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Summary 

This dissertation addresses the vehicle dispatching and conflict-free routing 

problems in two automated container terminal concepts. One is called Frame 

Bridge based Automated Container Terminal (FB-ACT) and the other is called 

Goods Retrieval and Inventory Distribution based Automated Container 

Terminal (GRID-ACT). As the size of realistic problem is large which 

requires very high computational and memory requirement, we develop a tree 

structure algorithm which is analogous to filtered beam search algorithm as 

the overall framework to solve the dispatching and routing problems. Based 

on the structure of the problems, we propose different novel solution methods 

and embed them into the analogous filtered beam search algorithm. In the FB-

ACT system, the first stage method estimates the results by a heuristic method 

which determines the task sequence based on pseudo delays. The second stage 

method obtains the results by solving the MIP model whose scale is greatly 

reduced when the decisions of vehicle dispatching problem are determined. In 

the GRID-ACT system, the first stage method obtains the results by the 

sequential path generation method. The second stage method implements a 

modified column generation algorithm which uses historical information to 

improve the results. As we observe some operational limitations that impede 

on the performance of the FB-ACT, we propose a hybrid FB-ACT system 

which uses some good ideas from the GRID-ACT to be implemented in the 

transportation system at the quayside. 
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CHAPTER 1 Introduction 

In 1955, former trucking company owner Malcom McLean and engineer Keith 

Tantlinger proposed to put the cargoes in steel containers as transportation 

units, which initiated the modern freight transportation. This mode not only 

provides protections against weather and pilferage, but also significantly 

improves the efficiency of cargo transportation and reduces the logistic cost. 

The unnecessary packing and unpacking in the transfer stations is prevented. 

The volume of cargoes is greatly increased by stacking the containers, which 

can carry as many as 14,000 TEUs.  

According to the statistics provided by Containerization International, annual 

container traffic has increased by approximately five fold in the past two 

decades from 28.7 million TEUs in 1990 to 135.4 million TEUs in 2014. 

Container traffic measures the flow of containers from land to sea transport 

modes, and vice versa, in twenty-foot equivalent units (TEUs). This growth 

trend is expected to continue. Facing with the continuously increasing 

container traffic, port operators insist on developing sustainable solutions to 

enhance the effectiveness and efficiency of container transportation between 

vessels and storage yard.  

In this introduction section, we will introduce the background of container 

terminals, followed by some commercial implemented automated container 

terminals, and then several new conceptual terminals are presented. 

1.1 Background of container terminals 

To complete the whole procedure of delivering the cargoes, the containers 

usually need to be transported via different transportation modes like vessels, 
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trains and trucks. The container terminals serve as the interface between these 

transportation modes. A container terminal is usually composed of three parts: 

quayside, storage yard and landside.  Figure 1.1 describes the layout and 

working flow of a container terminal. 

 

Figure 1.1 Working flow of a typical container terminal 

According to the work flow, the container activities can be categorized into 

three types: import, export and transshipment activities. For export activities, 

the containers are brought in by trains or trucks in landside and temporarily 

stored in the storage yard. When the containers are ready to be loaded, they 

are retrieved from the storage place and transported by internal transporters to 

the designated vessels. The equipment that transfers the containers between 
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internal transporters and storage yard is called yard crane (YC). The 

equipment that transfers the containers between internal transporters and 

vessels is called quay crane (QC). The processes for import activities are 

performed similarly but in the reverse order. For transshipment activities, the 

containers are unloaded from a vessel, stored in the storage yard, and will be 

ultimately loaded onto the designated vessels. Figure 1.2 describes the flow of 

these three activities in the container terminal. 

 

Figure 1.2 Import, export and transshipment 

Readers can refer to review papers by Steenken et al. (2004) and Stahlbock et 

al. (2008) for more detailed information on the operations in the container 

terminals. 

1.2 Automated Container Terminal 

Automation is the use of various control systems for operating equipment such 

as machinery, and processes in factories. Automation is proved to bring great 

benefits in manufacturing industry. It can considerably reduce the manpower 

cost. It can also reduce the carbon dioxide release by using electricity instead 

of diesel. The productivity is improved because the involved procedures are 



 

4 

 

performed smoothly by the control systems, which can reduce delay that 

happens during the handshakes among the equipment. It also helps to reduce 

unnecessary loss brought about from improper operations by manpower.  

The terminal operators over the world have been increasingly pressurized to 

provide better and faster service to vessel operators. More 16,000-19,000 TEU 

ships will be introduced in the trade. According to industry estimates (see 

Chan and Huat (2002)), the typical operating cost for a Post Panamax vessel 

per day, can easily come to US$ 30,000 (see Table 1.1 for details).  

Table 1.1 Operating cost for a typical Post Panamax vessel 

 US$/day 

Vessel Depreciation Cost (25 years life span) 10,000 

Fuel Cost (18 knots cruising speed) 10,000 

Wages, Maintenance and Insurance 10,000 

Considering the high operating cost, it is imperative for vessel operators to 

maximize the yields and the number of voyages made by each vessel. A major 

challenge in port management is thus to reduce the turnaround time of the 

container ships, especially for those with large container volume. 

On the other hand, environmental protection is a great concern worldwide and 

is believed to become more and more important. The CO2 emissions have 

become an issue and consequently there is increasing pressure on governments 

and industries to come forward with initiatives to it.  The equipment in a 

typical port is powered by diesel, which produces high carbon dioxide 
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emissions. Table 1.2 shows the CO2 emissions from container terminals of 

Rotterdam Port. (see Geerlings et al. (2011)).  

Table 1.2 CO2 emissions from container terminals of Rotterdam Port 

Container Terminal Total CO2 Emissions 

(kton CO2/year) 

CO2 Emission per TEU 

(kg CO2/TEU) 

Delta 71.30 16.73 

Home 15.01 15.01 

Hanno 1.20 24.00 

APM 35.95 16.34 

RST 10.76 9.35 

Uniport 6.53 17.18 

Total/Average 140.75 17.29 

Furthermore, the potential risk of strike cannot be neglected. It is reported that 

the West Coast container ports in US faced a loss of ten billion dollars due to 

the strike in early 2015. A strike also happened in the ports of Vancouver, 

which brought about eight hundred million dollars of loss per week.   

Therefore, introducing automation into the terminals becomes a substantial 

solution to these challenges. During the past two decades, port operators are 

insisting on improving the productivity by implementing automated 

equipment. The most successful commercial application is the automated 

guided vehicles based automated container terminals (AGV-ACT). Another 

commercially implemented case is the automatic straddle carrier based 

automated container terminals (ASC-ACT).   
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The first automated container terminal was implemented by Europe Container 

Terminal (ECT) in the 1990s at the Delta Dedicated North Terminal. 

Automated stacking cranes (ASCs) and automated guided vehicles (AGVs) 

were used. The AGVs were used to transport containers between the quayside 

and storage yard, whereas, the ASCs were used to stack the containers in the 

storage yard. Later, Container Terminal Altenwerder (CTA) also introduced 

ASCs and AGVs to the terminal in Hamburg. The layout of the AGV-ACT is 

showed in Figure 1.3. (Kim et al. (2004))  

 

Figure 1.3 Layout of AGV-ACT 

In the AGV-ACT system, AGVs take the place of trucks to transport the 

containers between quayside and storage yard. The AGVs are controlled by 

integrated information systems and move along the guide paths fixed on the 

ground. Rail mounted gantry cranes are implemented in the yard which are 

automated. For an unloading operation, a container picked up by a QC is put 

on an AGV which delivers the container to the storage yard. Different from 

the typical container terminal, the AGVs will not move into the storage yard. 
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They will stop at the end of yard blocks and wait for YCs to pick up the 

containers from them. After that, the AGVs are free and move to handle their 

next jobs. In the storage yard, a YC picks up the container from the AGV and 

will stack it onto a designated slot. The loading operation is performed 

similarly but in the reverse order.  

Automatic straddle carrier can both transport and lift/release containers. It 

allows for decoupling the work flow of transport and crane activities by using 

buffers at the respective interfaces. Moreover, the straddle carriers are able to 

stack four containers. They can not only be used as transporters but also as 

stack cranes in the storage yards. In this way, yard cranes like RTGCs or 

RMGCs are no longer needed. The automated straddle carrier system began to 

be used in Brisbane port in 2005. They have also been implemented in Maersk 

APM Shipping Container Terminal Port in Portsmouth Virginia. A study on 

the efficiency of the transportation equipment (AGV and automatic straddle 

carrier) was conducted by Park et al (2007).  

In addition to these commercially implemented automated container terminals, 

several new conceptual terminals are also proposed. They are Linear Motor 

Conveyance system based ACT (LMCS-ACT), Grid Rail system based ACT 

(GR-ACT), and Automated Storage/Retrieval system based ACT (AS/RS-

ACT). LMC system has been constructed and successfully tested in Eurokai 

Container Terminal, Hamburg by P. A. Ioannou (2000). The vehicles are 

replaced with shuttles that are moving on the linear motor conveyance system. 

The shuttles can be considered as vehicles moving on a fixed path. GR-ACT is 

proposed by Sea-Land and August-Design. Overhead rail is utilized in the 

storage yard for loading and unloading containers. It uses linear induction 
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motors, located on overhead shuttles that move along a monorail above the 

terminal. The containers are stacked beneath the monorail. The concept of the 

overhead grid rail system was used to design, simulate and evaluate a GR 

based ACT system by Ioannou et al. (2004). The AS/RS system in AS/RS-

ACT has three major hardware components: storage racks, storage and 

retrieval machines (SRM), and a shuttle. Rack structure is used to store the 

containers. A typical AS/RS structure module consists of single-deep stored 

unit loads and two parallel long narrow racks and an aisle between them. The 

SRM moves along the guide rails installed in the aisle. A shuttle is mounted 

on the SRM for pick-up and delivery in storage cells and P/D stands. 

Khoshnevis et al. (2006) proposed a simulation model which is developed for 

quantitative comparison of AS/RS systems. A comparison of the productivity 

among these ACTs can be found in the paper by Liu et al (2002).  

Compared to the ACTs discussed above, another two types of ACTs appear to 

be of interest. One type is called the Frame Bridge based ACT (FB-ACT) and 

the other one is called the Goods Retrieval and Inventory Distribution based 

ACT (GRID-ACT). These two ACTs are constructively changed, which bring 

exclusive benefits from the design. More details of these two ACTs are 

discussed in Sections 1.4 and 1.5, respectively. 

1.3 Frame Bridge Based Automated Container Terminal 

Shanghai Zhenhua Heavy Industries Co. Ltd. recently designed a real-size 

prototype automated container terminal that utilizes frame bridges, rail-

mounted frame trolleys and ground trolleys to transport containers between 

quay side and yard side. Figure 1.4 shows the layout of this ACT (Zhen et al. 

(2012)) 
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Figure 1.4 illustrates that the newly designed ACT is composed of three major 

parts: the quayside operation area, transportation area and storage area. Rail 

bridges are built to transport containers, which can be categorized into two 

types. One is laid parallel to the berth and interfaced with quay cranes, 

denoted as berth rails. The other is laid parallel to the yard block and 

interfaced with yard cranes, denoted as yard rails. The berth rails are 

constructed above the ground, and the yard rails are laid at ground level. These 

two parts of rail bridges cross each other perpendicularly. The transfer 

platform (TP) that sits on the berth rail provides an interface between the berth 

rail and the yard rail. 

Figure 1.4 Layout of the new design ACT 

The trolleys mounted on the berth rails are called frame trolleys (FTs). They 

are used to transport containers between QCs (quay cranes) and TPs. The 

trolleys mounted on the yard rails are called ground trolleys (GTs). They are 

used to transport containers between yard cranes and TPs. Because these two 
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parts of the rails are perpendicular to each other, the TP is used to rotate the 

containers 90 degrees during the handover of containers between these two 

types of trolleys. Because the terminal is covered by frame bridge rails, it is 

called Frame Bridge-based ACT (FB-ACT). This new ACT system has been 

proposed on the eastern side of Caofeidian Port (in Tianjin, China). In addition, 

SSA Marine is considering installing this ACT system at Long Beach in the 

coming years. 

Compared to other container terminal designs, the advantages of FB-ACT can 

be summarized as follows: 

1) The trolleys mounted on the rails can move at a high speed. They can 

reach speeds of up to 14 mph, whereas an AGV can travel up to 5 

mph when fully loaded. 

2) The productivity of yards is increased. In the AGV-ACT system, the 

YC needs to travel a longer distance on average to pick up/store 

containers. This is because the handover of containers between the 

yard crane and AGV occurs at the end of the block, whereas in the 

FB-ACT, the handover of containers can occur in the block and the 

GT speed is considerably faster than the YC.  

3) This system is a flexible design because the capacity can be increased 

by adding an additional layer of rails below or on top of the original 

rails in the future when it is needed. 

4) This system is green and requires less labor. FTs, GTs and TPs are 

powered by electricity instead of diesel. 
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However, the operation of the FB-ACT can be challenging. The handshakes 

among devices are one of the major issues to address because more equipment 

is required in this system. For a container handled by the QC, the handshake is 

between the QC and FT. For a container handled by the TP, the handshake is 

among the FT, GT and TP. Moreover, the system requires adequate traffic 

control, especially for FTs. Because the trolleys are mounted on the rails, they 

cannot cross over each other. The conflict of the trolleys can greatly affect the 

performance of this system. The research related to this type of configuration 

is limited. In our study, we are concerned with the problem of managing the 

involved resources and considering the vehicle collisions as well, to 

accomplish the container transportations between vessels and storage yard.  

1.4 Goods Retrieval and Inventory Distribution based Automated  

Container Terminal 

As the land becomes the scarcest resource in the cities, high land utilization 

becomes a significant benefit, which tends to be captured by the future 

generation ports. In addition, less handshakes among equipment is preferable 

when considering higher efficiency. It is quite challenging to maintain high 

efficiency under the circumstance of many handshakes. A new concept of 

ACT called Goods Retrieval and Inventory Distribution (GRID) based ACT 

proposed by BEC industries LLC, is a promising solution for the future 

generation ports. According to the study by Brian et al., it can save 

approximately 47% of the land for a layout with the scale of 31,200 TEUs.  

The GRID system is a new concept to optimize land utility and improve 

productivity in a container terminal. A 3D model of the port implementing the 

GRID system is shown in Figure 1.5. 
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Figure 1.5 3D model of GRID system 

It mainly consists of three components: transfer units (TUs), overhead rails 

and transfer tables. The TUs move along the rails which are bi-directional. It 

also can make a turn at the intersection of a horizontal rail and a vertical rail 

by switching the pair of wheels installed on the TU. Each TU has two pairs of 

wheels that are respectively responsible for vertical movement and horizontal 

movement. When a TU moves horizontally, the corresponding pair of wheels 

will be embedded in the horizontal rail and the other pair of wheels will be 

inactive. When the TU changes the direction from horizontal move to vertical 

move, the pair of wheels corresponding to horizontal move will be released 

from the horizontal rail and become inactive, while the other pair of wheels 

corresponding to vertical move will be embedded in the vertical rail. Once the 

procedure of the switch is accomplished, the TU can start to move vertically. 

The procedure is similar when the TU changes the direction from vertical 
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move to horizontal move. TUs are used to transfer the containers between 

storage yard and vessels. Transfer tables are built on the area at the quayside. 

They are used as buffers to decouple the operations of TUs and quay cranes. 

The flow of activities involving a container from vessel to storage yard can be 

described as follows: A quay crane picks up the container from the vessel and 

then puts it down on the transfer table. An empty TU arrives at the transfer 

table and picks up the container. The TU carrying the container moves along 

the rails to approach the specific slot where the container will be temporarily 

stored. Once the TU releases the container on the yard storage, it will move to 

handle other containers assigned to it. The procedure of moving containers 

from yard storage to vessels is similar in a reverse manner. In our study, we 

only focus on the operations of the inbound containers from vessels and 

outbound containers to vessels while the inbound containers from landside or 

outbound containers to landside is not in the scope of the study. Considering 

the scope of our study, the layout structure of the GRID system is simplified 

and it is shown in Figure 1.6.  

 

Figure 1.6 GRID system structure 
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The overhead rails cover two parts: transfer area and storage area. The storage 

area is where containers are stored. The transfer area is the place where the 

buffers are built. The operations on the buffers are shown in Figure 1.7. Half 

of the buffer is in the transfer area and the other half is under the quay crane. It 

is a two-layer buffer where the upper level is dedicated to inbound 

(discharging) containers and the lower level is dedicated to outbound (loading) 

containers. Each layer of the buffer is constructed by a belt conveyer. For an 

inbound container, the quay crane picks it up from the vessel and then puts it 

down on the buffer. Once the container is stable on the belt conveyer, the belt 

conveyer starts to convey the container to yard-side. The belt conveyer will be 

stopped when the container is under the location where a TU can approach to 

handle it. It is similar for the outbound container. When a TU carrying an 

outbound container arrives at the location above the buffer, it starts to put 

down the container on the belt conveyer at the lower layer. Once the container 

is  

 

Figure 1.7 Operations on the buffers 
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released on the conveyer, the conveyer starts to move the container to the 

quay-side so that a quay crane can handle it. The conveyer will also be 

stopped once the container arrives at the end of the buffer. However, quay 

cranes and TUs may still be delayed if the buffer is full. In our study, 

considering the fact that the QC is always the bottleneck in a container 

terminal system, we assume the capacity of the buffer on the transfer table is 

only one.  

Because the investment of the rails is high, the horizontal rails are not built on 

every row in the storage area and the contiguous vertical rails share one track 

in the middle of these two rails. However, two contiguous horizontal rails do 

not share the same track, which means the movement of TUs on the 

contiguous horizontal rails will not impact each other. This can improve the 

efficiency of the system by reducing the delay time or the detour of TUs.  

According to the operations in the GRID system, we can find that the 

assignment of containers to TUs and the route of TUs to complete their jobs 

are the crucial issues that affect the productivity of the system. A good 

schedule can maintain high productivity of quay cranes, and reduce the 

waiting time as well as detour of TUs during the routing procedure. Therefore, 

the motivation of our study is to find a promising scheduling for the GRID 

system so that the terminal can approach high efficiency under the 

circumstance of high land utilization. 

1.5 Contribution of the thesis 

The contributions of this thesis can be listed as follows: 
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(1) One new conceptual ACT called the FB-ACT is studied. To the best of our 

knowledge, our study is the first work to provide the details of the 

operations of the FB-ACT system. We emphasize on the management of 

resources in order to reduce the delay that happens during the handshakes 

and avoid vehicle collisions which significantly affects the efficiency of 

the system. A mathematical programming model is developed to solve the 

problem. Because the model cannot be solved when the scale of the 

problem is large, we develop a tree structure algorithm. The motivation of 

the algorithm is to decompose the problem to the sub-problems with small 

scale which can be solved efficiently. By the decomposition, the variables 

of the mathematical programming model for the conflict-free routing 

problem are greatly reduced. Our algorithm can obtain much more 

promising solutions compared with a heuristic algorithm using randomly 

dispatching rule and First Come First Serve (FCFS) rule. 

(2) Another new conceptual ACT called the GRID-ACT is studied. In the 

GRID-ACT, the main issues are the vehicle dispatching and conflict-free 

routing problems. Given the intrinsic difficulty of this problem, the tree 

structure algorithm is also adopted to solve the complicated problem and a 

column generation based algorithm is developed to solve the sophisticated 

conflict-free routing problem. Because of the complexity of the conflict-

free routing problem, the typical column generation algorithm cannot 

solve the problem well. Thus, we will continue the search by using the 

information from the solution obtained by the typical column generation 

algorithm. New columns can be generated by adding new constraints to 

the master model. The motivation of the new constraints is to prevent the 
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TUs from running in the congested area, so that we can obtain a promising 

and feasible solution for the conflict-free routing problem. Our algorithm 

can obtain satisfying solutions when compared to the algorithm with 

heuristic rules. 

(3) By analyzing the performance of FB-ACT and GRID-ACT, we proposed a 

new design of the container terminal. The main drawback of FB-ACT is 

the relatively large waiting time because of the prevention of vehicle 

collisions. The vehicles in GRID-ACT can flexibly select paths to prevent 

vehicle collisions, which can reduce the waiting time. However, because 

of the slow speed of the vehicles and the long distance of the paths, GRID-

ACT has to spend a relatively large time on traveling. This newly designed 

terminal is a hybrid of FB-ACT and GRID-ACT, which appears to offset 

the drawbacks of these two kinds of terminals. The problem about the 

vehicle dispatching and conflict-free routing is also solved by the tree 

structure algorithm. The subtask sequence is critical when we solve the 

routing problem. We propose two methods to determine the subtask 

sequence. One is based on the least delay time when neglecting vehicle 

collisions. The other one is based on the estimated starting time of the 

subtasks calculated by the column generation algorithm. The first method 

is much faster than the second one, which is used in the screening 

procedure, while the second method is used to determine the decisions 

involved with the routing problem. This newly designed terminal 

outperforms FB-ACT as shown by a comparison study.   

1.6 Organization of the thesis 

This thesis consists of six chapters, which are organized as follows. 
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Chapter 2 reviews the related studies on the vehicle dispatching problem and 

conflict-free routing problem, as well as the literatures that solve these two 

problems simultaneously.  

Chapter 3 proposes the study on the FB-ACT. A mathematical model is 

developed to solve the vehicle dispatching and conflict-free routing 

simultaneously. By decomposing the problem, the conflict-free routing 

problem can be solved optimally by a mixed integer programming. 

Chapter 4 describes the research on GRID-ACT. The problem is modeled as a 

set partitioning problem. A column generation algorithm with a further search 

procedure algorithm is proposed to obtain an integer solution.  

Chapter 5 develops a new design of the terminal, which is a hybrid of FB-

ACT and GRID-ACT. We develop two methods for solving the routing 

problem. A comparison study is conducted, which shows that the new design 

can be more efficient than FB-ACT. 

