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Abstract 

Breast cancer development is a multistep progression that leads to an accumulation 

of genetic alterations. Other than genetic mutations, epigenetic changes also contribute to 

tumorigenesis and one of the key players is EZH2. EZH2 exerts its epigenetic repression 

activity over its target genes via histone modification, and its aberrant overexpression in 

breast cancer leads to repression of multiple tumor suppressor genes. At the same time, 

another key oncogenic driver, FOXM1, has also been consistently shown to be 

upregulated in breast cancer and is associated with aggressive type of breast cancer. In 

this study, we sought to dissect the crosstalk between EZH2 and FOXM1 in aggressive 

TNBC.  

By combining our microarray data analysis in TNBC cell line with mRNA 

expression profiling using TCGA patient database, we observed an overlap between 

EZH2 and FOXM1 target genes in both proliferation and invasion pathways. 

Interestingly, we also observed an inverse correlation between EZH2 and its PRC2 

complex target genes suggesting a non-canonical function of EZH2 in the context of 

aggressive TNBC subtype. Subsequent in-vitro cell-based assays showed that EZH2 

positively modulated FOXM1-mediated invasion pathway. Through co-

Immunoprecipitation, we demonstrated a physical interaction between EZH2 and 

FOXM1 and through ChIP qRT-PCR assay, we found co-occupancy of EZH2 and 

FOXM1 on the promoter of MMP2 and MMP7. 

Despite the inverse correlation between EZH2 and PRC2 complex target genes, this 

canonical function of EZH2 was not completely lost in TNBC subtype. In accordance to 

this, we also identified occupancy of PRC2 complex and its associated repressive 
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H3K27me3 mark on the same MMPs promoters. This observation revealed dual role of 

EZH2 acting in an antagonistic manner study, the crosstalk between EZH2 and FOXM1 

activated the MMP-mediated invasion while the canonical EZH2/PRC2 complex 

mediated epigenetic repression. This epigenetic repression was reversed in response to 

nutrient stress and the equilibrium was tilted toward the MMPs promoters’ transactivation 

by EZH2/FOXM1 complex, as evident from increased MMPs mRNA levels and 

heightened invasive capacity.   

Taken together, this study proposed a model highlighting dual regulation of EZH2 in 

regulating MMP-mediated invasion in TNBC subtype. The balance between canonical 

and non-canonical roles of EZH2 could possibly be the determining factor in promoting a 

more aggressive breast cancer. 
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1.1 Epidemiology of Breast Cancer 

Breast cancer is one of the leading causes of cancer mortality in female malignancy, 

accounting to approximately half a million cancer related deaths worldwide (Ferlay et al. 

2015). The disease accounts for 25.2% of all female cancer diagnoses globally and up to 

29.3% in Singapore, where the lifetime risk is one in sixteen (2013).  

Based on Singapore cancer registry, there has been a 65.9% increment in the age-

standardized mortality rate over the past three decades, which is the highest among all of 

the reported cancer deaths in female population (2012b). However, the 5-year age-

standardized observed survival rate has seen an improvement of 72.3% for the same 

period of time. This improvement is largely attributed to the early detection through 

screening and advances in cancer therapy in recent years. 

 

1.1.1 Anatomical Structure of Breast Tissue 

The subcutaneous anatomical structure of female breast tissue consists of breast 

parenchyma supported by a complex network of stroma, adipose, vascular and lymphatic 

systems (Figure 1.1.) (Jesinger 2014).  The breast parenchyma is made up of lobules and 

ducts, the milk-producing glands and the milk-carrying tiny tubes/tracts respectively and 

it is at either of these sites that a breast cancer is first initiated and confined. In the 

absence of medical intervention, the tumor cells have a potential to become invasive by 

infiltrating adjacent tissues.  

The invasive breast cancers that first arise from the lobules are known as invasive 

lobular carcinomas (ILC), while those arise from the ducts are known as invasive ductal 
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carcinomas (IDC). Approximately 80% of breast cancer occurrences belong to the IDC 

group (Sandhu et al. 2010) hence, it warrants both medical and research attentions. 

 

                   

 
Figure 1.1. Anatomical structure of female breast tissue and origin of site for different 
types of invasive breast carcinomas. 
A. Anatomical structure of female breast tissue at a subcutaneous level showing an intricate 

subcutaneous network lobules and ducts supported by adipose tissue. (Figure extracted 
and modified from (Jesinger 2014).) 

B. Origin of site for incidence of IDC and ILC. Blue color-code denotes cancerous tissues. 
(Figure extracted and modified from http://www.drugs.com/health-guide/breast-
cancer.html, assessed on 4th June 2015.)    

 

1.1.2 Molecular Subtypes of Invasive Ductal Carcinoma  

One of the characteristics of a solid tumor is intra-tumor heterogeneity. This is 

especially evident within patients diagnosed with IDC displaying different clinical 

presentations; diverse morphological feature, molecular signaling, metastasis pattern and 

Ducts 

Lobules 

Adipose Tissue 

Muscle 

Ribs 
A B 

http://www.drugs.com/health-guide/breast-cancer.html
http://www.drugs.com/health-guide/breast-cancer.html
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clinical outcome. Early attempts to deconstruct the biological heterogeneity by 

comparing global gene expression analysis in normal and IDC have identified four 

distinct intrinsic subtypes of breast cancer (Perou et al. 2000; Sorlie et al. 2001; Sorlie et 

al. 2003): Luminal A, Luminal B, HER2-enriched and Basal-like subtypes (Figure 1.2.). 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1.2. Four molecular intrinsic subtypes of invasive ductal carcinoma. 
Differential immunohistochemical staining for estrogen receptor (ER), progesterone receptor 
(PR) and human epidermal growth receptor (HER2) on multiple breast tumor tissues 
identified four subtypes of breast cancer. Panels A-D: Luminal A subtype immunostains 
positive for ER and PR. Panels E-H: Luminal B subtype immunostains positive for ER, PR 
and HER2. Panels I-L: HER2-enriched subtype immunostains positive for HER2. Panels M-
P: Basal-like subtype immunostains negative for all receptors. (+) denotes positive 
immunostaining and (–) denotes negative immunostaining. (Figure was extracted and 
modified from (Sandhu et al. 2010).) 

 

 

 

A          B    C           D 

E          F    G           H 

I          J    K           L 

M          N     O           P 



5 
 

1.1.2.1 Luminal Subtype 

Approximately 70-75% of IDC express hormone receptors i.e. ER+ and PR+ breast 

cancers and they are classified as a luminal breast cancer subtype (Sandhu et al. 2010). 

Based on the differential HER2 expression and proliferation rate, this particular subtype 

can be further subclassified into luminal A (ER+, PR+ and HER2-) and luminal B 

subtypes (ER+, PR+ and HER2+) (Figure 1.2.) (Perou et al. 2000; Sorlie et al. 2001; 

Sorlie et al. 2003; Sandhu et al. 2010).  

Due to the presence of hormone receptors, patients diagnosed with luminal subtype 

generally response well toward endocrine therapy targeted against ER and PR receptors, 

and are associated with good prognosis (Figure 1.3.). However, within the luminal 

subtype, luminal B is associated with a worse prognosis compared with luminal A. The 

difference in the clinical outcome is due to differential responses toward endocrine 

therapy (Brenton et al. 2005). 

 

 

 

 

 

 

 

 

 

 



6 
 

 

 

 

 

 

 

 

 

Figure 1.3. A Kaplan-Meier survival plot in IDC patients. 
A survival plot for 294 IDC patients stratified according to their molecular intrinsic subtypes. 
Dark and light blue lines denote patients subclassified under luminal A and luminal B 
subtypes respectively. Pink line denotes patients subclassified under HER2-enriched subtype 
and red line denotes patients subclassified under Basal-like subtype. P-value was calculated 
using the Log-rank test. (Figure was extracted and modified from (Sandhu et al. 2010).) 

 

1.1.2.2 HER2-enriched Subtype 

HER2-enriched subtype is accounted for approximately 20% of IDC patients. This 

particular subtype does not express any hormone receptors however, it is characterised by 

a gene amplification of v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 

(ERBB2), resulting in an overexpression of HER2 receptor.  

Patients with HER2-enriched subtype was known to be associated with the worst 

prognosis among IDC patients (Figure 1.3.). However, with the development of targeted 

therapy against HER2 receptor, this subtype of patients have experienced significant 

improvement in the clinical outcome (Baselga et al. 2006). 

 

n = 294 
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1.1.2.3 Basal-like or Triple Negative Breast Cancer (TNBC) Subtype  

Of these 4 molecular intrinsic subtypes, basal-like subtype is of particular interest 

due to its highly aggressive clinical behavior and is associated with poor prognosis 

(Figure 1.3.). Basal-like subtype is characterized by the lack of all three receptors (ER-, 

PR-, HER2-) and is often called triple negative breast cancer (TNBC) subtype. This 

particular subtype accounts for approximately 15% of IDC patients (Foulkes et al. 2003). 

The terms basal-like and TNBC subtypes are used interchangeably however, basal-

like subtype is distinct from TNBC subtype by the differential expression of cytokeratin 

5/6 and epidermal growth factor receptor (EGFR) (Sandhu et al. 2010). On the other 

hand, the term basal-like is not commonly used in a clinical setting hence, basal-like 

subtype is often classified as TNBC subtype. For the interest of this thesis, the term 

TNBC will be used instead. 

Even within the TNBC breast cancer, a high degree of heterogeneity has been 

observed and reported. By comparing gene expression profiles from 21 breast cancer data 

sets for TNBC gene signature, Lehman and colleagues have further identified 6 

subclassifications of TNBC subtype; basal-like 1 (BL-1), basal-like 2 (BL-2), 

immunomodulatory (IM), mesenchymal (M), mesenchymal stem-like (MSL) and luminal 

androgen receptor subtypes (LAR) (Figure 1.4) (Lehmann et al. 2011b).  

The highly proliferative nature of TNBC breast cancer is reflected by the 

identification of both BL-1 and BL-2 TNBC subtypes. Both subtypes are characterized 

by their high expression for genes involved in cell cycle and proliferation. Particularly in 

BSL-2, an additional high gene expression associated with metabolism has also been 

observed (Lehmann et al. 2011b).  
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As the name suggested, IM subtype is highly associated with activated immune 

processes. Although there was an initial concern of the enrichment for the immune 

signaling pathway could be the reflection of the tumor microenvironment rather than the 

intrinsic expression. However, with the identification of a similar proportion of 

microdissected tumor samples expressing activated immune signaling genes found across 

different patient cohorts, this concern has been eliminated (Lehmann et al. 2011b). 

Since TNBC is highly associated with aggressive clinical behavior, Lehman and 

colleagues have also identified a mesenchymal subclassification of TNBC subtype; M 

and MSL subtype, which are both associated with cell motility and differentiation 

processes. However, unique to MSL subtype is the association with cytokine signaling, 

angiogenesis and drug resistance-associated signaling pathways (Lehmann et al. 2011b).  

The last subclassification of TNBC subtype is known as LAR due to its high 

expression for hormonally regulated pathway. This particular subtype is the most unique 

among all of the TNBC subclassification because intrinsically, LAR breast cancer is 

negative for hormone receptor expression i.e. ER- and PR-. Instead, LAR subtype is 

driven by androgen signaling pathway and it shares a small degree of overlapping with 

MSL subtype (Lehmann et al. 2011b).  

Despite the advancement in the molecular stratification of TNBC breast cancers, the 

treatment is still limited to a conventional chemotherapy. This further reflects the 

complexity nature of TNBC associated with its clinically aggressive behavior. 
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Figure 1.4. Six 
subclassification 
of TNBC breast 
cancer subtype. 
Hierarchical gene 
clustering 
showing 
differently 
expressed genes 
used to subclassify 
TNBC subtype 
into BL-1, BL-2, 
IM, M, MSL and 
LAR. Gene 
ontology terms for 
top canonical 
pathways 
associated with 
each subtypes is 
shown. P-value 
was calculated 
using the Log-
rank test. (Figure 
was extracted and 
modified from 
(Lehmann et al. 
2011b).) 
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1.1.3 Aggressive Nature of TNBC 

Pathologically, TNBC breast cancers are characterised by higher proliferative rate, 

higher propensity to metastasize, greater risk of early relapses and higher rates of 

mortality compared with other IDC subtypes (Perou et al. 2000; Sorlie et al. 2001; Sorlie 

et al. 2003; Brenton et al. 2005; Carey et al. 2007; Sandhu et al. 2010; Lehmann et al. 

2011a; Isakoff et al. 2015; Telli et al. 2015).  

The higher propensity to metastasize, which is one of the characteristics of TNBC 

breast cancers, further underscores its highly aggressive clinical behavior (Perou et al. 

2000; Sorlie et al. 2001; Sorlie et al. 2003; Brenton et al. 2005; Carey et al. 2007; Sandhu 

et al. 2010; Lehmann et al. 2011a; Isakoff et al. 2015; Telli et al. 2015). This particular 

subtype has a tendency to disseminate to brain and lung, but less likely to metastasize to 

lymph nodes, liver or bone (Tsuda et al. 2000). This factor eventually contributes to a 

high degree of mortality rate often observed in TNBC patients.  

Furthermore, Sorlie and colleagues have reported that 100% of TNBC patients 

succumb to their disease within 4 years of diagnosis (Sorlie et al. 2001). Some of the 

TNBC patients do respond to treatment however, a higher likelihood of relapse observed 

and it eventually contributes to a poor survival outcome (Carey et al. 2007). 

There are two properties of TNBC breast cancer that directly contribute to its 

aggressive nature associated with highly metastatic potential; stem cell maintenance 

(Wicha et al. 2006) and epithelial-mesenchymal transition (EMT) (Mani et al. 2008).  
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1.1.3.1 Contribution of Stem Cell to Aggressive Breast Cancer 

A high proportion of TNBC cancer cells express both surface makers of CD44 high 

and CD23 low and aldehyde dehydrogenase 1 (ALDH1A1), which are characteristics of 

breast cancer stem cell (Wicha et al. 2006). Wicha and colleagues proposed that these 

breast cancer cells with a stem cell-like phenotype directly attribute to high metastatic 

potential by maintaining a subset of TNBC cells with tumorigenic potential.  

However, not all TNBC cells expressing the stem-cell like profiles are stem cell per 

se. Furthermore, Visvader and colleagues argued that breast cancer stem cell could be 

originated from a differentiated cell that has acquired an ability for self-renewal 

(Visvader and Lindeman 2008). 

 

1.1.3.2 Contribution of EMT to Aggressive Breast Cancer 

Another property that confers metastatic potential to TNBC breast cancer is an EMT 

process. EMT is a transitional process in which epithelial cells lose their cell polarity to 

assume a more spindle-like phenotype, which is often associated with a more aggressive 

and invasive behavior in cancer cells (Hanahan and Weinberg 2011).  

Mani and colleagues showed that induction of transcription factors associated with 

EMT i.e. Snail or Twist is not only capable of transforming a normal mammary epithelial 

cell into a migratory mesenchymal-like phenotype, but also an acquisition of stem cell-

like phenotype (Mani et al. 2008). Since EMT phenotype is often overlapped with cancer 

stem cell phenotype, it remains unclear to which degree these two pathways contribute 

toward aggressive TNBC phenotype (Visvader and Lindeman 2008). 

http://en.wikipedia.org/wiki/Epithelial_cells
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Despite the conundrum between cancer stem cell and EMT, they both have a strong 

association with propensity to metastasize in breast cancer. The event leading to 

metastasis is first initiated by the degradation of basement membrane, following 

differentiation to a more motile mesenchymal phenotype facilitated by EMT process, 

before disseminating into distant organs (Shook and Keller 2003). One of the key 

components that aids in the disruption of basement membrane is matrix 

metalloproteinases (MMPs).  

 

1.1.3.3 Contribution of MMP to Aggressive Breast Cancer 

MMPs are a group of enzymes with the ability to disrupt extracellular matrix lining 

the basement membrane and it has been directly implicated in breast cancer progression 

(Boire et al. 2005).  MMPs can be further classified into six subgroups based on their structural 

domains: collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-

MMPs and other MMPs (Visse and Nagase 2003).  

Several reports have identified genetics polymorphisms found within the promoters 

of several MMPs, with majority resulting in their increased transcriptional activities, are 

associated with increased risk of breast cancer (Wieczorek et al. 2012). They include; 

MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP12, MMP13 and MMP21. 

The combined poor pathological features associated with TNBC breast cancers 

highlighted above together with its restricted option for any targeted therapy account for 

its higher rate of mortality among other IDC stubypes. These observations highlight the 

requirement to further examine the molecular aberrations associated with TNBC, in order 
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to uncover any potential molecular targets for the development of a better therapeutic 

treatment for this group of patients. 

 

1.1.4 Oncogenic Pathway Associated with TNBC 

The development of cancer in general is a multistep progression involving the 

activation of oncogenes and gradual loss of function of tumor suppressor genes. An 

intensive utilization of five hightroughput sequencing platforms involving DNA copy 

number array, DNA methylation array, exom sequencing, messenger RNA arrays, 

microRNA sequencing and reverse-phase protein arrays have identifed several 

dysregulated signaling pathway associated with TNBC cancer progression, which will be 

outlined here (2012a). 

 

1.1.4.1 The Role of Tumor Suppressor Loss in TNBC progression 

Tumor suppresor genes are known for their protective roles in normal cells against 

tumorigenesis. In their efforts to prevent tumorigenesis, they either repress the cell cycle 

progression of mutated cell in a bid to allow DNA repair machinery to fix the mutational 

error or potentiate the mutated cell to undergo cell death. Inadvertently, loss or 

inactivation of tumor suppressor genes does occur and those implicated in TNBC cancer 

progression are TP53, RB1, BRCA1 and PTEN (2012a).  

Tumor protein p53 (TP53) is a tumor suppressor gene encoding for p53 protein. 

Aptly named as guardian of the genome, p53 induces cell-cycle arrest and activates DNA 
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repair machinery in the event of cells exposed to various DNA-damaging induced 

stresses or mutagens (Yin et al. 2002). When the repair is not possible, p53 redirects the 

mutated cells to undergo apoptosis instead. Hence, loss of p53 contributes to tumor 

progression since the mutated cells are unable to undergo apoptosis and ultimately lead to 

their proliferation. Inactivation of TP53 has also been implicated in breast cancer and 

particularly in TNBC breast cancers, where approximately 84% of TNBC breast cancers 

exhibit loss of p53 function (2012a). 

In addition to loss of p53 function, loss of retinoblastoma 1 (RB1) tumor suppressor 

gene is also another feature only seen in TNBC breast cancers (Herschkowitz et al. 2008). 

It encodes for a nuclear phosphoprotein that regulates the cell cycle progression from G1 

to S phase and inactivation of both of its alleles resulting in a rare chilhood malignancy, 

retinoblastoma (Weinberg 1995). Approximately 20% of TNBC breast cancers show loss 

or mutated pRb, which is not observed in other IDC subtypes (2012a). 

BRCA1 (Breast cancer 1, early onset) tumor suppressor gene encodes for BRCA1 

protein has several roles in cellular processes, which involved maintenance of 

chromosomal stability, DNA repair, cell cycle and apoptosis (Yoshida and Miki 2004). 

Collectively, those roles help to protect cells in response to DNA damage and germline 

mutation of BRCA1 has been associated with TNBC breast cancers (Bhattacharyya et al. 

2000; Foulkes et al. 2003; 2012a). 
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1.1.4.2 The Role of Oncogenic Activation in TNBC Progression 

Other than loss of tumor suppressor genes, several activations of oncogenes have 

also been reported in TNBC breast cancers and they are PIK3CA, AKT3, MYC, HIF1A 

and FOXM1 (2012a). Both phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic 

subunit alpha (PIK3CA) and v-akt murine thymoma viral oncogene homolog 3 (AKT3) 

form a signal transduction pathway, PI(3)K/AKT pathway, commonly abberated in breast 

cancer and its activity is the highest in TNBC (2012a). It has been suggested that high 

activity of PI(3)K/AKT pathway in TNBC is in part due to loss of a tumor suppressor 

phosphatase and tensin homolog (PTEN) and/or gene amplification of  PIK3CA (2012a). 

The MYC (v-myc avian myelocytomatosis viral oncogene homolog) proto-oncogene 

encodes for a transcription factor with diverse cellular processes in proliferation, 

transformation, apoptosis and glycolysis (Dang 1999). Amplification of MYC has been 

implicated in breast cancer progression (Mariani-Costantini et al. 1988; Munzel et al. 

1991) and particularly in TNBC subtype with 40% of TNBC breast cancer samples 

exhibit MYC focal gain (Chandriani et al. 2009; 2012a). 

As breast cancer cells grow in 3-dimensional structure in-vivo, some of the tumors 

contain hypoxic regions due to their distant location from accessible blood vessels. 

Cancer cell has adopted several mechanisms to survive the decrease in oxygen 

availability and one of them is an activation of hypoxia inducible factor (HIF) 

transcription factors; HIF-1 and HIF-2 (Semenza 2012). HIF-1 and HIF-2 have different 

physiological roles with HIF-2 main role in adult red blood cell production (Haase 2010). 

HIF-1 forms a heterodimer between HIF-1α subunit and HIF-1β subunit. HIF-1α is 

degraded under normoxic condition via von Hippel–Lindau E3-ubiquitin ligase complex, 
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while HIF-1β is contitutively expressed (Wang et al. 1995). Abberant activation of HIF-

1α has been observed in breast cancer progression especially in mediating invasion and 

metastasis pathway (2012a; Gilkes and Semenza 2013). 

In addition, using PARADIGM, a method that allow simulataneous analysis of 

mutiple genome-wide sequencing platforms to predicts the degree of which a pathway’s 

activities are more altered in one group of biological samples than another (Vaske et al. 

2010), has also identified a comparably high activity of the HIF-1α, MYC and FOXM1 

(forkhead box protein M1) regulatory pathways exclusively in TNBC breast cancers than 

other IDC subtypes (Figure 1.5.) (2012a). This observation suggests that the above 

pathways could potentially be the driving events in TNBC progression and interestingly, 

those pathways also overlap with serous ovarian cancer network, suggesting a possible 

convergence in term of oncogenic pathway between these two solid tumors. 

 

 

 

 

 

 

 

 

 

 

 



17 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Integrated pathway analysis using PARADIGM.  
PARADIGM analysis reveals common networks in TNBC and Ovarian cancers. 
TNBC/Ovarian to luminal breast cancer associations are assessed using a basalness score. 
The analysis shows that HIF1A, FOXM1 and MYC pathways are highly activated in both 
TNBC and ovarian cancers than in luminal breast cancer. (Figure was extracted from 
(2012a).) 

 

1.1.4.3 The Implication of Deregulated Epigenetic Pathway in TNBC progression 

Alterations in the transcriptional program via activation of oncogenes and/or loss of 

function of tumor suppressor genes are not the only mechanisms that drive cancer 

progression. The configuration of the chromatin structure, which dictates the ability of 

transcription factors, cofactors or enhancers to bind to specific DNA sequences or the 

degree of which DNA and nucleosomes are compacted into a higher order structure, will 
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determine how genes are expressed or repressed. Hence, deregulation of signaling 

pathway is not always dependent on genetic alterations; epigenetic modifications also 

contribute considerably toward tumor initiation.  

Furthermore, there is a critical difference between genetic alterations and epigenetic 

modifications in term of restoration of gene expressions. Once genetic alteration takes 

place in a particular DNA sequence in a form of mutation, it will be difficult to restore 

the changes in its gene product. However, changes in the gene product due to epigenetic 

modification can be reversed with small molecule inhibitors targeting the histone-

modifying enzymes. 

Mechanistically, these epigenetic modifications involve series of post translational 

modifications at nucleosomal level, specifically the histone protein octamer coiled by 146 

basepairs of DNA sequence, which made up the core component of a nucleosome (Luger 

et al. 1997). Among those post translational modifications, the most well characterized 

epigenetic modifications are acetylation and methylation (Allfrey et al. 1964). 

There are two enzymatic families regulating the histone acetylation event: histone 

acetyltransferase and histone deacetyltransferase. The histone acetyltransferase was first 

discovered and isolated in yeast (Kleff et al. 1995; Brownell et al. 1996) and it is 

associated with transcriptional activation. Upon addition of an acetyl group to the 

positively charged lysine residue of histone proteins, it neutralizes the interaction 

between the histone proteins with the negatively charged DNA resulting in the disruption 

of the higher order chromatin structure (Shogren-Knaak et al. 2006). In contrast, histone 
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deacetyltransferase reverses the acetylation event and is associated with transcriptional 

repression (Taunton et al. 1996; Yang et al. 1996).  

