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Abstract

Augmented reality (AR) is a technique to augment virtual objects such as sound,

video and graphics, etc in the real environment captured through sensors like

camera and viewed from an AR device such as smart phone, glasses. Nowadays

AR has been widely applied in many fields like education, art and entertainment.

The development of computer vision techniques especially 3D reconstruction,

object tracking are crucial for the development of AR system.

In this thesis, the aim is to obtain a dense piecewise planar reconstruction of

a static scene from multiple image frames based on a factorization framework.

Integrating all the relevant constraints in a global objective function, we are able

to effectively leverage on the scene smoothness prior afforded by the dense for-

mulation, as well as imposing the necessary algebraic constraints required by

the shape matrix. These constraints also help to robustly decompose the mea-

surement matrix into the underlying low-rank subspace and the sparse outlier

part. Numerically, we achieve the constrained factorization and decomposition

via modifying a recently proposed proximal alternating robust subspace mini-

mization algorithm. The results show that our algorithm is effective in handling

real life sequences, and outperforms other algorithms in recovering motions and

dense scene estimate.

This novel planar reconstruction technique is especially beneficial for the

reconstruction of indoor scenes, since artificial planes almost dominate the en-

tire indoor scene. After we obtain the dense planar reconstruction, a simple

inference based on plane geometry can be applied to infer the most likely sup-
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port planes or obstacles, which is important for AR system and even for indoor

navigation of robotic agent.
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Chapter 1

Introduction

AR system is nowadays widely applied in many fields, e.g entertainment, edu-

cation, art, commerce, etc. The key technology fostering the AR system is com-

puter vision technology especially 3D reconstruction, object tracking and object

recognition, etc. In this thesis, we focus on 3D reconstruction and how it can

be used to facilitate interacting with the scene and objects, such as placement

of a virtual object and action possibilities on scene surfaces (e.g. the surface is

walkable).

3D reconstruction of scenes from motion cues is a longstanding problem in

computer vision. Most of the works in this area [51, 54, 5, 20, 68] are based

on sparse features, and a post-processing step is required to obtain a dense re-

construction. In this thesis, we want to obtain directly a dense piecewise planar

reconstruction from multiple image frames based on a factorization framework.

Such a piecewise planar representation is on the one hand a more compact and

efficient representation than dense 3D point cloud, and on the other hand a more

informative representation than sparse 3D points, especially in man-made en-

vironment. One can for instance directly link the reconstructed planes to the

notion of occupancy for navigation purpose [17], or more generally to the no-

tion of affordances [21], a term coined by Gibson to denote properties of things

that afford opportunities of interaction. A simple scheme to make these infer-
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1. INTRODUCTION

ences is to regard planes whose normal orientation is vertical and height zero as

navigable, and planes which are parallel to the floor as sittable [29] etc.. More

sophisticated schemes proposed would not only be based on the geometry of

objects [6, 42, 42]; with the aids of context [8, 48], it will further encourage

the interaction between objects and human [50, 35, 24, 22]. Being able to make

sense of the 3D structure in this manner is evidently important for autonomous

robots and augmented reality applications. For instance, in the latter, it is im-

portant to know where to place an object or even to have an avatar to manipulate

or act on an object.

Despite the evident utility of such a dense piecewise planar representation,

there is a paucity of works actually adopting this approach. This is despite

the massive amount of works in related areas, specifically those of optical flow

estimation and factorization, both with long history of research in the computer

vision community. We briefly discuss some issues in these two related areas

which present bottlenecks to the aforementioned approach and thus motivate

our research.

Optical flow estimation is indeed still a very active area of research, in no

small measure due to the release of benchmark datasets [2, 1, 3]. There has

indeed been parametric model-based optical flow methods [9, 33, 45] whose

underlying model is a scene with multiple planes and thus in principle could be

used for recovering these planes. Yet, while optical flow has historically been

understood to be a means through which eventually 3D structure and motion

(a.k.a. SFM 1) are obtained, there are nowadays not many works that utilize

the flow to go on and tackle the latter part of the problem. The reasons for this

state of affair are at least twofold. One of the reasons is simply the optical flows

are not good enough. While the performance might look impressive according

to the evaluation metrics used in the benchmarks, it is quite a different mat-

ter when being used for a geometrically exact process like SFM. For instance,

1Structure from motion (SFM) is often referred as estimation of 3D scene structures from
2D motion within a range of images.
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[73] showed that for the discrete case of homographies, there are hidden global

constraints in the form of rank of some parameter matrix. Similar constraints

exist for the continuous case [72]. Since most of the existing flow methods

only consider a local smoothness prior, the resulting parametric models do not

necessarily obey these global constraints, and as a consequence, problems arise

during the structure recovery stage. Numerically, the problem of estimating

the parameters of the parametric model from the optical flows (either explicitly

or implicitly) is still a significant challenge. Despite advances in optimization

methods that permit discontinuity-preserving flow estimation, there are still er-

rors remaining due to various practical reasons such as the need to perform re-

laxation (e.g. using L1-norm in place of L0-norm). These errors, when coupled

with not knowing the number nor the boundaries of the planes, mean that there

are still significant room for the parametric models to go wrong, and indeed they

do go wrong.

For the second related area of factorization, the literature is also immense,

though very much dominated by the discrete feature-based formulation [55, 60,

62, 15, 28, 16]. Continuous flow-based factorization works are few and far be-

tween. As a consequence, useful scene constraints such as scene smoothness

and orthogonality of planes are seldom brought to bear on most factorization

approaches to SFM. Indeed, as far as we can ascertain, there is no concrete prac-

tical factorization formulation for those approaches based on parametric models

(be it from discrete feature or continuous flow). [73, 72] only gave theoretical

formulation, whereas practical implementation is fraught with difficulties. The

challenge of a practically useful formulation is manifold. Firstly, due to errors in

the parametric model estimation, the input matrix to the factorization problem

contains a significant number of outliers, which must be dealt with using appro-

priate robust factorization algorithms. Secondly, constraints of various forms

should be imposed on the problems to improve the quality of the SFM solutions.

