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Abstract

Spin-orbit torques in heavy metal/ferromagnet bilayers are expected to

overcome spin-transfer torques for application to magnetic memories, in

terms of power-efficiency, endurance and speed. However, switching nano-

magnets by spin-orbit torques is hindered by a limited understanding of their

switching dynamics as well as by the requirement that an external assist

field must be applied to the systems to ensure deterministic switching. This

thesis addresses these two emergent issues of spin-orbit-torque induced dy-

namics. The non-linear behaviour of the magnetization under a combination

of the different spin-orbit torques is first analysed and reveals a regime of dy-

namic switching that does not require any external assist field. This study

is then extended to the thermal regime where the switching requirements

and the roles of the different torques are investigated using the Lagrangian-

Hamiltonian theory. Finally, switching is analysed for triaxial anisotropy

devices in which the additional shape anisotropy of ellipses can advanta-

geously replace the assist field for deterministic spin-orbit torque switching.

These simple and efficient switching schemes may greatly contribute to the

realization of spin-orbit-torque-based memories.

• Legrand, W., Ramaswamy, R., Mishra, R. & Yang, H. Coherent Sub-

nanosecond Switching of Perpendicular Magnetization by the Fieldlike

Spin-Orbit Torque without an External Magnetic Field, Phys. Rev.

Appl. 3, 064012 (2015).

• Legrand, W., Ramaswamy, R., Mishra, R. & Yang, H. Coherent Sub-

Nanosecond Switching of Perpendicular Magnetization by the Field-

Like Spin-Orbit Torque Without External Magnetic Field. (oral), In-

termag 2015, May 11th–15th, Beijing.
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Introduction

In the field of spintronics the manipulation of the magnetization can be

achieved by utlizing the degree of freedom that spin provides in order to

realize next generation electronic systems and components. Less than thirty

years old, spintronics is still a young field in condensed-matter physics, but

intensely studied as it benefits from various other fields such as magnetism,

materials science, and quantum and statistical physics. With the announced

end of the successive, continuous miniaturization in the silicon electronics,

many candidate materials and physical mechanisms are being proposed for

further technological improvement or even replacement of the present tech-

nology. Therefore, a strong interest for magnetic systems has emerged, es-

pecially regarding random access memories, given their many advantages

in terms of non-volatility and energy requirements. Random access mem-

ories are very often a critical component limiting the performance of the

systems, as they are embedded in a vehicle, part of a computational unit or

more generally integrated into almost any electronic equipment. The present

Master’s thesis deals with the operation and performances of a particular

type of magnetic systems, proposed since the very recent discovery of a new

physical phenomenon in spintronics: the spin-orbit torques. In addition to

the interesting physics involved in the manipulation of the magnetization

by spin-orbit torques, its development is expected to lead to a promising

alternative to silicon-based random access memories.
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Introduction

This thesis has been divided into two parts. A first part, which includes

the first three chapters, constitutes a review and provides the required back-

ground to approach magnetization dynamics applied to magnetic memories.

Chapter 1 is devoted to a brief history of the evolution of spintronics devices,

in order to introduce the present technology of spin torque memories. Chap-

ter 2 focuses on basic concepts in magnetism and micromagnetics which are

used in the present work. After this introduction, Chapter 3 opens the topic

of spin-orbit torques and provides a summarized description of its physics, an

analysis of its switching properties and its expected advantages for magnetic

memory applications. The second part of this thesis presents its original

work and includes the next three chapters. Each of them deals with one

of three complementary regimes of spin-orbit-torque-induced magnetization

switching. In Chapter 4, a dynamic approach is adopted in order to develop

a switching scheme that provides a high degree of control over the motion

and the final state of the magnetization. Chapter 5 deals with the thermal

activation regime, and provides a theoretical framework for spin-orbit torque

switching analysis. Chapter 6 finally focuses on an easily accessible, quasi-

static regime without exploiting high-speed dynamics aspects, acting on the

symmetries of the system to offer deterministic switching properties.

2



Chapter 1

Magnetic memory devices

Whatever the generations and the types of solid-state memories, the

adopted technical solutions have always strived to address the same critical

requirements, which can be summarized as follows: (i) ensuring the best data

retention properties over time, with endurance against the physical environ-

ment; (ii) minimising the error rates during reading and writing operations;

(iii) requiring the shortest operation times; (iv) being scalable down to the

lowest sizes in order to increase the density of memory embedded in one chip

and (v) saving power by reducing the operating currents and energies. Even

though this thesis does not intend to formally focus on the applicability of

the physical mechanisms it deals with, the present introductory chapter will

explain how these few essential needs motivate this work on the dynamics of

the spin-orbit torques. In addition, keeping these criteria in mind will be use-

ful throughout the thesis in order to appreciate the properties attributable

to spin-orbit torques. Before we address the dynamics of spin-orbit torque,

we first briefly review the background founded by the successive discoveries

that lead to the present generation of magnetic devices, with a particular

focus on magnetic memories.

3



Chapter 1 : Magnetic memory devices

1.1 Magnetoresistance in magnetic multilayers

The discovery of the Giant Magnetoresistance (GMR) in magnetic mul-

tilayers by Fert and Grünberg in 1988 [1, 2] immediately opened a new and

vast subfield in solid-state physics, now referred as spintronics. In spin-

tronics, the spin-dependent properties of the electrons rather than their

charge-dependent properties are studied. The whole field of spintronics is

therefore intrinsically related to magnetism. The GMR effect (and the nu-

merous subsequent discoveries it allowed) immediately found applications in

the electronics industry as hard-disk drives read heads, and not long after,

in magnetoresistive random-access memories (MRAM) as we will discuss in

§1.3.

The historical systems that first evidenced the GMR effect are multilay-

ered thin-film or ultrathin-film structures composed of alternating ferromag-

netic and non-magnetic layers. In these structures, the variation of resistance

with respect to the relative orientations of the magnetization in the ferro-

magnetic layers (the magnetoresistance) is explained by the spin-dependent

scattering of the conduction electrons. It is to be mentionned that GMR is

observed in two different geometries, namely the current in plane (CIP) and

current perpendicular to the plane (CPP) geometries, depending on whether

the current flows along the layers or across them, respectively. The origins

of the CIP-GMR [3] and CPP-GMR [4] are not fundamentally different: we

will thus only describe the case of the CPP geometry, which is of more rele-

vance for nowadays applications, and especially for spin torque memories, as

we will discuss below. The interested reader may refer to the several refer-

ences given here for a more detailed description and modelling of these two

4



1.1. Magnetoresistance in magnetic multilayers

phenomena.

Consider a trilayered structure made of two ferromagnetic (FM) layers

separated by a non-magnetic (NM) spacer, for example, where the FM is Fe

and the NM is Cr as in Ref. [1]. Due to the NM spacer, the magnetization

inside the two FM layers can be set either aligned along the same direction,

which is the parallel (P) configuration, or along opposite directions, which is

the antiparallel (AP) configuration, as represented in Fig. 1.1. The conduc-

tion electrons become spin-polarized in the direction of the magnetization

when they flow through the FM layers, after which they are injected from

one layer into the other one. As their spin is polarized either parallel or

antiparallel to the FM magnetization, two channels of conduction are de-

fined, one for spin-up and one for spin-down. The scattering of conduction

electrons is significantly stronger for the electrons whose spin is opposed to

the local magnetization, resulting in different resistivities for the two con-

duction channels, as can be seen in Fig. 1.1. When considering the total

conductivity, the structure is more resistive in the AP state than it is in the

P state, and therefore, the magnetic configuration of the layers can be easily

detected by an electrical current as the magnetoresistance ratio—the relative

difference of resistance between the AP and P states—can reach several tens

of percent.

Nevertheless, many layers may be required to obtain a significant mag-

netoresistance at room temperature. A significant improvement of the mag-

netoresistance was achieved using the tunnelling magnetoresistance (TMR)

in magnetic tunnel junctions (MTJ). In an MTJ, the two FM layers are

separated by an insulator rather than by a NM metal. With the insulating

barrier layer as thin as several Å, a tunnelling current can flow. Because of

5



Chapter 1 : Magnetic memory devices

Parallel state Antiparallel state

FM

NM

FM

FM

NM

FM

Figure 1.1: Schematic illustration of the GMR in a perpendicular configu-
ration. The two FM layers can be either in the P (left panel) or AP (right
panel) states. The two channels of conduction spin-up and spin-down are
represented, and the blue arrows show the spin-dependant scattering inside
the FM layers.

spin-dependent tunnelling the amount of current is dramatically affected by

the relative orientations of the magnetization in the FM electrodes, giving

rise to a very large magnetoresistance between the P and AP states. The

principle of the TMR is known since Julliere’s calculations dating back to

1975 [5], but an effective demonstration of the TMR had to wait for a reliable

fabrication processes until 1995 [6, 7]. The TMR contributed to improve the

magnetoresistance of the devices by one order of magnitude, and materials

choices in MTJs achieving coherent tunnelling contributed another tenfold

increase in the magnetoresistance. The latest reports demonstrate magne-

toresistance ratios larger than 600% at room temperature [8]. With such high

TMR ratios, an ultrafast electrical reading of the magnetic state—below the

nanosecond scale—can easily be implemented.

1.2 Magnetization switching by spin-transfer torques

As we have seen in the previous section, an initially non-spin-polarized

current flowing through the CPP spin-valve structure is spin-polarized when

it flows through any of the FM layers. Because of the conservation of the

6



1.3. Application to magnetic memories

total angular momentum, this process of local exchange interaction implies

that the flowing electrons conversely exert a reciprocal torque on the mag-

netization of the FM layer. The idea of Slonczewski that a large enough

current can be capable of switching the magnetization of a FM layer by a

process called spin-transfer torque (STT) [9] has been verified experimentally

in metallic spin-valves just before the 2000’s [10]. In this new scheme, it is

possible to switch from the AP to the P configuration, as the electrons are

polarized in one of the layer, and reverse the other layer (as it aligns with the

flow of polarized electrons). The fact that the spin-transfer torque effects act

not only in the direction of the flowing electrons, but also due to reflected

electrons, makes it possible to reverse the direction of the switching to gen-

erate the AP state from the P state as well, only by reversing the current [9].

Spin-transfer torques physically originate in spin-transport phenomena that

we will not cover here. For the interested reader, detailed investigations on

the origins of spin-transfer torques can be found in Refs. [11–13]. A theoret-

ical description of how the magnetization reverses from one direction to the

opposite one is necessary in order to understand the principles of magneti-

zation dynamics investigated in this thesis: the dynamics of magnetization

switching will be covered in Chapter 2.

1.3 Application to magnetic memories

To make a device out of a GMR or TMR trilayer, it is often designed as a

spin-valve, as shown in Fig. 1.2a. In a spin-valve, the magnetization of one of

the two FM layers (the reference layer) is fixed by coupling it strongly with a

neighbouring pinning layer (usually, an antiferromagnet) while the other FM

layer (the free layer) is free of any coupling, and can be reversed externally.

7



Chapter 1 : Magnetic memory devices

a.

Free layer

Spacer

Ref. layer

Pinning layer

b. c.

Figure 1.2: a. Schematic illustration of a spin-valve showing the free layer
(symbolized by the double-ended arrow), the reference layer (simple arrow)
and the antiferromagnet pinning layer (multiple thick arrows). Reading and
writing operation concept for b. field-operated and c. spin-transfer torque
MRAM unit cells and current lines. The reading currents are the red lines
while the writing currents are the thick black arrows. In b., the colored
arrows represent the Oersted fields that reverse the free-layer magnetization.

The spin-valve can thus be used to obtain a very sensitive magnetic response.

The easy electrical readout of the magnetic state in GMR spin-valves, and to

an even larger extent, in MTJs, make them also perfectly suitable to build

elementary memory cells. An MRAM chip is nothing else than an array

of such MTJ-based memory elements, where the binary magnetic state (P

or AP) of every single junction encodes one bit of information. In the first

generation of MRAM devices, the reading process was based on the electrical

reading of the magnetoresistance, and was associated with a simple writing

process: the free layers of the junctions were switched by the Oersted field

created from large currents flowing along a ’write’ current line on top of

the devices (see Fig. 1.2b). However, this approach was not satisfactorily

scalable, as the required current densities to achieve field-induced switching

dramatically diverge when the size of the devices is reduced, in addition to

increased crosstalk between the neighbouring cells. The solution to scale

down the magnetic memory devices has then been found in using current-

induced switching by spin-transfer torque.

In the spin-transfer torque MRAM, the writing operation as well as the

8



1.3. Application to magnetic memories

reading operation are performed by flowing the current through the spin-

valve. Only the intensity of the current varies between reading and writing:

reading is done at a low current to read the magnetoresistance without affect-

ing the magnetic state, while writing any of the AP or P states is achieved by

passing a high current through the structure, as represented in Fig. 1.2c. It

is essential for a memory that it can be switched back and forth between the

two states: this is achieved using the two opposite directions of the current

flowing across the layers.

The advantages of the STT-MRAM technology among previous genera-

tions are diverse. First, the spin-valve is a simple, two-terminal device, that

occupies less chip area. Second, switching can be achieved at lower currents

than in the previous field-switched MRAM scheme. Third, the operation

speed is enhanced as compared to the field-switched scheme. To move for-

ward beyond the STT-MRAM technology, a new operation scheme would

need to enhance the performance of the devices, at least, with respect to

these three criteria. As we will see in Chapter 3, one promising candidate

is found in spin-orbit torques (SOTs), which constitutes the primary mo-

tivation for this thesis’ work. In order to explain the differences between

SOT and STT, we will first study the essential principles of magnetization

dynamics in Chapter 2, before we introduce the SOTs in Chapter 3.

9





Chapter 2

Magnetization dynamics

This chapter aims at introducing the basic concepts in the physics of

magnetization dynamics that constitute a starting point for this work. The

chapter therefore opens with a description of the different magnetic inter-

actions and associated energies at the microscopic scales that rule the be-

haviour of magnetic systems (§2.1). These energies also drive, through the

concept of effective magnetic field, the dynamics of the system as described

by the Landau-Lifshitz-Gilbert equation (§2.2). A simplified but extremely

useful model of magnetic system is then presented in order to introduce some

general behaviours of the magnetic systems (§2.3).

2.1 Magnetic interactions

The magnetic state in a material can be defined when its electrons are

affected by magnetic fields: a large variety of behaviours occur in many kinds

of magnetic orderings. In this work, we are interested in the behaviour of

spontaneous magnetization materials, in which the magnetic ordering is not

caused by the application of external fields but, on the contrary, remains

even in the absence of fields and currents, as this retention of the magnetic

state is indeed essential to build a memory, for instance. This is possible in

materials that spontaneously have unpaired electrons, which create magnetic

11



Chapter 2 : Magnetization dynamics

moments. The magnetic moments are a vector quantity, which defines a

direction and an amplitude of magnetization. The magnetic phase of the core

electrons inside a solid-state magnet is well described by a set of spatially

fixed magnetic moments, each moment accounting for the behaviour of the

electrons located at each atom1. Other interactions are due to the magnetic

moments of the delocalized electrons.

Moreover, for the magnetization to be permanent, the magnetic moments

of the electrons have to remain unaffected by the fluctuations that any in-

dividual quantity is subject to: at room temperature, this happens notably

in ferromagnets and antiferromagnets. In a ferromagnet, the neighbouring

moments have a tendency to align their directions, while in an antiferromag-

net, they tend to be aligned along opposite directions. This forms larger

volumes with coherent, almost identical (or alternate) moments, that can

resist quantum fluctuations to define a stable magnetization. This work is

focusing on the behaviour of ferromagnetic systems, but we should note that

the dynamics of antiferromagnetic systems under current-induced torques

are a growing field of much interest as well (see, e.g., [14, 15]).

The size of the magnetic systems we are interested in is most often of

mesoscopic scale, and thus a continuous description of the magnetization is

of more relevance for the dynamics that an atomistic description, especially

given that the neighbouring moments aligns well with each other. To build

this continuous description, we introduce the local magnetization M, which

is the sum of a local subset of magnetic moments divided by the infinitesimal

local volume they belong to (in antiferromagnets, a similar treatment can be

done for two sublattices of opposite moments). In the usual ferromagnets

1by fixing the positions of the magnetic moments, we neglect all kind of deformations
originating in magnetic interactions, such as magnetostriction.