Histone lysine methyltransferase is another enzymatic family that regulates the 

histone methylation at lysine residue of histone 3 or histone 4 via its conserved catalytic 

SET domain (Jenuwein et al. 1998).  The methylation event usually involves addition of 

1-3 methyl groups and depending on its substrate specificity, methylation at H3K4 and 

H3K79 are associated with transcriptional activation, in contrast to transcriptional 

repressive activity on H3K9, H3K27 and H4K20 (Martin and Zhang 2005). However, not 

all histone lysine methyltransferases catalyze the addition of methyl groups through its 

SET domain. DOT1 protein, which is conserved in both yeast and human with a role in 

cell cycle regulation, is able to methylate H3K79 and is associated with transcriptional 

repression (Feng et al. 2002). 

Due to their direct consequences in altering the chromatin structure and influencing 

the gene expression, deregulated epigenetic modifications have been implicated in 

tumorigenesis. Particularly in breast cancer progression, where an investigation into 

histone acetylation pattern in 58 breast surgical samples revealed that progression from 

normal breast to ductal carcinoma in situ and invasive ductal carcinoma was correlated 

with global reduction in the level of histone acetylation (Suzuki et al. 2009). In a separate 

study using a larger breast cancer cohort of 880 primary breast carcinomas, the low level 

of histone acetylation and methylation are further associated with TNBC and Her2-

enriched breast cancer subtypes, and it can be used as a predictive marker for early onset 

of breast cancer (Elsheikh et al. 2009).   
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1.1.5 Current Treatment for TNBC  

Due to the lack of well-defined molecular targets, TNBC patients represent a clinical 

challenge with no targeted therapy exists in clinical setting currently (Carey et al. 2007; 

Lehmann et al. 2011a; Isakoff et al. 2015; Telli et al. 2015). Currently, treatment for 

TNBC patients is restricted to standard adjuvant chemotherapy regimen. However, due to 

its heterogeneity nature, TNBC breast cancers respond differentially toward 

chemotherapeutic agents. Hence, knowledge toward the biology of TNBC breast cancers 

is vital in identifying potential targets and appropriate treatment.  

Several clinical trials that aim to target potential receptors selectively expressed in 

TNBC, based on the immunohistochemical staining, have demonstrated only modest 

improvement (Carey et al. 2012; Forero-Torres et al. 2015). One of these studies focusing 

on EGFR, of which expression is upregulated in TNBC breast cancers (Makretsov et al. 

2004; Sandhu et al. 2010; Lehmann et al. 2011b; 2012a; Baselga et al. 2013). However, 

subsequent studies showed that both the response rate and progression free survival in 

TNBC patients treated with combination of an EGFR inhibitor, cetuximab, and a 

chemodrug do not differ significantly with those patients treated with a chemodrug alone 

(Carey et al. 2012; Baselga et al. 2013).  

Other than EGFR, vascular endothelial growth factor 1 (VEGF) has also been shown 

to be upregulated in TNBC (Lehmann et al. 2011b), and it is another possible candidate 

for the development of targeted therapy. In earlier trials, combination of a chemodrug and 

an inhibitor for VEGF receptor, Bevacizumab, improved both response rates and time to 

progression in patients with metastatic TNBC (Miller et al. 2007). However, subsequent 

studies of this treatment regime failed to improve overall survival in TNBC patients 
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(Cameron et al. 2013). Another class of targeted therapy inhibiting the activity of tyrosine 

kinase receptor, sunitib, proved to be disappointing with issue of toxicity and failure to 

improve progression free survival in TNBC patients (Barrios et al. 2010).  

However, there are several promising targets, utilizing the biology of breast cancer, 

being explored currently. One of them is BRCA deficiency in TNBC breast cancers, 

which renders the cells unable to mediate homologous recombination DNA repair in 

response to DNA damage (Moynahan et al. 1999; McCabe et al. 2006). Thus, breast 

cancer cells with BRCA deficiency have heightened sensitivity toward DNA-damaging 

agents such as platinum salts, carboplatin and cisplatin, which binds directly to DNA 

forming DNA-platinum adducts with a consequent in DNA cross-link strand breaks 

(Bhattacharyya et al. 2000). Several studies have proven the efficacy of this platinum 

based chemodrug selectively in advanced TNBC breast cancers (Byrski et al. 2008; 

Sirohi et al. 2008; Silver et al. 2010). 

 Consequently, BRCA-deficient tumors are highly dependent on poly-AD-ribose 

polymerase (PARP) for their DNA repair process (McCabe et al. 2006). This observation 

suggests that inhibition of PARP could potentially increase the susceptibility of cancer 

cells (Farmer et al. 2005; Fong et al. 2009; Tutt et al. 2010). PARP is part of DNA repair 

mechanism similar to BRCA however, PARP repairs single-strand DNA breaks as 

opposed to BRCA, which repairs double-strand DNA breaks (Lord et al. 2006). The 

sensitivity of PARP inhibition is not necessarily dependent on BRCA deficiency; cancer 

cells that lack of homologous recombination DNA repair mechanism are also sensitive 

toward PARP inhibition (Farmer et al. 2005). A trial using a single agent PARP inhibitor, 

Olaparib, has shown impressive response rate for patients with BRCA-deficient 
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metastatic breast cancer with minimal toxicity (Tutt et al. 2010). Another ongoing phase 

3 trial investigating the benefit of addition of Veliparib, another PARP inhibitor, in 

combination with carboplatin and a standard chemodrug has shown an initial significant 

pathologic complete response in TNBC patient (clinicaltrials.gov identifier 

NCT02032277) (Negri et al. 2013).  

 

1.2 Molecular Biology of EZH2 in Breast Cancer 

EZH2 is first identified in the study of eye color patterning in Drosophila, in which 

the protein homolog in Drosophila, enhancer of zeste (E(Z)) is able to suppress 

expression of white gene for eye color (Jack and Judd 1979). Subsequently, the human 

homolog, EZH2, was identified (Kuzmichev et al. 2002) and both the drosophila and 

human homologs are found to form a protein complex, and both contain intrinsic 

methyltransferase activity with an affinity for histone 3 lysine residue 27 (Czermin et al. 

2002; Kuzmichev et al. 2002; Muller et al. 2002). The methyltransferase activity is a 

process of depositing a methyl group to histone tail and depending on the lysine residue; 

it will have either a repressive or an activation effect. In the case of EZH2, its 

methyltransferase activity predisposed a gene to a repressive state by condensing the 

chromatin structure. 

In terms of the regulation of EZH2 in the context of breast cancer, there are three 

well characterized transcription factors that directly regulate the expression of EZH2 

through binding to its promoter region; HIF, E2F and RAF/ERK/ELK signaling pathway. 

The promoter region of EZH2 contains HIF response element (HRE), and in the event of 

hypoxia HIF directly transactivates EZH2 expression through binding to HRE (Chang et 
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al. 2011). E2F, a transcription factor that involves in cell cycle regulation has also been 

reported to bind to EZH2 promoter (Ren et al. 2002). In resting cell, E2F is under 

inhibitory effect of retinoblastoma protein and it is activated upon phosphorylation of 

retinoblastoma. Activated E2F is then able to bind to its binding motif of EZH2 and leads 

to its induction. Lastly, study in HER2-enriched breast cancer has reported that RAF 

signaling has also been implicated in the activation of EZH2 expression (Fujii et al. 

2011).  

 

1.2.1 EZH2 as the Catalytic Subunit of PRC2 complex 

In human, EZH2 is the catalytic subunit of Polycomb Group proteins (PcG) and 

together with its non-catalytic partners; Suppressor of Zeste 12 (SUZ12), Embryonic 

Ectoderm Development (EED) and other histone binding proteins; they form a 

multiprotein Polycomb Repressive Complex 2 (PRC2) (Jones et al. 1998; Rietzler et al. 

1998; Schumacher et al. 1998; Sewalt et al. 1998; Cao et al. 2002; Kuzmichev et al. 

2002; Varambally et al. 2002; Bracken et al. 2003; Kleer et al. 2003; Kirmizis et al. 2004; 

Shi et al. 2007b; Tan et al. 2007; Margueron et al. 2009; Holm et al. 2010; Wagener et 

al. 2010; Lee et al. 2011a; Holm et al. 2012; Xu et al. 2012; Kim et al. 2013; Yan et al. 

2013). EZH2, through its SET domain that contains methyltransferase active site, 

facilitates repression of its target genes by modifying their chromatin structures via 

trimethylation of lysine residue 27 on histone 3 (H3K27me3) (Cao et al. 2002; 

Kuzmichev et al. 2002; Kirmizis et al. 2004). The PRC2 target genes are mostly involved 

in cell cycle regulation, DNA repair, cell fate and differentiation and cancer (Bracken et 
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al. 2003; Tonini et al. 2004; Zeidler et al. 2005; Bracken et al. 2006; Rouleau et al. 2007; 

Chamberlain et al. 2008; Maertens et al. 2009).  

EZH2 protein is made up of five functional domains as depicted in Figure 1.6. 

(Simon and Lange 2008). The N-terminal domain composed of Domain I and II provide a 

binding site for EED and SUZ12 respectively. The adjacent cysteine rich CXC domain 

and SET domain are both required for the catalytic function of EZH2 in mediating 

methyltransferase activity and subsequent repression of its target genes. The EZH2 itself 

lacks of enzymatic function despite having an intact SET domain and it needs to form a 

protein complex with at least two of its binding partners, EED and SUZ12 to achieve a 

robust methyltransferase activity (Cao et al. 2002; Cao and Zhang 2004b; Pasini et al. 

2004; Ketel et al. 2005; Montgomery et al. 2005; Nekrasov et al. 2005). 

 

 

 

 

Figure 1.6. Domain organization of EZH2 protein 
EZH2 protein contains five functional domains.  N-terminal domain I, which includes EED 
interaction domain (EID), provides a binding site for EED. Domain II serves as binding site 
for SUZ12. The adjacent cysteine-rich CXC domain and C-terminal SET domain are both 
required for histone methyltransferase activity. (Image extracted and modified from (Simon 
and Lange 2008)) 

 

1.2.1.1 EED as a Member of PRC2 complex 

EED is first identified using a yeast two-hybrid and in-vitro binding assays (Jones et 

al. 1998; Sewalt et al. 1998), which demonstrate its evolutionary conserved partnership 

with EZH2 in Drosophila, mouse and human (Jones et al. 1998; Rietzler et al. 1998; 

N-terminus                  C-terminus 
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Schumacher et al. 1998; Sewalt et al. 1998). The N-terminal domain of EED contains a 

putative PEST sequence; a peptide sequence that is rich in proline (P), glutamic acid (E), 

serine (S), and threonine (T); with a role in protein degradation (Sewalt et al. 1998). The 

adjacent domain contains five WD40 domains and they all participate in the protein-

protein interaction with EZH2 (Sewalt et al. 1998). Lastly, the C-terminal domain is the 

region that recognizes H3K27me3 and binds directly to the histone tail, which activates 

the methyltransferase activity of PRC2 (Margueron et al. 2009).  

Despite its critical role in facilitating methyltransferase activity, aberrant 

overexpression of EED in human malignancy was not known previously. The first 

documented studies of EZH2 overexpression in human malignancies, did not observe a 

concomitant increase of EED expression (Varambally et al. 2002; Kleer et al. 2003). 

However, a recent study showed that EED is implicated in the EMT process (Oktyabri et 

al. 2014). Upon stimulation with transforming growth factor-beta (TGF-β), EED 

expression is upregulated, which mediates a transcriptional repression on the promoter of 

E-cadherin (CDH1), and induces the morphological conversion of cancer cell associated 

with EMT.  

 

1.2.1.2 SUZ12 as a Member of PRC2 complex 

In 1995, Nagase and colleagues isolated a full-length cDNA clone from an acute 

myeloid leukemia (AML) cell line, KG-1 and designated the predicted gene as KIAA0160 

(Nagase et al. 1995). Subsequently, the predicted gene was associated with a recurrent 

chromosomal translocation at chromosome 7 in endometrial stromal sarcomas (Koontz et 



26 
 

al. 2001). Due to its position on the breakpoint sites at chromosome 7, recombination of 

these breakpoints resulting in a fusion of KIAA0160 with another zinc finger gene, JAZF1 

(Juxtaposed With Another Zinc Finger Gene 1), and KIAA0160 was renamed as JJAZ1 

(Joined to JAZF1). 

In 2001, Birve and colleagues noted that human SUZ12 was identical to KIAA0160, 

and in their subsequent functional study demonstrated that SUZ12 was required to 

repressed the homeotic genes in Drosophila (Birve et al. 2001). The involvement of 

SUZ12 in the PRC2 complex was first reported by Cao and colleagues, where they 

purified EZH2-EED complex and identified their co-localization with H3K27me3 mark 

at Ultrabithorax (Ubx) polycomb response element (Cao et al. 2002). They also reported 

that the EZH2-EED complex required the involvement of SUZ12 to exert a more robust 

histone methyltransferase activity. Similar to EZH2, aberrant overexpression of SUZ12 

has also been implicated in multiple human malignancies, including colon, breast and 

liver cancer (Kirmizis et al. 2003; Kirmizis et al. 2004; Kuzmichev et al. 2005; Li et al. 

2007). 

 

1.2.2 Collaboration of PRC2-Mediated Transcriptional Repression with Other 

Silencing Enzymes 

The repressive H3K27me3, deposited on the histone tail of specific genes, mediated 

by PRC2 complex only serves as an initiation repressive event, a second layer of a 

maintenance repressive event is required for a stable repression of a particular gene, and 

they are either facilitated by PRC1 complex (de Napoles et al. 2004; Wang et al. 2004; 
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Boyer et al. 2006; Bracken et al. 2006), DNA methyltransferase (Vire et al. 2006; Ohm et 

al. 2007; Schlesinger et al. 2007; Villa et al. 2007; Widschwendter et al. 2007) or histone 

deacytelase (HDAC) (van der Vlag and Otte 1999; Garrick et al. 2008) (Figure 1.7). 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.7. PRC2 complex facilitates transcriptional repression.  
PRC2 complex through EZH2 catalyzes H3K27 trimethylation which serves as a recruitment 
marker for either PRC1 complex, DNA methyltransferase (DMNT) or histone deacytelase 
(HDAC) to facilitate stable repression of certain genes through chromatin compaction. 
(Image adapted from (Chase and Cross 2011)) 

 

1.2.2.1 EZH2/PRC2 Complex Links to PRC1 Complex 

Several studies have identified the partnership between PRC2 complex and PRC1 

complex in mediating gene silencing. Furthermore, a genome wide analysis has identified 

co-localization of PRC2 complex, PRC1 complex and the associating repressive 

H3K27me level in the genes involved in embryonic development and cell fate decisions 

(Boyer et al. 2006; Bracken et al. 2006). A purification of PcG proteins in HeLa cells has 
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identified several members of PRC1 complex, they are; polycomb (PC), polyhomeotic 

(PH), B Lymphoma Mo-MLV Insertion Region 1 Homolog (BMI-1) oncoprotein and 

ring finger protein 1 (RING1); and despite varying composition of these subunits due to 

alternative homologues of PcG proteins, the gene silencing activity remains unaffected 

(Levine et al. 2002). 

During initiation of repressive event, PRC2 complex, through its EZH2 subunit, will 

catalyze H3K27me3 on its target gene. This repressive mark is recognized by the 

chromodomain of the PC subunit of PRC1 complex, which facilitates the recruitment of 

PRC1 complex to the target gene and the subsequent gene silencing (Cao et al. 2002; 

Fischle et al. 2003; Cao and Zhang 2004a; Boyer et al. 2006). The actual mode of gene 

silencing mechanism has yet to be fully elucidated however, several studies have 

proposed that PRC1 complex executes its polycomb silencing effect either through; 1) 

blocking of nucleosomal remodeling (Levine et al. 2002), 2) chromatin condensation 

(Francis et al. 2004), 3) ubiquitination on histone H2A lysine residue 119 (Cao et al. 

2005; Stock et al. 2007) and/or 4) blocking of transcriptional elongation (Guenther et al. 

2007; Stock et al. 2007; Zeitlinger et al. 2007). 

Despite the overlapping target genes of PRC2 and PRC1 complex, which suggests 

their concerted effort in mediating polycomb gene silencing, several studies in 

hematopoietic stem cells (HSC) showed an opposing roles for these 2 complexes (Jacobs 

et al. 1999; Lessard et al. 1999; Oguro et al. 2006; Majewski et al. 2010). However, 

whether the same epigenetic regulation could occur in other tissue models remains as an 

open discussion. 
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1.2.2.2 EZH2/PRC2 Complex Links to DNA Methylation 

PRC2-mediated histone methylation and DNA methylation on CpG islands have 

long been thought as two separate gene silencing mechanisms. However, a landmark 

study by Viré and colleagues demonstrated the requirement of both EZH2 through PRC2 

complex and DNA methyltransferase to effectively represses EZH2 target genes in 

osteosarcoma cells (Vire et al. 2006). This observation suggests that EZH2 serves to 

recruit DNA methyltransferase-1, DNA methyltransferase-3A or DNA methyltransferase-

3B and highlights the direct connection between these 2, previously thought to be 

distinct, gene silencing mechanisms.  

A subsequent study comparing both normal and cancer cells reveals that EZH2 target 

genes i.e. tumor suppressor genes, with low expression of H3K27me3 in normal cells, 

became hypermethylated at their CpG islands in cancer cells (Ohm et al. 2007). Ohm and 

Colleagues also proposed that dimethylation at histone 3 lysine residue 9 may contribute 

to the transition from histone methylation to DNA methyltransferase-mediated CpG 

methylation. Similar mechanism that involves the collaboration between PRC2-mediated 

histone methylation and DNA methyltransferase in mediating a more stable gene 

repression has also been reported in prostate, liver, lung, ovarian, breast and leukemia 

(Schlesinger et al. 2007; Villa et al. 2007; Widschwendter et al. 2007). 

 

1.2.2.3 EZH2/PRC2 Complex Links to Histone Deacytelase 

The relationship between EZH2 and HDAC is first reported by van Der Vlag and 

colleagues (van der Vlag and Otte 1999). In the yeast two-hybrid system for the cloning 
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of several cDNAs encoding human PcG protein, they found that only HDAC co-

immunoprecipitates with the EED protein and not with other PcG proteins. Furthermore, 

treatment with HDAC inhibitor, trichostatin A, relieves the PRC2-mediated 

transcriptional silencing effect suggesting the direct mechanistic link between these 2 

distinct global gene silencing systems.  

Similar mechanism has also been reported in the regulation of α-globin gene 

expression (Garrick et al. 2008). In non-erythroid cells, α-globin gene is not expressed 

due to the presence of PRC2 complex and their associating repressive H3K27me3 mark 

as well as hypoacetylation of its promoter region. Upon treatment with trichostatin A, 

PRC2 complex is depleted accompanied by re-expression of α-globin gene. 

 

1.2.3 Non-PRC2 Complex Function of EZH2 

There are growing evidences of histone methyltransferase independent function of 

EZH2 in multiple malignancies, suggesting a role of EZH2 beyond its PRC2-mediated 

repressive activity (Cha et al. 2005; Shi et al. 2007b; Tan et al. 2007; Holm et al. 2010; 

Lee et al. 2011b; Wei et al. 2011a; He et al. 2012; Holm et al. 2012; Lee et al. 2012; Xu 

et al. 2012; Jung et al. 2013b; Jung et al. 2013a; Kim et al. 2013; Yan et al. 2013; 

Gonzalez et al. 2014b; Gonzalez et al. 2014a). In this instance, oncogenic EZH2 exhibits 

a transcriptional co-activation function, and the switch from PRC2 dependent function to 

independent function often involves a post translational modification. 

A study in castration-resistant prostate cancer showed that phosphorylation of EZH2 

at its serine residue (phospho-EZH2 (S21)) by protein kinase B, also known as Akt, 
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mediates its interaction with androgen receptor (AR) and subsequent gene activation (Xu 

et al. 2012). A subsequent study indicated that phosphorylation of EZH2 inhibits its 

methyltransferase activity preventing the binding of phosphorylated EZH2 to histone 3 

(Cha et al. 2005). Paradoxically, phospho-EZH2 (S21) methylates AR instead and leads 

to activation of target genes involved in prostate cancer progression, without the 

requirement of any of PRC2 complex subunits. It is worth noting that despite high 

expression of EZH2 in prostate cancer however, there is no concomitant increase of 

global H3K27me3 level, indicating a role of EZH2 independent of its repressive PRC2 

complex function.  

A separate study in glioblastoma-multiforme demonstrated that by phospho-EZH2 

(S21) is also capable of methylating signal transducer and activator of transcription 3 

(STAT3), and it leads to its subsequent protein stability through increased 

phosphorylation of STAT3 at its tyrosine residue (Kim et al. 2013). These observations 

suggest that phospho-EZH2 (S21) could be the potential molecular switch for EZH2 from 

a canonical epigenetic repressor to a non-canonical transcriptional coactivator. 

Components of cell cycle dependent signaling have also been implicated in the 

phosphorylation of EZH2 particularly cyclin-dependent kinase 1 (CDK1) and cyclin-

dependent kinase 2 (CDK2), albeit with several conflicting results. Wei and colleagues 

reported that phosphorylation of EZH2 by CDK1 at threonine residue (phospho-EZH2 

(Thr487)) inhibits its methyltransferase activity by disrupting the interaction between 

EZH2 and its PRC2 complex subunits (Wei et al. 2011b). However, Wu and colleagues 

showed that the same phosphorylation residue promotes ubiquitination of EZH2 and 

leads to its subsequent protein degradation by proteasome (Wu and Zhang 2011). It is 
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possible that these functional discrepancies are due to the different cell type used or the 

different target genes being investigated. 

In luminal breast cancers, EZH2 has been shown to interact with ER and β-catenin, 

and together this complex enhances the target genes involved in estrogen and Wnt 

pathways (Shi et al. 2007a). Interestingly, they also reported a transactivation activity of 

EZH2 at its N-terminal domains suggesting that EZH2 could function as a transcription 

factor.  

Our group has also previously reported the PRC2 independent function of EZH2 in 

breast cancer using TNBC as our study model (Lee et al. 2011b). We identified novel 

partners of EZH2 with components of nuclear factor kappa B (NF-κB), RelA and RelB. 

This complex helps to activate NF-κB target genes independent of PRC2 complex 

subunits. At the same time, we have also found that both EZH2/PRC2 complex and 

EZH2/RelA/RelB complex co-exist in TNBC and it is quite possibly that they each have 

different target genes with a distinct regulation from each other’s. Subsequently, 

Gonzalez and colleagues also showed the same EZH2/RelA/RelB complex in TNBC with 

an addition of RNA polymerase II and SET1 protein (Gonzalez et al. 2014a). They 

demonstrated that this complex is involved in directly activating NOTCH1 expression 

resulting in expansion of TNBC stem cells. 

The Wnt signaling and EZH2 axis has also been studied in colon cancer, which 

identified a novel partner of EZH2, DNA repair protein proliferating cell nuclear antigen 

(PCNA)-associated factor (PAF) (Jung et al. 2013b). Together EZH2, PAF, β-catenin, 

RNA polymerase II and others mediators transactivate Wnt target genes. 
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Other than non-PRC2 complex function of EZH2 describes above, a non-canonical 

methyltransferase activity of EZH2 has also been reported to methylate non-histone 

proteins. EZH2 has been reported to methylate transcription factor GATA binding protein 

4 (GATA4) at its lysine residue (me-GATA4 (K299)) during fetal heart development (He 

et al. 2012). me-GATA4 (K299) leads to its dissociation with histone acetyltransferase, 

P300, which prevents it acetylation and subsequent reduction in transcriptional activity. 

In another study, EZH2 is reported to methylate a tumor suppressor protein, retinoic acid-

related orphan nuclear receptor α (RORα), in luminal breast cancer (Lee et al. 2012). The 

methylated RORα is first recognized by DCAF1 adaptor (damage-specific DNA binding 

protein 1 (DDB1)/cullin4 (CUL4)-associated factor 1) and is subsequently ubiquitinated 

and degraded by DDB1/CUL4 E3 ubiquitin ligase. 

Taken together, the role of EZH2 during both normal and development and 

tumorigenesis is more complex and intricate than previously thought. With its 

multifunctional regulatory roles as a transcriptional activator, transcriptional co-activator 

and even non-histone protein methyltransferase differs depending on cell types and target 

genes, it underscores the uniqueness of genomic and epigenetics regulations, and a 

possible convergence of these two fields mediated by EZH2. 

