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Synthesis and Systematic Evaluation of Dark Resonance Energy 

Transfer (DRET)-based Library and Its Application in Cell Imaging  

Dongdong Su,[a],[b] Chai Lean Teoh,[b] Nam-Young Kang,[b]  Xiaotong Yu,[a] Srikanta Sahu[b] and Young-

Tae Chang*,[a],[b] 

Abstract: In this paper, we report a new strategy for constructing 

large Stokes shift dye library. By coupling a dark donor with tunable 

high quantum yield BODIPY acceptors, a novel Dark Resonance 

Energy Transfer (DRET) based library, named BNM, has been 

synthesized. Upon excitation of the dark donor (BDN) at 490 nm, it 

was demonstrated that the absorbed energy was transferred to the 

acceptor (BDM) with high efficiency, which was tunable in a broad 

range from 557 nm to 716 nm, with high quantum yield of up to 0.8. It 

is noteworthy to mention that the majority of the non-radiative energy 

loss of donor was converted to the acceptor’s fluorescence output with 

minimum leaks of donor emission. Fluorescence imaging tested in live 

cells showed that the BNM compounds are cell-permeable and can 

also be employed for live cell imaging. This is a new library which can 

be excited by dark donor to emit a tunable wide range of high 

fluorescence emission. Thus, the BNM library is well suited for high-

throughput screening or multiplexing experiments in biological 

methods by using a single laser excitation source. 

Introduction 

Fluorescent labelling has been developed to be a powerful tool in 

many biochemical and medical diagnostics, which can provide 

visualization of organelles as well as real-time monitoring of 

biochemical processes.[1]  In recent years, many approaches have 

been explored to develop fluorescent labeling technology, such 

as labeling of individual cells,[2] DNA sequencing labeling[3] and 

proteins labeling.[4] Among all these approaches, multicolor 

fluorescent labeling exhibits the advantages of time resolution, 

however, this approach has been hampered due to the limited 

availability of multicolor fluorescent molecules. 

Up to now, antibody,[5]  quantum dots[6] and organic dyes are 

the widely used signal reporters for specific labeling of targets, 

however, each of them has its drawbacks in multicolor fluorescent 

labeling technology. Different antibodies can provide specific 

labeling of cellular organelles in a multicolor format, but their 

relatively large size and poor cell permeability hindered their 

progress in practical biological applications.[7] Compared to other 

fluorophores, quantum dots show some advantages like having 

multiple colors and high photostability.[8] However, their cell 

toxicity and high consumption become their significant 

drawbacks.[9] Aside from antibody and quantum dots, small 

fluorescence molecules were also developed in the field of 

fluorescence labeling because of their sensitivity and easy 

visibility.[1b, 10] Till now, most of the multiplexing experiments have 

been achieved by using different structures of organic 

fluorophores for each color labeling.[11] However, using different 

organic dyes may suffer from photoinstability, pH and ionic 

sensitivity and may induce unpredictable interactions with various 

biopolymers during the experiments.[3c] 

New fluorescence libraries based on DOFLA (diversity-

oriented fluorescence library approach) reported by our group 

have led to the discovery of a series of novel sensors.[12] The 

DOFLA libraries which were constructed with the same 

fluorescence scaffold but with different building blocks can be 

used for multicolor labeling. The features of DOFLA libraries can 

potentially overcome some of the drawbacks caused by 

fluorophores with different structures.[13] Single fluorescent core 

structure can show tunable emission and even predictable 

photophysical properties.[14] However, for these published 

libraries, it was difficult to find one single wavelength excitation 

suitable for all these fluorophores with tunable emission. The dye 

at longer absorption wavelength cannot absorb enough energy to 

emit strong fluorescent intensities.[15] 

