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This paper presents ongoing development for  a novel  integrated screening framework for  flexibility  analysis  considering multi-
domain uncertainty  sources and multi-criteria  for  designing complex engineering systems.  The proposed methodology aims to
address two main issues in the design process for flexibility: 1) the complexity of exploring exhaustively flexible design strategies
under multiple uncertainty sources, and 2) the multiple and possibly conflicting criteria inherent to design decision-making. The
proposed screening framework is applied to a real-world capital-intensive project in the oil and gas industry. Current results indicate
that the screening model offers better performance than a full exhaustive search of the design space in terms of the number of
evaluations and simulation runtime, while providing good design solutions in terms of lifecycle performance. The work provides
insights on how to analyze flexibility in the conceptual design of complex systems, especially when computational resources are
limited, and design needs to consider multiple decision-making criteria.
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1 INTRODUCTION 
Designing complex engineering systems is a challenging task. Uncertainty affects systems lifecycle 
performance, and provides a range of risks and opportunities. For instance in the oil and gas industry, 
new technologies emerge over time (e.g. Pre-cooled Nitrogen Expander (PreNex) technology for LNG 
production), customer demand and preferences vary (e.g. fuel type switches from oil to LNG), market 
prices fluctuate, and local and international regulatory changes (e.g. tax policies for low-carbon 
technologies, International Maritime Organization (IMO) regulations to prevent pollution from Ships - 
MARPOL annex VI). Designing complex systems requires considerable capital investments as they 
are typically large-scale and long-lasting systems. Standard design processes and evaluation 
approaches, often based on design requirements, optimization, and most likely or average trend 
forecast (e.g. demand, price) may lead to  Lifecycle performance that is not consistent with forecasted 
trends in the early design phases (Flyvbjerg et al., 2003). New design approaches taking explicit 
considerations of flexibility and uncertainty are needed to enable a system to better adapt as 
uncertainty unfolds over time. 
Flexibility provides additional value to engineering systems that is typically not recognized from 
standard design and evaluation procedures. Flexibility is defined here as the “right, but not the 
obligation, to change a system in the face of uncertainty” (Trigeorgis, 1996). Value improvements 
ranging between 10% and 30% are observed routinely in many industries, as shown by de Neufville 
and Scholtes (2011). Flexibility provides a form of insurance against downside potentials. It also 
positions the system to capitalize on unexpected, upside opportunities. The net effect is typically to 
increase the overall lifecycle economic performance of the engineering system. 
Designing flexible engineering systems is not an easy task. Crucial decisions are needed in the early 
stages of the design and evaluation process to select and find the best possible alternatives, before 
detailed design and implementation. The literature in the domain of oil and gas infrastructure shows 
that high fidelity modeling can often be quite time consuming or even computationally intractable 
since models take hours if not days to analyze a single design alternative (Güyagüler, 2002, Lin, 
2009). Decision makers may not be able to wait until optimization results are ready for design 
selection under deterministic conditions, let alone consider many uncertainty sources, and flexibility in 
design strategies. Besides, in the early stages of a project, inputs and models may be uncertain, 
resulting in a high-fidelity model that does not necessarily give better results than a mid-fidelity one 
(Lin, 2009). In addition, the best flexible design alternatives need to satisfy many criteria, and possibly 
conflicting goals. For instance, the aim might be to choose a design based on the highest expected 
performance value (e.g. expected Net Present Value or ENPV), 5th (P5) and/or 95th (P95) values, 
volatility of performance outcomes, and initial capital expenditure (CAPEX).  
This paper presents ongoing development of a novel screening framework that addresses the issue of 
computational complexity in flexibility analysis, in addition to multi-domain uncertainty, and multi-
criteria analysis. The Related Work section presents the background motivating this study. The  
Methodology section describes the proposed screening framework to evaluate the baseline design 
alternatives and flexible designs. The Application section demonstrates a case study along with current 
results for the proposed framework in an oil and gas project. The Discussion and Conclusion sections 
provide practical insights to practitioners, discusses limitations, and directions for future work. 

