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Summary

Mobile Ad-hoc networks (MANETs) are drawing increasing research interest

because of the revolutionary development of mobile devices and wireless commu-

nication technology in recent years. One important feature of MANETs is that

Nodes can move freely without any requirement of infrastructure. Therefore com-

munications are purely based on peer-to-peer packet forwarding, which makes it

an ideal option for fast network deployment such as in military or disaster ar-

eas. While mobility and lack of central controller are the most important features

of MANETs, they are also the greatest challenges: constant changes in network

topology and local information sharing make end-to-end Quality of Service (QoS)

optimization difficult. In this dissertation, we propose a reinforcement-learning-

based solution to address the cross-layer optimization on QoS performances in

MANETs.

Our major work consists of three parts: Q-learning-based routing, power-

controlled routing and rate-aware power-controlled routing. In the first part, we

propose a self-learning routing protocol based on a Q-learning method that com-

bines multiple QoS metrics as its reward, with the help of a congestion level

indicator for the purpose of parameter tuning. As a result, nodes are able to dy-

namically change their routing strategies based on surrounding environment and

previous experiences. In order to cope with the routing loop problem, we introduce

xi



SUMMARY

a probing packet mechanism to discover and resolve routing loops periodically.

In the second step, we add a power control scheme into the Q-learning method.

To efficiently deal with the large action space formed by combining both routing

and power control, a CSMA/CA delay model is adopted to accelerate the learning

process by extracting a small number of variables from the environment, which

are further processed to simulate all the routing and power-control actions. In

order to find the optimal power level, a pricing mechanism based on interference

level is also embedded into the system.

Finally, we consider one more factor: rate adaptation. Although it is possible

to directly extend the power-controlled routing scheme by adding the rate-related

parameters, a global-utility-based rate-aware power-controlled routing scheme based

on the diffusion model is implemented to improve the performances. We also intro-

duce a multi-agent coordination mechanism based on the Distributed Constraint

OPtimization (DCOP) model. By comparing with various benchmarks in their

respective categories, we show that our methods can achieve better performances

with comparable energy consumption rate through simulation-based evaluations.

xii
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Chapter 1

Introduction

1.1 Background

1.1.1 Mobile Ad-hoc Network

The recent development in wireless-medium-based communications has dra-

matically changed people’s life. Wireless networks can be generally divided into

two main groups: infrastructure-based and infrastructure-less wireless networks

(Fig. 1.1). The most famous member in the first group is the cellular network.

Powered by multiple cellular radio towers and wired infrastructure, the cellular

network is capable of providing large radio coverage and high throughput to its

end users, with the requirement that communications are always between the

end users and infrastructure. Since the end users do not rely on each other for

packets forwarding, requests from them are forwarded to destinations through

the backbone infrastructure. As a result, the end users can enjoy the freedom of

the wireless communication while avoiding the shortcoming of unreliable wireless

communication channels for long distances.

1
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(a) Infrastructure-based wireless networks (b) Infrastructure-less wireless networks

Fig. 1.1: Infrastructure-based vs. Infrastructure-less wireless networks

Infrastructure-less networks, such as wireless ad hoc networks have advan-

tages on flexibility, scalability, easy deployment and relatively low cost. They do

not rely on the infrastructure, and therefore are suitable for emergency situations

such as disaster recovery or military usage. Wireless Mesh Networks (WMNs)

combine both features of infrastructure-based and infrastructure-less networks by

meshing client access gateways through ad hoc connection. Mobile Ad hoc Net-

works (MANETs) are a special kind of wireless ad hoc networks (Fig. 1.2) with an

extra restriction that its end users consist of mobile devices only. In fact, restric-

tions in MANETs are quite limited: they can choose to be cooperative, selfish,

invisible or even destructive (although may not be on purpose). How to organize

all the nodes in MANETs to accomplish a certain task is still an open challenge

because many well-addressed problems in wired networks, such as routing, rate

adaptation and power control cannot be applied directly to MANETs.

One major challenge comes from mobility. Frequent changes in topology re-

quire an efficient information sharing and coordination system. However, limited

communication range and lack of a central controller make the system design

challenging: communication in MANETs involves intermediate nodes exchanging

2
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Wireless networks

Infrastructure-

based 

Infrastructure-

less

Mobile  ad hoc 

networks

Wiresless 

mesh 

networks Mobile  ad hoc 

networks

Wireless  ad hoc 

networks

Fig. 1.2: Types of wireless networks

local information. As a result, excessive information sharing introduces undesir-

able overhead, which may further impair the whole network performance. On

the other hand, limited information-sharing bandwidth prevents the traditional

graph-theory-based algorithms from working on MANETs. Therefore, compro-

mising the trade-off between information sharing and overhead is the key to good

design for MANETs.

Limited lifetime of mobile devices is another challenge faced by MANETs.

Efficiently forwarding packets becomes crucial for energy saving purpose. One

important fact is that, it is not necessarily true that smaller transmission power

results in smaller power consumption. In fact, higher transmission power may

shorten the overall transmission time if a higher rate can be adopted, which may

eventually reduce the power consumption.

In wireless networks, Quality of Service (QoS) measures the overall perfor-

mance observed by an end user. Unfortunately, it is usually the bottleneck of

the development of MANETs because wireless communication channels are less

3
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reliable than wired ones due to multi-path propagation and channel fading. As

a result, when the hop counts of a packet increases, the probability of transmis-

sion failure increases significantly. The resulting poor QoS performances limit the

applicability of MANETs: high packet loss cannot guarantee critical information

delivery; high latency rules out real-time communications; low throughput makes

multimedia applications almost impossible. This is also the reason why MANETs

become an inferior choice if an infrastructure-based solution is possible.

However, MANET has a large room for improvement thanks to its flexibility:

nodes in MANETs are capable of changing its power level, rate adaptation method

and routing strategy to accomplish packet-forwarding tasks on demand. Therefore,

with a carefully designed coordination system, the overall QoS performances can

be greatly boosted.

Before we explain this, let us give an brief introduction of power control, rate

adaptation and routing respectively.

1.1.2 Power Control

In a wireless network, nodes are connected through wireless data connections.

A wireless signal is generated by a digital modulation method, and then transmit-

ted by an antenna, which is capable of converting electric power into radio waves.

In order to successfully receive the signal, the signal strength at the receiver side

has to exceed the energy detection threshold pET . The required transmission

power p and signal gain rG for a successful transmission can be expressed as

p · rG ≥ pET (1.1)

4
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Note that (1.1) is only a necessary condition for a successful transmission. In

order to correctly demodulate the received signal, a sufficient Signal-to-Interference-

plus-Noise Ratio (SINR) for a given modulation method is also required, which is

denoted as

p · rG
pN + pI

≥ TU
SINR (1.2)

where pI and pN are the interference and noise power strength, respectively. TU
SINR

is the threshold of SINR value required for a data rate U . Note that fulfilling

(1.1) and (1.2) does not guarantee a successful transmission attempt in practice.

However, in such a case, either the Bit Error Rate (BER) is negligible or the error

bits can be recovered by using some error correction techniques. Therefore, for

simplicity, we assume perfect reception when the energy detection threshold and

the SINR requirements are satisfied.

The solution of the power control problem is to find the best power level to

achieve good performances within the network. The challenge comes from the fact

that higher U requires higher SINR, which in turn requires higher transmission

power. However, higher transmission power increases pI at the same time. Another

important side effect of the power control scheme is the change of network topology,

which has great impacts on routing decisions. Therefore, it is preferred that the

power control scheme can take surrounding traffic conditions into consideration.

For example, a larger transmission range has a great advantage in a low-traffic

multi-hop network because it can shorten the path length and reduce the end-to-

end latency. However, in high-traffic conditions, the cost of the packet forwarding

becomes significant because of the increased contention among neighbors. In such

a scenario, a smaller transmission power is preferred.

5
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1.1.3 Rate Adaptation

The main purpose of rate adaptation is to achieve higher throughput, with

major challenges of accurately assessing the channel condition and differentiating

packet loss due to contention from that due to poor channel conditions [1]. In other

words, rate adaptation is the determination of the optimal data transmission rate

most appropriate for current wireless channel conditions [2]. Generally speaking,

higher data rate leads to higher packet loss, it is therefore crucial to find the best

trade-off between data rate and packet loss that maximizes the overall throughput.

1.1.4 Routing

Routing, as its name suggests, is to find the best route to a certain destination.

Different routing protocols have different definitions of the ”best”: minimum hops,

minimum power consumption, best link quality are all candidates of the routing

metrics. Whichever is chosen, there will be shortcomings and trade-offs. The

choice of routing protocol therefore depends on the scenarios, user preferences and

applications. The most widely used method for the routing problem is the graph

theory in which the whole network can be generalized as a graph G = (V,E)

consisting of vertex V and edges E. In MANETs, the vertexes become mobile

nodes and the routing problem can therefore be converted into a shortest path

problem: find a path between two vertexes that minimizes the sum of the weights

of its constituent edges.

Bellman-Ford [3, 4] is an algorithm that finds the short path from one source

to the rest of the nodes based on the principle of relaxation. At first, the distance

of each node to the source is marked as infinity. At each iteration, the distances

are relaxed when a shorter distance is found. The general idea can be represented

as a dynamic programming approach shown in Fig. 1.3: in each iteration, the
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Source 1
st

 hop 2
nd

 hop
Update Update

…... |V|th hop

Fig. 1.3: Bellman-Ford shortest path algorithm. In each iteration, source will move forward for
one more hop, thus at the ith iteration, the shortest distances to all the nodes by using up to i
hops are found

relaxation process moves one hop forward until there is convergence. Note that

one node can be updated multiple times. Since the maximal number of hop

is |V |, It is guarantee that after |V | iterations the convergence is reached. For

each iteration we have to go through all the edges, which results in the overall

complexity of O(EV ). When the algorithm finishes, the shortest path from the

source to all the nodes in V is obtained. If hop count is chosen as the routing

metric (in this case, all the edge cost equals to one), the algorithm can terminate

once the destination is reached for the first time.

Dijkstra’s algorithm [5] solves the shortest path problem by maintaining a set

of nodes S whose shortest path is already found. Then the algorithm repeatedly

adds the vertex in V − S, whose path estimate is the shortest, into set S. The

process terminates when S = V . For example, in Fig. 1.4, at a certain iteration,

there are three edges connecting S and V − S, Dijkstra’s algorithm chooses the

node in V − S with the smallest distance from the source, in this case, node D,

and adds it into S. Unlike the Bellman-Ford algorithm, if any node is added into

set S, its distance will not be updated any more. Therefore, the algorithm can

terminate once the destination is added into S.
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S

A

B

C

D.d = 0.36

E.d = 2.1

F.d = 1

V-S

Fig. 1.4: Dijkstra shortest path algorithm

Introducing heuristics can further extend the Dijkstras algorithm. A* search

algorithm proposed in [6] is an efficient path-finding algorithm by estimating fu-

ture cost heuristically. The A* algorithm calculates a heuristic cost to reach the

destination in addition to the cost incurred from the source. For example, we can

use the Euclidean distance as the heuristic function in A* to find shortest walking

distance from a source to a destination. The cost of an intermediate node consists

of two parts, one is the actual cost measured by the shortest path from the source

to the current node, the other is the estimated cost from the current node to the

destination, which, in this case, is the length of the line connecting the current

node and the destination. Note that in the example, the estimated future cost

is always smaller than the actual future cost, therefore, the heuristic function is

admissible. It is guarantee that when the heuristic function is admissible, the A*

algorithm can always find the optimal path.

Among the three algorithms, A* search has the lowest running time, in spite of
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the difficulties in finding an admissible heuristic function, especially when location

information is expensive or unreliable. The Dijkstra’s algorithm is running faster

than the Bellman-Ford algorithm because of its greedy approach in including the

finished nodes. However, it requires that all the cost of edges must be positive.

Even worse, it must rely on the global topology information to make decisions.

On the contrary, the Bellman-Ford algorithm, although having the longest running

time, can be distributed so that each node just updates its shortest distance from

the source whenever possible. More importantly, even when the optimal solution

has not been found yet, the algorithm can still provide a suboptimal path leading

to the destination.

The largest disadvantage of a graph-based approach is that it can only work

in a static environment with a fixed topology. In MANETs, during the execution

of a graph-based algorithm, the graph itself may already change due to link failure

or node movement. Therefore, it is crucial for a routing protocol in MANETs to

provide a satisfactory any-time solution, which also has the capability of evolving

over time.

1.2 Motivation

Interactions between power control, rate adaptation and routing can be gener-

alized as in Fig. 1.5. Power level directly determines not only transmission range

but also the corresponding maximum supported data rate. Based on current

SINR level, the rate adaptation scheme chooses the best data rate accordingly.

The topology formed by the power control and rate adaptation scheme is then

pass to the routing protocol. At the same time, since the routing protocol chooses

only a subset of nodes as intermediate nodes, it is also important for the power
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Power 

Rate Route 
Determine the link quality 

Determine link usage 

Fig. 1.5: Interaction between power, rate and route

control and rate adaptation scheme to be aware of the selected edges so that the

optimization can be carried out.

A power-controlled rate-aware routing protocol design can be straight forward

if following the layered structure in Fig. 1.5. For example, if we want to minimize

the overall energy consumption, we can use the minimal power level to maintain

the network connectivity. Then the algorithm chooses lowest data rate to ensure

maximum transmission range, and then forwards packets along the path with

minimum power consumption. If the utility function is to maximize the overall

throughput, we can start with rate adaptation by using the highest data rate

possible. The power level should be large enough to support the links to its

highest data rate, if not possible, then maximal power level is adopted. Finally,

the protocol can make use of a maximal flow algorithm to obtain the optimal path,

or simply chooses the next-hop data rate as one of the routing metrics to find the

shortest path. For both of the examples, the general ideas behind are the same: for

a given utility function, we can try to optimize all of three factors separately and

combine them together to form a complete solution. However, such an approach

does not fully utilize the flexibility and exploit the potential of MANETs.
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A

B

C

EF

Fig. 1.6: Design motivation. Five nodes are connected in a ring, node A is sending packets to
node C

Using a simple example, it is easier to illustrate the fact that the cross-layer

design provides optimization options that no single-layer optimization can achieve.

Fig. 3.9 shows a MANET with five nodes connected in a ring with traffic flowing

from node A to node C. If only routing is considered, it is generally a good choice

for node A to take the shortest path A−B−C because fewer intermediate nodes

are involved.

Now let us assume that node B is far away from both node A and node C.

Fig. 1.7 indicates the bandwidth for each link. In this case, going through node

F and node E may eventually result in higher throughput. Therefore, with the

extra information from another layer, the decision can be totally different.

The cross-layer design is not limited to the extra information, new actions

can also be introduced when multiple layers are optimized together. For example,

suppose now each node can freely adjust its power level and node C is within

node A’s maximum coverage, i.e., node C can be reached by node A by using the

maximum transmission power. Under such conditions, The best choice for node
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A

B

C

EF

6mbps 6mbps

18mbps

18mbps

18mbps

Fig. 1.7: Routing with rate information. The maximum rates are labeled in the figure, it is
therefore a better choice to go through a longer path. However, if nodes can freely adjust their
power levels, it might be a good choice for node A to directly reach node C by increasing its
power level.

A would be to increase the transmission power to reach node C (as shown by the

dotted line in Fig. 1.7) without involving any intermediate node. Such an action

cannot be made if the power control or the routing strategy operates separately.

Fig. 1.7 is a simplified graph-theory-based routing model which ignores the

transmission interference caused to neighbors. In reality, an Omni-directional

antenna will affect all nodes within its transmission range by introducing extra

interference. As a result, the supported maximum data rate drops due to the

reduced SINR and more intensive contention. Taking Fig. 1.7 as an example, the

power level required for node A to reach node C also makes node E under its

transmission range. Therefore, the link E − F and E − C now suffer throughput

loss due to the increased interference. If there is heavy traffic on these links, the

resulting performance loss can be significant. The decision on whether to use a

larger transmission power therefore depends on the trade-off between the perfor-

mance improvement of itself and the interference level caused to its neighbors.

This example explains one important fact: with more useful information and
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options, nodes have more chances to make a better choice, although it is tough.

The Open Systems Interconnection Model (OSI Model) [7] divides the commu-

nication system into seven abstract layers so that each layer can be developed

independently. It saves a lot of trouble for the protocol designers since they can

focus on one layer at a time. By breaking the layered model as in the previous

example, we must face the challenge of how to use the extra information to obtain

better performances. Unfortunately, it is not an easy task because multiple layers

have complicated impact on the final outcomes.

1.3 Problem Definition

Before getting into the solution, let us define the problem first. A network

adopting the IEEE 802.11 Distributed Coordination Function (DCF) Media Access

Control (MAC) protocol, consists of a set of nodes V and a set of data flows Ψ.

Each flow ψi ∈ Ψ can be represented as a tuple (oi, di, ri), where oi and di are the

source and destination node and ri is the packet-generating rate. Let pi be the

transmission power level for node i such that ∀pi : pmin ≤ pi ≤ pmax, where pmin

and pmax are the minimal and maximal power level for a mobile node. Typically,

pi is a discrete variable for most mobile devices. Let ε(pi) be the transmission

range for a given power level pi and χi,j be the distance between nodes i and j.