Finally, in Chapter 6, we consolidate the findings from the previous chapters 

and future research directions are also discussed. 
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CHAPTER 2 Literature Review 

There are numerous research works in the area of container terminal 

operations. However, the published works related to our topic is not much. 

Thus this literature review will also contain the areas having large parallels 

with our topic. The major works are scheduling problems of quay cranes and 

yard cranes, vehicle dispatching and routing problem in ACT system, 

automated warehouse. Literature reviews on port operations can be found in 

Vis and de Koster (2003), Steenken et al. (2004) and Robert Stahlbock and 

Stefan (2008). After that, we will also conduct a reviews related to the major 

algorithms applied in our works. 

2.1 Quay Crane Scheduling and Yard Crane Scheduling 

Quay cranes and yard cranes are the critical resources in container terminals. 

A well scheduling of them can significantly improve the efficient of the 

system. The ideas of the works in this area are helpful to develop algorithms 

for our topic. Thus, the research works of quay crane scheduling and yard 

crane scheduling are discussed. 

2.1.1 Quay Crane Scheduling 

The quay crane scheduling problem aims to solve the allocation of quay 

cranes to the containers with non-interference. It is called Quay Crane 

Scheduling with Non-Interference constraints Problem (QCSNIP). Kim et al. 

(2004) proposed a mixed integer programming model which considers various 

constraints related to the operation of QCs. The cross over among QCs is 

avoided by constraints in the MIP model. A branch and bound method and a 

heuristic algorithm called greedy randomized adaptive search procedure 
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(GRASP) are proposed to solve the problem. Lee et al. (2008) propose a more 

concise MIP model for the QCSNIP. They proved the QCSNIP is NP-

complete. A genetic algorithm is proposed to obtain its near optimal solutions. 

Bierwirth et al. (2009) present a revised optimization model for the scheduling 

of quay cranes and propose a heuristic solution procedure. The heuristic takes 

advantage of efficient criteria for branching and bounding the search, which is 

applied for searching a subset of above average quality schedules. Ng et al. 

(2006) propose a heuristic algorithm that decomposes the difficult multi-crane 

scheduling problem into easier sub-problems by partitioning the ship into a set 

of non-overlapping zones. The sub-problems for each possible partition are 

solved optimally by a simple rule. An effective algorithm is developed to find 

tight lower bounds. The results show that the heuristic can indeed find 

effective solutions with 4.8% above their lower bounds. Moccia et al. (2006) 

formulate this problem as a VRP with side constraints including precedence 

relations between vertices. The objective is to minimize the weighted sum of 

the completion time of a single vessel and the idle times of cranes which 

originate from interferences between cranes since cranes roll on the same rails 

and a minimum safety distance must be maintained between them. Marcello et 

al. (2007) decompose the quay crane scheduling problem into a routing 

problem and a scheduling problem. The routing problem is solved by a Tabu 

search heuristic, while a local search technique the minimizing the longest 

path length in a disjunctive graph, is used to generate the solution of the 

scheduling problem. Cononaco et al. (2008) present a queuing network model 

to solve this problem with the objective of minimizing the turnaround time of 

the vessels. 
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2.1.2 Integration of berth and quay crane scheduling problem 

The integration of berth and quay crane scheduling problem is an important 

research topic in this area because it can help achieve a more significant 

improvement on the efficiency of the ports than the scheduling of berths and 

quay cranes separately. Kim et al. (2005) propose an integer programming 

model by considering various practical constraints. A two-phase solution 

procedure is developed for solving the mathematical model. The first phase 

aims to solve the berth allocation problem which determines the berthing 

position and time of each vessel and the number of cranes assigned to each 

vessel at each time segment. The second phase concentrates on solving the 

quay crane scheduling problem based on the solution found from the first 

phase. Imai et al. (2008) propose a heuristic algorithm by employing a genetic 

algorithm. The fitness value of a chromosome is found by crane transfer 

scheduling across berths, which is determined by a maximum flow problem-

based algorithm based on the berth allocation problem solution defined by the 

chromosome. Liang et al. (2009) solve the problem of determining the 

berthing position and time of each ship as well as the number of quay cranes 

assigned to each ship, with the objective of minimizing the sum of the 

handling time, waiting time and the delay time for every ship. They find an 

approximate solution by combining genetic algorithm with heuristic. Chang et 

al. (2010) develop a hybrid parallel genetic algorithm (PGA), which combined 

parallel genetic algorithm and heuristic algorithm. The PGA is used to attain 

the sub-optimal solution for the BAP and QCAP. The heuristic algorithm is 

aimed at generating feasible solutions for population initialization, which can 

reduce the solution dimension. Lee et al (2010) propose a genetic algorithm to 
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obtain near optimal solution. The chromosome represents a sequence of 

container ships where a berth allocation can be constructed based on this 

sequence. An approximation algorithm is developed to solve the quay crane 

scheduling problem after the BAP is solved. Vacca et al. (2013) propose a 

model which is solved via column generation. An exact branch and price 

algorithm with several accelerating techniques is implemented to obtain 

optimal integer solutions to the problem. This is the first exact branch and 

price algorithm for the integrated planning of berth allocation and quay crane 

assignment. 

2.1.3 Yard Crane Scheduling 

The yard cranes are the equipment in the storage yard which can significantly 

affect the productivity of the container ports. Thus, yard crane scheduling is 

widely studied. Some research works solve the problem with single yard crane. 

Kim and Kim (1999) consider the dispatching of a single yard crane by 

formulating it as a transportation problem. The visiting route is determined 

with a dynamic programming procedure. Ng and Mak (2005) study the 

scheduling of a single yard crane for a given set of loading and unloading 

containers with different ready times. A branch and bound algorithm is 

implemented to solve the problem where efficient heuristics are proposed to 

find the lower bounds and upper bounds. Ng et al. (2005) study the problem of 

scheduling a yard crane with the objective of minimizing the sum of job 

waiting times. A heuristic algorithm based on a sequential sequence-building 

approach is proposed to solve the problem. The results show that the proposed 

heuristic can find effective solutions for the problem.  
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More research works are conducted with the consideration of multiple yard 

cranes. One of the critical constraints of this multiple yard crane scheduling 

problem is to prevent the yard crane interference. Ng. W. C. (2005) develops a 

dynamic programming based heuristic to solve the scheduling problem. It is a 

two phase algorithm where the first phase is to simplify and decompose the 

multiple yard crane scheduling problem into m independent single yard crane 

scheduling problems by partitioning the yard zone. Each sub-problem is 

solved by a heuristic rule based on the smallest job completion time. The 

second phase is to employ a job reassignment procedure to improve the 

schedule obtained in the first phase. The results show that the proposed 

algorithm can find solutions which are on average 7.3% above their lower 

bounds. Jung and Kim (2006) study the problem of scheduling multiple yard 

cranes to serve multiple quay cranes, where the adjacent yard cranes working 

in the same block have interference with each other. The algorithms based on 

GA and SA approaches are proposed to schedule the travelling route of the 

yard cranes and number of containers to pick up in each yard bay. Li et al. 

(2009) develop an efficient model for yard crane scheduling by taking into 

account realistic operational constraints such as inter-crane interference, fixed 

yard crane separation distances and simultaneous container storage/retrievals. 

They propose heuristics and rolling-horizon algorithm to solve the problem 

quickly with yielding near optimal solutions. Javanshir and Ganji (2010) 

propose a genetic algorithm to solve the yard crane scheduling problem with 

non-interference constraints. Chang et al. (2011) propose a novel dynamic 

rolling-horizon decision strategy for the yard crane scheduling. An integer 

programming model is built at the beginning to minimize the total task 



 

24 

 

delaying at blocks. A heuristic algorithm along with a simulation model is 

then applied. He et al. (2010) proposed a hybrid algorithm, which employs 

heuristic rules considering the workload of the yard crane and the number of 

yard cranes in the block, and then a parallel genetic algorithm is employed. 

Computational results show that the proposed method can solve the problem 

efficiently. 

2.2 Vehicle Planning Problem 

The vehicle planning problem aims to solve the problems like determining the 

vehicle to deal with certain containers considering a set of constraints. These 

constraints include: avoiding of vehicle collisions and deadlocks, and 

satisfying the time-window constraints. In our review, we will focus on the 

vehicle dispatching problem, vehicle routing problem and the integration of 

these two problems. 

2.2.1 Vehicle Dispatching Problem 

The vehicle dispatching is concerned with the problem that determines which 

vehicle transports which container to achieve certain goals. In the port area, 

the vehicles are the trucks, AGVs or straddle carriers. It is also an important 

topic in the research area of the port operations. Zhang et al. (2005) present 

three MIP models for the vehicle dispatching problem in a container terminal 

to determine the starting times of jobs as well as the work sequence of 

vehicles. The models only consider the unloading phase of a vessel in one 

berth and the vehicles are assumed to be dedicated to a certain quay crane. 

Two of these models can obtain a lower bound for the optimal value, while the 

complicated model can be solved by a greedy algorithm, which is capable of 

solving large scale problems. Kim et al. (2004) propose a heuristic algorithm 
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where two main steps of feasibility checking and delaying events are repeated. 

During the searching procedure, only the most imminent tasks are considered 

in the dispatching. Bise et al. (2005) develop easily implementable heuristic 

algorithms and identify both the absolute and asymptotic worst-case 

performance ratios of these heuristics. The greedy algorithm is based on the 

way that assigns container jobs to the vehicle with earliest arrival time. A 

refined greedy algorithm is proposed by considering a simple look-ahead rule 

when the algorithm is applied to the multiple crane model. Lee et al. (2010) 

solves the vehicle dispatching problem while considering the quay crane and 

yard crane capacity. A heuristic algorithm that combines the genetic algorithm 

and minimum cost flow (MCF) network model is proposed to tackle the 

problem. The ready time for jobs is used as the representation of the 

chromosome, while the MCF model is then used to decode the chromosome to 

determine the job sequence for the vehicles. 

As the AGVs are implemented in container terminals in these two decades, the 

vehicle dispatching concerning AGVs becomes a critical part of the research 

in the port operations. Kim et al. (1999) formulate a mixed integer linear 

programming model for dispatching AGVs with the objective of minimizing 

the delays of the vessels and the traveling time of the AGVs. Liu et al. (2002) 

study the performance of four different heuristic AGV dispatching rules by 

simulation method. The four different vehicle-initiated AGV dispatching rules 

are: longest travel distance rule; shortest travel distance rule; random rule; 

minimum yard crane queue size rule. The results show that the minimum yard 

crane queue size rule can achieve the best throughput performance. Grunow et 

al. (2006) propose a simulation study of AGV dispatching strategies in a 
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seaport container terminal. A typical on-line dispatching strategy commonly 

adopted from flexible manufacturing systems is compared with a pattern-

based offline heuristic proposed in the paper. Results of the simulation study 

reveal that the pattern-based heuristic clearly outperforms the on-line strategy. 

Briskorn et al. (2006) propose a formulation to avoid estimates of driving 

times, completion times, due times and tardiness, based on a rough analogy to 

inventory management and is solved using an exact algorithm. The results 

obtained from the simulation method show that the inventory-based model 

leads to better productivity on the terminal than the due-time-based 

formulation. 

2.2.2 Vehicle Routing Problem 

The vehicle routing problem (VRP) is the problem of designing optimal 

delivery or collection routes from one or several depots to a number of 

geographically scattered cities or customers, subject to side constraints. It is 

firstly proposed by George Dantzig and John Ramser in 1959. (The truck 

dispatch problem). In the container terminal, the transporters like trucks, 

straddle carriers or AGVs also face the VRP when they transfer the containers 

between the storage yard and vessels. The critical issue of the VRP in the 

container terminal is to avoid the collisions among the vehicles. Kim et al. 

(1991) propose an algorithm based on Dijkstra’s shortest-path method. A 

concept of time window graph is introduced in which the node set represents 

the free time windows and the arc set represents the reachability between the 

free time windows. By using the Dijkstra’s shortest-path method, a conflict-

free route for each vehicle is generated sequentially. Kim et al. (1993) present 

a conservative myopic strategy to coordinate the movements of vehicles in a 
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bidirectional AGV system. Oboth et al. (1999) address design and operational 

control issues for an AGV based material handling system. An effective route-

generation technique based on a bi-directional network that provides conflict-

free routes for multiple AGVs with varying speeds is presented. This 

technique generates the routes sequentially when considering the demand 

selection policies, demand assignment policies and idle AGV positioning 

policies. Qiu et al. (2001) present a bi-directional path layout and an algorithm 

for routing AGVs. Based on the path topology and the routing algorithm, 

provably sufficient and necessary conditions are obtained to achieve the 

conflict-free routes and shortest possible time. Jeon et al. (2011) determine the 

shortest-time routes inclusive of the expected waiting times instead of the 

simple shortest-distance routes. They propose a method for estimating the 

waiting time for each vehicle that results from the interferences among 

vehicles during travelling. The estimation of the waiting times is achieved by 

using the Q-learning technique and by constructing the shortest-time routing 

matrix for each given set of positions of quay cranes. Möhring et al. (2005) 

present an algorithm which avoids collisions, deadlocks and livelocks for the 

problem of routing AGVs. A shortest path with time-windows is first 

determined by real-time computation, and a following readjustment is 

implemented to these time-windows. The results of comparing to a static 

routing approach show that the algorithm has an explicit advantage. Zeng et al. 

(2008) present a mathematical model for general container routing in mesh 

yard layouts. A simple routing algorithm based on the model is proposed to 

choose suitable vehicle speed such that the vehicles using the same junction 

will arrive at different points in time to prevent conflicts. Numerical results 
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show that the routing scheme has good performance and the conflicts are 

prevented. Maza et al. (2001) propose a robust predictive method of routing 

without conflicts, consisting of adding a layer of real time control. Maza et al. 

(2005) propose an approach which combines the optimized pre-planning 

algorithm and the real-time routing algorithm. The algorithm consists of two 

stages: the first stage is the control stage, where a pre-planning method is used 

to establish the fastest conflict-free routes for AVGS; the second stage is used 

to avoid conflicts in a real-time manner when it is needed. Singh et al. (2002) 

propose a multi-agent approach to the operational control of AGVs by 

integration of path generation, enumerating time-windows, searching 

interruptions, adjusting waiting time and making decisions on the selection of 

routes. It presents an efficient algorithm and rules for finding a conflict-free 

shortest-time path for AGVs by using loop formation in a flow path network 

to deal with the parking of idle vehicles without obstructing the path of 

moveable AGVs. 

2.2.3 Integration of Vehicle Dispatching Problem and Conflict-free 

Routing Problem 

The integration of vehicle dispatching problem and conflict-free routing 

problem is a complicated problem. This problem can be solved to optimality 

only when the number of vehicles is very small. Desaulniers et al. (2003) 

model the problem by a set partitioning formulation. The model is then solved 

to optimality by a column generation method, where a branch-and-cut 

exploration tree is applied. Due to the complexity of the problem, it can only 

be solved up to four vehicles within controllable time. Corréa et al. (2004) 

propose an approach which combines constraint programming for vehicle 
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dispatching and mixed integer programming for routing without conflict. 

These two methods are iteratively executed until an optimal solution is found. 

The approach also limits the number of AGVs to six. Most of the research 

works implement heuristic algorithms to solve the problem under a realistic 

environments. Ghasemzadeh et al. (2009) present an integrated algorithm for 

scheduling and routing of AGVs in mesh-like systems. The scheduling 

algorithm aims to achieve the goals including: prediction and prevention of 

conflicts; arbitrary choice for AGVs to traverse the shortest path from source 

to destination; effect of priority policies to the scheduling result; no theoretical 

limitation on the number of participating AGVs. The routing algorithm aims 

to reduce the average number of conflicts which is closely related to the 

scheduling algorithm. Nishi et al. (2011) decompose the problem into two 

levels: the upper level master problem of task assignment and scheduling; and 

the lower level routing subproblem. The master problem is solved by using 

Lagrangian relaxation and a lower bound is obtained. Two types of cuts are 

proposed to exclude previous feasible solutions before solving the master 

problem again. One of the cuts is the capacity constraint, while the other one 

is for restricting the feasible region of the Lagrangian relaxation problem for 

the upper level master problem. Nishi et al. (2012) present a Petri net 

decomposition approach to solve the problem in dynamic environments. Static 

problems for finding near optimal dispatching and conflict-free routing are 

solved first. The entire Petri net is decomposed into task and AGV subnets, 

which is solved by the penalty function method. A deadlock avoidance 

method is embedded to ensure the feasibility and quality of the solution.    
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2.3 Automated Warehouse 

An automated warehouse is a facility where all or some of the tasks related to 

storing, retrieving, and moving inventory are carried out by automated 

systems. Automatic storage and retrieval (ASRS) is used in warehouses where 

robots store materials, selecting the best location on the basis of available 

space and inventory rotation needs, and retrieve those materials when they are 

needed. The robots in this system are called automated guided vehicles 

(AGVs). The routing of AGVs in this system is widely studied. Because of the 

complicated of this problem and the computing time restriction, various   

heuristic algorithms are proposed to solve this problem. 

Amato et al. (2005) develop a control algorithm for the management of an 

automated warehouse system. A model is built up by using the colored time 

Petri nets framework, to optimize the operations of the cranes and the 

operations of the shuttle, respectively. The proposed architecture and control 

algorithms are applied to a real plant. Liu (2011) proposes a new multi-

objective mathematical model to the integrated scheduling problem on the 

basis of a typical warehouse layout. A heuristic algorithm based on genetic 

algorithm is proposed to solve the problem. Vangeri and Hebbal (2014) 

present the picking route optimization of automated warehouse which is 

solved by modified genetic algorithm. The initial nodes are generated in a 

random manner for finding the complete route, and then applied the input 

parameters to modified genetic algorithm by which obtained the optimum 

route with low distance and time. Li et al. (2011) study the path optimization 

of automated warehouse. A mathematical model of stacker operation is built 

to minimize the length of operation path and operation time. The model is 
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solved by using the ant colony optimization method. Jiang et al. (2010) 

establish the corresponding simplified model of the warehouse and picking 

path model. Using the graph theory algorithm, it propose for the stacker 

picking path optimization of the existing warehouse. Wang et al. (2008) 

introduce the theory and methods of modeling automated warehouse with 

colored time Petri net. A colored token represent a job piece, RGV or crane 

and the color of each token was the residual sequence of places for a job piece 

visiting. He et al. (2007) propose a modular and computerized model and 

characterized control flow of the resources, and token colors were defined as 

the routes of storage/retrieval operations Lis et al. build a mathematical model 

to analysis of the optimization for AGVs in automated warehouse. A 

framework of a dispatching approach with genetic algorithm is proposed to 

solve the scheduling problem of AGV in automated warehouse. The coding, 

selection and mutation is discussed considering the characters of the problem. 

Deng et al. (2013) established a mathematical model of scheduling for the 

storage and retrieval path, which takes the shortest path as the optimization 

goal. An immune selection combined with discrete particle swarm 

optimization is proposed to optimize the path, to avoid falling into local 

optimum prematurely, and to find the optimal solution easier.    

2.4 Filtered Beam Search 

Filtered beam search algorithm is proposed by Ow et al. (1988). It is a kind of 

tree structure based algorithm. Evaluation functions are used to assess the 

performance of the nodes in the tree. A local evaluation which is fast but less 

accurate will first be applied to screen the nodes with poor performance. After 

the filtering procedure, a global evaluation which is more accurate but 
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expensive in computation effort will be applied to select the beam nodes. 

Filtered beam search algorithm can produce high quality solutions with a 

controllable computation effort. The algorithm is widely used to solve 

combinatorial optimization problems in various areas.  

Ow et al. (1989) solve the problem of scheduling a given set of jobs on a 

single machine to minimize total early and tardy costs. The priority search 

using a priority function is applied as the evaluation function for screening. 

The probe search using cost function is the evaluation function to select the 

beam nodes. De and Lee (1990) solve the problem for scheduling jobs in a 

flexible manufacturing system (FMS). The algorithm uses a frame-based 

knowledge representation scheme and a problem-solving strategy based on 

filtered beam search. Nair et al. (1995) solve the product line design problem 

using the beam search approach. The solutions are closer to the optimal, have 

smaller standard deviation over replicates, and take less computation time. 

Also optimal solutions are obtained more often and a number of “good” 

product lines are identified explicitly. Sabuncuoglu and Bayiz (1999) develop 

a beam search based scheduling algorithm for the job shop problem. The 

makespan and mean tardiness are used as the performance measures. The 

results indicate that the beam search technique is a very competitive and 

promising tool to obtain good solutions efficiently. Kim et al. (2004) apply a 

beam search algorithm to solve the load-sequencing problem in container 

terminals with the objective of maximizing the operational efficiency of 

transfer cranes and quay cranes while satisfying various constraints on 

stacking containers onto vessels. Wang and Lim (2007) solve the berth 

allocation optimization problem by transforming it into a multiple stage 
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decision making procedure. A new multiple stage search method is proposed 

based on the beam search algorithm.  

2.5 Column Generation Algorithm 

Column generation is an efficient algorithm for solving large linear programs. 

Many linear programs are too large to consider all the variables explicitly. 

Since most of the variables will be non-basic with a value of zero in the 

optimal solution, only a subset of variables needs to be considered in theory 

when solving the problem. The algorithm generates only the variables which 

have the potential to improve the objective function. The algorithm was 

initially proposed by Gilmore and Gomory (1961). It is fruitfully applied in 

various areas, especially in the areas like routing and scheduling.  

This paragraph will present some works that are using the algorithms based on 

column generation to solve the vehicle routing problem. Desrosiers et al. 

(1984) use a column generation approach in which the columns are generated 

by a shortest-path-with time windows algorithm. Agarwal et al. (1989) 

propose a computationally viable algorithm based on column generation 

algorithm where implementation strategies based on theoretical as well as 

empirical results are developed. Taillard E. D. (1999) presents a heuristic 

column generation method for solving vehicle routing problems with a 

heterogeneous fleet of vehicles. The column generation is based on the 

adaptive memory procedure which uses an embedded taboo search. 

