

DISPATCHING AND CONFLICT-FREE ROUTING

OF VEHICLES IN NEW CONCEPTUAL

AUTOMATED CONTAINER TERMINALS

XU YANHUA

NATIONAL UNIVERSITY OF SINGAPORE

2015

DISPATCHING AND CONFLICT-FREE ROUTING

OF VEHICLES IN NEW CONCEPTUAL

AUTOMATED CONTAINER TERMINALS

XU YANHUA

(B.Eng., Shanghai Jiao Tong University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL & SYSTEMS ENGINEERING

NATIONALUNIVERSITY OF SINGAPORE

2015

i

DECLARATION

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the sources of

information which have been used in thesis.

This thesis has also not been submitted for any degree in any university

previously.

XU YANHUA

14 Aug 2015

ii

Acknowledgements

My PhD study at National University of Singapore is an invaluable experience in my

life.

I would like to express my deepest appreciation to my supervisors, A/Prof. Chew Ek

Peng and A/Prof. Lee Loo Hay. They offer me consistent encouragement and

guidance throughout the whole course of my research. Without their invaluable

instructions, this thesis would not be completed.

I would like to give thanks to my friends who offer valuable suggestions on my

research. Thank Mu Aoran, Wang Qiang, Li Juxin, Fu Yinhui, Chen Liqing, Ma

Sicong, Wang Yuan, Jiang Xinjia and Zhou Chenhao. I also would like to thank my

peers who pursue Ph.D degree together. They are Ong Xianrong, Tang Baiwan, Xiao

Yan, Lei Zong and Chao Ankuo.

Special thanks to my best friends in China: Huang Zhigang, Lin Zhenfeng, Deng

Wanxi, Li Bojie, Li Nan, Huang Shanshan and Yang Xiuli.

Last, but not the least, I would like to thank my family for their continuous support

and understanding, especially my brother-in-law Zhang Yi.

iii

Table of Contents

DECLARATION .. i

Acknowledgements ... ii

Table of Contents ... iii

Summary…………………… .. vi

List of Tables…………. .. vii

List of Figures... viii

List of Abbreviations ... x

List of Notations ... xi

CHAPTER 1 Introduction ... 1

1.1 Background of container terminals .. 1

1.2 Automated Container Terminal ... 3

1.3 Frame Bridge Based Automated Container Terminal ... 8

1.4 Goods Retrieval and Inventory Distribution based Automated Container

Terminal .. 11

1.5 Contribution of the thesis .. 15

1.6 Organization of the thesis .. 17

CHAPTER 2 Literature Review ... 19

2.1 Quay Crane Scheduling and Yard Crane Scheduling ... 19

2.1.1 Quay Crane Scheduling .. 19

2.1.2 Integration of berth and quay crane scheduling problem 21

2.1.3 Yard Crane Scheduling ... 22

2.2 Vehicle Planning Problem ... 24

2.2.1 Vehicle Dispatching Problem .. 24

2.2.2 Vehicle Routing Problem .. 26

2.2.3 Integration of Vehicle Dispatching Problem and Conflict-free Routing

Problem .. 28

2.3 Automated Warehouse ... 30

2.4 Filtered Beam Search .. 31

2.5 Column Generation Algorithm ... 33

iv

CHAPTER 3 Vehicle Dispatching and Conflict-free

Routing Problems Under FB-ACT .. 36

3.1 Problem Definition ... 36

3.1.1 Activity for discharging and loading jobs ... 39

3.1.2 Activity flow for discharging jobs (Figure 3.1) ... 40

3.1.3 Activity flow for loading jobs (Figure 3.2) ... 42

3.1.4 Conflict Resolution .. 43

3.2 Mathematical model .. 47

3.3 Filtered Beam Search-based Algorithm ... 50

3.3.1 Filtered beam search algorithm ... 50

3.3.2 Development of the tree structure algorithm ... 52

3.3.3 Discussion of the performance of the tree structure algorithm 55

3.3.4 The fitness calculation ... 56

3.3.5 Surrogate model approach ... 58

3.3.6 Reduced MIP model approach .. 61

3.4 Computation experiments ... 63

3.4.1 Comparison study of the performance of the proposed methods 64

3.4.2 Effects of the parameters on the efficiency of FB-ACT 68

3.5 Conclusion ... 72

CHAPTER 4 Vehicle Dispatching and Conflict-free

Routing Problems Under GRID-ACT... 73

4.1 Problem Description .. 73

4.1.1 Convert the physical layout into a pure cell layout 75

4.1.2 Avoidance of vehicle collisions ... 77

4.1.3 Decoupling operations between QCs and TUs .. 81

4.1.4 Activities for discharging and loading jobs .. 81

4.2 Mathematical Model .. 82

4.3 Heuristic Method .. 86

4.3.1 Decomposition .. 86

4.3.2 Development of the tree structure algorithm ... 88

4.3.3 Time-space network ... 90

4.3.4 HSPG method ... 92

4.3.5 CGA-FS method ... 96

v

4.4 Heuristic rules algorithm ... 105

4.5 Numerical experiments .. 106

4.5.1 Effect of the filter-width on the performance of the algorithm 107

4.5.2 Comparison study of the performance of the proposed method 109

4.5.3 Effects of the parameters on the efficiency of GRID-ACT 110

4.6 Conclusion ... 113

CHAPTER 5 A Study On A New Design ACT ... 114

5.1 Introduction of the new design ACT .. 114

5.2 Model development ... 118

5.3 Mathematical network .. 125

5.4 Solution methodology ... 127

5.4.1 Heuristic sequential path generation ... 128

5.4.2 Column generation algorithm based sequential path generation .. 132

5.5 Computational experiments ... 138

5.6 Conclusion ... 142

CHAPTER 6 Conclusion .. 143

Appendix A…………….. .. 146

References…………….. ... 149

vi

Summary

This dissertation addresses the vehicle dispatching and conflict-free routing

problems in two automated container terminal concepts. One is called Frame

Bridge based Automated Container Terminal (FB-ACT) and the other is called

Goods Retrieval and Inventory Distribution based Automated Container

Terminal (GRID-ACT). As the size of realistic problem is large which

requires very high computational and memory requirement, we develop a tree

structure algorithm which is analogous to filtered beam search algorithm as

the overall framework to solve the dispatching and routing problems. Based

on the structure of the problems, we propose different novel solution methods

and embed them into the analogous filtered beam search algorithm. In the FB-

ACT system, the first stage method estimates the results by a heuristic method

which determines the task sequence based on pseudo delays. The second stage

method obtains the results by solving the MIP model whose scale is greatly

reduced when the decisions of vehicle dispatching problem are determined. In

the GRID-ACT system, the first stage method obtains the results by the

sequential path generation method. The second stage method implements a

modified column generation algorithm which uses historical information to

improve the results. As we observe some operational limitations that impede

on the performance of the FB-ACT, we propose a hybrid FB-ACT system

which uses some good ideas from the GRID-ACT to be implemented in the

transportation system at the quayside.

vii

List of Tables

Table 1.1 Operating cost for a typical Post Panamax vessel 4

Table 1.2 CO2 emissions from container terminals of Rotterdam Port 5

Table 3.1 Comparison of the number of variables between the reduced and

original MIPs ... 62

Table 3.2 Correlation coefficient between surrogate model and reduced MIP

model.. 63

Table 3.3 distance between QC and yard…………………………………….65

Table 3.4 minimum separation time of QC…………………………………..66

Table 3.5 Comparison with the optimal results ... 66

Table 3.6 Comparison with the FCFS rule .. 67

Table 3.7 Effects of the allocation of FTs on the makespan 68

Table 3.8 Effects of the numbers of FTs and TPs on the makespan 71

Table 3.9 Rate of reduction by increasing the number of FTs by one 71

Table 4.1 Dual contributions to arc reduced costs ... 100

Table 4.2 Comparison of CGA-FS, CGA and LB ... 103

Table 4.3 Correlation coefficient between HSPG method and CGA-FS method

.. 107

Table 4.4 Comparison of CGA-FS and heuristic rules algorithm 110

Table 4.5 Effects of number of QCs on makespan .. 113

Table 5.1 Dual contributions to arc reduced costs ... 135

Table 5.2 Comparison results of FB-ACT and HFG-ACT 139

viii

List of Figures

Figure 1.1 Working flow of a typical container terminal 2

Figure 1.2 Import, export and transshipment ... 3

Figure 1.3 Layout of AGV-ACT ... 6

Figure 1.4 Layout of the new design ACT .. 9

Figure 1.5 3D model of GRID system ... 12

Figure 1.6 GRID system structure ... 13

Figure 1.7 Operations on the buffers ... 14

Figure 3.1 Activity flow for a discharging job .. 41

Figure 3.2 Activity flow for a loading job ... 43

Figure 3.3 Relationship between the processing time of two subtasks............ 44

Figure 3.4 Framework of the tree structure algorithm 54

Figure 3.5 Gantt chart based on the surrogate model approach 58

Figure 3.6 The layout of the terminal………………………………………...64

Figure 3.7 Effects of the average job distance on the makespan 70

Figure 4.1 The activity flow of a discharging job under the GRID system….73

Figure 4.2 The gridding layout of GRID system ... 76

Figure 4.3 An illustration of collisions between TUs 78

Figure 4.4 Safety zone of TU1 on different locations 79

Figure 4.5 Framework of filtered beam search-based algorithm 90

Figure 4.6 Part of a mathematical network .. 91

Figure 4.7 The framework of the heuristic rules algorithm 106

Figure 4.8 Objective vs filter-width ... 108

Figure 4.9 Computing time vs filter-width ... 109

Figure 4.10 Effects of number of TUs on makespan 111

Figure 4.11 Effects of number of TUs on total processing time 111

Figure 4.12 Effects of number of horizontal rails on makespan 112

Figure 5.1 Layout of HFG-ACT .. 115

Figure 5.2 Movement in reverse directions ... 116

ix

Figure 5.3 Cross-over collision .. 123

Figure 5.4 Part of a mathematical network .. 125

Figure 5.5 Makespan of FB-ACT and HFG-ACT ... 142

x

List of Abbreviations

ACT Automated Container Terminal

AGV Automated Guided Vehicle

AS/RS Automated Storage/Retrieval System

CGA Column Generation Algorithm

CGA-FS Column Generation Algorithm with Further Search

FB-ACT Frame Bridge based Automated Container Terminal

FBS Filtered Beam Search

FT Frame Trolley

GR-ACT Grid Rail system Automated Container Terminal

GRID-ACT Goods Retrieval and Inventory Distribution based

Automated Container Terminal

GT Ground Trolley

HFG-ACT Hybrid of Frame Bridge and GRID systems based

Automated Container Terminal

HSPG Heuristic Sequential Path Generation

LMCS Linear Motor Conveyance System

MIP Mixed Integer Programming

QC Quay Crane

RMGC Rail Mounted Gantry Crane

RTGC Rubber Tired Gantry Crane

SPG Sequential Path Generation

TEU Twenty-feet Equivalent Unit

TP Transfer Platform

TU Transfer Unit

YC Yard Crane

xi

List of Notations

Q the set of QCs

 the number of horizontal rails (berth rails).

 the set of FTs

 the set of FTs that belonging to Rail ,

 the number of FTs in the Rail , || rr FN  , specially 00 N

 the set of TPs

 the set of TPs that belonging to Rail , .

 the set of loading jobs

 the set of discharging jobs

H the set of all the jobs, DLH 

QL the set of subtasks handled by QC

 the set of subtasks handled by TP

 the set of all subtasks, TPQLG 

 the yard block that subtask belongs to,

),(i job index. The job refers to the th job in the sequence

list of QC .

 subtask index. The subtask of the first stage of job .

 subtask index. The subtask of the second stage of job .

 the processing time of subtask

 the processing time of subtask

 the FT traveling time from location of subtask to

location of subtask

 the TP traveling time from location of subtask to

location of subtask

 the location of subtask .

m

iX),(
m

iX),( =1 if the container of job),(i is carried by FT m ;

otherwise 0

),,)(,,(ljkiZ ),,)(,,(ljkiZ  =1 if the starting time of subtask is greater

R

F

iF i FFF r  ...1

rN r

P

iP i PPP r  ...1

L

D

TP

G

),,(hiB 
),,(ki  TPki ),,(

),(i i



)1,,(i),(i

)2,,(i),(i

)1,,(ip)1,,(i

)2,,(ip)2,,(i

f t

ljkit),,) (,,(),,(ki 

),,(lj 

tp

ljkit),,)(,,(),,(ki 

),,(lj 

),,(kil ),,(ki 

),,(lj 

xii

than or equal to the finishing time of subtask ; otherwise

0

 the starting time of the first subtask of job

 the starting time of the second subtask of job

K the set of all TUs

N the set of all cells

T the set of all times

J the set of all container jobs

W the set of all guide-path segments

)(nL the set of all feasible routes for TU n

)(n the set of all feasible routes generated in the route generating

problem for vehicle n

)(iG the set of all cells in the physical layout that are within the

safety distance to Cell i but excluding cell i

)(wF the set of guide-path segments that are adjacent to)(Www 

and including itself, that is)(wFw

)(iA the set of all cells in the physical layout that are adjacent to Cell

i

p processing time of subtask 

nlc ,
 the total penalty cost of route))((nLll  , where it equals to

the total time that the route accomplishes its related subtasks

nltiA ,),,(





otherwise ,0

 at time cellat is route following , TU if ,1 tiln

i

nlB ,




otherwise ,0

 job covers route following , TU if ,1 iln

t

nlw
f

.,








otherwise ,0

 at timedirection upwardsan

at segment enters route following , TU if ,1

t

wln

t

nlw
f

.,








otherwise ,0

 at timedirection downwards a

at segment enters route following , TU if ,1

t

wln

),,(ki 

)1,,(iT),(i

)2,,(iT),(i

xiii

nlX ,





otherwise ,0

 route follows TU if ,1 ln

t

lmg ,




otherwise ,0

 at time subtask starts route following , TU if ,1 tlm 

p processing time of subtask  .

TUt the traveling time for a TU from the location of subtask  to

the location of subtask  using the shortest path ignoring

vehicle collisions

YC the set of subtasks handled at the storage yard transfer points.

)(C the set of subtasks that compete for the same storage yard

transfer point, where YC .

)(Q the set of subtasks that cannot be performed until subtask  is

accomplished according to the QC list.

SP the set of pairs of successive subtasks belonging to the same

vehicle

T the starting time of subtask 

z




otherwise ,0

subtask an earlier th starts subtask if ,1 

1

CHAPTER 1 Introduction

In 1955, former trucking company owner Malcom McLean and engineer Keith

Tantlinger proposed to put the cargoes in steel containers as transportation

units, which initiated the modern freight transportation. This mode not only

provides protections against weather and pilferage, but also significantly

improves the efficiency of cargo transportation and reduces the logistic cost.

The unnecessary packing and unpacking in the transfer stations is prevented.

The volume of cargoes is greatly increased by stacking the containers, which

can carry as many as 14,000 TEUs.

According to the statistics provided by Containerization International, annual

container traffic has increased by approximately five fold in the past two

decades from 28.7 million TEUs in 1990 to 135.4 million TEUs in 2014.

Container traffic measures the flow of containers from land to sea transport

modes, and vice versa, in twenty-foot equivalent units (TEUs). This growth

trend is expected to continue. Facing with the continuously increasing

container traffic, port operators insist on developing sustainable solutions to

enhance the effectiveness and efficiency of container transportation between

vessels and storage yard.

In this introduction section, we will introduce the background of container

terminals, followed by some commercial implemented automated container

terminals, and then several new conceptual terminals are presented.

1.1 Background of container terminals

To complete the whole procedure of delivering the cargoes, the containers

usually need to be transported via different transportation modes like vessels,

2

trains and trucks. The container terminals serve as the interface between these

transportation modes. A container terminal is usually composed of three parts:

quayside, storage yard and landside. Figure 1.1 describes the layout and

working flow of a container terminal.

Figure 1.1 Working flow of a typical container terminal

According to the work flow, the container activities can be categorized into

three types: import, export and transshipment activities. For export activities,

the containers are brought in by trains or trucks in landside and temporarily

stored in the storage yard. When the containers are ready to be loaded, they

are retrieved from the storage place and transported by internal transporters to

the designated vessels. The equipment that transfers the containers between

3

internal transporters and storage yard is called yard crane (YC). The

equipment that transfers the containers between internal transporters and

vessels is called quay crane (QC). The processes for import activities are

performed similarly but in the reverse order. For transshipment activities, the

containers are unloaded from a vessel, stored in the storage yard, and will be

ultimately loaded onto the designated vessels. Figure 1.2 describes the flow of

these three activities in the container terminal.

Figure 1.2 Import, export and transshipment

Readers can refer to review papers by Steenken et al. (2004) and Stahlbock et

al. (2008) for more detailed information on the operations in the container

terminals.

1.2 Automated Container Terminal

Automation is the use of various control systems for operating equipment such

as machinery, and processes in factories. Automation is proved to bring great

benefits in manufacturing industry. It can considerably reduce the manpower

cost. It can also reduce the carbon dioxide release by using electricity instead

of diesel. The productivity is improved because the involved procedures are

4

performed smoothly by the control systems, which can reduce delay that

happens during the handshakes among the equipment. It also helps to reduce

unnecessary loss brought about from improper operations by manpower.

The terminal operators over the world have been increasingly pressurized to

provide better and faster service to vessel operators. More 16,000-19,000 TEU

ships will be introduced in the trade. According to industry estimates (see

Chan and Huat (2002)), the typical operating cost for a Post Panamax vessel

per day, can easily come to US$ 30,000 (see Table 1.1 for details).

Table 1.1 Operating cost for a typical Post Panamax vessel

 US$/day

Vessel Depreciation Cost (25 years life span) 10,000

Fuel Cost (18 knots cruising speed) 10,000

Wages, Maintenance and Insurance 10,000

Considering the high operating cost, it is imperative for vessel operators to

maximize the yields and the number of voyages made by each vessel. A major

challenge in port management is thus to reduce the turnaround time of the

container ships, especially for those with large container volume.

On the other hand, environmental protection is a great concern worldwide and

is believed to become more and more important. The CO2 emissions have

become an issue and consequently there is increasing pressure on governments

and industries to come forward with initiatives to it. The equipment in a

typical port is powered by diesel, which produces high carbon dioxide

5

emissions. Table 1.2 shows the CO2 emissions from container terminals of

Rotterdam Port. (see Geerlings et al. (2011)).

Table 1.2 CO2 emissions from container terminals of Rotterdam Port

Container Terminal Total CO2 Emissions

(kton CO2/year)

CO2 Emission per TEU

(kg CO2/TEU)

Delta 71.30 16.73

Home 15.01 15.01

Hanno 1.20 24.00

APM 35.95 16.34

RST 10.76 9.35

Uniport 6.53 17.18

Total/Average 140.75 17.29

Furthermore, the potential risk of strike cannot be neglected. It is reported that

the West Coast container ports in US faced a loss of ten billion dollars due to

the strike in early 2015. A strike also happened in the ports of Vancouver,

which brought about eight hundred million dollars of loss per week.

Therefore, introducing automation into the terminals becomes a substantial

solution to these challenges. During the past two decades, port operators are

insisting on improving the productivity by implementing automated

equipment. The most successful commercial application is the automated

guided vehicles based automated container terminals (AGV-ACT). Another

commercially implemented case is the automatic straddle carrier based

automated container terminals (ASC-ACT).

6

The first automated container terminal was implemented by Europe Container

Terminal (ECT) in the 1990s at the Delta Dedicated North Terminal.

Automated stacking cranes (ASCs) and automated guided vehicles (AGVs)

were used. The AGVs were used to transport containers between the quayside

and storage yard, whereas, the ASCs were used to stack the containers in the

storage yard. Later, Container Terminal Altenwerder (CTA) also introduced

ASCs and AGVs to the terminal in Hamburg. The layout of the AGV-ACT is

showed in Figure 1.3. (Kim et al. (2004))

Figure 1.3 Layout of AGV-ACT

In the AGV-ACT system, AGVs take the place of trucks to transport the

containers between quayside and storage yard. The AGVs are controlled by

integrated information systems and move along the guide paths fixed on the

ground. Rail mounted gantry cranes are implemented in the yard which are

automated. For an unloading operation, a container picked up by a QC is put

on an AGV which delivers the container to the storage yard. Different from

the typical container terminal, the AGVs will not move into the storage yard.

7

They will stop at the end of yard blocks and wait for YCs to pick up the

containers from them. After that, the AGVs are free and move to handle their

next jobs. In the storage yard, a YC picks up the container from the AGV and

will stack it onto a designated slot. The loading operation is performed

similarly but in the reverse order.

Automatic straddle carrier can both transport and lift/release containers. It

allows for decoupling the work flow of transport and crane activities by using

buffers at the respective interfaces. Moreover, the straddle carriers are able to

stack four containers. They can not only be used as transporters but also as

stack cranes in the storage yards. In this way, yard cranes like RTGCs or

RMGCs are no longer needed. The automated straddle carrier system began to

be used in Brisbane port in 2005. They have also been implemented in Maersk

APM Shipping Container Terminal Port in Portsmouth Virginia. A study on

the efficiency of the transportation equipment (AGV and automatic straddle

carrier) was conducted by Park et al (2007).

In addition to these commercially implemented automated container terminals,

several new conceptual terminals are also proposed. They are Linear Motor

Conveyance system based ACT (LMCS-ACT), Grid Rail system based ACT

(GR-ACT), and Automated Storage/Retrieval system based ACT (AS/RS-

ACT). LMC system has been constructed and successfully tested in Eurokai

Container Terminal, Hamburg by P. A. Ioannou (2000). The vehicles are

replaced with shuttles that are moving on the linear motor conveyance system.

The shuttles can be considered as vehicles moving on a fixed path. GR-ACT is

proposed by Sea-Land and August-Design. Overhead rail is utilized in the

storage yard for loading and unloading containers. It uses linear induction

8

motors, located on overhead shuttles that move along a monorail above the

terminal. The containers are stacked beneath the monorail. The concept of the

overhead grid rail system was used to design, simulate and evaluate a GR

based ACT system by Ioannou et al. (2004). The AS/RS system in AS/RS-

ACT has three major hardware components: storage racks, storage and

retrieval machines (SRM), and a shuttle. Rack structure is used to store the

containers. A typical AS/RS structure module consists of single-deep stored

unit loads and two parallel long narrow racks and an aisle between them. The

SRM moves along the guide rails installed in the aisle. A shuttle is mounted

on the SRM for pick-up and delivery in storage cells and P/D stands.

Khoshnevis et al. (2006) proposed a simulation model which is developed for

quantitative comparison of AS/RS systems. A comparison of the productivity

among these ACTs can be found in the paper by Liu et al (2002).

Compared to the ACTs discussed above, another two types of ACTs appear to

be of interest. One type is called the Frame Bridge based ACT (FB-ACT) and

the other one is called the Goods Retrieval and Inventory Distribution based

ACT (GRID-ACT). These two ACTs are constructively changed, which bring

exclusive benefits from the design. More details of these two ACTs are

discussed in Sections 1.4 and 1.5, respectively.

1.3 Frame Bridge Based Automated Container Terminal

Shanghai Zhenhua Heavy Industries Co. Ltd. recently designed a real-size

prototype automated container terminal that utilizes frame bridges, rail-

mounted frame trolleys and ground trolleys to transport containers between

quay side and yard side. Figure 1.4 shows the layout of this ACT (Zhen et al.

(2012))

9

Figure 1.4 illustrates that the newly designed ACT is composed of three major

parts: the quayside operation area, transportation area and storage area. Rail

bridges are built to transport containers, which can be categorized into two

types. One is laid parallel to the berth and interfaced with quay cranes,

denoted as berth rails. The other is laid parallel to the yard block and

interfaced with yard cranes, denoted as yard rails. The berth rails are

constructed above the ground, and the yard rails are laid at ground level. These

two parts of rail bridges cross each other perpendicularly. The transfer

platform (TP) that sits on the berth rail provides an interface between the berth

rail and the yard rail.

Figure 1.4 Layout of the new design ACT

The trolleys mounted on the berth rails are called frame trolleys (FTs). They

are used to transport containers between QCs (quay cranes) and TPs. The

trolleys mounted on the yard rails are called ground trolleys (GTs). They are

used to transport containers between yard cranes and TPs. Because these two

10

parts of the rails are perpendicular to each other, the TP is used to rotate the

containers 90 degrees during the handover of containers between these two

types of trolleys. Because the terminal is covered by frame bridge rails, it is

called Frame Bridge-based ACT (FB-ACT). This new ACT system has been

proposed on the eastern side of Caofeidian Port (in Tianjin, China). In addition,

SSA Marine is considering installing this ACT system at Long Beach in the

coming years.

Compared to other container terminal designs, the advantages of FB-ACT can

be summarized as follows:

1) The trolleys mounted on the rails can move at a high speed. They can

reach speeds of up to 14 mph, whereas an AGV can travel up to 5

mph when fully loaded.

2) The productivity of yards is increased. In the AGV-ACT system, the

YC needs to travel a longer distance on average to pick up/store

containers. This is because the handover of containers between the

yard crane and AGV occurs at the end of the block, whereas in the

FB-ACT, the handover of containers can occur in the block and the

GT speed is considerably faster than the YC.

3) This system is a flexible design because the capacity can be increased

by adding an additional layer of rails below or on top of the original

rails in the future when it is needed.