 

1.2.4 EZH2 as an oncogenic driver in TNBC 

Our previous results have demonstrated that the EZH2 is consistently overexpressed 

in both TNBC cell lines and patient samples (Tan et al. 2007; Lee et al. 2011b). 

Overexpression of EZH2 has also been reported in numerous solid and hematological 
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tumors, with a positive correlation between the level of EZH2 with tumor grade, 

metastasis propensity and poor survival rates (Varambally et al. 2002; Bracken et al. 

2003; Kleer et al. 2003; Wagener et al. 2010; Xu et al. 2012; Kim et al. 2013; Yan et al. 

2013). Interestingly, several studies have identified an inverse correlation between 

expression of EZH2 and the level of repressive H3K27me3 particularly in TNBC (Holm 

et al. 2010; Holm et al. 2012). By comparing tissue microarrays collected from 3 

different studies, herein termed as dataset 1, dataset II and GEX dataset (Figure 1.8), 

Holm and colleagues found that high expression of EZH2 but low level of H3K27me3 

repressive mark are only observed TNBC subtype. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Expression of EZH2 and H3K27me3 Levels across Multiple IDC Subtypes in 
3 Different Data Sets   
(A-C) Protein expression of EZH2 stratified by IDC subtypes in dataset I, dataset II and GEX 
dataset. (D-F) Abundance of H3K27me3 levels stratified by IDC subtypes in dataset 1, 
dataset II and GEX dataset. The tumor sample size for each subtype is shown at the top and 
ANOVA was used as a statistical analysis with P-values shown for each datasets. (Image 
extracted from (Holm et al. 2012)) 
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When the tumors were further stratified based on the expression of EZH2 and 

abundance of repressive H3K27me3, Holm and colleagues demonstrated that tumors with 

high level of EZH2 but low abundance of repressive H3K27me3 is a predictive marker 

for poor prognosis in breast cancer patients (Figure 1.9). This observation suggested that 

the epigenetic characteristics of PRC2 complex is reduced especially in TNBC subtype 

and it contributes to a poor survival rates. In addition, the high expression of EZH2 

observed in TNBC subtype could lead to non-canonical functions that directly contribute 

to the development of a more aggressive breast cancer, independently of its canonical 

repressive epigenetic role.  
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Figure 1.9. Survival Analysis in Breast Cancer patients    
Kaplan-Meier curves measuring 5 years of distant disease free survival (DDFS) in breast 
cancer patients are stratified by abundance of EZH2 in (A) dataset I and (B) dataset II and 
abundance of H3K27me3 in (C) dataset I and (D) dataset II. Log-rank tests was used as a 
statistical analysis with P-values shown for each datasets. (Image extracted from (Holm et al. 
2012)) 

 

As an oncogene, EZH2 has been implicated in breast cancer progression ranging 

from proliferation, invasion and stem cell maintenance. Among those well-defined EZH2 

target genes associated breast tumorigenesis are RAD51, RUNX3, FOXC1, CDH1 and 

CDKN1C (Cao et al. 2008; Fujii et al. 2008; Yang et al. 2009; Chang et al. 2011; Du et 

al. 2012). RAD51 encodes for RAD51 recombinase protein with a role in DNA double 

strand break repair (Yuan et al. 1998). Chang and colleagues reported that RAD51 

protein expression is under PRC2-mediated repressive activity where promoter of RAD51 
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is enriched for repressive H3K27me3 mark (Chang et al. 2011). Reduction of RAD51 

expression promotes breast cancer stem cell expansion through activation of 

RAF/pERK/β-catenin signaling.  

A study in luminal breast cancer cell line showed that both EZH2 and HDAC1 binds 

to the promoter of RUNX3 (Runt-related transcription factor 3), and either reduction of 

EZH2 or pharmacological inhibition of HDAC1 through trichostatin A induces the 

expression of RUNX3 (Fujii et al. 2008). The role of RUNX3 as a tumor suppressor 

protein is well established in gastric cancer, and its gene is frequently deleted or 

transcriptionally repressed during cancer progression (Brenner et al. 2004). Suppression 

of RUNX3 in luminal breast cancer through regulation of EZH2 and HDAC1 leads to 

subsequent induction of cell proliferation as a consequence of reduced downstream target 

of RUNX3, cyclin-dependent kinase inhibitor p21WAF/Cip1.  

EZH2 through its repressive PRC2 complex activity has been shown to downregulate 

the expression of forkhead box protein C1 (FOXC1) transcription factor in TNBC cell 

line (Du et al. 2012). FOXC1 is known for its role in cell differentiation and particularly 

during eye development (Mortemousque et al. 2004; Aldinger et al. 2009). Reduction of 

FOXC1 in TNBC cell lines helps promote cancer cell migration and invasion in-vitro and 

metastasis in-vivo. Overexpression of EZH2 is also shown to repress the expression of E-

cadherin, which leads to enhanced invasion in breast cancer (Cao et al. 2008). However, a 

more effective silencing of E-cadherin also requires the involvement of HDAC activity, 

further emphasizing the PRC2 complex-HDAC axis as a mode of transcriptional 

silencing mechanism. 
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Our group has previously reported the direct regulation of EZH2 through its PRC2-

mediated gene silencing effect on CDKN1C (Yang et al. 2009). We identified the 

enrichment of EZH2 in the promoter of CDKN1C, which coincides with the repressive 

H3K27me3 levels across multiple breast cancer cell lines. CDKN1C encodes for a cyclin-

dependent kinase inhibitor protein p57KIP2 protein, and it is known for its role as a tumor 

suppressor (Lee et al. 1995; Matsuoka et al. 1995). Consistent with its role, we also 

observed reduced expression of p57KIP2 across multiple breast cancer cell lines. However, 

upon treatment with EZH2 inhibitor, 3-deazaneplanocin A (DZNep), the level of 

H3K27me3 on the promoter of CDKN1C is reduced followed by increased expression of 

p57KIP2, further highlighting the direct link between repressive PRC2 complex and 

transcriptional repression in CDKN1C. 

Loss of BRCA1, which is highly associated with breast cancer progression, has also 

been linked to overexpression of EZH2, and currently there are two proposed mechanism 

on how EZH2 causes the decrease in BRCA1 expression in TNBC (Gonzalez et al. 2009; 

Gonzalez et al. 2011). In 2009, Gonzalez and colleagues showed that overexpression of 

EZH2, which is frequently observed in ER-negative breast cancers, blocks the 

phosphorylation of BRCA1 at its serine residue (phospho-BRCA1 (Ser1423)) (Gonzalez 

et al. 2009). The blocking of phospho-BRCA1 (Ser1423) leads to induction of several 

gene expressions involved in G2/M progression hence, overexpression of EZH2 is 

associated with increase proliferation in breast cancer. Unfortunately, the group did not 

address the biological significance of phospho-BRCA1 (Ser1423), instead they 

demonstrated that increased BRCA1 is associated with increased phospho-BRCA1 

(Ser1423) upon EZH2 knock down and vice versa. 
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Two years later, Gonzales and colleagues again reported that EZH2 mediates the loss 

of BRCA1 expression by preventing its nuclear localization in breast cancer cell line 

(Gonzalez et al. 2011). In order to achieve this effect, EZH2 activates Akt-1 and together 

they prevents nuclear translocation of phospho-BRCA1 (Ser1423) resulting in subsequent 

aberrant mitoses and genomic instability. Even though, they were able to provide neither 

a suppression mechanism of EZH2/Akt-1 on BRCA1 nor an activation mechanism of 

EZH2 on Akt-1 however, there is a clear association between high EZH2 and loss of 

BRCA1 activity in majority of breast cancers.  

 

1.3 Molecular Biology of FOXM1 in Breast Cancer 

Despite overexpression of EZH2 in numerous malignancies, multiple observations 

show the requirement of EZH2 to form a direct interaction with other molecules in order 

to exert its oncogenic property. Considering the cellular complexity, it is not unexpected 

for more than 2 molecules modulating a specific molecular event in concert. Particularly 

in invasion and metastasis pathways, which attribute to the higher risk of relapse in 

TNBC compared to other breast cancer subtypes. Another oncogenic driver known to be 

associated with TNBC is forkhead box protein M1 (FOXM1), where mitotic gene 

network mediated by FOXM1 is highly enriched in TNBC compared to Luminal breast 

cancers (2012a).  

Similar to EZH2, overexpression of FOXM1 has been reported across multiple 

human malignancies and it has also been identified as one of the most upregulated 

oncogenes in tumors (Okabe et al. 2001; Pilarsky et al. 2004; Dai et al. 2007; Ahmad et 



40 
 

al. 2010; Bhat et al. 2011; Lok et al. 2011; Wang et al. 2011; Yau et al. 2011; 2012a; 

Gong and Huang 2012; Halasi and Gartel 2012; Uddin et al. 2012; Xia et al. 2012; Chen 

et al. 2013; Li et al. 2013; Xue et al. 2014; Li et al. 2015). Although FOXM1 is a 

transcription factor best known for its regulation in mitotic progression (Laoukili et al. 

2008) however, hyperactivation of FOXM1 has been linked to invasion pathway and is 

associated with a higher metastatic potential (Korver et al. 1997; Dai et al. 2007; Ahmad 

et al. 2010; Lok et al. 2011; Yau et al. 2011; Gong and Huang 2012; Uddin et al. 2012; 

Xia et al. 2012; Chen et al. 2013; Li et al. 2013; Xue et al. 2014).  

 

1.3.1 The Evolution of Forkhead Box Gene Family 

FOXM1 belongs to an evolutionary conserved forkhead box (Fox) gene family, 

which is characterized by a common DNA binding domain termed the forkhead box 

domain or winged-helix domain (Weigel et al. 1989). The Fox gene family consists of 19 

subfamilies designated by an English alphabet i.e. FoxA-FoxS, with its subclasses 

designated by an Arabic numeral i.e. FoxA1, FoxA2 and FoxA3 (Kaestner et al. 2000). 

The conserved forkhead box DNA binding domain consists of an approximately 100 

amino-acid residues was first identified in Drosophila, where no known protein motif of 

similar sequence was found at that time (Weigel et al. 1989). The encoding cDNA 

sequence was later cloned in a rat model, where its function in transcriptional regulation 

was further characterized and is now known as FoxA1 (Lai et al. 1990).  

Since the discovery of FoxA1 as a homeotic gene in Drosophila development, 

numerous Fox-related genes have been identified in various species, and with each gene 

nomenclaturally assigned by their independent discoverers, it eventually posed a 
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challenge in keeping up with their discoveries and literatures (Kaestner et al. 2000). To 

address this issue, a proposal for a unifying symbol and a standardizing nomenclature 

based on a phylogenetic analysis on Fox-related genes in various species was 

implemented by a winged helix/forkhead nomenclature committee in 2000 (Kaestner et 

al. 2000).  
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Figure 1.10. Fox Protein Family Tree   
Phylogenetic analysis of Fox proteins in various species based on the amino acid sequence of 
the forkhead box domain. Bootstrap percentages are indicated in the interior branches (Image 
extracted from committee (Kaestner et al. 2000) 
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Due to the evolutionary conserved forkhead box DNA binding domain in different 

species, functional redundancy is often found in several Fox proteins. Particularly during 

lung morphogenesis in a developing mouse embryo, both FoxA1 and FoxA2 are co-

expressed in respiratory epithelial cells and the deletion of either one of the genes could 

be compensated by the other subclass (Wan et al. 2005). On the other hand, gene 

duplication event over long evolutionary period could result in a newly evolved gene 

with a distinct function from its ancestral gene. A study in FOXP2 orthologs in human, 

chimpanzee, gorilla, orang-utan, macaque and mouse uncovered an intraspecific variation 

of FOXP2 gene sequence and nucleotide polymorphism specifically in human, which 

favors language acquisition and vocal learner particularly in human species. 

Several Fox proteins have also been implicated in human malignancies such as 

FoxA, FoxC, FoxM, FoxO and FoxP proteins. Deregulated FoxA1 has been linked to 

breast cancer progression, where it acts as a co-factor for ER in luminal breast cancer 

(Carroll et al. 2005) and is required for cyclin D regulation with a consequent role in 

breast cancer proliferation (Eeckhoute et al. 2006). Other than high proliferative capacity, 

another fundamental component of malignancy is invasive capacity, and overexpression 

of FoxC2 in murine mammary carcinoma cells has been reported to play a crucial role in 

cancer cell invasion and metastasis by mediating EMT pathway furthermore, expression 

of FoxC2 is correlated with TNBC subtype in human breast cancer (Mani et al. 2007). 

Cancer cell invasion and metastasis can also be promoted through evasion of immune 

cell, and deregulated expression of FoxP3 promotes evasion of tumor immune 

surveillance through regulating T regulatory cells (Liu et al. 2007). In contrast, FoxO 

proteins are known for their roles as a tumor suppressor, where activation of both 



45 
 

FoxO3a and FoxO4 proteins induce cell cycle arrest (Kops et al. 2002). Furthermore, a 

broad somatic deletion of FOXO1, FOXO3A and FOXO4 induced a progressive tumor 

development characterized by thymic lymphomas and hemangiomas in a mouse model, 

highlighting not only the role of FoxO protein as a bonafide tumor suppressor, but also 

functional redundancy of FoxO subfamily (Paik et al. 2007).  

 

1.3.2 Different Isoforms of FOXM1 

In term of its structural gene arrangement, human FOXM1 gene consists of 10 exons 

and two of its exons, exon A1 and A2 (also termed as exon Va and VIIa respectively), are 

alternatively spliced at its transcript level generating 3 protein isoforms; FoxM1a, 

FOXM1b and FOXM1c (Figure 1.10) (Korver et al. 1997; Yao et al. 1997; Ye et al. 

1997). At protein level, FOXM1 contains 3 functional domains; N-terminal autorepressor 

domain (NRD), forkhead DNA Binding domain (FKH) and C-terminal transactivation 

domain (TAD) (Laoukili et al. 2008). The largest protein isoform, FOXM1a, retains both 

alternative exons and one of the exon, exon A2, is inserted within the C-terminal TAD, 

which disrupts its transactivation function (Ye et al. 1997). Hence, FOXM1a is reported 

to be transcriptionally inactive and may also act as a dominant-negative since it still 

retains a functional FKH domain and able to bind to its target genes.  
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Figure 1.11. Domain Organization of FOXM1   
FOXM1 gene consists of 10 exons with two of its exons; exon A1 and A2, alternatively 
spliced to generate 3 FOXM1 protein isoforms. FOXM1a retains both alternative exons, 
particularly in its transactivation TAD domain, rendering it transcriptionally inactive. While 
both FOXM1b and FOXM1c have functional transactivation and DNA binding FKH 
domains, rendering them transcriptionally active. (Image extracted and modified from 
(Laoukili et al. 2007)) 

 

Both FOXM1b and FOXM1c lack of the alternative exon A2 in their C-terminal 

TAD however, FOXM1c still retains the alternative exon A1 within its FKH domain (Ye 

et al. 1997). Due to functional C-terminal TAD, both FOXM1b and FOXM1c are 

transcriptionally active. Considering the role of FOXM1 protein as a transcription factor, 

these natural splice variants may have a role in modulating the activity of FOXM1 under 

different conditions. Although there is no intensive study done on functional regulation of 

FOXM1a isoform (Ma et al. 2005) however, it is likely that the transcriptionally inactive 

FOXM1a isoform may compete with transcriptionally active FOXM1b and FOXM1c 

isoforms in order to maintain a balanced gene regulation during normal development,  

It is worth noting that FOXM1b isoform is specifically expressed in human testis and 

skin while FOXM1c isoform is ubiquitously expressed in several primary and secondary 

cell lines as well as in embryonic tissues, suggesting that the tissue-specific alternative 

splicing might have a regulatory significance (Yao et al. 1997; Chaudhary et al. 2000; 

Human FOXM1 gene 

Protein 
 Isoforms: 

 

FOXM1A 
 

FOXM1C 
 

FOXM1B 

Alternative splicing at transcript level 

Transcriptionally 
 inactive 
 

Transcriptionally 
 active 
 

Transcriptionally  
active 

   

   

   
FKH 
 
FKH 
 
FKH 

NRD 
 
NRD 
 
NRD 



47 
 

Teh et al. 2002; Ma et al. 2005; Wierstra and Alves 2006b; Wierstra and Alves 2006a). It 

is likely that the presence of the alternative exon A1 in the FKH domain of FOXM1 will 

determine the DNA binding specificity and preferential of different FOXM1 isoforms to 

its target genes.  

Furthermore, several studies have shown that the alternative exon A1 contains RB 

binding motif hence, FOXM1c isoform is under negative regulation of RB and requires 

RAF/MEK/MAPK signaling for its activation (Ma et al. 2005; Wierstra and Alves 2006a; 

Wierstra and Alves 2006b; Lam et al. 2013). The stimulation by RAF/MEK/MAPK 

signaling helps in the processing of FOXM1c resulting into a more active and truncated 

form of FOXM1c isoform (Lam et al. 2013). On the other hand, FOXM1b that lack of the 

alternative exon A1 is not under the inhibitory effect of RB binding and hence, it does not 

require the proteolytic processing for its activation (Lam et al. 2013). As a consequence, 

FOXM1b isoform is upregulated in cancer cells with a higher transforming potential 

compared to FOXM1c despite both having similar transactivity potential. 

 

1.3.3 Post Translational Regulation on FOXM1 

Due to its key role in cell cycle progression and to prevent unscheduled entry into the 

cell cycle, both expression and activity of FOXM1 are strictly controlled and varied 

during cell cycle progression (Laoukili et al. 2008; Yau et al. 2011). The transcript level 

and protein expression of FOXM1 are not detectable in resting cells however, they are 

upregulated when cells are poised to enter cell cycle. The highest expression of FOXM1 

is found during late G1 phase and early S phase, and its expression is subsequently 
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sustained throughout the remainder of cell cycle progression (Figure 1.11) (Korver et al. 

1997; Yau et al. 2011). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.12. Post Translational Modification of FOXM1 Protein During Cell Cycle 
Progression 
Regulation of FOXM1 expression and activity are subjected to different layer of post 
translational modifications by Cyclin-CDK2 and other proteins at each cell cycle phase. At 
G1 and S phase, Cyclin D-Cdk4/6 and Cyclin E-Cdk2 inactivate retinoblastoma protein 
through phosphorylation, relieving the inhibitory effect on FOXM1 protein posed by 
retinoblastoma protein. It is at this phase that the initiation of the phosphorylated FOXM1 
protein takes place. At late S phase, both Cyclin A-Cdk2 and mitogen-activated protein 
kinase (MAPK) signaling cascade helps to further phosphorylate FOXM1 protein. FOXM1 
protein reaches its full activation at G2/M phase mediated by the corresponding mitotic 
kinases and possibly polo-like kinase-1 (Plk-1) protein. (Image extracted from (Laoukili et 
al. 2007))    
 

1.3.3.1 Post Translational Modification by Cyclin-CDKs 

 In order to exert its role as a transcription factor, FOXM1 requires further post 

translational modification for its activation. As cell cycle progresses, there will be a 

successive and cyclical expression, activation and inhibition of different cyclins and its 

interacting kinases; Cyclin D-CDK4/6 at G1 phase, Cyclin E-CDK2 at late G1 phase, 

Cyclin A-CDK2 at S phase, Cyclin A-CDK1 at G2 phase and lastly Cyclin B-CDK1 at 

mitotic phase (Figure 1.9) (Dehay and Kennedy 2007). These cyclin-CDKs will in turn 
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phosphorylate FOXM1 resulting in gradual increment in phosphorylated FOXM1 level 

and it reaches its maximum activity at mitotic phase (Laoukili et al. 2008). Major and 

colleagues reported that phosphorylated FOXM1 mediates the recruitment of 

transcriptional co-activator p300/CREB binding protein (CBP) and in turn helps with 

enhancement of FOXM1 transcriptional activity (Major et al. 2004; Chen et al. 2009). 

 

1.3.3.2 Positive and Negative Autoregulation 

Other than post translational regulation by cyclin-CDKs, FOXM1 also controls it 

own expression by having both positive and negative autoregulations (Laoukili et al. 

2008; Halasi and Gartel 2009). A study in osteosarcoma cell line showed that exogenous 

expression of FOXM1 is able to induce endogenous level of FOXM1 at both transcript 

and protein levels (Halasi and Gartel 2009). This positive feedback regulation is not seen 

in other members of Forkhead family, suggesting that FOXM1 preferentially induces its 

own expression by binding to its own promoter. On the other hand, Laoukili and 

colleagues showed that the N-terminal NRD of FOXM1 protein acts as an autorepressor 

domain, inhibiting the activity of FOXM1 protein during G1 and S phases (Laoukili et al. 

2008). In contrast, deletion or mutated RXL/LXL motifs on NRD results in constitutively 

active form of FOXM1 protein, relieved from its autoinhibitory regulation. 

Taken together, the expression and activity of FOXM1 are strictly and timely 

regulated in response to cell cycle progression during normal development. Any mutation 

in mitotic kinases, proliferative signaling pathways or even in FOXM1 protein itself 
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could potentially contribute to aberrant expression and activity of FOXM1, which are 

often implicated in the onset of cancer progression.   

 

1.3.4 Cellular Function of FOXM1 in Cell Proliferation 

As a proliferation associated transcription factor, not only FOXM1 regulates genes 

important for cell cycle progression, but also genes essential for chromosome stability 

and DNA repair to ensure a proper execution of cellular proliferation (Ye et al. 1999; 

Wang et al. 2002; Kalinichenko et al. 2004; Krupczak-Hollis et al. 2004; Laoukili et al. 

2005; Wonsey and Follettie 2005; Halasi and Gartel 2012). A study in FOXM1 knockout 

mice showed that FOXM1 deficiency leads to various organ defects due to decreased 

proliferation of progenitor cell (Krupczak-Hollis et al. 2004), suggesting its critical role 

in cell proliferation. Cellular cell proliferation is tightly linked to cell cycle progression 

and consistent with this, FOXM1 deficiency also results in reduced expression of cell 

cycle-associated genes especially for those mediating S, G2 and M phases of the cell 

cycle (Wang et al. 2002; Kalinichenko et al. 2004; Krupczak-Hollis et al. 2004).  

In contrast to FOXM1 knockout mice experiment, Ye and colleagues generated 

FOXM1 overexpression transgenic mice and showed that not only numerous genes 

associated with mitotic phase are upregulated in response to the transgenic 

overexpression, but also a premature onset of DNA replication and mitosis are observed 

(Ye et al. 1999). Interestingly, the transgenic overexpression effect does not cause any 

abnormal increased in proliferative capacity for non-proliferative tissue, suggesting that 

the effect of FOXM1 is only apparent for cells with high proliferative index. 
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Several microarray analyses identified FOXM1-regulated cluster genes centering on 

G2/M-phase associated genes, further refining the function of FOXM1 as a mitotic phase 

regulator (Laoukili et al. 2005; Wonsey and Follettie 2005). With their chromatin 

Immunoprecipitation (ChIP) assay, Laoukili and colleagues demonstrated direct binding 

of FOXM1 to the promoters of those G2/M-phase associated genes i.e. CCNB1 and 

CENPF, further confirming the role of FOXM1 as a mitotic regulator (Laoukili et al. 

2005).  

In contrast, loss of FOXM1 leads to a delay in G2 phase progression, chromosome 

mis-segregation, mitotic spindle defect and ultimately resulting in mitotic catastrophe 

(Laoukili et al. 2005; Wonsey and Follettie 2005). More importantly, the expression 

profiling also uncovers several new set of FOXM1 target genes other than cell cycle-

related genes involved in metabolism, extracellular matrix remodeling and other 

transcriptional regulation (Laoukili et al. 2005; Wonsey and Follettie 2005).  

Collectively, the above mentioned studies suggest a pleiotropic regulation of FOXM1 

beyond cell proliferation. 

 

1.3.5 Cellular Function of FOXM1 during Oxidative Stress 

Reactive oxygen species (ROS) is a natural biological event produced regularly 

during aerobic condition in mammalian cells (Benz and Yau 2008). ROS is generated in 

mitochondria in several forms, which includes superoxide radical (O2-), hydrogen 

peroxide (H2O2), hydroxyl radical (.OH) and singlet oxygen. To maintain physiological 

condition favorable for normal cell developments, mammalian cells are equipped with 



52 
 

antioxidant defense mechanism to scavenge for the excessive ROS, and FOXM1 has 

been implicated in this process (Park et al. 2009; Halasi et al. 2013).  