These include the following: 1) the rank constraint that comes with the factor-
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1. INTRODUCTION

ization formulation, 2) what we called the structural constraints that preserve

the required structures of the shape matrix (governed by the underlying physical

model), and finally 3) scene constraints such as piecewise smoothness of sur-

faces or orthogonality between planes. Incorporating all these constraints make

the factorization problem much harder. A straightforward robust implementa-

tion of the alternating least squares scheme (e.g. [47]) ignores the constraints

first, and partly as a result, it does not work well (as shown in [65]); it is pro-

hibitively costly too. Deferring the structural constraints to a post-factorization

rectification step might sidestep some of the optimization difficulties but such an

approach is sub-optimal as the constraint is not imposed during the minimiza-

tion. In our experience, such a sub-optimal approach breaks down in the face of

inevitable noise present in our problems.

Our work proposes a parametric flow-based factorization formulation that

deals with all the aforementioned challenges. Optical flow is first estimated

with modern optical flow technique that can handle large displacement and in-

corporates various best practices such as multi-scale implementation. Parame-

ters of the affine flow (referred in Sec.3.2.4.2) that characterizes the local plane

in a superpixel are then estimated. Stacking the affine parameters from all the

local planes and from all views into a huge matrix, we present a robust ver-

sion of factorization algorithm which factors the input matrix into a motion

matrix and a shape matrix with inner dimension of six, as well as removing

outliers in the form of a sparse outlier matrix. Our robust factorization is based

on the proximal alternating robust subspace minimization algorithm known as

PARSuMi[65] but modified to incorporate the additional constraints mentioned

in the preceding paragraph. The advantage of the PARSuMi approach is that

it has demonstrated significantly better performance on real practical problems

with corruptions compared to other methods such as GRASTA [27], Wiberg

L1 [47] and BALM [18]. It does not seek convex relaxation of any form, but

rather constrains the rank and the corrupted entries’ cardinality directly in their

4



original forms. Such faithful representation of the original problem in PARSuMi

accounts for its success in solving real problems. Our modification of PARSuMi

allows us to embed both the structural and scene constraints integrally into the

optimization process. Firstly, we impose structural constraints on the factorized

shape matrix (e.g. equality of some matrix elements) so that the shape matrix

has a physical interpretation. We also enforce scene constraint such as smooth-

ness on the resultant dense planar structure estimates. This latter constraint helps

to reduce the uncertainty in decomposing the input affine parameter matrix into

the low rank part and the sparse outlier matrix.

The main contributions of this thesis can be summarized as: firstly, a novel

multiframe parametric model based on plane is proposed, resulting in a fac-

torization formulation. Priors on the factors such as structural constraints and

smoothness constraints (more on these in the subsequent chapter) are incorpo-

rated; secondly, the optimization derived from PARSuMi has strong capacity to

deal with large amount of outliers; thirdly, the synthetic experiments and real

image sequences experiments show the superiority of our algorithm to some

of the other state-of-the-art algorithms; finally, a practical inference from the

reconstruction result illustrates the support planes indoor.

The remainder of this thesis is organized as follows: In Chapter 2, we survey

a variety of related techniques and also present some brief background on ac-

tion affordance analysis coming more from the field of robotics and automation.

The main technical work and the experimental results are given in Chapter 3.

Chapter 4 describes the future work and presents the conclusions.
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Chapter 2

Related Work

2.1 Structure From Motion

Since SFM has a long history in computer vision, with various models and at-

tendant methods to solve this problem. Here we discuss the solution to this

problem based on two categories of methods known as batch reconstruction

(i.e. factorization) and incremental reconstruction (i.e. bundle adjustment).

2.1.1 Factorization

Solving SFM by factorization is a very active research field which stems from

the seminal work of [57]. The simpler formulations are usually based on either

orthographic or affine camera model, in which case the factorization equation

is given by W = PX, where W is the measurement matrix of image feature

positions, P 1is related to the camera motions, and X is the 3D scene structure.

Projective factorization based on perspective camera model results in a more

complex factorization equation Λ �W = PX (where the left hand side now

contains an unknown Λ which can be regarded as depths); this is usually solved

based on iterative method [55, 60, 62, 15, 28, 16]. The most recent formulation

1P = K
[
R | t

]
, where K =

f 0 cx
0 f cy
0 0 1

 is the camera’s intrinsic parameters, R is the

camera’s rotation and t is the camera’s translation.

7



2. RELATED WORK

[16] has an elegant treatment and can handle missing data and outliers. All the

works mentioned above are based on sparse feature points and there are a few

works such as [30, 44, 56] that are based on dense optical flow.

There have been quite a few factorization works that are based on a piece-

wise planar scene model. For the discrete formulation, [73] derived the rank

constraints on homographies across multiple views based on multiple planar

surfaces. Later, [14] further refined the rank four constraint over two views for

practical implementation. For the continuous flow formulation, [72] showed

that the parameter matrix for the planar flow is of rank six at most. There are

other different formulations that are also based on planes. For instance, [40]

used the area of the patch as features, in addition to the usual position features.

However, the authors did not show how much the proposed area feature brings

to the table. [31] developed the rank constraint in terms of the normal vector of

the plane, instead of the affine parameters of its flows. This allows its algorithm

to bypass the explicit estimation of optical flow, which is regarded as sensitive

to noise.

Despite the vast amount of literature, including those that deal with Gaus-

sian noise [7, 23, 34] or outliers [4, 47, 27, 59, 71], there remains a dearth of

practical schemes that can handle the full set of challenges in real life SFM sce-

narios, chief among which are the explicit handling of outliers together with an

integral handling of constraints that are applicable to the problem. Indeed, it

is only recently that [65] uncovered hitherto unknown outliers inherent in the

Dinosaur dataset widely used for SFM works; unfortunately, this work does not

handle additional constraints too. These concerns with outliers and constraints

constitute the main difference of our work with the above, and as far as we know,

it is the first work that uses dense flow formulation and is capable of imposing

scene and structural constraints.

8



2.1.2 Bundle Adjustment

Another dominant approach to solving SFM problem is known as Bundle Ad-

justment(BA) approach. The general BA approach can be summarized as three

steps: the first step is to calculate epipolar or trifocal geometry to obtain the

relative pose between camera pairs or triplets respectively; the second step is

to register all camera positions and reconstruct sparse scene points in the same

coordinate system and the final step is bundle adjustment to minimize the re-

projection error. The first step, especially that of estimating essential matrix

or fundamental matrix, has been well studied in theory and the algorithms are

well established. Most estimation algorithms are based on sparse points, e.g.

