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Some natural product leads of drugs (NPLDs) have been found to congregate in the chemical space. The
extent, detailed patterns, and mechanisms of this congregation phenomenon have not been fully
investigated and their usefulness for NPLD discovery needs to be more extensively tested. In this work, we
generated and evaluated the distribution patterns of 442 NPLDs of 749 pre-2013 approved and 263 clinical
trial small molecule drugs in the chemical space represented by the molecular scaffold and fingerprint trees
of 137,836 non-redundant natural products. In the molecular scaffold trees, 62.7% approved and 37.4%
clinical trial NPLDs congregate in 62 drug-productive scaffolds/scaffold-branches. In the molecular
fingerprint tree, 82.5% approved and 63.0% clinical trial NPLDs are clustered in 60 drug-productive clusters
(DCs) partly due to their preferential binding to 45 privileged target-site classes. The distribution patterns of
the NPLDs are distinguished from those of the bioactive natural products. 11.7% of the NPLDs in these DCs
have remote-similarity relationship with the nearest NPLD in their own DC. The majority of the new
NPLDs emerge from preexisting DCs. The usefulness of the derived knowledge for NPLD discovery was
demonstrated by the recognition of the new NPLDs of 2013–2014 approved drugs.

T
he focus of drug discovery has moved from natural products (NPs) to technology-derived synthetic mole-
cules for about 20 years1 without the anticipated drug productivity improvement2. Although being largely
sidelined, NPs are still relevant3,4 with NP-related small molecule drugs representing 29.5% of the 132 FDA

approved drugs in 2008–2012 (Supplementary Table S1), NP-related drugs include NPs and NP semi-synthetic
derivatives, mimetics, and pharmacophore-guided synthetic molecules3. The NPs from which the NP-related
drugs have been derived are named as the NP leads of drugs (NPLDs). There is a renewed interest in discovering
drugs5 from NP privileged structures6 and derivative libraries7. The knowledge of the distribution of the NPLDs in
the chemical space provides useful clues for prioritizing the relevant efforts.

Although NPs are in well-defined subspaces of the chemical space8, because of their enormous number9,
structural diversity9,10 and molecular complexity11, only a fraction of NPs can be practically explored in the
foreseeable future. Drug discovery efforts need to be prioritized towards the NPs with higher discovery potentials.
The key questions are which NPs to explore and where to find them. Evidences suggest that some NPLDs may
congregate in specific drug-productive regions of the chemical space. Certain NP chemical classes (e.g. steroids
and nucleosides) are drug prolific12. Half of the drugs are made of dozens of molecular frameworks13. For many
drugs, their individual molecular, physicochemical and topological pharmacophore properties14–16 and the cor-
responding principal components17–20 are constrained in specific ranges. Moreover, the GPCR, kinase and
protease targeting agents have been reported to each cluster together in the chemical space1. These studies have
consistently shown that a substantial percentage of the NPLDs congregate in the chemical space. However, the
extent and the detailed distribution patterns of the congregation of NPLDs in the chemical space and the
mechanisms leading to such patterns have not been fully investigated.
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There is a need to study these questions from different structural
and molecular binding perspectives to gain a deeper understanding
of the structural characteristics of NPLDs and to find clues for guid-
ing the search of new NPLDs. In this work, we determined the
distribution patterns of the 348 and 94 NPLDs of 749 pre-2013
approved and 263 clinical trial small molecule drugs (Supple-
mentary Tables S2, S3) in the chemical space represented by the
molecular scaffold trees21 and the molecular fingerprint based hier-
archical clustering tree22,23 of 137,836 non-redundant NPs3,24,25. The
number of NPs profiled here is comparable to those of the earlier
large-scale NP studies9,21,26. Molecular fingerprints were used for
representing NPs in the hierarchical clustering tree because of its
demonstrated effectiveness in structural similarity searching, and
its extensive applications in drug lead discovery12,23,27–30.

The derived distribution patterns were studied from the perspec-
tive of preferential binding of NPLDs to the privileged target-sites for
determining whether it contributes to the formation of these pat-
terns. We also evaluated whether these patterns are distinguished
from those of the bioactive NPs and how they evolve with time.
We further tested whether the derived knowledge can be explored
for NPLD discovery by applying it to retrospectively judge the
development potential of the new NPLDs of 2013–2014 approved
drugs uninvolved in the derivation of the NPLD distribution pat-
terns. New technologies are expected to significantly expand the
currently accessible NP chemical space31,32 and their potential impact
is not reflected in this study.

