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SUMMARY 

After a decade of international whole genome endeavors, common patterns of 

genetic variations of the human genome are catalogued through microarrays 

genotyping. With the advent of next generation sequencing platforms, an 

overwhelming majority of novel variants identified by whole genome 

sequencing are of lower frequencies, encouraging the array-based follow-up 

studies emphasizing on low frequency and rare variants. Besides, next 

generation sequencing facilitates population genetics research by providing 

fine-scale haplotype sequence of individual genome that contains all forms of 

polymorphisms, linkage disequilibrium information and patterns of genetic 

variations.  

 

The first study in this thesis investigates the microarray genotype calling issue 

for low frequency and rare variants. Existing genotype calling algorithms are 

developed mainly for common SNPs and present many problems for rare 

variants. In this thesis, we design and introduce a new method, iCall, for a 

robust genotyping of common, low-frequency and rare SNPs, and we show 

that iCall outperforms existing genotype calling algorithms. 

 

The second study in this thesis continues the theme of investigating the impact 

that sequencing technologies bring to genetics research. Specifically we 

evaluate existing methods for estimating the divergence time of closely related 

populations. This considers and compares genetic data obtained from 

genotyping and sequencing, and evaluate the relative performance of the 

different methods in terms of their robustness and accuracy through a series of 
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simulations under different demographic scenarios, followed by estimating the 

population divergence time between Southeast Asian Malays and South Asian 

Indians. 
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CHAPTER 1.   INTRODUCTION 

1.1 High Throughput Genetics Era 

In modern genetics, the invention of cloning and sequencing technologies 

utilizing recombinant DNA has enabled us to understand and study the nature 

of genetic information directly [1-3]. The molecular basis for genes is 

deoxyribonucleic acid (DNA) that consists of nucleotide sequences for known 

or unknown cellular functions or processes. The nucleotide sequences are read 

and translated by cells to produce amino acid sequences which in turn fold 

into proteins. The genomes of any two individuals are about 99.9% identical 

remaining 0.1% DNA sequence variation is largely attributed to: (i) single 

nucleotide polymorphisms (SNPs), also called markers, referring to single 

base changes in the human genome sequence [4]; and (ii) structural variants 

comprising of genomic alterations such as copy number polymorphisms, 

insertions, deletions and duplications [5]. SNPs are notably the most common 

genetic variation [6]. A large majority of the SNPs has a minimal impact on 

biological system, whereas a few SNPs can be functional, causing changes in 

amino acids, mRNA transcriptions and translations [7].  The human genome 

contains millions of SNPs and all of which can potentially contribute to cell 

function [8]. High throughput techniques leverage automation to quickly assay 

the human gene that encompass from the target regions to the whole-genome. 

It makes the unfinished genomic sequence data rapidly available to the 

researches. 

 

The field of human genetics has developed rapidly in the past decade. It is 

highly encouraged by the development of the genomic mapping technology, 

http://en.wikipedia.org/wiki/DNA_sequence
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from genome-wide linkage mapping to low and high throughput single 

nucleotide polymorphism genotyping, and the most recent high throughput 

genome sequencing [9]. With the advent of cost-efficient technology, it is now 

feasible to generate and analyze terabytes of genetic data to investigate gene 

association with complex diseases, the biological processes of DNA 

inheritance and evolutionary histories of human populations.   

 

The first two generations of linkage maps were restriction fragment length 

polymorphisms (RFLPs) and microsatellites, and both covered only hundreds 

of polymorphic markers on each platform. The third generation linkage map, 

SNP genotyping (also called microarray genotyping), emerged in the mid 

1990s and was first used to study genetic variation in 2000 [10]. Microarrays 

developed rapidly during the course of the last decade, covering from tens of 

thousands to several million polymorphism markers of, which marks the 

epoch of high throughput genetics.  

 

The International HapMap Project (HapMap) is a multi-country effort, 

launched in 2002, with aims to catalogue common patterns of genetic 

variations through microarray genotyping. In 2008, the HapMap project 

catalog contained 3.5 million common SNPs across 11 populations around the 

globe. It investigated the linkage disequilibrium (LD) structure of human 

genome, guided the design of genetic studies and was the key resource for 

researchers to find genetic variants affecting health as well as investigate 

population diversity and population structure.  
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The design of microarrays has depended on existing information about genetic 

variants in the human genome, and this has resulted in a greater propensity to 

include genetic variants that are more likely to be polymorphic across multiple 

populations than genetic variants that are of lower frequencies or rarer. As a 

result, the coverage of genotyping microarrays is skewed in favor of common 

variants. The advent of next-generation sequencing (NGS) brought a more 

comprehensive discovery of low-frequency and rare variants. NGS sharply 

reduced the cost of sequencing and has enabled rapid sequencing of large 

stretches of DNA base pairs spanning entire genomes.  

 

The 1000 Genome Project (1KGP) is an international genetic research effort, 

launched in 2008, aiming to establish the most detailed catalogue of human 

genetic variation. More specifically, 2500 individuals from populations of 

Asian, European, African, and American ancestry will be sequenced and 

information on variants with frequencies down to 1% can be gathered. To 

date, 1KGP has provided a deep characterization of human genomic 

variations, which brings an unprecedented opportunity to study population 

evolution.  

 

1.2 Genotype Calling 

 
Figure 1. Illustration of a biallelic SNP. 

Genotype calling is the process of determining the genotype of an individual at 

each SNP. Most typical SNPs are biallelic, with two possible alleles 

segregating in a population (Figure 1). Mendelian inheritance states that every 

http://en.wikipedia.org/wiki/Human_genetic_variation
http://en.wikipedia.org/wiki/Human_genetic_variation
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individual contains a pair of alleles for each particular trait (assuming 

diploidy). Hence if we let 𝐴 and 𝐵 represent generically the two possible 

alleles, a biallelic SNP has three possible genotypes: 𝐴𝐴, 𝐴𝐵, 𝐵𝐵.  

 

High throughput genotyping of millions of genetic variants can be achieved 

by using pre-designed high density oligonucleotide microarray chips. On each 

chip, there are hundreds of thousands of probes of defined sequences so that 

many SNPs could be interrogated simultaneously. Matched probes as well as 

mismatched probes are included in the chip, both of which have the potential 

to hybridize to target DNA. To reduce the effect of erroneous hybridization, 

several redundant probes are used to interrogate each SNP. The genotype can 

be determined by comparing the differential amount of hybridization of the 

target DNA to each of these redundant probes [11].  

 

There are two major producers of oligonucleotide microarray chips, 

Affymetrix Inc. and Illumina Inc. Affymetrix introduced its microarrays, 

including GeneChip Mapping 10K Array, Mapping 100K Array, Mapping 

500K Array, Human SNP Array and Genome-wide Human SNP Array, 

between 2004 and 2009. The chip’s feature has improved over time, from only 

containing 10,000 markers to more than 1.8 million markers [12-16]. Each 

array consists of millions of 25 base pair oligonucleotide probes, which emits 

fluorescence at the fluorescent end when they bind to the target sequences. 