12



2.1. Magnetic interactions

far from their Curie temperature (the temperature at which they lose their

ferromagnetic properties), the modulus of the local magnetization MS = |M|

cannot change, but only its direction m can rotate and can thus be defined

by M/MS . m is called the reduced magnetization. The following subsections

describe into some more details the different types of interactions affecting

M in ferromagnets. We also define the energies associated with each of them,

as they will allow us to subsequently derive the dynamics of M, in §2.2.

2.1.1 Exchange interaction

Mainly due to the Pauli exclusion principle, the orbits of two neighbour-

ing electrons can overlap significantly more when their spin are antiparallel

rather than parallel. This, in turn, causes a lower energy state for aligned

neighbouring moments in ferromagnets as the Coulomb interaction disfavours

overlapping orbitals2. These combined influences of the electronic orbitals

and positions of two electron of spin states Si and Sj are included into the ex-

change integral term J that defines the relative difference of energy between

the aligned and antialigned neighbouring orbitals as in E = −2J(Si · Sj).

By integration over all the neighbouring moments in a volume V , one finds

the exchange energy density

εex =
Aex

V

∫
dV (∇m)2 (2.1)

with Aex the exchange stiffness constant, proportional to J and inversely

proportional to the lattice parameter. The effect of the exchange interaction

is to favor domains of uniform magnetization. For typical ferromagnets made

of Co, Ni, Fe and their alloys, Aex is in the range of 10–30 pJ m-1 [16].

2this is an extremely simplified explanation. Under some conditions, the antialigned
neighbouring moments have a lower energy, which notably gives rise to antiferromagnetism
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Chapter 2 : Magnetization dynamics

2.1.2 Dzyaloshinskii-Moriya interaction

It has been recently highlighted that another local magnetic interaction

affects the magnetization states in thin-film ferromagnets: the Dzyalonshinkii-

Moriya interaction (DMI). It is an antisymmetric exchange interaction that

originates in spin-orbit coupling, and it can be observed when the materi-

als structure lacks inversion symmetry, notably in the case of asymmetric

interfaces [17]. Differently than in the case of the symmetric exchange inter-

action, the energy for two neighbouring spins Si and Sj coupled by the DMI

is E = Dij · (Si × Sj), where Dij is a DMI-related vector. By integration

over all the neighbouring moments in a volume V , one finds the DMI energy

density to be

εdmi =
1

V

∫
dV

∑
i=x,y,z

Di ·
(

m× ∂m

∂i

)
(2.2)

with Di the DMI vectors, whose signs of components determines the chirality

of the magnetic ordering for the different symmetry breaking directions and

whose values range up to 1–2 mJ m-2 for usual HM/FM interfaces [18]. In

thin film ferromagnets, the magnetization is extremely close to be uniform in

the vertical z direction, and the DMI originates from the symmetry breaking

in the same direction at the interface.

2.1.3 Dipolar interaction

Any single magnetic moment inside the system is also affected, as a

dipole, by the magnetic dipolar interaction with all the other moments. As

compared to the local exchange interaction that is limited to the immediate

neighbours only, the dipolar interaction has a longer range (as it decays as

1/r3) and can thus give rise to non-local fields at the scale of the whole sys-

tem. However, the dipolar interaction is several orders of magnitude weaker

14



2.1. Magnetic interactions

than the exchange interaction: the formation of coherent domains in ferro-

magnets, as mentioned above, originates in the exchange interaction, while

the dipolar fields only contribute to orientate them depending on the ge-

ometry of the sample. The dipolar interaction with all the moments of the

system can be integrated into an local (and thus non-uniform over the differ-

ent dimensions of the system) demagnetizing field Hd acting on the magnetic

moment. Integrating over all the individual moments translates in the con-

tinuous description into defining the demagnetizing field as originating from

a magnetic scalar potential ψ such that Hd = −∇ψ where ψ is defined by

M all over the magnet. For a simply connected domain and in the absence

of currents, ψ is found by solving ∇2ψin = ∇ ·M inside the magnet and

∇ψout = 0 outside the magnet, with the following boundary conditions: at

the surface of the magnet, ψ and its derivative along the normal n to the

surface, noted ψ̇, obey ψin = ψout and ˙ψin = ˙ψout + M · n, respectively. M

is indeed interacting with itself, hence the name of demagnetizing field, as

Hd points against the internal magnetic field. In terms of energy, we have

εd = − µ0
2V

∫
dV (M ·Hd). (2.3)

Finding Hd(r) from M(r) analytically is in general extremely complex in any

particular geometries of realistic magnets. However, a rather useful model

system is given by the ellipsoid with a uniform magnetization. Defining the

three principal axes unit vectors of the ellipsoid x̂, ŷ and ẑ, one have

Hd = −[Nx(M · x̂)x̂ +Ny(M · ŷ)ŷ +Nz(M · ẑ)ẑ] (2.4)
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where Nx, Ny and Nz are the three demagnetizing factors which verify Nx +

Ny +Nz = 1. This gives

εd =
µ0
2
M2

S

[
Nx(m · x̂)2 +Ny(m · ŷ)2 +Nz(m · ẑ)2

]
(2.5)

which can be extended to any system close to a uniformly magnetized vol-

ume of simple geometry (prism, disk, etc.) by some approximation. Nx,

Ny and Nz are lower in the longest dimension of the system, so that the

magnetization naturally aligns along the longest dimensions of a magnetic

object.

2.1.4 Zeeman energy

Any magnetic dipole naturally rotates to align itself with the direction of

an applied magnetic field. This interaction is integrated over the microscopic

scale into the Zeeman energy term

εz = −µ0
V

∫
dV (M ·Hext). (2.6)

The Zeeman energy tends to make M aligned with Hext.

2.1.5 Magnetic anisotropy

The magnetic systems do not necessarily have the same properties in all

directions. This is called magnetic anisotropy, and it is actually extremely

useful to exploit materials which exhibit magnetic anisotropy as they give

rise to more complex behaviours and energy landscapes, thus providing extra

degrees of freedom for realizing specific magnetic configurations. Microscopi-

cally, the magnetic anisotropy arises from the shape of the electronic orbitals

in the materials and their interactions, depending on their spatial ordering.
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2.1. Magnetic interactions

We distinguish two principal kinds of magnetic anisotropy, namely, magne-

tocrystalline and interfacial anisotropies. Magnetocrystalline anisotropy is

found in crystalline materials, in which some axes of the magnetization are

preferred over the other directions due to the crystalline order. This adds

an angular dependence to the energy: in the simplest case of a uniaxial

anisotropy along an axis û, we can define

εu = −K2(m · û)2 − K4

2
(m · û)4 (2.7)

whereK2 andK4 define the strength and angular dependence of the anisotropy.

From Eq. (2.7), it is seen that the magnetic anisotropy favours a particular

axis but no direction along it, and thus cannot break the symmetry along

this axis.

The case of an interfacial anisotropy occurs in ultrathin films, where the

interaction with other atoms at the surface of the magnetic material is no

longer negligible as compared to the interactions within its inner volume.

Because of the electronic interactions between the different atoms in con-

tact, an additional anisotropy arises from this surface contribution. It then

has a form similar to the one of Eq. (2.7). In addition, K2 and K4 scale as

the inverse of the thickness, because the interfacial effect is proportional to

the surface while affecting the whole volume. In thin films, the interfacial

anisotropy is directed along the direction of symmetry breaking, perpendic-

ular to the film plane.

It is to be noted that Eq. (2.7) is very similar to Eq. (2.5): therefore

the effect of the demagnetizing fields in uniformly magnetized systems is

referred to as a shape anisotropy. This shape anisotropy can compete with

17
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the anisotropy due to the material and may result in a system with a complex

angular dependence of the magnetization energy. The case of a uniaxial

anisotropy is common in thin films and very often used in magnetic devices,

as we have seen in Chapter 1. In ultrathin films, the interfacial anisotropy

can easily dominate over any other anisotropy to produce a perpendicular

magnetic anisotropy, which is of particular interest when combined with

current-induced switching [19]. More complex behaviours arise when other

anisotropy axes are present: notably, we will cover the case of a triaxial

anisotropy, in relation with spin-orbit torques, into more details in Chapter

6.

2.1.6 Energy minimization

Finding the energy landscape of the system is essential for finding the

equilibrium states of the system. They are found by minimizing the overall

energy in the magnet, εtot = εex + εdmi + εd + εz + εu. To give one example

among the large diversity of magnetic systems and behaviours related to this

energy minimization principle, consider the case of a simple square-shaped

thin film magnet. Owing to the demagnetizing energy (Eq. (2.3)), the mag-

netization on the edges of the system tends to align with them: as the magnet

is very thin in its vertical dimension, Nz ≈ 1, which implies that m should be

in-plane, as represented in Fig. 2.1a. However, if a large out-of plane mag-

netic anisotropy is present in the system, m is stabilized out-of plane against

the demagnetizing energy (Fig. 2.1b). The exchange anisotropy favours the

formation of uniformly magnetized domains, and m will be pointing up-

wards or downwards everywhere in a domain in order to minimize εex. If the

magnet is small enough the exchange interaction will dominate at the short
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2.2. Landau-Lifshitz-Gilbert equation

a. b. c.

Figure 2.1: Energy minimization principle in a perpendicularly magnetized
system. a. A square ferromagnet magnetized in-plane in the absence of in-
terfacial anisotropy. b. A square ferromagnet magnetized out-of-plane due
to high interfacial anisotropy. c. A magnet showing chequerboard demag-
netizing patterns. The red colour corresponds to m pointing up and the
blue colour corresponds to m pointing down. The black arrows represent
the dipolar interactions between the neighbouring domains.

length scale, and the magnetization will remain uniform. However, when the

size of the square is increased, the magnetization can break into subdomains

with different—but uniform in each—magnetization. These subdomains will

arrange to minimize the dipolar interaction between each domain, roughly

mimicking a chequerboard pattern, as shown in Fig. 2.1c. At the boundary

between two different domains, the linear transition area where m changes

from the magnetization of one domain to the magnetization of its neighbour

domain is called a domain wall (DW). In terms of energy, εtot is minimized

by a reduction of εd at the cost of a slightly larger εex and εu along the DWs.

2.2 Landau-Lifshitz-Gilbert equation

The concept of magnetic energy minimization described above is suitable

for providing the ground, equilibrium state of a magnetic system. However,

all the different non-equilibrium behaviours, including the switching events

and processes, obey to dynamics that need to be described in time-domain

at the sub-nanosecond scale. By analogy with the Larmor precession, it

is expected that the magnetic moment inside a system will precess around
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Chapter 2 : Magnetization dynamics

any internally generated or externally applied magnetic field. Also, due to

the different energy dissipation processes coming into play, an additional

damping occurs which helps the system to reach its low energy state. This

behaviour of a single magnetic moment ms is described by the Landau-

Lifshitz (LL) equation

dms

dt
= −γµ0ms ×Heff − λms × (ms ×Heff ) (2.8)

in which the first term on the right hand side describes the precession and

the second term describes the damping, with γ the gyromagnetic ratio (pos-

itive by convention), λ a phenomenological damping parameter (positive to

have energy dissipation), and µ0Heff the effective magnetic field causing the

precession.

The magnetization dynamics of a mesoscopic system are following the

same time evolution. However, the LL equation does not perfectly describe

the behaviour of ferromagnets, notably when there is a large damping. The

Landau-Lifshitz-Gilbert (LLG) equation is often preferred, which also pre-

dicts the precession of the magnetization around effective fields, or, equiva-

lently, in response to the torques. Considering the magnetization M to be a

function of both time and space M(r, t), the LLG equation reads as follow

∂M

∂t
= −γµ0M×Heff +

α

MS

(
M× ∂M

∂t

)
(2.9)

with α the Gilbert damping parameter and MS = |M| the constant norm of

the magnetization vector. The LLG equation can be transformed back to a

form similar to the LL equation by replacing the last time derivative of M
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2.2. Landau-Lifshitz-Gilbert equation

by the whole right-hand side in Eq. (2.9), giving

∂M

∂t
= − γ

1 + α2
µ0M×Heff −

αγµ0
MS(1 + α2)

M× (M×Heff ) (2.10)

where the relations between the coefficients in the LL and LLG equations

appear clearly, notably with γ being renormalized by
(
1 + α2

)
.

The effective field term µ0Heff should actually incorporate all the mag-

netic interactions within the system. It is deduced from the energy of the

system. Considering the magnetization m(r) at a position r, we define

Heff = − 1

µ0MS

dεtot
dm

, (2.11)

which gives the effective field locally felt by the magnetization. In µ0Heff ,

the fields originating from all energy contributions are to be linearly added,

namely,

• the field originating from exchange energy interaction µ0Hex, locally

given by

Hex =
2A

µ0MS
∇2m; (2.12)

• the field originating from the DMI µ0Hdmi, locally given by

Hdmi =
2D

µ0MS

((
∂m · ẑ
∂x

)
x̂ +

(
∂m · ẑ
∂y

)
ŷ −

(
∂m · x̂
∂x

+
∂m · ŷ
∂y

)
ẑ

)
;

(2.13)

• the demagnetizing field µ0Hd, as defined in §2.1.3;

• any external magnetic field µ0Hext interacting with the magnetic sys-

tem (due to the Zeeman energy);
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• the anisotropy field µ0Hani due to the magnetic anisotropy, which is

a function of the magnetization direction m at r only. For example,

keeping only the K2 term, we get

Hani(m) =
2K2

µ0MS
(m · û)û. (2.14)

2.3 The macrospin description

Solving numerically Eq. (2.9) for a system discretized into a mesh of

finite elements/finite differences, also called micromagnetics, is now easy to

perform thanks to the recent progresses in computational power. Such simu-

lations are extremely useful to accurately predict the behaviour of ferromag-

netic systems, and will be performed in Chapter 4 to study current-induced

switching by spin-orbit torques. In the present chapter, which is only an

introduction to the dynamics of magnetic systems, we rather aim at giving a

simplified, but physically transparent model to account for the time-domain

dynamics of ferromagnets, and apply this model to a basic situation. The

simplest assumption that can be done is to consider the magnetization to be

uniform inside the whole magnetic body. Such a macrospin approximation

is quite realistic for small, monodomain ferromagnets due to their dominat-

ing exchange interaction. For the larger magnets however, the picture will

unavoidably be inaccurate. However, this oversimplified model is still useful

for finding different qualitative behaviours or approximating critical limits

of some switching events. As explained above, the modulus of the magneti-

zation is constant over time, hence we are only interested in the direction of

m. As m is considered uniform, the system owns only two degrees of liberty

22



2.3. The macrospin description
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Figure 2.2: Coordinate system and angles: m is entirely described by the
polar angle θ and the azimuthal angle ϕ.

and is then entirely determined by the position of m on the unit sphere: the

definitions of the two spherical coordinate angles θ and ϕ describing m will

be kept all along this thesis and are defined in Fig. 2.2. To get some insight

into the general form of the solutions of the LLG equation (Eq. (2.9)), we

will now cover two common situations: (i) the magnetic relaxation due to

anisotropy in the absence of external torques, and (ii) the simplest scheme

of spin-transfer torque switching.

We first consider a large (Nz = 1), uniformly magnetized thin layer with

an interfacial anisotropy perpendicular to the plane (û = ẑ) with second

order angle dependence only (K4 = 0), as can be found in spin-valves or

MTJs. We consider 2K2 > µ0M
2
S so that the magnetization ground state

is out-of-plane, as found by comparing Eqs. (2.5) and (2.7). Finding the

effective field using Eq. (2.11) and eliminating MS on both sides, one gets

in the absence of any other interactions

dm

dt
= −γµ0Hanicos(θ)m× ẑ + α

(
m× dm

dt

)
(2.15)
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where Hani = 2K2/(µ0MS)−MS is the effective anisotropy finally resulting

from both demagnetizing fields and interface interactions. From this dy-

namic equation, the same two stable positions can be derived from energy

minimisation of εtot, which are +ẑ and −ẑ. If the initial magnetization dif-

fers from ±ẑ, m will relax to the closest one by a damped precession around

the vertical axis, as shown in Fig. 2.3a, drawn by solving Eq. (2.15).