Following induction of ROS, FOXM1 regulates the expression of several antioxidant 

gene expressions i.e. Superoxide Dismutase, Catalase and Peroxiredoxin 3 (Park et al. 

2009). This negative feedback loop mediated by FOXM1 in response to ROS production 

helps to protect and to promote survival of both normal proliferating and tumor cells from 

oxidative stress. Moreover, Park and colleagues also identified oncogenic Ras is 

implicated in this oxidative stress response (Park et al. 2009). Oncogenic Ras induces 

cellular levels of ROS, which in turn leads to activation of FOXM1 expression as a 

negative feedback response.  

Tumor cells expressing oncogenic Ras with elevated expression of FOXM1 during 

oxidative stress, which correlates with the production of antioxidant enzymes, are 

resistance to premature senescence and apopotosis (Park et al. 2009). As a biological 

consequence, tumor cells are addicted to FOXM1 for their survival during oxidative 

stress. Depletion of FOXM1 either by small interfering RNA knockdown or 

pharmacological inhibition of FOXM1 using bortezomib or thiostrepton, reverses the 

protective role from oxidative stress conferred by FOXM1 (Halasi et al. 2013).  

 

1.3.6 Cellular Function of FOXM1 in Mediating Drug Resistance 

Overexpression of FOXM1 has also been implicated in acquired chemoresistance, 

particularly in breast cancers (Carr et al. 2010; Kwok et al. 2010). To investigate the role 

of FOXM1 in acquired drug resistance, Kwok and colleagues generated a cisplatin-
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resistant breast cancer cell line (Kwok et al. 2010). They demonstrated that elevated 

expression of FOXM1, at both transcript and protein levels, is seen in resistant cell line 

and it correlates with upregulation of genes involved in DNA repair mechanism, 

particularly BRCA2 and X-ray cross-complementing group 1 (XRCC1). Ablation of 

FOXM1, either through small interfering RNA knockdown or thistrepton treatment, 

abrogates the DNA damage repair pathway, and causes proliferative arrest and cell death 

in resistant cell line (Kwok et al. 2010). 

In another study, overexpression of FOXM1 confers drug resistance in several 

HER2-enriched cell lines in response to Herceptin and paclitaxel (Carr et al. 2010). 

Herceptin is a targeted treatment designed for HER2-enriched breast cancer. However, 

only a modest response is observed in a single agent Herceptin treatment and hence, it is 

often used in combination with other microtubule stabilizing drugs (Burris 2000).  On the 

other hand, paclitaxel is known to bind to tubulin and prevent dissociation of tubulin 

dimers during cell division, causing mitotic failure and subsequent cell death (Xiao et al. 

2006). FOXM1 confers drug resistance in the context of Herceptin and paclitaxel by 

upregulating one of its direct target, a tubulin destabilizing protein Stathmin (Carr et al. 

2010). By doing so, FOXM1 indirectly causes alteration in microtubule formation and 

protects the cancer cell from paclitaxel-induced apoptosis.  

Further supports for the role of FOXM1 in mediating drug resistance in breast cancer 

come from works done by Millour and colleagues (Millour et al. 2010; Millour et al. 

2011). In 2010, they investigated the role of FOXM1 in conferring endocrine resistance 

in luminal breast cancer and found that FOXM1 is under direct regulation of ERα 

(Millour et al. 2010). ERα binds to FOXM1 promoter region and transactivates FOXM1 
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expression, which in turns leads to upregulation of FOXM1 downstream target Cyclin 

D1. The ERα-FOXM1-Cyclin D1 generates a positive feedback loop further enhancing 

the activity of FOXM1 and provides the underlying mechanism for endocrine resistant 

phenotype in luminal breast cancer (Millour et al. 2010).  

In the subsequent year, they investigated the link between epirubicin resistant 

phenotype and FOXM1 in luminal breast cancer (Millour et al. 2011). Epirubicin is an 

anthracycline based chemodrug that acts by intercalating DNA strands causing DNA 

damage and cytotoxic cell death (Cantoni et al. 1989). Millour and colleagues found that 

epirubicin activates ataxia-telangiectasia mutated (ATM) and promotes E2F activity in 

resistant cell line (Millour et al. 2011). FOXM1 contains E2F binding site within its 

promoter region and hence, activation of E2F leads to upregulation of FOXM1 

expression. In contrast, inhibition of ATM can resensitize the resistant cell line by 

downregulating expression of both E2F and FOXM1, leading to cell death. 

 

1.3.7 Cellular Function of FOXM1 in Tumorigenicity 

Tumorigenicity involves series of events culminating in tumor metastasis; starting 

from the initial vascularization of primary tumor, followed by increased cell motility and 

invasion of the basement membrane via secretion of MMPs, and lastly the EMT 

transition aiding in the dissemination of the invasive cancer cell to distant organ (Shook 

and Keller 2003; Hanahan and Weinberg 2011). Several studies have linked FOXM1 to 

early onset of tumorigenicity.  
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1.3.7.1 FOXM1 Links to Angiogenesis 

The availability for oxygen and nutrients are crucial during cancer progression and 

this process is term as angiogenesis, which describes the formation of new blood vessels 

necessary for tumor growth. Many studies have identified VEGF as the principal 

mediator for angiogenesis, and FOXM1 has a direct role in activating VEGF through 

direct binding to forkhead binding elements within VEGF promoter (Zhang et al. 2008; 

Li et al. 2009; Karadedou et al. 2012). There is also a positive correlation between 

FOXM1, VEGF and distant metastasis in multiple human malignancies and inhibition of 

FOXM1 will significantly reduce the expression of VEGF (Wang et al. 2007; Zhang et al. 

2008; Li et al. 2009; Ahmad et al. 2010). 

 

1.3.7.2 FOXM1 Links to Cell Migration and Invasion 

Enzymatic activity of MMPs has been linked to cancer cell migration and invasion 

and interestingly, FOXM1 expression directly correlates with MMP2, MMP7, MMP9 

and MMP12 expressions (Dai et al. 2007; Wang et al. 2007; Wang et al. 2008; Balli et al. 

2012; Xia et al. 2012). Wang and colleagues showed that suppression of FOXM1 in 

pancreatic cancer leads to downregulation of MMP2 and MMP9 expressions, which 

correlates with reduction in cancer cell angiogenesis, migration and invasion (Wang et al. 

2007).  

Similar observation has also been reported in glioblastoma, where Dai and 

colleagues showed that FOXM1 binds directly to the promoter region of MMP2 

regulating its transcriptional activation and protein expression (Dai et al. 2007). While in 
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lung cancer, Wang and colleagues showed that indirect activation of MMP9 by FOXM1 

is through modulating the activity of one of its downstream target c-Jun N-terminal 

protein kinase 1 (JNK1) (Wang et al. 2008). 

FOXM1 has also been shown to bind to the promoter region of MMP7 and this 

regulation together with RhoC, and Rho-kinase 1 (ROCK1) mediates the cancer 

migration and invasion in hepatitis B virus (HBV)-associated hepatocellular 

carcinoma (HCC) (Xia et al. 2012). FOXM1 also serves as a poor prognostic marker for 

recurrence and survival of patients with HBV-HCC after surgical resection. 

Interestingly, FOXM1 has also been implicated in tumor-associated macrophage 

during lung inflammation and tumor formation (Balli et al. 2012). Balli and colleagues 

showed that expression of FOXM1 in macrophage plays a critical role during tumor-

associated pulmonary inflammation. It helps recruit macrophages to the tumor site, which 

in turn support the proliferation and promote lung tumor growth. Mice with macrophage-

specific FOXM1 deletion has reduced tumor size and number, which is consistent with 

reduced migration of tumor-associated macrophage, and one of the migration-related 

target genes implicated in this process is MMP12 (Balli et al. 2012).  

 

1.3.7.3 FOXM1 Links to EMT  

Despite a strong correlation between FOXM1 expression and poor prognosis in 

HCC, overexpression of FOXM1 could only marginally affect HCC progression (Park et 

al. 2011). It is because FOXM1 activity is under repression by its negative regulator, 

tumor suppressor p14ARF. By generating transgenic mouse with Arf-null background, 

http://www.ncbi.nlm.nih.gov/pubmed/15572687
http://www.ncbi.nlm.nih.gov/pubmed/15572687
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Park and colleagues demonstrated a significant increase in FOXM1 and Akt expressions 

(Park et al. 2011). The Arf-/- HCC cells also displayed a low expression of E-cadherin 

but high expression of Vimentin and Snail, a classic signature of EMT-like phenotypes.   

Paradoxically, FOXM1C has been reported to bind to the promoter region of CDH1 

and transactivates the expression of this tumor suppressor gene (Wierstra 2011). This 

finding suggests a new role of FOXM1 as a tumor suppressor. However, it is worth 

noting that the particular study was performed using normal kidney cells (Wierstra 2011), 

which has different gene regulation and signaling pathway compared with tumor cells 

(Park et al. 2011). It is likely that as a biological consequence, FOXM1 regulation differs 

during normal cell development and during cancer progression, which could explain the 

discrepancy between these 2 studies. 

A study in pancreatic cancer showed that overexpression of FOXM1 mediates the 

acquisition of both EMT-like and cancer stem cell phenotypes (Bao et al. 2011). And 

these phenotypes can be reversed with the treatment of genistein, a natural chemo-

preventive agent. In a separate study, FOXM1 mediates the acquisition of EMT-like 

phenotype by directly transactivate Caveolin-1 (Huang et al. 2012). Caveolin-1 is a 

structural protein of calveolar membrane domains, and there is a correlation between its 

overexpression and FOXM1 upregulation in pancreatic cancer cells and tumor tissues. 

Collectively, the above mentioned study defines FOXM1 as an important oncogenic 

driver during cancer progression, and that deregulated signaling of FOXM1 and its 

downstream targets promotes cancer development and eventually tumor metastasis. 
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1.4 Aims of Thesis Research  

Identifying the gene expression patterns associated with shorter time to progression, 

invasive capacity, and metastatic propensity among different subtype of breast cancers, 

especially in TNBC, will be critical in predicting the clinical course of disease. Due to its 

highly heterogeneous nature and existence of different biological subgroups of TNBC 

(Lehmann et al. 2011b), it is necessary to identify molecular biomarkers associated with 

TNBC in order to improve both our understanding and ability to predict the overall 

severity of the disease. The ability to predict the overall severity of breast cancer will aids 

in the improvement of stratification of patients and a better disease management by 

ensuring that the patients will receive appropriate treatment.  

In the initial phase of this study, both expressions of EZH2 and FOXM1 were 

identified to be highly upregulated in TNBC and were associated with poor prognosis. 

Particularly in FOXM1, where its hyperactivation has been shown to be significantly 

correlated with TNBC-like subtype and is associated with a high degree of proliferation 

rate (Ye et al. 1997). The aim of this study was to examine whether both EZH2 and 

FOXM1 works in concert in driving high proliferative capacity, which is one of the many 

characteristics of aggressive TNBC. By depleting EZH2 in TNBC cell lines, we 

identified reduction in the proliferating cancer cells. Similarly, depletion of FOXM1 also 

yielded similar phenotype to the case of EZH2 depletion. Therefore, we sought to dissect 

the possible crosstalk between EZH2 and FOXM1 in regulating proliferation pathway in 

TNBC. 

In addition, FOXM1 exerts a tumorigenic role beyond cell cycle regulation as 

illustrated by Yau and colleagues in their study on two cohorts of breast cancer patients 
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differing in their ER status (Yau et al. 2011). Despite an elevated level of FOXM1 in ER- 

breast cancers, especially in TNBC, FOXM1 does not contribute to the tumor 

proliferative capacity directly instead; it is a reflection of its metastatic potential. This 

observation is further supported by the effect of FOXM1 depletion in neuroblastoma, 

pancreatic cancer, hepatocellular carcinoma and breast cancer where the cancer cells are 

viable and proliferating but with a severe consequence of reduction in tumorigenicity 

(Bhat et al. 2011; Wang et al. 2011; Halasi and Gartel 2012; Liu et al. 2012). Thus, the 

aim of the second phase of this study was to identify the molecular mechanistic that 

causes the switch in the role of FOXM1 from a proliferation regulator to an invasion 

regulator, and how EZH2 may assist in the switch. By integrating the key finding 

gathered from the first phase of study, where a novel interaction of EZH2 and FOXM1 

was identified, we subsequently uncovered an antagonistic relationship between a 

canonical EZH2/PRC2 complex and a non-canonical EZH2/FOXM1 complex in 

promoting invasion pathway in TNBC.  

This thesis highlights the plasticity of EZH2 activity during TNBC progression. 

Depending on its interacting partners, EZH2 may act as an epigenetic repressor or as a 

transcriptional co-activator. Whether the dual antagonistic role of EZH2 could be 

influenced by a biological stimulus e.g metabolic stress, oxidative stress, immuno-

cytotoxic stress, etc would be an interesting future avenue to explore.  
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2.1 Cell Culture and drug treatment 

All cell lines used in this study were obtained from the American Type Culture 

Collection and grown at 37 °C with 5% CO2. MDA-MB-231, HS578T and BT549 were 

maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen) supplemented 

with 10% fetal bovine serum (FBS) (Invitrogen). SUM159PT was maintained in Ham’s 

F-12 medium (Invitrogen) supplemented with 5% FBS, 5μg/mL insulin (Invitrogen) and 

1μg/mL hydrocortisone (Invitrogen). MCF10A was maintained in mammary epithelial 

growth medium (MEGM) (Invitrogen) supplemented with 5% horse serum (Invitrogen), 

20ng/mL EGF (Invitrogen), 0.5mg/mL hydrocortisone, 100ng/mL cholera toxin 

(Invitrogen) and 10μg/mL insulin. All media were supplemented with 5000U/mL 

penicillin/streptomycin (Invitrogen).  

For drug treatment, cells were treated with DZNep and GSK126, purchased from 

Pharmaron Inc. (Beijing, China), for 24 hours and 72 hours respectively. The 

concentrations of the drugs were listed in the respective experimental figures. All of the 

tissue culture works were carried out under aseptic techniques inside a biological safety 

cabinet II. 

 

2.2 Freezing and Thawing of Cultured Cell Lines 

For cryopreservation, cells were trypsinized and centrifuged at 1000 rpm for 3 

minutes. After discarding supernatant, cell pellets were resuspended with freezing media 

(For MCF10A: 90% culture media supplemented with 10% DMSO; for other cell lines: 

90% FBS and 10% DMSO) and aliquoted into each cryovials with a concentration of 
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1x106/mL. The cryovials were placed inside Mr. Frosty cylinder (NALGENE) filled with 

99% iso-propanol and stored at -80°C freezer. After 24 hours of incubation, the cryovials 

were transferred into a liquid nitrogen tank (-196°C) for a long term storage. 

For thawing out frozen cells, the cryovials were thawed rapidly by full submersion 

inside 37°C water bath. The freshly thawed cells were resuspended with its respective 

complete media at 5mL/cryovial. The cells were further centrifuge at 1000 rpm for 3 

minutes and seeded into T25 flasks (NALGENE). The cells were grown for 1 week post 

thawing before further experiments were performed. All of the cell lines used in the 

experiments were grown and maintained for less than 20 times passages.  

 

2.3 Transfection of Small Interfering RNA (siRNA)  

Transfection of siRNA was conducted using Lipofectamine RNAiMax (Invitrogen) 

according to the manufacturer’s instructions. The initial steps involved individual 

preparation of siRNA and RNAiMax solution by diluting 20μM of siRNA and 2μL of 

RNAiMax with 100μL OPTI-MEM (Invitrogen). The two solutions were mixed 

together with equal parts and incubated for 20 minutes at room temperature. The 

medium of seeded cells, which were grown in a 6-well plate 18 hours prior to the 

transfection, was refreshed with 800μL complete medium before addition of the 200μL 

transfection mixture. After 6 hours, the transfection medium was replaced with 2mL of 

complete medium, and the cells were allowed to grow and harvested 48 hours post 

transfection for RNA extraction or 72 hours post transfection for protein extraction.  
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Target-specific siRNA and non-targeting control siRNA were purchased from 

Integrated DNA Technologies Pte. Ltd. (IDT) Singapore with the following target 

sequences:  

 

Gene siRNA Sequence 

EZH2 (CDS) 5’-GACUCUGAAUGCAGUUGCU-3' 

EZH2 (5’UTR) 5’- CGGUGGGACUCAGAAGGCA-3’ 

FOXM1 (CDS) 5’-GGACCACUUUCCCUACUUU-3’ 

EED #1 HSC.RNAI.N003797.12.1_ (IDT) 

EED #2 HSC.RNAI.NOO3797.12.2_ (IDT) 

SUZ12 #1 HSC.RNAI.NO15355.12.1_ (IDT) 

SUZ12 #2 HSC.RNAI.N015355.12.2_ (IDT) 

Table 2.1. siRNA sequences used for transfection of siRNA in cell lines. 

 

2.4 Transfection of Plasmid Vectors  

To generate plasmid vectors, target genes from their respective transient expression 

plasmids were subcloned into the PMN retroviral expression vector (a gift from Dr Linda 

Penn's lab, University Health Network, Canada). EZH2 WT plasmid had been described 

previously (Lee et al. 2011b) and FOXM1 WT plasmid was a gift from Prof. Eric Lam 

(Imperial College London, U.K.).  

Transfection of plasmid vector was conducted using Lipofectamine 2000 

(Invitrogen) according to the manufacturer’s instructions. The initial steps involved 

individual preparation of plasmid vector and Lipofectamine 2000 solution by diluting 

4μg of plasmid and 10μL of RNAiMax with 100μL OPTI-MEM (Invitrogen). The two 
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solutions were mixed together with equal parts and incubated for 20 minutes at room 

temperature. The medium of seeded monolayer platinum-A retroviral packaging cells 

(CELL BIOLAB), which were grown in a 6-well plate coated with collagen I (BD 

BIOCOAT) 18 hours prior to the transfection, was refreshed with 800μL complete 

medium before addition of the 200μL transfection mixture. After 24 hours, the 

transfection medium was replaced with 2.5mL of complete medium. After 48 hours post 

transfection, the conditioned medium from the transfected platinum-A cells contained 

retroviruses packaged with our target genes and this in turn was harvested and filtered 

through 0.45μm filter unit. The target cells, which were seeded in a 6-well plate 24 hours 

prior viral infection, were overlaid with 2mL conditioned media and 1mL complete 

media containing 3μL of 8μg/mL polybrene, followed by centrifugation at 1800 rpm for 

90 minutes. After 48 hours post viral infection, the viral infected cells were sorted based 

on green fluorescent protein (GFP) over-expression and the sorted cells were subcultured 

and used for subsequent experiments. 

 

2.5 RNA Extraction 

Total RNA was isolated from various cell lines using Trizol (Invitrogen) and 

extracted with the RNAeasy Mini Kit (Qiagen). Cell pellets were collected by 

trypsinizing and harvesting monolayer cells. 1mL Trizol (Invitrogen) was added to the 

cell pellet, followed by addition of 200μL chloroform. The mixture was resuspended 

gently and followed by centrifugation at 12,000 rcf for 15 minutes at 4ºC to separate 

nucleic acids from proteins and other cell debris. After centrifugation, the top clear liquid 
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phase containing nucleic acids was transferred to a fresh tube followed by addition of 

70% ethanol to precipitate the nucleic acids content.  

To purify the RNA content, RNAeasy mini kit (Qiagen) was used. The mixture of 

nucleic acids and ethanol was transferred to the RNAeasy mini kit column to allow for 

RNA binding. The column was further centrifuged at 8,000 rcf for 30 seconds before 

washing once with 750μL RW1 buffer and twice with 500μL RPE buffer. At final step, 

the purified nucleic acids were eluted with 30μL RNAse-free water and their 

concentration and purity were assessed using Nanodrop ND-1000. 

 

2.6 Complementary DNA Conversion and Quantitative Real-Time PCR (qRT-PCR) 

To reverse transcribe and convert RNA samples into single-stranded complementary 

DNA (cDNA) samples, a High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems) was used. The initial step involved preparation of 750ng of RNA samples in 

25μL nuclease-free water. A 25μL master mix solution containing 5μL RT buffer, 5μL 

random primers, 2μL dNTP mix, 2.5μL MultiScribeTM reverse transcriptase and 10.5μL 

nuclease-free water, was prepared separately. Both the diluted RNA solution and the 

master mix were combined together and subjected to PCR amplification using thermo 

cycler at 25ºC for 10 minutes, followed 37ºC for 2 hours.  

To perform qRT-PCR, cDNA samples obtained above were further diluted in a 10x 

dilution factor to yield a total volume 4.4μL/reaction, followed by dispensing into an 

individual well of 96-well reaction plate (Thermo Fisher MicroAmp® Fast Optical). A 

separate primer master mix was prepared by combining 0.4μL 10μM gene-specific 
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primer mix, 5ul 2X KAPA SYBR® FAST qPCR master mix (Kapa Biosystems) and 

0.2μL KAPPA SYBR® FAST ROX dye (Kapa Biosystems). Lastly, 5.6μL primer 

master mix was mixed together with the cDNA sample inside each individual well of 96-

well, and the sample was amplified and quantified with PRISM 7500 Fast Real-Time 

PCR system (Applied Biosystems). All reactions were performed in triplicate using the 

following primer sequences and actin level was used as an internal control: 

 

Gene Forward primer Reverse primer 

ACTB GCACAGAGCCTCGCCTT GTTGTCGACGACGAGCG 

AURKB AGGAGAACTCCTACCCCTGG AGATGGGGTGACAGGCTCTT 

CCNB1 TGGAAAAGTTGGCTCCAAAG GATTTTGCAGAGCAAGGCAT  

CDC2 CCCTCCTGGTCAGTACATGGA GTTGAGTAACGAGCTGACCCC 

CDC20 ATTCGCATCTGGAATGTGTG TGTAATGGGGAGACCAGAGG 

CENPF AAGCCCAGCTCATTTTGTTC GCGCCAGAACTGTACTCTCC 

EZH2 AGTGTGACCCTGACCTCTGT AGATGGTGCCAGCAATAGAT 

FOXM1 AGGTGTTTAAGCAGCAGAAACG GCTAGCAGCACCTTGGGGGCAA 

MMP1 CCTCGCTGGGAGCAAACA TTGGCAAATCTGGCGTGTAAT 

MMP2 TGAGCTATGGACCTTGGGAGAA CCATCGGCGTTCCCATAC 

MMP7 GTTGTATGGGGAACTGCTGA GTTTCCTGGCCCATCAAATG 

MMP9 GGACGATGCCTGCAACGT CAAATACAGCTGGTTCCCAATCT 

UBE2C AGCAGGAGCTGATGACCCT  GGCGTGAGGAACTTCACTGT 

Table 2.2. Primer sequences used for qRT-PCR analysis of target genes. 
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2.7 Microarray Gene Expression Analysis  

Total RNA was isolated from MDA-MB-231 using Trizol (Invitrogen) and extracted 

with the RNAeasy Mini Kit (Qiagen) as described above. Reverse transcription was 

performed using the RNA Amplification kit (Ambion) and microarray hybridization was 

performed using the Illumina Gene Expression Sentrix BeadChip HumanRef-8_V2 

according to the manufacturer’s instructions.   

Briefly, 500ng RNA samples were reverse transcribed into cDNA samples and 

further processed into double- stranded cDNA samples. After cDNA purification step, 

biotinylated cRNA was generated and further purified before the hybridization step onto 

BeadChip. The biotinylated cRNA was further stained with streptavidin- Cy3 after 

washing. Lastly, the processed BeadChip was scanned using Illumina BeadArray Reader 

and images were stored with their repective barcodes. The scanned images were 

processed using Illumina GenomeStudioTM and the generated data were analysed using 

GeneSpringGXTM (Agilent Technologies) by selecting Illumina single color as an 

experimental type and median expression as a normalization control. Fold changes were 

analyzed by pairwise comparisons to internal controls. The normalized fold change data 

were further subjected to further bioinformatics analyses. 

 

2.8 Gene Ontology Analysis using Ingenuity Pathway Analysis (IPA) 

To determine differentially regulated genes after EZH2 depletion in MDA-MB-231 

cell line, a two-fold cut-off was employed and the genes were further separated into 

upregulated and downregulated genesets. The downregulated geneset was then imported 
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into  Ingenuity  Pathway  Analysis  (IPA)  software  for  gene  ontology  analysis.  From  

the analysis; gene network, biological functions and upstream regulator analysis 

enriched in the imported geneset were obtained. The gene network and upstream 

regulator analysis were exported from IPA. 