With the involvement of Förster resonance energy transfer 

(FRET) approach, we can solve the above mentioned 

problems.[16] The FRET-based dyes are constructed with the 

same donor but different acceptors, which will allow us to obtain 

strong tunable emissions by exciting the same donor. Recently, 

our group reported a set of novel Dark Resonance Energy 

Transfer (DRET) dyes, BNM, which use low quantum yield donor 

(less than 1%) to emit a wide range of high fluorescence 

emission.[17] The results show that the absorbed energy can be 

transferred to the acceptor with a high energy transfer rate, before 

being quenched by non-radiative intramolecular rotations. Also, 

this new designed DRET-based dyes show unique photophysical 

characteristics, such as high ability of light harvesting without 

fluorescence leaking from the donor, tunable emission 

wavelength excited at a single wavelength excitation, large 

pseudo-Stokes shifts and emission shifts, as well as highly 

efficient energy transfer. Furthermore, this type of dyes shows 

good cell penetration, which makes them as good candidate for 

living cells imaging.[17] All of these great properties encourage us 

to develop one library of BNM compounds and further study the 

relationship between structures and photophysical properties and 

then we can design and develop new BNM dyes for practical 

applications. 
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Results and Discussion 

Synthesis and Spectroscopic Properties of BNM Library 

The BNM library was synthesized as reported (Scheme 1).[17] The 

synthesis of 80 members of BDM was reported previously by our 

group.[18] Same donor and different acceptors were connected by 

cyanuric chloride, which contains features of good 

biocompatibility with various biological effects.[19] First, BDN-1 

was reacted with cyanuric chloride linker to obtain an intermediate 

BDN-3. After this key intermediate BDN-3 was efficiently 

synthesized, the acceptors, BDM, were introduced by 

combinational synthesis method to make the final BNM library 

(Scheme S1 and Table S1). All compounds were purified by silica 

gel chromatography and characterized by HPLC/MS. The 

average purity was determined to be >90 % at 365 nm (Table S2). 

  

Scheme 1. Synthetic scheme of BNM library. Reagents and conditions: (a) 

DIEA, THF, 0 ºC, 1h; (b) DIEA, THF, rt, 2h. *R is from 80 commercial aldehydes. 

 

Figure 1. Spectroscopic properties of BNM library. Absorbance (a) and 

fluorescence spectra (b) of the BNM library (10 μM in EtOH, λex= 490 nm). 

The absorbance and fluorescence spectra of BNM library 

were measured with SpectraMax M2 spectrophotometer in EtOH. 

As shown in Figure 1a, all of the absorption spectra of BNM 

compounds displayed two featured peaks. The peak around 490 

nm corresponded to the characteristic absorption signal of donor. 

And the other peak corresponded to the absorption signal of 

acceptors, which varied based on the broad chemical diversity of 

acceptor part. Compared with the unconjugated donor and 

acceptors, the shape of BNM absorption spectra did not show 

obvious change, which reveals that the electronic interactions 

between the donor and the acceptor are very weak.[20] The 

fluorescence spectra were obtained by exciting at the maximum 

absorption of BDN-1 (490 nm), and their maximum emission 

varied in the range of 557 - 716 nm based on the emission of their 

corresponded acceptors (Figure 1b). The excitation and 

absorption spectra of BNM compounds also show good overlap, 

which confirms the intramolecular resonance energy transfer 

effect.[17a] It clearly showed that all members in BNM library can 

be excited at the same wavelength excitation but got various 

emission wavelengths. Also, it is worthy to mention there is no 

background influence from donor part due to the low quantum 

yield of donor, which made them ideal candidates for multicolor 

labeling. Benefited from the dark donor and high efficiency of 

energy transfer, different color and different quantum yield dyes 

can be generated in a smooth way. 

Systematic Evaluation of Relationship between Structures 

and Photophysical Properties 

To evaluate the relationship between quantum yield and 

maximum emission wavelength of the BNM compounds, we 

converted the data into a scatter plot of quantum yield for 

emission wavelength, as shown in Figure 2. An obvious trend can 

be observed: the quantum yield decreased with the red shift of 

emission. This result is reasonable, as the emission wavelength 

of the acceptors red shifted, the overlap between emission 

spectrum of the donor and absorption spectrum of the acceptor 

becomes less, even though the donor has rather small emission 

intensity. Comparing the statistical results and the structures of 

BNM acceptors, we found the relationships between the 

structures of BNM acceptors and the photophysical properties. As 

shown in Figure 2, we chose two representative types as example. 

