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Abstract

Global growing needs for energy lead to the demand for new energy sources.

Among them, liquefied natural gas (LNG) plays a more and more important role

since it’s easier to store and transport. These advantages raise the demand for LNG

carriers, LNG floating production, storage and off-loading units (FPSOs), and LNG

floating storage and re-gasification units (FSRUs).

For ships carrying liquid cargo, like LNG carriers, motion responses in waves are

affected by both external wave excitations and internal sloshing-induced forces and

moments. That is, the sloshing flow in a ship cargo, like a LNG tank, is excited

by ship motions, but it affects the ship motions in return. This coupling effect is

important in the prediction of the ship motion and the sloshing flow. The effect of

the liquid sloshing is sometimes critical in ship structural design. Sloshing flows can

generate impulsive pressures acting on the internal structure, and this is the potential

damage to the structure. Therefore, the study of coupling effects is important to the

design of LNG carriers.

In order to study the interaction between liquid sloshing and ship motions in

waves, the two problems need to be solved simultaneously and accurately. To inves-

tigate sloshing in tanks subjected to large excitations close to the natural frequency

of the fluid, it is pertinent to use a surface capturing technique to handle the high

surface curvature and breaking fluid. In this study, the Level Set Method, which

has been great popular in the simulation of multiphase fluid flows, is applied. The

governing equations for the viscous fluid inside the tank are solved by using a fi-

nite difference approximation in an arbitrarily moving coordinate system to predict

sloshing flows in a two-dimensional rectangular tank under three-degrees-of-freedom

excitations. Validation is carried out by reproducing different benchmark sloshing

cases and comparing the present numerical result with published data. Good agree-

ment suggests that the numerical model is capable of solving the violent sloshing

problem.

Before applying the numerical model to couple with ship motions, a preliminary

study is conducted to further demonstrate the capability of the Level-Set numerical

model. In this study, the ship motions obtained from a realistic LNG carrier in seas

are used to generate the sloshing waves in a full-scale LNG tank. A parametric study

regarding wave frequency, amplitude and tank filling levels is performed. Long time

v



simulations in extreme conditions which involve violent fluid motions such as wave

breaking are carried out successfully.

At the same time, a further improvement on the Level-Set based sloshing model

is made. A parametric study on the effects of the smoothing band is performed based

on the preliminary numerical model. It indicates that the conventional size of the

smoothing band may not be suitable when more stable but less accurate fluid solver

applied to handle the wave breaking problem. To increase the accuracy and efficiency

while keep the stability, high-resolution convection schemes are incorporated. Valida-

tion cases with good agreement indicate that the combination of the high-resolution

convection schemes with the Level-Set technique is successful, promising and suitable

for applying in the coupled program.

To approach real-world situations, nonlinear ship motions in waves are solved

based on a nonlinear potential flow model. To obtain the wave forces acting on

the LNG carrier, some auxiliary functions are applied. Based on the kinematic and

dynamic relations with time marching, the numerical methodology to study the inter-

action between the sloshing and ship motion in waves is proposed. The COUPLED

model is validated by reproducing a benchmark experiment. Finally, a parametric

study with regard to wave amplitude and frequency is conducted. Comparison of the

ship motions with and without sloshing effects is performed. Sloshing effects on ship

motions are further investigated with respect to different tank filling conditions.
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Chapter 1

INTRODUCTION

1.1 Background

The demand for natural gas in the world was boosted in late 1970s by the desire to

diversify energy sources in the wake of global oil shocks. Due to the clean environmen-

tal advantages of natural gas over other fossil fuels and its superior thermal efficiency

when used in power generation, the demand for natural gas is sustained (Foss, 2012).

Currently most natural gas is supplied by pipelines where the natural gas resources

are near the market. However, there are still large reserves of natural gas existing

around the world in areas where there is no significant market, or where natural gas

resources far exceed regional demand, or where pipeline options are limited. Then

some of the natural gas produced there will be liquefied, in order to ship to areas

where usage of natural gas exceeds indigenous supply.
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Figure 1.1: Worldwide growth in LNG demand from Foss (2012).
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Liquefied natural gas (LNG) is natural gas that has been cooled to the point

when it condenses to liquid, which occurs at a temperature of approximately minus

161 degree centigrade at atmospheric pressure. At the liquid state, the volume of

gas is reduced by approximately 600 times. This makes it more economical to store

natural gas where other forms of storage do not exist and to transport natural gas

over long distances while using pipelines is too expensive or not possible. Liquefaction

also provides the possibility to store natural gas for use during high demand periods

in areas where developing underground storage facilities is not suitable. Therefore,

LNG plays a growing role in the global energy future as shown in Fig. 1.1.

Due to the growing LNG market, there is a strong demand for new LNG carriers

with larger cargo capacity. Historically, most of the LNG carriers used spherical

(Moss) tanks. However, according to Fig. 1.2 and Fig. 1.3, there is a trend toward

the newly proposed membrane tanks. This is due to the fact that membrane design

utilizes the hull shape more efficiently, and has less void shape between cargo tanks

and ballast tanks. Therefore, membrane design is much cheaper than moss design of

equal capacity. In addition, the growing energy market also requires that new LNG

tanks with larger cargo capacity could be operated under any filling conditions. Thus,

LNG sloshing problem, which usually arises in partially filled containers, becomes a

design concern for LNG tanks.

Membrane
Design

68%

Spherical
Design

30%

Others
2%

LNG Fleet Containment System - October 2011
(Number of ships)

Source: Maritime Business Strategies, LLC

Figure 1.2: LNG fleet containment from Foss (2012).

Under adverse weather condition, violent ship motions caused by sea waves would

excite strong sloshing flows inside the LNG tank. In that situation, LNG moves

against sides of the tank with an increased wave elevation. This can produce strong

impulsive loads on internal tank walls, especially when the tank is large. Furthermore,

if the external excitation is close to the natural frequency of the sloshing system, it

may lead to structural damage of tank membranes and possibly result in tank rapture.
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The typical LNG carrier can transport 125,000-138,000 cubic meters (CM) of LNG,14

Membrane
Design

94%

Spherical
(Moss) Design

6%

LNG Fleet Containment System, Order Book 2011-16 
(Number of ships)

Source: Maritime Business Strategies, LLC

Figure 1.3: LNG fleet containment - ship orders from Foss (2012).

At the same time, sloshing-induced forces and moments would result in significant

changes of ship motions, which are crucial to the safety and stability of LNG carriers

during delivery and offloading operations. Therefore, study on liquid sloshing and

interactions between sloshing and ship motions are of great importance to both the

design of LNG carriers and the LNG industry.

1.2 Review of studies on liquid sloshing

As the previous stated significance of study on liquid sloshing, so far, various re-

searchers have devoted efforts to studying liquid sloshing analytically, experimentally

and numerically.

1.2.1 Analytical methods to study sloshing

From the mathematical point of view, the sloshing motion is a difficult problem

to analyze due to the nonlinear boundary conditions on the free surface and the

complex position prediction of the free surface. To develop an analytical solution

for the sloshing motion, certain assumptions have been made in the previous work.

The general equations of motions for a fluid in closed containers can be simplified

by assuming the container rigid and impermeable. In addition, the fluid is assumed

inviscid, incompressible and the flow is initially irrotational. Capillary or surface

tension effects are also often ignored in a gravitational field.

In early years, Moiseev (1958) presented an analytical investigation and discussed

qualitatively some sloshing tests. He used the nonlinear free surface boundary con-

ditions and applied the method presented by Stoker and Lindsay (1958). In this

method, the velocity potential and wave height were expanded in a power series in
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which each term of the series was represented by a potential function. Abramson

(1966) also applied the potential theory to study linear hydrodynamic pressure in-

duced by liquid sloshing. Ockendon and Ockendon (1973) proposed an analytical

scheme for resonant sloshing due to external vertical excitations. Later, Faltinsen

(1978) developed a linear analytical solution to liquid sloshing problem in a horizon-

tally excited two-dimensional rectangular tank. With the small amplitude and low

gravity assumption, Dodge et al. (1991) conducted an analytical analysis on liquid

sloshing in axisymmetric containers.

Recently, Faltinsen and Timokha (2001) developed an analytical multi-modal

method to describe the nonlinear sloshing flow in a rectangular tank with finite water

depth. This method decomposed the free surface elevation to several modes. Subse-

quently, Faltinsen and Timokha (2012) derived a new Trefftz representation for the

sloshing velocity potential in the liquid sloshing problem in a two-dimensional circular

tank. This solution included a modified Poisson integral depending on the fully con-

tinuous component of strength functions and terms that are proportional to the jumps

of the strength function at the tank top. Calculations confirmed that this solution can

approximate the natural sloshing modes accurately for all tank fillings. Thus, they

concluded that this solution can be used for a numerical study of the limiting case of

the completely filled tank. It was also pointed out that their approach could be easily

generalized to the arbitrary two-dimensional sloshing problem for a smooth closed

tank surface by using conformal mapping. Also based on the multi-modal method,

Faltinsen and Timokha (2013) constructed an analytical method of nonlinear sloshing

in a spherical tank. By using analytically approximated natural sloshing modes and

curvilinear spatial coordinates, general fully nonlinear modal equations, weakly non-

linear modal equations and Moiseev-Narimanov modal system were derived for the

spherical shape. The latter was emphasized in this study to construct an asymptotic

time-periodic solution and classify the steady-state wave regimes appearing as stable

and unstable planar waves and swirling for spherical tanks theoretically.

Besides these, Ikeda et al. (2012) studied nonlinear liquid sloshing in a square tank

subjected to obliquely horizontal excitations with an improved model. In their the-

oretical analysis, five higher sloshing modes were considered by applying Galerkin’s

method to derive the modal equations of motion. Linear viscous terms were incorpo-

rated to consider the damping effects. Van der Pol’s method was applied to determine

the frequency response. Experiments were conducted to confirm the validity of the

theoretical analysis. Since damping effects were taken into account in their study, the

obtained frequency response curves can clearly explain the phenomena of nonlinear
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sloshing dynamics in real systems. They also found that higher sloshing modes play a

significant role in improving the accuracy of the frequency response curves. To study

shallow-water sloshing phenomena theoretically, Antuono et al. (2012) proposed a

model system starting with a set of Boussinesq-type equations with a linearized dis-

persive term. Based on a spatial Fourier decomposition, this system employs a spatial

modulating term to include the exciting forces and thus is capable of representing a

generic two-dimensional motion of the tank. This leads to a formulation that is con-

sistent with the conservation of momentum and energy of the flow. Comparisons with

both experimental measurements and numerical simulations validated the capabili-

ty of their proposed model. They also pointed out that depth-averaged equations

can provide a good description of shallow-water sloshing motions with non-breaking

waves.

Analytical methods are adequate to study sloshing when the liquid motion is

not violent. However, they might not be able to describe strong sloshing involving

breaking waves and overturning liquid.

1.2.2 Experimental investigations on sloshing

As a reliable approach to study complex sloshing flows, extensive experimental inves-

tigations have been conducted by various researchers in order to better understand

sloshing phenomena, and validate analytical and numerical analysis of different slosh-

ing problems.

In early years, Sumner (1965) measured the horizontal slosh force for an excitation

frequency equal to the fundamental natural frequency of the liquid free surface at each

liquid-depth ratio considered in the tests. Abramson et al. (1974) studied the sloshing

in a prismatic tank and measured the wave amplitude near the wall and longitudinal

force for large-amplitude steady-state sloshing. Bass et al. (1985) gave the modeling

criteria for scaled LNG sloshing experiments.

Later, Hinatsu et al. (2001) carried out experiments to analyze pressures on tank

walls for various sloshing arrangements. To define the characteristics of liquid sloshing

in cylindrical and rectangular tanks, Madarame et al. (2002) performed an experi-

mental study and found that the induced mode had one diametrical node, which was

accompanied by the lateral motion of the swell. The mode was replaced by a lower one

as the inlet-surface distance and velocity increase. Akyildiz and Ünal (2005) made an

experimental investigation of pressure distributions at different locations and three
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dimensional effects on liquid sloshing in a rectangular tank at a scaled model with

different filling levels.

Recently, Khezzar et al. (2009) performed an experimental study on water sloshing

in a rectangular tank subjected to sudden impact. Different filling ratios and tank ac-

celerations were tested. Ji et al. (2012) studied the nonlinear two-dimensional lateral

sloshing experimentally by the aids of the time history of wave elevation recorded at

the sidewall, free surface profile captured by high speed camera, and velocity vector

flow field obtained by PIV technique. In this study, non-resonant sloshing with deep

water condition was considered. Based on the experiments, they found that four

regimes of the sloshing waves can be categorized : mild 2-D wave; strongly nonlinear

2-D wave with hydraulic jump-like motion; 3-D wave with regular structure in the

longitudinal direction; 3-D chaotic wave. In their study, a comprehensive discussion

on strongly nonlinear 2-D wave concluded that this off-resonant sloshing problem can

be characterized into a combination of three sloshing motions: 1. standing waves

during run-down process similar with linear sloshing; 2. hydraulic jump along the

vertical wall during the run-up process; 3. bore motion propagating from the sidewall

to interior fluid region like a dam break during stationary process. To measure the

impact pressure accurately during the sloshing process excited by sinusoidal motions

in the sway direction, Pistani and Thiagarajan (2012) setup a sloshing experiment

in a two-dimensional tank. In their study, the artificial pressure spike acquired by

the transducer when measuring in the two phase environment was solved by lower-

ing the excitation voltage of sensors. Details of the analysis of characteristics of the

pressure traces during the impact of the fluid and their location in the tank were also

discussed. In addition, they proposed a strategy for defining a threshold pressure

based on the transducer location and sloshing impact time. Kim et al. (2013) build

a new experimental facility and performed a series of model tests on sloshing. It

was reported that the density ratio of liquid and gas should be carefully handled in

sloshing experiment. In their study, a higher density ratio of gas and liquid would

generally lead to higher sloshing-induced pressure.

These experiment investigations can help discuss the nonlinear characteristic of

sloshing wave, display the complicated sloshing process directly and obtain useful

measurements for validating analytical solution and numerical simulations. However,

there still are some limitations on this approach. Due to the scaling effects, unmatched

parameters like fluid viscosity and compressibility in model tests may produce un-

expected results different from the real situation. In addition, errors are possibly

encountered in the data processing of experimental measurements. Furthermore, it
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is usually time consuming and expensive to conduct experiments that reproduce a

real-world situation (like a full-scale LNG tank in realistic sea conditions).

1.2.3 Numerical modeling of sloshing

With the rapid growth of computer power and recent advance in numerical methods,

extensive numerical studies on the liquid sloshing problem have been conducted.

1.2.3.1 Approaches based on potential flow theory

Based on potential flow theory, the Boundary Element Method (BEM) could be used

to solve liquid flow phenomena with nonlinear free surface behavior inside a tank. The

flow variables can be expressed in terms of a velocity potential that satisfies Laplace’s

equation and free surface boundary conditions in an appropriate tank. In early years,

Faltinsen (1978) utilized the BEM to simulate sloshing flows in a two dimensional

rectangular tank and validated his numerical method by a linear analytical solution.

Nakayama and Washizu (1981) applied the same method to study nonlinear sloshing

flows in a container under horizontal, vertical and rotational excitations. Later, with

a higher-order BEM, Lee and Choi (1999) investigated the sloshing problem in cargo

tanks. Landrini et al. (1999) further applied a B-spline based BEM to study sloshing

phenomena. Recently, Huang et al. (2010) developed a time-domain green function

based BEM to simulate sloshing flow in tanks with experimental validations.

The Finite Element Method (FEM) is popular in many types of engineering ap-

plications and has been used to solve Laplace’s equation in sloshing studies. Nakaya-

ma and Washizu (1980) analyzed the nonlinear liquid sloshing in a two-dimensional

rectangular tank under pitch excitations by applying the FEM. Later, Okamoto and

Kawahara (1990) used a Lagrangian finite element method to analyze large amplitude

sloshing waves in a container. Wu et al. (1998) applied an inviscid finite element mod-

el to study the behavior of non-breaking sloshing waves in three dimensional tanks.

They focused on near-resonance cases and reported the effects of three-dimensional

motions in comparison with two-dimensional standing waves. In recent years, Kim

et al. (2003) developed a three-dimensional finite element model to investigate the

impact pressure due to sloshing in LNG tank. The model was validated by compar-

ing sloshing motions and pressure with experimental data. Following Nakayama and

Washizu (1980), Cho and Lee (2004) used the nonlinear FEM to analyze large ampli-

tude sloshing flows in two-dimensional tanks. Based on the fully nonlinear potential

theory, Wang and Khoo (2005) applied the FEM to investigate nonlinear sloshing
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in a two-dimensional rectangular tank under random excitations. They studied the

nonlinear effects of the random waves and observed the typical nonlinear feature of

sloshing waves.

Meanwhile, the Finite Difference Method (FDM) has also been utilized to solve

the governing equations for liquid sloshing in the frame of potential wave theory.

For instance, Frandsen (2004) developed a fully nonlinear finite difference model to

study sloshing wave in a two-dimensional tank excited by surge and heave motions.

Numerical results were compared with analytical solutions. Good agreement was

shown for small to steep non-breaking waves and the nonlinear feature was captured.

Nevertheless, these mentioned studies based on potential flow theory cannot simulate

sloshing wave with viscous effects and wave-breaking features because of the inviscid

assumption.

1.2.3.2 Approaches based on viscous flows

To simulate viscous sloshing flow, some other numerical methods have been developed

to solve the Navier-Stokes equations. Most of these methods could be categorized as

either grid methods or grid-less methods.

Grid-less methods

Recently, Grid-less methods which follow individual fluid particles have been proposed

and gained popularity in the simulation of free surface flows. Among them, smoothed

particle hydrodynamics (SPH) method proposed by Gingold and Monaghan (1977)

has been widely employed to investigate sloshing flows. Souto Iglesias et al. (2004)

applied the SPH to perform a numerical simulation of anti-roll tanks and sloshing type

problems. Using the same numerical model, Souto-Iglesias et al. (2006) investigated

sloshing moment amplitudes in a rectangular tank at different rolling frequencies. Ex-

periments were conducted for validation of the numerical solutions. Later, Colagrossi

et al. (2010) implemented the improved SPH method to study violent sloshing wave

impacts. Numerical results agreed well with laboratory measurements. The local fea-

tures of sloshing wave impacts were clearly captured and discussed. Shao et al. (2012)

proposed an improved SPH method for modeling liquid sloshing dynamics. In their

method, density correction and kernel gradient correction were used to achieve better

pressure field. Turbulent model was incorporated into this SPH method. They also

proposed a coupled dynamic solid boundary treatment (SBT) algorithm to improve

the accuracy near the solid boundary areas. Based on this algorithm, Chen et al.
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(2013) proposed a further improved SPH model by applying a smaller acting distance

of repulsive boundary particles. They also utilized the Moving Least Squares method

in the density reinitialization to obtain better pressure field. Based on their improved

SBT, a new pressure measurement method on solid walls was also given, which took

a pressure correction term into account. Experiments were conducted and obtained

wave pattern and pressure measurements close to their numerical results. Recently,

Gotoh et al. (2014) proposed two schemes to improve the ISPH-based methods in

simulation of violent sloshing flows with a particular focus on sloshing-induced im-

pact pressure. They comprised a higher-order Laplacian of Poisson Pressure Equation

and an Error Compensating Source of PPE to minimize the instantaneous and accu-

mulative projection-based errors. In their study, importance of dynamically adjusted

coefficients of error minimizing terms in the source term of PPE was highlighted,

which is shown to be superior to a scheme with constant coefficients.

Meanwhile, the moving particle semi-implicit (MPS) method proposed by Koshizu-

ka and Oka (1996) has also been applied to the simulation of sloshing waves. For

instance, Yoon et al. (1999) adopted the MPS method to simulate a self-induced s-

loshing problem. Recently, a new Lagrangian particle method proposed by Koh et al.

(2012), called the consistent particle method (CPM) has been employed to investigate

sloshing flows in a two-dimensional rectangular tank with various filling levels. This

method approximates the partial differential operator in a way consistent with Taylor

series expansion and applies a boundary particle recognition method to help define

the fluid domain. Good agreement was achieved between the numerical results and

experimental data.

Grid methods

When solving the Navier-Stokes equations with grid methods, due to the presence

of free surface, additional schemes have to be applied in order to simulate sloshing

waves.

One of the commonly applied schemes is the Marker-And-Cell (MAC) method,

which was first proposed by Harlow et al. (1965). The MAC method introduces

particles which have no mass and are marked as liquid or gas across the interface at

the initial time. With time marching, the particles are moved in a Lagrangian way

and then recognized as liquid or gas particles in each cell. By this way, the interface is

reconstructed. Based on the MAC approach, Feng (1973) investigated liquid sloshing

flows in a three-dimensional rectangular tank. Later, Cordonnier (1994) performed

a numerical study of sloshing phenomena inside tanks of various shapes based on a
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modified MAC method. The impacts on the walls were studied. The comparison

with experiments showed a good agreement.

Another scheme that has been widely used is SURF scheme proposed by Hirt

et al. (1975). In this approach, the free surface elevation is followed and assumed

as a single-valued function of the horizontal tank coordinates. Using SURF to track

the free surface, Arai et al. (1992) simulated three-dimensional sloshing flow based

on the SOLA, a finite difference scheme introduced by Hirt et al. (1975). Following

this SOLA-SURF combination, Kim (2001) studied sloshing flows with impact load

in two- and three-dimensional containers. Later, Kim et al. (2004) simulated violent

sloshing flows in prismatic tanks and investigated the impact pressure on tank ceiling.

Recently, the Volume of Fluid (VOF) method, which is proposed by Hirt and

Nichols (1981), has been extensively employed to capture the free surface when simu-

lating sloshing flows. In this method, a scalar named the volume fraction or the color

function is introduced to define the filling degree of each cell in the whole domain.

A cell with a volume fraction with zero value is defined as an empty cell, while the

one with value of one is defined as a full cell. For those partially filled cells, the

volume friction of the fluid in each cell needs to be computed by solving a transport

equation. By tracing the change of the volume friction, the motion of free surface is

captured. In early days, Solass (1995) applied a commercial program FLOW3D to

investigate sloshing phenomena. This program utilizes the SOLA scheme for solving

the Navier-Stokes equations and the VOF technique for tracking the free boundaries

of the fluid. In this study, it was reported that a sensitivity of the results to the choice

of numerical parameters and the lack of conservation of fluid mass can cause unphys-

ical sloshing behavior. Later, Van Daalen et al. (2000) applied a Navier-Stokes solver

based on the VOF method to simulate the low-filling sloshing flows in an anti-roll

tank. Simulated and measured roll moment amplitudes and phases were found to be

in good agreement for different sets of motions and various tank parameters. Celebi

and Akyildiz (2002) developed a viscous flow solver to capture nonlinear free surface

flows using the VOF technique. They simulated two-dimensional sloshing motion-

s in tanks excited by rotational and translational motions. Based on finite volume

method (FVM) and VOF scheme, Lee et al. (2007a) conducted a series of parametric

sensitivity studies on the LNG sloshing loads. Their results revealed that the liquid

turbulence, viscosity and density ratio are not significant to the dimensionless im-

pact pressure. Liu and Lin (2008) developed a numerical model combining the FDM

and VOF to investigate three-dimensional nonlinear liquid sloshing with broken free
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surfaces. The numerical model was validated by good agreement with experiment

measurements of two-dimensional sloshing flow under horizontal excitations.

Another surface capturing technique is the Level Set Method proposed by Osher

and Sethian (1988). Because of its capability in handling complex free surface and

easy implementation, the Level-Set technique has gained popularity in simulation of

free surface flows. In this method, a Level-Set function is defined in the whole domain

and typically initialized as the signed distance from the interface to the considered

point. Then the liquid and gas interface is captured by locating the zero Level-

Set function (when the distance is zero) as a solution of the Level-Set transport

equation with time marching. Sussman et al. (1998) developed an improved Level

Set Method to study incompressible two-phase flows. Yue et al. (2003) applied the

Level Set Method to perform the numerical simulation of unsteady multi-dimensional

free surface motions. Colicchio et al. (2005) conducted the Level-Set computations

of free surface rotational flows and achieved promising agreement with others’ work.

These studies indicated that the Level Set Method is robust in capturing the free

surface and has the potential to study sloshing flows. Gu et al. (2005) applied the

Level Set Method with a finite difference flow solver to study sloshing waves. The

accuracy and efficiency of the Level Set Method has been reported. Chen and Price

(2009) investigated the liquid sloshing in a rectangular tank with various filling levels

based on the Level Set Method with inclusion of compressibility effects. Wang et al.

(2011) simulated liquid sloshing inside a two-dimensional rectangular tank by the

Level Set Method. Parametric studies regarding excitation frequency, amplitude and

viscosity of fluid have been performed.

1.3 Review of studies on interaction between s-

loshing and ship motions

As described earlier, during transport of LNG through seas, not only the adverse sea

conditions would lead to strong sloshing which may result in large impulsive loads on

tank walls, but also the sloshing-induced forces and moments on LNG carriers would

cause an obvious change of the ship motions in waves. Thus, it is of great importance

to study the interactions between sloshing inside tanks and ship motions.
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1.3.1 Effects of sloshing on ship motions

Researchers have already considered the effects of sloshing motions inside tanks on the

ship motions for a long time. The main concern is to use the sloshing motion inside

the tank to stabilize the ship motion. In early years, Watts (1883, 1885) introduced

a method of creating a rolling damping moment by water sloshing motions inside

rectangular tanks to reduce the roll motions of ships. His studies paved the way for

the application of the later proposed anti-rolling tanks which utilizes the similar idea.

Vasta et al. (1961) further investigated the effects of tanks with liquid sloshing on the

roll motion of ships. Bosch and Vugts (1966) conducted experimental investigation

using a rectangular tank with water to reduce the ship rolling. In their study, it was

reported that 80% roll reduction in periodic waves and 50% in irregular waves were

found. Recently, Ikeda and Yoshiyama (1991) studied the coupling effects of sway

and roll motions on the performance of a rectangular anti-rolling tank. Results of the

tests showed that the sway motion would lower the reduction of the roll angle by the

anti-rolling and would increase the natural period of the tank. Their study extended

the sloshing effects on other degrees-of-freedom of ship motions. Later, Bass (1991)

conducted full-sea trials of free-surface tanks to investigate the effects of sloshing

flows on the ships and understand the behavior of anti-rolling containers. His study

provided precious experimental results in the real sea condition.

In these studies, the liquid sloshing occurs in a small special designed tank. How-

ever, when considering the liquid sloshing in full-scale LNG tanks, whose volume is

much larger, the effects of internal sloshing flows on ship motions should be further

explored.

1.3.2 Effects of ship motions on sloshing

External ship motions which are of large amplitude or near the natural frequency

of the sloshing system would generate violent internal sloshing which can induce

large impact pressure on the structure. In addition, realistic sea waves can generate

multiple degrees-of-freedom ship motions which are much more complicated than the

excitations with single direction used in the conventional sloshing studies. With the

recent higher focus on LNG market and related sloshing motion in larger tanks, the

effects of ship motions in seas on liquid sloshing motion inside LNG tanks have also

been a concern for researchers.

Mikelis and Journee (1984) investigated the liquid motions and induced pressure

in two-dimensional tanks based on a finite difference approach. In their study, the
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partially filled tanks were mounted on ships. Experiments were also conducted on

scaled tanks and the measurements were compared with corresponding numerical

predictions. Their study provided an innovative way to apply the effects of ship

motions on sloshing. However, their experimental study was based on scaled tanks,

whose accuracy may be limited due to size effects. Lee and Choi (1999) conducted

a numerical investigation on the sloshing problem in cargo tanks with a higher-order

BEM. A parametric study on the filling level was conducted. It was reported in their

study that hydraulic jumps were found when the excitation frequency of ship motions

was close to the resonance frequency of the sloshing system for lower filling conditions.

For higher filling conditions at the same excitation frequency, large impact pressure

was found. Recently, Lee et al. (2011) studied the LNG sloshing motions considering

ship movements as excitations in a full-scale tank to verify their finite difference model

with a marker-density scheme. However, only three cases have been conducted and

limited pressure results have been revealed.

In these studies, liquid sloshing in tanks were excited by ship motions. The effects

of inside sloshing motions on external ship motions were not considered in return.

However, in practice, impact forces and moments induced by sloshing on tank walls

could result in instability of the ship during traveling. As reviewed above, the sloshing

effects on ship motions have already been studied for a long time. With a further

consideration, researchers have devoted efforts to investigations on the interaction

between sloshing motions and ship motions.