 

2.9 Clinical Dataset Analysis using TCGA and Oncomine Databases 

To determine expression levels EZH2, FOXM1 and their co-target genes expressions 

in breast cancer patients, normalized mRNA expression data derived from the Agilent 

expression platform, “BRCA.exp.547.med.txt.”, was obtained from TCGA breast cancer 

online portal (https://tcga-data.nci.nih.gov/docs/publications/brca_2012/)RNA-Seq). 

PAM50 subtype classifications were available for 547 of the primary breast invasive 

carcinoma tumor samples and these samples were further classified into four intrinsic 

subtypes of breast cancers: 98 TNBC, 58 HER2-enriched, 232 Luminal A and 129 

Luminal B breast cancer patients. To generate heatmaps, median-normalized data were 

represented in log2 values and were processed by Cluster (Eisen, 1998, Stanford 

University) and visualized by Treeview (Eisen, 1998, Stanford University). 

To further establish the correlation between EZH2 and FOXM1 expressions, two 

microarray data sets from Curtis (Curtis et al. 2012) was downloaded from Oncomine 

(https://www.oncomine.org/). Pearson Correlation was calculated between gene 

expression values of EZH2 and FOXM1 in these two data sets. 

 

https://tcga-data.nci.nih.gov/docs/publications/brca_2012/
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2.10 Histone Extraction, Protein Extraction and Immunoblots  

For histone extraction, cells were lysed in Triton-X extraction buffer (1XPBS, 0.5% 

Triton-X-100 and 2mM PMSF) for 10 minutes. The histone pellet was collected by 

centrifugation at 5000 rpm for 10 minutes at 4ºC, followed by an overnight acid 

digestion in 0.2N HCl at 4°C. The next day, the histone was harvested by centrifugation 

at 13,000 rpm for 10 minutes at 4ºC and its concentration was determined by Nanodrop 

ND-1000.   

For protein lysate, cells were lysed in radioimmunoprecipitation assay (RIPA) buffer 

(50mM Tris-HCl pH7.4, 1mM EDTA, 150mM NaCl, 1% Igepal CA630, 0.5% sodium 

deoxycholate, 1mM Na2VO4, 20mM NaF, 1mM PMSF, and mini-Complete protease 

inhibitor (Roche)) and incubated on ice for 1 hour, with 15 minutes interval of 15 seconds 

vortex. The lysate was further sonicated for 15 seconds using an XL2000 Microson 

Ultrasonic Processor (Misonix) followed by centrifugation at 13,000 rpm for 15 minutes at 

4ºC. The supernantant containing protein lysate was transferred to a new tube and the 

protein concentration was determined using Bradford Assay (Bio-rad). Using bovine serum 

albumin (BSA) with a known concentration, a serial dilution was performed as the standard 

and on the other hand, the protein sample was diluted into a 20x dilution factor. Both the 

standard and diluted protein sample were mixed with Bradford reagent and incubated at 

room temperature for 7 minutes before being measured using Tecan XfluorTM software. 

Equal amount of histone extract (3μg) or protein extract (30μg) were separated on SDS-

polyacrylamide gels and transferred to PVDF membranes. The membranes were blocked 

with 5% milk or 5% BSA according to the antibody requirements and immunoblots were 

probed with the following antibodies: anti-EED (07-368), anti-H3K27me3 (07-449) and 

anti-SUZ12 (07-379) were purchased from Upstate Biotechnology. Anti-Cyclin B (sc-245) 
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and anti-FOXM1 (sc-500) were purchased from Santa Cruz. Anti-Aurora A (CST-4718), 

anti-CDC2 (CST-9112), anti-EZH2 (CST-3147) and anti-PLK1 (CST-4513) were 

purchased from Cell Signaling. Anti-p-EZH2 Thr487 (Ab-109398) and anti-Actin were 

purchased from Abcam and Sigma-Aldrich respectively.  

 

2.11 Co-Immunoprecipitation (coIP) 

Co-Immunoprecipitation was performed by a whole cell lysis with 1ml of 

Immunoprecipitation (IP) lysis buffer (20mM Tris-HCl, pH 7.4, 2mM EDTA, 25mM 

NaF, 1% Triton X-100, and mini-Complete protease inhibitor (Roche)) incubated on ice 

for 1 hour. The lysates were centrifuged at 13,000 rpm for 10 minutes at 4ºC and the 

supernatants were transferred to fresh a tube. The samples were further diluted with 

500μL IP lysis buffer and precleared with 30μL Protein A agarose beads (Roche) for 2 

hour. After 2 hours, the samples were collected by centrifugation at 13,000 rpm for 30 

seconds at 4ºC. The samples were further immunoprecipitated with 3μg antibody pull 

down and Protein A/G agarose bead (Roche) by rotating in a cold room for overnight. 

The next day, the agarose beads were washed three times with washing buffer (50 mM 

Tris-HCl, pH 8.0, 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, and 

0.1% SDS). The immune complexes were eluted with sample buffer containing 1% SDS 

and DTT (Cell Signaling) for 5 min at 95°C. The sample was separated by SDS-

polyacrylamide gels and transferred to PVDF membranes for immunobloting. Antibodies 

used for pull down were: non-specific IgG (sc-2025 or sc-2027) and anti-FOXM1 (sc-500 
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or sc-502) purchased from Santa Cruz. Anti-EZH2 (39901 or 39875) was purchased from 

Active Motif.  

 

2.12 Chromatin Immunoprecipitation (ChIP) and Sequential ChIP 

Chromatin Immunoprecipitation was performed by harvesting 3 x 106 cells using 

trypsinization, followed by a cell fixing with 81μL 37% formaldehyde (Sigma-Aldrich). 

The fixing was quenched with 192μL 2M glycine and the cells were washed twice with 

ice cold 1XPBS. Cell pellets were then lysed with 300μl SDS lysis buffer  (1% SDS,  

10mM  EDTA,  50mM  Tris-HCl  pH 8.0)  and  sonicated  for  2  minutes and 40 

seconds  (10 seconds pulse on and 30 seconds pulse off). The cell lysate was 

transferred to 15mL Falcon tubes and top-up with Dilution buffer (0.01% SDS, 1% 

Triton X-100, 1mM EDTA, 10mM Tris-HCl pH 7.4, 140mM NaCl) to 3mL. Samples 

were then precleared with 30μL Protein G Dynal Beads (Life technologies) and 2μg 

Rabbit IgG for 4 hours with rotation at 4ºC. Pre-cleared chromatin was 

immunoprecipitated with 3μg specific primary antibodies and rotated overnight at 4ºC. 

The next day, 30μL Protein G Dynal Beads were added into the immunocomplexes and 

further incubated for 2 hours. The Beads were subsequently washed thrice with the 

Dilution buffer, and the immunoprecipitated chromatins were eluted with 100μL SDS 

Elution Buffer (1%SDS, 10mM EDTA, 50mM Tris-HCl pH 7.5) and shook at 68ºC for 

10 minutes. The supernatants were recovered using magnetic rack and transferred 

to fresh tubes for an overnight decrosslinking at 68ºC. Purification of 

immunoprecipitated DNA was performed using PCR purification kit (Qiagen) following 

manufacturer’s protocol.  
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Sequential ChIP was performed with similar procedures as ChIP assay above except 

that the elution step was performed with 240μL 10mM DTT (Cell Signaling) and 

shook at 37ºC for 30 minutes. The eluate was subsequently subjected to second IP using 

the same protocol as mentioned above. Antibodies used for ChIP were as followed: anti-

EZH2 (39901, Active Motif), anti-FOXM1 (sc-500, Santa Cruz), anti-EED (09-733, 

Millipore), anti-H3K27me3 (9744, Cell Signaling) and a non-specific IgG (sc-2027, 

Santa Cruz). The immunoprecipitated DNA and input DNA were quantified by qPCR 

analysis with the following ChIP promoter primer sequences:  

 

Primer 
Forward primer Reverse primer 

Gene ID 

AURKB  GGGGTCCAAGGCACTGCTAC GGGGCGGGAGATTTGAAAAG 

CCNB1  CGCGATCGCCCTGGAAACGCA CCCAGCAGAAACCAACAGCCGT 

FOXM1  CCGGAGCTTTCAGTTTGTTC CGGAATGCCGAGACAAGG 

MMP2 P1 TGCTGGAGTTCCCCATCA GCATGTTAAAGGAAGCACCCA 

 P2 AACCAGTCTTGCCCAATTTC CCTTCTGCAAATGTGTAAGCC 

 P3 AAAACGGACAAAGAGTTGGC TGTTTACCGAAGCCCCTCC 

 P4 ATGTTGTCTTGTGAGCGTGC AACAAGGGAGCAGATATCCC 

MMP7 P1 CAAAATGACATGAATCCACC ATATCAGTAGTTGTGTGGGC 

 P2 GGTAAGATGACTGTTAAGGT ATATCCAATAAAGGACTGTT 

 P3 ATACCTATGAGAGCAGTCAT CATCGTTATTGGCAGGAAGC 

 P4 ATTGCATATTCCTGGGCGGT CATTAGAAACATGTGTAGGG 

ACTB  AGTGTGGTCCTGCGACTTCTAAG CCTGGGCTTGAGAGGTAGAGTGT 

Table 2.3. ChIP primer sequences used for qRT-PCR analysis of target gene promoters. 
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Quantification of promoter binding enrichment was defined as the percentage of the 

whole cell lysate relative to the input DNA. The fold enrichment was calculated by 

normalizing the specific antibody enriched against the nonspecific IgG-enriched 

chromatin. All ChIP promoter primer sequences were synthesized and purchased from 

AITbiotech Singapore. The ChIP promoter primer sequences for proliferation-associated 

genes (FOXM1, CCNB1 and AURKB) (Sanders et al. 2013) and for invasion-associated 

genes (MMP2 (primer ID: P2) and MMP7 (primer ID: P2)) (Xia et al. 2012) were made 

as previously reported respectively.   

 

2.13 Beta-Galactosidase Senescence Marker 

To investigate for the presence of senescence, cells were stained with β-galactosidase 

staining kit (Cell Biolabs) according to the manufacturer’s protocol. Briefly, cells were 

seeded into a 6-well plate (Corning) and fixed with 1X Fixing solution 48 hours post 

siRNA transfection. After washing the fixed cells with 1X PBS, the cells was overlaid 

with freshly prepared cell staining working solution supplemented with X-gal and 

incubated at 37ºC protected from light for overnight. Cells were further washed with 1X 

PBS before viewing under a light microscope (NIKON Eclipse TS100). 

 

2.14 Cell Proliferation Assay 

To measure the rate of cellular proliferation, cells were assayed with CellTiter-Glo 

(CTG) (Promega) according to the manufacturer’s protocol. Cells were lysed with CTG 
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solution and chemiluminescent signal was detected with a microplate reader (TECAN). 

For siRNA transfection, cells were seeded into a 96-well white polystyrene plate 

(Corning) 24 hours post transfection and allowed to grow for 7 days, with measurement 

taken every 2 days. For drug treatment, cells were treated 24 hours after cell seeding and 

the measurement was taken the following day for 9 days. The growth rate was calculated 

by normalizing CTG values obtained with those taken on day 1 and plotted against time.  

 

2.15 Mitotic Index 

To measure the percentage of cells in mitotic phase, cells were harvested and fixed in 

70% ethanol. Fixed cells were then resuspended with permeabilizing solution (PBS, 0.1% 

bovine serum albumin, 0.25% Triton X-100) and incubated for 15 minutes. Cells were 

further stained with 10μL Alexa Fluor® 555 Rat anti-Histone H3 pS28 (BD Pharmingen), 

100μg/mL RNase (Invitrogen) and 50μg/mL Propidium Iodide (PI) (Sigma-Aldrich). The 

flow-cytometric analysis for DNA content was performed using FACSCalibur (Becton 

Dickinson Instrument). Cell cycle fractions and cells positive for p-H3 were quantified 

using the CellQuest software (Becton Dickinson).  

 

2.16 Transwell Invasion Assay 

For invasion assay, a 24-well Falcon FluoroBlok Transwell insert (BD Biosciences) 

with a pore size of 8μm was overlaid with 250μg/mL of growth factor-reduced Matrigel 

(BD Biosciences) for 6 hours at 37°C. For MDA-MB-231, 2.5 x 104 cells were seeded in 
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each insert with DMEM supplemented with 0.5% FBS. For MCF10A, 5 x 104 cells were 

seeded in each insert with MEGM supplemented with 0.5% horse serum. 

Chemoattractants used were the complete medium used for each cell lines and were 

added outside the chamber. Invaded cells were fixed after an indicated incubation time 

using 3.7% formaldehyde (Sigma-Aldrich) and stained with 25μg/mL PI. Ten fields per 

insert were scanned and average invaded cells were counted in triplicate using Cellomics 

ArrayScan.  

 

2.17 Statistical Analysis 

The experimental results presented in the figures are representative of at least three 

independent observations. The data are presented as the mean values ± SEM. 

Comparisons between groups were evaluated by Student’s t test. For multiple 

comparisons involving more than 2 groups, One-way ANOVA or Two-way ANOVA 

were employed depending on the intrinsic experimental data to be analyzed. Values of at 

least *P ≤ 0.05 were considered to be statistically significant or as indicated in each 

figure legends. All statistical tests and generation of graphs were done using Graphpad 

Prism Version 5. 
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3.1 Identification of EZH2 Dependent Co-regulatory Gene Network in TNBC  

To explore the possibility of non-PRC2 complex function of EZH2 independent of 

its repressive H3K27me3 activity, we exploited EZH2 positively-regulated transcriptome 

in a TNBC cell line. This was achieved by depleting EZH2 expression using siRNA in 

MDA-MB-231 cell line, followed by cDNA microarray hybridization. Subsequent gene 

expression analysis led to the identification of 445 genes (Appendix 1) that were 

downregulated upon EZH2 depletion (with fold change ≥ 2, FDR ≈1% and p < 0.01) 

(Figure 3.1A, left) and this group of genes was thought to be under positive regulation of 

EZH2, though their downregulation could also be due to an indirect effect. Nevertheless, 

to gain further insights into the role of histone methyltransferase independent function of 

EZH2, we performed Gene Ontology analysis using IPA on the 445 EZH2-positively 

regulated genes and identified several gene networks (Figure 3.1A, right). Most networks 

identified by IPA were associated cell cycle, DNA repair, cellular movement and 

inflammatory response. Consistent with our previous report that showed the axis of 

inflammatory response is well interconnected with positive EZH2 regulation on NF-κB 

pathway (Lee et al. 2011b), our IPA analysis has also identified the enrichment for this 

particular gene regulatory network. 
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Figure 3.1 EZH2 positively correlates with FOXM1 and its 
associated gene network in aggressive breast cancer.  
Gene heatmap showing the downregulation of genes following 
EZH2 depletion in MDA-MB-231 cells (left) and their associated 
GO analysis by IPA (right). 
 
 

 

On the other hand, the notion of EZH2 as the sole regulator for these gene networks 

identified by IPA might be an oversimplification. Coupled with previous studies of 

identification of novel non-PRC2 partners of EZH2 (Cha et al. 2005; Shi et al. 2007b; 

Tan et al. 2007; Holm et al. 2010; Lee et al. 2011b; He et al. 2012; Holm et al. 2012; Lee 

et al. 2012; Xu et al. 2012; Jung et al. 2013b; Jung et al. 2013a; Kim et al. 2013; Yan et 

al. 2013; Gonzalez et al. 2014b; Gonzalez et al. 2014a), it is very likely for EZH2 to work 

in concert with other molecule in regulating these newly identified EZH2-positively 

regulated gene networks. To determine candidate upstream regulators that potentially co-

regulates with EZH2, we further utilized IPA for upstream regulator analysis and 

identified top 10 candidate regulators (Figure 3.2). As expected, the top hit is EZH2, 

ID Associated Network Functions Score 

1 Cell cycle, cellular assembly or organization, 
DNA replication, recombination and repair 48 

2 Cancer, organismal injury and abnormalities, 
reproductive system disease 48 

3 Cell cycle, cellular movement, cancer 48 

4 Inflammatory response, cancer, cellular 
movement 48 

5 Developmental disorder, hematological 
disease, hereditary disorder 48 

siNC siEZH2 

MDA-MB-231 
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further reflecting the robustness of IPA analysis in predicting upstream regulators under 

EZH2 depletion condition.  

 

No. Upstream Regulators P-value 

1 EZH2 4.23E-15 

2 E2F1 1.11E-10 

3 PPARA 3.68E-08 

4 FOXM1 2.84E-07 

5 NFYA 1.35E-04 

6 ATF2 2.71E-04 

7 JUN 3.04E-04 

8 IRF6 3.19E-04 

9 NFKB1 3.75E-04 

10 E2F2 6.29E-04 
Figure 3.2 IPA upstream regulator analysis. 
IPA analysis identifies top 10 candidate regulators mediating EZH2-positively regulated 
gene networks. P-value is indicated for respective candidate regulators. 

 

From the previous analysis of 453 breast carcinomas, TNBC subtype was reported to 

be highly enriched for a mitotic gene network mediated by either c-Myc or FOXM1 

activation (2012a). Since FOXM1 is identified as one of the potential upstream regulator 

by IPA analysis and to explore the possibility of coregulation between EZH2 and 

FOXM1, we performed a hierarchical clustering using microarray dataset from TCGA 

breast cancer cohort. Strikingly, EZH2, FOXM1 and FOXM1 target genes associated 

with mitotic progression were highly enriched in TNBC subtype (Figure 3.3A).  
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Figure 3.3 Hierarchical Clustering in Breast Cancer Patients. 
(A)  Hierarchical clustering downloaded from TCGA database showing four subtypes of 
tumors are colored as: TNBC, red; Her2-enriched, pink; Luminal A, light blue; and Luminal 
B, dark blue. Normal breast tissue is colored as yellow as a comparison. (B) Quantification 
of each gene expressions from the gene clusters (right) as log2 median-centered intensity. 

 

Although similar observation was also seen in Her2-enriched and Luminal B 

subtypes however, the commonly known PRC2 targets were downregulated in these two 

subtypes as opposed to TNBC. This finding indicates with interest that despite the 

overexpression of EZH2, the repressive H3K27me3 activity is reduced only in TNBC, 
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further demonstrating the histone methyltransferase independent function of EZH2 is 

associated with TNBC subtype.  

Other than cell cycle regulator, FOXM1 is also known for its role during early onset 

of cancer metastasis and 3 pathways have been reported to be associated with FOXM1 

role; angiogenesis, cell migration and invasion, and EMT (Dai et al. 2007; Wang et al. 

2007; Wang et al. 2008; Zhang et al. 2008; Li et al. 2009; Ahmad et al. 2010; Bao et al. 

2011; Park et al. 2011; Balli et al. 2012; Huang et al. 2012; Karadedou et al. 2012; Xia et 

al. 2012). We also observed enrichment for these subsets of genes in TNBC, further 

reflecting the invasive nature of this particular breast cancer subtype.  

To further establish coregulation of EZH2 and FOXM1, we analyzed 2 independent 

data sets from Curtis (Figure 3.4A) and TCGA (Figure 3.4B) downloaded from 

Oncomine. Pearson’s correlation calculation showed statistically significant correlation 

between expression of EZH2 and FOXM1 in these 2 breast cancer cohorts. Collectively, 

our data indicate that coregulation of EZH2 and FOXM1 is specific to invasive TNBC 

subtype and it does not require repressive histone methyltransferase activity of EZH2. 

 
 

 

 

 

Figure 3.4 Pearson’s correlation in 2 breast cancer cohorts. 
Pearson’s correlation calculation showing a significant correlation between EZH2 and 
FOXM1 in (A) Curtis breast cancer dataset and (B) TCGA breast cancer dataset. Both 
datasets are downloaded from Oncomine database and R-value is indicated for respective 
cohorts. 
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3.2 EZH2 Positively Modulates FOXM1 and Its Target Gene Expressions for 

Mitotic Progression 

To further validate our microarray data, we sought to deplete EZH2 by siRNA in 

MDA-MB-231 cell line and determined its effect on FOXM1 and its target genes 

expressions by immunoblots and qRT-PCR analyses. Depletion of EZH2 and the 

associated H3K27me3 activity by siRNA caused the downregulation of not only FOXM1 

but also its commonly known mitotic targets at both protein (Figure 3.5A) and mRNA 

(Figure 3.5B) levels in MDA-MB-231 cell line. At the same time, we also performed 

FOXM1 depletion as a comparison. True to its function as a mitotic regulator, we also 

observed reduction in its mitotic targets similar to the effects seen in EZH2 depletion.  

Interestingly, depletion of either EZH2 or FOXM1 caused downregulation of 

FOXM1 and EZH2 respectively at both protein and mRNA levels, which raised two 

possibilities; 1) EZH2 and FOXM1 regulates each other protein stability, 2) EZH2 and 

FOXM1 regulates each other transcriptional activity. This question would be addressed 

by performing EZH2 ChIP and FOXM1 ChIP and determining their occupancy on each 

other promoters in the later part of this thesis.  

Nevertheless, our initial validation showed coregulation of EZH2 and FOXM1 on 

FOXM1 mitotic targets. Although there was a possibility that the downregulation of 

those mitotic targets by EZH2 depletion could be an indirect effect mediated in part by 

downregulation of FOXM1. In our subsequent ChIP experiments, we would prove that 

indeed EZH2 regulation on FOXM1 mitotic targets was an indirect effect through 

modulating FOXM1.  
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Figure 3.5 EZH2 positively modulates FOXM1 and its target gene expressions. 
(A) Immunoblots and (B) qRT-PCR analysis of MDA-MB-231 cells upon EZH2 or FOXM1 
depletion utilizing siRNA knockdown system. Student t test was used as a statistical analysis 
and all the data in the graph bars represented ± SEM; **P-value ≤ 0.01, ***P-value ≤ 0.001, 
****P-value ≤ 0.0001 

 

To eliminate the possibility of cell type-specific effect, we also performed EZH2 

depletion in multiple TNBC cell lines i.e. SUM159PT, HS578T and BT549; using 

multiple EZH2 siRNA sequences (Figure 3.6A). Consistent with the effect seen in MDA-

MB-231, all of the TNBC cell lines also demonstrated downregulation of FOXM1 and 

Cyclin B1 upon EZH2 depletion. The incomplete knockdown effect by siRNA targeting 

the 5’UTR region of EZH2 was due to the difficulty to achieve an efficient knockdown 

for this particular region. 5’UTR region is often G-C rich and some region may bind to 

RNA-binding proteins, collectively these factors contribute to reduce knockdown 

efficiency as siRNA may not be able to form a complete base-pairing at this region. 

To validate the specificity of our siRNA effects, we again utilized the siEZH2 UTR 

in MDA-MB-231 cell line and thus, has no effect on the exogenous wild-type (WT) 
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EZH2, which was ectopically expressed in this particular TNBC cell line. This plasmid 

rescue experiment effectively restored the endogenous EZH2 depletion effects (Figure 

3.6B). The exogenous WT EZH2 not only restored EZH2 and FOXM1 levels, but also 

the mitotic target of FOXM1, Cyclin B1. This rescued data indicated that our EZH2 

depletion effects seen on the mitotic targets of FOXM1 was specific to EZH2 modulation 

and our WT EZH2 plasmid was able to rescue the depletion effectively. 

 

 

 

 

 

 

Figure 3.6 EZH2 depletion using multiple siRNA 
sequences in multiple TNBC cell lines.  
(A) Immunoblots showing EZH2 depletion in several 
TNBC cell lines; SUM159PT, HS578T, BT549 using 
multiple EZH2 siRNA sequences. (B) qRT-PCR showing 
plasmid rescue experiment in MDA-MB-231. Student t test 
was used as a statistical analysis and all the data in the 
graph bars represented ± SEM; ****P-value ≤ 0.0001 

 

 

It was worth noting that ectopic expression of WT EZH2 did not induce upregulation 

of FOXM1 expression, although depletion of EZH2 (Figure 3.5 and 3.6) led to reduction 

of FOXM1 at both protein and mRNA levels in multiple TNBC cell lines, suggesting that 
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measured the retention of FOXM1 protein after Nocodazole release. It has been reported 

that the maximum expression and the highest activity of FOXM1 is at mitotic phase 

(Laoukili et al. 2008) and FOXM1 protein is gradually degraded past this point until the 

next cell cycle begins.  

