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SUMMARY 

It is challenging to accurately perform liver intervention procedures such as 

biopsy and ablation in clinical practice, where the target (a tumor, usually) is 

moving during the treatment due to respiratory liver motion and deformation. 

Such motion makes both imaging, and locating of the target area, more 

difficult. In this thesis, three aspects in particular are focused on, namely 

image processing, phantom study, and experimental study, to develop new 

techniques and look for practical solutions to this problem. Specifically, we 

apply respiratory signal extraction and 4D liver modeling, dynamic liver 

phantom evaluation, ex-vivo and in-vivo biopsy testing, and hybrid schemes to 

improve biopsy efficiency and accuracy. 

In the first part of the thesis, a new approach providing fast and robust 

extraction of respiratory signal from real-time ultrasound images is introduced 

to identify the respiratory phase of the liver. This approach is able to achieve 

accurate motion estimation within several seconds, and thus demonstrates its 

suitability as a build-in respiratory motion-tracking algorithm for the US 

image-guided biopsy robotic system. Moreover, a novel method for generating 

a subject-specific and respiration-corrected 4D ultrasound liver model is 

described, to visualize and analyze liver motion during respiration. This 

method creates a sequence of respiration-corrected 3D image volumes, to 

capture liver motion, and hence to provide subject-specific preoperative 

information to improve the accuracy of diagnosis and treatment.  



  IX

Second, a novel dynamic liver phantom, which can be applied as a liver 

motion simulator, is presented for the development and validation of an 

image-guided biopsy system. By tracking the marker position inside the 

phantom, we found this dynamic phantom capable of providing stable and 

repeatable movement cycles to simulate subject-specific respiration under 

different settings of parameters. This phantom reduces the reliance on living 

subjects, and at the same time also reduces the potential harmful effects of 

tested devices on living subjects. 

Third, to obtain ideal testing objects for the US image-guided biopsy study, 

a unique Vaseline-based technique, for easy creation of simulated tumors of 

different sizes inside porcine livers, is proposed. Its performance was 

investigated in ex-vivo and in-vivo biopsy studies. This technique provides 

practical solutions to the problem of a lack of ideal testing objects, and has 

value in terms of application in any biopsy-related study, such as biopsy 

training, biopsy imaging, and biopsy needle function testing and so on. 

In addition, a supplementary work on quantitative evaluation of vascular 

segmentations in liver images is illustrated, because analysis of vascular 

structure from volumetric datasets plays a crucial role in many clinical 

applications, including biopsy. Though this work was based on automatic 

segmentation results from patients’ CT datasets, it is worth mentioning that 

this method is also suitable for vessel segmentations from US volume data as 

well.  
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CHAPTER 1. INTRODUCTION AND BACKGROUND 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This Chapter introduces the background, motivation, and objectives of the 

thesis.  
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1.1 Introduction 

Liver disease, especially liver cancer, is one of the leading causes of death 

worldwide [1]. An accurate diagnosis of all types of liver disease in their early 

stages is a key factor for successful treatment, and in avoiding patients 

suffering from disease progression and facing the risk of losing all liver 

function. End-stage liver disease is usually fatal [2]. For the last several 

decades, liver biopsy has been considered as the gold standard for assessing 

the stage and the grade of liver disease (Figure 1.1). More specifically, it has 

been widely applied to diagnose unexplained liver diseases or abnormal liver 

function tests, sample suspicious tumor cells, determine the severity of liver 

diseases including non-alcoholic liver disease, certain liver disease such as 

chronic hepatitis B or C, primary biliary cirrhosis, autoimmune hepatitis or 

Wilson’s disease, and monitor the liver after a liver transplantation [3].  

 

Figure 1.1 Liver biopsy [4] 

However, liver biopsy is an invasive examination, and its accuracy is 

affected by liver motion due to respiration. Although it has become possible to 

employ liver biopsy with minimally invasive techniques under the guidance of 
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real-time 2D ultrasound image, accurate percutaneous liver biopsy is still 

difficult and challenging. 

Many methods have been reported to handle the respiratory liver motion 

problem in clinical practice, where this issue is the chief difficulty during an 

image-guided biopsy procedure. These methods, physically or physiologically, 

ease the breathing-induced liver motion in a ‘straightforward’ way, and 

specifically, can be divided into the following categories: breath-holding [5, 6], 

gating [7-10], tracking [11-13], coaching and bio-feedback [14-17]. However, 

all of these methods have limitations – such as requiring patients’ participation, 

which is not always possible, or making strong assumptions on the regularity 

of the respiratory motion. These measures can, in the end, add extra cost or a 

psychological burden to the patient. In this study, we look for clinically 

practical solutions for the problem of respiratory liver motion, on the 

assumption that free-breathing of the subjects is allowed during the whole 

procedure of diagnosis and treatment. 

In terms of image-guided methods applied in the treatment of liver 

intervention procedures, MR- (Magnetic Resonance), CT- (Computed 

Tomography) and US- (Ultrasound) based solutions have been reported in the 

literature [18-28, 30-36]. Traditionally, to capture the respiratory motion of the 

liver, MRI has been seen to be preferable to CT imaging, mainly because 

patients are not exposed to ionizing radiation, and the fact the orientation of 

the scanned slices can be chosen freely. However, image-guided methods 

based on MR datasets are time-consuming and expensive. At present, US-

based image processing algorithms to handle respiratory liver motion are 

becoming more and more popular, due to the advantages of their economy, 
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safety, flexibility, and real-time properties. Specifically, this research will 

focus on respiration-corrected 4D US. 

1.2 Background 

1.2.1 The liver and liver biopsy 

The liver is both the largest internal organ and the largest gland in the human 

body, and performs a major role in metabolism with numerous functions in the 

human body, including regulation of glycogen storage, decomposition of red 

blood cells, plasma protein synthesis, hormone production, and detoxification 

[29, 96]. Figure 1.2 [33] shows orthogonal slices through the abdomen to 

demonstrate the exemplary shape of the liver, and its position. 

 

Figure 1.2 Orthogonal slices showing the liver and its position in the upper 

abdomen. (a) transversal or axial, (b) coronal, (c) sagittal view [33] 

As mentioned in the previous section, liver biopsy is a procedure that 

involves obtaining a small piece of liver tissue, which is then analyzed in the 

laboratory. It is an important and effective diagnostic tool for clinicians in 

determining the severity and aggressiveness of liver diseases, especially liver 

cancer (non-resectable tumors). The principle of trucut biopsy that explains 

the detail on procedures of biopsy is shown in Figure 1.3 [56]. 
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Figure 1.3 Principle of trucut biopsy [56] 

The typical biopsy needle (Figure 1.3) has an outer cannula, an inner tube, 

and a stylet. A snare in the form of a coil is provided between the distal ends 

of the outer cannula and the inner tube. The coil is coupled to a sleeve affixed 

to the inner surface of the outer cannula using axially directed coupling 

elements. Upon rotation of the inner tube with respect to the outer cannula, the 

coil will decrease in diameter to either sever or hold the biopsy piece within 

the outer needle.  

In practice, once the outer cannula reaches the surface of the liver, the stylet 

will cut a small incision before the pushing step. Then, the stylet will progress 

inside of the tumor, and the outer cannula will slide in. These steps are called 

‘First Hit’ (FH). After FH, the inner part will move out with the sample, but 

the outer cannula will be fixed on the target position to ensure the next 

samples will also be taken at the right spot. Since the outer cannula is fixed 
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and can follow the movement of the tumor caused by respiration, we can say 

that if there is a successful FH, the biopsy is successful. 

It is worth mentioning that for the diagnosis of liver cancer, other commonly 

used clinical techniques include blood test, ultrasonography, and computed 

tomography [38]. In the blood test, most patients with hepatoma demonstrate a 

positive reaction to Alpha Fetal Protein. However, it cannot be implied the 

liver is normal when the reaction is negative. In the ultrasonography, the 

difference of texture between hepatoma segmented and normal tissue can be 

observed. However, the ultrasonic image may not clearly show the region of 

interest of possible carcinoma due to its resolution and field of view 

limitations. CT cannot detect small hepatomas, and some patients are allergic 

to the contrast medium which is necessary for the CT imaging. Thus, although 

biopsy is an invasive examination, it is frequently used as a final confirmation 

method of the diagnosis of liver disease. The information gained from this 

procedure cannot be obtained from other, less invasive tests [37]. 

1.2.2 Respiratory organ motion 

The main types of lethal cancer include liver, lung, stomach, colon, breast, 

and prostate cancer. Unfortunately, all these sites are affected by respiratory 

motion. This introductory section provides an overview of respiratory motion 

and the resulting issues in the liver biopsy procedure. 

A) The mechanics of breathing 

Human breathing refers to the exchange of air between an organism’s 

circulatory system and its external environment. The main muscles involved in 

breathing are the diaphragm, which is the large muscle that forms the floor of 
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the chest cavity, and the intercostal muscles, which are attached to the ribs. 

The breathing mechanism involves the action of these muscles, such that the 

transport of oxygen and carbon dioxide is continuing. In order to breathe, we 

must continuously contract and relax our respiratory muscles about 30,000 

times a day or a billion times for a lifetime of 90 years [46].  

Breathing consists of two phases, namely, inhalation (or inspiration) and 

exhalation (or expiration). During inhalation, the diaphragm actively contracts 

and pushes the contents of the abdomen in inferior direction [33]. At the same 

time, the external intercostal muscles pull the ribs up and further expanding 

the thoracic cavity. During exhalation, generally, the diaphragm and the 

external intercostal muscles passively relax, thereby the volume of the thoracic 

cavity decreases and the abdominal organs move up in superior direction again 

(Figure 1.4) [31]. 

 

Figure 1.4 Mechanics of breathing [31] 
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B) Observation of respiratory organ motion 

The respiratory organ motion in the thorax and abdomen has been quantified 

in numerous works [39-45]. Here, a brief overview is provided. Since 

respiration is mainly driven by the diaphragm, it typically shows a 

predominant superior-inferior motion of 10-30mm during quiet breathing in 

healthy subjects [39, 44, 45]. Seppenwoolde et al. [42] reported motion with 

average amplitude of 12mm for targets not attached to rigid structures in the 

lung. Weiss et al. [44] found 2.3-7.8mm motion for the heart and 0.9-7.0mm 

motion for the trachea. Brandner et al. [46] observed 1-25mm superior-inferior 

motion for the kidneys, and 13mm superior-inferior motion for the spleen. 

Even in the prostate, respiratory organ motion in the range of 1.0-10.2mm 

(average 3.3mm) was observed [47]. 

In the following section, there will be a focus on the liver and on biopsy 

procedure targets within the liver that is subject to extensive respiratory 

motion. 

C) Respiratory liver motion 

The shape of the liver is mainly determined by the surrounding structures 

such as the diaphragm and the lower ribs. Since the location of liver is directly 

below the diaphragm, it is strongly influenced by respiration [96]. Motion in 

the liver is generally not as pronounced as that of other organs, such as the 

heart. The main component of liver respiratory motion is a superior-inferior 

shift, typically in the range of 5-25mm for relaxed breathing, as quantified by 

a large number of works [39, 46-50, 52, 127, 128]. Besides, Rohlfing et al. [18] 

reported the liver additionally shows motion in anterior-posterior (1-12mm) 

and left-right direction (1-3mm). Zhang et al. [129] also discussed on the 
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deformation of the liver which can range from as low as 2mm to as high as 

18mm in 3D positions. In addition, liver tumor, which is the target for biopsy 

or treatment, its motion during respiration was also qualified by Kitamura et al. 

[41]. It is worth mentioning that these results of quantification or qualification 

of liver motion were mostly from direct observation and measurement of the 

liver motion via high resolution CT or MR images acquired at different 

respiratory phase of the patients or subjects. Their results showed that the 

extent of tumor motion depends on the position in the liver to a certain degree; 

however, these factors are not sufficient to predict the motion of a target in the 

liver to ensure accurate delivery [33]. Therefore, patient-specific assessment 

of liver respiratory motion is highly recommended in clinical applications [51, 

53-55].  

1.2.3 Existing methods to handling respiratory organ motion in clinical 

practice 

In this section, the existing methods for handling organ motion in clinical 

practice are discussed.  

Before detailing specific methods to handling respiratory motion, the 

method for monitoring and detection of respiratory signals is outlined below. 

Typically, most commonly used methods can be divided into two categories: 1) 

internal-signal-based methods, which directly monitor structures, such as 

diaphragm, liver boundary, or internal landmarks inside the body [12, 18, 41-

44], and 2) external-signal-based methods, which measure the displacement of 

the chest or the abdomen using external optical or electromagnetic markers 

and devices [14, 57-59]. 
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A) Breath-holding 

A straightforward approach to handle organ motion is to reduce the extent of 

breathing by instructing the patient to breathe shallowly [33]. This can be 

assisted by providing oxygen [60], or by applying gentle pressure on the 

abdomen using a belt [60], a cushion [61], or a compression plate [62, 63]. 

Except for the breathing reduction approaches, other methods that will 

completely interrupt breathing have been also applied in clinical practice. This 

can be achieved by voluntary breath-holding [5, 6], such as deep inspiration 

breath-hold (DIBH) method [64], or forced breath-holding, such as active 

breathing control (ABC) method [65, 66], with the use of special designed 

ABC devices.  

However, holding their breath and following the respective instructions 

requires a considerable amount of cooperation on the part of the patient. Not 

surprisingly, some patients may have problems holding their breath for what is 

typically a period of 20 seconds or more. 

B) Gating 

Gating technology is more widely used in radiation therapy to deal with the 

respiratory motion problem [14, 20, 59, 79, 80, 89]. In gated-based treatment, 

the therapy beam is only turned on during a portion of the breathing cycle, for 

instance when the target is close to the exhalation position [33], to achieve 

high overall dose delivery accuracy. 

However, controlling the needle for sampling is quite different to turning on 

or turning off the radiation therapy beam; the gating method is not, therefore, 
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very suitable in this case, unless the inserting of the needle is very fast, which 

always requires robotic arm assistance. 

C) Tracking 

When the target is moving, it is always desirable to keep the target in view 

throughout the breathing cycle. The aim of this kind of approach is to obtain a 

possibly static target in the needle's eye view without interrupting breathing. 

An obvious advantage of tracking is that it only requires minimal patient 

cooperation when compares to breath-holding. However, tracking a target 

requires great technical effort with three essential factors that are not 

necessary for breath-holding: needle adaptation (requires robotic arm 

assistance), prediction of target motion, and real-time motion compensation 

[10]. Unfortunately, the large technical gap has prevented tracking methods 

from being widely adopted in clinical practice so far.  

D) Bio-feedback 

Bio-feedback is a treatment technique that can be used to handle respiratory 

motion, in which patients are guided to gain more control of their breathing by 

using respiratory signals from their own bodies. It is often beneficial to 

provide visual feedback, which is displayed on a screen or via display goggles, 

to the patients who are able to comply, because this can strongly improve the 

regularity of breathing [13, 16, 67, 68].  

Although bio-feedback has mostly led to more regular breathing, the 

reproducibility of respiratory motion is still low in some cases [69-71]. 

Additionally, it has to be emphasized again that the correlation between a 

respiratory signal and the internal target motion may not be stable [33]. Even 
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if a patient can achieve, for example, a perfectly reproducible skin motion with 

visual coaching, this cannot guarantee an accurate localization of a target 

inside the abdomen. 

1.2.4 Related works for obtaining subject-specific respiratory motion 

When moving organs are considered, a natural extension of static imaging is 

to acquire a series of time-resolved images, and thereby capture the temporal 

behavior of an organ [33]. In this section, related works for obtaining subject-

specific respiratory motion using 4D imaging techniques are discussed. 

A) Related works for the 4D image method on MR/CT datasets 

Traditional 4D imaging techniques, such as 4D-CT and 4D-MRI, have been 

widely used to assess patient-specific breathing motion, mostly for 

determining individual safety margins in radiation therapy. However, there is 

no well-established and clinically available 4D-CT or 4D-MRI technique for 

radiation therapy, to the knowledge of the researchers, let alone for biopsy and 

ablation procedures. Several methods have been proposed, yet none have been 

implemented in the clinic, due to either insufficient image quality or excessive 

technical involvement.  

Two main approaches have been taken in 4D-MRI development [72-78]: (1) 

to use fast 3D-MRI sequences to acquire real-time volumetric images (i.e., 

real-time 4D-MRI), and (2) to use fast 2D-MRI sequences to continuously 

acquire images from all respiratory phases and then retrospectively sort these 

images by respiratory phase (i.e., retrospective 4D-MRI). 
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The first approach is typically accomplished with parallel imaging and echo- 

sharing techniques. However, limitations with currently available hardware 

and software make it impossible to acquire high-resolution 4D image sets 

without significantly compromising image quality. Typical temporal 

resolution of real-time 4D-MRI is greater than 1 second, and typical voxel size 

is approximately 4mm [72, 73]. For example, Dinkel et al. used a 3D time-

resolved MRI to demonstrate the difference of individual motion pattern of 

lung tumors [72]. The temporal resolution was 1.4 second and the voxel size 

was 4.11.31.3  mm, in this study. This temporal resolution is inadequate 

compared to a typical human's breathing cycle of 4-5 seconds. Overall, the 

image quality of real-time 4D-MRI is low. The loss of image quality can be 

partially compensated for by co-registration with high quality reference 

images, but computational cost increases. 

The second approach requires respiratory surrogate (either internal or 

external) to monitor patient motion during image acquisition. Compared to 

real-time 4D-MRI, the image quality is improved with this method [74-78, 81-

84]. Remmert et al. demonstrated a retrospective 4D-MRI technique on a 

dynamic lung phantom, using an external signal for motion monitoring [74]. 

The pixel size was 7.27.2  mm at 10mm slice thickness. Von Siebenthal et al. 

developed a retrospective 4D-MRI technique using a navigator slice at a fixed 

position for motion monitoring [75]. All images were acquired in sagittal 

planes, and an alternating scheme was used to acquire data frames at all slice 

positions, interleafed with navigator frames, with an in-plane resolution of 

8.18.1  mm and an out-of-plane resolution of 3-4mm. Disadvantages of this 

technique include the need for sequence modification and longer acquisition 



  14

time, as every other image is acquired purely for retrospective sorting 

purposes. Consequently, the complex nature of this technique is the major 

factor limiting its implementation in radiation therapy and biopsy or ablation 

procedure. 