In the case of spin-transfer torque switching, a spin-current of polariza-

tion different from the local magnetization is passed through the FM layer

and can possibly switch it due to the torque exerted by this current, called

the Slonczewski torque. In a spin-valve for example, which can be in the P or

AP states, we are interested in the dynamics of the free layer initially mag-

netized along +ẑ. The current is spin-polarized by the other electrode (the

pinned layer) along p̂ = −ẑ. In a simple modelling, assuming the full ab-

sorption of the spin-current, the Slonczewski torque is given as an additional

term in the LLG equation so that

dm

dt
= −γµ0Hanicos(θ)m× ẑ + α

(
m× dm

dt

)
+ γaJm× (p̂×m) (2.16)

where

aJ =
h̄

2e

ηJ

MStFM
(2.17)

is the strength of the spin torque. The additional Slonczewksi term accounts

for the exchange interaction between polarized conduction electrons and the

local magnetization [9, 20, 21]: J is the current density, η the polarization

of the spin current, and tFM the thickness of the FM layer. As can be

seen from the trajectory solution of Eq. (2.16) drawn in Fig. 2.3b, the

Slonczewski torque drives m away from +ẑ during its precession around the
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Figure 2.3: Solution trajectories of the Landau-Lifshitz-Gilbert (LLG) equa-
tion in the macrospin approximation. a. Typical solution of Eq. (2.15) for
an arbitrary initial position (blue dot). b. Typical solution of Eq. (2.16) for
an arbitrary initial position (blue dot). In each graph, the red curve is the
time evolution of m on the unit sphere.

vertical direction and helps it to switch to −ẑ by crossing the xy plane.

In this chapter, we have progressively introduced the different magnetic

interactions and mechanisms affecting the dynamics of the magnetization

in ferromagnetic systems. We have discussed the dynamics in two essen-

tial cases: the magnetic relaxation in the absence of currents and the spin-

transfer torque switching. We are now ready to approach the main interest

of this thesis’ work, which deals with spin-orbit-torque-induced dynamics.
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Chapter 3

Magnetization switching by spin-orbit torques

In this chapter, we first briefly review the origins of the spin-orbit torques

in the most commonly studied system based on heavy-metals (§3.1). As we

will see, the spin-orbit torques have particularly interesting properties when

they are combined with a uniaxial perpendicular anisotropy. We therefore in-

troduce a systematic study of the phase diagram of the equilibrium solutions

of such a system, both under and in the absence of currents (§3.2), which

will allow us to describe accurately the switching processes in the following

chapters. A review of the understanding of the spin-orbit-torque-induced

switching processes is then given in §3.3, before we formulate our approach

for the next chapters and applications to spin-orbit-torque-driven magnetic

memories (§3.4).

3.1 Origins of spin-orbit torques in magnetic mul-

tilayers

Due to relativistic effects in the motion of the electrons in solids, there

is a coupling between the spin of the electron and its orbital moment. This

spin-orbit interaction is the origin of a means of getting a spin-polarization

from a charge current as it couples the crystalline momentum and the spin

states, and, therefore, the magnetization. This results in what are called spin-
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Figure 3.1: a. Schematic picture of the spin-Hall-effect-induced torque, dis-
playing charge current density vector J, spin Hall effect on carrier motion
(dashed lines) depending of the electron spin (short black arrows), spin cur-
rent Js, and effective torque τeff . b. Schematic picture of the Rashba-effect-
induced-torque, displaying electron spin-polarization (short black arrows) at
the HM/FM interface originating from the symmetry-breaking electric field
Easym and resulting in the effective field Heff .

orbit torques (SOTs). Materials known to exhibit a large spin-orbit coupling

and thus large SOTs are, so far, pure [22] or alloyed [23, 24] heavy-metals,

two-dimensional electron gases at insulator interfaces [25], semiconductors

[26], topological insulator surfaces [27–30], graphene [31], etc. For this work,

we will only cover the generation of SOTs in magnetic multilayers incor-

porating heavy-metals (HMs). We will then often compare SOTs in these

systems to STTs in similar magnetic multilayers, allowing for a common com-

parison ground for the dynamics. The origins of SOTs in HM/FM/oxide1

heterostructures are still a subject of intense debate: some mechanisms are

clearly identified but the roles of each of them in the generation of the final

resulting torques remains unclear. Nevertheless, we can mainly distinguish

(i) the spin Hall effect [22] and (ii) the Rashba spin-orbit coupling [32, 33].

In the case of the spin Hall effect (Fig. 3.1a), the charge current J gen-

erates a spin current h̄/(2e)Js in the direction perpendicular to the interface

[34, 35]. The injected spin-polarized electrons will interact with the magne-

tization of the FM and exert a torque τeff , exactly as in the case of STT.

1the oxide layer was originally introduced to protect the FM layer from alteration due
to its environment, and may or may not have an effect on the torques

28



3.1. Origins of spin-orbit torques in magnetic multilayers

In this situation, the effective torque may be strongly affected by the trans-

parency of the HM/FM interface [36, 37]: if the spin-current generated in

the HM cannot pass through the interface, it cannot have an effect on the

magnetization. The direction as well as the strength of the spin Hall effect is

evaluated by the spin Hall angle θSH , defined as the ratio of the transverse

spin current on the charge current

θSH =
Js
J
. (3.1)

For a current J flowing in the x direction (as defined in Fig. 3.1a), a positive

spin angle indicates that the top surface of the HM gets a spin-polarization

opposite to ŷ. For instance, Pt has a positive θSH of about 0.08–0.3 depend-

ing on the interfacial effects affecting the measurements [37, 38], while Ta

and W have negative θSH of about 0.15–0.24 [22, 39] and 0.3–0.4 [40, 41],

respectively.

The Rashba effect (Fig. 3.1b) occurs in materials lacking inversion sym-

metry, where the symmetry breaking at the HM/FM interface creates an

electric field Easym that will interact with the electron motion due to the

Rashba spin-orbit coupling [42–44]. This results in an effective field Heff ,

parallel to the surface and perpendicular to the current, that exerts a torque

on the magnetization inside the FM [45]. The Rashba effect is considered to

allow SOTs of the same amplitude as the ones originating from the spin Hall

effect [46].

Some systems may exhibit only one of these effects, while some other ma-

terial combinations may show both. Some theories have tried to combine the

two mechanisms into one consistent model to evaluate the roles of both spin
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Hall effect and Rashba spin-orbit coupling [47, 48] in SOTs. For example, in

Ta/CoFeB structures, a recent study found some evidence for the presence

of both mechanisms [49]. The torques have both an interface and a bulk

origin inside the HM [50, 51]. In these models, it has been found that the

SOTs affect the magnetization dynamics in two different ways [39, 52–54]:

one very similar to the Slonczewski torque except that p̂ is being replaced

by the spin polarization of the injected electrons, σ̂ = −ŷ, and the other

one similar to a field directed along ±ŷ. To get the effects of the spin-orbit

torques on the equilibrium and dynamics, we replace the STT term given by

the last term in Eq. (2.16) by two SOT terms, the Slonczewski-like and the

field-like torques, which are given by

τ‖ =
γh̄

2e

c‖J

MStFM
m× (σ̂ ×m) (3.2)

and

τ⊥ =
γh̄

2e

c⊥J

MStFM
(σ̂ ×m), (3.3)

respectively. In Eqs. (3.2) and (3.3), we denote the Slonczewski- and

field-like torque coefficients by c‖ and c⊥, respectively. The simple-minded

thought that the spin Hall effect would be the origin of the Slonczewski-like

torque while the Rashba effect would be the source of the field-like torque

is tempting. However, even if this assumption may hold in some particular

cases, there is no reason for such a separation to exist when we have a closer

look at the torque mechanisms. In general, we need to consider that both

mechanisms can generate both forms of torque, as can be understood from

the various models describing the SOTs [46, 48]. As a consequence, c‖ may

strongly differ from θSH , which partly explains the strong controversy on its
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value in some systems [22, 39, 52, 55]. Moreover, both c‖ and c⊥ can be

modulated by extrinsic parameters such as the spin diffusion length [56], in-

terface quality [37] or electric field [57]. From now on, the term Slonczewski

torque will only refer to the spin-orbit-originated Slonczewski-like torque.

3.2 Perpendicular magnetic anisotropy and spin-

orbit torques

As we can see from Eqs. (3.2) and (3.3), the SOT magnetization dynam-

ics are induced by an in-plane spin polarization. This situation is analogous

to the case of the orthogonal-STT [58] scheme developed as an improvement

of the STT scheme. In the orthogonal-STT, the spin valve is kept where

the pinned layer and the free layer have their magnetization perpendicular

to the plane, but a polariser layer whose magnetization is in-plane is added

to the other side of the free layer. As a consequence, the injected spin po-

larization inside the free layer is rather in-plane than out-of plane. This

avoids the cancellation of the torque in the P and AP configurations [the

torque is zero if we put m = ±p̂ in Eq. (2.16)]. As we can see from Fig.

2.3b, the STT-induced magnetization switching is not direct but proceeds

through many precessions because of this cancellation of the torque near

the P and AP equilibrium positions: the switching needs to be initiated by

thermal excitations away from the equilibrium2. On the contrary, when the

spin-polarization is in-plane, direct and much faster and reliable switching

is demonstrated [59]. Also, the perpendicular magnetic anisotropy allows

further downscaling of the magnetic system while keeping its thermal sta-

bility [60]. For these reasons, it is interesting to combine perpendicularly

2that means that no switching is expected at 0K
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Figure 3.2: The different equilibria U , D, S1, S2, OM1 and OM2 are shown
on the unit sphere. The blue and red arrows indicate their field-induced and
spin-orbit-torque-induced displacements. Adapted from [61].

magnetized materials with the spin-orbit torques generated in a HM layer.

In terms of magnetic states, this configuration gives rise to more equilibrium

positions for m than in the STT scheme. Before we describe the switching

process, we will first identify and name these equilibria, as analysed in a

macrospin model by Yan et al. [61], which will be extremely useful in our

investigations.

Under the macrospin approximation, it is possible to study analytically

the LLG equation [(2.16)] after replacing the STT term by the SOT terms, in

order to find the equilibria in the unixaial perpendicular magnetic anisotropy

system. As the field-like torque acts exactly as a field in the y direction, the

inclusion of the field-like torque term to find the equilibria under constant

current or no current is not necessary. Also, c‖ is taken to be positive.

These equilibria are given by the solutions of Heff = λm, λ being a scalar

coefficient expressing the collinearity of the two vectors. We can then further

distinguish the stable and unstable equilibria by looking at the solutions for

small deviations after linearising Eq. (2.16) around the previously found
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equilibrium positions of m. We describe the positions of the equilibrium

positions on the unit sphere with θ and ϕ defined in Fig. 2.2 when a field

and/or a current can be applied in the x direction. In this case, Yan et al.

[61] list three different kinds of equilibria (refer to Fig. 3.2):

• two stable equilibria U and D lying in the xz plane. They verify φ = 0.

They are the intuitive ’up’ (θ = 0) and ’down’ (θ = π) stable positions

in the absence of currents, and can disappear by merging with the

saddle points defined next, depending on applied current and field;

• two saddle points, S1 in the one hemisphere (x > 0) and S2 in the

other hemisphere (x < 0);

• and two equilibria lying away from xz plane, referred to as OM1 and

OM2. They obey a symmetry with regard to xz plane, and share the

same polar angle θ with opposite azimuthal angle ϕ and −ϕ, respec-

tively.

In the small current regime, the system has then six equilibrium positions,

but only U and D are stable. The effect of the applied field in the x direction

is to break the symmetry of the system, so that reversing the current and

hence the Slonczewski torque does not give the symmetric equilibria. When

the current is increased, U and D are displaced clockwise while S1 and S2

shift counter-clockwise along the xz meridian, and OM1, OM2 approach ±ŷ

(red arrows in Fig. 3.2). Increasing the field displaces U , D, S1 and S2 in

the direction of the field, OM1 and OM2 in the direction opposite to it (blue

arrows in Fig. 3.2). Finally, note that OM1 become stable at larger positive

currents [61].
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3.3 Switching processes

In this section, we are interested in the switching processes of perpendic-

ularly magnetized FMs through spin-orbit torque, as demonstrated experi-

mentally in Refs. [62, 63]. We want to determine the switching behaviour of

m when a current is sent for a finite-time.

We first give an explanation based on the macrospin model. As can be

seen from the diagram of Fig. 3.2, the equilibria of each pair U/S1 and

D/S2 get closer when the current is increased. When the torque is large

enough, these equilibrium merge and disappear. The magnetization then

has to switch to another stable state. In the absence of an applied field,

both positions U and D are suppressed concurrently and hence m switches

to the OM1 position (stable under currents). When the current is reduced

to zero, OM1 becomes unstable and m has to switch to a stable position

again: as the starting point of this relaxation phase is perfectly in-plane, one

cannot predict the final state between U or D, that will be decided by the

random thermal fluctuations. The switching is therefore non-deterministic.

However, when a field is applied in the x direction, it becomes possible

to achieve deterministic switching as the symmetry of the system is broken.

Consider that an external field is applied parallel to +x̂. As can be visualized

on Fig. 3.2, due to the influence of the field, the pair U/S1 will merge for a

lower current than the pair D/S2. After suppressing U/S1, m can proceed

to either D or OM1, depending on their stabilities. Even if the current

is increased, resulting in m being stabilized at OM1, the switching is still

deterministic because OM1 is displaced away from the xy plane by the in-

plane field. In the present case, θ > π/2 so that when the current is reduced,
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m relaxes from a position where mz < 0 and ends at the switched position

D. Reversing either the current or the field allows the opposite switching

operation (from D to U).

In the explanation above, it is implicit that all parameters are modified

quasi-statically: the current is not a pulse with short rising and falling edges

but is progressively applied, so that the behaviours of the equilibria dominate

the process. Dealing with the dynamics of the reversal process will be the

focus of Chapter 4, but we already note here that the dynamic behaviour can

totally differ from the quasi-static evolution. The reversal process through

the intermediary OM1 state has been discussed numerically by macrospin

simulations [64]. Some full micromagnetic simulations later confirmed that

this process is expectable and not originating from the approximations of

the macrospin model [65]. If the current density is chosen in the proper

window, one can observe direct switching (U to D or D to U). The macrospin

model then gives in these two cases an intuitive picture of the SOT-induced

switching phenomenon, but remains oversimplified. A first limitation is that

it does not take into account the field-like torque. Another limitation is that

assuming a uniform magnetization excludes the influence of some magnetic

interactions, notably the DMI, which exerts a crucial influence for some

material combinations, as we explain below.

The field-like torque has been evidenced to be of a large magnitude in

diverse systems, and can be even a couple times larger than the Slonczewski

torque, notably when the HM is Ta [39, 52, 53, 66]. Because it shifts the

U and D positions away from the xz plane, it affects the energy landscape

and can favourably or unfavourably affect the switching currents [67]. We

also note that the field-like torque will affect the behaviour of the OM1
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equilibrium.

The switching process explained above is well describing the case of a

very small ferromagnet that will exhibit coherent magnetization switching

and closely follow the macrospin behaviour. This regime is expected to

occur when the size of the magnet is of the order of the size of the domain-

wall or below, which roughly corresponds to 25–50 nm for perpendicularly

magnetized materials [68, 69]. However, for larger systems, another switching

process is expected to occur, through nucleation and propagation [70–72]:

a small part of the magnet is first reversed and creates a DW, which is

pushed by the field and SOTs so that the magnetization reverses everywhere.