We next stimulated MDA-MB-231 cell to undergo mitotic phase using Nocodazole 

treatment before releasing the mitotic cells in a Cycloheximide supplemented medium, 

followed by several cell harvests for protein extraction in interval. Cycloheximide is a 

global protein inhibitor and it was used in this protein stability assay to prevent any 

confounding factor from other proteins that may have effects on FOXM1 stability. By 

comparing ectopic expression of WT EZH2 in MDA-MB-231 with empty vector using 

immunoblots and densitometry analysis, we observed a marked increase in FOXM1 

protein stability in the WT EZH2 overexpression cell (Figure 3.7A). Although the 

Nocodazole release experiment suggested that EZH2 had a positive role in maintaining 

FOXM1 protein stability however, we could not exclude the possibility of EZH2 

regulation at FOXM1 transcript level. It is possible that the overexpression of FOXM1 

commonly seen in TNBC has reached its maximum tumorigenicity level and it could not 

be further induced, despite the overabundance of its positive regulator. In accordance to 

this theory, we also observed no significant difference in term of mitotic index between 

overexpressed WT EZH2 and empty vector in MDA-MB-231 (Figure 3.7B), despite the 

retention of FOXM1 seen in the former cell construct. 
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Figure 3.7 EZH2 promotes FOXM1 protein stability. 
(A) Immunoblot and densitometry analysis in Nocodazole release experiment showed 
retention of FOXM1 protein in overexpressed WT EZH2 in MDA-MB-231 cell compared to 
empty vector. (B) Mitotic index in Nocodazole release experiment comparing overexpressed 
WT EZH2 and empty vector in MDA-MB-231 cell. Student t test was used as statistical 
analysis and all the data in the graph bars represented ± SEM. 

 

On the other hand, depletion of PRC2 members; SUZ12 and EED, had no effect on 

the expression of FOXM1 and its mitotic target genes at both protein (Figure 3.8A) and 

mRNA levels (Figure 3.8B). We utilized multiple siRNA sequences for the SUZ12 and 

EED depletions to eliminate the possibility of sequence-specific effect for our 

immunoblots. Since both siRNA sequences targeting either SUZ12 or EED achieved 
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similar knockdown efficiency at protein level, we randomly chose one siRNA sequence 

for each gene to be used for qRT-PCR analyses.  

It was noteworthy that the downregulation of EZH2 protein (Figure 3.8A) but not its 

mRNA level (Figure 3.8B) was observed in either SUZ12 or EED depletion, which is 

consistent with previous reports (Cao and Zhang 2004b; Pasini et al. 2004; Montgomery 

et al. 2005). Similarly, Depletion of EED caused downregulation of SUZ12 proteins 

(figure 3.8A) but not its mRNA level (Figure 3.8B) and vice versa. In order for PRC2 

complex to exert a robust methyltransferase activity, at least 3 subunits have to be present 

and intact, and they are EZH2, EED and SUZ12 (Cao et al. 2002; Cao and Zhang 2004b; 

Pasini et al. 2004; Ketel et al. 2005; Montgomery et al. 2005; Nekrasov et al. 2005). 

Disruption of either one of these proteins will affect the stability of PRC2 complex as a 

whole, which was demonstrated in our immunoblots knockdown experiments in MDA-

MB-231 cell line. Taken together, our data suggested that the methyltransferase activity 

of PRC2 complex was not required for the regulation of FOXM1 and its mitotic targets in 

TNBC model. 
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Figure 3.8 EZH2 positively modulates FOXM1 and its target gene expressions. 
(A) Immunoblots and (B) qRT-PCR analysis of MDA-MB-231 cells upon SUZ12 or EED 
depletion utilizing siRNA knockdown system. Student t test was used as statistical analysis 
and all the data in the graph bars represented ± SEM; ****P-value ≤ 0.0001 

 

3.3 Depletion of EZH2 or FOXM1 Shares Similar Biological Consequences in Cell 

Proliferation 

Both EZH2 and FOXM1 have been reported to regulate cell cycle progression in 

multiple malignancies (Korver et al. 1997; Varambally et al. 2002; Bracken et al. 2003; 

Kleer et al. 2003; Shi et al. 2007b; Ahmad et al. 2010; Derfoul et al. 2011; Yau et al. 

2011; Bao et al. 2012; Gong and Huang 2012; Uddin et al. 2012; Jung et al. 2013a; Yan 

et al. 2013). We next asked whether biological consequences resulting from depletion of 

EZH2 or FOXM1 in TNBC would also affect cell proliferation and in particular, mitotic 

progression. We first compared EZH2 and FOXM1 effects in cell proliferation using 

MDA-MB-231 cell line and found that after siRNA depletion, both EZH2-depleted cells 
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and FOXM1-depleted cells underwent senescence as shown by the presence of blue-

stained cells using β-galactosidase senescence assay when compared to siNC control 

(Figure 3.9A top panel). On the other hand, no blue-stained senescent cells were observed 

in either EED-depleted cells, or SUZ12-depleted cells (Figure 3.9A bottom panel).   

Subsequent investigation for the cell growth rate using CTG proliferation assay was 

consistent with the observation seen in senescence assay, where the inhibitory effect in 

cell growth was only observed in EZH2-depleted cells and FOXM1-depleted cells, but 

was not observed in EED-depleted cells and SUZ12-depleted cells (Figure 3.9B). 

Especially at day 7, where there was a significant reduction in growth rate for EZH2-

depleted cells and FOXM1-depleted cells when compared to siNC control cell cells. 

However, both EED-depleted cells and SUZ12-depleted cells had a similar growth rate as 

siNC control cells. Taken together, our phenotypic assays suggesting a histone 

methyltransferase independent activity of EZH2, where depletion of either subunits of 

PRC2 complex had no effect on both growth arrest and cell proliferation in general.  
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Figure 3.9 EZH2 and FOXM1 role in cell proliferation. 
(A) Beta-galactosidase staining for senescence marker in MDA-MB-231. Blue staining in 
EZH2-depleted cells and FOXM1-depleted cells indicated presence of senescence. (B) 
MDA-MB-231 cells depleted for EZH2, FOXM1, EED or SUZ12 were seeded in a 96-well 
format and their proliferation rates were measured every alternate day for 7 days. The 
proliferation rate for each knockdown cell was individually compared to non-targeting 
siRNA (siNC) cells. Two way ANOVA was used as statistical analysis and all the data in the 
graph bars represented ± SEM; ****P-value ≤ 0.0001 

 

To investigate whether the inhibitory effects seen in cell proliferation, in particularly 

mitotic phase, could be rescued by ectopic expression of WT FOXM1, we performed 

endogenous EZH2 depletion in WT FOXM1 overexpressed MDA-MB-231 cell line 

followed by mitotic index. During mitosis, histone H3 is phosphorylated at its serine 

D a y  1

D a y  3

D a y  5

D a y  7
0

5

1 0

1 5

P ro life r a t io n  A s s a y

N
o

rm
a

li
ze

d
 G

ro
w

th
 R

a
te

s iN C

s iE Z H 2

s iF O X M 1

s iE E D

s iS U Z 1 2

****

****

n s

n s

A t D a y  7

A 

 

B 

 



91 
 

residue 28 (H3 pS28) (Tapia et al. 2006) and by fixing and staining cells with antibody 

specific for H3 pS28, we were able to quantify for mitotic cells using FACS analysis. 

From our mitotic index analysis, ectopic expression of WT FOXM1 could modestly 

rescue the inhibitory effect in mitotic progression due to endogenous EZH2 depletion 

(Figure 3.10A), further demonstrating the role of FOXM1 in regulating this biological 

pathway.  

The rescued effects were also seen at mRNA levels, with a modest rescued 

expression seen for CDK1 (gene name CDC2) and Cyclin B after ectopic expression of 

WT FOXM1 (Figure 3.10B). Both CDK1 and Cyclin B are known for their active roles 

in mitotic progression (Dehay and Kennedy 2007) yet FOXM1, a well known mitotic 

regulator, was not able to effectively rescue the EZH2-mediated depletion phenotype. 

Since activation of FOXM1 is dependent on its post translational modification, it is 

possible that the ectopic expression of WT FOXM1 may not be able to fully recapitulate 

the endogenous activity of FOXM1, which has been downregulated due to EZH2 

depletion. Hence, both CDK1 and Cyclin B expressions could not be fully restored to 

their basal levels.  

Furthermore, our FOXM1 plasmid still retains the N-terminal NRD, which acts as an 

autorepressor of FOXM1 activity (Laoukili et al. 2008) and as such, the ectopic WT 

FOXM1 plasmid may not be able to readily direct its activity in-vitro. Interestingly, 

ectopic expression WT FOXM1 could modestly induce mRNA level of EZH2 (Figure 

3.10B), further suggesting the possibility of FOXM1 in transactivating EZH2 gene 

expression. Nevertheless, both of our rescued phenotypic data and qRT-PCR analysis 
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indicated that the EZH2-FOXM1 axis might potentially regulate biological pathway other 

than cell proliferation in MDA-MB-231 cell.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 
 
 

Figure 3.10 Functional rescue experiments for mitotic progression. 
EZH2 depletion in MDA-MB-231-FOXM1 overexpression cells were analyzed for (A) 
mitotic index and (B) qRT-PCR. For mitotic index, cells were synchronized for mitotic 
phase using 100ng/ml Nocodazole, incubated for 16 hours and harvested for FACS analysis. 
Percentages of cells positive for p-H3 (S28) were indicated. Two way ANOVA was used as 
a statistical analysis and all the data in the graph bars represented ± SEM; *P-value ≤ 0.05, 
**P-value ≤ 0.01, ****P-value ≤ 0.0001 
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3.4 EZH2 Forms a Protein Complex with FOXM1 Independent of PRC2 Members 

Since depletion of either EZH2 or FOXM1 not only affected each other expressions 

(Figure 3.5), but also exhibited similar biological consequence in reduction of cell 

proliferation (Figure 3.9), we next explored the possibility that EZH2 might form a direct 

physical interaction with FOXM1. In endogenous coIP performed in MDA-MB-231, 

EZH2 was co-precipitated with FOXM1 and members of PRC2 complex, EED and 

SUZ12 (Figure 3.11A left). However, on the other direction of pull-down assay, FOXM1 

was found to be co-precipitated with EZH2 but not with EED or SUZ12 (Figure 3.11A 

right). These results indicated that EZH2 forms 2 separate protein complexes; a canonical 

PRC2 complex and a non-canonical EZH2/FOXM1 complex in TNBC. This data was 

consistent with our previous report (Lee et al. 2011a), where we observed 2 groups of 

gene sets differentially regulated by EZH2 upon EZH2 depletion – EZH2-negatively 

regulated gene set and EZH2-positively regulated gene set. Previous work identified the 

non-canonical EZH2/RelA/RelB complex and in this current work, the non-canonical 

EZH2/FOXM1 complex. 

To investigate whether similar observation could also be replicated in other TNBC 

cell lines, we performed coIP in SUM159PT and HS578T. Consistent with the 

observation seen in MDA-MB-231, we also observed EZH2/FOXM1 protein complex in 

both SUM159PT (Figure 3.11B) and HS578T (Figure 3.11C), further validating the bi-

directional non-canonical EZH2/FOXM1 complex in TNBC. This finding raised several 

questions; 1) whether the non-canonical EZH2/FOXM1 complex had any role in breast 

cancer progression and 2) whether the methyltransferase activity was still required for the 
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physical interaction. These two questions would be subsequently addressed in the later 

part of this thesis. 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 3.11 EZH2 forms both canonical EZH2/PRC2 complex and non-canonical 
EZH2/FOXM1 complex in TNBC. 
immunoblot analysis showing bi-directional coIP of (A) MDA-MB-231, (B) SUM159PT and 
(C) HS578T cell lysates using indicated pull down antibodies followed by immunoblot 
analysis.  

 

3.5 FOXM1 Occupies Promoters of its Target Genes in Mitotic Progression  

With known role in cell cycle progression for both EZH2 and FOXM1 (Korver et al. 

1997; Varambally et al. 2002; Bracken et al. 2003; Kleer et al. 2003; Shi et al. 2007b; 

Ahmad et al. 2010; Derfoul et al. 2011; Yau et al. 2011; Bao et al. 2012; Gong and 

Huang 2012; Uddin et al. 2012; Jung et al. 2013a; Yan et al. 2013), coupled with similar 

A 

 
                                                   MDA-MB-231                                                .            

B 

 

C 

 



95 
 

inhibitory effects in cell proliferation at both gene expressions (Figure 3.5) and 

phenotypic analysis (Figure 3.9), we attempted to explore the potential of these two 

molecules in binding to the promoter of FOXM1 targets in mitotic progression using 

ChIP assay. 

We first conducted single ChIP pull down for EZH2 and FOXM1 and investigated 

their occupancies on promoters of two known mitotic targets of FOXM1; Cyclin B and 

Aurora Kinase B. We also included CNR1 promoter as a positive control for EZH2 ChIP 

pull down and ACTB promoter as a negative control. We detected significant enrichment 

of FOXM1 on CCNB1 and AURKB promoters (Figure 3.12), further supporting the 

known role of FOXM1 on these mitotic targets. Furthermore, we also detected significant 

enrichment of EZH2 to its own target promoter. In contrast, we did not detect any 

enrichment of EZH2 on these promoters. These initial observations suggested that only 

FOXM1 directly regulated its mitotic targets and not EZH2.  
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Figure 3.12 FOXM1 enrichment on CCNB1, AURKB and its own promoters. 
ChIP qPCR of EZH2 and FOXM1 on the promoters of ACTB, FOXM1, CCNB1 and 
AURKB. ACTB as a negative control was used as a statistical comparison with each ChIP 
pull down. Quantification of enrichment was determined as fold enrichment over IgG. Two 
way ANOVA was used as a statistical analysis and all the data in the graph bars represented 
± SEM; ****P-value ≤ 0.0001 

 

The inhibitory effect seen in cell proliferation under EZH2 depletion could be an 

indirect effect of downregulated FOXM1 expression under this condition. Collectively 

our data showed that FOXM1 is a bona fide mitotic regulator in TNBC model. However, 

our identification of non-canonical EZH2/FOXM1 complex suggested that FOXM1 

might have a role beyond the mitotic regulation, which in part mediated by EZH2.  

On the other hand, the EZH2/FOXM1 complex could be an “interaction artefact” by 

the virtue of cellular proximity. There was a concern that any two or even more 

molecules could form a physical interaction at cellular level when they are in close 

proximity. Usually, such interaction is transient and does not exert any cellular function. 

However, our coIP assay was performed endogenously without the involvement of any 
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crosslinking agent. Hence, our experimental design had eliminated the possibility of 

“interaction artefact”. Whether the non-canonical EZH2/FOXM1 identified in our initial 

investigation had a role in other cellular pathway would be the topic of our second phase 

of study.  
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CHAPTER 4: EZH2 AND FOXM1 REGULATION IN 

INVASION PATHWAY 
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4.1 Depletion of EZH2 or FOXM1 Shares Similar Biological Consequences in 

Cancer Cell Invasion  

Other than cell cycle progression, both EZH2 and FOXM1 have been reported to 

regulate invasion and metastasis in multiple malignancies (Kleer et al. 2003; Dai et al. 

2007; Cao et al. 2008; Ahmad et al. 2010; Derfoul et al. 2011; Lok et al. 2011; Yau et al. 

2011; Gong and Huang 2012; Ren et al. 2012; Shin and Kim 2012; Xia et al. 2012; Xu et 

al. 2012; Chen et al. 2013; Jung et al. 2013a; Kim et al. 2013; Li et al. 2013; Xue et al. 

2014). We next asked whether biological consequences resulting from depletion of EZH2 

or FOXM1 in TNBC would also affect cancer cell invasion and migration. We first 

compared EZH2 and FOXM1 effects in promoting invasive capacity using MDA-MB-

231 cell line and found that after siRNA depletion, both EZH2-depleted cells and 

FOXM1-depleted cells had reduced invasive capacity when compared to siNC control 

(Figure 4.1).  
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Figure 4.1 EZH2 and FOXM1 role in cancer cell invasion. 
Transwell Fluoroblok invasion assay in MDA-MB-231 cells depleted for EZH2 and FOXM1 
using multiple siRNA sequences. Cells were seeded in a matrigel coated 24-well format and 
invading cells were stained with PI after 48 hours of incubation. The number of invading 
cells was measured using high content screening analysis and the average values were taken. 
Each sample was done in triplicate and one way ANOVA was used as statistical analysis. All 
the data in the graph bars represented ± SEM; **P-value ≤ 0.01, ***P-value ≤ 0.001 

 

To investigate whether the inhibitory effects seen in invasion pathway could be 

rescued by ectopic expression of WT FOXM1, we performed endogenous EZH2 

depletion in WT FOXM1 overexpressed MDA-MB-231 cell line followed by invasion 

assay. From our analysis, ectopic expression of WT FOXM1 could effectively rescue the 

EZH2 depletion phenotype in invasion back to its basal level (Figure 4.2), in contrast to 

the modest rescued phenotype seen in mitotic progression (Figure 3.10). Taken together, 

our data indicated that the EZH2-FOXM1 axis is more effective in regulating invasion 

pathway than cell cycle progression in TNBC. 
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Figure 4.2 Functional rescue experiments for invasion pathway. 
EZH2 depletion in MDA-MB-231-FOXM1 overexpression cells were analyzed for invasive 
capacity. Invasion assay was taken after 48 hours incubation. Two way ANOVA was used as 
a statistical analysis and all the data in the graph bars represented ± SEM; **P-value ≤ 0.01 

 

4.2 MMP-mediated Invasion Pathway in TNBC 

As described earlier, there are two biological processes most commonly known to 

contribute to invasive capacity of highly aggressive TNBC; EMT (Shook and Keller 

2003; Mani et al. 2008; Visvader and Lindeman 2008; Bao et al. 2011; Hanahan and 

Weinberg 2011; Park et al. 2011; Huang et al. 2012) and MMP (Boire et al. 2005; Dai et 

al. 2007; Wang et al. 2007; Wang et al. 2008; Balli et al. 2012; Shin and Kim 2012; 

Wieczorek et al. 2012; Xia et al. 2012). To determine which of these two biological 

processes are directly under the regulation of EZH2-FOXM1 axis, we sought to 

investigate the mRNA levels of several well known EMT-associated transcription factors 

and MMP families under EZH2 or FOXM1 depletion condition.  

We first investigated the possibility of EZH2-FOXM1 regulation in EMT pathway, 

and by comparing either EZH2 or FOXM1 depletion with siNC control in MDA-MB-
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231, we unexpectedly found that all of transcription factors associated with EMT was 

upregulated (Figure 4.3A). The properties of EMT are commonly associated with 

embryogenesis (Nieto et al. 1994; Carver et al. 2001), wound healing (Lepilina et al. 

2006; Arnoux et al. 2008) and in the case of human pathology, cancer metastasis (Mani et 

al. 2008; Visvader and Lindeman 2008; Bao et al. 2011; Park et al. 2011; Huang et al. 

2012). Conversely, the reduction in senescence (Figure 3.9A) and cell proliferation 

(Figure 3.9B) observed under EZH2 or FOXM1 depletion, which constituted to 

regression of cancer progression, should be inversely correlated with growth promoting 

properties of EMT. Paradoxically, our study suggested the potential convergence of these 

two polar opposite biological processes – senescence and EMT. 
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Figure 4.3 Positive regulation of EZH2 and FOXM1 in MMP-mediated invasion. 
qRT-PCR analysis of MDA-MB-231 cells upon EZH2 or FOXM1 depletion for (A) EMT-
associated transcription factors and (B) MMP families. Two way ANOVA was used as 
statistical analysis by comparing either EZH2 or FOXM1 depletion with siNC and all the 
data in the graph bars represented ± SEM; *P-value ≤ 0.05, ***P-value ≤ 0.001, ****P-
value ≤ 0.0001 

 

However, the finding of a positive relationship between senescence and EMT was 

not unprecedented. Several studies have shown that senescent cells are often responded to 

the cellular stress by secreting several interleukins such as IL-6, IL-8 and CXCL-1 

(Acosta et al. 2008; Coppe et al. 2008; Kuilman et al. 2008). These interleukins in turn 

stimulate the proliferation of malignant epithelial cell through EMT, linking a robust 

inflammatory network with both senescence and EMT. Coincide with this reported 
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studies, we had also identified the enrichment for inflammatory network under EZH2 

depletion using IPA analysis (Figure 3.1). 

Although senescence-induced EMT would be an attractive hypothesis to pursue 

however, it was not consistent with the reduced invasive capacity observed in our study 

(Figure 4.1). It was possible that the upregulation of senescence-induced EMT markers 

by either EZH2 or FOXM1 depletion was a reflection of the morphological changes in 

the shape of the cell. As shown in figure 3.9A, the β-galactosidase positive EZH2-

depleted cells and FOXM1-depleted cells had a morphologically elongated cell shape 

compared to siNC (and β-galactosidase negative EED-depleted and SUZ12-depleted 

cells), reminiscing the classical shape of messenchymal cells.  

Since the “collateral effect” of senescence-induced EMT marker did not activate the 

EMT machinery, as evident by the contradictorily reduced invasive capacity of either 

EZH2-depleted cells or FOXM1-depleted cells, we investigated the mRNA levels of 

several MMP families with reported role in cancer metastasis (Figure 4.3B). As 

anticipated, depletion of either EZH2 or FOXM1 caused downregulation of MMP1, 

MMP2, MMP7 and MMP9, which was consistent with the reduced invasive capacity 

observed (Figure 4.1). Furthermore, in an attempt to recapitulate the invasion assay 

condition, where the cells were seeded in a serum free medium for 48 hours, the RNA 

extraction for qRT-PCR analysis of EMT markers and MMP families was also performed 

in a similar serum free condition to minimize the confounding factor due to the presence 

of the serum. 
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4.3 Nutrient Deprivation Increases MMP-mediated Invasion Pathway 

As a comparison, we also investigated the mRNA levels for MMP2 and MMP7 

under both complete and serum free medium (Figure 4.4). Both MMP2 and MMP7 are 

direct targets of FOXM1 during cancer invasion, where FOXM1 binds to both promoters 

and transactivates their expressions (Dai et al. 2007; Wang et al. 2007; Xia et al. 2012). 

Hence, they would be appropriate downstream targets to investigate for the crosstalk of 

EZH2 and FOXM1 in MMP-mediated invasion in TNBC. 

 

 

 

 

 
 
 
 
 
 
 
Figure 4.4 Positive regulation of EZH2 and FOXM1 in MMP-mediated invasion during 
serum starvation. 
qRT-PCR analysis of MDA-MB-231 cells upon EZH2 or FOXM1 depletion for MMP2 and 
MMP7 under complete and serum free medium growth. Unless specified otherwise, two way 
ANOVA was used as statistical analysis by comparing either EZH2 or FOXM1 depletion 
with siNC and all the data in the graph bars represented ± SEM; **P-value ≤ 0.01, ****P-
value ≤ 0.0001 
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4.4), further affirming our initial concern for the confounding effect by serum. However, 

both EZH2-depleted cells and FOXM1-depleted cells grown under serum free condition 

exhibited downregulation of MMP2 and MMP7 mRNA levels, consistent with reduced 

invasive capacity observed in invasion assay (Figure 4.1). Interestingly, we observed a 

significant 2-fold and 4-fold upregulations for MMP2 and MMP7 mRNA levels 

respectively for cells grown under serum free medium (Figure 4.4 comparing siNC 

normal growth with siNC serum starvation). It was likely that the serum starvation 

condition might have altered the cellular metabolic state, and as a response toward this 

metabolic stress the cancer cells converged the stress signaling to increased migration and 

invasion, potentially by recruiting EZH2, FOXM1 and other co-activator to promoters of 

MMP target genes for transcriptional activation. 

 

4.4 Nutrient Deprivation Decreases PRC2 Activity on MMPs Promoters 

To examine this theory, we first performed ChIP analysis in MDA-MB-231 cell and 

detected significant enrichment of EZH2 and FOXM1 on MMP2 and MMP7 promoters 

under normal growth compared to ACTB promoter (Figure 4.5A). Moreover, following 

FOXM1 depletion, the enrichment of EZH2 and FOXM1 associated with MMP2 and 

MMP7 promoters decreased significantly (Figure 4.5B). The changes in promoter 

occupancies following FOXM1 depletion corresponded well to the downregulation of 

MMP2 and MMP7 mRNA levels upon FOXM1 depletion (Figure 4.3B and 4.4). These 

observations not only validated our ChIP assay on EZH2 and FOXM1 occupancies on the 
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promoters of MMP target genes, but also provided a possible co-recruitment of EZH2 and 

FOXM1 as suggested by our initial coIP data (Figure 3.11).  