B) Related works for the 4D image method using Ultrasound 

Inspired by the existing 4D MR techniques that aim at obtaining the 

respiratory organ motion, more and more researchers have realized similar 

technical concepts may be applied to US image. The concept of ‘slice 

stacking’ [81-84], for instance, has potential in the development of a robust, 

reliable, and clinically practical 4D US technique, in achieving both technical 

simplicity and sufficient image quality. 

At present, the dedicated 3D US probe is still very expensive [94], and also 

has a limited field of view. Therefore, freehand [85] and mechanically-swept 

[86] 3D US systems are more cost-effective in image-guided interventions, 

and have been comprehensively studied by scientists [87]. Such a 3D US 

system firstly needs to be able to attach a position sensor to a 2D US probe, 

and then perform scanning by changing probe position and orientation, finally 

combining all the acquired 2D images with position information into a 3D US 

image [95]. This system is quite effective for imaging static targets. However, 

when the imaged targets (e.g., liver tumors) have noticeable motion and 

deformation caused by breathing, or other physiological processes, it will be 

quite challenging to create 3D US images to track the moving targets. This is 

because acquired 2D images often have different orientations and motion 

states, thus being unable to provide consistent information about organs when 

combined into a 3D US image. Therefore, motion-corrected/gated techniques 
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during image acquisition are required to make sure that the acquired 2D 

images have the same motion state, or that the created 3D images can capture 

the moving organ in any motion state. Here, 4D ultrasound imaging refers to a 

sequence of breathing-corrected 3D ultrasound images designed to capture the 

moving organs. 

Up to now, there have been only a small number of literatures related to 4D 

US imaging. Nakamoto et al. [88] proposed a freehand 4D US imaging 

method, which uses a laparoscopic US probe and a magnetic position sensor 

together to acquire 2D images with position information, and create breathing-

aligned 3D images. Wachinger et al. [89] combined a mechanically swept 3D 

US probe and a manifold learning based respiratory gating method to acquire 

respiration-corrected 3D US images. 

C) Choice of image modality 

Imaging is widely-performed at all stages of biopsy procedure, including 

pre-operative planning, intra-operative delivery, and post-operative 

verification. Previous section A) explored in detail the limitations of 

traditional 4D-MRI and 4D-CT image methods for biopsy study, which aimed 

at solving the respiratory motion problem. In one word, 4D-CT involves a 

high imaging dose being given to the patient due to the increased scan time 

[55, 69, 90], and respiratory organ motion during image acquisition can cause 

blurring, or reconstruction artifacts that are visible as false structures [33]; 

while 4D-MRI is expensive and not available for every patient. Neither image 

modalities are real-time. Consequently, traditional 4D-MRI or 4D-CT liver 

methods have significantly limited practical value in clinical applications – 

which require both time- and cost-effective, as well as absolutely accurate, 
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delivery for each patient. Conversely, US has excellent properties such as 

being safe, cheap, flexible, and non-invasive to the patient, and being 

particularly amenable to integration with other complicated medical (i.e. 

robotic-assisted) systems. The major concern regarding US imaging is its 

limitation in image quality, but technically, this could be improved in a variety 

of ways. Therefore, in this thesis, we will focus on the studying, exploring, 

and developing of new techniques based on the US image.  

 

1.3 Objective and Structure of the Thesis 

In this section, the motivation and objectives of this thesis are introduced. 

Since respiratory liver motion is a complicated and challenging issue to be 

solved, works should be done in multiple aspects, with connection to each 

other. Figure 1.5 shows the structure of the thesis. We divide the works into 

the following 3 aspects: 1) imaging processing; 2) phantom study; and 3) 

experimental study. The main goal of our work is to develop and evaluate new 

techniques covering these three aspects to improve biopsy efficiency and 

accuracy.  
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Figure 1.5 Structure of the thesis 

Specifically, this work includes the following specific objectives:  

1) To develop a novel respiratory signal extraction algorithm for liver 

motion phase identification, and to parameterize a 4D liver model. 

2) To develop a novel subject-specific and respiration-corrected 4D US 

liver model for capturing and visualization of the liver motion during 

respiration. To perform motion analysis based on the 4D liver model, and help 

clinicians utilize this preoperative subject-specific motion information to 

improve diagnostic efficiency. 
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3) To design and validate a novel dynamic liver phantom for liver 

motion simulation, and therefore enable biopsy study on moving objects for 

the evaluation and assessment of the developing biopsy devices.   

4) To develop a novel technique for easy creation of the simulated 

tumor inside porcine livers ex-vivo and in-vivo, to obtain ideal testing objects 

for US image-guided biopsy at low cost. 

This thesis is organized as follows. 

Chapter 1 introduces the background and specific aims of the thesis.  

With the concept of fast and robust US image processing, Chapter 2 

introduces a method which uses an adaptive template searching strategy to 

extract respiratory signal from 2D US image sequences. The effects of various 

template regions or searching regions on the accuracy of extracted signal are 

also discussed.  

Chapter 3 illustrates the details of generating sequences of subject-specific 

and respiration-corrected 3D ultrasound images from multiple robotic-

assisted-swept 2D US image sequences. The motion differences between 

subjects are quantitatively observed. 

Chapter 4 describes the design concepts, and the mechanical design of a 

novel dynamic phantom, which consists of a linear servo actuator for 

respiratory motion generation, and an ultrasound-compatible compartment that 

can hold real porcine livers for testing. More importantly, the capability of the 

phantom for generating stable and repeatable movement cycles to simulate 

human respiration, and test the biopsy system, is verified.  



  19

To solve the commonly seen problem that ideal testing is hard to ensure in 

an experimental biopsy study, Chapter 5 presents a novel method to create 

simulated tumors inside porcine livers ex-vivo and in-vivo, for US image-

guided biopsy. The performance of our proposed method is evaluated by 

comparing it to the more widely used approaches. 

Chapter 6 describes a supplementary work, on quantitative evaluation of 

vascular segmentations in liver images. The significance of analysis of liver 

vessel structure to image-guided liver intervention procedures is discussed. 

Finally, conclusions and recommendation for future work are summarized in 

Chapter 7.  
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CHAPTER 2. EXTRACTION OF RESPIRATORY 

SIGNAL FROM INTRA-OPERATIVE ULTRASOUND 

IMAGE  

 

 

 

 

 

 

 

 

 

 

 

 

 

This Chapter introduces a method which uses an adaptive template searching 

strategy to extract respiratory signal from 2D US image sequences. The effects 

of various template regions or searching regions on the accuracy of extracted 

signal are also discussed.  

The following results were first published in: J Wu, C Li, S Huang, F Liu, BS 

Tan, LL Ooi, H Yu, J Liu, ‘Fast and robust extraction of surrogate respiratory 

signal from intra-operative liver ultrasound images’, International Journal of 

Computer Assisted Radiology and Surgery (IJCARS) 1-9, 2013  
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2.1 Introduction 

Image-guided and robot-assisted surgery and intervention are now widely 

applied in clinical applications to overcome limitations of traditional open and 

minimally invasive procedures. It plays an established role in complex 

surgeries, but its use in relatively simple procedures, such as biopsy, is 

conversely limited, because of high cost of surgical robot system and 

consumables, long set-up time, and absence of built-in intelligence. To address 

this issue, a new trend [91] in medical device is to develop simple image-

guided, dedicated, and low-cost robotic systems for specific surgical and/or 

interventional procedures.  

Enlightened by the success of the prostate robot [92], we are developing an 

US-guided robot to achieve quantitatively targeted liver tumor biopsy and 

ablation. However, it is challenging due to the movement and deformation of 

the liver soft tissue mainly caused by the respiration [93]. For liver motion 

compensation, a set of external or internal landmarks are always tracked as the 

surrogate of the respiratory pattern to either form the correlation with the true 

motion to be estimated, or be applied as input to drive the motion model. On 

the one hand, external landmarks, always placed on the abdomen or chest, are 

usually tracked using special optical or electromagnetic (EM) devices [102, 

103]. These devices, however, create certain restrictions for surgical robots. 

For example, optical or magnetic obstruct along the optical or electromagnetic 

line-of-sight of these trackers is not allowed. On the other hand, internal 

landmarks, such as implanted fiducials [101], have issue of invasiveness, 

which may lead to infections or other complications. The superior-inferior (SI) 
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motion of the diaphragm is also a good indicator of the breathing signal [30, 

97, 98], but the diaphragm does not always appear in the intra-operative US 

liver images.  

To overcome these problems, and particularly, to further reduce the cost of 

our surgical robot, and make it noninvasive, simple and portable, we aim to 

identify the respiratory signals directly from intra-operative US liver images. 

In this Chapter, we first present an efficient and robust method for extracting 

the respiratory motion from intra-operative US liver images, and then evaluate 

the consistency between the identified respiratory motion and the motion of 

the skin landmark recorded by an EM tracker. 

2.2 Adaptive Template Searching 

The flowchart of our adaptive template searching (ATS) method is shown in 

Figure 2.1, which consists of 6 consecutive steps: 1) image acquisition, 2) 

video loading, 3) pre-processing (pre-filtering), 4) template region selection, 5) 

frame-by-frame template matching (registration), and 6) breathing signal 

extraction. In step 3), the image sequence is processed by a median filter (5×5 

pixel) to smooth the speckles. In step 5), a frame-by-frame matching process, 

based on normalized cross correlation, is executed. Specifically, the template 

compares to various windows in the search region, starting from the top left, 

moving to the top right, and then going into the next row, and so on. Here, 

‘adaptive searching’ refers to the methodology that the searching center on 

space of each frame is not fixed, but determined by the matching result of 

previous frame. 
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Figure 2.1 The flowchart of ATS. MIUE (Model-based Image Understanding 

Environment) is a customized imaging tool developed based on our in house 

software platform [114] 

2.2.1 Noise reduction 

Speckle-like noise, which is often seen in US images, disturbs the frame-by-

frame matching process and leads to unstable matching results. A median filter 

(5×5 pixel) is firstly employed to process the image sequence before template 

matching. How this procedure improves the robustness and accuracy of the 

matching process will be demonstrated in the experiments. 

2.2.2 Template region 

The criterion for selection the template region in the US image is that this 

region should contain pronounced feature, such as liver boundaries or vessels, 

for robust matching. It is obvious that larger size of template region has 
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greater possibility to contain such pronounced feature; however, the 

computational cost becomes higher at the same time. Experiments on deciding 

appropriate template region size for robust and fast matching will be 

performed. 

2.2.3 Similarity measurement 

The intensity of dynamic liver US image may not change greatly for 

successive frames during respiration. Hence, in this study, the normalized 

cross correlation method [101] is a suitable choice as the image similarity 

metric of the matching procedure. This metric calculates pixel-wise cross 

correlation and divides it by the square root of the autocorrelation of the 

images [101]: 
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where A and B are the measured image or image region pair, and N is the 

number of pixels of an image or its sub-region. 

2.2.4 Adaptive searching 

To achieve efficient registration, a basic principle is to set the searching 

space as small as possible on the targeted image. Due to the quasi-periodic 

property of normal respiration, the liver tissue also moves in an approximately 

periodical way. Therefore, the liver tissue repeatedly appears in a relatively 

fixed extent (1-12mm [18]) in a normal or deep breathing cycle, such that the 
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searching space can be restricted in a neighborhood range of the template 

region. Traditional searching strategies (‘center-fixed’ searching) always fix 

the searching center at the center of the template region on each frame to be 

searched, aiming to find the optimum near the searching center. However, this 

searching strategy is very time-consuming. 

Motivated by this, we present a new ‘adaptive searching’ strategy, which 

defines a series of small center-variant searching spaces in the frame-by-frame 

matching process. Specifically, the position of searching center of next frame 

is updated by the center of the template with best match of the current frame. 

This searching strategy makes use of the inter-frame dependency of the US 

image sequence, with the assumption that the motion of the liver tissue is 

small in two successive frames. Therefore, any specified image feature in the 

previous US frame should be found in a small neighbor region in the current 

US frame. Here, we call center-variant searching space as adaptive searching 

space, and the basic matching process using adaptive searching strategy is 

delineated in Figure 2.2.  

When compared to center-fixed searching method, the adaptive searching 

method is usually faster, more robust, and with higher efficiency. In this study, 

the reference feature template (ground truth) is the template in the first frame 

and remains unchanged during the whole searching process, which means 

though the searching is adaptive, the search process can still find the optimal 

matching without accumulating the errors, because error accumulation only 

occurs when the matching template itself is adaptive. In other words, the 

center of the searching template will be updated on the next frame, but the 
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reference feature template will not be updated or replaced by the best match 

template on the current frame. 

 

Figure 2.2 The adaptive searching strategy updates searching center on 

current frame, based on the matched result of previous frame. Due to the slow 

variation of the liver tissue on two successive frames, the searching space 

(dashed green square on the right subfigure) can be very small 

2.3 Experiments 

Figure 2.3 shows the experimental setup. The US imaging device used in 

this study is a Terason t3000 US system [139] with a 5C2 curve linear 

transducer (frequency 3.5 MHz). The 2D B-mode US image sequences (with 

image resolution of 640 × 480 pixels, pixel size of 0.37 × 0.37mm, and 

temporal resolution of 10 FPS) were obtained from four healthy volunteers, 

and each sequence contained 256 frames. All the experiments on extracting 

the respiratory motion in this study were performed on a Dell workstation with 

Intel Xeon CPU E5620 2.4 GHz and 12G RAM, and single-thread 

programming mode was used. In order to avoid the tremor of the probe by 

human hands, we designed a probe holder connecting to a robotic arm to hold 

this US probe as still as possible. 
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In order to validate the respiratory signals identified by our method, a NDI 

Aurora EM tracking system was used, to track an EM sensor placed on the 

umbilicus of the volunteers while acquiring the US images. Note that usually 

the EM sensor will not be put on the chest area, otherwise the signal obtained 

could be disturbed by the heartbeat of the subject. Instead, the anterior-

posterior (AP) motion of the abdominal umbilicus was selected as reference 

respiratory motion for verification, because the umbilicus is usually a good 

position for placing an external marker to monitor the respiration, and is often 

adopted in respiratory motion modeling to obtain the surrogate breathing 

signals [28]. By using dynamic libraries provided by NDI and Terason 

vendors, we implemented a customized module in our software system to 

record the EM signals and US images to avoid large latency. Since the 

function to read the EM data executes extremely fast (far less than 1ms), the 

latency between each EM signal and US data was negligible. Finally, each US 

frame corresponds to an EM position.  

 

Figure 2.3 Experimental setup. On the left side, A: US transducer with the 

probe holder for imaging; B: NDI Aurora EM tracking device; C: an EM 

sensor tracked by B. On the right side, the laptop belongs to a part of the 
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Terason US system, which is used for displaying the acquired images, which 

are simultaneously loaded into our MIUE framework on the bigger monitor 

2.4 Results and Discussion 

In this section, multiple sets of experiments performed are presented. These 

experiments were designed to analyze 1) the effect of noise reduction, 2) 

trade-off of the template region size, 3) the efficiency and robustness of the 

adaptive searching strategy, and 4) consistency validation, by visually and 

quantitatively compare the extracted respiratory motion from image sequence 

of 256 image frames, to the reference motion of the abdominal umbilicus 

tracked by the EM system. 

2.4.1 Noise reduction 

In this experiment, four image sequences from four different volunteers were 

used, the template region was fixed to 65×65 pixels, the adaptive searching 

space to 17×17 pixels, and the filter size was gradually increased to analyze 

the impact of filtering on the identified respiratory motion curves. The results 

were shown in Figure 2.4 (x-axis: time; y-axis: vertical displacement). The 

first row in Figure 2.4 displays four reference images, corresponding to the 

first image of each image sequence of four volunteers in turn. For each 

reference image, an exemplary region is selected as the matching template, 

labeled by a red square. The second row in Figure 2.4 shows four reference 

respiratory signals of the umbilicus, tracked by the EM system while acquiring 

these image sequences. The last three rows list the extracted respiratory 

motion curves from these image sequences without filtering, with a median 

filter of 5×5 or 9×9 pixels, respectively. The experiment results show that the 
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median filter can remove the speckle-like noise present in the US images, and 

make the frame-by-frame matching process more robust and accurate. 

Consequently, noise is removed from the respiratory motion curves, such that 

the entire profile of the motion curve is well preserved. 
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Figure 2.4 Experiment results of noise reduction. X-axis: time; y-axis: 

vertical displacement. 
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2.4.2 Template region 

In order to demonstrate the effect of the template region size on the resulting 

respiratory motion curves, experiments were performed by gradually 

increasing the size of the template region, as displayed in Figure 2.5 (x-axis: 

time; y-axis: vertical displacement). For variable control, the filtering was not 

applied, and the size of the adaptive searching space was fixed as 17×17 pixels. 

Similarly, four exemplary template regions (A, B, C, and D) from the 

sequences of four volunteers respectively, were selected for analysis (the first 

row of Figure 2.5), using the template regions of which the sizes vary from 

33×33 pixels to 129×129 pixels. It was observed that, using a template region 

of 33×33 pixels, the extracted motion curves are unstable with heavy noise 

and shape distortion (the third row of Figure 2.5), compared to the reference 

EM motion curves (the second row of Figure 2.5). When the template regions 

grow to 65×65, 97×97, and 129×129 pixels, these motion curves were found 

to have relatively low noise, and similar shapes to the reference curves (the 

last three rows of Figure 2.5).  

The computation time on image sequence of 256 image frames for different 

template region sizes is listed in Table 2.1; it linearly increases with the pixel 

number (size) of the template region. For trade-off between stability and 

computation time, a template region of 65×65 pixels was found to be adequate. 

Therefore, in the other experiments detailed in this study, the sizes of the 

template regions will be fixed to 65×65 pixels. 
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Figure 2.5 Experiment results of extracted respiratory motion curves use 

increasing template region sizes. X-axis: time; y-axis: vertical displacement. 