Then we can define the interfered neighbors of node i as
−−→
Adji, which is the set

of nodes that are within the sender node i’s transmission range. Symmetrically,

the interfering neighbors set is denoted as
←−−
Adji, which represents the set of nodes

whose transmission range can reach node i (Fig. 1.8). The reason of maintaining

the two sets of neighbors is the asymmetry introduced by the power control scheme:

since all nodes can change their transmission power levels, it is quite possible that
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ε(pi) ̸= ε(pj) for any two given nodes. Therefore, it is necessary to differentiate

−−→
Adji from

←−−
Adji since they may be different as well. Lastly, we denote the actual

neighbor set as Adji =
−−→
Adji ∩

←−−
Adji. Transmissions from node i can only succeed if

the receiver is in Adji because of the handshake procedure introduced in the IEEE

802.11 MAC protocol. Note that both
−−→
Adji and Adji are functions of transmission

power pi. The routing strategy for node i to destination node d can be denoted

by Ri(d). The consecutive strategy therefore is defined as R
(t)
i (d) where R

(t)
i (d) =

Rt
R

(t−1)
i (j)

(d) and R
(1)
i (d) = Ri(d). Ui,j(pi) represents the expected data rate from

node i to node j by using power level pi. f(ψi) is the utility function for traffic

flow ψi. The optimization problem can be represented as:

max f(Ψ) =
∑
i∈N

f(ψi)

subject to pmin ≤ pi ≤ pmax, i = 1, 2, 3, 4...v ∈ V

Ri(d) ∈ Adji(pi), i = 1, 2, 3, 4...v ∈ V

Umin ≤ Ui,j(pi) ≤ Umax, j ∈ Adji(pi)

R
(t)
i (d) = d, where t <∞

Modeling power level, rate adaptation and routing mathematically at the

same time is difficult because of the non-linear constraints of the actual neighbor

set and the optimal data rate. Common approaches such as the graph theory

method require a well-defined topology because routing does not make much sense

when edges do not exist. On the other hand, constructing an optimal topology

also requires the information of routing because only the links participating in for

packet forwarding need be optimized.

Artificial Intelligence (AI) techniques such as reinforcement learning method
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ε(pi) 

(a) Interfered neighbors (b) Interfering Neighbors

Fig. 1.8: Interfered neighbors vs. Interfering Neighbors

could be a possible solution since it allows agents to explore and learn from the

environment without a system model. The Q-learning method is a model-free

reinforcement learning technique for optimal policy search in any given Markov

decision process (MDP) [8]. By starting with some initial settings, each node can

adjust its power, rate and routing strategy based on its own observations.

1.4 Literature Review

1.4.1 Power Control

Power control is critical because of its impact on transmission range and

battery life [9]. Extensive studies have been carried out in the area of power

control in cellular systems [10–13], which mainly focus on single-hop transmissions.

In MANETs, it is common that packet traverses more than one hops to reach the

destination, therefore, the power control scheme has to pay more attention to

SINR and space reuse ratio. Controlling power level in a multi-hop network was

first introduced by Kleinrock et al [14] with the constraint that all nodes must
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use the same transmission power level. Hou et al [15] remove the restriction

by introducing an analytical model for throughput and forward progress using

variable transmission power levels. ElBatt et al [16] combine power control and

scheduling by packing the maximum number of transmissions into the transmission

packets which determines the set of powers that could be used by the scheduled

users. It requires a controller responsible for executing the scheduling algorithms.

Long et al [17] develop a non-cooperative reinforcement-learning-method-based

power control algorithm with the main objective of minimizing the transmitting

power. It provides a power control mechanism based on a stochastic fictitious play

model with repeated games. Genetic Algorithm (GA) can also provide a solution

to the power control problem. Wu et al [18] propose a permutation encoded GA by

formulating the minimal power broadcast problem to a graph-based constrained

optimization problem.

Topology control is another kind of power control scheme. The topology of a

multi-hop wireless network is the set of communication links between node pairs

used explicitly or implicitly by a routing mechanism [19]. Unlike the power control

scheme in the cellular network, topology control in MANETs mainly focuses on

the connectivity rather than the quality of each link. In other words, it tries to

maintain the number of neighbors within a reasonable range. The Hybrid and

the AEWMA scheme described in [20] changes the transmission power level in

response to the neighbors’ piggybacked power query message. The Power Control

MAC (PCM) protocol in [21] and Power-Aware Routing Optimization (PARO)

in [22] use the maximal power level for the Request To Send (RTS) and Clear

To Send (CTS) frames and a much lower power level for data frames. The Local

Mean Algorithm (LMA) illustrated in [23] tries to maintain the number of neigh-

bors between NodeMinThresh and NodeMaxThresh. If the number of current
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neighbors is smaller than NodeMinThresh, the power level will be increased.

Likewise, power level will be reduced when the current number of neighbors is

larger than NodeMaxThresh. The Local Mean of Neighbors algorithm (LMN) in

[23] does not have a fixed threshold. Instead, each node tries to keep its number

of neighbors as the same as the mean value of its neighbors’ number of neighbors.

The Common Power (COMPOW) algorithm in [24], as its name suggests, tries

to find a common power level for all nodes such that the entire network remains

connected. The DIStributed POWer management (DISPOW) described in [25]

sends out power-change requests based current connectivity, interference and en-

ergy level, then adjusts power level according to the current status and the power

requests received. All these approaches are able to construct a reasonable topol-

ogy with most nodes connected by a relatively small power level. However, the

optimal performance cannot be obtained because the impact of power control on

routing and rate adaptation is overlooked.

1.4.2 Rate Adaptation

The rate adaptation schemes can be divided into two groups based on their

support of loss differentiation. The schemes without loss differentiation adjust

their data rate according to frame loss or signal strength. For example, Kamer-

man et al [26] propose a scheme which chooses a higher transmission rate after a

number of successful transmissions at a given rate and switches back to a lower

rate after several consecutive failures. The Adaptive ARF (AARF) scheme pro-

posed in [27] follows a similar idea but dynamically chooses the threshold for rate

switching. The Receiver Based Auto Rate (RBAR) scheme proposed in [28] is the

first rate adaptation scheme adjusting the transmission rate based on the chan-

nel information obtained through MAC level control message. The Opportunistic
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Auto Rate (OAR) scheme in [1] is similar to RBAR with an extra feature of the

opportunistic transmission of data frames. The Full Auto Rate (FAR) scheme in

[29] increases the data rate of the RTS / CTS to achieve better performance.

The other group is the rate adaptation schemes with a loss differentiating

mechanism, which is used to diagnose the cause of a packet loss. Packet loss can

be caused due to channel degradation or packet collision. Only in the first case,

rate should be decreased in order to reduce the packet loss rate. Collision-Aware

Rate Adaptation (CARA) in [30] uses the RTS packets to probe the channel con-

dition when encountering packet loss. Since RTS / CTS packets are always sent

at the basic rate, it is not quite possible that the packet loss is due to collision if

the RTS / CTS packets are lost as well. The Robust Rate Adaptation Algorithm

(RRAA) scheme in [31] combines both packet loss count and MAC-layer informa-

tion to estimate short-term loss ratio and opportunistically guides its rate change

decisions.

Most of the rate adaptation schemes are based on the MAC layer. In fact,

some power control and rate adaptation schemes, such as [32–34], also mainly

focus on the MAC level one-hop single-flow scenarios.

1.4.3 Routing

Routing is a path selection process based on a predefined topology. One

or more metrics need to be chosen as path weight for routing process. Most

of the conventional routing protocols are designed either to minimize the data

traffic in the network or to minimize the average hops for delivering a packet [35].

For example, Ad hoc On-demand Distance Vector (AODV) [36], Dynamic Source

Routing (DSR) [37] and Destination-Sequenced Distance-Vector Routing (DSDV)

[38] are all shortest-path-algorithm-based routing protocols that are well known
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for their simplicity and fair performances. However, since they only consider the

hop count when selecting a route, the route selected may not be the optimal one

in terms of QoS parameters such as delay and throughput. Besides, the selected

route may fail since the hop count cannot guarantee any stability and reliability.

Many prior works have been done to improve the original AODV algorithm.

The AODV routing protocol with High Packet Delivery Fraction (AODV-HPDF)

protocol in [39] utilizes local repair at the upstream intermediate node by intro-

ducing ”the salvage process”, during which the intermediate node tries to send

out packets buffered to the destination as a source. At a given scenario, its packet

delivery rate can be slightly increased if these originally dropped packets can be

successfully retransmitted. However, in a highly dynamic environment where link

failures are frequent, such a salvage process may introduce significant overhead.

Adding multi-path routing features into AODV is another possible solution. Ma-

rina and Das [40] propose the Ad hoc On-demand Multipath Distance Vector

(AOMDV) routing protocol which tries to buffer potential routes so that when

a link breaks, backup routes can be used directly without sending extra routing

control messages. However, such backup routes still suffer from node mobility [41].

Some researchers also try to use reinforcement learning methods to solve the

QoS optimization problem in MANET because AODV’s packet forwarding policy

is purely based on the hop count. Among all these available learning methods, Q-

learning is preferred because it does not require a model of the environment. Chang

and Kaelbling [42] propose a scheme using the reinforcement learning methods to

control both packet routing decisions and node mobility to improve the connectiv-

ity of the network. However, the assumption that node mobility can be controlled

by its routing protocol is usually not valid for MANETs [43].

Q-Learning AODV (QLAODV) proposed in [43] is another MANET routing
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protocol that considers link stability and bandwidth efficiency. It uses distributed

Q-learning to infer network status information and takes link stability and band-

width efficiency into consideration while selecting a route. For each node, its

bandwidth factor and mobility factor are calculated and broadcast to its neighbors

through the AODV Hello messages. Both factors are used to update the discount

factor in Q-learning. Therefore, for a given node, all its neighbors will receive

the same discount factor, which is not fair because obviously some neighbors are

closer or have better link quality than others. Besides, the term ”maximum band-

width” used to calculate the bandwidth factor cannot be easily obtained since it

depends on the topology of MANETs. Q-Learning MAODV (QLMAODV) follows

the same idea, which combines mobility, bandwidth and residual power together

to calculate the discount factor. However, the mobility factor requires the exact

location and moving pattern for each node which is not easy to obtain.

In summary, the Q-learning-based routing schemes proposed in [39, 42–46]

can easily combine different routing metrics by treating the entire network system

as a black box. However, using multiple metrics inevitably involves weight tuning.

Moreover, the final result may be trapped in a local optimal point due to the lack

of peer-to-peer coordination and the system model.

1.4.4 Power-controlled Routing

There are two types of protocols that take power control and routing into

account at the same time. The first category is the energy-aware routing protocols,

which use remaining energy level or power consumption rate as the path weight to

reduce energy consumption and prolong network life time, such as [47–49]. They

do not control transmission power levels directly.

The second category, however, explicitly changes the transmission power level

20



CHAPTER 1. Introduction

for performance improvement. One major challenge for the power-controlled rout-

ing protocol design is to cope with the complicated interaction between power

level and routing strategy. A feasible solution is to combine existing power con-

trol protocols and routing protocols to bypass this challenge as in [50–52]. How-

ever, overlooking the interaction between power control and routing has perfor-

mance penalty as described earlier. Therefore, many researchers propose delegated

power-control routing protocols. Power Control Routing (PCR) proposed in [53]

explicitly tries each power level to find the best combination of power control and

routing that minimizes the overall path cost. Cross-layer Power Control Ad hoc

On-demand Distance Vector (CPCAODV) in [54] builds different routing entries

for different power levels on demand, and selects the minimum power level for

data delivery. TopoLogy-control-based QoS Routing (TLQR) in [55] uses hop

count based on residual bandwidth for different power levels. The residual hop

count is estimated by each node’s two-hop neighbors’ used bandwidth, distance,

and power level. Since all these protocols require each power level be explicitly

tested, they may not be affordable, especially in a dynamic network with a large

number of nodes.

1.4.5 Power-controlled Rate-aware Routing

Power-controlled Rate-aware routing is a relatively new area and therefore

less work has been carried out. Kwon and Shroff [56] propose such a scheme al-

locating links to incoming flows. The algorithm solves an optimization problem

to minimize the average energy consumption while maintaining SINR constraints.

However, the algorithm makes an unrealistic assumption about total control over

node scheduling on a static topology without contention. The most relevant work

is the Transmission Power-Controlled Rate-Aware (TPCRA) routing protocol in
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[57], which develops a MAC-level module to support the calculation of the trans-

mission power and data rate of a neighborhood in a scalable way. At first, each

node estimates the ideal transmission power and modulation to all its neighbors

through message broadcasts. Then, an objective function considering data rate,

path length and power level is evaluated to construct the routing paths. One

major drawback of TPCRA is that the extra interference and contention intro-

duced by higher power level and routing path is not considered. Moreover, when

constructing the topology, routing is not jointly optimized with rate adaption.

1.5 Thesis Contribution

The Q-learning-based method bypasses the complicated system model by in-

troducing a self-evolving process consisting of acting, observing, learning and up-

dating. However, Q-learning has its own defects when applied to MANETs, such

as static environment restriction, routing loop problem, selfish behaviors, slow

convergence rate and lack of coordination, etc.. In this thesis, we propose a Q-

learning-based framework that jointly optimizes power control, rate adaptation

and routing, meanwhile customized to overcome the problems in the traditional

Q-learning method.

To be more specific, the main contributions of this thesis are listed below:

• Design a routing protocol which uses a distributed multi-metrics Q-learning

algorithm to find the optimal path

• Implement an automatic parameter tuning mechanism to differentiate var-

ious traffic conditions based on congestion level and a learning parameter

reset mechanism to deal with mobility

• Introduce a probing packet system for routing loop detection and recovery
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• Design a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

delay model to overcome the large action space formed by combining power

control and routing

• Measure the interference level in terms of weighted delay and use the inter-

ference level to derive an optimal transmission range.

• Implement a global-utility-based routing protocol based on the diffusion

model

• Design a power-controlled rate-aware routing protocol using a global utility

cost function

• Develop a multi-agent coordination scheme based on the Distributed Con-

straint OPtimization (DCOP) framework

1.6 Thesis Outline

We provide the solution of jointly optimizing power control, rate adaptation

and routing in MANETs using the reinforcement-learning-based method in three

steps. Since considering all three factors at the same time is challenging, we just

add one factor at a time. Firstly, we illustrate how the Q-learning method can be

applied to the routing problem. Then, a power control scheme, which deals with

the trade-off between interference and transmission range, is embedded into the

system. Finally, a rate adaptation scheme is added to form the complete solution.

In the following content, Chapter 2 presents a Q-learning-based routing proto-

col that chooses the optimal path based on multiple metrics. Chapter 3 combines

power control and routing protocol together, with the help of a CSMA/CA model,
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so that the learning process is instantaneously completed for all neighbors. Chap-

ter 4 adds the rate adaptation into the protocol. Inspired by the Braess’s paradox,

the global utility, which is obtained from diffusion model, is used as the instant

rewards in the Q-learning framework. Besides, a coordination mechanism based

on the DCOP framework is also developed to address the multi-agent learning

problem. Finally, Chapter 5 summarizes the whole thesis and indicates possible

extensions as the future work.
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Q-learning-based Routing

Protocol

One distinguish feature of reinforcement learning is its emphasis on learning

by the individual from direct interaction with its environment, without relying

on exemplary supervision or complete models of the environment [58]. A typical

application of reinforcement learning is in finding the exit of a maze without prior

knowledge of the exact layout. A learning agent has to find a path to the exit

in order to maximize its utility (assuming each step provides some reward along

the path). In order to obtain desired performances, the reward mechanism needs

to be carefully designed. For example, if the goal is to find the shortest path to

the exit, then we can give each step negative reward whereas give the exit large

positive reward. On the other hand, if the reward mechanism is poorly designed

such that the maze contains a loop with positive reward, then it is quite likely

that the learning agent will be trapped in the maze forever.

Routing is also an appropriate application of reinforcement learning because
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finding a route to a given destination is conceptually the same as finding the

exit in an unknown maze. In this chapter, a short introduction of reinforcement

learning and Q-learning is given at first. Then we present the Q-Learning-based

Routing (QLR) scheme by showing how the Q-learning method can be applied to

the routing problem using multiple QoS metrics, followed by some customized op-

timizations techniques, such as a congestion-level-based parameter tuning scheme.

QLR also sends out probing packets to detect and solve the routing-loop prob-

lem which is not addressed in most existing Q-learning-based routing protocols.

Finally, we use simulations to evaluate our protocol under different scenarios.

2.1 Reinforcement Learning and Q-learning

A typical application of reinforcement learning is in a Markov Decision Pro-

cess (MDP) [59], which provides a mathematical framework for modeling deci-

sion making in a stochastic environment. MDP can be considered as a 4-tuple:

(S,A, Pa(s, s
′), Ra(s, s

′)), where S and A are the sets of states and actions, Pa(s, s
′)

is the transition probability that state s ∈ S changes to state s′ ∈ S when action

a ∈ A is performed, with an immediate reward Ra(s, s
′). Note that it is not neces-

sary that s ̸= s′. Fig. 2.1 is an example of a MDP model with s0 and s3 being the

starting and ending state respectively. The numbers on the arrows indicate the

transmission probabilities between different states. The whole process terminates

when the ending state is reached. The goal of a learning agent in the MDP model

is to find an optimal policy that maximizes the aggregated reward.

If both the transition probabilities Pa(s, s
′) and rewards Ra(s, s

′) are known,

it can be solved by the Dynamic Programing (DP) technique [60]. However, if

Pa(s, s
′) or Ra(s, s

′) is unknown, it becomes a reinforcement learning problem [61].
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Fig. 2.1: Markov Decision Process. Node s0 and s3 are the starting and ending states respectively,
a0 and a1 are the actions available at each state, the numbers on the arrows indicate the transition
probability Pa(s, s

′)

In reinforcement learning, the Q value is introduced to indicate the optimality of

an action in a given state. Therefore, the Q value can be considered as a function

that maps each state-action pair into a real number ℜ, which can be represented

as

Q : S × A→ ℜ (2.1)

The Q value is updated by observing its reward and resulting state when

performing an action, which can also be considered as the expected value of the

overall reward. For a given state s and action a, its Q value can be calculated as

Q(s, a) =
∑
s′

Pa(s, s
′)(Ra(s, s

′) + γZ(s′)) (2.2)

27



CHAPTER 2. Q-learning-based Routing Protocol

where Z(s′) is the expected reward of state s′, and γ is the discount factor that

indicates how much weight is given for the future value.

If the resulting state s′ is also not known, then the learning must be purely

based on the state-action pairs (s, a), which is essential the Q-learning method.