Desaulniers et al. (2002) propose accelerating strategies implemented in 

conjunction with column generation to solve the vehicle routing and crew 

scheduling problems. The techniques are embedded in the five phases of the 

solution process: pre-processor, subproblem, master problem, branch-and-
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bound, and post-optimizer. Choi and Tcha (2007) apply a column generation 

based approach for a vehicle routing problem with a heterogeneous fleet of 

vehicles having various capacities, fixed costs and variable costs. A couple of 

dynamic programming schemes developed for the classical vehicle routing 

problem are emulated with some modifications to efficiently generate feasible 

columns. Baldacci et al. (2008) present a new exact algorithm for the 

Capacitated Vehicle Routing Problem based on column generation with 

additional cuts which correspond to capacity and clique inequalities. The new 

columns are generated with the reduced costs that are smaller than the gap 

between an upper bound and the lower bound. Mourgaya and Vanderbeck 

(2007) present a truncated column generation procedure followed by a 

rounding heuristic to construct the approximate solutions. 

This paragraph will present the works that implement column generation 

algorithm to solve the scheduling problem. Appelgren et al. (1969) apply 

column generation algorithm for a ship scheduling problem. Problems with 

about 40 ships and 50 cargoes are solved in about 2.5 min. Some integer 

programming experiments have been made in order to resolve the fractional 

cases. Desrochers et al. (1989) propose a column generation approach to solve 

the transit crew scheduling problem which has to create minimal cost bus 

driver schedules respecting both the collective agreement with labor unions 

and the bus schedule. Chen and Powell (1999) implement column generation 

algorithm to solve a class of problems of scheduling n  jobs on m  identical, 

uniform, or unrelated parallel machines with an objective of minimizing an 

additive criterion. Ribeiro and Soumis (1994) present a formulation to the 

multiple-depot vehicle scheduling problem as a set partitioning problem with 
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side constraints. The continuous relaxation is amenable to be solved by 

column generation. Van et al. (2000) discuss how the column generation can 

be applied to alleviate the difficulties associated with the size of time-indexed 

formulations. Bard and Purnomo (2005) present a methodology for scheduling 

nurses in which several conflicting factors guide the decision process. The 

methodology is a column generation approach that combines integer 

programming and heuristics. A double swapping heuristic is used to generate 

the columns.  

Wilhelm Wilbert E (2001) and Vanderbeck (2005) conduct a review of using 

column generation in integer programming problems.  
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CHAPTER 3 Vehicle Dispatching and Conflict-free Routing 
Problems Under FB-ACT 

3.1 Problem Definition 

This thesis considers the problem that determines the assignment of FTs to 

deliver containers under the cooperation of related resources, such as QCs, 

TPs and GTs, to ensure efficiency of the operation of the FB-ACT system. The 

goal of our study is to minimize the makespan of a given number of container 

jobs.  

Compared to existing terminals, more equipment is used in the FB-ACT, 

which requires more handshakes among different types of devices. In the 

AGV-based ACT, two types of handshakes exist: between QC and AGV and 

between YC and AGV. However, there are more handshakes in FB-ACT. The 

handshakes can be categorized into four types: between the QC and FT, FT 

and TP, TP and GT and GT and YC. Therefore, the operations of the FB-ACT 

can be challenging because of the handshakes between different devices. 

Another challenge is the conflict among FTs on the same track. Delays will 

occur during the process of handoffs and the process of avoiding FT conflict. 

An effective schedule is necessary to significantly reduce the delay. To solve 

the problem, we must determine the assignment and sequence of containers in 

each resource, such as the QC, FT, TP and GT. We also need to prioritize FTs 

when there is an FT conflict. 

The following assumptions are introduced for the formulations of the problem: 

(1) Each QC contains its own job sequence list.  

(2) A TP is dedicated to several neighboring yards.  

(3) Only one GT is running on each yard rail, i.e., there is no conflict among 

GTs. 
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(4) The yard location of each container job is known. 

(5) The travelling speed of empty and loaded FTs and GTs is the same. 

The elements in our problem can be summarized as: 

(1) The assignment of containers to FTs; 

(2) The job sequence of resources, including FTs, TPs and GTs. 

(3) The priority of FTs when there are FT conflicts. 

Unlike FTs, for which we need to determine the assignment of containers as 

well as the sequence, we only need to determine the job sequence in TPs and 

GTs. When a container is assigned to an FT, we will know the TP and GT to 

which this container will be assigned. The reason is that we know at which 

yard location the container is going to be stored or retrieved. Each yard block 

is served by only one GT; therefore, the assignment of the container to a GT is 

known. Additionally, each yard is served by a dedicated TP on each berth rail. 

Thus, when a container is assigned to an FT, the assignment of the container to 

a TP is known. Therefore, we only need to determine the sequence of the 

containers in each GT and TP.  

We introduce the following notations:  

Notations 

Parameters 

Q  the set of QCs; 

 the number of horizontal rails (berth rails); 

 the set of FTs; 

 the set of FTs that belonging to Rail , ; 

R

F

iF i FFF r  ...1
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 the number of FTs in the Rail ,  , specially   

 the set of TPs. 

 the set of TPs that belonging to Rail , ; 

B  the number of Block (several contiguous yard blocks form a 

Block, and each yard block belongs to only one Block); 

 the set of loading jobs; 

 the set of discharging jobs; 

H  the set of all the jobs, ; 

QL  the set of subtasks handled by QC; 

 the set of subtasks handled by TP; 

G   the set of all subtasks, TPQLG  ; 

Q  the number of jobs of QC   

  the yard block that subtask  belongs to, ;  

 job index. The job  refers to the th job in the sequence 

list of QC ; 

 subtask index. The subtask of the first stage of job ; 

  subtask index. The subtask of the second stage of job . If 

job  is a loading job, then  is a subtask handled by 

TP, and  is a subtask handled by QC; if job  is a 

rN r || rr FN  .00 N

P

iP i PPP r  ...1

L

D

DLH 

TP

),,( hiB 
),,( ki  TPki ),,( 

),( i ),( i i



)1,,( i ),( i

)2,,( i ),( i

),( i )1,,( i

)2,,( i ),( i
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discharging job, then  is a subtask handled by QC, and 

 is a subtask that handled by TP. 

  the processing time of subtask . 

  the processing time of subtask . 

  the FT traveling time from location of subtask  to 

location of subtask . 

  the TP traveling time from location of subtask  to 

location of subtask . 

  the location of subtask .  

Decision Variables: 

m

iX ),(  =1 if the container of job  is carried by FT ; otherwise 0. 

 if the starting time of subtask  is greater than or equal 

to the finishing time of subtask ; otherwise 0. 

   the starting time of the first subtask of job ; 

          the starting time of the second subtask of job . 

3.1.1 Activity for discharging and loading jobs 

The container jobs can be categorized into discharging jobs and loading jobs. 

We need to analyze the flow time of these two jobs so that they can be 

formulated into a mathematical model. The entire process of loading a 

container and discharging a container in the FB-ACT is described below. 

)1,,( i

)2,,( i

)1,,( ip )1,,( i

)2,,( ip )2,,( i

f t

ljkit ),,) (,,(  ),,( ki 

),,( lj 

tp

ljkit ),,)(,,(  ),,( ki 

),,( lj 

),,( kil  ),,( ki 

),( i m

1),,)(,,( ljkiZ  ),,( lj 

),,( ki 

)1,,( iT ),( i

)2,,( iT ),( i
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Suppose a discharging job  is assigned to an FT k . QC  picks up the 

container from the vessel. Then, the spreader of QC  grasping the container 

moves to the rear of the QC and waits for FT k . When FT k  arrives at the 

point where containers can be picked up or dropped off by QCs, the container 

is placed on FT k . At this time, QC  is available to conduct the next job. FT 

k , carrying this container, moves to next location where the container will be 

transferred to a GT. During the movement of FT k , it may be delayed if 

another FT is processing a container on the route of FT k . When FT k  arrives 

at the location to transfer the container, the process of transferring the 

container can be started if both the TP and GT are ready. Once the TP picks up 

the container from FT k , it rotates the container 90 degrees so that the 

container can be placed on the GT. After the container is placed on the GT, the 

TP and FT are available for their next jobs. The GT will carry the container to 

the corresponding storage location. The yard crane will pick up the container 

and put it at its storage location. At this time, the discharging job for this 

container is completed. The operations of a loading job are similar. 

The activity flow of discharging jobs and loading jobs is shown in Figures 3.1 

and 3.2, respectively. 

3.1.2 Activity flow for discharging jobs (Figure 3.1) 

The procedure of a discharging job  is described in the activity flow in 

Figure 3.1.  

),( i 





),( i
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Figure 3.1 Activity flow for a discharging job 

There are two activities in Figure 3.1. The first is related to the transfer of a 

container between the FT and QC, and the second is related to the transfer of a 

container between the FT and GT. They will block the rail during the transfer 

operations. Other FTs on the same rail cannot pass through the blocked 

location until those operations are completed. We define these two activities as 

two subtasks. Each job contains two subtasks.  

)1,,( iT  denotes the starting time of the first subtask of a container job . 

For discharging jobs, the starting time is the moment that QC  starts to 

release the container to an FT. The end of this subtask is the moment that the 

container is placed on the FT. The first shaded area in Figure 3.1 is the 

processing time of subtask . At time )1,,()1,,(  ii pTT  , the QC is free 

and can move to serve the next container. )2,,( iT  is the starting time of the 

second subtask of the container job. For discharging jobs, the starting time is 

the moment that the FT and the related TP and GT are ready for the transfer of 

the container. The discharge job ends at the moment the container is placed on 

the GT. The second shaded area in Figure. 2 is the processing time of subtask 

),( i



)1,,( i
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. At time )2,,()2,,(  ii pTT  , the FT and TP are free and can move to 

their next jobs. At time ),()2,,()2,,(  iii gpTT  , the container job is complete 

and the GT is free to serve its next job. The processing time in which the GT 

with the container moves to the specified slot on the yard and the YC transfers 

the container from the GT to the slot is denoted by ),( ig . 

3.1.3 Activity flow for loading jobs (Figure 3.2) 

The following activity flow describes the procedure of a loading job . 

Similarly, for loading jobs, )1,,( iT  is the starting time of the first subtask. It is 

the time that TP starts transferring the container from the GT to the FT 

(denoted as FT k ). At time )1,,()1,,(  ii pTT  , the container is placed on the 

FT. The GT and TP are free for their next jobs. )2,,( iT  is the starting time of the 

second subtask and is the time that QC begins to pick up the container from 

the FT. At time )2,,()2,,(  ii pTT  , the container is picked up, and the FT is 

free for its next job. At time ),()2,,()2,,(  iii qpTT  , the loading job is 

completed and the QC is free for its next job. The processing time in which 

the QC moves to the specified slot on the vessel and then places the container 

in the slot is denoted by 
),( iq . 

Therefore, the completion time of a loading container job is 

),()2,,()2,,(),(  iiii qpTC  . The completion time of a discharging container 

job is ),()2,,()2,,(),(  iiii gpTC  .  

 

)2,,( i

),( i
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Figure 3.2 Activity flow for a loading job 

3.1.4 Conflict Resolution  

Two subtasks cannot be carried out simultaneously when they are competing 

for the same resources, or there is traffic conflict between the FTs. Some 

subtasks will be delayed to avoid conflicts in resources and traffic.  

We introduce the variable ),,)(,,( hjkiZ   to set apart the starting time of subtasks. 

),,)(,,( hjkiZ  =1 if the starting time of subtask ),,( hj   is greater than or equal 

to the finishing time of subtask ),,( ki  . The relationship of the processing 

time of two subtasks can be represented by the equations with variable 

),,)(,,( hjkiZ  . They are shown in Figure 3.3.  

Figure 3.3 illustrates that two subtasks cannot be operated simultaneously and 

are represented by the equation: 1),,)(,,(),,)(,,(  kihjhjki ZZ  . Either 

),,)(,,( hjkiZ   or ),,)(,,( kihjZ   is equal to 1, meaning that either subtask  

starts to be operated after subtask  is completed or subtask  is 

started after subtask  is completed.  

 

),,( hj 

),,( ki  ),,( ki 

),,( hj 
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Figure 3.3 Relationship between the processing time of two subtasks 

The resources in our problems are the FT, QC, TP and GT. For the pair of 

subtasks that are competing for the same resources, some constraints are 

proposed to ensure that they will not be operated simultaneously, as shown 

below: 

 

Moreover, any two successive subtasks that use the same QC or GT must also 

be set apart by a minimum handling time. For these two successive subtasks 

that belong to different types of jobs (loading or unloading), the minimum 

separation time is different. 
qc

ldt  is defined as the minimum separation time of 

two successive subtasks that use the same QC, with the former subtask 

belonging to a loading job and the latter subtask belonging to a discharging 

job. Similarly, we can define the other minimum separation times as 
qc

dlt , 
qc

llt , 

and 
qc

ddt . Any two successive subtasks that use the same GT will also be set 

apart by a certain time interval. They are denoted by 
gt

ldt , 
gt

dlt , 
gt

llt , and 
gt

ddt . 

)1(

;1

),,)(,,(),,(),,(),,(

),,)(,,(),,)(,,(





hjkikikihj

kihjhjki

ZMpTT

ZZ




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In summary, the starting time of any two successive subtasks that use the same 

QC or GT should satisfy the following constraint: 

)( ),,)(,,(),,(),,(),,( 1 hjkimskikirj ZMtpTT  , 

where mst  is the minimum separation time defined above. Because the QC 

sequence is given, the value of ),,)(.,( hjkiZ   is known when the subtasks 

),,( ki   and ),,( hj   are competing for the same QC (thus  and  are the 

same). The constraints can be presented as: 

QLhikitpTT mskikihi  ),,1(),,,(,),,(),,(),,1(   

Additionally, the travel time should be considered when the subtasks are 

competing for the same resources, such as the TP and FT. We have the 

constraints: 

 if these two subtasks are 

competing for the same FT; 

 if they are competing for 

the same TP. 

FT conflict will also contribute to delay because two subtasks cannot be 

conducted simultaneously when there is an FT conflict between them. One 

will be operated first, whereas the other one will be delayed. The variable 

),,)(.,( hjkiZ   is used to avoid conflict among FTs. To build the constraints that 

avoid the conflict among FTs, the FTs on the same rail are set in increasing 

order from left to right. Suppose that FT  performs subtask ),,( hj   and 

that FT  performs subtask ),,( ki  .  

Consider the following conditions: 

 

)1( ),,)(,,(),,)(,,(),,(),,(),,(  hjki

f t

hjkikikihj ZMtpTT 

)1( ),,)(,,(),,)(,,(),,(),,(),,(  hjki

t p

hjkikikihj ZMtpTT 

1k

2k



 

46 

 

(1) FT  and FT  are on the same rail; 

(2) < , i.e., FT  is on the left-hand side of FT ; 

(3) > , i.e., the location of subtask ),,( hj   is on the right-hand 

side of subtask ),,( ki  . 

If conditions (1)-(3) are met, there is an FT conflict between these two 

subtasks. Consequently, subtask ),,( ki   and subtask ),,( hj   cannot be run 

simultaneously to avoid FT conflict.  

The number of FTs on rail r  is indicated as rN , and the index of the FTs on 

the same rail is increased from left to right. The set of FTs on each rail can be 

presented as 
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The constraint to avoid FT conflict can be represented by (a):      

   

(a) 

Condition (1) can be obtained as 

 

When Condition (1) holds, Constraint (a) can be reduced to (b): 
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       (b) 

If Condition (1) holds, Conditions (2) and (3) are satisfied. This is denoted as 

the equation: 

 

This means the FT (denoted as ) for subtask   is on the left hand 

side of the FT (denoted as ) for subtask , i.e., . 

From (b), we can see that 1),,)(,,(),,)(,,(  kihjhjki ZZ   must be satisfied, which 

implies either ),,)(,,( hjkiZ   or ),,)(,,( kihjZ   is equal to one. Therefore, these two 

subtasks cannot be operated simultaneously. The constraint can ensure that 

any pair of subtasks with FT conflict will not be operated simultaneously. The 

time constraint can be presented as 

Consequently, if there is FT conflict between two subtasks, either 

 or 

 holds. 

3.2 Mathematical model 

The mathematical model is shown below. 

},{: ),(),(2)2,,(),(),(1)2,,(
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Constraints: 

(1) FT dispatching constraints 

                                                                             (3.2) 
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(2) Time constraints for the two tasks of a given job 
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(4) Domain of variables: 
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Objective (3.1) minimizes the makespan of a given set of container jobs. 

Constraints (3.2) – (3.5) are the constraints of FT dispatching. Constraint (3.2) 

ensures that every container job must be completed by exactly one FT. 

Constraint (3.3) means that each FT can only carry one container at a time. 

Conflict among FTs can be avoided via Constraint (3.4). Constraint (3.5) is the 

time constraint for two tasks if they cannot be performed simultaneously. 

Constraint (3.6) is the time constraint for the subtasks of each container job. 

Constraints (3.7) – (3.10) guarantee that the starting time of two successive 
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subtasks of the same QC must be separated by a minimum handling time. 

Constraint (3.11) ensures that each GT can only carry one container at a time. 

Constraints (3.12) – (3.15) ensure that the starting time of two successive 

subtasks of the same GT must be separated by a minimum handling time. 

Constraints (3.16) – (3.17) represent the time of constraint for the subtasks 

that use the same TP. It ensures that each TP can only operate one container at 

a time. Constraints (3.18) – (3.20) define the domains of the decision variables. 

3.3 Filtered Beam Search-based Algorithm 

To minimize the makespan of a given set of container jobs, we need to make 

the following decisions: 

(i) The assignment of container jobs to FTs; 

(ii) The job sequence among resources, including FTs, TPs and GTs. 

(iii) The prior ordering of FTs when there is FT conflict.  

The solution space of the decision variables increases exponentially with 

increases in the number of jobs. Existing commercial solvers are not able to 

solve the MIP model. Therefore, we develop a heuristic algorithm using the 

filtered beam search concept to address our problem. 

3.3.1 Filtered beam search algorithm 

Before presenting our algorithm, we first introduce the analogous algorithm 

called the filtered beam search (FBS) algorithm. The filtered beam search 

algorithm was proposed by Ow et al. (1988). It is widely used to solve 

combinatorial optimization problems in various areas, such as berth allocation 

problems (BAP) (Wang et al. (2007)), job shop scheduling (Sabuncuoglu et al. 

(1999)), load sequencing of outbound containers (Kim et al. (2004)), product 
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line design and selection (Nair et al. (1995)), and the single machine 

early/tardy problem (Ow et al. (1989)).  

FBS is a type of tree structure-based algorithm. The beam nodes represent the 

partial solutions with good performance and are further expanded to generate 

new nodes. Evaluation functions are used to assess the performance of these 

nodes. The nodes with good performance are most likely to be selected to be 

the beam nodes of the next level in the tree. By continually expanding the tree, 

a good and complete solution can be obtained at the leaf level. However, the 

computation time can be quite large due to the effort of evaluating large 

numbers of nodes generated from the beam nodes. To make the algorithm 

efficient, a local evaluation (a cost estimated by a simple or greedy rule) will 

first be applied to help screen the nodes. The local evaluation is simple and 

computationally fast. After the filtering procedure, based on the local 

evaluation, many nodes with poor performance are screened out, whereas a 

smaller number of nodes are retained. Another function, called global 

evaluation (a cost estimation projecting the current partial solution to a 

complete solution), will be applied to evaluate the retained nodes. Beam nodes 

are selected based on the results of the global evaluation. The significance of a 

FBS can be summarized as follows. The local method is computationally 

inexpensive but less accurate. The global method is more accurate but 

computationally expensive. The filtering procedure removes the poor 

candidates so that the global method does not have to evaluate them. It can 

produce high-quality solutions with an efficient computational effort.  
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3.3.2 Development of the tree structure algorithm 

Our algorithm is also constructed by tree structure and is analogous to FBS 

when using the screening procedure. However, the most remarkable point 

distinct from FBS is the mechanism of the global evaluation. In FBS, the 

global evaluation is to project the current partial solution to one complete 

solution or a certain number of complete solutions, and then the result of this 

complete solution or average of the results of those complete solutions is 

considered as the estimated cost of the partial solution. Thus it can be seen that 

the way to generate complete solutions is substantially crucial to the accuracy 

of the estimated cost. Because of the complexity of our problem, finding a 

way that generates promising complete solutions from partial solutions is 

intractable. Therefore, we will propose an optimal method or near optimal 

method to evaluate the nodes again after the screening procedure instead of 

the global evaluation. In other words, we will not project our partial solutions 

to a complete solution.    

The expansion of nodes in the tree is also different. In our tree structure 

algorithm, a unit called the intermediate node will be generated from upper 

level first before a new beam node is created.  

To illustrate our tree structure algorithm clearly, some related terms need to be 

defined first. 

Beam node: the nodes in the tree which will be further explored. It represents 

the solution of involved subtasks showing how these subtasks are assigned to 

vehicles and how the vehicles transport the containers without collisions.  
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Partial solution: A beam node in the tree structure, except at the leaf level, 

represents a partial solution when not all of the subtasks have been assigned. 

Complete solution: A beam node at the leaf level in the tree structure 

represents a complete solution that all subtasks are accomplished with the 

feasible schedule. 

Assigned subtask: The subtask in the beam node is called an assigned subtask. 

The involved decision variables are determined for these subtasks. 

Unassigned subtask: A subtask that has not been assigned to the beam node 

is called an unassigned subtask. 

Assigned subtask with partial decisions: This is a subtask that is assigned to 

a beam node during the procedure of expanding a beam node. Only the 

decision about the vehicle assignment, as well as the sequence of this subtask 

in the corresponding vehicle, is determined. 