[53, 58, 25, 46]. There are also a few works proposed to incorporate dense flow

to solve fundamental matrix e.g. [64, 63]. Several open questions remain in

the second step. General approaches to register cameras are categorized into in-

cremental method and global method. Some examples of applying incremental

methods are [51, 54, 5, 20, 68]. Some of the challenges in this approach include:

firstly it is inefficient to add all cameras one by one, and secondly incremental

methods will suffer from drift errors as frames accumulate, due to issue with

scale ambiguities. Though several compensating schemes, such as by applying

a hierarchical scheme [37, 26] to merge short sequences (more than two or three

views), have been proposed, global methods [32, 41, 67, 49] would be better

in dealing with the drift problem. The algorithm of the final step is also well

established in [61].

The work in our thesis eschews the above approach. Instead, we prefer

the more elegant factorization formulation. Our chief aim is to improve the

robustness of the latter so that it can be used in practical SFM scenarios.

9



2. RELATED WORK

2.2 Scene Understanding

Understanding a 3D scene also attracts a lot of attentions, since it is crucial

for practical applications, e.g. AR system, navigation of robots and unmanned

ground vehicle, task-completion of a robotic agent. The research in this thesis

can be regarded as a kind of affordance analysis of scenes and objects in an

environment, in the sense suggested by Gibson [21], e.g., what does a scene

surface afford in terms of navigability?

Some propose to recognize or predict the affordance of an object by geo-

metric shape such as the normal of the object’s surface and its height w.r.t the

camera coordinate [29]. Learning method becomes a powerful tool to recognize

the affordance of different objects mostly based on RGB-D images or videos.

Below are some representative works. [42] fully learns intra-class variation of

objects’ function; [36] applies deep learning to solve graspable objects problem;

[6] argues that objects can provide more affordances by different configurations

in an environment. For example, a bowl can contain water only when it is put

upright, so [6] proposes to learn the geometry of one object and its different

poses in the environment, and then it infers the function based on shape and

pose at current circumstance. However, there are limitations if the method is

based on object shape only, e.g., the discrimination among objects may be sim-

ilar in shape but different in function, so some indicate that the action of hu-

man or robotic agents plays an important role in recognizing objects?affordance

[50, 35], e.g., once the action of drinking is recognized, the object in hand can

be container regardless of the shape. Thus, incorporation of human’s or robotic

agents’ action on the object to infer affordance is proposed. [24, 22] propose to

imagine virtual action of human or robotic agent on a specific object and [22]

further proposes the inference of the object’s affordance based on a matching

procedure between object and action. Moreover, the context where actions hap-

pen [70, 19] is also suggested as the key to know the objects’ affordance, since

the context is considered as a strong priority demonstrated in some psychology

10



experiments [8, 48].

This thesis takes the first step towards deriving such scene and object affor-

dances from low level input without any supervision, and our focus is on indoor

scenes. We demonstrate some simple affordance analysis; one crucial task is to

find the support planes from the indoor scene, i.e. where to walk, sit and put

things on. For this aim, the geometry of scene and objects is adequate for infer-

ence. In particular, for walkable surface, the task after reconstruction is to find

the dominant support plane from the reconstructed scene geometry.

11
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Chapter 3

Proximal Robust Factorization with

Constraints from Planar Scenes

3.1 Technical Pre-requisites

In general, a plane in the 3D space can be written as

Z = ZXX + ZY Y + Z0 (3.1)

where Z0 is the offset along the Z axis, ZX and ZY are the slopes of the surface

w.r.t X , Y respectively. [56] showed that the optical flow in this local planar

y

x

Z

X

Y

o

Image plane

O

Figure 3.1: camera model
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3. PROXIMAL ROBUST FACTORIZATION WITH CONSTRAINTS
FROM PLANAR SCENES

patch can be represented by a first order affine model:

u(x, y) = u0 + uxx+ uyy +O2(x, y) (3.2)

v(x, y) = v0 + vxx+ vyy +O2(x, y) (3.3)

where x, y is the image coordinate, and the six affine flow parameters are given

by:

u0 = −Z3fTX − fωY , v0 = −Z3fTY + fωX (3.4)

ux = Z1TX + Z3TZ , vx = Z1TY − ωZ (3.5)

uy = Z2TX + ωZ , vy = Z2TY + Z3TZ (3.6)

In the above, Z1 = ZX

Z0
Z2 = ZY

Z0
Z3 = 1

Z0
, T = (TX TY TZ)T is the camera

translation velocity, ω = (ωX ωY ωZ)T is the camera angular rotation velocity,

and f is the focal length of the camera. Rearranging, we obtain the following

equation



u0

v0

ux

vx

uy

vy



T

=

[
TX TY TZ ωX ωY ωZ

]
(3.7)



−Z3f 0 Z1 0 Z2 0

0 −Z3f 0 Z1 0 Z2

0 0 Z3 0 0 Z3

0 f 0 0 0 0

−f 0 0 0 0 0

0 0 0 −1 1 0
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3.1.1 Rank Constraint on Multiple Plane Patches across Multi-

views

For the ith frame and jth patch, let us denote W
(j)
i = (uij0 v

ij
0 uijx v

ij
x u

ij
y v

ij
y )

T
,

Ui = (T iX T iY T
i
Z ω

i
X ωiY ω

i
Z)

T and Vj =



−Z(j)
3 f 0 Z

(j)
1 0 Z

(j)
2 0

0 −Z(j)
3 f 0 Z

(j)
1 0 Z

(j)
2

0 0 Z
(j)
3 0 0 Z

(j)
3

0 f 0 0 0 0

−f 0 0 0 0 0

0 0 0 −1 1 0


.

Stacking them as

W =



W
(1)T
1 W

(2)T
1 · · · W

(n)T
1

W
(1)T
2 W

(2)T
2 · · · W

(n)T
2

· · · · · · · · · · · ·

W
(1)T
F W

(2)T
F · · · W

(n)T
F


, U =

[
U1 U2 U3 · · · UF

]T
∈ RF×6

and

V =

[
V1 V2 V3 · · · Vn

]
∈ R6×6n, where F is number of views and n is the

number of plane patches, we obtain the multi-plane multi-view formulation:

W = UV (3.8)

from which we conclude that the rank of W is no larger than 6. In the ensuing,

we assume that the input W on the left hand side has been obtained; for details

on how the affine parameters in W are computed, please refer to Sec. 3.2.4.2.

Unlike the discrete approach to SFM, the dense representation of scene in

our method allows us to enforce not only a global rank constraint on W but also

a smoothness constraint on the 3D structure matrix V. Specifically, the factor-

ized 3D structure matrix V should be such that its constituent planar patches ex-

hibit piecewise smoothness; details of its formulation is given in Section 3.2.4.1.