2 RELATED WORK  
Four main axes of research opportunities are related to this work: 1) design for flexibility, 2) multi-
domain uncertainty, 3) screening model, and 4) multi-criteria decision-making. The following 
accounts for the main contributions motivating this work, and the corresponding research gaps.   
Yang (2009) proposed a screening model to explore planning decision considering demand uncertainty 
in the auto industry manufacturing systems. Her framework was developed to make decisions in three 
domains of strategic, tactical and operation, aiming at finding promising flexible strategies efficiently. 
There are, however, some limitations concerned with this study. For problem modeling, only design 
variables were considered for optimization in the flexible system configuration, and no decision rules1 
                                                        
1 A decision rule is a triggering mechanism determining when it is appropriate to exercise a particular flexibility, 
based on some uncertainty observable. For instance, one may decide to expand LNG production capacity after 
demand reaches a certain threshold. Decision rules can be modeled to assess the value of flexibility. 
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were used to adapt the configuration of the system under demand uncertainty. As a result, tactical level 
flexibility strategies were ignored, such as the ability to expand production capacity in each plant. The 
study only considered one uncertainty source (i.e. product demand), while many others exist (e.g. 
material price).  
Lin (2009) proposed a four-step screening model to identify and evaluate architecture and developing 
strategies for capital intensive projects in the early stages of the design. Unlike Yang’s research 
(2009), Lin benefited from decision rules to embed the flexibility in the system. On the other hand, the 
procedure used to tuning the decision rules was based on engineering practices and a trial-and-error 
approach, which needs iterative procedure which leads to bios sampling in design space. There is a 
need for a more systematic search process to evaluate flexibility decision rules, which are crucial to 
generate value enhancing solutions. 
Gupta and Grossmann (2012) presented a mixed integer nonlinear programming model (MINLP) for 
offshore oilfield development problem. The proposed model considers multisite investment and 
operation planning decisions considering three main components of oil, water, and gas, aiming at 
maximizing total NPV for long-term planning horizon. The model involves decisions related to 
floating production, storage, and offloading (FPSO) installation and expansions, field−FPSO 
connections, well drilling, and production rates in each time period. All decisions, however, were 
made based upon deterministic conditions, which may not be appropriate for flexibility analysis. 
Furthermore, considering a single fiscal objective may not satisfy the stakeholder’s preferences. 
Ross (2003) introduced a structured framework for designing complex engineering systems 
considering multi-attribute decision making concept. The Multi-Attribute Tradespace Exploration 
(MATE) framework relies on a tradespace spanned by completely enumerated design variables. The 
full enumeration of a tradespace can be computationally demanding. Hence, this presents a research 
opportunity to explore such a vast solution space more efficiently by minimizing the computational 
time through removing sampling bias in tradespace enumeration. 
Güyagüler (2002) introduced a hybrid optimization technique (HGA), based on genetic algorithms 
(GA) combined with Kriging techniques to determine the best location for new wells in offshore 
petroleum industries. There are limitations concerned with problem modeling, and the fact that only 
well placement uncertainties were addressed. Other sources of uncertainty can be considered at 
operational, tactical, and strategic levels to deliver more valuable design alternatives. 
Tavakkoli-Moghaddam et al. (2012) developed a multi-criteria model for operational planning of 
cellular manufacturing systems considering alternative process routs. A meta-heuristic algorithm was 
proposed to tackle the computational burden of the branch and bound algorithm. The main issue with 
the work is that all parameters considered are deterministic, which is not appropriate for flexibility 
analysis. 

2.1 Main contributions 
The main contribution of this ongoing research is to introduce an integrated multi-criteria screening 
framework to explore flexible design strategies efficiently and effectively. None of the work above 
considers the following four aspects simultaneously: 1) flexibility analysis for design decision-making 
under uncertainty, 2) a screening approach alleviating the complexity of real-world computationally 
intensive simulations, 3) a multi-criteria search approach to bring flexible designs consistent with 
stakeholders’ preferences, and 4) multi-domain uncertainty to deliver better value-driven designs via 
explicit considerations of operational, tactical, and strategic sources of flexibility. 