We can give the explicit procedure of how the tree structure algorithm 

searches for a complete solution. At the root level of the tree, there is only one 

beam node that is an empty set. A large number of intermediate nodes are 

generated by selecting unassigned subtasks and assigning them to vehicles. A 

method called the surrogate method is developed to assess the fitness of these 

intermediate nodes. The surrogate method should be computationally fast. A 

related small number of intermediate nodes are retained after the screening 

procedure based on the results from the surrogate method. A method called the 

detail method is developed to solve the intermediate nodes to optimal 

solutions or near optimal solutions. Because the intermediate nodes represent 
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the solution of vehicle dispatching problem, the detail model solves the 

conflict-free routing problem under the solution of vehicle dispatching 

problem. After the calculation of detail model, vehicle dispatching and 

conflict-free routing problems of the subtasks in the intermediate nodes are 

solved. The best m  intermediate nodes according to the results of the detail 

method are selected as new beam nodes at next level. The subtasks in the 

beam nodes become assigned subtasks and are removed from the set of 

unassigned subtasks. The tree is expanded in this way until the leaf level is 

approached. The framework of the filtered beam search based algorithm can 

be described by Figure 3.4.  

 

Figure 3.4 Framework of the tree structure algorithm 
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3.3.3 Discussion of the performance of the tree structure algorithm 

It is intractable to simultaneously solve the vehicle dispatching and conflict-

free routing problems when the planning horizon is large. However, we can 

try to obtain promising solutions by dynamically rolling the planning horizon. 

Each time we solve the problem to optimality or near optimality within a 

related small planning horizon. The planning horizon is extended step by step 

until it becomes complete. It is believed that longer decomposed planning 

horizon brings the solution closer to optimality. However, the computational 

efforts are exponentially increased when the decomposed planning horizon 

gets longer. The tree structure algorithm is in line with the strategy of rolling 

the planning horizon. A complete planning horizon is equivalent to the tree 

from root to leaf. Each expansion of the tree is similar to rolling the planning 

horizon. 

The number of retained partial planning horizons is also significantly affects 

the final result. It is intuitive that when more number of promising partial 

planning horizons are retained for further exploration, the final result will be 

closer to optimality. This number of retained partial planning horizons is 

reflected as the beam number in the tree structure algorithm. Considering the 

computational efforts, the number of beam nodes has to be controlled. The 

performance of the tree structure algorithm is deteriorated if the number of 

possible intermediate nodes if extensively large. The possibility of losing 

promising solutions will increase because of missing the promising 

intermediate nodes among the huge set. Fortunately, the number of 

intermediate nodes is arbitrarily large because of the concept of QC list under 

the container terminal environment. In the vehicle dispatching problem under 
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the container terminal environment, a work schedule of QCs is constructed 

first based on the bay profile, which is sent as a guideline for discharging and 

loading operations by a shipping agent. Then, a sequence list called the QC list 

is made, which specifies the sequence of discharging and loading operations 

of individual containers by the corresponding QC. Thus, there exists a 

precedence relationship among the subtasks operated by the same QC. 

Consequently, we should avoid assigning a container job to a vehicle if a 

certain number of container jobs that preceding this container job are not 

accomplished. Therefore, the possible number of the intermediate nodes can 

be dramatically reduced.  

We implement the tree structure algorithm to solve the three problems under 

different container terminal systems. According to the characteristics of 

container terminal systems, different surrogate methods and detail methods are 

proposed. The next three chapters will introduce the new container terminal 

systems and discuss how we implement the algorithm to solve the complicated 

problems of vehicle dispatching and conflict-free routing. 

3.3.4 The fitness calculation 

We want to examine the efficiency of the schedule represented by the 

intermediate nodes. A good schedule should not contain long delay times or 

large number of unproductive moves. The delay time is involved in the 

handshakes among different types of equipment or during the FT conflict. The 

unproductive moves of FTs include empty FTs travelling to pick-up their next 

container, or in making way for other FTs to prevent FT conflict. Therefore, 

the fitness of the intermediate node, denoted as , is defined as the ratio of f
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unproductive time to the length of the time window. A smaller fitness leads to 

a better intermediate node. The unproductive time includes the delay time and 

the time of unproductive FT moves. To determine the unproductive time, we 

must define the time window. The start time of the time window begins at the 

end time of the beam node from which the intermediate node is expanded. The 

end time of the time window is the time when the earliest FT finishes all look-

ahead subtasks. In the fitness calculation, we only consider the unproductive 

time within the time window. To obtain the end time of the time window, we 

must calculate the completion time of the assigned subtasks with partial 

decisions. Two methods are proposed to make the decisions for calculating the 

completion time of the assigned subtasks with partial decisions in the 

intermediate nodes. The surrogate model approach is the first approximation 

method, and the reduced MIP model approach is the other more accurate 

method. The surrogate model approach is used to filter out the intermediate 

nodes with poor performance, saving the best w  intermediate nodes, where 

w  is the filter width. The reduced MIP model approach will then calculate the 

fitness of the saved intermediate nodes again. The new generation of beam 

nodes will be derived from the intermediate nodes with the first b  smallest 

fitness value, where b  is the beam width. The details of these two approaches 

will be discussed later in this section.  

A simple example is given below to illustrate the procedure of calculating the 

fitness of an intermediate node. We assume that there are three FTs and that 

the look-ahead number is two. The QC handling time is 90 s, whereas the TP 

handling time is 60 s. The index of subtask ),,( ki   means the k th subtask of 

the i th container in the QC   list. We randomly select the unassigned 
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subtasks and assign them to the FTs. After the assignment procedure, we 

obtain the FT sequence of the newly assigned subtasks as follows: subtasks 

)2,3,3(),1,3,3(  assigned to FT1, subtasks )1,1,5(),2,1,4(  assigned to FT2 and 

subtasks )2,2,4(),1,2,4(  assigned to FT3. The starting time of the current time 

window is the completion time of assigned subtask )2,3,4(  (referring to Figure 

3.5), which is also the end time of the previous time window. After the 

calculation by the surrogate model, the completion time of each subtask is 

obtained and the Gantt Chart is compiled, as shown in Figure 3.5. The 

completion time of subtask )1,1,5(  is the end time of the time window because 

FT2 is the earliest FT that completes all of its look-ahead subtasks.  

Hence, the fitness can be calculated: 

75.1
220500

7514511014515

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Figure 3.5 Gantt chart based on the surrogate model approach 

3.3.5 Surrogate model approach  

There are two types of subtasks in an intermediate node: assigned subtasks 

and assigned subtasks with partial decisions. The completion time of the 
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assigned subtasks is determined and will not change. We only need to 

calculate the completion time of the assigned subtasks with partial decisions.  

The surrogate model approach calculates the completion time of one subtask 

at a time. According to the sequence in each FT, a set that consists of the first 

subtask in each FT is constructed. This set is called Set P. We will select one 

subtask in Set P whose completion time will be determined. Then, Set P will 

be updated by removing the selected subtask and adding the subtask following 

the selected subtask belonging to the same FT. The procedure is executed until 

the completion time of all assigned subtasks with partial decisions is 

determined. The assigned subtasks with partial decisions are the subtasks that 

are assigned to the FTs when expanding the beam node.  

The way to select the subtask such that its completion time will be determined 

is based on the cost of the subtask in Set P. The cost of a subtask is defined as 

the delay time the subtask brings to other subtasks in Set P. For example, two 

subtasks (denoted as A1 and A2) cannot be executed simultaneously. Subtask 

A2 will be delayed if we allow subtask A1 to be conducted first. The delay 

time of subtask A2 is brought from subtask A1. We then select another subtask 

(denoted as A3) in Set P. The delay time of subtask A3 is calculated in the 

same manner that we let subtask A1 be conducted first. When the delay time 

of subtask A3 is calculated based on subtask A1, we do not consider the 

impact of other subtasks, such as A2, on subtask A3. In summary, the sum of 

the delay time of all subtasks in Set P, except subtask A1, represents the cost 

of subtask A1. The costs of other subtasks in Set P are calculated in the same 

manner. 

After *m  selections, where m  is the number of FTs and   is the look-
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ahead number of subtasks for one FT, the completion time of all  the assigned 

subtasks with partial decisions can be calculated. Therefore, the fitness of the 

intermediate node can be calculated based on the completion time of the 

subtasks.  

Some notations must first be introduced to interpret the pseudo-code of the 

surrogate model approach. 

The sequence of subtasks in FT i  is represented as ),..,,( ,2,1  iii，i fffSF , 

where 
jif ,
 is the index of the subtask, the subscript i  is the index of FT and j  

is the index of the order in the sequence. 
jif ,
 represents the j th subtask that 

FT i  will carry out.   is the look-ahead number of the subtasks that each FT 

will carry out. A candidate set, denoted as S , is the set of subtasks among 

which there is one subtask, which will be selected to calculate its completion 

time. The cost of subtask 
jif ,
 is denoted as 

jif
C

,
. The completion time of 

subtask 
jif ,
 is denoted as 

jif
CT

,
. The pseudo-code is shown below: 

_______________________________________________________________ 

Initialization of candidate set, }|{ 1, MifS i  , where M  is the set of FTs. 

while S , do 

          (1) calculate SfC jif ji
, where,

,
; 

          (2) select the subtask }{min  where,
,

,
,, ji

ji
ji f

Sf
fji CCf


 ; 

          (3) determine the completion time of subtask 
jif ,
,   

              },max{
,,,,, ,, jijijijiji f

ft

fhhf

ft

fkkf ptCTptCTCT  , where subtask k  

is the previous  

              subtask of subtask 
jif ,
 in the same FT, and subtask h  is the subtask 
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with which subtask    

             
jif ,
 cannot be operated simultaneously; 

          (4) update S : 

                      Remove subtask 
jif ,
 from S ; 

                    if there exists subtask 
1, jif , do 

                           choose the subtask 
1, jif  to enter S ; 

                    end if 

end while 

_______________________________________________________________ 

                 

3.3.6 Reduced MIP model approach  

The original MIP model, described in Section 3.2, cannot be solved by 

commercial software for large-scale problems. However, the MIP model can 

be greatly reduced when the assignment of subtasks to FTs and the sequence 

of subtasks in FTs are given. For clarity, we propose a definition denoted as 

the FT schedule. The FT schedule is the assignment of subtasks to FTs as well 

as the subtask sequence in each FT. We can re-model the problem given the 

FT schedule, which is deemed a reduced MIP model. It can be found in 

Appendix A. 

To show the reduction of variables in the reduced MIP model with the given 

FT schedule, some examples are created. The results are shown in Table 3.1. 

The number of FTs is three in each instance in Table 3.1. 

The number of variables in the reduced MIP varies depending on the FT 

schedule, whereas the number of variables in the original MIP is fixed. A 

certain number of FT schedules are generated for each case. The number of 
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variables in the reduced MIP is the average number among the generated FT 

schedules. 

Table 3.1 Comparison of the number of variables between the reduced and 

original MIPs 

Case Average no. of variables 

in the reduced MIP 

No. of variables in the 

original MIP 

Ratio 

10 jobs 79 448 0.1746 

12 jobs 102 635 0.1612 

15 jobs 152 972 0.1570 

20 jobs 231 1699 0.1364 

30 jobs 471 3750 0.1261 

40 jobs 804 6585 0.1226 

50 jobs 1,251 10,244 0.1224 

Because we only calculate the completion time of a certain number of 

subtasks, the number of subtasks in the reduced MIP model is limited so that 

the computing time will be small. The completion time of each look-ahead 

subtask can be obtained from the optimal solution of the reduced MIP model. 

The fitness value can be found according to the completion time of the 

subtasks. The reduced MIP model can be used in the second-stage selection. 

This method is more accurate than the surrogate model, but the computing 

time is longer.  

The method in the first-stage selection should be easy and computationally 

efficient. However, it should also be precise so that good solutions will not be 

discarded. A large number of calculation examples are created to show that the 

correlation coefficient between the fitness values is high based on the 

surrogate model and reduced MIP model. The computing time of these two 

approaches is also compared. The results are provided in Table 3.2. 
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Table 3.2 Correlation coefficient between surrogate model and reduced MIP 

model 

 Correlation coefficient Computing time ratio 

3 subtasks look-ahead 0.8432 30.12 

4 subtasks look-ahead 0.8131 32.88 

5 subtasks look-ahead 0.7892 37.23 

6 subtasks look-ahead 0.7732 43.69 

The correlation coefficient is high and most of the unsatisfying partial 

solutions can be discarded by the first stage selection. The computing time of 

the surrogate model is much shorter than that of reduced MIP. Therefore, a 

large number of partial solutions can be evaluated in the first stage selection. 

In summary, for each beam node, we randomly generate a certain number of 

intermediate nodes during the expanding procedure. For each generated 

intermediate node, we first use a surrogate model approach to calculate the 

fitness. The best w  (filter width) intermediate nodes are retained after the 

filtering procedure. These intermediate nodes are assessed by the reduced MIP 

model approach. The best b  (beam width) intermediate nodes are retained. 

Beam nodes are derived from these best b  intermediate nodes. The algorithm 

is terminated when the completion time of all subtasks is determined, where 

the beam nodes represent a complete solution. The best solution can then be 

selected from the beam nodes. 

3.4  Computation experiments 

Experiments are conducted to assess the proposed approaches. The 

experiments are divided into two parts: the first part is to assess the proposed 

algorithm by comparison to the optimal results. The second part analyzes the 
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layout that impacts the performance of the FB-ACT.  

3.4.1 Comparison study of the performance of the proposed methods 

The parameters involved with the TP, GT, QC and FT are shown as follows: 

The speeds of the FT, GT, and TP are 4, 4 and 1 m/s, respectively. The QC 

handling time is 40 moves per hour, and the TP handling time is 60 moves per 

hour. The layout of the terminal in our experiments is shown in Figure 3.6. All 

of the numerical studies use the same parameters. 

Figure 3.6 The layout of the terminal 

As our problem is focus on the operation in the area of rails for FTs, the 

movement of QCs is not considered. Each QC is assumed to be fixed. The 

horizontal distance between two contiguous rails for is 20 meters. Like the 

layout shown in Figure. 3.6, the distance between the QCs and yards are given 

in Table 3.3. 

Table 3.3 distance between QC and yard 

 Yard1 Yard2  Yard3 Yard4  Yard5 Yard6 Yard7 Yard8 Yard9 

QC1 10 

(meters) 

10 30 50 70 90 110 130 150 

QC2 70 50 30 10 10 30 50 70 90 

QC3 130 110 90 70 50 30 10 10 30 
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As there is only one GT in each rail, there is no conflict of GTs. The operation 

in the yard area is simplified. We assume the location of the container in the 

yard is in the middle. We also assume that the yard crane is always ready for 

the GT. Hence, the travel time of a GT between the pickup/draw point by TP 

and pickup/draw point by yard crane can be set to be 12.5 second. The 

handling time that the yard crane picks up (draws) a container from (to) a GT 

is set to be 10 second. Similarly, the handling time that the TP picks up (draws) 

a container from (to) a GT is 10 second. The minimum separation time of GT 

can be shown in Table 3.4. Since the location is assumed to be fixed, the 

minimum separation time of QC is shown in Table 3.4 

Table 3.4 minimum separation time of QC 

Notation Time (second) Notation Time (second) 

ll

qct
 

45 ll

gtt
 

45 

ld

qct
 

145 ld

gtt
 

0 

dl

qct
 

0 dl

gtt
 

185 

dd

qct
 

45 dd
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The look-ahead number in our experiments is set to 4. There is a tradeoff 

between the computation time and accuracy of the algorithm when choosing 

the look-ahead number. A larger look-ahead number leads to a longer 

computation time in the reduced MIP model. In addition, when generating the 

intermediate nodes from beam nodes, the number of possible combinations 

will increase greatly if the look-ahead number is larger. Because we will only 
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generate a certain number of intermediate nodes, the likelihood of losing the 

optimal assignment will increase if the number of possible candidates of the 

intermediate nodes is large. However, if the look-ahead number is not 

sufficiently large, the accuracy of the algorithm will decrease. Therefore, we 

set the look-ahead number to 4.  

Table 3.5 Comparison with the optimal results 

Case  CPLEX 

 

FBS 

____________________ 

Optimal 

Gap 

 Makespan CPU Time 

(min) 

Makespan CPU Time 

(min) 

P1 (8 jobs, 3FT)          14.45 0.05 14.45 3.00 0 

P2 (9 jobs, 3FT)          14.61 0.05 14.61 2.91 0 

P3 (10 jobs, 3FT)        14.40 0.61 14.42 4.67 0.14 

P4 (10 jobs, 3FT)        16.08 0.62 16.09 4.45 0.06 

P5 (12 jobs, 3FT)        16.75 2.34 16.8 4.50 0.30 

P6 (12 jobs, 3FT)        17.25 2.40 17.83 4.52 3.36 

P7 (12 jobs, 4FT)        16.10 2.50 16.15 4.62 0.31 

P8 (15 jobs, 3FT)        20.33 32.47 20.75 8.67 2.07 

P9 (15 jobs, 3FT)        22.00 22.26 22.07 8.17 0.32 

P10 (15 jobs, 4FT)      19.89 25.08 19.90 9.50 0.05 

P11 (15 jobs, 4FT)      19.87 24.42 20.42 8.62 2.77 

P12 (15 jobs, 4FT)      19.50 36.34 19.77 8.77 1.13 

P13 (20 jobs, 3TF)      24.07 3 h 21 24.79 11.52 2.99 

P14 (20 jobs, 4FT)      23.07 4 h 31 23.72 12.01 2.64 

  Average Optimality Gap                   1.153 

When the number of jobs is small, CPLEX can solve our MIP model and 

obtain the optimal result. Fourteen instances are randomly generated. There is 

only one rail in each instance. Three quay cranes serve the jobs and containers 

are distributed among nine yard blocks. The comparison is shown in Table 3.5. 

The optimality gap is relatively small when the problem scale is small. The 

computation time of the CPLEX method increases exponentially. Our 
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algorithm can solve the problems in polynomial time. The optimal results in 

large-scale problems cannot be obtained by commercial software. Therefore, 

we assess our algorithm via comparison with the results calculated by the 

FCFS rule. 

Table 3.6 Comparison with the FCFS rule 

 FCFS rule FBS Gap (%) 

P1 (20 jobs, 3FT) 36.53 24.95 31.70 

P2 (20 jobs, 4FT) 36.75 22.28 39.37 

P3 (20 jobs, 5FT) 34.03 20.43 39.96 

P4 (20 jobs, 6FT) 34.54 20.13 41.72 

P5 (20 jobs,7FT) 30.03 17.77 40.83 

P6 (20 jobs, 3FT, 2Rail) 24.55 17.67 28.02 

P7 (20 jobs, 2FT, 3Rail) 20.75 15.03 27.57 

P8 (20 jobs, 3FT, 3Rail) 19.99 13.64 31.77 

P9 (30 jobs,3FT) 61.82 42.68 30.96 

P10 (30 jobs, 4FT) 60.82 41.50 31.77 

P11 (30 jobs, 5FT) 55.73 38.10 31.63 

P12 (30 jobs, 6FT) 54.13 36.28 32.98 

P13 (30 jobs, 7FT) 54.84 38.90 29.06 

P14 (30 jobs, 3FT, 2Rail) 40.56 25.00 38.36 

P15 (30 jobs, 2FT, 3Rail) 31.55 24.67 21.81 

P16 (30 jobs, 3FT, 3Rail) 31.27 22.89 26.80 

P17 (40 jobs, 3FT) 83.68 50.70 39.41 

P18 (40 jobs, 4FT) 79.88 46.27 42.08 

P19 (40 jobs, 5FT) 81.74 42.60 47.88 

P20 (40 jobs, 6FT) 80.92 42.23 47.81 

P21 (40 jobs, 7FT) 73.61 41.25 43.96 

P22 (40 jobs, 3FT, 2Rail) 55.73 38.28 31.31 

P23 (40 jobs, 2FT, 3Rail) 46.44 30.97 33.31 

P24 (40 jobs, 3FT, 3Rail) 44.46 28.48 35.94 

P25 (50 jobs, 3FT) 110.45 66.97 39.37 

P26 (50 jobs, 4FT) 109.56 65.20 40.49 
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Continue Table 3.6    

P27 (50 jobs, 5FT) 99.63 56.77 43.02 

P28 (50 jobs, 6FT) 104.14 55.57 46.64 

P29 (50 jobs, 7FT) 102.12 54.47 46.66 

P30 (50 jobs, 3FT,2Rail) 73.79 45.35 38.54 

P31 (50 jobs, 2FT, 3Rail) 63.38 44.55 29.71 

P32 (50 jobs, 3FT,3Rial) 61.99 36.57 41.01 

In Table 3.6, the index like (3FT, 2 Rail) means that there are 2 rails and 3 FTs 

are mounted on each rail. 

Table 3.6 suggests that our algorithm significantly outperforms the FCFS rule 

in every instance, especially in cases with a relatively large number of FTs (i.e., 

five, six or seven) on the same track. The average difference of the instances 

that is less than or equal to three FTs on the same track is 32.85% and it is 

40.37% when there are more than three FTs on the same track. The FCFS rule 

performs poorly in its handling of the FT conflict. The FCFS rule is a greedy 

heuristic rule that considers a relatively small number of combinations of 

solutions, whereas our algorithm uses the MIP to optimize the solutions of the 

assigned subtasks with partial decisions.   

3.4.2 Effects of the parameters on the efficiency of FB-ACT  

Effects of the allocation of FTs on the makespan 

 

Table 3.7 Effects of the allocation of FTs on the makespan 

 1 Rails, 6 FTs 

(min) 

2 Rails, 3 FTs 

(min) 

3 Rails, 2 FTs 

(min) 

20 jobs 21.55  18.24 16.23 

30 jobs 35.44 27.60 26.33 

40 jobs 42.12 37.05 33.24 

50 jobs 56.04 46.34 43.87 
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15 instances are created in each case in Table 3.7. The result is the average of 

the instances.  