4) This system is green and requires less labor. FTs, GTs and TPs are

powered by electricity instead of diesel.

11

However, the operation of the FB-ACT can be challenging. The handshakes

among devices are one of the major issues to address because more equipment

is required in this system. For a container handled by the QC, the handshake is

between the QC and FT. For a container handled by the TP, the handshake is

among the FT, GT and TP. Moreover, the system requires adequate traffic

control, especially for FTs. Because the trolleys are mounted on the rails, they

cannot cross over each other. The conflict of the trolleys can greatly affect the

performance of this system. The research related to this type of configuration

is limited. In our study, we are concerned with the problem of managing the

involved resources and considering the vehicle collisions as well, to

accomplish the container transportations between vessels and storage yard.

1.4 Goods Retrieval and Inventory Distribution based Automated

Container Terminal

As the land becomes the scarcest resource in the cities, high land utilization

becomes a significant benefit, which tends to be captured by the future

generation ports. In addition, less handshakes among equipment is preferable

when considering higher efficiency. It is quite challenging to maintain high

efficiency under the circumstance of many handshakes. A new concept of

ACT called Goods Retrieval and Inventory Distribution (GRID) based ACT

proposed by BEC industries LLC, is a promising solution for the future

generation ports. According to the study by Brian et al., it can save

approximately 47% of the land for a layout with the scale of 31,200 TEUs.

The GRID system is a new concept to optimize land utility and improve

productivity in a container terminal. A 3D model of the port implementing the

GRID system is shown in Figure 1.5.

12

Figure 1.5 3D model of GRID system

It mainly consists of three components: transfer units (TUs), overhead rails

and transfer tables. The TUs move along the rails which are bi-directional. It

also can make a turn at the intersection of a horizontal rail and a vertical rail

by switching the pair of wheels installed on the TU. Each TU has two pairs of

wheels that are respectively responsible for vertical movement and horizontal

movement. When a TU moves horizontally, the corresponding pair of wheels

will be embedded in the horizontal rail and the other pair of wheels will be

inactive. When the TU changes the direction from horizontal move to vertical

move, the pair of wheels corresponding to horizontal move will be released

from the horizontal rail and become inactive, while the other pair of wheels

corresponding to vertical move will be embedded in the vertical rail. Once the

procedure of the switch is accomplished, the TU can start to move vertically.

The procedure is similar when the TU changes the direction from vertical

13

move to horizontal move. TUs are used to transfer the containers between

storage yard and vessels. Transfer tables are built on the area at the quayside.

They are used as buffers to decouple the operations of TUs and quay cranes.

The flow of activities involving a container from vessel to storage yard can be

described as follows: A quay crane picks up the container from the vessel and

then puts it down on the transfer table. An empty TU arrives at the transfer

table and picks up the container. The TU carrying the container moves along

the rails to approach the specific slot where the container will be temporarily

stored. Once the TU releases the container on the yard storage, it will move to

handle other containers assigned to it. The procedure of moving containers

from yard storage to vessels is similar in a reverse manner. In our study, we

only focus on the operations of the inbound containers from vessels and

outbound containers to vessels while the inbound containers from landside or

outbound containers to landside is not in the scope of the study. Considering

the scope of our study, the layout structure of the GRID system is simplified

and it is shown in Figure 1.6.

Figure 1.6 GRID system structure

14

The overhead rails cover two parts: transfer area and storage area. The storage

area is where containers are stored. The transfer area is the place where the

buffers are built. The operations on the buffers are shown in Figure 1.7. Half

of the buffer is in the transfer area and the other half is under the quay crane. It

is a two-layer buffer where the upper level is dedicated to inbound

(discharging) containers and the lower level is dedicated to outbound (loading)

containers. Each layer of the buffer is constructed by a belt conveyer. For an

inbound container, the quay crane picks it up from the vessel and then puts it

down on the buffer. Once the container is stable on the belt conveyer, the belt

conveyer starts to convey the container to yard-side. The belt conveyer will be

stopped when the container is under the location where a TU can approach to

handle it. It is similar for the outbound container. When a TU carrying an

outbound container arrives at the location above the buffer, it starts to put

down the container on the belt conveyer at the lower layer. Once the container

is

Figure 1.7 Operations on the buffers

15

released on the conveyer, the conveyer starts to move the container to the

quay-side so that a quay crane can handle it. The conveyer will also be

stopped once the container arrives at the end of the buffer. However, quay

cranes and TUs may still be delayed if the buffer is full. In our study,

considering the fact that the QC is always the bottleneck in a container

terminal system, we assume the capacity of the buffer on the transfer table is

only one.

Because the investment of the rails is high, the horizontal rails are not built on

every row in the storage area and the contiguous vertical rails share one track

in the middle of these two rails. However, two contiguous horizontal rails do

not share the same track, which means the movement of TUs on the

contiguous horizontal rails will not impact each other. This can improve the

efficiency of the system by reducing the delay time or the detour of TUs.

According to the operations in the GRID system, we can find that the

assignment of containers to TUs and the route of TUs to complete their jobs

are the crucial issues that affect the productivity of the system. A good

schedule can maintain high productivity of quay cranes, and reduce the

waiting time as well as detour of TUs during the routing procedure. Therefore,

the motivation of our study is to find a promising scheduling for the GRID

system so that the terminal can approach high efficiency under the

circumstance of high land utilization.

1.5 Contribution of the thesis

The contributions of this thesis can be listed as follows:

16

(1) One new conceptual ACT called the FB-ACT is studied. To the best of our

knowledge, our study is the first work to provide the details of the

operations of the FB-ACT system. We emphasize on the management of

resources in order to reduce the delay that happens during the handshakes

and avoid vehicle collisions which significantly affects the efficiency of

the system. A mathematical programming model is developed to solve the

problem. Because the model cannot be solved when the scale of the

problem is large, we develop a tree structure algorithm. The motivation of

the algorithm is to decompose the problem to the sub-problems with small

scale which can be solved efficiently. By the decomposition, the variables

of the mathematical programming model for the conflict-free routing

problem are greatly reduced. Our algorithm can obtain much more

promising solutions compared with a heuristic algorithm using randomly

dispatching rule and First Come First Serve (FCFS) rule.

(2) Another new conceptual ACT called the GRID-ACT is studied. In the

GRID-ACT, the main issues are the vehicle dispatching and conflict-free

routing problems. Given the intrinsic difficulty of this problem, the tree

structure algorithm is also adopted to solve the complicated problem and a

column generation based algorithm is developed to solve the sophisticated

conflict-free routing problem. Because of the complexity of the conflict-

free routing problem, the typical column generation algorithm cannot

solve the problem well. Thus, we will continue the search by using the

information from the solution obtained by the typical column generation

algorithm. New columns can be generated by adding new constraints to

the master model. The motivation of the new constraints is to prevent the

17

TUs from running in the congested area, so that we can obtain a promising

and feasible solution for the conflict-free routing problem. Our algorithm

can obtain satisfying solutions when compared to the algorithm with

heuristic rules.

(3) By analyzing the performance of FB-ACT and GRID-ACT, we proposed a

new design of the container terminal. The main drawback of FB-ACT is

the relatively large waiting time because of the prevention of vehicle

collisions. The vehicles in GRID-ACT can flexibly select paths to prevent

vehicle collisions, which can reduce the waiting time. However, because

of the slow speed of the vehicles and the long distance of the paths, GRID-

ACT has to spend a relatively large time on traveling. This newly designed

terminal is a hybrid of FB-ACT and GRID-ACT, which appears to offset

the drawbacks of these two kinds of terminals. The problem about the

vehicle dispatching and conflict-free routing is also solved by the tree

structure algorithm. The subtask sequence is critical when we solve the

routing problem. We propose two methods to determine the subtask

sequence. One is based on the least delay time when neglecting vehicle

collisions. The other one is based on the estimated starting time of the

subtasks calculated by the column generation algorithm. The first method

is much faster than the second one, which is used in the screening

procedure, while the second method is used to determine the decisions

involved with the routing problem. This newly designed terminal

outperforms FB-ACT as shown by a comparison study.

1.6 Organization of the thesis

This thesis consists of six chapters, which are organized as follows.

18

Chapter 2 reviews the related studies on the vehicle dispatching problem and

conflict-free routing problem, as well as the literatures that solve these two

problems simultaneously.

Chapter 3 proposes the study on the FB-ACT. A mathematical model is

developed to solve the vehicle dispatching and conflict-free routing

simultaneously. By decomposing the problem, the conflict-free routing

problem can be solved optimally by a mixed integer programming.

Chapter 4 describes the research on GRID-ACT. The problem is modeled as a

set partitioning problem. A column generation algorithm with a further search

procedure algorithm is proposed to obtain an integer solution.

Chapter 5 develops a new design of the terminal, which is a hybrid of FB-

ACT and GRID-ACT. We develop two methods for solving the routing

problem. A comparison study is conducted, which shows that the new design

can be more efficient than FB-ACT.

Finally, in Chapter 6, we consolidate the findings from the previous chapters

and future research directions are also discussed.

19

CHAPTER 2 Literature Review

There are numerous research works in the area of container terminal

operations. However, the published works related to our topic is not much.

Thus this literature review will also contain the areas having large parallels

with our topic. The major works are scheduling problems of quay cranes and

yard cranes, vehicle dispatching and routing problem in ACT system,

automated warehouse. Literature reviews on port operations can be found in

Vis and de Koster (2003), Steenken et al. (2004) and Robert Stahlbock and

Stefan (2008). After that, we will also conduct a reviews related to the major

algorithms applied in our works.

2.1 Quay Crane Scheduling and Yard Crane Scheduling

Quay cranes and yard cranes are the critical resources in container terminals.

A well scheduling of them can significantly improve the efficient of the

system. The ideas of the works in this area are helpful to develop algorithms

for our topic. Thus, the research works of quay crane scheduling and yard

crane scheduling are discussed.

2.1.1 Quay Crane Scheduling

The quay crane scheduling problem aims to solve the allocation of quay

cranes to the containers with non-interference. It is called Quay Crane

Scheduling with Non-Interference constraints Problem (QCSNIP). Kim et al.

(2004) proposed a mixed integer programming model which considers various

constraints related to the operation of QCs. The cross over among QCs is

avoided by constraints in the MIP model. A branch and bound method and a

heuristic algorithm called greedy randomized adaptive search procedure

20

(GRASP) are proposed to solve the problem. Lee et al. (2008) propose a more

concise MIP model for the QCSNIP. They proved the QCSNIP is NP-

complete. A genetic algorithm is proposed to obtain its near optimal solutions.

Bierwirth et al. (2009) present a revised optimization model for the scheduling

of quay cranes and propose a heuristic solution procedure. The heuristic takes

advantage of efficient criteria for branching and bounding the search, which is

applied for searching a subset of above average quality schedules. Ng et al.

(2006) propose a heuristic algorithm that decomposes the difficult multi-crane

scheduling problem into easier sub-problems by partitioning the ship into a set

of non-overlapping zones. The sub-problems for each possible partition are

solved optimally by a simple rule. An effective algorithm is developed to find

tight lower bounds. The results show that the heuristic can indeed find

effective solutions with 4.8% above their lower bounds. Moccia et al. (2006)

formulate this problem as a VRP with side constraints including precedence

relations between vertices. The objective is to minimize the weighted sum of

the completion time of a single vessel and the idle times of cranes which

originate from interferences between cranes since cranes roll on the same rails

and a minimum safety distance must be maintained between them. Marcello et

al. (2007) decompose the quay crane scheduling problem into a routing

problem and a scheduling problem. The routing problem is solved by a Tabu

search heuristic, while a local search technique the minimizing the longest

path length in a disjunctive graph, is used to generate the solution of the

scheduling problem. Cononaco et al. (2008) present a queuing network model

to solve this problem with the objective of minimizing the turnaround time of

the vessels.

21

2.1.2 Integration of berth and quay crane scheduling problem

The integration of berth and quay crane scheduling problem is an important

research topic in this area because it can help achieve a more significant

improvement on the efficiency of the ports than the scheduling of berths and

quay cranes separately. Kim et al. (2005) propose an integer programming

model by considering various practical constraints. A two-phase solution

procedure is developed for solving the mathematical model. The first phase

aims to solve the berth allocation problem which determines the berthing

position and time of each vessel and the number of cranes assigned to each

vessel at each time segment. The second phase concentrates on solving the

quay crane scheduling problem based on the solution found from the first

phase. Imai et al. (2008) propose a heuristic algorithm by employing a genetic

algorithm. The fitness value of a chromosome is found by crane transfer

scheduling across berths, which is determined by a maximum flow problem-

based algorithm based on the berth allocation problem solution defined by the

chromosome. Liang et al. (2009) solve the problem of determining the

berthing position and time of each ship as well as the number of quay cranes

assigned to each ship, with the objective of minimizing the sum of the

handling time, waiting time and the delay time for every ship. They find an

approximate solution by combining genetic algorithm with heuristic. Chang et

al. (2010) develop a hybrid parallel genetic algorithm (PGA), which combined

parallel genetic algorithm and heuristic algorithm. The PGA is used to attain

the sub-optimal solution for the BAP and QCAP. The heuristic algorithm is

aimed at generating feasible solutions for population initialization, which can

reduce the solution dimension. Lee et al (2010) propose a genetic algorithm to

22

obtain near optimal solution. The chromosome represents a sequence of

container ships where a berth allocation can be constructed based on this

sequence. An approximation algorithm is developed to solve the quay crane

scheduling problem after the BAP is solved. Vacca et al. (2013) propose a

model which is solved via column generation. An exact branch and price

algorithm with several accelerating techniques is implemented to obtain

optimal integer solutions to the problem. This is the first exact branch and

price algorithm for the integrated planning of berth allocation and quay crane

assignment.

2.1.3 Yard Crane Scheduling

The yard cranes are the equipment in the storage yard which can significantly

affect the productivity of the container ports. Thus, yard crane scheduling is

widely studied. Some research works solve the problem with single yard crane.

Kim and Kim (1999) consider the dispatching of a single yard crane by

formulating it as a transportation problem. The visiting route is determined

with a dynamic programming procedure. Ng and Mak (2005) study the

scheduling of a single yard crane for a given set of loading and unloading

containers with different ready times. A branch and bound algorithm is

implemented to solve the problem where efficient heuristics are proposed to

find the lower bounds and upper bounds. Ng et al. (2005) study the problem of

scheduling a yard crane with the objective of minimizing the sum of job

waiting times. A heuristic algorithm based on a sequential sequence-building

approach is proposed to solve the problem. The results show that the proposed

heuristic can find effective solutions for the problem.

23

More research works are conducted with the consideration of multiple yard

cranes. One of the critical constraints of this multiple yard crane scheduling

problem is to prevent the yard crane interference. Ng. W. C. (2005) develops a

dynamic programming based heuristic to solve the scheduling problem. It is a

two phase algorithm where the first phase is to simplify and decompose the

multiple yard crane scheduling problem into m independent single yard crane

scheduling problems by partitioning the yard zone. Each sub-problem is

solved by a heuristic rule based on the smallest job completion time. The

second phase is to employ a job reassignment procedure to improve the

schedule obtained in the first phase. The results show that the proposed

algorithm can find solutions which are on average 7.3% above their lower

bounds. Jung and Kim (2006) study the problem of scheduling multiple yard

cranes to serve multiple quay cranes, where the adjacent yard cranes working

in the same block have interference with each other. The algorithms based on

GA and SA approaches are proposed to schedule the travelling route of the

yard cranes and number of containers to pick up in each yard bay. Li et al.

(2009) develop an efficient model for yard crane scheduling by taking into

account realistic operational constraints such as inter-crane interference, fixed

yard crane separation distances and simultaneous container storage/retrievals.

They propose heuristics and rolling-horizon algorithm to solve the problem

quickly with yielding near optimal solutions. Javanshir and Ganji (2010)

propose a genetic algorithm to solve the yard crane scheduling problem with

non-interference constraints. Chang et al. (2011) propose a novel dynamic

rolling-horizon decision strategy for the yard crane scheduling. An integer

programming model is built at the beginning to minimize the total task

24

delaying at blocks. A heuristic algorithm along with a simulation model is

then applied. He et al. (2010) proposed a hybrid algorithm, which employs

heuristic rules considering the workload of the yard crane and the number of

yard cranes in the block, and then a parallel genetic algorithm is employed.

Computational results show that the proposed method can solve the problem

efficiently.

2.2 Vehicle Planning Problem

The vehicle planning problem aims to solve the problems like determining the

vehicle to deal with certain containers considering a set of constraints. These

constraints include: avoiding of vehicle collisions and deadlocks, and

satisfying the time-window constraints. In our review, we will focus on the

vehicle dispatching problem, vehicle routing problem and the integration of

these two problems.

2.2.1 Vehicle Dispatching Problem

The vehicle dispatching is concerned with the problem that determines which

vehicle transports which container to achieve certain goals. In the port area,

the vehicles are the trucks, AGVs or straddle carriers. It is also an important

topic in the research area of the port operations. Zhang et al. (2005) present

three MIP models for the vehicle dispatching problem in a container terminal

to determine the starting times of jobs as well as the work sequence of

vehicles. The models only consider the unloading phase of a vessel in one

berth and the vehicles are assumed to be dedicated to a certain quay crane.

Two of these models can obtain a lower bound for the optimal value, while the

complicated model can be solved by a greedy algorithm, which is capable of

solving large scale problems. Kim et al. (2004) propose a heuristic algorithm

25

where two main steps of feasibility checking and delaying events are repeated.

During the searching procedure, only the most imminent tasks are considered

in the dispatching. Bise et al. (2005) develop easily implementable heuristic

algorithms and identify both the absolute and asymptotic worst-case

performance ratios of these heuristics. The greedy algorithm is based on the

way that assigns container jobs to the vehicle with earliest arrival time. A

refined greedy algorithm is proposed by considering a simple look-ahead rule

when the algorithm is applied to the multiple crane model. Lee et al. (2010)

solves the vehicle dispatching problem while considering the quay crane and

yard crane capacity. A heuristic algorithm that combines the genetic algorithm

and minimum cost flow (MCF) network model is proposed to tackle the

problem. The ready time for jobs is used as the representation of the

chromosome, while the MCF model is then used to decode the chromosome to

determine the job sequence for the vehicles.

As the AGVs are implemented in container terminals in these two decades, the

vehicle dispatching concerning AGVs becomes a critical part of the research

in the port operations. Kim et al. (1999) formulate a mixed integer linear

programming model for dispatching AGVs with the objective of minimizing

the delays of the vessels and the traveling time of the AGVs. Liu et al. (2002)

study the performance of four different heuristic AGV dispatching rules by

simulation method. The four different vehicle-initiated AGV dispatching rules

are: longest travel distance rule; shortest travel distance rule; random rule;

minimum yard crane queue size rule. The results show that the minimum yard

crane queue size rule can achieve the best throughput performance. Grunow et

al. (2006) propose a simulation study of AGV dispatching strategies in a

26

seaport container terminal. A typical on-line dispatching strategy commonly

adopted from flexible manufacturing systems is compared with a pattern-

based offline heuristic proposed in the paper. Results of the simulation study

reveal that the pattern-based heuristic clearly outperforms the on-line strategy.

Briskorn et al. (2006) propose a formulation to avoid estimates of driving

times, completion times, due times and tardiness, based on a rough analogy to

inventory management and is solved using an exact algorithm. The results

obtained from the simulation method show that the inventory-based model

leads to better productivity on the terminal than the due-time-based

formulation.

2.2.2 Vehicle Routing Problem

The vehicle routing problem (VRP) is the problem of designing optimal

delivery or collection routes from one or several depots to a number of

geographically scattered cities or customers, subject to side constraints. It is

firstly proposed by George Dantzig and John Ramser in 1959. (The truck

dispatch problem). In the container terminal, the transporters like trucks,

straddle carriers or AGVs also face the VRP when they transfer the containers

between the storage yard and vessels. The critical issue of the VRP in the

container terminal is to avoid the collisions among the vehicles. Kim et al.

(1991) propose an algorithm based on Dijkstra’s shortest-path method. A

concept of time window graph is introduced in which the node set represents

the free time windows and the arc set represents the reachability between the

free time windows. By using the Dijkstra’s shortest-path method, a conflict-

free route for each vehicle is generated sequentially. Kim et al. (1993) present

a conservative myopic strategy to coordinate the movements of vehicles in a

27

bidirectional AGV system. Oboth et al. (1999) address design and operational

control issues for an AGV based material handling system. An effective route-

generation technique based on a bi-directional network that provides conflict-

free routes for multiple AGVs with varying speeds is presented. This

technique generates the routes sequentially when considering the demand

selection policies, demand assignment policies and idle AGV positioning

policies. Qiu et al. (2001) present a bi-directional path layout and an algorithm

for routing AGVs. Based on the path topology and the routing algorithm,

provably sufficient and necessary conditions are obtained to achieve the

conflict-free routes and shortest possible time. Jeon et al. (2011) determine the

shortest-time routes inclusive of the expected waiting times instead of the

simple shortest-distance routes. They propose a method for estimating the

waiting time for each vehicle that results from the interferences among

vehicles during travelling. The estimation of the waiting times is achieved by

using the Q-learning technique and by constructing the shortest-time routing

matrix for each given set of positions of quay cranes. Möhring et al. (2005)

present an algorithm which avoids collisions, deadlocks and livelocks for the

problem of routing AGVs. A shortest path with time-windows is first

determined by real-time computation, and a following readjustment is

implemented to these time-windows. The results of comparing to a static

routing approach show that the algorithm has an explicit advantage. Zeng et al.

(2008) present a mathematical model for general container routing in mesh

yard layouts. A simple routing algorithm based on the model is proposed to

choose suitable vehicle speed such that the vehicles using the same junction

will arrive at different points in time to prevent conflicts. Numerical results

28

show that the routing scheme has good performance and the conflicts are

prevented. Maza et al. (2001) propose a robust predictive method of routing

without conflicts, consisting of adding a layer of real time control. Maza et al.

(2005) propose an approach which combines the optimized pre-planning

algorithm and the real-time routing algorithm. The algorithm consists of two

stages: the first stage is the control stage, where a pre-planning method is used

to establish the fastest conflict-free routes for AVGS; the second stage is used

to avoid conflicts in a real-time manner when it is needed. Singh et al. (2002)

propose a multi-agent approach to the operational control of AGVs by

integration of path generation, enumerating time-windows, searching

interruptions, adjusting waiting time and making decisions on the selection of

routes. It presents an efficient algorithm and rules for finding a conflict-free

shortest-time path for AGVs by using loop formation in a flow path network

to deal with the parking of idle vehicles without obstructing the path of

moveable AGVs.

2.2.3 Integration of Vehicle Dispatching Problem and Conflict-free

Routing Problem

The integration of vehicle dispatching problem and conflict-free routing

problem is a complicated problem. This problem can be solved to optimality

only when the number of vehicles is very small. Desaulniers et al. (2003)

model the problem by a set partitioning formulation. The model is then solved

to optimality by a column generation method, where a branch-and-cut

exploration tree is applied. Due to the complexity of the problem, it can only

be solved up to four vehicles within controllable time. Corréa et al. (2004)

propose an approach which combines constraint programming for vehicle

29

dispatching and mixed integer programming for routing without conflict.

These two methods are iteratively executed until an optimal solution is found.

The approach also limits the number of AGVs to six. Most of the research

works implement heuristic algorithms to solve the problem under a realistic

environments. Ghasemzadeh et al. (2009) present an integrated algorithm for

scheduling and routing of AGVs in mesh-like systems. The scheduling

algorithm aims to achieve the goals including: prediction and prevention of

conflicts; arbitrary choice for AGVs to traverse the shortest path from source

to destination; effect of priority policies to the scheduling result; no theoretical

limitation on the number of participating AGVs. The routing algorithm aims

to reduce the average number of conflicts which is closely related to the

scheduling algorithm. Nishi et al. (2011) decompose the problem into two

levels: the upper level master problem of task assignment and scheduling; and

the lower level routing subproblem. The master problem is solved by using

Lagrangian relaxation and a lower bound is obtained. Two types of cuts are

proposed to exclude previous feasible solutions before solving the master

problem again. One of the cuts is the capacity constraint, while the other one

is for restricting the feasible region of the Lagrangian relaxation problem for

the upper level master problem. Nishi et al. (2012) present a Petri net

decomposition approach to solve the problem in dynamic environments. Static

problems for finding near optimal dispatching and conflict-free routing are

solved first. The entire Petri net is decomposed into task and AGV subnets,

which is solved by the penalty function method. A deadlock avoidance

method is embedded to ensure the feasibility and quality of the solution.

30

2.3 Automated Warehouse

An automated warehouse is a facility where all or some of the tasks related to

storing, retrieving, and moving inventory are carried out by automated

systems. Automatic storage and retrieval (ASRS) is used in warehouses where

robots store materials, selecting the best location on the basis of available

space and inventory rotation needs, and retrieve those materials when they are

needed. The robots in this system are called automated guided vehicles

(AGVs). The routing of AGVs in this system is widely studied. Because of the

complicated of this problem and the computing time restriction, various

heuristic algorithms are proposed to solve this problem.