Drug scaffolds have been well analyzed13 and drug distribution in
the chemical space have been extensively studied from the perspec-
tives of specific molecular and physicochemical properties1,14–20. To
the best of our knowledge, our work is the first large-scale and sys-
tematic study of the detailed distribution patterns of the largest set of
NPLDs in the chemical space from the perspectives of their molecu-
lar scaffolds and structures. The molecular scaffold analysis was
intended for determining whether there is a significant change in
the congregation patterns of the NPLDs in comparison to the pre-
vious studies13,33. The molecular structural analysis was intended for
further probing the complex structural features of the NPLD con-
gregation phenomenon and the underlying molecular mechanisms
that might contribute to the clustering of NPLDs with particular
focus on the possible influence of the binding of NPLDs and their
derivatives to the privileged target sites.

Methods
We collected 442 NPLDs1,3,27,28,34,35 and the information about their NP origin1,28

from the literature. We also collected 169,037 NPs from the ZINC24, TCM-ID29,
TCM@Taiwan25, and other literatures3. For database entries with multiple non-linked
components, only the largest component was selected. Hydrogens were added and
small fragments (counter ions, solvent molecules, etc.) were removed by using
Corina, The number of NPs were reduced to 137,836 after removing the duplicate
entries, small NPs with molecular weight ,50 Daltons (drug leads are .100
Daltons30) and the NPs whose molecular fingerprints could not be computed by using
available software tools such as PaDEL36. Duplicates were identified and removed by
structural comparison based on a set of 98 molecular descriptors we have used for
classifying bioactive molecules37 and implemented in the online server MODEL38,
open-source software PaDEL36, and our own software, which can distinguish dif-
ferent molecules non-distinguishable by the 881-bit Pubchem molecular fingerprints.

In deriving the molecular scaffold trees of the 442 NPLDs and 137,836 NPs,
Scaffold Hunter v2.3.021 was used to select the NPLDs and NPs with ring structures
and to subsequently cluster them into molecular scaffold trees by using default rule set
in the Scaffold Tree Generation window. The molecular fingerprint based hierarch-
ical clustering tree of the 442 NPLDs and 137,836 NPs was generated by using the
Matlab statistics toolbox with the structures of the NPs represented by 2D molecular
fingerprints23 (specifically, the 881-bit PubChem substructure fingerprints computed
by using PaDEL36) and with their similarity levels measured by the Tanimoto coef-
ficient Tc22,23 and the complete linkage. Tc was used because it is the most popular
similarity metric for molecular fingerprint based measurement of compound sim-
ilarity23. Complete linkage was used because of its relatively good performance in
clustering bioactive compounds in a recent comparative study39. The hierarchical tree
graphs were generated by using EMBL automatic tree generator in iTOL version-
1.8.140 with the distance of the NPs measured by the Tanimoto distance Td 5 1-Tc. In
analyzing the physicochemical landscapes of the NPs in specific regions of the
chemical space, we used MODEL38 and Discovery studio 3.1.1 software to compute

eight molecular descriptors frequently used for analyzing drug-like14,41–43 and lead-
like43,44 features. These are molecular weight (MW), lipophilicity AlogP and logD,
polarizability (PZ), and the number of O1N (ON), hydrogen bond donor (HD),
hydrogen bond acceptor (HA), rotatable bond (RB), and rings (RI).

To determine whether the clustering of the NPLDs in specific sub-regions of the
chemical space are statistically more significant than chance, our derived distribution
patterns of the NPLDs with respect to those of the randomly shuffled NP com-
munities were analyzed by the method used for determining the statistical signifi-
cance of the phylogenetic clustering of traditional medicinal plants45. In this method,
the mean Tanimoto distance MTd of the NPLDs in every NPLD-clustered sub-region
was compared to the MTd values of these NPLDs in 60,000 randomly generated NP
sub-regions. By using the algorithms implemented in the Phylocom: software46, a
one-tailed P-value and a net relatedness index (NRI) were calculated for each sub-
region. The P-value is the number of randomly selected NPs that are more clustered
than the NPLDs in each sub-region divided by the number of runs (60,000 in this
study). The desired significance level a of the P-value was further adjusted by
Bonferroni correction to a9 5 a/N (N is the number of independent statistical
significance tests, which is 60 in this study)47. The NRI is a standardized effect size
measure of the community structure in each sub-regions, which is the difference in
average Td between the NPLDs and the 60,000 randomly generated NP sub-regions,
and standardized by the standard deviation of the Td values in 60,000 randomly
shuffled sets of NP communities. The sign of NRI informs whether the NPLDs are
more clustered (NRI . 0) or more dispersed (NRI , 0) than the NPs in each sub-
region. These quantities were calculated by using Phylocom v4.146 with the Td values
of the NPLDs and NPs as input data.