Each SNP is interrogated by five probe quartets, each of which consists of four 

pairs of perfect match and mismatch probes. Genotype can be called according 

to the pixel intensity of fluorescence for each SNP [13].  
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Illumina introduced its first microarray, the Human-1 Genotyping BeadChip, 

in 2005, followed by the HumanHap family and the Omni family, increasing 

their total dataset from 100,000 markers to 5 million markers. The latest 

microarrays, the Omni family, are characterized as high throughput 

genotyping arrays which provide access to newly discovered SNPs with lower 

frequencies [17]. Genomic markers are interrogated and detected through the 

process: (i) 50-mer probes hybridize to the loci of interest; (ii) marker 

specificity is conferred by enzymatic single-base extension to incorporate a 

labeled nucleotide; (iii) dual-color fluorescent measures the intensities of two 

alleles [18].  

 

The platforms offered by these companies differ in terms of array fabrication, 

probe design, sample preparation and hybridization protocol [19]. Hence, 

genotype calling algorithms are usually developed for specific platforms. 

These calling procedures are usually automated due to the massive scale of the 

genotyping and erroneous calls are possible. These erroneous calls have the 

potential to cause confounding in downstream studies [20]. Thus the 

development of accurate calling algorithms is an important topic of research.  

 

1.3 Linkage Disequilibrium 

Microarrays are predesigned with tagging SNPs according to existing genome 

annotations which are mostly common variants (minor allele frequency 

(MAF) ≥5%). Although genotyping microarrays contain an increasing number 

of markers, it is at present too expensive to directly interrogate all common 
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variants in the human genome to catalogue common patterns of genetic 

variations. 

 

Linkage disequilibrium (LD) refers to the non-random association between 

neighboring alleles resulting from coinheritance of genetic SNPs [21]. 

Assuming all the alleles descended from a single ancestral chromosome, new 

alleles differing from the ancestral chromosome arise from historical 

mutations [22]. Collections of specific alleles orderly arranged on 

a chromosome that are likely to be inherited together are called haplotypes 

[23]. New haplotypes are generated by mutations or recombination and the 

coinheritance of the haplotypes reflect LD structure. LD extends the promise 

of being able to survey the genome by choosing a minimal number of markers 

for each LD block as proxies.  

 

The extent and strength of LD is affected by genetic factors such as mutation, 

recombination and selection, as well as human demographic factors such as 

population structure and migration [24].  Hence research on LD is very 

important in understanding population evolutionary history [25, 26]. 

 

There are many measures formulated to assess the strength of LD. The genetic 

correlation coefficient 𝑟, the square of genetic correlation coefficient 𝑟2 and 

Lewontin’s 𝐷′ are commonly used [27, 28]. Consider the haplotypes for two 

biallelic loci, with allele 𝐴 and 𝑎 at one locus and allele 𝐵 and 𝑏 at the other 

locus. Let 𝑝𝐴, 𝑝𝑎, 𝑝𝐵, 𝑝𝑏 denote the four allele frequencies, and 𝑝𝐴𝐵, 𝑝𝐴𝑏 , 𝑝𝑎𝐵, 

 𝑝𝑎𝑏 represent the four haplotype frequencies.  

http://en.wikipedia.org/wiki/Allele
http://en.wikipedia.org/wiki/Chromosome
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The genetic correlation coefficient, 𝑟, is defined as: 

𝑟 =
𝑝𝐴𝐵 − 𝑝𝐴𝑝𝐵

 √𝑝𝐴𝑝𝐵𝑝𝑎𝑝𝑏 
 

Lewontin’s 𝐷′ is defined as: 

𝐷′ = {

𝑝𝐴𝐵 − 𝑝𝐴𝑝𝐵

min (𝑝𝐴𝑝𝑏 , 𝑝𝑎𝑝𝐵)
        if  𝑝𝐴𝐵 − 𝑝𝐴𝑝𝐵 > 0

𝑝𝐴𝐵 − 𝑝𝐴𝑝𝐵

min (𝑝𝐴𝑝𝐵, 𝑝𝑎𝑝𝑏)
         if  𝑝𝐴𝐵 − 𝑝𝐴𝑝𝐵 < 0

 

 

1.4 Rare Variants 

Microarray genotyping, facilitated by LD, successfully captures more than 

90% of genetic variation and was used to establish the linkage map of the 

human genome. However, microarray genotyping prioritizes common variants 

and is ineffective in discovering low frequency (1% ≤ MAF < 5%) and rare 

(MAF < 1%) variants. Because of next generation sequencing, it has become 

possible to directly sequence and formulate accurate haplotype information of 

human genome. A majority of rare variants is discovered by a variety of 

international sequencing endeavors.  

 

Rare variants show a systematically different and typically stronger population 

stratification than common variants, especially as rare variants are found to be 

more geographically localized and tend to be population specific. Studies 

show that rare variants can reveal fine-scale population substructures beyond 

those inferred by common variants [29], demonstrating that rare variants can 

contain more information about recent human population evolution than 

common variants.  
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1.5 Population Structure and Migration 

In out context, population structure (also called population stratification) refers 

to the systematic genetic variation in allele frequencies between populations. 

Human populations have gone through a complex migration and settlement 

process, and diverged into sub-populations with possible mating preference 

and restrictions such as geography, environment or social interaction. As a 

result of genetic drift or divergent natural selection, populations become 

genetically differentiated over time and the amount of genetic differentiation is 

related to the historical evolution process [30]. Studies show that genetically 

related populations are more likely to cluster geographically. Correlations in 

genotype data cluster well for continents of origin including Eurasia, east Asia 

and Africa [31, 32].  

 

1.5.1 F-statistics (𝐹𝑆𝑇) 

Quantifying patterns of human genetic variation across global populations is 

important in understanding the population structure. The F-statistics, first 

introduced by Wright in 1921, describe the partitioning of genetic diversity 

within and among populations and are the most widely used metrics to 

quantify and detect population structure [33]. The three interrelated parameters 

introduced are 𝐹𝐼𝑇 , 𝐹𝑆𝑇 , 𝐹𝐼𝑆, representing the correlation of genes within 

individual relative to in the combined population, of different individuals in 

the same population relative to in the combined population, and within 

individuals relative to within the population it belongs to, respectively. They 

follow the relation (1 − 𝐹𝐼𝑇) = (1 − 𝐹𝑆𝑇)(1 − 𝐹𝐼𝑆)[34]. 
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𝐹𝑆𝑇 is directly related to the variance of allele frequency among different 

populations [35]. A large 𝐹𝑆𝑇 value indicates significant differences in allele 

frequencies among populations and small 𝐹𝑆𝑇 value indicates similarity in 

allele frequencies among populations. At one locus, if natural selection favors 

one allele in one population, its 𝐹𝑆𝑇 value tends to be larger than other loci 

without selection. If natural selection favors one allele in both populations, its 

𝐹𝑆𝑇 value tends to be smaller than that of loci with pure genetic drift. Many 

estimations of 𝐹𝑆𝑇 have been developed with different assumptions about 

sample sizes or the number of populations. The most widely used estimation 

was introduced by Weir and Cockerham in 1984, which we used to estimate 

𝐹𝑆𝑇 in this thesis.  