In Q-learning, the Q values are recursively updated from the old values:

Q′(s, a) = Q(s, a) + α · (Ra(s) + γmax
a

(s′, a)−Q(s, a)) (2.3)

where α is the learning rate controlling the weight of the new reward value. When

α = 1, the old value is totally ignored for each update. Note that α may not be

a constant value. In fact, α must decrease with time to ensure the Q-learning

process will converge eventually [62].

2.2 Q-learning-based Routing

As we already explained, Q-learning is a model-free reinforcement learning

method which updates the policy through continuous observation of the rewards of

all state-action pairs [58]. In the context of routing, we must first define the states

and the actions. In fact, packet forwarding can be easily modeled as a MDP: one

packet needs to travel to the destination through several intermediate nodes, and

during each step, stochastic transmission failure results in an unchanged resulting

state. Clearly, here a state is just the location of each packet while the action set

is the choices of next hop for each node.

What is the learning agent? The most intuitive answer may be the transmis-

sion packets because they can make decisions for the next hop by observing the

transmission results. However, this is clearly not possible because once a packet
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reaches its destination, it is out of the system. Without knowledge accumulation,

Q-learning cannot be carried out. If mobile nodes are considered as the learning

agents, then there is no longer any state change because once a packet is forwarded

to the next hop, it is passed to another learning agent. To appropriately apply

Q-learning to routing, all the nodes have to be combined together to form multiple

learning agents. Each learn agent is responsible for one specific destination, which

results in three-dimensional Q values:

Q : S × A×D → ℜ (2.4)

where D is the set of destinations. Therefore, the corresponding Q value of node

i choosing an action a to reach destination d can be denoted as Qi(d, a). Since in

the routing problem, the action a and state s are associated with a specific node,

for convenience, we denote the node of the next hop as a and the current node as

s. For example, Qi(d, j) means the Q value for node i taking node j as the next

hop to reach the destination d.

All the Q values are distributively stored in each node as shown in Fig. 2.2.

Since the state s is always the current node, each node only needs to store the Q

values of destination-action pairs D×S. In fact, to shrink the space usage further,

since node i can only reach its neighbors Adji, only Qi(d, a)∀a ∈ Adji are stored.

The corresponding update function can be represented as

Q′i(d, a) = Qi(d, a) + α×
[
Ra(i) + γmax

j
Qa(d, j)−Qi(d, a)

]
(2.5)

where max
j
Qa(d, j) is the best future value if the next hop a is chosen. Note that

29



CHAPTER 2. Q-learning-based Routing Protocol

 d1

d2

d3
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Fig. 2.2: Relationship between learning agents and nodes. Each row indicates a learning agent
for a destination. All the learning agents are distributively stored in all the nodes

max
j
Qa(d, j) can only be retrieved from node a.

Another important decision for the Q-learning method is the choice of the

reward function Ra(s). Different reward functions indicate different preferences

in the path selection process, just as in the maze example mentioned in the be-

ginning of this chapter. It is difficult to argue which reward function is the best

because the final performance is usually based on the application and the network

characteristics. However, it is still possible to design a reward function which is

of more robust and versatile applicability.

We choose SINR, throughput, and delay as the metrics to comprehensively

indicate Ra(s) value. SINR is a common measurement for link qualities: higher

SINR usually results in more reliable links. Throughput is an important QoS

parameter indicating the rate of successful message delivery, which is crucial for
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real-time multimedia services. Delay measures the end-to-end latency of packet

forwarding from the source to destination. High delay is likely to be caused by

inefficient routing or severe congestion. Therefore, Ra(s) is denoted as:

Ra(s) = −F (w1 · SINR)F (w2 · Throughput) · w3 ·Delay +Destination (2.6)

where SINR, Throughput and Delay are the normalized feedback with their

respective weights w1, w2 and w3. Destination is 1 only if the final destination is

reached to encourage fewer hops. F is the discount function which maps the value

into the range of (0, 1]. There are some interesting points about Ra(s):

• Ra(s) is always negative for all the nodes except the destination, which may

have a positive reward. This is to ensure that no infinite routing loop is

formed in the learning process.

• Delay is treated differently because it is additive. For example, by adding

the delay from node i to j and the one from node j to k, we can obtain

the delay from i to k. SINR and Throughput, on the other hand, do not

have such a property. Therefore, in (2.6), they act as a discount factor to

normalize Delay.

• A typical choice of F is F (x) = e−x because the quantity of an exponential

function decays at a rate proportional to its current value. As a result, a

fast drop when SINR and Throughput are small can be expected due to

the minus sign in front.

• SINR, Throughput and Delay are all mapped into [0, 1] through rescaling:

x′ =
x−min(x)

max(x)−min(x)
(2.7)
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Noted SINR value can be recorded only when a packet is successfully re-

ceived by the receiver. Therefore, min(SINR) is the threshold SINR value

of the slowest supported transmission rate instead of 0. The detailed Min

and Max values are shown below:

Table 2.1: QoS feedbacks

Min Max
SINR SINR for minimal data

rate
Transmission power di-
vided by noise

Throughput 0 Raw data rate
Delay Transmission time with-

out contention
MAC transmission
queue timeout value

• SINR indicates the ”buffer” to counter the mobility and channel fading,

whereas Throughput represents the link quality for a certain period in the

past. Higher Throughput indicates the quality and reliability of a neighbor.

Unlike SINR and Delay, which can be obtained at the moment when a

packet is received, Throughput has to be observed for a certain window by

using a moving average function. For the same reason, it contains chronicle

information about the link quality: it is expected that the more frequently

used links are more reliable than those are solemnly used. For example,

Throughput = 0 indicates there is no previous successful transmission at-

tempts, which gives F (w2 · Throughput) = 1. In other words, no discount

is given for the penalty Delay. As Throughput gets higher, Delay is dis-

counted further.

The reward information is embedded in the CTS and ACK frames and send

back to the sender. Unlike protocols described in [43] and [46], in which the reward

is given only if the destination is reached, our protocol gives immediate reward
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for both destination reached and good link quality. In [43] and [46], feedback only

determines the discount factor γ. As a result, the hop count has a much higher

priority than other factors.

So far we have shown how to store and update the Q values. The next step

is to make the routing decisions based on the Q values. It may appear trivial that

the Q entry with maximum Q value should be selected as the next hop. However,

since the Q value can only be updated if the corresponding action is performed, a

greedy strategy prevents the exploration process to find a better route. A simple

solution is to normalize the Q values by the Boltzmann probability distribution

[45] to enable exploration. The selection method can be represented as

P (Ri(d) = a) =
eβQi(s,a)∑

j∈Adji

eβQi(s,j)
(2.8)

where β controls the greediness of the selection process. When β is infinity, only

the entry with the largest Q value will be chosen as the next hop. Whereas when β

is 0, the choice becomes random in spite of the Q values. Note that QLR becomes

a multipath routing scheme by introducing the Boltzmann-probability-based se-

lection mechanism because traffic is divided to different intermediate nodes based

on their Q values to mitigate the congestion level in a heavily loaded environment.

2.2.1 Information Sharing

As mentioned above, in order to update the Q values in (2.5), the maximal

future value and reward have to be obtained from neighbors. They are shared

using broadcasting and unicasting respectively:

• Each node broadcasts its maximal future values max
j
Qi(d, j)∀d ∈ D by in-
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Fig. 2.3: The format of a Hello packet.

cluding the information into a Hello message as shown is Fig 2.3. Originally,

the Hello message is periodically broadcast to confirm the adjacency rela-

tionships, which is an excellent candidate for the broadcasting information

carrier.

• Each node unicasts the QoS information back to its neighbors. When a

node receives packets from its neighbors, the SINR, throughput and delay

of the sender is updated. By inserting it into the header of a routing control

message, theses information is sent back to the sender whenever appropriate.

The information sharing mechanism inevitably introduces extra overhead.

However, no extra packet is created during the process because the existing con-

trol packets are modified to accommodate the extra information. Moreover, to

mitigate the corresponding penalty, it is best to enable the sharing mechanism at

a fix interval. The guideline for choosing an appropriate interval is the network

mobility: with higher mobility, higher information exchange frequency should be

adopted.

2.2.2 Overview of Q-learning-based Routing

Generally speaking, the Q-learning-based routing process can be classified

into the following phases:

• Initialization: In this phase, a node either just joins a network or the entire

network just starts to communicate. Therefore, there is no Q entry avail-

able. If the node has packets to send, it needs to initiate a Route Request
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(RREQ)/Route Replay (RREP) procedure to establish the first route. If the

node has no packet to send, it will monitor HELLO messages from its neigh-

bors. The corresponding Q entries of newly found destinations are initialized

to 1 to encourage the initial explorations.

• Learning: In this phase, nodes have already obtained the list of destinations

and initialized the correspondingQ entries. When it needs to send or forward

a packet, all the Q values are retrieved to calculate the next hop. Once the

packet is successfully received, the corresponding QoS feedback is embedded

into an ACK packet and sent back by the receiver. Then, the node can

update the corresponding Q values.

• Sharing: In this phase, nodes broadcast their optimal Q values for each

destination to neighbors through the HELLO message. Meanwhile, once

a HELLO message is received, nodes also update their neighbors Q values

accordingly.

• Maintenance: This phase occurs when there is a change in the network.

It can either be a topology change, such as nodes leaving the network, or

a traffic change, such as extra flows emerging. A topology change can be

observed from the HELLO messages. For example, when a HELLO message

from a new node is received, the new node is added into the neighbor Q

table. Whereas if the HELLO message from a neighbor is not heard for

a certain timeout period, we can deduce the neighbor’s absence. When a

topology change is detected, the learning rate is reset to 1 to explore new

paths. If a neighbor becomes unavailable, all the corresponding entries are

removed from its neighbor’s Q tables. When there is not entry left, the node

enters the initialization phase.
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A traffic change refers to a change of the destination set. When a node

receives a RREQ request targeting itself, it adds itself into the HELLO

message and broadcast. On the contrary, if after a timeout period, there is no

more data packet received, this node will remove itself from the destination

set by indicating a N.A. value in its optimal future value. Nodes receive

such a value will remove the destination as well.

2.2.3 An Example of Q-learning-based Routing

Fig. 2.4 shows an example of how the Q-learning-based routing scheme works.

Four nodes A,B,C and D are mobile nodes connected by wireless links. Source

A tries to send packets to destination B, with two intermediate nodes C and

D helping forward packets. For demonstration purpose, we assume that all the

weights and parameters are set to 1.

Initially, similar to AODV, node A sends out a route request that floods

through the network to reach node B. After B receives the request, it will identify

itself as a destination and start to send back routing information. At first the

routing information can only be sent from the destination B (assuming no other

nodes are aware ofB at the beginning). After the feedback from nodeB is received,

node A, C and D will update their respective entries (Fig. 2.4a). Since node B is

the destination, they can get the destination reward of 1 as in (2.6). For example,

when C receives the feedback tuple as (0.3, 0.3, 0.1), RC(B) is updated as 0.945.

A,B and C then share such information with each other as shown in Fig. 2.4b.

For example, A sends back its feedback to C indicating the reward and maximal

future value. After that, C can update its entry as 0.539. Note that although

the instant reward from A to C is the same as the one from C to A, it is not

necessarily true for all links. The absence of the symmetric link assumption is also
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the reason why we must adopt the feedback mechanism to obtain information.

Once a packet needs to be forwarded, the Q values are used to determine next

hop according to (2.8). In this particular instance, A forwards packets to B, C

and D with the probabilities of 31.77%, 29.98% and 38.26% respectively.

It is expected that after finite iteration, the Q values should converge to a

fixed value in a static environment. In the next part, we are going to illustrate

how to guarantee the convergence.

2.2.4 Parameter Tuning

There are quite a number of parameters in QLR, namely, the learning rate α,

discount factor γ in (2.5), the Boltzmann probability parameter β in (2.8), and

the three weights (w1, w2, w3) in (2.6).

The convergence of Q-learning requires the learning rate to fulfill two condi-

tions [62]:

Condition 1 :
∑
t

αt =∞ (2.9)

Condition 2 :
∑
t

αt
2 <∞ (2.10)

where αt is the learning rate at tth iteration. t is initialized as one and increments

by one whenever the Q value is updated. Note that a node maintains a different

t for each destination. The first condition ensures that all values are reachable

whereas condition 2 ensures that it will converge to an optimal solution.

The learning rate therefore can be defined as

αt = 1/t (2.11)
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(a) At first, node B broadcast information to node C and D

A

C

D

B

Destination Next hop Q value

B

B

B

A 0.539

B 0.945

D -

Destination Next hop Q value

B

B

B

A 0.686

B 0.880

C -

Destination Next hop Q value

B

B

B

C 0.649

B 0.591

D 0.835

(b) Node A, C and D exchange information and update Q values

Fig. 2.4: QLR example. An example showing how the Q-learning-based routing protocol works
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which meets both conditions 1 and 2 when t → ∞. In other words, if the en-

tire network remains static, the learning process is guaranteed to converge to a

solution.

Unfortunately, neither t → ∞ nor the static network assumption can hold

in MANETs: we cannot expect a node to wait forever to find a path to the

destination and all nodes just stay where they are throughout the learning process.

One important feature of the Q-learning-based routing is its ability of providing

best any-time solutions. In other words, although the solution provided may not

be the optimal one, it is still the best solution so far can be found.

The Boltzmann distribution parameter β indicates the greediness of the ac-

tions. Therefore, it is desirable that a smaller value should be given for exploration

at the beginning and becomes greater as more information is obtained. Therefore,

we can also define β as

βt = t (2.12)

However, the above settings can only work as long as the network remains

static. Once the topology changes, previous learning results will become obso-

lete. Therefore, a learning reset mechanism is required for continuous learning

in a dynamic network environment like MANETs. Fortunately, since neighbors

periodically send out Hello packets, it is quite easy for each node to keep a record

of its neighbors. Whenever there is a change in the neighbor list, such as adding

or deleting a neighbor, t will be reset to 1 to initiate the learning process. Note

that when a topology change is detected, the t values for all the destinations are

reset.

Weight tuning is inevitable for a reward function like (2.6), because all the
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metrics are in different units. By introducing weight to each of them, we can then

have a way to later consolidate their combined effects. Usually, weight tuning can

be accomplished via heuristic approaches: explicitly try various combinations of

weights and choose the one with the best performance. However, since different

scenarios may require different weights, it is not possible to provide weights for

each scenario. Therefore, we need to extract some common features from each

scenario and group them accordingly. By doing so, only a limited set of weights

are required for these groups.

The congestion level is a good measurement indicating surrounding traffic

conditions. For a higher level of congestion, smaller weights are preferred because

higher weights usually result in more hops, which makes network congestion more

severe. The congestion level C can be defined as

C =
Channel busy time

Total time
× Current queue size

Maximum queue size
(2.13)

We define the levels of congestion as light, moderate or heavy by defining

two threshold value Cm and Ch such that the congestion level is light if C < Cm,

moderate if Cm < C ≤ Ch and heavy elsewhere. For each congestion level, there

is a corresponding heuristically tuned weight set, so that once the congestion level

is estimated, the corresponding weight set will be chosen to calculate the reward.

The overall procedure for sending and receiving a packet is explained in Al-

gorithm 1 and 2.

2.2.5 Routing-Loop Problem

The routing-loop problem is common in all the Q-learning-based routing pro-

tocols because of the explicit use of past experiences and neighboring information,
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Algorithm 1 Procedure of packet sending

1: function SendPackets(packet, destination)
2: nextHop← GetNextHop(destination) using 2.8
3: packet.SetNextHop(nextHop)
4: if feedbackRecord.Contains(nextHop) then
5: packet.InsertFeedback(feedbackRecord[nextHop])
6: end if
7: Send(packet)
8: end function

Algorithm 2 Procedure of packet receiving

1: function ReceivePackets(packet)
2: if packet contains feedback then
3: feedback ← Retrievefeedback(packet)
4: w ← RetrieveWeight
5: Rx

a ← CalculateReward(feedback, w)
6: UpdateQEntry(Rx

a)
7: end if
8: RecordFeedback(packet)
9: if packet.destination == self then
10: Dispatch(packet)
11: else
12: SendPacket(packet, packet.destination)
13: end if
14: end function
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which, unfortunately, can easily be outdated in a dynamic environment.

We can take another look at the example above. This time, assume that

node B dies due to insufficient energy. After a certain period, such a change will

be observed by node A, B and C. They delete their corresponding entries which

have node B as the next hop, and reset their iterate count t as shown in Fig. 2.5.

However, the routing table of node A still contains entries that can reach node B.

In other words, node A still thinks node B is reachable through node C or D. At

the same time, node C and D also believe that they can reach node B with the

help of node A. That is the moment a routing loop is formed when any of these

nodes tries to send packet to node B.

A

C

D

Destination Next hop Q value

B

B

B

A 0.539

B -

D -

Destination Next hop Q value

B

B

B

A 0.686

B -

C -

Destination Next hop Q value

B

B

B

C 0.649

B -

D 0.835

Fig. 2.5: An example of the routing-loop problem. If Node B goes down, all the nodes will delete
the entries with node B as the next hop and reset t. However, such a change may result in a
routing loop because node A and C still think they can reach node B through each other.

Probing packets can be used to solve the routing loop problem. Every fixed

time interval, typically 5 seconds, a source node sends out a probing packet to

its destinations. This probing packet records every node it traverses. Therefore,
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whenever an intermediate node receives the same packet twice, a routing loop is

detected. It will delete the corresponding routing entries in this loop, and then

the probing packet will be forwarded until all the nodes in this loop are notified.

Taking Fig. 2.5 as an example, if node A detects that node A and C are

forming a routing loop, it will delete the entry QA(B,C). Then in the next 5

seconds it will delete QA(B,D) once A−D is found to be a loop.

The detailed procedure for the loop detection is shown in Algorithm 3.