Table 2.1 Computation time for different template region sizes. The image 

sequences and corresponding template regions are the same as in Figure 2.5. 
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Region size (searching time, in seconds) Template 
region 33×33 65×65 97×97 129×129 

A 1.33 5.17 11.50 20.37 

B 1.33 5.15 11.53 20.26 

C 1.32 5.10 11.41 20.05 

D 1.33 5.24 11.63 20.38 
 

2.4.3 Adaptive searching 

A series of experiments was performed to test the efficiency and robustness 

of our adaptive searching method, in comparison with the traditional center-

fixed searching strategy. For variable control, the filtering was not used, and 

the size of the template region was fixed as 65×65 pixels. The results were 

shown in Figure 2.6 (x-axis: time; y-axis: vertical displacement). Four typical 

template regions A, B, C, and D were manually selected from the image 

sequences of volunteer 1, 2, 3, and 4 respectively (the first row of Figure 2.6, 

labeled in red square). Based on the results of center-fixed searching, it would 

not be possible to obtain correct respiratory motion curves using the searching 

range of 33×33 or 65×65 pixels (the third and fourth rows of Figure 2.6). Only 

when the searching range is increased to 129 ×129 pixels (the fifth row of 

Figure 2.6), are correct respiratory motion curves available – however, this 

leads to a large computational cost. In contrast, use of the adaptive searching 

technique facilitates finding an optimal match in a much smaller searching 

range, usually a region of 17×17 pixels (the seventh row of Figure 2.6).  

In addition, the computation time on image sequence of 256 image frames 

for the extracted respiratory motion curves in Figure 2.6 is listed in Table 2.2. 

In order to obtain satisfactory respiratory curves, using adaptive searching 
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strategy (17×17 pixels) can extract the curves in about 5 seconds for image 

sequence of 256 frames in Figure 2.6. On the other hand, requires about 300 

seconds by using center-fixed searching strategy to get the satisfactory results 

as adaptive searching strategy. So a great speedup can be achieved using our 

proposed adaptive searching technique. In addition, the adaptive searching 

strategy leads to a relatively small searching range, making the matching 

process more robust, and consequently alleviating the noise present in the final 

motion curves. 
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Figure 2.6 Experiment results of center-fixed searching strategy with 

increasing searching range (row 3-5), and adaptive searching strategy with 

smaller searching ranges (row 6-7). X-axis: time; y-axis: vertical 

displacement. 
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Table 2.2 Comparison of computation time for center-fixed searching 

strategy, and adaptive searching strategy. The image sequences and 

corresponding template regions are the same as in Figure 2.6. 

Traditional (time, in seconds) Adaptive (time, in seconds) 
Template region 

33×33 65×65 129×129 9×9 17×17 

A 19.31 75.10 293.34 1.43 5.08 

B 19.85 76.90 304.27 1.49 5.27 

C 19.46 75.26 296.17 1.44 5.13 

D 19.40 75.13 295.66 1.42 5.16 

 

2.4.4 Consistency validation 

In order to evaluate the accuracy of our method, three exemplary regions on 

each reference image of each volunteer's image sequence (the first row of 

Figure 2.7; x-axis: time; y-axis: vertical displacement) were selected as 

matching templates, and the identified motion curves (the second to fourth 

rows of Figure 2.7, in red) were visually compared to the reference motion 

tracked by EM device (in green). For better visual inspection, the identified 

curves were linearly scaled to have the same minimum and maximum as the 

EM reference curves.  

In addition, the identified motion curves were also quantitatively compared 

with the reference motion curves, using a correlation coefficient (CC), which 

is listed in Table 2.3. As can be observed in Figure 2.7 and Table 2.3, the 

motion curves extracted from the liver boundaries and vessels (in red color) 

have nearly consistent respiratory phases with the reference curves (in green 

color), and the corresponding CC values are all greater than 0.9. The purpose 
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of plot the overlay of these two lines in this figure is to qualitatively show the 

overlap degree of the results and the reference. Higher overlap degree of these 

two lines suggests the identified respiratory signal is closer to that of the 

ground truth, and vice versa. Note that the amplitudes of both curves are 

slightly different, but they were normalized when overlaid, because I only 

focused on whether the phase changes of the identified signal can be 

synchronized with the EM sensor signal or not. The absolute amplitude 

changes were not observed here. In this study, I only focused on extracting 2D 

motion information from 2D US images, essentially 2D projection of the 3D 

liver motion. I put two lines together on the same figure only for comparing 

their similar respiratory phase changes. In addition, these high CC values 

prove that the translational motion of the liver boundaries and vessels are 

highly relevant to respiration, which reveals the potential to extract surrogate 

breathing signals from intra-operative US images, instead of tracking external 

landmarks. On the other hand, for other regions without pronounced features, 

the translational motion is difficult to detect. Therefore, the identified curves 

near these regions are heavily inconsistent with the reference curves, and the 

corresponding CC values are very small, at less than 0.2.  

All the experiments above demonstrate that images of some areas of the 

liver, such as the liver boundary and vessels, carry more respiration-relevant 

information than others, and we can extract from intra-operative US liver 

images the surrogate respiratory signals, which is comparable to that 

determined by tracking the external landmarks. This observation supports our 

recommendation of removing extra tracking devices from our ongoing 

surgical robots, which is expected to be simple, portable and low-cost. 
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Figure 2.7 Visual and quantitative comparison between the identified motion 

curves (in red) and the EM-tracked reference motion (in green). The motion 

curves extracted near the liver boundaries (A, B, F, H, K, L) and vessels (D, I) 

highly approximate to the reference respiratory curves. X-axis: time; y-axis: 

vertical displacement.  
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Table 2.3 Consistency is quantitatively analyzed using the correlation 

coefficient (CC) metric. The image sequences and selected template regions 

are the same as in Figure 2.7. 

 Volunteer 1 Volunteer 2 

Region A B C D E F 

CC Value 0.9591 0.9415 0.1187 0.9701 0.0627 0.9379 

 Volunteer 3 Volunteer 4 

Region G H I J K L 

CC Value 0.1824 0.9714 0.9798 0.1715 0.9389 0.9107 

 

 

It is worth mentioning that there are some existing feature-based ultrasound 

image processing approaches that can be compared with the proposed 

approach in this chapter. Here, several most recently published approaches, 

which are most related to our proposed approach, are listed in the following. 

Harris et al. proposed a feature-based method to track respiratory liver motion 

using 4D ultrasound [181], yet its performance was only assessed on relative 

short sequences, which poses a special challenge for this method to apply on 

long US sequences due to its iterative nature to accumulate errors, which has 

been identified as a significant drawback to US tracking at low volume rates 

and fixed searching region. De Luca et al. proposed a learning-based method 

for robust tracking in 2D ultrasound sequences for image guidance 

applications [182]. Their method was based on a scale-adaptive block-

matching and temporal realignment driven by the image appearance learned 

from an initial training phase, and liver vessel tracking of 9 volunteers under 

free breathing was performed. However, the average processing time to track 
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vessel motion was about 100 ms per frame (range [30, 350] ms), and without 

learning process (training phase), the error of their results increased 

significantly when compared to our proposed method. In addition, Kubota et 

al. proposed a feature-based method for tracking organ motion on diagnostic 

ultrasound images, based on a large number of feature points controlled under 

a region of interest (ROI), and an error correction algorithm [183]. This 

proposed method was tested on the gallbladder of subject A and a liver vein in 

subject B under normal respiration, and a series of CC (correlation coefficient) 

values were calculated between the center of the tracked ROI and ground truth 

manually annotated by a clinician. The results showed that the CC curve on 

subject A was stable, however, on subject B was vibrated extensively, because 

the amounts of deformation or change in the cross-section position of the 

target on subject B were relatively larger than the size of the ROI, which 

means the results were greatly affected by selection of feature points and range 

of ROI. Furthermore, we have also looked into the feature-based processing 

method applied in the prostate surgery (prostatectomy). Abdouni et al. 

proposed a deformable tracking algorithm for monitoring the motion of the 

target volume on 2D US images based on Speeded-Up Robust Features 

(SURF), which were a series of salient points in this study [184]. However, 

this algorithm suffered from limitations, such as the results were also greatly 

based on the selection of feature points, which was quite unpredictable, and 

the calculation time was too large to be implemented in real-time. Finally, a 

recently published review paper (De Luca et al.) pointed out that the main 

challenge of feature tracking is to identify image structures that can be reliably 

tracked [185]. Weak echoes, poor SNR (Signal-to-noise Ratio), signal 
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dropouts, artifacts, and incomplete boundaries make this task especially 

difficult for US image tracking, yet only very few of published works have 

progressed to clinical practice. Our proposed method, being technically easy to 

be integrated to biopsy system with satisfying accuracy, is definitely capable 

of being applied to clinical practice when compared to existing methods. 

The significance of applying the feature-based respiratory signal extraction 

algorithm is to achieve fast and accurate motion estimation in 2D US, and 

finally help the clinicians to locate the target in real-time. It is also quite useful 

to determine the breathing phase of the subject, such that building a subject-

specific liver model becomes possible. 

2.5 Limitations 

The validation of this work was based on the results from EM sensor placed 

on the abdomen of the subjects, so it is true that we took only 1D result at one 

location as reference of this work, even though the movements of umbilicus 

position on the other two directions can be neglected when compared to the 

movement in the AP direction during human respiration [100, 112]. Since a 

strictly ground-truth respiratory signal is in general not available, we believe 

we will find better approaches to be applied as the reference in the future study. 

For example, acquiring data on our developing dynamic liver phantom (details 

in chapter 4) or other dynamic phantoms with known motions, and evaluate 

the accuracy of the proposed method. 
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2.6 Conclusion 

A fast and robust method has been proposed to identify the respiratory 

motion of the liver based on 2D US image sequence. Using the adaptive 

searching strategy, the method is able to extract the respiratory signal from an 

image sequence of 256 image frames in 5 seconds. The experiments also 

demonstrate that our method can produce accurate and robust results, 

comparable to those of the EM tracking system. It will be of great help for the 

US-guided robot to have a build-in respiratory motion tracking system, 

resulting in more compact and flexible design at relatively low cost.  
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CHAPTER 3. SUBJECT-SPECIFIC AND 
RESPIRATION-CORRECTED 4D ULTRASOUND 
LIVER MODEL  

 

 

 

 

 

 

 

 

 

This Chapter illustrates the details of a novel approach for generating 

sequences of subject-specific and respiration-corrected 3D ultrasound images 

from multiple robotic-assisted-swept 2D US image sequences, to help 

clinicians improve diagnostic efficiency. The motion differences between 

subjects are quantitatively observed.   

The following work was accepted to be published in: C Li, J Wu, J Wu, A 

Gogna, BS Tan, J Liu, H Yu, ‘Subject-specific and Respiration-corrected 4D 

Liver Model from Real-time Ultrasound Image Sequences,’ Computer 

Methods in Biomechanics and Biomedical Engineering.  
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3.1 Introduction 

Respiratory liver motion and deformation, which is mainly in the form of 

translation along the human SI (superior-inferior) axis [18, 19] is an inevitable 

issue in clinical practice for the treatment of liver tumors [20, 21]. Such 

motion causes difficulties in both imaging and locating the target (tumor) area 

and can even possibly fail the treatment. To overcome this problem and 

provide adequate information for clinicians, numerous research articles have 

been published over the years, on respiratory organ motion study, using 4D 

(i.e. 3D+time) liver models [18, 22-27, 102, 103]. However, these techniques 

all share the problem that establishing a 4D motion model (pre- or intra-

operatively) using either MR or CT datasets is too time-consuming and costly 

[104], or make strong assumptions about the regularity of respiratory motion 

based on statistical data, and thus ignore the variations of the breathing pattern 

among different subjects or patients. Consequently, traditional 4D liver model 

methods have significant limitations regarding their practical value in clinical 

applications, which require both time- and cost-effective and absolutely 

accurate delivery, for each patient.  

To bridge this gap, our technical motivation is to enable the transfer of 

clinically useful 4D liver information from MRI/CT to ultrasound, because 

ultrasound imaging is safe, cheap, flexible, non-invasive to the patient, and 

particularly attractive for integrating to other complicated medical (i.e. 

robotic-assisted) systems [95]. Considering the fact that a dedicated 3D 

ultrasound probe is still expensive and also has a limited field of view [87], 

freehand or robotic-assisted-swept 3D ultrasound [85, 86] seems a better 
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choice. With the addition of respiration-corrected techniques to ensure the 

acquired 2D images are at the same respiratory phase, the creation of a series 

of 3D images (4D ultrasound) that can capture the state of a moving organ 

during respiration is quite promising.  

It is also worth mentioning that in clinical practice, techniques to physically 

or physiologically ease the breathing-induced liver motion issue in a 

‘straightforward’ way, such as respiratory gating [105], anesthesia with jet 

ventilation [106], and – most widely-used – active breathing control (i.e. 

breathing holding) [107, 108], are often preferred and conventionally adopted 

[109]. Nevertheless, these methods either add extra cost or psychological 

burden to the patient, or are only suitable for the few patients who can actively 

cooperate. Concerning the breath-holding method, for example, it is too much 

to expect patients to hold their breath when examination is longer than 20 

seconds [110, 111]. In these cases, treatment protocols that allow patients to 

breathe freely during the whole procedure are still desirable. 

Motivated by both technical and clinical needs, we propose a novel method 

to build subject-specific 4D liver models solely from multiple robotic-assisted-

swept 2D ultrasound image sequences in this study. The experimental results 

were evaluated by quantitative metrics. In addition, we analyzed the motion 

data from generated 4D models, to indicate the differences between subjects 

during respiration. With a prior knowledge of subject-specific liver motion in 

the free-breathing 4D model, the diagnostic efficiency and delivery of the 

treatment can be improved. 
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3.2 System Overview  

The hardware system used in this study consisted of 1) an ultrasound (US) 

imaging system for image acquisition, 2) a robotic-assisted probe holder for 

scanning control, and 3) an electromagnetic (EM) tracking system for 

respiratory signal recording. Figure 3.1 shows the schematic diagram of the 

system overview.  

The US imaging system used was Terason t3000 (Burlington, USA) [139] 

with a 5C2 curved transducer. The frequencies and focusing depth varied from 

2.0 MHz to 5.0MHz and from 16 to 19cm, respectively. The US image 

resolution was 640 × 480 pixels, and the temporal resolution was about 10 

FPS. The pixel size of the image was about 0.37 × 0.37mm when the focusing 

depth was 17 cm, and correspondingly varied under different depth settings. 

In order to avoid the tremor of human hands, a robotic-assisted probe holder 

connected to a robotic arm was designed to clamp the probe and help to scan 

the liver with optimum stability, to acquire US images of different scanning 

angles under human respiration. The holder also guaranteed that the probe was 

applied with sufficient skin pressure to maintain the location and orientation of 

the US image. The expected scanning angles were actuated by a geared motor 

(Faulhaber DC-Micromotor 0615, Schönaich, Germany), and recorded by an 

encoder embedded in the motor. The motor was connected to a computer 

using Ethernet (via a network cable). The tilting was capable of covering an 

angle of up to 86º. The remote center-of-motion (RCM) for tilt was placed at 

the surface of the US transducer.  
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An NDI (Ontario, Canada) Aurora Electromagnetic (EM) tracking system 

was used to track an EM sensor placed on the umbilicus of the volunteers, 

because researches have shown that the motion of sensors attached to human 

abdomen and that of inner organs, such as liver, are greatly correlated – thus 

internal liver motion can be evaluated using a skin surrogate motion signal 

[100, 112]. In addition, De Groote et al. [113] placed tracking markers on the 

abdomen and found that the largest abdominal skin displacement was at the 

umbilicus. Therefore, in this study, we put the EM sensor at this particular 

anatomical position. The dominant motion direction of the tracked sensor on 

the umbilicus was applied as the ground truth respiratory signal, to indentify 

the respiratory phase of the subject, and further provide valid reference for 

clinicians to manually annotate the liver boundary or landmarks on the US 

image sequences.  

For the software system, a customized imaging tool was developed based on 

our in house software platform MIUE [114]. Through this tool, the operator 

can send commands to drive the motor to tilt the US probe at a predefined 

angular interval to sweep the liver region. For each scanning angle, an image 

sequence is acquired to cover several breathing cycles. Since the scanning can 

be precisely controlled, the relative position and orientation of each 2D image 

sequence can be known accurately, which is used for 3D image reconstruction 

from 2D image sequences in a group-wise strategy. 
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Figure 3.1 Schematic diagram of system overview 

3.3 Experimental Setup 

Four healthy volunteers (average age 33, with normal BMI: Body Mass 

Index, Table 3.1) were recruited for the experiments. The volunteers were 

asked to lie on a bench bed in the supine position (Figure 3.2) in a quiet room. 

Soft pillows were prepared for the comfort of the volunteers. Each volunteer 

was given enough time to calm down and breathe calmly before image 

acquisition. 

Table 3.1 Profile of four volunteers.  

Subject 

Number 
Gender Age Weight/Kg Height/cm BMI 

1 M 27 72 172 24 

2 M 32 65 168 23 

3 M 25 75 182 23 

4 M 49 61 168 22 

 

 

At the beginning of the experiment, the US probe was covered in ultrasound 

gel and held by the clinician to flexibly scan the liver at inter-rib intervals of 

the right chest to refrain from obstruction of ribs, so that clear images of the 

liver boundaries and/or vessels could be observed. Then, the US probe was 
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mounted onto the probe holder with its position and orientation close to that 

previously selected manually, and ultrasound images were acquired by 

robotically scanning the livers of the volunteers as predescribed. For each 

volunteer, p = 48 image sequences were acquired by regularly tilting the US 

probe with a total angle of 30.84˚ and a total acquisition time of about 8-9 

minutes. Each image sequence contained 128 frame images, and 

approximately lasted 3-4 respiratory cycles. All the acquired US images and 

corresponding EM positioning data were transferred to the computer for 

further analysis. 