 

Consider allele A. Let 𝑎, 𝑏, 𝑐 represent the variance of the frequency of allele 

A between populations, between individuals within populations, and between 

gametes within individuals, respectively, and 𝑝 represent the frequency of 

allele A in the ancestral population. The expectations of 𝑎, 𝑏, 𝑐 take the forms 

of [36]: 

E(𝑎) = 𝑝(1 − 𝑝)𝐹𝑆𝑇 

E(𝑏) = 𝑝(1 − 𝑝)(𝐹𝐼𝑇 − 𝐹𝑆𝑇) 

E(𝑐) = 𝑝(1 − 𝑝)(1 − 𝐹𝐼𝑇) 

Then estimates of the three F-statistics are given by: 

1 − 𝐹𝐼�̂� =
𝑐

𝑎 + 𝑏 + 𝑐
 

𝐹𝑆�̂� =
𝑎

𝑎 + 𝑏 + 𝑐
 

1 − 𝐹𝐼�̂� =
𝑐

𝑏 + 𝑐
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 𝑎, 𝑏 and 𝑐 can be estimated from a weighted analysis of variance [37]: 

𝑎 =
�̅�

𝑛𝑐
{𝑠2 −

1

�̅� − 1
[�̅�(1 − �̅�) −

𝑟 − 1

𝑟
𝑠2 −

1

4
ℎ̅]} 

𝑏 =
�̅�

𝑛 − 1̅̅ ̅̅ ̅̅ ̅
[�̅�(1 − �̅�) −

𝑟 − 1

𝑟
𝑠2 −

2�̅� − 1

4�̅�
ℎ̅ ] 

𝑐 =
1

2
 ℎ̅ 

where 

𝑝𝑖 is the frequency of allele A in the sample of size 𝑛𝑖 from population 𝑖 (𝑖 =

1,2, … , 𝑟), 

h̃𝑖 is the proportion of individuals heterozygous for allele A in population 

𝑖 (𝑖 = 1,2, … , 𝑟), 

�̅� = ∑
𝑛𝑖

𝑟𝑖  , the average sample size, 

𝑛𝑐 = (𝑟�̅� − ∑
𝑛𝑖

2

𝑟�̅�𝑖 )/(𝑟 − 1)  = �̅�(1 − 𝐶2/𝑟), with 𝐶2 denotes the squared 

coefficient of variation of sample sizes, 

�̅� = ∑ 𝑛𝑖𝑝𝑖/𝑟�̅�𝑖 , the average sample frequency of allele A, 

𝑠2 = ∑ 𝑛𝑖(�̃�𝑖 − �̅�)2/(𝑟 − 1)�̅�𝑖 , the sample variance of allele A frequencies 

over populations, 

ℎ̅ = ∑ 𝑛𝑖ℎ̃𝑖/𝑟�̅�𝑖 , the average heterozygote frequency for allele A. 

 

1.6 Population Divergence Time Estimation  

Population divergence is the process in which populations of the same 

ancestry accumulate genetic mutations independently over a period of time, 

producing sufficient genetic distinction between these populations as a result 

of an extended period of reproductive isolation. The population structure can 

be summarized by a tree showing the genetic distances between populations 
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and the history of population divergence [38]. The simplest population 

structure is isolation model (Figure 2 (a)), in which two random mating 

populations 1 and 2 with constant effective population sizes diverged 𝑇 

generations ago from an ancestral population. The isolation migration model 

(Figure 2 (b)) adds migration to the two populations after the original 

divergence. Although the assumptions of random mating and constant 

population size are not fully realizable, these two models are widely used by 

researchers to study and simulate human evolution.  

 
Figure 2. (a) Isolation model (b) Isolation migration model 

The inference of the divergence time between populations has been of 

fundamental interest in the study of population evolution. While there is a 

consensus around the origin and proliferation of modern humans in Africa, 

dated respectively at about 200,000 and 100,000 years ago, there have been 

several conflicting theories on the exact nature of modern human dispersal 

across the globe [39, 40]. The availability of genome-wide data by 

technologies ranging from genotyping to next-generation sequencing provides 

the unprecedented opportunity to study the anthropology and migration of 

modern humans that shaped the existing global distribution of human 

populations, in an evolutionary process driven by demographic changes, 

genetic drift and natural selection [41, 42]. Already, valuable insights have 

been derived from deep genetic surveys of populations in Africa [43, 44], Asia 

[45, 46], Europe [47], and the Americas [48].  
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Figure 3. ‘Out-of-Africa’ global migration history. Figure has been adapted 

from a similar figure in reference [49]. 

An early notable study on population divergence time was the ‘Out of Africa’ 

theory [40] (Figure 3). Early studies estimated population divergence time 

mainly based on molecular clock theory and mtDNA or Y chromosomes [40, 

50]. However, the assumption of molecular clock theory that mutations in a 

particular genetic system occur at a deterministic and steady rate is criticized 

for failing to take account of the stochasticity of gene drift. Although mtDNA 

and Y chromosome are convenient to use, they account for only a minority of 

the heritable sequences and contain much less evolutionary information owing 

to ancestral recombination events on autosomal chromosomes.  

 

Modern population genetics theories made improvement in considering the 

stochasticity and complex gene forces. Coalescent theory, developed 

independently by several researchers [21, 35, 51, 52] and formalized by John 

Kingman in 1982, is the most important theory now (see Section 3.2.1). It 

provides a stochastic model to trace all alleles in a sequence shared by all 

members of a population backward in time to a single ancestral copy. Based 

on coalescent theory, many methods have been developed to estimate 
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TMRCA (see Section 1.7.7), a reasonable surrogate of the population 

divergence time.  

 

1.7 Concepts in Population Genetics 

1.7.1 Mutation 

A mutation refers to a change in the nucleotide sequence in the genome, which 

can be a single base substitution, insertion or deletion. Mutation provides a 

continual source of genetic variation to a population that is passed on to 

subsequent generations. Many of these mutations are likely removed through 

the process of negative selection, while the remainder can accumulate to a 

high frequency in the population over time [41]. The rate of mutation is low, 

and independent estimates have suggested that the mutation rate in autosomal 

chromosomes is between 1.0×10-8 to 2.5×10-8 mutations per site per generation 

[53]. 

 

1.7.2 Recombination and Genetic Distance  

Recombination (also called crossover) refers to the genetic events that two 

chromosomes of a homologous pair exchange their genetic material and 

produce recombinant chromosomes during the formation of a gamete in 

meiosis. The expected number of crossovers between the loci per meiosis is 

used to measure the genetic distance of the loci. The unit of genetic distance is 

the Morgan (M) (or centiMorgan (cM)), referring to the distance within which 

an average of one crossover occurs for every meiosis (or every 100 meiosis). 

 

1.7.3 Random Mating and Hardy-Weinberg Equilibrium 

http://en.wikipedia.org/wiki/Nucleotide_sequence
http://en.wikipedia.org/wiki/Genome
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Random mating assumes that there are no mating preferences or restrictions 

such as environment or social interaction, and every individual has the same 

chance to mate with every other individual in the population. When an infinite 

large random mating population is free from other evolutionary forces, it is in 

Hardy-Weinberg Equilibrium (HWE), which states that the allele and 

genotype frequencies in a population will remain constant from generation to 

generation. Assuming in a population the frequency of allele A and allele B is 

𝑝 and (1 − 𝑝), the frequencies of three genotypes in the population are: 

𝑝𝐴𝐴 = 𝑝2, 𝑝𝐴𝐵 = 2𝑝(1 − 𝑝), 𝑝𝐵𝐵 = (1 − 𝑝)2. 