Algorithm 3 Procedure of receiving a probing packet

1: function ReceiveProbingPackets(packet)
2: if packet is received more than twice then
3: discard packet
4: else if packet is received twice then
5: A loop is detected, extract loop information from the packet and delete

corresponding entries
6: Forward packet
7: else
8: Add current node information into the packet
9: Forward packet
10: end if
11: end function

2.2.6 System Analysis

It is challenging to combine all the nodes in a network as learning agents when

they can join and leave the network at any time. Even so, there is no need for a

higher level root supervisory system. In fact, the reason we choose Q-learning is

because of its capability of handling node mobility in MANETs.

Although all nodes in the network form a learning agent for a given destina-

tion, it is not necessary that one transmission involves all the nodes. Therefore,

when one node leaves the network, only part of the learning agent is reset, which

does not affect the rest of the network. More importantly, the Q-learning-based
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routing protocol enables the multi-path routing feature. In other words, multi-

ple paths are stored in each node. When one path fails to function, there are

alternative routes available to ensure connectivity.

When a node joins the network, it will monitor the broadcast packets to obtain

knowledge of the surrounding environment and figure out which destinations can

be reached. Then, it broadcasts such information to its neighbors. The neighbors

then update their own routing entries or add new routing paths. More details can

be found in the example below.

Another important consideration is the convergence rate, which reflects nodes’

response time to a network change. For example, once a node leaves or joins a

network, we need to know how much time is needed for itself and rest of the

network to recognize the change and adapt to it accordingly. We have tested the

convergence time for a newly added node in different scenarios with the number

of neighbors changed from 2 to 20. The data rate is set to 10 packets / second.

The result of 1000 tests is shown in Fig. 2.6. It can be seen that when the number

of neighbors are 20, the learning process can still finish in about 6 seconds from

an initial state. Note that the time required to find the best path is less than

the convergence time because better routes have more chances to be visited. It is

therefore updated faster than the rest.

2.3 Experimental Results and Discussion

2.3.1 Simulation Setup

Simulations are carried out by using Network Simulator 3 version 3.12.1 (ns-

3.12.1) [63] in Ubuntu [64] version 11.04. The network consists of multiple mobile

nodes with Wi-Fi communication devices equipped. We assume that the IEEE
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Fig. 2.6: Convergence time for different number of neighbors

802.11b DCF mode is used with RTS/CTS enabled.

AODV [36] and QLMAODV [46] are chosen as the benchmark to evaluate

the performances. AODV is a reactive minimum-hop-based routing protocol for

MANETs. The route discovery process is initiated by the source, which broadcasts

a requests packets to it neighbors. Other node who receives the request packet,

re-broadcast it if it is not destination and does not know a path to the destination.

Otherwise, it will reply the request. Note that the replied packet does not contains

information about the full path, therefore, each node is only aware of the next hop

for each destination.

QLMAODV is a Q-learning-based routing protocol which uses the discount

factor to differentiate the optimality of its neighbors. The discount factor can be

expressed as γ =MF ∗BF ∗EF , where MF , BF and EF is the abbreviation of

mobility factor, bandwidth factor and energy factor, respectively.

We simulate a dense MANET consisting of up to 100 nodes uniformly dis-

tributed in a 300 m × 1500 m environment. Flows are generated using random

source-destination pairs. One node can be both source and destination. However,
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Table 2.2: Simulation Parameters for Routing

MAC Layer IEEE 802.11 DCF with RTS/CTS

Simulation area 1500 m × 300 m

Mobility pattern Random way-point model

Maximum speed 2-10 m/s

Traffic flow Constant Bit Rate (CBR)

Packet size 512 bytes

Flow rate 10 packets/sec

Flow number 5-40

Raw stream data rate 2 Mbps

Simulation time 400 seconds or longer

Large-scale propagation model Log-distance path loss model, nl = 3.0

Fast fading model Ricean fading, K = 13 dB

the source of a flow cannot be the source of another flow. The same rule applies to

the choice of destinations as well. During the simulation, we assume that all nodes

are cooperative: whenever there is an incoming packet, a node tries to forward it

to the destination in spite of its current conditions. In other words, no packets are

intentionally dropped. The summary of simulation parameters is shown in 2.2.

Their performances are evaluated under different node densities, traffic loads,

mobility and link qualities. Each measurement is an average of 60 runs with dif-

ferent random number seeds. By constantly observing the results, each simulation

terminates at 400 seconds or the time when two adjacent observations are within

5% differences, whichever is longer, to ensure convergence. The results are shown

with 95% confident interval.
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2.3.2 Simulation Metrics

The following end-to-end QoS metrics are chosen to evaluate the perfor-

mances:

• Packet Delivery Ratio (PDR): The ratio of the number of data packets re-

ceived by the destination to the number of data packets transmitted by the

source. Since constant rate is applied to all transmissions, PDR measure-

ment is indicative of effective throughput.

• Delay: The average duration between the moment a data packet is sent and

the moment it is received by the destination. If a packet is retransmitted,

the sending time is recorded from the moment of its first attempt.

The simulation performance data are collected by the NS3 flow monitors.

2.3.3 Traffic Load

In this scenario, the number of nodes is capped at 50 while the number of

flows increases from 5 to 40. We stop the measurement at 40 flows because the

PDR values at 40 flows are close to 0. The traffic of each flow is generated at 10

packets per second. The delay and PDR results are shown in Fig. 2.7.

Fig. 2.7a shows that AODV is susceptible to heavy traffic. The delay increases

dramatically when the number of flows increases from 5 to 10. This is mainly

due to the shortest path algorithm adopted by AODV, which can easily create

congestions in dense areas. In order to reduce the communication overhead, AODV

prefers to use the existing paths for packet forwarding. As a result, nodes in

dense areas can easily be overloaded. QLR and QLMAODV, on the other hand,

try to avoid such areas by seeking better QoS feedback. Thanks to the weight

tuning mechanisms, when traffic load gets higher, QLR outperforms QLMAODV.
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Fig. 2.7: QoS performance under different traffic loads
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When the congestion level becomes severe, a more direct path is preferred because

traversing more hops may eventually worsen the overall congestion level. Although

AODV chooses the most direct paths, they are shared among many flows, which

results in severe performance impairment.

PDR in Fig. 2.7b also shows the same pattern. When the number of flows

reaches 10, both AODV and QLMAODV suffer a great loss in PDR due to con-

gestion. Although the bandwidth factor is explicitly taken into consideration,

QLMAODV does not perform well because congestion is not necessarily caused

by the lack of bandwidth, it can also be caused by excessive contentions. In the

latter case, QLMAODV still tries to send packets to those congested intermediate

nodes which results in more packet loss. Moreover, the lack of a weight tuning

mechanism makes it hard to differentiate the factors. For example, in a congested

network, the mobility and energy factor have less impacts on the final performance,

therefore should be given smaller weights. This is also the reason we introduce

the weight tuning mechanism to help the nodes adjusting their learning behaviors.

AODV has a good performance when the number of flows is 5 because short paths

usually perform well when congestion is not formed. QLR has the best perfor-

mance in PDR. It is expected that when the traffic load gets even higher, all of

the three will have equal performance since without reliable information exchange,

the Q-learning-based protocols cannot function.

Fig. 2.7c shows the average number of hops per flow for each protocol. Note

that only successfully received packets are taken into account. It can be seen

that when the network becomes congested, the average hops for AODV drops

accordingly because packets taking longer paths get lost more easily during for-

warding. The weight tuning mechanism adopted by QLR effectively shortens the

transmission paths to minimize the congestion level. Although compared with
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QLMAODV, it takes more hops to forward packets when the number of flow is

5. The relationship reverses soon after the number of flows reaches 10 and the

difference increases with the traffic load.

Fig. 2.8 shows all the routing paths for the three routing protocols, when the

number of flows is 20, at a specific time instance t = 200s. Each solid line indicates

a specific link used as a part of a routing path. AODV (Fig. 2.8a) uses very limited

number of links, especially in the dense areas. Besides, since route rediscovery

takes place only when current route breaks, there is no guarantee that the current

path is the shortest in a dynamic network. QLMAODV (Fig. 2.8b) on the other

hand aggressively chooses those intermediate nodes with good QoS feedback. As

a result, routing paths spread all over the network but are not well balanced, as

we can easily spot some ”hot zones” where a lot of packet forwarding takes place.

QLR forces nodes to take biased decisions based on different congestion levels.

Therefore, it can be seen from Fig. 2.8c that routes are evenly distributed among

the whole network which results in a more satisfactory QoS performance.

2.3.4 Node Density

In this scenario, the number of flows is fixed at 5 while the number of nodes

is varied from 50 to 100. The QoS performance of the three protocols are shown

in Fig. 2.9.

Generally speaking, higher node density means more neighbors around each

node. Therefore, it inevitably causes more communication overhead, which may

result in more severe congestions. On the other hand, higher node density also

increases the network connectivity so that each node has more choices for packet

forwarding. Therefore, the performance under high node density depends on two

factors. One is the efficiency of the information sharing mechanism, which deter-
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Fig. 2.8: Routing path exmaple
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Fig. 2.9: QoS performance under different node densities
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mines the size of the overhead introduced. The other is how these protocols take

advantage of the extra routing options to mitigate the negative overhead effect.

It can be seen that AODV is vulnerable to the increased node density as

shown in Fig. 2.9. AODV sends out route requests only when the current path

breaks, therefore the merit of having more neighbors is not significant. On the

contrary, it is easier to find a neighbor at the edge of its transmission range, which

usually has a poor link quality. The shortest path algorithm may choose those

nodes as the next hop which results in poor performances. QLMAODV faces

a different problem in this scenario: the routing loop problem can exhaust the

network resources very quickly. As the node density increases, the probability

of forming a routing loop also increases. QLR has the best performance in this

scenario. However, if we compared it with the performance in scenario 1, we can

find that the traffic load has more significant impacts on the delay performance.

The information embedded in the Hello message is proportional to the number

of destinations. Therefore, when the number of flows increases, the information

sharing overhead increases proportionally. QLMAODV suffers a serious PDR drop

of more than 20% when the number of nodes increases from 70 to 80 (Fig. 2.9b).

The routing decisions of QLMAODV are based on the broadcast information.

When the PDR value drops below 50%, the reception of the information becomes

no longer reliable, which further reduces the PDR value.

2.3.5 Mobility

In this scenario, we examine the effect of frequent topology changes on the

final QoS performances. The number of flows is fixed at 40 whereas the maximum

speed of the random way-point model is varied from 2 m/s to 10 m/s. The

simulation results are shown in Fig. 2.10.
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Fig. 2.10: QoS performance under different mobilities
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The impacts of mobility on the final QoS performance are limited for AODV

and QLMAODV because of their route maintaining mechanisms. However, the

learning process of QLR relies on topology of neighbors. If there is a topology

change, QLR will reset t to initialize the learning process. As a result, high node

mobility prevents QLR from converge. This is also the reason in Fig. 2.10b, PDR

of the QLR drops from 31.6% to 15.1%.

2.3.6 Link Quality

Link quality directly determines the stability of a transmission. Higher link

quality can ensure higher PDR and smaller route re-establish cost. This scenario

evaluates the effect of link quality by varying the factor K of the Ricean propaga-

tion model, whereas fixing the number of nodes and flows to 50 and 20 receptively.

K is the ratio between the power in the direct path to the cumulative power of in-

direct paths. Therefore, a smaller K value means a smaller portion of line-of-sight

signal, and therefore less stable transmission links. By observing the final delay

and throughput performances, we can evaluate how these three protocols handle

frequent link breaks. The simulation results are shown in Fig. 2.11.

As shown in Fig. 2.11a, QLR is less vulnerable to unstable links because

SINR is explicitly taken into account as a metric in the reward function. As a

result, the average SINR can be obtained through continuous learning process.

QLMAODV has the longest delay because its cost function does not consider the

channel fading effect. Therefore, although nodes with larger bandwidth may have

a worse performance due to frequent packet loss, QLMAODV still prefers to choose

them as the next hop. In fact, this is exactly the reason why QLMAODV has the

lowest PDR as in Fig. 2.11b.

The performance of AODV is fair. It has a longer delay than QLR because it
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starts the route repair process when links break, which takes extra time to establish

a new route. QLR, on the other hand, chooses a secondary route when the first

route fails without introducing any extra route request. It is interesting to notice

that although AODV does not consider link qualities, the PRD performance is

comparable with QLR (Fig. 2.11b). During the route discovery process of AODV,

the source sends out a Route Request (RREQ) packet which floods through the

network until the destination is reached. Then the destination replies back a Route

Reply (RREP) message following exactly the same path. Therefore, the RREQ

and RREP packets have to survive all the links along the path between the source

and destination, to establish a route. In other words, the route has been tested

for reliability when it is established. It can also be seen that the effects of fading

are much more pronounced than those of distance attenuation [65].

2.4 Summary

In this chapter, we give a short introduction of the reinforcement learning

and Q-learning method, followed by a detailed explanation about how they can be

applied to the MANET routing problem. Then we optimize the learning process

by introducing the weight tuning, parameter reset and routing-loop prevention

mechanisms. Finally, we compare QLR with the benchmarks by simulations. The

results show that QLR can perform well in different traffic loads, node densities,

and link qualities. However, the parameter reset mechanism is heavily affected by

the node mobility.

56



CHAPTER 2. Q-learning-based Routing Protocol

Ricean K factor (dB)
2 4 6 8 10 12

E
nd

-t
o-

en
d 

de
la

y 
in

 s
ec

on
ds

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

AODV
QLR
QLMAODV

(a) Delay

Ricean K factor (dB)
2 4 6 8 10 12

P
ac

ke
t D

el
iv

er
y 

R
at

io
 (

P
D

R
)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
AODV
QLR
QLMAODV

(b) PDR

Fig. 2.11: QoS performance under different Ricean K factors
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Chapter 3

Power-controlled Routing

Protocol

The idea of putting a power control scheme into a routing protocol is straight-

forward because power control and routing are closely related to each other. It

is illustrated in chapter 1 that by constructing a topology based on the routing

requirements, the overall performances can be improved. However, it is not easy

to find the optimal power level. The transmission range is directly determined

by a node’s transmission power. Therefore, a higher transmission power level can

provide higher connectivity and shorter path. On the other hand, a larger trans-

mission range causes more interference to the neighbors and may further impair

the overall network performance. Trade-offs between transmission range and in-

terference level is of paramount importance in power-controlled routing protocol

design.

In chapter 2, we have shown how the Q-learning method can be applied to

the routing problem. In the following content, we are going to present the Q-
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Learning-based Power-Controlled Routing (QLPCR) scheme by explaining how

power control can be added into the Q-learning-based framework. Besides, a

routing-loop prevention mechanism is proposed based on an improved information

sharing system. The simulation results show that our method can achieve better

performance under different loads, mobility levels, and node densities.

3.1 System Design

3.1.1 Motivation

Since the Q-learning method is based on a black-box model, we can simply

extend the action space A and the instant reward Ra(s, s
′) by adding power control

into consideration. Extending the action space A to include power control is

straightforward: we can transform A into a two-dimensional action space, i.e.

A = Ar ×Ap where Ar and Ap are the action space of routing and power control,

respectively. Therefore, the Q value can be extended correspondingly:

Q : S × Ar × Ap ×D → ℜ (3.1)

Note that the original Q-learning algorithm requires the actual feedback/reward

from neighbors for each state-action pair during the discovery phase. It soon be-

comes impractical if the action space gets larger. Explicitly trying each action

may never reach a convergence point because of the constant changes of topology

in MANETs. For example, let us consider a network consisting of 50 nodes and 10

traffic flows, each node has 5 different power levels. According to (3.1), there are

totally 50× 50× 10× 5 = 12500 Q entries in the network, which are distributively
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stored in each node. Assume the average number of neighbors is 5, then each node

has to maintain 5× 5 = 250 Q entries with 5× 5 = 25 available actions. In other

words, a node has to explicitly try all the 25 actions and wait for the feedback

until all the 250 Q entries converge.

It is not easy to extend the instant reward Ra(s, s
′) as well. Recall that in

chapter 2, we combine several QoS metrics to form the reward function. Therefore,

a trivial solution is to add one more metric indicating the optimality of a power

level. However, it is quite challenging because of the complicated interactions

between power control and routing. Since the change of power level has impacts

on multiples nodes, it is hard to describe such impacts in a single Q value. More

importantly, such an approach makes the trade-off between transmission range

and interference level unmeasurable.

Now it is clear that the trivial extension from chapter 2 is out of the ques-

tion. Therefore, we need to redesign the whole system to provide solutions to the

following problems:

• The action space is too large to be explicitly tried out.

• The optimality of a power level cannot be assessed directly.

• It is hard to measure the trade-offs between the transmission range and

interference level.

Our solution is to define Ra(s, s
′) as the end-to-end delay from node s to s′. To

address the first problem, we need to break the black-box model of the Q-learning

method. With the help of a CSMA/CA delay model, all the transmission delay

can be estimated accordingly. We also define a new term ”weighted delay”, which

is the product of transmission data rate and delay. The weighted delay is used

to measure the trade-offs between transmission range and interference level. The
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philosophy behind the weight delay is that it is better to leave the nodes with high

data rate alone because interfering them may delay a lot of packets. On the other

hand, a node with high data rate is given higher priority to use a larger power level

if its performances can be improved. Note that by specifying the instant reward

Ra(s, s
′) as the delay to the next hop, the Q values now represents the end-to-end

delay from the current node to the destination.

Therefore, the first step is to define a CSMA/CA model to calculate the

end-to-end delay.

3.1.2 CSMA/CA Delay Model

The IEEE 802.11 DCF MAC protocol is based on CSMA/CA which is well

known for its capability of mitigating the hidden node problem. We have already

mentioned a lot of terms in CSMA/CA such as RTS, CTS and ACK etc., here we

will give a brief introduction of CSMA/CA.

The CSMA/CA protocol continuously senses the carrier to avoid potential

collisions. The flow chart in Fig. 3.1 indicates the key procedures in CSMA/CA.