Results and Discussion
Distribution profiles of NPLDs in the chemical space from the
perspectives of molecular scaffolds and molecular structures.
There are 411 NPLDs and 134,097 NPs with ring structures. These
were grouped by Scaffold hunter21 into molecular scaffold trees of
39,051 scaffolds (114 are drug-productive). The distribution of the
NPLD scaffolds in this large-scale analysis is similar to the previous
findings13,33, the majority (62.7%) of the NPLDs of the approved
drugs and a substantial percentage (37.4%) of the NPLDs of the
clinical trial drugs congregate in 62 drug-productive scaffolds or
scaffold parent-child sub-branches (DSs) labeled as DS1 to DS62
(Figure 1, Supplementary Table S4 and Figures S1–S5). A DS is
defined as a scaffold with $2 NPLDs that have yielded $1
approved drug or a scaffold parent-child sub-branch with $2
NPLD-producing scaffolds that have yielded $1 approved drug.

Figure 1 | Distribution of the natural product leads of approved and
clinical trial drugs in branch 5 of the Scaffold-Hunter derived molecular
scaffold trees of the 134,097 natural products and 411 natural product
leads. The drug-productive scaffolds or scaffold parent-child sub-branches

(DSs) are indicated by red dots or red dots connected by red lines, which

marked by the respective label DS15-DS19. The green triangles indicate the

natural product leads outside the DSs. Some of the representative scaffolds

in these DSs are shown in the Figure. The more complete sets of the

representative scaffolds are shown in the Supplementary Figure S2.

www.nature.com/scientificreports
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These DSs have collectively yielded 69.6% approved and 44.4%
clinical trial drugs. The congregation of NPLDs in the DSs coupled
with the earlier finding that the GPCR, kinase and protease targeting
agents each are clustered together in the chemical space1 indicates
that NPLDs of the same and different scaffolds against the same
classes of targets may on a broader scale be clustered together in
the chemical space. To facilitate the visualization of our generated
scaffold trees by using Scaffold Hunter, the resulting scaffold data-
base was exported as a SQL file that can be downloaded at http://bidd.
nus.edu.sg/group/NPLD_Distribution/NP_ScaffoldHunter.zip.

To probe the larger-scale distribution patterns of NPLDs in the
chemical space from the perspective of molecular structures, we
generated a molecular fingerprint based hierarchical clustering tree
of the 442 NPLDs and 137,836 NPs. The derived tree is composed of
33 main branches (Supplementary Figure S6 and Table S5). Most
(87.9%) branches are drug-productive, reflecting the fact that NPs
primarily co-evolve and interact with proteins6 and a variety of
chemical classes3,4 and target families48,49 have been therapeutically
explored. Nonetheless, NPLDs within each branch are mostly clus-
tered together, with 341 (77.2%) NPLDs (82.5% approved, 3.0%
clinical trial) clustered in 60 drug-lead productive clusters (DCs)
labeled as DC1 to DC60 (Figure 2, Supplementary S7–S10 and
Table S6). A DC is defined as a relatively small region of the molecu-
lar fingerprint characterized chemical space with moderate to high
concentration of NPLDs yielding $1 approved drug.

To facilitate the analysis of the clustered distribution of the
NPLDs, we generated the heat map of the proximity matrix of
442 NPLDs against 137,836 non-redundant NPs. The proximity
matrix was calculated by using molecular fingerprint Tanimoto dis-
tance Td between NPLDs and NPs with the row and column posi-
tions representing the NPLDs and NPs in the same order as their
respective positions in the hierarchical clustering tree of the NPLDs

and NPs. The heat map was created by using the heatmap.2 function
of the gplots package in R with the red to yellow colors indicating the
stronger to weaker structural similarity between the NPLDs and NPs.
The heat map for branch 4 and 9 are shown in Supplementary
Figures S11–S12 and those of the other branches can be downloaded
from http://bidd.nus.edu.sg/group/NPLD_Distribution/NP_heatmaps.
zip.

We found that 11.7% of the NPLDs in the DCs have remote-
similarity relationships (0.57 # Tc , 0.7) with the nearest NPLD
in their own DC, and another 24.9% of the NPLDs in these DCs have
intermediate-similarity relationship (0.7 # Tc , 0.85) with their
nearest NPLD in their own DC. Remote-similarity relationships have
been reported in compounds with cross-pharmacology relation-
ships50 and between a bioactive compound and its scaffold hopping
parent bioactive compound51. Therefore, the DCs broadly cover the
high-similarity to remote-similarity relationships for capturing sim-
ilar activities, and cross-pharmacology and scaffold hopping types of
relationships.