Exploiting this natural scene constraint helps to regularize the problem and in

particular, renders the outlier detection much more robust. It is also evident
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3. PROXIMAL ROBUST FACTORIZATION WITH CONSTRAINTS
FROM PLANAR SCENES

from the form of Vj given in the preceding paragraph that some of its elements

should be subject to various equality constraints, what we referred to as struc-

tural constraint in the first section.

3.2 Proximal Robust Factorization with Scene and

Structural Constraints

Various modern subspace learning techniques [65, 13, 39, 27, 47, 11] provide

generic methods to recover low-rank matrices robustly in the presence of out-

liers, that is:

min
W,E

‖W − Ŵ + E‖2 (3.9)

s.t. rank(W) ≤ r

‖E‖0 ≤ N0

where Ŵ is the observed data, E is the sparse corruption data r is upper bounded

rank constraint and N0
1 is upper bounded number of outliers. All the ‖·‖s here

are the Frobenius norm. However, these generic methods cannot incorporate

the additional constraints present in our problem, namely, the constraints on the

factor V of W. As we will show later, imposing these constraints directly into

the optimization process itself (rather than as a post processing rectification) is

important in obtaining meaningful and well-posed solution. In particular, the

algorithm is more likely to correctly detect the outliers, and thereby correctly

decompose the observed Ŵ into the noise-free, low rank W and the outliers E.

To incorporate these constraints, we extend the PARSuMi [65] method. The

choice of PARSuMi is based on its superior performance compared to other

competing methods. We incorporate the constraints as follows:

1There is no conclusive number of N0 for all problems, but we would like to choose 50%
number of all entries in matrix as the upper bound since the reconstruction would fail if the
number of outliers exceeds 50% in synthetic experiments.
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min
W,E,V

‖W − Ŵ + E‖2 + β1‖W −UV‖2

+ β2

n∑
j=1

∑
t∈Nj

‖Ω ◦ (Vj −Vt)‖2 (3.10)

s.t. rank(W) ≤ r

‖E‖0 ≤ N0

BVec(V) = d

where Nj is the local neighbourhood of plane patch j. Compared with PAR-

SuMi, the additional term β2
∑n

j=1

∑
t∈Ni
‖Ωjt ◦ (Vj − Vt)‖2 in the objec-

tive stems from the scene smoothness constraint. Ωjt is a shorthand for ex-

tracting the relevant entries of V to impose the following smoothness term

Sjt([Zj
1 , Z

j
2 , Z

j
3 ] − [Zt

1, Z
t
2, Z

t
3]) and Sjt is a weight factor defined in Section

3.2.4.1. The last line in the constraint terms arises from the structural constraint

associated with V (Vec(·) vectorizes a matrix to a column vector). We want this

constraint on V to in turn influence the solution of W via W = UV, thus the

term β1‖W −UV‖2 in the objective. In Sec3.3.1.2, we will demonstrate that

it is essential both to seek a low rank subspace N and to satisfy the property of

matrix V

The algorithm proceeds by the minimization of the low-rank matrix W, the

structure matrix V, and the sparse matrix E alternatingly until convergence. The

efficiency of our method depends on the fact that the inner minimizations of W.

V and E admit efficient solutions. Basically, at step k, the three subproblems

update the respective variable as follows:
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min
V

β1‖Wk −UkV‖2 + β2

n∑
j=1

∑
t∈Nj

‖Ωjt ◦ (Vj −Vt)‖2 (3.11)

s.t. BVec(V) = d

min
W
‖W − Ŵ + Ek‖2 + β1‖W −UkVk+1‖2

+ β3‖W −Wk‖2 (3.12)

s.t. rank(W) ≤ r

min
E
‖Wk+1 − Ŵ + E‖2 + β4‖E− Ek‖2 (3.13)

s.t. ‖E‖0 ≤ N0

Note that the above iteration is different from applying a direct alternating min-

imization of (3.10). We have added the proximal regularization terms β3‖W −

Wk‖2 and β4‖E − Ek‖2 to make the objective functions in the subproblems

coercive and hence ensuring that Wk+1 and Ek+1 are well defined. Empirically

they are important for the critical point convergence of the sequence. We did

not add a similar proximal term in (3.11), since ‖Wk −UkV‖2 can be readily

shown to be equivalent to ‖V − Vk‖2 up to a multiplicative factor (using the

fact Uk = WkVkT (VkVkT )−1).

3.2.1 Update for V

Writing v = Vec(V), (3.11) can be written as

min
v

1

2
vTQv + cTv (3.14)

s.t. Bv = d
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This is a standard quadratic programming (QP) problem with a large number of

variables and linear constraints. We use a standard QP solver based on interior-

point technique to solve for v, from which we obtain the updated Vk+1.

3.2.2 Update for W

Following [65], we do not directly solve for W in the subproblem; instead, we

seek a low-rank N ∈ RF×6 whose column space is the underlying subspace of

W. This is a more parsimonious representation and is thus numerically more

advantageous to optimize.

For minW‖W− Ŵ + Ek‖2 + β1‖W−UkVk+1‖2 + β3‖W−Wk‖2 there

exists a closed-form solution which we denote as G:

G =
Ŵ + β3W

k + β1U
kVk+1 − Ek

1 + β3 + β1
(3.15)

Then the objective function to recover the subspace N becomes

min
N,C

‖G−NC‖2 (3.16)

s.t. NTN = I, N ∈ RF×6
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Of which the optimal solutions for N and C are given by the following:

[U S V] = SV D(G)

U =

[
U′ U′′

]

S =

S′ 0

0′ S′′


V =

[
V′ V′′

]
(3.17)

N = U′

C = S′V′T (3.18)

where SV D stands for singular value decomposition, U′ ∈ RF×6,U′′ ∈ RF×(F−6),S′ ∈

R6×6,S′′ ∈ R(F−6)×(6n−6) and V′ ∈ R6n×6,V′′ ∈ R6n×(6n−6).