Initially, nodes with packets waiting to be transmitted listen to the shared medium

until it becomes idle. Instead of transmitting the packet immediately, nodes decre-

ment its backoff counter. This process repeats until the backoff counter drops to

zero. Then, the RTS and CTS frames are exchanged between the sender and re-

ceiver to initiate the real data transmission process. Any node receiving the RTS

or CTS remains silent for a period indicated in the Network Allocation Vector

(NAV) as if the channel is busy. This process is known as the virtual carrier

sensing, which is important in solving the hidden terminal problem. In case of a

transmission collision, the sender doubles its contention window (CW ) and sets

the backoff counter uniformly between 1 and CW , which is known as the binary
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Fig. 3.1: Flowchart of CSMA/CA
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Fig. 3.2: Markov Chain model for backoff process

exponential backoff. Once the number of collision exceeds the maximal retrans-

mission attempts allowed m, the packet is dropped. After a transmission finishes

(both successfully and unsuccessfully), the backoff counter is reset to the minimal

value CWmin. The receiver sends back an ACK packet to the sender once the

data frame is successfully received. If the sender does not receives the ACK frame

within a certain time period, the transmission is considered failed and a retrans-

mission process is initiated. This is also the reason why transmissions can succeed

from node i to j only if the node j ∈ adji so that the RTS, CTS, ACK frames can

be exchanged.

A lot of research has been done on the CSMA/CA models [66–69]. Therefore

we choose similar settings: a network consists of v contending nodes. All the nodes
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share the same medium therefore at most one node is able to successfully transmit

at any time slot. We also assume the perfect reception, i.e. if no collision happens

during one transmission attempt, the packet is successfully received. The whole

backoff process can be modeled as a Markov Chain model, which is a memoryless

random process such that the probability distribution of the next state depends

only on the current state [70]. The random process of the backoff counter matches

the characteristics of a Markov chain model by defining each state as a pair of the

retransmission count and backoff count (Fig. 3.2), with CWi indicating the con-

tention window for the ith retransmission, Pb and Pc representing the probability

of channel busy and collision respectively.

Unlike [67, 68] which assume that each packet has an infinite number of re-

transmission attempts until it succeeds, the model is changed to have m maximal

allowed retransmission attempts and compulsory backoff for a new packet trans-

mission. Let bi,k is the state probability of {i, k} where i is the retransmission state

and k is the backoff counter state. Corespondingly, bfail is the state probability

of transmission failure. The following equations can be obtained from the Markov

chain model:

bi,0 = Pc
ib0,0 for 0 ≤ i ≤ m (3.2)

bfail = Pc
m+1b0,0 (3.3)
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bi,k =
CW i − k
CW i

× 1

1− Pb

× bi,0 for 0 ≤ i ≤ m, 0 < k < CW i (3.4)

∑
i

∑
k

bi,k + bfail = 1 (3.5)

where CW i is the contention window for ith retransmission and Pc is the proba-

bility of a transmitting frame colliding given that it is transmitted.

If we define τ as the average attempts per time slot for each node, then

τ =
∑
i

bi,0 =
∑
i

Pc
ib0,0 =

1− Pc
m+1

1− Pc

b0,0 (3.6)

Pb is the probability of sensing the channel busy which is the probability that

among the remaining v − 1 nodes, one or more nodes transmit at one time slot

duration. Therefore it is also the probability that another one or more nodes

transmit at one time slot duration:

Pc = Pb = 1− (1− τ)v−1 (3.7)

From (3.2) - (3.7), b0,0, τ , Pc and Pb can be worked out. Ps is defined as

the probability that one transmission attempt is successful, which can be calcu-

lated as the probability that only one node transmits given at least one node is

transmitting:

Ps =
vτ(1− τ)v−1

1− (1− τ)v
(3.8)
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Since the collision probability for each transmission attempt is Pc, we can

derive that a transmission succeeds after nth attempts with the probability of

(1− Pc)Pc
(n−1) and fails with the probability of Pc

m. Note that in CSMA/CA, if

a node senses channel busy, its backoff counter will pause until the medium is free

again. Therefore, we can first define X as the backoff delay without the counter

pause time, which is measured in terms of number of time slots.

The probability that the nth transmission is successful is (1− Pc)Pc
n−1 with

the corresponding expectation of backoff time is CWmin+1
2

n∑
i=1

2i−1 = CWmin+1
2

(2n−1).

If all the m transmission attempts fail, the backoff time is CWmin+1
2

(2m − 1) with

the probability of Pc
m. Therefore, when Pc ̸= 0.5, the expectation of X can be

written as

E[X] =
CWmin + 1

2
[(1− Pc)

m∑
n=1

Pc
n−1(2n − 1) + Pc

m(2m − 1)]

=
CWmin + 1

2
[
1− Pc

Pc

m∑
n=1

Pc
n(2n − 1) + Pc

m(2m − 1)]

=
CWmin + 1

2
[
1− Pc

Pc

(
m∑

n=1

(2Pc)
n −

m∑
n=1

Pc
n) + Pc

m(2m − 1)]

=
1

2
(CWmin + 1)

(
(2m − 1)Pm

c +
(1− Pc) (2 (2

m − 1)Pm+1
c − (2m+1 − 1)Pm

c + 1)

(Pc − 1)(2Pc − 1)

)
=

(CWmin + 1) (2mPm
c − 1)

4Pc − 2

On the other hand, when Pc = 0.5, E[X] can be expressed as

E[X] =
(CWmin + 1)m

2
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Therefore, by combing them together, we can have

E[X] =


(CWmin+1)(2mPm

c −1)
4Pc−2 Pc ̸= 0.5

(CWmin+1)m
2

Pc = 0.5

(3.9)

Then, we can add the backoff counter pause time into the total backoff delay

B. The expectation of B can be calculated as

E[B] = E[X] + E[X]Pb(PsTs + (1− Ps)Tc) (3.10)

where Ts and Tc are the average time that the channel is occupied with a successful

and collided transmission, respectively. Pb is the probability that at least one of

the neighbors transmits at each time slot. Therefore, the average transmission

made by the neighbors in X slots is E[X]Pb. PsTs + (1 − Ps)Tc calculates the

average time for each transmission attempt.

Tc is relatively simple: after the sender sends out the RTS packet and detects

the collision, it will wait for another Extended InterFrame Space (EIFS) period.

A successful transmission consists of exchanging control messages and real data

transmissions. There is one Short InterFrame Space (SIFS) buffer period between

two adjacent control frames and one DCF InterFrame Space (DIFS) at the end of

the transmission. Therefore, Ts and Tc can be calculated as

Ts = TRTS + TCTS + TDATA + TACK + 3× TSIFS + TDIFS (3.11)

Tc = TRTS + TEIFS (3.12)
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Let Z be the data frame transmission time, similar to X, we can have

E[Z] =
m−1∑
n=0

(1− Pc)Pc
nnTc + (1− Pc

m)Ts + Pc
mTc

=
(m− 2)Pc

m+1 − (m− 1)Pc
m + Pc

1− Pc

· Tc + (1− Pc
m)Ts (3.13)

Then the overall service time 1/µ can be calculated as

E[1/µ] = E[B] + E[Z] (3.14)

Note that E[1/µ] is the mean of the service time. In other words, it is average

time from when a packet is at the head of the MAC queue to the moment it is

received. In order to obtain the overall transmission time L, which is also the

instant reward, we still need to consider the waiting time in the queue:

E[L] = E[1/µ] +W (λ, µ) (3.15)

where W (λ, µ) is the mean waiting time. If we simplify the queueing model as a

M/M/1/K queue, then

W (λ, µ) =


1/µ

1−λ/µ −
(λ/µ)K+1

1−(λ/µ)K+1 · K+1
λ

λ ̸= µ

K
2λ

λ = µ

(3.16)

where λ is the packet arrival rate and K is the maximal length of the queue.

It can be seen that the total delay L can be work out once the number of

neighbors v (µ is a function of v) and the packet arrival rate λ are known.
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3.1.3 Modified Model

The assumption of homogeneous data rate and full load made by the CSMA/CA

model above is not realistic in MANETs. Moreover, in order to count the number

of the fully loaded neighbors, a predefined threshold, which can only be deter-

mined heuristically, is used to differentiate saturated and non-saturated nodes.

As a result, the non-saturated delay estimation is no longer accurate. Therefore,

in this section, we redefine the CSMA/CA model which allows arbitrary traffic

loads for each node.

Let T = [τ1, τ2, τ3, ...τn] be the average attempts per slot for all the nodes. We

assume that each node is aware of its own τ value by observing the MAC layer

transmission queue. Since transmission attempts of node i are affected by its inter-

fering neighbors
←−−
Adji, the first step is to define the joint probability of concurrent

transmission attempts κ
(n)
←−−
Adji

, which represents the probability of n spontaneous

transmission attempts among the node set
←−−
Adji at any time slot. The special case

when n = 0 and n = 1 can be calculated as

κ
(0)
←−−
Adji

=
∏

j∈
←−−
Adji

1− τj (3.17)

κ
(1)
←−−
Adji

=
∑

j∈
←−−
Adji

τj
∏

k∈
←−−
Adji,k ̸=j

1− τk (3.18)

It can be seen that
∏

j∈
←−−
Adji

1− τj is the probability that all the neighbors of

node i keep silent in a time slot. Therefore, its complement is the probability

that at least one node is transmitting. The average probability of transmission

attempts per time slot made by
←−−
Adji, which is denoted as τ̂i, can be calculated as
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τ̂i = 1− κ(0)←−−
Adji

(3.19)

The collision probability for each transmission attempt made by node i is de-

noted by Pc(i), which is also the probability that at least one of node i’s neighbors

is transmitting when node i transmits:

Pc(i) = τ̂i (3.20)

Based on the same terminology, P̂c(i) is defined as the collision probability of

each transmission attempt made by a node in set
←−−
Adji, which can be calculated

as the probability that more than one node transmits in
←−−
Adji given at least more

than one node transmits in
←−−
Adji :

P̂c(i) =
1− κ(0)←−−

Adji
− κ(1)←−−

Adji

1− κ(0)←−−
Adji

(3.21)

Similar to (3.9), the average backoff delay Xi without the counter pause time

can be calculated as

E[Xi] =


(CWmin+1)(2mPc(i)m−1)

4Pc(i)−2 Pc(i) ̸= 0.5

(CWmin+1)m
2

Pc(i) = 0.5

(3.22)

Then the service time 1/µi of node i is

E[1/µi] = E[Xi] + E[Xi]τ̂i(P̂c(i)Tc + (1− P̂c(i))Ts) (3.23)

By substituting the E[X] with E[Xi] in (3.15), we can obtain Li, the total
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delay of node i.

3.1.4 Multi-hop Extension

It can be seen that Li is a function of the current packet arrival rate λi and

the average transmission attempts T . Therefore, if λi and T remain unchanged,

the delay Li will also remain unchanged. However, since it has nothing to do

with the receiver, the transmission delays to all the neighbors are the same if we

adopt the CSMA/CA model above. In that case, we can simply obtain the delay

feedback from one of the neighbors as in chapter 2. Then why do we need the

CSMA/CA delay model in the first place?

The short answer is that the transmission delay are also affected by the re-

ceiver side, because of the hidden node problem. Figure 3.3 shows an example

of the hidden node problem: although both node A and C can communicate

with node B, but they are hidden from each other. As a result, the transmis-

sion between A and B fails when C is also transmitting. In fact, the RTS/CTS

handshaking mechanism is designed to mitigate this problem: when receiving the

NAV information, nodes within both node A’s or B’s transmission range will keep

silent until the current transmission finishes. As a side effect, node A and C have

to compete with each other although they are not neighbors.

In fact, it is quite unlikely that the sender and receiver share the same neigh-

bors in a MANET. Therefore, in order to calculate 1/µi, we need to obtain the

traffic information from neighbors of both the sender and receiver because they

all participate in contention. First we need to extend the definition of neighbors.

Let
←−−
Adji,l be the joint set of neighbors, where node i is the source and node l is
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A B C

Fig. 3.3: Hidden node problem

the destination. It can be defined as

←−−
Adji,l = {k : k ∈

←−−
Adji ∪

←−−
Adjl, k ̸= i} (3.24)

Note that the extra condition k ̸= i excludes only i but not l because when

the sender tries to sending packets to destination, the destination may also has

packets to send. Therefore, they still have to compete with each other. τ̂(i,l) and

P̂c(i,l) can be defined as

τ̂(i,l) = 1− κ(0)←−−
Adji,l

(3.25)

P̂c(i,l) =
1− κ(0)←−−

Adji,l
− κ(1)←−−

Adji,l

1− κ(0)←−−
Adji,l

(3.26)

The mutual neighbors of both nodes i and l have to be determined to avoid
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C

i

lχi,l 

k

Fig. 3.4: An example of how to determine a mutual neighbor

being double counted. One simple solution is to explicitly compare
←−−
Adji and

←−−
Adjl, which inevitably introduces large amounts of extra communication overhead.

Another feasible solution is to obtain a reasonable estimate based on a stochastic

model.

For each interfering neighbor of node i, its probability of being a mutual

neighbor can be estimated based the geometry calculation as shown in Fig. 3.4.

In this example, we try to determine whether node k is a mutual friend of both

node i and l. Assume that χi,l and χi,k are the distances between i, l and i, k

which are assumed to be known to node i for now. Therefore, the two circles

centered at node i represent all the possible locations of node l and k. Without

losing generality, we can fix node l and consider only node k. On the other hand,

k ∈
←−−
Adjl implies that χi,l < ϵ(pk), where ϵ(pk) is the transmission range of node

k with the transmission power pk. The third circle centered at node l indicates
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all the possible locations of node k where node l can be reached. Clearly the red

arc indicates all the possible locations of node k being a mutual neighbor. The

probability can be expressed as

ζki,l = arccos(
χ2
i,k + χ2

i,l − ϵ(pk)
2

2χi,k × χi,l

)/(2π) (3.27)

note that here k ̸= l. If k = l, then ζki,l = 0.

Then we can define κ
(0)
←−−
Adji

and κ
(1)

Adji
, which is the estimated value of κ

(0)
←−−
Adjl

and

κ
(1)
←−−
Adjl

by considering the effect of mutual neighbors, respectively:

κ
(0)
←−−
Adji

=
∏

j∈
←−−
Adji

1− τj + ζji,lτj (3.28)

κ
(1)
←−−
Adji

=
∑

j∈
←−−
Adji

(1− ζji,l)τj ×
∏

k∈
←−−
Adji,k ̸=j

1− τk + ζki,lτk (3.29)

Note that i ∈
←−−
Adjl. Since node i cannot compete with itself, we also need to

exclude node i from
←−−
Adjl when calculating κ:

κ
(0)
←−−
Adjl−i

=κ
(0)
←−−
Adjl

/(1− τi) (3.30)

κ
(1)
←−−
Adjl−i

=(κ
(1)
←−−
Adjl
− τiκ(0)←−−

Adjl−i

)/(1− τi) (3.31)

It is time to calculate κ
(0)
←−−
Adji,l

and κ
(1)
←−−
Adji,l

in (3.25):

κ
(0)
←−−
Adji,l

=κ
(0)
←−−
Adji

κ
(0)
←−−
Adjl−i

(3.32)

κ
(1)
←−−
Adji,l

=κ
(1)
←−−
Adji

κ
(0)
←−−
Adjl−i

+ κ
(0)
←−−
Adji

κ
(1)
←−−
Adjl−i

(3.33)

By replacing κ
(0)
←−−
Adji

and κ
(1)
←−−
Adji

with κ
(0)
←−−
Adji,l

and κ
(1)
←−−
Adji,l

in the previous section, we

can work out the specific end-to-end delay Li,j in exactly the same way.
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The overall procedure of calculating the specific delay to all the neighbors is

listed in Algorithm 4. It will be executed whenever a broadcasted Hello packet is

received from the neighbors.

Algorithm 4 Procedure of updating the end-to-end delays of the neighbors

1: function ReceiveProbingPackets(HelloPacket from node j)

2: Extract τj , κ
(0)
←−−
Adjj

and κ
(1)
←−−
Adjj

from HelloPacket

3: Update κ
(0)
←−−
Adji

and κ
(1)
←−−
Adji

according to (3.17)

4: for all node l ∈
←−−
Adji do

5: Calculate κ
(0)
←−−
Adji

and κ
(1)
←−−
Adji

according to (3.28)

6: Calculate Li,j and update
7: end for
8:

9: end function

3.1.5 Distance Estimation

Location information is required in (3.27) to obtain ζ. Although the location

information can be obtain from the location discovery schemes [71–73], it is costly

and not necessary. Instead, the relative location information, more specifically,

the ratios of all the distances, is enough for us to work out ζ. We can assume that

the expected signal gain rG is exponentially proportional to the distances χ :

E(rG) ∝ χ(−nl) (3.34)

where nl is the path loss exponent with the value between 2 to 4. nl can be

determined by empirical data or the path loss exponent estimation method [74].

To estimate E(rG), nodes have to continuously record the received and trans-

mission power level from its neighbors and smooth them using a moving average
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function to overcome the problem of varying interference, signal fading and mo-

bility. Let ri,jG denote the instantaneous reading of the signal gain from the node

j. Its corresponding estimated value r̂i,jG can be recursively updated:

r̂i,jG ←MA(ri,jG , r̂
i,j
G ) (3.35)

where MA is a moving average function. A typical choice would be the Exponen-

tial Moving Average (EMA) as in [57]. This process is repeated at discrete time

intervals.

By replacing the distance χ with the signal gain rG, (3.27) can be rewritten

as:

ζki,l(pi) = arccos(
(r̂i,kG )

−2nl
+ (r̂i,lG )

−2nl − (pET

pk
)−2nl

2(r̂i,kG )−2nl × (r̂i,lG )−2nl

)/(2π) (3.36)

where pET is the energy detection threshold.