3  METHODOLOGY  
A structured methodology is developed to address the following research questions: 1) how can one 
find the best flexible design alternative with less computational effort compared to full exhaustive 
search, considering multiple decision-making criteria, and multi-domain uncertainty sources?, and 2) 
with regards to the case study, what should be the best flexible design and deployment strategy in the 
face of uncertain market demand? The above questions are addressed by first proposing a novel 
screening framework accounting for the four axes mentioned above. The proposed framework is then 
used to analyze a LNG production system as a demonstration case study. The goal is to quantify 
potential value improvements not recognized by standard design and evaluation approaches, while 
trading off efficient design space exploration to find the best flexible design and management 
strategies for this system 
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3.1 Proposed Screening Framework 

Figure 1: Proposed multi-criteria screening method for flexibility 

3.1.1 Phase 1: Problem modeling 
Problem modeling is the starting phase of the framework, and includes three steps (see ):  

Step 1: Baseline Quantitative Performance Model 
This step generates a baseline quantitative performance model to evaluate the design alternatives 
subject to a number of assumptions, such as market parameters, design parameters, cost and revenue 
drivers. A performance-based model is developed, and lifecycle performance of different design 
alternatives is measured using different metrics (e.g. Net Present Value or NPV). The initial model is 
based on deterministic values for the uncertainty factors, and fixed design variables and parameters. 

Step 2: Uncertainty Analysis 
In step 2, the lifecycle performances of the designs are investigated under uncertainty of the major 
uncertainty drivers. The lifecycle performance of the system is recognized as highly sensitive to 
varying sources of uncertainty. To model the behavior of uncertainty throughout the evaluation period, 
a stochastic function can be used such as Geometric Brownian Motion (GBM), S-curve function, 
Mean Reverting Process, etc. Using this stochastic model and Monte Carlo simulation, one can 
generate a large number of possible scenarios (e.g. LNG demand). After the risk profiles of the 
different design alternatives are generated, they can be compared based on different performance 
metrics (e.g. average or mean value, value at risk captured as 5th performance percentile, variability). 

Step 3: Flexibility Analysis 
Step 3 introduces the notion of flexibility in the design, deployment, and evaluation of the different 
alternatives. Flexible design opportunities are considered to cope with the major uncertainty drivers 
based on a number of generic real option strategies (e.g. capacity expansion/reduction, switching 
inputs/outputs, deferring investment, etc.) (Trigeorgis, 1996). Flexible strategies are characterized by a 
combination of design variables and decision rules, thereby defining the design space. Decision rules 
are embedded in the evaluation model using logical statements such as “IF…, THEN, ELSE, …”. 

3.1.2 Phase 2: Screening procedure 
The screening procedure benefits from the response surface approach, through building a meta-model. 
The aim is to reduce the computational burden of evaluation process required using the original 
simulation model. To capture the nonlinearity of the system response (e.g. value of flexibility or 
ENPV), a DACE (Design and Analysis of Computer Experiments) model is applied. The key to using 
response surfaces for finding the best flexible design lies in balancing the need to exploit the 

Yes 

No 

Phase 2: Screening procedure 

(1): Strategy synthesis  (2): Simulation 

(3): Build meta-model  

(4): Meta-model evaluation  (5): Meta-model 
is good enough?  

Exit this phase 

(1): Multi-objective optimization 
(6) 

 
(2): Ranking promising options  

Preference 
information 

Phase 3: Multi-criteria decision-making 

Local and global 
sensitivity analysis 

Phase 4: Sensitivity analysis 

(1): Deterministic quantitative 
performance model 

(2): Quantitative performance 
model under uncertainty  

(3): Quantitative performance 
model for flexibility 

Phase 1: Problem modeling 
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approximating surface (by sampling where it is optimized) with the need to improve the 
approximation (by sampling where prediction error may be high). Finally, this phase terminates via a 
credible stopping criterion, as shown in Figure 1. 

3.1.3 Phase 3: Multi-criteria decision-making 
The dominant distinct candidate flexible designs are generated based on generalized goals and 
domain-specific preferences. Exploring the solution space based on generalized preferences as primary 
goals can be done using an evolutionary multi-objective search engine to find the Pareto front 
solutions. The following tasks are considered: 1) using finalized meta-model as a surrogate of 
simulation model, 2) finding promising dominant flexible configurations, and 3) clustering distinct 
dominant design through identifying the region of interest on Pareto front. In 2), distinct candidate 
flexible designs are ranked based on qualitative preference such as sustainability, safety, durability, 
reparability, maintainability, manufacturability, and modularity among others (Allen et al., 2002). The 
following tasks are then considered: 1) multi-attribute decision-making, and 2) weighing of the 
different criteria based on decision-makers’ preferences. 