The compounds in triangle show the highest quantum yield with 

emission wavelength at around 560 nm. Most of the compounds 

have similar features in their structures, which include the electro-

donating group at the ortho position of the building block. As 

reported that the introduction of electro-donating group at the 

ortho positions can suppress non-radiative deactivation by 

restricting internal rotation of the phenyl ring, leading to relatively 

high quantum yield.[21] On the other hand, quite low quantum 

yields compounds also share similar structure features, 

containing the internal charge transfer (ICT) donor 

dialkylaminophenyl group in full conjugation with the BODIPY 

core (Table S3). As ICT process can quench the fluorescence of 

BODIPY core, and in addition, photoinduced electron transfer 

(PET) is known to be less significant in the longer wavelength 

region of the spectrum,[22] this explain the reasons for the low 

quantum yields of these dyes. It should be noted that based on 

the relationships between structures and photophysical data, we 

could predict and further design fluorophores with certain 

photophysical properties for particular application. For example, 

BNM441 in square, which exhibits most of the desired 

photophysical properties for bioimaging and other biological 
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studies, such as long emission wavelength, high quantum yield 

and large pseudo-Stokes shifts. This may be because the 

structure of BNM441 is more conjugated than those with 

dialkylaminophenyl substituent as building block, where the more 

conjugated structure can suppress the ICT process, which 

consequently shows longer emission wavelength and relatively 

high quantum yield. 

 

Figure 2. Relationship between structures and photophysical properties of BNM 

library. 

As discussed above, the electronic character of the building 

block in the acceptors may crucially determine the photophysical 

properties of BNM. Up to now, Hammett substituent constant (σ) 

has already been used as a numerical value to quantitatively 

evaluate the electronic effects of a substituent.[23] To clarify the 

relationship between the structures and photophysical properties, 

we chose some compounds from the BNM library whose building 

blocks contain single para-position of the phenyl group 

substituents as examples. As shown in Table 1, Hammett 

substituent constant σp had a significant inverse correlation with 

the emission wavelength (Figure S1). The decrease in the 

Hammett substituent constant from highest ethyl (σp=−0.15) to 

lowest dimethylamine (σp=−0.83), caused bathochromic emission 

wavelength shifts from 562 to 716 nm (Table 1). Similar result was 

also discovered by the previous report.[14a] These trends further 

confirm the determined relationship between the electronic 

character of the building block and photophysical properties. In 

fact, the building blocks for most of the BNM compounds are 

complicated, containing two or three phenyl group substituents or 

conjugated structures, hence, the multiple electronic effects 

(ortho, meta and para) of substituents on the BDM acceptor may 

be responsible for the tunable emission wavelength of BNM 

library. 

Application of BNM Compounds in Live Cell 

Next, we examined the potential application of these new DRET 

compounds for fluorescence live cells imaging. All the BNM 

compounds were found to be well cell-permeable (data not 

shown). Among them, BNM490 was observed to give the best-

resolved images and its organelle localization in cells was further 

characterized (Figure 3). Co-staining with organelle tracker 

showed that BNM490 co-localize with endoplasmic reticulum 

(ER) (Pearson’s coefficients of 0.92). Taken together, the newly 

designed DRET-based BNM library being well penetrated in live 

cells renders it potentially useful for biological applications in living 

systems. In addition, we also demonstrate BNM490, as a new 

DRET-based ER sensor. It suggests that this new designed 

DRET-based BNM library is potentially useful for biological 

applications in living systems. 

 

Table 1. Electronic effect of substituents on the relationship between 

structure and photophysical properties. 