The results indicate that for a given total number of FTs, the system performs 

better with fewer FTs on the same rail. This finding is intuitive because when 

the number of FTs on one rail is reduced, the number of potential FT conflicts 

decreases. However, the difference between columns 4 and 3 in Table 3.5 is 

considerably less than that between columns 3 and 2. Because the delay time 

due to FT conflict is not so much in the case of 3 FTs on a rail, the reduction 

of FTs on the same rail will not yield significant benefits. 

Effects of the average job distance on the makespan 

The allocation of containers can affect the performance of the system by 

increasing the delay due to FT conflict. Because container jobs with long 

distances will increase the traveling time, we set the traveling time to zero to 

eliminate its impact on the makespan. In addition, there is no conflict on the 

traveling route of GTs. The distance between the transfer point by the TP and 

the yard storage point will not affect the makespan. Therefore, the job distance 

in our numerical experiments is between the QC pick-up or delivery point and 

the transfer point by the TP. Four groups of numerical experiments are 

conducted. The horizontal coordinate is the distance. Each experiment 

contains seven intervals of distance, i.e., [30, 45], [45,60], [60,75], [75,90], 

[90,105], [105,120] and [120,135] (meters). Ten instances are generated in 

each interval. The value of the vertical coordinate is the mean of the makespan 

of these 10 instances. 

The results in Figure 3.7 suggest that the makespan increases with 

increases in the average distance. This trend occurs because the delay 
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increases due to FT conflict. The likelihood that one FT will be delayed to 

make way for another FT may increase if its route is longer. Therefore, to 

improve the performance of the FB-ACT system, the containers should be 

well allocated. A container should not be stored in a yard that is far away from 

its location in the vessel. 

 

Figure 3.7 Effects of the average job distance on the makespan 

Effects of the number of FTs and TPs on the makespan 

Some instances are created to study the effects of the number of FTs and TPs 

on the makespan. There are 18 yards, 5 quay cranes and 40 jobs. We set 

different numbers of FTs and TPs and run the experiments. 12 instances are 

created in each case. The result for each case is the average of the 12 instances. 

The results are shown in Table 3.8. 
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Table 3.8 Effects of the numbers of FTs and TPs on the makespan 

 1 Rail  

3 FT 

1 Rail 

4 FT 

1 Rail,  

5 FT 
1 Rail 

6 FT 

1 Rail,  

7 FT 

6 TPs 57.00 50.22 48.67 48.00 47.7 

12 TPs 54.45 47.08 45.65 44.48 43.65 

18 TPs 53.28 45.22 43.73 43.60 43.44 

The results indicate that increasing the numbers of FTs and TPs can decrease 

the makespan. This trend is obvious because increasing a resource can reduce 

the waiting time. However, the rate of reduction is decreased when increasing 

the number of FTs. This trend can be observed from Table 3.9. When the 

number of FTs on the same rail is small, an increase in the number of FTs can 

reduce the waiting time. However, an increase in the number of FTs will 

increase the delay time to prevent FT conflict when the number of FTs is large.   

Table 3.9 Rate of reduction by increasing the number of FTs by one 

 4FT vs. 3FT 5FT vs. 4FT 6FT vs. 5FT 7FT vs. 6FT 

6 TPs 11.89 (%) 3.09 1.38 0.62 

12 TPs 13.54 3.04 2.56 1.87 

18 TPs 15.13 3.33 0.31 0.30 

In summary, FT conflict is the main variable that contributes to delay time. 

The containers should be well allocated to reduce the movement of FTs. The 

increase in job distance will create more delay time to prevent FT conflict. The 

FTs should be distributed to different rails. When the number of FTs on the 

same rail is sufficiently large, an increase in the number of FTs can only 

reduce the makespan slightly. 
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3.5 Conclusion  

In this chapter, we focus on finding a promising schedule for containers while 

considering the handshakes and interference among the equipment involved. A 

mathematical model is proposed to achieve the objective. Because the large-

scale models cannot be solved by commercial software, an algorithm was 

developed that uses an idea similar to the filtered beam search method. The 

proposed algorithm is tested with the 14 instances, which can be solved by 

CPLEX. The results show that the algorithm can achieve a near-optimal 

solution. The results from another 32 instances at a relatively large scale 

illustrate that our algorithm significantly outperforms the FCFS rule.  

In future studies, a tight lower bound should be found. Because the optimal 

solution of our problem cannot be found for a large number of jobs, a tight and 

strong lower bound must be established to assess the best solution found by 

the proposed algorithm. In our current model, we set the number of layers of 

the frame bridge to one. However, multi-layer frame bridges can increase 

productivity, which is one of the most attractive characteristics of an FB-ACT 

system. The comparison of productivity between single- and multi-layer FB-

ACT systems is an interesting field for future research. Additionally, in our 

study, only one GT serves a yard block. We can increase the number of GTs 

that serve yard blocks. These GTs can be on the same rail or increase the layer 

of yard rails.     
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CHAPTER 4 Vehicle Dispatching and Conflict-free Routing 
Problems Under GRID-ACT 

4.1 Problem Description 

The GRID system consists of three components: transfer units (TUs), 

overhead rails and transfer tables. The overhead rails cover the whole area of 

the storage yard. Thus the container can be only stacked under the overhead 

rails. The TUs move along the rails which are bi-directional. Each TU has two 

pairs of wheels that are respectively responsible for two mutually 

perpendicular directions. One pair of wheels is mounted on the rails to move 

the TU along one direction while the other pair of wheels is not connected 

with the rails. When changes to the perpendicular direction, the idle wheels 

are mounted on the rails and the other wheels will leave the rails and become 

idle. At this time, the TU completes the procedure of making a 90 degrees turn. 

The TU can perform like a yard crane to lift up a container or release a 

container. The activity flow of a discharging job can be shown as follows: 

 

Figure 4.1 The activity flow of a discharging job under the GRID system 
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An empty TU arrives at the location )1,,( il  and starts to pick up the container 

),( i . After a period equaling to )1,,( ip , the TU starts to move to its 

destination at location )2,,( il . The TU will choose a proper way or stop to wait 

if needed to prevent vehicle collisions. When the TU arrives at location )2,,( il , 

it starts to put down the container to the transfer table. After a period equaling 

to )2,,( ip , the TU is free and can start to move to its next job. The container 

),( i  will be picked up by the QC and placed on the vessel. The activity of a 

loading job is similar in a reverse order.  

In this study, we focus on the problem of vehicle dispatching and conflict-free 

routing simultaneously. In order to solve the routing of TUs, we propose to 

convert the physical layout of this system into a pure node layout and then into 

a time space network. Because the term of node has been used in the tree 

structure algorithm, another term called the cell will take the place of the node. 

The purpose of this transformation is to measure the position of TUs at every 

time, so that we can model them to capture the conflict-free routings. We will 

implement the technique of set partitioning based model to model our problem. 

Because of the intrinsic difficulty of the model, our problem will be 

decomposed into two sub-problems: vehicle dispatching problem and conflict-

free-routing problem. A tree structure algorithm is used to solve the vehicle 

dispatching problem, while a column generation algorithm based method will 

be applied to solve the routing problem. In order to model our problem, we 

will first discuss the way to construct the time-space network. The 

methodology will be discussed after this. 
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4.1.1 Convert the physical layout into a pure cell layout 

The shape of a TU is a little bit larger than a 40ft standard container. The 

length of the TU is 13.2 meters and the width is 3.3 meters. The speed of the 

TU is 2 meters per second. To model the routing of the TUs, we define the 

time that one TU needs to traverse the distance equaling to the width of a TU 

as a unit of time. The unit of time equals to 3.3/2=1.65 seconds. We use this 

time unit to measure all the activities in this system. The activities are 

including: 

I. TUs move on the rails; 

II. TUs stop to wait to prevent collisions; 

III. TUs make a turn; 

IV. TUs pick up containers from the stacking areas or buffers; 

V. TUs put down containers to the stacking areas or buffers; 

VI. QCs load and unload containers 

We format the container stacking area as a gridding. We call the grid in the 

gridding layout as a cell. The size of one cell in the gridding is of length 3.3 

meters and width 3.3 meters. Thus, we can indicate the location of the 

containers and TUs using the index of the cells. The gridding layout and the 

index of the cells are shown in Figure 4.2. Each cell is assigned with a unique 

number. 
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Figure 4.2 The gridding layout of GRID system 

A 40ft standard container occupies four cells. As shown in Figure 4.2, 

Container A occupies Cells 33, 34, 35 and 36. The distance of two tracks 

belonging to a vertical rail (vertical to the berth) is the width of four cells and 

the distance of two tracks belonging to a horizontal rail (parallel to the berth) 

is the width of one cell. To indicate the location of the containers, we define 

the index of the first cell (counted from left to right) occupied by the container 

to be the index of the location of this container. For example, the location of 

Container A is indicated by Cell 33. Similarly, a TU also occupies four cells at 

a time, and the location of the TU can be indicated by the index of the first cell 

(also counted from left to right) occupied by the TU. The location of TU1 in 

Figure 4.2 is Cell 8.  

To model our problem, we propose a definition of the adjacent set to describe 

the adjacent relations among the cells, which is used to determine how TUs 

move.  

Adjacent set: Cell A is adjacent to Cell B if the TU can move from Cell A to 

Cell B at next time unit, which means the TU stays at Cell A at time t  and it 

can stay at Cell B at time 1t . For simplicity, define a set denoted by )(iA  as 
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the cells that are adjacent to Cell i . Because the TU can move bi-directionally, 

thus if )(iHj ,  )( jHi  also holds. In addition, the TU can stay at its 

current place, and thus )(iHi  also holds. 

For the cells in the row such that a horizontal rail is constructed above, their 

neighboring cells in the horizontal direction are the adjacent cells of them. As 

shown in Figure 4.2, a horizontal rail is constructed on the first row of the 

cells. Cell 5 and Cell 7 belong to the adjacent set )6(A . Whether the 

neighboring cells in the vertical direction belong to the adjacent set or not 

would depend on whether the TU can move directly between them. From the 

way we define the location of TUs, we can have, for example, Cell 21 

belonging to )5(A , whereas Cell 22 is not an element of )6(A . The concept of 

adjacent set will help us construct a time-space network. 

4.1.2 Avoidance of vehicle collisions 

As the TUs are running on the rails, they cannot cross over each other when 

running on the same rail. There is one track shared by two contiguous vertical 

rails, and so the TUs running on the contiguous vertical rails also cannot cross 

over each other. As an illustration, in Figure 4.3, TU1 cannot move 

downwards if TU2 is going to keep staying at the current location or to move 

upwards. Different from vertical rails, each horizontal rail owns its exclusive 

tracks in order to improve the productivity of the system. The TUs running on 

two adjacent horizontal rails will not impact each other. For example, in 

Figure 4.3, TU1 can move rightwards while TU2 stays at its current place or is 

going to move leftwards. Therefore, we propose two terms to help prevent 
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vehicle collisions: one is safety zone and the other one is guide-path segment. 

The details are discussed as follows. 

 

Figure 4.3 An illustration of collisions between TUs 

Safety zone 

To ensure the safety of the system and prevent the collisions mentioned above, 

we define the safety zone for each TU. The safety zone of one TU consists of 

the cells that are neighboring to those cells occupied by this TU. The cells 

occupied by this TU also belong to the safety zone. It should be highlighted 

that in some cases, the neighboring cells do not belong to the safety zone. 

These cases happen when the TUs are on horizontal rails. Because the 

horizontal rails have their unique tracks, the safety zone of the TU on the 

horizontal rail is different from the safety zone of the TU on the vertical rail. 

Figure 4.4 summarizes the safety zone of the TU staying at different locations.      
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Figure 4.4 Safety zone of TU1 on different locations 

There are three types of safety zone of one TU when it stays at different 

locations. The first type is that all the cells neighboring to the TU are counted 

in the safety zone. The second type is that only left and right cells neighboring 

to the TU are counted in the safety zone while the cells that are on the up-side 

or down-side of  the TU are not counted. The third type is that the cells 

neighboring to the TU but belonging to the row in which there is a horizontal 

rail above it are not counted in the safety zone. Like the situation shown in the 

third part of Figure 4.4, the cells indexed as i  to 5i  are not counted in the 

safety zone of TU1. The reason why the safety zone does not include all the 

neighboring cells is that we want to reduce the congestion on the horizontal 

rails where there is heavy traffic.   

In summary, we can use a set of constraints called safety zone constraints to 

prevent vehicle collisions. Safety zone constraints are described as: at every 

time, TUs cannot occupy any cells belonging to the safety zone of the other 
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TUs. However, the cross-over collisions cannot be captured by the safety zone 

constraints. Thus, guide-path segment is proposed to prevent the collisions.  

Guide-path segment 

The TUs may still confront cross-over collisions. They cannot be prevented by 

safety zone constraints, when they are moving vertically in the area where 

there are horizontal rails. We assume the scenario shown in Figure 4.2 in 

which TU1 is at Cell 5 at time t  and TU2 is at Cell 25. TU1 is going to move 

downwards while TU2 is going to move upwards. Thus, at time 1t , TU1 is 

at Cell 21 and TU2 is at Cell 9. We can find that both at times t  and 1t , the 

safety zone constraints are not violated. However, this scenario must be 

prevented because of the cross-over of the TUs on the contiguous rails. 

Similarly, if two TUs are on the same rail, safety zone constraints also cannot 

prevent this cross-over collision. Therefore, we propose a concept called 

guide-path segment to help build constraints to prevent this kind of vehicle 

collision.   

If a path satisfies the following two conditions, it is a guide-path segment. 

(1) At least one cell of the path is on the row where a horizontal rail is built; 

(2) TUs can move vertically along it. 

A set denoted as )(wF  is proposed to help build the constraints of avoidance 

of vehicle collisions. )(wF  is the set of guide-path segments where TUs 

cannot travel at the reverse direction when a TU travels on guide-path segment 

w . Intuitively, we have )(wFw . We call the other guide-path segments in 

set )(wF  as adjacent to w . By the definition of guide-path segments, we can 
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propose a set of  constraints to prevent vehicle collisions, that is if one TU 

enters a guide-path segment denoted as w  at time t  and is going to move 

downwards, then any other TUs cannot enter the guide-path segments which 

are adjacent to w  as well as w  itself, at time t  and move upwards. We can 

find that the scenario mentioned at the beginning of this subsection can be 

detected by this set of constraints.  

4.1.3 Decoupling operations between QCs and TUs 

In this system, a buffer is placed at the quayside. The containers can be 

temporarily stored on the buffer. To simplify the operations involved in the 

quayside, we assume that the capacity of the buffer is sufficient. Thus, we can 

decouple the operations between QCs and TUs. TUs can directly put down the 

containers on the buffer without waiting for the QCs. The QCs will pick up 

and deliver the containers according to the pre-specified QC lists. However, 

we should still need to prevent the buffer from becoming overcrowded. Hence, 

the TUs should operate the container jobs with consideration of the QC lists, 

which means it should avoid delivering containers whose precedent containers 

are not completed. In other words, when we solve the assigning problem, the 

container jobs with fewer predecessors should be assigned first. 

4.1.4 Activities for discharging and loading jobs 

The container jobs can be categorized into discharging jobs and loading jobs. 

Similarly, each container job consists of two subtasks. A subtask is the activity 

that the TU loads or unloads a container. For a loading job, the activities can 

be described as follows. A TU picks up the container from the slot in the 

storage yard. This is the start of the first subtask of the container job. Once the 

container is fixed on the TU, this is the end of the first subtask. Then, the TU 
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moves along the path which is conflict-free with other TUs. When the TU 

arrives at the transfer point in the quayside, the TU starts to unload the 

container to the buffer. This is the start of the second subtask. The end of the 

second subtask is the time that the container is released on the buffer. At this 

time, the TU is free to move to its next container job. The container job is then 

completed. For a discharging job, we assume that the corresponding container 

is always ready on the buffer. When a TU arrives at the transfer point in the 

quayside, the TU starts to pick up the container from the buffer. This is the 

start of the first subtask. Once the container is fixed with the TU, the first 

subtask ends. Then, the TU moves along a conflict-free path to the place 

where the container will be stored in the yard. When the TU arrives at this 

place, it starts to release the container onto the place. This is the start of the 

second subtask. Once the container is released onto the place, the second 

subtask ends and the container job is also completed at this time.  

4.2 Mathematical Model 

The input of our problem is the information about the location of the origin 

and destination of a set of containers as well as the pre-specified QC lists. Our 

objective is to minimize the total processing time of a given set of containers, 

considering the vehicle collisions and capacity of QCs. We need to solve the 

container assignment problem so as to know each container will be assigned to 

which TU, and the routing problem to know how the TUs accomplish the 

transportations without vehicle collisions. 

To be able to track the position of a TU at any given time, a time dimension is 

introduced to the pure cell layout and hence a time space network is created. 

In a time space network, a cell is duplicated many times (up to the maximum 



 

83 

 

time unit) to represent the same cell at different times. The maximum time 

unit can be the upper bound of the makespan of any feasible solution. 

Based on this time space network, we can model the problem as a set 

partitioning problem, where each decision variable represents a path of how 

the TU transports the containers. The notations of the mathematical model are 

given below: 

Parameters: 

K                  Set of all TUs 

N                  Set of all cells 

T                   Set of all times 

J                    Set of all container jobs 

W                    Set of all guide-path segments 

)(nL                Set of all feasible routes for TU n  

)(n   Set of all feasible routes generated in the route generating 

problem for Vehicle n  

)(iG   Set of all cells in the physical layout that are within the safety 

distance to Cell i  but excluding Cell i  

)(wF  Set of guide-path segments that are adjacent to )( Www   and 

including itself, that is )(wFw  

)(iA                 Set of all cells in the physical layout that are adjacent to Cell i   
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p                     Processing time of subtask   

nlc ,
 The total penalty cost of route ))(( nLll  , where it equals to 

the total time that the route accomplishes its related subtasks 

nltiA ,),,(
            





otherwise ,0

 at time  cellat  is  route following , TU if ,1 tiln
  

i

nlB ,                  




otherwise ,0

 job covers  route following , TU if ,1 iln
 

t

nlw
f

.,               








otherwise ,0

 at timedirection  upwardsan    

at segment  enters  route following , TU if ,1

t

wln

 

t

nlw
f

.,               








otherwise ,0

 at timedirection  downwards a    

at segment  enters  route following , TU if ,1

t

wln

 

Decision Variables: 

nlX ,
                 





otherwise ,0

 route follows  TU if ,1 ln
 

The assumptions of the problem are made: 

(1) Yard slot of each job is known; 

(2)  The traveling speed of empty and loaded TUs is the same, and the related 

acceleration and deceleration are not considered; 

(3) The capacity of the buffer on quayside is set to be efficient; 

(4) Number of container jobs, number of TUs and QCs are all known. 
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The problem is formulated as follows: 

)(Problem 0P  

Objective: 

 
 Kn nLl

nlnl XcMinimize
)(

,,                                                                               (4.1) 

Constraints: 

KnX
nLl

nl 


,1
)(

,
                                                                                   (4.2) 

JiXB
nLl Kn

nl

i

nl  
 

,1
)(

,,                                                                          (4.3) 

TtNiXAXA
iGj nLl Kn

nlnltj

nLl Kn

nlnlti     
   

,,15.0
)( )(

,,),(

)(

,,),(              (4.4) 

   
   

 

)( )(

,,,
)(

,,,
,,15.0

wFw nLl Kn

nl

t

nlw
nLl Kn

nl

t

nlw
TtWwXfXf             (4.5) 

KnnLlX nl  ),({0,1},,
                                                                   (4.6) 

Objective function (4.1) minimizes the total time to accomplish all subtasks. 

Constraint set (4.2) restricts a TU to select only one route from the set of the 

possible routes. Constraint set (4.3) ensures that every job is visited only once. 

Constraint set (4.4) ensures the safety distance is maintained between TUs in 

order to prevent vehicle collisions. Constraint set (4.5) prevents the cross over 

among TUs in the vertical direction. For example, one TU enters a segment 

denoted as iw  at time t  in the “-” direction, that is 1,,,
 nl

t

nlw
Xf

i

. Then other 

TUs cannot enter the segment jw  and kw  in the reverse direction, where jw  
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and kw )( iwF . However, if there is no TU entering the segment iw  in the “-” 

direction at time t , the situation is acceptable that one TU ( jn ) enters the 

segment jw  in the “+” direction at time t  and another TU ( kn ) enters the 

segment kw  in the “+” direction at time t . Thus 

1)(*5.0 ,,,,,,
 

kkkjj
nl

t

nlwnl

t

nlw
XfXf , which does not violate the constraint. 

Finally, constraint set (4.6) specifies the variables to be binary. 

Note that the second components of the left-side in Constraint sets (4.4) and 

(4.5) have a coefficient equaling to 0.5. This is because when the first 

component of the left-side equals to zero, the situation that the TUs move near 

the location is allowed. Let us give an illustration on Constraint set (4.5). We 

have )( ki wFw  , )( kj wFw  . If no TU moves on 

kw  at time t , we allow one 

TU to move on 

iw  and another one TU to move on 


jw  at time t . Thus the 

second component equals to one where the constraint still holds. The 

explanation is similar for Constraint set (4.4). 

4.3 Heuristic Method 

In this section, we discuss the solution approach to solve our problem. The 

algorithm is developed based on the tree structure, and two methods are 

embedded to help solve the conflict-free routing problems under the given 

schedules of vehicle dispatching problems. 

4.3.1 Decomposition  

There are two aspects that determine the solvability of the mathematical model 

proposed in Section 4.2. One is the number of jobs and the other one is the 

complexity of routes including the number of TUs, the length of routes and the 
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potential collisions among TUs. Unfortunately, the proposed mathematical 

model is intrinsically difficult to be solved under the environment of the GRID 

system in container terminals. Firstly, the number of containers that need to be 

transferred is quite large. Secondly, the layout of the container terminal is 

large, resulting in a complex routing problem. Thirdly and the most significant 

factor, the large amount of potential collisions would require an elaborate 

route for each TU. Therefore, we will decompose our problem into two sub-

problems: assignment problem and routing problem. We will solve the 

assignment problem first, and then solve the routing problem based on the 

results from the assignment problem. 