Such a switching process is, for example, expected in Pt-based systems as

the Pt/FM interface creates a large DMI. The DMI favours non-uniform

magnetic configurations even more than the demagnetizing fields inside the

system. Notably, it is energetically favourable that the edges of the system

be tilted outwards or inwards depending on the sign of the DMI in the U or

D states. This tilting being added to the one originating from the in-plane

field, one side is favoured for nucleation. Switching is therefore possible only

in one direction while the opposite switching event is prevented, ensuring

a deterministic reversal [71]. Micromagnetic simulations have shown this

process to occur even in the short pulse regime [69].

It is worth mentioning here that SOTs—exactly like STTs—do not only

allow magnetization switching as shown above, but also provide many other

ways of manipulating the magnetic order, among which we can name, for in-

stance, high-velocity domain wall motion, modulation of the magnetization

precession, spin-wave generation, etc. This list is far from being exhaustive,

as some new possibilities raised by the SOTs are still regularly unveiled. We
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will not cover them into details, as this thesis intends to focus on magnetiza-

tion switching among all the new prospects offered by SOTs. However, some

of the different concepts formulated in the following chapters can hopefully

be translated to other techniques based on SOTs.

3.4 Spin-orbit-torque-driven magnetic memories

The previous sections briefly exposed the state of the present knowledge

of the SOT-induced magnetization switching processes in perpendicularly

magnetized FMs. This switching scheme has numerous advantages over the

STT scheme. As revealed by the study of the equilibrium positions in §3.2,

switching is not obtained from destabilizing an equilibrium but from sup-

pressing it. As a consequence, unlike the STT scheme, the magnetization

does not precess around the destabilized equilibrium before it switches, but

directly moves towards the new equilibrium position in a time shorter than

the precession period. For comparison, the reader may refer to Ref. [73] to

get a detailed and up-to-date description of the spin-transfer torque reversal

processes in devices. This direct switching is superior to precessional switch-

ing in terms of speed and therefore, energy efficiency, as a current is required

for a shorter time [74, 75]. Under some conditions that we have seen in §3.3,

the switching can be deterministic, as it is in the STT case.

Another considerable advantage of this configuration is that the current

is flowing in the plane of the HM/FM layers. As a consequence, the writing

current in a spin-valve SOT-based memory cell does not need to flow through

the insulating barrier of the MTJ, and a three-terminal device can be build

[76], thus avoiding excessive ageing and damaging of the insulator. In this

case, only a small current needs to flow through the barrier for reading,
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ensuring its reliability over many operation cycles.

Given these strong motivations, it comes as no surprise that a lot of

research is directed towards developing SOT-based memories. However, some

different issues are still to be tackled before SOTs can be effectively used in

memory devices. First, the dynamical regime of the reversal process is still

complex as it cannot be easily described by the simple model presented

above: in many cases, deterministic dynamic switching—in one nanosecond

or less—remains difficult. Notably, the roles of the different torques need

to be further identified. Second, the requirement for an external field to

be applied to the device is a drawback regarding the practical interest of

SOTs: it is possible to integrate a magnet in the layers stack to create such

a field, but this approach requires much more engineering of the materials

and is hardly scalable. Two recent studies proposed alternative ways to

replace the external magnetic field. One is based on a broken lateral inversion

asymmetry with the deposition of wedged layers [77]. Another proposal is to

engineer a tilted magnetic anisotropy by diagonal etching of the oxide layer

[78]. Although effective, these methods require the same amount of or even

more engineering to achieve SOT switching without external field.

Dealing with these two concerns being the object of this work, Chapter 4

is dedicated to an exploration of the influence of the field-like torque in the

dynamic regime. Notably, it will reveal an efficient switching scheme free of

external magnetic fields. Chapter 5 will push forward the theoretical descrip-

tion of the thermally-induced switching processes in the presence of the field-

like torque. It can be used in order to study the different current-induced

torque terms. Chapter 6 investigates SOT switching in triaxial anisotropy

systems. With a simple modification of the device geometry, it is able to
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allow for a simple way of obtaining deterministic switching in the absence of

external fields.
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Chapter 4

Dynamic spin-orbit torque switching with-

out external fields

In this chapter, we study the influence of the field-like torque on the

regime of dynamic switching. In §4.1, we analyse qualitatively the roles of

both Slonczewski and field-like torques in comparison with their quasi-static

behaviour. By solving numerically the equation of motion of the magnetiza-

tion in the macrospin approximation, it will be shown that in the dynamic

regime the interplay of both torques offers an efficient way of switching the

magnetization deterministically without the requirement for any external

magnetic field (§4.2). The essential role of the rising time of the pulse is

studied in §4.3. The switching times will be analysed in §4.4, where the

influence of the anisotropy will be considered. In §4.5, we validate our ap-

proach by micromagnetic simulations in order to demonstrate the concept in

realistic systems. Finally, §4.6 summarizes the significance of this study.

4.1 Nature of the Slonczewski and field-like torques

We begin by analysing the respective behaviours of the Slonczewski and

field-like torques in the dynamic regime. We consider the magnetization

to obey a macrospin behaviour: this assumption is relevant in the small

magnets of 50 × 50 nm2 or less, which are of most interest for applications.

We describe the evolution of the magnetization by the direction of m in the
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Chapter 4 : Dynamic spin-orbit torque switching without external fields

LLG equation [Eq. (2.9)] to which we add the Slonczewski [Eq. (3.2)] and

field-like [Eq. (3.3)] torques. An external field Hx can be applied in the

x direction. In order to get analytical results, we rescale the terms of Eq.

(2.9) in order to obtain a convenient, dimensionless equation of motion. The

Slonczewski and field-like torque effective fields are given by

H‖,⊥ =
h̄

2e

c‖,⊥J

µ0MStFM
. (4.1)

We introduce the values of the effective fields rescaled by the anisotropy with

the dimensionless hx = Hx/Hani, h
‖ = H‖/Hani and h⊥ = H⊥/Hani. The

time is also rescaled by the natural time unit t′ = γµ0Hanit so that we get

the dimensionless equation

dm

dt′
= (hxx̂ + cos θẑ)×m +αm× dm

dt′
+ h‖(m× σ̂)×m + h⊥σ̂×m. (4.2)

We finally introduce the characteristic current density

J0 =
2e

h̄
µ0MStFMHani (4.3)

so that a torque efficiency of 1 results in an effective SOT field of the same

strength as the anisotropy field Hani for J = J0. To get exemplary numerical

results, we fix for later in this chapter MS = 1500 emu cm-3, tFM = 1.6 nm,

Hani = 1000 Oe. With these realistic parameters, the characteristic current

density is J0 = 7.28× 107 A cm-2, which is experimentally accessible.

The form of the field-like torque in Eq. (4.2) already reveals that it

causes the precession of m around σ̂: as a consequence, it should be able to

induce switching by making m cross the xy plane [79]. Even if the field-like
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torque is not expected to allow quasi-static switching for symmetry reasons,

it could allow to switch m in the dynamic regime. However, most works in

the literature modelled the SOT switching only considering the Slonczewski

torque [64, 80]. Another work was focused on small macrospin nanodots

like here, but it considered a small field-like torque only in the presence

of an external field [81]. In this chapter, we will consider a field-like torque

potentially much larger than the Slonczewski torque, as found in some recent

experiments [39, 52–54]. We will also eventually remove the assist-field.

We can distinguish between the quasi-static and the dynamic regimes

depending on the rising time of the applied current pulse. As we have in-

troduced the natural time unit, it can be seen easily from Eq. (4.2) that in

the absence of current-induced torques and external fields, the period of one

precession for a simple relaxation around the perpendicular easy-axis is 2π.

This time is the characteristic time for the system to follow the externally

applied torques. Denoting the rising/falling time of the current impulsion

by t′rise, the system will obey a quasi-static evolution if t′rise � 2π. In this

case, we are interested in the evolution of the equilibrium positions, which is

influenced by the effective fields, so that h‖ and h⊥ are more relevant to the

problem. However, if t′rise � 2π, m will not follow the equilibria but will

lag behind them, which in turn generates some precession around the new

equilibria. The final position may be totally different and in this case it is

relevant to look at the torques τ‖ and τ⊥.

These behaviours are summarised in Fig. 4.1. To obtain the switching

trajectories, we solve Eq. (4.2) numerically with a damping parameter α =

0.01, and draw the time evolution of m on the unit sphere in red during the

pulse (including the rising edge), and in blue after the pulse (relaxation phase,
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Figure 4.1: Differences between the Slonczewski and field-like torques in the
quasi-static and dynamic regime. An in-plane assist field hx = 0.2 is applied.
a. t′rise = 40π, h‖ = 0.3 and h⊥ = 0. b. t′rise = 40π, h‖ = 0 and h⊥ = 0.7.
c. t′rise = 0, h‖ = 0.3 and h⊥ = 0. d. t′rise = 0, h‖ = 0 and h⊥ = 0.7. e.
t′rise = 40π, h‖ = 0.4 and h⊥ = 0. f. t′rise = 40π, h‖ = 0 and h⊥ = 1.1. In
each case, the red curve corresponds to the time evolution of m during the
current pulse, and the blue curve corresponds to its relaxation.

including the falling edge). The thermal perturbations are not considered in

this chapter. A pulse much longer than 2π is applied in each case, but the

rising time can be either 40π implying a quasi-static evolution, or 0 (ideally

short) implying a dynamic regime. An assist field is applied in the x direction

in order to break the symmetry, which allows preferential U to D switching.
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In Fig. 4.1a, one can see the effect of the Slonczewski torque in the quasi-

static regime. As h‖ = 0.3 is not large enough to induce the switching, m

follows the U equilibrium slowly displaced by the Slonczewski effective field

h‖ in the x direction, and slowly returns towards its initial position during

the relaxation phase. Similarly, as shown in Fig. 4.1b, the field-like torque

h⊥ = 0.7 shifts the equilibria towards σ̂.

Even if these torques are not sufficient to switch the magnetization quasi-

statically, the magnetization switches for the same torques in the dynamic

regime, as can be seen from Figs. 4.1c,d for the Slonczewski and the field-like

torque, respectively. This is because when the effective fields are changed

faster than the characteristic time for precession, m is still located at its

initial position when the maximum torque is already applied. In this case,

instead of following the displaced equilibria, m rotates around it, which po-

tentially allows switching by precession. Along the switching trajectory, the

Slonczewski torque h‖ is directed towards σ̂ and can lead to direct switch-

ing to the intermediate state OM1 (not shown), or in the case where hx is

sufficient like here, to a precessional switching to D (Fig. 4.1c). The field-

like torque has the same action as a field: as a consequence, m precesses

around the effective field hxx̂ +h⊥σ̂ (Fig. 4.1d). Finally, Figs. 4.1e,f display

the quasi-static switching event, with h‖ = 0.4 and h⊥ = 1.1, respectively.

While the action of the Slonczewski torque is to suppress the U position,

which leads to switching through a relaxation around D (Fig. 4.1e), the

field-like torque rather causes the merging of the U and D equilibria. Due to

the assist field, one direction of switching is favoured during the quasi-static

relaxation (Fig. 4.1f). Nevertheless, as the starting point of the relaxation is

in-plane, the real behaviour would be randomized by the thermal fluctuations
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of the system.

From these examples, we can see that on the one hand, the Slonczewski

torque is able to provide both quasi-static and dynamic deterministic switch-

ing, but it requires an assist-field. If, on the contrary, there is no assist field,

m moves under current to OM1, which is aligned with σ̂ as the symmetry

is not broken: the final position after the random relaxation from the plane

cannot be predicted. On the other hand, the field-like torque is able to gen-

erate some precession around σ̂ in the dynamic regime, even without assist

field. However, the final position after the many precession that occur cannot

be reliably predicted (in Fig. 4.1d, it could be U as well, depending on small

variations of the parameters and thermal fluctuations) and switching is not

deterministic. Neither of the two torque terms allows for a reliable switching

without assist field. As we will explain in the next section, the combination

of these two torques provides a mean of reliably switching the magnetization

without external fields in a fast, dynamic regime.

4.2 Varying the torques ratio

The main difference between the quasi-static regime and the dynamic

regime is that for the latter, the energy background for m is modified in-

stantaneously and before m starts any motion. We first consider the presence

of a field-like torque only, in a dissipationless system. The lag of m behind

the equilibria raises the energy of the system relatively to the new energy

minima, so that m precesses around the displaced equilibria on an orbit of

equal energy. As the field-like torque corresponds to a field applied parallel

to σ̂, both U and D positions are displaced on the yz meridian (ϕ = −π/2)

towards σ̂, at θ = arcsinh⊥ and θ = π−arcsinh⊥, respectively. For m start-
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Figure 4.2: Isoenergetic orbits under the influence of the field-like torque in
the dynamic regime. The dissipation of the system is suppressed (α = 0).
a. t′rise = 0, h‖ = 0 and h⊥ = 0.45. b. t′rise = 0, h‖ = 0 and h⊥ = 0.55. In
both cases, the isoenergetic orbits for m starting from ±ẑ are shown. The
displaced U and D equilibria are indicated by the red dots.

ing from U or D, it will precess around the displaced U and D equilibrium,

as shown in Fig. 4.2a. However, a change in the behaviour occurs when the

field-like torque is sufficiently strong. In this case, as shown in Fig. 4.2b, the

two isoenergetic orbits starting from ±ẑ and winding around the displaced U

and D equilibria (represented by the red dots) become large enough to merge

together. Therefore m follows a large orbit which conjugates both U and D

equilibria by winding around them as well as OM1. The two orbits merge

when the homoclinic orbits starting from the non-stable equilibrium OM1

located at σ̂ reach ±ẑ. This gives us the condition ε(±ẑ) = ε(σ̂), verified for

h⊥ = 0.5.

As a consequence, it is possible to switch from U to D and the opposite

using the dynamic properties of the field-like torque, as soon as h⊥ > 0.5. Ac-

tually, this dynamic scheme is very similar to the case of field-pulse-induced

switching [82]. Different means are available to control the switching in this

field-pulse scheme. As the period of one rotation on the orbit is known, it is

possible to control the current pulse so that it stops when m has switched to

the opposite equilibrium position. Alternatively, by increasing the Gilbert
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damping α, it is possible to reach a regime where m stabilizes at one par-

ticular equilibrium by tuning the energy dissipation, in order to get a de-

terministic switching whatever the length of the pulse [82]. However, these

approaches are hindered by the difficulty of controlling α and the material

parameters accurately enough, in a repeatable way in order to get a reliable

deterministic switching. The limitation of this scheme can be seen in Fig.

4.3a, which shows the trajectory of m under the sole field-like torque and

in the absence of external fields. Because the damping is too low, many

precessions occur around σ̂, so that the position where m finally stabilizes

cannot be predicted.

We now approach the role of the Slonczewski torque in our dynamic

switching scheme. Due to its form in m× (σ̂ ×m), the Slonczewski torque is

very similar to the torque originating in the damping process [see Eq. (2.10)],

which makes the Slonczewski torque to be sometimes called a damping-like

torque. As explained in ref. [38], the Slonczewski torque does not necessarily

compete with the damping, but can contribute or oppose to the damping

torques given the sign of cos
( ̂̂σ,m), the cosine of the angle between σ̂ and

m.

As we mentioned in the beginning of the chapter, we now consider the

case where both Slonczewski and field-like torques are present, and α = 0.01

like in most technologically relevant magnetic materials. The proper balance

of the two SOT terms addresses the issues we mentioned above for the field-

like torque pulse scheme. We consider different cases for which c‖/c⊥ is lower

than unity but non-zero. The field-like torque still dominates the dynamics,

so that the nature of the precession orbits remains unchanged in the first

approach. Only the position of U and D are slightly moved towards +x̂,
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Figure 4.3: Switching trajectories obtained for increasing values of the ratio
between the Slonczewski and the field-like torques in the absence of external
fields. a. h‖ = 0 and h⊥ = 0.8. b. h‖ = 0.04 and h⊥ = 0.8. c. h‖ = 0.05 and
h⊥ = 0.8. d. h‖ = 0.1 and h⊥ = 0.8. e. h‖ = 0.2 and h⊥ = 0.8. f. h‖ = 0.3
and h⊥ = 0.6. In each case, t′rise = 0 and the pulse is much longer than
2π: the red curve corresponds to the time evolution of m during the current
pulse, and the blue curve corresponds to its relaxation after the pulse.

which does not affect the general behaviour. As the motion of m is restrained

to the hemisphere for which y < 0, the sign of cos
( ̂̂σ,m) is always positive

so that the Slonczewski torque acts as an additional source of damping. By

progressively increasing the strength of the Slonczewski torque, the effective

damping along the trajectory is also reinforced. As a consequence, the initial
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energy supplied by the sharp rising pulse is dissipated faster and m precesses

for a shorter time before it stabilizes at either U or D. We can define a

precession order N which accounts for the rotations of m around σ̂: each time

m crosses the xy plane, we count one half-turn so that N is an half-integer.