Amato et al. (2005) develop a control algorithm for the management of an

automated warehouse system. A model is built up by using the colored time

Petri nets framework, to optimize the operations of the cranes and the

operations of the shuttle, respectively. The proposed architecture and control

algorithms are applied to a real plant. Liu (2011) proposes a new multi-

objective mathematical model to the integrated scheduling problem on the

basis of a typical warehouse layout. A heuristic algorithm based on genetic

algorithm is proposed to solve the problem. Vangeri and Hebbal (2014)

present the picking route optimization of automated warehouse which is

solved by modified genetic algorithm. The initial nodes are generated in a

random manner for finding the complete route, and then applied the input

parameters to modified genetic algorithm by which obtained the optimum

route with low distance and time. Li et al. (2011) study the path optimization

of automated warehouse. A mathematical model of stacker operation is built

to minimize the length of operation path and operation time. The model is

31

solved by using the ant colony optimization method. Jiang et al. (2010)

establish the corresponding simplified model of the warehouse and picking

path model. Using the graph theory algorithm, it propose for the stacker

picking path optimization of the existing warehouse. Wang et al. (2008)

introduce the theory and methods of modeling automated warehouse with

colored time Petri net. A colored token represent a job piece, RGV or crane

and the color of each token was the residual sequence of places for a job piece

visiting. He et al. (2007) propose a modular and computerized model and

characterized control flow of the resources, and token colors were defined as

the routes of storage/retrieval operations Lis et al. build a mathematical model

to analysis of the optimization for AGVs in automated warehouse. A

framework of a dispatching approach with genetic algorithm is proposed to

solve the scheduling problem of AGV in automated warehouse. The coding,

selection and mutation is discussed considering the characters of the problem.

Deng et al. (2013) established a mathematical model of scheduling for the

storage and retrieval path, which takes the shortest path as the optimization

goal. An immune selection combined with discrete particle swarm

optimization is proposed to optimize the path, to avoid falling into local

optimum prematurely, and to find the optimal solution easier.

2.4 Filtered Beam Search

Filtered beam search algorithm is proposed by Ow et al. (1988). It is a kind of

tree structure based algorithm. Evaluation functions are used to assess the

performance of the nodes in the tree. A local evaluation which is fast but less

accurate will first be applied to screen the nodes with poor performance. After

the filtering procedure, a global evaluation which is more accurate but

32

expensive in computation effort will be applied to select the beam nodes.

Filtered beam search algorithm can produce high quality solutions with a

controllable computation effort. The algorithm is widely used to solve

combinatorial optimization problems in various areas.

Ow et al. (1989) solve the problem of scheduling a given set of jobs on a

single machine to minimize total early and tardy costs. The priority search

using a priority function is applied as the evaluation function for screening.

The probe search using cost function is the evaluation function to select the

beam nodes. De and Lee (1990) solve the problem for scheduling jobs in a

flexible manufacturing system (FMS). The algorithm uses a frame-based

knowledge representation scheme and a problem-solving strategy based on

filtered beam search. Nair et al. (1995) solve the product line design problem

using the beam search approach. The solutions are closer to the optimal, have

smaller standard deviation over replicates, and take less computation time.

Also optimal solutions are obtained more often and a number of “good”

product lines are identified explicitly. Sabuncuoglu and Bayiz (1999) develop

a beam search based scheduling algorithm for the job shop problem. The

makespan and mean tardiness are used as the performance measures. The

results indicate that the beam search technique is a very competitive and

promising tool to obtain good solutions efficiently. Kim et al. (2004) apply a

beam search algorithm to solve the load-sequencing problem in container

terminals with the objective of maximizing the operational efficiency of

transfer cranes and quay cranes while satisfying various constraints on

stacking containers onto vessels. Wang and Lim (2007) solve the berth

allocation optimization problem by transforming it into a multiple stage

33

decision making procedure. A new multiple stage search method is proposed

based on the beam search algorithm.

2.5 Column Generation Algorithm

Column generation is an efficient algorithm for solving large linear programs.

Many linear programs are too large to consider all the variables explicitly.

Since most of the variables will be non-basic with a value of zero in the

optimal solution, only a subset of variables needs to be considered in theory

when solving the problem. The algorithm generates only the variables which

have the potential to improve the objective function. The algorithm was

initially proposed by Gilmore and Gomory (1961). It is fruitfully applied in

various areas, especially in the areas like routing and scheduling.

This paragraph will present some works that are using the algorithms based on

column generation to solve the vehicle routing problem. Desrosiers et al.

(1984) use a column generation approach in which the columns are generated

by a shortest-path-with time windows algorithm. Agarwal et al. (1989)

propose a computationally viable algorithm based on column generation

algorithm where implementation strategies based on theoretical as well as

empirical results are developed. Taillard E. D. (1999) presents a heuristic

column generation method for solving vehicle routing problems with a

heterogeneous fleet of vehicles. The column generation is based on the

adaptive memory procedure which uses an embedded taboo search.

Desaulniers et al. (2002) propose accelerating strategies implemented in

conjunction with column generation to solve the vehicle routing and crew

scheduling problems. The techniques are embedded in the five phases of the

solution process: pre-processor, subproblem, master problem, branch-and-

34

bound, and post-optimizer. Choi and Tcha (2007) apply a column generation

based approach for a vehicle routing problem with a heterogeneous fleet of

vehicles having various capacities, fixed costs and variable costs. A couple of

dynamic programming schemes developed for the classical vehicle routing

problem are emulated with some modifications to efficiently generate feasible

columns. Baldacci et al. (2008) present a new exact algorithm for the

Capacitated Vehicle Routing Problem based on column generation with

additional cuts which correspond to capacity and clique inequalities. The new

columns are generated with the reduced costs that are smaller than the gap

between an upper bound and the lower bound. Mourgaya and Vanderbeck

(2007) present a truncated column generation procedure followed by a

rounding heuristic to construct the approximate solutions.

This paragraph will present the works that implement column generation

algorithm to solve the scheduling problem. Appelgren et al. (1969) apply

column generation algorithm for a ship scheduling problem. Problems with

about 40 ships and 50 cargoes are solved in about 2.5 min. Some integer

programming experiments have been made in order to resolve the fractional

cases. Desrochers et al. (1989) propose a column generation approach to solve

the transit crew scheduling problem which has to create minimal cost bus

driver schedules respecting both the collective agreement with labor unions

and the bus schedule. Chen and Powell (1999) implement column generation

algorithm to solve a class of problems of scheduling n jobs on m identical,

uniform, or unrelated parallel machines with an objective of minimizing an

additive criterion. Ribeiro and Soumis (1994) present a formulation to the

multiple-depot vehicle scheduling problem as a set partitioning problem with

35

side constraints. The continuous relaxation is amenable to be solved by

column generation. Van et al. (2000) discuss how the column generation can

be applied to alleviate the difficulties associated with the size of time-indexed

formulations. Bard and Purnomo (2005) present a methodology for scheduling

nurses in which several conflicting factors guide the decision process. The

methodology is a column generation approach that combines integer

programming and heuristics. A double swapping heuristic is used to generate

the columns.

Wilhelm Wilbert E (2001) and Vanderbeck (2005) conduct a review of using

column generation in integer programming problems.

36

CHAPTER 3 Vehicle Dispatching and Conflict-free Routing
Problems Under FB-ACT

3.1 Problem Definition

This thesis considers the problem that determines the assignment of FTs to

deliver containers under the cooperation of related resources, such as QCs,

TPs and GTs, to ensure efficiency of the operation of the FB-ACT system. The

goal of our study is to minimize the makespan of a given number of container

jobs.

Compared to existing terminals, more equipment is used in the FB-ACT,

which requires more handshakes among different types of devices. In the

AGV-based ACT, two types of handshakes exist: between QC and AGV and

between YC and AGV. However, there are more handshakes in FB-ACT. The

handshakes can be categorized into four types: between the QC and FT, FT

and TP, TP and GT and GT and YC. Therefore, the operations of the FB-ACT

can be challenging because of the handshakes between different devices.

Another challenge is the conflict among FTs on the same track. Delays will

occur during the process of handoffs and the process of avoiding FT conflict.

An effective schedule is necessary to significantly reduce the delay. To solve

the problem, we must determine the assignment and sequence of containers in

each resource, such as the QC, FT, TP and GT. We also need to prioritize FTs

when there is an FT conflict.

The following assumptions are introduced for the formulations of the problem:

(1) Each QC contains its own job sequence list.

(2) A TP is dedicated to several neighboring yards.

(3) Only one GT is running on each yard rail, i.e., there is no conflict among

GTs.

37

(4) The yard location of each container job is known.

(5) The travelling speed of empty and loaded FTs and GTs is the same.

The elements in our problem can be summarized as:

(1) The assignment of containers to FTs;

(2) The job sequence of resources, including FTs, TPs and GTs.

(3) The priority of FTs when there are FT conflicts.

Unlike FTs, for which we need to determine the assignment of containers as

well as the sequence, we only need to determine the job sequence in TPs and

GTs. When a container is assigned to an FT, we will know the TP and GT to

which this container will be assigned. The reason is that we know at which

yard location the container is going to be stored or retrieved. Each yard block

is served by only one GT; therefore, the assignment of the container to a GT is

known. Additionally, each yard is served by a dedicated TP on each berth rail.

Thus, when a container is assigned to an FT, the assignment of the container to

a TP is known. Therefore, we only need to determine the sequence of the

containers in each GT and TP.

We introduce the following notations:

Notations

Parameters

Q the set of QCs;

 the number of horizontal rails (berth rails);

 the set of FTs;

 the set of FTs that belonging to Rail , ;

R

F

iF i FFF r  ...1

38

 the number of FTs in the Rail , , specially

 the set of TPs.

 the set of TPs that belonging to Rail , ;

B the number of Block (several contiguous yard blocks form a

Block, and each yard block belongs to only one Block);

 the set of loading jobs;

 the set of discharging jobs;

H the set of all the jobs, ;

QL the set of subtasks handled by QC;

 the set of subtasks handled by TP;

G the set of all subtasks, TPQLG  ;

Q the number of jobs of QC 

 the yard block that subtask belongs to, ;

 job index. The job refers to the th job in the sequence

list of QC ;

 subtask index. The subtask of the first stage of job ;

 subtask index. The subtask of the second stage of job . If

job is a loading job, then is a subtask handled by

TP, and is a subtask handled by QC; if job is a

rN r || rr FN  .00 N

P

iP i PPP r  ...1

L

D

DLH 

TP

),,(hiB 
),,(ki  TPki ),,(

),(i),(i i



)1,,(i),(i

)2,,(i),(i

),(i)1,,(i

)2,,(i),(i

39

discharging job, then is a subtask handled by QC, and

 is a subtask that handled by TP.

 the processing time of subtask .

 the processing time of subtask .

 the FT traveling time from location of subtask to

location of subtask .

 the TP traveling time from location of subtask to

location of subtask .

 the location of subtask .

Decision Variables:

m

iX),( =1 if the container of job is carried by FT ; otherwise 0.

 if the starting time of subtask is greater than or equal

to the finishing time of subtask ; otherwise 0.

 the starting time of the first subtask of job ;

 the starting time of the second subtask of job .

3.1.1 Activity for discharging and loading jobs

The container jobs can be categorized into discharging jobs and loading jobs.

We need to analyze the flow time of these two jobs so that they can be

formulated into a mathematical model. The entire process of loading a

container and discharging a container in the FB-ACT is described below.

)1,,(i

)2,,(i

)1,,(ip)1,,(i

)2,,(ip)2,,(i

f t

ljkit),,) (,,(),,(ki 

),,(lj 

tp

ljkit),,)(,,(),,(ki 

),,(lj 

),,(kil ),,(ki 

),(i m

1),,)(,,(ljkiZ ),,(lj 

),,(ki 

)1,,(iT),(i

)2,,(iT),(i

40

Suppose a discharging job is assigned to an FT k . QC picks up the

container from the vessel. Then, the spreader of QC grasping the container

moves to the rear of the QC and waits for FT k . When FT k arrives at the

point where containers can be picked up or dropped off by QCs, the container

is placed on FT k . At this time, QC is available to conduct the next job. FT

k , carrying this container, moves to next location where the container will be

transferred to a GT. During the movement of FT k , it may be delayed if

another FT is processing a container on the route of FT k . When FT k arrives

at the location to transfer the container, the process of transferring the

container can be started if both the TP and GT are ready. Once the TP picks up

the container from FT k , it rotates the container 90 degrees so that the

container can be placed on the GT. After the container is placed on the GT, the

TP and FT are available for their next jobs. The GT will carry the container to

the corresponding storage location. The yard crane will pick up the container

and put it at its storage location. At this time, the discharging job for this

container is completed. The operations of a loading job are similar.

The activity flow of discharging jobs and loading jobs is shown in Figures 3.1

and 3.2, respectively.

3.1.2 Activity flow for discharging jobs (Figure 3.1)

The procedure of a discharging job is described in the activity flow in

Figure 3.1.

),(i 





),(i

41

Figure 3.1 Activity flow for a discharging job

There are two activities in Figure 3.1. The first is related to the transfer of a

container between the FT and QC, and the second is related to the transfer of a

container between the FT and GT. They will block the rail during the transfer

operations. Other FTs on the same rail cannot pass through the blocked

location until those operations are completed. We define these two activities as

two subtasks. Each job contains two subtasks.

)1,,(iT denotes the starting time of the first subtask of a container job .

For discharging jobs, the starting time is the moment that QC starts to

release the container to an FT. The end of this subtask is the moment that the

container is placed on the FT. The first shaded area in Figure 3.1 is the

processing time of subtask . At time)1,,()1,,( ii pTT  , the QC is free

and can move to serve the next container.)2,,(iT is the starting time of the

second subtask of the container job. For discharging jobs, the starting time is

the moment that the FT and the related TP and GT are ready for the transfer of

the container. The discharge job ends at the moment the container is placed on

the GT. The second shaded area in Figure. 2 is the processing time of subtask

),(i



)1,,(i

42

. At time)2,,()2,,( ii pTT  , the FT and TP are free and can move to

their next jobs. At time),()2,,()2,,( iii gpTT  , the container job is complete

and the GT is free to serve its next job. The processing time in which the GT

with the container moves to the specified slot on the yard and the YC transfers

the container from the GT to the slot is denoted by),(ig .

3.1.3 Activity flow for loading jobs (Figure 3.2)

The following activity flow describes the procedure of a loading job .

Similarly, for loading jobs,)1,,(iT is the starting time of the first subtask. It is

the time that TP starts transferring the container from the GT to the FT

(denoted as FT k). At time)1,,()1,,( ii pTT  , the container is placed on the

FT. The GT and TP are free for their next jobs.)2,,(iT is the starting time of the

second subtask and is the time that QC begins to pick up the container from

the FT. At time)2,,()2,,( ii pTT  , the container is picked up, and the FT is

free for its next job. At time),()2,,()2,,( iii qpTT  , the loading job is

completed and the QC is free for its next job. The processing time in which

the QC moves to the specified slot on the vessel and then places the container

in the slot is denoted by
),(iq .

Therefore, the completion time of a loading container job is

),()2,,()2,,(),( iiii qpTC  . The completion time of a discharging container

job is),()2,,()2,,(),( iiii gpTC  .

)2,,(i

),(i

43

Figure 3.2 Activity flow for a loading job

3.1.4 Conflict Resolution

Two subtasks cannot be carried out simultaneously when they are competing

for the same resources, or there is traffic conflict between the FTs. Some

subtasks will be delayed to avoid conflicts in resources and traffic.

We introduce the variable),,)(,,(hjkiZ  to set apart the starting time of subtasks.

),,)(,,(hjkiZ  =1 if the starting time of subtask),,(hj  is greater than or equal

to the finishing time of subtask),,(ki  . The relationship of the processing

time of two subtasks can be represented by the equations with variable

),,)(,,(hjkiZ  . They are shown in Figure 3.3.

Figure 3.3 illustrates that two subtasks cannot be operated simultaneously and

are represented by the equation: 1),,)(,,(),,)(,,( kihjhjki ZZ  . Either

),,)(,,(hjkiZ  or),,)(,,(kihjZ  is equal to 1, meaning that either subtask

starts to be operated after subtask is completed or subtask is

started after subtask is completed.

),,(hj 

),,(ki ),,(ki 

),,(hj 

44

Figure 3.3 Relationship between the processing time of two subtasks

The resources in our problems are the FT, QC, TP and GT. For the pair of

subtasks that are competing for the same resources, some constraints are

proposed to ensure that they will not be operated simultaneously, as shown

below:

Moreover, any two successive subtasks that use the same QC or GT must also

be set apart by a minimum handling time. For these two successive subtasks

that belong to different types of jobs (loading or unloading), the minimum

separation time is different.
qc

ldt is defined as the minimum separation time of

two successive subtasks that use the same QC, with the former subtask

belonging to a loading job and the latter subtask belonging to a discharging

job. Similarly, we can define the other minimum separation times as
qc

dlt ,
qc

llt ,

and
qc

ddt . Any two successive subtasks that use the same GT will also be set

apart by a certain time interval. They are denoted by
gt

ldt ,
gt

dlt ,
gt

llt , and
gt

ddt .

)1(

;1

),,)(,,(),,(),,(),,(

),,)(,,(),,)(,,(





hjkikikihj

kihjhjki

ZMpTT

ZZ





45

In summary, the starting time of any two successive subtasks that use the same

QC or GT should satisfy the following constraint:

)(),,)(,,(),,(),,(),,(1 hjkimskikirj ZMtpTT  ,

where mst is the minimum separation time defined above. Because the QC

sequence is given, the value of),,)(.,(hjkiZ  is known when the subtasks

),,(ki  and),,(hj  are competing for the same QC (thus and are the

same). The constraints can be presented as:

QLhikitpTT mskikihi ),,1(),,,(,),,(),,(),,1(

Additionally, the travel time should be considered when the subtasks are

competing for the same resources, such as the TP and FT. We have the

constraints:

 if these two subtasks are

competing for the same FT;

 if they are competing for

the same TP.

FT conflict will also contribute to delay because two subtasks cannot be

conducted simultaneously when there is an FT conflict between them. One

will be operated first, whereas the other one will be delayed. The variable

),,)(.,(hjkiZ  is used to avoid conflict among FTs. To build the constraints that

avoid the conflict among FTs, the FTs on the same rail are set in increasing

order from left to right. Suppose that FT performs subtask),,(hj  and

that FT performs subtask),,(ki  .

Consider the following conditions:

 

)1(),,)(,,(),,)(,,(),,(),,(),,( hjki

f t

hjkikikihj ZMtpTT 

)1(),,)(,,(),,)(,,(),,(),,(),,( hjki

t p

hjkikikihj ZMtpTT 

1k

2k

46

(1) FT and FT are on the same rail;

(2) < , i.e., FT is on the left-hand side of FT ;

(3) > , i.e., the location of subtask),,(hj  is on the right-hand

side of subtask),,(ki  .

If conditions (1)-(3) are met, there is an FT conflict between these two

subtasks. Consequently, subtask),,(ki  and subtask),,(hj  cannot be run

simultaneously to avoid FT conflict.

The number of FTs on rail r is indicated as rN , and the index of the FTs on

the same rail is increased from left to right. The set of FTs on each rail can be

presented as

},...,2,1{:

},...,,...,2,1{:2},,...,2,1{:1

11

1

1

1

21111








 



r

k

k

r

k

k

r

k

k NNNrRail

NNNNRailNRail

The constraint to avoid FT conflict can be represented by (a):

(a)

Condition (1) can be obtained as

When Condition (1) holds, Constraint (a) can be reduced to (b):

1k 2k

1k 2k 1k 2k

),,(hjl ),,(kil 

































































1

1

1

1

1),,(),,(

1

),(

1

),(),,)(,,(),,)(,,(

1

),(

1

),(

,...,1,,2,1,2,1,,...,2,1

)(2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

r

t

t

r

t

thjki

N

Nm

m

j

N

Nm

m

ikihjhjki

v

Nm

m

i

v

Nm

m

j

NNvllhkRr

XXZZXX

r

i

i

r

t

t

r

i

i

r

t

t

r

t

t

r

t

t





},...,2,1{,2

1

1

1

1

1

1

1

1

1

1 1

),(

1

),(RrXX

r

i

i

r

i

i

r

i

i

r

i

i

N

Nm

m

j

N

Nm

m

i 































 



47


































1

1

1

1

1),,(),,(

),,)(,,(),,)(,,(

1

),(

1

),(

,...,1,,2,1,2,1,,...,2,1

,

1

1

1

1

r

t

t

r

t

thjki

kihjhjki

v

Nm

m

i

v

Nm

m

j

NNvllhkRr

ZZXX
r

t

t

r

t

t





 (b)

If Condition (1) holds, Conditions (2) and (3) are satisfied. This is denoted as

the equation:

This means the FT (denoted as) for subtask is on the left hand

side of the FT (denoted as) for subtask , i.e., .

From (b), we can see that 1),,)(,,(),,)(,,( kihjhjki ZZ  must be satisfied, which

implies either),,)(,,(hjkiZ  or),,)(,,(kihjZ  is equal to one. Therefore, these two

subtasks cannot be operated simultaneously. The constraint can ensure that

any pair of subtasks with FT conflict will not be operated simultaneously. The

time constraint can be presented as

Consequently, if there is FT conflict between two subtasks, either

 or

 holds.

3.2 Mathematical model

The mathematical model is shown below.

},{:),(),(2)2,,(),(),(1)2,,(
),(,),(


 


QQQQQQ

DQLQ
ghTqhTMaxMin 



(3.1)

},...,1{,1
1

1

1

1

1

1

),(

1

),(

1

1

1

1





























r

t

t

r

t

t

v

Nm

m

i

v

Nm

m

j NNvXX
r

t

t

r

t

t



1k),,(hj 

2k),,(ki  21 kk 

GhjkiZMtpTT hjki

f t

hjkikikihj ),,(),,,(),1()(),,) (,,(),,) (,,(),,(),,(),,(

,0)(),,)(,,(),,(),,(),,( f t

hjkikikihj tpTT 

0)(),,)(,,(),,(),,(),,( f t

hjkihjhjki tpTT 

48

Constraints:

(1) FT dispatching constraints

 (3.2)

FmHjiZZXX ijji

m

j

m

i  ,),(),,(,1)1,,)(2,,()1,,)(2,,(),(),( (3.3)

(3.4)

2,1,2,1

)1()(),,)(,,(),,)(,,(),,(),,(),,(





kh

ZMtpTT hjki

ft

hjkikikihj 
 (3.5)

(2) Time constraints for the two tasks of a given job

HiTtpT i

ft

iiii ),(,)2,,()2,,)(1,,()1,,()1,,( (3.6)

(3) Sequence-dependent times for different resources

QC:

LiLitpTT ll

qciii ),1(,),(,)2,,()2,,()2,,1( (3.7)

DiLitpTT ld

qciii ),1(,),(,)2,,()2,,()1,,1( (3.8)

LiDitpTT dl

qciii ),1(,),(,)1,,()1,,()2,,1( (3.9)

DiDitpTT dd

qciii ),1(,),(,)1,,()1,,()1,,1( (3.10)

GT (successive tasks belong to the same yard):

TPhjkihkll

ZZ

hjki

hikjhjki





),,(),,,(,2,1,2,1,

,1

),,(),,(

),,)(,,(),,)(,,(




 (3.11)

)1,,()1,,(

)1,,)(1,,()1,,()1,,()1,,(

,),(,),(

),1(





 ji

ji

ll

gtiij

llLjLi

ZMtpTT




 (3.12)

HiX
V

m

m

i 


),(,1
||

1

),(

































































1

1

1

1

1),,(),,(

1

),(

1

),(),,)(,,(),,)(,,(

1

),(

1

),(

,...,1,,2,1,2,1,,...,2,1

)(2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

r

t

t

r

t

thjki

N

Nm

m

j

N

Nm

m

ikihjhjki

v

Nm

m

i

v

Nm

m

j

NNvllhkRr

XXZZXX

r

i

i

r

t

t

r

i

i

r

t

t

r

t

t

r

t

t





49

)2,,()1,,(

)2,,)(1,,()1,,()1,,()2,,(

,),(,),(

),1(





 ji

ji

ld

gtiij

llDjLi

ZMtpTT




 (3.13)

)1,,()2,,(

)1,,)(2,,()2,,()2,,()1,,(

,),(,),(

),1(





 ji

ji

dl

gtiij

llLjDi

ZMtpTT




 (3.14)

)2,,()2,,(

)2,,)(2,,()2,,()2,,()2,,(

,),(,),(

),1(





 ji

ji

dd

gtiij

llDjDi

ZMtpTT




 (3.15)

TP:

 (3.16)

BvTPhjkihk

XXMZMtpTT

v

Fm

m

i

Fm

m

jhjki

tp

hjkikikihj

rr

,...,1,),,(),,,(,2,1,2,1

)2()1(),(),(),,)(,,(),,)(,,(),,(),,(),,(



 






(3.17)

(4) Domain of variables:

FmHiX m

i  ,),(1; OR 0),( (3.18)

 (3.19)

 (3.20)

Objective (3.1) minimizes the makespan of a given set of container jobs.

Constraints (3.2) – (3.5) are the constraints of FT dispatching. Constraint (3.2)

ensures that every container job must be completed by exactly one FT.

Constraint (3.3) means that each FT can only carry one container at a time.

Conflict among FTs can be avoided via Constraint (3.4). Constraint (3.5) is the

time constraint for two tasks if they cannot be performed simultaneously.

Constraint (3.6) is the time constraint for the subtasks of each container job.