 

1.7.4 Natural Selection, Neutrality and Genetic Drift  

Natural selection is a key mechanism of evolution that favors or induces 

survival and perpetuation of one kind of biological traits over others. The key 

concept in natural selection is fitness, which describes the ability to both 

survive and reproduce.  

 

In 1960s, Motoo Kimura introduced the neutral theory of molecular evolution, 

using diffusion equations to calculate the distribution of the allele frequencies. 

Neutral theory claims that most polymorphisms do not influence the fitness of 

an individual and are not subjected to selection. The main force that 

changes allele frequencies is genetic drift [54] that the allele frequency of a 

new allele introduced by mutation is a stochastic process and can rise and 

spread in a population or get lost due to the random sampling of organisms. 

When the population size is large, the allele frequency will not fluctuate 

dramatically and will remain stable. When the population size is small, gene 

http://en.wikipedia.org/wiki/Allele
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Genetic_drift
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drift will lead to the allele frequency changing rapidly and will cause some 

alleles to become fixed and some alleles lost in the population.  

 

1.7.5 Wright Fisher Model 

 
Figure 4. Illustration of the Wright Fisher model. Consider a diploid population 

consisting of N0 diploidy individuals, in total 2N0 haploid copies of genes. All 

haploid copies of gene in generation t are drawn randomly from all copies of 

gene in generation t-1. 

The Wright Fisher Model is a genetic drift model for a single locus with 

assumptions of finite population size, discrete and non-overlapping 

generations, random mating, equal sex ratio and equal fitness for all 

individuals [42]. Successive generations are produced by multinomial 

sampling from previous generation so that all individuals have an equal 

probability to be picked as a parent. Assume a diploidy population of size 𝑁0. 

Here are two straightforward conclusions: 

a. Considering two lineages, the number of generations until two lineages 

have a common parent follows a geometric distribution of rate 
1

2𝑁0 
.  

b. For a sample of size 𝑛, there are 𝐶2
𝑛 possible coalescent pairs. Let 𝑊𝑛 

be the number of generations until the first coalescence, then 𝑊𝑛 ∼ 

Geometric(𝐶2
𝑛/2𝑁0) or 𝑊𝑛 ∼ Exponential(𝐶2

𝑛/2𝑁0) when 𝑛 ≪ 𝑁0.  

 

1.7.6 Effective Population Size 
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The Wright-Fisher model assumes that all individuals in a population have an 

equal chance of breeding. The effective population size refers to ‘the number 

of breeding individuals in an idealized population that would show the same 

amount of dispersion of allele frequencies under random genetic drift’, which 

should be smaller than the census population size [55]. Effective population 

size is an important parameter in population genetic studies and most of the 

estimates of human population size are in order of 104.  

 

1.7.7 TMRCA 

In the Wright-Fisher model as well as coalescent theory, all gene samples are 

ultimately inherited from a single ancestral copy called the most recent 

common ancestor (MRCA). The time to the most common ancestor (TMRCA) 

refers to the time that has elapsed since the MRCA of a set of gene copies 

lived. For example, in the Wright-Fisher model, let 𝑊𝑛 be the time until the 

first coalescence occurs in a sample of size 𝑛. Thus 𝑇𝑀𝑅𝐶𝐴 = ∑ 𝑊𝑘
𝑛
𝑘=2 . 

TMRCA can be estimated by statistical estimators based on DNA data and 

established mutation rates as practiced in genetic genealogy. The TMRCA has 

been commonly used as a reasonable surrogate for the population divergence 

time. 

 

1.8 Description of the Thesis 

High throughput genetics allows array-based and sequencing-based population 

genetic research to proliferate and extends the catalog of genetic variation to 

the whole allele frequency spectrum. This chapter has provided an 

introduction to some key concepts of population genetics. Subsequent chapters 

http://en.wikipedia.org/wiki/Idealised_population
http://en.wikipedia.org/wiki/Allele_frequency
http://en.wikipedia.org/wiki/Genetic_drift
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will explore two issues raised in the high throughput genetic era related to 

population genetics. 

 

Through next generation sequencing, a large collection of rare variants have 

been discovered, resulting in new microarray designs that have been 

customized to interrogate genetic variants of lower frequencies. Chapter 2 

discusses the problem of large-scale genotype calling for rare variants and 

provides a brief review of existing methods. Subsequently we introduce a 

novel genotype calling algorithm and compare it against existing methods.  

 

Population divergence time is an important parameter in understanding 

population structure and evolution. Chapter 3 briefly introduces some key 

theories of population genetics, followed by an in-depth review of different 

methods for estimating population divergence time. Subsequently we perform 

a formal statistical evaluation study on the existing methods using a systematic 

simulation and apply the methods to sequencing data of Southeast Asian 

Malays and South Asian Indians. 

 

The last chapter discusses the main conclusions of our work and also some 

aspects that could be explored in future work. 
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CHAPTER 2.  LARGE SCALE GENOTYPE CALLING 

2.1 Background 

Early generations of genotyping microarrays prioritized tagging SNPs 

identified from the International HapMap Project [4] that are selected on their 

ability to provide adequate coverage of the human genome in the HapMap 

populations. Over the last decade, the International HapMap Project has 

provided a useful and functional haplotype map of the human genome, which 

facilitated many types of genetic studies such as population evolution study, 

association studies and pharmacogenomics. 

 

In Phase 3 of the HapMap, over 1.8 million SNPs were genotyped in 1,184 

reference individuals from 11 global populations [6]. The SNPs in the 

HapMap database were selected to preferentially include common variants and 

included only a small subset of low-frequency variants, as only 10-13% had 

MAF<5%. In addition, 100-kb regions of 692 individuals were sequenced in 

HapMap phase III, in which 42-66% of the segregating sites have MAF<5% 

[6], showing that a substantial proportion of variants on human DNA have 

lower frequencies.  

 

Next-generation genotyping microarrays have been designed with insights 

from 1KGP and whole genome and exome-sequencing studies to increase 

genome coverage and to include low-frequency and rare variants that are often 

ancestry specific [56]. Such microarrays help to provide a more 

comprehensive understanding of the variations in human populations and to 
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explore the role of rare variants [57]. For example, the exome microarray was 

specifically designed to contain mostly variants with MAF< 1%.  

 

Determining the genotypes of these low-frequency and rare variants from 

hybridization intensities is challenging as there is less support to locate the 

presence of the minor alleles when the allele counts are low. Existing 

genotype calling algorithms are mainly designed for calling common variants 

and are notorious for failing to generate accurate calls for low-frequency and 

rare variants. Therefore, there is a need for a robust genotype calling algorithm 

that is capable of  accurately determining the genotypes for both common and 

rare variants.  