3.1.6 Routing Loop Prevention with End-to-End Informa-

tion

Although the routing loop prevention mechanism described in chapter 2 can

still be used, it burdens the network by introducing the extra probing packets

periodically. If the network is heavily congested, it is quite likely that the probing

packets are dropped without even reaching its destination.

In fact, with the end-to-end delay information obtained from the learning

process, there is a more efficient and reliable method that prevents loops from
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forming. Two policies are adopted to prevent the routing-loop problem: spatial

and temporal policies. The spatial rule indicates that for any newly added routing

entry, there must be another entry that either takes more hops or takes more time

to reach the destination. This is to ensure that all routing paths do not contain

any node for more than once. Let us take Fig. 2.4b as an example. By using

the spatial rule, Node D will not add QD(B,A) into its routing table because

QD(B,A) has a worse Q value and a large hop count than QD(B,B). In fact, the

entry QD(B,A) has to use node D as an intermediate node to reach destination

B. That is also the reason why the routing loop is formed.

The other kind of routing loops are formed because of obsolete information.

It can be addressed by the temporal policy that utilizes a sequence number to

indicate the validity of neighbors information. Similar to AODV, the sequence

number represents the freshness of information. For each destination, there is a

corresponding sequence number maintained by the destination itself. For each

fixed time interval, destination node broadcasts its information with the incre-

mented sequence number. Any node receiving the broadcasted packets with a

larger sequence number will invalidate all the corresponding entries with smaller

sequence number. Then, it uses the updated sequence number to broadcast its

own information.

3.1.7 Power Control

The purpose of power control is to optimize the overall network delay perfor-

mance by dealing with the trade-offs between interference level and transmission

range. Since multiple nodes are affected when one node changes its power level,

the cost function of power control has to involve multiple Q entries of different

nodes as well.
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At first, Let us consider the effect of transmission range. As explained earlier,

for any node i, its transmission delay is determined by its interfering neighbors

←−−
Adji, which is independent of the node i’s transmission power pi. Instead,

−−→
Adji,

which indicates how many neighbors are affected by node i, is directly determined

by pi . Since Adji =
←−−
Adji ∩

−−→
Adji, we can derive that Adji(pi) ≥ Adji(p

′
i)∀pi > p′i,

where Adji(pi) is the set of the actual neighbors when the transmission power

level is pi. In other words, using a higher transmission power level results in more

routing options in spite of its higher energy consumption. However, it does not

mean higher power level is better. For example, if
←−−
Adji ∈

−−→
Adji, increasing power

level is purely a waste of energy and bandwidth because no benefit can be obtained

from the increased transmission range.

Interference level is also observable. In fact, the set
−−→
Adji contains all the nodes

affected by the node i. The interference level of a power level can be measured by

summing up all interference caused in
−−→
Adji.

Let us first define a cost function for power control:

Cp(pi) = Cr(pi) + Ci(pi) (3.37)

where Cr(pi) and Ci(pi) are cost functions of transmission range and interference

level with transmission power level pi, respectively.

As mentioned earlier, the interference level can measured by the weighted

delay which is transmission rate times its expected delay. Cr(pi) is straight forward

to calculate, which is just the sum of all the weighted delays for all the traffic flows

passing through it:

Cr(pi) =
∑
d∈D

λdi max
a∈Adji(pi)

(Q(d, a)) (3.38)
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where λdi is the packet arrival rate for node i destined to node d.

Based on the same terminology, Ci(pi) can be defined as the extra weighted

delay caused to its neighbors, which can be represented in terms of Cr:

Ci(pi) =
∑

j∈
−−→
Adji(pi)

∆Cr(pj) (3.39)

where ∆Cr(pj) is the extra weighted delay caused by including node j in
−−→
Adji(pi).

Calculating the exact value of ∆Cr(pj)is not practical nor necessary since it re-

quires lots of information from node j. we can use a first order Taylor series

approximation instead:

Ci(pi) ≈
∑

j∈
−−→
Adji(pi)

τi ×
∂Cr(pj)

∂τi
= τi

∑
j∈
−−→
Adji(pi)

∂Cr(pj)

∂τi
(3.40)

Let Ip(j) =
∂Cr(pj)

∂τi
, where Ip(j) is the interference price of node j. Therefore,

once node i receives the interference prices of its neighbors, the optimal power

level therefore can be obtained by:

p∗i = argmax
pmin<pi<pmax

Cp(pi) (3.41)

The detailed calculating is explained in Algorithm 5.

The only task left is to calculate Ip(j), which can be approximated as:
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Ip(j) =
∂Cr(pj)

∂τi
=

∂
∑

d∈V λ
d
j max
a∈Adjj(pj)

(Q(d, a))

∂τi

≈
∂
∑

d∈D λ
d
jDj

∂τi

=
∂Dj

∑
d∈D λ

d
j

∂τi

=
∂Djλj
∂τi

(3.42)

The approximation made in (3.42) assumes that the sender and receiver share

the same neighbors. Therefore, the problem is reduced to calculate the derivative

of Dj, which then can be further reduced by using the differentiation chain rule.

In the end, we just need to calculate the derivative of κ
(0)
←−−
Adjj

and κ
(1)
←−−
Adjj

.

The derivatives can be obtained by adding a virtual neighbor i with τi = 0 .

Therefore, we can get the following equations:

∂κ
(0)
←−−
Adjj

∂τi
=

∂[(1− τi)
∏

k∈
←−−
Adjj

1− τk]

∂τi
= −

∏
k∈
←−−
Adjj

1− τk (3.43)

∂κ
(1)
←−−
Adjj

∂τi
=

∏
k∈
←−−
Adjj

1− τk −
∑

k∈
←−−
Adjj

τk
∏

l∈
←−−
Adjj ,l ̸=k

1− τl (3.44)

You may notice that (3.43) only considers the case when node i is not node

j’s interfering neighbor. What if i ∈
←−−
adjj? We choose to use (3.43) even if i ∈

←−−
adjj

for mainly two reasons:

• The difference between these two cases is small. For example, if i ∈
←−−
adjj,

then (1− τi)′ = −1. If we use (3.43), (1− τi)′ = −(1− τi). Let us consider

the worst case that, node i transmits with full load without any contention.
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The typical value of CWmin is 32 in IEEE 802.11b. Therefore, we can get

τi = 2/33 = 0.061. Therefore, the error is also 6.1%. Typically, τ is much

smaller than this value because of the contention from neighbors.

• By using (3.43), the final result is independent of node i. In other words,

the interference price calculated, Ip(j), can be used by any node. Therefore,

we can just broadcast the price without specifying the receiver.

Note that it is possible to use a higher order approximation in (3.40). Besides,

in (3.42), we can also get rid of the approximation by using Dj,k instead of Dj to

obtain the derivative. In that case, we need to calculate the derivative of κ
(0)
←−−
Adjj,l

and κ
(0)
←−−
Adjj,l
∀l ∈ Adjj(pj). The reason we choose the approximation here is that,

from the heuristic results, the improvement is negligible in both cases.

Fig. 3.5 shows an example of the power control scheme. Assume node 1 has

several neighbors under its maximal transmission range. There is only one flow

from node 1 to node 6. The current power level p1 (the shaded circle) is smaller

than the power level p′1 (the blank circle). The power control cost function for

both power levels can be expressed as:

Cp(p1) = λ61max(Q(6, 2), Q(6, 3)) + τ1 × (Ip(2) + Ip(3)) (3.45)

Cp(p
′
1) = λ61max(Q(6, 2), Q(6, 3), Q(6, 4)) + τ1 × (Ip(2) + Ip(3) + Ip(4)) (3.46)

It can be seen that when the transmission range gets larger, Cr(p1) may get

smaller because the number of choices increases. However, Ci(p1), the interference

level, gets higher because more neighbors are interfered. The power control scheme

is aimed at finding the optimal point that can get the best trade-offs between both

effects to achieve overall network optimization.
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Fig. 3.5: Node 1 is trying to find the optimal power level. After sending the information

requesting packets, all its neighbors sends back the response to update
−−→
Adj1(p1)). Then node 1

can choose the best power level using (3.41)

Algorithm 5 Procedure of power control

1: function ChooseOptimalPowerLevel
2: BestPowerLevel = pmax

3: Cp = inf
4: for all pi in available power levels do

5: Determine
−−→
Adji(pi)

6: Determine Adji(pi)
7: Calculate Cr using Adji(pi)
8: Ci = 0

9: for all j in
−−→
Adji(pi) do

10: Ci+ = Pcj
11: end for
12: if Cp > Ci + Cr && BestPowerLevel > pi then
13: Cp = Ci + Cr
14: BestPowerLevel = pi
15: end if
16: end for
17: Set power level to BestPowerLevel
18: end function
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3.1.8 Information Sharing System

There are two types of information passing mechanism in our system: pas-

sive information sharing and active information requesting. General information

without specific receiver is sent out using passive information sharing. To be more

specific, for any node i, the following information is included in the broadcasted

Hello packets using pmax to ensure that all its potential neighbors are notified:

• Minimal delays estimation max
i
Qa

t (d, i) from their neighbors, together with

hop count information

• CSMA/CA delay model parameters, τi, κ
(0)
←−−
Adji

, and κ
(1)
←−−
Adji

• Transmission power level pi

• Interfering price Ip(i)

Active information requesting, on the other hand, is for the receiver-specified

information. For example, in order to maintain the
−−→
Adji, each node periodically

sends out information requesting packets. All the receiver respond to this request

to indicate its presence. In reality, such information can also be embedded into

other information requesting packets, such the RREQ packets in AODV.

3.1.9 System Analysis

The learning process is quite similar to the previous Q-learning-based routing.

The phase transition diagram is shown in Fig. 3.6. Compared with the Q-learning-

based routing, the major differences are:

• Learning is no longer based on individual feedback. As shown in the previous

section, the convergence time is proportional to the size of the network. It is

84



CHAPTER 3. Power-controlled Routing Protocol

Initialization
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Sharing Maintance

1

Fig. 3.6: Phase transitions diagram

expected that when the number of choice exceeds 30, it is hard to converge

in a dynamic environment. Therefore, we make use of a model to obtain all

the feedback at the same time when any neighbors update their status.

• Each node has to maintain another table which is used to store each neigh-

bor’s information, including CSMA/CA delay model parameters, τi, κ
(0)
←−−
Adji

,

and κ
(1)
←−−
Adji

, Transmission power level pi, Interference price Ip(i) and required

power level.

• Power control is added into the action space. However, power level is only

changed at a fix time interval because frequent topology changes may result

in an unstable network.

The flowchart of sending a packet is shown in Fig. 3.7. At first, nodes will try

to find the corresponding Q entries. If such entries do not exist, the node will send

out RREQ packets to establish an initial route. Once the destination receives the

RREQ packet, it will reply with RREP packets and add itself into the HELLO

message.
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Fig. 3.7: Flowchart of sending a packet
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Fig. 3.8: Flowchart of receive a packet

The complete process of receiving a packet is shown in Fig. 3.8. If the re-

ceived packet is a data packet, it will be forwarded or dispatched locally. If it is

a routing control packet, the node has to check whether the packet contains opti-

mal future value or the traffic information described in chapter 4.1.8 and update

corresponding entries. Note that once the neighbor’s information is received, all

the corresponding delay is calculated to update the Q entries.

Each node needs to maintain three tables: one is the Q table which contains

87



CHAPTER 3. Power-controlled Routing Protocol

A
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EF

Fig. 3.9: Example of QLPCR

the Q values of all the destination-next-hop pairs. The second is the neighbor Q

table which contains the optimal future values, the last one is the neighbor table

containing all the neighbor information.

Entries in the neighbor Q table and the neighbor table can be added or up-

dated only when the corresponding information is received from neighbors. These

information is then used to update entries in the Q table.

As mentioned above, there are two ways to detect whether a node leaves the

network. The first case is a transmission failure when the number of retry attempts

reaches the optimal value. The other case is during a timeout period there is not

HELLO message received from this neighbor. Once a node is labelled as absent,

all the corresponding entries from the three tables are removed.

We will use the example in chapter 1 to illustrate how QLPCR works in a

small scale network.

Let node A and node C be the source and destination respectively. Initially

there is no route established.

When A tries to send packets to C, it will find that no Q entries are available.
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Therefore, it sends out a RREQ packet to find the destination, once the RREP

packet is received, it will add the new entry into the Q table:

Table 3.1: Q Table of Node A

Destination Next hop Q value
C B 1

The initial Q value is set to 1 to encourage exploration of the new path.

Although node F also sends RREP back to node A, since it requires one more

hop to reach C, the route is discarded in the initial route establishing process.

Once traffic starts to generate in the network, each node will monitor its traffic

conditions and broadcast the information. Meanwhile optimal future values are

also shared among neighbors through HELLO message. For example, after some

time, node A will receive its neighbor’s maximum future values and store them in

the neighbor Q table:

Table 3.2: Neighbor Q Table of Node A

Destination Next hop Maximum future value
C F 0.726
C B 0.635
C C 1
...

Note that the neighbor Q table is updated only when newer HELLO message

is received from the neighbors.

Correspondingly, the Q is also updated by observing the traffic information

and the neighbor Q value table. The delay value, in this case, also the reward

Ra can be calculated by the equation (4.13), then the value of Ra is used in (3.5)

to obtain the new Q value. Suppose after some time, the Q table of node A is

Note that although QA(C,C) has the smallest value here, node C is not reachable
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Table 3.3: Q Table of Node A After Update

Destination Next hop Q value
C F 0.578
C B 0.336
C C 0.898
...

for the current power level. Therefore this entry is excluded when calculating

the corresponding routing probability by equation (3.7). In this case, we can get

Pr(RA(C) = F ) = 0.56.

If node F leaves the network, all the entries containing F are removed. As a

result, only node B is chosen as the next hop.

Power control is performed periodically, usually every 20 seconds or longer.

By using Equation (4.34), we can obtain the cost function for different power

levels. In this case, if the interference prices of node F and C are small, node A

will increase its power level to reach node C directly. Whereas if F and C are

heavily loaded, it is quite unlikely for A to increase its power level because of the

higher interference prices.

The most significant strength for QLPCR is its capability to adjust routing

strategy and power level based on surrounding traffic conditions to maximize the

overall network performances.

Its weakness is the operational cost which involves extra storage, computation

and information sharing. In a sparse or lightly loaded network, it may not be worth

the effort for such an optimization. More importantly, since all the destinations

are maintained for each node, the overhead complexity increases proportional to

the size of a network.

Another weakness is that the operation of QLPCR highly depends on the

shared information. Therefore once the packet delivery ratio gets low, it is hard
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to recover from such a scenario.

3.2 Performance Evaluation

In this section, we evaluate the QLPCR protocol with the same setting as in

chapter 2. Three benchmarks are chosen from three categories: LMN [23] from

the power control schemes, QLMAODV [46] from the Q-routing schemes and PCR

[53] from the power-controlled routing schemes.

LMN actively changes the transmission power so that each node has to main-

tain its number of neighbors as the mean value of its neighbors. PCR is a combi-

nation of power control and routing schemes. In order to choose the best power

level, its routing table is constructed and maintained for each power level. There-

fore, nodes have to constantly change their power levels for exploration to update

the routing entries. It uses the link weight which is defined as the number of

neighbors, as the routing metrics to minimize the interference level.

In addition to the existing metrics, we also measure the power consumption

rate because power control inevitably has great impacts on the power consumption

rate. The detailed power consumption data is shown in Table 3.4 [57]:

Table 3.4: Detailed Power Consumption

Idle power consumption 0.6699 W

Reception power consumption 1.049 W

Output power levels [0.01, 0.013, 0.02, 0.025, 0.04] W

Power consumption for electronics 1.6787 W

Energy detection threshold -96 dbm

For each packet transmission, we assume that the final power consumption is

the sum of output power levels and the constant power consumption for electronics
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[75]. The total power consumption over a certain time period is mainly based on

the duration of each state, namely idle, receiving and transmitting. Therefore, it

is possible that a higher output power level may result in lower power consumption

if the transmitting period can be shortened.

Similar to the previous chapter, we analyze all the four protocols under dif-

ferent node densities, traffic loads, and mobility levels. The settings are almost

identical to chapter 2 except that the data rate is reduced to 8 packets/s because

some measurements are too low if 10 packets/s is used.

3.2.1 Node Density

In this scenario, the number of nodes is increased from 50 to 100. It is

expected that higher node density will impair the overall network performances

because of the increased communication overhead and contention. The simulation

results are shown in Fig. 3.10.

Fig. 3.10a shows that PCR has the longest delay because of its minimum

link weight algorithm: the nodes with different traffic load are treated equally. As

a result, the nodes in the spare areas are preferred even if they are overloaded.

LMN outperforms QLMAODV because of the simple effective interference control

scheme with minimum communication overhead. QLPCR has a similar perfor-

mance to LMN, thanks to its power control scheme that minimizes the overall

interference level.

PDR drops when number of nodes increases as shown in Fig. 3.10b. It can be

seen that QLMAODV has a significant drop in PDR when the number of nodes

reaches 70, due to the lack of a power control scheme. As a result, the nodes

in dense areas suffer tremendous interference. All the power-controlled schemes,

on the other hand, although still suffering from interference, limits its damage to
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an acceptable level. QLPCR jointly considers both routing and power control, by

takes the real-time traffic conditions into account when deciding the optimal power

level. Therefore, as long as the traffic load does not increases, its performance will

not be greatly affected by the node density. Although PCR has the lowest PDR

value, it can be seen that its power control scheme is still capable of controlling the

interference level when the node density gets higher. LMN has a fair performance

in PDR by limiting the number of neighbors.

QLPCR and PCR have a relatively stable energy consumption performance

because their power levels are not determined by the node density (Fig. 3.10c).

LMN, on the other hand, has to decrease the power level in a high density environ-

ment to maintain the number of neighbors. That is also the reason why its energy

consumption drops when the node density increases. Although QLMAODV has

the highest power consumption rate initially, it drops dramatically while the num-

ber of nodes increases. This is mainly due to its low PDR value so that only a

smaller portion of time is used for the data transmission.