These DCs have collectively yielded 87.9% approved and 68.8%
clinical trial drugs. In particular, 56.0% approved and 67.4% clinical
trial NPLDs are clustered in 22 NPLD-prolific DCs (Table 1) that
have collectively yielded 68.4% approved and 39.2% clinical trial
drugs, which is consistent with the report that half of the drugs are
made of dozens of molecular frameworks13. The NPLD-prolific DCs
were ranked based on the ratio of the approved NPLDs to the NPs in
each DC. Partly because of the inadequate exploration and partly
because of the limited availability of the relevant information, these
ratios may not fully reflect the reality but nonetheless provide useful
indications. We found that 60% of the top-10 NPLD-prolific DCs
with .100 searchable NPs in Table 1 are among top-ranked DCs
with higher approved NPLD to NP ratios. Thus, drug productivity of
these top-ranked DCs seems to arise from higher NPLD yields
instead of the higher number of NPs explored. The top-ranked
DC38 and DC8 in Table 1 were excluded because they have ,100
searchable NPs. If counted, they are among the DCs with highest
approved NPLD to NP ratios.

Statistical significance of the clustering of NPLDs in the DCs. The
statistical significance of the clustering of the NPLDs in every DC was
evaluated by using the Phylocom software46 to calculate the P-value
and NRI of the NPLDs against the chance clustering of the NPs in the
DC from 60,000 sets of randomly selected NPs, as outlined in the
Method section. We found that there are statistically more NPLDs in
most of the DCs than expected by chance, with 78.3% of the DCs
having P # 0.0095 and additional 10% of the DCs having 0.011 # P
# 0.0362 respectively (Table 2), which correspond to very strong
(P # 0.01) and strong (0.01 , P # 0.05) presumption against null
hypothesis respectively52. The P-value of the remaining 4 (6.7%) and 3
(5%) DCs are in the range of 0.0525 # P # 0.0736 and 0.1233 # P #

0.1857 respectively, which correspond to low (0.05 , P # 0.1) and no
(P . 0.1) presumption against null hypothesis respectively52. It is
noted that each of these seven DCs has only 2 NPLDs and there is
a possibility that the low statistical significance of these DCs are partly
due to the few discovered NPLDs in these DCs.

To further provide a more conservative evaluation of the statistical
significance of the clustering of NPLDs in the DCs, Bonferroni cor-
rection for study-wide hypothesis testing was performed. We found
that, under the Bonferroni correction with a9 5 0.05/60, 48.3% DCs
still have statistically strong or very strong significance against null
hypothesis (Table 2). On the other hand, 16.7% DCs showed weak
and 35% DCs showed no significance. It is noted that the majority
(67.7%) of these weak or no significance DCs have 2–3 NPLDs in
their respective DCs. The low number of NPLDs in each of these DCs
likely leads to a higher tendency of forming a distribution pattern
with weaker statistical significance that can be exposed by stricter
statistic tests.

Figure 2 | Distribution of the natural product leads of approved and
clinical trial drugs in branch 3 of the substructure-fingerprint clustering
tree of the 137,836 natural products and 442 natural product leads. The

drug-lead productive clusters are red-orange colored and marked by the

respective cluster label DC4-DC10. The red, purple and blue lines on top of

the clustering tree indicate the locations of the approved, approved 1

clinical trial, and clinical trial drug-leads with the height correlating with

the number of approved 1 clinical trial drugs.

www.nature.com/scientificreports
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Molecular mechanisms that contribute to the clustering of
NPLDs. To determine what molecular mechanisms might contri-
bute to the clustering of NPLDs within individual DCs with parti-
cular focus on the possible influence of the targets of their derived

drugs, we evaluated the 203 targets of the 822 approved and clinical
trial drugs of the 331 NPLDs in the 55 DCs with their target
information available in the therapeutic target database53. We
found that the targets of each individual DC are primarily from

Table 2 | The statistical significance of the clustering of the NPLDs in every DC. MTd is the mean Tanimoto distance of the NPLDs in each DC,
MTd.rnd is the mean Tanimoto distance in randomization, NRI is a standardized effect size measure of the community structure, and P-value
is the number of randomly selected NPs that are more clustered than the NPLDs in each DC divided by the number of runs (60,000 in this
study). P values in bold are the ones which remain significant after Bonferroni correction with conservative a9 5 0.05/60 5 0.000833