1.3.3 Full coupling between sloshing and ship motions

So far, there are some existing studies on the coupling problems. In early days,

Dillingham (1981) conducted a coupling investigation for motions of a vessel with a

shallow water flow on deck. He used an impulse-response technique to solve the cou-

pled equation. Later, Journée (1997) performed a model test in beam waves using a

ship model with liquid cargo tanks. A wide range of filling levels were tested. Exper-

imental measurements were compared with the solution given by the strip theory. In

recent years, Wang et al. (2012) investigated the interaction phenomenon of sloshing

motions and the global wave loads by seakeeping model tests of a self-propelled LNG

ship with a liquid cargo tank under the 30% filling condition. In their study, it was

noticed that the existence of liquid in tank will affect the natural rolling period of

the ship. The motion period of liquid in the tank depends not only on the inner

shape of the tank and the liquid filling level, but also on the wave heading angle and
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ship speed. It was also reported that sloshing-induced forces between the tank and

the ship hull, are different according to the wave length and traveling speed. The

existence of liquid sloshing in the cargo tank might reduce the global wave loads on

LNG ships in some degree.

Numerical studies on coupling between sloshing and ship motions can be catego-

rized into two approaches: the frequency-domain approach adopting linear sloshing

in the frame of potential flow theory; and the time-domain approach using nonlinear

sloshing flow. Some representative studies based on the assumption of linear sloshing

flow in the frequency-domain are given as follows. Molin et al. (2002) conducted

a three-dimensional potential calculation of the ship motion with a semi-analytical

approach for the sloshing flow to model the motions of a barge with a partially filled

water tank on deck. Experimental investigations were also conducted and compared

with the numerical prediction. Applying the same assumption of Molin et al. (2002),

Malenica et al. (2003) adopted the boundary integral equation method to solve both

sloshing and seakeeping hydrodynamic part. Their results matched the experimen-

tal data given by Molin et al. (2002). Later, Newman (2005) extended an exterior

panel code WAMIT to inner tank to perform linear coupling analysis. Recently, T-

sai et al. (2013) carried out a numerical seakeeping-sloshing coupling analysis for an

8,000TEU container ship. The simulation was conducted by a hydrodynamic nu-

merical code HydroSTAR in the frequency domain considering the high speed effect.

The linear sloshing flow was assumed. In their study, for the request of full load sea

trial, particular cargo holds were ballasted with sea water to design draft, analyzing

with different ship speed and discussing the effects. It was found that the resonan-

t frequency would occur with full load condition and full ship speed, especially for

rolling motion. This resonant activity may cause the structure destruction seriously.

The assumption of linear sloshing is adequate when liquid sloshing is not violent and

breaking waves are not involved. However, in a real-world situation, during the L-

NG delivery and offloading process, induced sloshing flows might be very severe and

include breaking waves.

According to the existing studies, assuming the sloshing flow is linear and applying

a frequency-domain approach are not enough due to the importance of nonlineari-

ties for accurate prediction of sloshing motions. Therefore, a time-domain approach

is necessary to accurately model the coupling between sloshing and ship motions.

Kim (2002) carried out a computational study with the focus on the anti-rolling

tank which was found to have significant coupling effects on both ship motions and
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sloshing. The linear ship motion was computed by applying a time-domain pan-

el method called Large-Amplitude Motion Program based on potential flow theory.

The three-dimensional viscous sloshing flow was modeled by the finite difference based

SOLA-SURF method. Rognebakke and Faltinsen (2003) investigated the interaction-

s between ship motions and sloshing by experimental measurements and numerical

modeling. The external ship motion was modeled by using linear potential flow theory.

The nonlinear sloshing was simulated by a multi-modal method. Good agreements

were obtained between the experimental results and numerical predictions. It was

reported that the steady-state ship motion was almost linear and sinusoidal at the

frequency of the linear incident wave even though the induced sloshing was violent

and nonlinear in the water tank.

Later, Lee et al. (2007b) performed a numerical study of the LNG sloshing ef-

fects on the global motion of LNG carriers. The ship motions were simulated by

a three-dimensional frequency-domain scheme based on potential flow theory. The

nonlinear viscous sloshing flow was adopted and solved by a finite difference method

using the SURF scheme to capture the free surface in time domain. To couple the two

separate numerical solutions, the convolution integral was used to obtain the corre-

sponding simulations of ship motions in time domain. The coupling numerical model

was validated by the experimental results. In their study, it was reported that the

pattern of the coupling effects between vessel motions and liquid sloshing apprecia-

bly changed with filling levels in the LNG tank. Applying similar ideas of obtaining

frequency-domain ship motions prior to conversion to time domain, Kim et al. (2007)

investigated the coupling effects between ship motions and sloshing. They adopted an

impulse-response-function (IRF) method to solve the linear ship motions in frequency

domain. The nonlinear inviscid sloshing flow was governed by the Euler equations

and simulated based on a finite difference approximation. Based on their numerical

results, they concluded that due to the nonlinearity of the sloshing flow, ship motions

showed a strong sensitivity to wave slope. Based on their study, Nam et al. (2009)

carried out a series of experiments using a LNG FPSO with two tanks. A fair agree-

ment was observed between the experimental work and the simulation results given

by the numerical model used in Kim et al. (2007), showing significant coupling effects

on both ship motion responses and the sloshing flows.

Recently, Zhao et al. (2014) developed a two-dimensional coupled model which

adopted the nonlinear sloshing flows and the linear ship motions both based on po-

tential flow theory in time domain. Experiments were conducted to validate the

numerical model. Good agreement was achieved. Based on the verified model, the
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coupling between ship sway motion and internal sloshing was investigated. In this

investigation, it was observed that internal sloshing amplitude was nonlinear to the

incident wave height. Both the internal sloshing and the ship motion exhibited ampli-

tude modulation phenomena. It was also reported that the sloshing reduction effects

on the global motions at the natural frequency was caused by sloshing force being π

behind the wave force.

It is obvious that most aforementioned studies consider the linear ship motions.

Limited investigations on the interactions between nonlinear ship motions and non-

linear sloshing flows are reported. Recently, Mitra et al. (2012) developed a fully

coupled model of nonlinear sloshing and ship motions. The fully nonlinear sloshing

motion was studied by a finite element method and the nonlinear ship motion was

simulated by a hybrid marine control system. Simulated roll motions were compared

with existing results. Fair agreement indicated that the proposed model was expected

to be useful in evaluating the coupling effect. In their study, the coupling model also

allowed for the effects of wind, wave and current. It was found that the wave height

can have large effects on sloshing whereas the current velocities caused fairly marginal

effects on the ship motions. However, their nonlinear sloshing flow is based on poten-

tial flow theory. Therefore, the violent sloshing including the wave overturning and

breaking cannot be handled by this coupling model.

1.4 Objective and scope

As discussed in the previous sections, it is of great importance to study liquid sloshing

flows inside LNG tanks considering the coupling effects between internal sloshing

motions and external motions of the LNG carrier. Since LNG sloshing in the real-

world situation might be violent and lead to breaking waves, the analytical solution

is not a feasible approach to this study. It also seems impossible to conduct the

investigation on sloshing in a full-scale LNG tank mounted in a carrier in sea waves by

an experimental means. Therefore, this study focuses on the numerical investigation

of liquid sloshing in LNG tanks coupled with ship motions.

As reviewed in the previous section, most numerical analysis on sloshing flows are

confined in a small specially designed tank, whose motions are constrained in a single

direction. Limited sloshing studies with respect to multi-excitations are reported, not

to mention considering the effects of ship motions.

Numerical investigations on the coupled interaction between liquid sloshing and

ship motions are mainly based on two approaches. In the early years, studies based on
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the frequency-domain approach have assumed that internal sloshing flows are linear.

However, recent studies have shown that linear assumption is not accurate to describe

violent sloshing motions inside the tank with strong nonlinearities. Therefore, more

recent studies have chosen to apply nonlinear sloshing flows based on the time-domain

approach. In most of these coupling models assuming liquid sloshing is nonlinear,

ship motions were modeled either by the frequency-domain approach or linear time-

domain approach. However, frequency-domain approach can only consider periodic

results. The instantaneous interaction between sloshing and ship motions cannot be

accurately captured. For ship motions based on the linear time-domain approach, the

influence of the nonlinear components are not considered. Thus, to accurately model

the ship motions, a nonlinear time-domain approach is necessary.

Currently, there are few numerical models that could simulate the interaction by

adopting both nonlinear sloshing flows and nonlinear ship motions. Existing ones

have simulated the nonlinear sloshing flow based on potential flow theory. As re-

viewed in the previous section, the potential flow theory cannot consider the viscous

effects in sloshing flows. In addition, these numerical models cannot handle large sur-

face deformations, such as water overturning and wave breaking. Coupled numerical

models that can simulate viscous sloshing flows with breaking waves and nonlinear

ship motions have barely been found.

In addition, most aforementioned coupling studies focus on the coupling influence

on single degree of freedom, such as sway or roll. The coupling effects on multi-degrees

of freedom need be further explored.

Therefore, the overall objective of this study is to develop a numerical methodology

that can model the coupled interaction between internal viscous sloshing flow with

breaking waves and external nonlinear ship motions in time domain, and investigate

the coupling effects on sloshing and multi-degrees of ship motions.

To achieve this objective, the scope of this study contains:

• Develop a free surface flow solver that solves Navier-Stokes equations based on

the finite difference approximation and captures free surfaces with the aid of

the Level Set Method.

• Conduct a comprehensive parametric study on sloshing phenomena in a full-

scale LNG tank excited by ship motions.

• Develop a numerical model that can couple the ship motions obtained by nonlin-

ear potential flow theory and the viscous sloshing motion based on the developed

free surface flow solver.
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• Carry out a parametric study to shed lights on the coupling effects on both

external ship motions and internal sloshing motions.

The results of this present study might have significant impact on

• Providing a numerical model that can accurately simulate free surface flows with

breaking waves and handle fully coupling between nonlinear viscous sloshing and

nonlinear ship motions;

• Understanding sloshing phenomena affected by ship motions and their influence

on multi-degrees of ship motions in return.

1.5 Organization

This thesis contains six chapters and is organized as follows.

Chapter 1 first introduces the background of the current LNG market. Then a

comprehensive review on the studies of liquid sloshing is given. Analytical and exper-

imental approaches to sloshing motions are discussed. Various numerical methods in

this field are introduced. Their applications on sloshing are reviewed and discussed.

Following this, a review of the work on the coupling effects between sloshing and ship

motions is given with related applications and limitations discussed. Based on the

reviews, the objective and scope of the study are presented.

Chapter 2 gives the mathematical formulation of the numerical sloshing model.

The general ideas of Level Set Method are introduced first. Then both the Level-Set

evolution equations and the Navier-Stokes equations are given. The numerical solu-

tion to both equations are also briefed with the details of discretization formulations.

The numerical model is then validated by classic tests on fluid solver, pure interface

capturing, and free surface flow simulation.

Chapter 3 presents the parametric study on sloshing flows inside a full-scale LNG

tank excited by ship motions. First, the simulations of sloshing under excitations in

horizontal, vertical and rotational directions are performed. Then the sloshing flow

with breaking waves is also reproduced. Finally, the parametric study with respect

to excitation amplitudes, frequencies and filling levels is carried out. The effects of

the initial phase difference between the ship motions on sloshing are also discussed.

Chapter 4 describes the development of the numerical model for simulation of the

sloshing flow in this study. First, the numerical dissipation issue of the preliminary

sloshing model is discussed. Second, a parametric study on the smoothing band
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in the Level-Set technique is conducted. Based on the findings, the intermediate

sloshing model is presented. Finally, the final sloshing model which adopts the high-

resolution convection schemes is developed. The details of the convection schemes

are introduced. The validation of the final model is also performed by repeating the

sloshing and wave generation cases.

Chapter 5 performs the study on the coupling between LNG sloshing and ship

motions. First, the numerical model based on nonlinear potential flow theory is de-

scribed. Then the methodology of coupling the numerical models for ship motions

and sloshing motions is developed. After that, a preliminary validation of the COU-

PLED model is conducted. Finally, coupling effects are investigated by a parametric

study regarding wave amplitude, wave frequency and the filling level inside the LNG

tank.

Chapter 6 summarizes the findings of the present study. Corresponding conclu-

sions on sloshing simulation and modeling of coupling between ship motions and

sloshing are made. The possible future research work is suggested in the end.
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Chapter 2

A NUMERICAL MODEL FOR

SIMULATION OF FREE

SURFACE FLOWS

This chapter first presents a brief introduction to the Level Set Method and the

governing equations applied in this study. Following the mathematical formulation of

the numerical model, details of the numerical approaches used to solve the Level-Set

equation and governing equations are given respectively. In the last section, validation

of the present numerical model is carried out by reproducing some benchmark test

cases.

2.1 Mathematical formulation

2.1.1 Level Set Method

Fig. 2.1 shows the basic idea of the Level Set Method. Instead of following the

interface (the blue circle on the left of Fig. 2.1) directly, the Level Set Method builds

it into a surface (the green cone-shaped surface). This is called the Level-Set function,

and it intersects the x-y plane where the original curve is. Thus, the interface (blue

curve) is called the ‘zero level set’since it is the set of points that are at height zero.

When trying to find the new locations of the interface with time evolution, the

Level Set Method follows the motion of the Level-Set function rather than obtaining

the motion of the interface directly. A simple example of a similar process is given in

Fig. 2.2.
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Figure 2.1: An illustration of the interface and the Level-Set function.
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Figure 2.2: An example of capturing interface by Level Set Method.

In the top row of Fig. 2.2, the circle changes its topology by splitting into two. To

be more general, if the interface shape is irregular, it is quite difficult to describe this

transformation and model this process numerically by parameterizing the boundaries

of the shape and following its motion. Doing so requires finding the instant when

the shape becomes two parts, and then rebuilding the two shapes with newly solved

parameters. On the other hand, it is much easier to find the shape boundary and

follow the shape motion though the Level-Set function with its expanding, rising or

22



falling. For instance, to simulate the process of the first row in Fig. 2.2, directly

modeling the splitting of the circle (red line) into two (purple lines) first requires

finding the moment the circle splits. The positions of the two circles’ centers and

their radii at each time instant are also needed to rebuild the two circular shapes.

However, one can simulate the process by simply following the falling of the Level-

Set function (green line), as shown in the second row of Fig. 2.2. In other words,

the interface may get wildly contorted while the Level-Set function can remain well

behaved.

To sum up, the original idea behind the Level Set Method is to represent a close

curve (the interface) Γ in two dimensions with an auxiliary scalar function φ in three

dimensions, which is named the Level-Set function. Then the curve Γ is defined as

the zero level set of φ by,

Γ = {(x, y) | φ (x, y, t) = 0}, (2.1)

and thus the curve is determined implicitly after the Level-Set function φ is solved

in the whole domain. In the original Level Set Method, φ is assumed to be positive

inside the region bounded by the closed curve Γ and negative outside.

When applying the Level Set Method in modeling a free surface flow, the Level-

Set function φ defined in the whole computational domain is introduced with the

following properties:

φ (xi, t)





< 0 if xi ∈ air

= 0 if xi ∈ interface

> 0 if xi ∈ water

, (2.2)

where xi is the spatial coordinate. The position of the air-water interface is directly

defined by the zero level set φ = 0. In order to satisfy Eq. (2.2), the scalar φ can be

defined as a signed distance function,

|∇φ| = 1 (2.3)

which represents the normal positive (in the water phase) or negative (in the air

phase) distance of any fluid point P in the whole domain from the air-water interface.

An illustration of the application of the Level Set Method in a two-dimensional free

surface flow is given in Fig. 2.3. The interface is the φ = 0 contour. At a certain point

P , its Level-Set value φP is the shortest distance from its position to the interface
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with a negative sign in the air phase and a positive sign in the water phase.

zero level set

air phase

water phase

pf ( , ) 0ix tf =

( , ) 0ix tf <

( , ) 0ix tf >

p

Air-water interface

Figure 2.3: Level Set Method for two-dimensional free surface flows.

When a fluid particle in the whole domain is followed, its Level-Set value φ does

not change with time. In other words, if a fluid particle belongs to the set of points

defining the air-water interface, it will always be on the interface. If the free surface

is subjected to a velocity field ui, the Level-Set function is then advected by the

following equation:
Dφ

Dt
≡
∂φ

∂t
+ ui

∂φ

∂xi
= 0, (2.4)

where D/Dt is the material derivative. Normally, the value of φ is known at the initial

time t = t0. Then at a certain later time step, based on the known velocity field ui,

the Level-Set function φ can be updated by solving Eq. (2.4). Thus, on this way, the

air-water interface can be determined by the contour φ = 0 at every time step.

According to the definition, within the whole domain, the fluid properties are:

ρ = ρair, µ = µair in the air phase, where the signed distance is negative; and

ρ = ρwater, µ = µwater in the water phase, where the signed distance is positive

. However, stability issues may arise at the air-water interface due to the sharp

gradient between the two fluid properties, especially when computing viscous flows.

Thus, a region of a finite thickness, 2ǫ, called a ‘transition zone’is introduced around

the air-water interface. Over this zone, a smooth but also rapid change of the fluid
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properties occurs across the interface from the air domain to the water domain.

Special attention has to be given to proper smoothing of the variables inside the

transition zone, since they are linked to those outside the transition zone through

the governing equations. Inconsistent smoothing may result in unphysical solutions

within the whole domain. The Heaviside-type function is usually employed to smooth

the fluid viscosity and density in the transition zone. There are several choices for

the Heaviside function. The following is adopted in this study:

H(φ) =





0 if φ < −ǫ
1
2

[
1 + φ

ε
+ sin(πφ/ε)

π

]
if |φ| ≤ ǫ

1 if φ > ǫ

. (2.5)

Then the fluid properties in the whole domain can be represented by the following

equations:

ρ (φ) = ρair +H (φ) (ρwater − ρair) , (2.6)

µ (φ) = µair +H (φ) (µwater − µair) . (2.7)

air variable

water variable

transition zone

interface

 !

,air air  ! !" "

,water water  ! !" "

Figure 2.4: Fluid properties in the whole domain.
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Fig. 2.4 shows the density and viscosity in the whole domain and the smoothing

in the transition zone. With the Heaviside function applied in the transition zone,

the air properties are smoothly transformed to water properties across the interface,

thus avoiding the sudden jump condition.

2.1.2 Navier-Stokes equations

In this study, we model the water and air phases as two incompressible fluids. Their

motions are governed by the Navier-Stokes equations, which represent the conserva-

tion of mass and momentum per unit mass:

∂ui
∂xi

= 0, (2.8)

∂ui
∂t

+ uj
∂ui
∂xj

=
1

ρ (φ)

(
−
∂p

∂xi
+
∂τij
∂xj

)
+ fi, (2.9)

where i, j = 1, 2 represent the two-dimensional flows, ρ(φ) is the fluid density in

the whole domain defined by Eq. (2.6), p indicates the pressure, fi denotes the i-th

component of the external excitations (including the force due to the gravitational

acceleration),τij are the viscous stress components given by,

τij = µ (φ)

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.10)

where µ(φ) is the fluid viscosity in the whole domain given by Eq. (2.7).

2.2 Numerical model

2.2.1 Solution to the Level-Set equation

2.2.1.1 Spatial discretization

In this study, the fifth order Hamilton-Jacobi Weighted Essentially Non-oscillatory

(HJ-WENO) scheme is used to calculate the spatial gradient in Eq. (2.4).

The Essentially Non-oscillatory (ENO) method was first introduced for the nu-

merical solution of conservation law by Harten et al. (1987). Their basic idea was

to compute numerical flux functions using the smoothest possible polynomial inter-

polations. Shu and Osher (1988, 1989) implemented this idea by constructing the

numerical flux functions from a divided difference table of the point-wise data. Due
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to the fact that the Hamilton-Jacobi equations in one spatial dimension are integrals

of conservation laws, Osher and Sethian (1988) extended the ENO method to the

Hamilton-Jacobi equations. Since Eq. (2.4) belongs to the category of Hamilton-

Jacobi equations, the Level-Set function can be expressed by,

φ(x) = Q0(x) + Q1(x) +Q2(x) +Q3(x). (2.11)

This can be differentiated and evaluated at xi to find (φ+
x )i and (φ−

x )i, which are the

forward and backward differences respectively. That is, the following equation:

φx(x) = Q′

1(x) +Q′

2(x) +Q′

3(x), (2.12)

is applied to define (φ+
x )i and (φ−

x )i, where the constant Q0(x) term vanishes upon

differentiation.

Later, Liu et al. (1994) introduced the Weighted ENO method to avoid the overkill

problem due to the ENO philosophy of choosing exactly one of the candidate stencils

in regions where the data are well behaved. Based on the HJ-ENO scheme, Jiang and

Peng (2000) extended the WENO method to the Hamilton-Jacobi equations. This

HJ-WENO scheme was found to be of great help in solving the Level-Set evolution

equation, Eq. (2.4), since it comes with a higher order of accuracy.

Following the work of Osher and Shu (1991), the details of applying the fifth-order

HJ-WENO to calculate the spatial gradient are given as follows. When computing the

backward difference (φ−

x )i, the third-order HJ-ENO uses a subset of {φi−3, φi−2, φi−1, φi, φi+1, φi+2}

and three approximations. By writing

∂φ

∂x
=
φi − φi−1

∆x
(2.13)

as D−φ, we can have following expressions:

ν1 = D−φi−2 (2.14)

ν2 = D−φi−1 (2.15)

ν3 = D−φi (2.16)

ν4 = D−φi+1 (2.17)

ν5 = D−φi+2. (2.18)
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Then the three approximations to (φ−

x )i are defined by,

φ1
x =

ν1
3

−
7ν2
6

+
11ν3
6

(2.19)

φ2
x = −

ν2
6

+
5ν3
6

+
ν4
3

(2.20)

φ3
x =

ν3
3

+
5ν4
6

−
ν5
6
. (2.21)

By weighting the approximations to (φ−

x )i, the HJ-WENO scheme combines the above

three equations (Eq. (2.19), Eq. (2.20) and Eq. (2.21)) to give

φx(x) = w1φ
1
x + w2φ

2
x + w3φ

3
x, (2.22)

where w ∈ [0, 1] is the weighting coefficient with

w1 + w2 + w3 = 1. (2.23)

To reach the fifth-order of accuracy, the optimal combination of the weighting coef-

ficients is w1 = 0.1, w2 = 0.6 and w3 = 0.3. But this optimal approximation is only

valid in smooth regions and will yield inaccurate estimations in non-smooth region-

s. Next, following Jiang and Peng (2000), the weighting coefficients are defined by

estimating the smoothness of the stencils in Eq. (2.19), Eq. (2.20) and Eq. (2.21) as,

S1 =
12

13
(ν1 − 2ν2 + ν3)

2 +
1

4
(ν1 − 4ν2 + 3ν3)

2 (2.24)

S2 =
12

13
(ν2 − 2ν3 + ν4)

2 +
1

4
(ν2 − ν4)

2 (2.25)

S3 =
12

13
(ν3 − 2ν4 + ν5)

2 +
1

4
(3ν3 − 4ν4 + ν5)

2. (2.26)

These estimates are applied to define the following coefficients:

α1 =
0.1

(S1 + ǫ)2
(2.27)

α2 =
0.6

(S2 + ǫ)2
(2.28)

α3 =
0.3

(S3 + ǫ)2
, (2.29)

where,

ǫ = 10−6max{ν21 , ν
2
2 , ν

2
3 , ν

2
4 , ν

2
5}+ 10−99. (2.30)
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The last term in Eq. (2.30) is used to avoid division by zero, and the first term

is a scaling term that aids in transition between HJ-WENO and HJ-ENO. In this

study, since the Level-Set φ is an approximate signed distance function, the ν that

approximates φx is almost equal to 1. Therefore, ǫ can be set to 10−6. Together with

the coefficients defined earlier, the weighting coefficients are finally determined by,

w1 =
α1

α1 + α2 + α3
(2.31)

w2 =
α2

α1 + α2 + α3

(2.32)

w3 =
α3

α1 + α2 + α3

. (2.33)

Calculating the forward difference (φ+
x )i based on the HJ-WENO scheme in the

same way, a sub set of {φi−2, φi−1, φi, φi+1, φi+2, φi+3} is used. Similarly, by defining:

ν1 = D+φi+2 (2.34)

ν2 = D+φi+1 (2.35)

ν3 = D+φi (2.36)

ν4 = D+φi−1 (2.37)

ν5 = D+φi−2, (2.38)

Eq. (2.19), Eq. (2.20) and Eq. (2.21) are applied to approximate (φ+
x )i. Computing

the weights with Eq. (2.31), Eq. (2.32) and Eq. (2.33), the spatial discretization

based on the fifth-order HJ-WENO scheme is achieved by applying Eq. (2.22).

2.2.1.2 Temporal discretization

Previous studies suggest that Level Set Method are more sensitive to spatial accura-

cy, and that temporal truncation errors result in less deterioration of the numerical

solution (Osher and Fedkiw, 2006). However, to obtain accurate numerical solutions

in this study, it is still necessary to use a higher-order temporal discretization.

Based on the assumption that the spatial discretization can be separated from the

temporal discretization in a semi-discrete way that allows the temporal discretization

of the PDE to be treated independently as an ODE, Shu and Osher (1988) proposed

Total Variation Diminishing Runge-Kutta (TVD-RK) methods to improve accura-

cy. Unlike some other RK schemes, these TVD-RK schemes produce no spurious

oscillations. The existing fourth- and higher-order TVD-RK schemes do not seem

to produce a better result when the HJ-WENO scheme is used to calculate spatial
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gradients in practical calculations. They only improve the temporal accuracy slightly,

but cost more computational time (Osher and Fedkiw, 2006). Due to this fact, the

third-order TVD-RK scheme is applied in this study. The details are as follows.

First, an Euler step is applied twice to advance the solution to the time step

tn +∆t and then to tn + 2∆t, shown as,

φn+1 − φn

∆t
+ uni · ∇φ

n = 0 (2.39)

φn+2 − φn+1

∆t
+ uni+1 · ∇φ

n+1 = 0. (2.40)

Applying the interpolation,

φn+ 1

2 =
3

4
φn +

1

4
φn+2 (2.41)

we can get the approximation to the Level-Set value φ at the time step tn + 1
2
∆t.

Based on this, taking a further Euler step to advance the solution to tn + 3
2
∆t, we

have
φn+ 3

2 − φn+ 1

2

∆t
+ u

n+ 1

2

i · ∇φn+ 1

2 = 0 (2.42)

Similarly, applying the φ value at the current time step and time step tn + 3
2
∆t by

the following equation,

φn+1 =
1

3
φn +

2

3
φn+ 3

2 , (2.43)

the third-order accurate approximation to φ at the next time step tn + ∆t can be

produced.

2.2.1.3 Re-initialization of the Level-Set function

As the Level-Set function φ is stepped forward in time its distribution throughout the

domain may deviate from being a signed distance function (i.e. |∇φ| 6= 1), especial-

ly for flows undergoing extreme topological changes. Thus, to maintain the signed

distance property of the Level-Set function, we need to solve the re-initialization

equation given by Sussman et al. (1994),

∂φ

∂τ
+ S (φ0) (|▽φ| − 1) = 0, (2.44)

where φ0 denotes the updated φ in the current time step. Evolving Eq. (2.44) to the

steady state through the fictitious time τ gives us the signed distance function of φ.
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In the re-initialization equation (Eq. (2.44)), S (φ0) is a one-dimensional smeared out

function which is continually updated during the calculation using the updated value

φ0 by,

S (φ0) =
φ0√

φ2
0 + (∆x)2

. (2.45)

In this study, the fast marching method proposed by Sethian (1996) is adopted

to perform the re-initialization process. The positive domain (water) and negative

domain (air) use the fast marching scheme separately with the same idea. First, all

cells are divided and defined as three bands: the accepted band with cells adjacent

to the interface, the tentative band with cells close to the accepted band, and the

faraway band with all the remaining cells in the corresponding domain. Then, values

of Level-Set function φ in the accepted band are used to update the value of φ in all

the tentative cells by solving |∇φ| = 1. After the calculation, the tentative cell with

the smallest value of Level-Set function is selected and added to the accepted band.

In the next step, the φ value in the newly accepted cell is used to update the values of

φ in its neighboring tentative cells by solving |∇φ| = 1. Any of its other neighboring

cells that are in the defined faraway band are assigned values of updated φ at the

above step, and are redefined into the tentative band.

Since the cells close to the interface in the first accepted band are not updated

by the fast marching procedure, we must specify the values of φ in those cells. To

achieve this, we adopt the method proposed by Losasso et al. (2006). First, a massless

particle is introduced at each cell close to the interface. Using the local properties of

φ, the particle is transported towards the interface in the local normal direction over

a distance equal to its corresponding value of φ. Then the normal vector and the

value of φ are calculated at the new particle location. With the updated information,

the particle is propagated again towards the interface. This procedure is continued

until the absolute value of φ at the particle location is less than a tolerance of the

interface,

φ < 0.1∆x. (2.46)

The value of φ close to the interface is then updated using the distance from the cell

center to the final location of the particle. If the final particle location is not within

a tolerance of the interface, the linear interpolation between surrounding cells that

cross the interface is applied to update φ accordingly.
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2.2.2 Solution to Navier-Stokes equations

In this study, the Navier-Stokes equations (Eq. (2.9)) are discretized on a staggered

grid with p, ρ and µ defined at grid cell centers, and the velocity u, v at cell faces.