 

Figure 3.2 Experimental setup. A: 2D US probe; B: NDI EM tracking 

device; C:  EM sensor on the umbilicus of volunteer tracked by B; D: Probe 

holder. 
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3.4 Generation of the Liver Model  

The processing flow chart of generating the liver model from the real-time 

ultrasound image is shown in Figure 3.3. The basic idea is to detect the 

specific respiratory phase of a series of 2D images from multiple 2D image 

sequences with different scanning angle, and then combine these detected 2D 

images into a respiration-corrected 3D image, which captures the moving liver 

at a specific breathing phase, ranging from end of expiration (EE) to end of 

inspiration (EI) [116]. The assumption made in this approach is that the 

physiological motion of the liver is smooth over time; thus, in theory, each 

reconstructed 3D US image captures the shape of the liver at a specific 

breathing phase. For a more detailed description and explanation of the 

respiratory signal detection, please refer to our previous works [115, 116]. 
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Figure 3.3 Overall processing flow of 4D ultrasound imaging using a 2D 

ultrasound probe, and a robotic arm enabling tilt-scanning of the probe. A 

series of 3D images is created to capture the moving liver from EE to EI. 

We assumed that each of 2D image sequences (Si) was acquired at a specific 

scanning angle i  . In total I = 48 2D image sequences were acquired. We 

firstly detected and extracted the respiratory signal from each frame of Si [115, 

116]. The extracted respiratory signal was 1-dimensional, representing the 

principal pattern of the liver motion within the US imaging plane. In particular, 

all EE and EI frames could be found by calculating the local maximums and 

minimums within the extracted respiratory signal.  
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Although human respiration is generally quasi-periodic, all EEs and EIs 

found in the detected respiratory signals still showed relatively great 

differences due to differences in breathing depth. In order to create a smooth 

3D image sequence covering a half respiratory cycle, we searched successive 

EE and EI pairs, and labeled one pair EEi and EIi, which was closest to the 

averages of the detected EEs and EIs. In terms of calculation, the time point 

(i.e. frame number) at which detected EEs or EIs occur was used, quantified as 

a delay from a specific reference time point, which is the first frame of the 

image sequence (frame 1). The corresponding formulation is described as 

follow: 
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where M  is the total number of successive EE and EI pairs in Si.  

For each Si, and a corresponding pair of EEi and EIi, an image sub-sequence 

between EEi and EIi was selected out. K frames of images were resampled in 

this image sub-sequence in a linear interpolation way (K = 8 in this study). 

Then, the images at the same respiratory phase were regrouped into a new 

respiration-corrected image sequence (Tk = {T1, T2, … T8}) according to their 

initial scanning angles from all the 48 sub-sequences. In other word, a total 

number of 384848  KI  images were regrouped in this step. Note each 

Tk contains 48 respiration-corrected images corresponding to 48 initial 

scanning angles at the time point k. 

Finally, we reconstructed each aligned image sequence (Tk) into a 3D image 

volume (Vk). Therefore, each Vk captured the shape of the liver at a specific 
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respiratory phase between EE and EI. Since the aligned images were acquired 

by regularly tilting the US probe, the reconstructed 3D image Vk contained a 

fan-shaped volume.  

3.5 Evaluation 

Since the dynamic 3D (4D) liver model was generated from the respiration-

corrected 2D image sequences as described in the previous section, the 

evaluation was performed on randomly selected 2D image planes for 

efficiency of calculation. Theoretically, taking any of the scanning angle i , 

and the relative 2D scanning plane Pi, which is the initial scanning plane at 

angle i , and same as the scanning plane of Si, as a reference, the cross-

section of the specific structures (boundary/landmarks) of the dynamic 3D 

liver model on Pi should match the relative trajectories of the original 2D 

image sequence Si. The matching error caused by linear interpolation and 

selection of EE/EI pairs when generating the liver model will be quantitatively 

evaluated.  

For any 2D plane that was selected for evaluation, a coordinate system fixed 

on the center of the ultrasound image was established, as demonstrated in 

Figure 3.4. Let 2D images sequence Qij denote the cross-section of the 

dynamic 3D (4D) liver model on a randomly selected scanning plane at angle 

i  of subject j, in total i = 3 image sequences were randomly selected for each 

subject. Each Qij will be compared with its relative Sij. 
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Figure 3.4 Establishment of the coordinate system on the 2D ultrasound 

image plane, and manual annotation of liver boundary (in red color) and an 

internal landmark (in blue color). 

3.5.1 Manual annotations 

Based on the replay of each selected US image sequence Sij and relative 

signal from the EM tracking sensor, one clinician manually annotated (1) first 

frame (IEE) of a half respiratory cycle on Sij; (2) last frame (IEI) of a half 

respiratory cycle on Sij; (3) the area of liver boundary (Bij1) on IEE; and (4) the 

area of liver boundary (Bij2) on IEI. On the other hand, the clinician also 

annotated the areas of liver boundary Cij1 and Cij2, on the first and last frames 

of Qij, respectively (Figure 3.4).  

In addition, the clinician indicated a total of two well-defined in-plane 

anatomical landmarks, such as bifurcations of vessels in the liver, for each 

subject, in the first frames of Qij and relative Sij, (Figure 3.4). Three engineers 

experienced in ultrasound imaging research manually annotated the rest of the 

landmarks in the remaining frames of Sij, using the annotation done by the 
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clinician in the first frame as an aid. Note that the clinician and all engineers 

were asked to use a brush tool with width of 20 pixels during the manually 

annotation of the liver boundary for the calculation of the overlap ratio. 

Finally, the clinician reviewed the results to ensure anatomical accuracy. The 

MIUE platform [114] was used for the manual annotations. The positions of 

relative landmarks on Qij, were automatically obtained using the same method 

[115, 116], based on the annotation from the clinician in the first frame of Qij,.  

3.5.2 Evaluation measures 

The identified liver boundaries were used for consistent validation of the 

generated liver model during a half respiratory cycle. All the annotated Bij1 

and Bij2 were taken as ground truth. All the Cij1 and Cij2 were quantitatively 

compared with relative Bij1 and Bij2 by calculating the overlap ratio defined 

within the [0.5, 1] interval. The extreme values 0.5 and 1 denote the worst case 

where two boundaries can not match at all, and the best case where two 

boundaries can match perfectly, respectively. 
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where # denotes the number of pixels, and \ is the minus operator. For 

example, A\B is the set of all object pixels belonging to A but not B. 

The pinpointed landmarks were used to evaluate the accuracy of the 

generated liver model. Let Lnkt denote the position of the landmark n at frame t 

of its relative sequence placed by engineer k, and Mnt denote the position of 
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the relative landmark on Qij. The mean 
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engineers was taken as a gold standard. The overall distance error of landmark 

n was calculated as follows: 
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The standard deviation was also calculated  
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We took into account that the landmark trajectories between engineers could 

be significantly different in some cases, especially when the landmark area 

was affected by noise and was therefore not very clear. To measure the inter-

observer variability, we defined a function 
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If a landmark moved out of the field of view, those frames were omitted 

from evaluation. 

3.6 Motion Analysis 

In clinical practice, liver interventions such as biopsy and ablation have 

always been guided by intra-operative 2D US images in real-time, so it is 

important to analyze the motion of the liver boundary and internal landmarks 
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in the specific 2D US image plane, and also to compare the individual 

differences between subjects, to provide clinicians with useful pre-operative 

information.  

Since the coverage range of the fan-shaped scan could vary slightly between 

each subject, we chose to use the same 2D plane Pr, which can be found and 

uniquely identified in each subject’s one of forty-eight scanning plane Pi, as 

the reference plane. Specifically, Pr was perpendicular to the coronal plane of 

the subject. When the probe sweeps the fan-shape area, there is a moment (at 

scanning angle r) that the probe is perpendicular to the coronal plane of the 

subject, and this probe plane is Pr. Actually Pr is perpendicular but not 

necessarily orthogonal to the coronal plane. Similarly, manual annotation of 

the liver boundary and one internal landmark for each subject were ascertained 

by the clinician and three engineers on the Pr, during a half respiratory cycle.  

After annotation, it is possible to measure the magnitude, degree, and 

direction of displacement of the liver boundary, as well as displacement of the 

internal landmarks. Specifically, the displacement, velocity, and acceleration 

of the liver boundary and internal landmarks on the Pr of each subject were 

calculated to show the physiological change during a half respiratory cycle.   

3.7 Results 

3.7.1 4D liver model 

Three 3D volumes of the generated liver model of subject 1, at three 

different respiratory phases (EE, EI, and the middle phase between them), are 

shown in Figure 3.5. From this figure, the dynamic changes of the respiration-
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corrected model at different respiratory phases can be observed. For each 

volume, three orthogonal views of the US image are also shown for visual 

comparison. 

 

Figure 3.5 Three volumes are reconstructed at three different respiratory 

phases (left: EE, middle: Middle phase, right: EI). Three orthogonal views of 

the US volumes are shown 

3.7.2 Accuracy of the liver model 

Table 3.2 shows the results of the overlap ratios Oij1 and Oij2 of the liver 

boundary at EE frame and EI frame of a half respiratory cycle, respectively. 

The values of Oij1 and Oij2 ranged from 0.81 to 0.95, and 0.77 to 0.94, and the 

mean values of Oij1 and Oij2 were 0.90 and 0.89, respectively.  

For each landmark, time points t = 8, and in total N = 8 landmarks (two for 

each subject) were indicated by the clinician in 16 selected image sequences 
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for the four subjects and calculated in equation (3.3). Table 3.3 shows the 

results of measures of the pinpointed landmarks, and relative inter-observer 

errors for each subject. The mean values of Ln and IOn were 2.44 and 0.40, 

respectively. The standard deviations of eight landmarks ranged from 0.32 to 

0.66.  

Figure 3.6 shows the individual landmark trajectories manually annotated by 

the three engineers, for four landmarks (n = 1, 3, 5, 7) in a half respiratory 

cycle. Three different colors represent the annotations of the three engineers. 

From this figure, we can see that the differences between the engineers can not 

be neglected. 

Table 3.2 Overlap of liver boundary at EE and EI of half respiratory cycle. 

Subject (j) 1 2 

Image seq (i) 1 2 3 1 2 3 

Oij1 (EE) 0.90 0.85 0.92 0.86 0.94 0.93 

Oij2 (EI) 0.93 0.88 0.87 0.89 0.90 0.93 

Subject (j) 3 4 

Image seq (i) 1 2 3 1 2 3 

Oij1 (EE) 0.88 0.95 0.92 0.91 0.81 0.87 

Oij2 (EI) 0.82 0.91 0.94 0.89 0.77 0.89 

 

Table 3.3 Matching error of eight landmarks. 

Subject (j) 1 2 3 4 

Landmark 

(n) 
1 2 3 4 5 6 7 8 

Ln (mm) 2.38 2.76 2.42 2.25 2.78 3.20 1.68 2.06 
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IOn (mm) 0.31 0.64 0.27 0.50 0.44 0.36 0.31 0.33 

n  0.54 0.50 0.49 0.61 0.65 0.66 0.47 0.32 
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Figure  3.6 Individual landmark trajectories as annotated by three engineers 

(presented in three different colors) of four landmarks (n = 1, 3, 5, 7) 
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3.7.3 Motion analysis 

In this study, the outlines of the liver boundaries, and the position of 

landmarks, were overlaid, on a frame-by-frame basis on Pr during a half 

respiratory cycle, in order to characterize the sequential history of liver 

movement. Figure 3.7(A, B) shows the annotation of the liver boundaries 

during a half respiratory cycle for subjects 1 and 3, respectively. The 

displacement of the liver boundary from EE to EI is shown in the figure, using 

a color map format. The overlaid trajectories also depict a difference of degree 

in liver displacement between two subjects during a half respiratory cycle. 

Similarly, Figure 3.7(C, D) shows the annotation of the position of the 

landmarks of the same two subjects, at the same half respiratory cycle. The 

displacement of the landmarks from EE to EI is shown in the figure by again 

using a color map format. 

In order to quantitatively analyze the subject-specific liver motion, the 

movement of the liver boundary point which was farthest from the X axis was 

chosen to describe the displacement in Y direction, and this is shown in Figure 

3.8 for each subject. Similarly, the displacement of the landmark in Y and X 

directions was also measured for each subject, and this is shown in Figure 3.9 

and Figure 3.10, respectively. Between EE and EI, the liver boundary of 

subject 3 showed the biggest displacement in negative Y direction (12.9 mm), 

while subject 4 showed the smallest (6.3 mm). The analysis of the velocity of 

the liver boundary of the four subjects in Figure 3.8 shows the tendency for 

the velocity to reach maximum value in negative Y direction at the middle 

phase between the EE and EI. A similar tendency was also observed, as shown 

in Figure 3.9 and Figure 3.10, for the landmarks for the four subjects in both 
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negative Y and positive X directions. The scale of Figures 3.9 and 3.10 are 

intentionally kept the same as Figure 3.8. 
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Figure 3.7 The overlay of the liver boundary (A, B) and internal landmarks 

(C, D) of the two subjects 1(A, C) & 3(B, D). The scale is shown on the left 

side of each image. The timing of the movement is shown in the color map 

style at the top. The coordinate system, fixed on the center of the image, is 

shown in white. 
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Figure 3.8 The displacement, velocity, and acceleration in  Y direction of the 

liver boundary for the four subjects in Pr. S denotes subject. The figure was 

plotted in a black dash line, solid red line, short dash blue line, and dash dot 

pink line, for subjects 1 to 4, respectively. 



  66

 

Figure 3.9 The displacement, velocity, and acceleration in Y direction of the 

landmarks for the four subjects in Pr. S denotes subject. The figure was 

plotted in a black dash line, solid red line, short dash blue line, and dash dot 

pink line for subjects 1 to 4, respectively. The scale is intentionally kept the 

same as in Figure 3.8. 
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Figure 3.10 The displacement, velocity, and acceleration in X direction of 

the landmarks for the four subjects in Pr. S denotes subject. The figure was 

plotted in a black dash line, solid red line, short dash blue line, and dash dot 

pink line for subjects 1 to 4, respectively. The scale is intentionally kept the 

same as in Figure 3.8. 
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3.8 Discussion  

In this study, we have explained the process flow of the proposed method, 

qualitatively demonstrated its feasibility by creating a sequence of respiration-

aligned 3D images, quantitatively evaluated the accuracy of generated models, 

and analyzed the motion of specific anatomical structures based on the models 

between subjects. Compared to the previously published 4D liver model 

approach using a 3D ultrasound probe, our proposed method is capable of 

generating a 4D liver model at low cost and with higher resolution, as well as 

offering a solution to the problem of the limited field of view of the 3D 

ultrasound probe. It is also worth mentioning that our fan-shape reconstructed 

liver model covers an angle of about 31 degrees of the liver area, because we 

set the probe holder to cover this range of angle only. During the image 

acquisition step, we placed the US probe between the ribs of the subjects 

(Figure 3.2), and the field of view was also affected by the obstruction of the 

human ribs. Theoretically, we can obtain larger field of view by applying our 

proposed method, if we change the setting of the probe holder to cover a larger 

range of liver area when we scan the liver. 

The use of robotic arm greatly helps us to acquire stable US images of 

different scanning angles under human respiration. During the experiment, we 

have tried several settings for the robotic-assisted scanning, and we think what 

we applied in this study currently provides an optimum balance between 

image acquisition/model building, and get a representative sample of motion. 

The values of the overlap ratio Oij for the liver boundaries at EE and EI of 

the four subjects show that there is no significant mismatch between the 

generated model and the ground truth. Since the calculation of the overlap 
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ratio was on a randomly selected 2D image plane, the choice of the plane itself 

would affect the result of the overlap ratio – particularly where, for example,  

the liver boundary area was not as clear on the selected image plane as on 

other planes, thus making the manual annotation more difficult and less 

accurate. The matching error of the landmarks Ln is in an acceptable range for 

clinical application. The value of Ln was affected by the error of manual 

annotation, choice of image plane, and the accuracy of the accuracy of 

respiratory signal extraction method on the landmark tracking. In this study, 

we purposely did not pick extreme landmarks, to ensure the accuracy of 

respiratory signal extraction method, so that the evaluation of Ln would make 

sense. 

The X-Y Cartesian coordinate system used to measure the displacement of 

liver structures, is clinically useful and has good inter- and intra-tester 

reliability [117]. Based on the results of motion analysis, for all four subjects, 

the displacement and velocity of internal landmarks were both smaller than 

those of their relative liver boundaries during EE to EI. When the position of 

an internal landmark was closer to the boundary than other landmarks, its 

displacement from EE to EI was closer to that of its relative liver boundary.  

In addition, the motion difference (displacement, velocity and acceleration) 

between subjects should not be omitted. We found there was a need to build a 

subject-specific model, because those differences were caused by the different 

speed or depth of the respiration of the subjects – which could be crucial to the 

success of biopsy, ablation, or other clinical applications. According to the 

feedback from the clinicians, subject-specific information on liver motion or 

deformation during respiration is a useful clue for them in helping determine 
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whether there is any tumor inside a patient’s liver, or its possible position if 

this has been verified. In this study, the motion estimation of a 4D volume 

with 8 frames from EE to EI, took an average 2-3 minutes. Moreover, the 

observation of the motion data matches previously published results from 

other research groups [118, 119]. 

3.9 Limitations 

Our proposed method in this chapter described an indirect way to generate 

subject-specific liver model from series of 2D US images sequences, however, 

it should be noted that 3D US transducers have already existed in the market, 

with capability of scanning real time 3D US image [186], such that technically 

speaking, generate 4D subject-specific model directly from 3D US images 

could be possible. Although 3D transducers and related speckle tracking 

techniques also suffer from image quality issue [87, 186], we think the clinical 

use of 3D transducer will be more and enough, with the steady increase of its 

visibility in the study field. In US-guided liver research area, currently the 3D 

US transducer cannot cover the whole right liver at one single scan, so usually 

multiple 3D images are assembled together for reconstructing the whole right 

liver area. In fact this strategy is very similar to our proposed method. So far, 

we believe our proposed method still has its clinical values as described in this 

chapter. 