 
 

 

 

 

 

 

 
 

Figure 4.5 EZH2 and FOXM1 co-enrichment on MMP2 and MMP7 promoters. 
ChIP qPCR of EZH2 and FOXM1 on the promoters of ACTB, MMP2 and MMP7 (A) under 
normal growth condition and (B) FOXM1 depletion. ACTB as a negative control was used as 
a statistical comparison with each ChIP pull down. Quantification of enrichment was 
determined as fold enrichment over IgG. Two way ANOVA was used as a statistical analysis 
and all the data in the graph bars represented ± SEM; **P-value ≤ 0.01, ***P-value ≤ 0.001 
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condition, where mRNA levels of MMP2 and MMP7 were upregulated (Figure 4.4), and 

several evidences that support accelerated MMP-mediated invasion of cancer cells 

especially during starvation (Kousidou et al. 2004; Suzuki et al. 2004; Storz et al. 2009), 

we performed ChIP assay comparing normal growth and serum starvation to justify for 

the effect of EZH2, FOXM1 and EED on promoters of MMP2 and MMP7.  
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Based on the ChIP data, we did not observe any significant difference in the 

recruitment of EZH2, FOXM1 and EED on the promoter of MMP2 and MMP7 during 

starvation (Figure 4.6A top and bottom panels respectively). In contrast, there was a 

significant reduction in the H3K27me3 mark on both promoters during starvation. 

Although there was a reduction in the recruitment of EED on both promoters, which was 

consistent with the qRT-PCR analysis for reduced mRNA level of EED as well as SUZ12 

during starvation (Figure 4.6B), however those factors were too inconsequential to 

contribute to the significant reduction in the H3K27me3 level on MMP promoters.  
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Figure 4.6 Comparison of promoter occupancy during normal growth and starvation. 
(A) ChIP qPCR of EZH2, FOXM1, EED and H3K27me3 on the promoters of MMP2 (top) 
and MMP7 (bottom) in MDA-MB-231 cells. Normal growth and starvation condition were 
indicated at x axis label. Quantification of enrichment was determined as fold enrichment 
over IgG. Two way ANOVA was used as a statistical analysis and all the data in the graph 
bars represented ± SEM; *P-value ≤ 0.05, ****P-value ≤ 0.0001. (B) qRT-PCR analysis 
comparing mRNA level of EZH2, FOXM1 and EED during normal growth and starvation 
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regulating invasion pathway in TNBC and it was imperative to investigate whether the 
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EED or SUZ12 depletions in invasion pathway and surprisingly, we found that both 

EED-depleted cells and SUZ-12-depleted cells promoted invasion in TNBC (Figure 

4.7A). Furthermore, mRNA levels for invasive markers, MMP2 and MMP7, were 

upregulated upon either EED or SUZ12 depletion. Unlike EZH2 or FOXM1 depletion, 

the upregulation of these invasive markers mediated by either EED or SUZ12 depletion 

was not affected by the growth condition.  

It was worth noting that EED depletion conferred a higher upregulation of invasive 

capacity as evident by the invasion assay (Figure 4.7A) and the qRT-PCR analysis 

(Figure 4.7B) compared to SUZ12 depletion. Although both EED and SUZ12 mediate the 

methyltransferase activity of EZH2/PRC2 complex, but they each exert a distinct role 

during epigenetic repression. EED is responsible in recognizing and binding to the 

histone tail of H3 (Margueron et al. 2009), while SUZ12 helps to stabilize the EZH2-

EED complex resulting in a more robust methyltransferase activity (Cao et al. 2002). 

Hence, the minor difference between EED depletion and SUZ12 depletion in the light of 

TNBC invasion could be due to their different roles in mediating repressive 

methyltransferase activity via PRC2 complex.  

Since EED is in direct contact with the histone tail, depletion of EED would be more 

effective in disrupting the PRC2-mediated repressive function on its target genes. This 

theory subsequently led to the possibility that both MMP2 and MMP7 were under 

epigenetic repression by PRC2 complex and upon depletion of PRC2 subunits, their 

expressions were activated. Paradoxically, our ChIP data indicated potential 

transcriptional activation of MMP2 and MMP7 expressions via EZH2/FOXM1 complex 

(Figure 4.5 and 4.6A).  
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Figure 4.7 Negative regulation of PRC2 complex in cancer cell invasion. 
EED or SUZ12 depletion in MDA-MB-231 cell was analyzed for (A) invasive capacity and 
(B) qRT-PCR analysis for mRNA level of MMP2 and MMP7 under complete and serum free 
medium growth. Invasion assay was taken after 48 hours incubation and one way ANOVA 
was used as statistical analysis. For qRT-PCR analysis, two way ANOVA was used as 
statistical analysis by comparing either EED or SUZ12 depletion with siNC and all the data 
in the graph bars represented ± SEM; *P-value ≤ 0.1, **P-value ≤ 0.01, ***P-value ≤ 0.001, 
****P-value ≤ 0.0001 
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and FOXM1 on distal promoter region, but also EED on both MMP2 and MMP7 

promoters (Figure 4.8A top and bottom panel respectively). Consistent with the binding 

of EED, we also detected a concomitant enrichment for repressive H3K27me3 level on 

both promoters.  

Albeit the knockdown ChIP data showed dependency of EZH2 and FOXM1 (Figure 

4.5B) and primer pairs surrounding the TSS showed EED occupancy on MMP2 and 

MMP7 promoter (Figure 4.8A), those were insufficient to demonstrate a possible co-

occupancy of all three factors on the promoters. Thus we performed an extensive 

sequential ChIP. After the EED first ChIP, only EZH2 binding was significantly enriched 

in EED-bound MMP2 and MMP7 promoters (Figure 4.8B), indicating that only EZH2 

was concurrently bound with EED to these promoters.  

At the same time, we also conducted EZH2 first ChIP experiment and found that 

FOXM1/EED were concurrently bound to these promoters with EZH2 (Figure 4.8C). 

These results indicated that the recruitment of EZH2/EED and EZH2/FOXM1 to MMP2 

and MMP7 promoters was interdependent. In contrast, the recruitment of EED was void 

of FOXM1 binding, where the FOXM1 binding was not significantly enriched in EED-

bound MMP2 and MMP7 promoters.  

These sequential ChIP data further supported the demonstration by CoIP assay, 

where FOXM1 did not co-precipitate with either EED or SUZ12 (Figure 3.11). The co-

occupancy of EZH2, FOXM1, EED and H3K27me3 enrichment seen in Figure 4.8A 

could be due to the 3-dimensional arrangement of chromatin, it was possible for the 
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EZH2/FOXM1 complex and EZH2/PRC2 complex to bind to the same region but in a 

cis-trans fashion. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.8 Promoter co-occupancy of EZH2, FOXM1 and EED. 
(A) ChIP qPCR of EZH2, FOXM1, EED and H3K27me3 on the promoters of MMP2 (top) 
and MMP7 (bottom) in MDA-MB-231 cells. P1 to P4 indicate primer pairs used to 
encompass the genomic regions analyzed for promoter occupancy, TSS (transcription start 
site). (B) and (C) Sequential ChIP assay was performed to assess in-vivo co-localization of 
EZH2, FOXM1 and EED on the promoters of MMP2 and MMP7. First ChIP and second 
ChIP antibodies were indicated as the chart title and x axis labels, respectively. 
Quantification of enrichment was determined as fold enrichment over IgG. One way 
ANOVA was used as a statistical analysis and all the data in the graph bars represented ± 
SEM; *P-value ≤ 0.05, **P-value ≤ 0.01, ***P-value ≤ 0.001 
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Taken together, we concluded that EZH2, through interacting with FOXM1, was 

required for the activation of a subset of MMP target genes in mediating invasion 

pathway in TNBC cells. At the same time, EZH2, through interacting with its PRC2 

subunits, exerted an antagonistic effect for the same MMP target genes. These 

observations established potential dual roles of EZH2 acting as a transcriptional activator 

and transcriptional repressor simultaneously on the promoter of MMP target genes. Upon 

cellular response toward stress signaling such as nutrient starvation, the repressive 

EZH2/PRC2 complex was downregulated leading to increased invasive capacity 

regulated by activator EZH2/FOXM1 complex 

 

4.7 EZH2 and FOXM1 Regulates Each Other at Transcriptional Level 

In our early investigation into EZH2 and FOXM1 regulation on each other, we did 

not observed recruitment of EZH2 to the promoter of FOXM1 using a single PCR primer 

pair (Figure 3.12). However, it did not exclude the possibility of EZH2 regulating the 

transcriptional activity of FOXM1, since depletion of EZH2 caused downregulation of 

both mRNA and protein levels of FOXM1 (Figure 3.5). On the other hand, mRNA level 

of EZH2 was upregulated during starvation condition (Figure 4.8B) and we reasoned that 

it might play a role in the recruitment of EZH2 to FOXM1 promoter.   

To further investigate the possibility of EZH2 occupancy on FOXM1 promoter, we 

designed series of PCR primers to probe for chromatin regions surrounding FOXM1 

transcription start sites (TSS) for the binding of EZH2 under both normal growth and 

starvation condition. As anticipated, we observed enrichment for EZH2 recruitment on 
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the distal FOXM1 promoter region approximately 1.1 kbps from TSS only during 

starvation condition (Figure 4.9A). Since depletion of FOXM1 also led to 

downregulation of EZH2 (Figure 3.5), we also performed similar ChIP assay using 

primer pairs surrounding the TSS of EZH2 for the binding of FOXM1. Similarly to 

recruitment of EZH2 to FOXM1 promoter, FOXM1 was also recruited to the promoter of 

EZH2 in response to nutrient starvation (Figure 4.9B).  

Based on these results, we concluded that EZH2 regulated both protein stability 

(Figure 3.7) and transcriptional activity of FOXM1, thus depletion of EZH2 caused the 

downregulation of both protein and mRNA levels of FOXM1. At the same time, FOXM1 

also played a role in the transcriptional activity of EZH2, which demonstrated a positive 

feedback loop between EZH2 and FOXM1 during starvation condition.  
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Figure 4.9 ChIP qPCR for whole promoter during normal growth and starvation. 
ChIP qPCR of EZH2 and FOXM1 recruiment on the promoter of (A) FOXM1 and (B) EZH2 
in MDA-MB-231 cells respectively under normal growth and starvation condition. P-5 to 
P+2 indicated primer pairs used to encompass the genomic regions analyzed for promoter 
occupancy. Quantification of enrichment was determined as fold enrichment over IgG. All 
the data in the graph bars represented ± SEM 
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CHAPTER 5: FUNCTIONAL VALIDATION OF EZH2-

FOXM1 REGULATION IN INVASION PATHWAY 
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5.1 EZH2 or FOXM1-mediated Oncogenic Transformation in Mammary Epithelial 

Cell  

Our study of EZH2 and FOXM1 crosstalk in TNBC had been limited to TNBC cell 

lines, in particular MDA-MB-231 cell line. Hence, there was a concern that this 

functional crosstalk could be limited to this particular cell line. In order to ascertain the 

oncogenic nature of EZH2 and FOXM1 in breast cancer progression, we sought to 

overexpress EZH2 or FOXM1 in an immortalized human mammary epithelial cell line, 

MCF10A. Our theory was if both EZH2 and FOXM1 were true oncogenes, they would 

be able to mediate oncogenic transformation even in a normal mammary epithelial cell. 

To this end, we generated a single overexpressed WT EZH2 or WT FOXM1 cell and 

a double overexpressed WT EZH2-FOXM1 cell in MCF10A. For the double 

overexpressed WT EZH2-FOXM1-MCF10A, we titrated the plasmid transfection such as 

each ectopic expression of WT EZH2 and WT FOXM1 were halved of those in the single 

overexpressed cell lines, to ensure equal expression dosage in the overexpression 

MCF10A cell, which was evident from both immunoblot (Figure 5.1A) and qRT-PCR 

(Figure 5.1B) analysis for protein and mRNA levels in these overexpression cell lines 

respectively. 
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Figure 5.1 Ectopic expression of WT EZH2 and WT FOXM1 in a mammary epithelial 
cell line. 
(A) Immunoblots and (B) qRT-PCR analysis of MCF10A cell upon ectopic expression of 
WT EZH2 and WT FOXM1. One way ANOVA was used as statistical analysis and all the 
data in the graph bars represented ± SEM; ****P-value ≤ 0.0001 

 

5.2 Interdependency of EZH2 and FOXM1 in Regulating MMP-mediated Invasion 

Pathway 

Despite the successful transfection, we did not observe any morphological change in 

these cells at 2D growth (Figure 5.2A) however; we detected a concomitant increased in 

the invasive capacity with the overexpression status (Figure 5.2B). The increased was 

even more striking in the double overexpression EZH2-FOXM1 MCF10A cell. 

Interestingly, the increased in the invasive capacity of double overexpression EZH2-

FOXM1 MCF10A cell was not accompanied by the increased in cell proliferation (Figure 

5.2C left) compared to single overexpressed WT EZH2 or WT FOXM1 MCF10A cell.  

Furthermore, the protein levels for cyclin B and CDK1 were slightly reduced in 

double overexpression WT EZH2-FOXM1 MCF10A cell (Figure 5.1A) compared to 
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single overexpressed WT EZH2 or WT FOXM1 MCF10A cell. These observations were 

consistent with our findings in MDA-MB-231 where the EZH2-FOXM1 axis was more 

effective in regulating invasion pathway than cell proliferation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Phenotypic analyses in ectopic overexpressed WT EZH2 and WT FOXM1 in 
MCF10A cell. 
(A) Micrographs showing ectopic overexpression of WT EZH2, WT FOXM1 and WT 
EZH2-FOXM1 in MCF10A cells in 2D growth. (B) In-vitro matrigel invasion assay images 
captured using (top) HCS microscopes and (bottom) quantification of invading cells. (C) 
CTG based proliferation assay measured on day 1 and day 5. One way ANOVA was used as 
statistical analysis and all the data in the graph bars represented ± SEM; *P-value ≤ 0.05, 
***P-value ≤ 0.001 
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The changes in the phenotype were also reflected in the mRNA level, where we only 

observed marked increments of subset of MMP family expressions in double 

overexpressed WT EZH2-FOXM1 MCF10A cell (Figure 5.3). The increased in the 

invasive capacity was in part mediated by the role of MMPs with very little contribution 

from the EMT transcription factors, which was evident from the unchanged mRNA levels 

for EMT markers in these ectopic overexpression cell lines. This data further supported 

the finding in MDA-MB-231 cell, where upon EZH2 or FOXM1 depletion the EMT 

markers were paradoxically increased (Figure 4.3A). 

 

 

 

 

 

 

 

Figure 5.3 mRNA levels for both invasion and EMT markers in ectopic overexpression 
MCF10A cell lines. 
qRT-PCR analysis in MCF10A cell for a subset of MMP families and several EMT-
associated transcription factors. Two way ANOVA was used as a statistical analysis and all 
the data in the graph bars represented ± SEM; ****P-value ≤ 0.0001 
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observe concomitant increased in the MMPs mRNA levels (Figure 5.3). This finding 

indicated that FOXM1 activity was dependent on EZH2 in transactivating its downstream 

invasion-associated target genes. And consistent with the proliferation status, the 

enrichment for the proliferation-associated gene promoters; FOXM1, CCNB1 and 

AURKB; was reduced in double overexpressed WT EZH2-FOXM1-MCF10A cell, 

especially in its FOXM1 immunoprecipitates compared to single overexpressed WT 

FOXM1-MCF10A cell. On the other hand, the EZH2 immunoprecipitate in double 

overexpressed WT EZH2-FOXM1 MCF10A cell was not enriched for any of those 

proliferation-associated gene promoters. The observations in ectopic overexpression 

MCF10A cell lines not only further validated the findings seen in MDA-MB-231 cell, but 

also demonstrated a selective active role of EZH2 on FOXM1 and their interdependence 

in regulating invasion pathway. 

 

 

 

 

 

 

 
Figure 5.4 Selective EZH2 and FOXM1 co-enrichment on MMP2 and MMP7 
promoters in double overexpressed WT EZH2-FOXM1 MCF10A cell. 
ChIP qPCR of EZH2 and FOXM1 on the promoters of ACTB, FOXM1, CCNB1, AURKB, 
MMP2 and MMP7. Each ChIP pull down was compared to empty vector MCF10A cell line. 
Quantification of enrichment was determined as fold enrichment over IgG. Two way 
ANOVA was used as a statistical analysis and all the data in the graph bars represented ± 
SEM; *P-value ≤ 0.05, **P-value ≤ 0.01, ***P-value ≤ 0.001 
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5.3 Pharmacological Inhibition of Histone Methyltransferase Activity of EZH2 

To answer the question of whether histone methyltransferase activity of EZH2 was 

important for the interaction between EZH2 and FOXM1, we utilized a pharmacological 

inhibitor, GSK126 small inhibitor compound, which is a selective inhibitor for the 

enzymatic activity of EZH2 without affecting its protein (McCabe et al. 2012).  

To verify for the effect of histone methyltransferase inhibition, we performed 

immunoblotting on the treated MDA-MB-231 cell and checked for the presence of 

histone methyltransferase activity. It was evident that the histone methyltransferase 

activity was completely inhibited after 3-day treatment (Figure 5.5A). As expected, the 

expression of EZH2, EED and SUZ12 were not affected by the GSK126 treatment, 

despite a concomitant decrease in the repressive H3K27me3 level. Notably, the 

expression of FOXM1 and its target in mitotic progression, Cyclin B, were not affected 

by the epigenetic inhibitor treatment either.  

Even at mRNA level, no effect was observed on several proliferation-associated 

downstream targets of FOXM1 (Figure 5.5B). Strikingly, the expression of MMP2 and 

MMP7 were induced in a dose dependent manner after the treatment, which recapitulated 

the earlier observation seen in the EED and SUZ12 depletions (Figure 4.6B).   
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Figure 5.5 GSK126 treatment in MDA-MB-231 cell. 
(A) Immunoblots and (B) qRT-PCR analysis of MDA-MB-231 cell upon GSK126 treatment 
for 72 hours. Each treatment group was compared to DMSO control and One way ANOVA 
was used as statistical analysis and all the data in the graph bars represented ± SEM; ****P-
value ≤ 0.0001 

 

5.4 Histone Methyltransferase Activity of EZH2 Inhibits Invasion Pathway 

The subsequent functional assay reiterated the effects seen at both mRNA and 

protein expressions, where no significant changes were observed in cell proliferation 

(Figure 5.6A) but a concomitant increased in the invasive capacity (Figure 5.6B) after a 

dose dependent GSK126 treatment. On the other hand, treatment with 3-Deazaneplanocin 

A (DZNep) significantly reduced the number of invading cells. DZNep is an inhibitor 

that efficiently depletes EZH2 and PRC2 proteins and effectively abolish the repressive 

H3K27me3 activity altogether (Tan et al. 2007). 
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Figure 5.6 Phenotypic analyses in GSK126 treated MDA-MB-231 cell. 
(A) CTG based proliferation assay measured on every alternate day for 9 days. Statistical 
analysis comparing treatment group with DMSO treated cell was performed on day 9. (B) In-
vitro matrigel invasion assay for the quantification of invading cells. One way ANOVA was 
used as statistical analysis and all the data in the graph bars represented ± SEM; *P-value ≤ 
0.05, **P-value ≤ 0.01, ****P-value ≤ 0.0001 

 

5.5 Inhibition of Histone Methyltransferase Activity of EZH2 Increases EZH2-

FOXM1 Interaction 

Whether the stability of EZH2/FOXM1 complex remained intact after the selective 

inhibition of the histone methyltransferase activity of EZH2 was a question raised in the 

earlier part of this project after the initial detection of EZH2/FOXM1 complex through 

coIP.  

To answer this question, we performed a separate coIP experiment with GSK126 

treatment in MDA-MB-231 cell. In each respective immunoprecipitates of FOXM1 

(Figure 5.7A), EZH2, phosphorylated-EZH2, and pan-methylated lysine (Figure 5.7B), 

we were able to detect EZH2/FOXM1 complex in all, but phosphorylated-EZH2 

immunoprecipitate (Figure 5.7B). However, after GSK126 treatment, we detected a slight 

D a y  1

D a y  3

D a y  5

D a y  7

D a y  9
0

5

1 0

1 5

2 0

2 5

P ro life r a t io n  A s s a y
(n  =  3 )

N
o

rm
a

li
ze

d
 G

ro
w

th
 R

a
te

D M S O
G S K 1 2 6 -0 .1 u M

G S K 1 2 6 -0 .5 u M

G S K 1 2 6 -1 u M
G S K 1 2 6 -2 u M

G S K 1 2 6 -5 u M

n s
n s

n s
n s
n s

DMSO

GSK12
6-0

.1u
M

GSK12
6-0

.5u
M

GSK12
6-1

uM

GSK12
6-2

uM

GSK12
6-5

uM

DZNep
-2.

5u
M

0

1000

2000

3000

4000

Invasion Assay

A
ve

ra
ge

 In
va

de
d 

C
el

ls

ns * **ns ns ****

A                B 



126 
 

increased in the binding of EZH2 to FOXM1 and vice versa. Of particular interest was 

the methylated FOXM1, which was undetected upon GSK126 treatment (Figure 5.7B).  

Whether EZH2 had a non-histone methyltransferase activity acting on FOXM1 

remained an open discussion however, it was clear that inhibition of the repressive 

H3K27me3 activity did not affect EZH2/FOXM1 complex.  

 

 

 
 
 

Figure 5.7 coIP in MDA-MB-231 cell treated with GSK126. 
Immunoblot analysis showing (A) FOXM1 immunoprecipitate and (B) EZH2, phospho-
EZH2 and pan-methylated lysine immunoprecipitates comparing GSK126 treated and non-
treated MDA-MB-231 cells. 

 

5.6 Inhibition of Histone Methyltransferase Activity of EZH2 Increases FOXM1 

Enrichment on MMPs Promoters  

Furthermore, our initial ChIP findings also indicated the histone methyltransferase 

independent activity of EZH2/FOXM1 complex on MMP2 and MMP7 promoters, 

especially during serum starvation condition (Figure 4.8A). Hence, to validate our 
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hypothesis, we treated MDA-MB-231 with GSK126 followed by H3K27me3 ChIP. As 

expected, we observed enrichment for H3K27me3 on both MMP2 and MMP7 promoters, 

possibly due to the EZH2/PRC2 complex acting on the same regions, and the 

enrichments were gradually decreased with increasing dose of GSK126 (Figure 5.8 

bottom).  

Although the enrichment of EZH2 on these promoters were not significantly affected 

after GSK126 treatment (Figure 5.8 top) however, we observed increased in the 

enrichment of FOXM1 on the same promoters (Figure 5.8 middle). The latter finding 

further supported the earlier observation in coIP, where we detected increased in the 

physical interaction between EZH2 and FOXM1 upon GSK126 treatment (Figure 5.7).  
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Figure 5.8 ChIP assay in MDA-MB-231 cell treated with GSK126. 
ChIP qRT-PCR analysis of EZH2, FOXM1 and H3K27me3 on the promoters of MMP2 and 
MMP7. Each ChIP pull down was compared to DMSO treated cell. Quantification of 
enrichment was determined as fold enrichment over IgG. Two way ANOVA was used as a 
statistical analysis and all the data in the graph bars represented ± SEM; *P-value ≤ 0.05, 
**P-value ≤ 0.01, ***P-value ≤ 0.001 
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Taken together, we concluded that 2 forms of EZH2 complex, canonical 

EZH2/PRC2 complex and non-canonical EZH2/FOXM1 complex, co-occupied invasion 

associated promoters i.e. MMP2 and MMP7 with each exerting contradictory roles in 

TNBC progression. EZH2/PRC2 complex exerted its histone methyltransferase activity, 

which was evident during serum starvation condition and GSK126 treatment by the 

decrease of EED (Figure 4.8A) and repressive H3K27me3 level (Figure 4.8A and 5.8), 

while EZH2/FOXM1 complex acted as a transcriptional activator evident by the 

increased physical interaction at protein level (Figure 5.7) and increased FOXM1 

enrichment on MMPs promoters (Figure 5.8) that led to increased MMP2 and MMP7 

expression (Figure 5.5B) upon GSK126 treatment. 
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CHAPTER 6: DISCUSSION  
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6.1 Summary of Results 

Our initial screening using both microarray and bioinformatics analyses actually 

identified role of EZH2 in regulating mitotic pathway. Our data suggested that EZH2 had 

dual role as a repressor and an activator, as evident from the identification of 2 

differentially regulated sets of gene; EZH2 positively-regulated and EZH2 negatively-

regulated gene sets (Lee et al. 2011a). Subsequently, we focused our study in the 

positively-regulated gene sets and found that EZH2 mediated positive regulation on a set 

of mitotic genes such as CDC20, BUB1, AURKB, CENPF, CCNB2, and UBE2C.  