An illustration is provided in Fig. 2.5.

( , 1 2)v i j +

( , 1 2)v i j -

( 1 2, )u i j+( 1 2, )u i j-

( , )p i j

( , )i jr( , )i jm

Figure 2.5: Demonstration of the two-dimensional staggered grid.

A two-step scheme by Kim and Moin (1985) is used for the time-advancement

of the Navier-Stokes equations. To apply this scheme, the role of pressure in the

momentum equations can be interpreted as a projection operator which projects an

arbitrary velocity field into a divergence-free field.

Temporal gradients are discretized with a second-order TVD-RK scheme, which

performs two Euler time steps. First, Eq. (2.9) is rewritten to obtain a predicted

velocity ûn+1
i at the next time step,

ûn+1
i = ũni −

∆t

ρn (φ)

∂pn

∂xi
, (2.47)

where the superscript n denotes the current time step and

ũni = uni +∆t

[
1

ρn (φ)

(
∂τnij
∂xj

)
− unj

∂uni
∂xj

+ fi

]
. (2.48)

In requiring that the predicted velocity field be divergence free, Eq. (2.47) becomes

∂

∂xi

[
1

ρn (φ)

∂pn

∂xi

]
=

1

∆t

(
∂ũni
∂xi

)
, (2.49)
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which is a Poisson equation for the unknown pressure field. Applying the second-

order central difference scheme to calculate the spatial gradients, (take x-direction as

an example),

∂ũ

∂x
=
ui+ 1

2
,j − ui− 1

2
,j

∆x
(2.50)

gives the solution to Eq. (2.49). Adding the gradient of the calculated pressure field

to Eq. (2.47) obtains a prediction of the new velocity field ûn+1
i . By solving Eqs.

(2.47), (2.48), and (2.49) again with ûn+1
i , the second prediction for the velocity field

at the time step n+2 is achieved. By taking an average of the second prediction and

the initial velocity field, the velocity field at the time step n + 1 is given by,

un+1
i =

1

2

(
uni + ûn+2

i

)
. (2.51)

When discretizing the convective term in Eq. (2.9), it is essential to avoid the

introduction of numerical instabilities due to the sharp density gradient at the inter-

face. To ensure stability, we employ the first-order upwind scheme in the numerical

model at the current stage, which is as follows (take u∂u
∂x

as an example):

u
∂u

∂x
= ui+ 1

2
,j ·

ui+ 1

2
,j − ui− 1

2
,j

∆x
, if ui+ 1

2
,j > 0 (2.52)

u
∂u

∂x
= ui+ 1

2
,j ·

ui+ 3

2
,j − ui+ 1

2
,j

∆x
, if ui+ 1

2
,j < 0. (2.53)

To make the numerical model stable, we restrict the time step by the CFL con-

dition and the gravity (Kang et al., 2000). By employing a CFL number of 0.5, the

following condition should be satisfied:

∆t < 0.5




Ccfl +

√
(Ccfl)

2 + 4 (Gcfl)

2




−1

, (2.54)

where Ccfl = max (|u| /∆x, |v| /∆y) and Gcfl = g/∆y and ∆x, ∆y are the grid

increments in the x- and y-directions respectively.
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2.3 Validation of the numerical model

The frame of the numerical model described above is based on the work of Archer

and Bai (2011). In their work, only a basic free surface flow solver was developed,

with a heavy focus on the particle technique applied into the Level Set Method. To

make the program suitable for simulations of liquid sloshing, massive revisions and

improvements have been made to obtain the present numerical model. In this section,

classic test cases are performed to validate the model’s capability. To investigate

the accuracy of the Level-set algorithm, the vortex in box case, which involves the

propagation of an interface in a prescribed velocity field, is studied first. To test the

numerical solution to the governing equations of the fluid, the lid-driven cavity flow

case, which has been widely used as a benchmark test case, is applied as the second

validation case. Since the first two cases are concerned with interface capturing and

motion of a single fluid, the free sloshing in a rectangular tank case is performed to

test the capability of the combined numerical model for simulation of free surface

flows. Finally, an even more difficult test case, the dam break test, is conducted to

show the capacity of the present numerical model in modeling the two-phase flows

with breaking waves. It is worth mentioning that the tank walls are assumed to be

rigid in all the following cases in this thesis.

2.3.1 Vortex in box

The vortex in box test case is a typical test used to access the accuracy of an algorithm

in the propagation of an interface. In this case, a circular surface is placed in the

velocity field of a constrained vortex. The resulting deformation procedure involves

the stretching and restoration of this circular surface.

The velocity field is given by:

u = − sin2(πx) sin(2πy) cos(πt/T ) (2.55)

v = − sin2(πy) sin(2πx) cos(πt/T ), (2.56)

where T = 4.0 is the total time duration of the simulation. A circular interface with

a radius of r = 0.15 is placed in a square domain with a size of 1.0× 1.0. The center

of the circular interface is located at (0.5, 0.75). Fig. 2.6 shows the initial conditions

of this case. According to the given equation of the velocity and simulation time,

the flow field will reverse its direction at time t = 2.0. At time t = 4.0, an accurate

algorithm should predict the interface returning to its initial circular shape.

34



X

Y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure 2.6: Initial conditions of the vortex in box case.

To begin with, four different mesh sizes, 100 × 100, 200 × 200, 400 × 400 and

800 × 800 are applied to test the grid convergence. Fig. 2.7 shows the time instant

when the flow stops and begins to reverse its direction. The interface has been

stretched into a thin spiraling filament. It can be seen that as the mesh size increases,

the difference between the results given by the present model becomes smaller. This

indicates a nearly convergent solution is achieved by the mesh of 400× 400.
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0.8

1

Figure 2.7: Comparison between different meshes at t = 2 (red dashed line: 100×100,
blue dash-dot line: 200× 200, pink solid line: 400× 400, black solid line:800× 800).

A comparison is made at time t = 4.0 in Fig. 2.8 when the interface is expected
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to return and recover its initial circular shape. With the finer mesh size applied, the

circular shape obtained is closer to the ideal condition. Same as Fig. 2.7, predictions

given by 400× 400 and 800× 800 are very close to each other, supporting our state-

ment that a convergent solution is achieved by the mesh of 400 × 400. In addition,

Good agreement between the present solution and the ideal condition validates that

the Level-Set algorithm in the present numerical model is capable of capturing the

interface with a high degree of accuracy.
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Figure 2.8: Comparison between different meshes at t = 4 (gray dash line: 100×100,
red dash-dot line: 200×200, blue long dashed line: 400×400, pink solid line: 800×800,
black dash-dot-dot line: Ideal condition).

Fig. 2.9 presents the whole procedure of this vortex box test case with the mesh

size of 400 × 400. When time 0.0 < t < 2.0, the circular interface is stretched out

while the swirling velocity gradually decreases. At time t = 2.0, the flow comes to a

stop and starts to reverse its direction. During time 2.0 < t < 4.0, the reversal of the

swirling flow direction gradually drives the stretched interface back. Finally, at time

t = 4.0, the circular interface is back and has recovered its initial profile as expected.

(The captured interface at the time instants t = 0.0, t = 2.0 and t = 4.0 is given in

Fig. 2.6, Fig. 2.7 and Fig. 2.8, respectively.)
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(b) t = 1.0

X

Y

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

(c) t = 1.5
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(e) t = 3.0
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(f) t = 3.5

Figure 2.9: Surface profiles at different time instants during the vortex stretch and
recover process.
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2.3.2 Lid-driven cavity flow

Prior to applying the numerical model to solve the two-phase flow problem, we need

to further validate the fluid solver by repeating the well-known lid-driven cavity flow

test. As shown in Fig. 2.10, a two-dimensional rectangular cavity with a length of

L = 1 and a height of H = 1 is filled with only one fluid of a fixed density ρ = 1.

Therefore, the free surface is not of concern here. The top wall moves at a constant

velocity U = 1 while the other three are stationary. The flows in the cavity with

viscosities of µ = 1.0× 10−2, 2.5× 10−3 and 1.0× 10−3 are simulated. According to

Re =
ρUL

µ
, (2.57)

the Reynolds numbers are Re = 100, Re = 400 and Re = 1000, respectively.

0u v= =

20mm

0u v= =

0u v= =

 , 0u U v= =

L

H

Figure 2.10: The geometry of the lid-driven cavity.

Since there are three different cases with different Reynolds numbers, grid conver-

gence tests are performed for each case. For Re = 100, Fig. 2.11 shows the velocity

components in the x- and y-directions along the vertical and horizontal centerlines,

respectively. The results from the two mesh sizes, 50 × 50 and 100 × 100 lie quite

close to each other, suggesting a convergent solution is achieved. To validate the

accuracy of this solution, the benchmark result of Ghia et al. (1982) is also plotted

for the purpose of comparison. The present numerical results agree quite well with

the benchmark solution.

Similarly, for Re = 400, the mesh size test is also performed. As shown in Fig.

2.12, the numerical results gradually approach the benchmark solution as the mesh
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Figure 2.11: Comparison between numerical results with different mesh sizes and the
benchmark solution for Re = 100.

size increases from 50 × 50 to 200 × 200. This suggests that the fluid solver in the

present numerical model might need a finer mesh when modeling a challenging case.

Lastly, a further comparison is made for the Re = 1000 case, as shown in Fig.

2.13. In this case, an even finer mesh size of 300× 300 has to be applied to obtain a

satisfying numerical result.

To sum up, as the Reynolds number increases, the numerical modeling of the lid-
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Figure 2.12: Comparison between numerical results with different mesh sizes and the
benchmark solution for Re = 400.

driven cavity flow becomes more challenging. A finer mesh size is required to achieve

a more accurate result. Nevertheless, good agreement with the benchmark solution

indicates that the present numerical model could solve fluid motions accurately.
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Figure 2.13: Comparison between numerical results with different mesh sizes and the
benchmark solution for Re = 1000.
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2.3.3 Free sloshing in a rectangular container

To further validate the present numerical model in modeling fluid motions with a

free surface, we shall consider a classic test case for free surface flow problems: wave

sloshing in a container under the influence of gravity.

1.0 mxL  

d

Figure 2.14: A schematic view of the free sloshing case.

As shown in Fig. 2.14, a sloping free surface separating the water phase and

air phase is set in a rectangular container. The length of the container is 1 m and

the initial slope of the free surface is 0.02 with a still water depth of 0.2 m. Once

the fluid begins to move under gravity, there exists an infinite number of standing

wave modes in the container. Provided the viscosity is neglected in this case, the

analytical solution to this problem can be found based on linear wave theory. The

surface displacement η is given by Lin and Li (2002) as,

η =

∞∑

m=1

Am sin (kmx) cos (̟mt) (2.58)

where km = (mπ) /Lx is the wave number, Lx is the length of the water tank, ̟m =√
gkm tanh (kmd) is the frequency, g is the gravitational acceleration, d is the still

water depth and Am = SLx/(m
2π2) [4sin (mπ/2)− 2 sin (mπ)] is the amplitude of

the mth mode.

To investigate the grid convergence, three different meshes, denoted by Mesh 1,

Mesh 2, and Mesh 3, using 40 × 10, 160 × 40, and 480 × 120 cells, respectively, are

adopted with the time interval of 0.01 s. In Fig. 2.15, time histories of the surface

displacement at the left wall of the container obtained with different mesh sizes are

compared with the analytical solution. Numerical results with different mesh sizes

gradually approach the analytical solution. A convergent solution can be obtained

using Mesh 2 in the computational domain.

Further investigations on the convergence of the calculation with three different

time intervals are conducted. Fig. 2.16 shows that all the three results obtained by
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the chosen time intervals are almost identical, which indicates that the calculations

are not very sensitive to the three time intervals as long as the simulation can be

completed. Thus, results obtained by Mesh 2 and the time interval of 0.01 s are

selected for further comparison.

Time (s)

y/
h

0 2 4 6 8-0.1

0

0.1

Mesh 1
Mesh 2
Mesh 3
Analytical solution

Figure 2.15: Time histories of free surface displacement at the left wall for three mesh
sizes.
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0 2 4 6 8-0.1
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0.02
0.01
0.005
Analytical solution

Figure 2.16: Time histories of free surface displacement at the left wall for three time
intervals.

Fig. 2.17 shows the comparison of the wave profiles at six time instants with

the corresponding analytical solutions. The first four wave profiles capture the free

surfaces during the first wave period for the leading mode, and the last two frames

show how the wave behaves after a longer time simulation. From the comparisons, we

can see that the numerical predictions agree well with the analytical solution at the

beginning, but a slightly larger discrepancy is observed at the last instant of time.

This might be caused by the neglect of nonlinear effects in the analytical solution

and accumulated errors in the numerical model. Overall, the numerical model at the

current phase can accurately simulate the two-phase flows without breaking waves.
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Figure 2.17: Comparison of wave profiles between the present numerical results and
analytical solutions at different time instants.
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2.3.4 Dam break test case

In this section, fluid motion with breaking waves is used to test the capability of the

present numerical model in handling violent topological changes. The dam break test

case has been selected since it involves the following features: free surface splitting,

merging, and over turning. In this test case, the sudden collapse of a water column

on a rigid horizontal plane is used to simulate the abrupt failure of a dam, where an

initially blocked still-water column starts to spread out after the barrier is removed.

This test case is a classic validation case and has been the subject of many numerical

and experimental studies. Here, the numerical and experimental work of Fekken

(1998) is followed.

H3 H2 H1
P1

H4

0.6

0.6

0.53

1.2

0.6 0.498 0.497

0.16

dam

Figure 2.18: A schematic view of the dam break case.

Fig. 2.18 is the schematic view of this dam break case. As shown in this figure,

the experiment was conducted in a two-dimensional rectangular tank with a length

of L = 3.332 m and a height of H = 1.2 m. The water column is set on the left side

of the wall with a length of Lw = 1.2 m and a height of Hw = 0.6 m. According to

Fekken et al. (1998), the experiment conducted by the Maritime Research Institute

Netherlands (MARIN) used four vertical wave probes at position H1, H2, H3, H4

and a pressure sensor at position P1, as shown in Fig. 2.18, to measure the wave

height and pressure.

Following the same procedure of the previous section for the convergence test, the

time step ∆t = 0.001s and mesh size of 216 × 80 are selected to simulate this test
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Figure 2.19: Wave profiles captured by the presented numerical model at different
time instants.

case. The total simulation time is t = 4.0 s. The viscosities of both water and air are

neglected. The wave profile obtained by the present numerical model at different time

instants are shown in Fig. 2.19. After the vertical barrier is removed at time t = 0.0

s, the water column collapses and flows to the right side due to the pressure difference

between water and air. When the front of the water hits the wall around t = 0.6 s,

the kinetic energy of the flow pushes it upwards against the wall. As the water runs

up along the right wall, the velocity of the flow decreases gradually due to the energy

conversion from kinetic energy to potential energy. Around t = 1.0 s, the water front

ceases to hit the wall and starts to fall back into the tank due to gravity. Then, the

falling water hits the bottom water in the tank at around t = 1.4 s. This generates a

splash wave traveling to the left with a thin, elongated surge front. The splash falls

into the tank and finally the water calms down. It can also be observed that several

air bubbles are captured by the present numerical model at around t = 2.0 s.

In Fig. 2.20, the comparison of the pressure time history is made among our sim-
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Figure 2.20: Comparison of time histories of the pressure among the present results,
Fekken’s numerical results and experimental measurements.

ulation results, the experimental observation of MARIN, and the numerical solutions

given by Fekken et al. (1998). To obtain the pressure value at P1 in the present

numerical model, the values at four neighboring cell centers are identified to perform

the interpolation. As shown in Fig. 2.20, both numerical solutions have a similar

trend: there are three peaks captured by the two numerical models. The first peak is

generated when the water front hits the right wall after the water column collapses.

The second one occurs due to the additional induced pressure after the wave front

comes to a stop, falls back due to gravity and hits the water in the tank bottom. The

third peak is relatively moderate since it occurs when the breaking wave falls down

and the water again runs up to the right wall, which results in a pressure increase.

However, both numerical solutions have not captured the steep rise in pressure at

around time t = 0.6 s. One possible reason for this discrepancy is that the slope of

the waterfront in the simulation is smaller than that in the experiment just before

impact. This difference in the slopes might be due to the fact that both numerical

simulations are not exactly equivalent to the experiment. According to Fekken (1998),

to represent the dam break in the experiments, a flap was pulled up with a velocity of

approximately 4 m/s. As studied in Buchner and van Ballegoyen (1997), the slope of

the waterfront may have a big influence on the impact pressure. Thus, the difference

in slope of the waterfront leads to the pressure discrepancy around t = 0.6 s.
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Figure 2.21: Comparison of the wave height recorded at four probes among the present
results, Fekken’s numerical results and experimental measurements.

Fig. 2.21 shows the wave heights obtained by the experiment, Fekken’s numerical

work and our numerical model at the four measured positions. At the two wave probes

nearest to the dam, H4 and H3, the wave height predicted by both the numerical

models are close each other and agree well with the laboratory measurements, except

some localized discrepancies, as shown in Fig. 2.21(c) and Fig. 2.21(d). It should be

pointed out that, at t = 0 s, the wave height should be 0.6 m as correctly given in

Fig. 2.21(d) by both numerical results. However, the experimental recording was less

than 0.6 m. This height difference could be due to the same reason for the pressure

discrepancy mentioned earlier.

However, as the distance from the dam increases, Fig. 2.21(a) and Fig. 2.21(b)

show that the wave height atH2 andH1 generated by the present model diverges from

the numerical solution given by Fekken et al. (1998). Although a similar trend of the
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two numerical predictions approaching the experimental results could be observed,

our results are closer in agreement with the experimental recordings.

2.4 Summary

In this chapter, the numerical model for the simulation of free surface flows applied

in the present study was introduced in detail.

The mathematical formulation of the numerical model was given by introducing

the basic principle of the Level Set Method capturing the free surface and the Navier-

Stokes equations that govern the motions of both the fluids.

To capture the free surface, the Level-Set equation was solved numerically. The

fifth-order HJ-WENO scheme was applied to discretize the spatial gradient, while the

third-order TVD-RK scheme was employed to calculate the temporal gradient. To

maintain the signed distance property of the Level-Set function, the fast marching

scheme was adopted for the re-initialization of the Level-Set equation at every time

step.

The fluid governing equations were solved using the two-step projection scheme

with the second-order TVD-RK scheme to calculate the temporal gradients. The

diffusive terms in the Navier-Stoke equations were discretized by the central difference

scheme and the convective terms were computed by the first-order upwind scheme.

To test the present numerical model, first, the vortex in box case was studied.

With details captured by the Level-Set technique during the vortex deformation and

agreement with the ideal conditions at the restoring moment of the vortex, the pure

interface capturing part of the present model was validated. Then, the fluid solver

of the numerical model was assessed by reproducing the classic lid-driven flow case.

Good agreement with the benchmark solutions for different Re numbers indicated

the accuracy of the fluid solver used in the present model.

Finally, the free surface flows with and without breaking waves were investigated.

In both cases, satisfactory results were achieved. The predictions given by the present

model matched the published analytical solutions and experimental data. Thus, the

numerical model for the simulation of the free surface flows applied in this study was

well verified.
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Chapter 3

LIQUID SLOSHING DUE TO

SHIP MOTIONS

3.1 Introduction

As described in Chapter 1, sloshing is a motion of a free liquid surface inside a

container. It is of great significance with regard to LNG carriers since violent liquid

sloshing can lead to structural damage of tank walls. Tank rupture is also a risk if

the external excitation is close to the natural frequency of the sloshing system. In

addition, to study the interaction between sloshing and ship motions in waves, an

accurate prediction of the sloshing flow is required.

In Chapter 2, the numerical model to study free surface flows was discussed and

validated by the good agreements obtained with the benchmark results of some classic

test cases. In this chapter, the present numerical model is applied to study various

sloshing problems. First, the forced sloshing induced by horizontal and rotational

motions is investigated. To further validate the capability of the present numerical

model, sloshing with breaking waves is also considered. Finally, since the basis of

this research is about the interaction between sloshing and ship motions, sloshing in

a full-scale tank excited by ship motions encountered in sea conditions is studied.

3.2 Forced sloshing

Forced sloshing in a tank is usually generated by the external tank’s motions, which

is a problem involving a moving boundary. However, in the numerical simulation,

the moving boundary problem is always complicated to solve due to the time vary-
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ing computational domain. In order to avoid the complicated boundary conditions

imposed on the moving boundary, a coordinate system that moves together with the

tank is adopted, as shown in Fig. 3.1. By doing this, the external excitation fi in

Eq. (2.9) can be easily represented by using the tank motion. Thus, fi consists of

the gravitational acceleration, translational and rotational inertia forces and can be

expressed in the vector form as (Ibrahim, 2005),

f = g −
dU

dt
−
dΩ

dt
× (r−R)−Ω× [Ω× (r−R)]− 2Ω×

d (r−R)

dt
, (3.1)

where g, U and Ω are the gravitational acceleration, translational velocity and rota-

tional velocity of the moving coordinate respectively. In addition, r and R are the

position vectors of the considered point in the computational domain and the rotation

center respectively, as shown in Fig. 3.1. If no rotational motion is present (Ω = 0),

Eq. (3.1) will be reduced to a simple form with only the first two non-zero terms on

the right-hand side of the equation remaining.

x

y r

R

rotation center

considered point

Figure 3.1: Definition of the two-dimensional moving coordinate system.
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3.2.1 Sloshing due to surge motions without breaking waves

First, the experiment conducted by Koh et al. (2012) to investigate liquid sloshing in

a two-dimensional rectangular tank is reproduced numerically. The tank used in the

experiment measures 0.6 m in both the horizontal and vertical directions with a still

water depth of 0.3 m. As shown in Fig. 3.2, a wave probe measuring the free surface

elevation is located 20 mm from the right wall at point H1, and a pressure sensor is

placed on the left wall at point P1, 20 mm above the bottom of the tank.

L

D

d

1H

1P
20mm

20mm

Figure 3.2: A schematic view of the two-dimensional rectangular tank used in Koh’s
experiment.

The displacement of the tank is governed by,

x = A (1− cosωt) , (3.2)

where A is the excitation amplitude set to 5 mm and ω is the excitation frequency

chosen to be 6.85 rad/s, the same as the fundamental frequency ω0 calculated by,

ω0 =

√
g
π

L
tanh

(π
L
d
)
, (3.3)

where L denotes the tank length and d is the initial water depth.

To investigate the grid convergence, three different meshes are tested with cell

numbers of 50× 50, 100× 100 and 200× 200 respectively. The time interval is taken

as ∆t = 0.001 s. In Fig. 3.3, results of the free surface elevation at point H1 and
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pressure at point P1 are compared with the experimental results. Clearly, numerical

results from the different meshes gradually approach the experimental results. The

values obtained by the two finer meshes lie close to each other. This suggests that

a convergent solution is achieved by the present numerical model and that the mesh

size of 100× 100 could be used for the following simulations in this section.
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(a) Time histories of free surface displacement at point H1
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Figure 3.3: Convergence test of three mesh sizes.

We further test the convergence of the calculation with three different time inter-

vals: ∆t = 0.001 s, ∆t = 0.002 s, and ∆t = 0.005 s. Results shown in Fig. 3.4 are

almost identical and indicate that the calculations are insensitive to the three time

intervals adopted in this case. Thus, a convergent solution can be obtained using

the time interval ∆t = 0.005 s. It will be used for the following calculations in this

section.

With the chosen mesh and time interval, the time histories of free surface eleva-

tion and pressure obtained by the present numerical model are compared with the

experimental results in Fig. 3.5.
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Figure 3.4: Convergence test of three time intervals.

The results show close agreement between the present numerical results and the

experimental data in Koh et al. (2012) for both the water surface displacement and

the pressure. Resonant phenomenon is clearly observed in Fig. 3.5(a). Note that two

successive peaks in each period are captured for pressure after t = 3 s in Fig. 3.5(b).

As discussed in Peregrine (2003) for wave impact on walls, when water reaches its

crest, it is projected upward and it appears to be nearly in free fall. To accelerate the

water upward, a higher pressure (the first peak) is required to provide the pressure

gradient. At the maximum upward excursion, the water at the crest has little pressure

on the water below. When the water falls down after the maximum upward excursion,

another higher pressure (the second peak) is needed again to provide the pressure

gradient during the deceleration. In addition, a small phase discrepancy is observed

after 7s, which is also reported in the work of Koh et al. (2012). This discrepancy

is likely caused by the slight difference in the frequency ratios used between the

experiment and the numerical simulation. In order to achieve the resonance in the
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Figure 3.5: Comparison between the present numerical results and Koh’s experimental
recordings.

experiment, the frequency needs to be shifted slightly from the prediction based on

linear wave theory.

Fig. 3.6 shows comparisons of the wave profiles at four different time instants

with the corresponding experimental data. The wave profiles obtained by the present

numerical model agree well with the experimental results. As time elapses, the free

surface gradually climbs higher along the side wall. The nonlinear characteristic

is observed with the larger upward sloshing amplitude, indicating that the present

numerical model can accurately predict nonlinear sloshing motion under horizontal

excitations.
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Figure 3.6: Comparison of wave profile between present numerical results (solid line)
and Koh’s experimental data (circle) at different time instants.
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As it is of great importance to predict global sloshing loads on LNG tanks, a

further investigation is performed to validate the capability of the present model in

modeling sloshing loads. Here, the sloshing excited by horizontal sinusoidal motions

in Faltinsen and Timokha (2001) is simulated.

The tank is 1.0 m ×1.0 m with an initial water depth of 0.35 m, where the highest

natural period is T1 = 1.2651 s according to linear wave theory, and the amplitude

of the excitation is 0.05 m. The dimensionless lateral forces on the wall, defined

as 1000Fx/ρgl
2b, are computed by the present numerical model and compared with

the analytical solution in Faltinsen and Timokha (2001) and the experimental data

in Olsen and Johnsen (1975). The comparison is shown in Fig. 3.7. The shift of

the resonant period from T1 to around 1.1T1 is captured by our numerical model

and the analytical solution. Good agreement among the present numerical result,

the analytical solution and the laboratory recordings is achieved, implying that our

numerical model can predict the sloshing loads on the tank wall correctly.
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Figure 3.7: Comparison of dimensionless lateral force against T/T1 among the present
numerical result, Faltinsen’s solution and laboratory measurements.
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3.2.2 Sloshing due to pitch motions

L

D

d
200mm

rotation axis

P

Figure 3.8: A sketch of the two-dimensional tank used in Chen’s experiment with the
rotation axis.

In this section, the present numerical model is applied to the analysis of liquid

sloshing in a two-dimensional rectangular tank under forced pitch excitations. The ex-

periment conducted by Chen et al. (2013) to investigate the sloshing-induced pressure

on solid walls is simulated. Our numerical results are compared with the correspond-

ing experimental data and their numerical results. Fig. 3.8 shows the dimensions of

the water tank: L = 1.0 m in length, D = 1.0 m in height with an initial water depth

d = 0.3 m. A pressure sensor is placed on the left wall 0.2 m from the bottom of

the tank. The tank rolls around the axis at the center of its bottom. The rotational

angle of the water tank is given by,

θ = A (sinωt) , (3.4)

where A and ω represent the pitch excitation amplitude and excitation frequency,

respectively. In this case, the rotational excitation amplitude A is equal to 5◦. Ac-

cording to Eq. (3.3), the first natural frequency of this sloshing system is ω0 = 4.76

rad/s. Following the work in Chen et al. (2013), four sloshing cases with different

excitation frequencies, chosen according to the first natural frequency, are reproduced

numerically here:

• Case 1: ω = 0.20ω0 = 0.95 rad/s;
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• Case 2: ω = 0.65ω0 = 3.09 rad/s;

• Case 3: ω = 0.80ω0 = 3.81 rad/s;

• Case 4: ω = 1.15ω0 = 5.47 rad/s.

Figs. 3.9 - 3.12 give the time histories of the pressure values obtained in the four

cases.
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Figure 3.9: Comparison of time histories of pressure at ω = 0.95 rad/s, among present
numerical results, Chen’s SPH results and Chen’s experimental data.

Chen et al. (2013) present the pressure results only after 2 s. This may be due

to the transit effect in the experiments. As shown in Fig. 3.9, Case 1 (ω = 0.20ω0)

simulates the condition when the excitation frequency is much smaller than the nat-

ural frequency. Excited by such a relatively low frequency, the free surface oscillates

mildly in the tank so that the time history of the pressure obtained on the tank wall

varies periodically. The pressure result is approximately sinusoidal with an amplitude

of around 500 Pa. This indicates that the hydrostatic pressure is dominant in this

case.

In Case 2 (ω = 0.65ω0), with a larger excitation frequency that is still not close

to the natural frequency, the free surface in the tank climbs higher along the side

wall. The pressure result still has a sinusoidal tendency with a larger amplitude of

about 800 Pa, as shown in Fig. 3.10. Further, it can be seen that the pressure result

becomes asymmetrical with a smaller positive amplitude than the negative one. This

suggests that the effect of the dynamic pressure due to the sloshing wave is becoming

more evident.