3.10 Conclusion 

In this chapter, we have proposed a subject-specific 4D ultrasound imaging 

method, based solely on real-time robotic-assisted-swept 2D ultrasound to 
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visualize and analyze liver motion. This method detects ultrasound images 

with the same respiratory phase, from different 2D image sequences acquired 

with different sweeping angles, and resamples them to create respiration-

corrected 3D image volumes. The methodology used illustrates that we were 

able to capture liver motion at a specific respiratory phase. By applying this 

method, we found that the motion of the liver between various scan subjects 

can be quite different. This method is currently used as a preoperative tool for 

making a subject-specific liver model, to improve diagnostic and therapeutic 

efficiency in clinical practice. Finally, it will also enable US-guided surgical 

robots to utilize a built-in respiratory signal tracking system, resulting in more 

flexible design at lower cost. 
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CHAPTER 4. PHANTOM STUDY - DYNAMIC LIVER 
PHANTOM: DESIGN, VALIDATION, AND TEST FOR 
US BIOPSY SYSTEM  

 

 

 

 

 

 

 

 

 

Phantoms that can simulate the dynamic motion of liver tissue are always 

strongly needed. Chapter 4 describes the design concepts, and the mechanical 

design of a novel dynamic phantom. The capability of the phantom for 

generating stable and repeatable movement cycles to simulate human 

respiration, and test the biopsy system, is verified. 

Parts of the following results were first published in: C Li, SP Ang, J Liu, H 

Yu, ‘A Dynamic Liver Phantom for Ultrasound Image Guided Biopsy’, 15th 

International Conference on Biomedical Engineering (ICBME), Springer 

International Publishing, 2014: 152-155. 
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4.1 Introduction 

For the last several decades, liver biopsy has been considered the gold 

standard for obtaining histological diagnosis, and as such is widely applied in 

hospitals all over the world. However, to date, this minimally invasive 

procedure, which requires accurate needle placement under ultrasound 

guidance to effectively target the lesion, is still difficult, mainly because of the 

problem of liver motion induced by human respiration [115]. Human liver is 

neither rigid nor directly accessible, so testing objects that are able to simulate 

the dynamic motion of the liver are keenly needed and of vital importance for 

the related researches, as well as hands-on practice training for clinicians. 

Unfortunately, living subjects or cadavers, though most suitable for use, are 

not always available, or are extremely expensive. In most cases, researchers 

must make use of liver phantoms to evaluate the effectiveness and 

performance of imaging and surgical devices, thereby tuning the performance 

of such devices before they go for clinical trials. These phantoms reduce 

reliance on living subjects and cadavers for such purposes, at the same time 

reducing the potential harmful effects of such devices on living subjects. 

To date, most of the liver phantoms on the market or in the research field 

have been static ones [120-133], and commercialized versions are expensive. 

Higher-quality static phantoms with removable organs can cost up to 

USD$15,000 [134]. The cost of dynamic phantoms can often be higher due to 

the addition of mechanical parts, such as actuators to drive the periodical 

movement [135]. Moreover, it is hard to accurately replicate the movement of 

the liver based on real patient data in dynamic phantoms, which requires 
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extremely accurate calculation of the respiratory cycle and control of the 

actuator, thus hugely increasing the design and fabrication cost. In fact, the 

liver does not generate motion itself, but sustains an induced motion from the 

respiratory cycle. Hence, most dynamic liver phantoms employ a one- 

dimensional linear motion generator, which pushes against a synthetic liver, 

such as the one developed by Cleary [123] with its magnetic tracking system 

that follows the movement of internal organs. However, most phantoms are 

adapted for MRI or CT systems [120-133]. Therefore, there is a strong need 

for a phantom that can both simulate the dynamic motion of liver tissue and 

which is also technically practical for the US image guided system. 

Motivated by this need, we propose a novel dynamic liver phantom to be 

applied in ultrasound image-guided liver biopsy study. 

4.2 Supporting Data and Design Concepts 

4.2.1 Supporting data 

The liver is located in the upper part of the abdomen, and has a dimension of 

210-225mm in width, 150-175mm in height, and 100-125mm in depth [135]. 

Most of the motion experienced by the liver is actually induced by other 

organs, such as the diaphragm, which is in close proximity. According to 

research by Xi et al. [118], the mean mobility of the liver is 1.3±0.5mm in the 

left-right (LR) direction, 1.2±1.0mm in the anterior-posterior (AP) direction, 

and 10.1±3.9mm in the cardio-caudal (CC) direction; liver movement in the 

CC direction is very close to that of the diaphragm (Figure 4.1). Xi et al. also 

states that even though the movements of the diaphragm and liver are not 
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perfectly aligned, the determination of the safe border of the liver tumor can 

be determined by using diaphragmatic movement.   

 

Figure 4.1 Liver movement in the CC direction is very close to that of the 

diaphragm [118] 

This observation is further corroborated by the research of Rubin et al. [137]. 

In their research, liver tumor positions in the exhale and inhale stages were 

tracked using 4-Dimensional Computed Tomography (4DCT) scan; the results 

showed that the main movements of the liver tumors were in the CC direction 

and also in the AP direction, with negligible movement in the LR position. 

According to their results, during the inhale phase, the liver tumor moved 

down and in anterior direction, which was in lieu with the motion of the 

diaphragm, which moves down during the inhale phase, squeezing the liver. 

Due to conservation of volume, the tumor also has to move downwards and 

forwards, There were no, or negligible, changes in the position of the tumor in 

the LR direction.   

4.2.2 Design concepts 

First of all, our phantom needs to be ultrasound-compatible, which requires 

putting either gelatin liver models or porcine livers in liquid or ultrasound gel 
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without air bubbles or gaps, for ultrasound scanning inside the phantom. 

Second, in comparison with commercially available dynamic phantoms [135], 

our phantom is designed to be modular and able to accommodate different 

sizes of liver; hence, this is a one-model-fits-all design, which makes it more 

cost effective. Given the modular design, any part damaged during usage can 

be replaced easily, with no need to replace the whole phantom, thus greatly 

reducing the overall cost of running the phantom experiments. Third, most 

phantoms are opaque, meaning if there is any problem inside, it is difficult to 

rectify, since it is hard to visualize the error. Our phantom, being made 

entirely of acrylic, is transparent, and can be easily validated with visual cues, 

making visual observation of liver movement easier. Lastly, some phantoms 

can only use one type of setting. This phantom, being modular in design, is 

capable of changing speed and stroke length for both extension and retraction, 

and adjusts according to the shape of the liver. 

4.3 Mechanical Design of the Phantom 

Figure 4.2 shows the design of a chest-like shaped phantom. It consists of a 

linear servo actuator for respiratory motion generation and an ultrasound- 

compatible compartment that can hold either gelatin liver models or porcine 

livers for testing. 
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Figure 4.2 Design of the phantom 

The chest-like case (Figure 4.2.B) is made of the water-proof material 

acrylic, with a dimension of 330mm measured from left to right, 220mm 

measured in the CC direction, and 200mm measured in the AP direction. The 

edge of the box has a radius of 60mm as a design to represent the chest. The 

box is filled with distilled water to allow easy transmission of the ultrasound 

wave into the liver. Excess water is displaced through a water displacement 

tube located on the side of the box. Everything is joined together via nylon 

screws, to prevent disturbance of the ultrasound image.  

The actuator holder (Figure 4.2.C) is designed to hold the actuator in place. 

The actuator is connected to an actuating assembly, which includes a rod and a 

pushing plate which acts like the diaphragm (Figure 4.2.F). The actuator also 

has another stabilizer, to stabilize its front part. The position of the actuator 
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holder can be adjusted forwards or backwards, using screws at its base to 

accommodate necessary changes. The actuator is held in place by the 

clamping action of the top and bottom piece, and also via an M4 screw at the 

back of the actuator. The whole base is secured to the main phantom through 

another frame, which has screws at the side to prevent the phantom from 

toppling over during actuation.  

Inside the case, there is a sponge holder (Figure 4.2.D), designed to hold a 

sponge in place to simulate the soft tissues below the liver, such as for 

example, the stomach or right kidney. This is because the liver needs support 

at the other side of the diaphragm. The sponge was chosen to simulate such 

soft tissues because of its elasticity; it will not exert too much force on the 

liver when pushed against. Acrylic plates are used to secure down the sponge, 

since they have a tendency to float on water. During the usage of the phantom, 

the sponges will be fully soaked in distilled water before putting them into the 

phantom, to avoid air bubbles being trapped inside, and to reduce the 

likelihood of floating.  

The actuator chosen for the design is the Firgelli L16 actuator [138] with a 

63:1 gearing option (Figure 4.2.E), selected for its capabilities at an affordable 

price. At 10mm/s, it is able to produce a force of 76 N in the actuating 

direction. As the actuating assembly is only about 1kg in weight, the actuator 

is able to produce an excess of about 66 N to overcome the resistant force of 

the liver itself, and also the friction produced by the O-ring in preventing 

water leakage from the hole. If the force required to resist the friction from the 

O-rings themselves is very low, the actuator is capable of producing speeds as 



  79

high as 15mm/s at a load of 38N, to simulate different breathing conditions. 

Speeds can go up to 20mm/s.  

Figure 4.3 below shows the prototype of our phantom. 

 

Figure 4.3 Prototype of the phantom. A: chest-like case; B: actuator holder; 

C: sponge holder; D: Firgelli L16 actuator; E: pushing plate. 

4.4 Phantom Control 

In the human body, the diaphragm displays a different moving speed during 

the phases of respiration. During the inhalation phase, the diaphragm will 

move faster, down against the liver; while during the exhalation phase, the 

diaphragm will move more slowly, up away from the liver. Hence, in order to 

display such a trait in the liver phantom, the actuator needs to have a different 

actuation speed during extension and retraction. We wrote a new customized 

program for the phantom using Labview, which allows different retraction and 
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extension speeds, and also allows variable extension and retraction limits. 

Figure 4.4 below shows the customized Labview program for the 

actuator.
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Figure 4.4 Customized Labview program for the actuator 

4.5 Experiments 

4.5.1 Validation 

Experiments were conducted to test the effects of actuation against the liver 

on the distance moved by the liver in the 3 different directions X, Y, and Z 

(Figure 4.5), during repeated cycles. This was achieved by placing tracing 

markers, which, in this study, were steel bolts, on the surface of the porcine 

liver (Figure 4.6), and tracking the distance moved by the markers in relation 

to a starting point O. The steel bolts were chosen for ease of detection from the 

real-time ultrasound images, their distinct shape and small size. 

 

Figure 4.5 Coordinates definition of the phantom 
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Figure 4.6 Placement of 3 steel bolts on the surface of porcine liver 

During the experiment, the actuator was moved forward in steps of 5mm up 

to 20mm in the X direction, and retracted back in steps of 5mm to the start 

position. The 20mm limit was chosen since liver movement will proceed up to 

a limit of about 14mm in the CC direction [127]. A buffer of 5mm was given 

for extreme cases. Measurements were taken in steps of 5mm due to the 

impracticality of using a 2D ultrasound probe (Terason t3000 scanner with a 

5C2 transducer; image size: 640 × 480 pixels, pixel size: about 0.37 × 0.37 

mm, temporal resolution: about 10 FPS) [139] to track the motion. The cycles 

repeated 10 times in the forward direction (positive X direction), and the same 

in the retraction direction (negative X direction) to generate more data and 

ensure that the results were consistent. Figure 4.7 shows the movement of the 

pushing plate from the start position (A, 0mm) to the maximum position (B, 

20mm) in the X direction. During the experiment, we held the ultrasound 

probe vertically above the water level and tried to acquire a clear ultrasound 

image with the marker captured. When the real-time ultrasound image caught 

the marker at a fixed location (Figure 4.8), we recorded the position of the 
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ultrasound probe, and then calculated the position of the marker based on the 

ultrasound image. 

 

Figure 4.7 Movement of the pushing plate from the start position (A, 0mm) 

to the maximum position (B, 20mm) in the X direction 
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Figure 4.8 Detection of the position of markers using Terason t3000 

ultrasound probe (A), and real-time US image of the marker (in red circle, B-

E). 

4.5.2 Biopsy test on the phantom 

The purpose of this experiment was to test if this dynamic phantom is 

suitable for biopsy study. To simulate a tumor as a biopsy target inside a 
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porcine liver, an agar-based mixture [140] was prepared and injected into 6 

porcine livers at 3-4 sites, with varying ‘tumor’ sizes, ranging from 2 to 4cm 

(mean 3cm) in diameter, using an 18-gauge syringe at room temperature. In 

total, 20 sites were created. The details of our novel method to create 

simulated tumors inside porcine livers, and its validation in ex-vivo and in-

vivo experiments, will be discussed in the next Chapter. 

The porcine liver with injected simulated tumors was placed in the phantom. 

In order to simulate real biopsy conditions, the actuator was moved forwards 

to 15mm directly in the X direction at speed of 10mm/s, retracted back to the 

start point at same speed, and held in this position for 5 seconds, until the start 

of the next cycle. This cycle was repeated to ensure the stability of the 

phantom, as it would have to go through many cycles before the actual biopsy 

was performed. The 15mm stroke length was chosen to simulate the condition 

of the liver at the end of the inhale (EI) phase. The 5 seconds of stasis at the 

start position (0mm) was set to simulate the interval between two respiratory 

cycles in healthy individuals. The same ultrasound probe and probe holder that 

connected to a robotic arm, as described in Chapters 2 and 3, were used for 

ultrasound image guidance and needle insertion assistance. A standard biopsy 

needle was used for all sampling trials. In this experiment, the clinician 

performed the biopsy during the 5-second static period of the phantom, after 

the ultrasound image of the simulated tumor was revealed and confirmed on 

the computer screen at the start position (0mm). Once the clinician started to 

insert the biopsy needle, the phantom stopped the set cycle movement and 

remained stationary. Only one biopsy attempt was applied for each injected 

tumor. All specimens were analyzed carefully after each attempted biopsy. A 
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detailed description of the biopsy procedure in this experiment will be given in 

the next Chapter. 

 

Figure 4.9 Targeting of the injected simulated tumor. Red rectangle: target; 

yellow arrow: trajectory of biopsy needle; green arrow: boundary of porcine 

liver. 

4.6 Results and Discussion 

4.6.1 Validation 

The results collected for the positions of the markers are shown in Table 4.1. 

Avg denotes the average position out of the 10 measures in 10 different cycles, 

while S.D. denotes the standard deviation of the positions measured for the 10 

sample sizes. Figure 4.10 shows the side view of the pathways of 3 markers as 

averages.  

Table 4.1 Average position reading of 10 cycles for 3 markers (unit: mm) 



  87

 0mm 5mm 10mm 15mm 20mm 
 

 X Y Z X Y Z X Y Z X Y Z X Y Z 

Avg. 76.07 45.14 54.14 80.55 44.85 53.25 85.35 44.80 52.35 89.80 44.40 50.45 93.50 44.42 47.17
1 

S.D. 0.78 0.83 2.18 0.57 1.10 1.57 0.74 1.08 0.63 0.56 0.92 0.61 0.50 1.10 0.75

Avg. 72.50 132.57 44.71 77.20 132.60 42.50 81.65 132.10 40.20 85.30 132.20 38.70 89.92 131.50 37.67
2 

S.D. 0.89 1.18 0.70 1.44 1.11 0.92 1.16 1.30 0.87 1.03 1.54 0.46 1.17 1.89 0.75

Avg. 81.43 86.14 55.21 85.70 86.90 54.15 89.95 86.80 52.55 93.50 86.90 51.70 97.17 86.83 48.67
3 

S.D. 0.56 0.64 0.80 0.64 0.70 0.71 0.76 0.75 0.79 0.50 0.54 1.05 0.69 0.69 1.25

 

 

Figure 4.10 The side view of the pathways of 3 markers as averages 

The distances moved by the points in the X direction were in lieu of the 

distance being pushed by the actuator. For the start position, the average 

changes in distance in the X direction were closer to 5mm, which was the 

distance the actuator was required to provide. From 10mm to 20mm, the 

distance moved by the markers decreased slightly, to near 4mm. This was 

because, when the distance moved by the marker hit 10mm, it was slightly 
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resisted by the sponge, hence hindering further movement of the marker in the 

X direction. The marker also moved upwards with increasing actuation in the 

negative Z direction, because when the liver’s movement was impeded by the 

sponge from moving forward, the surface of the liver had to move up due to 

conservation of volume. There were negligible changes in the Y direction, 

since the average movement in this direction was between -0.8mm to 0.8 mm, 

and there was no regular pattern in the direction of the deformation in the Y 

direction. Changes due to conservation of volume could have been the cause 

of changes in the Y direction, but since the liver is irregular in shape, the 

directions varied.  

Distance positions recorded were accurate, as most of the standard 

deviations of the distance measured were below 1mm, which was the lowest 

division of the ruler used. The distance moved by the markers, for all 3 

markers, was also consistent in all 3 directions, since most of the standard 

deviations of all the distance travelled for all the points were less than 1mm, 

while the rest were near 1mm. 

4.6.2 Biopsy test on the phantom 

For the biopsy test experiments on the phantom, each biopsy attempt was 

either described as a success (the biopsy being successful in obtaining the 

simulated tumor, which was white in color) or as a failure (the biopsy only 

obtained a liver tissue sample). The clinician visually checked the biopsied 

sample tissues on the white tissue paper carefully. The results showed that the 

clinician successfully hit the simulated tumor in 15 out of 20 attempts (75%). 
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Figure 4.11 shows a successful and an unsuccessful biopsy attempt. Figure 

4.12 shows a visual check of the injected simulated tumor. 

 

Figure 4.11 A successful (A) and an unsuccessful (B) biopsy attempt, 

respectively 
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Figure 4.12 Visual check on injected simulated tumor 

It is obvious that targeting and delivering the biopsy on the moving porcine 

liver in the dynamic phantom is more difficult than on the static phantoms. For 

the unsuccessful biopsy attempts in this experiment, the possible reasons for 

failure can be listed as follows. First, the main reason could be the relatively 

low ultrasound image quality on the target (agar-based simulated tumor) area. 

In fact, the US image of the metal bolts in the experiment to validate the 

phantom was much clearer than that of the agar-based simulated tumors. 