The assignment problem can be considered as a combinatorial problem. As the 

solution space of the assignment problem is dramatically large, it is difficult to 

find the optimal assignment even when ignoring the routing problem. One 

promising way is to determine the scheduling only within a short-term look-

ahead planning horizon and then rolling the planning horizon step by step 

while the scheduling made in the previous planning horizon is kept. The 

complete scheduling can be obtained when all the jobs are involved. During 

one short-term planning horizon, the assignment problem is solved first, then 

the routing problem is solved under the solution of the assignment problem. 

The tree structure algorithm can fit this mechanism, because the tree structure 

algorithm expands the tree step by step and the nodes of next level in the tree 

inherit the results of the upper level. The procedure of expanding the tree is 

the counterpart of the rolling the planning horizon. The leaf nodes in the tree 

are complete solutions while the nodes of other levels are partial solutions. 
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In conclusion, we will implement the tree structure algorithm to solve the 

problem in this study. Different from the one in Chapter 3, another two 

embedded methods are proposed. One is a heuristic sequential path generation 

(HSPG), which is easily implemented to solve the routing problem, while the 

other one is a column generation algorithm with further search procedure 

which can solve the routing problem more accurately. This second method is 

called CGA-FS in short. The first method HSPG is used in the screening 

procedure, while the second method CGA-FS is used in the selection of new 

beam nodes. The related contents of the algorithm will be discussed as follows.   

4.3.2 Development of the tree structure algorithm 

To illustrate our tree structure algorithm clearly, some related terms are 

needed to be defined first. 

Beam node: the nodes in the tree which will be further explored. It represents 

the solution of involved subtasks showing how these subtasks are assigned to 

vehicles and how to route the vehicles on the layout without collisions. 

Partial solution: A beam node in the tree structure, except at the leaf level, 

represents a partial solution when not all of the subtasks have been assigned. 

Complete solution: A beam node at the leaf level in the tree structure 

represents a complete solution that all subtasks are accomplished. 

Assigned subtask: The subtask in the beam node is called an assigned subtask. 

The involved decision variables are determined for these subtasks. 

Unassigned subtask: A subtask that has not been assigned to the beam node 

is called an unassigned subtask. 
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Assigned subtask with partial decisions: This is a subtask that is assigned to 

a beam node during the procedure of expanding a beam node. Only the 

decision about the vehicle assignment, as well as the sequence of this subtask 

in the corresponding vehicle, is determined, while the involved decisions 

about the routing are not determined. 

Now, we can give the explicit procedure of how the tree structure algorithm 

searches for a complete solution. At the root level of the tree, there is only one 

beam node that is an empty set. A large number of intermediate nodes are 

generated by selecting unassigned subtasks and assigning them to vehicles. In 

order to avoid the situation that the buffer becomes over-crowded by storing 

too many loading containers, or the situation that the TUs have to wait for the 

discharging containers because those containers cannot be picked up by the 

QCs until their predecessors have been picked up, we will select the 

unassigned containers which are on the top of the QC lists. After assigning   

subtasks to each TU, an intermediate node is created.   is the look-ahead 

number of subtasks of each TU during the next short-term planning horizon. 

Then, the HSPG method will be used to assess the fitness of this intermediate 

node. A related small number of intermediate nodes are retained after the 

screening procedure based on the results from the HSPG method. The CGA-

FS method is developed to solve the routing problem of the retained 

intermediate nodes again. The best m  intermediate nodes according to the 

results of the CGA-FS method are selected as new beam nodes at next level. 

The subtasks in the beam nodes becomes assigned subtasks and are removed 

from the set of unassigned subtasks. The tree is expanded in this way until the 
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leaf level is approached. The framework of the tree structure algorithm can be 

described by Figure 4.5. 

 

Figure 4.5 Framework of filtered beam search-based algorithm 

The following parts will give the details of the HSPG method and CGA-FS 

method. These two methods aim to find conflict-free routes for the TUs. In 

order to solve the routing problem, the time-space network is built. The 

mechanism of determining the cost of arcs in the time-space network is the 

core of these two methods. 

4.3.3 Time-space network 

The network is a time-space acyclic network ),( AVG  , where V  and A  

represent the set of vertices and the set of directed arcs, respectively (shown in 

Figure 4.6).  
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Figure 4.6 Part of a mathematical network 

There are two types of vertices: 

 To each location SNn  , there corresponds 1T  vertices Vvnl   

(one vertex for each time t ). 

 An origin vertex Vom   and a destination vertex Vdm   are associated 

with each vehicle Km  to represent the start and the end of its route 

respectively. The set of origin and destination vertices is denoted as OD. 

The arc set A  includes five types of arcs which correspond to moves in space 

and/or time: 

 The start arcs link the origin vertex mo  of each vehicle to the vertex 

Vvnl   corresponding to its initial position. 
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 The end arcs link all vertices nTv  (T  is the last period of the horizon) to 

each destination vertex Kmdm , . 

 The waiting arcs are defined for all pairs of vertices 

ODVODVvv tnnt \\),( 1, 
. These arcs represent a vehicle waiting at a 

given location for one period of time. 

 The travel arcs represent the movements between two adjacent locations. 

These arcs are represented as ),( 1, tjit vv  where i  and j  are adjacent 

locations.  

 Let QL  be a subtask to be operated at the quayside transfer point and 

the slot in storage yard. A task arc ODVODVvv htnnt \\),( , 
 is 

defined if this subtask can begin at time t . 

The sets of start and task arcs are denoted by 
SA  and 

TA , respectively, while 

the set of travel arcs is denoted as HA . HA  contains two subsets denoted as 

WA  and 
GA . WA  represents the travel arcs whose paths are guide-path 

segments, while 
GA  represents the travel arcs whose paths are not guide-path 

segments. WA  is divided into subsets 
WA  and 

WA  according to the direction 

(+ or -) used to travel along the corresponding guide-path segment.  Similarly, 

GA  is divided into subsets 
GA  and 

GA . 

4.3.4 HSPG method 

The HSPG method should be fast in computation. It generates the route of 

each TU in a decentralized manner. The way of decentralization means that 

we determine the routes of TUs sequentially. We fix the route of one TU, and 
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the following routes of the other TUs cannot violate the previous determined 

routes. However, it is not a good way to determine the route of one TU from 

its first job to its last job and then move to fix the route of another TU, 

because the TUs at the back of the sequence will confront a high chance to 

sustain a large delay time. Therefore, this sequence of TUs is changed after all 

TUs accomplish one job. Some concepts are introduced below to help 

illustrate the HSPG method. 

TU sequence: We define a sequence called the TU sequence which 

determines the order of TUs to solve their routing problem. The TU sequence 

is indicated as Seq , where ),..,,( mbaSeq  and the element in the sequence is 

the index of the TUs. The number of the elements in the sequence is the 

number of TUs. The TU in the first place of the sequence will find its route 

first. After the scheduling of the route for the first TU, the TU with the second 

order in the sequence will start to find its route. 

Short-term Planning horizon: The short-term planning horizon in our 

method is not a time window with a fixed length. The end time of the horizon 

is the time that all TUs complete their assigned jobs. The start time of the 

horizon is the end time of last short-term planning horizon. 

Unproductive time: Unproductive time of a TU includes the waiting time, 

empty movement and the additional movement time. The time of waiting is 

that the TU stays at the current place to prevent the collisions. When a TU 

completes a job, it will start to move to the location of the next job. This 

movement is called empty movement. Empty movement is inevitable. If the 

collisions among the TUs are neglected, the shortest path of each TU is 
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intuitive. The time of the shortest path can be calculated. The difference of the 

time of a feasible route and shortest path is defined as the additional 

movement time. 

Cost of arcs: In the HSPG method, the cost of the arcs in the time-space 

network can only be one or infinite. If the arc is available for the TU, it is 

valued with one, otherwise it becomes infinite. The arc is available which 

means the TU can transfer from the head node to the tail node. There are two 

situations that the cost of the arc is set to be infinite.  

I. If the cell corresponding to the head node of the arc is occupied by 

other TUs at the same time, the cost of the arc is set to be infinite.  

II. If the TU needs to stay at the current cell for a certain time to 

accomplish the process such as making a turn, the cost of the arc is 

infinite when the cell of the tail node is not the current cell that the TU 

is staying at. 

The total unproductive time of the TUs should be minimized to improve the 

efficiency of the system. To pursue this goal, the TU sequence is determined 

by the unproductive time of the TUs. The TU with larger unproductive time 

will be assigned with a smaller order in the TU sequence. The route of the TU 

is obtained according to the cost of the arcs in the network. Once a route is 

obtained, the cost of the arcs whose corresponding cells are involved in the 

route will be infinite. Therefore, we can find that there are more arcs whose 

cost is infinite if the order of the TU in the TU sequence is large. 

Consequently, the unproductive time may increase.  
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We will discuss the way to determine the routes of the TUs as follows. 

When the cost of the arcs in the network is determined, we will find the paths 

with minimum cost in the time-space network as the routes of the TUs. A 

recursive formula is adopted to find the path with minimum cost. The 

recursive formula is presented as: 

))1,((min),( ),)(1,( titj
Ij

Rtjftif 


 , 

where ),( tif  is the cost of the path that arrives at node ),( ti , and 
),)(1,( titjR 
 is 

the cost of the arc that connecting the nodes )1,( tj  and ),( ti . The value of  

),)(1,( titjR 
 is either one or infinite according to the criteria mentioned before.  

Given the pair of origin and destination, the route with minimum cost is also 

the feasible route with minimum time. Because we set the cost of infeasible 

arcs to infinite, the route obtained by the recursive formula will only contain 

the arcs with cost equaling to one. Therefore, the route is a feasible route. In 

addition, the cost of available arcs equals to one. Hence, the cost of the route 

is also the time the route consumes from the origination to the destination. 

Consequently, the route from the origination to the destination with a 

minimum cost is the shortest route.  

The HSPG method can be summarized by the following pseudo-code: 

For i =1 to  , do 

(i) Generate TU sequence Seq  based on the unproductive time of 

the TUs; 
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For i =1 to m , do 

(a) Determine the route of the ith TU in the Seq  by the 

method of recursive formula; 

(b) Update the cost of the arcs in the network; 

End for 

(ii) Update the unproductive time of each TU; 

End for 

 

  is the number of look-ahead jobs of each TU. The look-ahead jobs are the 

jobs that will be scheduled during the short-term planning horizon. m  is the 

number of TUs.   

4.3.5 CGA-FS method 

The CGA-FS method solves the routing problem more accurately than the 

HSPG method. Different from the HSPG method, column generation 

algorithm is implemented to determine the cost of the arcs in the network. 

However, because of the high potential of vehicle collisions as well as the 

congestions in transfer area, it is hard to get an improved feasible solution 

from column generation algorithm. Therefore, we will continue to find new 

columns by adding new constraints after the typical column generation 

algorithm meets the stopping criteria. The further search will be terminated 

when we obtain an integer solution. The following contents include the 

implementation of column generation algorithm in the problem, and the way 
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we use the information from the results of column generation algorithm to 

obtain an improved feasible solution.   

Master model 

The mathematical model is built in the section of problem definition. Because 

we decompose the problem into two sub-problems, the mathematical model in 

this section will not consider the assignment problem anymore. The model is 

reduced to concentrate on the routing problem, which is shown in a model 

denoted as 
0RP . The model 

0RP  is the same as 
0P  but without the set of 

constraints (4.3). Thus, we will not show 
0RP  here. 

We will implement column generation algorithm to help solve 
0RP . 

0RP  is 

divided into two interrelated problems; the master problem )(MP  and route 

generating problem )(RGP . The MP  is a relaxed, as non-integer values are 

allowed, and restricted problem of 
0RP  because only a subset of the decision 

variables (or columns), 
nlX ,
 are generated by RGP . In each iteration of the 

column generation procedure, the MP  is solved to optimality. According to 

the dual values of the constraints,  RGP  generates columns (routes) for TUs 

that have the potential to improve the objective function of MP . This iterative 

process stops when no more improving columns are generated. 

The master problem is presented as: 

)(ProblemMP  

Objective:  
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 
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Route Generating Problem 

In this part, we will discuss how to generate new routes which will be added to 

the master model. The route generating problem consists of finding the 

shortest path (that is, the route with the least reduced cost) in network G . To 

compute the reduced cost of a path, the arc costs ac  are replaced by arc 

reduced cost ac  derived from the dual solution of the current restricted master 

model. Such a reduced cost is given by )(acc aa  , where )(a  is the sum 

of all the dual contributions for this arc a . These contributions are calculated 

according to which type the arc belongs to. The contributions are shown in 

Table 4.1, where )()1( Kkk  , ),()2(

, TtSNntn  , ),()3(

, TtWwtw  , 

denote the dual variables associated with constraints (4.9)-(4.11), respectively. 

Furthermore, a  represents the subtask associated with arc TAa , s

at  and e

at  
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are the start and end times associated with arc Aa , 
ai  is the tail vertex of 

arc Aa , and aw  is the guide-path segment associated with arc 
WAa . 

Table 4.1 Dual contributions to arc reduced costs 

If arc Aa  satisfies Add this contribution to its reduced 

cost 

ma

S oiAa  ,  
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A dynamic programming algorithm is used to solve the shortest path problem. 

This dynamic programming algorithm is a simple pushing algorithm that is 

performed after ordering the vertex of G  in topological order.   

Procedure of further search 

In this section, we will first discuss the reason why column generation 

algorithm cannot solve the routing problem well in the GRID system. After 

that, we will present the procedure of further search to obtain a promising and 

feasible solution. 
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There are two reasons why column generation algorithm cannot guarantee an 

optimal solution for a problem modelled as a set partitioning model. Firstly, 

when the algorithm stops, the optimal solution is found for the relaxation of 

the model, not the model itself. Secondly, we concentrate on searching the 

columns with negative reduced costs. But it is possible that a column of the 

optimal solution to the routing model 
0RP  has a positive reduced cost. 

However, this column will not be generated during the iterations. The optimal 

solution to the master model actually is a lower bound to the routing model 

0RP . The optimal solution of the master model is likely to be fractional, 

because vehicles have high collision potential under the GRID-ACT system.. 

The solution of the routing model 
0RP  when the procedure of column 

generation algorithm is stopped, may not improve a lot compared to the initial 

solutions generated by the sequential paths generation algorithm, or may even 

be the same as the initial solutions. Thus, a procedure of further search is 

proposed to improve the solution. The motivation of the further search is to 

add new constraints to the master model )(MP  so that we can get new dual 

values to continue the column generation iterations. The new constraints aim 

to reserve the node or guide-path segment to one TU and prevent other TUs 

from using it, which helps to approach feasibility. We will stop the procedure 

until the solution of the master model is integer. 

We define a set to record the information of new constraints which is denoted 

as A , where the elements in set A  is ),,( kt . ),( t  represents the constraint 

whose corresponding dual values are most negative in the current model MP . 

If the constraint belongs to the set of constraints (4.10), we have N , while 
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if it belongs to the set of constraints (4.11), we have W . The indicator k  

represents the TU whose routes contribute to the constraint most, that is the 

value denoted as )(m  is largest, where  )(m  equals to 

 
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 if W . Thus, a new constraint is 

created and added to the model MP , where the constraint is represented as: 
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We define these new constraints as (4.8a). These new constraints aim to 

ensure certain TUs will not use the nodes or guide-path segments so as to 

prevent vehicle collisions. After the new constraint is added to model MP , we 

solve the model again. We will update the cost of the arcs according to the 

dual values. When Akt ),,( , we want to prevent the TUs which are not the 

TU k  from occupying the node ),( t  where )( G and N , or using 

the segment ),( t  where )( F  and W . Thus, we set the cost of the 

arcs involved with ),( t  to be infinitely large. Consequently, the new 

generated routes will not violate the constraints (4.8a).  

However, if there are more than one TUs whose value of )(m  is close to the 

maximum value, we will create branches. For example, assume )( im  is the 

largest among )(m , where Km . For any TU n such that   )()( nmi , 
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where   is a threshold value that should be set to a small value, we will create 

the branches where the new constraint is created under a different TU. The 

further search will stop if the solution of the model MP  in any branch is 

integer. The TU will select the route such that the corresponding variable 

value equals to one.  

We generate 20 instances to see how much improvement the further search 

can obtain. Each instance contains the information including the number of 

TUs, the starting point of each TU, the container jobs of each TU, the 

origination and destination of each container job. Table 4.2 presents the results 

of CGA without further search and CGA with further search. The result is the 

total time to accomplish the container jobs. The lower bound is the optimal 

solution of the master problem of the instance. Gap1 in the fifth column is the 

difference of the results between CGA and CGA-FS. Gap2 in the seventh 

column is the difference of the results between CGA-FS and lower bound. The 

fourth column in Table 4.2 is the number of new constraints that added to the 

master problem during the further search.  

In cases P1-P10, each TU is assigned with two container jobs, while each TU 

is assigned with three container jobs in the cases P11-P20. In cases P1, P2, 

P11 and P12, there are 3 TUs and 2 QCs. In the cases P3, P4, P13 and P14, 

there are 4 TUs and 2 QCs. In cases P5, P6, P15 and P16, there are 6 TUs and 

3 QCs. In cases P7, P8, P17 and P18, there are 8 TUs and 4 QCs. In cases P9, 

P10, P19 and P20, there are 10 TUs and 4 QCs. 
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Table 4.2 Comparison of CGA-FS, CGA and LB 

Case CGA CGA-FS # of new 

constraints 

Gap1  

(%) 

Lower 

bound 

Gap2 

(%) 

P1  13.31 12.62 5 5.18 12.34 2.27 

P2  13.70 13.20 7 3.65 12.88 2.48 

P3  17.82 16.76 9 5.95 16.35 2.51 

P4 19.02 17.55 12 7.73 16.92 3.72 

P5 28.32 25.86 15 8.69 25.11 2.99 

P6 30.11 27.22 18 9.60 25.87 5.22 

P7 45.23 39.35 22 13.00 37.32 5.44 

P8 44.00 38.12 24 13.36 36.70 3.87 

P9 67.32 58.31 34 13.38 55.22 5.60 

P10 66.05 56.20 32 14.91 54.00 4.07 

P11 19.66 18.91 8 3.81 18.42 2.66 

P12 19.65 18.20 8 7.38 17.88 1.79 

P13 27.80 26.32 9 5.32 25.54 3.05 

P14 29.00 27.12 9 6.48 26.23 3.39 

P15 45.35 40.35 13 11.03 38.72 4.21 

P16 44.11 38.76 17 12.13 37.50 3.36 

P17 66.22 56.30 24 14.98 53.88 4.49 

P18 69.05 54.62 20 20.90 51.88 5.28 

P19 106.25 89.92 28 15.37 85.22 5.52 

P20 110.11 93.68 26 14.92 89.01 5.25 

The results show that the CGA-FS can improve the solution obtained from the 

CGA. The number of additional new constraints is increased when the number 

of TUs gets larger, because we need more efforts to handle the vehicle 

collisions when the more TUs run on the system.  

A summary of the CGA-FS algorithm is shown next: 

1.Initialize a certain number of routes for each TU  
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2. while axmnummpInummpI ___   or axmnumItenumIte ___  , do  

  (1) solve the restricted master problem with relaxation of the integer 

variables; 

      (2) calculate the reduced costs of arcs in the network according to the  

dual values; 

     (3) find new column for each TU by the shortest path dynamic  

programming algorithm under the network; 

  (4) add the new generated routes to the master model; 

  (5) numItenumIte __  ; 

(6) if the optimal value of the relaxation of the restricted master model is  

same as previous iteration, do 

nummpInummpI __  ; 

             end if. 

end while 

3. Solve the master model without relaxation of the integer variables; If the 

objective value is the same as the optimal value of the relaxation of the 

restricted master model, Stop; Otherwise go to Step 4; 

4. Start the further search procedure; 

4.1 find the constraint whose dual value is most negative; 
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4.2 find the TU which contributes to this constraint most; 

4.3 create branches, and add a new constraint to MP  of each branch; 

4.4 solve the MP , and update the cost of the arcs; 

4.5 generate a new route for each TU and add these new columns to MP ; 

4.6 solve the MP ; if the solution of any branch is integer, Stop; otherwise,  

go back to Step 4.1. 

Here, axmnummpI __  is the maximum number that we allow for the 

successive iterations to be without improvement, and axmnumteI __  is the 

maximum number of iterations for generating new routes. 

4.4 Heuristic rules algorithm  

We propose an algorithm which implements several heuristic rules. The 

results of the heuristic algorithm are used to compare with that of our 

algorithm. In this heuristic algorithm, we will also use the HSPG method 

introduced in Section 4.3.4 to solve the routing problem. However, the TU 

sequence is randomly generated instead of basing on the unproductive time of 

TUs. The way of job dispatching is based on two vehicle-initiated rules: FCFS 

(first come first serve) rule and STT (shortest travel time) rule. The STT rule 

tries to reduce the unproductive move of TUs because they will be assigned 

with the jobs which are most near them. The FCFS rule is applied to prioritize 

the waiting transportation orders.  

The framework of the heuristic algorithm can be presented by Figure 4.7. The 

algorithm runs repeatedly until the stopping criteria is met. The stopping 
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criteria can be set as the computation time or the number of solutions we 

obtain. Finally, we select the best solution obtained by the algorithm.  