DC Branch No of NPLD MTD MTD.rnd NRI P-value

DC1 1 2 0.2642 1.8368 6.2835 0.00238
DC2 1 2 0.1224 1.8373 6.9228 0.00117
DC3 1 2 0.6296 1.8331 4.7303 0.00847
DC4 3 4 1.0322 1.6705 6.1005 0.00047
DC5 3 19 1.2111 1.6704 16.3408 0.00000
DC6 3 5 1.2328 1.6704 5.2077 0.00142
DC7 3 15 1.4909 1.6706 5.2466 0.00043
DC8 3 6 1.0778 1.6706 8.2775 0.00003
DC9 3 7 1.1073 1.6711 9.1502 0.00002
DC10 3 5 0.8436 1.6704 9.8633 0.00000
DC11 4 4 0.8826 1.5121 4.7221 0.00277
DC12 4 5 0.6238 1.5122 8.4309 0.00000
DC13 4 18 1.0751 1.5107 12.7659 0.00000
DC14 7 5 0.8233 1.2803 4.4320 0.00177
DC15 8 3 0.8090 1.5069 4.7523 0.00175
DC16 9 3 0.4985 1.4882 5.2888 0.00145
DC17 9 16 0.8576 1.4892 10.2529 0.00000
DC18 9 2 1.0548 1.4913 1.5675 0.06920
DC19 9 37 1.0487 1.4896 11.3267 0.00000
DC20 10 2 0.1740 1.4029 5.8662 0.00135
DC21 10 9 0.9145 1.4017 6.8067 0.00000
DC22 10 3 0.7339 1.4007 4.5322 0.00078
DC23 10 2 1.2542 1.3999 0.6864 0.15480
DC24 11 5 0.8121 1.3910 5.5223 0.00100
DC25 12 2 0.2934 1.2207 3.7910 0.00947
DC26 12 2 0 1.2202 4.9798 0.00078
DC27 12 8 0.9926 1.2208 2.9058 0.01428
DC28 12 8 0.2007 1.2200 12.9182 0.00000
DC29 12 7 0.7426 1.2203 5.5655 0.00043
DC30 13 2 0.8474 1.3667 1.9145 0.06510
DC31 14 5 1.0297 1.5449 4.2627 0.00100
DC32 14 5 0.9406 1.5439 4.9565 0.00007
DC33 14 4 1.1776 1.5454 2.5820 0.02413
DC34 14 3 0.8209 1.5460 4.0057 0.00120
DC35 14 6 0.6607 1.5452 8.3548 0.00000
DC36 15 10 0.6860 1.3351 7.9798 0.00000
DC37 16 3 0.6935 1.1435 3.4132 0.01103
DC38 16 7 0.5400 1.1431 10.9642 0.00000
DC39 17 3 0.4787 1.1665 5.0540 0.00093
DC40 17 7 0.8464 1.1671 4.7313 0.00235
DC41 17 2 0.6630 1.1649 2.3529 0.03623
DC42 17 7 0.7352 1.1663 6.3612 0.00025
DC43 20 5 0.4329 1.3241 17.2567 0.00000
DC44 20 5 0.6912 1.3241 12.1159 0.00003
DC45 20 7 0.9507 1.3238 10.0919 0.00002
DC46 21 3 0.1372 0.7713 5.0125 0.00010
DC47 21 4 0.5792 0.7708 1.8932 0.02985
DC48 24 4 0.7416 1.0739 5.7931 0.00110
DC49 24 6 0.5427 1.0740 14.5890 0.00000
DC50 26 5 0.4218 0.7916 6.3884 0.00012
DC51 26 2 0.6052 0.7909 1.1859 0.07355
DC52 28 3 0.9049 1.1883 2.4123 0.03025
DC53 28 9 0.9577 1.1880 5.9241 0.00070
DC54 30 2 0.7262 0.8764 0.7311 0.18568
DC55 32 3 0.3393 0.8538 4.4925 0.00152
DC56 32 2 0.6884 0.8548 0.9532 0.12325
DC57 32 2 0.2012 0.8550 3.7418 0.00427
DC58 32 2 0.4916 0.8533 2.0560 0.05248
DC59 32 3 0.2995 0.8535 4.8258 0.00077
DC60 33 2 0 0.9059 5.0937 0.00040
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one to a few target classes (e.g. amine receptors) with their substrates/
ligands from one to a few chemical classes (e.g. amines). This finding
is based on the limited target information for 74.9% NPLDs and
without considering the additional targets of the non-NPLDs in
each DC. While the limited target information may not enable
a full investigation of the influence of drug target-sites, it
nonetheless provides useful hints about the key factors that
promote the clustering of NPLDs. The 203 targets can be classified
based on their target-sites into 45 target-site classes (TCs) labeled as
TC1 to TC45, which collectively belong to 20 target-site super-classes
(TSs) labeled as TS1 to TS20 (Supplementary Table S7). A TS is
defined as a group of target-sites bound by substrates/ligands of a
specific chemical class (e.g. amine binding sites) irrespective of their
targets. A TC represents a sub-group of target-sites of a specific target
class (e.g. amine transporters) bound by substrates/ligands of a
specific chemical class.