This is validated by Fig. 3.11 and 3.12. Two successive peaks are captured in

both plots. Nonlinear characteristics like sharper crests and flatter troughs are also
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Figure 3.10: Comparison of time histories of pressure at ω = 3.09 rad/s, among
present numerical results, Chen’s SPH results and Chen’s experimental data.
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Figure 3.11: Comparison of time histories of pressure at ω = 3.81 rad/s, among
present numerical results, Chen’s SPH results and Chen’s experimental data.

observed. Both cases give a maximum pressure amplitude of around 1200 Pa due

to the higher free surface displacement along the side wall. This indicates that the

sloshing waves are quite severe in both cases, with excitation frequencies closer to the

natural frequency.

However, as the excitation frequency increases, there come some discrepancies

between the present numerical result and Chen’s work. In Fig. 3.11, there is a phase

shift around t = 8 s between both the numerical work and experimental result. Apart

from the numerical dissipations, the three-dimensional effects in the experiment may

also account for this discrepancy. With a larger frequency, the difference in Fig. 3.12

is evident, especially at the early stage t = 2 to 4 s. The discrepancy is mainly caused

by the unstable movement of the tank during the early acceleration period of the

experiment. Nevertheless, the present numerical model provides a closer prediction

to the SPH result at that stage. Except for these localized discrepancies, the present
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Figure 3.12: Comparison of time histories of pressure at ω = 5.47 rad/s, among
present numerical results, Chen’s SPH results and Chen’s experimental data.

numerical model fits the data of Chen et al. (2013) well.

Fig. 3.13 shows the maximum pressure recorded during the simulation time of 20

s against various excitation frequencies, as well as the comparison with the numer-

ical results in Chen et al. (2013). When the frequency ratio is small, the pressure

amplitude gradually increases as the ratio increases. As the ratio approaches 1, the

amplitude rises rapidly and then falls quickly while the ratio keeps increasing. A

small discrepancy is found around the natural frequency when the sloshing wave in

the tank is most severe. Overall, close agreement between the two numerical models

is achieved, indicating that the present numerical model can be applied to rotational

sloshing simulations.
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Figure 3.13: Comparison of the pressure amplitudes obtained at various excitation
frequencies between the present numerical results and Chen’s SPH results.
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3.2.3 Sloshing due to surge motions with breaking waves

In the first two cases, the good agreement between the experimental results and the

numerical results indicates that the present numerical model is able to cope with the

two-dimensional sloshing flow in a rectangular tank under surge and pitch motions.

However, in these two cases, the excitation is not strong enough to generate breaking

waves. In practice, when LNG tanks with various filling levels are being transported

under severe sea conditions, strong sloshing flow with breaking waves will likely be

induced inside LNG tanks. Therefore, it is necessary to validate the capability of

the present numerical model in modeling a sloshing flow with breaking waves. Here,

following the experiment conducted by Colagrossi et al. (2004), a series of numerical

simulations is performed for severe situations.

In their experiment, a rigid rectangular tank is built with a length of L = 1 m, a

height of D = 1 m and a width of B = 0.1 m to model the two-dimensional sloshing

flow. A horizontal motion is applied to the tank as the external excitation given by,

x = A sin (2πt/T ) . (3.5)

Here A and T are the excitation amplitude and period, respectively. Since we are

exclusively concerned about the sloshing flow with breaking waves, we only reproduce

some of their cases, in which the wave impact against the tank roof occurs. Hence,

in this study, the tank is filled with water up to d = 0.35L, with probes recording the

wave elevation at 0.05L from the side walls. Two excitation amplitudes A = 0.05L

and A = 0.1L are simulated respectively. With various excitation periods ranging

from about T = 0.5T1 to T = 2.0T1, the maximum wave elevations in the tank are

predicted by the present numerical model. Here T1 is the natural period of the tank

computed by linear wave theory. The simulation time for each case is 30 wave periods,

the same as the time used in the experiment. Comparisons with the experimental

results in Colagrossi et al. (2004) and Olsen (1970) are shown in Fig. 3.14.

If the ratio of the excitation period to the natural period T/T1 is smaller than 1, as

the period ratio increases, the maximum wave height (ζ) increases accordingly in both

A/L = 0.05 and A/L = 0.1 cases. For the A/L = 0.05 case, when the period ratio is

around 1.04, the point of ζ value is on the horizontal line, indicating that the sloshing

wave eventually hit the tank roof at this excitation period. For the A/L = 0.1 case,

due to the larger excitation applied, the impact against the tank roof is captured at

a smaller period ratio: around 0.9. In this A/L = 0.1 case, the range of the period

ratio 0.9 to 1.2, at which the wave impact occurs, is also wider than that of 1.04 to
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Figure 3.14: Comparison of maximum wave elevation against the excitation period,
between the present numerical results and the experimental results.

1.14 in the A/L = 0.05 case whereby the smaller excitation amplitude is used. When

the period ratio keeps increasing, in both cases, the ζ value drops to around 0.2m

rapidly. As shown in Fig. 3.14, except for some small discrepancies, the numerical

results agree well with both experimental results. This validates the capability of the

present numerical model in handing sloshing flows with breaking waves.

To better illustrate simulated severe sloshing flow in the tank, we employ one

of the simulations as an example to represent the process. In this simulation, the

excitation period ratio is T/T1 = 1.04. This, as previously mentioned, is the smallest

period ratio in the A/L = 0.05 series that captures the impact against the roof with
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the filling level d = 0.35L. Fig. 3.15 shows the wave profiles at four selected time

instants with the chosen parameters. At the initial time around t = 0.58 s, the

standing wave can be observed. As time elapses, the free surface becomes higher and

large volume of water rises up along the side wall, which can be observed in the plot

t = 2.55 s. Finally, the sloshing wave is strong enough to climb along the right wall

and hit the tank roof. At the last time instant, the occasion of the water rolling up

along the left wall and the wave overturning before dropping to the tank is captured.
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Figure 3.15: Wave profiles captured by the present numerical model at various time
instants.
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3.3 A study on sloshing induced by ship motions

As reviewed in Chapter 1, most previous studies have focused on sloshing waves in

a tank excited by a single translational or rotational motion. However, in a real-

world situation, liquid sloshing is usually induced by multi-degrees-of-freedom exci-

tations simultaneously, including surge, sway, pitch, and roll, etc. Chen and Nokes

(2005) applied a time-dependent finite difference scheme to analyze the complete two-

dimensional sloshing motion in a tank. The coupled surge-heave-pitch excitation was

considered and coupling effects were observed when the sloshing flow became non-

linear prominent. They also concluded that the coupled motion should be included

in the analysis of sloshing inside a tank during an earthquake. Similarly, the slosh-

ing analysis in LNG tanks should also consider this simultaneous coupled motion.

In addition, the sloshing wave inside LNG tanks is usually induced by ship motions.

Therefore, responses of the LNG carrier excited by sea waves should also be employed

in the sloshing analysis to simulate real situations.

Recently, Lee et al. (2011) studied LNG sloshing by considering ship movements in

a full-scale tank to verify their finite difference model with a marker-density scheme.

However, only three cases have been done and some pressure results have been re-

vealed. Some studies on the coupling effects between internal sloshing flow and ex-

ternal ship motions have naturally used ship responses as excitations of sloshing flow,

such as Kim (2002), Rognebakke and Faltinsen (2003), Kim et al. (2007) and Nam

et al. (2009). But most of these studies emphasized the sloshing effects on the ship

motions and haven’t performed a systematic analysis on the internal sloshing under

coupling effects.

In this section, the validated numerical model is applied to study LNG sloshing

induced by ship motions obtained in sea conditions. A realistic LNG carrier with a

length of L = 270.0 m, a breadth of B = 43.4 m and a depth of D = 26.0 m is used.

Kim et al. (2008) adopted their WISH numerical program to simulate the dynamic

responses of this LNG carrier and a complete Response Amplitude Operator (RAO)

was achieved. Since the present numerical model is built in two dimensions, we only

consider the head sea condition with the heading angle of the wave β = 180◦. The

corresponding surge, heave and pitch RAOs of the LNG carrier obtained by WISH

are then applied to excite the LNG tank and induce the internal sloshing waves.

As no information on the LNG tank was provided in Kim et al. (2008), the LNG

tank simulated here is assumed to have a length of L = 50.0 m and height of D = 25.0

m. To further simplify our calculations, the tank is located at the center of the LNG
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carrier and the rotational axis is assumed to be through the center of the tank.

According to Pérez and Blanke (2002), we employ the following equations,

x = Ax sin (ωit + αx) , (3.6)

y = Ay sin (ωit+ αy) , (3.7)

θ = Aθ sin (ωit + αθ) , (3.8)

to represent the regular surge, heave and pitch motions of the LNG tank respectively.

Here, Ax, Ay, Aθ are the amplitude of each motion defined by the wave height and

the corresponding RAO value at a certain frequency ωi. αx, αy, and αθ denote the

random initial phase of each motion.

With the obtained three-degrees-of-freedom RAOs of the LNG carrier, the two-

dimensional sloshing flow in the LNG tank is investigated with regard to the excitation

frequency, filling level and excitation amplitude (i.e. external wave height), as follows.

3.3.1 Effects of initial phase differences between each motion

Before we conduct a detailed study of the other factors, it should be noted that in

Eqs. (3.6) - (3.8), initial phases are random and undetermined. However, in practice,

we are more concerned about the critical condition. Therefore, an investigation into

the phase value in each motion is necessary to find the combination that leads to the

most severe sloshing inside the tank.

The sloshing wave inside the LNG tank is mainly induced by the horizontal and

rotational motions of the LNG carrier. Thus, the investigation starts with the initial

phase in the surge motion αx. Due to the fact that the initial phase in each motion is

randomly chosen in the range of 0− 2.0π, it is better to consider the phase difference

between each motion. Here, the phase difference between the surge and pitch motion

of the LNG carrier is studied first, while the heave motion is excluded. The phase

of pitch motion αθ is set to be 0. The value of αx varies from 0 to 1.75π with an

interval 0.25π. Thus, 8 cases are conducted in this series with an initial water depth

d = 10.0 m (40% filling level) and an excitation frequency ω = 0.5 rad/s. According

to the RAOs in Kim et al. (2008), at this excitation frequency, the motion amplitudes

are Ax = 0.1054 m and Aθ = 0.5835◦ for the external wave height of 1 m. After the

convergence tests, the 200× 100 mesh and the time interval ∆t = 0.025 s are utilized

in this investigation.
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Figure 3.16: Time histories of free surface elevation on the left wall for various phase
differences under the 40% filling level.

Fig. 3.16 gives the time histories of free surface elevation on the left wall for the

eight cases. In Fig. 3.16(a), we can observe the trend that as αx increases from 0

to 0.75π, the predicted surface elevation is raised while all the results have a similar

pattern. This demonstrates that the phase differences between the surge and pitch

motions have an effect on the induced sloshing flow. Fig. 3.16(b) shows the results

obtained for phase differences varying from 1.0π to 1.75π. Contrary to the trend in

Fig. 3.16(a), the free surface displacement decreases as the phase difference increases.

The maximum free surface displacements are recorded against the phase difference

in Fig. 3.17. The variation of the maximum value corresponds with the observations

in the time series. This suggests that when the phase difference is 1.0π, the horizontal

component of the pitch motion will enhance the surge motion most and thus induces

the most severe sloshing flow. In Fig. 3.17, a symmetrical pattern can be observed.

This is further validated by Fig. 3.18. The data for the phase differences αx = 0.75π

and αx = 1.25π are almost identical, apart from a phase shift. Since we are concerned
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Figure 3.17: Maximum free surface elevations for various phase differences under the
40% filling level.

about the critical condition, in the following cases, the initial phases of surge and pitch

are chosen to be αθ = 0 and αx = 1.0π.
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Figure 3.18: Comparison of free surface elevation between results for αx = 0.75π and
αx = 1.25π.

It is known that a low filling level usually leads to more violent fluid motions in

the tank. Therefore, to better understand the effects of the phase difference, the 20%

filling level is studied with the same excitation amplitude and frequency used in the

previous case. As shown in Fig. 3.19 and Fig. 3.20, the effects of the phase difference

between the surge and pitch motions under the lower filling level are similar to those

under the 40% filling level. As αx increases, the surface elevations become larger

and reach the maximum value when αx = 1.0π. The only difference is the predicted

elevations under the lower filling level are generally larger as expected.
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Figure 3.19: Time histories of free surface elevation on the left wall for various phase
differences under the 20% filling level.
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Figure 3.20: Maximum free surface elevations for various phase differences under the
20% filling level.

The tank under pure vertical excitations only causes changes to its gravitational

acceleration. This will not lead to a large effect if the free surface of the tank is initially

undisturbed. However, during LNG transportation, the tank is usually excited by

horizontal, vertical and rotational motions at the same time. In this situation, the

free surface will deform due to surge and pitch motions. Thus, the vertical excitation

may enlarge the free surface elevation during tank motions (Chen and Nokes, 2005).

Hence, an investigation on the random initial phase in the heave motion αy is further

performed.

The determined αθ = 0 and αx = 1.0π are employed. Due to the likely larger effect

of heave motions on free surface displacement, an initial water depth d = 5.0 m and
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an excitation frequency ω = 0.45 rad/s are used to simulate a strong sloshing flow.

Assuming the external wave height is 1 m, the corresponding excitation amplitudes

are Ax = 0.2496 m, Ay = 0.3846 m and Aθ = 0.6809◦ according to the RAOs. Fig.

3.21 shows the time histories of free surface elevation on the left wall. All the free

surface displacements obtained by varying phases in heave motion are identical. This

suggests that the random initial phase of heave motion αy does not have an apparent

effect on the sloshing flow, even though the heave motion would have effects on the

deformation of the free surface. The main reason for this negligible effect is that

compared to the acceleration of gravity, the change of vertical acceleration is quite

small and the difference due to the phase shift is therefore much smaller. Thus, αy is

set to be 0 in all the following cases.
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Figure 3.21: Time histories of free surface elevation on the left wall for various heave
phases.

Based on the test on the phase difference, to study the necessity of applying

the surge-heave-pitch combined excitations to the sloshing study, we also simulate

liquid sloshing in the LNG tank excited by each single motion respectively. Since the

initial water surface is undisturbed, sloshing waves in the tank cannot be generated

by a single heave motion. In this case, only the single surge and pitch motion are

considered respectively. The water depth is d = 10.0 m and the excitation frequency

is ω = 0.5858 rad/s. The corresponding excitation amplitudes are Ax = 0.041 m,

Ay = 0.311 m and Aθ = 0.255◦.

Fig. 3.22 shows the time history of the free surface elevation obtained by the

fully coupled surge-heave-pitch excitations and surge+pitch superposition with an

external wave height h = 1 m. It can be observed that the discrepancy becomes more

pronounced with time.
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Figure 3.22: Time histories of free surface elevation under fully coupled and super-
posed excitations.

Fig. 3.23 shows the difference of the maximum elevation as a function of the ex-

ternal wave height. As the the excitation amplitude increases, the difference between

the results of the surge-heave-pitch combined excitations and the surge+pitch super-

position becomes larger. The predictions given by the fully coupled combination are

more conservative. To achieve an accurate simulation of liquid sloshing in LNG tanks,

surge-heave-pitch combined excitations that are closer to the real-world situation, are

applied in all of the following cases.
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Figure 3.23: Maximum elevation differences at different excitation amplitudes.

3.3.2 Effects of excitation frequency

Various excitation frequencies will excite the sloshing flow in the tank with different

levels of severity. It is known that the most severe sloshing is induced when the exci-
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tation frequency is close to the natural frequency of the sloshing system. This leads

the free surface displacement to reach its maximum value. Effects of the excitation

frequency on the sloshing have been reported (Chen and Nokes, 2005; Wang et al.,

2011) where a fixed excitation amplitude is applied to any frequency. However, in

realistic seas, the dynamic responses of LNG carriers will vary at different frequen-

cies, indicating that the excitation amplitude at each frequency should be different.

In this study, the sloshing wave in a full-scale LNG tank under sea conditions is eval-

uated, so that the excitation amplitudes are different between each frequency, unlike

all previous studies.

According to Kim et al. (2008), the motion RAOs are given with the frequency

varying from 0 to 1.4 rad/s. Here, ten different frequencies are selected, shown to-

gether with the corresponding RAOs in the three directions in Table 3.1. The RAO

values in each motion have an overall trend to decrease as the frequency increases. To

better illustrate the effect of the excitation frequency, the 50% filling level is selected,

and three more frequencies are added around the resonant frequency at ω0 = 0.635

rad/s. In addition, all simulations in this and the following sections run for 200 s to

provide enough information.

Table 3.1: Motion RAOs applied in this parametric study.

ω 0.2 0.32 0.36 0.4 0.5 0.56 0.6 0.68 0.72 0.8

x 0.8468 0.6313 0.5396 0.4031 0.1054 0.031 0.051 0.037 0.028 0.0201
y 0.9663 0.7917 0.5781 0.5414 0.2582 0.3358 0.2961 0.1278 0.079 0.0357
θ 0.228 0.5302 0.6383 0.6855 0.5835 0.3418 0.201 0.1779 0.1475 0.043

Fig. 3.24 shows the free surface displacement at the left tank wall for 4 typical

excitation frequencies ω/ω0 = 0.629, 0.943, 1.007 and 1.070, respectively. As shown in

Fig. 3.24(a), when the excitation frequency is relatively far from the resonant value,

irregular crests and troughs are observed. Double peaks are also captured, showing

that in some instances, the tank cannot catch up with the water movement. As the

frequency approaches the natural frequency, the sloshing wave becomes stronger as

shown in Fig. 3.24(b). A typical wave envelope is presented, which indicates that a

beating phenomenon is captured in this situation. This observation agrees with the

conclusion made by Wu et al. (1998). They reported that modulated waves could be

obtained when the excitation frequency deviates slightly from the resonant value. Fig.

3.24(c) gives the free surface displacement of the sloshing wave under the excitation
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Figure 3.24: Time histories of free surface displacement at four different frequencies.
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frequency which is almost equal to the natural frequency. The resonant phenomenon

is clearly observed with a much higher surface elevation than the previous two cases.

Similar to the case at ω/ω0 = 0.943, the free surface elevation at ω/ω0 = 1.070 also

captures the beating phenomenon in Fig. 3.24(d). Compared with Fig. 3.24(b), the

period of the envelope is smaller and the free surface elevation is lower, which is likely

due to the larger deviation from the resonant value and smaller RAOs.

The maximum free surface displacement recorded at the left wall during the sim-

ulation time is plotted against the excitation frequency in Fig. 3.25. It can be seen

that the motion RAOs and the excitation frequency (or the wave frequency) are t-

wo competitive factors, and at a certain frequency, the water sloshing in the tank is

determined by both the amplitude of RAOs and the deviation of the wave frequency

from the resonant frequency of the system. With values close to the resonant condi-

tion, the sloshing waves are much higher than those induced by excitations far from

the natural frequency, even though the dynamic responses of the tank to waves may

be smaller at these wave frequencies. This indicates that the wave frequency is a

dominant factor that determines the free surface elevation of the sloshing flow.
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Figure 3.25: Maximum elevations at different frequencies.
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3.3.3 Effects of filling level

Due to the growing demand for LNG, newly designed LNG carriers are usually re-

quired to have a wide range of filling levels. Thus it is of practical significance to

investigate sloshing waves under different filling levels. In this section, five differ-

ent filling levels as listed in Table 3.2 are utilized to conduct a series of sloshing

simulations.

Table 3.2: Frequency ratios for various filling levels.

Filling level Natural frequency (rad/s) 0.5/ω0 0.6/ω0 0.72/ω0

20% 0.4330 1.1547 1.3856 1.6627
40% 0.5859 0.8534 1.0241 1.2289
50% 0.6358 0.7864 0.9437 1.1324
60% 0.6737 0.7422 0.8906 1.0687
80% 0.7239 0.6907 0.8289 0.9946

Fig. 3.26 exhibits the free surface displacement with various filling levels at three

excitation frequencies, ω = 0.5, 0.6 and 0.72 rad/s. The ratios of these three frequen-

cies to the natural frequency are also shown in Table 3.2. Two resonant results are

observed in Figs. 3.26(b) and 3.26(c) for the filling levels of 40% and 80% respective-

ly. This is because the applied frequencies ω = 0.6 and 0.72 rad/s are close to the

natural frequencies at these two filling levels. In addition, the beating phenomena

are captured for the 50% and 60% filling levels in these two figures, which can be also

found in Fig. 3.26(a) for the 20% filling level.

Fig. 3.27 presents the maximum free surface displacement as the function of the

filling level. At ω = 0.5, the maximum elevation decreases as the filling level increases

from 20% to 80%, while an adverse trend is obtained at ω = 0.72. An intermediate

filling level gives the highest free surface elevation when ω = 0.6 is applied. Overall,

the effect of the filling depth on the sloshing wave depends on the relation between

the selected excitation frequency and the corresponding resonant frequency.

Fig. 3.28 gives the maximum wave elevation at different filling levels over the

entire frequency region with the external wave height equal to 1 m. It can be seen

that at different filling levels, the maximum sloshing wave always occurs around the

corresponding resonant frequency. At the same time, the maximum sloshing wave at

most excitation frequencies (between ω = 0.2 and ω = 0.5) happens at the lowest

filling level, and lower filling levels generally lead to stronger sloshing flows.
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Figure 3.26: Time histories of free surface displacement under different filling condi-
tions at the given frequencies.

To further investigate this, four additional cases with low filling levels of 10%,

15%, 25% and 30% are simulated. Fig. 3.29 shows the maximum wave elevations

recorded for the low filling levels against the excitation frequency. We see that the

same scenario is also captured for the low filling conditions, where maximum wave

elevation occurs around the resonant frequency. It should be noted that in the 10%
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Figure 3.27: Maximum elevations under different filling conditions at the given fre-
quencies.

series, a frequency shift can be clearly observed. It is known that the nonlinearity

of sloshing can shift the resonant frequency from the value predicted by linear wave

theory. At the very low filling level of 10%, the nonlinearity is expected to be much

stronger than at other filling levels. This may be responsible for the frequency shift.

As the resonant frequency moves to around ω = 0.4 rad/s and the peak in motion

RAOs also occurs around this frequency, the obtained elevation is larger at the filling

level of 10% than those at other filling levels.
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Figure 3.28: Maximum elevations at various frequencies under five different filling
conditions.
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Figure 3.29: Maximum elevations at various frequencies under lower filling conditions.

3.3.4 Effects of external wave height

In all the previous cases, the height of the external sea wave inducing motions of

the LNG carrier is assumed to be 1 m in order to focus our study on other factors.

In real-world situations, LNG carrier often encounter seas with larger wave heights.

Different motion RAOs would thus be obtained because of varying wave heights and

have an effect on the sloshing flow in the LNG tank. In this section five different

wave heights from H = 1 to 5 m are selected, with the filling depth d = 10 m and

the resonant frequency obtained by applying Eq. (3.3).

Fig. 3.30 shows the time history of the free surface displacement at the left wall

with different wave heights. When H = 1 m, the resonant phenomenon is captured,

while from H = 2 m the beating phenomena are observed. As discussed earlier, the

beating phenomenon occurs when the excitation frequency is slightly away from the

resonant value. Thus, it can be concluded that the frequency obtained by Eq. (3.3) is

close to, but not exactly, the real resonant frequency of the sloshing system when the

wave height is large. As the wave height increases, the nonlinear characteristics are

more evident with sharper crests and flatter troughs. Thus, the increased nonlinear

effect results in the shift of the resonant frequency obtained by linear wave theory.

In addition, as shown in Fig. 3.30, free surface elevation also becomes larger at the

higher wave amplitudes.

Fig. 3.31 shows the maximum sloshing wave elevation with different filling levels

excited by various wave amplitudes at the corresponding resonant frequencies. From

H = 2 m, wave impact against the roof is clearly observed at most filling levels.
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Figure 3.30: Time histories of free surface displacement induced by different wave
heights.

The larger increase for the 20% filling level case is clearly noticed when the wave

amplitude is larger than 2 m, indicating that the nonlinearity of waves plays a more

important role at lower filling levels. Moreover, this figure clearly shows at which

wave amplitude the sloshing wave can reach the tank roof at different filling levels.
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Figure 3.31: Maximum wave elevations induced by different wave heights under var-
ious filling conditions.
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3.3.5 Pressure in the tank

Local pressure is one major concern in the sloshing study. Violent liquid movement

can lead to high local pressure in the LNG tank, which may cause brittle damage and

consequently, structural failure. Therefore, accurate pressure prediction inside the

tank during the sloshing process is of great importance. In this section, pressure on

the left tank wall is studied in conjunction with the effects of the excitation frequency,

filling depth and external wave height.

Fig. 3.32 shows the time history of total pressure at three different points y =

4, 6 and 8 m respectively on the left tank wall, where y is the distance from the

bottom of the tank to the measured point. Four different excitation frequencies,

ω = 0.32, 0.40, 0.45 and 0.50 rad/s are used, corresponding to ω/ω0 = 0.74, 0.92, 1.04

and 1.15. The filling depth is fixed at d = 5 m in all of the following cases, which

corresponds to the 20% low filling condition. The wave amplitude is set to 1 m. As

can be seen from the figure, the pressure at ω = 0.45 rad/s is always higher than that

at other frequencies. This is because ω = 0.45 is closer to the resonant frequency.

From y = 4 to 8 m, the pressure decreases due to the hydrostatic effect. At y = 8 m,

only two results can be recognized, showing that the sloshing wave cannot reach this

height along the tank while under the other two excitation frequencies.

Fig. 3.33 shows the time history of pressure at the 20%, 40%, 60% and 80% filling

levels. The resonant frequency dependent on the filling depth is applied for each case

to simulate the most critical condition. At y = 6 m, the pressure shows an increased

trend according to the increased filling depth. Except for the 20% filling condition,

the pressure oscillates following an approximately sinusoidal pattern, which indicates

that hydrostatic pressure dominates in these three filling conditions. The differences

in amplitude between different filling levels are due to the different RAO values under

corresponding excitation frequencies.

We now consider the effect of external wave height (i.e. the excitation amplitude)

on the pressure in the tank. The 40% filling level is used and the wave height varies

from 1 m to 5 m. Fig. 3.34 shows the time histories of pressure at y = 6 m on the left

wall for different wave heights. As the wave height increases, envelopes are gradually

formed due to the difference between the real and theoretical resonant frequencies.

This is consistent with the variation of free surface elevation excited by different wave

heights. In addition, sharper double peaks are gradually formed as larger wave heights

are applied, which is not observed in the time history of free surface elevation. This

indicates that larger impact pressure on the left wall is produced due to the stronger

water movement, even when the free surface is falling down along the left wall. In
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Figure 3.32: Time histories of pressure at four different frequencies on the left tank
wall.

other words, larger dynamic pressure is induced at a larger wave height which provides

more kinetic energy.

The pressure distributions on the left tank wall when the sloshing wave just reach-

es the tank roof for three different cases are shown in Fig. 3.35. As the filling depth

increases, pressure distribution on the left tank wall gradually becomes linear. This
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Figure 3.33: Time histories of pressure under four different filling conditions on the
left tank wall.

supports the observation that, of the free surface displacement at various filling depth-

s, the nonlinear sloshing behavior is dominant in lower filling conditions. In Fig.

3.35(a), the increase in the pressure at the top of the tank might be caused by a small

volume of the fluid climbing along the tank very rapidly and hitting the top corner

like a water jet. In addition, it is interesting to note that negative pressure appears
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Figure 3.34: Time histories of pressure induced by five different wave heights at y = 6
m on the left tank wall.

near the corner at the larger filling levels in Fig. 3.35(b) and Fig. 3.35(c).
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Figure 3.35: Pressure distribution at the left wall when the sloshing wave just reaches
the tank roof for three different cases.

3.4 Summary

In this chapter, the numerical model developed in Chapter 2 was applied to the nu-

merical simulation of sloshing flows. By employing the moving coordinate system, the

model could easily simulate sloshing waves in a rectangular tank excited randomly

by three-degrees-of-freedom motions. First, the developed numerical model was vali-

dated by simulating both mild and violent sloshing waves excited by single surge and

pitch motions. The present numerical results agreed well with other published exper-
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imental and numerical results, indicating the applicability of the present numerical

model in complicated sloshing simulations.

Emphasis in this chapter was put on the investigation of sloshing flows in a full-

scale LNG tank excited by ship motions in sea conditions. To achieve this, the motion

RAOs of a realistic LNG carrier were adopted directly to excite the liquid sloshing in

the LNG tank. Based on the parametric study on the effects of excitation frequency,

filling level and external wave height, the following conclusions could be made:

1. In head sea conditions, the random initial phase difference between the surge

and pitch motions will have definite effects on the induced sloshing waves, and

the phase difference of 180◦ can cause the most violent sloshing.