The updated Wk+1 is

Wk+1 = NC (3.19)

U is also updated in this step, with Uk+1 given by:

Uk+1 = Wk+1Vk+1T (Vk+1Vk+1T )−1 (3.20)

3.2.3 Update for E

While a least squares minimization problem constrained by L0-norm term is

in general combinatorial in nature, the subproblem in (3.13) has a closed-form

solution, as was shown by section 4.3 of [65]. The closed-form solution E′ for

minE‖Wk+1 − Ŵ + E‖2 + β4‖E− Ek‖2 is

E′ =
Ŵ −Wk+1 + β4E

k

1 + β4
(3.21)
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We first find the N th
0 largest element in magnitude in E′ and denote it as EN0 .

Then the element (i, j) of the updated Eij is given by:

Ek+1
ij =


E′ij if ‖E′ij‖ > ‖EN0‖

0 else
(3.22)

Readers are referred to [65] for details.

The overall algorithm is summarized in Algorithm (1).

Algorithm 1 ParSuMi Factorization with Constraints

Input: Observed matrix Ŵ, parameter r, N0, Initialization W0, U0, E0,k = 0.
Repeat

1: Solve v (3.14) in the form of quadratic programming by interior point
method and update Vk+1

2: Compute Nk+1 and Wk+1 by (3.15), (3.19) and (3.17) respectively
3: Update Ek+1 by (3.21) and (3.22)

Until ‖W
k+1−Wk‖2

‖Wk+1‖2 ≤ η1 && ‖Vk+1−Vk‖2

‖Vk+1‖2 ≤ η2 && ‖Uk+1−Uk‖2

‖Uk+1‖2 ≤ η3 &&
‖Wk+1−Uk+1Vk+1‖2

‖Uk+1Vk+1‖ ≤ η4

3.2.4 Implementation Details

3.2.4.1 Scene Constraint

In implementing the smoothness constraint, we use bilateral filtering to prevent

smoothing across plane boundaries. In particular, we use colour intensity Ij =

(IjR, I
j
G, I

j
B) and texture Tj to describe each local plane patch Pj . (IjR, I

j
G, I

j
B)

is the mean intensity of the three colour channels in the patch, and the local

texture Tj is obtained by entropy filter analysis [43] . Let patch t, t ∈ Nj be the

neighbour of patch j; the neighbourhoodNj is defined as all those plane patches

t sharing part of the boundaries with patch j. The weight factor Sjt that weight

the neighbors t adaptively in Ωjt of (3.10) is then defined as

Sjt = exp (−‖Ij − It‖2

σ2
1

− ‖Tj −Tt‖2

σ2
2

)δ(ρjt > ξ) (3.23)
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The weight factor is also determined by the occlusion states of the patches

j and t. The last term in the above expression is an indicator function, which

returns 0 if the mean occlusion state (ρjt of all the pixels lying on the common

boundary of patches j and t) exceeds the threshold ξ, and 1 otherwise. Occlu-

sion state of individual pixel is computed by bidirectional (forward/backward)

consistency check of flow[52].

3.2.4.2 Affine Parameter Estimation

Define xj = (uj0 u
j
x u

j
y v

j
0 v

j
x v

j
y)
T as a vector of the unknown affine flow pa-

rameters in the local patch Pj and uj as the known optical flow of all the pixels

in the patch. Using equations (3.2) and (3.3), and collecting all unknown affine

parameter xj from all patches, we can form the following linear system of equa-

tions:

Ax = u (3.24)

where x = (xT1 xT2 ... x
T
n )T is the stacked affine parameters and u = (uT1 uT2 ... u

T
n )T

is the stacked optical flow vectors from the n local patches.

To regularize the affine parameters, our objective function incorporates a

smoothness term between neighboring patches similar to that used in the sub-

problem for V (3.11) and also applies a global rank constraint explained below:

min
x
‖Ax− u‖2 + µ1

n∑
j=1

∑
t∈Nj

Sjt‖xj − xt‖2 (3.25)

s.t rank(reshape(x)) ≤ 4

The affine parameters x = (xT1 xT2 ... x
T
n )T are restacked by the reshape operator
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to the following form (x1 x2 ... xn)T , which can be written as:

(x1 x2 ... xn)T =



u
(1)
0 v

(1)
0 u

(1)
x v

(1)
x u

(1)
y v

(1)
y

u
(2)
0 v

(2)
0 u

(2)
x v

(2)
x u

(2)
y v

(2)
y

...
...

...
...

...
...

u
(n)
0 v

(n)
0 u

(n)
x v

(n)
x u

(n)
y v

(n)
y


(3.26)

=



Z
(1)
1 Z

(1)
2 Z

(1)
3 1

Z
(2)
1 Z

(2)
2 Z

(2)
3 1

...
...

...
...

Z
(n)
1 Z

(n)
2 Z

(n)
3 1




0 0 Tx Ty 0 0

0 0 0 0 Tx Ty

−fTx −fTy Tz 0 0 Tz

−fωy fωx 0 −ωz ωz 0


and thus its rank is at most 4. Empirically, we found that in real images, despite

that there is already a rank 6 constraint on W, imposing the above rank 4 con-

straint still brings about small improvement, so it is always recommended. To

simplify the computation, we first minimize (3.25) without the rank constraint,

and then do a post-hoc correction using truncated SVD.

To further improve robustness against outliers, the random sample consensus

(RANSAC) is applied to each local patch. Those points deemed as outliers with

regards to equation (3.24) are removed from the optimization in (3.25).

Lastly, as real optical flow is not equally reliable everywhere in the 2d image,

we associate to each affine parameter vector estimate a confidence factor, which

is a product of three factors. They are:

1. a factor related to the image gradient strength in the patch (specifically the

mean of the top 15% largest gradient values
√
I2x + I2y in the patch)

2. a bidirectional consistency factor which is inversely proportional to the
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mean difference between the forward and backward optical flow in the

patch (discarding the top 20% largest flow differences as these might be

genuine occlusions, and small amount of occlusions can be handled by

RANSAC)

3. a factor related to the distance dj from the center of patch j to the image

center, as there is an increasing modelling error incurred by the affine

camera assumption as we move towards the image periphery. Specifically,

the factor is given by:

ρ(dj) =


1 dj < d

exp(−αdj) else
(3.27)