The targets in 53 (96.4%) DCs are from 1–3 TCs (27, 19, 7 DCs
from 1, 2, 3 TCs) with the majority (65.5%) from either 1 TC
(27 DCs) or 2–3 TCs of 1 TS (9 DCs), and the remaining 2 DCs
are from 4 TCs (Figure 3). This indicates that the similar target-site
structural constraints are likely the key factors in promoting the
clustering of NPLDs in individual DCs. The targets of approved
and clinical trial drugs are highly selective in their numbers, drugg-
ability features, and systems profiles48,53–55, and the druggability fea-
tures have been characterized by the affiliation of the family members
of the studied target to the known drug targets56 and by the existence
of a privileged binding site with unique physicochemical properties57

for enabling favorable binding by drug-like molecules58.
Our revealed links between the clustering of NPLDs in individual

DCs and the grouping of their targets in selected TCs are consistent
with these findings. NPLDs in these DCs possess structural, physico-
chemical and/or pharmacophore features complementary to a pri-
vileged target-site, are at or near activity peaks against the target, and
have good or amendable safety and pharmacokinetic properties.
They either have or may be further optimized to gain such additional

features as adequate metabolic stability59, metabolite safety60, absorp-
tion61 and physical forms62 to reach the drug sweet spots63 in the
chemical space. Therefore, our revealed clustered patterns of
NPLDs and their links to the selected TCs provide useful information
and enable further study of the distribution profiles of the NPLDs in
the chemical space particularly with respect to the relevant target-site
classes.

Consistent with the reported clustering of GPCR, kinase and
protease targeting agents in the chemical space1, the GPCR, kinase
and protease TCs are primarily targeted by the selected chemical
classes of NPLDs in specific DCs. For GPCRs, amine receptors
(TC1) are primarily targeted by amines (DC31, DC44), ergoline
alkaloids (DC40, DC41), and indole (DC14, DC42) and tropane
(DC43) alkaloids, amino acid receptors (TC20) by amino acids
(DC7) and oligopeptides (DC9), cannabinoid receptors (TC39) by
cannabinoids (DC56) and cannabidiols (DC53), purine nucleoside
receptors (TC5) by purines (DC12, DC13), opiate receptors (TC43)
by opiate alkaloids (DC49), and monosaccharide receptors (TC32)
by phenylpropanoids (DC60). Kinases (TC11) are primarily targeted
by staurosporines (DC39). For the proteases, serine endopeptidases
(TC28) are primarily targeted by glycosaminoglycans (DC10) and
linear amino acid derivatives (DC4), proteasome (TC27) by oligo-
peptides (DC9), and exopeptidases (TC23) by phenethylamines
(DC34), sesquiterpenes (DC22), larger indole alkaloids (DC14),
and linear and cyclic peptides (DC38).

The other drug-prolific DCs are also closely linked to specific TCs
(Table 1), with DC19 (steroids) linked to the nuclear receptor ligand
binding sites (TC44), DC5 (aminoglycosides) to the DNA metabol-
ism enzyme nucleoside phosphate (TC7) and ribosome 30 s subunit
aminoacyl-tRNA (TC18) binding sites, DC17 (acarviosins) to the
phosphatase substrate (TC19), ribosome 23S rRNA peptidyl trans-
ferase (TC25) and outer membrane lipopolysaccharide (TC35) sites,
DC21 (fatty acids, prostanoids) to the retinoid receptor ligand
(TC37) and coenzyme A analog metabolism enzyme substrate
(TC40) binding sites, DC28 (cardiac glycosides) to the nucleoside

Figure 3 | Distribution of the approved NP-related drugs, grouped into 45 target-site classes (TCs) of 20 target-site super-classes (TSs), in the drug-
productive clusters DC1 to DC60. TSs are colored as: TC1, TC2 of TS1 amine sites (LightCoral), TC3, TC4 of TS2 nucleobase sites (OliverGreen), TC5,

TC6 of TS3 nucleoside sites (PalePurple), TC7-TC16 of TS4 nucleoside phosphate sites (Red), TC17 of TS5 cyclic nucleotide sites (Cyan), TC18 of TS6

aminoacyl-tRNA sites (Chocolate), TC19 of TS7 amino acid phosphate sites (Magenta), TC20, TC21 of TS8 amino acid sites (Yellow), TC22-TC28 of TS9

oligopeptide sites (Green), TC29 of TS10 peptidoglycan sites (PaleYellow), TC30 of TS11 peptidoglycan sites (Blue), TC31-TC33 of TS12 saccharide sites

(OrangeRed), TC34 of TS13 cyclic oligosaccharide drug delivery systems (PaleBrown), TC35 of TS14 lipopolysaccharide sites (DarkCyan), TC36-TC39 of

TS15 fatty acid, cannabinoid, eicosanoid, retinoid sites (PaleBlue), TC40 of TS16 coenzyme A & analog sites (PaleGreen), TC41, TC42 of TS17

microtubule sites (DeepPink), TC43 of TS18 opiate sites (Purple), TC44 of TS19 steroid sites (Brown), and TC45 of TS20 naphthoquinone sites (Orange).
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phosphate metabolism enzymes substrate binding sites (TC10), and
DC8 (b-lactams) to the b-lactam binding protein peptidoglycan
binding sites (TC29).