 

In the following sections, we will discuss the design of the Illumina 

microarrays and provide a review of the existing genotype calling algorithms 

developed for Illumina microarray. Subsequently we will propose our new 

method, which is benchmarked against four of the most commonly used 

single-stage algorithms as well as different iterations of two-stage calling with 

zCall.  
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2.2 Chip Design and Data 

 
Figure 5. Illustration of the design of Illumina microarray. A target sequence is 

bound to the matched oligonucleotide bead and its fluorescent end fluoresces 

red/green light to signal the hybridization of corresponding allele. 

The Illumina Infinium SNP genotyping array consists of hundreds of 

thousands of beads that are clustered into sets called ‘beadpools’. Each 

beadpool consists of beads that are manufactured at the same time and 

physically located at similar positions on the microarray [58]. Each bead is 

covered with hundreds of thousands of copies of specific oligonucleotide that 

act as the capture sequences in one of assays [59]. The oligonucleotide 

sequence has a fluorescent end which fluoresces when the sequence binds to 

the appropriate target sequence. The degree of fluorescence yields a pixel 

intensity measuring the degree of hybridization to each of the alleles. Two 

color single base extension (SBE) chemistry [60] is used on each bead which 

enables it to assay two alleles (Figure 5). 

 

A chip is assayed for each individual and the genotypes are determined using 

genotype calling procedures based on the observed fluorescent intensities of 

every SNP on the chip. Because the vast majority of SNPs are biallelic [61], 

this process has predominantly been applied to probes that query two possible 

allelic outcomes at a genomic variant (generically defined as allele A and 

allele B). Translating both sets of allelic hybridization intensities thus allows 
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discrete decisions to be made with respect to whether the genotype of a sample 

at a particular SNP is AA, AB or BB.  

 

Different platforms rely on different technologies and produce raw allele 

intensities in different dimensions. For example, the Illumina array has on 

average twenty beads per SNP which generate twenty pairs of hybridization 

intensities, which before genotype calling, these twenty pairs of intensities are 

averaged to produce one pair of summary intensity for each SNP [58]. In 

contrast, early designs of the Affymetrix microarrays generate four-

dimensional data at each SNP, namely the intensities of perfect match of 

allele 𝐴, mismatch of allele 𝐴, perfect match of allele 𝐵 and mismatch of allele 

𝐵. These four dimensional data are typically reduced to two dimensions with 

platform specific dimension reduction methods.  

 

In general, microarrays will eventually give a pair of summarized allele-

specific intensities (𝑥, 𝑦) for each sample at each SNP, corresponding to allele 

𝐴 and allele 𝐵 respectively. A number of genotype algorithms have been 

established to process the intensities into genotype calls. Although they model 

the data differently, in principle, individuals with high 𝑥  and low 𝑦 are 

asserted to be genotype 𝐴𝐴, whereas the opposite to be genotype 𝐵𝐵. 

Individuals with moderate 𝑥 and 𝑦 are asserted to be genotype 𝐴𝐵 (Figure 

6A).   
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Figure 6. Illustration of hybridization intensity profiles for three different SNPs 

at both the allelic intensities axes and the transformed contrast scale axes. The 

three SNPs correspond to (i) a common SNP with MAF≥5% (panels A and B); 

(ii) a polymorphic SNP with MAF<5% (panels C and D); (iii) a common SNP 

with shifted intensity clusters (panels E and F). In each panel, the assigned 

genotypes are colored accordingly as AA (red), AB (green), and BB (blue). This 

figure has been adapted from Figure 1 in Zhou et al. (2014) Bioinformatics Vol. 

30 no. 12 [62]. 

Genotype calling algorithms perform the calling based on hybridization 

intensities either in the original coordinates or translate the intensities into 

other coordinates. The commonly used transformations are contrast-strength 

coordinates and log scale coordinates: 

Contrast-strength coordinates: contrast =
𝑥−𝑦

𝑥+𝑦
  ;   strength = log (𝑥 + 𝑦) 

Log scale coordinates: 𝑥′ = log(𝑥 + 1) ;   𝑦′ = log (𝑦 + 1) 

 

In practice, the genotypes for the bulk of the SNPs can be accurately 

determined with straightforward rules that partition the distinctively 

hybridization intensities. However, SNPs with lower minor allele frequencies 

or with shifted intensities will not conform to these simple rules and they 

usually require more sophisticated statistical strategies to accurately call 

genotypes. The lower allele frequency spectrum of the majority of these SNPs 
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presents a significantly different challenge where only a small fraction of the 

samples is heterozygous and there is usually no homozygous cluster for the 

minor allele (Figure 6C-D). This can thwart algorithms that perform multi-

sample calling as these algorithms often set out to locate three genotype 

clusters. Shifts in the positions of the genotype clusters due to intrinsic 

hybridization chemistry for a fraction of the SNPs can compound the problem 

of multi-sample genotype calling (Figure 6E-F). When the emphasis switches 

to low-frequent spectrum of the genetic variants, an accurate and robust 

genotype calling algorithm becomes important in new generation genetic 

study. 

 

2.3 Existing Genotype Calling Algorithms 

Statistical algorithms have automated the process of calling genotypes in 

large-scale microarrays genotyping in which up to five million variants can be 

assayed simultaneously. Early methods call genotypes based on intensities of 

multiple redundant probes at a single SNP of a single sample. Newer methods 

often use the standardized two-dimensional intensities and improve their 

calling accuracy by incorporating these two types of information: 

a. Information from multiple SNPs for each individual 

b. Information from multiple individuals at the same SNP 

Consequently, existing algorithms can be broadly classified into four 

categories: single-sample single-SNP calling algorithms; multi-sample single-

SNP calling algorithms; single-sample multi-SNP calling algorithms and 

multi-sample multi-SNP calling algorithms. 
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Single-sample single-SNP calling algorithm 

The earliest type of calling algorithms incorporates the raw intensities from 

different probes and chips at the same SNP for a single person, and aims to 

reduce the probe and chip effects to the lowest level and model the 

background noise effectively to reduce false calls. 

 

The Dynamic Modeling (DM) algorithm [63] performs genotype calling based 

on Affymetrix four-dimensional raw data from a single chip. It assumes two 

underlying normal distribution (representing foreground and background 

distribution) for the intensities of every probe quartet for each SNP. The 

genotype for each probe quartet is selected based on a probe-level log 

likelihood and the final genotype for each SNP is subsequently determined by 

a non-parametric test that compares the p-values of four genotype models 

(AA, AB, BB, NULL). 

 

GEL [64] uses information on multiple chips. It utilizes DM calls as 

preliminary genotype calls to obtain an empirical distribution of the 

transformed two-dimensional intensities of each genotype. A genotype of each 

SNP can be subsequently assigned by Bayes rule. 

 

RLMM [65] is also a multi-chip model. In contrast to DM and GEL, RLMM is 

a supervised learning algorithm. It fits a linear model for each allele of each 

SNP to extract the chip effect and the probe effect, and then it derives a 

discriminant function based on the Mahalanobis distance with parameters 

trained by well-defined genotype groups and assigns genotype calls to new 
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data. RLMM has been criticized for its dependence on the availability of 

training data, which is not often available or appropriate. 