Constraints (3.7) – (3.10) guarantee that the starting time of two successive

.,...,1,),,(),,,(,2,1,2,1,,...,2,1

1),,)(,,(),,)(,,(),(),(

BvTPhjkihkRr

ZZXX

v

kihjhjki

Fm

m

i

Fm

m

j

rr



 






2,1,2,1,),(),,(;1 OR 0),,)(,,( hkHjiZ hjki 

HiTT ii ),(,0,)2,,()1,,(

50

subtasks of the same QC must be separated by a minimum handling time.

Constraint (3.11) ensures that each GT can only carry one container at a time.

Constraints (3.12) – (3.15) ensure that the starting time of two successive

subtasks of the same GT must be separated by a minimum handling time.

Constraints (3.16) – (3.17) represent the time of constraint for the subtasks

that use the same TP. It ensures that each TP can only operate one container at

a time. Constraints (3.18) – (3.20) define the domains of the decision variables.

3.3 Filtered Beam Search-based Algorithm

To minimize the makespan of a given set of container jobs, we need to make

the following decisions:

(i) The assignment of container jobs to FTs;

(ii) The job sequence among resources, including FTs, TPs and GTs.

(iii) The prior ordering of FTs when there is FT conflict.

The solution space of the decision variables increases exponentially with

increases in the number of jobs. Existing commercial solvers are not able to

solve the MIP model. Therefore, we develop a heuristic algorithm using the

filtered beam search concept to address our problem.

3.3.1 Filtered beam search algorithm

Before presenting our algorithm, we first introduce the analogous algorithm

called the filtered beam search (FBS) algorithm. The filtered beam search

algorithm was proposed by Ow et al. (1988). It is widely used to solve

combinatorial optimization problems in various areas, such as berth allocation

problems (BAP) (Wang et al. (2007)), job shop scheduling (Sabuncuoglu et al.

(1999)), load sequencing of outbound containers (Kim et al. (2004)), product

51

line design and selection (Nair et al. (1995)), and the single machine

early/tardy problem (Ow et al. (1989)).

FBS is a type of tree structure-based algorithm. The beam nodes represent the

partial solutions with good performance and are further expanded to generate

new nodes. Evaluation functions are used to assess the performance of these

nodes. The nodes with good performance are most likely to be selected to be

the beam nodes of the next level in the tree. By continually expanding the tree,

a good and complete solution can be obtained at the leaf level. However, the

computation time can be quite large due to the effort of evaluating large

numbers of nodes generated from the beam nodes. To make the algorithm

efficient, a local evaluation (a cost estimated by a simple or greedy rule) will

first be applied to help screen the nodes. The local evaluation is simple and

computationally fast. After the filtering procedure, based on the local

evaluation, many nodes with poor performance are screened out, whereas a

smaller number of nodes are retained. Another function, called global

evaluation (a cost estimation projecting the current partial solution to a

complete solution), will be applied to evaluate the retained nodes. Beam nodes

are selected based on the results of the global evaluation. The significance of a

FBS can be summarized as follows. The local method is computationally

inexpensive but less accurate. The global method is more accurate but

computationally expensive. The filtering procedure removes the poor

candidates so that the global method does not have to evaluate them. It can

produce high-quality solutions with an efficient computational effort.

52

3.3.2 Development of the tree structure algorithm

Our algorithm is also constructed by tree structure and is analogous to FBS

when using the screening procedure. However, the most remarkable point

distinct from FBS is the mechanism of the global evaluation. In FBS, the

global evaluation is to project the current partial solution to one complete

solution or a certain number of complete solutions, and then the result of this

complete solution or average of the results of those complete solutions is

considered as the estimated cost of the partial solution. Thus it can be seen that

the way to generate complete solutions is substantially crucial to the accuracy

of the estimated cost. Because of the complexity of our problem, finding a

way that generates promising complete solutions from partial solutions is

intractable. Therefore, we will propose an optimal method or near optimal

method to evaluate the nodes again after the screening procedure instead of

the global evaluation. In other words, we will not project our partial solutions

to a complete solution.

The expansion of nodes in the tree is also different. In our tree structure

algorithm, a unit called the intermediate node will be generated from upper

level first before a new beam node is created.

To illustrate our tree structure algorithm clearly, some related terms need to be

defined first.

Beam node: the nodes in the tree which will be further explored. It represents

the solution of involved subtasks showing how these subtasks are assigned to

vehicles and how the vehicles transport the containers without collisions.

53

Partial solution: A beam node in the tree structure, except at the leaf level,

represents a partial solution when not all of the subtasks have been assigned.

Complete solution: A beam node at the leaf level in the tree structure

represents a complete solution that all subtasks are accomplished with the

feasible schedule.

Assigned subtask: The subtask in the beam node is called an assigned subtask.

The involved decision variables are determined for these subtasks.

Unassigned subtask: A subtask that has not been assigned to the beam node

is called an unassigned subtask.

Assigned subtask with partial decisions: This is a subtask that is assigned to

a beam node during the procedure of expanding a beam node. Only the

decision about the vehicle assignment, as well as the sequence of this subtask

in the corresponding vehicle, is determined.

We can give the explicit procedure of how the tree structure algorithm

searches for a complete solution. At the root level of the tree, there is only one

beam node that is an empty set. A large number of intermediate nodes are

generated by selecting unassigned subtasks and assigning them to vehicles. A

method called the surrogate method is developed to assess the fitness of these

intermediate nodes. The surrogate method should be computationally fast. A

related small number of intermediate nodes are retained after the screening

procedure based on the results from the surrogate method. A method called the

detail method is developed to solve the intermediate nodes to optimal

solutions or near optimal solutions. Because the intermediate nodes represent

54

the solution of vehicle dispatching problem, the detail model solves the

conflict-free routing problem under the solution of vehicle dispatching

problem. After the calculation of detail model, vehicle dispatching and

conflict-free routing problems of the subtasks in the intermediate nodes are

solved. The best m intermediate nodes according to the results of the detail

method are selected as new beam nodes at next level. The subtasks in the

beam nodes become assigned subtasks and are removed from the set of

unassigned subtasks. The tree is expanded in this way until the leaf level is

approached. The framework of the filtered beam search based algorithm can

be described by Figure 3.4.

Figure 3.4 Framework of the tree structure algorithm

55

3.3.3 Discussion of the performance of the tree structure algorithm

It is intractable to simultaneously solve the vehicle dispatching and conflict-

free routing problems when the planning horizon is large. However, we can

try to obtain promising solutions by dynamically rolling the planning horizon.

Each time we solve the problem to optimality or near optimality within a

related small planning horizon. The planning horizon is extended step by step

until it becomes complete. It is believed that longer decomposed planning

horizon brings the solution closer to optimality. However, the computational

efforts are exponentially increased when the decomposed planning horizon

gets longer. The tree structure algorithm is in line with the strategy of rolling

the planning horizon. A complete planning horizon is equivalent to the tree

from root to leaf. Each expansion of the tree is similar to rolling the planning

horizon.

The number of retained partial planning horizons is also significantly affects

the final result. It is intuitive that when more number of promising partial

planning horizons are retained for further exploration, the final result will be

closer to optimality. This number of retained partial planning horizons is

reflected as the beam number in the tree structure algorithm. Considering the

computational efforts, the number of beam nodes has to be controlled. The

performance of the tree structure algorithm is deteriorated if the number of

possible intermediate nodes if extensively large. The possibility of losing

promising solutions will increase because of missing the promising

intermediate nodes among the huge set. Fortunately, the number of

intermediate nodes is arbitrarily large because of the concept of QC list under

the container terminal environment. In the vehicle dispatching problem under

56

the container terminal environment, a work schedule of QCs is constructed

first based on the bay profile, which is sent as a guideline for discharging and

loading operations by a shipping agent. Then, a sequence list called the QC list

is made, which specifies the sequence of discharging and loading operations

of individual containers by the corresponding QC. Thus, there exists a

precedence relationship among the subtasks operated by the same QC.

Consequently, we should avoid assigning a container job to a vehicle if a

certain number of container jobs that preceding this container job are not

accomplished. Therefore, the possible number of the intermediate nodes can

be dramatically reduced.

We implement the tree structure algorithm to solve the three problems under

different container terminal systems. According to the characteristics of

container terminal systems, different surrogate methods and detail methods are

proposed. The next three chapters will introduce the new container terminal

systems and discuss how we implement the algorithm to solve the complicated

problems of vehicle dispatching and conflict-free routing.

3.3.4 The fitness calculation

We want to examine the efficiency of the schedule represented by the

intermediate nodes. A good schedule should not contain long delay times or

large number of unproductive moves. The delay time is involved in the

handshakes among different types of equipment or during the FT conflict. The

unproductive moves of FTs include empty FTs travelling to pick-up their next

container, or in making way for other FTs to prevent FT conflict. Therefore,

the fitness of the intermediate node, denoted as , is defined as the ratio of f

57

unproductive time to the length of the time window. A smaller fitness leads to

a better intermediate node. The unproductive time includes the delay time and

the time of unproductive FT moves. To determine the unproductive time, we

must define the time window. The start time of the time window begins at the

end time of the beam node from which the intermediate node is expanded. The

end time of the time window is the time when the earliest FT finishes all look-

ahead subtasks. In the fitness calculation, we only consider the unproductive

time within the time window. To obtain the end time of the time window, we

must calculate the completion time of the assigned subtasks with partial

decisions. Two methods are proposed to make the decisions for calculating the

completion time of the assigned subtasks with partial decisions in the

intermediate nodes. The surrogate model approach is the first approximation

method, and the reduced MIP model approach is the other more accurate

method. The surrogate model approach is used to filter out the intermediate

nodes with poor performance, saving the best w intermediate nodes, where

w is the filter width. The reduced MIP model approach will then calculate the

fitness of the saved intermediate nodes again. The new generation of beam

nodes will be derived from the intermediate nodes with the first b smallest

fitness value, where b is the beam width. The details of these two approaches

will be discussed later in this section.

A simple example is given below to illustrate the procedure of calculating the

fitness of an intermediate node. We assume that there are three FTs and that

the look-ahead number is two. The QC handling time is 90 s, whereas the TP

handling time is 60 s. The index of subtask),,(ki  means the k th subtask of

the i th container in the QC  list. We randomly select the unassigned

58

subtasks and assign them to the FTs. After the assignment procedure, we

obtain the FT sequence of the newly assigned subtasks as follows: subtasks

)2,3,3(),1,3,3(assigned to FT1, subtasks)1,1,5(),2,1,4(assigned to FT2 and

subtasks)2,2,4(),1,2,4(assigned to FT3. The starting time of the current time

window is the completion time of assigned subtask)2,3,4((referring to Figure

3.5), which is also the end time of the previous time window. After the

calculation by the surrogate model, the completion time of each subtask is

obtained and the Gantt Chart is compiled, as shown in Figure 3.5. The

completion time of subtask)1,1,5(is the end time of the time window because

FT2 is the earliest FT that completes all of its look-ahead subtasks.

Hence, the fitness can be calculated:

75.1
220500

7514511014515





f .

Figure 3.5 Gantt chart based on the surrogate model approach

3.3.5 Surrogate model approach

There are two types of subtasks in an intermediate node: assigned subtasks

and assigned subtasks with partial decisions. The completion time of the

59

assigned subtasks is determined and will not change. We only need to

calculate the completion time of the assigned subtasks with partial decisions.

The surrogate model approach calculates the completion time of one subtask

at a time. According to the sequence in each FT, a set that consists of the first

subtask in each FT is constructed. This set is called Set P. We will select one

subtask in Set P whose completion time will be determined. Then, Set P will

be updated by removing the selected subtask and adding the subtask following

the selected subtask belonging to the same FT. The procedure is executed until

the completion time of all assigned subtasks with partial decisions is

determined. The assigned subtasks with partial decisions are the subtasks that

are assigned to the FTs when expanding the beam node.

The way to select the subtask such that its completion time will be determined

is based on the cost of the subtask in Set P. The cost of a subtask is defined as

the delay time the subtask brings to other subtasks in Set P. For example, two

subtasks (denoted as A1 and A2) cannot be executed simultaneously. Subtask

A2 will be delayed if we allow subtask A1 to be conducted first. The delay

time of subtask A2 is brought from subtask A1. We then select another subtask

(denoted as A3) in Set P. The delay time of subtask A3 is calculated in the

same manner that we let subtask A1 be conducted first. When the delay time

of subtask A3 is calculated based on subtask A1, we do not consider the

impact of other subtasks, such as A2, on subtask A3. In summary, the sum of

the delay time of all subtasks in Set P, except subtask A1, represents the cost

of subtask A1. The costs of other subtasks in Set P are calculated in the same

manner.

After *m selections, where m is the number of FTs and  is the look-

60

ahead number of subtasks for one FT, the completion time of all the assigned

subtasks with partial decisions can be calculated. Therefore, the fitness of the

intermediate node can be calculated based on the completion time of the

subtasks.

Some notations must first be introduced to interpret the pseudo-code of the

surrogate model approach.

The sequence of subtasks in FT i is represented as),..,,(,2,1  iii，i fffSF ,

where
jif ,
 is the index of the subtask, the subscript i is the index of FT and j

is the index of the order in the sequence.
jif ,
 represents the j th subtask that

FT i will carry out.  is the look-ahead number of the subtasks that each FT

will carry out. A candidate set, denoted as S , is the set of subtasks among

which there is one subtask, which will be selected to calculate its completion

time. The cost of subtask
jif ,
 is denoted as

jif
C

,
. The completion time of

subtask
jif ,
 is denoted as

jif
CT

,
. The pseudo-code is shown below:

Initialization of candidate set, }|{ 1, MifS i  , where M is the set of FTs.

while S , do

 (1) calculate SfC jif ji
, where,

,
;

 (2) select the subtask }{min where,
,

,
,, ji

ji
ji f

Sf
fji CCf


 ;

 (3) determine the completion time of subtask
jif ,
,

 },max{
,,,,, ,, jijijijiji f

ft

fhhf

ft

fkkf ptCTptCTCT  , where subtask k

is the previous

 subtask of subtask
jif ,
 in the same FT, and subtask h is the subtask

61

with which subtask

jif ,
 cannot be operated simultaneously;

 (4) update S :

 Remove subtask
jif ,
 from S ;

 if there exists subtask
1, jif , do

 choose the subtask
1, jif to enter S ;

 end if

end while

3.3.6 Reduced MIP model approach

The original MIP model, described in Section 3.2, cannot be solved by

commercial software for large-scale problems. However, the MIP model can

be greatly reduced when the assignment of subtasks to FTs and the sequence

of subtasks in FTs are given. For clarity, we propose a definition denoted as

the FT schedule. The FT schedule is the assignment of subtasks to FTs as well

as the subtask sequence in each FT. We can re-model the problem given the

FT schedule, which is deemed a reduced MIP model. It can be found in

Appendix A.

To show the reduction of variables in the reduced MIP model with the given

FT schedule, some examples are created. The results are shown in Table 3.1.

The number of FTs is three in each instance in Table 3.1.

The number of variables in the reduced MIP varies depending on the FT

schedule, whereas the number of variables in the original MIP is fixed. A

certain number of FT schedules are generated for each case. The number of

62

variables in the reduced MIP is the average number among the generated FT

schedules.

Table 3.1 Comparison of the number of variables between the reduced and

original MIPs

Case Average no. of variables

in the reduced MIP

No. of variables in the

original MIP

Ratio

10 jobs 79 448 0.1746

12 jobs 102 635 0.1612

15 jobs 152 972 0.1570

20 jobs 231 1699 0.1364

30 jobs 471 3750 0.1261

40 jobs 804 6585 0.1226

50 jobs 1,251 10,244 0.1224

Because we only calculate the completion time of a certain number of

subtasks, the number of subtasks in the reduced MIP model is limited so that

the computing time will be small. The completion time of each look-ahead

subtask can be obtained from the optimal solution of the reduced MIP model.

The fitness value can be found according to the completion time of the

subtasks. The reduced MIP model can be used in the second-stage selection.

This method is more accurate than the surrogate model, but the computing

time is longer.

The method in the first-stage selection should be easy and computationally

efficient. However, it should also be precise so that good solutions will not be

discarded. A large number of calculation examples are created to show that the

correlation coefficient between the fitness values is high based on the

surrogate model and reduced MIP model. The computing time of these two

approaches is also compared. The results are provided in Table 3.2.

63

Table 3.2 Correlation coefficient between surrogate model and reduced MIP

model

 Correlation coefficient Computing time ratio

3 subtasks look-ahead 0.8432 30.12

4 subtasks look-ahead 0.8131 32.88

5 subtasks look-ahead 0.7892 37.23

6 subtasks look-ahead 0.7732 43.69

The correlation coefficient is high and most of the unsatisfying partial

solutions can be discarded by the first stage selection. The computing time of

the surrogate model is much shorter than that of reduced MIP. Therefore, a

large number of partial solutions can be evaluated in the first stage selection.

In summary, for each beam node, we randomly generate a certain number of

intermediate nodes during the expanding procedure. For each generated

intermediate node, we first use a surrogate model approach to calculate the

fitness. The best w (filter width) intermediate nodes are retained after the

filtering procedure. These intermediate nodes are assessed by the reduced MIP

model approach. The best b (beam width) intermediate nodes are retained.

Beam nodes are derived from these best b intermediate nodes. The algorithm

is terminated when the completion time of all subtasks is determined, where

the beam nodes represent a complete solution. The best solution can then be

selected from the beam nodes.

3.4 Computation experiments

Experiments are conducted to assess the proposed approaches. The

experiments are divided into two parts: the first part is to assess the proposed

algorithm by comparison to the optimal results. The second part analyzes the

64

layout that impacts the performance of the FB-ACT.

3.4.1 Comparison study of the performance of the proposed methods

The parameters involved with the TP, GT, QC and FT are shown as follows:

The speeds of the FT, GT, and TP are 4, 4 and 1 m/s, respectively. The QC

handling time is 40 moves per hour, and the TP handling time is 60 moves per

hour. The layout of the terminal in our experiments is shown in Figure 3.6. All

of the numerical studies use the same parameters.

Figure 3.6 The layout of the terminal

As our problem is focus on the operation in the area of rails for FTs, the

movement of QCs is not considered. Each QC is assumed to be fixed. The

horizontal distance between two contiguous rails for is 20 meters. Like the

layout shown in Figure. 3.6, the distance between the QCs and yards are given

in Table 3.3.

Table 3.3 distance between QC and yard

 Yard1 Yard2 Yard3 Yard4 Yard5 Yard6 Yard7 Yard8 Yard9

QC1 10

(meters)

10 30 50 70 90 110 130 150

QC2 70 50 30 10 10 30 50 70 90

QC3 130 110 90 70 50 30 10 10 30

65

As there is only one GT in each rail, there is no conflict of GTs. The operation

in the yard area is simplified. We assume the location of the container in the

yard is in the middle. We also assume that the yard crane is always ready for

the GT. Hence, the travel time of a GT between the pickup/draw point by TP

and pickup/draw point by yard crane can be set to be 12.5 second. The

handling time that the yard crane picks up (draws) a container from (to) a GT

is set to be 10 second. Similarly, the handling time that the TP picks up (draws)

a container from (to) a GT is 10 second. The minimum separation time of GT

can be shown in Table 3.4. Since the location is assumed to be fixed, the

minimum separation time of QC is shown in Table 3.4

Table 3.4 minimum separation time of QC

Notation Time (second) Notation Time (second)

ll

qct

45 ll

gtt

45

ld

qct

145 ld

gtt

0

dl

qct

0 dl

gtt

185

dd

qct

45 dd

gtt

85

The look-ahead number in our experiments is set to 4. There is a tradeoff

between the computation time and accuracy of the algorithm when choosing

the look-ahead number. A larger look-ahead number leads to a longer

computation time in the reduced MIP model. In addition, when generating the

intermediate nodes from beam nodes, the number of possible combinations

will increase greatly if the look-ahead number is larger. Because we will only

66

generate a certain number of intermediate nodes, the likelihood of losing the

optimal assignment will increase if the number of possible candidates of the

intermediate nodes is large. However, if the look-ahead number is not

sufficiently large, the accuracy of the algorithm will decrease. Therefore, we

set the look-ahead number to 4.

Table 3.5 Comparison with the optimal results

Case CPLEX

FBS

Optimal

Gap

 Makespan CPU Time

(min)

Makespan CPU Time

(min)

P1 (8 jobs, 3FT) 14.45 0.05 14.45 3.00 0

P2 (9 jobs, 3FT) 14.61 0.05 14.61 2.91 0

P3 (10 jobs, 3FT) 14.40 0.61 14.42 4.67 0.14

P4 (10 jobs, 3FT) 16.08 0.62 16.09 4.45 0.06

P5 (12 jobs, 3FT) 16.75 2.34 16.8 4.50 0.30

P6 (12 jobs, 3FT) 17.25 2.40 17.83 4.52 3.36

P7 (12 jobs, 4FT) 16.10 2.50 16.15 4.62 0.31

P8 (15 jobs, 3FT) 20.33 32.47 20.75 8.67 2.07

P9 (15 jobs, 3FT) 22.00 22.26 22.07 8.17 0.32

P10 (15 jobs, 4FT) 19.89 25.08 19.90 9.50 0.05

P11 (15 jobs, 4FT) 19.87 24.42 20.42 8.62 2.77

P12 (15 jobs, 4FT) 19.50 36.34 19.77 8.77 1.13

P13 (20 jobs, 3TF) 24.07 3 h 21 24.79 11.52 2.99

P14 (20 jobs, 4FT) 23.07 4 h 31 23.72 12.01 2.64

 Average Optimality Gap 1.153

When the number of jobs is small, CPLEX can solve our MIP model and

obtain the optimal result. Fourteen instances are randomly generated. There is

only one rail in each instance. Three quay cranes serve the jobs and containers

are distributed among nine yard blocks. The comparison is shown in Table 3.5.

The optimality gap is relatively small when the problem scale is small. The

computation time of the CPLEX method increases exponentially. Our

67

algorithm can solve the problems in polynomial time. The optimal results in

large-scale problems cannot be obtained by commercial software. Therefore,

we assess our algorithm via comparison with the results calculated by the

FCFS rule.

Table 3.6 Comparison with the FCFS rule

 FCFS rule FBS Gap (%)

P1 (20 jobs, 3FT) 36.53 24.95 31.70

P2 (20 jobs, 4FT) 36.75 22.28 39.37

P3 (20 jobs, 5FT) 34.03 20.43 39.96

P4 (20 jobs, 6FT) 34.54 20.13 41.72

P5 (20 jobs,7FT) 30.03 17.77 40.83

P6 (20 jobs, 3FT, 2Rail) 24.55 17.67 28.02

P7 (20 jobs, 2FT, 3Rail) 20.75 15.03 27.57

P8 (20 jobs, 3FT, 3Rail) 19.99 13.64 31.77

P9 (30 jobs,3FT) 61.82 42.68 30.96

P10 (30 jobs, 4FT) 60.82 41.50 31.77

P11 (30 jobs, 5FT) 55.73 38.10 31.63

P12 (30 jobs, 6FT) 54.13 36.28 32.98

P13 (30 jobs, 7FT) 54.84 38.90 29.06

P14 (30 jobs, 3FT, 2Rail) 40.56 25.00 38.36

P15 (30 jobs, 2FT, 3Rail) 31.55 24.67 21.81

P16 (30 jobs, 3FT, 3Rail) 31.27 22.89 26.80

P17 (40 jobs, 3FT) 83.68 50.70 39.41

P18 (40 jobs, 4FT) 79.88 46.27 42.08

P19 (40 jobs, 5FT) 81.74 42.60 47.88

P20 (40 jobs, 6FT) 80.92 42.23 47.81

P21 (40 jobs, 7FT) 73.61 41.25 43.96

P22 (40 jobs, 3FT, 2Rail) 55.73 38.28 31.31

P23 (40 jobs, 2FT, 3Rail) 46.44 30.97 33.31

P24 (40 jobs, 3FT, 3Rail) 44.46 28.48 35.94

P25 (50 jobs, 3FT) 110.45 66.97 39.37

P26 (50 jobs, 4FT) 109.56 65.20 40.49

68

Continue Table 3.6

P27 (50 jobs, 5FT) 99.63 56.77 43.02

P28 (50 jobs, 6FT) 104.14 55.57 46.64

P29 (50 jobs, 7FT) 102.12 54.47 46.66

P30 (50 jobs, 3FT,2Rail) 73.79 45.35 38.54

P31 (50 jobs, 2FT, 3Rail) 63.38 44.55 29.71

P32 (50 jobs, 3FT,3Rial) 61.99 36.57 41.01

In Table 3.6, the index like (3FT, 2 Rail) means that there are 2 rails and 3 FTs

are mounted on each rail.

Table 3.6 suggests that our algorithm significantly outperforms the FCFS rule

in every instance, especially in cases with a relatively large number of FTs (i.e.,

five, six or seven) on the same track. The average difference of the instances

that is less than or equal to three FTs on the same track is 32.85% and it is

40.37% when there are more than three FTs on the same track. The FCFS rule

performs poorly in its handling of the FT conflict. The FCFS rule is a greedy

heuristic rule that considers a relatively small number of combinations of

solutions, whereas our algorithm uses the MIP to optimize the solutions of the

assigned subtasks with partial decisions.

3.4.2 Effects of the parameters on the efficiency of FB-ACT

Effects of the allocation of FTs on the makespan

Table 3.7 Effects of the allocation of FTs on the makespan

 1 Rails, 6 FTs

(min)

2 Rails, 3 FTs

(min)

3 Rails, 2 FTs

(min)

20 jobs 21.55 18.24 16.23

30 jobs 35.44 27.60 26.33

40 jobs 42.12 37.05 33.24

50 jobs 56.04 46.34 43.87

69

15 instances are created in each case in Table 3.7. The result is the average of

the instances.