Detailed analysis of the physicochemical landscape of the NPLD
distribution profile reveals clues for searching the sweet spots in
the DCs. While the knowledge of the clustered distribution patterns
of the NPLDs in the DCs and the correlation to the TCs is useful for
revealing the NPLD-like structural frameworks for targeting specific
target classes, more detailed analysis is needed for identifying the
NPLDs within each DC. On the other hand, drug-like14,41–43 and lead-
like43,44 rules have been derived and extensively used for identifying
drug leads on the basis of whether their specific physicochemical pro-
perties fall into certain drug-likeness or lead-likeness ranges. Opti-
mal hydrophobic and hydrogen bond interactions, and thus the
AlogP/logD and ON/HD/HA values, are important for optimizing
NPLDs into drugs64. Therefore, additional clues for searching the
new NPLDs may be obtained by studying the physicochemical
landscapes of the known NPLDs and the NPs in the DCs.

We evaluated the physicochemical landscape of the NPLDs and
NPs in branch 9 characterized by the eight physicochemical prop-
erties MW, AlogP, logD, ON, HD, HA, RB, RI, and PZ frequently
used for analyzing drug-like14,41–43 and lead-like43,44 features (Supple-
mentary Figure S13). This branch contains four DCs (DC16, DC17,
DC18, and DC19). While, the NPs inside and outside these DCs have
mixed MW values, there is a significantly higher concentration of
NPs with either higher AlogP/logD values or higher ON/HD/HA
values. In particular, regardless of their MW values, the NPLDs tend
to be located at the peak of either AlogP/logD or ON/HD/HA. For
instance, the NPLDs in DC17 (which include macrolides, polyenes,
spinosyns and acarviosins) have peak MW values likely due to the
added or enlarged hydrophobic groups (peak AlogP/logD values) to
optimally interact with, e.g., the outer membrane lipopolysaccharide
sites of TC35, or the added hydrogen bonding components (peak
ON/HD/HA values) to optimally interact with, e.g., the phosphatase
substrate sites of TC19. The NPLDs in DC19 (composed of steroids
and derivatives) tend to have peak AlogP or logD values without
significantly enlarged MW values over other NPs in the DC, possibly
due to enhanced hydrophobic components within the steroid struc-
tural framework for achieving optimal hydrophobic interactions
with the nuclear receptor ligand sites of TC44. Therefore, the tend-
ency of the NPLDs to be located at either the AlogP/logD or the ON/
HD/HA peaks in the DCs may be potentially used as an indicator for
searching new NPLDs.

The distribution profiles of NPLDs with respect to bioactive NPs.
The more clustered distribution of NPLDs (Figure 2 and Supple-

mentary S7–10) are in contrast to the much less clustered distribu-
tion of the 48,216 bioactive NPs from the TCM@Taiwan database25

and the literatures3 (Supplementary Figures S14–17). Although the
number and diversity of our collected bioactive NPs are limited in
representing bioactive NPs, useful indications may be revealed.
These bioactive NPs are more diversely distributed in 32 of the 33
branches with 78.8% of the bioactive NPs located outside the DCs.
Therefore, NPLDs are distinguished from bioactive NPs in their ten-
dency to more closely cluster together in the chemical space, which is
consistent with the distribution pattern of drug-productive species
families in the phylogenetic tree (drug-productive species families
are more closely clustered than the species families of bioactive
NPs)3. To investigate whether the more clustered distribution of
NPLDs in the DCs is due to the more extensive exploration efforts
towards these DCs, the exploration times of the 442 NPLDs, crudely
estimated by the time since the first literature report, were compared
to those of the 11,816 bioactive NPs inside and outside the DCs,
which are largely comparable to each other (Supplementary
Figures S18–21). Hence, there is no clear indication to link drug-
productivity of the DCs to the biased exploration efforts.

The distribution profiles of NPLDs with respect to time and
disease classes. Since 1988, the number of DCs has been gradually
increased at an average rate of 3.2 new DCs per 5 years, and the
majority (60.0%–69.0%) of the 15–32 new NPLDs approved in
every five-year period from 1560 to 2012 are from preexisting DCs
(Table 3). Drug discovery focus has been shifting in terms of targets,
chemotypes, diseases and therapeutic strategies48,65. To study if novel
drugs derived from shifted focuses are outside pre-existing DCs, we
analyzed 27 new NPLDs approved in 1990–2012 each targeting a
novel target previously unaddressed by an approved drug (Supple-
mentary Table S8) and thus are novel NPLDs of the time. At the time
of their first drug approval, 18 (66.7%) of these novel NPLDs were
from preexisting DCs, suggesting that existing DCs remain good
sources of novel NPLDs and drugs.