Due to the enhanced damping obtained from the Slonczewski torque, it is

natural that N decreases with the increasing values of h‖. This is shown in

Figs. 4.3b-f: by increasing c‖/c⊥ from 0 to 0.05, 0.0625, 0.125, 0.25 and 0.5,

N decreases from a very large value in the absence of the Slonczewski torque,

to N = 2, 3/2, 1, 1/2 and 0. In the particular case of Fig. 4.3e, for which

c‖/c⊥ = 0.25, m reverses directly from its initial position to the opposite one,

without precession because the Slonczewski torque is large enough to prevent

m from switching back to its initial position. When c‖/c⊥ is further increased

(Fig. 4.3f), the motion of m is so damped that it cannot cross the xy plane

and switching is not possible. In each case, m stabilizes at the unswitched

or switched position during the current pulse. The relaxation phase does

not affect the switching and m relaxes to the side it was stabilized under

currents. By changing the damping parameter from α = 0.001 to α = 0.2,

these results are not qualitatively changed. Note however that a high value

of α makes the relaxation phase shorter after the current pulse and is thus

to be preferred.

The deterministic switching obtained for h‖ = 0.2 and h⊥ = 0.8 and

resulting in N = 1/2 (Fig. 4.3e) shows different interesting properties. (i)

The switching is deterministic in the absence of assist field: it is the dynamic

relation between the torques that results in systematic switching. (ii) The

outcome of the switching is not affected by the length of the pulse as soon as

it is longer than the time required to stabilize m at z < 0. Any longer pulse
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Figure 4.4: Switching outcome as a function of the strength of the field-like
and Slonczewski torques, with t′rise = 0. The red domains correspond to an
unswitched magnetization, the blue domains indicate a switched final state,
and the white domains indicate when m is driven to the plane under currents,
resulting in non-deterministic switching. The dashed line indicates the points
where c‖/c⊥ = 0.25. The white triangles are the points corresponding to
Figs. 4.3a-f. The numbers into brackets indicate the precession number N
within each domain.

works as well so that a precise control of the pulse is not required. (iii) The

two states U and D are equivalent in this scheme, and reversing the current

does not affect the dynamics as the system is symmetric with respect to the

yz plane. As a consequence, both U to D and D to U toggle switching are

obtained for the two current polarities, which differs with the quasi-static

switching scheme described in §3.3 where the direction of the switching is

determined by the sign of hxJ .

It is relevant to look at the different switching behaviours for all possible
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combinations of the two SOT terms. Figure 4.4 shows the final state after the

application of the current pulse to the system, extending the few cases studied

in Figs. 4.3a-f. A blue colour indicates that m has switched from U/D to the

opposite magnetization, while a red colour indicates that the final state is

unswitched. For the values of c‖/c⊥ < 0.01, the damping remains too low in

the system and the magnetization reversal is not deterministic, resulting in

the central part of the figure being composed of mixed blue and red points.

When c‖/c⊥ > 0.01, the Slonczewski torque contributes to the damping and

reduces N so that the outcome of the switching is deterministic. The lines

separating switching and non-switching are therefore obtained numerically

as we do not have analytical equations for them.

We distinguish switching via more than one precession (N = 3/2, 5/2, ...),

unswitched outcome after some precession (N = 1, 2, ...), efficient switching

via half-precession (N = 1/2) and prevented attempts (N = 0). When

the combined SOT terms are too strong, the U and D position merge in

the xy plane. Under currents, m will therefore stabilize in-plane, and the

subsequent relaxation of m from the plane leads to a non-deterministic issue.

The corresponding points are drawn in white in Fig. 4.4. They are defined by

h‖ > 0.5 and h⊥ > 1 in the simple case where only one torque is considered,

or by lower values when both torque combine. Also, when c‖ and c⊥ have

opposite signs, the magnetization easily lies in the xy plane, as can be seen

in Fig. 4.4. The behaviour of m for the different signs of the field-like torque

has been explored in [67].

The most interesting case is definitely N = 1/2, as it allows a fast and

direct switching. As can be seen from the extent of the blue region (1/2)

in Fig. 4.4, switching with N = 1/2 is quite robust to any variations of the
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ratio of the torques and/or current. It is also very important that for some

values of c‖/c⊥, for example 0.25, no switching back is possible as N = 0

or 1/2 whatever the current density is. This feature can be seen from the

dashed line in Fig. 4.4. We find that the switching is reliable (N limited

to 0 or 1/2), for c‖/c⊥ = 0.23–0.55. Such robustness comes from the fact

that the damping originates in the current itself: if more current is applied

to the system, resulting in a larger initial precession energy, the effective

damping is also enhanced. The additional energy is therefore compensated

by a larger dissipation and the switching trajectory is almost similar. In this

view, this scheme is undeniably superior to the field-pulse scheme, is which

the proper current density to be applied is largely dependant on the value of

α in the system [82]. The condition c‖/c⊥ = 0.23–0.55 can be achieved easily

in SOT heterostructures, as the value of c‖/c⊥ was found in this range for

Ta/CoFeB/MgO [39, 52, 66] and Hf/CoFeB/MgO [83], among the material

combinations explored so far.

4.3 Influence of the rising time

The condition c‖/c⊥ = 0.23–0.55 derived above is found for an ideal

pulse without rising time. However, this dynamic switching scheme exploits

the initial lag of the magnetization behind the new equilibrium positions

displaced by the torques. For a very long rising time, which would correspond

to a quasi-static regime, we have seen that a deterministic switching outcome

is not expected. We then expect the rising time of the pulse to strongly affect

the outcome of the switching: this section is devoted to this effect, as a finite

rising time cannot be avoided in real experimental conditions.

We model the same switching event as in Fig. 4.3e, but we now assume
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x

y

z

Figure 4.5: Switching trajectories obtained for increasing values of the rising
time of the pulse. The different curves correspond to trise = 50 ps (blue),
200 ps (green), 400 ps (orange) and 800 ps (red). Other parameters are same
as in Fig. 4.3e.

different rising times trise for the pulse. In order to assess the experimental

feasibility of our switching scheme, we consider the rising time in picoseconds

rather than in the natural time unit t′. The system parameters were defined

above. The different switching trajectories for trise = 50 ps, 200 ps, 400 ps

and 800 ps are shown in Fig. 4.5. They correspond to t′rise = 0.3π, 1.2π, 2.2π

and 4.5π, respectively. For trise = 50 ps, the behaviour is not significantly

altered and the trajectory of m remains very close to the trajectory for an

ideal pulse, because t′rise � 2π. Even for trise = 200 ps, switching by half-

precession is still observed, although the trajectory is modified. However,

for the longer rising times m behaves similarly as in the quasi-static regime,

because t′rise ≈ 2π. As a consequence, m shifts significantly towards the dis-
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Figure 4.6: Switching outcome as a function of the strength of the field-like
and Slonczewski torques for rising times of a. trise = 300 ps and b. trise =
1000 ps. The red domains corresponds to an unswitched magnetization, the
blue domains indicates a switched final state, and the white domains indicate
when m is driven to the plane under currents, resulting in non-deterministic
switching.

placed equilibrium position during the rising edge of the current pulse. This

affects the initial lag so that the amplitude of the precession is consequently

reduced and m cannot switch, as it does not even reach the xy plane.

A finite rising time thus modifies the behaviour of the system, because less

initial energy is supplied to m during the rising edge. In order to compensate,

the field-like torque (which shifts the equilibria and supplies some energy to

m) needs to be increased, while the Slonczewski torque (which dissipates

the energy) needs to be reduced. This effect can be seen in Figs. 4.6a,b

which show the switching outcome as a function of the amplitude of the SOT

terms for rising times of 300 ps and 1000 ps, respectively. For trise = 300 ps

(t′rise = 1.7π), the switched, blue domains (as well as the other domains with

N > 1) shift outwards (to larger h⊥ values) and shrink (corresponding to

lower h‖). For trise = 1000 ps (t′rise = 5.5π), switching is no longer expected

except for very specific parameters and the switching diagram is mostly filled

with the red domain N = 0. With a good device design and high-quality
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electronics, a pulse rise time of 50 ps is achievable [59]. In these conditions,

the switching behaviour is not affected and corresponds to Fig. 4.4. We can

conclude that our switching scheme can be used to switch the magnetization

in experimental conditions.

4.4 Switching times and anisotropy

We now study the switching times achievable within our dynamic scheme,

as this is an essential indicator of the performance of magnetization switch-

ing. Our definition of the switching time is when m crosses the xy plane.

In the case presented in Fig. 4.3e, where direct switching is achieved via

half-precession, m crosses the xy plane after t′sw = 0.41. With the parame-

ters defined above, this corresponds to tsw = 145 ps, which is similar to the

switching times obtained in the orthogonal spin-torque scheme [58, 59].

In order to reduce the switching time, it is natural to think about increas-

ing the torques. The precession frequency of a magnet is proportional to the

applied (effective) field. This can also be seen from Eq. (4.2): a larger h⊥

(combined with a larger h‖ to keep the same torques ratio) would increase

the frequency of precession of m around σ̂ and, consequently, the switching

speed. In principle, the switching speed would then be inversely proportional

to the current density J . Unfortunately, this approach cannot work in our

scheme. As explained in §4.2, a torque that overcomes the anisotropy drives

m to the plane and suppresses the deterministic switching.

Therefore, increasing the current density only is not a suitable way of

reducing the switching times. In the non dimensional Eq. (4.2), one of the

scaling factors between t and t′ is Hani. Hani also rescales the characteristic

current density J0. As a consequence, by increasing Hani and J by a common
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Figure 4.7: Switching outcome as a function of the anisotropy and current
density for a. trise = 50 ps and b. trise = 10 ps. The red domains corresponds
to an unswitched magnetization, the blue domains indicates a switched final
state, and the white domains indicate when m is driven to the plane under
currents, resulting in non-deterministic switching.

factor, the equation of motion of m is self-similar, which means that its

non-dimensional form is unchanged1. The switching trajectory is therefore

identical but covered faster. As long as more current can be applied to the

HM, engineering a larger anisotropy of the FM will allow to accelerate the

switching, and would also benefit the thermal stability. This principle has

nevertheless one requirement: for the trajectory to be identical, the rising

time of the pulse should also be reduced by the same factor. However, trise

is an experimental limitation that we cannot avoid: trise = 50 ps cannot be

further reduced for applications. By increasing Hani, t
′
rise is then increasing

for the given trise = 50 ps. Once t′rise reaches 2π, the dynamic regime is

altered, which prevents switching (as seen in the previous section). We thus

need to consider the maximal value of (Hani, J) that will still allow the

switching.

To illustrate this point, we simulate the switching for different values

of the anisotropy ranging 1000–8000 Oe, comparing two cases: an almost

1we remind that hx = 0 in our scheme
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ideal trise = 10 ps and a realistic trise = 50 ps. In order to provide typical

values for the current densities and anisotropies involved, we define for this

part c⊥ = 0.28 and c‖ = 0.07 (so that c‖/c⊥ = 0.25). Note that the torque

coefficients found experimentally range roughly 0.5–3 times these values for

Pt, Ta, Hf and W as a HM [22, 37–41, 83]. Thus, these values rather define

a lower bound for the switching efficiency of the systems. The results are

shown in Figs. 4.7a,b which map the outcome of the switching (the previous

colour code is used) for different currents and anisotropies in the cases of

trise = 10 ps and trise = 50 ps, respectively. The requirement that J should

be increased proportionally to Hani can be seen from the shape of the blue

domain. Moreover, the limitation in the increase of J at a given Hani appears

as the white area boundary on top of the blue domain.

In addition, looking at the switched blue domain in Fig. 4.7a shows the

limitation mentioned above on the maximal value of Hani at a given trise.

When Hani is increased from 1000 Oe to 8000 Oe, t′rise increases from 0.28π

to 2.25π. For Hani > 6500 Oe, t′rise ≈ 2π, and switching is prevented. As a

consequence, the blue domain reduces and finally disappears, being replaced

by the red colour corresponding to a failed switching. On the contrary, when

trise is set to 10 ps, t′rise spans 0.06–0.45 for Hani ranging 1000-8000 Oe.

Switching is not altered as t′rise � 2π: as can be seen in Fig. 4.7b, the blue

domain is preserved even at high anisotropies.

In the range of anisotropies that allow switching, we should then be able

to reduce the switching times. In order to keep h⊥ = 0.8 and h‖ = 0.2, as

explained above, we could apply J = 2.1 × 108 A cm-2 for Hani = 1000 Oe

and increase both values proportionally. However, we have to consider the

effect of the rising time of the pulse. Figure 4.7a shows that the window of
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Figure 4.8: Switching times as a function of the anisotropy for trise = 50 ps
(black dots) and trise = 10 ps (red squares).

currents allowing proper switching reduces for the higher anisotropies. As

it is preferable to ensure the most reliable behaviour, it is suitable to define

an optimal current which would fall in the centre of this window, in order

to avoid any unexpected outcome of the switching. For each value of the

anisotropy, we apply this optimal current density and look at the switching

time topt at this particular current density. The evolution of topt with the

anisotropy is shown in Fig. 4.8 for both trise = 50 ps and trise = 10 ps.

As expected, the switching current decreases as 1/Hani for the ideal case

where trise = 10 ps. For the realistic case of trise = 50 ps, the switching

time behaves differently when the anisotropy increases. The switching time

decreases as 1/Hani for the lowest anisotropies only. However, topt reaches
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a minimal value topt ≈ 80 ps at Hani = 4000 Oe before it increases with

Hani. Once again, this limitation comes from the perturbation due to the

finite rising time: when t′rise ≈ 2π, topt diverges and switching is no longer

achievable for Hani > 6500 Oe.

Finally, we conclude that given the constraint of the shortest achievable

rising time of the pulse, J and Hani can be adjusted together to reach a

minimal switching time. It is of much interest that, as long as topt does not

reach its minimum, it evolves as 1/J (or 1/Hani). Increasing the current and

the anisotropy concurrently reduces the switching time, but does not increase

the total energy required for switching, which is proportional to both time

and current. Therefore, the only limitation will come from the maximum

current density, as the 7–8×108 A cm-2 required for the minimum topt found

in 4.7a—with c⊥ = 0.28 and c‖ = 0.07—is too high. This limitation can be

overcome by the choice of materials with the highest torque efficiencies, as

we remind that the values we have chosen here were rather a lower bound.

4.5 Validation by micromagnetic simulations

In the previous sections of this chapter, an essential assumption is that

the FM behaves coherently, following the macrospin model. In the present

section, we aim at evaluating the validity of this assumption depending on

the device size and also on the magnitude of the DMI, which promotes non-

uniform magnetization patterns and could thus influence the switching [70].

We perform micromagnetic simulations with the software OOMMF [84] in-

cluding all the terms introduced in §2.1. The cell size is taken as 2.5×2.5×0.8

nm-3. We take an exchange stiffness Aex = 30 pJ m-1 [16]. The DMI con-

stant D differs by some orders of magnitude depending on the material: it
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was found that |D| ≈ 0.053 mJ m-2 for Ta/CoFe/MgO heterostructures but

|D| ≈ 1.2 mJ m-2 for Pt/CoFe/MgO [85]. For Hf- and W-based heterostruc-

tures, different thickness-dependant values of |D| range 0–0.5 mJ m-2. As a

consequence, a reasonable value of the DMI in our system would be 0.5 mJ

m-2, remembering that it may be larger for Pt, but much lower for Ta.