The results indicate that for a given total number of FTs, the system performs

better with fewer FTs on the same rail. This finding is intuitive because when

the number of FTs on one rail is reduced, the number of potential FT conflicts

decreases. However, the difference between columns 4 and 3 in Table 3.5 is

considerably less than that between columns 3 and 2. Because the delay time

due to FT conflict is not so much in the case of 3 FTs on a rail, the reduction

of FTs on the same rail will not yield significant benefits.

Effects of the average job distance on the makespan

The allocation of containers can affect the performance of the system by

increasing the delay due to FT conflict. Because container jobs with long

distances will increase the traveling time, we set the traveling time to zero to

eliminate its impact on the makespan. In addition, there is no conflict on the

traveling route of GTs. The distance between the transfer point by the TP and

the yard storage point will not affect the makespan. Therefore, the job distance

in our numerical experiments is between the QC pick-up or delivery point and

the transfer point by the TP. Four groups of numerical experiments are

conducted. The horizontal coordinate is the distance. Each experiment

contains seven intervals of distance, i.e., [30, 45], [45,60], [60,75], [75,90],

[90,105], [105,120] and [120,135] (meters). Ten instances are generated in

each interval. The value of the vertical coordinate is the mean of the makespan

of these 10 instances.

The results in Figure 3.7 suggest that the makespan increases with

increases in the average distance. This trend occurs because the delay

70

increases due to FT conflict. The likelihood that one FT will be delayed to

make way for another FT may increase if its route is longer. Therefore, to

improve the performance of the FB-ACT system, the containers should be

well allocated. A container should not be stored in a yard that is far away from

its location in the vessel.

Figure 3.7 Effects of the average job distance on the makespan

Effects of the number of FTs and TPs on the makespan

Some instances are created to study the effects of the number of FTs and TPs

on the makespan. There are 18 yards, 5 quay cranes and 40 jobs. We set

different numbers of FTs and TPs and run the experiments. 12 instances are

created in each case. The result for each case is the average of the 12 instances.

The results are shown in Table 3.8.

71

Table 3.8 Effects of the numbers of FTs and TPs on the makespan

 1 Rail

3 FT

1 Rail

4 FT

1 Rail,

5 FT
1 Rail

6 FT

1 Rail,

7 FT

6 TPs 57.00 50.22 48.67 48.00 47.7

12 TPs 54.45 47.08 45.65 44.48 43.65

18 TPs 53.28 45.22 43.73 43.60 43.44

The results indicate that increasing the numbers of FTs and TPs can decrease

the makespan. This trend is obvious because increasing a resource can reduce

the waiting time. However, the rate of reduction is decreased when increasing

the number of FTs. This trend can be observed from Table 3.9. When the

number of FTs on the same rail is small, an increase in the number of FTs can

reduce the waiting time. However, an increase in the number of FTs will

increase the delay time to prevent FT conflict when the number of FTs is large.

Table 3.9 Rate of reduction by increasing the number of FTs by one

 4FT vs. 3FT 5FT vs. 4FT 6FT vs. 5FT 7FT vs. 6FT

6 TPs 11.89 (%) 3.09 1.38 0.62

12 TPs 13.54 3.04 2.56 1.87

18 TPs 15.13 3.33 0.31 0.30

In summary, FT conflict is the main variable that contributes to delay time.

The containers should be well allocated to reduce the movement of FTs. The

increase in job distance will create more delay time to prevent FT conflict. The

FTs should be distributed to different rails. When the number of FTs on the

same rail is sufficiently large, an increase in the number of FTs can only

reduce the makespan slightly.

72

3.5 Conclusion

In this chapter, we focus on finding a promising schedule for containers while

considering the handshakes and interference among the equipment involved. A

mathematical model is proposed to achieve the objective. Because the large-

scale models cannot be solved by commercial software, an algorithm was

developed that uses an idea similar to the filtered beam search method. The

proposed algorithm is tested with the 14 instances, which can be solved by

CPLEX. The results show that the algorithm can achieve a near-optimal

solution. The results from another 32 instances at a relatively large scale

illustrate that our algorithm significantly outperforms the FCFS rule.

In future studies, a tight lower bound should be found. Because the optimal

solution of our problem cannot be found for a large number of jobs, a tight and

strong lower bound must be established to assess the best solution found by

the proposed algorithm. In our current model, we set the number of layers of

the frame bridge to one. However, multi-layer frame bridges can increase

productivity, which is one of the most attractive characteristics of an FB-ACT

system. The comparison of productivity between single- and multi-layer FB-

ACT systems is an interesting field for future research. Additionally, in our

study, only one GT serves a yard block. We can increase the number of GTs

that serve yard blocks. These GTs can be on the same rail or increase the layer

of yard rails.

73

CHAPTER 4 Vehicle Dispatching and Conflict-free Routing
Problems Under GRID-ACT

4.1 Problem Description

The GRID system consists of three components: transfer units (TUs),

overhead rails and transfer tables. The overhead rails cover the whole area of

the storage yard. Thus the container can be only stacked under the overhead

rails. The TUs move along the rails which are bi-directional. Each TU has two

pairs of wheels that are respectively responsible for two mutually

perpendicular directions. One pair of wheels is mounted on the rails to move

the TU along one direction while the other pair of wheels is not connected

with the rails. When changes to the perpendicular direction, the idle wheels

are mounted on the rails and the other wheels will leave the rails and become

idle. At this time, the TU completes the procedure of making a 90 degrees turn.

The TU can perform like a yard crane to lift up a container or release a

container. The activity flow of a discharging job can be shown as follows:

Figure 4.1 The activity flow of a discharging job under the GRID system

74

An empty TU arrives at the location)1,,(il and starts to pick up the container

),(i . After a period equaling to)1,,(ip , the TU starts to move to its

destination at location)2,,(il . The TU will choose a proper way or stop to wait

if needed to prevent vehicle collisions. When the TU arrives at location)2,,(il ,

it starts to put down the container to the transfer table. After a period equaling

to)2,,(ip , the TU is free and can start to move to its next job. The container

),(i will be picked up by the QC and placed on the vessel. The activity of a

loading job is similar in a reverse order.

In this study, we focus on the problem of vehicle dispatching and conflict-free

routing simultaneously. In order to solve the routing of TUs, we propose to

convert the physical layout of this system into a pure node layout and then into

a time space network. Because the term of node has been used in the tree

structure algorithm, another term called the cell will take the place of the node.

The purpose of this transformation is to measure the position of TUs at every

time, so that we can model them to capture the conflict-free routings. We will

implement the technique of set partitioning based model to model our problem.

Because of the intrinsic difficulty of the model, our problem will be

decomposed into two sub-problems: vehicle dispatching problem and conflict-

free-routing problem. A tree structure algorithm is used to solve the vehicle

dispatching problem, while a column generation algorithm based method will

be applied to solve the routing problem. In order to model our problem, we

will first discuss the way to construct the time-space network. The

methodology will be discussed after this.

75

4.1.1 Convert the physical layout into a pure cell layout

The shape of a TU is a little bit larger than a 40ft standard container. The

length of the TU is 13.2 meters and the width is 3.3 meters. The speed of the

TU is 2 meters per second. To model the routing of the TUs, we define the

time that one TU needs to traverse the distance equaling to the width of a TU

as a unit of time. The unit of time equals to 3.3/2=1.65 seconds. We use this

time unit to measure all the activities in this system. The activities are

including:

I. TUs move on the rails;

II. TUs stop to wait to prevent collisions;

III. TUs make a turn;

IV. TUs pick up containers from the stacking areas or buffers;

V. TUs put down containers to the stacking areas or buffers;

VI. QCs load and unload containers

We format the container stacking area as a gridding. We call the grid in the

gridding layout as a cell. The size of one cell in the gridding is of length 3.3

meters and width 3.3 meters. Thus, we can indicate the location of the

containers and TUs using the index of the cells. The gridding layout and the

index of the cells are shown in Figure 4.2. Each cell is assigned with a unique

number.

76

Figure 4.2 The gridding layout of GRID system

A 40ft standard container occupies four cells. As shown in Figure 4.2,

Container A occupies Cells 33, 34, 35 and 36. The distance of two tracks

belonging to a vertical rail (vertical to the berth) is the width of four cells and

the distance of two tracks belonging to a horizontal rail (parallel to the berth)

is the width of one cell. To indicate the location of the containers, we define

the index of the first cell (counted from left to right) occupied by the container

to be the index of the location of this container. For example, the location of

Container A is indicated by Cell 33. Similarly, a TU also occupies four cells at

a time, and the location of the TU can be indicated by the index of the first cell

(also counted from left to right) occupied by the TU. The location of TU1 in

Figure 4.2 is Cell 8.

To model our problem, we propose a definition of the adjacent set to describe

the adjacent relations among the cells, which is used to determine how TUs

move.

Adjacent set: Cell A is adjacent to Cell B if the TU can move from Cell A to

Cell B at next time unit, which means the TU stays at Cell A at time t and it

can stay at Cell B at time 1t . For simplicity, define a set denoted by)(iA as

77

the cells that are adjacent to Cell i . Because the TU can move bi-directionally,

thus if)(iHj ,)(jHi also holds. In addition, the TU can stay at its

current place, and thus)(iHi also holds.

For the cells in the row such that a horizontal rail is constructed above, their

neighboring cells in the horizontal direction are the adjacent cells of them. As

shown in Figure 4.2, a horizontal rail is constructed on the first row of the

cells. Cell 5 and Cell 7 belong to the adjacent set)6(A . Whether the

neighboring cells in the vertical direction belong to the adjacent set or not

would depend on whether the TU can move directly between them. From the

way we define the location of TUs, we can have, for example, Cell 21

belonging to)5(A , whereas Cell 22 is not an element of)6(A . The concept of

adjacent set will help us construct a time-space network.

4.1.2 Avoidance of vehicle collisions

As the TUs are running on the rails, they cannot cross over each other when

running on the same rail. There is one track shared by two contiguous vertical

rails, and so the TUs running on the contiguous vertical rails also cannot cross

over each other. As an illustration, in Figure 4.3, TU1 cannot move

downwards if TU2 is going to keep staying at the current location or to move

upwards. Different from vertical rails, each horizontal rail owns its exclusive

tracks in order to improve the productivity of the system. The TUs running on

two adjacent horizontal rails will not impact each other. For example, in

Figure 4.3, TU1 can move rightwards while TU2 stays at its current place or is

going to move leftwards. Therefore, we propose two terms to help prevent

78

vehicle collisions: one is safety zone and the other one is guide-path segment.

The details are discussed as follows.

Figure 4.3 An illustration of collisions between TUs

Safety zone

To ensure the safety of the system and prevent the collisions mentioned above,

we define the safety zone for each TU. The safety zone of one TU consists of

the cells that are neighboring to those cells occupied by this TU. The cells

occupied by this TU also belong to the safety zone. It should be highlighted

that in some cases, the neighboring cells do not belong to the safety zone.

These cases happen when the TUs are on horizontal rails. Because the

horizontal rails have their unique tracks, the safety zone of the TU on the

horizontal rail is different from the safety zone of the TU on the vertical rail.

Figure 4.4 summarizes the safety zone of the TU staying at different locations.

79

Figure 4.4 Safety zone of TU1 on different locations

There are three types of safety zone of one TU when it stays at different

locations. The first type is that all the cells neighboring to the TU are counted

in the safety zone. The second type is that only left and right cells neighboring

to the TU are counted in the safety zone while the cells that are on the up-side

or down-side of the TU are not counted. The third type is that the cells

neighboring to the TU but belonging to the row in which there is a horizontal

rail above it are not counted in the safety zone. Like the situation shown in the

third part of Figure 4.4, the cells indexed as i to 5i are not counted in the

safety zone of TU1. The reason why the safety zone does not include all the

neighboring cells is that we want to reduce the congestion on the horizontal

rails where there is heavy traffic.

In summary, we can use a set of constraints called safety zone constraints to

prevent vehicle collisions. Safety zone constraints are described as: at every

time, TUs cannot occupy any cells belonging to the safety zone of the other

80

TUs. However, the cross-over collisions cannot be captured by the safety zone

constraints. Thus, guide-path segment is proposed to prevent the collisions.

Guide-path segment

The TUs may still confront cross-over collisions. They cannot be prevented by

safety zone constraints, when they are moving vertically in the area where

there are horizontal rails. We assume the scenario shown in Figure 4.2 in

which TU1 is at Cell 5 at time t and TU2 is at Cell 25. TU1 is going to move

downwards while TU2 is going to move upwards. Thus, at time 1t , TU1 is

at Cell 21 and TU2 is at Cell 9. We can find that both at times t and 1t , the

safety zone constraints are not violated. However, this scenario must be

prevented because of the cross-over of the TUs on the contiguous rails.

Similarly, if two TUs are on the same rail, safety zone constraints also cannot

prevent this cross-over collision. Therefore, we propose a concept called

guide-path segment to help build constraints to prevent this kind of vehicle

collision.

If a path satisfies the following two conditions, it is a guide-path segment.

(1) At least one cell of the path is on the row where a horizontal rail is built;

(2) TUs can move vertically along it.

A set denoted as)(wF is proposed to help build the constraints of avoidance

of vehicle collisions.)(wF is the set of guide-path segments where TUs

cannot travel at the reverse direction when a TU travels on guide-path segment

w . Intuitively, we have)(wFw . We call the other guide-path segments in

set)(wF as adjacent to w . By the definition of guide-path segments, we can

81

propose a set of constraints to prevent vehicle collisions, that is if one TU

enters a guide-path segment denoted as w at time t and is going to move

downwards, then any other TUs cannot enter the guide-path segments which

are adjacent to w as well as w itself, at time t and move upwards. We can

find that the scenario mentioned at the beginning of this subsection can be

detected by this set of constraints.

4.1.3 Decoupling operations between QCs and TUs

In this system, a buffer is placed at the quayside. The containers can be

temporarily stored on the buffer. To simplify the operations involved in the

quayside, we assume that the capacity of the buffer is sufficient. Thus, we can

decouple the operations between QCs and TUs. TUs can directly put down the

containers on the buffer without waiting for the QCs. The QCs will pick up

and deliver the containers according to the pre-specified QC lists. However,

we should still need to prevent the buffer from becoming overcrowded. Hence,

the TUs should operate the container jobs with consideration of the QC lists,

which means it should avoid delivering containers whose precedent containers

are not completed. In other words, when we solve the assigning problem, the

container jobs with fewer predecessors should be assigned first.

4.1.4 Activities for discharging and loading jobs

The container jobs can be categorized into discharging jobs and loading jobs.

Similarly, each container job consists of two subtasks. A subtask is the activity

that the TU loads or unloads a container. For a loading job, the activities can

be described as follows. A TU picks up the container from the slot in the

storage yard. This is the start of the first subtask of the container job. Once the

container is fixed on the TU, this is the end of the first subtask. Then, the TU

82

moves along the path which is conflict-free with other TUs. When the TU

arrives at the transfer point in the quayside, the TU starts to unload the

container to the buffer. This is the start of the second subtask. The end of the

second subtask is the time that the container is released on the buffer. At this

time, the TU is free to move to its next container job. The container job is then

completed. For a discharging job, we assume that the corresponding container

is always ready on the buffer. When a TU arrives at the transfer point in the

quayside, the TU starts to pick up the container from the buffer. This is the

start of the first subtask. Once the container is fixed with the TU, the first

subtask ends. Then, the TU moves along a conflict-free path to the place

where the container will be stored in the yard. When the TU arrives at this

place, it starts to release the container onto the place. This is the start of the

second subtask. Once the container is released onto the place, the second

subtask ends and the container job is also completed at this time.

4.2 Mathematical Model

The input of our problem is the information about the location of the origin

and destination of a set of containers as well as the pre-specified QC lists. Our

objective is to minimize the total processing time of a given set of containers,

considering the vehicle collisions and capacity of QCs. We need to solve the

container assignment problem so as to know each container will be assigned to

which TU, and the routing problem to know how the TUs accomplish the

transportations without vehicle collisions.

To be able to track the position of a TU at any given time, a time dimension is

introduced to the pure cell layout and hence a time space network is created.

In a time space network, a cell is duplicated many times (up to the maximum

83

time unit) to represent the same cell at different times. The maximum time

unit can be the upper bound of the makespan of any feasible solution.

Based on this time space network, we can model the problem as a set

partitioning problem, where each decision variable represents a path of how

the TU transports the containers. The notations of the mathematical model are

given below:

Parameters:

K Set of all TUs

N Set of all cells

T Set of all times

J Set of all container jobs

W Set of all guide-path segments

)(nL Set of all feasible routes for TU n

)(n Set of all feasible routes generated in the route generating

problem for Vehicle n

)(iG Set of all cells in the physical layout that are within the safety

distance to Cell i but excluding Cell i

)(wF Set of guide-path segments that are adjacent to)(Www  and

including itself, that is)(wFw

)(iA Set of all cells in the physical layout that are adjacent to Cell i

84

p Processing time of subtask 

nlc ,
 The total penalty cost of route))((nLll  , where it equals to

the total time that the route accomplishes its related subtasks

nltiA ,),,(





otherwise ,0

 at time cellat is route following , TU if ,1 tiln

i

nlB ,




otherwise ,0

 job covers route following , TU if ,1 iln

t

nlw
f

.,








otherwise ,0

 at timedirection upwardsan

at segment enters route following , TU if ,1

t

wln

t

nlw
f

.,








otherwise ,0

 at timedirection downwards a

at segment enters route following , TU if ,1

t

wln

Decision Variables:

nlX ,





otherwise ,0

 route follows TU if ,1 ln

The assumptions of the problem are made:

(1) Yard slot of each job is known;

(2) The traveling speed of empty and loaded TUs is the same, and the related

acceleration and deceleration are not considered;

(3) The capacity of the buffer on quayside is set to be efficient;

(4) Number of container jobs, number of TUs and QCs are all known.

85

The problem is formulated as follows:

)(Problem 0P

Objective:

 
 Kn nLl

nlnl XcMinimize
)(

,, (4.1)

Constraints:

KnX
nLl

nl 


,1
)(

,
 (4.2)

JiXB
nLl Kn

nl

i

nl  
 

,1
)(

,, (4.3)

TtNiXAXA
iGj nLl Kn

nlnltj

nLl Kn

nlnlti     
   

,,15.0
)()(

,,),(

)(

,,),((4.4)

   
   

 

)()(

,,,
)(

,,,
,,15.0

wFw nLl Kn

nl

t

nlw
nLl Kn

nl

t

nlw
TtWwXfXf (4.5)

KnnLlX nl ),({0,1},,
 (4.6)

Objective function (4.1) minimizes the total time to accomplish all subtasks.

Constraint set (4.2) restricts a TU to select only one route from the set of the

possible routes. Constraint set (4.3) ensures that every job is visited only once.

Constraint set (4.4) ensures the safety distance is maintained between TUs in

order to prevent vehicle collisions. Constraint set (4.5) prevents the cross over

among TUs in the vertical direction. For example, one TU enters a segment

denoted as iw at time t in the “-” direction, that is 1,,,
 nl

t

nlw
Xf

i

. Then other

TUs cannot enter the segment jw and kw in the reverse direction, where jw

86

and kw)(iwF . However, if there is no TU entering the segment iw in the “-”

direction at time t , the situation is acceptable that one TU (jn) enters the

segment jw in the “+” direction at time t and another TU (kn) enters the

segment kw in the “+” direction at time t . Thus

1)(*5.0 ,,,,,,
 

kkkjj
nl

t

nlwnl

t

nlw
XfXf , which does not violate the constraint.

Finally, constraint set (4.6) specifies the variables to be binary.

Note that the second components of the left-side in Constraint sets (4.4) and

(4.5) have a coefficient equaling to 0.5. This is because when the first

component of the left-side equals to zero, the situation that the TUs move near

the location is allowed. Let us give an illustration on Constraint set (4.5). We

have)(ki wFw  ,)(kj wFw  . If no TU moves on 

kw at time t , we allow one

TU to move on 

iw and another one TU to move on


jw at time t . Thus the

second component equals to one where the constraint still holds. The

explanation is similar for Constraint set (4.4).

4.3 Heuristic Method

In this section, we discuss the solution approach to solve our problem. The

algorithm is developed based on the tree structure, and two methods are

embedded to help solve the conflict-free routing problems under the given

schedules of vehicle dispatching problems.

4.3.1 Decomposition

There are two aspects that determine the solvability of the mathematical model

proposed in Section 4.2. One is the number of jobs and the other one is the

complexity of routes including the number of TUs, the length of routes and the

87

potential collisions among TUs. Unfortunately, the proposed mathematical

model is intrinsically difficult to be solved under the environment of the GRID

system in container terminals. Firstly, the number of containers that need to be

transferred is quite large. Secondly, the layout of the container terminal is

large, resulting in a complex routing problem. Thirdly and the most significant

factor, the large amount of potential collisions would require an elaborate

route for each TU. Therefore, we will decompose our problem into two sub-

problems: assignment problem and routing problem. We will solve the

assignment problem first, and then solve the routing problem based on the

results from the assignment problem.

The assignment problem can be considered as a combinatorial problem. As the

solution space of the assignment problem is dramatically large, it is difficult to

find the optimal assignment even when ignoring the routing problem. One

promising way is to determine the scheduling only within a short-term look-

ahead planning horizon and then rolling the planning horizon step by step

while the scheduling made in the previous planning horizon is kept. The

complete scheduling can be obtained when all the jobs are involved. During

one short-term planning horizon, the assignment problem is solved first, then

the routing problem is solved under the solution of the assignment problem.

The tree structure algorithm can fit this mechanism, because the tree structure

algorithm expands the tree step by step and the nodes of next level in the tree

inherit the results of the upper level. The procedure of expanding the tree is

the counterpart of the rolling the planning horizon. The leaf nodes in the tree

are complete solutions while the nodes of other levels are partial solutions.

88

In conclusion, we will implement the tree structure algorithm to solve the

problem in this study. Different from the one in Chapter 3, another two

embedded methods are proposed. One is a heuristic sequential path generation

(HSPG), which is easily implemented to solve the routing problem, while the

other one is a column generation algorithm with further search procedure

which can solve the routing problem more accurately. This second method is

called CGA-FS in short. The first method HSPG is used in the screening

procedure, while the second method CGA-FS is used in the selection of new

beam nodes. The related contents of the algorithm will be discussed as follows.

4.3.2 Development of the tree structure algorithm

To illustrate our tree structure algorithm clearly, some related terms are

needed to be defined first.

Beam node: the nodes in the tree which will be further explored. It represents

the solution of involved subtasks showing how these subtasks are assigned to

vehicles and how to route the vehicles on the layout without collisions.

Partial solution: A beam node in the tree structure, except at the leaf level,

represents a partial solution when not all of the subtasks have been assigned.

Complete solution: A beam node at the leaf level in the tree structure

represents a complete solution that all subtasks are accomplished.

Assigned subtask: The subtask in the beam node is called an assigned subtask.

The involved decision variables are determined for these subtasks.

Unassigned subtask: A subtask that has not been assigned to the beam node

is called an unassigned subtask.

89

Assigned subtask with partial decisions: This is a subtask that is assigned to

a beam node during the procedure of expanding a beam node. Only the

decision about the vehicle assignment, as well as the sequence of this subtask

in the corresponding vehicle, is determined, while the involved decisions

about the routing are not determined.

Now, we can give the explicit procedure of how the tree structure algorithm

searches for a complete solution. At the root level of the tree, there is only one

beam node that is an empty set. A large number of intermediate nodes are

generated by selecting unassigned subtasks and assigning them to vehicles. In

order to avoid the situation that the buffer becomes over-crowded by storing

too many loading containers, or the situation that the TUs have to wait for the

discharging containers because those containers cannot be picked up by the

QCs until their predecessors have been picked up, we will select the

unassigned containers which are on the top of the QC lists. After assigning 

subtasks to each TU, an intermediate node is created.  is the look-ahead

number of subtasks of each TU during the next short-term planning horizon.

Then, the HSPG method will be used to assess the fitness of this intermediate

node. A related small number of intermediate nodes are retained after the

screening procedure based on the results from the HSPG method. The CGA-

FS method is developed to solve the routing problem of the retained

intermediate nodes again. The best m intermediate nodes according to the

results of the CGA-FS method are selected as new beam nodes at next level.

The subtasks in the beam nodes becomes assigned subtasks and are removed

from the set of unassigned subtasks. The tree is expanded in this way until the

90

leaf level is approached. The framework of the tree structure algorithm can be

described by Figure 4.5.

Figure 4.5 Framework of filtered beam search-based algorithm

The following parts will give the details of the HSPG method and CGA-FS

method. These two methods aim to find conflict-free routes for the TUs. In

order to solve the routing problem, the time-space network is built. The

mechanism of determining the cost of arcs in the time-space network is the

core of these two methods.

4.3.3 Time-space network

The network is a time-space acyclic network),(AVG  , where V and A

represent the set of vertices and the set of directed arcs, respectively (shown in

Figure 4.6).

91

Figure 4.6 Part of a mathematical network

There are two types of vertices:

 To each location SNn  , there corresponds 1T vertices Vvnl 

(one vertex for each time t).

 An origin vertex Vom  and a destination vertex Vdm  are associated

with each vehicle Km to represent the start and the end of its route

respectively. The set of origin and destination vertices is denoted as OD.