The approved drugs from individual DCs largely target one to a
few disease classes (Supplementary Figure S22). Specifically, 61.7% of
DCs target one (DC1, DC2, DC11, DC18, DC23, DC26, DC39,
DC46, DC51 and DC60), two (DC3, DC6, DC16, DC20, DC22,
DC25, DC30, DC34, DC35, DC37, DC50, DC54, DC55, DC56,
DC57 and DC59) or three (DC4, DC9, DC15, DC28, DC31, DC32,
DC41, DC47, DC48, DC52 and DC58) disease classes. While the
remaining DCs target multiple disease classes, most drugs from these
DCs target a few disease classes. Anti-infectious and anti-parasite
drugs are mostly from DC8 (87 drugs), DC5 (22 drugs), DC17 (19
drugs), DC45 (10 drugs), DC4 (9 drugs) and DC13 (8 drugs).
Anticancer drugs are primarily from DC19 (31 drugs), DC13 (13

Table 3 | chronological data of the natural product leads with the first approved drugs and the drug lead productive clusters during every
five-year period from 1963 to 2012. The six drug lead clusters with only one approved drug plus one or more clinical trial drugs were not
included here

Period

Number of natural product leads with the first approved drug in period Number of drug lead clusters in period

Inside preexisting DCs Outside preexisting DCs Number of preexisting DCs Number of new DCs

Pre–1963 56 NA 8 NA
1963–1967 7 20 8 7
1968–1972 4 9 15 3
1973–1977 9 8 18 2
1978–1982 17 56 20 13
1983–1987 20 20 33 5
1988–1992 20 12 38 6
1993–1997 20 9 44 2
1998–2002 19 10 46 3
2003–2007 9 6 49 1
2008–2012 11 6 50 4
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drugs), DC50 (9 drugs), DC38 (8 drugs), DC5 (7 drugs), DC14 (5
drugs) and DC46 (5 drugs). Circulatory system drugs are largely
from DC38 (17 drugs), DC10 (12 drugs), DC28 (11 drugs), DC13
(9 drugs), DC44 (9 drugs) and DC21 (6 drugs). Nervous system
drugs are mostly from DC49 (13 drugs), DC44 (7 drugs) and DC7
(5 drugs). Drugs for endocrine, nutritional and metabolic diseases
are primarily from DC19 (13 drugs), DC26 (7 drugs), DC38 (6 drugs)
and DC25 (5 drugs). Genitourinary system drugs are mostly from
DC19 (15 drugs) and DC8 (5 drugs).

The usefulness of the knowledge of NPLD distribution profile for
facilitating new NPLD discovery. The tendencies of NPLDs to
cluster together in the chemical space and to preferentially bind to
the privileged target-sites in the target-space may be explored for
assessing the development potential of new NP leads. Based on the
insights derived from our analysis, one can postulate that, apart from
the ability of an NPLD or its derivatives to modulate a validated
target, an NPLD may have a higher probability to be developed
into a drug if it is inside a DC, near a DC (to form an expanded
DC) or near an NPLD outside existing DCs (to form a new DC) in the
chemical space, and if its target belongs to an existing TC or a new TC
in an existing TS. This postulation was tested by the retrospective
analysis of the new NPLDs of FDA approved drugs in 2013–June
201466,67 that were not used in the derivation of the NPLD distri-
bution patterns and the target-site linkages. Our literature search led
to the finding of 4 new small molecule NPLDs, 3 of which were
retrospectively recognized as developable based on our postulation
(Table 4). Specifically, the NPLD uridine monophosphate of
sofosbuvir is inside DC5 and target TC7, the NPLD phlorizin of
canagliflozin is near DC57 (Tc 5 0.91 to the nearest NPLD) and
target monosacharide transporter substrate sites as a new TC in
TS12 (saccharide binding sites), and the imidazole-based NPLD
(e.g. mizoribine) of luliconazole is inside DC13 and target a steroid
metabolism enzyme substrate site in TS19 (steroid binding sites).
Therefore, the insights derived from this and other studies of
NPLD distribution profiles may be explored for facilitating the
assessment of the development potential of NP leads.

Concluding Remarks
This study systematically exposed the clustered distribution profiles
of NPLDs and revealed useful insights into the mechanisms that
partly contribute to the formation of these profiles, i.e., the tendency
of NPLDs to preferentially bind to the privileged target-sites. The
insights from this and other studies of NPLD distribution profiles
provide useful clues to and enable further studies of the lead sweet
spots in the chemical space with respect to the corresponding target-
sites. The distribution of NPLDs and the lead sweet spots in the
chemical space is collectively influenced by potent binding to the
target-sites and such additional factors as the optimization potential
to reach the drug sweet spots in the chemical space63 with more
adequate metabolic stability59, metabolite safety60, absorption61 and
physical forms62). Further studies are needed for a deeper under-
standing of the collective influence of these multiple factors on the
distribution of NPLDs in the chemical space. These advances
coupled with expanded knowledge of lead-like and drug-like struc-
tures and physicochemical properties13 may enable more prioritized
and rational exploration of the NP-subspaces for drug discovery.
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