3.2.2 Traffic Load

In this scenario, the number of nodes is fixed at 50 while the number of flows

increases from 5 to 40. All the protocols have a significant PDR drop because of

the network congestion (Fig. 3.11a). Among them, QLMAODV has the largest

drop of around 50%. This is a good example to show why power control is essential

in the QoS optimization: although the Q-learning-based routing method is capable

of avoiding congestion areas, when the whole network gets congested due to the

excessive interference, there is not so much a routing scheme can help. QLPCR

has the best performance because when the traffic rate gets higher, the interference

prices get more expensive. Therefore, its transmission range is limited to reduce
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Fig. 3.10: QoS performance of power-controlled schemes under different node densities
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the interference cost. LMN has a similar mechanism to reduce the interference.

However, it does not consider any traffic conditions. Therefore, when the traffic

load gets higher, it cannot further reduce the interference.

Fig. 3.11b shows the average end-to-end delay for all the protocols. It can

be seen that LMN, QLPCR and QLMAODV have similar performances in this

scenario. PCR has encounter a large delay when the traffic load is light because

the routing decisions are heavily biased by the network topology. When the traffic

load get higher, the number of neighbors has a stronger positive correlation with

the interference level. This is also the reason its performance in heavy load is

comparable to the one in light load.

The general trend of power consumption increases with the number of flows

because there are more packets to transmit (Fig. 3.11c). As shown in Fig. 3.11a,

when number of flows increases, the PDR drops accordingly. This also includes

information sharing packets, which LMN makes use of to determine the number

of neighbors. As a result, LMN tries to increase its power level to maintain

connectivity. This is a reason why LMN has a steep slope in terms of the power

consumption.

3.2.3 Mobility

Mobility indicates how fast nodes can move around in a given area with a

specific mobility model. The purpose of this scenario is to evaluate the real-

life situations where devices are carried by human beings. Therefore, we fix the

number of nodes to 50 and number of flows to 40 and vary the maximum speed

of the random way-point model from 2 m/s to 10 m/s, which covers almost the

whole range of the human walking speed.

The result shown in Fig. 3.12 suggests that mobility has small impacts on
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Fig. 3.11: QoS performance of power-controlled schemes under different traffic loads
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LMN and PCR because they actively control the connectivity of the network to

accommodate the topology change, therefore have relatively unaffected perfor-

mances.

QLMAODV, on the other hand, has a significant performance drop across all

the metrics. QLMAODV explicitly measures the link stability by Link Expiration

Time (LET). As a result, the routing choices are heavily biased by the instanta-

neous moving patterns of neighbors. As a result, nodes with good link qualities

are not chosen as the next hop.

The PDR and delay performances of QLPCR also drop a lot when the node

mobility increases. This is mainly due the overhead caused by the topology change.

QLPCR has to actively maintain the list of neighbors by both passive information

sharing and active information requesting. When the topology changes, nodes have

to restart the learning process by re-sending all the information sharing packets.

3.3 Conclusion

In this chapter, we manage to add power control into the Q-learning-based

framework. In order to deal with the large action space formed by the power

control and routing, a CSMA/CA model is introduced to simulate the learning

process.

Since the instant reward is reduced to represent the delay value only, the

routing-loop prevention mechanism is also improved by introducing one spatial

and one chronicle policies.

The power control scheme involves multiple nodes in a network. Therefore, we

measure the interference level by a weighted delay which takes all the neighbors’

traffic conditions into account. Then, we can directly compare the interference
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Fig. 3.12: QoS performance of power-controlled schemes under different mobilities
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level and potential performance improvement of a power level.

The simulation results show that our proposed protocol can perform well in

a heavily loaded dense network with high node density. The energy consumption

level is also comparable, even better at selected scenarios. However, we can still

expect that it cannot perform well if the network is highly dynamic.
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Chapter 4

Rate-aware Power-controlled

Routing Protocol

Now we have shown how to add power control and routing into the Q-learning-

based framework, leaving only one last factor: the rate adaptation. In this chapter,

we explore possible solutions to combine all the three factors.

In the following content, first, we present the Q-Learning-based Rate-aware

Power-Controlled Routing (QLRPCR) protocol, which extends QLPCR by adding

the rate awareness. Then, we propose another solution, namely the Multi-agent

Rate-aware Power-Controlled Routing (MRPCR) protocol, which constructs a

decision-making system for power control, rate adaptation and routing, based

on diffusion model and Distributed Constraint OPtimization (DCOP) framework.

Lastly, we validate the design through simulations. The results show that MR-

PCR has a good QoS performance in various scenarios with reasonable power

consumptions.
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4.1 Protocol Design

4.1.1 Simple Rate-aware Extension in CSMA/CA Model

One easy solution to transform QLPCR into a rate-aware protocol: TDATA in

(3.11) can be transformed into a function of the data rate Ui:

TDATA =
Lp

E[Ui]
(4.1)

where Lp is the packet size.

Recall that a successful transmission must fulfill two prerequisites: (1.1) and

(1.2). Therefore, the optimal transmission rate from node i to one of its neighbor

j can be expressed as:

Ui,j =

max{U : TU
SINR ≤

pir
(i,j)
G

pN+pI
} if pir

(i,j)
G ≥ pET

0 if pir
(i,j)
G < pET

(4.2)

In order estimate the optimal data rate Ui,j, the receiver j needs to keep track

of both pI and rG. We have already shown how to maintain ri,jG ∀i ∈ Adjj in (3.35).

The same method can be applied to pI as well. Besides, pi is broadcasted through

the Hello message, therefore node j actually has all the information required to

calculate Ui,j by (4.2), which is embedded into the ACK packet so that whenever

there is a transmission between node i and j, Ui,j can be updated.

In order to obtain the average transmission data rate for node i, we have to

take all the neighbors into account and calculate the average.

Let λ
(d)
i denotes the traffic rate of node i destined to node d such that λi =∑

d∈D
λ
(d)
i . Therefore, the probability of any packet destined to node d is given by

λ
(d)
i

λi
. Since for a given destination d, the probability of choosing node j as the next
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hop is Pr(Ri(d) = j), we can further calculate the probability of node j is chosen

as the next hop for any destination:

Pr(Ri = j) =

∑
d∈D

Pr(Ri(d) = j)λ
(d)
i

λi
(4.3)

For a given next hop j, the traffic go through it is λi ∗Pr(Ri = j). Therefore,

the time needed is Pr(Ri=j)
Ui,j

. The average data rate for node i can be calculated as

Ui =
λi∑

j∈Adj(pi)

Pr(Ri=j)λi

Ui,j

=
1∑

j∈Adj(pi)

Pr(Ri=j)
Ui,j

(4.4)

To obtain Pr(Rti = j), we need to consider all the destinations and take the

average:

Pr(Rti = j) =

∑
d∈D

Pr(Rti(d) = j)λ
(d)
i

λi
(4.5)

where λ
(d)
i denotes the traffic rate of node i destined to node d such that λi =∑

d∈D
λ
(d)
i .

Since all the Q values are updated through the model-base simulations, no

exploration is required for the route discovery. Therefore, we can use the greedy

approach in selecting the next hop:

Pr(Ri(d) = j) =


1 if j = argmax

k∈Adji

Qi(d, k)

0 if j ̸= argmax
k∈Adji

Qi(d, k)
(4.6)

This is not the end of the story because there are lots of room for improvement.

First, interference is not caused by an excessive transmission range alone. In fact,
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Fig. 4.1: Braess’s Paradox: originally 4000 drivers need to travel from station A to D, the
optimal solution is to equally divide the entire traffic

any packet transmission activity in the MANETs causes certain interference to

neighbors. Therefore, considering the interference level in power control loses some

potential optimization opportunities. Second, the average transmission attempts

per time slot τ is not an independent random variable, although in a large network

with evenly distributed traffic, it can be approximated as such. Third, multi-agent

learning requires special coordination to ensure its performance.

4.1.2 Braess’s Paradox

The routing strategies without considering interference leads to selfish behav-

ior because each node only considers its own routing metrics when making the

routing decisions. The interference caused in routing can be well explained by

Braess’s paradox, which shows how in a multi-agent environment, selfish behavior

can harm the overall performance. Let us begin with the example in [76], which is

a good starting point to explain Braess’s paradox. Suppose 4000 drivers are going

from station A to D through station B or C, the corresponding weights (in this

case, time consumed) are labeled as in Figure 4.1 where x is the number of drivers

going through a certain link. It is obvious that the optimal solution is to equally

divide the traffic to both B and C, with the resulting average cost of 65.
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Fig. 4.2: When one extra link is added between node B and C, the final average cost increases

The situation becomes tricky when one extra path is constructed between

stations B and C as in Figure 4.2. It is surprising to see that the optimal solution

becomes A − B − C −D if all agents just try to minimize their own costs (they

are reluctant to shift from A−B to A−C because their local cost increases from

40 to 45). The average cost in this case is 80, which is larger than the previous

case. In other words, the average performance in equilibrium is worsened by one

extra path.

Braess’s paradox illustrates the fact that the Nash equilibrium of a traffic

network is not necessarily optimal because of interference. In this example, al-

though each driver chooses the path with the shortest delay to the destination,

form a global view, the path chosen is not optimal because the extra delay caused

to existing drivers is not taken into account. In order to avoid the sub-optimal

behaviors, one well-known solution is called marginal cost pricing [77]. The idea

is to add an extra price into the cost function to indicate the interference level

caused to others. For example, as indicated in Figure 4.3, if one driver chooses to

take path A−B, in addition to the original cost of 40, there is an extra interference

cost of 40 because the cost of another 4000 drivers are increased by 0.01. On the

contrary, taking link A− C costs only 45 because it does not affect other users.

Back to our problem, the same logic applies. The cost function used in our

system consists of two parts: one is link cost for using a specific link and the other
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Fig. 4.3: After adjusting weight according to the global objective function, traffic will be re-
distributed.

cost is interference cost representing the extra cost introduced to its neighbors.

Therefore, the reward function Ra(i, k) of node i can be expressed as:

Ra(i, k) = Li,k +
∑

j∈
−−→
Adji

∂Lj

∂λi
× λi (4.7)

where Li,k is the actual delay obtained from chapter 3. Lj is the estimated delay

going through node j. The second part is the interference level caused to node is

neighbors given its transmission rate λi. Note that the estimated delay Lj is used

to calculating the derivative only.

The marginal cost pricing mechanism moves the interference cost from power

control to routing. As a result, the routing strategies now can make decisions

based on the global utility. Since the Q values are also used for power control, the

ability of limiting interference in power control remains unchanged.

4.1.3 Diffusion Model

Similar to the chapter 3, we need to find the derivative of the transmission

delay Li. However, the previous CSMA/CA model is based on τ , the average
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transmission attempts per time slot. Since they are dependent random variables,

the derivative obtained is not accurate. In this section, we propose a network

model which is based on an independent random variable, the packet arrival rate

λ.

The diffusion approximation is proposed as a technique to solve non-product

form queuing networks [78]. By replacing the discrete valued queuing process

with a continuous Markov process, which is called the diffusion process, the overall

probability distribution of the state of a network can be represented by the product

of the states of individual states of the individual queues. Details about queuing

networks and the diffusion model can be found in [79]. The final closed-form result

is simply:

Li =
ρi

λi(1−
⌢
ρi)

=
ρi

λi(1− e
− 2(1−ρi)

cAi
2ρi+cBi

2 )

(4.8)

where ρi is the utilization factor: the ratio between the packet arrival rate λi

and the service rate µi.
⌢
ρi is an intermediate variable indicating the adjusted

utilization factor. Note that in steady state, the packet arrival rate is the same

as packet transmission rate. cAi and cBi are the coefficient of variance of the

inter-arrival and service time at station i. The next step is to find
∂Lj

∂λi
in (4.7).

In order to simplify the calculation, we assume that the random backoff timer

is exponentially distributed with mean 1/ξ [80]. Therefore, if one station transmits

without any contention, the service time 1/µ would be 1/ξ+Lp/U , where U is the

average physical data rate. For simplicity, we assume that the packet size is fixed.

For a node j, assume one of its neighbors, say node i, has a packet arrival rate λi

packets / sec with constant packet length Lp bytes/packet and average physical

data transmission rate Ui bits / sec. Therefore, the neighbors will make use of the
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channel for transmission for
∑

i∈
←−−
Adjj

λiLp/Ui [80]. For node j, its packet processing

time becomes:

1

uj
=

1/ξ + Lp/Uj

1−
∑

i∈
←−−
Adjj

λiLp/Ui

(4.9)

Then if we take the derivative, the following equation can be derived:

∂ρj
∂λi

=
∂(λj/uj)

∂λi
=

ρjLp

uj(
Ui

ξ
+ Lp

Ui

Uj
)

(4.10)

Taking the derivative of (4.8), we can obtain

∂Lj

∂ρj
=

(1− ⌢
ρj) + ρj

∂
⌢
ρ j

∂ρj

λj(1−
⌢
ρj)

2 (4.11)

Then the derivative of Dj in terms of the data rate λi can be expressed as:

∂Lj

∂λi
=
∂Lj

∂ρj
× ∂ρj
∂λi

=
(1− ⌢

ρj) + ρj
∂
⌢
ρ j

∂ρj

λj(1−
⌢
ρj)

2 × ρjLp

uj(
Ui

ξ
+ Lp

Ui

Uj
)

(4.12)

since
⌢
ρj = e

−
2(1−ρj)

cAj
2ρj+cBj

2
, we can derive

∂
⌢
ρj
∂ρj

= e
−2(1−ρj)

cAj
2ρj+cBj

2 · [ 2

cAj
2ρj + cBj

2
+

2cAj
2(1− ρj)

(cAj
2ρj + cBj

2)2
] (4.13)

In order to obtain
∂Lj

∂λi
in (4.12), λj, µj, cAj, cBj, Uj are broadcasted by Hello

packets using the same maximal power level so that all nodes in its maximal

coverage are informed. λj, µj, cAj, cBj can be obtained by observing the MAC
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queue. Uj, on the other hand, is determined by the rate adaptation mechanism,

mentioned above.

4.1.4 Power Control Scheme

Since the interference level is embedded in the Q values, the cost function for

power control can be represented as the weighted sum of all the Q values:

Cp(pi) = Cr(pi) =
∑
d∈D

λ
(d)
i max

j∈Adji(pi)
Qi(d, j) (4.14)

Note that Adji(pi) and Qi(d, j) are both functions of the transmission power

pi. When pi increases, Adj(pi) contains more nodes because of larger transmission

ranges. According to (4.8) and (4.9), larger power also results in lower service

time and overall transmission delay because of higher transmission rate. On the

other hand, it also introduces larger interference in (4.7).

4.1.5 DCOP and Multi-agent Coordination

DCOP techniques can solve the multi-agent coordination problem commonly

existing in Q-learning-based methods. Generally speaking, they can be divided

into complete and incomplete algorithms [81]. The main difference between these

two groups is that complete algorithms can always find a global optimal solution

[82–86]. However, the guarantee of optimality comes with the price of exponen-

tially increasing coordination overhead, which severely limits their practicality

[87]. On the other hand, incomplete algorithms such as the Distributed Stochas-

tic Algorithm (DSA) [88] and Distributed Breakout Algorithm (DBA) [89], do not

guarantee finding the optimal solution. Nevertheless, compared with complete

algorithms, they do not require any global control mechanism. Agents in incom-
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plete algorithms only require local information therefore have low computational

and communication cost. More importantly, incomplete algorithms are able to

make progressively improving any-time solutions by aggregating current states of

individual agents. Although the optimality of solutions is not guaranteed, it is

usually sufficient to finding satisfying solutions in highly dynamic environments.

The MANET is a typical multi-agent system with each node responsible of

its own actions. Nodes compete for network resources and cooperate to complete

packet forwarding at the same time. Without global coordination, they can only

react based on local information. Unfortunately, there is no guarantee about the

validity of such information if all nodes keep changing their status. That is also the

reason why we need a multi-agent coordination mechanism to improve efficiency.

DSA and DBA are both incomplete algorithms requiring only local informa-

tion, but at the same time, providing any-time solutions. DSA is uniform in that

all agents are equal and have no identities to distinguish one another. The basic

idea of DSA is straightforward. Initially all the agents pick random initial values

for their variables. After that, they exchange their current state information with

their neighboring agents. If their current performances can be improved by a new

set of values, they will then decide stochastically to do so. The detailed algorithm

is shown in Algorithm. 6. The motivation behind this is quite similar to the

backoff mechanism in CSMA/CA. The backoff mechanism reduces the chance of

more than one node accessing the medium. Similarly, DSA can reduce the number

of nodes that change their current variables instantaneously. However, when the

number of nodes is low, it may result in a slow convergence rate. For example,

when only one node is capable of making improvement, DSA still requires it to

act stochastically.

DBA on the other hand, is not a stochastic process. The procedure are

110



CHAPTER 4. Rate-aware Power-controlled Routing Protocol

Algorithm 6 DSA

1: function DSA
2: Randomly choose a value
3: while Not finished do
4: if the value is changed then
5: Broadcast the new value
6: end if
7: Update the values of the neighbors
8: if There is improvement then
9: Select the new value stochastically
10: end if
11: end while
12: end function

shown in Algorithm 7. After receiving the neighbor’s state information, each node

calculates its potential improvement and broadcast it to the neighbors. The node

with the greatest improvement can change its value while the rest of the nodes

will just remain unchanged. By doing this, the global performance improvement

can be guaranteed. However, it requires two rounds of communication and only

one node within a given communications range can make the adjustment. More

importantly, this algorithm can easily be trapped in a local optimal point because

of the greedy approach. As a result, its performance heavily relies on the initial

values.