3.1.4 Phase 4: Sensitivity analysis 
In order to observe how sensitive the model is subject to some critical parameters, several local and 
global sensitivity analyses are conducted. This analysis may seek different purpose such as the effect 
of having flexibility in different domains of study, different decision rule parameters, a range of design 
parameters, etc. The results of this analysis can be used to see that the best flexible designs proposed 
by the framework if remain unchanged. 

4 APPLICATION 
4.1 Case study 
The problem is to design a LNG production and fueling system for trucks used in on-road 
transportation and mining operations. There are currently two design alternatives considered (see 
Figure 2): 1) deploying small decentralized LNG production facilities combined with fueling stations, 
or 2) a big centralized production facility with satellite fueling stations along the pipeline.  

Figure 2: Decentralized (a) and centralized (b) design alternatives 

Design alternative 1 – referred as decentralized system in Figure 2 (a) – consists of 5 satellite plants 
with 20% production capacity of the centralized plant at each site, along with fuelling stations along 
the pipeline at strategic points to accommodate demand. Design alternative 2 – referred as centralized 
strategy in Figure 2 (b) – consists of building a centralized LNG plant with 100% capacity equipped 
trucking fleets for distributing the fuel to satellite fueling stations. For design alternative 2, fueling 
stations should be laid out along the trucking routes. 
A third design alternative is considered to introduce the notion of flexibility, which is described as on-
site capacity expansion. This strategy is the most relevant to deal with uncertain localized demand 
growth, a major uncertainty driver to economic performance. This flexible decentralized solution is a 
flexible version of design alternative 1. It consists of 5 satellite plants deployed first with 10% initial 
capacity. Then, depending how fast the demand grows over time, their capacity can be expanded to a 
maximum of 20% capacity, only when required by localized demand. This design alternative contrasts 
with alternatives 1 and 2, which are both rigid inflexible design and deployment strategies. 

(b) (a) 
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4.2 Analysis using proposed methodology 
4.2.1 Phase 1: Problem modeling 

Step 1: Baseline DCF Model 
The performance metric used in this example is NPV, calculated as the sum of discounted cash flows 
throughout the project lifecycle T = 20 years – see equation (1). Variables !!! and !!! show the total 
revenues and costs incurred in years t = 1, 2, .... !, and  ! is the discount rate with 0 ≤ ! ≤ 1.  

!"# = !!! − !!!
1 + ! !

!

!!!
 (1) 

Step 2: Uncertainty Analysis 
A stochastic S-curve function is assumed to simulate LNG demand over the study period, shown in 
equation (4). The rationale is that demand for LNG initially grows slowly for some time, because the 
market and LNG infrastructures are evolving. Then over time demand increases exponentially, and 
finally tapers as it approaches a saturation limit. Variable !! is the maximum expected demand for 
LNG at demand point l; b is the sharpness parameter that determines how fast demand grows through 
the temporal range to reach the upper bound for demand at any demand point l, !!; a is a translation 
parameter that interacts with b, but translates the curve horizontally. Since economic performance is 
highly influenced by the sharpness parameter b, uncertainty is considered and modeled using an 
additional uncertainty factor !!. Monte Carlo simulation is used to simulate a wide range of scenarios. 

!"#$!" =
!!