The final confidence cj for patch j is the mean value of the confidence factors

across all views. Attaching this confidence factor to the jth column of Ŵ and

W (Ŵ(j) and W(j) respectively), it yields the following weighted form of our

original optimization problem (3.28):

min
V

n∑
j=1

‖cj(W(j) − Ŵ(j) + E(j))‖2 + β1

n∑
j=1

‖cj(W(j) −UV(j))‖2

+ β2

n∑
j=1

∑
t∈Nj

‖Ωjt ◦ (Vj −Vt)‖2 (3.28)

s.t. rank(W) ≤ r

‖E‖0 ≤ N0

BVec(V) = d

The subproblems(3.11),(3.12),(3.13) are modified as

24



min
V

β1

n∑
j=1

‖cj(Wk −UkV)‖2 + β2

n∑
j=1

∑
t∈Nj

‖Ωjt ◦ (Vj −Vt)‖2 (3.29)

s.t. BVec(V) = d

min
W

n∑
j=1

‖cj(W(j) − Ŵ(j) + Ek(j))‖2 + β1‖W −UkVk+1‖2

+ β3‖W −Wk‖2 (3.30)

s.t. rank(W) ≤ r

min
E

n∑
j=1

‖cj(Wk+1(j) − Ŵ(j) + E(j))‖2 + β4‖E− Ek‖2 (3.31)

s.t. ‖E‖0 ≤ N0

The column weighting in the second term of (3.28)warrants some explanation.

While it might be argued there is no need to perform column-weighting other

than that arising from the source of uncertainties (i.e. the input Ŵ in the first

term), doing the column weighting in the second term helps the optimization to

converge to the correct solution more frequently. This is because the uncertain-

ties in Ŵ will spread to the estimate Wk and could lead the optimization astray;

explicitly coding this uncertainties in Wk too will allow the inner optimization

for V to place more trust on the prior term rather than the data term.

3.3 Experiments

In our experiments, we evaluate our algorithm using both synthetic data and real

image sequences.
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3.3.1 Evaluation on Synthetic Data

For input, we generate a sequence of motion matrices U ∈ RF×6 and n different

planes in random. Each plane is segmented into p patches. Both the structure

matrix V ∈ R6×6np and the matrix W ∈ Rm×6np can then be obtained. In

the computation of V for this synthetic case, instead of performing bilateral

filtering as in (3.11), we assume we have perfect knowledge on the distribution

of the scene discontinuities so that we are able to impose smoothness constraint

only between patches lying in the same plane. Henceforth, we denote the ground

truth version of the respective matrices with the subscript GT.

So we can have the groundtruth of W, U, V and perfect scene constraint.

3.3.1.1 Effects of Constraints on Results

In our first experiment on synthetic data, we evaluate the effectiveness of our

algorithm on sparse outlier detection vis-à-vis the scene constraint and the struc-

tural constraint. A series of frames (F = 19) with smooth motions is generated;

n = 10 planes are created and each single plane is segmented into p = 6 patches.

We add outliers to 0−50% of the entries of W. The magnitudes of these outliers

are set to the magnitude of the largest entries in W. In addition, dense Gaussian

noise N(0, σ) is also added to each column of W, with σ set to 5% of the mean

magnitude of the entries in that column. This serves as the noisy input Ŵ to the

factorization algorithm.

We then apply our algorithm (Algorithm 1) to Ŵ to obtain W, U, V, and

E. To demonstrate the crucial role played by the scene constraint and the struc-

tural constraint, we also apply two variants of Algorithm 1: one where we only

apply the scene constraint, and one where we just use the original PARSuMi al-

gorithm (i.e. without any constraints). Three measures are used to demonstrate

the difference brought about by these constraints. First, we measure the amount

of outliers that are correctly detected. This is given by the percentage of correct
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Figure 3.2: Performance with and without constraints.(a) is Percentage of Cor-
rect Detection on Outlier Locations. (b) is Relative Error of the Recovered W.
(c) is Planar normal error. The blue curves(ST+SC) represent our algorithm with
both structural and scene constraints, the green curves(ST) with only structural
constraint, and the red curves(PARSuMi(None)) without any constraints (just
PARSuMi for outlier removals).

detection of the outlier locations:

Ncorrect

max(NGT , Nrecovered)
(3.32)

where Ncorrect is the number of outliers whose supports are correctly identified,

NGT is the actual number of outliers and Nrecovered is the number of recovered

outliers. We also measure the extent to which the correct W is recovered:

‖W −WGT‖2

‖WGT‖2
(3.33)

The above measure may not tell the full story as far as estimation of scene

structure is concerned. Thus we also measure the average directional error in

the recovered plane normal. The results are shown in Fig. 3.2. It is clear

from Fig. 3.2 (a) that leveraging on the scene and structural constraints, our

algorithm is better able to recover the support of E under increasing amount of

outliers. Without any unexpected in Fig.3.2 (b) the accuracy of the recovered W

depending on the aforementioned constraints is much higher than on PARSuMi

with no constraints and just outlier removals. Finally, Fig. 3.2 (c) shows that

even when the recovered Ws seem to exhibit only small differences (between

our algorithm and one where only structural constraint is used), these differences
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could be important as far as scene recovery is concerned.

3.3.1.2 Effect of Global Objective Function on Results

Having seen the crucial role played by the scene and structural constraints, we

want to evaluate in this subsection the importance of incorporating these con-

straints integrally into a global objective function, like what we did in Algo-

rithm 1. This is contrasted against the following schemes which sequentially

remove outliers (via ParSuMi) and then enforce constraints separately via either

alternating least squares (ALS) or rectification:

1. ParSuMi (for outlier removal) + ALS (to incorporate constraints)

2. ParSuMi (for outlier removal) + rectification matrix Q (to enforce con-

straints)

Note that the original ParSuMi algorithm performs outlier removal and factor-

ization but does not handle constraints. Thus, in the first method above, the

ALS further improves the factorization by incorporating the constraints and then

solves for U and V alternatingly until convergence. The objective function for

the ALS is as follows:

min
U,V

‖W −UV‖2 + β
n∑
j=1

∑
t∈Nj

‖Ωjt ◦ (Vj −Vt)‖2 (3.34)

s.t. BVec(V) = d
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Figure 3.3: Plane normal error and camera motion error under dominant lateral
translation.

where W is the denoised output by ParSuMi. In the kth iteration, we update

Uk+1 and Vk+1 as follows:

Vk+1 = arg min
V
‖W −UkV‖2 + β

n∑
j=1

∑
t∈Nj

‖Ωjt ◦ (Vj −Vt)‖2 (3.35)

s.t.BVec(V) = d

Uk+1 = arg min
U
‖W −UVk+1‖2 (3.36)

In the second method, we seek a matrix Q that will rectify the U and V out-

put by PARSuMi, so that the conditions required by the constraints are fulfilled:

min
Q

n∑
j=1

∑
t∈Nj

‖Ωjt ◦ ((QV)j − (QV)t)‖2 (3.37)

s.t.BVec(QV) = d

The rectified solutions Û and V̂ are obtained as follows:

Û = UQ−1 (3.38)

V̂ = QV (3.39)

Lastly, we also tried out a variant with just ALS to enforce the constraints,

without any outlier removal.
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Figure 3.4: Plane normal error and camera motion error under dominant for-
ward translation.
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Figure 3.5: Plane normal error and camera motion error under translation and
rotation comparable in magnitude.