 

BRLMM [66] is similar to RLMM except its use of DM calls to initialize the 

algorithm and an additional Bayesian step which introduces a prior 

distribution to each of the parameters, thus removing the need by RLMM for 

prior training data to initialize the parameters. However, the reliance on DM 

calls has been found to introduce serious errors and systematic biases in the 

recalibration process.  

 

DM, GEL, RLMM and BRLMM were developed for the Affymetrix platform. 

They were early methods and exhibited poorer performance than methods 

developed subsequently. We will thus not discuss their methodologies.  

 

Multiple-sample single-SNP calling algorithm (population based) 

Population strategies jointly consider the intensity measurements at each SNP 

across multiple samples in a cluster analysis framework to learn about 

genotype cluster characteristics before making the calls. It has been shown that 

pooling information across multiple individuals can improve the calling 

quality. In addition, population based methods could effectively genotype for 

thousands of individuals simultaneously. 

 

GenCall is in the proprietary software of BeadStudio and GenomeStudio. 

According to one of Illumina’s technical reports, GenCall analyses DNA from 

a population of several individuals by a set of multiplexed arrays. A custom 
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clustering algorithm that incorporates several biological heuristics models the 

behavior of each locus. In cases where fewer than three clusters are observed, 

locations and shapes of the missing clusters are estimated using neural 

networks. The genotype call is asserted as the one having the best performance 

based on a Bayesian procedure [67]. 

 

Illuminus [68] is an unsupervised clustering method based on a mixture model 

of t-distributions which is fitted to the strength and contrast of each SNP 

through an Expectation Maximization (EM) algorithm [4]. Genotype calls are 

assigned by choosing the class that has the highest posterior probability and 

the probability serves as a call confidence measure. Illuminus is also 

developed for Illumina platform. A limitation of both GenCall and Illuminus is 

the higher error rates in genotype calling when the minor allele frequency is 

low. 

  

Single-sample multiple-SNP calling algorithm (SNP based) 

With the rapid development of microarray technology, increasing number of  

SNPs can be genotyped in one assay. It is cheaper and easier to assay 

thousands of SNPs of a single person than thousands of individuals at a single 

SNP. SNP-based strategy has become another choice of the genotype calling 

strategy.  

 

GenoSNP [58] is a SNP-based strategy which clusters the intensities for all 

SNPs within a single individual by fitting a Bayesian hierarchical model to the 

logarithm transformed intensity (log2(𝑥 + 1), log2(𝑦 + 1)) through the EM 
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algorithm. The genotype is asserted as the one that has the maximum posterior 

probability.  

 

SNP-based methods would be desirable if each probe on a genotyping array 

had a similar response characteristic regardless of which genomic region was 

being queried. However, it has been questioned whether the SNPs have similar 

patterns and the within-cluster variation is less than that between clusters [58]. 

Compared with population-based algorithms, GenoSNP has more SNPs that 

fail the test for Hardy-Weinberg Equilibrium, which indicates the violation of 

the assumption that the behavior of all SNPs is similarly across the whole 

genome.  

 

Multiple-sample multiple-SNP calling algorithm 

This type of algorithm attempts to jointly evaluate both the population-based 

and SNP-based information to reduce the false calling rate. 

 

The Modified Mixture Model (M3) [69] defines a two-stage calling procedure. 

In the first stage, it utilizes a typical population-based Bayesian model to call 

genotype preliminarily. Then it defines an average posterior rate (APR) based 

on the posterior probability obtained in the first stage to measure the calling 

quality. Those SNPs with low MAF and poor APR are chosen to be recalled in 

the second stage, in a manner very similar to GenoSNP, to perform calling 

across multiple SNPs. A reference SNP is used for each poorly called SNP to 

assist the recalling process in the second stage. The reference SNP has good 
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SNP quality, good clustering properties and similar pattern with the testing 

SNP.  

 

MAMS [70] was designed for the Affymetrix platform. First, it utilizes a 

typical Bayesian model to call genotypes of single-array multi-SNP data 

(SAMS call). Second, it applies agglomerative hierarchical clustering to call 

genotypes of multi-array single-SNP data (MASS call). Finally, it calculates 

the silhouette width for both SAMS call and MASS call and asserts the final 

genotype by comparing their silhouette width scores.  

 

A genotype calling algorithm, optiCall [67], is specifically developed for the 

Illumina platform. It uses multi-SNP multi-sample data to construct a prior 

distribution and call genotypes within each SNP with a Bayesian hierarchical 

model. Subsequently, it performs a chi-square HWE test and applies Illuminus 

to reassign the genotypes for SNPs that are not in HWE. The optiCall 

algorithm improved the calling accuracy on low frequency and rare SNPs to 

some degree. 

 

Another Illumina specific platform to improve the calling accuracy on rare 

SNPs is zCall [71]. It uses two intensity thresholds to separate data of each 

SNP into genotype AA, AB, BB and NULL. Based on the genotypes obtained 

from a default genotype caller, zCall applies a linear regression analysis to the 

mean intensities of genotype AA and BB as well as standard deviations of 

intensities of genotype AA and BB for common SNPs. Rare SNPs are 
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genotyped according to the major allele threshold determined by the default 

call and the minor allele threshold determined by the regression model.  

 

We will provide a more detailed review of Illuminus, GenoSNP, optiCall and 

zCall in the following sections. Since GenCall is a proprietary method of 

Illumina, M3 is only available in Matlab and MAMS is designed for the 

Affymetrix platform, we will not review their methodologies in details. 

Subsequently, we will introduce our novel method, iCall, and compare it with 

GenCall, Illuminus, optiCall, GenoSNP and zCall. 

 

2.3.1 Illuminus (single-SNP multiple-sample calling algorithm) 

The Illuminus algorithm uses the normalized hybridization intensities for the 

respective two alleles at each SNP that are generated from the proprietary 

software GenomeStudio as the input, and transforms the intensity signals into 

contrast-strength scale. Contrast and strength of sample 𝑗 at SNP 𝑙 is denoted 

as (𝑐𝑗𝑙, 𝑠𝑗𝑙). Because Illuminus is a population-based method, for the sake of 

brevity, I leave out the SNP label 𝑙 in the following text in this section.  

 

Illuminus fits a three-component bivariate mixture model for 𝑿𝒋 = (𝑐𝑗, 𝑠𝑗)  

using multivariate truncated t distributions, where the three components 

correspond to the genotype classes of 𝐴𝐴, 𝐴𝐵 and 𝐵𝐵. Let 𝑓(𝒙;𝑴, 𝚺, 𝜈) 

represent the probability density at 𝒙 of a t distribution with location 

parameter 𝑴, variance-covariance matrix 𝚺 and degree of freedom ν. The 

density for 𝑿𝒋 can be written as 
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F(𝑿𝒋) = ∑𝜆𝑘𝜙𝑘(𝑿𝒋;𝑴𝒌, 𝚺𝒌, 𝜈𝑘)

3

k=1

 

where (λ1, λ2, λ3) are mixture proportions following HWE and  

ϕ1(𝑿𝒋;𝑴𝟏, 𝚺𝟏, 𝜈1) =
𝑓(𝑿𝒋;𝑴𝟏, 𝚺𝟏, 𝜈1)

1 − ∫ 𝑓(𝑿𝒋;𝑴𝟏, 𝚺𝟏, 𝜈1)𝑑𝑐
−1

−∞
 
 

ϕ2(𝑿𝒋;𝑴𝟐, 𝚺𝟐, 𝜈2) =
𝑓(𝑿𝒋;𝑴𝟐, 𝚺𝟐, 𝜈2)

∫ 𝑓(𝑿𝒋;𝑴𝟐, 𝚺𝟐, 𝜈2)𝑑𝑐
1

−1
 
 

ϕ3(𝑿𝒋;𝑴𝟑, 𝚺𝟑, 𝜈3) =
𝑓(𝑿𝒋;𝑴𝟑, 𝚺𝟑, 𝜈3)

1 − ∫ 𝑓(𝑿𝒋;𝑴𝟑, 𝚺𝟑, 𝜈3)𝑑𝑐
∞

1
 
 

 

Illuminus introduced a fourth bivariate Gaussian component with zero mean 

and large variances as a background distribution of intensity serving for 

outliers whose intensity profile is not clear to be classified as any of the three 

genotype clusters. 