Simulations of SOT-induced switching are performed for various current

densities with two study parameters: the first one is the size of the system

(w×w = 50× 50 nm-2, 100× 100 nm-2 and 200× 200 nm-2) and the second

one is the strength of the DMI (|D| = 0 or 0.5 mJ m-2). In order to compare

devices with the same effective anisotropy, we compensate the increasing

demagnetizing fields in the larger samples by a larger K2 in order to get

Hani = 1000 Oe in each square magnet. No assist field is applied. Two

parameters are modified in this part: first, α is set to 0.3 during the relaxation

phase in order to accelerate the convergence and reduce the computation time

and second, the torques ratio is chosen as c‖/c⊥ = 0.3 to avoid switching

back from the edges, which have a lower effective anisotropy due to the

non-uniformity of the demagnetizing field. The results of the simulations

are shown in Figs. 4.9a-f. The green circles indicate the mean value of the

out-of-plane component of m while the red stars indicate its value after the

relaxation phase.

Considering no DMI and the magnet size of 50 × 50 nm2 that we men-

tioned earlier, the behaviour simulated by micromagnetic simulations accu-

rately reproduces the coherent switching described by the macrospin model.

If we vary the torques ratio, we find the different regimes with N = 0, 1/2, 1,

etc. As shown in Fig. 4.9a, for c‖/c⊥ = 0.3 we get only one regime of switch-

ing without possible switching back, and the switched state has a coherent
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magnetization, as can be seen from the inset. After relaxation, the mag-

netization is effectively switched. For too high current densities, however,

deterministic switching is suppressed, as expected from §4.2. Increasing the

size of the magnet to 100× 100 nm2 and 200× 200 nm2, a similar behaviour

is observed. However, due to the growing non-uniformity of the demagneti-

zation effects in magnets of increasing sizes, their central part is magnetized

more and more in the plane, as can be seen from the growing white areas

in the insets of Figs. 4.9a-c. Because of m being in the plane at the end of

the pulse, the relaxation phase may be affected by the thermal fluctuations

and could lead to non-deterministic switching. As a consequence, a size of

100× 100 nm2 seems to be a maximum size in order to achieve deterministic

dynamic switching of the magnetization using our scheme. Considering the

DMI now, the size of the system is even more critical. As can be seen from

Fig. 4.9d, for a size of 50 × 50 nm2 the deterministic, coherent switching

regime is restrained to the lower current densities only [inset (i)]. If the cur-

rent density is too high [inset (ii)], the DMI promotes the formation of a DW,

as the effective anisotropy felt by m, getting closer to the plane, reduces2

and thus cannot oppose the DMI anymore. When the size of the magnet is

increased to 100 × 100 nm2 or 200 × 200 nm2 in the presence of the DMI,

the magnetization is reversed through incoherent motion, which leads to a

non-uniform final state (Figs. 4.9e,f): the regime of deterministic switching

is disrupted.

Finally, the use of micromagnetic simulations confirms that our dynamic

switching scheme can be applied to small-sized, monodomain ferromagnets

not larger than 100 × 100 nm2. However, it is a requirement that the DMI

2it is a function of cos θ, see Eq. (2.15)
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keeps a low value in our system (|D| � 0.5 mJ m-2), as it has a detrimental

influence on the deterministic switching.

4.6 Conclusions

By firstly considering the behaviours of both the Slonczewski and field-

like torques separately, we have described their different roles in the dynamic

regime and how they differ from their quasi-static behaviour. By combin-

ing the two torques, deterministic switching outcomes can be obtained, even

without applying an external assist field to the system. Notably, for a ratio

of the Slonczewski torque to the field-like torque ranging 0.23–0.55, direct

switching via half-precession is observed without switching back for a large

range of current densities, and even in the absence of external fields. This

new switching scheme remains reliable whatever the length of the current

pulse applied to the system; however, the rising time of the pulse is a critical

factor that limits the switching times and even the possibility of switching in

the extreme cases. We have explored a way of reducing the switching time

down to 80 ps in realistic conditions by concurrently increasing the anisotropy

of the system and the applied current, which does not increase the energy

required to switch the magnetization. Finally, we have conducted micromag-

netic simulations in order to find the requirements of this switching scheme

regarding the device size and the magnitude of the Dzyaloshinskii-Moriya

interaction. This method is applicable to technologically important systems

of sizes below 100 × 100 nm2, at the condition that they do no exhibit a

significant Dzyaloshinskii-Moriya interaction. Ta-based systems would then

constitute an ideal candidate for the implementation of this method, as Ta

has been shown experimentally to generate torques in a wide range of ratios—
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adjustable for our purposes to 0.23–0.55 by tuning its thickness [52]—high

torque efficiencies, and a negligible Dzyaloshinskii-Moriya interaction (|D| ≈

0.053 mJ m-2 [85]). Given the high-paced on-going research on spin-orbit

torque heterostructures, there is no doubt that more material combinations

compatible with our scheme will emerge. The solution provided here is thus

satisfying for fast and reliable spin-orbit torque switching in magnetic mate-

rials as it avoids the undesirable requirement of applying an external assist

field.
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Figure 4.9: Micromagnetic simulations of dynamic SOT switching for differ-
ent sizes and strengths of the DMI. |D| = 0 mJ m-2 for a. 50 × 50 nm2, b.
100× 100 nm2 and c. 200× 200 nm2. |D| = 0.5 mJ m-2 for d. 50× 50 nm2,
e. 100×100 nm2 and f. 200×200 nm2. The green circles (red stars) indicate
the mean value of m · ẑ just before relaxation (after relaxation). The inset in
each panel corresponds to a top view of the magnet just before relaxation,
showing m · ẑ as coded on the colour scale in d., for J = 1.43× 108 A cm-2

(black arrows). Only for d., the inset is split into two parts (i) and (ii) corre-
sponding to the current densities J = 0.91× 108 A cm-2 and J = 1.43× 108

A cm-2, respectively (two black arrows).
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Spin-orbit torques in the thermal regime

In this chapter, we are interested in the behaviour of the magnetization

for currents under their critical value for switching. In this regime, the mag-

netization can be switched due to the thermal activation processes (§5.1),

well described by the Fokker-Planck analysis. Using the formalism of the

Hamiltonian-Langevin equations, we find the thermal barrier under the in-

fluence of both Slonczewski and field-like torques (§5.2). We will then be able

to identify the influence of the field-like torque on the regime of thermally

activated reversals (§5.3). Finally, we will investigate the dependence of the

thermal barrier with respect to the in-plane angle of the assist field, as it

provides a means of evaluating the amplitude of the field-like torque (§5.4).

5.1 Thermal processes and Fokker-Planck equation

Even when the current applied to the system is under the critical value

required to observe a magnetization reversal (in the sense of a direct or pre-

cessional switching, as seen in the previous chapters), the magnet can spon-

taneously switch because of random thermal fluctuations that can punctually

contribute to raise the energy of the magnet above the switching point. In

order to model the effects of thermal fluctuations on the system, we can con-

sider that a purely random field acts on the magnetization. This is because
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the thermal excitation has correlation times much shorter than the time

needed for the magnet to reorientate, therefore it appears as purely random

in the equations of motion [86]. The equation of motion is to be modified

by the inclusion of a random Langevin field HL, which will modify the evo-

lution of m as a stochastic process. It then appears that for the thermally

activated switching processes, we cannot define a perfectly known position

of m as it evolves randomly over time. In fact, the instantaneous direction

of the magnetization is always subject to the deviations due to thermal fluc-

tuations. Assuming that the magnetic system is small enough, we can keep

the previous description of m based on the two degrees of freedom θ and

ϕ, but now the temperature is no longer neglected. A better description of

the system is then to define the probability function W (t, θ, ϕ) describing m

by the probability of finding it at a position (θ, ϕ) at a time t. This prob-

ability density W should be integrable on the unit sphere, and at any time

t its integration over the whole sphere gives a cumulate probability 1. To

note, it is also possible to simulate the dynamics perturbated by the random

thermal fluctuations by adding the Langevin field to the LLG equation, or

equivalently [87], by performing time-quantified Monte-Carlo simulations of

many switching events. However, to find the large effective energy barriers,

some corresponding to switching times of several days or years, it would be

required to run billions of steps for each simulation. For this reason, a de-

scription in terms of probability density is preferred, which, moreover, allows

to directly find the energy barriers by the treatment presented in §5.2.

The evolution of the system is then given by a sum of drift and diffusion

terms. The time evolution of an individual m at a position (θ, ϕ) affects the

probability function, as this individual m will move somewhere else following
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the dynamic terms of the LLG equation. This creates a probability current

density which constitutes the drift term. The drift probability density current

is obtained from the continuity equation and contributes to ∂W/∂t as −∇ ·

Jdrift, given by

−∇ ·
(
dm

dt
W

)
= −

(
1

sin θ

∂

∂θ
sin θ

dθ

dt
W +

1

sin θ

∂

∂ϕ
sin θ

dϕ

dt
W

)
(5.1)

where dθ/dt, dϕ/dt are obtained from the LLG equation.

Moreover, because of thermal fluctuations, an initially concentrated prob-

ability function will diffuse in space. In terms of Langevin dynamics, the

random field HL that we introduced above is normally distributed around 0

and defined by the statistical average

〈µ0HL,i(t)µ0HL,j(t
′)〉 =

2D

γ2
δijδ(t− t′) (5.2)

which indicates that it is isotropic (i and j are Cartesian coordinates) and not

correlated at the time scale of the system. We define the diffusion coefficient,

D = αγkbT/(MSV )1. These thermal fluctuations contribute to ∂W/∂t as

−∇ · Jdiff , given by

∇ ·
(
D∇W
1 + α2

)
=

1

sin θ

∂

∂θ

D sin θ

(1 + α2)

∂W

∂θ
+

1

sin θ

∂

∂ϕ

D(sin θ)−1

(1 + α2)

∂W

∂ϕ
. (5.3)

Finally, both drift and diffusion terms are integrated into the Fokker-Plank

equation, a partial differential equation which gives the time evolution of

1The standard deviation of µ0HL during a time ∆T , which allows to solve the LLG equa-
tion including the thermal fluctuation field, is then simply given by σµ0Hi =

√
2D/(γ2∆T )

for all x, y and z components.
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W (t, θ, φ) and reads as

∂W

∂t
= −∇ · Jdrift −∇ · Jdiff . (5.4)

More details about the derivation of the Fokker-Planck equation can be

found, for instance, in Refs. [73, 88] which determine all these terms for

the similar case of a system subject to STT. Given the uniaxial symmetry of

our system, it is convenient to rewrite the Fokker-Planck equation in canon-

ical coordinates. Following Ref. [89], we introduce the Lagrangian density

L = −M
γ
ϕ̇(cos θ − 1)− E (5.5)

and the canonical coordinates q = ϕ and p = ∂L/(∂q̇) = −(M/γ)(cos θ − 1).

The first term in Eq. (5.5), corresponding to pq̇, is the Berry phase: refer for

instance to Ref. [90] for a more comprehensive introduction of the Lagrangian

density. We also define g = sin θ and transform Eq. (5.4) into

∂W

∂t
= − ∂

∂q

(
dq

dt
W

)
+

D

1 + α2

∂

∂q

(
g−2

∂

∂q
W

)
− ∂

∂p

(
dp

dt
W

)
+

D

1 + α2

(
M

γ

)2 ∂

∂p

(
g2

∂

∂p
W

)
.

(5.6)

5.2 Thermal barrier under currents

The calculation of the switching barrier under spin-orbit torques has been

made in Ref. [70], but without accounting for the field-like torque. In this

section, we extend these derivations to include the field-like torque term, as

we aim at evaluating its influence on the switching barriers. In Ref. [89],

two assumptions are made for the problem which we will follow closely. First
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5.2. Thermal barrier under currents

assumption, the thermal energy kbT is assumed to be low with respect to

the barrier energy (WKB approximation, [91]). Following Ref. [89], we then

define the Hamiltonian density derived from (5.6) as

H =
dq

dt

∂S

∂q
+ αg−2

(
∂S

∂q

)2

+
dp

dt

∂S

∂p
+ αg2

(
M

γ

)2(∂S
∂p

)2
(5.7)

where S is an effective action. The corresponding Lagrangian density is given

by

L = −q̇λq − ṗλp −H (5.8)

where λq = −∂S/∂q and λp = −∂S/∂p are the counting variables conjugated

to q and p, respectively.

We now use the LLG equation to find θ̇ = dθ/dt, ϕ̇ = dϕ/dt. Using Eq.

(2.11) to relate the effective field Heff to the energy density, we find

(1 + α2)θ̇ =
−γ
MSg

∂ε

∂ϕ
− αγ

MS

∂ε

∂θ

+γ µ0

[
−
(
H⊥ − αH‖

)
cosϕ−

(
H‖ + αH⊥

)
cos θ sinϕ

]
︸ ︷︷ ︸

Bp

(1 + α2)gϕ̇ =
γ

MS

∂ε

∂θ
− αγ

MSg

∂ε

∂ϕ

+γ µ0

[
−
(
H‖ + αH⊥

)
cosϕ+

(
H⊥ − αH‖

)
cos θ sinϕ

]
︸ ︷︷ ︸

Bq

.

(5.9)

Rewriting these two equations in the (q,p) phase space, one gets

q̇ =
1

1 + α2

∂ε

∂p
− αγg−2

(1 + α2)MS

∂ε

∂q
+

γg−1

1 + α2
Bq

ṗ =
−1

1 + α2

∂ε

∂q
− αMSg

2

(1 + α2)γ

∂ε

∂p
+

MSg

1 + α2
Bp.

(5.10)

Second assumption, α (≈ 0.01 in FMs) is considered low as well. Only a small
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Chapter 5 : Spin-orbit torques in the thermal regime

portion of the energy is dissipated during the thermally activation process.

Following [89] again, we can rewrite the Lagrangian density as

L = −dε
dt
λε −Hε, (5.11)

which means that the thermal fluctuations on the isoenergetic curves are

neglected. The Lagrangian is split into a non-perturbative part

L0 = −λq
(
q̇ − 1

1 + α2

∂ε

∂p

)
− λp

(
ṗ+

1

1 + α2

∂ε

∂q

)
(5.12)

and a perturbative part

L1 =− λqαγg
−2

(1 + α2)MS

∂ε

∂q
+
λqγg

−1

1 + α2
Bq −

λ2qαg
−2

1 + α2

− λpαMSg
2

(1 + α2)γ

∂ε

∂p
+
λpMSg

1 + α2
Bp −

λ2pαg
2

1 + α2

(
MS

γ

)2

.

(5.13)

As Hε = −L1, with the canonical transformation λq = ∂ε
∂qλε, λp = ∂ε

∂pλε,

we get the Hamiltonian density

Hε =λε
∂ε

∂q

[
αγg−2

(1 + α2)MS

∂ε

∂q
+

γg−1

1 + α2
Bq

]
+ λ2ε

αg−2

1 + α2

(
∂ε

∂q

)2

λε
∂ε

∂p

[
αMSg

2

(1 + α2)γ

∂ε

∂p
− MSg

1 + α2
Bp

]
+ λ2ε

αg2M2
S

(1 + α2)γ2

(
∂ε

∂p

)2
(5.14)

in which the counting variable λε actually describes the switching path in the

energy space. The terms in λεHp,q, λεα and λ2εα describe the energy contri-

butions from the SOT, from the damping and from the thermal fluctuations,

respectively.