Four types of camera motions are evaluated: translation dominant, with di-

rection either forward or lateral, translation (lateral) and rotation comparable in

magnitude, rotation dominant. The remaining parameters such as F, n, p are the

same as in the preceding section, so are the amount of outliers and the type of

Gaussian noise added. Three measures are used to evaluate the performance of

our algorithm and the various alternatives with non-global objective functions:

average errors in the plane normals recovered, and directional errors in the cam-

era translation and camera rotation.

Fig. 3.3 and Fig. 3.4 show the error performance under a translation domi-

nant camera motion. Even though the accuracy of the recovered camera motion

under the lateral (Fig. 3.3) and forward camera motion (Fig. 3.4) is very simi-

lar, the recovered 3D structure under lateral translation is much better than that

under a forward translation. This is not surprising given previous findings [69]

about how lateral translation yields more reliable depth cues. In all these set-
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Figure 3.6: Plane normal error and camera motion error under dominant rota-
tion.

tings, our algorithm achieved the best performance. Not only it retained the

strong outlier removal capability of the original PARSuMi, all aspects of perfor-

mance are improved by the addition of relevant constraints.

Fig. 3.5 shows the error performance under the case of translational and

rotational flows having comparable magnitudes. Our algorithm and the ”PAR-

SuMi + ALS” variant achieved very similar results as in Fig. 3.3, whereas other

variants experienced some fluctuations in performance.

Fig. 3.6 shows the error performance under a rotation dominant camera

motion. Clearly, the strong rotation makes the recovery of translation and scene

structure much more problematic. In this case, there is little difference between

our algorithm and the ”PARSuMi + ALS” variant.

3.3.2 Evaluation on Real Data

For the real image sequences, different scenes are captured by a calibrated hand-

held camera. We next obtain the 2D local patches by the temporal superpixel

(TSP) algorithm [12] and dense optical flow by the DeepFlow algorithm [66].

The TSP algorithm is chosen because it yields temporally consistent superpixel

labels throughout the video sequence, with the label terminated if the superpixel

is occluded in a particular frame. This greatly faciliates our factorization setup

(we drop patches which are not visible in every frame). The method described

in Section 3.2.4.2 is then used to estimate the affine parameters and construct the
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(a) (b) (c) (d) (e) (f)

Figure 3.7: Visualization of reconstruction results. The various columns de-
pict the following respectively: (a) original image, (b) superpixel segmentation
overlaid on the optical flow color map, (c) and (d) depth and normal map (with
missing values) and (e) and (f) depth and normal map (with missing values filled
up by those of directly connected neighbors with similar intensity and texture.)

input matrix Ŵ to the factorization process. We choose β1 = 10−6

max(F,6n)
∗ 1.02k

(where k is the iteration number), β2
β1

= 2.5 and the proximal regularization term

β3 = β4 = 10−3

max(F,6n)
. For the distance threshold d, we choose d = atan (18◦)∗f .

In the ensuing subsections, we will present both qualitative and quantitative

evaluations.

3.3.2.1 Qualitative Evaluation

We present a visualization of the depth and normal map of the real image se-

quences to demonstrate our result qualitatively. For the depth map, the objects

nearer to the camera will be brighter than those further away from the camera

(with the nearest depth set to 255 and the furthest set to 50). For the normal map,
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we use the colors on a normal sphere to indicate the normal directions (last row

in Fig. 3.7).

Fig.3.7 shows the results from seven different sequences from both indoor

and outdoor scenes and with different motion types. The first five sequences

are captured by camera moving with predominantly lateral motion, with the

rest predominantly forward motion. The first four image sequences are indoor

scenes and the fifth sequence is the road sequence from [74]. As can be seen, for

the indoor scenes, our algorithm successfully extracted different planes under a

predominantly lateral motion. For the outdoor scene, most of the surfaces are

not strictly planar, but sufficiently planar when viewed from afar and thus our

algorithm also successfully reconstructed the scene in sequence five. In gen-

eral, the structure recovery is much better by camera with lateral motion than

that with forward motion (this is demonstrated in synthetic experiment too), not

only because of the reasons [69] mentioned in the preceding synthetic experi-

ments, but also because for optical flow generated from real image sequence,

a forward motion suffers greater modelling errors than that of a lateral motion.

Nevertheless, our algorithm successfully reconstructs parts of the scenes. In se-

quence 6, other than the noisy depths on the left side of the image, the rest of

the depths and the various plane normals are correctly recovered. In particular,

the horizontal support plane of the chair is successfully recovered. In sequence

7, the objects on the table are reconstructed well, but not so for most parts of the

couch. Together with sequence 6, the results for these two sequences demon-

strate the sensitivity of depth reconstruction under forward motion.

3.3.2.2 Quantitative Evaluation from Checkerboard Calibration

We use checkerboard calibration [10] to obtain planar orientation for the checker-

board with respect to the first camera, as well as the camera rotation and absolute

translation for each subsequent frame. Specifically, from checkerboard calibra-

tion, each camera frame rotation Ri i ∈ {1, 2, 3, ...., F} and absolute transla-
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tion Ti i ∈ {1, 2, 3, ...., F} w.r.t the checkerboard coordinate frame can be ob-

tained. We set the first frame as the reference frame. By equation (3.40),(3.41),

the ’groundtruth’ rotation R1m m ∈ {2, 3, 4..., F} and translation T1j j ∈

{2, 3, 4..., n} w.r.t the first camera’s coordinate frame can be calculated.

R1m = Rm/R1 (3.40)

T1m = R1mT1 − Tm (3.41)

T1m is the translation velocity of camera motion. By equation (3.42) we can

obtain the camera angular velocity ω = [ωx(t), ωy(t), ωz(t)].

R1m = I +W1mdt (3.42)

where W =


0 −ωZ(t) ωY (t)

ωZ(t) 0 −ωX(t)

−ωY (t) ωX(t) 0

 is the angular velocity tensor.