2. The most critical sloshing wave is generated when the sea wave frequency ap-

proaches the resonant frequency of the sloshing system, at which both the pres-

sure and free surface elevation reach the maximum value.

3. As the filling depth increases, the free surface elevation excited by each resonant

frequency decreases due to the corresponding smaller RAOs applied. In lower

filling level conditions, the nonlinear characteristics of the sloshing wave are

more evident.

4. The increase in the external wave height leads to a stronger sloshing wave in

the tank due to the larger kinetic energy provided. At a larger wave amplitude,

the beating phenomenon can be observed for both the pressure and free surface

elevation even at the natural frequency calculated by linear wave theory.

Overall, the external wave height that excites ship motions and the related exci-

tation frequency have a substantial effect on the sloshing wave inside the tank. Since

environmental conditions are undetermined during the LNG delivery and a wide range

of filling levels are required, the dimensions of the LNG tank should be designed to

avoid having a resonant frequency coinciding with the predominant ocean wave fre-

quency and falling within the frequency range in which a large motion RAO of the

LNG carrier will be generated.
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Chapter 4

AN IMPROVED NUMERICAL

MODEL BY

HIGH-RESOLUTION

CONVECTION SCHEMES

4.1 Introduction

In this chapter, the development of the free surface flow solver is presented in detail.

In Chapter 2, the numerical model at the first stage was described comprehensively

and validated by classic benchmark solutions. However, the preliminary model would

suffer the numerical dissipation issue when considering some challenging sloshing

simulations. In this chapter, a detailed description of the issues with the preliminary

model is provided, followed by the improvement of the intermediate model (which

has been applied in Chapter 3) and the final developed sloshing model.

4.2 The preliminary model : the numerical dissi-

pation issue

4.2.1 Nonlinear liquid sloshing under horizontal motions - 1
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Figure 4.1: A sketch of the two-dimensional rectangular tank in Liu’s work.

In order to test the performance of the preliminary model in solving nonlinear

waves, we numerically repeat two experiments conducted by Liu and Lin (2008) for

both non-resonance and resonance cases. As shown in Fig. 4.1, both cases are

performed in a rectangular tank 0.57 m long, 0.31 m wide and 0.3 m high. The initial

water depth is 0.15 m, so the lowest natural frequency of the sloshing system is 6.0578

rad/s according to Eq. (3.3).

The tank is mounted on a shake table and its motion is governed by a sinusoidal

displacement with an amplitude a = 0.005 m for both cases. So, in our co-moving

system, the acceleration force in the horizontal (x) direction is given by,

fx = −aω2 sin (ωt) , (4.1)

where the excitation frequencies ω are 0.583ω0 and 1.0ω0 for the non-resonance and

resonance cases respectively. In both cases, three different meshes are tested, whose

cell numbers are 95 × 50, 190 × 100 and 295 × 150 respectively. A time interval

∆t = 0.001 s is applied.
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Figure 4.2: Comparison of surface displacement with different mesh sizes for the
non-resonance case.

In the first case, the simulation with ω = 0.583ω0 runs up to 20 s. In Fig. 4.2,

the time evolutions of the surface displacement recorded at 0.02 m from the left- and

right-hand side walls are compared with the experimental results. It can be seen that

the numerical results gradually achieve a better agreement with the experimental

data as the mesh size increases. The values obtained by the two finer meshes lie close

to each other at both locations. This suggests that a convergent solution is achieved

by the preliminary model. Overall, the numerical results agree with the experimental

data.
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Figure 4.3: Comparison of surface displacement with different mesh sizes for the
resonance case.

In the second case where ω = 1.0ω0, the total simulation time is 6.7 s. Fig. 4.3

illustrates the comparison of the time history of the surface displacement. Just like

the previous case, Mesh 2 and Mesh 3 give almost the identical results, indicating that

a grid-independent solution is achieved.The resonant phenomenon is clearly observed.

In addition, nonlinear features of sloshing waves are also captured in Fig. 4.3, which

show sa asymmetrical wave pattern with a much larger wave crest than trough.

However, in this resonance case, the discrepancy between the experimental data

and the results predicted by the preliminary model becomes larger with time. This is

mainly due to the accumulation of numerical errors. These errors may be caused by

the dissipative nature of the first-order upwind scheme, which is employed to solve

the convective terms in the Navier-Stokes equations. But this dissipation is not sub-

stantial when linear stationary free sloshing wave and nonlinear sloshing wave under

non-resonant excitations are simulated. As described in Chapter 2, the preliminary

model consist of a fluid solver and a Level-Set based free surface tracker. In the fluid
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solver, the reason why the first-order upwind scheme is applied is to avoid numer-

ical instability while simulating the two-phase flows. In the Level Set Method, the

introduction of the smoothing band also aims to reduce the instability caused by the

jump condition from air to water. Therefore, a further parametric investigation on

the smoothing band is needed before we exclude the applicability of the first-order

upwind scheme in the preliminary numerical model.

4.3 The intermediate model: a parametric study

of the smoothing band in the Level-Set tech-

nique

4.3.1 Nonlinear liquid sloshing under horizontal motions - 2

When applying the Level-Set scheme to simulate two-phase flows, a narrow transi-

tion zone is usually defined and located around the interface. This avoids introducing

numerical instability due to the sharp change of the fluid properties. Smeared func-

tions are thus used to smooth the material properties inside the transition zone.

Most studies follow the classical ways of using trigonometric-type Heaviside function-

s. Some other researchers have also proposed new smoothing functions, such as the

exponential-type (Colicchio et al., 2005), to achieve more stable performances. Most

of these studies (Gu et al., 2005) adopt the empirical value ǫ = 1.5h as suggested

by Sussman et al. (1994), where h is the minimal mesh size. ǫ = 2.0h (Wang et al.,

2011) or ǫ = 3.0h (Colicchio et al., 2006) have also been used. However, some other

studies have not indicated the size of the smoothing band. Thus, as discussed above,

it is essential to study the effects of the size of the smoothing band.

In this section, we continue our numerical simulation of the resonance sloshing

experiment by Liu and Lin (2008). Considering that the sharp gradient between air

and water may intensify the numerical error, we conduct our study by increasing the

size of the smoothing band with an interval ∆ǫ = 2h. The value ǫ = s× h increases

from s = 2.0 to s = 16.0. Following the previous section, the mesh size of 190× 100

and a time interval ∆t = 0.001 s are used.
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Figure 4.4: Comparison of time histories of surface displacement between numerical
results with smoothing sizes varied from s = 2.0 to s = 8.0.

Fig. 4.4 shows the time history of the surface displacement obtained by the

numerical model with s = 2.0 to s = 8.0. It can be seen that as the smoothing band

becomes larger, the wave elevation predicted by the numerical model becomes higher.

When comparing the numerical predictions with the experimental measurements,

as the s term increases from 2.0 to 4.0, a significant improvement is obtained by

the numerical model. For s = 6.0 and s = 8.0 simulations, the improvement is

very limited and the two solutions lie close to each other, which indicates an optimal

solution is nearly obtained. In addition, the convergent results obtained by the present

model match the experimental recordings well.
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Figure 4.5: Comparison of time histories of surface displacement between numerical
results with smoothing sizes varied from s = 10.0 to s = 16.0.

By continuing to enlarge the smoothing band, as shown in Fig. 4.5, the numerical

results obtained with s = 10.0 to s = 16.0 show an opposite trend to those shown in

Fig. 4.4: the wave elevations gradually decrease and deviate from the experimental

results. This indicates that within a certain range of s values, a convergent solution

can be achieved by the current numerical model. Thus, we can say that the size of the

smoothing band does have an effect in the present numerical model. But it should also

be pointed out that the introduction of the smoothing region around the interface

is a numerical technique which aims to reduce the instability caused by the jump

condition. In other words, the smoothing region is an artificial area which should be

limited to a relatively small size. Therefore, in this study, the maximum size of the

smoothing band is limited to 10% of mesh sizes for the whole computational domain.

For the resonance case considered in this section, only 10 grid cells can be used as

the smoothing band for the mesh size of 190× 100. Thus the maximum s value that

can be applied here is 5.0. As shown in Fig. 4.4, the corresponding best simulation
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results would be the one given by s = 4.0.

To illustrate the applicability of the improved numerical model by increasing the

smoothing band, a further comparison is conducted. Two mesh sizes, 190× 100 with

s = 2.0 and 380×200 with s = 4.0, are employed respectively to repeat the resonance

case. In both simulations, the actual smoothing size is the same, equal to 0.012 m.

As shown in Fig. 4.6, even though the physical size is the same, the numerical results

obtained with more smoothing grids are closer to the experimental measurements.

This indicates that when the smoothing band is properly enlarged, the accuracy of

the numerical model is much improved. Therefore, the resultant intermediate model

is applicable to deal with violent free surface flows.
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Figure 4.6: Comparison of time histories of surface displacement between 190 × 100
with s = 2.0 and 380× 200 with s = 4.0.

Further comparison is made and shown in Fig. 4.7. The blue line represents the

analytical solution by Faltinsen (1978), which is based on linear potential flow theory

without considering the viscous effects. It can be seen that the analytical solution

shows a symmetrical wave pattern and fails to match the experimental recordings.
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The numerical solution with s = 4.0 agrees well with the experiment, suggesting

that the intermediate model is capable of accurately simulating nonlinear sloshing

motions.
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Figure 4.7: Comparison of time histories of surface displacement among the improved
numerical prediction, the experimental data and the analytical solution.

4.3.2 Sloshing under vertical motions

Pure vertical excitations on the tank only make changes to its gravitational acceler-

ation. This will not lead to a large effect if the free surface of the tank is initially

undisturbed. However, during LNG transportation, the tank may be excited by hor-

izontal, vertical and rotational motions at the same time. In such situations, the free

surface will deform due to surge and pitch motions. The vertical excitation would

then enlarge the free surface elevation during tank motions (Chen and Nokes, 2005).

Thus, it is of importance to validate the improved numerical model in predicting the

sloshing under pure vertical excitations.
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In this section, we follow the work in Frandsen (2004) and compare the results

obtained by the intermediate model with his numerical work. A two-dimensional

rectangular tank is used in his simulation and measures 1.0 m in both horizontal and

vertical directions. The displacement of the tank is governed by,

y = Ay cos (ωt) , (4.2)

where Ay and ω denote the amplitude and frequency of the vertical excitation. The

filling water has an average depth d = 0.5 m with an initial free surface defined by,

η0 = A cos (πx/L) . (4.3)

Fig. 4.8 provides a schematic view of the computational domain.

L

D

d

Figure 4.8: A schematic view of the initial conditions of the heave-induced sloshing.

Two cases with different excitations are conducted with the same amplitude of

the initial free surface A = 0.1 m. In Case 1, the excitation has an amplitude of

Ay = 0.272 m and a frequency ω = 0.798ω0, where ω0 = 5.317 s−1 is the lowest

natural frequency of the sloshing system according to Eq. (3.3). The excitation

amplitude of Case 2 is Ay = 0.0668 m with a frequency ω = 1.6102ω0.

To begin with, three mesh sizes, 100×100, 200×200 and 300×300, are tested for

Case 1. The preliminary numerical model (s = 2.0) with a time interval of 0.001 s is

used first for the mesh size convergence test. Fig. 4.9 shows the wave elevations at the

left wall predicted by the three mesh sizes. The circles are the benchmark solution

given by Frandsen (2004). It can be seen that similar results are attained by the

preliminary model with the three different mesh sizes at the initial period. As time
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elapses, the discrepancy between the results predicted by the coarse mesh and the

finer meshes becomes larger due to the accumulation of numerical errors. Conversely,

the solutions obtained by the two finer meshes lie close to each other, indicating that

a grid-independent solution is achieved. However, even with a convergent solution,

in Fig. 4.9, we can see that the preliminary model cannot predict the peak value

accurately.
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Figure 4.9: Time histories of wave elevation at the left wall for three mesh sizes.

Based on the mesh size convergence test, the mesh size of 200 × 200 is applied

for the following simulations in this section. According to the 10% limitation, a

maximum smoothing band of s = 10.0 can be applied in the intermediate model. To

find the optimal s value for this case, we follow the same process as the previous case,

starting from s = 2.0 with an interval ∆s = 2.0. In Fig. 4.10, the numerical results

with various s values are compared with the benchmark solution. As the s value

increases from 2.0 to 4.0, a much better agreement with the benchmark solution

can be observed. This indicates that an apparent improvement is achieved by the

intermediate model. It should be pointed out that we only increased the s value to

s = 6 in this case. This is because we find that when increasing s from 4.0 to 6.0, a

deviation from the benchmark solution appears, showing that s = 4.0 is the optimal

s value for this case. Therefore, we stop here since it is impossible to achieve a better

result by applying a larger smoothing band than s = 4.0.
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Figure 4.10: Time histories of wave elevation at the left wall obtained by different
smoothing sizes.

To further test the optimal s value with the current model, we apply the same

mesh size of 200 × 200 with s = 4.0 for Case 2. Fig. 4.11 shows the comparison of

the wave elevations at the left wall between the present predictions and the solution

given by Frandsen (2004). With a non-resonant frequency applied, random peaks and

troughs are generated. Except for some localized discrepancies, the solution attained

by the numerical model with s = 4.0 is in good agreement with the benchmark

solution.
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Figure 4.11: Comparison between Frandsen’s results and the present numerical pre-
dictions with s = 4.0 for the non-resonance case.

4.3.3 Sloshing under rotational motions

Besides the translational excitations, rotational motions are the main excitations to

cause sloshing phenomena, especially during LNG transportation. In two-dimensional

analysis, it is essential to consider the pitch motion in order to perform comprehensive

98



validation. Thus in this section, besides testing the intermediate model under surge

and heave motions, the sloshing in a two-dimensional rectangular tank under forced

pitch excitations is also simulated.
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Figure 4.12: A sketch of the water tank used in Akyildiz’s experiment.

Following the experimental work in Akyildiz and Ünal (2005), as shown in Fig.

4.12, the dimensions of the tank are: length L = 0.92 m and height D = 0.62 m. The

tank is forced to rotate around its center with a motion governed by,

θ = θ0 cos (ωt+ ξ0) , (4.4)

where the excitation frequency is ω = 2 rad/s with ξ0 = π/2. The filling ratio is 75%

and two pressure probes p1 and p2 are located at the right wall of the tank 17 cm and

24.7 cm from the tank bottom respectively. According to Akyildiz and Ünal (2005),

two excitation amplitudes, θ0 = 4◦ and θ0 = 8◦ are applied respectively. After the

mesh convergence test, the mesh size of 184× 124 is adopted in this case with a time

interval of 0.001 s. The s value of 4.0 is chosen as it achieved satisfactory results in

the previous validation.

Fig. 4.13 shows the time history of pressure at the two probes for the θ0 = 4◦

case. It can be seen that with the frequency ω = 2 rad/s applied in this case,

which is far from the natural frequency ω0 = 5.551 rad/s according to linear wave

theory, the pressure is approximately sinusoidal with an amplitude of around 300 pa.

This indicates that the sloshing wave oscillates mildly in the tank and hydrostatic

pressure is dominant in this case. In Fig. 4.13, a comparison is also made among

the solution by the intermediate model, the numerical result by Shao et al. (2012),

and the experimental recording of Akyildiz and Ünal (2005). The time series of Shao
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et al. (2012) is predicted by a SPH-based numerical model with improved pressure

treatments at the boundary. We can see that the present results are in fair agreement

with both results. A small phase difference can be observed between our results and

Akyildiz’s. However, this phase discrepancy is barely found between our solutions

and Shao’s.
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Figure 4.13: Comparison of the time histories of pressure at two probes when θ0 = 4◦.

Similarly, in Fig. 4.14, with a larger excitation θ0 = 8◦ applied at the same

frequency, the pressure results are also approximately sinusoidal. But with a larger

excitation amplitude, more energy is offered to the sloshing system leading to a larger

pressure amplitude of around 600 pa. Except for some local discrepancies, the pressure

result predicted by the intermediate model match the data given by both Akyildiz

and Ünal (2005) and Shao et al. (2012). This further reveals that the intermediate

model, using a finer mesh size and properly larger smoothing band, improves on the

accuracy of the preliminary model when dealing with violent free surface flows.

As described above, the first-order upwind scheme is adopted in the preliminary

numerical model to calculate the convective term due to the advantage of its numerical
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Figure 4.14: Comparison of the time histories of pressure at two probes when θ0 = 8◦.

stability. However, as shown in the previous section, when simulating the violent free

surface flows, the preliminary model would attain predictions which deviate from

the benchmark solutions to some extent. This indicates that the numerical stability

achieved by adopting the first-order upwind scheme in the preliminary model may

be based on a compromise of accuracy. In this section, inspired by introducing the

smoothing zone into the Level-Set technique, which also aims to reduce the numerical

instability when dealing with the sharp change of the fluid properties, an investigation

on the effects of smoothing band is performed. It is found that with a relatively

larger smoothing band, the sharp gradient between the air and water is mitigated

a bit and satisfactory numerical results are achieved. According to this finding, the

intermediate model with a 10% limitation on the the size of the smoothing band is

developed. Validation is performed with three sloshing cases excited by motions in

different directions. Good agreement with the published experimental measurements

and benchmark solutions indicates the intermediate model is accurate and applicable.
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4.4 The final model: implementation of high-resolution

convection schemes

As stated earlier, the smoothing zone is a numerical technique used to attain the

stable solutions but it does not physically exist. Therefore, the application of the

increased smoothing band is not quite general even though the 10% limitation is

followed. Additionally, there are some cases when one of the two dimensions is very

small. Take, for example, a simulation of a free surface flow in a very long tank. The

vertical mesh size compared with the horizontal mesh size is quite small. Thus, the

smoothing band is relatively limited to a small size. We can increase the vertical mesh

size to a certain extent for such a case in order to apply the intermediate model with a

properly increased smoothing band. However, the accompanying computational effort

would be huge and undesirable in our study. Thus, we are looking for alternative ways

to improve the accuracy of our numerical model for simulation of free surface flows.

One viable option is to replace the first-order upwind scheme by a convection

scheme with a higher-order of accuracy. Most studies (Gu et al., 2005; Wang et al.,

2011) using the Level-Set scheme with the smoothing band concept to solve free

surface flows apply the second-order or even lower order convection schemes based

on finite difference or finite volume approximations. The third-order Quadratic Up-

stream Interpolation for Convective Kinematics (QUICK) scheme of Leonard (1979)

has been applied to the fluid solver with the Level-Set technique to capture the inter-

face by Yang and Stern (2009). But unlike the aforementioned studies, they adopted

the ghost-fluid method proposed by Kang et al. (2000), which does not smooth the

fluid properties but handles them in a sharp manner. Thus, in this section, we try

to incorporate a higher-order convection scheme into our current numerical model,

which can retain the smoothing zone of the Level Set Method.

4.4.1 Highly-accurate and bounded convection schemes

The numerical approximation for the convective term of hyperbolic conservation laws

and transport equations has been one of the critical challenges in computational fluid

dynamics. Many researchers have devoted efforts to devising a perfect convection

scheme, which would be accurate, stable and bounded. However, there is a conflict-

ing issue in meeting all these requirements. Achieving high levels of stability and

boundedness requires some kind of diffusive smoothing mechanism which would defi-

nitely lead to a compromise of the scheme’s accuracy. Among the different convection
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schemes developed in the past which have often been applied in practical engineering

applications, the classical first-order upwind scheme and the hybrid central/upwind

scheme are highly stable and unconditionally bounded, but highly diffusive in certain

circumstances. The second-order upwind scheme and the skew-up upwind scheme

have been proposed as alternative higher-order schemes and have been successful in

increasing the accuracy of the solution. In particular, the third-order QUICK scheme,

which has the very attractive properties of no numerical diffusion, low dispersion and

inherent convective stability, has been widely applied. However, even though QUICK

is robust and reliable under many conditions, it has a shortcoming: under highly

convective conditions (such as sharp changes in gradients and jump discontinuities),

it has the tendency to produce overshoots and undershoots, displaying unphysical os-

cillations near regions of steep gradients. These oscillations can be sufficiently serious

and lead to numerical instabilities eventually.

To retain QUICK’s desirable attributes (third-order accuracy and good stabili-

ty) while eliminating unphysical oscillations, Leonard (1988) modified the QUICK

scheme slightly and proposed the resulting Simple High-Accuracy Resolution Pro-

gram (SHARP), which can produce solutions without undershoots and overshoots.

This is a significant advance in the modeling of highly convective flows. More im-

portantly, Leonard (1988) introduced the concept of variable normalization and the

normalized variable diagram (NVD), which is a plot of the locally normalized con-

vected control-volume face variable with respect to the normalized adjacent upstream

node variable. Using the NVD plane, standard convection methods, such as first- and

second-order upwind, second-order central difference and third-order QUICK, can be

represented by various straight lines. In addition, based on this frame, researchers

can construct various convection schemes by combining different classical convection

methods within certain constraints. A brief introduction of the NVD is given in the

following section.

4.4.1.1 Normalized Variable Diagram

As shown in Fig. 4.15, we consider the variation of a convected scalar Φ along a

direction normal to a control-volume (CV) face. According to the convecting velocity

shown in Fig. 4.15, three adjacent nodes U, C, D are labeled as the upstream, central

and downstream nodes around the CV face (denoted by the dotted line). To model

the Φ value of the CV face, some or all of the Φ values at the three U, C, D nodes

are applied to perform the interpolation depending on different convection schemes.

Note that the choice of the nodes of ΦU , ΦC and ΦD depends on the direction of
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the normal velocity. As indicated in Fig. 4.16, variable normalization of the same

information is performed, and the locally normalized variable is thus defined by,

Φ̃ =
Φ− ΦU

ΦD − ΦU
. (4.5)

According to the definition, the normalized variables for the upstream and down-

stream values are Φ̃U = 0 and Φ̃D = 1 respectively.

CU D

f

Figure 4.15: Node variables in a general form.

CU D

f

Figure 4.16: Node variables in a normalized form.

Before applying variable normalization, the Φ value at the CV face is basically the

function of the Φ values at the U, C and D nodes, denoted as Φf = F (ΦU ,ΦC ,ΦD).

But in terms of the normalized variables, the value at the CV face is only related

to the adjacent upstream node, which means Φ̃f = f
(
Φ̃C

)
. Thus, the NVD frame

presents the relationship between the normalized value at the CV face and its adjacent

upstream normalized value. In other words, the NVD concept offers a plane where

standard convection schemes can be greatly simplified and easily investigated.
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Applying variable normalization and present notations (which consider the same

CV face and normal velocity direction), the classical convection schemes can be re-

defined.

First-order upwind scheme

When applying the first-order upwind scheme to compute the Φ value at the CV face,

the equation based on usual variables is,

Φf = ΦC . (4.6)

Based on the normalized variables, it becomes,

Φ̃f = Φ̃C . (4.7)

Second-order central difference scheme

Similarly, using the second-order central difference scheme based on usual variables,

the Φ value at the CV face is calculated by,

Φf =
1

2
(ΦD + ΦC) . (4.8)

Using the normalized variables, it becomes,

Φ̃f =
1

2

(
1 + Φ̃C

)
= 0.75 + 0.5

(
Φ̃C − 0.5

)
. (4.9)

Second-order upwind scheme

Based on the linear upwind-biased extrapolation, the equation given by the second-

order upwind scheme in terms of usual variables is,

Φf =
1

2
(3ΦC − ΦU) . (4.10)

Using variable normalization, it is written as,

Φ̃f =
3

2
Φ̃C = 0.75 + 1.5

(
Φ̃C − 0.5

)
. (4.11)
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QUICK scheme

Finally, using the widely applied QUICK scheme to predict the Φ value at the CV

face, the equation based on usual varialbes is,

Φf =
1

8
(3ΦD + 6ΦC − ΦU ) , (4.12)

In terms of the normalized variables, it is expressed as,

Φ̃f =
1

8

(
3 + 6Φ̃C

)
= 0.75 + 0.75

(
Φ̃C − 0.5

)
. (4.13)

QUICK

CD

FUD

SUD

O

P

Q

0.5

0.5

1.0

0.375

1.0

0.75

fF f

CFC

Figure 4.17: Classic convection schemes on NVD.

Based on Eqs. (4.7), (4.9), (4.11) and (4.13), the standard convection schemes

can be represented by different straight lines as shown in Fig. 4.17, which is the Nor-

malized Variable Diagram. As previously stated, the relation between the normalized

value at the CV face Φ̃f and the value of its adjacent upstream node Φ̃C can be

easily plotted and expressed for different convection schemes in this diagram. More
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importantly, it should be noted that other than the first-order upwind scheme, the

other three characteristics all pass through point (0.5, 0.75), labeled as Q in Fig. 4.17.

In particular, the characteristics of the first-order upwind scheme passes through the

origin O and the point (1, 1) labeled as P. Thus, characteristics passing through Q

can be written as,

Φ̃f = 0.75 + S
(
Φ̃C − 0.5

)
, (4.14)

where S is the slope of the line. Going back to the un-normalized variables with the

upwind-weighted curvature, the original value at the CV face becomes,

Φf = 0.5 (ΦD + ΦC)− CF (ΦD − 2ΦC + ΦU) , (4.15)

where CF is the curvature factor, and clearly,

CF =
1

2
S −

1

4
. (4.16)

In terms of the normalized variables, Eq. (4.15) can be written as,

Φ̃f = 0.5
(
1 + Φ̃C

)
− CF

(
1− 2Φ̃C

)
. (4.17)

It should be noted that applying the curvature factor CF , which is taken to be a

function of Φ̃C rather than a constant, Eq. (4.17) is more general such that any

functional relationship (linear and nonlinear) between Φ̃f and Φ̃C passing though Q

can be written in this form. This also forms the basis for the development of the

convection schemes that produce nonlinear characteristics in the NVD frame. In

addition, by applying Taylor series expansions about the CV face locations, Leonard

(1988) draws two basic conclusions: for any characteristic in the NVD frame,

1. Passing through Q is necessary and sufficient for second-order accuracy.

2. Passing through Q with a slope of 0.75 is necessary and sufficient for third-order

accuracy.

This corresponds with the observations of Fig. 4.17 based on Eqs. (4.7), (4.9),

(4.11) and (4.13), which shows that the third-order QUICK scheme passes though

Q with a slope of 0.75, whereas the second-order schemes have different S values.

According to Leonard (1988), linear characteristics in the NVD frame that pass

through the second quadrant would produce unphysical oscillations in the steady
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one-dimensional convection. Others that pass below the origin O are artificially d-

iffusive. In addition, based on numerical experiments, characteristics passing above

point P would lead to overshoots and undershoots in two dimensions. Thus, to de-

velop a convection scheme similar to QUICK without producing oscillations based on

the NVD frame, Leonard (1988) summarized the above constraints and proposed a

criterion:

The nonlinear NVD characteristic should pass through O, P and Q, with a slope

of 0.75 at Q.

Based on this criterion, they introduced the third-order SHARP scheme, which is

capable of convective modeling of discontinuities.

4.4.1.2 The Convection Boundedness Criterion

Almost at the same time, Gaskell and Lau (1988) proposed their own bounded convec-

tion algorithm, Sharp and Monotonic Algorithm for Realistic Transport (SMART),

based on the same variable normalization concept. More importantly, they intro-

duced a different perspective on boundedness constraints from the previous criterion

summarized by Leonard (1988), and proposed the Convection Boundedness Criterion

(CBC). Together with the NVD frame, CBC becomes the basis for the development

of many convection schemes. The details regarding CBC are given as follows.

DC

F

U

i
1

2
i -1i -2i -

Figure 4.18: An illustration of interpolative boundedness.
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The original idea starts with a diagram which plots the normalized variable Φ̃

related to x when Φ̃i−1 ≈ 1 or 0. As shown in Fig. 4.18, quadratic profiles that pass

through (0, 0), (∆x, Φ̃i−1) and (2∆x, 1) clearly violate the boundedness. For example,

when Φ̃i−1 ≈ 1, if the value of Φ̃i−1/2 exceeds 1 as shown, the value at i must increase

(overshoot), enhancing the convective flux at i + 1/2, in order to balance the high

(unphysical) influx to the CV centered at i. By contrast, monotonic profiles make

the value of Φ̃i−1/2 bounded by Φ̃i−1 and either 1 or 0, with the largest variation

in Φ̃ occurring over a thin layer located upstream x ≈ 0, or downstream x ≈ 2∆x,

respectively. This kind of violation is referred to as the lack of ‘interpolative bound-

edness’ in Gaskell and Lau (1988), which would lead to the unphysical oscillations,

and is found inherent in some higher-order convection schemes, like, for instance,

the second-order upwind scheme. Thus, to make a convection scheme bounded, the

following two conditions need to be satisfied:

1. When Φ̃i−1 ∈ (−∞, 1], Φ̃i−1/2 ∈ (Φ̃i−1, 1];

2. When Φ̃i−1 ∈ [1,∞), Φ̃i−1/2 ∈ [1, Φ̃i−1).

Among all the aforementioned classical schemes, only the first-order upwind and the

central difference scheme satisfy the interpolative boundedness. However, the second-

order central difference scheme is not known as a boundedness-preserving algorithm.