Compound Substituent Hammett constant [a] λabs λem 

BNM2 

 
−0.83 494/594 716 

BNM107 

 
−0.72 494/595 711 

BNM45 

 
−0.34 494/559 576 

BNM110 

 
−0.27 494/557 573 

BNM140 

 
−0.25 494/559 573 

BNM177 

 
−0.20 494/553 562 

BNM19 

 
−0.15 494/552 562 

BNM489 

 
−0.15 494/551 562 

[a]σp is the parameter for the Hammett constant of the para-position from 

reference.[23] 

  

Figure 3. BNM490 stains endoplasmic reticulum of living cells. (a) Chemical 

structure of BNM490. (b) Absorbance and fluorescence spectra of BNM490. (c) 

Fluorescence images of CHO cells stained with 5 μM BNM490 (red) (λex=488 

nm, λem=595 ±50 nm) and 1 µM of ER Tracker (blue) (λex=405 nm, λem= 450 ±50 

nm). Both images when merged show good correlation. The images were taken 

on a Nikon A1R+si confocal microscope equipped with a 60× oil objective. Scale 

bar represents 20 µm. 
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Conclusions 

By connecting dark donor and BODIPY acceptors, we have 

shown a new design and synthesis strategy of DRET-based 

library. This DRET strategy allows us to obtain a desired emission 

wavelength in biological experiments without considering the 

effective energy absorbed at the excitation wavelength. The BNM 

library is a novel BODIPY library with tunable emission 

wavelengths and high quantum yield using single excitation 

wavelength, which is particularly important for high-throughput 

screening or multiplexing technique. In addition, by analysing the 

relationship between building block structures and photophysical 

properties, fluorescent compounds with desired photophysical 

properties can be designed and synthesized by simple synthesis 

scheme. Also, cell imaging shows that BNM compounds were 

well cell-permeable and can be employed as well resolved 

fluorescence probe. With its unique properties, we believe that 

BNM compounds can be functionalized as excellent fluorescent 

probes for fluorescence labeling in bioimaging. 

Experimental Section 

Reagents and Solvents 

The chemicals, including aldehydes and solvents, were purchased from 

Sigma Aldrich, Fluka, MERCK, Acros and Alfa Aesar. All the chemicals 

were directly used without further purification. Normal phase column 

chromatography purification was carried using MERCK silica Gel 60 

(Particle size: 230-400 mesh, 0.040-0.063 mm).  

Measurements and Analysis 

HPLC-MS was taken on an Agilent-1200 with a DAD detector and a single 

quadrupole mass spectrometer (6130 series). The analytical method, 

unless indicated, is A: H2O (0.1% HCOOH), B: CH3CN (0.1% HCOOH), 

gradient from 10 to 90% B in 10 minutes; C18 (2) Luna column (4.6 ×50 

mm2, 3.5 μm particle size). Spectroscopic and quantum yield data were 

measured on a SpectraMax M2 spectrophotometer (Molecular Devices). 

Data analysis was performed using Graph Prism 5.0. 

Quantum Yield Measurements 

Quantum yields for all the fluorescent compounds were measured by 

dividing the integrated emission area of their fluorescent spectrum against 

the area of Rhodamine B in EtOH excited at 490 nm (Φrho-B = 0.7).[24]  

Quantum yields where then calculated using equation (1), where F 

represents the integrated emission area of fluorescent spectrum, η 

represents the refractive index of the solvent, and Abs represents 

absorbance at excitation wavelength selected for standards and samples. 

Emission was integrated from 530 nm to 750 nm. 

  (1) 

 

Cell Culture and Imaging Experiments  

Chinese hamster ovary (CHO) cells were cultured in high-glucose (4500 

mg/L) containing- Dulbecco's Modified Eagle's medium (DMEM) 

supplemented with 10 % fetal bovine serum, 100 U/ml penicillin and 100 

µg/ml streptomycin. 24-36 h prior to imaging, cells were plated in clear 

bottom, 96-well plate or 35 mm glass bottom dish. BNM compounds were 

added to cultured cells to reach final concentration of 5-10 µM and 

incubated for 1 h at 37 ºC. Cells were washed with PBS buffer twice before 

imaging. To determine cell localization, ER-tracker Blue-White (1 µM) (Life 

Technologies) was added to BNM-stained CHO cells and further 

incubated for 15- 30 min at 37 ºC. Live cells images were acquired on an 

inverted Ti-E microscope (Nikon Instruments Inc), equipped with a 

customised Ex 480 nm/40, long-pass 510 nm filter for BNM fluorescence 

acquisition, as well as DAPI for Hoechst33342 fluorescence acquisition. 