As we are in the low temperature limit, in order to obtain the switching

barrier one can integrate the Lagrangian density along the optimal switch-

ing path [89]. It is obtained here by approximating that it remains along
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5.2. Thermal barrier under currents

the solution trajectory of the LLG equation without thermal activation, or,

equivalently, by the set of positions (θ, ϕ) verifying L0 = 0. Along this trajec-

tory, the optimal path in energy space corresponds to the values of λ∗ε(θ, ϕ)

that are the non-trivial solutions of Hε = 0. Our treatment cannot follow

the one made in Ref. [70], as in the presence of the field-like torque, the

switching trajectory is not restrained to the xz plane. Moreover, in our case

we consider (in prevision of §5.4) a possible rotation of the external assist

field Hip in the xy plane, by an angle β separating x and Hip. Summing

the energy contributions coming from both anisotropy and in-plane field,

and using the reduced notations as in Chapter 4, we get the system’s energy

density

ε = −µ0HaniMS

(
hip sin θ cos(ϕ− β) +

cos2 θ

2

)
, (5.15)

and its derivatives in terms of the canonical coordinates

∂ε

∂q
=µ0HaniMS(hip sin θ sin(ϕ− β))

∂ε

∂p
=− µ0Haniγ

g
(hip cos θ cos(ϕ− β)− cos θ sin θ).

(5.16)

The switching trajectory in (θ, ϕ) coordinates is found by solving

−hip sin(ϕ− β)− h⊥ cosϕ− h‖ cos θ sinϕ = 0

−hip cos(ϕ− β) cos θ + cos θ sin θ + h⊥ cos θ sinϕ− h‖ cosϕ = 0

(5.17)

and along this trajectory, we know explicitly Hε from Eqs. (5.14) and (5.16)

together, allowing to find λ∗ε(θ, ϕ). A value of λ∗ε > 0 indicates that the

torques dominate over the damping, and that the system evolves naturally

(dissipating some energy), while a value of λ∗ε < 0 indicates that the damping

is stronger than the torques, and that the system evolves under thermal
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Chapter 5 : Spin-orbit torques in the thermal regime

activation (acquiring thermal energy from the environment). If λ∗ε > 0 along

the switching trajectory, no thermal activation is required, and the system

switches directly. However, if λ∗ε < 0 on a part of the trajectory, this part

constitutes the barrier. The overall switching barrier energy is then finally

obtained by integrating λ∗ε along the barrier part of the optimal path

Eb = V

∫ Emax

Emin

dEλ∗ε, (5.18)

with V the volume of the magnet, and ∆ = Eb/(kbT ) the thermal stability

coefficient. Finally, to check the correctness of the code obtained from the

above derivations, we compared its results with the results of Ref. [80] in

the case without field-like torque, and found identical optimal paths and

switching barriers.

5.3 Field-like torque influence on thermal regime

In the present section, we use the results of §5.2 in order to evaluate the

influence of the field-like torque on ∆. Under the presence of an assist field

Hxx̂, we compare the switching barriers with and without a field-like torque.

An assist-field is applied in the x direction and its amplitude is varied over

the range hip = 0.10–0.46. At each field value, we look for the thermal barrier

dependence on J . We obtain the maps of ∆(J, hip) for c‖ = 0.07 and three

values of c⊥ = 0, 0.07, 0.28, which are drawn in Figs. 5.1a-c. The maps were

found similar for the negative values of the torques ratio. By definition, the

barrier reaches 0 at Jc, the critical switching current.

It is noticeable that the presence of the field-like torque not only affects

Jc, as expected from [67], but also modifies the current dependence of the
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Figure 5.1: Evolution of the barrier height with the amplitude of the assist
field for different torques ratios. c‖ = 0.07 and a. c⊥ = 0. b. c⊥ = 0.07. c.
c⊥ = 0.28.

thermal barrier at the same time as their height. Particularly in the case of

c‖ = 0.07 and c⊥ = 0.28, the isobarrier lines in Figs. 5.1c are incurved and

do not exhibit the similar linear relations compared to other cases. We have

to note that some error unavoidably comes from the approximation made in

§5.2 that the optimal switching path is restrained along the set of positions

(θ, ϕ) verifying L0 = 0. Notably, for the low values of the current density

J , a more direct path to the switched region may exist. However, for the

larger values of the current, the torque dominates and this picture is quite

accurate. Thus, we can explain this modification of the relationship between

∆, J and hip by the fact that the field-like torque dramatically modifies the
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Chapter 5 : Spin-orbit torques in the thermal regime

switching paths.

A direct application of the relations derived here between the barrier

height and the field-like torque is to characterize the SOTs. In order to find

whether the field-like torque is present in a system and contributes to the

switching or not, the dependence of the assist field to the torque constitutes

a criterion. This could then provide an analysis for the results of thermally

activated SOT switching [92]. In the view of applications, finding the data

retention properties under currents and fields is essential as suggested in [70],

in particular for mixed SOT-STT cases [93]. Interestingly, as can be seen by

comparing Figs. 5.1a,c, the current dependence is reinforced by the field-like

torque in a manner that the thermal barrier is higher at low current, but

lower at high current. Such a property may be useful to avoid the cross-talk

errors due to the thermally activated switching of half-selected bits.

5.4 Finding the right assist field angle

In this section, the dependence of the thermal activation barrier on the

angle of the assist-field is investigated. From §5.3, we have understood that

even if the field-like torque can greatly reduce the switching currents, it also

has a tendency to curve the originally linear decrease of the barrier with

currents and fields. By varying the angle β, the switching can be optimized.

∆ is computed as in §5.3, but instead of varying the amplitude of the assist-

field, hip = 0.2 is fixed and the in-plane field angle β is varied. The maps

of ∆(J, β) for c‖ = 0.07 and three values of c⊥ = 0, 0.07, 0.28 are shown in

Figs. 5.2a-c.

Not only ∆ is found to be significantly dependant on β, but also the

critical current value Jc. The larger the field-like torque, the more the in-
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Figure 5.2: Evolution of the barrier height with the angle of the assist field
for different torques ratios. c‖ = 0.07 and a. c⊥ = 0. b. c⊥ = 0.07. c.
c⊥ = 0.28.

plane assist-field needs to be accordingly rotated. Actually, it is necessary

that the direction of the assist field and the direction of the sum of the

torques h‖ + h⊥ be matched: if they point to different directions, they will

compete against each other during the switching process, and increase the

energy cost of crossing the barrier.

This point is illustrated in Figs. 5.3a,b: they present a mapping of the

energy density ε on the unit sphere, from the lowest energy (dark blue) to

highest energy (dark red) on a linear scale, for β = 0 and −67.5◦, respectively.

J = 1.5 × 108 A cm-2 and the torques are c⊥ = 0.28 and c‖ = 0.07. The

black line is the trajectory of m shifted from U without current to U under
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Figure 5.3: Evolution of the barrier height with the magnitude of a rotated
in-plane assist field in the case of a significant field-like torque, c⊥ = 0.28
and c‖ = 0.07. a. Energy density and switching path for hip = 0.2, β = 0◦.
b. hip = 0.2, β = −67.5◦. The dark line is the quasi-static trajectory
for the current increased from 0 to J and the purple line is the thermally-
activated switching path from the displaced U position (yellow point).
The outcome of any relaxation along the switching path is color-coded by
red(unswitched)/blue(switched) points. c. ∆(J, hip) for β = −67.5◦.

current (yellow dot) when the current density is slowly increased to J under

the critical current. The thermally-activated switching path found from Eq.

5.17 is drawn in purple. Along the thermally-activated switching path, the

red/blue dots indicate the final state U or D if m relaxes from this point

under J . As expected, only the extremal point of the thermally-activated

switching path, being the top of the energy barrier, allows relaxation to D

as denoted by its blue colour.

In the absence of the field-like torque, for an external field aligned with
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the current, the switching path belongs to the meridian plane xz [70] and thus

has to cross over the lowest energies, being driven close to the saddle point

S1. Under the influence of the field-like torque however, the switching path

(in purple in Fig. 5.3a) is driven away from S1 and is driven to positions of a

higher magnetic energy. This causes an increase of the thermal barrier due to

field misalignment. Rotating the in-plane field brings the saddle point close

to the switching path again and decreases the energy barrier (Fig. 5.3b). As

a consequence, the barrier height also recovers its almost linear dependence

on the field magnitude, as can be seen from Fig. 5.3c. Under the influence

of the field-like torque, aligning the assist field with the direction of the

current does not leads to the best switching efficiency. Note that choosing

β = − arctan
(
−c⊥/c‖

)
roughly allows to get close to the minimum value of

∆ and Jc. This angular dependence can also be used to find the components

of the SOTs: by varying the angle of the assist-field, it is possible to observe

the influence of the field-like torque on the switching and thus to quantify

it, by fitting the observed angular dependence to the present model.

5.5 Conclusions

In this chapter, the equations describing the height of the energy barrier

for the thermally activated SOT switching were derived in the presence of

both Slonczewski and field-like torques, considering in addition the possible

rotation of the assist-field. It has been shown that the field-like torque mod-

ifies the switching path and thus can decrease the energy barrier as well as

the critical current Jc. Moreover, it is obtained by an angular dependence

study that aligning the assist-field with the current direction is not neces-

sarily the optimal choice in the presence of a field-like torque. Both the
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switching barrier and critical current can be further reduced by rotating the

assist-field in the plane. The field magnitude and angle dependence of the

∆(J) plots can thus be used to study the field-like terms in the SOTs and

quantify the torques ratio. This method is not redundant with the vector

second-harmonic measurements of the SOTs [39, 52, 53], but rather com-

plementary: with the vector measurements, a local value of the torque is

derived at the position of m imposed by the external field: such measure-

ments can be tedious in the cases where all positions are to be measured to

find the angular dependence. With the method proposed in this chapter, a

simple evaluation of the average value of c‖ and c⊥ along the switching path

is done, which is more relevant for switching phenomena. Indeed, in the

previous treatment of the problem of the thermally-activated SOT switch-

ing, the possible angular dependence of the SOTs terms—having c‖ and c⊥

varying with θ and ϕ [39, 94, 95]—has been neglected. For materials that

present such an angular dependence, finding an average value is definitely

useful but it would be much relevant as well to include the angular depen-

dence explicitly in the derivations presented in this chapter in order to get a

refined and more quantitative model, which is left for future works.
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Chapter 6

Triaxial anisotropy in spin-orbit torque de-

vices

This last chapter presents a study of the SOT switching in triaxial anisotropy

devices. It was found in earlier studies that breaking the symmetry of the

layered systems is necessary in order to achieve deterministic switching in the

absence of external fields [77, 78]. The approach presented here consists in

shaping the magnet in a way that breaks the symmetry (§6.1). By analysing

the switching under the simple assumption of a macrospin system, it is found

that such a system works in principle (§6.2). The main focus of this chapter

however deals with the experimental investigation of this proposed switching

scheme (§6.3) which, even if it does not simply fall into the perfect behaviour

described in §6.2, shows the features that can be expected from a system of

a broken symmetry.

6.1 Principle of triaxial anisotropy in ellipse-shaped

devices

In the usual SOT switching scheme, where the magnet possesses a uniax-

ial magnetic anisotropy, it is customary to apply an external assist field par-

allel to the current in order to break the symmetry of the system. In Chapter

4, we have defined a way of exploiting the combined dynamics of the two SOT
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terms in order to achieve deterministic switching. In this chapter, we also

aim at eliminating the assist field to simplify the engineering of the struc-

tures, but we would like our method to be compatible with the quasi-static

regime, so that simple measurements and comparison with the conventional

scheme can be done. Deterministic switching cannot be achieved if the rever-

sal processes are identical for U and D states, and for both current directions

[77, 78]. As a consequence, we need to break the symmetry of the system.

To do this, we propose to use the shape anisotropy in a perpendicularly

magnetized FM layer, which can be patterned easily as an ellipse. However,

the shape anisotropy by itself cannot be the equivalent of the assist field. As

can be understood from Eq. 2.5, the shape anisotropy is indeed a quadratic

function of the angle with the long direction of an elongated shape, and

does not have the form of a field. If one tries to add a shape anisotropy

along the current direction to mimic the assist field, this anisotropy—due to

its quadratic form—will act as a reversible assist field. Such an anisotropy

field helps switching when the current flows in one direction, and reverses

when the current flows in the opposite direction, which also helps switching.

The sign of hxJ is constant for both U and D states, and for both current

directions. In other terms, the symmetry is not broken, as can be seen from

Fig. 6.1a.

In order to break the symmetry of the system, we rather have to rotate

the long axis of the ellipse in the layer plane. We denote the rotation angle

between the long axis of the ellipse, û, and x̂ by Φ. We note v̂ the direction

of the short axis. As can be seen from Fig. 6.1b, the inversion symmetry

is broken by this rotation. The shape anisotropy is no longer uniaxial as
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Figure 6.1: a. Schematic of an SOT device with an in-plane shape anisotropy
aligned with the current direction. The mirrored image shows an identical
device, except if an external field is applied. b. Schematic of an SOT device
with an in-plane shape anisotropy rotated with respect to the current direc-
tion. The mirrored image shows a different device. In each case the green
material is the HM while the red one is the FM.

Nz > Nv > Nu and

εd =
µ0
2
M2

S

[
Nu(m · û)2 +Nv(m · v̂)2 +Nz(m · ẑ)2

]
−K2(m · ẑ)2. (6.1)

We consider a uniform magnetization inside the magnet, and the interfacial

magnetic anisotropy to be larger than all other terms. Using the notations

defined in §2.3, we can rewrite the effective field in Eq. (4.2) by finding the

derivatives of the energy density

−1

µ0MS

∂εd
∂θ

= MS

[
Nz −Nu cos2(ϕ− Φ)−Nv sin2(ϕ− Φ)− 2K2

µ0MS

]
sin θ cos θ

(6.2)

−1

µ0MSsinθ

∂εd
∂φ

= MS(Nu −Nv) sin θ cos(ϕ− Φ) sin(ϕ− Φ) (6.3)

which gives us two components of the anisotropy

Ha =

[
2K2

µ0MS
− (Nz −Nu)MS + (Nv −Nu)MS sin2(ϕ− Φ)

]
cos θẑ (6.4)

Hb = −(Nv −Nu)MS cos (ϕ− Φ) sin (ϕ− Φ) sin θẑ× m̂ (6.5)
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We finally decompose these terms using Hani = 2K2/(µ0MS)−(Nz −Nu)MS

and Hsh = (Nv −Nu)MS to obtain the reduced anisotropies (non dimen-

sional parameters, as in Chapter 4)

ha =
(
1 + hsh sin2(ϕ− Φ)

)
cos θẑ (6.6)

hb = −hsh
sin(2(ϕ− Φ)) sin θ

2
ẑ× m̂ (6.7)

One can verify that we find the same orthogonal components using Eq. (2.4).

The shape anisotropy slightly modulates the perpendicular anisotropy de-

pending on the azimuthal angle, but more importantly it generates an ad-

ditional torque term when m is close to the plane that makes m align with

û.

6.2 Asymmetric destabilization of the equilibria

We now look at the influence of this additional shape anisotropy on the

switching regimes. We consider, like in Chapter 4, MS = 1500 emu cm-3, a

weak perpendicular magnetization Hani = 1000 Oe and a thickness tFM =

1.6 nm. By choosing a rather low perpendicular magnetic anisotropy, we aim

at amplifying the effects of the shape anisotropy. The size of the elliptical

shape defines its demagnetizing factors: we summarize the values of Nu and

Nv obtained from the approximation that they have a prismatic shape and

the deduced values of hsh according to Ref. [96] in Table 6.1.

Size 400× 200 nm2 200× 100 nm2 100× 50 nm2

Nu 0.00736 0.01295 0.02241

Nv 0.01499 0.02648 0.04592

hsh 0.144 0.255 0.443

Table 6.1: Values of the demagnetizing factors and reduced anisotropy for
different ellipse sizes.
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Before we perform any numerical simulations, one can expect two effects

of the shape anisotropy.

1. The action of the anisotropy should be similar to that of an assist field.

As a consequence, different threshold currents should appear for U to

D and D to U switching.

2. The equilibrium positions of the magnetization should be shifted. How-

ever, Eq. (6.6) and (6.7) suggest that the additional anisotropy have

a stronger effect when m is close to the plane. We expect a large dis-

placement of OM1 and OM2, but a smaller shift for U and D. At zero

current, U and D will not be displaced from ±ẑ.