Thus, it is obvious that guaranteeing interpolative boundedness dose not necessarily

result in ‘computed boundedness’, which requires that the numerical solution should

not contain any unphysical overshoots or undershoots while remaining bounded with

respect to the adjacent values. Therefore, Gaskell and Lau (1988) concluded that

interpolative boundedness is only a necessary, but not sufficient condition, for a con-

vection scheme to attain computed boundedness.

To further investigate the sufficient conditions for a computed bounded convection

scheme from a physical point of view, Gaskell and Lau (1988) considered the general

convection-diffusion equation for the scalar Φ:

∂(uiΦ)

∂xi
=

∂

∂xi

(
µ
∂Φ

∂xi

)
+ S (4.18)

where S is the source term. Combined with the notations in the previous NVD (U:

i − 2, C: i − 1 and D: i), the integral form of Eq. (4.18) over the CV centered at C

based on variable normalization can be written as,

Φ̃i−1/2 − Φ̃i−3/2 =
Φi−1/2 − Φi−3/2

Φi − Φi−2
= S̃∗, (4.19)
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where S̃∗ is the net effective normalized source term, and,

S̃∗ =

[(
µ∂Φ

∂x

)
i−1/2

−
(
µ∂Φ

∂x

)
i−3/2

]
+
∫ i−3/2

i−3/2
Sdx

u0(Φi − Φi−2)
, (4.20)

which consists of the diffusion and source terms.

Physical considerations lead to the conclusion that the normalized values at the

CV center Φ̃i−1 must be positive if the normalized source term S̃∗ is greater than 0,

and vice versa. Thus, it is straightforward to obtain the following constraints:

for S̃∗ > 0, Φ̃i−1 > 1, 1 < Φ̃i−1/2 ≤ Φ̃i−1, (4.21)

for S̃∗ ≤ 0, 0 ≤ Φ̃i−1 ≤ 1, 0 ≤ Φ̃i−3/2 ≤ Φ̃i−1 < Φ̃i−1/2 ≤ 1, (4.22)

for S̃∗ < 0, Φ̃i−1 < 0, Φ̃i−1 ≤ Φ̃i−1/2 < Φ̃i−1/3 < 0, (4.23)

which are consistent with Eq. (4.19) and the physical expectations. In addition, they

also include the previously introduced interpolative boundedness. Thus, satisfaction

of the three constraints can be both necessary and sufficient to ensure the computed

boundedness.

Based on the three constraints, Gaskell and Lau (1988) proposed the convection

boundedness criterion (CBC). Here, combined with the NVD frame, the CBC is

slightly modified by replacing Φ̃i−1/2 and Φ̃i−1 with Φ̃f and Φ̃C , respectively, while

the face value is only related to the adjacent upstream value as Φ̃f = f(Φ̃C) in the

NVD plane. Thus, a finite difference approximation to Φf is bounded if:

1. f should be a continuous increasing function or union of piecewise continuous

increasing functions;

2. for Φ̃C ∈ [0, 1], f is bounded by the function Φ̃f = Φ̃C and Φ̃f = 1 (Φ̃C ≤ Φ̃f ≤

1);

3. for Φ̃C /∈ [0, 1], f is equal to Φ̃C (Φ̃f = Φ̃C).

Based on the NVD frame, the CBC is illustrated diagrammatically in Fig. 4.19, where

the line Φ̃f = Φ̃C and the shaded area are the region over which the CBC is valid.

The proposed CBC is a necessary and sufficient condition for guaranteeing com-

puted boundedness if at most three neighboring nodes are applied to approximate

face values. This is not a problem for the schemes based on the NVD frame since

the NVD concept also applies at three nodes surrounding the CV. From Fig. 4.17,

110



1.0

1.0

fF f

CFC

(1,1)

Figure 4.19: An illustration of the convection boundedness criterion.

it can be seen that only the first-order upwind scheme unconditionally satisfies the

CBC, while the other three classical schemes violate the CBC outside the range of

Φ̃C ∈ [0, 1]. This is consistent with the experience that these schemes would exhibit

spurious undershoots and overshoots, especially for highly convective conditions.

4.4.1.3 Composite schemes

From the previous discussions, it is straightforward to conclude that it is impossible

for a single linear scheme in the NVD plane to satisfy both high-order accuracy

and CBC conditions. Thus, applying the composite forms to construct a bounded

convection scheme with higher-order accuracy is unavoidable. In the NVD frame,

within the region of Φ̃C ∈ [0, 1], the characteristic of the desired scheme must pass

though the origin O (0, 0), point Q (0.5, 0.75) and P (1, 1). Different combinations

of the piecewise lines that connect the three points would lead to different composite

schemes. Heretofore, the development of perfect convection schemes has presented a

continuing challenge.

Various composite schemes have been proposed. Most of them have quite similar

forms but few of them have been applied to free surface flows, not to mention ap-

plied with the Level-Set technique. Thus, in the current stage of our study, we only
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select some popular composite schemes and incorporate them into our intermediate

numerical model. The details of the four selected schemes are given as follows. It is

worth mentioning that some of the convection schemes developed based on the NVD

frame with the CBC constraints are essentially the same as some schemes based on

the Total Variational Diminishing flux limiters (TVD), which are widely applied in

numerical simulation of compressible flows. For instance, one of the schemes applied

in our study, the composite Second-Order Upwind-Central differencing-first-order Up-

wind scheme (SOUCUP) proposed by Zhu and Rodi (1991) is essentially equivalent

to the minimum modulus (MINMOD) scheme of Roe (1986). Thus, the MINMOD

here represents the SOUCUP scheme in the NVD frame.

MINMOD (SOUCUP)

fF f

CFC

Q

Figure 4.20: MINMOD in the NVD frame.

Following the CBC constraints, Zhu and Rodi (1991) noticed that in the NVD frame,

the second-order upwind and the central difference schemes pass through points O

(0, 0) and P (1, 1), respectively and intersect at point Q (0.5, 0.75) located in the

shaded area defined in Fig. 4.19. Thus, they made a straightforward choice to

employ a union of piecewise-linear characteristics that connect the three points by

simply combining the second-order upwind and the central difference scheme in the

region of 0 ≤ Φ̃C ≤ 1, outside which, the first-order upwind scheme is applied.

Thereby, they proposed the composite SOUCUP (MINMOD) scheme, which is given

based on normalized variables as follows:
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Φ̃f =





3
2
Φ̃C 0 ≤ Φ̃C ≤ 1

2
1
2
(1 + Φ̃C)

1
4
≤ Φ̃C ≤ 1

Φ̃C otherwise.

(4.24)

Fig. 4.20 shows the MINMOD scheme in the NVD plane. According to the criteria

of Leonard (1988), since its characteristics pass though point Q (0.5, 0.75) with a slope

not equal to 0.75, the MINMOD scheme is second-order accurate.

MUSCL

fF f

CFC

Q

Figure 4.21: MUSCL in the NVD frame.

The monotonic upwind scheme for conservation law (MUSCL), proposed by Van Leer

(1979) is the first high-order scheme based on the total variation diminishing with a

second-order accuracy. Applying variable normalization, Lien and Leschziner (1993)

rewrote the MUSCL scheme to approximate the turbulence convection as,

Φ̃f =






2Φ̃C 0 ≤ Φ̃C ≤ 1
4

1
4
+ Φ̃C

1
4
≤ Φ̃C ≤ 3

4

1 1
4
≤ Φ̃C ≤ 1

Φ̃C otherwise.

(4.25)

As shown in Fig. 4.21, the slope of the characteristics of the MUSCL scheme at

point Q is 1.0, not 0.75. Therefore, it is still second-order accurate, consistent with

the accuracy obtained in the TVD form.
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SMART

fF f

CFC
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Figure 4.22: SMART in the NVD frame.

After applying the Taylor series expansion, Gaskell and Lau (1988) obtained a sim-

ilar equation to Eq. (4.17) by ignoring the higher-order terms and introducing the

upstream curvature with an undermined variable α−:

Φf =
1

8
(6ΦD + 3ΦC − ΦU)− α− (ΦD − 2ΦC + ΦU ) . (4.26)

The difference is that Eq. (4.26) is clearly comprised of the QUICK scheme and the

upstream curvature, while Eq. (4.17) applies the central difference and the curvature.

Following their own CBC constraints, Gaskell and Lau (1988) determined the values

of curvature variable α− within different regions of Φ̃C and proposed the SMART

scheme. Applying normalized variables, SMART can be written as,

Φ̃f =






3Φ̃C 0 ≤ Φ̃C ≤ 1
6

3
8
+ 3

8
Φ̃C

1
6
≤ Φ̃C ≤ 5

6

1 5
6
≤ Φ̃C ≤ 1

Φ̃C otherwise.

(4.27)

From the above description and the normalized equations, it is evident that the

SMART scheme is mainly based on the QUICK scheme, though revised slightly in

order to obey the CBC. This can also be observed in Fig. 4.22, in which the slope of

the characteristics at point Q is 0.75, same as the QUICK scheme. Thus, the SMART

scheme is third-order accurate.
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Figure 4.23: COPLA in the NVD frame.

Numerical experiments led by Zhu (1992) ascertained that the SMART scheme needed

a relatively large amount of computer storage to overcome the oscillatory convergence

behavior. Thus, Choi et al. (1995) modified the SMART scheme slightly without

deteriorating the accuracy of the original scheme. Their proposed combination of

piecewise linear approximations (COPLA) scheme is as follows:

Φ̃f =





2.25Φ̃C 0 ≤ Φ̃C ≤ 1
4

3
8
+ 3

8
Φ̃C

1
4
≤ Φ̃C ≤ 3

4
3
4
+ 1

4
Φ̃C

3
4
≤ Φ̃C ≤ 1

Φ̃C otherwise.

(4.28)

Fig. 4.23 shows that the piecewise lines of COPLA pass through point Q with

a slope of 0.75, which is consistent with the previous statement that its order of

accuracy remains the same as that of SMART.

The four schemes described above represent a kind of convection scheme, which

is clearly computed bounded and highly accurate. To distinguish them from other

higher-order schemes (QUICK, Third-order Upwind), this kind of convection scheme

is named as high-resolution schemes.
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Application in the present model

In Chapter 2, the development of the preliminary numerical model was described in

detail. The convective terms of the Navier-Stokes equations are discretized by the

first-order upwind scheme on a staggered variable arrangement, applying the velocity

value at the cell faces directly. As stated earlier, the NVD concept is built based

on the use of the control volume. Thus, to apply the aforementioned high-resolution

convection schemes, a new variable Φ is introduced as a velocity component into the

preliminary numerical model.

Taking term u∂u
∂x

as an example, the discretization for u(i−1/2, j) can be rewritten

as,

u
∂u

∂x
=

1

∆x
(Φ(i, j)u(i, j)− Φ(i− 1, j)u(i− 1, j)), (4.29)

where u(i, j) and u(i − 1, j) are obtained by the interpolation using the calculated

velocity components at the cell faces, i.e.:

u(i, j) =
1

2
(u(i− 1/2, j) + u(i+ 1/2, j)) (4.30)

u(i− 1, j) =
1

2
(u(i− 3/2, j) + u(i− 1/2, j)). (4.31)

Applying variable normalization, if u(i− 1/2, j) > 0, we have,





ΦU = u(i− 3/2, j),

ΦC = u(i− 1/2, j),

ΦD = u(i+ 1/2, j),

Φ̃C = u(i−1/2,j)−u(i−3/2,j)
u(i+1/2,j)−u(i−3/2,j)

.

(4.32)

Going back to the un-normalized variables, the value of Φ(i, j) in the newly intro-

duced CV can be approximated by the four selected high-accuracy bounded schemes

in our numerical model as follows:

MINMOD

Φ(i, j) = Φf =





1.5u(i− 1/2, j)− 0.5u(i− 3/2, j) 0 ≤ Φ̃C ≤ 1
2

0.5u(i+ 1/2, j) + 0.5u(i− 1/2, j) 1
2
≤ Φ̃C ≤ 1

u(i− 1/2, j) otherwise.

(4.33)
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MUSCL

Φ(i, j) = Φf =





2.0u(i− 1/2, j)− u(i− 3/2, j) 0 ≤ Φ̃C ≤ 1
4

0.25u(i+ 1/2, j) + u(i− 1/2, j)− 0.25u(i− 3/2, j) 1
4
≤ Φ̃C ≤ 3

4

u(i+ 1/2, j) 3
4
≤ Φ̃C ≤ 1

u(i− 1/2, j) otherwise.

(4.34)

SMART

Φ(i, j) = Φf =





3.0u(i− 1/2, j)− 2.0u(i− 3/2, j) 0 ≤ Φ̃C ≤ 1
6

0.375u(i+ 1/2, j) + 0.75u(i− 1/2, j)− 0.125u(i− 3/2, j) 1
6
≤ Φ̃C ≤ 5

6

u(i+ 1/2, j) 5
6
≤ Φ̃C ≤ 1

u(i− 1/2, j) otherwise.

(4.35)

COPLA

Φ(i, j) = Φf =






2.25u(i− 1/2, j)− 1.25u(i− 3/2, j) 0 ≤ Φ̃C ≤ 1
4

0.375u(i+ 1/2, j) + 0.75u(i− 1/2, j)− 0.125u(i− 3/2, j) 1
4
≤ Φ̃C ≤ 3

4

0.25u(i− 1/2, j) + 0.75u(i+ 1/2, j) 3
4
≤ Φ̃C ≤ 1

u(i− 1/2, j) otherwise.

(4.36)

4.4.2 Validation: lid-driven flow

Prior to applying the newly incorporated high-resolution convection schemes to solve

the free surface flows, the validation of the fluid solver is conducted first. Here, the

well-known test case, the lid-driven cavity problem, is again considered. The detailed

setup of this case can be found in Section 2.3.2. In this section, only Re = 100 and

Re = 1000 are considered. After the grid convergence test, the mesh size of 160×160

is applied.

Fig. 4.24 shows the numerical results for the Re = 100 case given by the four

schemes. The velocities in the x- and y-directions are plotted along the vertical
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Figure 4.24: Comparison between solutions given by the high-resolution convection
schemes and the benchmark solution for Re = 100.

and horizontal centerlines. To validate the newly added convection schemes, the

benchmark solution of Ghia et al. (1982) is also given, for comparison with the present

results. It can be seen that the four schemes predict almost identical results for both

directions and agree well with the benchmark solutions.

Further comparison is made for the Re = 1000 case, as shown in Fig. 4.25. Clearly,

for a higher Reynolds number, at the steady state, the velocity gradients along the

centerline become larger. In this case, identical results are also obtained by the four

schemes with a slight discrepancy between the result of MINMOD and those of the
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Figure 4.25: Comparison between solutions given by the high-resolution convection
schemes and the benchmark solution for Re = 1000.

other three schemes. Overall, the four convection schemes achieve accurate results

against the benchmark solution. Thus, we can move on to combine the new fluid

solver with the Level-Set technique to solve the free surface flows.

4.4.3 Sloshing under surge motions

Again, the experiment conducted by Koh et al. (2012) to investigate liquid sloshing

in a two-dimensional rectangular tank is reproduced numerically. The description of
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the experiment setup can be found in Section 3.2.1.
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(b) Time histories of pressure at point P1

Figure 4.26: Comparison between numerical results based on classical upwind schemes
and Koh’s experimental data.

The mesh size of 120×120 and a time interval of 0.001 s are applied first to test the

performance of all the schemes. The size of the smoothing band is set as s = 2. In Fig.

4.26, the wave elevation and pressure obtained by the classical upwind schemes are

compared with the experimental data. Achieving higher wave elevation and pressure

results indicates that the second-order upwind scheme does alleviate the numerical

dissipation. In addition, from 6 s to 8 s for the surface displacement, the second-order

upwind scheme can also predict a closer trough to the experimental measurements

than the first-order upwind scheme. This indicates that a higher-order convection

scheme does improve on the accuracy of the current numerical model. However, Fig.

4.26 also shows that the second-order upwind scheme over-predicts results from 7 s

to 9 s. This means that it is necessary for us to consider high-resolution convection

schemes in stead of the classical upwind schemes in our final model.
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The application of high-resolution convection schemes produces promising results,

as shown in Fig. 4.27. All the pressure predictions given by high-order schemes are

quite identical to each other, as well as being close to the experimental recordings.

In the time history of the surface displacement, a discrepancy can be observed but

it is not apparent. In order to better investigate the effects of different convection

schemes, an error study is conducted by comparing the numerical results with the

experimental data from Koh et al. (2012).
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Figure 4.27: Comparison between numerical results based on high-resolution convec-
tion schemes and Koh’s experimental data.

As shown in the previous figures, pressure discrepancies are less evident than

those shown in the surface displacement results. Thus, this error study is based

on comparison of the surface displacement value at specified time steps. In order

to quantify the discrepancy in surface displacement history, the following standard

deviation is defined:
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σ =

√√√√ 1

N

[
N∑

i=1

(
ηi − η0i
η0i

)2
]
, (4.37)

where N is the total number of data from the experimental measurements of Koh

et al. (2012), ηi is the ith surface displacement given by the numerical model at a

certain time instant, and η0i is the corresponding experimental result. In the experi-

ment conducted by Koh et al. (2012), the wave elevation (surface displacement) data

captured by the wave gauge are outputted every 0.005 s. The whole experiment runs

up to 9 seconds. For our comparison, we selected the data at corresponding time steps

by using a 0.005 filter, since we applied the 0.001 s time interval in our simulations.
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Figure 4.28: Results of the error study for the selected convection schemes.

As shown in Fig. 4.28, the six convection schemes are categorized into three

groups: classical upwind schemes, second-order high-resolution schemes, third-order

high-resolution schemes. The results given by the first-order upwind scheme deviate

most from the experimental measurements. This is consistent with the observation

we get from the time history of the surface displacement. In addition, all the discrep-

ancies between the experimental data and the results obtained by the higher-order

convection schemes are below 3%. This again indicates that the preliminary model

using higher-order schemes to handle the convective terms will have the capability to

simulate free surface flows accurately.
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Furthermore, with the mesh size of 120 × 120 and the smoothing band s = 2,

results predicted by the present numerical model using the convection schemes with

a second-order accuracy have relatively smaller deviations: they are all below 2%.

However, when the convection schemes with a third-order accuracy are employed

with the same mesh and the same sized smoothing band, smaller deviations than

those given by the second-order schemes are not obtained as expected. This is also

captured in Fig. 4.27, especially in the surface displacement result which shows that

the third-order schemes over-predict the surface displacement as time elapses. From

6 s to 9 s, the over-estimation becomes increasingly apparent. However, the two

solutions given by the third-order schemes lie quite close to each other, suggesting

they are convergent to a certain value. Considering the findings from the previous

parametric study on the effects of the smoothing band, we can say that, with the

size of the smoothing band chosen to be s = 2, the selected convection schemes with

the second-order accuracy obtain optimal numerical results when compared with the

experimental data. Based on the fact that the first-order upwind scheme obtains

optimal results with s = 4, while the second-order schemes require the smaller size

s = 2, we conduct a further investigation to see if a smaller smoothing size could also

achieve satisfactory results with third-order convection schemes.
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Figure 4.29: Time histories of surface displacement predicted by first-order upwind
scheme with different s values.

To validate our idea, we choose the second-order MINMOD scheme and the third-

order COPLA scheme, both of which achieve the better results with smaller deviations

in their own category; see Fig. 4.28. The first-order upwind scheme is also applied for

a comprehensive comparison. We still adopt the mesh size of 120× 120 and the time

interval of 0.001s in this investigation. Thus, according to the 10% limitation, we test

the size of the smoothing band from s = 1 to s = 6 with interval ∆s = 1. Just like the
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error study, the investigation is based on the comparison of the surface displacement.

First, Fig. 4.29 shows the results obtained by the first-order upwind scheme with

different s values. Similar to the tendency we observe in the previous investigation

on the smoothing band, by increasing the size of the smoothing band, more accurate

numerical results that are closer to the experimental data can be obtained. From

s = 1 to s = 4, evident improvement is captured. From s = 4 to s = 6, the obtained

surface displacement results lie close to each other, suggesting that a convergence

is nearly achieved. This also corresponds to the phenomena we observe with the

intermediate model.
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Figure 4.30: Time histories of surface displacements predicted by MINMOD with
different s values.

Figs. 4.30 and 4.31 show the solutions obtained by the MINMOD and COPLA

schemes respectively. Apparently, even with smaller s values, both high-resolution

schemes still predict the surface displacement accurately. Note that in Fig. 4.30, the

maximum size of the smoothing band applied in this case is only s = 4. Around

t = 7.6 s, the long dash line, which is the surface displacement result given by s = 4,

forms an abnormal wave peak. As well as this, the predicted data has clearly deviated

from the experimental recordings. A possible explanation for both scenarios is that

the numerical model with the second-order MINMOD scheme starts to simulate a

different case here when the smoothing band s = 4 or larger is applied. Therefore,

we end this case by not increasing the s value further. Similar scenarios can be

observed in Fig. 4.31 which shows the simulation results obtained by COPLA. This

supports our explanations. More importantly, an abnormal wave peak is captured

around t = 7.6 s by the third-order COPLA scheme with the size of the smoothing

band being only s = 3. This suggests that the higher-order scheme may require a

smaller smoothing zone to simulate real situations. With a higher-order and stable
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convection scheme, the numerical model can solve the free surface flow accurately

by using a smaller smoothing band. To further show the effects of the size of the

smoothing band with various convection schemes, following the same method as the

previous error study, an investigation is performed.
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Figure 4.31: Time histories of surface displacements predicted by COPLA with dif-
ferent s values.

In Table 4.1, We can see that the results given by the error study are in agree-

ment with our observations. In addition, we note that the convergent predictions

are achieved around s = 2 to s = 3 for MINMOD, and s = 1 to s = 2 for COPLA

respectively.

Table 4.1: Results of the error study for the three convection schemes with different
s values.

FUD MINMOD COPLA

s = 1 6.28% 3.19% 2.08%
s = 2 5.32% 1.59% 2.45%
s = 3 4.14% 2.03% 6.06%
s = 4 3.06% 4.29%
s = 5 2.34%
s = 6 2.21%

To find out more about the effect of the smoothing band combined with the

convection schemes, a further investigation is conducted by applying three different

mesh sizes with corresponding s values. Besides 120 × 120, the meshes 60 × 60 and

30 × 30 are applied. Based on the 10% limitation, the maximum s value should be

s = 3 and s = 1.5 respectively. To find the optimal size of the smoothing band, s = 2,

which is found to be best for the MINMOD scheme, is applied as the maximum value
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for 30× 30. A smaller interval ∆s = 0.5 is applied to see if there is an intermediate

optimal value between s = 2 and s = 3 for MINMOD, and between s = 1 and s = 2

for COPLA scheme. Just like the previous study, the time history of the surface

displacement is compared first, as shown in Fig. 4.32 and 4.33. Even with coarse

meshes, we can see that satisfactory results are achieved with a smaller smoothing

band for both convection schemes. The displacement predictions lie close to each

other in each case for various s values.
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(a) MINMOD with 30× 30
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(b) MINMOD with 60× 60

Figure 4.32: Comparison of time histories of surface displacement between different
s values with two different mesh sizes based on MINMOD.

A further error study is still required to find the optimal s value. Following the

previous method, Table 4.2 provides the results by comparing the numerical solutions

with experimental measurements. It reveals that for the second-order MINMOD

scheme, the optimal value is s = 2 . For the third-order COPLA scheme, s =

1.5 can produce the closest predictions to the experimental recordings. In addition,

this s value is the best for each scheme in all cases, no matter what mesh size is

applied. Thus, we can say that, with a higher-order convection scheme applied in
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(b) COPLA with 60× 60

Figure 4.33: Comparison of time histories of surface displacement between different
s values with two different mesh sizes based on COPLA.

our intermediate numerical model, the free surface flow problems could be solved

accurately even with quite a small smoothing band. Additionally, as the order of

accuracy for a convection scheme increases, the optimal size of the smoothing band

becomes smaller.

Table 4.2: Results of the error study for MINMOD and COPLA with different mesh
sizes.

MINMOD COPLA

30× 30 60× 60 120× 120 30× 30 60× 60 120× 120
s = 1.0 5.59% 4.37% 3.19% 4.33% 2.97% 2.08%
s = 1.5 5.03% 3.39% 2.43% 3.94% 2.10% 1.65%
s = 2.0 3.85% 2.17% 1.59% 4.05% 2.42% 2.45%
s = 2.5 2.47% 1.60% 3.49% 3.87%
s = 3.0 3.30% 2.03% 3.42% 6.06%
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4.4.4 Wave generation in a wave tank

To further validate the final numerical model of the present study, the experimental

study performed by Gao (2003) to investigate wave generation and propagation in a

tank is simulated. In this test, regular waves are generated in a 8.75 m long wave

tank with a still water depth of 0.28 m. Free surface elevations at three different

stations x = 0.55 m, x = 3.55 m and x = 5.45 m in the wave tank are recorded by the

wave gauge. The wave paddle is set at the left side of the wave tank and its motion

is governed by a sinusoidal displacement. In our co-moving system, to attain the

same conditions, we set the velocity of the left wall to be the same as the velocity of

the wave paddle measured in the experiment, as shown in Fig. 4.34. To begin with,

the preliminary model with the first-order upwind scheme and s = 2 is employed to

perform the mesh size convergence test.
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Figure 4.34: Time history of the velocity of the wave paddle recorded in Gao’s ex-
periment.

Three mesh sizes with cells numbers 200 × 10, 400 × 20 and 800 × 40 are tested

respectively with a time interval of 0.001 s. In Fig. 4.35, time histories of the free

surface elevations at the three stations obtained by the three mesh sizes are compared

with the corresponding experimental results. We can see that with the finer mesh

applied, the numerical results gradually approach the experimental data. This trend

is apparent in the predictions at x = 0.55 m, especially in the first 2 seconds when

the first wave peak is formed. As the distance from the wave paddle increases, larger

differences between the coarse mesh and the two finer meshes appear in the results.

This discrepancy is mainly due to the accumulation of numerical errors caused by the

coarse mesh. Conversely, solutions given by Mesh 2 (400×20) and Mesh 3 (800×40 )

lie close to each other at all three stations, suggesting that a grid-convergent solution
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is achieved. Therefore, Mesh 3 is adopted to perform the following simulations in this

test.
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Figure 4.35: Comparison of time histories of wave elevation between numerical results
with different mesh sizes and Gao’s experimental data.

Take a further look at the solid lines in Fig. 4.35. At x = 0.55 m, except for

some over-estimations of the wave peak value, fair agreement is achieved between the

preliminary numerical model and the experimental recordings. At x = 3.55 m, the
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over-estimations of the wave peak are barely observed. So far, the preliminary numer-

ical model is still capable of repeating the wave generation case accurately. However,

the time series of the wave elevations at x = 5.45 m predicated by the preliminary

model suffers apparent discrepancies from the experimental measurements around at

8 to 9 s, when forming two wave peaks. This indicates that the preliminary mod-

el, which uses the first-order upwind scheme and the smoothing band s = 2, is not

accurate enough to solve this wave generation problem.

As discussed in the previous section, the intermediate model, which applies the

first-order upwind scheme and a larger smoothing band than s = 2, may achieve

a satisfactory result. However, since we adopted mesh 800 × 40 to perform these

simulations, the maximum size of the smoothing band should be limited to s = 2.

As shown in the earlier mesh size tests, the numerical model using the first-order

upwind scheme with s = 2 is not able to accurately repeat the wave generation and

propagation experiments. Therefore, in the following simulations we are going to

apply the final model based on high-resolution convection schemes directly.

The second-order MINMOD scheme and the third-order COPLA scheme are ap-

plied to calculate the convective terms in the Navier-Stokes equations respectively.

The size of the smoothing band varies from s = 1.0 to s = 2.0 with an interval

∆s = 0.5.

In Fig. 4.36, the time histories of the wave elevations obtained by the final model

with MINMOD and various s values are compared with the experimental results. We

can see that all three results predicted with different s values lie quite close to each

other at x = 0.55 m. But it should also be noted that for the two wave peaks around 8

to 9 seconds, s = 1.5 predicts the closet result to the experiment. For the two further

stations, an obvious phase shift can be observed. The reason for this discrepancy

might be that in the numerical simulation, the wave is generated by inputting the

velocity of the wave paddle at the inlet where a fixed wall is applied as the boundary

condition. But in the experiment, the wave is generated by a moving paddle at the

inlet, rather than a fixed wall. Thus, this may cause a very small phase difference

at the beginning, and this shift is amplified as the distance increased from the inlet

boundary. This also explains why the shift is not evident in the predictions obtained

at x = 0.55 m. In addition, the dash line given by s = 1.5 at x = 5.45 m again

agrees best with the experimental recordings while the other two results are almost

identical. Thus, in this case, we can say that the optimal size of the smoothing band

is s = 1.5 when the final model adopts the MINMOD scheme.
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Figure 4.36: Comparison of time histories of wave elevation between MINMOD results
with different s values and Gao’s experimental data.