Motivated by this issue, we developed a novel technique to create simulated 

tumors inside the liver that can be clearly seen under an US image (the details 

are in the next Chapter). Second, due to the setting of the phantom and its 

movement pattern, the clinician chose to perform the biopsy during the 5-

second static period, as previously described. Though 5 seconds is longer than 

the normal human respiratory interval (usually 2-3 seconds for healthy 

individuals under normal conditions [141]), this time was still quite short for 

the insertion of the biopsy needle – even if the target was identified on the US 
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image. In addition, 5 seconds was not enough time to both locate the target on 

the US image and insert the needle. An ideal situation would be the clinician 

locating the simulated tumor in the first interval, and inserting the needle in 

the next. However, this would require the simulated tumor to appear in the 

same US image plane in two consecutive intervals, whereas unfortunately, this 

did not happen every time. Third, the error caused by manual manipulation of 

the biopsy needle cannot be neglected, since the porcine liver was not fixed 

tightly inside the phantom. Motivated by this problem, we designed a needle 

holder in our biopsy system to eliminate this error as far as possible. Lastly, 

since the porcine liver was submerged in water in the phantom, we noticed 

that the water wave caused by the movement of the pushing plate could push 

on the porcine liver, thus leading to minor deformations in it during its 5-

second static period. Sometimes this deformation made the target move out of 

the US image plane, such that the attempt became more difficult. 

Finally, it is worth mentioning that without the use of phantom, the 

validation of the biopsy system becomes weak. During the experiment, the 

clinicians asked us to set the phantom as described in section 4.5.2, and 

performed the biopsy at the start position during the 5-second static period of 

the phantom. The only reason that we did not apply the feature-based tracking 

algorithm described in chapter 2 in the experiment is that the motion provided 

by the phantom was well known and totally visible to the clinicians, such that 

they could freely adjust the US probe at the start position, and located the 

target in the real-time US image without applying the motion tracking 

algorithm during the static period of the phantom. In other word, theoretically 

we could integrate the motion tracking algorithm in the system, and in terms 



  92

of techniques, our proposed image processing algorithms and phantom 

prototyping are actually connected with each other. It was clinicians’ choice 

that simplified the image processing in this phantom experiment. 

4.7 Limitations 

It is worth mentioning that in terms of phantom design, there are several 

shortcomings of our phantom that could be improved in the future: (1) better 

shaped of sponge or other similar materials that simulates the area contacting 

the bottom of the liver more accurately, can be used; (2) the shape of the 

pushing plate can also be improved to a curve shape, which is more close to 

the shape of human diaphragm, to simulate the pushing movement better; (3) 

we hope to produce a liver organ model whose shape, material and ultrasound 

properties are close to the real human liver, and can be repeatedly scanned, 

injected, and inserted, such that the dynamic phantom could provide better 

simulation of the human liver motion. 

4.8 Conclusion 

The results shown in this study correspond to the results of the 4DCT scan 

as conducted by Rubin et al. [137], which was described in the last part of 

section 4.2.1, whereby the significant distance moved by the tumor was in the 

X direction, or the CC direction, in the case of this experiment. The 

experiments conducted in this study and by Rubin et al. [137] also showed 

little change in the LR directions for the marker or the injected tumor. In the 

AP direction, both the marker and the liver tumor moved in the anterior 

direction during the inhalation phase. Hence, we can conclude that the results 
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obtained by this experiment are conclusive and therefore, the phantom is 

stable and suitable for use as a liver motion simulator. Given that it is 

systematically stable, the phantom designed by us has provided a solution to 

ease the complications experienced by researchers and clinicians, by giving 

them a phantom which simulates the respiratory motions of the liver that were 

more readily available and affordable to purchase, as compared to the 

commercial phantoms. Costs have been reduced by the modular design of the 

phantom, and also by its capacity for being adapted to different tumor 

scanning methods; the latter facility also serves to standardize all the results 

given by different scanning methods, reducing the potential discrepancies that 

might surface with usage of different phantoms for different systems. 

During the experiment, our dynamic phantom simulated some difficulties 

that could happen in real biopsy practice. The efficiency and accuracy of our 

image-guided and processing algorithms, as well as the biopsy planning, were 

well evaluated. Regarding the hardware aspect, the usefulness of the probe 

holder, robotic arm, and whole biopsy system, were also put to the test. 

Through the phantom experiment, the clinicians also provided us some 

practical advice on the image processing procedures. This information will 

prove very valuable for us in improving the performance of our system. 

In summary, the novelties of this work are listed as follows: (1) the design 

of this dynamic liver phantom is novel, and it is capable of providing stable 

and repeatable movement cycles under different settings [123, 134-135]; (2) 

this phantom is adapted for US systems, while most of the existed phantoms 

were designed for CT or MR system [120-135]; (3) Cost effective in 

comparison with commercially available dynamic phantoms [123, 134-135]. 
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CHAPTER 5. EXPERIMENTAL STUDY - CREATION 
OF SIMULATED TUMORS FOR REAL-TIME 
ULTRASOUND IMAGE-GUIDED LIVER BIOPSY 

 

 

 

 

 

To solve the commonly seen problem that ideal testing is hard to ensure in an 

experimental biopsy study, this Chapter presents a novel method to create 

simulated tumors inside porcine livers ex-vivo and in-vivo, for US image-

guided biopsy. The performance of our proposed method is evaluated by 

comparing it to the more widely used approaches. 

Parts of the following work was accepted to be published in: C Li, JY Teo, J 

Wu, A Gogna, BS Tan, LL Ooi, J Liu, H Yu, ‘Creation of Clinically-

differential Tumor Mimic Model Using Vaseline-based Materials with Barium 

Sulfate for the Validation of Real-time Ultrasound Image-guided Liver Biopsy 

System,’ Biomedical Engineering: Applications, Basis and Communications. 

Parts of the following results were first published in: C Li, JY Teo, J Wu, J Liu, 

LL Ooi, H Yu, ‘Ultrasound Image Guided Biopsy on Vaseline-based Mimic 

Porcine Liver Tumors’, 11th Anniversary Asian Conference on Computer 

Aided Surgery (ACCAS), 2015. 
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5.1 Introduction 

The accurate diagnosis of solid liver lesions is a key factor in determining 

appropriate treatment. For the last several decades, liver biopsy has been 

considered the gold standard for obtaining histological diagnosis [37]. This is 

a minimally invasive procedure, which requires accurate needle placement 

under ultrasound guidance to effectively target the lesion. Competency with 

ultrasound-guided biopsy requires hands-on practice, so we developed a 

dedicated intelligent robot to assist clinicians in the performance of liver 

biopsy. However, whilst undertaking the validation of our system, we found 

that the ideal testing model (liver tissue with an intraparenchymal target) was 

very hard to obtain. To overcome this problem, several kinds of tumor model 

have been previously described, such as VX2 carcinoma [142-146], canine 

transmissible venereal tumor model [147, 148], a solution combining gelatin 

and agar [149], and an agar-based mixture tumor model [140, 141, 150-153]. 

However, these approaches present limitations in terms of cost, tumor size, 

extravasation, convenience in acquiring materials, the amount of time and 

effort required to produce the model, and most importantly, the inevitably low 

image quality of the target (simulated tumor) area. For these reasons we found 

it necessary to develop an easy, safe, and controllable way to simulate the 

presence of tumors within the liver, so that the clinician can locate the target 

precisely and easily. The purpose of this study was to develop a technique for 

the easy creation of solid tumor models of different sizes, that could be used in 

the validation of ultrasound image-guided liver biopsy systems and other 

applications, and evaluate its performance by comparison with the most 

widely used approaches. 
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5.2 Creation of Simulated Liver Tumors 

Two kinds of injectable model were prepared to simulate liver tumors. Their 

performances as possible targets for biopsy were tested in both ex-vivo and 

live animal (in-vivo) experiments. 

5.2.1 Agar-based tumor model 

An agar-based mixture has been previously described as an injectable 

sonographically visible model, in various studies in the literature [140, 141, 

150-153]. The mixture was prepared by combining 10 g of agar powder, and 

10 ml of glycerol, with enough distilled water to make up a 200 ml volume 

(Figure 5.1). The mixture was then heated to 80 ℃ using a hot water bath to 

bring its components into solution. Once the heating was complete, 5 ml of 

green coloring was added. Figure 5.2 shows the condition of the mixture under 

different temperatures. Note that the mixture must be maintained at a 

temperature above around 45 ℃ in a hot water bath to prevent solidification of 

the agar prior to injection. 

 

Figure 5.1 Materials for agar-based tumor model: agar powder (left) and 

glycerol (right). 
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Figure 5.2 Condition of the agar-based mixture: liquid when heated to 

greater than 50 o Centigrade (left); solid at room temperature (26 o 

Centigrade, right). 

5.2.2 Vaseline-based tumor model 

The Vaseline-based mixture was prepared by combining 10 g of Vaseline 

jelly with 10 ml of glycerol. The mixture was then heated in a hot water bath 

to bring its components into solution (Figure 5.3). Coloured dye can also be 

added if desired. Note that the mixture maintains its semi-fluid form even at 

room temperature, which makes handling of the material less demanding. 

In addition, 5 g of barium sulfate was added to the simulated tumor mixture 

(Figure 5.4). The comparison of ultrasound image quality on the simulated 

tumors with/without barium sulfate is given in section 5.4. 

 

Figure 5.3 Making the Vaseline-based tumor model: Vaseline jelly (left); hot 

water bath (right). 
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Figure 5.4 Addition of clinical barium sulfate to the Vaseline-based mixture 

5.3 Experiments 

5.3.1 Ex-vivo experiment 

In the ex-vivo experiment, we injected both kinds of simulated tumor model 

into porcine livers with an 18-gauge syringe for tumor implantation.  All the 

porcine livers were obtained from the market on the same day as the ex-vivo 

experiment. 

The Vaseline-based mixture was injected at room temperature into each 

porcine liver at 2-3 sites, with volumes of 2 ml, 3 ml, 5 ml, 8 ml and 10 ml (2 

sites each volume. The detailed relationship between injection volume and 

simulated tumor size is shown in Table 5.1, in section 5.4). Similarly, the agar-

based mixture was injected at 45-50 ℃.  We created 1) 10 sites for the 

Vaseline-based mixture with barium sulfate, on 4 randomly selected porcine 

livers, 2) 10 sites for the Vaseline-based mixture without barium sulfate, on 4 



  99

randomly selected porcine livers, and 3) 10 sites for the agar-based mixture, 

on 4 randomly selected porcine livers. Then the porcine liver with the 

simulated tumors in-situ was placed in a transparent plastic box immersed in 

water  as previously described, for targeting.  Figure 5.5 shows implantation of 

the Vaseline-based simulated tumor material into a porcine liver using an 18-

gauge syringe. 

 

Figure 5.5 Injection of Vaseline-based simulated tumor model in ex-vivo 

experiment 

5.3.2 Live animal (in-vivo) experiment 

Because of the physiological and anatomical similarities between pigs and 

human beings, one micropig (45 kg) was used in a live animal experiment. 

After overnight fasting, anesthesia was induced by intramuscular 

administration of atropine (0.05mg/kg) followed by xylazil (2.5mg/kg) and 

ketamine (10mg/kg). Then, the micropig was intubated using an appropriate 

size cuffed endotracheal tube connected to a ventilator, and the deep 

anesthesia was maintained additionally by inhalation of 5-10% of isoflurane. 

During the experiment, the micropig was fixed with its legs by ropes on an 
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operating table in the supine position, and monitored with oxygen saturation 

(SpO2) (Figure 5.6). 

 

Figure 5.6 Preparation of the micropig for in-vivo experiment. 

Before implantation of the simulated tumor, the abdominal area of the 

micropig was shaved and scrubbed with iodine- and alcohol-soaked gauzes. 

The injection was guided by real-time ultrasound to locate the liver area 

(Figure 5.7). Since the skin and subcutaneous tissue of a micropig is much 

thicker than that of a human being, the injection point on the skin of the 

micropig needed to be cut by a surgical knife to ease the injection. The 

clinician injected the micropig with the Vaseline-based mixture with barium 

sulfate in a total of three sites (5 ml each). The Vaseline-based mixture with 

barium sulfate was stained with bromophenol blue for easier visual checking. 
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Figure 5.7 Injection of Vaseline-based simulated tumor model in live animal 

(in-vivo) experiment. 

5.3.3 Targeting of simulated lesion 

For both the ex-vivo and in-vivo experiments, the targeting procedures were 

similar. The ultrasound probe was connected to the robotic arm, and real-time 

ultrasound images were obtained and processed on self-developed software 

platform MIUE [114] during the procedure. In order to avoid the issue of the 

tremor of human hands, a probe holder was designed to clamp the probe and 

help to scan the liver with optimum stability. The anticipated scanning angles 

were actuated by a geared motor (Faulhaber DC-Micromotor 0615, Schönaich, 

Germany). The motor was connected to a computer using Ethernet (via a 

network cable). A needle holder was designed to fix the biopsy needle in the 

same plane as the US probe, but the needle angle was adjustable within this 
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plane. A standard biopsy needle was used for all sampling trials. The setup of 

ex-vivo and in-vivo experiments can be seen in Figure 5.8. 

 

Figure 5.8 Setup of the ex-vivo (A) and in-vivo (B) experiments. 



  103

The tumors were located using real-time ultrasound. A Terason t3000 

scanner with a 5C2 transducer was used for acquiring US images (image size: 

640 × 480 pixels, pixel size: about 0.37 × 0.37 mm, temporal resolution: about 

10 FPS) [139]. The lesion to be targeted was selected using the robotic arm.  

For each biopsy attempt, a one-time fan scan of the ultrasound probe was 

applied to cover the biopsy area. After that, a 3D ultrasound image model for 

ex-vivo experiment, or a respiration-correction 4D model for in-vivo 

experiment, viewable in any angle by zooming in/out, rotation, and via 

translation tools, which was built in MIUE, was used by the clinician to locate 

the tumor in the pre-operative stage, and select the biopsy plane. The probe 

then automatically moved to the biopsy plane under the guidance of the 

robotic arm. From that point, real-time ultrasound images, containing the 

image of the injected simulated tumor, which is tracked by the motion tracking 

algorithm described in chapter 2 for the in-vivo experiment, and the trajectory 

of the needle, were continuously shown on the screen for needle guidance.  

Once the clinician located the simulated tumor on the computer and selected 

the orientation of the biopsy needle in the 2D image plane, the biopsy 

procedure was guided and accomplished by the needle holder. Note that before 

delivering the biopsy in this in-vivo experiment, we still needed to cut the 

abdominal skin of the micropig at the biopsy point selected by the clinician, to 

ease the insertion of the biopsy needle. Without this additional action, the 

biopsy needle would have been bent, due to the thrust force (Figure 5.9).  

Figure 5.10 depicts the biopsy procedure in the ex-vivo and in-vivo 

experiments. Only one biopsy attempt was made for each injection area. All 
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specimens were analyzed carefully after each attempted biopsy, to ascertain 

whether or not they were successful.  

 

Figure 5.9 Biopsy attempt without cutting the abdominal skin of the 

micropig. The red circle shows the bending of the biopsy needle during 

insertion 
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Figure 5.10 Delivering the biopsy with the needle holder. A: ex-vivo 

experiment; B: in-vivo experiment. Red arrows: the needle holder. 

 

Euthanasia of the micropig was carried out after the in-vivo experiment. 

This was done via intravenous injection of pentobarbital (150mg/kg). This 
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method is humane, practical, and suitable for micropigs.  The liver was then 

extracted for further investigation. 

5.4 Results 

5.4.1 Results of biopsies 

Each biopsy attempt was either described as a success (meaning the clinician 

successfully obtained a simulated tumor sample, which appeared in a 

green/white/blue color in the biopsy needle) or a failure (the clinician only 

obtained a liver tissue sample in the biopsy needle). In the ex-vivo experiment, 

for the Vaseline-based simulated tumors with barium sulfate, the clinician 

successfully obtained simulated tumor samples in all 10 attempts (10/10); for 

the Vaseline-based simulated tumors without barium sulfate, the clinician 

successfully hit the simulated tumors in 7 attempts (7/10); and for the agar-

based simulated tumor, the clinician successfully hit the simulated tumor in 6 

attempts (6/10). In the in-vivo experiment, the clinician obtained the simulated 

tumor in 2 attempts (2/3). Figure 5.11 shows the visual appearance of the 

injected simulated tumors after the ex-vivo and in-vivo experiments. Figure 

5.12 shows the proof of visual checks on three successful biopsy attempts 

from the ex-vivo and in-vivo experiments. 
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Figure 5.11 View on gross pathology of injected simulated tumors (left 

column), and successful biopsy attempts on injected simulated tumors (right 

column). Top row: an agar-based simulated tumor; Middle and bottom row:   

Vaseline-based simulated tumors with barium sulfate, in ex-vivo and in-vivo 

experiment, respectively. 

5.4.2 Comparison of ultrasound image of the target area 

Tumor location and planned targeting are key to a successful biopsy attempt, 

and these are clearly affected by the ultrasound image of the simulated tumor 

area. 

During the biopsy procedure, we observed a ‘shadow’ phenomenon with the 

images of the Vaseline-based simulated tumors with barium sulfate, which 

assisted the clinician in determining tumor location. Based on the results of the 

experiments, the position above the top of the ‘shadow’ area could be 

confirmed as the location of the simulated tumor (target). Figures 5.12 and 
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5.13 show this phenomenon and the real-time ultrasound image comparison 

between simulated tumors with and without barium sulfate. 

 

Figure 5.12 Comparison between real-time ultrasound images of simulated 

tumors with/without barium sulfate. Left: Vaseline-based simulated tumor with 

barium sulfate; right: agar-based simulated tumor. Red arrow: location of 

target; Yellow arrow: ‘shadow’ phenomenon. 

 

Figure 5.13 Comparison between real-time ultrasound images of simulated 

tumors with/without barium sulfate. Left: Vaseline-based simulated tumor with 

barium sulfate; right: Vaseline-based simulated tumor without barium sulfate. 

Red arrow: location of target; Yellow arrow: ‘shadow’ phenomenon. 

5.4.3 Quantitative analysis of the injection 

The size of the simulated tumors is related to the amount of mixture injected. 

After biopsy, the porcine livers were bisected and the diameter of the 

simulated tumors was measured. Table 5.1 shows the volumes of injected 
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material used, and the resultant tumors’ diameter. Note that the simulated 

tumors were not perfectly spherical, but more elliptical in appearance.  