To verify these two properties, the switching loops are simulated by ap-

plying sweeps of current pulses much longer than the dynamic regime, from

−1.2J0 to 1.2J0. The size is chosen as 200×200 nm2 for circles and 200×100

nm2 for ellipses, with h‖ = 0.5 and h⊥ = 0. mz = m · ẑ is shown in Figs.

6.2a-f for a circular device under no field and hx = 0.1 (Figs. 6.2a,b), and

for ellipse shaped devices with Φ = 0, 90, 45 and −45◦ rotation without

field (Figs. 6.2c-f). The initial state can be either U (upwards triangles) or

D (downwards triangles). In the case of a circular device, as shown in Fig.

6.2a, all switching thresholds are symmetric and switching cannot be deter-

ministic. The action of the external assist field is to modify the switching

thresholds of U and D in order to get deterministic switching (Fig. 6.2b).

As expected from our analysis above, shaping a secondary anisotropy which

does not break the symmetry is inefficient to provide deterministic switch-

ing. The switching thresholds are slightly modified, reduced for Φ = 0◦ (Fig.

6.2c), and increased for Φ = 90◦ (Fig. 6.2d), but still symmetric. On the
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Figure 6.2: Vertical component mz = m · ẑ of the magnetization under
current in ellipse-shaped devices. a. Circle device, hx = 0. b. Circle device,
hx = 0.1. c. Ellipse device, Φ = 0◦. d. Ellipse device, Φ = 90◦. e. Ellipse
device, Φ = 45◦. f. Ellipse device, Φ = −45◦. The upwards triangles indicate
an initial state U , the downwards triangles indicate an initial state D.

contrary, tilting the ellipse modifies the symmetry of the system which gives

asymmetric switching thresholds (of a few percent). It is also observed that

the position of the OM1 equilibrium is modified and moves to z > 0 for

Φ = 45◦ (Fig. 6.2e) or to z < 0 for Φ = −45◦ (Fig. 6.2f). This allows
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deterministic relaxation from this state.

6.3 Experimental investigation

To verify the applicability of this principle, we proceed to the exper-

imental verification of the SOT switching properties of ellipse-shaped de-

vices. As we have learned from our study of the DMI in §4.5, its influ-

ence opposes the coherent switching behaviour, therefore it is not desir-

able if we want to observe the properties of a system with uniform mag-

netization. This reason leads to the choice of Ta for the HM layer, as

the DMI is known to be weak in Ta/HM structures [85]. The full mul-

tilayer stack is deposited by dc-magnetron sputtering and composed of (Si

substrate)/Ta(6)/CoFeB(1)/MgO(2)/SiO2(3), the numbers into brackets be-

ing the thicknesses in nanometres. After deposition, the films exhibit per-

pendicular magnetic anisotropy. Hall bar crosses with 900 nm-wide arms are

patterned by electron beam lithography and ion beam etching. After this,

a second electron beam lithography process is used in order to define the

pattern of the FM, followed by another etching step down to the Ta layer.

We define three types of devices: the usual circular dots corresponding to

uniaxial anisotropy systems (300 nm diameter), ellipse-shaped dots with the

long axis aligned with the current (300 nm ×150 nm), and ellipse-shaped

dots whose long axis has been rotated by 45◦ (also 300 nm ×150 nm). A top

view of the different devices geometry, with the definition of the measurement

currents Jx and Jy, is shown in Fig. 6.3.

We first verify the magnetic properties of the devices by measuring their

anomalous Hall resistance (AHR) while sweeping an external magnetic field

Hext. The AHR adds a shift to the value of the Hall resistance that is

87



Chapter 6 : Triaxial anisotropy in spin-orbit torque devices

𝑱𝒙

𝚽 = 𝟒𝟓°

𝑱𝒙

𝚽 = 𝟎°

𝑱𝒙

𝑱𝒚 𝑱𝒚 𝑱𝒚

Figure 6.3: Schematic (top view) of the geometry of the devices and definition
of the measurement currents.

proportional to the vertical component of the magnetization, allowing us to

distinguish between the U and D states. We report one example of AHR

loop measurements in both out-of-plane and in-plane configurations. Mea-

surement of the AHR is made in the Hall cross using a sinusoidal waveform

current generator and synchronous lock-in detection, keeping a small current

value in order to avoid any effect of the torques. As shown in Fig. 6.4a, the

devices exhibit a good perpendicular magnetic anisotropy, as only the U and

D states appear on the AHE loop. The AHR measured while applying an

in-plane field (with a small tilt angle of 2◦ to avoid the formation of inhomo-

geneous domains, Fig. 6.4b) gives a good estimate of the effective anisotropy:

by fitting the AHR to sin θ = Hext/Hani, we find Hani = 750 Oe. After doing

this, the magnetic field is precisely aligned in the plane, and parallel to the

current in the x direction, by finding the centred AHR loop at ±0.1◦.

The field being precisely aligned, it is possible to measure the SOT switch-

ing under an assist field. The measurement is similar to the previous one, but

it is the applied current Jx that is swept instead of the field, which is fixed.

In order to avoid accumulated Joule heating, the Hall resistance is measured

for single pulses (200 µs) of varying amplitudes. The switching loops for cir-

cular devices are shown in Figs. 6.5a-d. As expected, an hysteresis switching
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Figure 6.4: a. Out-of-plane and b. In-plane field swept anomalous Hall
resistance measurements.

loop is obtained which shows deterministic switching. Moreover, the direc-

tion of the switching loop is changed from anticlockwise to clockwise when

the field is reversed (Figs. 6.5a-b), which is an evidence of SOT switching.

When the assist field is reduced, the switching current increases, which is

also expected, and the deterministic switching is less obvious, as can be seen

from Figs. 6.5c-d in which RAHE gets closer to zero at high currents.

The same measurements are performed for the rotated ellipse samples and

their SOT switching loops are reported in Figs. 6.6a-d. One can notice the

successful patterning of the ellipse shape, as the loops exhibit a reduction by a

factor of two in the AHR, which reflects the reduction by a factor of two in the

device area. No significant differences between the behaviour of the ellipse-

shaped and circular devices are present however. This failure to observe

any asymmetry in the switching currents may be due to the fact that the

assist field dominates the behaviour of the devices or to a reversal mechanism

differing from a coherent reversal: in the case of a domain nucleation followed

by propagation, the effect of the anisotropy would be extremely reduced.

In order to clarify this point, the SOT-switching loops in the absence of
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Figure 6.5: Spin-orbit torque current-induced switching loops of circle de-
vices in the presence of different assist fields. a. 100 Oe. b. −100 Oe. c. 10
Oe. d. −10 Oe. The blue points are obtained for a decreasing sweep and
the red ones are obtained for an increasing sweep of the current.

external fields are measured. To exclude the possibility of a remanent field in

the setup acting as an assist field, the device is rotated from 0 to 180◦ by 30◦

steps, and measured at each position. In the case where the switching loop

would be determined by an external field, a rotation of 180◦ of the sample

should reverse the loop, which is not observed here as all loops are found

similar. The measurements are performed for two different configurations

with J flowing along x and J flowing along y (see Fig. 6.3). This allows

to measure circular samples (Figs. 6.7a,b) and ellipse samples with Φ = 0◦

(Fig. 6.7c), 90◦ (Fig. 6.7d), 45◦ (Fig. 6.7e) and −45◦ (Fig. 6.7f). Also, as

non-deterministic outcomes can be expected, the current is swept from zero
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to the large positive values, back to the large negative values, and in several

cycles in order to complete the loop.

The first noticeable point is that the circular devices and the rotated el-

lipses show switching hysteresis loops, while the ellipses without rotation do

not. For Φ = 0◦ the behaviour is non-deterministic with half probability of

m being up and half probability of being m being down at low currents (Fig.

6.7c). For Φ = 90◦, only one state is observed. As a perturbation coming

from an external assist field is excluded, these effects originate from the de-

vices themselves, even in the circular devices whose symmetry is presumably
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Figure 6.6: Spin-orbit torque current-induced switching loops of ellipse de-
vices (45◦ rotation) in the presence of different assist fields. a. 100 Oe. b.
−100 Oe. c. 10 Oe. d. −10 Oe. The blue points are obtained for a de-
creasing sweep and the red ones are obtained for an increasing sweep of the
current.
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Figure 6.7: Spin-orbit torque current-induced switching loops at zero field.
a. Circle, J along x. b. Circle, J along y. c. Ellipse, J along x (0◦ rotation).
d. Ellipse, J along y (90◦ rotation). e. Rotated ellipse, J along x (45◦

rotation). f. Rotated ellipse, J along y (−45◦ rotation).

unbroken. One can imagine that any imperfection of the system originat-

ing from the fabrication process, such as non-uniform anisotropy, uneven

MS , current inhomogeneities, misalignment of the dot position, etc. would
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favour one switching direction. Unfortunately, these effects cannot be easily

controlled: measurements on different circular devices show an opposite di-

rection of the switching loops. In addition, the loop is sometimes reversed

when the current direction is changed from x to y in the same device, and

sometimes not, supporting that the origin of the switching direction is related

to defects.

For the non-rotated ellipses, the measurements are not fully consistent

with the macrospin analysis of §6.2. The switching thresholds for a 0◦ ro-

tation are indeed reduced, and can explain the non-deterministic switching

with centred mz = 0. On the contrary, assuming a macrospin behaviour the

switching thresholds for a 90◦ rotation are supposed to be increased. They

are found larger for the state presented here, as shown in Fig. 6.7d. How-

ever, other loops measured for a manually prepared opposite initial state

(not shown) reveal that the switching threshold is reduced for the other

state. Such behaviours cannot be explained by the macrospin analysis and

may originate from non-uniform switching processes, which we will not anal-

yse here. In the case of the rotated ellipses, unpredictable switching loops

similar to the ones found in the circular samples are observed. The few

percent of switching currents asymmetry are not sufficient to ensure deter-

ministic switching. However, in addition to them, a second switching occurs

at larger current densities (for example, at Ich = 1 mA in Fig. 6.7e). In

the case of a 45◦ rotation of the ellipse (Fig. 6.7e), one state (low RAHE) is

favoured for both current polarities, and in the case of a −45◦ rotation (Fig.

6.7f), it is the opposite state (high RAHE), as was analysed in §6.2. As a

consequence, this switching characteristic allows deterministic switching of

the ellipse from U to D in one case and from D to U in the other case.
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6.4 Conclusions and remaining works

The analysis of the critical switching currents and equilibria in triaxial

anisotropy devices with a rotated main axis shows that deterministic switch-

ing can be achieved even in the absence of external magnetic fields. It is

verified by experiments, even if the system does not behave as a perfect

macrospin system, that it is possible to exploit the anisotropy of the system

to switch its magnetization deterministically at high currents.

However, an issue arises from this geometry, as the switching is found

not to be bipolar anymore. In usual uniaxial systems under an assist field,

reversing the current allows to achieve the opposite switching event. On the

contrary, in the case of a triaxial anisotropy in a rotated ellipse, either in the

case of Φ = 45◦ or Φ = −45◦, only one switching D to U or U to D is obtained

whatever the current polarity is, where the opposite switching direction is

prevented. Because Φ is fixed while fabricating the device, it is a priori not

possible to use these ellipse-shaped devices for memory applications, which

require bipolar switching. To circumvent this issue, an alternative device

geometry can be employed, where the current can be injected into the HM

along two orthogonal directions. Fig. 6.3 actually displays a schematic of

such a 4-terminal device.

However, some of the results presented above cannot be explained by

the sole macrospin model. Taking the influence of the field-like torque and

of non-homogeneous switching into account could be an interesting way of

further analysing these experiments. The fact that deterministic switching

loops are observed in circular, symmetric devices also deserves more investi-

gation. A careful preparation of the defects, in particular of the structural
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asymmetry originating from the misalignment of the dot position, could al-

low reproducible behaviours, which would be of great significance. One way

to predict the conditions for such a deterministic switching would be to per-

form micromagnetic simulations, accounting for asymmetry, defects in the

anisotropy and/or in the current distribution inside the bilayer, as well as

their interaction with the field-like torque and the DMI. However, to be able

to compare the experiments with a realistic micromagnetic model, a precise

characterization of the samples with nanometer-resolved instruments would

first be required, in order to understand the nature and size of the defects, the

real amount of current imbalance, etc. Such an exploration would constitute

a valuable extension of this work.
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In this thesis, we have been focusing on the switching dynamics of spin-

orbit torque magnetic devices. It is expected that spin-orbit torque can

provide fast, energy-efficient and reliable switching operations, placing spin-

orbit torque devices as a good candidate for the design of future random

access memories. In Chapter 3, we have identified two directions of further

investigation for the manipulation of the magnetization in FM by spin-orbit

torques that would benefit such applications.

The first direction was to find how to avoid the requirement that an ex-

ternal assist field needs to be applied to spin-orbit torque devices. Avoiding

this requirement would indeed greatly simplify the engineering and the fab-

rication of the multilayer stack of spin-orbit torque devices. Two methods

have been presented here that can be applied in two different contexts. In

the case of quasi-static switching, where the switching speed is not one of the

primary objectives, the approach of breaking the symmetry of the system by

fabricating a rotated, ellipse-shaped device has been investigated in Chapter

6. It has been shown experimentally that this technique allows deterministic

switching of the FM, in a simple bilayered HM/FM system fabricated by a

common lithography technique. From this principle, a four-terminal device

can be realized which allows to choose the direction of switching by varying

the direction of the current. Nonetheless, further investigation of the be-

haviours observed experimentally is still to be done, in order to understand
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and possibly control the deterministic switching originating from defects or

inhomogeneities and exploit it in devices. In the situation of dynamic opera-

tion, which on the contrary especially aims at triggering the fastest magnetic

switching, it has been demonstrated in Chapter 4 that the careful choice of

the Slonczewski to field-like torque ratio allows to employ an efficient and

simple deterministic switching scheme that does not require the assistance of

a magnetic field. This dynamic switching scheme is particularly promising,

as the careful study of the switching times and operation requirements has

revealed switching performances able to compete with the other spin torque

switching schemes. The half-precession switching of the FM is expected to

operate in a sub-nanosecond timescale similar to that of the switching in or-

thogonal spin-torque devices or in the best spin-orbit torque devices achieved

so far. Furthermore, the short switching times demonstrated in ultrafast

spin-orbit torque devices have been analysed by micromagnetic simulations

showing a non-uniform switching process triggered by the assist-field. Our

proposed switching scheme promises the same switching speeds in the ab-

sence of external fields, as was confirmed by micromagnetic simulations. The

development of new materials for spin-orbit torques may combine with this

method to allow even shorter switching times at lower current densities. The

influence of the angular dependence of the spin-orbit torques in this context

remains largely unexplored and could also be combined with the approach

presented in this thesis to develop more efficient switching schemes.

The second direction was to identify and understand the role of the field-

like torque in magnetization switching. The half-precession switching scheme

exposed in Chapter 4, which strongly relies on the field-like torque, consti-

tutes an improvement in the understanding of the combined influences of
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both torques in the dynamic regime. We have seen that while the field-like

torque brings an excitation to the system, the Slonczewski torque damps

the precession the field-like torque has induced. This thesis also helped to

complete the understanding of thermally-activated spin-orbit torque switch-

ing, by analysing the influence of the field-like torque on the thermal regime

in Chapter 5. We have shown that the dependence of the thermal barrier

on both the amplitude and the angle of the external assist field is dramat-

ically modified by the presence of a field-like torque, which allows for its

characterization. Also, this shows that in the thermal regime, the influence

of the field-like torque on the switching currents could be directly observed

and distinguished from the one of the Slonczewski torque. This observation

provides us a measurement method of the effective torque strengths in the

particular context of magnetization switching, that adds to other methods

relying on second-harmonic measurements.

Hopefully, these developments will benefit to the understanding of mag-

netization switching by spin-orbit torque as well as to its application in mag-

netic memory devices. The outcomes of the present work strengthens the

expectations that spin-orbit torques memories can compete with the other

magnetic memory technologies and motivates further efforts and develop-

ments in the area of ’spinorbitronics’.
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