The arc set A includes five types of arcs which correspond to moves in space

and/or time:

 The start arcs link the origin vertex mo of each vehicle to the vertex

Vvnl  corresponding to its initial position.

92

 The end arcs link all vertices nTv (T is the last period of the horizon) to

each destination vertex Kmdm , .

 The waiting arcs are defined for all pairs of vertices

ODVODVvv tnnt \\),(1, 
. These arcs represent a vehicle waiting at a

given location for one period of time.

 The travel arcs represent the movements between two adjacent locations.

These arcs are represented as),(1, tjit vv where i and j are adjacent

locations.

 Let QL be a subtask to be operated at the quayside transfer point and

the slot in storage yard. A task arc ODVODVvv htnnt \\),(, 
 is

defined if this subtask can begin at time t .

The sets of start and task arcs are denoted by
SA and

TA , respectively, while

the set of travel arcs is denoted as HA . HA contains two subsets denoted as

WA and
GA . WA represents the travel arcs whose paths are guide-path

segments, while
GA represents the travel arcs whose paths are not guide-path

segments. WA is divided into subsets
WA and

WA according to the direction

(+ or -) used to travel along the corresponding guide-path segment. Similarly,

GA is divided into subsets
GA and

GA .

4.3.4 HSPG method

The HSPG method should be fast in computation. It generates the route of

each TU in a decentralized manner. The way of decentralization means that

we determine the routes of TUs sequentially. We fix the route of one TU, and

93

the following routes of the other TUs cannot violate the previous determined

routes. However, it is not a good way to determine the route of one TU from

its first job to its last job and then move to fix the route of another TU,

because the TUs at the back of the sequence will confront a high chance to

sustain a large delay time. Therefore, this sequence of TUs is changed after all

TUs accomplish one job. Some concepts are introduced below to help

illustrate the HSPG method.

TU sequence: We define a sequence called the TU sequence which

determines the order of TUs to solve their routing problem. The TU sequence

is indicated as Seq , where),..,,(mbaSeq and the element in the sequence is

the index of the TUs. The number of the elements in the sequence is the

number of TUs. The TU in the first place of the sequence will find its route

first. After the scheduling of the route for the first TU, the TU with the second

order in the sequence will start to find its route.

Short-term Planning horizon: The short-term planning horizon in our

method is not a time window with a fixed length. The end time of the horizon

is the time that all TUs complete their assigned jobs. The start time of the

horizon is the end time of last short-term planning horizon.

Unproductive time: Unproductive time of a TU includes the waiting time,

empty movement and the additional movement time. The time of waiting is

that the TU stays at the current place to prevent the collisions. When a TU

completes a job, it will start to move to the location of the next job. This

movement is called empty movement. Empty movement is inevitable. If the

collisions among the TUs are neglected, the shortest path of each TU is

94

intuitive. The time of the shortest path can be calculated. The difference of the

time of a feasible route and shortest path is defined as the additional

movement time.

Cost of arcs: In the HSPG method, the cost of the arcs in the time-space

network can only be one or infinite. If the arc is available for the TU, it is

valued with one, otherwise it becomes infinite. The arc is available which

means the TU can transfer from the head node to the tail node. There are two

situations that the cost of the arc is set to be infinite.

I. If the cell corresponding to the head node of the arc is occupied by

other TUs at the same time, the cost of the arc is set to be infinite.

II. If the TU needs to stay at the current cell for a certain time to

accomplish the process such as making a turn, the cost of the arc is

infinite when the cell of the tail node is not the current cell that the TU

is staying at.

The total unproductive time of the TUs should be minimized to improve the

efficiency of the system. To pursue this goal, the TU sequence is determined

by the unproductive time of the TUs. The TU with larger unproductive time

will be assigned with a smaller order in the TU sequence. The route of the TU

is obtained according to the cost of the arcs in the network. Once a route is

obtained, the cost of the arcs whose corresponding cells are involved in the

route will be infinite. Therefore, we can find that there are more arcs whose

cost is infinite if the order of the TU in the TU sequence is large.

Consequently, the unproductive time may increase.

95

We will discuss the way to determine the routes of the TUs as follows.

When the cost of the arcs in the network is determined, we will find the paths

with minimum cost in the time-space network as the routes of the TUs. A

recursive formula is adopted to find the path with minimum cost. The

recursive formula is presented as:

))1,((min),(),)(1,(titj
Ij

Rtjftif 


 ,

where),(tif is the cost of the path that arrives at node),(ti , and
),)(1,(titjR 
 is

the cost of the arc that connecting the nodes)1,(tj and),(ti . The value of

),)(1,(titjR 
 is either one or infinite according to the criteria mentioned before.

Given the pair of origin and destination, the route with minimum cost is also

the feasible route with minimum time. Because we set the cost of infeasible

arcs to infinite, the route obtained by the recursive formula will only contain

the arcs with cost equaling to one. Therefore, the route is a feasible route. In

addition, the cost of available arcs equals to one. Hence, the cost of the route

is also the time the route consumes from the origination to the destination.

Consequently, the route from the origination to the destination with a

minimum cost is the shortest route.

The HSPG method can be summarized by the following pseudo-code:

For i =1 to  , do

(i) Generate TU sequence Seq based on the unproductive time of

the TUs;

96

For i =1 to m , do

(a) Determine the route of the ith TU in the Seq by the

method of recursive formula;

(b) Update the cost of the arcs in the network;

End for

(ii) Update the unproductive time of each TU;

End for

 is the number of look-ahead jobs of each TU. The look-ahead jobs are the

jobs that will be scheduled during the short-term planning horizon. m is the

number of TUs.

4.3.5 CGA-FS method

The CGA-FS method solves the routing problem more accurately than the

HSPG method. Different from the HSPG method, column generation

algorithm is implemented to determine the cost of the arcs in the network.

However, because of the high potential of vehicle collisions as well as the

congestions in transfer area, it is hard to get an improved feasible solution

from column generation algorithm. Therefore, we will continue to find new

columns by adding new constraints after the typical column generation

algorithm meets the stopping criteria. The further search will be terminated

when we obtain an integer solution. The following contents include the

implementation of column generation algorithm in the problem, and the way

97

we use the information from the results of column generation algorithm to

obtain an improved feasible solution.

Master model

The mathematical model is built in the section of problem definition. Because

we decompose the problem into two sub-problems, the mathematical model in

this section will not consider the assignment problem anymore. The model is

reduced to concentrate on the routing problem, which is shown in a model

denoted as
0RP . The model

0RP is the same as
0P but without the set of

constraints (4.3). Thus, we will not show
0RP here.

We will implement column generation algorithm to help solve
0RP .

0RP is

divided into two interrelated problems; the master problem)(MP and route

generating problem)(RGP . The MP is a relaxed, as non-integer values are

allowed, and restricted problem of
0RP because only a subset of the decision

variables (or columns),
nlX ,
 are generated by RGP . In each iteration of the

column generation procedure, the MP is solved to optimality. According to

the dual values of the constraints, RGP generates columns (routes) for TUs

that have the potential to improve the objective function of MP . This iterative

process stops when no more improving columns are generated.

The master problem is presented as:

)(ProblemMP

Objective:

98

 
 Kn nl

nlnl XcMinimize
)(

,,


 (4.8)

Constraints:

KnX
nl

nl 


,1
)(

,



 (4.9)

TtNiXAXA
iGj nl Kn

nlnltj

nl Kn

nlnlti     
   

,,1*5.0
)()(

,,),(

)(

,,),(



 (4.10)

   
   

 

)()(

,,,
)(

,,,
,,15.0

wFv nl Kn

nl

t

nlv
nl Kn

nl

t

nlw
TtWwXfXf



 (4.11)

KnnlX nl ),(0,,  (4.12)

Route Generating Problem

In this part, we will discuss how to generate new routes which will be added to

the master model. The route generating problem consists of finding the

shortest path (that is, the route with the least reduced cost) in network G . To

compute the reduced cost of a path, the arc costs ac are replaced by arc

reduced cost ac derived from the dual solution of the current restricted master

model. Such a reduced cost is given by)(acc aa  , where)(a is the sum

of all the dual contributions for this arc a . These contributions are calculated

according to which type the arc belongs to. The contributions are shown in

Table 4.1, where)()1(Kkk  ,),()2(

, TtSNntn  ,),()3(

, TtWwtw  ,

denote the dual variables associated with constraints (4.9)-(4.11), respectively.

Furthermore, a represents the subtask associated with arc TAa , s

at and e

at

99

are the start and end times associated with arc Aa ,
ai is the tail vertex of

arc Aa , and aw is the guide-path segment associated with arc
WAa .

Table 4.1 Dual contributions to arc reduced costs

If arc Aa satisfies Add this contribution to its reduced

cost

ma

S oiAa  ,
)1(

m

TAa 



)(

)2(

,

)2(

,
*5.0

a

i
a

i
aa

iGj
tjtj



TAa
)*5.0(

)(

)2(

,

)2(

,

1









a

a

e
a

s
a

iGj

tjtj

t

tt



WAa)3(

, i
aa tw

 + 



)(

)2(

,

)2(

,
*5.0

a

i
a

i
aa

iGj
tjtj



GAa 



)(

)2(

,

)2(

,
*5.0

a

i
a

i
aa

iGj
tjtj



A dynamic programming algorithm is used to solve the shortest path problem.

This dynamic programming algorithm is a simple pushing algorithm that is

performed after ordering the vertex of G in topological order.

Procedure of further search

In this section, we will first discuss the reason why column generation

algorithm cannot solve the routing problem well in the GRID system. After

that, we will present the procedure of further search to obtain a promising and

feasible solution.

100

There are two reasons why column generation algorithm cannot guarantee an

optimal solution for a problem modelled as a set partitioning model. Firstly,

when the algorithm stops, the optimal solution is found for the relaxation of

the model, not the model itself. Secondly, we concentrate on searching the

columns with negative reduced costs. But it is possible that a column of the

optimal solution to the routing model
0RP has a positive reduced cost.

However, this column will not be generated during the iterations. The optimal

solution to the master model actually is a lower bound to the routing model

0RP . The optimal solution of the master model is likely to be fractional,

because vehicles have high collision potential under the GRID-ACT system..

The solution of the routing model
0RP when the procedure of column

generation algorithm is stopped, may not improve a lot compared to the initial

solutions generated by the sequential paths generation algorithm, or may even

be the same as the initial solutions. Thus, a procedure of further search is

proposed to improve the solution. The motivation of the further search is to

add new constraints to the master model)(MP so that we can get new dual

values to continue the column generation iterations. The new constraints aim

to reserve the node or guide-path segment to one TU and prevent other TUs

from using it, which helps to approach feasibility. We will stop the procedure

until the solution of the master model is integer.

We define a set to record the information of new constraints which is denoted

as A , where the elements in set A is),,(kt .),(t represents the constraint

whose corresponding dual values are most negative in the current model MP .

If the constraint belongs to the set of constraints (4.10), we have N , while

101

if it belongs to the set of constraints (4.11), we have W . The indicator k

represents the TU whose routes contribute to the constraint most, that is the

value denoted as)(m is largest, where)(m equals to

 
 


)()(

,),(,

)(

,),(, 5.0
ml Gj

mltjml

ml

mltml AXAX
 

 if N or

 
 

 
)()(

,,,

)(
,,, 5.0

ml wFv

t

mlvml

ml

t

mlwml fXfX


 if W . Thus, a new constraint is

created and added to the model MP , where the constraint is represented as:

,,),,(,0
,)()(

,),(,

,)(

,),(, NAktAXAX
kmKm ml Gj

mltjml

kmKm ml

mltml     
   


 



or

.,),,(,0
,)()(

,,,

,)(
,,, WAktfXfX

kmKm ml Fv

t

mlvml

kmKm ml

t

mlwml     
   

 
 

We define these new constraints as (4.8a). These new constraints aim to

ensure certain TUs will not use the nodes or guide-path segments so as to

prevent vehicle collisions. After the new constraint is added to model MP , we

solve the model again. We will update the cost of the arcs according to the

dual values. When Akt ),,( , we want to prevent the TUs which are not the

TU k from occupying the node),(t where)( G and N , or using

the segment),(t where)( F and W . Thus, we set the cost of the

arcs involved with),(t to be infinitely large. Consequently, the new

generated routes will not violate the constraints (4.8a).

However, if there are more than one TUs whose value of)(m is close to the

maximum value, we will create branches. For example, assume)(im is the

largest among)(m , where Km . For any TU n such that  )()(nmi ,

102

where  is a threshold value that should be set to a small value, we will create

the branches where the new constraint is created under a different TU. The

further search will stop if the solution of the model MP in any branch is

integer. The TU will select the route such that the corresponding variable

value equals to one.

We generate 20 instances to see how much improvement the further search

can obtain. Each instance contains the information including the number of

TUs, the starting point of each TU, the container jobs of each TU, the

origination and destination of each container job. Table 4.2 presents the results

of CGA without further search and CGA with further search. The result is the

total time to accomplish the container jobs. The lower bound is the optimal

solution of the master problem of the instance. Gap1 in the fifth column is the

difference of the results between CGA and CGA-FS. Gap2 in the seventh

column is the difference of the results between CGA-FS and lower bound. The

fourth column in Table 4.2 is the number of new constraints that added to the

master problem during the further search.

In cases P1-P10, each TU is assigned with two container jobs, while each TU

is assigned with three container jobs in the cases P11-P20. In cases P1, P2,

P11 and P12, there are 3 TUs and 2 QCs. In the cases P3, P4, P13 and P14,

there are 4 TUs and 2 QCs. In cases P5, P6, P15 and P16, there are 6 TUs and

3 QCs. In cases P7, P8, P17 and P18, there are 8 TUs and 4 QCs. In cases P9,

P10, P19 and P20, there are 10 TUs and 4 QCs.

103

Table 4.2 Comparison of CGA-FS, CGA and LB

Case CGA CGA-FS # of new

constraints

Gap1

(%)

Lower

bound

Gap2

(%)

P1 13.31 12.62 5 5.18 12.34 2.27

P2 13.70 13.20 7 3.65 12.88 2.48

P3 17.82 16.76 9 5.95 16.35 2.51

P4 19.02 17.55 12 7.73 16.92 3.72

P5 28.32 25.86 15 8.69 25.11 2.99

P6 30.11 27.22 18 9.60 25.87 5.22

P7 45.23 39.35 22 13.00 37.32 5.44

P8 44.00 38.12 24 13.36 36.70 3.87

P9 67.32 58.31 34 13.38 55.22 5.60

P10 66.05 56.20 32 14.91 54.00 4.07

P11 19.66 18.91 8 3.81 18.42 2.66

P12 19.65 18.20 8 7.38 17.88 1.79

P13 27.80 26.32 9 5.32 25.54 3.05

P14 29.00 27.12 9 6.48 26.23 3.39

P15 45.35 40.35 13 11.03 38.72 4.21

P16 44.11 38.76 17 12.13 37.50 3.36

P17 66.22 56.30 24 14.98 53.88 4.49

P18 69.05 54.62 20 20.90 51.88 5.28

P19 106.25 89.92 28 15.37 85.22 5.52

P20 110.11 93.68 26 14.92 89.01 5.25

The results show that the CGA-FS can improve the solution obtained from the

CGA. The number of additional new constraints is increased when the number

of TUs gets larger, because we need more efforts to handle the vehicle

collisions when the more TUs run on the system.

A summary of the CGA-FS algorithm is shown next:

1.Initialize a certain number of routes for each TU

104

2. while axmnummpInummpI ___  or axmnumItenumIte ___  , do

 (1) solve the restricted master problem with relaxation of the integer

variables;

 (2) calculate the reduced costs of arcs in the network according to the

dual values;

 (3) find new column for each TU by the shortest path dynamic

programming algorithm under the network;

 (4) add the new generated routes to the master model;

 (5) numItenumIte __  ;

(6) if the optimal value of the relaxation of the restricted master model is

same as previous iteration, do

nummpInummpI __  ;

 end if.

end while

3. Solve the master model without relaxation of the integer variables; If the

objective value is the same as the optimal value of the relaxation of the

restricted master model, Stop; Otherwise go to Step 4;

4. Start the further search procedure;

4.1 find the constraint whose dual value is most negative;

105

4.2 find the TU which contributes to this constraint most;

4.3 create branches, and add a new constraint to MP of each branch;

4.4 solve the MP , and update the cost of the arcs;

4.5 generate a new route for each TU and add these new columns to MP ;

4.6 solve the MP ; if the solution of any branch is integer, Stop; otherwise,

go back to Step 4.1.

Here, axmnummpI __ is the maximum number that we allow for the

successive iterations to be without improvement, and axmnumteI __ is the

maximum number of iterations for generating new routes.

4.4 Heuristic rules algorithm

We propose an algorithm which implements several heuristic rules. The

results of the heuristic algorithm are used to compare with that of our

algorithm. In this heuristic algorithm, we will also use the HSPG method

introduced in Section 4.3.4 to solve the routing problem. However, the TU

sequence is randomly generated instead of basing on the unproductive time of

TUs. The way of job dispatching is based on two vehicle-initiated rules: FCFS

(first come first serve) rule and STT (shortest travel time) rule. The STT rule

tries to reduce the unproductive move of TUs because they will be assigned

with the jobs which are most near them. The FCFS rule is applied to prioritize

the waiting transportation orders.

The framework of the heuristic algorithm can be presented by Figure 4.7. The

algorithm runs repeatedly until the stopping criteria is met. The stopping

106

criteria can be set as the computation time or the number of solutions we

obtain. Finally, we select the best solution obtained by the algorithm.

Figure 4.7 The framework of the heuristic rules algorithm

4.5 Numerical experiments

The numerical experiments consists of two major parts. The first part aims at

accessing the effectiveness of our algorithm. The second part is the study on

the GRID-ACT system.

107

4.5.1 Effect of the filter-width on the performance of the algorithm

The filter-width is critical parameters that affect the performance of the

algorithm. It is intuitive that increasing filter-width can help to obtain a more

promising solution. However, the computation time will be increased. Thus,

we need to handle the trade-off between the accuracy and computing time. In

our algorithm, we use the HSPG method to screen the intermediate nodes, and

then the fitness of the retained nodes is calculated by the CGA-FS method. If

the correlation coefficient of the fitness calculated by HSPG and CGA-FS is

small, the filter-width must be set to a large number in order to prevent

screening out the good intermediate nodes. On the contrary, the filter-width

can be set to a relatively small number if the correlation coefficient is large.

Table 4.3 shows the correlation coefficient of the results calculated by the

HSPG method and CGA-FS method.

Table 4.3 Correlation coefficient between HSPG method and CGA-FS method

 4 TU 6 TU 8 TU 10 TU 12 TU

Correlation

coefficient

0.9517 0.9423 0.9011 0.8923 0.8733

The term “4 TU” in Table 4.3 means the intermediate nodes are for the case

that there are four TUs in the system. In each case, there are 100 intermediate

nodes that are randomly generated. The correlation coefficient is calculated by

the results of these 100 intermediate nodes.

108

From the results, we can find that the correlation coefficient is large which

means we can set a relatively small number for the filter-width to reduce the

computing time while the good solutions may not be discarded. Figure 4.8

shows the results with different filter-width.

Figure 4.8 Objective vs filter-width

From Figure 4.8, we can find that when the filter-width is large enough, the

improvement of the objective is minor. However, the raise of filter-width will

increases the computing time. Figure 4.9 shows the relationship between

filter-width and computing time.

109

Figure 4.9 Computing time vs filter-width

From the results shown in Figure 4.8 and Figure 4.9, we can determine the

filter-width with consideration of computing time. Therefore, the experiments

in this study will select the number around 14 as the filter-width.

4.5.2 Comparison study of the performance of the proposed method

The algorithm with heuristic rules is widely used in a variety of industrial

applications. We will conduct a comparison study between the algorithm

described in Section 4.4 and our proposed method. The results are shown in

Table 4.4. All the cases involve 100 container jobs. The run time of the

heuristic algorithm is set to be equal to the time that our algorithm takes.

110

Table 4.4 Comparison of CGA-FS and heuristic rules algorithm

Case CGA-FS

Makespan (min)

Heuristic algorithm

Makespan (min)

Gap

(%)

P1, 2 QC 3 TU 130.16 146.12 10.92

P2, 2 QC 3 TU 124.02 138.08 10.18

P3, 2 QC 4 TU 96.00 110.22 12.90

P4, 2 QC 4 TU 98.44 110.57 12.13

P5, 3 QC 3 TU 124.09 134.23 8.17

P6, 3 QC 3 TU 116.78 125.55 6.99

P7, 3 QC 4 TU 92.21 104.05 11.38

P8, 3 QC 4 TU 91.99 102.63 10.37

P9, 3 QC 5 TU 78.24 88.43 11.52

P10, 3 QC 5 TU 77.67 89.87 13.58

P11, 4 QC 5 TU 64.40 72.13 10.72

P12, 4 QC 5 TU 66.22 75.26 12.01

P13, 4 QC 7 TU 42.50 52.12 18.46

P14, 4 QC 7 TU 41.12 50.26 18.19

P13, 4 QC 10 TU 31.48 38.22 17.63

P14, 4 QC 10 TU 32.01 38.20 16.05

From the results, we can find that our method outperforms the heuristic

algorithm, especially in the cases that the TU number is large. From the results,

we can also find that the number of TUs and QCs affects the performance of

the system. Thus, in the second part, we will study the effects of the

parameters on the efficiency of the system.

4.5.3 Effects of the parameters on the efficiency of GRID-ACT

In this section, we will discuss the effects of the parameters like the number of

TUs, QCs and horizontal rails.

111

Figure 4.10 Effects of number of TUs on makespan

Figure 4.11 Effects of number of TUs on total processing time

Figures 4.10 and 4.11 are the results of different number of TUs. It is intuitive

that the makespan is decreased when increasing the number of TUs. However,

the total processing time gets larger. This is because the system becomes

congested, resulting in more delay when TUs are transporting the containers.

In addition, TUs have to travel a longer distance in order to prevent vehicle

collisions, which also increases the total processing time.

112

The number of horizontal rails also affects the performance of the system.

Figure 4.12 shows the results of makespan under different number of

horizontal rails.

Figure 4.12 Effects of number of horizontal rails on makespan

We can find that when the number of horizontal rails is small, increasing this

resource can significantly reduce the makespan. This is because it can make

the routes more flexible so that TUs can make a change on the paths to prevent

vehicle collisions other than staying to wait until they can move through the

congested area. However, this benefit cannot be obtained when the number of

horizontal rails is large. The increment of horizontal rails does not reduce the

makespan. This is because it cannot reduce the delay that happens in the

transfer area. Every TU will approach the transfer points in the quayside to

pick up or deliver the containers. Thus, the transfer area will be congested

especially at the transfer points. Therefore, increasing the number of QCs can

significantly reduce the makespan, because the traffic of each transfer point is

reduced when increasing the number of transfer points. Table 4.5 shows the

results of makepan under different number of QCs.

When the number of TUs is small, the reduction of makespan by increment of

one QC is not large. When the number of TUs is large, the reduction of

113

makespan by increasing of one QC is significant. Because when number of

TU is large, increase the number of QC can spread out TUs in the transfer area,

and the delay because of the busy of transfer points is also reduced.

Table 4.5 Effects of number of QCs on makespan

 QC2 VS QC3 QC3 VS QC4

TU 4 5.46% 2.69%

TU 5 5.61% 5.39%

TU 6 8.60% 12.4%

TU 7 11.93% 14.52%

TU 8 12.80% 16.21%

4.6 Conclusion

In this study, we describe the operations of the GRID-ACT and propose an

algorithm to solve the problem consisting of vehicle dispatching and conflict-

free routing. To access our algorithm, we conduct a comparison study with the

heuristic algorithm. From the results, our algorithm can solve problems

efficiently. In order to maintain a high productivity of the system, we should

invest enough TUs and horizontal rails. Because the speed of the TU is slow,

the system is low productivity when the number of TU is small. However,

when the number of TU is large, the marginal benefit is small by additional

one TU. It is because the system becomes more congested which resulting in

more delay.

114

CHAPTER 5 A Study On A New Design ACT

From the studies on FB-ACT and GRID-ACT, we can observe the main

drawbacks of these two kinds of ACTs. In the FB-ACT system, the vehicles

mounted on the same rail can only wait or give way to prevent collisions,

which results in a large waiting time of the vehicles. Moreover, the

handshakes among the equipment also bring waiting time to the system. In the

GRID-ACT, the vehicles can flexibly select the paths to prevent collisions

rather than keep waiting at a place. But the speed of the vehicles is relatively

slow. Thus, a lot of time would be spent on traveling on the paths to

accomplish the transportation demands. On the other hand, the advantages of

these two ACTs attract lots of attention. In FB-ACT, the yard crane

productivity is high because the ground trolleys can move to the designate slot.

This leads to the reduction of the movement of YCs whose speed is much

slower than ground trolleys. In GRID-ACT, the handshakes are greatly

reduced, because the vehicles can lift and release the containers by themselves.

A hybrid design of ACT is proposed which combines the advantages of these

two ACT systems while weeds out the drawbacks. The idea of the design is to

implement GRID system to take place of transportation activities at the

quayside, while the transportation activities within the storage yard are

performed by the same way in FB-ACT system.

5.1 Introduction of the new design ACT

The layout of the new design ACT is shown in Figure. 5.1. We call this design

HFG-ACT (an abbreviation of Hybrid of Frame Bridge and GRID systems

based ACT).