These mitotic genes were also under positive regulation of FOXM1 and when we 

depleted either EZH2 or FOXM1 in MDA-MB-231, we observed similar reduction in 

term of cell proliferation. Furthermore, FOXM1 activity had been reported to be the 

highest during mitotic phase (Laoukili et al. 2008) thus, we speculated a coregulation of 

EZH2 and FOXM1 in this pathway. Despite our demonstration of a previously 

unidentified protein-protein interaction between EZH2 and FOXM1 however, our 

subsequent rescued experiments and ChIP data showed that EZH2 had very little effect in 

the regulation of mitotic pathway. In fact, the regulation of FOXM1 in the same pathway 

was more robust than EZH2, further reiterated the commonly known function of FOXM1 

as a mitotic regulator (Ye et al. 1999; Wang et al. 2002; Kalinichenko et al. 2004; 

Krupczak-Hollis et al. 2004; Laoukili et al. 2005; Wonsey and Follettie 2005; Halasi and 

Gartel 2012). 

In the second phase of our study, we recognized the other tumorigenic character of 

aggressive TNBC aside from its high proliferative activity, which was high invasive 

capacity and propensity to metastasis. Both EZH2 and FOXM1 have also been 



132 
 

consistently implicated in invasion pathway (Kleer et al. 2003; Ahmad et al. 2010; Ren et 

al. 2012; TCGA 2012; Xue et al. 2014) hence, we tried to investigate the coregulation of 

EZH2 and FOXM1 in the invasion pathway. It was at this phase that we were finally able 

to demonstrate the interdependency of EZH2 and FOXM1 in regulating MMP-dependent 

breast cancer cell invasion. The finding on the EZH2-FOXM1 interdependency stemmed 

from both Nocodazole release experiment and ChIP data, where we observed a longer 

half-life of FOXM1 protein under EZH2 overexpression condition, as well as enrichment 

of EZH2 on FOXM1 promoter and vice versa during serum starvation condition 

respectively.  

In accordance with our previous report in TNBC (Lee et al. 2011a), we also detected 

two separate complexes of EZH2 in MDA-MB-231 cell; the repressive EZH2/PRC2 

complex and the activator EZH2/FOXM1 complex. Intriguingly, both complexes 

contributed to transcriptional regulation of a subset of MMP families in an antagonistic 

manner, where the EZH2/FOXM1 complex was independent of PRC2 members and their 

associating repressive H3K27me3 activity. Notably, inhibiting the histone 

methyltransferase activity of EZH2 promoted further induction in invasive capacity but 

not proliferation in TNBC.  

In the third phase of our study, we further validated the EZH2-FOXM1 axis in 

invasion pathway by transforming a mammary epithelial cell line, MCF10A. In contrast 

to reduced cancer cell invasion seen during EZH2 or FOXM1 depletion in MDA-MB-231 

cell, ectopic expression of WT EZH2 or WT FOXM1 in MCF10A cell promoted the 

invasion, and the effect was even more pronounced in double overexpressed WT EZH2-

FOXM1-MCF10A cell. Furthermore, single overexpression of WT EZH2 in MCF10A 
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cell was not able to drive MMPs expressions as effectively as double overexpressed WT 

EZH2-FOXM1-MCF10A cell. These findings further highlighted the interdependency of 

EZH2 and FOXM1 seen in TNBC cell line.  

 

6.2 Novelty of the Findings 

FOXM1 has been known to play an important role in cancer progression by 

crosstalking a wide spectrum of cellular processes crucial to tumorigenesis however; the 

precise underlying mechanism for the broad regulation of FOXM1 in human 

malignancies is still the subject of speculation. As one of the key cell cycle regulators, 

FOXM1 hyperactivation in the onset of tumorigenesis could reflect its role as an 

oncogenic driver. Conversely, cancer cells generally have a higher proliferative capacity 

compared to normal cells and hyperactivation of FOXM1 could simply be the passenger 

effect. This is further illustrated by Yau et al where an elevated level of FOXM1 in 

TNBC does not correlate to proliferation markers (Yau et al. 2011). Furthermore, they 

also reported that the poor prognostic value of TNBC does not correlate to its 

proliferative capacity instead; it is a reflection of its metastatic potential, suggesting that 

FOXM1 possesses an additional tumorigenic role beyond cell cycle regulation.  

This observation is further supported by effects of FOXM1 depletion, where certain 

cancer cells are viable and proliferating but with a severe consequence of reduction in 

tumorigenicity (Bhat et al. 2011; Wang et al. 2011; Halasi and Gartel 2012; Liu et al. 

2012). Herein we revealed the unexpected role of EZH2 in re-directing the role of 

FOXM1 from a mitotic regulator to an invasion regulator. Consistent with this, ectopic 
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expression of WT EZH2 was able to stabilize FOXM1 protein past mitotic phase as 

shown in the Nocodazole release experiment (Figure 3.7A), however the residual 

FOXM1 expression did not have any effect on cell proliferation (Figure 3.7B). Our 

results proposed a non-canonical function of EZH2 in activating MMP-mediated invasion 

pathway in conjunction with FOXM1.  

Moreover, this non-canonical role of EZH2 in TNBC was supported by several lines 

of evidence; 1) EZH2 formed a protein complex with FOXM1 independent of PRC2 

subunits (Figure 3.11A-C), 2) EZH2/FOXM1 complex selectively transactivated MMP2 

and MMP7 expressions (Figure 4.5A, 4.6A, 4.8A, 4.8C and 5.4), 3) Ectopic 

overexpression of WT EZH2 and WT FOXM1 in mammary epithelial cell line promoted 

cancer invasion (Figure 5.2A and 5.3), and 4) Histone methyltransferase activity of EZH2 

was dispensable for MMP-mediated invasion pathway (Figure 5.5B, 5.6B and 5.8). In 

fact, both canonical and non-canonical EZH2 complexes existed in MMP2 and MMP7 

promoters suggesting 2 layers of regulatory mechanism for these target genes. 

Mechanistically, we showed that both EZH2 and FOXM1 were enriched on MMP2 

and MMP7 promoters with a direct consequence in increased expression of MMP2 and 

MMP7 as well as increased invasive capacity. Intriguingly, we also detected co-

occupancy of EED and enrichment for repressive H3K27me3 on the same regions. This 

unprecedented observation of co-occupancy of two antagonistic forms of EZH2; 

canonical repressive EZH2/PRC2 complex and non-canonical activator EZH2/FOXM1 

complex, revealed that the two layers of gene regulations; epigenetic and transcriptional 

activation, were coordinately involved in aggressive breast cancers. In a slightly different 

study, a promoter co-occupancy of both PRC2 complex and a novel EZH2 partner, Spi-1, 
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has been linked to antiapoptosis in erythroleukemia (Ridinger-Saison et al. 2013). Here, 

the transcription factor Spi-1 assumes a repressive role by modulating the activity of 

PRC2 with a net effect in repression of its pro-apoptotic target.  

Our data provided a novel molecular basis that linked two key oncogenic drivers, 

EZH2 and FOXM1, in promoting MMP-mediated invasion specific to TNBC, offering 

insights into how EZH2 exerted antagonistic dual role in a more aggressive breast cancer; 

on one hand as a repressive epigenetic regulator, but on the other as a mediator in 

redirecting the role of FOXM1 from a mitotic regulator to an invasion regulator. At the 

same time, we also provided an evidence of the convergence of both genetic and 

epigenetic regulations by EZH2; EZH2/FOXM1 complex in directing transcriptional 

activity of MMP2 and MMP7 and EZH2/PRC2 complex in epigenetic repression of 

MMP2 and MMP7 promoters. 

 

6.3 Limitations of the Study 

The scope of this project was to investigate the co-regulation of EZH2 and FOXM1 

especially in the progression of TNBC hence; only TNBC cell lines were used as our 

experimental model. The earlier small interfering RNA depletion and coIP experiments 

were performed in multiple TNBC cell lines to establish the regulation of EZH2 and 

FOXM1 in these cell lines. However, the subsequent phenotypic and functional 

experiments were conducted only in MDA-MB-231 cell line, which raised a concern of 

cell type specific effect. Although our subsequent validation of co-regulation of EZH2 

and FOXM1 in a transformed ectopic overexpression mammary epithelial cell line, 
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MCF10A, was consistent with the observations seen in MDA-MB-231 cell however; we 

should also expanded our studies in other TNBC cell lines.  

Furthermore, the clinical TNBC subtype can be further subclassified into 6 molecular 

subtypes of TNBC (Lehmann et al. 2011b), and there is a possibility that the co-

regulation of EZH2 and FOXM1 might be limited to a particular subtype of TNBC. In 

contrast to extensive molecular profiling for clinical TNBC subtype that identified 6 

subtypes of TNBC, similar work performed in a cell line context was only able to further 

characterize 3 subtypes of TNBC cell line; basal-like, luminal-like and mesenchymal-like 

(Charafe-Jauffret et al. 2006). The gap in molecular classification between clinical 

sample and cell line sample could be the limiting factor in the investigation of context 

specificity of EZH2-FOXM1 coregulation. Furthermore, there is a growing concern with 

the use of cancer cell line as a cancer model because long term in-vitro culture could 

change the pathological behavior of a particular cell line from the actual tumor sample in 

which they were originally derived from. An alternative to bridge the possible differential 

gene regulation existing between the clinical sample and the cell line sample would be 

the use of patient-derived xenograft sample (PDX). 

PDX is a form of tumor graft model, where the tumor sample is surgically obtained 

from a patient, followed by mechanical or chemical digestion into a single cell 

suspension, before engrafting into a non obese diabetic/severe combined 

immunodeficient (NOD/SCID) mouse (Siolas and Hannon 2013). Since PDX sample is 

derived from patient tumor directly and maintained in a 3-dimensional culture condition 

inside a mouse carrier, which provides a direct contact with microenvironment necessary 

for tumor growth, it retains pattern of gene expression similar to its parental tumor. 
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Hence, it offers a better tool for the investigation of molecular regulation and signaling of 

EZH2-FOXM1 in TNBC progression.  

Another limitation of this study was the lack of an in-vivo mouse model as a proof of 

concept for invasive tumor and metastasis propensity. An in-vitro experiment could not 

accurately capture advanced tumor progression that involves invasion and ultimately 

dissemination into distant organs. Although in-vitro matrigel invasion assay is a routinely 

used experiment to investigate invasive capacity of cancer cell, and it is also able to 

provide quantitative data on the number of invading cells however, we found that this 

assay had a low technical replication. Furthermore, in-vitro matrigel invasion assay is not 

able to recapitulate metastasis event. Hence, the use of in-vivo mouse model or PDX 

sample would be able to accurately delineate invasion pathway under the regulation of 

EZH2-FOXM1, and at the same time to provide a molecular mechanism on how the 

disease progresses past invasion and into metastasis.   

 

6.4 Future Prospects 

In this present study, we discovered a novel co-regulation of EZH2 and FOXM1 in 

MMP-mediated invasion pathway in TNBC and at the same time, we also showed the 

involvement of repressive EZH2/PRC2 complex in the same pathway. However, there 

were several unanswered questions pertaining to this dual antagonistic role of EZH2. 

Firstly, how does EZH2 switch from its role as a canonical repressive PRC2 complex to a 

non-canonical activator EZH2/FOXM1 complex? Secondly, what causes the significant 

reduction in H3K27me3 level during starvation condition (Figure 4.6A)? The second 
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question was particularly intriguing because the reduction in H3K27me3 level was not 

accompanied by significant reduction in enrichment of EED on MMPs promoters. This 

raised the possibility of involvement of other epigenetic regulator. 

Several studies have reported the existence of a non-canonical form of EZH2 

however, only a few has identified the upstream regulator that causes the functional 

switch of EZH2 from an epigenetic repressor to a transcriptional activator (Cha et al. 

2005; Wei et al. 2011a; Xu et al. 2012; Kim et al. 2013). The common theme among 

those studies is the post translational modification on EZH2 causes its functional switch 

and two regulators have been identified so far; CDK1 and Akt. In the case of CDK1-

dependent phosphorylation of EZH2, the event leads to inhibition of histone 

methyltransferase activity of EZH2 by disrupting its interaction with PRC2 members 

(Wei et al. 2011a). The resulting net effect is the derepression of EZH2/PRC2 complex 

target genes and some of them are important for tumor progression.  

On the other hand, the study on Akt-dependent phosphorylation of EZH2 by Xu and 

colleagues have clearly demonstrated the functional switch of EZH2, and it is further 

accompanied by increment of active histone marks on its target (Xu et al. 2012). 

Furthermore, they have also identified two forms of EZH2 complex; EZH2/PRC2 

complex and EZH2/AR complex, which is consistent with our study where we identified 

EZH2/PRC2 complex and EZH2/FOXM1 complex. In a slightly different study by Cha 

and colleagues, phosphorylation of EZH2 by Akt inhibits histone methyltransferase 

activity of EZH2 however, it does not alter EZH2 interaction with PRC2 members (Cha 

et al. 2005).  Instead, Cha and colleagues hypothesized that the Akt-dependent 
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phosphorylation of EZH2 switches the histone methyltransferase to a non-histone protein 

methyltransferase activity.  

In our current study, we had demonstrated that the phosphorylation of EZH2 did not 

interact with FOXM1 (Figure 5.7B). It was possible that our upstream regulator that 

mediated the functional switch of EZH2/PRC2 complex to EZH2/FOXM1 complex did 

not involve either CDK1-dependent phosphorylation or Akt-dependent phosphorylation. 

Furthermore, we also identified two complexes of EZH2 existing together in TNBC, 

which was consistent with previously reported studies in other cancer models (Lee et al. 

2011a; Xu et al. 2012; Jung et al. 2013a), and upon serum deprivation only EED and 

H3K27me3 levels were downregulated. Hence, we speculated that our upstream regulator 

was tightly regulated by stress signaling and it had a role in repressing the PRC2 

members selectively. Based on these criteria, we had narrowed down our candidate to 

HIF1 transcription factor. Furthermore, HIF1 transcription factor has been shown to be 

upregulated during serum deprivation in breast cancer (Shi et al. 2010), and it is also 

correlated with loss of SUZ12 and H3K27me3 levels in metastatic renal cancer 

(Vanharanta et al. 2013). In addition, PARADIGM analysis identified activation of HIF1 

network together with MYC and FOXM1 specifically in TNBC subtype (2012a), and 

HIF1 transcription factors has been reported to bind to the promoter of FOXM1 (Xia et 

al. 2009) and EZH2 (Chang et al. 2011) and directly transactivates their expressions. 

Although several studies have highlighted the inverse correlation between EZH2 and 

repressive H3K27me3 levels particularly in breast cancer progression (Holm et al. 2010; 

Holm et al. 2012), and our analysis of TCGA database further supported the non-

canonical role of EZH2 (Figure 3.3) however, the canonical EZH2/PRC2 complex 



140 
 

activity is not completely loss. As evident from our data that demonstrated dual 

regulation of EZH2, involving both EZH2/PRC2 complex and EZH2/FOXM1 complex, 

on MMP2 and MMP7 promoters (Figure 4.8 and 5.8). Furthermore, the H3K27me3 levels 

on these promoters were further downregulated during starvation condition (Figure 4.6A) 

suggesting that the histone methylation is a reversible process.  

Two histone demethylases have been reported that could specifically demethylate 

H3K27me3 marks; jumonji domain-containing proteins3 (JMJD3) and ubiquitously 

transcribed X chromosome tetratricopeptide repeat protein (UTX) (Agger et al. 2007; 

Hong et al. 2007; Xiang et al. 2007). It was possible that these histone demethylases 

might further downregulate the repressive H3K27me3 marks on MMPs promoter during 

starvation. In accordance to this, HIF1 transcription factor has also been reported to 

induce the expression of JMJD3 as a stress response during restrictive oxygen growth 

(Lee et al. 2014). 

Taken together, our future works might encompass the investigation into the 

involvement of HIF transcription factor as the upstream regulator that mediated the 

switch of EZH2 activity and histone demethylase that further augmented the reduction of 

repressive H3K27me3 levels in response to nutritional stress. It would also be imperative 

to extrapolate the study to include tumor-relevant hypoxia condition as HIF1 

transcription factor is associated with hypoxia, and both the functional and phenotypic 

studies could potentially be more robust under this condition. To further demonstrate the 

specificity of this EZH2/FOXM1 regulation in TNBC invasion, there would be a need to 

perform similar study in luminal breast cancer subtype as a biological comparison. 
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6.5 Clinical Implications 

In clinical breast cancer TCGA data, high expression of EZH2 and FOXM1 were 

significantly coexpressed in TNBC compared with other breast cancer subtype, 

particularly Luminal A breast cancer (Figure 3.3A). Although Luminal B breast cancer 

also expressed elevated EZH2, FOXM1 and proliferation-associated downstream targets 

of FOXM1 however; the expression of PRC2 complex downstream targets was reduced, 

supporting the contention that the activity of histone methyltransferase of EZH2 is more 

evident in a less aggressive breast cancer but the same activity is reduced or lost in a 

more aggressive breast cancer.  

The elevated expression of proliferation-associated downstream targets of FOXM1 

in Luminal B breast cancer reflects the hyperactivation of FOXM1, and not necessarily 

the coordinate activity of both EZH2 and FOXM1. The high expression of EZH2 and its 

canonical PRC2 targets seen in TNBC further support the notion of histone 

methyltransferase independent activity is associated with TNBC as reported previously 

(Holm et al. 2010; Holm et al. 2012). In addition, high expression of EZH2 but low 

repressive H3K27me3 level is associated with poor survival outcome in breast cancer, 

further supporting our finding of depletion of PRC2 members or pharmacological 

inhibition of H3K27me3 activity increased invasive capacity in TNBC leading to a more 

aggressive breast cancer phenotype.  

The current treatment for localized and advanced TNBC disease is limited to 

cytotoxic chemotherapy such as antitubulins (eg. Paclitaxel, Docetaxel, etc), 

anthracyclines (eg. Doxorubicin, Epiribucin, etc), alkylating antineoplastic agents (eg. 

Cyclophosphamide, etc), antimetabolites (eg. Gemcitabine, Methotrexate, etc) and 
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platinum-based agents (eg. Carboplatin, Cisplatin, etc). Several studies have shown the 

effectiveness of these cytotoxic agents in neoadjuvant, adjuvant and metastatic TNBC 

settings (Sparano et al. 2008; Thomas 2008; Gianni et al. 2009). Standard neoadjuvant 

and adjuvant regimens typically include combination of both anthracycline agents or an 

anthracycline with taxane have been shown to improve survival in treatment of early 

breast cancer and lymph node positive breast cancer (Sparano et al. 2008; Gianni et al. 

2009). Some breast cancers eventually develop resistance to either anthracyclines or 

taxanes, and although a combination of an antitubulin (Ixabepilone) and an antimetabolite 

(Capecitabine) has been shown to improve progression-free survival however, it fails to 

improve overall survival in the treatment of metastatic breast cancer (Thomas 2008). 

It has been shown previously that elevated expression of FOXM1 in multiple cancers 

after chemotherapy treatment protects the cancer cells against apoptosis induced by 

DNA-damaging agent (Halasi and Gartel 2012) This may explain the relapse seen in 

some of TNBC patients after chemotherapy treatment. Our finding provided the first 

evidence of involvement of FOXM1 in the progression of TNBC by forming a protein 

complex with EZH2.  

Considering the implication of FOXM1 in multiple human malignancies, it is very 

attractive to target FOXM1 for a clinical intervention or even as a cancer biomarker. 

Thiazole antibiotics and proteasome inhibitors have been known to inhibit the expression 

of FOXM1 (Radhakrishnan et al. 2006; Halasi and Gartel 2012) and some of these are 

already in use in clinical practice. Hence, incorporating chemotherapeutic agents with 

FOXM1 inhibitor could potentially contribute to the improvement of therapeutic outcome 

for TNBC patients.  
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Our data also showed that targeting the histone methyltransferase activity of EZH2 

had no effect in inhibiting the proliferation of breast cancer cells, in fact inhibiting the 

repressive H3K27me3 activity further promoted cancer cell invasive capacity. Given the 

importance of EZH2 for cancer progression, therapeutic inhibition of EZH2 protein may 

prove to be more efficacious in TNBC treatment, as opposed to inhibiting its histone 

methyltransferase activity.  

DZNep is the first EZH2 inhibitor that is widely used for experimental works, 

however, the inhibitory effect of DZNep is not specific to EZH2 (Glazer et al. 1986). 

Furthermore, a result in animal models showed that not only DZNep confers non-specific 

inhibition on global level of H3K27me3, but it also has short half-life and high toxicity 

issues (Miranda et al. 2009). In order to reduce the toxicity issue and to improve drug 

specificity, several selective methyltransferase inhibitor for EZH2 have been developed 

and some are currently in clinical phase 1/2 for the treatment of lymphomas, non-

Hodgkin lymphomas and rhabdoid tumors (McCabe et al. 2012; Knutson et al. 2013; 

Knutson et al. 2014).  

However, given that methyltransferase activity of EZH2 could act as a tumor 

suppressor as shown in our data and reported previously (Ernst et al. 2010; Nikoloski et 

al. 2010), caution in the development of clinical application of EZH2 inhibitors are 

warranted. An alternative strategy involving pharmacologic perturbation of the 

interaction between EZH2 and FOXM1 might be a lucrative avenue. As it could 

selectively inhibits the tumor promoting property of EZH2/FOXM1 complex while 

sparing the tumor suppressor property of EZH2/PRC2 complex. 
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6.6 Conclusions and Proposed Model 

In this study, we have identified coregulation of EZH2 and FOXM1 in regulating 

MMP-mediated cancer cell invasion specifically in TNBC progression. As described in 

chapter 1.2, the role of EZH2 in cancer progression has been intensively studied and 

recent findings have also identified the non-canonical role of EZH2 ranging from 

interaction with non-PRC2 members, non-histone methyltransferase activity and even as 

a transcription factor. Importantly, we found both canonical and non-canonical roles of 

EZH2 existing together in an antagonistic manner on the MMP2 and MMP7 promoters in 

regulating TNBC invasion. EED and SUZ12 as PRC2 members for EZH2 canonical role, 

while FOXM1 was implicated as the novel partner of EZH2 for its non-canonical role 

counterpart. Furthermore, in response to stress induced by nutrient deprivation, there was 

a shift in the equilibrium of EZH2 complexes toward its non-canonical EZH2/FOXM1 

complex and accompanied by reduction in the repressive H3K27me3 level on MMP2 and 

MMP7 promoters.  

Based on the collective results of Chapter 3, 4 and 5, we proposed a model for 

EZH2-FOXM1 regulation of MMP target gene expression in TNBC in response to stress 

induced nutrient deprivation as summarized in Figure 6.1. During normal growth, both 

canonical EZH2/PRC2 complex and non-canonical EZH2/FOXM1 complex co-occupy 

MMPs promoters. Although the activator EZH2/FOXM1 complex binds to the same 

promoter, the underlying repressive mechanism via H3K27me3 exerted by the repressive 

EZH2/PRC2 complex prevents the transactivation of MMP expression. In contrast, 

during starvation condition the activity of EZH2/PRC2 complex is inhibited by a 

mechanism that has yet to be elucidated. As a consequent, the activator EZH2/FOXM1 
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complex is now able to transactivate MMP expression resulting in an enhanced invasive 

capacity in TNBC and accompanied by a concomitant decrease in the repressive 

H3K27me3 level on the promoters.  

 

 

 

 

 

Figure 6.1 A proposed model of dual regulation of EZH2 in regulating MMP-mediated 
invasion in TNBC. 
During normal growth, both canonical and non-canonical complexes of EZH2 were recruited 
to the promoter of MMPs, and both acted in an antagonistic manner preventing the 
transactivation of MMPs expressions. In contrast, during starvation condition, the 
EZH2/PRC2 complex activity was repressed, which in turn activated MMPs expressions 
through EZH2/FOXM1 complex leading to heightened cancer cell invasion. 
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