1 + !!!!(!±!!)! (2) 

Step 3: Flexibility Analysis 
To embed the capacity expansion policy, a simple decision rule was incorporated in the Excel® DCF 
model: IF “observed demand in the last year was higher than a certain threshold value at a given site” 
THEN “expand capacity to its maximum planned level until the end of the lifecycle” ELSE “do 
nothing”. The threshold value corresponds to the maximum capacity that can be reached at each site, 
which is 20% of total production capacity of the centralized plant. For example, decision-makers may 
decide to add another plant as soon as demand reaches 75% of maximum planned capacity for the site. 
Figure 3 shows the simulation results corresponding to all design alternatives, with the decision rule 
affecting only the flexible decentralized design. The vertical dashed lines represent the ENPV over 
2,000 simulations for the three design alternatives. For the inflexible decentralized design alternative 1 
(blue) ENPV = $10.23 million, for the centralized design 2 (red) ENPV = $13.6 million, and for the 
flexible decentralized design alternative 3 (green) ENPV = $18.45 million. For the flexible case, the 
following decision rule was used: if “observed demand in the last year was higher than 85% of 
maximum planned capacity at the site (i.e. 85% of 20% of total capacity)” then “add 10% capacity in 
extra LNG production capacity” else “do nothing”. Note that the decision rule is applied 
independently at each of the five sites, depending on the demand scenario realized. It can be applied 
only once in any year t. Once full capacity is reached, it remains at that production level. 

 
Figure 3: Cumulative distribution of NPV based on 2,000 LNG demand scenarios 
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The value of flexibility is calculated as shown in equation (3): 

Flexibility!Value = ENPV!!"#$%&"#!!"#$%& − ENPV!!"#$%&!'$%!!"#$%&!  (3) 
 

Here the baseline design is the inflexible centralized design 2. The results in Figure 3 show that the 
value of flexibility is about $18.45 million – $13.60 million = $4.85 million. This expected value can 
be compared with the cost incurred to enable the flexibility (e.g. buying extra piece of land, preparing 
existing infrastructures at production site for possible expansion, etc.). This provides a way to make a 
better informed decision in flexibility, and determine whether it is worth the extra cost. 

4.2.2 Phase 2: Screening procedure 
In this phase the proposed methodology benefits from statistical meta-modeling rather than traditional 
design of experiment, as used in (Lin, 2009, Yang, 2009). In the literature on mathematical geology, 
the approach was called ‘Kriging’, and dates back to the early 1960s (Krige, 1960). In the original 
method, the data consisted of core samples taken from different locations, and the goal was to find a 
function that approximates the underground concentration of a valuable mineral. More recently, the 
Efficient Global Optimization (EGO) proposed by Jones et al. (1998) is a Kriging meta-model based 
optimization method developed from Bayesian based optimization methods. The sequential Kriging 
meta-model is used to create an adaptive response surface. The Kriging mata-model is chosen for the 
screening framework because it: 

1. Effectively balances the local (also refereed as exploitation) and global (also refereed as 
exploration) search strategies to explore the solution space efficiently and systematically, while 
the traditional RSM methods (e.g. quadratic regression models) have some limitations as indicated 
by Jones et al. (1998). 

2. Benefits from adaptive sequential response surface procedure, which is based on a Gaussian 
process, to lessen the computation time and evaluation number, as can be seen in the results. 

3. Takes advantage of a viable stopping criterion which is tied with simulation-optimization 
procedure to control balancing between exploration and exploitation. 

4. Is easy to implement, especially when Excel(R) and Matlab(R) are properly interfaced. 

Equation (4) calculates the expected improvement of current response surface (Jones et al., 1998). 
Where, Φ is the cumulative normal distribution and ! is the normal distribution; !!"#  shows the 
minimum value among the tried points, where !!"# = min!(!!,… , !!); !!is DACE predictor; ! shows 
the standard error/mean square error of the Kriging meta-model. Once the expected improvement 
gives a better value, the optimum point ! is obtained to run simulation for this point.  

! ! ! = !!"# − ! Φ !!"# − !
! + !" !!"# − !

!  (4) 

The following Kriging technique is applied to create an adaptive response surface (also see Figure 1):  

• step 1 and 2): Conduct initial design of experiment (i.e. “space-filling” using Latin Hypercube 
sampling) and conduct initial simulation (e.g. Monte Carlo Simulation)  

• step 3): Fit the parameters of a DACE model using maximum likelihood estimation.  
• Once the initial DACE surface is fit and any transformation made, the iterative procedure starts. 
• step 4): The expected improvement function is maximized using MATLAB function called 

“fmincon”  
• Step 5): If the maximum value of the expected improvement (EI) function is less than the EI 

threshold value then  
a. Step 5,Yes): Global search is ‘expected we stop. Otherwise  
b. Step 5, No): Sampling of the design space including design variables and decision rules is 

conducted where expected improvement is maximized, re-estimate the DACE parameters  
• Iterate until stopping criteria at step 5 is met. 