115

Figure 5.1 Layout of HFG-ACT

Compared to the layout of FB-ACT, we can observe that we implement the

GRID system to accomplish the transportation of containers at the quayside.

Because the positions of containers in GRID system and on GTs are mutually

perpendicular, we need to turn the container to 90 degrees when transfer it

between a TU and a GT. Therefore, the TUs in HFG-ACT are different from

those in GRID-ACT. These TUs are designed to be capable to rotate the

container by 90 degrees.

The GRID system plays a role on transferring the containers between quayside

and storage yard. We define two kinds of transfer points: quayside transfer

point and yard-side transfer point, where TUs can unload or load containers.

The quayside transfer points are set on the first lane of the horizontal lanes

which is the nearest to the vessels. The explicit location of the points are

determined by the location of the QCs, whereas the transfer points at yard-side

are explicitly appointed. They are allocated on the last lane of the horizontal

lanes which is nearest to storage yard. Specifically, they are the places above

116

the ground rails. Each transfer point at yard-side serves the corresponding yard

block.

In order to improve the efficiency of TUs in GRID system, neither the

horizontal nor the vertical contiguous lanes will share one track, which means

TUs on the contiguous lanes can move in diverse directions. The illustration is

shown in Figure 5.2. Both situations shown in Figure 5.2 are permitted.

Figure 5.2 Movement in reverse directions

In order to prevent the head-on or rear-end collisions, a safety distance

between the TUs on the same horizontal lanes is defined. Because the speed of

the vehicle is relatively slow, the safety distance can be set short so that

vehicles can move more flexibly.

In summary, the operation of a loading container can be described as

following. One YC picks up the container from the slot in the storage yard and

puts it on a GT. Then the GT carrying the container will move to the transfer

point. Once a TU arrives at the transfer point, it will pick up the container

from the GT and then rotate the container to 90 degrees before lifting the

container. The TU carrying the container moves along the lanes to approach

the transfer point at quayside. The TU will put down the container onto the

transfer buffer. At this time, the TU is free to handle its next job and a

specified QC will load the container on the transfer buffer to the vessel. The

117

operation of an unloading container is performed similarly but in a reverse

order.

In order to model the conflict-free routing problem, the definition of cell is

proposed meshing with the structure of GRID system, which is the same as

that shown in Chapter 4. The shape of a TU is slightly larger than a 40ft

standard container. We set the length of the TU to 13.2 meters and the width

to 3.3 meters. The GRID system is constructed by horizontal tracks and

vertical tracks, which form homogeneous lattice. Thus the length of a lattice is

four times to the width of it. Therefore, we define the time that the TU spends

on the movement with a distance of 3.3 meters as a unit time. The speed of the

TU is set to be 2 m/s. Thus, a unit time is equivalent to 1.65 seconds. We

create the dummy cells meshing on the GRID system. One cell is a square area.

The position of the TUs can be represented by the cells. Distinctively, one TU

occupies four cells at a time. We choose the first cell counted from left to right

as the position of the TU. Based on the definition of cells, we can quantify the

safety zone of the TUs at any time. If we set the safety distance to one unit

time distance, the safety zone can be presented as the set:

))}(,4min())(,4max(|{)(iRijiLijiG  ,

where i is the position of the TU,)(iR is the right-most cell of the row that

Cell i belongs to and similarly)(iL is the left-most cell. Once a TU stays at

Cell i , the cells in set)(iG are reserved so other TUs cannot occupy.

Moreover, the position of the transfer points mentioned previously can also be

presented by the cells.

118

Another useful term guide-path segment introduced in Chapter 4, is also used

to help model our problem. A guide-path segment is the smallest unit that the

TU travel through. It is bi-directional. Moreover, the guide-path segments can

be categorized into two types: vertical guide-path segments and horizontal

guide-path segments. Intuitively, vertical guide-path segments are those TUs

move in vertical direction while horizontal guide-path segments are those TUs

move horizontally. The guide-path segment can be represented by the cells at

its two sides. The set of horizontal guide-path segments is denoted as
HW ,

where },4)()(|)1,{(NiiRiiLiiW H  . The set of vertical guide-

path segments is denoted as
VW . Unlike the horizontal movement, the vertical

movement can only occurs at certain cells where vertical tracks exist for TUs

to travel along. Thus, we have:

},,\

,3)()(,14*)1(*)1(|),{(

IntegerjNRowk

iRiiLjRkiRiiW

R

V





where R is the number of cells on one lane, Row is the set of lanes, and RN

is the index of last lane. The last lane is the rail nearest to the storage yard

while the first lane is the rail nearest to the quayside.

The definition of guide-path segments is used to help build constraints to

prevent vehicle collisions in the mathematical model, and construct the

mathematical network for searching solutions. They will be discussed later.

5.2 Model development

Similar to the previous studies, we will address the vehicle dispatching and

conflict-free routing problems in HFG-ACT, while the quay crane and yard

119

crane capacities are considered. The modeling technique is similar to that in

study on the GRID-ACT.

Modeling assumptions

The following assumptions are made:

 Job sequence and job types for each QC are given; Subtasks handled by

QCs must be carried out in the exact order in the QC list;

 Yard block of each job is known;

 The traveling speeds of empty and loaded TUs are the same;

 Only one GT is running on each yard rail, i.e., there is no conflict among

GTs;

 Number of container jobs, number of TUs, GTs, QCs and YCs are all

known;

Because there is only one GT on the ground rail, we can simplify the

operations in storage yard as a constant time. This constant time consists of

GT traveling time and YC handling time. To make it simple, we assume that

the travel distance of GTs is set between the transfer point and the middle of

the yard block.

Notations

The model parameters are as follows:

Q the set of QCs;

K the set of TUs;

120

Y the set of yard blocks;

kN the number of jobs in the QC list of QC k;

L the set of loading jobs;

D the set of discharging jobs;

H the set of all the jobs, DLH  ;

QL the set of subtasks that handled at quayside transfer points;

qQL the subtasks whose corresponding container belongs to the sequence

list of QC q , Qq ;

YL the set of subtasks that handled at yard-side transfer points;

yYL the subtasks whose corresponding container belongs to the yard block

with index of y , Yy ;

VW the set of vertical path segments (
w and

w , indicate the two

directions along the segment
VWw).

),(i container job index. The job),(i refers to the i th job in the

sequence list of QC  .

)(nL Set of all feasible routes for TU n

)(n Set of all feasible routes generated in the pricing problem for the

vehicle n

Binary parameters:

121

lmtiA),(




otherwise ,0

 at time location at is route following , TU if ,1 tilm

i

mlB ,




otherwise ,0

 job covers route following , TU if ,1 ilm

t

lmw
f

,







 

otherwise ,0

 at time

 direction ain segment enters route following , TU if ,1

t

wwlm

t

lmw
f

,







 

otherwise ,0

 at time

 direction ain segment enters route following , TU if ,1

t

wwlm

t

lmg ,




otherwise ,0

 at time subtask starts route following , TU if ,1 tlm 

The decision variables are as follows:

lmX =1: TU m select the route l ; otherwise 0.

To solve the problem, three decisions need to be determined, as shown below:

(1) The assignment of container jobs to TUs, i.e. each container job is

assigned to which TU.

(2) The location of the TUs at every time unit to ensure that there are no

vehicle collisions;

(3) The starting time of the subtasks because of the constraints of QC and YC

capacities.

122

We model the problem as a set partitioning problem. A route is defined as a

set of the decisions mentioned above for a TU. It should be highlighted that

the decisions of a container job must be complete if a route contains this job.

For example, if route l contains the assignment decision that a container job

),(i is assigned to TU m , the decisions including how the TU travels along

the lanes and when the subtasks)1,,(i and)2,,(i start, must also be

contained in route l .

Model Formulation

Mathematical model 0P

Objectives:

 
 Km mLl

lmlm XcMinimize
)(

: (5.1)

Constraint

KmX
mLl

lm 


,1
)(

 (5.2)

HXB
mLl Km

lmlm  
 

 ,1
)(

 (5.3)

TtNiXAXA
mLl Km iGj mLl Km

lmlmtilmlmti     
    )()()(

),(),(,,1*5.0 (5.4)

TtWwXfXf V

mLl Km

lm

t

lmw
mLl Km

lm

t

lmw
   

  

 ,,1
)(

,
)(

,
 (5.5)

q

mLl Km

lmlm

mLl

qc

Km

lmlm QLQqXttXt    
  

),(,, '

)(

'

)(

)',(


 (5.6)

123

y

mLl mLl Km

tt

ttu

lm

u

lm

Km

lm

t

lm YLYyXgXg

yc

yc

   
  





)',(,,1
)()(

'

)',(

),'(






 (5.7)

KmmLlX lm ),(},1,0{ (5.8)

Formulation (5.1)-(5.8) is explained as follows. As lmc represents the penalty

generated by route l , the objective function (5.1) minimizes the sum of

penalties for the full horizon. The constraints (5.2) enforce the selection of

exactly one route for each vehicle. Constraints (5.3) ensure that each container

job is assigned to exactly one vehicle route.

The conflict-free routing constraints are modeled with (5.4)-(5.5). Constraints

(5.4) ensure that there is at most one vehicle visiting a cell in N at time Tt .

Constraints (5.5) are used to prevent the cross-over among the vehicles in the

same lane. The details are illustrated below.

Figure 5.3 Cross-over collision

Considering the scenario shown in Figure. 5.3, TU  and TU  currently at

time t stay on cells i and j , respectively. They are going to move in the

reverse direction. Thus, at time 1t , TU  will stay at cell j while TU 

will stay at cell i . This kind of scenario cannot be detected by constraints (5.4).

124

However, it is infeasible because the TUs on the same lane cannot cross-over

each other. Therefore, constraints (5.5) are proposed to prevent this kind of

vehicle collision. In addition, this scenario will not happen if these two TUs

are on a horizontal lane. This is because of the restriction of safety zone,

constraints (5.4) can prevent two TUs from staying contiguously. In

conclusion, only the vertical guide-path segments have possibilities of head-on

collisions, which cannot be prevented by constraints (5.4).

Constraints (5.6)-(5.7) are proposed considering the capacities of QCs and

YCs. Constraints (5.6) impose a time interval between two consecutive

subtasks using the same QC. The values of the time intervals depend on the

type of subtasks. They are the same as those defined in the study on FB-ACT.

Similarly, constraints (5.7) impose a time interval between the pair of

consecutive subtasks using the same yard block. We assume that there is no

pre-defined sequence for YCs. This means that we only need to ensure that the

YC serves one subtask at a time, but the sequence of subtasks being carried

out is unknown. Similarly, the values of the time intervals are the same as

those defined in the study on FB-ACT. Finally, constraints (5.8) specify the

binary character of the variables.

In practice, the number of feasible routes is substantially large and the model

(5.1)-(5.8) cannot be solved directly. In order to solve the problem efficiently,

we will apply the tree structure algorithm where two efficient approaches are

embedded. Before discussing the algorithm in detail, the mathematical

network will be presented first. It is implemented to solve the routing problem

when we decompose our original problem into vehicle dispatching problem

and vehicle conflict-free routing problem.

125

5.3 Mathematical network

The conflict-free routes will be generated based on a time-space network. We

will introduce this network first before we present our algorithms. The

mathematical network is a time-space acyclic network),(AVG  , where V

and A represent the set of vertices and the set of directed arcs, respectively

(shown in Figure 5.4).

Figure 5.4 Part of a mathematical network

There are two types of vertices:

 To each location SNn  corresponds 1T vertices Vvnl  (one

vertex for each time t).

126

 An origin vertex Vom  and a destination vertex Vdm  are associated

with each vehicle Km to represent the start and the end of its route,

respectively. The set of origin and destination vertices is denoted as OD.

The arc set A includes five types of arcs, corresponding to moves in space

and/or time:

 The start arcs link the origin vertex mo of each vehicle to the vertex

Vvnl  corresponding to its initial position, i.e. a location or a transfer

point on the guide-path.

 The end arcs link all vertices nTv (T is the last period of the horizon) to

each destination vertex Kmdm , .

 The wait arcs are defined for all pairs of vertices

ODVODVvv tnnt \\),(1, 
. These arcs represent a vehicle waiting at a

given location for one period of time.

 The travel arcs represent the movements along the guide-path. These arcs

are represented as),(1, tjit vv where i and j are adjacent locations.

 Let YLQL be a subtask to be operated at the quayside transfer point

or yard side transfer point. A task arc ODVODVvv htnnt \\),(, 
 is

defined if this subtask can begin at time t , where n is the location of the

transfer point.

The sets of start and task arcs are denoted by
SA and

TA , respectively, while

the set of travel arcs WA is divided into subsets
WA and

WA according to

127

the direction (+ or -) used to travel along the corresponding guide-path

segment.

To calculate the cost of a route)(ml  , a cost ac is associated with each arc

Aa . This cost is null for all arcs other than the task arcs. For a task arc a

representing task  starting at time t , this cost corresponds to the penalty

incurred for beginning  at time t .

5.4 Solution methodology

The complexity of vehicle dispatching and conflict-free routing leads to

intrinsic difficulty of this problem. The tree structure algorithm is adopted to

solve the problem, where two methods are embedded during the procedure of

expanding the tree. The structure and mechanism of expanding the tree are the

same as that in the study shown in Chapters 3 and 4. But the embedded

methods are different which are developed according to the characters of the

problem in this study. The problem is still divided into two sub-problems:

vehicle dispatching problem and vehicle conflict-free routing problem. As the

conflict-free routing problem is still complicated even though the decisions of

vehicle dispatching problem are given, we propose two heuristic based

algorithms to solve this routing problem. In Chapter 2, we can find that

because each FT moves on a unique rail, the routing problem can be solved by

determining the subtask sequence. The subtask sequence is a prior ordering of

the subtasks when they are competing for the resources. The TUs in this

problem can move more flexibly so that the routing problem cannot be solved

by using the same method as that in the Chapter 3. However, the subtask

sequence seems to be a crucial factor for the performance of the solutions.

128

Thus, we will solve the routing problem by determining the subtask sequence.

The first method is easy and fast and it is called heuristic sequential path

generation (HSPG), which is used to screen the intermediate nodes. The

second method is more accurate but needs more computation efforts and it is

called column generation algorithm based sequential path generation

(CGASPG), which is used to generate new beam nodes. The procedure of

expanding the tree is the same as that in the previous study. We will only

discuss these two embedded methods in this study.

5.4.1Heuristic sequential path generation

A greedy algorithm is used to play the role of the surrogate method, which is

used to screen the intermediate nodes. This algorithm consists of generating

the conflict-free route for each subtask sequentially. The way to give a priori

ordering of the subtasks is crucial to the performance of the algorithm. In

addition, this algorithm is applied to solve the conflict-free routing problem in

a large number of intermediate nodes, which implies that the computation time

must be short. Considering the impact from the pre-specified QC list, we

should maintain consistency of the prior ordering of the subtasks and the QC

list. Intuitively, if a subtask is ranked high in the QC list but ranked a low

position in the prior ordering, this will incur an additional delay since other

subtasks succeeding to it have to be delayed when the vehicles already arrive

at the transfer point. In order to obtain a prior ordering which tends to prevent

this additional delay, a mathematical model is built, which is denoted as

)(nPS
, where n indicates the intermediate node. The objective of the model

is to determine a prior ordering so that the delay is minimized based on the

assumption that the vehicle collisions are not considered. Thus, the traveling

129

time between the transfer points is represented by the time using the shortest

path. Because the number of subtasks involved is relatively small and the

model is simple, the computation efforts of the model will be small. After the

ordering is solved, the conflict-free route of each subtask is solved by

sequential path generation algorithm based on the ordering.

We first define the additional parameters in this model while the parameters

that are the same as previous will not be presented here again.

Parameters

p processing time of subtask  .

TUt The traveling time for a TU from the location of subtask  to the

location of subtask  using the shortest path ignoring vehicle

collisions

)(mV the set of subtasks that belongs to vehicle Kmm ,

)(C the set of subtasks that compete the same yard transfer point, where

YL .

)(Q the set of subtasks that cannot be performed until subtask  is

accomplished according to the QC list.

SP the set of pairs of successive subtasks belonging to the same vehicle

Decision variables

mT the time for vehicle m to complete its subtasks

130

T the starting time of subtask 

z




otherwise ,0

subtask than earlier starts subtask if ,1 

Mathematical model)(nPS

Objective:

Minimize: 



SP

TU

SKm

m tpT
),(





 (5.9)

Constraint

)(,, mVKmpTT m   (5.10)

)()(,),1( QCzMTtpT tvalin

m 

(5.11)

SPTtpT TU ),(,0 

(5.12)

)(,,1  CYCzz 

(5.13)

SPz ),(,1 

(5.14)

)(,,,1  QQqQLz q 

(5.15)

TTz   },1,0{ (5.16)

131

The objective function (5.9) minimizes the sum of delay during the horizon of

accomplishing all the subtasks in the intermediate node. Constraints (5.10)

define the complete time for vehicles to accomplish their subtasks. Constraints

(5.11) impose a time interval of at least tvalin

mtp  periods between two

subtasks that compete for the same resources at the transfer points. The

definition of tvalin

mt is presented in the study of FB-ACT, which is the necessary

handling time for the resources like QC, YC and GT between two consecutive

subtasks. Constraints (5.12) impose a time interval of at least the processing

time and traveling time between two subtasks using the same vehicle.

Constraints (5.13) ensure that two subtasks that competing for the same

resources in yard block cannot be performed simultaneously. Constraints (5.14)

and (5.15) ensure that the subtasks are performed consistently with the

sequence in each vehicle and QC list. Finally, constraints (5.16) specify the

domain of the decision variables.

Once the mathematical model
SP is solved, the priori ordering of the subtasks

can be determined according to the values of variables)(ST  . The

subtask with smaller value of T is assigned with a higher ranking in the prior

ordering.

Given the network G and the subtask set S , the main steps of the algorithm

are shown as following:

(1) Position all vehicles at their source nodes in G .

(2) Route the vehicle with the subtask  which is the first rank on the priori

ordering. Remove from G all arcs and vertices in this path to prevent

132

collisions when routing other vehicles. Remove also all arcs corresponding

to task  . Update the priori ordering by removing the task  .

(3) If there are still some unscheduled subtasks, return to step 2.

(4) Otherwise, Stop.

After these steps, we can obtain a feasible solution. The total processing time

of subtasks computed based on the feasible solution is treated as the fitness of

the corresponding intermediate node. As discussed before, a screening

procedure is performed when the fitness of the intermediate nodes is

calculated. Another method is applied to the retained intermediate nodes to

resolve the conflict-free routing problem. This method will be discussed in the

next section.

5.4.2Column generation algorithm based sequential path generation

It is intractable to solve the conflict-free routing problem to optimality when

the number of vehicle gets large. We implement the column generation

technique to help solving the routing problem. We first present how we use

column generation algorithm for our routing problem. Then, we will introduce

how we use the results from the column generation algorithm to help solving

the routing problem.

Column Generation Algorithm

The mathematical model for solving the conflict-free routing problem

associated with the intermediate node n , is denoted as)(nPC
. It is presented

as following.

133

Mathematical model)(nPC

Objectives:

 
 Km mLl

lmlm XcMinimize
)(

: (5.17)

Constraint

KmX
mLl

lm 


,1
)(

 (5.18)

TtNiXAXA
mLl Km iGj mLl Km

lmlmtilmlmti     
    )()()(

),(),(,,1*5.0 (5.19)

TtWwXfXf V

Lml Km

lm

t

lmw
mLl Km

lm

t

lmw
   

  

 ,,1
)

,
)(

,


 (5.20)

)(),(, '

)(

'

)(

)',(nQLXttXt
mLl Km

lmlm

mLl

qc

Km

lmlm    
  




 (5.21)

)()',(,1
)()(

'

)',(

),'(

nYLXgXg
mLl mLl Km

tt

ttu

lm

u

lm

Km

lm

t

lm

yc

yc

   
  










 (5.22)

KmmLlX lm ),(},1,0{ (5.23)

The model)(nPC
 aims to solve the conflict-free routing problem in the

intermediate node indicated by n . A column generation algorithm is used to

find its optimum solution. Such an algorithm divides the problem into a

restricted master problem and several sub-problems. In our study, the

restricted master problem is simply the linear relaxation restricted to a small

subset of its variables and the sub-problems corresponding to shortest path

problems with additional constraints. There is one sub-problem for each

134

vehicle. The role of the restricted master problem is to coordinate the various

proposals made by the sub-problems to satisfy all linking constraints (5.18)-

(5.22). The role of the sub-problems consists of identifying variables that may

contribute to improve the objective function.

The column generation procedure is iterative. It starts with a small subset of

the path variables. The restricted master problem is solved optimally at each

iteration to provide current primal and dual solutions. Each sub-problem is

solved by dynamic programming with the objective of finding path variables

with negative reduced costs, under the dual information obtained from the

restricted master problem. After that, the new paths variables are added to the

restricted master problem, which will be solved again. The primal solution to

the restricted master problem is optimal to the linear relaxation of)(nPC
,

when there are no path variables that with negative reduced cost. The iterative

procedure is then stopped.

The sub-problems

The key factor in solving the sub-problems is to derive the arc reduced costs

ac from the dual solution of the current restricted master problem. Such a

reduced cost is given by)(acc aa  , where)(a is the sum of all the dual

contributions for this arc a . These contributions are calculated according to

which type that arc belongs to. The contributions are shown in Table 5.1,

where)()1(Vkk  ,),()2(

, TtSNntn  ,),()3(

, TtWw V

tw  ,

))',(()4(

)',(QL  ,
)5(

),',(t),)',((TtYL  denote the dual variables

associated with constraints (5.18)-(5.22), respectively. Furthermore, a

135

represents the subtask associated with arc TAa , s

at and e

at are the start and

end times associated with arc Aa , ai is the tail vertex of arc Aa , and aw

is the guide-path segment associated with arc
VW

Aa .

Table 5.1 Dual contributions to arc reduced costs

If arc Aa satisfies Add this contribution to its reduced

cost

ma

S oiAa  ,
)1(

m

TAa 



)(

)2(

,

)2(

,
*5.0

a

i
a

i
aa

iGj
tjtj



TAa
)*5.0(

)(

)2(

,

)2(

,

1









a

a

e
a

s
a

iGj

tjtj

t

tt



VW
Aa

)3(

, i
aa tw

 + 



)(

)2(

,

)2(

,
*5.0

a

i
a

i
aa

iGj
tjtj



YCAa a

T  ,
 








YL

tt

ttu

u

YL
t

a

tva lin
m

tva lin
m

a

a

i
aa

),'(

)5(

),'(

)',(

)5(

)',(









QLAa a

T )',(, 
)4(

)',(
a

i

at

QLAa a

T ),'(, 
)4(

),'(a

i

at 

A dynamic programming algorithm is used to solve the shortest path problem.

This dynamic programming algorithm is a simple pushing algorithm that is

performed after ordering the vertices of G in topological order.

As discussed in Chapter 4, we need to spend great efforts to prevent vehicle

collisions in the GRID system. It is always the case that the solution from the

136

model)(nPC is the same as the initial feasible solution when no more new

paths variables are added. The initial feasible solutions are computed by the

HSPG method. One of the ways to obtain the optimal solution is the branch-

and-cut technique. However, those problems mainly focus on the vehicle

dispatching while the prevention of vehicle collisions tends to be easier to

handle. Unfortunately, in our problem, vehicle collision is a hazard, which

needs an explicit scheduling to prevent it. In addition, the detail method is not

used for only once. It is applied on every retained intermediate node at every

level of the spreading tree. The computation time of the detail method should

be controlled so that the whole problem can be solved within a reasonable

timescale. On the other hand, the detail method should be accurate enough to

afford a satisfying performance of the whole algorithm. Different from the

problem in Chapter 4, the transfer points at the quayside and yard-side are

much more congested. The method CGA-FS developed in Chapter 4 fails to

improve the solutions. We can find that the task sequence is crucial for solving

the routing problem. Thus, we will provide a method based on the column

generation algorithm to obtain a promising task sequence. The main idea is to

estimate the starting time of the tasks using the results obtained by the column

generation algorithm. Then the task sequence is determined by the estimated

starting time. We call this method as column generation algorithm based

sequential paths generation (CGASPG).

For each TU, we can estimate the starting time of its subtasks by summating

the starting time of the subtask multiplied by the flow of its corresponding

route. For instance, route il , jl (where)(, nll ji ) are the routes of vehicle n

137

with the positive flow nli
X , and nl j

X , , respectively. The flow of the other

routes of vehicle n is zero. One subtask is carried by vehicle n , denoted as  .

Then, the estimated starting time can be calculated by:

nlnlnlnl jjii
XtXtt ,,,, **   . Thus, similarly, we can obtain the estimated

starting time of all the subtasks in a similar manner. The subtask with an

earlier estimated starting time will be ranked at a high position on the prior

ordering. However, to maintain a certain level of flexibility, a threshold is

introduced as
SPGH . Therefore, a branch will be created when there exists

subtasks that
SPGHtt  || 

, where one branch is with the decision that

subtask  is prior to  when searching the conflict-free routing, and the

other one branch is with the decision that subtask  is prior to  .The

sequential paths generation algorithm is implemented to search the conflict-

free routes according to the prior ordering.