Fig. 4.37 shows the wave elevations predicted by the present numerical model

with the third-order COPLA scheme at the three stations. At x = 0.55 m, all three

results achieved by different s values lie quite close to each other and agree fairly

well with the experimental measurements. However, at x = 3.55 m, discrepancies

between the numerical predictions can be observed. It should be noted first that a
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Figure 4.37: Comparison of time histories of wave elevation between COPLA results
with different s values and Gao’s experimental data.

phase difference appears between the solid line (s = 1.0) and the other two lines.

Another difference is that around 5 to 9 seconds, the wave peaks captured by the two

larger smoothing bands are almost identical but clearly larger than the experimental

recordings.

As the distance increases from the wave paddle, at x = 5.45 m, the discrepancies
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between the three numerical solutions by three s values become more apparent. It can

be seen that larger smoothing bands result in larger deviations from the experimental

recordings, especially when predicting the wave peaks around 9.7 s. Additionally,

a phase discrepancy between numerical and experimental results is also captured.

This should be caused by the same reason explained in the previous MINMOD test.

Except for some local discrepancies and the phase shift, the numerical solution given

by the final model, based on COPLA and the smoothing band s = 1, achieves good

agreement with the experimental measurements.

To support our explanation of the phase difference between the experimental re-

sults and the numerical predictions, we further compare our numerical results with

those predicted by a numerical model based on the finite volume approximation with

the cut cell approach proposed by Bai et al. (2009). In this comparison, the two opti-

mal combinations of MINMOD with s = 1.5 and COPLA with s = 1.0 are employed,

as well as the experimental results by Gao (2003) as a reference. Fig. 4.38 shows

the final comparison at the three stations. In general, all numerical results agree

well with the experimental data. The only discrepancy is that, compared with Gao’s

experimental recordings, our numerical solution over-predicts the wave peaks, while

Bai’s solution over-predicts the wave troughs. But more importantly, the numerical

solutions by the present final model and the model of Bai et al. (2009) have a simi-

lar phase difference from the experimental measurements. This phenomenon become

more palpable at the two stations farther from the wave paddle. This supports our

previous explanation.

In addition, it should be pointed out that the optimal combinations (the second-

order MINMOD scheme with s = 1.5 and the third-order COPLA scheme with s =

1.0) again validate our previous statements. With a higher-order convection scheme

applied, a smaller smoothing band can be adopted to attain a satisfactory result. This

is quite important because, for a wave generation case like this, with only 40 cells in

the vertical direction, a smaller smoothing band is more reasonable. Moreover, the

smoothing band is an artificial technique to achieve a stable numerical solution. A

smaller smoothing zone more accurately reflects the real-world situations. Thus, for

the present numerical model, the third-order COPLA scheme is adopted to solve the

convective terms.
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Figure 4.38: Comparison of time histories of wave elevation among the present nu-
merical results, Bai’s numerical solutions and Gao’s experimental data.
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4.5 Summary

In this chapter, an improved numerical model for the simulation of free surface flows

was developed.

First, the numerical dissipation issue of the preliminary numerical model was

reported. The preliminary model can produce acceptable results for modeling non-

resonant sloshing flows. However, when dealing with the resonant sloshing case, the

preliminary model under-predicts the wave elevations.

To improve performance of our numerical model, the intermediate model was

developed based on the findings of the parametric study regarding the size of the

smoothing band in Level-Set technique. It was found that with finer mesh sizes and

a relatively larger smoothing band, even though the physical smoothing region is the

same, the numerical prediction with the larger smoothing band matches the published

experimental data better.

Finally, considering the dissipation nature of the first-order upwind scheme applied

in the preliminary model, the final model was built by implementing high-resolution

convection schemes to solve the Navier-Stokes equations. The bases for the develop-

ment of high-resolution convection schemes, the Normalized Variable Diagram and

the Convection Boundedness Criterion, were introduced. The expressions of the high-

resolution convection schemes applied in the present model were also formulated. To

validate the final model, the error study regarding convection schemes and smooth-

ing band was performed. It was found that with a higher-order convection scheme

applied, a smaller optimal smoothing band is required to achieve satisfactory result-

s. This finding is of great importance: it indicates that the final numerical model

with the implementation of high-resolution convection schemes utilizes the smallest

artificial smoothing zone to achieve accurate solutions.
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Chapter 5

NUMERICAL STUDY ON

COUPLING OF SLOSHING AND

SHIP MOTIONS

This chapter presents the numerical study on the coupling of sloshing and ship motion-

s. First, we briefly introduce the numerical model developed by Bai and Eatock Taylor

(2006), which solves the ship motions in waves based on nonlinear potential flow the-

ory. Then the methodology of coupling the numerical models for ship motions and

sloshing motions is developed. After that, a preliminary validation of the COUPLED

numerical model is performed by reproducing a benchmark experiment conducted by

Rognebakke and Faltinsen (2003). Finally, a parametric study with regard to wave

amplitude, frequency and the filling level in the water tank is conducted.

5.1 Numerical modeling of ship motions in waves

To model nonlinear ship motions, nonlinear potential flow theory is applied. The

problem is formulated as an initial boundary value problem and solved by the bound-

ary element method in the time domain. It should be pointed out that at this stage,

the barge is considered as the LNG carrier in this study in order to simplify the

numerical modeling.
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5.1.1 Mathematical formulation

5.1.1.1 Model description

Following the work of Feng and Bai (2015), the circular numerical wave tank (NWT)

is used to investigate the ship motion in waves. Fig. 5.1 shows the top view of the

NWT model. As well as the circular tank, the barge is also illustrated with the free

water surface and a damping zone on the free surface near the tank side wall. The

origin of the three-dimensional coordinate system Oxyz is placed at the center of the

barge (also the center of the circular wave tank) on the plain water surface. The z-axis

points vertically upward. β is the direction of the incident wave which is defined from

the positive x-axis. The length of the damping zone is set equal to one wavelength.

It should be noted that all the following simulations are under head sea conditions,

since the liquid sloshing is simulated inside a two-dimensional tank.

y

x

free surface

damping zone

O

b

incident wave

tank wall

Figure 5.1: A schematic view of the circular numerical wave tank.

5.1.1.2 Governing equations and boundary conditions

Assumptions are made that the fluid is incompressible and inviscid, and the flow is

irrotational. Based on potential flow theory, ship motions in waves can be formulated
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in terms of a velocity potential φ(x, y, z, t). Then in the fluid domain, the velocity

can be described by the gradient of this potential function as,

u = ∇φ =
∂φ

∂x
~i+

∂φ

∂y
~j +

∂φ

∂z
~k. (5.1)

According to the continuity equation, the velocity potential φ satisfies Laplace’s e-

quation in the fluid domain Ω,

∇2φ = 0, (5.2)

and is also subject to other boundary conditions on all surfaces S in the whole domain.

Boundary condition on the free surface

In order to update the free surface location and the associated velocity potential on

the free surface, the kinematic and dynamic conditions on the free water surface SF

need to be satisfied. In the Lagrangian description, they can be written as,

DX

Dt
= ∇φ (5.3)

Dφ

Dt
= −gz +

1

2
∇φ · ∇φ (5.4)

whereD/Dt is the usual total derivative, X is the position of points on the free surface,

and g is the gravitational acceleration. In Eq. (5.4), the atmospheric pressure on the

free surface is set equal to zero.

As can be seen, the free surface boundary conditions are nonlinear in nature. The

exact application of these nonlinear boundary conditions result in a nonlinear problem

which is impossible to solve analytically. Hence, difficulties arise when incorporating

the nonlinear effect of these boundary conditions into the solution procedure; special

techniques need to be applied to solve these difficulties. There are a few such special

methods available to deal with above mentioned problems. Among these methods,

the Mixed Eulerian-Lagrangian (MEL) time stepping approach is found to be widely

accepted and thus is applied in this numerical model.
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Boundary condition on solid surface

Generally, the boundary condition on the solid faces (the floating barge, the tank

wall, the sea bed) can be expressed as,

∂φ

∂n
= Vn, (5.5)

where n is the outward unit normal vector from the solid to the fluid surface and Vn

is the normal velocity of the body surface. Assuming the rotational motions of the

rigid body (the floating barge) are not significant, the motions of the body about its

center of mass Xg = (xg, yg, zg) can be written in terms of six components. Thus, the

following expression can be obtained:

Vn = (ξ̇ − α̇× (X−Xg)) · n, (5.6)

where ξ = (ξ1, ξ2, ξ3) is the vector representing the displacements of surge, sway and

heave motions and α = (α1, α2, α3) is the rotational vector denoting the angles of

roll, pitch and yaw about the center of mass Xg in an anticlockwise direction.

To be more specific, the boundary conditions for the fixed rigid body (the tank

wall and the seabed) can be simplified from Eq. (5.6) to the impermeability condition,

∂φ

∂n
= 0. (5.7)

Initial condition

Since the model is simulated in the time domain, an initial condition must be imposed

for the time step marching. The simulation usually starts from calm water conditions,

thus the velocity potential and wave elevation are set as,

φ = 0, z = 0 when t ≤ 0. (5.8)

5.1.1.3 Higher-order boundary element method

Because the boundary element method can reduce the dimensions of the boundary

value problem (BVP) to be solved by one, it is widely used to solve the BVP and

perform the numerical simulation of the nonlinear waves.

In this method, to formulate the BVP, a Rankine source is adopted as the Green’s

function G. Then a boundary integral equation for the potential φ over the whole
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boundary S can be derived. Applying Green’s second identity, the original potential

flow problem can be expressed by,

C(x0)φ(x0) =

∫∫

S

[
G(x,x0)

∂φ(x)

∂n
− φ(x)

∂G(x,x0)

∂n

]
ds, (5.9)

where C(x0) denotes the solid angle at the field point x0 and n is measured from

the source point x. As mentioned above, only head sea conditions are considered in

this study, thus the simulations are symmetric about the x− z plane. Assuming the

seabed in all the simulations is horizontal, the simple Rankine source and its image

with respect to the symmetry plane and the horizontal seabed can be chosen as the

Green’s function. In this way, the Green’s function can be expressed as

G(x,x0) =
1

4π

(
1

R1

+
1

R2

+
1

R3

+
1

R4

)
, (5.10)

where

R1 =
√

(x− x0)2 + (y − y0)2 + (z − z0)2

R2 =
√

(x− x0)2 + (y + y0)2 + (z − z0)2

R3 =
√

(x− x0)2 + (y − y0)2 + (z + z0 + 2d)2

R4 =
√

(x− x0)2 + (y + y0)2 + (z + z0 + 2d)2.

(5.11)

Following the work in Bai and Eatock Taylor (2006), the higher-order boundary el-

ement method is applied to discretize the surface over which the integral is performed.

Two kinds of quadratic isoparametric elements, the six-node triangular element and

the eight-node quadrilateral element are employed in this study. To obtain desired

variables (position coordinate, velocity potential etc.), shape functions are introduced

within every element. Due to its easy description, a local intrinsic coordinate system

(ξ, η) is applied to define the shape function. Based on this local coordinate system,

the shape functions for the six-node element are expressed as follows:

N1(ξ, η) = (1− ξ − η)(1− 2ξ − 2η)

N2(ξ, η) = ξ(2ξ − 1)

N3(ξ, η) = η(2η − 1)

N4(ξ, η) = 4ξ(1− ξ − η)

N5(ξ, η) = 4ξη

N6(ξ, η) = 4η(1− ξ − η)

(5.12)
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where Nj(ξ, η) is the shape function at the jth node in an element.

Similarly, the shape function for the eight-node element can be constructed in the

local intrinsic coordinate system by,

N1(ξ, η) = 0.25(1− ξ)(1− η)(1 + ξ + η)

N2(ξ, η) = 0.5(1− ξ2)(1− η)

N3(ξ, η) = 0.25(1 + ξ)(1− η)(ξ − η − 1)

N4(ξ, η) = 0.5(1 + ξ)(1− η2)

N5(ξ, η) = 0.25(1 + ξ)(1 + η)(ξ + η − 1)

N6(ξ, η) = 0.5(1− ξ2)(1 + η)

N7(ξ, η) = 0.25(1− ξ)(1 + η)(ξ − η + 1)

N8(ξ, η) = 0.5(1− ξ)(1− η2).

(5.13)

After introducing the shape functions into each element, the position coordinate,

velocity potential and its derivatives within an element in terms of the nodal values

can be found by,

x(ξ, η) =

K∑

j=1

Nj(ξ, η)xj, (5.14)

φ(ξ, η) =
K∑

j=1

Nj(ξ, η)φj, (5.15)

∂φ(ξ, η)

∂ξ
=

K∑

j=1

Nj(ξ, η)

∂ξ
φj , (5.16)

∂φ(ξ, η)

∂η
=

K∑

j=1

Nj(ξ, η)

∂η
φj , (5.17)

where K is the number of nodes in the element, i.e.: six for the triangular element and

eight for the quadrilateral element. xj and φj are the nodal positions and potentials

respectively. By putting these expressions back into Eq. (5.9), the BIE is transformed

to a discretized form as,

C(x0)φ(x0) =

N∑

n=1

M∑

m=1

{
G(xm,x0)

[ K∑

j=1

Nj(ξ, η)

(
∂φ

∂n

)

j

]

−
∂G(xm,x0)

∂n

[ K∑

j=1

Nj(ξ, η)φj

]}
wm |Jm(ξ, η)| , (5.18)
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where M is the number of sampling points in the standard Gauss-Legendre method,

wm denotes the integral weight at mth sampling point, Jm(ξ, η) represents the Jaco-

bian transformation from the local to the global coordinate and N is the number of

elements.

To solve Eq. (5.18), the undetermined solid angle C(x0) in Eq. (5.9) needs

to be solved. Inspired by the fact that a uniform potential applied over a closed

domain would not generate any flux, Wu and Eatock Taylor (1989) specified that

φ = constant 6= 0 over the entire integral boundary S in a uniform field. Following

them, Eq. (5.9) leads to,

C(x0) = −

∫∫

S

∂G(x,x0)

∂n
ds. (5.19)

In this expression, the solid angle can be directly computed by the influence coeffi-

cients.

To sum up, the discretized equation can be finally organized in the matrix form

as, [
A(11) A(12)

A(21) A(22)

][
X(1)

X(2)

]
=

[
B(1)

B(2)

]
(5.20)

where,

X(1) = {φ1, φ2, . . . , φNn
}

X(2) =

{(
∂φ
∂n

)

1
,
(

∂φ
∂n

)

2
, . . . ,

(
∂φ
∂n

)

Np

}
(5.21)

A
(11)
i,j = C(xi) + A

(21)
i,j

A
(21)
i,j =

Nn∑
n=1

M∑
m=1

[
∂G(xm,xi)

∂n
Nj(ξ, η)ωm|Jm(ξ, η)|

] (5.22)

A
(12)
i,j = A

(22)
i,j

A
(22)
i,j = −

Np∑
n=1

M∑
m=1

[
G(xm,xi)Nj(ξ, η)ωm|Jm(ξ, η)|

] (5.23)
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B
(1)
i =

Nn∑
n=1

M∑
m=1

[
G(xm,xi)

∂φ(xm)
∂n

ωm|Jm(ξ, η)|
]

−
Nn∑
n=1

M∑
m=1

[
∂G(xm,xi)

∂n
φ(xm)ωm|Jm(ξ, η)|

]

B
(2)
i = −C(xi) +B

(1)
i

(5.24)

In the above expressions, Nn and Np are the numbers of elements on the Neumann

and Dirichlet boundaries, respectively.

After assembling the above equations for each node on the whole integral surface,

a set of linear algebraic equations are attained. Since either the potential or its

derivative on the boundary is known from the corresponding boundary conditions,

the set of linear algebraic equations can be solved to obtain the solution of the mixed

boundary value problem.

5.1.1.4 Hydrodynamic forces

After the velocity potential is obtained by solving the mixed boundary value problem,

the pressure on the floating barge can be found by the Bernoulli equation,

p = −ρ(φt +
1

2
∇φ · ∇φ+ gz) (5.25)

where ρ is the density of the fluid, and φt is the time derivative of the potential. By

integrating the pressure over the body surface,

fi = −

∫∫

SB

pnids (5.26)

the hydrodynamic forces F = (f1, f2, f3) and moments M = (f4, f5, f6) can be com-

puted. Here, ni denote the six components of the normal unit vector n defined in Eq.

(5.5). Thus, to compute the hydrodynamic forces, the pressure given in Eq. (5.25)

needs to be determined first. The only concern here is the evaluation of the temporal

derivative of potential φt.

Following Wu and Eatock Taylor (2003), φt is represented by another boundary

value problem. Additional auxiliary functions ψi which satisfy Laplace’s equation in

the fluid domain are introduced. They are also subject to the following boundary

conditions. On the free water surface, the auxiliary functions satisfy,

ψi = 0. (5.27)
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On the body surface, they are specified by,

∂ψi

∂n
= ni. (5.28)

For other boundaries, the Neumann condition is used and it defines the auxiliary

functions by,
∂ψi

∂n
= 0. (5.29)

Based on Green’s identity, the following relationship between ψi and φt is developed

to obtain the hydrodynamic forces through the auxiliary functions:

∫∫

S

(φt
∂ψi

∂n
− ψi

∂φt

∂n
) = 0. (5.30)

Eq. (5.30) can be simplified based on the boundary conditions for ψi and φt. This

leads to expressions for the hydrodynamic forces as,

fi = −ci,j ξ̈j +Qi, (5.31)

where ξj denotes the body displacement in the jth generalized direction, ci,j is equiv-

alent to an added mass coefficient (computed from the auxiliary functions), and Qi

represents a complex expression involving the auxiliary functions, the potential, and

the components of displacement. See Wu and Eatock Taylor (2003) for more details.

Thus, computing the auxiliary functions can lead to the solution of the hydro-

dynamic forces. It should be noted that the second mixed boundary value problem

for ψi has the same boundary condition as the first one for the velocity potential φ.

Therefore, these two problems have the same influence coefficient matrix, which saves

computational effort to calculate the hydrodynamic forces by the auxiliary function

approach.

Since the freely floating barge is considered in this study, the equation of motion

needs to be solved to predict the position of the barge at each time step. Following

Bai and Eatock Taylor (2009), based on the transformed representation of the force

and Newton’s second law, the following expression is obtained:

6∑

j=1

(mi,j + ci,j)ξ̈j = Qj +mbgδi,3. (5.32)
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Here, mi,j is the element of the mass matrix, mb indicates the body mass and,

δi,j = 1 if i = j

δi,j = 0 if i 6= j
. (5.33)

After obtaining the potential and the auxiliary functions, the acceleration of the

floating barge can be solved directly based on the formula above. In this way, the

position of the barge can be updated.

5.1.2 Numerical implementation

5.1.2.1 Mesh generation

In the present study, the boundary integral equations Eqs. 5.20-5.24 are discretized

using two kinds of quadratic elements as introduced in the previous section. It should

be noted that the entire boundary in the computational domain is not continuous and

smooth due to the presence of the floating barge and the free water surface. Thus, it

is necessary to introduce continuous patches into the discretized surfaces, over which

the mesh generation is carried out.

Based on the two kinds of quadratic elements defined by Eqs. 5.12 and 5.13,

there are two types of patches correspondingly introduced in this model. Since it is

easy to generate quadrilateral meshes on the vertical boundaries like the side wall,

this structured type of mesh is applied under this condition. The corner nodes are

distributed exponentially in the z direction with a view to approaching the vertical

decay of the velocity potential. Therefore, the vertical coordinates are calculated as,

zi,j = z1,j − (z1,j +D) ·
1− exp[γ(zi,j +D)(Mz + 1− i)/Mz]

1− exp[γ(zi,j +D)]
, (5.34)

with i varying from 1 to Mz + 1. Here z1,j denotes the coordinate of the point

where the wave intersects the vertical surface, Mz is the number of elements in the z

direction and D represents the water depth or the draft of the barge. The parameter

γ determines the mesh size near the free surface.

Due to the fact that a triangular mesh is applicable in complex geometries, this

unstructured type of mesh is used on the free surface and the truncated bottom of the

body. To generate triangular meshes, the Delaunay triangulation method is applied

in this model. See Subramanian et al. (1994) for details. Fig. 5.2 provides an example

of the mesh generation in this study.
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Figure 5.2: An example of mesh generated on the barge and the free surface.

5.1.2.2 Artificial damping layer

As shown in Fig. 5.1, an artificial damping layer is adopted to absorb the scattered

wave energy on the outer annulus of the circular tank. To model the damping layer,

the kinematic and dynamic free surface boundary conditions in Eq. (5.3) and Eq.

(5.4) are simply modified by adding a damping term over a finite length of the free

surface. The expressions are given as,

DX

Dt
= ∇φ− ν(r)(X−Xe) (5.35)

Dφ

Dt
= −gz +

1

2
∇φ · ∇φ− ν(r)φ, (5.36)

where r denotes the distance from the barge, ν(r) is the damping coefficient and

Xe = (xe, ye, 0) is the reference value specifying the condition when the water surface

is still. For practical application, the damping coefficient is imposed to be continuous

and tuned to a characteristic excitation frequency ω of the wave motion. Here, it is

defined by,

ν(r) =





ω
(

r−r0
λ

)2

if r ≥ r0 = rD − λ

0 if r < r0
, (5.37)

where λ denotes the representative wavelength corresponding to the excitation, rD is

the radius of the outer circular computational domain.
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5.1.2.3 Time stepping scheme

After solving the mixed boundary value problem by the higher-order boundary ele-

ment method, the geometry of the free surface and the potential are to be updated for

the calculation at the next time step. To realize this, the fourth-order Runge-Kutta

scheme is adopted to conduct the integration of the nonlinear free surface boundary

conditions in time.

The particle velocities on the surface need to be calculated before the time step-

ping integration of the free surface boundary conditions. From the solution of the

boundary value problem and the corresponding boundary conditions, the potential

and its derivatives in the whole domain are known. Thus they can be applied to

calculate the particle velocities by the following expression:




∂φ
∂x
∂φ
∂y
∂φ
∂z


 =




∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

nx ny nz




−1 


∂φ
∂ξ
∂φ
∂η
∂φ
∂n


 . (5.38)

As there is always more than one element surrounding a node, the velocity at

each node is determined by averaging the values of the above equation applied within

every element surrounding this node. Now, based on the boundary conditions, the

surface position and velocity potential at the next time step can be updated. In this

manner, the time is marching forward until the stopping criteria are satisfied.

5.1.2.4 Algebraic equation solver

The solution of the full and asymmetric influence matrix from the mixed boundary

value problem at each time step is of great importance to the present study. The

efficiency of the numerical model mainly depends on the solution scheme applied.

There are a number of options for solving the matrix system. But the efficiency of

most schemes is unfortunately case-dependent. The generalized minimum residual

(GMRES) iterative scheme with a diagonal preconditioner, which is widely used for

similar problems and found to be very effective by Bai and Eatock Taylor (2006), is

adopted in this present study.
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5.2 A COUPLED numerical model for simulation

of the interaction between sloshing and ship

motions

As described in Chapter 1, prior to studying the coupling effects between sloshing and

ship motions, the two distinct sub-problems need to be computed accurately. In pre-

vious chapters, the Level-Set based free surface flow solver has proved its capability in

accurate simulation of sloshing flows, even with breaking waves. The HOBEM based

ship motion solver has also been well validated in the work of Bai and Eatock Taylor

(2006, 2009). Thus in this section, the COUPLED numerical model, which combines

both solvers, is developed and validated.

5.2.1 Mathematical formulation

Here, to consider the interactions between the sloshing and the ship motions, the

coupling mechanism of Kim (2002) is adopted. First, external ship motions induce

liquid sloshing in the internal tank from the start of the coupling process. Therefore,

the external force in Eq. (3.1) for the sloshing flows is modified as,

fe = g−
d2ξ1, 3

dt2
−
dα̇5
dt

× (r−R)− α̇5× [α̇5 × (r−R)]−2α̇5×
d (r−R)

dt
(5.39)

where ξ1, 3 denotes the translational vectors of surge and heave, α̇5 indicates the

velocity vector of pitch motion and the other terms use the same definition as in Eq.

(3.1). In addition, the center of rotation is defined at the same position as the center

of gravity of the barge.

At the same time, the sloshing flow inside the tank will generate forces and mo-

ments on the tank which will act on the ship in return. Therefore, the hydrodynamic

force defined in Section 5.1.1.4 should consider the sloshing-induced forces and mo-

ments before updating the position of the freely floating barge at the next time step.

Here, Eq. (5.32) is modified as,

6∑

j=1

(mi,j + ci,j)ξ̈j = Qj +mbgδi,3 + Fsi, (5.40)

where Fsi consists of the force on the horizontal tank wall (Fs1), the force on the

vertical tank wall (Fs3) and the induced moments (Fs5). It should be pointed out
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again, that the sloshing model is two-dimensional and the ship motion model is three-

dimensional. Therefore, in order to include the sloshing effects into the COUPLED

model, a length of 0.02 m along the y-direction is considered when computing the

forces and moments defined above. In this way, the two numerical models are com-

bined together and developed into the final COUPLED model applied in the present

study.

5.2.2 Numerical implementation

The fully COUPLED numerical model is built based on the modification of the Level-

Set based free surface flow solver and the HOBEM based ship motion solver. Here, a

complete computational cycle within one time step is summarized as follows.

1. Read the input file and set up the initial conditions for the circular wave tank.

2. Define the vertical patches and horizontal patches. Generate elements accord-

ingly on the water surface, the barge surface, the tank wall, etc. at the initial

time step.

3. According to the updated value, regenerate the elements on the surfaces except

at the initial time step.

4. Solve the mixed boundary value problem by the higher-order boundary element

method for ship motions in waves.

5. Calculate the derivatives of potential on the free water surface and the body

surfaces.

6. Go to the sloshing cycle.

7. Set up the initial conditions for the computational domain in the internal water

tank.

8. Solve the Level-Set evolution equation to capture the free surface.

9. Reinitialize the Level-Set function by the fast marching technique.

10. Based on the interface captured, define the fluid properties in the whole water

tank by the Heaviside function.
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11. Take the fluid properties into the Navier-Stokes equations. At the same time,

introduce the velocities and accelerations of the barge into the Navier-Stokes

equations to induce the sloshing flow.

12. Rewrite the Navier-Stokes equations with a two-step scheme and obtain the

source term for the Poisson equation.

13. Solve the Poisson equation and update the velocity field.

14. Based on the computed pressure, obtain the force and moments on the tank

wall by integration.

15. Jump out of the sloshing cycle.

16. Calculate the hydrodynamic force on the barge.

17. Combine the obtained force and the sloshing-induced force. Add them into the

motion equation.

18. Solve the motion equation and update the position of the barge at the next

time step.

19. Update the position and potential on the free surface at the next time step.

20. Go back to Step 3. Repeat the computational cycle until the desired time is

reached.

5.2.3 A preliminary validation of the COUPLED model

To validate the COUPLEDmodel, the two-dimensional experimental work of Rognebakke

and Faltinsen (2003) has been reproduced numerically. In this case, a box-shaped hull

section is allowed to move in the sway direction only. It is excited by regular waves

and contains two identical water tanks. In order to prevent the model from drifting

off, a system of springs with total stiffness 30.9 N/m is added. Fig. 5.3 shows the

dimensions of the section.
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Figure 5.3: A schematic view of box-shaped hull section used in Rognebakke’s exper-
iment.

Here, the two filled tanks series and the empty tank series are studied at different

wave frequencies. 20 wave periods are applied as the total simulation time. Fig. 5.4

shows the results of the sway amplitude for empty tanks and two filled tanks.

ω (rad/s)

Sw
ay

 A
m

p

6 6.5 7 7.5 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7 EmptyTank_Exp
Empty_Numerical
FilledTank_Exp
Filled_Numerical

Figure 5.4: Comparison of sway amplitude for empty tanks and two tanks filled with
h = 0.186 m between the present numerical results and Rognebakke’s experimental
data.

As can be seen in Fig. 5.4, the overall trends of motion RAOs show close a-

greement between the numerical results and the experimental data. However, it is

observed that the present numerical results have slightly smaller values. One possi-

ble reason is that the amplitude applied in the numerical simulation is 0.012 m in

order to avoid introducing numerical instability in the HOBEM model, while in the
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experiment it is 0.015 m. In addition, it can be seen that the difference between

numerical and experimental results for the empty tank is close to that for the filled

tank. This indicates that the accuracy of the COUPLED model is mainly determined

by the HOBEM model. The numerical error due to the interchange of data between

the Level-Set based sloshing model and the HOBEM model might be quite limit-

ed. It should also be noted that there is an apparent reduction in the sway motion

when tanks are filled with water. This suggests that the internal sloshing flow would

have a significant impact on the external ship motions. In general, the capability

of the COUPLED model is validated by the good agreement with the experimental

recordings.