Table  5.1 Average tumor size from the injected mixtures. 

Number of injections 
Volume of injection 

(ml) 

Average simulated tumor 

size (diameter / cm) 

6 2 1.61 

6 3 1.85 

6 5 2.20 

6 8 2.57 

6 10 2.78 

 

Moreover, for the Vaseline-based simulated tumors with barium sulfate, the 

amount of injected material and the size of the simulated tumor were also 

related to the size of the ‘shadow’, as discussed above. This is illustrated in 

Figure 5.14. 

 

Figure 5.14 Comparison of the ‘shadow’ size for different amounts of 

injected material. Left: 3 ml of mixture injected; right: 10 ml of mixture 

injected. 
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5.5 Discussion 

In the ex-vivo experiment, failed biopsy attempts were more commonly 

from the smallest, 2 ml or 3 ml injections, so it is obvious that bigger size in 

the injected simulated tumors facilitates biopsy. Since the porcine livers were 

not fixed in the plastic box, when the biopsy needle touched the surface of the 

livers or during the insertion process, the deformation of liver tissue or 

displacement of simulated tumors could occur, which could possibly affect or 

fail the biopsy trial. According to the results of the ex-vivo experiments, the 

highest successful biopsy rate (100%) on our proposed Vaseline-based 

material suggests the most useful image aid of the simulated tumor area, 

which also matches the feedback from the clinician. 

It is worth noticing that we only observed the ‘shadow’ phenomenon from 

the images of Vaseline-based simulated tumor with barium sulfate, so we 

think it has nothing to do with the air bubbles, otherwise we should have 

observed it from the images of Vaseline-based simulated tumor without 

barium sulfate or agar-based simulated tumor too. The possible reason for this 

‘shadow’ phenomenon could have been the mixture of barium and Vaseline, 

which could be the source of attenuation on US image in this case. 

Biopsy in live animals (in-vivo) is much more difficult than ex-vivo biopsy, 

for a variety of reasons – and this was apparent in this particular case. First, 

the image quality of the liver and target areas is usually considerably poorer 

than those acquired ex-vivo. Second, there is a higher requirement for the fast 

and accurate insertion of the biopsy needle. With the micropig, we had to 

ensure it penetrated through the thick skin and subcutaneous tissue of the 
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animal within the pre-selected path. The deformation of liver tissue and 

displacement of simulated tumors caused by the biopsy needle are still harder 

to detect on the ultrasound image than in ex-vivo, during the insertion process. 

Third, the periodic respiration of the micropig under ventilator resulted in the 

deformation of the liver area, making both injection of the simulated tumors 

and insertion of the biopsy needle, more difficult. The successful biopsy rate 

in the live animal experiment with our proposed Vaseline-based simulated 

tumors with barium sulfate as targets was 66.7% (2/3). After the liver was 

extracted from the micropig’s carcass, we found that the clinician had injected 

one out of the three mixtures into the animal’s spleen instead of its liver. This 

is the reason that led to the failed attempt in the in-vivo experiment. 

This study evaluated the utility of various mixtures to simulate intrahepatic 

tumors, and demonstrated that these can be used for targeting studies, because 

the clinicians can successfully locate the target in the experiment precisely and 

easily, under the same routine they performed to locate real tumors in real 

medical applications in the hospital everyday. The ultrasound properties of our 

proposed material are similar to those of real tumor tissues. During preparation 

of the tumor mixture, it is critical to maintain the mixture in a liquid or semi-

fluid state prior to injection, and to ensure the mixture can solidify after 

injection to form a discrete tumor. From both the ex-vivo and in-vivo 

experiments, we have proved that the Vaseline-based simulated tumor can 

maintain its size and position after injection. The Vaseline-based model has 

the following advantages when compared to the more widely-used agar-based 

model: (1) There is less requirement for  temperature control; (2) The average 

time for the preparation of the Vaseline-based mixture is 6-8 minutes at most, 
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while preparing the same amount of agar-based mixture takes 15-20 minutes; 

(3) The agar-based mixture must be injected above about 45 ℃; the Vaseline-

based mixture can be injected at room temperature. This is important because 

live animal experiments require fast injection of the simulated tumor, when the 

clinician finds a suitable site via the real-time ultrasound under animal 

respiration. Unfortunately, temperature control of the mixtures takes time, and 

makes the injection more difficult in the case of agar-based material; (4) The 

Vaseline-based mixture is much easier to inject, as it is less viscous, and 

minimal pressure needs to be applied. On the other hand, the agar-based 

mixture is viscous and solidifies rapidly when the needle makes contact with 

the cold water or porcine liver tissue, making the injection process more 

laborious and less controlled; (5) Since our ex-vivo simulated tumor was 

originally developed as a tool to validate our robotic biopsy system, ensuring 

that the ultrasound image of the simulated tumor is adequate for real-time 

biopsy is essential. We have demonstrated that the so-called ‘shadow’ 

phenomenon can be seen on the real-time ultrasound images of Vaseline-based 

simulated tumors with barium sulfate. This is helpful for the clinician in 

accurately localizing the biopsy target. More importantly, even when the real-

time ultrasound image quality of the simulated tumor itself was not 

satisfactory, in some attempts in the ex-vivo and in-vivo experiments, as is 

often seen in clinical applications, this method (locating the target by the 

‘shadow’) still worked.  

For the above reasons, we assert the more widely-used agar-based simulated 

tumor is less suitable than our proposed Vaseline-based simulated tumor here 
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for both ex-vivo and live animal (in-vivo) experiments. The materials used in 

our study are easily prepared and can be bought at low cost. All the materials 

are non-toxic.  

Finally, the live animal experiment described in this chapter is a great 

example to show how the techniques we proposed in this thesis work together 

to help the clinicians perform the biopsy. Specifically, first of all, the 

clinicians injected simulated liver tumor inside the liver of the animal to create 

the biopsy target (chapter 5). Next, we applied fan-shape scan on the biopsy 

area under the control of probe holder, and generated a respiration-corrected 

4D animal liver model for the clinicians to locate the tumor in the pre-

operative stage, and selected the biopsy plane (chapter 3). After that, real-time 

ultrasound images, containing the image of the injected simulated tumor, 

which was tracked by the motion tracking algorithm, and the trajectory of the 

needle, were continuously shown on the screen for needle guidance (chapter 2). 

Finally, the biopsy procedure, which had been experienced by the clinicians in 

the phantom experiment before, was guided and accomplished by the needle 

holder (chapter 4). As mentioned in the chapter 1, respiratory liver motion is a 

complicated issue to be solved, and works should be done in multiple aspects, 

such that we have developed several related techniques, and described them in 

various chapters. From this experiment, the connectivity of various chapters is 

clearly shown.  

5.6 Limitations 

For the limitation of this proposed work, it is worth mentioning that the 

biological properties of the proposed Vaseline-based mixture materials are far 
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from those of real tumor tissue, so proof the functionality of our developing 

guidance system on the proposed Vaseline-based mixture material via the ex-

vivo and in-vivo experiments does not guarantee its outcome in real medical 

biopsy, if the real liver lesions (targets) appear not as clear. However, it is not 

our goal to create a kind of simulated tumor mixture whose biological 

properties have to be similar to those of real tumors. In fact, our goal is to 

develop a practical and easy way to create simulated (injectable) tumor inside 

liver, which is visually similar to real tumors, and make sure it can be most 

easily located in ultrasound image. We need solid evidence to prove a 

successful or unsuccessful biopsy attempt, such that we know whether our 

tracking algorithm is accurate enough to guide the biopsy, or whether the 

mechanical module of the biopsy system is precise enough to guide the biopsy 

needle. The basic requirement for this simulated target is that it must be 

visually differentiable in US image, and we have proved that the proposed 

Vaseline-based mixture material with barium sulfate provides the best visual 

guidance during biopsy when compared to other selected materials. Whether it 

biologically being similar to the real tumors or not, is none of our concern in 

this chapter. 

5.7 Conclusion 

The described Vaseline-based mixture is a novel approach to creating solid 

intrahepatic simulated tumors. When compared with the more widely-used 

agar-based method, it offers various advantages. This model offers a valuable 

adjunct in the development and assessment of novel, minimally invasive 

surgical techniques. 
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CHAPTER 6. SUPPLEMENTARY WORK: A 
QUANTITATIVE EVALUATION FUNCTION FOR 3D 
TREE-LIKE STRUCTURE SEGMENTATIONS IN 
LIVER IMAGES  

 

 

 

 

 

 

 

 

 

The analysis of vascular structure from volumetric datasets plays a crucial 

role in many medical applications. This Chapter describes a supplementary 

work, on quantitative evaluation of vascular segmentations in liver images. 

The significance of this work is discussed. 

The following was first published in: C Li, J Wu, Y Chi, J Liu, Q Tian, H Yu, 

‘A quantitative evaluation function for 3D tree-like structure segmentations in 

liver images,’ Computer Methods in Biomechanics and Biomedical 

Engineering: Imaging & Visualization, pp. 1-9, 2014. 
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6.1 Introduction 

Nowadays, an accurate analysis of human organ vascular system in 

volumetric image data is gaining increasing importance for a wide variety of 

medical applications. Precise knowledge of the morphology and structure of 

human organ vascular system allows for quantitative diagnosis, surgical 

planning, surgical navigation and outcome assessment, as well as for 

monitoring of the progression of vascular diseases [154]. 

Although many algorithms have been designed for vessel segmentations in 

different organs such as liver [155-165] and lung [166-171], there has been no 

clear investigation about evaluating the effectiveness of these algorithms, 

especially in 3D situations. In most cases, the evaluation section of vessel 

segmentations in any organ has not been emphasized, or the quality of the 

results is only manually assessed by the specialists, which sometimes is too 

subjective. Without clear evaluating rules of various segmentation results, 

researchers will have difficulties in improving their segmentation algorithms. 

Moreover, keeping consistent high quality of manual evaluation on large scale 

of segmentation results is always impossible due to time and energy limitation 

of human being, so it is important to find an effective and generally applicable 

method to achieve automatic evaluation on various tree-like structure 

segmentation data. 

In order to investigate automatic evaluation algorithms for such purpose, we 

have also looked into the retinal vessel segmentation area, where most of the 

evaluation methods are only suitable for 2D cases, but the evaluation issue is 

much more emphasized [172-175]. To our best knowledge, the evaluation of 
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these vessel segmentation algorithms has been conducted by using general 

pixel (2D) based measures (or known as binary image similarity measures) 

such as the accuracy (Acc), sensitivity (Se), specificity (Sp), or on the other 

hand, by using distance based measures (in 2D) like mean squared error 

distance (MSE), Hausdorff distance (H) [176], and figure-of-merit (FOM) 

[177]. However, pixel(2D)/voxel(3D) based measures only make use of the 

number of correctly and incorrectly classified pixels/voxels, while distance 

based measures utilize the position of mis-segmented pixels, but most of them 

are not suitable in 3D cases due to the limitation of the method itself or huge 

computing cost. Moreover, most of those methods are used without taking into 

account the subjects' properties of structure or topology, which in this case is 

the 3D tree-like structure of the liver vessels. For the methods that have taken 

into account subjects' properties of structure or topology, they are all dealing 

with the 2D segmentation cases, thus none of them are very suitable for the 

evaluation of  vessel segmentations in 3D situations. Gegúndez-Arias 

proposed a function for quality evaluation of retinal vessel segmentations (2D) 

[174], which used three independent metrics to describe the retinal vessel 

features and assess the overall quality of segmentation results based on the 

value of these three metrics. But directly applying their method into 3D cases 

will face difficulties such as 2D-based theoretic limitations and huge 

computational cost from morphological operators on the 3D vessel trees 

volume. Inspired by their approach, we developed four independent metrics, 

and made them suitable in 3D situations by providing more efficient 

calculations. Generally speaking, one quantitative function to achieve the 

evaluation of overall qualities of segmentation results is not always possible, 
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and we believe the design of several independent metrics to evaluate their 

respective properties of the segmentation results is necessary and a proper way 

to accomplish this task. 

In this study, we propose a quantitative evaluation function enables general 

vascular segmentation assessment based on its tree-like structure. Specifically, 

four independent metrics focusing on the connectivity, overall 

shape/correctness, skeleton structure, and branches structure error of the tested 

3D volume make this function sensitive to tree-like structure features. On the 

other hand, this is a general evaluation method suitable for any algorithms 

aiming at 3D tree-like structure segmentations in liver images with large scale 

of testing data. Moreover, it may be regarded as a helpful guideline for 

improving or adjusting the performance of 3D tree-like structure segmentation 

algorithms, especially for those involved with parameters, because larger 

function value suggests better parameters settings of the algorithms.  

6.2 Description of QEF 

This QEF is based on four independent metrics aiming at evaluating four 

different aspects of vascular tree features of segmentation results with respect 

to their corresponding ground truth. The selected features can be considered as 

key factors of any tree-like structure.  

Figure 6.1 below shows how this QEF works. The input of the evaluation 

function is the segmented data by any segmentation algorithm to be valuated, 

and the output is the result of QEF 
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Figure 6.1 Flow-chart to show how this quantitative evaluation function 

works. 

Here, denoting S as the segmentation result to be evaluated, and Sg as the 

reference segmentation ground truth, these four metrics are defined within the 

[0, 1] interval as follows. 

 Connectivity (C): This metric assesses the fragmentation degree 

between segmentation result and reference segmentation ground truth. 

Since the vascular tree should be a connected structure, proper vascular 

segmentation is expected to have only few connected components 

(ignore the capillary network, ideally two for the liver veins: one for 

portal vein tree, the other for hepatic vein tree). This metric compares 

the number of connected components in S and Sg with regard to the 

total number of segmented voxels in Sg [174]. 

Mathematically, it is defined as 
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where min is the minimum function, *C(Sg) and *C(S) stand for the 

number of connected components in Sg and S, respectively, and # Sg 

denotes the cardinality of Sg. For the purpose of simplicity, 

segmentation is referred to the set of vessel voxels exclusively, which 

means the set of background voxels is excluded. 

 Overlap Volume Ratio (O): The calculation of the overlap ratio 

between segmentation result and reference segmentation ground truth 

is a direct and effective way to assess the quality of segmentation 

results. Obviously, higher overlap volume ratio indicates higher 

matching degree of the segmentation result and reference segmentation 

ground truth. This metric, based on the Jaccard coefficient [178], 

evaluates the overall shape/correctness of the segmentation result. It is 

defined as 
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where \ is the intersection operator. For example, A\B is the set of all 

object voxels belonging to A but not B. 

 Skeleton Coincidence (S): Skeleton represents the key structure of 3D 

volume. In some extreme cases as shown in Figure 6.2, the overlap 

volume ratio of two volumes could be high, but their skeletons could 

be significantly different. So it is necessary to identify this kind of 
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extreme cases by comparing the skeleton volume of S and Sg. This 

metric, partially based on Jaccard coefficient (Jaccard, 1901), measures 

the skeleton overlap volume ratio between segmentation result and 

reference segmentation ground truth. It is defined as 
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where sv(A) represents the skeleton volume of A. 

 

Figure 6.2 One example to showcase the situation where the overlap volume 

ratio of two volumes is high, but their skeletons are significantly different. Red 

line (with width) represents the skeleton of the volume. 

 Branches Structure Error (B): This metric evaluates the structure 

error of each identified branch piece between segmentation 

result and reference segmentation ground truth at different 

branch level. For lower branch level branch pieces, the structure 

error contributes more to the total error calculation, because they 

are the main parts of the vessel tree and of important interest to 

clinicians. The metric is defined as 
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where  DS  and  gDS  represent the diameter of branch piece of 

segmentation result and reference segmentation ground truth 

respectively; i is the branch level; j is the branch ID number of each 

branch at certain branch level. Note that when calculate this metric, the 

root points of the vessel trees need to be manually selected. 

Figure 6.3 shows the branch level division and branch pieces of a 

typical tree-like structure. 

 

Figure 6.3 Branch level division of a typical tree-like structure: Red circle 

identify the root of this tree; Black color branch: level 1 (i=1); Blue color 

branch: level 2 (i=2); Green color branch: level 3 (i=3); Orange color 

branch: level 4 (i=4). 

According to these four independent metrics, a function f is defined to 

be monotonically increasing as 
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where 

   1,0,,,  COSBBSOCBSOCf         (6.6) 

The product of these four independent metrics C, O, S and B was chosen 

here because it preserves equal weight of each metric in f . This definition 

indicates that those four metrics are equally important. The extreme f  values 

0 and 1 denote the worst and best segmentation results, respectively. 

6.3 Validation of QEF 

This subsection shows one example of how COSB performs on one set of 

liver vessel segmentation data. This example illustrates and highlights certain 

outstanding properties of our QEF, and can be considered to serve the purpose 

of verifying its validity as well. Here, the segmentation results have been 

visualized using MIUE [114]. 

The testing example used in this section, as shown in Figure 6.4 (A)-(D), are 

the segmentation results from same contrast enhanced CT-Scan data, while 

Figure 6.4(A) was generated by a medical imaging specialist with ten-years 

experiences using MIUE [114] and verified by a radiologist. Specifically, the 

medical imaging specialist generated an initial result by segmenting a CT 

volume using image processing techniques, e.g. thresholding. The radiologist 

compared the segmented result with the CT scan and gave the advices on how 

to improve the initial result. Accordingly, the medical imaging specialist 

revised it manually using image edit tools. The result was not revised until it 
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was accepted by the radiologist. The final verified result becomes the ground 

truth. Figure 6.4 (B)-(D) were generated using context-based voting algorithm 

[179] under different thresholds. 

 

Figure 6.4 One example of segmentation results to show the properties of 

COSB and for its validation. (A): Reference-standard. (B)-(D): Segmentation 

results under different threshold setting. In red color: hepatic vein; green 

color: portal vein; black color in (C): ungrouped vessel pieces. 

The metrics of C, O, S, B, and function f , expressed in (1)–(4), and (6), 

respectively, were calculated for volume (B), (C), and (D), taking volume (A) 

as reference segmentation ground truth. The values obtained are presented in 

Table 6.1, and show significantly differences between the tested segmented 

volumes. From the figure we can see that volume (B) is very similar to 

reference volume (A), since it has high matching degree of the hepatic and 

portal vein volume with the reference standard ground truth, so (B) got the 

biggest values in O, S and B among the three tested volume. In terms of vessel 

detection and extraction, the result of (B) and (C) are close to each other. 