This paragraph will discuss the insight of the CGASPG method. The crucial

factor for the routing problem is to determine which vehicle can use the

locations where more than one vehicle is competing for them. The branch-

and-bound algorithm appears to be a way to optimally solve the routing

problem. However, the scale of the variables is always substantially large

considering the number of locations and the length of time dimension. Apart

from that, a tight lower bound is also intractable to be found. Instead of

making decisions of vehicle usage on every location at the time, we make a

compromise that a prior subtask will have the right to occupy the locations

when we find the route for it. Thus, the problem is reduced to make a prior

ordering of the subtasks. The worst case of the number of the orderings is the

138

value equaling to the factorial of n , where n is number of subtasks. In fact,

the number is much smaller than)(nfactorial because of the precedence

relationship pre-specified by the QC lists and the sequence on the same

vehicle. However, the number of the feasible ordering is still substantially

large, resulting in unpredictable computation efforts to enumerate all these

feasible orderings. Therefore, we will follow the information obtained from

column generation algorithm to capture the promising orderings.

5.5 Computational experiments

In this section, we will conduct the numerical experiments to access the

performance of this hybrid system. We will compare the performance of FB-

ACT and HFG-ACT. Although the algorithm for each ACT system is not the

same which may affects the fairness of the comparison, it can still provide

some useful information that the hybrid system seems to have a performance.

The experiments are conducted based on the layout that there are 15 yard

blocks and 4 QCs allocated along the quayside. For the FB-ACT system, there

are 3 horizontal rails. For the HFG-ACT system, there are 4 horizontal rails

and one of the rails is for transferring containers between TUs and GTs. Thus,

both system have 3 rails for the vehicles to travel. There are 100 container jobs

in each instance. The results are shown in Table 5.2. The results are the

makespan.

139

Table 5.2 Comparison results of FB-ACT and HFG-ACT

Case FB-ACT (min) HFG-ACT (min) Difference (%)

2 FTs

P1.1 78.2 83.2 -6.39

P2.1 76.4 84.1 -10.1

P3.1 81.4 85.8 -5.41

P4.1 80.9 83.4 -3.09

P5.1 82.3 84.9 -3.16

Average: -5.62

3 FTs

P1.2 68.3 70.8 -3.66

P2.2 70.6 71.5 -1.27

P3.2 71.1 72.6 -2.11

P4.2 72.2 73.7 -2.08

P5.2 73.2 75.4 -3.01

Average: -2.43

4 FTs

P1.3 65.3 63.0 3.52

P2.3 68.6 63.5 7.43

P3.3 68.4 64.4 5.85

P4.3 67.0 63.1 5.82

P5.3 65.8 61.6 6.38

Average: 5.80

5 FTs

P1.4 65.1 60.2 8.91

P2.4 65.2 61.8 6.60

P3.4 67.6 61.1 11.0

P4.4 65.2 60.4 8.74

P5.4 64.5 60.5 7.60

Average: 8.57

6 FTs

P1.5 66.4 58.2 12.35

P2.5 65.3 59.9 8.27

140

Continue Table 5.2

P3.5 66.6 60.6 9.01

P4.5 67.3 60.8 9.66

P5.5 63.5 57.2 9.92

Average: 9.82

We randomly generate five cases and each case is calculated when there are 2

FTs, 3 FTs, 4 FTs, 5 FTs and 6 FTs. The index of 2 FTs means that there are 2

FTs on the rail in the FB-ACT and there are 6 FTs in this system. Thus, there

are also 6 TUs in HFG-ACT. The cases of P1.1 and P1.2 are under the same

case but with different number of FTs. There are 6 FTs in total in FB-ACT in

the case P1.1 while there 9 FTs in total in FB-ACT in the case P1.2. The

difference in Table 5.2 is calculated as following:

2/)32(columncolumncolumndifferent  .

From the results, we can find that when the number of FTs on each rail is

small, the FB-ACT performs better than HFG-ACT. This is because the traffic

congestion on the rail is not much and the travelling speed of FT is higher than

that of TU. However, when the number of FTs on the rail is large, HFG-ACT

performs better than FB-ACT. The HFG-ACT can handle the traffic

congestion on the rails more efficiently by flexibly selecting the paths while

the FTs on the FB-ACT can only be delayed on the rails. Figure 5.5 shows the

results of Table 5.1 that we plot the makespan of FB-ACT and HFG-ACT

under different cases and number of vehicles.

141

142

Figure 5.5 Makespan of FB-ACT and HFG-ACT

From Figure 5.5, we can find that the FB-ACT will not get benefit from the

increase of vehicle numbers when it gets congested. However, HFG-ACT

outperforms FB-ACT in the scenario that the number of vehicles is relative

large.

5.6 Conclusion

In this study, we observe some operational limitations that impede on the

performance of the FB-ACT. Thus, we propose a hybrid FB-ACT system

which uses some good ideas from the GRID-ACT and implement in the

transportation system at the quayside. From the numerical results, we can find

that the new design system can handle the vehicle congestion more efficiently

than FB-ACT. When the number of vehicles is small, FB-ACT performs better

than HFG-ACT. However, when the number of vehicles gets large, FB-ACT

seems to be stunned in the vehicle congestion. Thus HFG-ACT is able to

provide a good solution in this situation.

143

CHAPTER 6 Conclusion

With the development of technology, container terminal operators tend to

design new container terminals to improve the productivity as well as maintain

efficient operations. In this thesis, we study the details of the operations of two

new conceptual ACT systems which have triggered interests in industrial as

well as academic area. To the best of our knowledge, the work in the thesis is

the first work to simultaneously solve the vehicle dispatching and conflict-free

routing in these two ACT systems. As we observe some operational

limitations that impede on the performance of the FB-ACT, we propose a

hybrid FB-ACT system which integrate some good ideas from the GRID-ACT

into the transportation system at the quayside

We first study the system called Frame Bridge based Automated Container

Terminal proposed by Shanghai Zhenhua Heavy Industries Co. Ltd. In FB-

ACT system, several different types of equipment are involved in the

transportation of one container. We emphasize on the management of

resources in order to reduce the delay during the handshakes and avoid vehicle

collisions, which significantly affects the efficiency of the system. We develop

a mathematical programming model which integrates the vehicle dispatching

problem and vehicle conflict-free routing problem. Because the model cannot

be solved when the scale of the problem is large, we develop a tree structure

algorithm. Our algorithm can solve this complicated problem efficiently by

dividing it into the sub-problems with small scale. By comparing with the

heuristic algorithm, our algorithm can solve the problem and give a more

satisfying performance.

144

Another new conceptual ACT called Goods Retrieval and Inventory

Distribution (GRID) based ACT was proposed by BEC industries LLC. In

GRID-ACT, the main issues are the vehicle dispatching and conflict-free

routing problems. Due to the meshed structure of the paths, the problem is

modeled as a set partitioning problem. Given the intrinsic difficulty of this

problem, the tree structure algorithm is also adopted to solve the complicated

problem. The conflict-free routing problem should be concentrated on because

of its significance in reducing traveling time including the delay. Thus two

methods are proposed to solve this problem. One is fast in computation, which

will be used in screening procedures. And the other one is more accurate,

which will be used in the selection of beam nodes (the partial solutions which

will be further exploration). Because of the complexity of the conflict-free

routing problem, the typical column generation algorithm cannot solve it well.

However, we can continue the search by using the information obtained by the

typical column generation algorithm. New columns can be generated by

adding new constraints which aim to prevent TUs from running in congested

area. After the additional searching, we can obtain a promising and feasible

solution for the conflict-free routing problem. Our algorithm can obtain

satisfying solutions when compared to a heuristic algorithm.

By analyzing the performance of FB-ACT and GRID-ACT, we proposed a

new design of container terminal. The main drawback of FB-ACT is the

relative long waiting time because of the prevention of vehicle collisions. The

vehicles in GRID-ACT can flexibly select paths to prevent vehicle collisions,

which can reduce the waiting time. However, because of the slow speed of the

vehicle and the long distance of the paths, GRID-ACT has to spend a

145

relatively long time on traveling. This newly designed terminal is a hybrid of

FB-ACT and GRID-ACT, which appears to offset the drawbacks of these two

kinds of terminals. This newly designed terminal outperforms FB-ACT and

the result is shown by a comparison study.

There are still many interesting topics related to these new conceptual ACT

systems. One of them is the container allocation problem. Because the

stacking mechanism in GRID-ACT is very different from the traditional

container terminals, how to allocate the containers in the storage yard seems to

be one crucial strategy that affects the performance of the system. The second

one is the operations related to the yard in FB-ACT system. The system can

use more than one GT on the ground rail. The ground rails can also be

constructed as two layers. Thus, we should spend more efforts on the

scheduling problem in the yard area.

146

Appendix A

Some new parameters are introduced to present the reduced MIP model.

Parameters:

)(iSm : the ith subtask in the FT schedule of FT m . The last subtask in the FT

schedule of FT m can be indicated as)(mS , where  is the look-ahead

number.

GTC : the set of pairwise subtasks which competes for the same GT.

TPC : the set of pairwise subtasks which competes for the same TP.

FTC : the set of pairwise subtasks where there is FT conflict between them.

C : the set of pairwise subtasks which cannot be operated simultaneously. We

can have: FTTPGT CCCC  .

Decision variables:

*

),,)(,,(hjkiZ  :
*

),,)(,,(hjkiZ  =1 if the starting time of subtask),,(hj  is greater

than or equals to the finishing time of subtask),,(ki  ;
*

),,)(,,(hjkiZ  =0,

conversely. It is different from the variable),,)(,,(hjkiZ  in the original MIP

model which the value of zero does not force the starting time of subtask

),,(ki  to be greater than or equals to the finishing time of subtask),,(hj  .

The reduced MIP model can be shown as below:

}{))(())((



mm SS

Mm
pTMaxMin：

147

Constraints:

(1) Time constraints for the two subtasks of a given job

HiTtpT i

ft

iiii ),(,)2,,()2,,)(1,,()1,,()1,,(

(2) Sequence dependent times for different resources

QC:

LiLitpTT ll

qciii ),1(,),(,)2,,()2,,()2,,1(

DiLitpTT ld

qciii ),1(,),(,)2,,()2,,()1,,1(

LiDitpTT dl

qciii ),1(,),(,)1,,()1,,()2,,1(

DiDitpTT dd

qciii ),1(,),(,)1,,()1,,()1,,1(

GT:

GT

hjkimskikihj

Chjki

ZMtpTT





)),,(),,,((

),1(),,)(,,(),,(),,(),,(





GT

hjkimshjhjki

Chjki

ZMtpTT





)),,(),,,((

,*),,)(,,(),,(),,(),,(





TP:

TP

hjki

tp

hjkikikihj

Chjki

ZMtpTT





)),,(),,,((

),1(),,)(,,(),,)(,,(),,(),,(),,(





TP

hjki

tp

hjkihjhjki

Chjki

ZMtpTT





)),,(),,,((

,*),,)(,,(),,)(,,(),,(),,(),,(





FT conflict:

148

FT

hjki

ft

hjkikikihj

Chjki

ZMtpTT





)),,(),,,((

),1(),,)(,,(),,)(,,(),,(),,(),,(





FT

hjki

ft

hjkihjhjki

Chjki

ZMtpTT





)),,(),,,((

,*),,)(,,(),,)(,,(),,(),,(),,(





(3) Domain of variables

ChjkiORZ hjki )),,(),,,((,10),,)(,,(

HiTT ii ),(,0,)2,,()1,,(

149

References

Agarwal, Y., K. Mathur, et al. (1989). "A set‐partitioning‐based
exact algorithm for the vehicle routing problem." Networks 19(7):
731-749.

Amato, F., Basile, F., Carbone, C., & Chiacchio, P. (2005). An approach
to control automated warehouse systems. Control Engineering
Practice, 13(10), 1223-1241.

Appelgren, L. H. (1969). "A column generation algorithm for a ship
scheduling problem." Transportation science 3(1): 53-68.

Asef-Vaziri, A. and B. Khoshnevis (2006). Automated technologies in
maritime container terminals. METRANS national urban freight
conference, Long Beach.

Baldacci, R., N. Christofides, et al. (2008). "An exact algorithm for the
vehicle routing problem based on the set partitioning formulation
with additional cuts." Mathematical Programming 115(2): 351-385.

Bard, J. F. and H. W. Purnomo (2005). "Preference scheduling for
nurses using column generation." European journal of operational
research 164(2): 510-534.

Bierwirth, C. and F. Meisel (2009). "A fast heuristic for quay crane
scheduling with interference constraints." Journal of Scheduling
12(4): 345-360.

Bish, E. K., F. Y. Chen, et al. (2005). "Dispatching vehicles in a mega
container terminal." OR spectrum 27(4): 491-506.

Briskorn, D., A. Drexl, et al. (2006). "Inventory-based dispatching of
automated guided vehicles on container terminals." OR spectrum
28(4): 611-630.

Canonaco, P., P. Legato, et al. (2008). "A queuing network model for
the management of berth crane operations." Computers &
Operations Research 35(8): 2432-2446.

150

Chan, C. T., L.H. Huat (2002). "Containers, container ships and quay
cranes: a practical guide." Genesis Typesetting & Publication
Services.

Chang, D., Z. Jiang, et al. (2010). "Integrating berth allocation and
quay crane assignments." Transportation Research Part E: Logistics
and Transportation Review 46(6): 975-990.

Chang, D., Z. Jiang, et al. (2011). "Developing a dynamic rolling-
horizon decision strategy for yard crane scheduling." Advanced
Engineering Informatics 25(3): 485-494.

Chen, Z.-L. and W. B. Powell (1999). "Solving parallel machine
scheduling problems by column generation." INFORMS Journal on
Computing 11(1): 78-94.

Choi, E. and D.-W. Tcha (2007). "A column generation approach to
the heterogeneous fleet vehicle routing problem." Computers &
Operations Research 34(7): 2080-2095.

Corréa, A. I., A. Langevin, et al. (2004). Dispatching and conflict-free
routing of automated guided vehicles: A hybrid approach combining
constraint programming and mixed integer programming, Springer.

De, S. and A. Lee (1990). "Flexible manufacturing system (FMS)
scheduling using filtered beam search." Journal of Intelligent
Manufacturing 1(3): 165-183.

Deng, L., Lu, G., Yang, W., & Fei, M. (2013). Automated warehouse
path optimization based on immunity discrete particle swarm
optimization. Chinese Automation Congress (CAC), 2013 (pp.703-
707). IEEE.

Desaulniers, G., J. Desrosiers, et al. (2002). Accelerating strategies in
column generation methods for vehicle routing and crew scheduling
problems, Springer.

Desaulniers, G., A. Langevin, et al. (2003). "Dispatching and conflict-
free routing of automated guided vehicles: An exact approach."
International Journal of Flexible Manufacturing Systems 15(4): 309-
331.

151

Desrochers, M. and F. Soumis (1989). "A column generation
approach to the urban transit crew scheduling problem."
Transportation science 23(1): 1-13.

Desrosiers, J., F. Soumis, et al. (1984). "Routing with time windows
by column generation." Networks 14(4): 545-565.

Geerlings, H. and R. Van Duin (2011). "A new method for assessing
CO2-emissions from container terminals: a promising approach
applied in Rotterdam." Journal of Cleaner Production 19(6): 657-666.

Ghasemzadeh, H., E. Behrangi, et al. (2009). "Conflict-free scheduling
and routing of automated guided vehicles in mesh topologies."
Robotics and Autonomous Systems 57(6): 738-748.

Gilmore, P. C. and R. E. Gomory (1961). "A linear programming
approach to the cutting-stock problem." Operations research 9(6):
849-859.

Grunow, M., H.-O. Günther, et al. (2006). "Strategies for dispatching
AGVs at automated seaport container terminals." OR spectrum 28(4):
587-610.

He, J., D. Chang, et al. (2010). "A hybrid parallel genetic algorithm for
yard crane scheduling." Transportation Research Part E: Logistics
and Transportation Review 46(1): 136-155.

He, S. J., Cheng, F., & Luo, J. (2007). Modeling and Implementing of an
Automated Warehouse via Colored Timed Petri Nets; a Behavior
Perspective. Control and Automation, 2007. ICCA 2007. IEEE
International Conference on (pp.2823-2828). IEEE.

Imai, A., H. C. Chen, et al. (2008). "The simultaneous berth and quay
crane allocation problem." Transportation Research Part E: Logistics
and Transportation Review 44(5): 900-920.

Javanshir, H. and S. S. Ganji (2010). "Yard crane scheduling in port
container terminals using genetic algorithm." Journal of Industrial
Engineering International 6(11): 39-50.

Jiang, L. L., & Zhang, C. (2010). Stacker picking path optimization of
the automated warehouse based on graph theory. Logistics Sci-Tech.

152

Jeon, S. M., K. H. Kim, et al. (2011). "Routing automated guided
vehicles in container terminals through the Q-learning technique."
Logistics Research 3(1): 19-27.

Jung, S. H. and K. H. Kim (2006). "Load scheduling for multiple quay
cranes in port container terminals." Journal of Intelligent
Manufacturing 17(4): 479-492.

k., P. N. (2007). "A study on the efficiency of transportation
equipment at automated container terminals." Proceedings of the
2007 annual Conference on International Conference on Computer
Engineering and Applications, World Scientific and Engineering
Academy and Society (WSEAS).

Kim, C. W. and J. M. Tanchoco (1991). "Conflict-free shortest-time
bidirectional AGV routeing." THE INTERNATIONAL JOURNAL OF
PRODUCTION RESEARCH 29(12): 2377-2391.

Kim, C. W. and J. TANCHOCOJ (1993). "Operational control of a
bidirectional automated guided vehicle system." THE
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 31(9): 2123-
2138.

Kim, K.-H. and J.-W. Bae (1999). "A dispatching method for
automated guided vehicles to minimize delays of containership
operations." Management Science and Financial Engineering 5(1): 1-
25.

Kim, K. H. and J. W. Bae (2004). "A look-ahead dispatching method
for automated guided vehicles in automated port container
terminals." Transportation science 38(2): 224-234.

Kim, K. H., J. S. Kang, et al. (2004). "A beam search algorithm for the
load sequencing of outbound containers in port container
terminals." OR Spectrum 26(1): 93-116.

Kim, K. H. and K. Y. Kim (1999). "An optimal routing algorithm for a
transfer crane in port container terminals." Transportation science
33(1): 17-33.

153

Kim, K. H. and Y.-M. Park (2004). "A crane scheduling method for
port container terminals." European journal of operational research
156(3): 752-768.

Lee, D.-H., H. Q. Wang, et al. (2008). "Quay crane scheduling with
non-interference constraints in port container terminals."
Transportation Research Part E: Logistics and Transportation
Review 44(1): 124-135.

Lee, L. H., E. P. Chew, et al. (2010). "Vehicle dispatching algorithms
for container transshipment hubs." OR spectrum 32(3): 663-685.

Li, H. P., Fang, Z. F., & Wang, Y. (2011). Research on path optimization
of automated warehouse based on ant colony algorithm. Advanced
Materials Research, 201-203, 1112-1115.

Li, W., Y. Wu, et al. (2009). "Discrete time model and algorithms for
container yard crane scheduling." European journal of operational
research 198(1): 165-172.

Liang, C., Y. Huang, et al. (2009). "A quay crane dynamic scheduling
problem by hybrid evolutionary algorithm for berth allocation
planning." Computers & Industrial Engineering 56(3): 1021-1028.

Liu, C.-I. and P. Ioannou (2002). A comparison of different AGV
dispatching rules in an automated container terminal. Intelligent
Transportation Systems, 2002. Proceedings. The IEEE 5th
International Conference on, IEEE.

Liu, C.-I., H. Jula, et al. (2002). "Design, simulation, and evaluation of
automated container terminals." Intelligent Transportation Systems,
IEEE Transactions on 3(1): 12-26.

Liu, S. N. (2011). Modeling and optimization of integrated scheduling
of automated warehouse system. Advanced Materials Research, 230-
232, 35-39.

Maza, S. and P. Castagna (2001). Conflict-free AGV routing in bi-
directional network. Emerging Technologies and Factory
Automation, 2001. Proceedings. 2001 8th IEEE International
Conference on, IEEE.

154

Maza, S. and P. Castagna (2005). "A performance-based structural
policy for conflict-free routing of bi-directional automated guided
vehicles." Computers in Industry 56(7): 719-733.

Moccia, L., J. F. Cordeau, et al. (2006). "A branch‐and‐cut algorithm
for the quay crane scheduling problem in a container terminal."
Naval Research Logistics 53(1): 45-59.

Möhring, R. H., E. Köhler, et al. (2005). Conflict-free real-time AGV
routing. Operations Research Proceedings 2004, Springer.

Mourgaya, M. and F. Vanderbeck (2007). "Column generation based
heuristic for tactical planning in multi-period vehicle routing."
European journal of operational research 183(3): 1028-1041.

Nair, S. K., L. S. Thakur, et al. (1995). "Near optimal solutions for
product line design and selection: beam search heuristics."
Management Science 41(5): 767-785.

Ng, W. (2005). "Crane scheduling in container yards with inter-crane
interference." European journal of operational research 164(1): 64-
78.

Ng, W. and K. Mak (2005). "An effective heuristic for scheduling a
yard crane to handle jobs with different ready times." Engineering
Optimization 37(8): 867-877.

Ng, W. and K. Mak (2005). "Yard crane scheduling in port container
terminals." Applied mathematical modelling 29(3): 263-276.

Ng, W. and K. Mak (2006). "Quay crane scheduling in container
terminals." Engineering Optimization 38(6): 723-737.

Nishi, T., Y. Hiranaka, et al. (2011). "A bilevel decomposition
algorithm for simultaneous production scheduling and conflict-free
routing for automated guided vehicles." Computers & Operations
Research 38(5): 876-888.

Nishi, T. and Y. Tanaka (2012). "Petri net decomposition approach
for dispatching and conflict-free routing of bidirectional automated
guided vehicle systems." Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on 42(5): 1230-1243.

155

Oboth, C., R. Batta, et al. (1999). "Dynamic conflict-free routing of
automated guided vehicles." International Journal of Production
Research 37(9): 2003-2030.

Ow, P. S. and T. E. Morton (1988). "Filtered beam search in
scheduling†." THE INTERNATIONAL JOURNAL OF PRODUCTION
RESEARCH 26(1): 35-62.

Ow, P. S. and T. E. Morton (1989). "The single machine early/tardy
problem." Management Science 35(2): 177-191.

Park, Y.-M. and K. H. Kim (2005). A scheduling method for berth and
quay cranes. Container Terminals and Automated Transport
Systems, Springer: 159-181.

Qiu, L. and W.-J. Hsu (2001). "A bi-directional path layout for conflict-
free routing of AGVs." International Journal of Production Research
39(10): 2177-2195.

Ribeiro, C. C. and F. Soumis (1994). "A column generation approach
to the multiple-depot vehicle scheduling problem." Operations
research 42(1): 41-52.

Sabuncuoglu, I. and M. Bayiz (1999). "Job shop scheduling with beam
search." European journal of operational research 118(2): 390-412.

Sammarra, M., J.-F. Cordeau, et al. (2007). "A tabu search heuristic
for the quay crane scheduling problem." Journal of Scheduling 10(4-
5): 327-336.

Singh, S. and M. Tiwari (2002). "Intelligent agent framework to
determine the optimal conflict-free path for an automated guided
vehicles system." International Journal of Production Research
40(16): 4195-4223.

Stahlbock, R. and S. Voß (2008). "Operations research at container
terminals: a literature update." OR spectrum 30(1): 1-52.

Steenken, D., S. Voß, et al. (2004). "Container terminal operation and
operations research-a classification and literature review." OR
spectrum 26(1): 3-49.

156

Taillard, É. D. (1999). "A heuristic column generation method for the
heterogeneous fleet VRP." Revue française d'automatique,
d'informatique et de recherche opérationnelle. Recherche
opérationnelle 33(1): 1-14.

Vacca, I., M. Salani, et al. (2013). "An exact algorithm for the
integrated planning of berth allocation and quay crane assignment."
Transportation science 47(2): 148-161.

Van den Akker, J., C. A. Hurkens, et al. (2000). "Time-indexed
formulations for machine scheduling problems: Column generation."
INFORMS Journal on Computing 12(2): 111-124.

Vanderbeck, F. (2005). Implementing mixed integer column
generation. Column Generation, Springer: 331-358.

Vangeri, A., & Hebbal, S. S. (2014). Route optimization of automated
warehouse with the aid of modified genetic algorithms (mga).
International Review of Mechanical Engineering, 8(4), 667-679.

Vis, I. F. and R. De Koster (2003). "Transshipment of containers at a
container terminal: An overview." European journal of operational
research 147(1): 1-16.

Wang, F. and A. Lim (2007). "A stochastic beam search for the berth
allocation problem." Decision Support Systems 42(4): 2186-2196.

Wang, T. B., & Zhu, Z. H. (2008). Research of modeling automated
warehouse with colored timed petri net. Mechanical & Electrical
Engineering Technology.

Wilhelm, W. E. (2001). "A technical review of column generation in
integer programming." Optimization and Engineering 2(2): 159-200.

Zeng, J. and W.-J. Hsu (2008). "Conflict-free container routing in
mesh yard layouts." Robotics and Autonomous Systems 56(5): 451-
460.

Zhang, L.-W., R. Ye, et al. (2005). "Mixed integer programming
models for dispatching vehicles at a container terminal." Journal of
Applied Mathematics and Computing 17(1-2): 145-170.

157

Zhen, L., L. H. Lee, et al. (2012). "A comparative study on two types of
automated container terminal systems." Automation Science and
Engineering, IEEE Transactions on 9(1): 56-69.