 

Figure 4.7 The framework of the heuristic rules algorithm 

4.5 Numerical experiments 

The numerical experiments consists of two major parts. The first part aims at 

accessing the effectiveness of our algorithm. The second part is the study on 

the GRID-ACT system.  
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4.5.1 Effect of the filter-width on the performance of the algorithm 

The filter-width is critical parameters that affect the performance of the 

algorithm. It is intuitive that increasing filter-width can help to obtain a more 

promising solution. However, the computation time will be increased. Thus, 

we need to handle the trade-off between the accuracy and computing time. In 

our algorithm, we use the HSPG method to screen the intermediate nodes, and 

then the fitness of the retained nodes is calculated by the CGA-FS method. If 

the correlation coefficient of the fitness calculated by HSPG and CGA-FS is 

small, the filter-width must be set to a large number in order to prevent 

screening out the good intermediate nodes. On the contrary, the filter-width 

can be set to a relatively small number if the correlation coefficient is large. 

Table 4.3 shows the correlation coefficient of the results calculated by the 

HSPG method and CGA-FS method.   

Table 4.3 Correlation coefficient between HSPG method and CGA-FS method 

 4 TU 6 TU 8 TU 10 TU 12 TU 

Correlation 

coefficient  

0.9517 0.9423 0.9011 0.8923 0.8733 

The term “4 TU” in Table 4.3 means the intermediate nodes are for the case 

that there are four TUs in the system. In each case, there are 100 intermediate 

nodes that are randomly generated. The correlation coefficient is calculated by 

the results of these 100 intermediate nodes. 



 

108 

 

From the results, we can find that the correlation coefficient is large which 

means we can set a relatively small number for the filter-width to reduce the 

computing time while the good solutions may not be discarded. Figure 4.8 

shows the results with different filter-width.         

Figure 4.8 Objective vs filter-width 

From Figure 4.8, we can find that when the filter-width is large enough, the 

improvement of the objective is minor. However, the raise of filter-width will 

increases the computing time. Figure 4.9 shows the relationship between 

filter-width and computing time. 
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Figure 4.9  Computing time vs filter-width 

From the results shown in Figure 4.8 and Figure 4.9, we can determine the 

filter-width with consideration of computing time. Therefore, the experiments 

in this study will select the number around 14 as the filter-width

4.5.2 Comparison study of the performance of the proposed method 

The algorithm with heuristic rules is widely used in a variety of industrial 

applications. We will conduct a comparison study between the algorithm 

described in Section 4.4 and our proposed method. The results are shown in 

Table 4.4. All the cases involve 100 container jobs. The run time of the 

heuristic algorithm is set to be equal to the time that our algorithm takes.  
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Table 4.4 Comparison of CGA-FS and heuristic rules algorithm 

Case CGA-FS 

Makespan (min) 

Heuristic algorithm 

Makespan (min) 

Gap 

(%) 

P1, 2 QC 3 TU 130.16 146.12 10.92 

P2, 2 QC 3 TU 124.02 138.08 10.18 

P3, 2 QC 4 TU 96.00 110.22 12.90 

P4, 2 QC 4 TU 98.44 110.57 12.13 

P5, 3 QC 3 TU 124.09 134.23 8.17 

P6, 3 QC 3 TU 116.78 125.55 6.99 

P7, 3 QC 4 TU 92.21 104.05 11.38 

P8, 3 QC 4 TU 91.99 102.63 10.37 

P9, 3 QC 5 TU 78.24 88.43 11.52 

P10, 3 QC 5 TU 77.67 89.87 13.58 

P11, 4 QC 5 TU 64.40 72.13 10.72 

P12, 4 QC 5 TU  66.22 75.26 12.01 

P13, 4 QC 7 TU 42.50 52.12 18.46 

P14, 4 QC 7 TU 41.12 50.26 18.19 

P13, 4 QC 10 TU 31.48 38.22 17.63 

P14, 4 QC 10 TU  32.01 38.20 16.05 

From the results, we can find that our method outperforms the heuristic 

algorithm, especially in the cases that the TU number is large. From the results, 

we can also find that the number of TUs and QCs affects the performance of 

the system. Thus, in the second part, we will study the effects of the 

parameters on the efficiency of the system.  

4.5.3 Effects of the parameters on the efficiency of GRID-ACT 

In this section, we will discuss the effects of the parameters like the number of 

TUs, QCs and horizontal rails.  
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Figure 4.10 Effects of number of TUs on makespan 

 

Figure 4.11 Effects of number of TUs on total processing time 

Figures 4.10 and 4.11 are the results of different number of TUs. It is intuitive 

that the makespan is decreased when increasing the number of TUs. However, 

the total processing time gets larger. This is because the system becomes 

congested, resulting in more delay when TUs are transporting the containers. 

In addition, TUs have to travel a longer distance in order to prevent vehicle 

collisions, which also increases the total processing time.  
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The number of horizontal rails also affects the performance of the system. 

Figure 4.12 shows the results of makespan under different number of 

horizontal rails.  

 

Figure 4.12 Effects of number of horizontal rails on makespan 

We can find that when the number of horizontal rails is small, increasing this 

resource can significantly reduce the makespan. This is because it can make 

the routes more flexible so that TUs can make a change on the paths to prevent 

vehicle collisions other than staying to wait until they can move through the 

congested area. However, this benefit cannot be obtained when the number of 

horizontal rails is large. The increment of horizontal rails does not reduce the 

makespan. This is because it cannot reduce the delay that happens in the 

transfer area. Every TU will approach the transfer points in the quayside to 

pick up or deliver the containers. Thus, the transfer area will be congested 

especially at the transfer points. Therefore, increasing the number of QCs can 

significantly reduce the makespan, because the traffic of each transfer point is 

reduced when increasing the number of transfer points. Table 4.5 shows the 

results of makepan under different number of QCs. 

When the number of TUs is small, the reduction of makespan by increment of 

one QC is not large. When the number of TUs is large, the reduction of 



 

113 

 

makespan by increasing of one QC is significant. Because when number of 

TU is large, increase the number of QC can spread out TUs in the transfer area, 

and the delay because of the busy of transfer points is also reduced.  

Table 4.5 Effects of number of QCs on makespan 

 QC2 VS QC3 QC3 VS QC4 

TU 4 5.46% 2.69% 

TU 5 5.61% 5.39% 

TU 6 8.60% 12.4% 

TU 7 11.93% 14.52% 

TU 8 12.80% 16.21% 

 

4.6 Conclusion 

In this study, we describe the operations of the GRID-ACT and propose an 

algorithm to solve the problem consisting of vehicle dispatching and conflict-

free routing. To access our algorithm, we conduct a comparison study with the 

heuristic algorithm. From the results, our algorithm can solve problems 

efficiently. In order to maintain a high productivity of the system, we should 

invest enough TUs and horizontal rails. Because the speed of the TU is slow, 

the system is low productivity when the number of TU is small. However, 

when the number of TU is large, the marginal benefit is small by additional 

one TU. It is because the system becomes more congested which resulting in 

more delay.   
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CHAPTER 5 A Study On A New Design ACT 

From the studies on FB-ACT and GRID-ACT, we can observe the main 

drawbacks of these two kinds of ACTs. In the FB-ACT system, the vehicles 

mounted on the same rail can only wait or give way to prevent collisions, 

which results in a large waiting time of the vehicles. Moreover, the 

handshakes among the equipment also bring waiting time to the system. In the 

GRID-ACT, the vehicles can flexibly select the paths to prevent collisions 

rather than keep waiting at a place. But the speed of the vehicles is relatively 

slow. Thus, a lot of time would be spent on traveling on the paths to 

accomplish the transportation demands. On the other hand, the advantages of 

these two ACTs attract lots of attention. In FB-ACT, the yard crane 

productivity is high because the ground trolleys can move to the designate slot. 

This leads to the reduction of the movement of YCs whose speed is much 

slower than ground trolleys. In GRID-ACT, the handshakes are greatly 

reduced, because the vehicles can lift and release the containers by themselves. 

A hybrid design of ACT is proposed which combines the advantages of these 

two ACT systems while weeds out the drawbacks. The idea of the design is to 

implement GRID system to take place of transportation activities at the 

quayside, while the transportation activities within the storage yard are 

performed by the same way in FB-ACT system.  

5.1 Introduction of the new design ACT 

The layout of the new design ACT is shown in Figure. 5.1. We call this design 

HFG-ACT (an abbreviation of Hybrid of Frame Bridge and GRID systems 

based ACT).  
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Figure 5.1 Layout of HFG-ACT 

Compared to the layout of FB-ACT, we can observe that we implement the 

GRID system to accomplish the transportation of containers at the quayside. 

Because the positions of containers in GRID system and on GTs are mutually 

perpendicular, we need to turn the container to 90 degrees when transfer it 

between a TU and a GT. Therefore, the TUs in HFG-ACT are different from 

those in GRID-ACT. These TUs are designed to be capable to rotate the 

container by 90 degrees.  

The GRID system plays a role on transferring the containers between quayside 

and storage yard. We define two kinds of transfer points: quayside transfer 

point and yard-side transfer point, where TUs can unload or load containers. 

The quayside transfer points are set on the first lane of the horizontal lanes 

which is the nearest to the vessels. The explicit location of the points are 

determined by the location of the QCs, whereas the transfer points at yard-side 

are explicitly appointed. They are allocated on the last lane of the horizontal 

lanes which is nearest to storage yard. Specifically, they are the places above 
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the ground rails. Each transfer point at yard-side serves the corresponding yard 

block. 

In order to improve the efficiency of TUs in GRID system, neither the 

horizontal nor the vertical contiguous lanes will share one track, which means 

TUs on the contiguous lanes can move in diverse directions. The illustration is 

shown in Figure 5.2. Both situations shown in Figure 5.2 are permitted. 

 

Figure 5.2 Movement in reverse directions 

In order to prevent the head-on or rear-end collisions, a safety distance 

between the TUs on the same horizontal lanes is defined. Because the speed of 

the vehicle is relatively slow, the safety distance can be set short so that 

vehicles can move more flexibly.  

In summary, the operation of a loading container can be described as 

following. One YC picks up the container from the slot in the storage yard and 

puts it on a GT. Then the GT carrying the container will move to the transfer 

point. Once a TU arrives at the transfer point, it will pick up the container 

from the GT and then rotate the container to 90 degrees before lifting the 

container. The TU carrying the container moves along the lanes to approach 

the transfer point at quayside. The TU will put down the container onto the 

transfer buffer. At this time, the TU is free to handle its next job and a 

specified QC will load the container on the transfer buffer to the vessel. The 
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operation of an unloading container is performed similarly but in a reverse 

order.  

In order to model the conflict-free routing problem, the definition of cell is 

proposed meshing with the structure of GRID system, which is the same as 

that shown in Chapter 4. The shape of a TU is slightly larger than a 40ft 

standard container. We set the length of the TU to 13.2 meters and the width 

to 3.3 meters. The GRID system is constructed by horizontal tracks and 

vertical tracks, which form homogeneous lattice. Thus the length of a lattice is 

four times to the width of it. Therefore, we define the time that the TU spends 

on the movement with a distance of 3.3 meters as a unit time. The speed of the 

TU is set to be 2 m/s. Thus, a unit time is equivalent to 1.65 seconds. We 

create the dummy cells meshing on the GRID system. One cell is a square area. 

The position of the TUs can be represented by the cells. Distinctively, one TU 

occupies four cells at a time. We choose the first cell counted from left to right 

as the position of the TU. Based on the definition of cells, we can quantify the 

safety zone of the TUs at any time. If we set the safety distance to one unit 

time distance, the safety zone can be presented as the set:  

))}(,4min())(,4max(|{)( iRijiLijiG  , 

where i  is the position of  the TU, )(iR is  the right-most cell of the row that 

Cell i  belongs to and similarly )(iL  is the left-most cell. Once a TU stays at 

Cell i , the cells in set )(iG  are reserved so other TUs cannot occupy. 

Moreover, the position of the transfer points mentioned previously can also be 

presented by the cells.   
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Another useful term guide-path segment introduced in Chapter 4, is also used 

to help model our problem. A guide-path segment is the smallest unit that the 

TU travel through. It is bi-directional. Moreover, the guide-path segments can 

be categorized into two types: vertical guide-path segments and horizontal 

guide-path segments. Intuitively, vertical guide-path segments are those TUs 

move in vertical direction while horizontal guide-path segments are those TUs 

move horizontally. The guide-path segment can be represented by the cells at 

its two sides. The set of horizontal guide-path segments is denoted as 
HW , 

where },4)()(|)1,{( NiiRiiLiiW H  . The set of vertical guide-

path segments is denoted as 
VW . Unlike the horizontal movement, the vertical 

movement can only occurs at certain cells where vertical tracks exist for TUs 

to travel along. Thus, we have:   

},,\

,3)()(,14*)1(*)1(|),{(

IntegerjNRowk

iRiiLjRkiRiiW

R

V




 

where R  is the number of cells on one lane, Row is the set of lanes, and RN  

is the index of last lane. The last lane is the rail nearest to the storage yard 

while the first lane is the rail nearest to the quayside.  

The definition of guide-path segments is used to help build constraints to 

prevent vehicle collisions in the mathematical model, and construct the 

mathematical network for searching solutions. They will be discussed later. 

5.2 Model development 

Similar to the previous studies, we will address the vehicle dispatching and 

conflict-free routing problems in HFG-ACT, while the quay crane and yard 
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crane capacities are considered. The modeling technique is similar to that in 

study on the GRID-ACT. 

Modeling assumptions 

The following assumptions are made: 

 Job sequence and job types for each QC are given; Subtasks handled by 

QCs must be carried out in the exact order in the QC list; 

 Yard block of each job is known; 

 The traveling speeds of empty and loaded TUs are the same; 

 Only one GT is running on each yard rail, i.e., there is no conflict among 

GTs; 

 Number of container jobs, number of TUs, GTs, QCs and YCs are all 

known; 

Because there is only one GT on the ground rail, we can simplify the 

operations in storage yard as a constant time. This constant time consists of 

GT traveling time and YC handling time. To make it simple, we assume that 

the travel distance of GTs is set between the transfer point and the middle of 

the yard block.  

Notations 

The model parameters are as follows: 

Q  the set of QCs; 

K    the set of TUs; 
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Y   the set of yard blocks; 

kN   the number of jobs in the QC list of QC k; 

L   the set of loading jobs; 

D  the set of discharging jobs; 

H   the set of all the jobs, DLH  ; 

QL  the set of subtasks that handled at quayside transfer points; 

qQL  the subtasks whose corresponding container belongs to the sequence 

list of QC q , Qq ; 

YL  the set of subtasks that handled at yard-side transfer points; 

yYL  the subtasks whose corresponding container belongs to the yard block 

with index of y , Yy ; 

VW  the set of vertical path segments (
w  and 

w , indicate the two 

directions along the segment 
VWw  ). 

),( i   container job index. The job ),( i  refers to the i th job in the 

sequence list of QC  . 

)(nL    Set of all feasible routes for TU n  

)(n   Set of all feasible routes generated in the pricing problem for the 

vehicle n  

Binary parameters: 
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The decision variables are as follows: 

lmX  =1: TU m  select the route l ; otherwise 0. 

 

To solve the problem, three decisions need to be determined, as shown below: 

(1) The assignment of container jobs to TUs, i.e. each container job is 

assigned to which TU. 

(2) The location of the TUs at every time unit to ensure that there are no 

vehicle collisions; 

(3) The starting time of the subtasks because of the constraints of QC and YC 

capacities. 
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We model the problem as a set partitioning problem. A route is defined as a 

set of the decisions mentioned above for a TU. It should be highlighted that 

the decisions of a container job must be complete if a route contains this job. 

For example, if route l  contains the assignment decision that a container job 

),( i  is assigned to TU m , the decisions including how the TU travels along 

the lanes and when the subtasks )1,,( i  and )2,,( i  start, must also be 

contained in route l .  

Model Formulation 

Mathematical model 0P  

Objectives:  

 
 Km mLl

lmlm XcMinimize
)(

:                                                                           (5.1) 
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mLl
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KmmLlX lm  ),(},1,0{                                                                   (5.8) 

Formulation (5.1)-(5.8) is explained as follows. As lmc  represents the penalty 

generated by route l , the objective function (5.1) minimizes the sum of 

penalties for the full horizon. The constraints (5.2) enforce the selection of 

exactly one route for each vehicle. Constraints (5.3) ensure that each container 

job is assigned to exactly one vehicle route.  

The conflict-free routing constraints are modeled with (5.4)-(5.5). Constraints 

(5.4) ensure that there is at most one vehicle visiting a cell in N  at time Tt . 

Constraints (5.5) are used to prevent the cross-over among the vehicles in the 

same lane. The details are illustrated below.  

 

Figure 5.3 Cross-over collision 

Considering the scenario shown in Figure. 5.3, TU   and TU   currently at 

time t  stay on cells i  and j , respectively. They are going to move in the 

reverse direction. Thus, at time 1t , TU   will stay at cell j  while TU   

will stay at cell i . This kind of scenario cannot be detected by constraints (5.4). 
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However, it is infeasible because the TUs on the same lane cannot cross-over 

each other. Therefore, constraints (5.5) are proposed to prevent this kind of 

vehicle collision.  In addition, this scenario will not happen if these two TUs 

are on a horizontal lane. This is because of the restriction of safety zone, 

constraints (5.4) can prevent two TUs from staying contiguously. In 

conclusion, only the vertical guide-path segments have possibilities of head-on 

collisions, which cannot be prevented by constraints (5.4).   

Constraints (5.6)-(5.7) are proposed considering the capacities of QCs and 

YCs. Constraints (5.6) impose a time interval between two consecutive 

subtasks using the same QC. The values of the time intervals depend on the 

type of subtasks. They are the same as those defined in the study on FB-ACT. 

Similarly, constraints (5.7) impose a time interval between the pair of 

consecutive subtasks using the same yard block. We assume that there is no 

pre-defined sequence for YCs. This means that we only need to ensure that the 

YC serves one subtask at a time, but the sequence of subtasks being carried 

out is unknown. Similarly, the values of the time intervals are the same as 

those defined in the study on FB-ACT. Finally, constraints (5.8) specify the 

binary character of the variables. 

In practice, the number of feasible routes is substantially large and the model 

(5.1)-(5.8) cannot be solved directly. In order to solve the problem efficiently, 

we will apply the tree structure algorithm where two efficient approaches are 

embedded. Before discussing the algorithm in detail, the mathematical 

network will be presented first. It is implemented to solve the routing problem 

when we decompose our original problem into vehicle dispatching problem 

and vehicle conflict-free routing problem. 
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5.3 Mathematical network 

The conflict-free routes will be generated based on a time-space network. We 

will introduce this network first before we present our algorithms. The 

mathematical network is a time-space acyclic network ),( AVG  , where V  

and A  represent the set of vertices and the set of directed arcs, respectively 

(shown in Figure 5.4).  

 

Figure 5.4 Part of a mathematical network 

There are two types of vertices: 

 To each location SNn   corresponds 1T  vertices Vvnl   (one 

vertex for each time t ). 
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 An origin vertex Vom   and a destination vertex Vdm   are associated 

with each vehicle Km  to represent the start and the end of its route, 

respectively. The set of origin and destination vertices is denoted as OD. 

The arc set A  includes five types of arcs, corresponding to moves in space 

and/or time: 

 The start arcs link the origin vertex mo  of each vehicle to the vertex 

Vvnl   corresponding to its initial position, i.e. a location or a transfer 

point on the guide-path. 

 The end arcs link all vertices nTv  (T  is the last period of the horizon) to 

each destination vertex Kmdm , . 

 The wait arcs are defined for all pairs of vertices 

ODVODVvv tnnt \\),( 1, 
. These arcs represent a vehicle waiting at a 

given location for one period of time. 

 The travel arcs represent the movements along the guide-path. These arcs 

are represented as ),( 1, tjit vv  where i  and j  are adjacent locations.  

 Let YLQL  be a subtask to be operated at the quayside transfer point 

or yard side transfer point. A task arc ODVODVvv htnnt \\),( , 
 is 

defined if this subtask can begin at time t , where n is the location of the 

transfer point. 

The sets of start and task arcs are denoted by 
SA  and 

TA , respectively, while 

the set of travel arcs WA  is divided into subsets 
WA  and 

WA  according to 
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the direction (+ or -) used to travel along the corresponding guide-path 

segment.  

To calculate the cost of a route )(ml  , a cost ac  is associated with each arc 

Aa . This cost is null for all arcs other than the task arcs. For a task arc a

representing task   starting at time t , this cost corresponds to the penalty 

incurred for beginning   at time t . 

5.4 Solution methodology 

The complexity of vehicle dispatching and conflict-free routing leads to 

intrinsic difficulty of this problem. The tree structure algorithm is adopted to 

solve the problem, where two methods are embedded during the procedure of 

expanding the tree. The structure and mechanism of expanding the tree are the 

same as that in the study shown in Chapters 3 and 4. But the embedded 

methods are different which are developed according to the characters of the 

problem in this study. The problem is still divided into two sub-problems: 

vehicle dispatching problem and vehicle conflict-free routing problem. As the 

conflict-free routing problem is still complicated even though the decisions of 

vehicle dispatching problem are given, we propose two heuristic based 

algorithms to solve this routing problem. In Chapter 2, we can find that 

because each FT moves on a unique rail, the routing problem can be solved by 

determining the subtask sequence. The subtask sequence is a prior ordering of 

the subtasks when they are competing for the resources. The TUs in this 

problem can move more flexibly so that the routing problem cannot be solved 

by using the same method as that in the Chapter 3. However, the subtask 

sequence seems to be a crucial factor for the performance of the solutions. 
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Thus, we will solve the routing problem by determining the subtask sequence. 

The first method is easy and fast and it is called heuristic sequential path 

generation (HSPG), which is used to screen the intermediate nodes. The 

second method is more accurate but needs more computation efforts and it is 

called column generation algorithm based sequential path generation 

(CGASPG), which is used to generate new beam nodes. The procedure of 

expanding the tree is the same as that in the previous study. We will only 

discuss these two embedded methods in this study. 