The normal direction of the checkerboard w.r.t. the checkerboard coordinate

frame is nc = (0, 0, 1) and it is transferred onto the first frame coordinate by

R1nc.

We then compare our results with those of the multiview dense reconstruc-

tion by G. Zhang et al [74] and the sparse reconstruction algorithm by Y. Dai

et al [16], for both motion and structure (represented by only the normal of

the checkerboard). The algorithm by [74] is representative of those dense re-

construction algorithms using traditional Bundle Adjustment approach, whereas

that of [16] is representative of state-of-the-art reconstruction algorithms based

on factorization. The sequences compared are the first, second, and seventh in

Fig.3.7, containing 10, 17, and 11 images respectively 1. Since in our method

the checkerboard is oversegmented into multiple superpixel patches by TSP, we

1While sequence 3 and 6 also contain checkerboard for ground truth calibration, the
checkerboard is far from the camera and with an almost fronto-parallel orientation, configu-
ration that is not conducive for accurate calibration results.
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Table 3.1: Quantitative Evaluation

Sequence Name Normal Err. (Deg.) Translation Err. (Deg.) Rotation Err. (Deg.)
ours G. Zhang[74] Y. Dai [16] ours G. Zhang [74] Y. Dai[16] ours G. Zhang [74] Y. Dai[16]

SQ. 1 7.4770 34.7304 51.8554 8.1465 13.8377 53.3743 73.5671 19.4221 116.5598
SQ. 2 8.9901 20.9990 20.0714 2.7288 3.2133 5.2512 97.1477 102.8634 58.2363
SQ. 7 49.6045 19.2127 122.8575 9.6247 17.4474 113.2668 90.4913 33.1826 78.9828

use the mean reconstructed normal of these patches to represent the orientation

estimate of the checkerboard. For [74] and [16], the normal for each patch is

obtained from the reconstruction points on the checkerboard by fitting a planar

equation nXX + nY Y + nZZ + c = 0 to the points (X, Y, Z), from which

(nX , nY , nZ) is recovered as the orientation of the planar patch. For the motion

estimates, we compare the errors in the translational and rotational directions.

The final error is the average error across all views

The results are shown in TABLE 3.1. Note that the three sequences are

captured by camera where the translation significantly dominates the rotation,

so the figures on rotation accuracy are not very meaningful. As can be seen,

our algorithm achieves the best performance in translation accuracy for all the

three sequences, and best performance in the planar orientation for two of the

sequences under lateral motion. For sequence 7 captured under forward camera

motion, the recovery of planar orientation is much more sensitive to noise. The

reason for this sensitivity is clear if we look at equations (3.4): the plane gra-

dients (ZX = −nX

nZ
,ZY = −nY

nZ
) are coupled to and thus carried by the lateral

translational terms TX and TY . If there is little or no lateral translation, it would

be very difficult to recover a good estimate of the plane gradients in the X- and

Y -directions.

As an aside, we note that if the camera motion is known to be predominantly

lateral (under which the convergence is much less prone to errors and initializa-

tion), a larger β1 and distance threshold d can be used for a faster convergence

rate.
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(a) (b) (c)

Figure 3.8: The respective columns depicts (a) the original image, (b) the dom-
inant planes with each color representing one plane, and (c) the support planes
with brightness indicating likelihood of being a good support.

3.3.3 Inference of support plane from planar reconstruction

One direct application from the planar reconstruction is to infer the affordance of

the scene. In this experiment, the dominant support planes upon which one can

perform actions like sitting, walking and placement of objects, can be inferred

from the orientation of the recovered planes. Assume there is a robotic agent

standing upright such that its visual axis is more or less parallel to the ground

plane. Those planes with normals near to the vertical y-axis of the robot’s ’eye’

(Fig.3.1) would be more capable of supporting things. Our scheme is that af-

ter clustering over-segmented superpixel patches into several dominant planes

using [38], a ranking of support likelihood based on the affinity between the

plane’s normal and the y-axis will be performed. For the clustering, the affinity

between 2 patches is based on the similarity of their normal −→n = (nX , nY , nZ)

and offset c , specifically, Aij = exp (−arccos (−→n i·−→n j)+α(ci−cj)2
σ2 ) , where · is the

dot product of 2 vectors. The result is shown in Fig.3.8. The brighter area in-

dicates planes with higher support likelihood. As we can see, despite a few
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clustering mistakes, (e.g. in the first row, the boxes and part of the book shelf

are merged into the background), the dominant support planes are still found,

e.g. the table and the floor in the first row, the support planes of the couch and

shelf in the second row and the support plane of the chair and floor in the last

row. The information of support planes can be very important for robotic agents

to decide an action or for virtual object placements in some AR applications.
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Chapter 4

Conclusions and Future Works

In this thesis, a robust and practical factorization algorithm to recover 3D mo-

tion and dense planar scene is proposed, given noisy optical flow as input. To

achieve this, we first developed the numerical machinery that can effectively

integrate all the relevant constraints in a global objective function, including

scene smoothness and algebraic constraint associated with the shape matrix. As

a consequence, our algorithm can robustly decompose the measurement ma-

trix into the underlying low-rank subspace and the inevitable outliers that are

present in real life SFM scenarios. We tested the algorithm under a wide variety

of motion-scene configurations. The results show that integrating all these rele-

vant constraints is crucial for reliable outlier removal, and for yielding a shape

matrix that is meaningful and interpretable. Furthermore a simple and effective

inference of support planes in the 3D indoor scene is proposed for the possible

actions on and placement of objects, which is important for indoor robotic agent

navigation and Augmented Reality System e.g indoor entertainment application.

For future works, firstly, a more global constraint on the estimation of optical

flow can be investigated so as to obtain more robust results based only on a local

smoothness prior. These constraints include rigidity, or more generally, multiple

rigid motions. The challenge lies in how to incorporate them in an integral

manner into our factorization formulation (as opposed to a preprocessing step
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in our current formulation) which is a non-trivial problem.

For a second related future work, updating the changes in a scene is a fre-

quent need.The update can be done with more semantics than what has been

addressed in this thesis. The work of my thesis can be the first step to obtain

a dense reconstruction result in a scene. Object recognition could then be in-

volved using the planar surfaces and appearance information. By combining the

two steps, a reliable dictionary for the scene can be built. Subsequent update

can be performed on the dictionary.
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