ϕ4(𝑿𝒋;𝑴𝟒, 𝚺𝟒) = 𝑁(𝑿𝒋;𝑴𝟒, 𝚺𝟒) 

where 𝑴𝟒 = (0, 0), 𝚺𝟒 = [
100000 0

0 100000
] . 

 

The parameters (𝑴𝟏,𝑴𝟐,𝑴𝟑, 𝚺𝟏, 𝚺𝟐, 𝚺𝟑, 𝜆1, 𝜆2, 𝜆3) are calibrated by the EM 

algorithm and the genotype is assigned if its posterior probability exceeds 

0.95. A good set of initial starts plays an important role in the EM algorithm. 

Poor initial starts may result in poor classification. To deal with this problem, 

Illuminus provides five guided starts, from which the initialization of the 

location parameters is chosen: 
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[
 
 
 
 
−0.9                       0                      0.9        
−0.9                      −0.5                          0.9        
−0.9                      0.5                       0.9        
−0.9       0.5(max(𝑐) + min (𝑐)) 0.9max (𝑐)

0.9min (𝑐) 0.5(max(𝑐) + min (𝑐)) 0.9     ]
 
 
 
 

 

where 𝑐 denotes contrasts at the specific SNP. Selecting best initialization 

starts makes Illuminus more robust to intensity location shifts. 

 
Figure 7. Illustration of the erroneous calling made by Illuminus. Illuminus is 

not robust for low frequency and rare variants since it tends to cluster intensities 

in more clusters than observed. 

Illuminus performs well for SNPs with MAF>1%. However, it presents many 

problems when dealing with rare variants (Figure 7). One problem originates 

from the dynamic temping to choose the initial starts with highest likelihood 

function. Consequently, it has a preference of classifying samples into three 

clusters with small variance to achieve high likelihood score although 

sometimes the data present fewer clusters (Figure 7A-C, E). Consider a rare 

variant (MAF<1%), the sample sizes and intensity patterns of the three 

genotype clusters differ significantly. When the population size is small 

(hundreds), it is possible to observe only two or only one genotype cluster at a 

rare SNP. Another problem originates from the set of the five guide starts, 
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which fails to capture some patterns of intensity profiles, and results in 

erroneous calls (Figure 7 D, F). 

 

2.3.2 GenoSNP (multiple-SNP single-sample calling algorithm) 

GenoSNP uses the raw hybridization intensities that are generated from the 

proprietary software GenomeStudio as the input and transforms the intensities 

into logarithm coordinates. The transformed intensity of sample 𝑗 at SNP 𝑙 is 

(log2(𝑥𝑗𝑙 + 1), log2(𝑦𝑗𝑙 + 1)). Since GenoSNP calls genotype across SNPs 

sample by sample, for the sake of brevity, I will leave out the sample label 𝑗 in 

the following text in this session.  

 

Let 𝑿𝒍 = (log2(𝑥𝑙 + 1), log2(𝑦𝑙 + 1)) be the pair of transformed intensities 

for the lth SNP; 𝑔𝑙 ∈ {1,2,3,4} represent the genotype {AA, AB, BB, NULL} 

at SNP 𝑙. GenoSNP uses a four-component Gaussian mixture model to fit the 

data and calls are obtained by finding the genotype with the maximum 

probability. 

p(𝑔𝑙; 𝜽) = ∏𝜆𝑘
𝐼(𝑔𝑙=𝑘)

4

k=1

 

p(𝑿𝒍; 𝑔𝑙, 𝑢𝑙 , 𝜽) = ∏𝑁(𝑿𝒍;𝜧𝒌, 𝑢𝑙𝚲𝒌)
𝐼(𝑔𝑙=𝑘)

4

𝑘=1

  

where {𝜆𝑘, 𝑘 = 1,2,3,4} represent the mixture proportions; {𝜧𝒌, 𝑘 = 1,2,3,4} 

and {𝚲𝒌, 𝑘 = 1,2,3,4} represent the means and scale correlation matrix of 

Gaussian distributions; 𝑢𝑙 represents a scaling parameter at SNP 𝑙. The 

parameters are further modelled by a hierarchical model given as follows. 
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𝑝(𝝀|𝜿) ∝ ∏𝜆𝑘
𝜅0−1

4

𝑘=1

  

p(𝑢𝑙; 𝑔𝑙, 𝛉) = ∏G(𝑢𝑙; νk/2, 𝜈𝑘/2)I(𝑔𝑙=𝑘)

4

k=1

 

𝑝(𝜧𝒌, 𝚲𝐤) = 𝑁(𝜧𝒌;𝒎𝟎, η0𝚲𝒌)𝑊(𝚲𝒌|𝛾0, 𝑺𝟎) 

where {𝜆𝑘} follows a Dirichlet distribution, 𝐺(x; α, β) represents the pdf of a 

gamma distribution with shape parameter 𝛼 and scale parameter 𝛽; 

𝑁(𝒙;𝜧, 𝚲) represents the pdf of a bi-variate Gaussian distribution with mean 

𝜧 and covariance matrix 𝚲; 𝑊(𝚲; 𝛾, 𝑺) represents the pdf of a Wishart 

distribution with degree of freedom 𝛾 and scale matrix 𝑺; 𝑣𝑘 are fixed at 4; 

𝜽 = {𝛌,𝜧, 𝚲}; hyper-parameters 𝜅0=1.1, 𝜂0=1,𝛾0=1, 𝑺𝟎 = [
0.1 0
0 0.1

] , 

𝒎𝟎=[(9,6), (8,8), (6,9), (6,6)] for k=1,2,3,4 respectively. 

 

Instead of implementing a standard EM algorithm, GenoSNP uses a 

Variational Bayes EM algorithm (VB-EM) to perform the optimization, which 

was proved to be more robust than standard EM algorithm, and the final 

genotypes are asserted to be the genotype that maximizes the variational 

approximation probability. 
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Figure 8. Illustration of the erroneous calling of GenoSNP. The three panels in 

the first row illustrate the calling for single sample across multiple SNPs. The 

three panels in the second row illustrate the calling for single SNP across 

multiple samples.  