Exploring the flexible design strategies exhaustively is a computationally intensive task. Therefore, the 
proposed screening procedure based on Kriging meta-modelling is applied to reduce the computational 
burden. It is used as demonstration to find the optimal capacity expansion decision rule by efficiently 
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exploring the flexible design space instead of a full exhaustive search. While the threshold value is a 
continuous function varying between 1-100%, the screening approach only samples a few points in 
this simplified design space. While this analysis is shown as an example, it can be extended to analyze 
a combination of other decision rules and physical design variables (e.g. initial capacity).  
To show that the simulation-optimization procedure is valid within an acceptable flexibility value gap, 
7 computer experiments were conducted using different parameters. Due to space limitation, Table 1 
shows comparison between exhaustive search and screening model in terms of the best threshold 
values found and the values of flexibility for the first three. The same number 2,000 demand scenarios 
were used for both screening and exhaustive search in each replication. 
The value of flexibility obtained by exhaustive search is higher than the one found by screening 
model. The flexibility value gaps are illustrated in the last column. Table 2 shows comparisons 
between exhaustive search and the screening model in terms of the number of evaluations (i.e. 
simulations in untried points) required. Table 3 shows a comparison in terms of computational runtime 
on a Windows 7 platform with 8 GB RAM and 3.3 GHz processing speed.  

Table 1: comparison between exhaustive search and screening model in terms of 
threshold value and flexibility value (FV) 

No. 
Simulation 
Replication 

Number 

Exhaustive 
Optimum 

Threshold Value 

Screening 
Optimum 

Threshold Value 

Exhaustive 
Optimum 

FV 

Screening 
Optimum FV 

!!!"!!"#$%&' − !!!"#$$%&%'
!!!"!!"#$%&'

×100 
1 15 0.72 0.71 4.95 4.63 6.46% 
2 1 0.71 0.74 5.23 5.08 2.89% 
3 3 0.73 0.75 5.29 5.13 3.02% 

Current results suggest considerable improvement compared to a full exhaustive search both in terms 
of the number of evaluations required, and simulation runtime. Both tables also show that further 
improvement occurs when the number of replications is bigger. 

Table 2: comparison between exhaustive search and screening model in terms of the 
number of evaluations required 

No. Simulation  
Replication Number 

Exhaustive 
Number of Evaluations 

Screening  
Number of Evaluations 

Improvement 
for Number of Evaluations 

1 15 46 5 89.13% 
2 1 46 9 80.43% 
3 3 46 5 89.13% 

Table 3: comparison between exhaustive search and screening model for computational 
runtime 

No. 
Simulation 
Replication  

Number 

Exhaustive 
Runtime 

(sec.) 

Screening 
Runtime 

(sec.) 

Runtime 
Improvement 

(sec.) 
1 15 ≈ 10,350 1,358.49 86.87% 
2 1 ≈ 690 207.68 69.90% 
3 3 ≈ 2,070 294.11 85.79% 

4.2.3 Phase 3: Multi-criteria decision-making 
The best design alternative can be chosen based on many criteria, such as those shown in Table 4. All 
values for the flexible systems correspond to the best decision rule as found through optimization, 
using the screening technique (i.e. threshold value 72% of maximum planned capacity). The aim is to 
choose a design based on the highest value for ENPV (or mean NPV), P5 (5th percentile of NPV 
distribution, giving a sense of the downside potentials, or Value At Risk) and P95 (95th percentile, 
giving a sense of the Value at Gain), and smaller values for standard deviation, and initial CAPEX.  
Results in Table 5 show that the flexible design would be best among all decision criteria, except for 
P95. The reason is that if high demand growth scenarios occur, the decentralized plant is better 
positioned since it has more capacity installed early on. The flexible system, however, provides better 
economic performance on average (i.e. mean NPV), better protection against downsides (i.e. P5) as 
would insurance do, less variability (i.e. standard deviation), and requires less initial CAPEX. 
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Table 4: Summary table of multi-attribute decision-making1 

Metric 
Centralized Design 
Under uncertainty 

Decentralized Design  
Under uncertainty 

Flexible  
Design 

Best 
Design? 