5.4.1Heuristic sequential path generation 

A greedy algorithm is used to play the role of the surrogate method, which is 

used to screen the intermediate nodes. This algorithm consists of generating 

the conflict-free route for each subtask sequentially. The way to give a priori 

ordering of the subtasks is crucial to the performance of the algorithm. In 

addition, this algorithm is applied to solve the conflict-free routing problem in 

a large number of intermediate nodes, which implies that the computation time 

must be short. Considering the impact from the pre-specified QC list, we 

should maintain consistency of the prior ordering of the subtasks and the QC 

list. Intuitively, if a subtask is ranked high in the QC list but ranked a low 

position in the prior ordering, this will incur an additional delay since other 

subtasks succeeding to it have to be delayed when the vehicles already arrive 

at the transfer point. In order to obtain a prior ordering which tends to prevent 

this additional delay, a mathematical model is built, which is denoted as 

)(nPS
, where n  indicates the intermediate node. The objective of the model 

is to determine a prior ordering so that the delay is minimized based on the 

assumption that the vehicle collisions are not considered. Thus, the traveling 
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time between the transfer points is represented by the time using the shortest 

path. Because the number of subtasks involved is relatively small and the 

model is simple, the computation efforts of the model will be small. After the 

ordering is solved, the conflict-free route of each subtask is solved by 

sequential path generation algorithm based on the ordering. 

We first define the additional parameters in this model while the parameters 

that are the same as previous will not be presented here again. 

Parameters 

p  processing time of subtask  . 

TUt  The traveling time for a TU from the location of subtask   to the 

location of subtask   using the shortest path ignoring vehicle 

collisions 

)(mV   the set of subtasks that belongs to vehicle Kmm ,  

)(C  the set of subtasks that compete the same yard transfer point, where 

YL . 

)(Q  the set of subtasks that cannot be performed until subtask   is 

accomplished according to the QC list. 

SP  the set of pairs of successive subtasks belonging to the same vehicle 

Decision variables 

mT  the time for vehicle m  to complete its subtasks
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T  the starting time of subtask   

z  




otherwise ,0

subtask  than earlier starts subtask  if ,1 
 

Mathematical model )(nPS
 

Objective: 

Minimize: 



SP

TU

SKm

m tpT
),( 





                                                            (5.9) 

Constraint 

)(,, mVKmpTT m                                                             (5.10) 

)()(,),1(  QCzMTtpT tvalin

m                            

(5.11) 

SPTtpT TU  ),(,0                                                                     

(5.12) 

)(,,1  CYCzz                                                                          

(5.13) 

SPz  ),(,1                                                                                              

(5.14) 

)(,,,1  QQqQLz q                                                                      

(5.15) 

TTz   },1,0{                                                                                       (5.16) 
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The objective function (5.9) minimizes the sum of delay during the horizon of 

accomplishing all the subtasks in the intermediate node. Constraints (5.10) 

define the complete time for vehicles to accomplish their subtasks. Constraints 

(5.11) impose a time interval of at least tvalin

mtp   periods between two 

subtasks that compete for the same resources at the transfer points. The 

definition of tvalin

mt  is presented in the study of FB-ACT, which is the necessary 

handling time for the resources like QC, YC and GT between two consecutive 

subtasks. Constraints (5.12) impose a time interval of at least the processing 

time and traveling time between two subtasks using the same vehicle. 

Constraints (5.13) ensure that two subtasks that competing for the same 

resources in yard block cannot be performed simultaneously. Constraints (5.14) 

and (5.15) ensure that the subtasks are performed consistently with the 

sequence in each vehicle and QC list. Finally, constraints (5.16) specify the 

domain of the decision variables. 

Once the mathematical model 
SP  is solved, the priori ordering of the subtasks 

can be determined according to the values of variables )( ST  . The 

subtask with smaller value of T  is assigned with a higher ranking in the prior 

ordering.  

Given the network G  and the subtask set S , the main steps of the algorithm 

are shown as following: 

(1) Position all vehicles at their source nodes in G . 

(2) Route the vehicle with the subtask   which is the first rank on the priori 

ordering. Remove from G  all arcs and vertices in this path to prevent 
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collisions when routing other vehicles. Remove also all arcs corresponding 

to task  . Update the priori ordering by removing the task  . 

(3) If there are still some unscheduled subtasks, return to step 2. 

(4) Otherwise, Stop. 

After these steps, we can obtain a feasible solution. The total processing time 

of subtasks computed based on the feasible solution is treated as the fitness of 

the corresponding intermediate node. As discussed before, a screening 

procedure is performed when the fitness of the intermediate nodes is 

calculated. Another method is applied to the retained intermediate nodes to 

resolve the conflict-free routing problem. This method will be discussed in the 

next section.  

5.4.2Column generation algorithm based sequential path generation 

It is intractable to solve the conflict-free routing problem to optimality when 

the number of vehicle gets large. We implement the column generation 

technique to help solving the routing problem. We first present how we use 

column generation algorithm for our routing problem. Then, we will introduce 

how we use the results from the column generation algorithm to help solving 

the routing problem. 

Column Generation Algorithm 

The mathematical model for solving the conflict-free routing problem 

associated with the intermediate node n , is denoted as )(nPC
. It is presented 

as following. 
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Mathematical model )(nPC
 

Objectives:  

 
 Km mLl

lmlm XcMinimize
)(

:                                                                         (5.17) 

Constraint  

KmX
mLl

lm 


,1
)(

                                                                           (5.18) 

TtNiXAXA
mLl Km iGj mLl Km
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KmmLlX lm  ),(},1,0{                                                                 (5.23) 

The model )(nPC
 aims to solve the conflict-free routing problem in the 

intermediate node indicated by n . A column generation algorithm is used to 

find its optimum solution. Such an algorithm divides the problem into a 

restricted master problem and several sub-problems. In our study, the 

restricted master problem is simply the linear relaxation restricted to a small 

subset of its variables and the sub-problems corresponding to shortest path 

problems with additional constraints. There is one sub-problem for each 
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vehicle. The role of the restricted master problem is to coordinate the various 

proposals made by the sub-problems to satisfy all linking constraints (5.18)-

(5.22). The role of the sub-problems consists of identifying variables that may 

contribute to improve the objective function.  

The column generation procedure is iterative. It starts with a small subset of 

the path variables. The restricted master problem is solved optimally at each 

iteration to provide current primal and dual solutions. Each sub-problem is 

solved by dynamic programming with the objective of finding path variables 

with negative reduced costs, under the dual information obtained from the 

restricted master problem. After that, the new paths variables are added to the 

restricted master problem, which will be solved again. The primal solution to 

the restricted master problem is optimal to the linear relaxation of )(nPC
, 

when there are no path variables that with negative reduced cost. The iterative 

procedure is then stopped. 

The sub-problems 

The key factor in solving the sub-problems is to derive the arc reduced costs 

ac from the dual solution of the current restricted master problem. Such a 

reduced cost is given by )(acc aa  , where )(a  is the sum of all the dual 

contributions for this arc a . These contributions are calculated according to 

which type that arc belongs to. The contributions are shown in Table 5.1, 

where )()1( Vkk  , ),()2(

, TtSNntn  , ),()3(

, TtWw V

tw  , 

))',(()4(

)',( QL  , 
)5(

),',( t ),)',(( TtYL   denote the dual variables 

associated with constraints (5.18)-(5.22), respectively. Furthermore, a  
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represents the subtask associated with arc TAa , s

at  and e

at  are the start and 

end times associated with arc Aa , ai  is the tail vertex of arc Aa , and aw  

is the guide-path segment associated with arc 
VW

Aa . 

Table 5.1 Dual contributions to arc reduced costs 

If arc Aa  satisfies Add this contribution to its reduced 

cost 
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A dynamic programming algorithm is used to solve the shortest path problem. 

This dynamic programming algorithm is a simple pushing algorithm that is 

performed after ordering the vertices of G  in topological order.  

As discussed in Chapter 4, we need to spend great efforts to prevent vehicle 

collisions in the GRID system. It is always the case that the solution from the 
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model )(nPC  is the same as the initial feasible solution when no more new 

paths variables are added. The initial feasible solutions are computed by the 

HSPG method. One of the ways to obtain the optimal solution is the branch-

and-cut technique. However, those problems mainly focus on the vehicle 

dispatching while the prevention of vehicle collisions tends to be easier to 

handle. Unfortunately, in our problem, vehicle collision is a hazard, which 

needs an explicit scheduling to prevent it. In addition, the detail method is not 

used for only once. It is applied on every retained intermediate node at every 

level of the spreading tree. The computation time of the detail method should 

be controlled so that the whole problem can be solved within a reasonable 

timescale. On the other hand, the detail method should be accurate enough to 

afford a satisfying performance of the whole algorithm. Different from the 

problem in Chapter 4, the transfer points at the quayside and yard-side are 

much more congested. The method CGA-FS developed in Chapter 4 fails to 

improve the solutions. We can find that the task sequence is crucial for solving 

the routing problem. Thus, we will provide a method based on the column 

generation algorithm to obtain a promising task sequence. The main idea is to 

estimate the starting time of the tasks using the results obtained by the column 

generation algorithm. Then the task sequence is determined by the estimated 

starting time. We call this method as column generation algorithm based 

sequential paths generation (CGASPG).  

For each TU, we can estimate the starting time of its subtasks by summating 

the starting time of the subtask multiplied by the flow of its corresponding 

route. For instance, route il , jl  (where )(, nll ji  ) are the routes of vehicle n  
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with the positive flow nli
X ,   and nl j

X , , respectively. The flow of the other 

routes of vehicle n  is zero. One subtask is carried by vehicle n , denoted as  . 

Then, the estimated starting time can be calculated by: 

nlnlnlnl jjii
XtXtt ,,,, **   . Thus, similarly, we can obtain the estimated 

starting time of all the subtasks in a similar manner. The subtask with an 

earlier estimated starting time will be ranked at a high position on the prior 

ordering. However, to maintain a certain level of flexibility, a threshold is 

introduced as 
SPGH . Therefore, a branch will be created when there exists 

subtasks that 
SPGHtt  || 

, where one branch is with the decision that 

subtask   is prior to   when searching the conflict-free routing, and the 

other one branch is with the decision that subtask   is prior to  .The 

sequential paths generation algorithm is implemented to search the conflict-

free routes according to the prior ordering.  

This paragraph will discuss the insight of the CGASPG method. The crucial 

factor for the routing problem is to determine which vehicle can use the 

locations where more than one vehicle is competing for them. The branch-

and-bound algorithm appears to be a way to optimally solve the routing 

problem. However, the scale of the variables is always substantially large 

considering the number of locations and the length of time dimension. Apart 

from that, a tight lower bound is also intractable to be found. Instead of 

making decisions of vehicle usage on every location at the time, we make a 

compromise that a prior subtask will have the right to occupy the locations 

when we find the route for it. Thus, the problem is reduced to make a prior 

ordering of the subtasks. The worst case of the number of the orderings is the 
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value equaling to the factorial of n , where n  is number of subtasks. In fact, 

the number is much smaller than )(nfactorial  because of the precedence 

relationship pre-specified by the QC lists and the sequence on the same 

vehicle. However, the number of the feasible ordering is still substantially 

large, resulting in unpredictable computation efforts to enumerate all these 

feasible orderings. Therefore, we will follow the information obtained from 

column generation algorithm to capture the promising orderings.  

5.5 Computational experiments 

In this section, we will conduct the numerical experiments to access the 

performance of this hybrid system. We will compare the performance of FB-

ACT and HFG-ACT. Although the algorithm for each ACT system is not the 

same which may affects the fairness of the comparison, it can still provide 

some useful information that the hybrid system seems to have a performance.  

The experiments are conducted based on the layout that there are 15 yard 

blocks and 4 QCs allocated along the quayside. For the FB-ACT system, there 

are 3 horizontal rails. For the HFG-ACT system, there are 4 horizontal rails 

and one of the rails is for transferring containers between TUs and GTs. Thus, 

both system have 3 rails for the vehicles to travel. There are 100 container jobs 

in each instance. The results are shown in Table 5.2. The results are the 

makespan. 
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Table 5.2 Comparison results of FB-ACT and HFG-ACT 

Case FB-ACT (min) HFG-ACT (min) Difference (%) 

2 FTs 

P1.1 78.2 83.2 -6.39 

P2.1 76.4 84.1 -10.1 

P3.1 81.4 85.8 -5.41 

P4.1 80.9 83.4 -3.09 

P5.1 82.3 84.9 -3.16 

Average: -5.62 

3 FTs 

P1.2 68.3 70.8 -3.66 

P2.2 70.6 71.5 -1.27 

P3.2 71.1 72.6 -2.11 

P4.2 72.2 73.7 -2.08 

P5.2 73.2 75.4 -3.01 

Average: -2.43 

4 FTs 

P1.3 65.3 63.0 3.52 

P2.3 68.6 63.5 7.43 

P3.3 68.4 64.4 5.85 

P4.3 67.0 63.1 5.82 

P5.3 65.8 61.6 6.38 

Average: 5.80 

5 FTs 

P1.4  65.1 60.2 8.91 

P2.4 65.2 61.8 6.60 

P3.4 67.6 61.1 11.0 

P4.4 65.2 60.4 8.74 

P5.4 64.5 60.5 7.60 

Average: 8.57 

6 FTs 

P1.5 66.4 58.2 12.35 

P2.5 65.3 59.9 8.27 
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Continue Table 5.2 

P3.5 66.6 60.6 9.01 

P4.5 67.3 60.8 9.66 

P5.5 63.5 57.2 9.92 

Average: 9.82 

We randomly generate five cases and each case is calculated when there are 2 

FTs, 3 FTs, 4 FTs, 5 FTs and 6 FTs. The index of 2 FTs means that there are 2 

FTs on the rail in the FB-ACT and there are 6 FTs in this system. Thus, there 

are also 6 TUs in HFG-ACT. The cases of P1.1 and P1.2 are under the same 

case but with different number of FTs. There are 6 FTs in total in FB-ACT in 

the case P1.1 while there 9 FTs in total in FB-ACT in the case P1.2. The 

difference in Table 5.2 is calculated as following:

2/)32( columncolumncolumndifferent  . 

From the results, we can find that when the number of FTs on each rail is 

small, the FB-ACT performs better than HFG-ACT. This is because the traffic 

congestion on the rail is not much and the travelling speed of FT is higher than 

that of TU. However, when the number of FTs on the rail is large, HFG-ACT 

performs better than FB-ACT. The HFG-ACT can handle the traffic 

congestion on the rails more efficiently by flexibly selecting the paths while 

the FTs on the FB-ACT can only be delayed on the rails. Figure 5.5 shows the 

results of Table 5.1 that we plot the makespan of FB-ACT and HFG-ACT 

under different cases and number of vehicles. 
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Figure 5.5 Makespan of FB-ACT and HFG-ACT 

From Figure 5.5, we can find that the FB-ACT will not get benefit from the 

increase of vehicle numbers when it gets congested. However, HFG-ACT 

outperforms FB-ACT in the scenario that the number of vehicles is relative 

large.  

5.6 Conclusion 

In this study, we observe some operational limitations that impede on the 

performance of the FB-ACT. Thus, we propose a hybrid FB-ACT system 

which uses some good ideas from the GRID-ACT and implement in the 

transportation system at the quayside. From the numerical results, we can find 

that the new design system can handle the vehicle congestion more efficiently 

than FB-ACT. When the number of vehicles is small, FB-ACT performs better 

than HFG-ACT. However, when the number of vehicles gets large, FB-ACT 

seems to be stunned in the vehicle congestion. Thus HFG-ACT is able to 

provide a good solution in this situation.  
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CHAPTER 6 Conclusion 

With the development of technology, container terminal operators tend to 

design new container terminals to improve the productivity as well as maintain 

efficient operations. In this thesis, we study the details of the operations of two 

new conceptual ACT systems which have triggered interests in industrial as 

well as academic area. To the best of our knowledge, the work in the thesis is 

the first work to simultaneously solve the vehicle dispatching and conflict-free 

routing in these two ACT systems. As we observe some operational 

limitations that impede on the performance of the FB-ACT, we propose a 

hybrid FB-ACT system which integrate some good ideas from the GRID-ACT 

into the transportation system at the quayside  

We first study the system called Frame Bridge based Automated Container 

Terminal proposed by Shanghai Zhenhua Heavy Industries Co. Ltd. In FB-

ACT system, several different types of equipment are involved in the 

transportation of one container. We emphasize on the management of 

resources in order to reduce the delay during the handshakes and avoid vehicle 

collisions, which significantly affects the efficiency of the system. We develop 

a mathematical programming model which integrates the vehicle dispatching 

problem and vehicle conflict-free routing problem. Because the model cannot 

be solved when the scale of the problem is large, we develop a tree structure 

algorithm. Our algorithm can solve this complicated problem efficiently by 

dividing it into the sub-problems with small scale. By comparing with the 

heuristic algorithm, our algorithm can solve the problem and give a more 

satisfying performance. 
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Another new conceptual ACT called Goods Retrieval and Inventory 

Distribution (GRID) based ACT was proposed by BEC industries LLC. In 

GRID-ACT, the main issues are the vehicle dispatching and conflict-free 

routing problems. Due to the meshed structure of the paths, the problem is 

modeled as a set partitioning problem. Given the intrinsic difficulty of this 

problem, the tree structure algorithm is also adopted to solve the complicated 

problem. The conflict-free routing problem should be concentrated on because 

of its significance in reducing traveling time including the delay. Thus two 

methods are proposed to solve this problem. One is fast in computation, which 

will be used in screening procedures. And the other one is more accurate, 

which will be used in the selection of beam nodes (the partial solutions which 

will be further exploration). Because of the complexity of the conflict-free 

routing problem, the typical column generation algorithm cannot solve it well. 

However, we can continue the search by using the information obtained by the 

typical column generation algorithm. New columns can be generated by 

adding new constraints which aim to prevent TUs from running in congested 

area. After the additional searching, we can obtain a promising and feasible 

solution for the conflict-free routing problem. Our algorithm can obtain 

satisfying solutions when compared to a heuristic algorithm. 

By analyzing the performance of FB-ACT and GRID-ACT, we proposed a 

new design of container terminal. The main drawback of FB-ACT is the 

relative long waiting time because of the prevention of vehicle collisions. The 

vehicles in GRID-ACT can flexibly select paths to prevent vehicle collisions, 

which can reduce the waiting time. However, because of the slow speed of the 

vehicle and the long distance of the paths, GRID-ACT has to spend a 
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relatively long time on traveling. This newly designed terminal is a hybrid of 

FB-ACT and GRID-ACT, which appears to offset the drawbacks of these two 

kinds of terminals. This newly designed terminal outperforms FB-ACT and 

the result is shown by a comparison study.   

There are still many interesting topics related to these new conceptual ACT 

systems. One of them is the container allocation problem. Because the 

stacking mechanism in GRID-ACT is very different from the traditional 

container terminals, how to allocate the containers in the storage yard seems to 

be one crucial strategy that affects the performance of the system. The second 

one is the operations related to the yard in FB-ACT system. The system can 

use more than one GT on the ground rail. The ground rails can also be 

constructed as two layers. Thus, we should spend more efforts on the 

scheduling problem in the yard area.  
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Appendix A 

Some new parameters are introduced to present the reduced MIP model. 

Parameters: 

)(iSm : the ith  subtask in the FT schedule of FT m . The last subtask in the FT 

schedule of FT m  can be indicated as )(mS , where   is the look-ahead 

number. 

GTC : the set of pairwise subtasks which competes for the same GT. 

TPC : the set of pairwise subtasks which competes for the same TP. 

FTC : the set of pairwise subtasks where there is FT conflict between them. 

C : the set of pairwise subtasks which cannot be operated simultaneously. We 

can have: FTTPGT CCCC  . 

Decision variables: 

*

),,)(,,( hjkiZ  : 
*

),,)(,,( hjkiZ  =1 if the starting time of subtask ),,( hj   is greater 

than or equals to the finishing time of subtask ),,( ki  ; 
*

),,)(,,( hjkiZ  =0, 

conversely. It is different from the variable ),,)(,,( hjkiZ   in the original MIP 

model which the value of zero does not force the starting time of subtask

),,( ki   to be greater than or equals to the finishing time of subtask ),,( hj  . 

The reduced MIP model can be shown as below: 

}{ ))(())(( 



mm SS

Mm
pTMaxMin：  
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Constraints: 

(1) Time constraints for the two subtasks of a given job 

HiTtpT i

ft

iiii  ),(,)2,,()2,,)(1,,()1,,()1,,(   

(2) Sequence dependent times for different resources 

QC: 

LiLitpTT ll

qciii  ),1(,),(,)2,,()2,,()2,,1(   

DiLitpTT ld

qciii  ),1(,),(,)2,,()2,,()1,,1(   

LiDitpTT dl

qciii  ),1(,),(,)1,,()1,,()2,,1(   

DiDitpTT dd

qciii  ),1(,),(,)1,,()1,,()1,,1(   

GT: 

GT

hjkimskikihj

Chjki

ZMtpTT





)),,(),,,((

),1( ),,)(,,(),,(),,(),,(




 

GT

hjkimshjhjki

Chjki

ZMtpTT





)),,(),,,((

,* ),,)(,,(),,(),,(),,(





 

TP: 

TP

hjki

tp

hjkikikihj

Chjki

ZMtpTT





)),,(),,,(( 

),1( ),,)(,,(),,)(,,(),,(),,(),,(





TP

hjki

tp

hjkihjhjki

Chjki

ZMtpTT





)),,(),,,(( 

,* ),,)(,,(),,)(,,(),,(),,(),,(




 

FT conflict: 
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FT

hjki

ft

hjkikikihj

Chjki

ZMtpTT





)),,(),,,((

),1( ),,)(,,(),,)(,,(),,(),,(),,(





FT

hjki

ft

hjkihjhjki

Chjki

ZMtpTT





)),,(),,,(( 

,* ),,)(,,(),,)(,,(),,(),,(),,(




 

(3) Domain of variables 

ChjkiORZ hjki  )),,(),,,((,10),,)(,,(   

HiTT ii  ),(,0, )2,,()1,,(   
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