Algorithm 7 DBA

1: function DBA
2: Randomly choose a value
3: while Not finished do
4: Exchange value with neighbors
5: Calculate the maximum improvement
6: Broadcast the maximum improvement
7: if it has the biggest improvement then
8: change to the new value
9: end if
10: end while
11: end function
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Our mechanism, Distributed Stochastic Breakout Algorithm (DSBA), com-

bines both features of DSA and DBA. A Node with larger performance improve-

ment has a better chance of making the change. The best value of power level

is denoted by p∗i , such that p∗i = argmax
pi

Ci(pi). After calculation, the best pos-

sible improvement is broadcasted to notify its neighbors. Correspondingly, node

i will make scholastic decisions of changing its current value. The probability of

changing its current value can be calculated as:

Pr(pi ← p∗i ) =


Cp(p∗i )−Cp(pi)∑

j∈Adj(pi)∪i

Cp(p∗j )−Cp(pj)
ifCp(p

∗
i ) ̸= Cp(pi)

0 ifCp(p
∗
i ) = Cp(pi)

(4.15)

The above process of our proposed scheme is sketched in Algorithm 8.

Algorithm 8 DSBA

1: function DSBA
2: Randomly choose a value
3: while Not finished do
4: Broadcast the new value
5: Update the values of the neighbors
6: Calculate the improvement Cp(p

∗
j)− Cp(pj)

7: Broadcast the improvement
8: Make the decision based on (4.15)
9: end while
10: end function

4.1.6 System Analysis

QLRPCR also has similar data maintenance and updating mechanism com-

pared with QLPCR. Besides the rate adaptation mechanism introduced, it has

several distinct features as well.

• The first improvement is moving the interference price from power control
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to routing. By doing so, the interference caused during routing process can

also be taken into consideration. The example in chapter 1 can still be used

to illustrate the significance.

Suppose we have the Q table of node A as:

Destination Next hop Q value
C F 0.578
C B 0.336
C C 0.898
...

As explained earlier, node A prefers node F as the next hop because of

the higher Q value. However, extra traffic going through node F inevitably

increases the congestion level. If there is a large amount of traffic passing

through node F , a lot of flows are affected. On the other hand, although

node B has a lower Q value, less flows may be affected. In this sense, node

B may be a better choice.

• The second improvement is the multi-agent coordination system. As men-

tioned above, frequent change in topology may result in an unstable network

environment. Therefore, we need a coordination mechanism to reduce the

frequency of power level changes, meanwhile keep the benefit of power con-

trol scheme.

Fig. 4.4 illustrate why a coordination system is important in MANETs.

Suppose node A and B both notice node C is a good intermediate node for

packet forwarding with a lower interference price. Without a coordination

mechanism, both of them will increase their power levels and start to send

packets to node C. As a result, the interference price of node C increases

dramatically. Then, A and B may choose to decrease their power levels. As
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a result, the network topology oscillates between these two states.

B

A

C

B

A

C

Fig. 4.4: Power control collision

The DSBA algorithm we proposed to address the problem is shown in Fig.

4.5. Before changing its power level, each node will broadcast the possible

improvement of this change. Then each node will take the action stochasti-

cally so that a larger improvement can have a higher chance to change the

power level.

Start DSBA end
Calculate the optimal 

power level

Calculate the 

improvement  and 

broadcast

Receive neighbor’s 

improvement 

Change power level 

stochastically

Fig. 4.5: Flowchart of DSBA

It can be seen that with the two new features, network efficiency and stability

can improved. However, it inevitably introduces extra overhead for information

sharing. Besides, the global-utility-based routing introduces a fairness problem:

some nodes have to sacrifice its own performances to improve the overall network

performances.
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4.2 Simulation

Simulations are carried out over NS 3.12 using the built-in IEEE 802.11a

MAC and Wi-Fi PHY models. The power consumption and modulation thresh-

old setting follow the Cisco 802.11 a/b/g CardBus Wireless LAN card operating

on 802.11a mode similar to [57]. The detailed parameters are listed below: We

Table 4.1: SINR Threshold for Different Data Rate

SINR threshold for 6 Mbps 6.02 dB

SINR threshold for 9 Mbps 7.78 dB

SINR threshold for 12 Mbps 9.03 dB

SINR threshold for 18 Mbps 10.79 dB

SINR threshold for 24 Mbps 17.04 dB

SINR threshold for 36 Mbps 18.80 dB

SINR threshold for 48 Mbps 24.05 dB

SINR threshold for 54 Mbps 24.56 dB

compare MRPCR against the original DSDV and TPCRA. DSDV uses a simple

shortest path algorithm without a power control scheme. TPCRA constructs a

topology by maximize the data rate for each link. Then a routing function con-

sidering data rate, path length and power level is used to choose the path. We

evaluate our protocol with the original DSA model and also the simple extension

from the chapter 3, QLRPCR. For each scenario, the delay, throughput and energy

consumption are measured and analyzed. All values shown are averaged over 60

independent simulations and plotted with a 95% confidence interval. We evaluate

four scenarios: the effect of varying node densities, mobility, flow densities and

traffic loads. Note the scenarios in this chapter follows [57], therefore are quite

different from previous chapters.
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4.2.1 Node Density

In the first scenario, the number of nodes and flows are fixed with constant

data rate. The simulation area is varied from 300m × 600m to 1km × 2km, in

order to compare with [57]. Three sources and three destinations are placed at

the leftmost and rightmost boundaries to elongate transmitting paths. Figure 4.6b

shows that MRPCR has the shortest delay in most of the cases mainly due to the

cross-layer scheme adopted in our system. DSDV preforms the worst because of

its lack of power control and rate adaptation abilities. It can be seen that the

delay in QLRPCR is quite small in a dense network due to its lower throughput:

less packets to transmit cause less congestion. When the area gets larger, the

power-controlled routing protocols begin to actively alter the transmitting power

to construct better paths to destinations. That is also when MRPCR has sig-

nificant advantages compared with other protocols. The delay performance of

MRPCR remains the same in spite of whether the improved or the original DSA

is adopted. The end-to-end delay is a measurement of accumulative latency of

all links along a path. Therefore, the difference between the delay performances

of these two stochastic processes are averaged out. TPCRA performs relatively

better in a dense network while it suffers a significant performance downgrade

when nodes getting further away. This is mainly due to its power control pol-

icy that requires constantly monitoring of all neighbors. If any of the neighbors

cannot be reached with maximal transmitting rate, the node will choose its maxi-

mal transmitting power, in spite of whether these neighbors participate in packet

forwarding. As a result, outliers heavily affect the power control decisions: those

far-away nodes will force others to choose maximal power level although it may

not be necessary.

Figure 4.6a shows the end-to-end throughput performances. It can be seen

116



CHAPTER 4. Rate-aware Power-controlled Routing Protocol

that MRPCR with the improved DSA has an observable improvement compared

with the one with the original DSA. This is mainly due to the fact the original

DSA requires a large number of iterations to reach the final output. Therefore, it

introduces larger variation on the intermediate output. Such a variation is more

significant in throughput because throughput is determined by the worst link along

a path. DSDV can obtain good overall throughput in a dense network because of

its smaller overhead. However, when the simulation area gets larger, this advan-

tage is overturned by the need for an effective rate adaptation and transmitting

power control scheme. Figure 4.6a also shows the trend that when the simula-

tion area gets large enough all protocols will have the same performance because

all nodes have to adopt maximal transmitting power and slowest modulation to

maintain network connectivity.

The average power consumption in Figure 4.6c is obtained by dividing the

overall energy consumption of all nodes by the total simulation time and the num-

ber of nodes. Transmission power level and duration together determine the total

power consumption. Generally speaking, higher throughput and slower data rate

result in a longer transmission period. For example, DSDV has the largest energy

consumption due to its high throughput when the simulation area is small. As

the throughput decreases, the energy consumption decreases significantly because

of the shorter transmitting duration. The energy consumptions of MRPCR and

QLRPCR, on the other hand, have a peak value in the middle because the larger

output power level overcomes the effect of the shorter transmitting duration.

4.2.2 Mobility

In this scenario, 50 nodes are randomly located at a 1200m × 600m area

except for three fixed pairs of sources and destinations at the boundaries. The
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Fig. 4.6: QoS performance of power-controlled schemes under different node densities
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maximum speed of random waypoint is varied from 4m/s to 20m/s. It can be

seen that the delay increases with mobility as shown in Figure 4.7b, due to the

packet transmission failure caused by topology change. Such failure is handled

by the retransmission mechanism in IEEE 802.11. If the retransmission attempt

exceeds a threshold, the corresponding packet is dropped. Those dropped pack-

ets are not counted when measuring end-to-end delay performances. Therefore,

latency degradation caused by mobility is not obvious. One exception is TPCRA,

which almost triples its delay when the maximum speed increases from 4m/s to

20m/s. Higher power level in TPCRA can improve the throughput (Figure 4.7a)

by increasing the transmission range. On other hand, it also reduces the chance

of packet drop and consequently suffers more from retransmission mechanism.

MRPCR’s throughput is mostly affected by mobility because each tends to use

smaller power level to reduce interference level whenever possible. Therefore, as

mobility gets higher, so does the packet drop rate. TPCRA, QLRPCR and DSDV

have relatively stable performance because distance attenuation is less pronounced

for them.

Fig. 4.7c shows the average power consumption is dominantly determined by

the throughput except DSDV. Source nodes in DSDV have to keep sending routing

request with maximal power level to establish new paths due to its extremely low

throughput.

4.2.3 Traffic Load

In this scenario, the traffic rate of each flow is varied from 128 kbps to 1280

kbps. MRPCR has a large jump in delay when the flow rate reaches 372 kbps, as

shown in Figure 4.8b. When the throughput is approaching saturation point, the

packet drop begins to increase, which results in lots of retransmission attempts.
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Fig. 4.7: QoS performance of power-controlled schemes under different mobilities
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After the saturation point is reached, delay increment becomes relatively mild

because of higher packet loss incurred. It is noticeable that although MRPCR

uses delay as the only routing metric, in this scenario, its delay performance is

worse than TPCRA and QLPCR when network becomes congested. The delay

estimation model adopted in MRPCR is not an exact model. Nonetheless, it is

still a good indicator of network conditions. Therefore, by using it, satisfactory

delay and throughput performances can still be obtained (Fig. 4.8a).

TPCRA performs well when the traffic load is low. However, its ignorance of

interference results in significant throughput drop when the traffic load increases.

It is also interesting to see that DSDV has better saturation throughput compared

with TPCRA and QLPCR. It is because the shortest path algorithm may be

efficient in a congested network. With smaller overhead and fewer intermediate

notes involved, DSDV can mitigate the overall congestion level. On the other hand,

the maximal transmission power introduces excessive interference for it as well. As

a result, frequent retransmission attempts also elongate its average transmitting

durations. Energy consumption follows the same pattern as in the last scenario

showing throughput as a dominant factor (Fig. 4.8c).

4.2.4 Number of Flows

In this scenario, the number of flow is increased from 6 to 13, while the

simulation area is fixed at 600 m × 800 m. Sources and destinations are randomly

chosen from 50 nodes. The restriction of the 6 fixed nodes on the boundary is

removed to ensure there are always 50 nodes freely moving in the simulation area.

As a result, sources and destinations can be very close to each other at certain

time intervals. It will inevitably produce a higher throughput and smaller delay

compared with previous scenarios as shown in Fig. 4.9b and 4.9a. It can be seen
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Fig. 4.8: QoS performance of power-controlled schemes under different traffic rates
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that saturation is not reached with even 13 flows because of the high space reuse

rate. MRPCR has the highest throughput due to its coordination mechanism.

QLRPCR also explicitly considers interference in its metrics therefore achieves

good throughput. TPCRA, on the other hand, lacks such a mechanism. As a

result, it has better performances when the number of flows is small, but when

the number of flows increases, the effect of excess interference becomes obvious

which can also be observed in DSDV.

The end-to-end delay in QLRPCR is quite small when dealing with fewer

flows (Fig. 4.9c). However, since it lacks of coordination mechanisms, when

number of flows gets larger, congestion has a more severe impact on it. When the

number of flows reaches 10, MRPCR with the original DSA has a smaller delay: If

surrounded by multiple flows, decisions are more easily trapped in a local optimal

point. The pure stochastic decision made by DSA will help the node jump out of

local optimal point resulting in a better topology setting. TPCRA has relatively

stable delay performances because of its aggressive power control policy.

4.3 Conclusion

In this chapter, first we propose a simple extension of the chapter 3, with the

rate-aware capability. However, in order to optimize the overall performance, we

propose a power-controlled rate-aware routing protocol with multi-agent coordi-

nation enhancement. It adopts a customized Q-learning method that optimizes a

global cost function based on a MAC-layer delay model. In addition, the multi-

agent coordination mechanism stochastically prevents frequent changes of network

to improve overall performances. Stimulation results show that our protocols can

achieve a good delay and throughput performance with acceptable power con-
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Fig. 4.9: QoS performance of power-controlled schemes under different numbers of flows
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sumption rate. Compared with the original DSA, the improved version almost

always produces a better throughput. However, if surrounding environment is too

complicated, the original DSA has a better chance to jump out of the local optimal

point.
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Chapter 5

Conclusion and Future Work

5.1 Summary

How to jointly optimize power, rate and routing in MANETs is the cen-

tral problem in this thesis. To solve the complicated interactions between each

other, we have provided a reinforcement-learning-based solution which dynami-

cally learns and changes strategy based on the environment. We have also provided

modifications to the traditional Q-learning method to overcome various problems

in the context of MANETs. Step by step, we put routing, power control and rate

adaptation into the framework of Q-learning.

The first part of our work is to apply the Q-learning method to the routing

problem. We combine throughput, delay and SINR as the instant reward to guild

the learning process. An automatic parameter tuning mechanism, which operates

by observing the congestion level, is implemented to overcome the challenges intro-

duced by multiple metrics. For different congestion level, different set of weights

is adopted to bias the learning process. We also design a learning reset process

to deal with the mobility. To overcome the routing loop problem, which is quite
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common in the Q-learning-based routing schemes, we introduce a probing packets

mechanism that periodically sends out probing packets that travel from source to

destination while keep a record of all the nodes traversed. Once one node is visited

more than once, the loop is detected. The probing packet then is forwarded again

to notify all the node in the loop. To evaluate the proposed protocol, we compare

the Q-learning-based routing protocol with the benchmarks by simulations. The

simulation results show that our proposed protocol can perform well in different

traffic loads, node densities, and link qualities.

The next step is to add power control into the Q-learning-based framework.

The large action space formed by the power control and routing options prevents

us from directly adding power level into the framework. To accelerate the learn-

ing process, a CSMA/CA model is introduced to simulate the reward so that all

Q-entries can be updated at once. In the CSMA/CA model, we explicitly specify

the rate of transmission attempts for each nodes to calculate the specific end-to-

end-delay to each of the neighbors. The model also considers the hidden node

problem by differentiating the neighbors of sender from the ones of receiver. A

stochastic estimation method of mutual neighbors is design to reduce the com-

munication overhead when determining the neighbors. The power control scheme

involves multiple nodes in a network. Therefore, we measure the interference

level by a weighted delay so that the trade-offs between the interference level and

transmission range can be quantitatively calculated. Since only delay is used as

the routing metrics, we also introduce a more efficient routing-loop prevention

mechanism, which prevents self-addition into the routing entry. The simulation

results show that our proposed protocol can perform well in a heavily loaded dense

network with high mobility with comparable energy consumption.

Finally, we include the rate adaptation to form a complete solution. Instead of
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extend from the previous power-controlled routing protocol, we choose to redesign

the routing scheme to include the interference level to overcome the suboptimal

solution illustrated in Braess’s paradox. In order to properly measure the inter-

ference level, we make use of the diffusion model to obtain the derivate of the

end-to-end delays. We also combine both DSA and DBA to provide a fast any-

time solution for the multi-agent learning coordination problem. The simulation

results show that our protocols can achieve a satisfactory performance in various

scenarios. However, if surrounding environment is too complicated, the original

DSA has a better chance to jump out of local optimal points.

In conclusion, by applying the Q-learning method to the cross-layer design,

satisfactory QoS performances can be obtained. Since Q-learning is capable of

learning from the environment, it is expected that learning nodes in MANETs

can cope with various traffic conditions.

5.2 Future Work

The following possible improvements can be implemented in our protocol:

• Delay estimation is based on delay models. Therefore, a better delay model

is also a possible way to improve our current work. Both the CSMA/CA and

diffusion model make some unrealistic assumptions to simplify the process.

Therefore, it is always possible to come out with a more precise model.

• Considering interference in routing introduces the fairness problem. A rotation-

based scheduling can be added to ensure fairness.

• DCOP mechanism also has rooms for improvement. Although a complete

algorithm is not applicable to MANETs, it is still possible to borrow some
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ideas such as backtracking mechanism to come out with a hybrid algorithm

that provide a locally complete algorithm.

There are also some potential directions we can continue our research:

• We use delay as the reward for path selection because it is additive. How-

ever, it is also possible to explore other solutions such as throughput. In

graph theory, delay and throughput can be found by using the shortest path

and maximal flow algorithms respectively. Therefore, in Q-learning-based

routing schemes, it is also possible to obtain the maximal flow by sharing

information among neighbors and modeling how each node affect the sur-

rounding overall flow rate.

• Scheduling can be the next factor to be included in the Q-learning framework

because it is also important to the QoS optimization in MANETs.

• Q-learning can be extended into higher level. Choosing delay as the metric

of routing is predefined. However, it is possible to dynamically change the

routing metrics based on higher level application requirement. For example,

when user is watching streaming videos, the Q-learning process may choose

throughput as the routing metrics whereas for instant messaging, delay is a

better choice. In order to understand user’s intention, we need more sophis-

ticated AI knowledge representation such as ontology or natural language

processing to make it feasible.

As for the QoS optimization problem, there are several possible solutions for

MANETs as well:

• Caching is a possible way to solve the unreliable links in MANETs. When

destination is not reachable, source may choose to send the packets to an
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intermediate node which has higher possibility to reach the destination in

the future. When the intermediate node finds a path to the destination, it

will send the cached packets for the source.

• Network coding is also another solution to improve the network performance.

Combining several messages together can effectively reduce the network

traffic load.
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