Flexibility Value 
(Improvement) 2 

Initial capacity (tpd 3) 100% (5×20%) (5×10%) N/A N/A 
Mean NPV 45.69% 0% 100% Flexible 35.66% 
P5  41.56% 0% 100% Flexible 70.96% 
P95  5.72% 100% 0% Decentralized 0.00% 
Standard deviation 47.82% 100% 0% Flexible 23.00% 
Initial CAPEX 48.73% 100% 0% Flexible 19.02% 

1 All figures were normalized between 0% and 100% to mask the confidential data 
2 Flexible design compared to the centralized design in terms of given criteria – calculated based on the original data; 3 Ton per day 

All design alternatives are analyzed based on different criteria, aiming at finding dominant design 
alternative(s). To do so, RR-Pareto technique developed by Raphael (2011) was used and all criteria 
were considered as objective functions. Essentially, this technique benefits from Pareto dominance 
concept and a practical interactive feature so that designers’ preferences can be considered 
quantitatively. This multi-criteria technique shows that the flexible design is the dominant design 
alternative using RR-PARETO3 filtering, as shown in Figure 4.  

 
Figure 4: Parallel axis plot of dominant design alternatives based on RR-PARETO3 

filtering - Source: (Raphael, 2011) 

4.2.4 Phase 4: Sensitivity analysis 
The sensitivity analysis was conducted in terms of different volatility of sharpness parameter and the 
discount rate. Results indicate that the more volatile LNG demand is, the higher the value of 
flexibility. This confirms the fact that flexibility is more valuable the more uncertainty there is. At 
higher discount rates, there are more incentives to defer additional capacity deployment, which is 
translated here by the higher value of flexibility. For brevity, the results are not presented in this paper. 

5 DISCUSSION AND CONCLUSION 
This research proposes a screening framework to efficiently explore the solution space of flexible 
design and management strategies in complex engineering systems. The proposed framework was 
applied to a demonstration analysis of a real-world oil and gas system. Current results demonstrate 
promising improvement on economic lifecycle performance by exploiting ideas of flexibility in 
comparison to a baseline design concept developed from standard design and evaluation approaches. 
Observations on a simplified case show that the screening model offers better performance than a full 
exhaustive search of the design space in terms of the number of evaluations required and of the 
simulation runtime, while providing a good flexible design solution in terms of lifecycle performance. 
Using this approach, decision-makers and practitioners can explore flexible design strategies at a 
fraction of the computational cost, while finding good enough solutions as compared to a full 
exhaustive search that may require hours if not days of computations on standard computers. 

5.1 Limitations 
In the proposed methodology, a Kriging meta-model was used as surrogate model to reduce the 
computational complexity of the screening process. Therefore validation and verification of the meta-
model requires further investigation since it is used as the basis for the following decision-making 
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phase. The proposed framework as a generalized method can be applied for a wide range of problems 
in engineering systems, although applications are needed for full validation. Also, the underlying 
assumption is that designers of engineering systems have knowledge about different sources of 
uncertainty and flexibility based on their expertise and experiences. It is also assumed that the decision 
makers are clear about their generalized goals and domain-specific preferences. In reality, however, 
these assumptions may not be as clear. Some mechanisms have been developed to help designers 
generate flexible design concepts (e.g. (Cardin et al., 2012)) and determine salient utility measures 
(e.g. Ross, 2006) and help alleviate these concerns, to be used in combination with the proposed 
screening framework. 

5.2 Future work 
This paper presented an ongoing research regarding a multi-criteria screening framework for 
flexibility analysis considering multi-domain uncertainty. While the methodology was applied to a 
simplified real-world problem, the framework needs to be developed so that it can be applied for 
large-sized real-world problems. This involves extending the multi-criteria part of the analysis, 
considering more decision rules and design variables, and extending to consider more than one 
uncertainty sources (i.e. here only demand was considered) and flexibility strategies (i.e. here only one 
strategy was analyzed). 
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