Fluorescence imaging was also done on a Nikon A1R+si confocal 

microscope where mentioned. Images were analysed using NIS Elements 

3.10 software. 
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Table S1. Aldehyde building blocks for BNM library. 

 

Table S2. Spectroscopic properties and purity table for BNM library: absorbance maximum (λabs), 

fluorescent emission maximum (λem), extinction coefficient and quantum yield. 
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Code 
mass 

(calc) 

m/z 

(exp) 
λabs (nm) λem (nm) ε (M-1cm-1)a Φb Purity (%) 

BNM-1 863.3 862.2 494/555 572 61169 0.32 90 

BNM-2 816.3 817.3 494/594 716 57652 0.02 91 

BNM-19 815.3 814.3 494/552 562 79522 0.42 91 

BNM-40 849.3 848.2 494/554 565 55311 0.40 86 

BNM-43 845.3 846.3 494/561 576 49680 0.33 92 

BNM-45 873.4 874.4 494/559 576 65109 0.38 90 

BNM-53 861.3 862.3 494/561 586 61765 0.42 99 

BNM-54 881.2 881.0 494/554 568 74195 0.44 82 

BNM-62 833.3 832.2 494/561 582 61765 0.47 93 

BNM-63 847.3 846.2 494/561 586 91254 0.41 90 

BNM-68 857.3 858.3 494/548 557 56300 0.47 99 

BNM-69 875.3 876.4 494/569 583 103329 0.51 96 

BNM-70 883.3 882.2 494/576 617 66298 0.19 92 

BNM-75 845.3 844.3 494/555 572 58136 0.39 88 

BNM-78 861.3 860.3 494/583 651 69380 0.01 96 

BNM-107 844.3 843.2 494/595 711 81103 0.02 90 

BNM-110 803.3 802.2 494/557 573 67470 0.46 90 

BNM-132 819.3 818.2 494/561 583 81692 0.15 99 

BNM-140 831.3 830.3 494/559 573 68094 0.46 90 

BNM-177 829.3 810.3 494/553 562 62674 0.42 86 

BNM-178 895.3 894.3 494/557 571 77863 0.45 88 

BNM-186 803.3 802.2 494/550 561 53540 0.43 89 

BNM-101 865.3 864.3 494/555 568 86069 0.36 86 

BNM-100 857.1 858.1 494/565 576 78504 0.47 88 

BNM-52 957.2 956.2 494/557 572 80610 0.55 89 

BNM-164 847.3 848.3 494/560 583 83940 0.43 97 
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BNM-206 833.3 834.3 494/565 587 78472 0.43 90 