5.3 A parametric study on the coupling effects be-

tween sloshing and ship motions

In this section, the COUPLED model is adopted to perform a numerical simulation

of the interaction between sloshing and ship motions. A systematic parametric study

regarding wave amplitude, frequency and filling conditions of the water tank is carried

out.

As shown in Fig. 5.5, a circular wave tank with a radius of 4 m, and a water depth

of 3 m is adopted. At the center of the circular wave tank, a barge with a length of

2.47 m, a breadth of 0.6 m and a draft of 0.18 m, which has been used in the work

of Molin et al. (2009), is placed, considering its shape, size and feasibility. Inside the

barge, an internal sloshing tank is set at the middle position. It measures 0.6 m, 0.18

m in the horizontal and vertical directions respectively. To achieve stable numerical

results, the total simulation time is set as 20 times of the wave period. It should be

noted that the surge motion shown in the following cases includes the drift of the

barge. Also note that the Level-Set based free surface flow solver is only applicable

to two-dimensional flows. Thus, head sea conditions, which only induce surge, heave

and pitch motions, are considered in this study.

5.3.1 Effects of wave amplitude

In this section, four wave amplitudes from A = 0.005 m to 0.014 m with an increment

of 0.003 m are employed with the wave frequency f = 5.0 rad/s. The water tank is

filled to 50% of the tank height.
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Figure 5.5: A schematic view of the COUPLED model used in this study.

First, to better illustrate the effects of sloshing in the water tank, the HOBEM

model is used to simulate the freely floating barge with an empty tank (no internal

sloshing). Fig. 5.6 and Fig. 5.7 plot the corresponding normalized motions and the

hydrodynamic forces on the barge.

From Fig. 5.6, one can see that the motion response of the barge generally becomes

larger as the wave amplitude increases. To be more specific, due to the inclusion of
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Figure 5.6: Time histories of the motion RAOs of the barge with an empty tank for
different wave amplitudes.

drift, surge motions are proportionally raised with the enlarged wave amplitudes. The

normalized heave motions are close to each other with almost identical amplitudes

and small shifts of the mean heave displacements. This suggests that the heave

motion is probably linear with respect to the wave amplitude. Similar to the surge

motions, Fig. 5.6(c) shows that the normalized pitch motions are enlarged as the
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Figure 5.7: Time histories of the wave forces on the barge with an empty tank for
different wave amplitudes.

wave amplitude increases. In Fig. 5.7, the normalized translational forces for various

wave amplitudes are almost identical. This supports our explanations for almost

identical heave motions and enlarged surge motions due to drift. This also indicates

that translational motions are proportional to the wave amplitudes. Furthermore,

the difference in the moments about the y direction for different wave amplitudes can
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be observed from t = 10T . The difference becomes larger over time and clearly lead

to the increase in the rotational motions of the barge. Therefore, this phenomenon

validates our previous statement and indicates that the pitch motions are not linear

to the wave amplitude.
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Figure 5.8: Time histories of the motion RAOs of the barge with a filled tank for
different wave amplitudes.

Fig. 5.8 and Fig. 5.9 display the displacements and hydrodynamic forces of the
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barge given by the COUPLED model, which considers the internal water tank with

a 50% filling level. In both figures, similar tendencies to those obtained without

internal sloshing can be observed. The normalized surge motions increase as the

wave amplitude increases. The obtained results of heave motions lie quite close to

each other. The pitch motions are also visibly more violent as the wave amplitude

increases.

Additionally, the translational forces are almost the same, while the moments

vary from different wave amplitudes. However, we can see that most of the values

from the time series achieved by the COUPLED model for the barge with a filled

tank are larger than those obtained by the HOBEM model for the barge with an

empty tank without the effects of internal sloshing. Furthermore, in Fig. 5.8(c),

from t = 10T , the results obtained by the larger wave amplitudes tend to represent a

slightly different pattern from that obtained by A = 0.005 m. This should be mainly

due to the influence of the sloshing motion.

Thus, to better illustrates the effects of internal sloshing on barge motions, the

difference of the normalized motions are plotted by using the time history obtained

by the COUPLED model to minus that from the HOBEM model. Fig. 5.10 shows

the difference of motion due to the coupling effects.

Evidently, the differences of the three components due to internal sloshing exhibit

different patterns from the previous time histories of the normalized barge motions.

First, the previous surge solutions from both models become larger due to the larger

wave amplitudes. However, the difference of the surge components decreases as the

wave amplitude increases. In addition, in the time history of sloshing effects on the

surge motions of the barge, the peaks and troughs are barely noticeable. Considering

both points, the presence of internal sloshing might counteract the effects of the wave

amplitude on the surge motions (mainly on the drift). In other words, the increment

of surge motions due to the larger wave amplitude is reduced because of the effects

of sloshing motion.

Second, the previous heave solutions become stable beyond a certain time instant,

while the differences of the heave components intensify over time, indicating that the

effects of sloshing on the heave motions are amplified with time. Obvious shifts in

the results for various wave amplitudes can be observed. However, it should be noted

that the highest shift is achieved with A = 0.005 m, while the lowest one is obtained

with A = 0.008 m. Thus, the heave motion shifts do not follow a monotonic relation

with respect to the wave amplitudes.

158



Time/T

F
or

ce
_X

0 5 10 15 20

-0.05

0

0.05

0.1

Filled_A05
Filled_A08
Filled_A11
Filled_A14

(a) force x

Time/T

F
or

ce
_Z

0 5 10 15 20

-0.1

0

0.1

(b) force z

Time/T

M
om

en
t_

Y

0 5 10 15 20

-0.2

0

0.2

(c) moment y

Figure 5.9: Time histories of the wave forces on the barge with a filled tank for
different wave amplitudes.

Finally, as shown in Fig. 5.10(c), the differences of the normalized pitch motions

are symmetrical to the initial position (i.e.: there is no rotation angle). This again

supports our previous conclusion that internal sloshing has a greater influence on the

pitch motions than the drift motions. In addition, after t = 10T , the differences

between each of the pitch results with varying wave amplitudes become larger over
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Figure 5.10: Time histories of the sloshing effects on the barge motions for different
wave amplitudes.

time. A different beating phenomenon of the A = 0.008 m result is observed. This

indicates that the larger wave amplitude leads to a different pattern of pitch motions

due to the presence of internal sloshing. Therefore, we can conclude that the effects of

sloshing on the pitch motions of the barge are not proportional to the wave amplitude.

Fig. 5.11 records the maximum motion differences during the whole simulation.
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It concurs with the previous discussion. The effects of internal sloshing reduce the

increment of surge motions due to the increase in the wave amplitude, while they

intensify the increment of pitch motions. The sloshing influence on heave responses

is not monotonic to the wave amplitudes.
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Figure 5.11: Maximum sloshing effects on ship motions under different wave ampli-
tudes.
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As studied in Chapter 3, higher wave amplitudes induce stronger sloshing flows

inside the water tank. To better understand the effects of ship motions on the sloshing

motions, the surface displacements at the left of the water tank wall are plotted for

different wave amplitudes.
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Figure 5.12: Time histories of the surface displacement at the left wall for different
wave amplitudes.
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Figure 5.13: Time histories of pressure at the left wall for different wave amplitudes.

As shown in Fig. 5.12, it is clear that the surface displacements become larger

as the wave amplitude increases. More specifically, the time series of the surface

displacement achieved with A = 0.005 m is almost symmetrical to the initial water

depth (d = 0.09 m). However, with a larger wave amplitude applied, for example,

A = 0.014 m, larger peaks and relatively smaller troughs are observed, and the surface

displacement is no longer symmetrical to the still water line.

The time history of the pressure at the left wall 0.01 m above the tank bottom

is recorded in Fig. 5.13. Similar patterns to the surface displacement are obtained.
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As the wave amplitude increases, the pressure results gradually become asymmet-

ric. From both figures, we can conclude that with larger wave amplitudes applied,

nonlinear sloshing flows are generated inside the water tank by the COUPLED model.

Wave Amp

M
ax

im
um

 η

0.005 0.01 0.015

0.09

0.1

0.11

Figure 5.14: Maximum surface displacements under different wave amplitudes.

Fig. 5.14 shows the maximum wave elevation recorded at the left wall of the water

tank for each wave amplitude. A nearly linear relation between the sloshing flow and

the wave amplitude can be observed. However, Fig. 5.15 shows that the maximum

pressure changes nonlinearly with the variation of the wave amplitude. Thus, one can

conclude that the sloshing motions inside the tank are not proportional to the wave

amplitude.
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Figure 5.15: Maximum pressure under different wave amplitudes.
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5.3.2 Effects of wave frequency

Based on the previous section, a critical wave amplitude of A = 0.014 m is chosen to

perform the following simulations. In this section, the coupling effects under various

wave frequencies from f = 6 to 10 rad/s with a interval of 1 rad/s are studied. It

should be mentioned that the hydrodynamic forces which are obviously less affected

by the coupling effects as shown in the previous section, are not a concern in the

following cases.

Following the same steps from the previous section, first, the HOBEM model is

used to simulate the freely floating barge with an empty tank (no internal sloshing)

at different wave frequencies. The numerical results are given in Fig. 5.16.

As shown in Fig. 5.16(a), it is easily observed that the time series of the surge mo-

tions are not monotonic to the variation of the wave frequencies. The main reason for

this might be that the surge motion (including the drift) is not significantly influenced

by the variation of the wave frequencies when the same wave amplitude is applied.

In addition, the noticeable peaks and troughs in the time series are only found at

frequency f = 6 rad/s. This suggests that larger motion responses are induced at

this value than at other frequencies. Fig. 5.16(b) shows the time series of the heave

motions. The outstanding result of the heave motion is obtained at wave frequency

f = 6 rad/s, as expected. Furthermore, in contrast to the surge component, the

time histories of the heave motion seem monotonic to the wave frequencies. As the

wave frequency increases, the value of the heave motions drops. From Fig. 5.16(c),

interesting phenomena can be observed in the time histories of the pitch motions.

Various wave frequencies result in different shapes of beating phenomena. It should

be noted that the value of the pitch motion at f = 7 rad/s is obviously larger than

those at other frequencies.

Taking the 50% filled water tank into account, numerical results obtained by the

COUPLED model are shown in Fig. 5.17. Barge motions predicted by the COUPLED

model are similar to those computed by the HOBEM model. The time histories of

the three components given by both models have the same tendencies. The frequency

f = 6 rad/s leads to the largest heave motions, while the frequency f = 7 rad/s can

generate strong pitch motions.

Since differences between the results of the two models can barely be observed, the

effects of internal sloshing are represented by using the time history obtained by the

COUPLED model to minus that from the HOBEM model. As shown in Fig. 5.18(a),

the differences show a different pattern from that of the two time histories of the

surge motions. Unlike the non-monotonic relation, the increment of surge motions
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Figure 5.16: Time histories of the motion RAOs of the barge with an empty tank at
different wave frequencies.

due to the sloshing presence is reduced as the wave frequency increases. Fig. 5.18(b)

shows the differences of the heave motions at various wave frequencies. Just as with

the surge component, the increase in the wave frequency leads to the decrease in

difference. It should also be noted that the value for each time history is gradually

amplified, indicating the sloshing effects become larger with time. Similar to the
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Figure 5.17: Time histories of the motion RAOs of the barge with a filled tank at
different wave frequencies.

previous two pitch results, Fig. 5.18(c) shows that different beating phenomena are

formed, and the outstanding result with f = 7 rad/s can be observed. However, there

is one major difference: the value of the difference at f = 6 rad/s is relatively closer

to those at f = 8 rad/s and is much greater than those at f = 9 and 10 rad/s. In

the two original pitch results (by HOBEM and COUPLED), the predictions at f = 6
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Figure 5.18: Time histories of the sloshing effects on the barge motions at different
wave frequencies.

rad/s are closed to those at f = 9 and 10 rad/s and are much smaller than those

at f = 8 rad/s. This could be caused by the relatively larger sloshing effects on the

pitch motion at f = 6 rad/s, suggesting a more severe sloshing flow would be induced

at this frequency.

Fig. 5.19 records the maximum value of the differences during the simulation. It
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Figure 5.19: Maximum sloshing effects on ship motions at different wave frequencies.

can be seen that as the wave frequency increases, the increment of surge and heave

motions due to the internal sloshing decreases. For the pitch motion, a non-monotonic

trend can be observed, while maximum effects due to internal sloshing are caused at

f = 7 rad/s.

As discussed in Chapter 3, the influence of the wave frequency on the sloshing
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flow is complicated. Two factors need to be considered. The first one is the ratio of

the wave frequency to the natural frequency of the sloshing system. The other is the

body response at the given wave frequency. For example, a smaller body response

might lead to a more violent sloshing flow if the wave frequency is closer to the natural

frequency of the sloshing system.
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Figure 5.20: Time histories of the surface displacement at the left wall at different
wave frequencies.

Here, Fig. 5.20 shows the time series of the free surface displacement at various

wave frequencies. The sloshing flow excited by f = 6 rad/s is much stronger than

those excited by other frequencies. This is partially due to the larger surge and heave

motions obtained at this frequency. However, the outstanding pitch motion at f = 7

rad/s doesn’t result in a strong sloshing flow inside the water tank. Thus, to explain

this scenario, one should take the ratio of the wave frequency to the natural frequency

into account. According to Eq. (3.3), the natural frequency of this sloshing system is

4.7497 rad/s. Clearly, f = 6 rad/s is closest to the critical value. Thus, as the wave

frequency increases, the sloshing flow becomes smaller. This indicates that in this

case, the ratio of the wave frequency to the natural frequency of the sloshing system

has greater effects on the induced sloshing than the barge motions.

Fig. 5.21 indicates the time history of the pressure recorded at the left wall 0.01 m

above the tank bottom. A similar trend to the surface displacement result is achieved.

This also suggests that hydrostatic pressure is dominant in these cases.

Fig. 5.22 and Fig. 5.23 record the maximum surface displacement and pressure

against the wave frequency. The decreasing trend supports our previous description.
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Figure 5.21: Time histories of pressure at the left wall at different wave frequencies.
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Figure 5.23: Maximum pressure at different wave frequencies.

5.3.3 Effects of the filling level in the water tank

In this section, the influence of the filling level in the water tank on the coupling

effects is investigated. To begin with, the three usual filling levels 20%, 50% and 80%

are adopted, with the chosen amplitude A = 0.014 m and frequency f = 5.0 rad/s.

Fig. 5.24 shows the motions predicted by the COUPLED model under the three
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filling levels. It can be seen that as the filling level increases, the surge motions

(including the drift) become larger with time. However, with various filling levels,

the heave motions are almost identical. Finally, an interesting scenario can be found

in Fig. 5.24(c): the time histories of the pitch motion are not monotonic to the

variation of the filling level inside the water tank. The most critical condition is

found when the internal tank is 50% filled.

To better illustrate the effects of the internal sloshing, just as in the previous

sections, the difference of the time series of barge motions is given by using the

results obtained by the COUPLED model for the three filling levels to minus the

time history of the barge motions with an empty tank computed by the HOBEM

model for A = 0.014 m and f = 5 rad/s (shown in Fig. 5.6). As displayed in Fig.

5.25, the motion differences display a similar trend to the previous results from the

COUPLED model. The increment of the surge motions is enlarged as the tank is

filled with more water. The mid filling level results in the largest increase in the

pitch motions. However, unlike the identical results of the heave component from

the COUPLED model, the presence of the sloshing increases the differences in heave

motions over time.

As discussed in Chapter 3, the lower filling condition has gained a lot of attention

since in such conditions, greater nonlinear characteristics of the sloshing flow could

be observed. Thus, in this section, three additional lower filling levels, 10%, 15% and

25% are further considered.

To illustrate the effects of the lower filling levels directly, the original motions by

the COUPLED model are not shown here. The corresponding differences of the time

series of motions for the four lower filling levels are plotted in Fig. 5.26. Similar to

those results for the usual filling levels, the increment of surge and heave motions

would be amplified as the filling level increases. However, unlike the non-monotonic

relation between the effect on pitch motions and the usual filling levels, for the lower

filling conditions, the sloshing effects on pitch motions are intensified as the tank is

filled with more water. This suggests that the mid filling level might induce quite

violent sloshing flow.

In addition, there is another scenario that needs to be noted. For the usual filling

levels, as shown in Fig. 5.25, the increment of the differences in the surge and heave

motions are almost proportional to the increase in the filling level. However, as shown

in Fig. 5.26, the increment changes nonlinearly with the variation of the lower filling

levels. This again suggests that the nonlinearity of sloshing is more evident under

lower filling conditions.
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Figure 5.24: Time histories of the barge motions obtained by the COUPLED model
under different filling conditions.

Fig. 5.27 shows the maximum difference value against the filling level. Except for

the pitch component, the surge and heave motions are amplified as the tank is filled

with more water. Maximum sloshing effects on pitch motions are generated at the

50% filling level at the given wave frequency and amplitude. The nonlinear relation

between the lower filling level and the motion differences due to sloshing can also be
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Figure 5.25: Time histories of the sloshing effects on barge motions under different
filling conditions.

observed in Fig. 5.27.

To further investigate the influence of the filling level on internal sloshing, the

surface elevations at the left tank wall are plotted for the three usual filling levels

in Fig. 5.28. It can be observed that the mid filling level clearly induces the most

violent sloshing flow while achieving the highest surface elevation. This accords with
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Figure 5.26: Time histories of the sloshing effects on barge motions under low filling
conditions.

the previous discussion on pitch motions.

As discussed in Section 5.3.2, the ratio of the wave frequency to the natural

frequency of the sloshing system is one major reason leading to the different internal

sloshing flows. In this section, according to Eq. (3.3), the natural frequencies for the

20%, 50% and 80% filling levels are f = 3.0933, 4.7497 and 5.7224 rad/s respectively.
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Figure 5.27: Maximum sloshing effects on barge motions under different filling con-
ditions.

With the given wave frequency f = 5.0 rad/s and fixed wave amplitude, it is clear

that the 50% filling level would induce most severe sloshing motions, since its natural

frequency is closest to the given value. Accordingly, the sloshing at the 80% filling

level would lie between the mid filling level and the lower 20% filling level. In Fig.

5.29, which records the time history of the pressure at the left wall, this explanation

is validated. It should be noted that the initial hydrostatic pressure is deducted for
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Figure 5.28: Time histories of the surface elevation at the left wall under different
filling conditions.

better comparison. Similar trends to the surface elevation are achieved, indicating

the influence of the natural frequency is significant here.
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Figure 5.29: Time histories of pressure at the left wall under different filling condi-
tions.

Maximum surface elevations are recorded and plotted against the filling level in

Fig. 5.30. It accords with the observations from the time histories and suggests that

the mid filling level would lead to the most violent sloshing in the tank. However,

it should be noted there is a tiny peak observed at the 20% filling level. This might

be caused by both the lower filling nonlinear effects and the corresponding barge

motions, consistent with the detailed discussion in Section 3.3.3.

Fig. 5.31 plots the pressure distributions on the left tank wall at the moment

when the maximum wave elevations are captured for three filling conditions. We can

see that the three pressure distributions are almost linear along the tank wall. This

suggests that the sloshing flows generated under the three filling conditions are not
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Figure 5.30: Maximum surface elevations under various filling conditions.
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Figure 5.31: Pressure distribution at the left wall under three different filling condi-
tions.

strong.

5.4 Summary

In this chapter, the numerical model based on nonlinear potential flow theory to

simulate the ship motions was introduced. The boundary value problem was described

and the higher-order boundary element formulation of this problem was presented.

The numerical implementation of this model was also given in detail.

177



To study the interaction between sloshing and ship motions, the methodology of

coupling the two numerical models was developed by applying the ship motions as

the excitations of the sloshing, and combining the sloshing-induced forces into the

external wave forces as the total forces acting on the ship. A preliminary test was

conducted by reproducing the experimental work of Rognebakke and Faltinsen (2003)

numerically. Good agreement between the numerical results and the experimental

recordings validated the capability of the developed COUPLED model.

By applying the COUPLED model, a parametric study regarding wave ampli-

tude, wave frequency and the filling level in the tank was performed. The following

conclusions could be made:

1. The variations of ship motions obtained with and without the presence of the

sloshing motion are both nonlinear to the change of the wave amplitude.

2. The increase in the wave amplitude would reduce the sloshing effects on the

surge motion but amplify the sloshing effects on the pitch motion.

3. Unlike wave amplitude, the increasing wave frequency generally leads to a de-

crease in ship motions, with or without the influence of sloshing flow.

4. Similar to the wave amplitude, the motion variation changes nonlinearly with

the wave frequency. It is clear that the ratio of the wave frequency to the

resonant frequency of the ship/the sloshing system is the dominant factor in

determining the ship motions/sloshing flows.

5. With regard to filling levels, the higher the filling level, the larger the surge

and pitch motions. However, note that the mid filling level results in the most

significant effect on the pitch motions.

6. Correspondingly, the most severe sloshing flow is generated under the 50% filling

condition. This is due to the given wave frequency being the closest to the

natural frequency of the sloshing system under the mid filling level. This also

indicates that, the internal sloshing flow affects the rotational motions of the

ship most significantly at the prescribed condition.

Based on the parametric study, the wave frequency and its related resonant phe-

nomena of ship/sloshing motions should be the main concern in the design of LNG

carriers and tanks.
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Chapter 6

CONCLUSIONS AND

RECOMMENDATIONS

6.1 Conclusion

The main objective of this research is to develop a nonlinear coupled numerical model

and investigate the liquid sloshing in LNG tanks coupled with ship motions. To

achieve this, the following work has been done successively.

Firstly, in order to model nonlinear viscous sloshing flows, a free surface flow

solver based on the finite difference approximation was developed. The fluid solver

and interface tracker of the preliminary model were validated separately by successful

reproduction of benchmark test cases. The performance of the preliminary model was

assessed by carrying out the non-resonance and resonance sloshing cases. Satisfactory

results were obtained for the non-resonance case. However, numerical dissipations

were found in the resonance case. To solve this dissipative issue, two improvements

have been made to the preliminary model:

• The first improvement was applying a larger size of the smoothing band in the

Level-Set technique of the preliminary model than the conventional size, based

on which, the intermediate model was developed.

• The second improvement was incorporating high-resolution convection schemes

into the intermediate model. Thus, the final model of the free surface flow solver

was developed.

Different free surface flow problems with and without breaking waves have been

studied. Good agreement with published data was achieved. Results also show that:
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• The size of smoothing band in the Level Set Method would have significant

effects on the performance of current free surface flow solver.

• With higher-order convection schemes used in the fluid solver, a smaller smooth-

ing band than the conventional size could be employed in the current model.

• s = 4, s = 2 and s = 1 are recommended smoothing sizes for the Level-Set

based free surface solver with first-order Upwind scheme, second-order MIN-

MOD scheme and third-order COPLA scheme respectively.

Secondly, to study the effects of ship motions, an investigation of sloshing flows in

a full-scale LNG tank was conducted. A co-moving coordinate system was adopted

to simulate sloshing waves in a rectangular tank excited randomly by three-degrees-

of-freedom motions. It is found that:

• In the head sea condition, the random initial phase difference between surge

and pitch motions has a significant effect on the induced sloshing waves, and

the phase difference of 180◦ can cause the most violent sloshing.

• The most severe sloshing wave is generated when the sea wave frequency ap-

proaches the natural frequency of the sloshing system, at which both the pres-

sure and free surface elevation reach the maximum value.

• The free surface elevation excited by each resonant frequency decreases as the

filling depth increases, due to the corresponding smaller RAOs applied. In lower

filling level conditions, the nonlinear characteristics of sloshing wave are more

evident than those in mid and higher filling conditions, such as 50% and 80%.

Next, in order to investigate coupling effects between nonlinear viscous sloshing

flows and nonlinear ship motions, a COUPLED numerical model in time domain was

developed:

• A numerical model based on nonlinear potential wave theory was adopted to

solve ship motions in waves.

• In order to use ship motions to induce sloshing, the free surface flow solver was

modified, and employed the accelerations and velocities obtained from the po-

tential flow model into the Navier-Stokes equations as the external excitations.
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• To consider the sloshing effects, pressure results obtained by the sloshing model

were integrated along tank walls. The equation of motions in the ship model was

modified accordingly by incorporating the sloshing-induced forces and moments.

• A preliminary validation of the COUPLED model was conducted by numer-

ically reproducing a benchmark experiment. Good agreement validated the

applicability of the COUPLED model.

Finally, a parametric study regarding wave amplitude, wave frequency and the

filling level in the water tank was performed. Results show that:

• Variations of the ship motions obtained with and without the presence of slosh-

ing motions were both nonlinear to the change of wave amplitude.

• The increase in wave amplitude would reduce the effects of sloshing on surge

motions but amplify the effects of sloshing on pitch motions.

• A more nonlinear sloshing would be generated when a larger wave amplitude

was used. The variations of sloshing flows were not proportional to the change

of wave amplitudes.

• The increase in wave frequency would generally lead to the decrease in ship

motions, with or without the influence of sloshing flow. It is clear that the ratio

of the wave frequency to the natural frequency of ship/sloshing system is the

dominant factor to determine ship/sloshing motions.

• As the tank was filled with more water, larger surge and pitch motions would

be induced. The mid filling level would result in the most significant effect on

the pitch motion. Correspondingly, the most severe sloshing flow was generated

under the 50% filling condition. This is due to the given wave frequency being

closest to the natural frequency of the sloshing system under this mid filling

level.

Thus, further conclusions could be drawn:

• Wave frequencies and amplitudes have a substantial effect on liquid sloshing

and its interaction with ship motions.

• Internal sloshing flows would significantly affect surge and pitch motions. In

addition, in the current study, sloshing would most influence the rotational

motions of the ship.
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• The dimension of LNG tanks should be designed to avoid the corresponding

natural frequency coinciding with the prominent ocean wave frequency and

falling into the frequency range in which a large motion RAO of the LNG

carrier would be generated.

6.2 Recommendations for future research

In traditional LNG industry, LNG carriers are usually required to be empty or fully

loaded during transportation. During offloading process, when the tank would be

partially filled and sloshing could be induced, the coupling of ship motions and s-

loshing may arise, even though a mooring system would be used to stabilize LNG

carriers considering the sloshing effect. In addition, as mentioned in Chapter 1, with

the growing demand for LNG, the newly designed LNG carriers needs to meet the

requirement of a wide range of filling levels. This suggests that LNG carriers may

transport partially filled tanks under certain circumstances. In such situations, the

interaction between ship motions and liquid sloshing is of great concern. The pro-

posed nonlinear COUPLED model may provide an important means for investigation

of this kind of problem. To make the COUPLED model more applicable, the following

aspects are recommended for future research.

One possible avenue for future work is the extension of the two-dimensional slosh-

ing model to three dimensions for a deeper investigation of the sloshing phenomena.

This is necessary since different kinds of sloshing waves may be found when excit-

ed by real sea waves in three dimensions besides the already known kinds excited

by earthquakes (Wu and Chen, 2009). A three-dimensional sloshing model would

also be much more applicable and useful when coupled with the three-dimensional

nonlinear potential flow model for ship motions. As described earlier, only head sea

conditions are considered in this study due to the two-dimensional sloshing model.

After the extension, more factors could be considered in the study of coupling effect-

s. The influence of angle of the incident wave on the interaction between sloshing

and ship motions can be analyzed. The effects of the position and size of water

tanks in the LNG carrier could also be figured out. There have already been several

three-dimensional Level-Set model applied in other areas, such as image processing,

compute graphics and material engineering. Therefore, it should be feasible to extend

the current sloshing model to three dimensions.

Considering large sloshing-induced loads on the LNG tanks, recent studies have

also been interested in suppressing the sloshing motions with internal structures (Wu
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et al., 2012; Jung et al., 2012; Akyıldız et al., 2013; Koh et al., 2013; Molin and

Remy, 2013; Jin et al., 2014). Based on the extended three-dimensional sloshing

model, additional technique needs to be taken into account due to the presence of the

structure (baffles, perforated screens). One of the popular method to study the in-

teraction between free surface flows and marine structures is the Immersed Boundary

Method (IBM), which introduces a body force to the momentum equation to enforce

the boundary condition of the structure in the fluid. Due to its easy grid generation,

inherent simplicity to study moving bodies on fixed grids and straightforward calcula-

tion of the forces on the body, the IBM has been widely adopted (Fadlun et al., 2000;

Mittal et al., 2005; Zhang et al., 2010). A similar two-dimensional IBM Level-Set

combined numerical model (Bai and Huo, 2013) has been developed and well validat-

ed in simulations of fluid structure interaction (FSI). Therefore, it would be applicable

to incorporate the IBM to the three-dimensional sloshing model (if extended). Stud-

ies on the sloshing-suppressing structures could be performed consequently. More

complicated interactions between free surface flows and submerged moving structures

could be investigated. In addition, considering the possibly introduced breaking waves

in the process of FSI, the turbulence model could be incorporated in the future.
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