However, we intentionally kept some ungrouped vessel pieces in (C), which 

results in (C)'s lower value in metric C (Connectivity) when compares with 

(B). On the other hand, although (D)'s property of connectivity is very nice 

(metric C=1), there are many portal and hepatic vessel branches missing in (D). 
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Those are key loss of a vessel segmentation result, and thus result in the 

lowest COSB value (0.42) for (D), because three (O, S and B) out of four 

measured features have been penalized. In this way, based on the value of 

COSB, we can evaluate the quality of 3D tree-like structure segmentation 

results quantitatively. 

Table 6.1 Quality evaluation values for the vessel segmentation shown in 

Figure 6.3(B)-(D) taking (A) as reference standard ground truth 

Segmented 

Volume 
C O S B COSB 

B 0.99 0.79 0.83 0.98 0.63 

C 0.98 0.78 0.80 0.98 0.60 

D 1 0.64 0.71 0.93 0.42 

 

In addition, making use of this example, we can also obtain the connection 

between COSB values and human scored evaluation results. A group of 20 

human observers (Scientists, post-docs, research engineers at Singapore Bio-

Image Consortium (SBIC), Agency for Science, Technology and Research 

(A*STAR), Singapore, and graduate students from Department of Biomedical 

Engineering / Department of Electrical and Computer Engineering / School of 

Computing, National University of Singapore (NUS)) were asked to rank the 

quality of volume Figure 6.4 (B)–(D) with respect to the reference standard 

volume Figure 6.4 (A). Here we asked them to focus on the differences of 

volume. In the end, all the human observers evaluated volume (B) as the best 

segmentation, and volume (D) as the worst. This human observation result can 
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be explained by the facts that the segmentation of volume (B) preserves most 

of the vessel details visualized in reference standard volume (A) while, on the 

contrary, (D) keeps the least. On the other hand, although (C) was affected by 

the ungrouped vessel pieces, it was still considered more valuable than 

segmentation of volume (D) because the fact that there are key vessels missing 

in segmentation (D) degrades the visual perception of quality more than those 

ungrouped vessel pieces in (C). As shown by the values in Table 6.1, this 

human observation result matches the calculation of COSB results. Moreover, 

this session can be regarded as the training session for the following main 

experiments as well. 

6.4 Experimental Results and Discussion 

The example presented in the section of validation of QEF proves that the 

values of COSB on testing liver vessel segmentations have abilities to show 

good correlation with human quality perception. In this section, we calculate 

the value of COSB and other widely-used QEFs including sensitivity (Se), 

specificity (Sp), and accuracy (Acc) on real liver vessel segmentation datasets 

to compare their respective matching degree with human quality perception. 

Obviously, the function which provides the best correlation with human 

quality perception can be considered as the best evaluation function for this 

assessment task. 

The procedure applied in this section can be summarized as follows. Eight 

liver vessel segmentation results generated using context-based voting 

algorithm [179] under optimized threshold were selected for the experiment. 

Same group of 20 human observers were asked to score the quality of liver 
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vessel segmentation results compared with their respective reference ground 

truth within the [0, 1] interval, where 0 and 1 denote the worst and best quality 

of the results, respectively. By doing this, human scores (HS) for the 

segmentation results representing subjective human quality perception can be 

obtained. Next, the values of COSB and other QEFs were calculated for the 

same segmentation results as well. Finally, all the values of QEFs and human 

scores were compared to measure the matching degree between them, and in 

this way, the correlation between the performance of subjective evaluation 

(provided by HS) and performance of objective evaluation (provided by 

QEFs) can be obtained. 

Figure 6.5 shows the set of liver vessel segmentation results corresponding 

to their respective ground truth used for the experimentation. In the first and 

third columns ‘CT01-08_GT’ represent the ground truth generated by a 

medical imaging specialist with ten-years experiences using MIUE [114] and 

verified by a radiologist, while in the second and fourth columns ‘CT01-

8_Rst’ represent their respectively segmentation results. According to the 

analysis of 20 human observers, the performance of the segmentation 

algorithm under different thresholds on the selected data can be briefly 

summarized as follow. 



  128

 

Figure 6.5 Eight groups of liver vessel segmentation results to test the 

performance of COSB and other commonly-used QEFs (Se, Sp, Acc). CT01-

08_GT: Reference-standard ground truth. CT01-08_Rst: Segmentation results 

using context-based voting algorithm. In red color: hepatic vein; green color: 

portal vein. 
 

CT01_Rst: performed very well in portal vein, but missed some vessel 

details at the tip-end. The segmentation algorithm grouped some hepatic vein 

as portal vein. 

CT02_Rst: performed better in portal vein than in hepatic vein. Some 

missing vessel voxels observed near the hepatic vein tree root point area.  
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CT03_Rst: performed better in portal vein than in hepatic vein, but missed 

some vessel details at the tip-end of portal vein. The segmentation of the 

hepatic vein was not so good, because one of the main branches was missing. 

CT04_Rst: performed poorly in both portal vein and hepatic vein. The 

segmentation algorithm failed to extract the proper vessel shape. When 

compared with the origin CT scan data, we found that the poor performance 

area was actually affected by the tumor.  

    CT05_Rst: missed some vessel details at the tip-end of both hepatic and 

portal vein. The middle upper area was affected by the tumor.  

CT06_Rst: performed better in hepatic vein than in portal vein. Some vessel 

details at the tip-end of portal vein are missing. The middle lower area was 

affected by the tumor.  

CT07_Rst: performed poorly in middle upper part of portal vein and hepatic 

vein, as well as the area near the hepatic vein tree root point. Some hepatic 

vein found in the upper left area was found being grouped wrongly. 

CT08_Rst: did not perform well in the middle upper area of both portal vein 

and hepatic vein. The performance of lower area was better.  

The results of the experiment are presented in Table 6.2. From the table we 

can see that the Se, Sp, Acc values of those eight tested data are quite close, 

and more importantly, without a clear order that can suggest the segmentation 

qualities of the data. In other words, if the doctors or medical image users only 

analyze the value of Se, Sp, or Acc, it is very hard for them to assess the 

qualities of segmentation results, or decide which segmentation result should 

be the best or the worst. On the other hand, the values of COSB show 
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significant differences between the eight groups of tested data. This table also 

shows the average value of the human scores (HS) given by the 20 human 

observers for each segmentation results in the last column. When comparing 

the COSB values with the average human scores (HS), we found they are 

highly matched. The calculation shows that the COSB values are very close to 

the HS values, and the average value of relative errors is only 7.3% over all 

the 8 datasets. However, the Sp or Acc values did not show much relevance to 

the average human scores. Note that the Se value also showed some 

correlation between the averaging human scores (HS), but the average value of 

relative errors is 20.5% over all the 8 datasets, which is much larger than 

COSB. 
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Table 6.2 Quality evaluation values for the vessel segmentation shown in 

Figure 6.4. a R: Resolution, D: Dimension, b Se: sensitivity, Sp: specificity, Acc: 

accuracy. 

 

The correlation between COSB, other QEFs and human scores denoting 

human quality evaluations can be also visually checked in Figure 6.6. From 

the figure we can see that the Acc (yellow) and Sp (brown) lines are far away 

from average HS (blue) line, and both COSB (pink) and Se (cyan) lines show 

correlation between average HS (blue) line, but COSB line is closer regarding 

to the overall trend.  
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Figure 6.6 Averages of human scores (HS), Acc, Se, Sp and COSB values on 

eight groups of segmentation results. 
 

Therefore, the analysis of the results in this experiment concludes that 

COSB provides the best correspondence with human perception when 

compared to the other remaining tested QEFs. 

6.5 Limitations 

Since this work was dealing with several patients’ CT data, theoretically the 

real ground truth date set, which is the subject-specific liver vessel 

segmentations, is not available. Usually we can only make use of the manually 

segmented data set by the clinicians as the assumed ground truth. However, 

this assumed ground truth is only an approximate result due to technology 

limitations, operational errors, and time constraint. Although they are the best 

reference results we can get so far, there are still some methods to improve it. 

One possible way is to utilize liver vessel phantoms with known ground truth 

to valid a segmentation algorithm using our proposed evaluation function.   
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6.6 Conclusion 

3D tree-like structure segmentation in human organs plays an important role 

in the diagnosis of organ tumors, surgical planning, surgical navigation, and 

other related medical applications, but only a few researchers have realized the 

problem of how we should evaluate the effectiveness of those numerous 

segmentation algorithms proposed over the past few years. In addition, in 

terms of US image guided biopsy application,  it is also important to identify 

major blood vessels in liver before biopsy so that the biopsy need will not 

puncture them. So far, most evaluation functions have not considered the 

vasculature of human organs as tree-like structures with specific features, and 

have only been applicable to 2D situations. In this Chapter, we propose a 

quantitative evaluation function for 3D tree-like structure segmentations in 

liver images, with the purpose of overcoming the above-mentioned limitations 

of existing QEFs, and providing valid evaluation results. In section 6.3, this 

proposed function, evaluating the degree of connectivity, overlap volume ratio, 

skeleton coincidence, and branches structure error in a segmented volume with 

respect to its ground truth, has been proved to be sensitive to the structural 

changes in one series of segmented volume data, and to accurately reflect the 

quality of segmentation results with its value. From the results of all 

experiments in section 6.4, we conclude that COSB achieves the highest 

matching degree with human quality perception, when compared to other 

widely used quality evaluation functions, and thus is the most suitable 

quantitative evaluation function for 3D tree-like structure segmentations in 

liver images. 
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Although this proposed function was designed for quality evaluation in the 

case of segmentations in a specific 3D tree-like structure, it is very important 

to note that this method is independent with the segmentation algorithm 

applied, which means it is clearly result-oriented, focused only on the 

segmentation results; this means it has very high potential to be applied to any 

3D segmentation algorithm evaluation. Moreover, we believe this quantitative 

evaluation function is also suitable for the segmentation evaluation task of 

other tree-like structures in the human body, such as lung vessels, bronchial 

vessels, cerebral blood vessels, and so on. Even for the cases to which this 

method may not be applicable, the applied concept of measuring descriptive 

features of specific structure may still be useful in designing other specialized 

QEFs. Furthermore, based on the different function values on the same set of 

data under different parameter(s) settings, COSB can suggest the best possible 

parameter(s) settings for optimization, as long as the segmentation algorithm 

applied is involved with the parameters. Finally, we think this proposed 

method is also a good approach for the evaluation of quality in 3D tree-like 

structure modeling. 

In summary, the novelties of this work are listed as follows, when compare 

to the state of art: (1) the proposed quantitative method for evaluating the 

effectiveness of 3D vessel segmentation algorithms is novel [172-175]; (2) 

The design of evaluation metrics with consideration of vasculature of human 

organs as tree-like structures with specific features is novel [172-177]; (3) 

This proposed method is strictly result-oriented and suits for the evaluation of 

any tree-like structures segmentation algorithms [165-171].  

 



  135

 

CHAPTER 7. CONCLUSION AND 
RECOMMENDATIONS FOR FUTURE WORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions and recommendation for future work are summarized in this 

Chapter. 
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7.1 Contributions 

In this PhD project, we have developed several novel techniques for US 

image processing, phantom study, and experimental study parts to explore 

practical solutions for the respiratory liver motion issue, and hence to improve 

biopsy efficiency and accuracy, directly or indirectly.  

First, a novel, fast, and robust respiratory signal extraction algorithm from 

real-time 2D ultrasound image sequences has been applied to identify the 

respiratory phase of the liver. This algorithm is able to extract the respiratory 

signal from an image sequence of 256 image frames in 5 seconds; the 

extracted respiratory motion near the liver boundaries and vessels area is 

highly consistent with the ground truth, revealing the fact that this method can 

also be applied in liver boundary or internal landmark tracking, by merely 

using a 2D ultrasound image.  Considering the cost-effective requirement for 

most of the developing biopsy systems nowadays, our method provides a 

feasible solution for replacing extra commercial tracking devices. In addition, 

identification of the respiratory phase is useful and valuable, in enabling more 

complicated algorithms for further processing of the 2D US image data. 

Second, a novel method for generating a subject-specific and respiration-

corrected 4D ultrasound liver model has been developed. Since both the 

overlapping error of the liver boundary and the overall distance error of the 

pinpointed landmarks were within the acceptance range of clinical 

applications, it can be concluded that the sequences of respiration-corrected 

3D image volume created by our method can precisely capture liver motion – 

meaning clinicians can utilize this preoperative subject-specific liver motion 
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information to improve diagnostic accuracy by predicting the existence, or 

possible position, of a tumor. 

Third, a novel dynamic liver phantom, which can be applied as a liver 

motion simulator, has been designed for the development and validation of an 

image-guided biopsy system. This phantom is capable of providing stable and 

repeatable movement cycles under different sets of parameters, such as length 

of strike, and velocity of the pushing plate to simulate subject-specific 

respiration. With our dynamic phantom being used in experiments, some 

difficulties that could present themselves in the real situation of biopsy 

practice would very likely be reproduced and realized in advance by the 

researchers and engineers. This phantom not only reduces reliance on living 

subjects – thus avoiding the potential harm of testing devices on living 

subjects – but also makes it possible to conduct a large amount of tests, if 

needed. 

In addition, a unique Vaseline-based technique for easy creation of 

simulated tumors of different sizes inside porcine livers has been proposed to 

obtain ideal testing subjects for US image-guided biopsy study. Our method 

offers various advantages when taking into account the time and effort 

required to produce a tumor model and apply it in experiments, and a 

successful biopsy rate on our proposed simulated tumor, when compared with 

the commonly used agar-based technique. All the materials needed for our 

method are non-toxic and can be bought at low cost. This technique offers a 

valuable adjunct in the development and assessment of biopsy devices and 

system. 
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In summary, the primary contributions of this thesis are listed as follows: 

(1) An algorithm to extract the respiratory signal from real-time 2D US 

image sequences for the purpose of identifying the respiratory phase of the 

liver; (2) A method to generate a subject-specific and respiration-corrected 4D 

US liver model; (3) A dynamic liver phantom to validate an image-guide 

biopsy system; (4) A Vaseline-based technique for easy creation of injectable 

simulated tumors inside porcine livers to obtain ideal testing objects for US 

image-guided biopsy system at low cost . 

It is also worth mentioning that with the application of above mentioned 

techniques, how they can help to improve the treatment of biopsy in an 

integrated manner.  From the aspect of biopsy system design, the use of US 

probe arm (probe holder) helps pre-operative US image acquisition and real-

time intra-operative planning and navigation as well, which, is linked to the 

techniques in (1) motion tracking and (2) 4D US imaging. On the other hand, 

the use of needle arm (needle holder) helps the clinicians to insert the biopsy 

needle in the experiments or during the treatment, which, is linked to 

techniques in (3) phantom test and (4) biopsy accuracy evaluation.  

The overall solution is illustrated in Figure 7.1.   
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Figure 7.1 Solution with proposed techniques in an integrated manner 

 

7.2 Recommendations for future work 

The ultimate goal of this study is to provide a practical solution for the 

clinicians to handle the issue of respiratory liver motion, and thereby improve 

the efficiency of diagnose and accuracy of the biopsy treatment, by developing 

US-based tracking algorithm and US-image guided biopsy system, and 

applying them in an integrated way in the practice. It requires works to be 

done in multiple aspects to achieve this ultimate goal, and however, some of 

them are beyond this thesis, for example the design of the biopsy system. In 

this thesis, we have tried to solve the complicated liver motion problem in 

various directions, as predescribed. These efforts have been extensive, but are 

not exhaustive. Apart from the works I finished in the thesis, there are still 
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some future works to be done in each sub-project to get closer to the ultimate 

goal. The recommendations for future work are listed as follows. 

In respiratory signal extraction, we plan to perform more detailed validation, 

on more subjects, with both normal and abnormal breathing patterns, and to 

further demonstrate the high relevance of special parts (such as the liver 

boundary and vessels) with respiration. We also plan to propose a robust 

method to automatically identify these special parts from intra-operative US 

images, and extract their respiratory signal as a valid surrogate. In addition, 

more kinds of searching algorithms could be applied to see if they can 

improve the searching efficiency.  

In subject-specific liver modeling, since a strictly ground-truth respiratory 

signal is in general not available, the EM-tracked signal is instead applied as 

the reference for picking EE/EI pairs, thus generating ground truth image 

sequences for evaluation. Our next step is to acquire data on the dynamic liver 

phantom with known motion [180], and evaluate the accuracy of the suggested 

method. Further, the technique for easy creation of simulated tumors, together 

with the dynamic liver phantom, could provide a good testing subject to assess 

if the moving target can accurately be visualized using our proposed imaging 

and modeling method. In addition, we also plan to conduct more experiments 

on the patients, such that the subject-specific motion information of the real 

tumors can be observed and analyzed.  

In phantom study, more experiments could be done to ascertain real liver 

deformation, and determine a regular pattern of this at predetermined locations. 

Deformation of the liver is irregular, or non-linear, due to the difference in the 

shape of the organ’s different parts, as we can conclude from the paths of the 



  141

deformation of the liver provided by the 3 different markers. The experiment 

could be repeated with additional points closer to the 3 different positions used, 

to test if some of the areas have the same deformation pattern, especially those 

near to each other. From there, it could be possible to estimate the trend of a 

particular point or area of the liver.  

In experimental study, more kinds of materials could be tried and tested to 

determine their capability and suitability for being the target of biopsy study. 

We are hoping to be able to explore and discover new combinations of 

materials that can be more easily produced and detected under US image. 

Moreover, since the biological properties of our proposed Vaseline-based 

mixture materials are far from those of real tumor tissue, when we explore the 

new materials, we could investigate their biological properties and 

sonomorphological characterizations as well, in the future work.  

By applying these future works together in the future tests, the developing 

biopsy system can be better validated, until it achieves accurate biopsy under 

various conditions, and finally meets all the requirements for clinical trails, 

thereby reach the ultimate goal of this study. 
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