BNM-216 801.3 802.3 494/552 563 85037 0.67 99 

BNM-223 939.3 938.3 494/572 628 85063 0.05 91 

BNM-242 959.2 958.2 494/554 566 87888 0.68 98 

BNM-294 867.3 868.2 494/553 564 83537 0.67 99 

BNM-296 825.2 826.2 494/547 558 64547 0.60 95 

BNM-329 821.3 822.3 494/549 560 84972 0.69 99 

BNM-349 801.3 802.3 494/547 562 72602 0.70 86 

BNM-361 801.3 802.3 494/549 560 79003 0.69 97 

BNM-370 801.3 802.3 494/553 566 68095 0.80 99 

BNM-375 812.3 812.3 494/576 616 70913 0.22 94 

BNM-441 890.3 891.4 494/577 617 94473 0.38 97 

BNM-446 902.3 883.3 494/582 616 78151 0.26 90 

BNM-449 907.3 888.3 494/549 560 85900 0.75 97 

BNM-455 812.3 813.3 494/558 565 55643 0.24 89 

BNM-456 812.3 813.3 494/571 557 56087 0.30 86 

BNM-468 901.3 882.3 494/576 560 62974 0.20 91 

BNM-472 828.3 813.3 494/549 561 57222 0.32 95 

BNM-474 801.3 802.3 494/549 562 76570 0.69 99 

BNM-483 909.3 890.3 494/557 574 76687 0.54 99 

BNM-486 831.3 832.3 494/559 575 74731 0.44 85 

BNM-487 911.2 894.2 494/562 578 80133 0.54 91 

BNM-489 801.3 802.3 494/551 562 68562 0.48 98 

BNM-490 863.3 864.3 494/554 570 78471 0.55 86 

BNM-491 812.3 813.3 494/565 587 83859 0.30 93 

BNM-495 853.3 854.3 494/563 580 98822 0.63 97 

BNM-498 858.3 859.4 494/572 702 81732 0.03 89 

BNM-505 903.3 882.3 494/559 592 83608 0.03 91 
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BNM-506 859.3 860.4 494/557 571 78855 0.62 97 

BNM-507 817.3 818.3 494/550 562 82019 0.71 95 

BNM-510 817.3 818.3 494/559 576 79322 0.49 86 

BNM-511 959.2 958.2 494/557 574 77110 0.65 93 

BNM-513 826.3 827.3 494/572 603 86842 0.30 97 

BNM-515 831.3 832.3 494/553 566 61765 0.60 99 

BNM-516 826.3 827.3 494/565 587 61765 0.32 90 

BNM-517 919.4 918.4 494/558 577 85761 0.38 97 

BNM-518 885.4 888.4 494/558 571 78928 0.64 99 

BNM-519 889.4 890.3 494/561 587 84056 0.41 93 

BNM-520 889.4 890.4 494/551 563 83016 0.72 99 

BNM-522 845.3 846.3 494/550 562 84907 0.78 97 

BNM-524 891.3 892.3 494/559 573 90672 0.36 86 

BNM-525 887.4 888.4 494/550 563 80831 0.79 98 

BNM-526 845.3 846.3 494/560 578 84565 0.57 99 

BNM-527 987.2 986.2 494/558 575 78302 0.64 96 

BNM-528 875.3 876.3 494/561 584 93895 0.48 99 

BNM-529 854.3 855.3 494/572 604 82420 0.30 96 

BNM-530 854.3 855.3 494/574 611 76304 0.18 97 

BNM-531 859.3 860.3 494/554 568 86484 0.66 99 

BNM-532 854.3 855.3 494/566 590 90153 0.40 97 

BNM-533 861.3 862.3 494/562 583 86692 0.50 93 

BNM-143 787.3 788.3 494/549 563 45834 0.42 89 

BNM-198 803.3 804.3 494/554 567 51689 0.39 89 

BNM-397 833.3 834.3 494/562 591 64421 0.20 90 

BNM-401 891.3 892.3 494/562 579 66165 0.48 96 

    

aThe maximal absorption of the BDM part; bFluorescence quantum yields were determined using 

rhodamine B (Φ=0.7 in EtOH) as a standard. All absorbance and fluorescence excitation and emission 
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data were recorded by SpectraMax M2, Molecular Devices, fluorescent plate reader (10 μM compounds 

in EtOH (100 μL) for λabs, 10 μM compounds in EtOH (100 μL) for λem in 96-well polypropylene plates. 

Mass was calculated as (M+), and found in ESI-MS (M-F), or found mass (M+H) in the positive mode 

scan, or found mass (M-H) in the negative mode scan; Purity data was calculated on the basis of the 

integration in HPLC trace at 365 nm.  

 

Table S3. The summary of BNM compounds with low quantum yield. 

Compound code Substituent λabs λem Φ 

BNM2 

 

494/594 
716 0.02 

BNM78 

 

494/583 651 0.01 

BNM107 

 

494/595 711 0.02 

BNM498 

 

494/572 702 0.03 

BNM505 

 

494/559 592 0.03 
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Figure S1. Relationship between Hammett constant and maximum emission wavelength for selected 

BNM compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