GenoSNP has been criticized for its assumption that SNPs across the genome 

have similar intensity patterns. It performs poorly when the intensity clouds 

deviate from their expected locations. As shown in Figure 8, the intensity 

profile across multiple SNPs is similar and stable for different individuals 

(Figure 8A-C). The clustering based on cross SNPs intensity is generally 

correct. However, many erroneous calls are made when there is location shift 

(Figure 8D-F).  

 

2.3.3 optiCall (multiple-SNP multiple-sample calling algorithm) 

A Bayesian hierarchical model to the normalized hybridization intensities is fit 

using optiCall. A prior distribution is fitted to cross-sample cross-SNP 

intensities and genotypes are called within each SNP as which has the highest 

posterior probability.  

  

STEP 1: Create across sample cross SNP prior 
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Let 𝑿𝒋𝒍 = (𝑥𝑗𝑙 , 𝑦𝑗𝑙) represent the normalized intensities of sample 𝑗 at SNP 𝑙. 

The optiCall algorithm takes a random subset 𝑆 of intensity values from the 

dataset, which contains intensities across SNPs and across samples. Similar to 

Illuminus, a four-component Student’s 𝑡 mixture model is fitted to the subset 

of intensities. Let 𝑿𝒋𝒍 represent a sample in 𝑆 and 𝑔𝑗𝑙 ∈ {1,2,3,4} represent its 

genotype. The joint pdf of (𝑿𝒋𝒍, 𝑔𝑗𝑙) is given by 

F(𝑿𝒋𝒍, 𝑔𝑗𝑙;𝑴𝒌, 𝚺𝒌, 𝜈𝑘) = ∏[𝜆𝑘𝑓𝑘(𝑿𝒋𝒍;𝑴𝒌, 𝚺𝒌, 𝜈𝑘)]
𝐼(𝑔𝑗𝑙=𝑘)

4

k=1

 

where 𝑓(𝒙;𝑴, 𝚺, 𝜈) denotes the density function for data 𝒙 at a Student’s 𝑡 

distribution with location parameter 𝑴, variance-covariance matrix 𝚺 and 

degree of freedom ν. (λ1, 𝜆2, 𝜆3, 𝜆4) are the mixture proportion of the four 

classes that need not follow HWE.  Degree of freedom ν for all classes is set 

to 1. The parameters for NULL class are fixed to 𝑴𝟒 = (0, 0), 𝚺𝟒 =

[
100 0
0 100

]. The EM algorithm is applied to fit the model and infer the 

parameters {𝐌𝟏,𝑴𝟐,𝑴𝟑, 𝚺𝟏, 𝚺𝟐, 𝚺𝟑, 𝜆1, 𝜆2, 𝜆3}. 

 

STEP 2: Genotype calls across samples with prior information across SNPs 

The optiCall algorithm clusters intensities with another four-component 

mixture Student’s t model for each SNP separately. The parameters of the t-

distributions have Normal-inverse-Wishart prior determined in STEP 1.  

F(𝑿𝒋, 𝑔𝑗; 𝝁𝒌, 𝛔𝒌, 𝜈𝑘) = ∏[𝜋𝑘𝑓𝑘(𝑿𝒋; 𝝁𝒌, 𝛔𝒌, 𝜈𝑘)]
𝐼(𝑔𝑗=𝑘)

4

k=1

 

p(𝝁𝒌, 𝝈𝒌) ∝ 𝑁 (𝝁𝒌; 𝜶𝒌,
𝝈𝒌

𝛽𝑘
)𝑊(𝝈𝒌

−𝟏; 𝛾𝑘, 𝑺𝒌), 𝑘 = 1,2,3 

𝝁𝟒 = (0, 0), 𝚺𝟒 = [
100 0
0 100

] 
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where 𝜈1 = 𝜈3 = 1, 𝑣2 = 1.3. 𝛂𝐤 are set to 𝑴𝒌 obtained in STEP 1, 𝑺𝒌 are set 

to be the inverse of 𝚺𝒌 obtained in STEP 1, 𝛽𝑘 = 1 and 𝛾𝑘 = 100, 𝑘 = 1,2,3.  

 

The EM algorithm is applied to calibrate the parameters and genotype with 

maximum posterior probability will be assigned if its posterior is above 0.9. 

 

STEP 3: Rescue 

The opticall method uses the p-value of HWE chi-square test as a measure of 

clustering quality and uses Illuminus algorithm to reclassify SNPs that have 

poor clustering qualities. 

 
Figure 9. Illustration of erroneous calling made by optiCall. 

optiCall achieves higher robustness for rare variants than Illuminus since its 

prior distributions effectively locate each genotype, especially the minor 

allele. Nevertheless, it performs poorly for the SNPs whose location of 

intensity clouds shifts (Figure 9). The prior distribution obtained by multi-SNP 

multi-sample intensity may not be appropriate for all SNPs. Heterozygotes’ 

mean often has a larger variability and heterozygotes’ covariance matrix is 

often larger than that of homozygotes. This characteristic may strongly affect 
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the calling procedure and lead to erroneous calls (Figure 9A-B). The creators 

of optiCall are aware that the prior distribution would cause problem for those 

SNPs with location shift, hence use Illuminus as a rescue process. However, 

this will reintroduce the shortcoming of Illuminus – its low accuracy for rare 

variants – for those SNPs being rescued (Figure 9C-F).  

 

2.3.4 zCall (multiple-SNP multiple-sample calling algorithm) 

 
Figure 10. Illustration of the algorithm of zCall. Two intensity thresholds tx and 

ty are used to cluster the intensities into genotype classes.  

In recognition of the challenges associated with calling the genotypes for rare 

SNPs, zCall was introduced to post-process the genotype calls from a default 

calling algorithm such as GenCall [71]. This relied on calibrating the positions 

of the other two genotype clusters on the basis of the dominant homozygous 

cluster to improve the accuracy and call rate (Figure 10). The input of zCall is 

the Illumina normalized intensity 𝑿𝒋𝒍 = (𝑥𝑗𝑙 , 𝑦𝑗𝑙) and the genotype calls made 

by a default population-based genotype caller {𝑔𝑗𝑙}.  

 

STEP 1: linear regression model 

zCall picks out all SNPs with MAF≥5% based on the default call, and then 

uses linear regression to analyze the relation between mean value of intensities 
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of allele A and allele B of the homozygotes BB and AA respectively and the 

relation between standard deviation of intensities of allele A and allele B of 

homozygotes BB and AA respectively (𝜇𝑌,𝐴𝐴~𝜇𝑋,𝐵𝐵; 𝜎𝑌,𝐴𝐴~𝜎𝑋,𝐵𝐵; 

𝜇𝑋,𝐵𝐵~𝜇𝑌,𝐴𝐴; 𝜎𝑋,𝐵𝐵~𝜎𝑌,𝐴𝐴). 

 

STEP 2: recall rare variants 

At a rare variant, the mean and standard deviation of major homozygotes is  

well defined by the default call. The mean and standard deviation of minor 

homozygotes can be determined by the linear model obtained from STEP 1. 

The genotype clusters can be determined by a vertical (𝑥 = 𝑡𝑥) and horizontal 

(𝑦 = 𝑡𝑦) line, where 𝑡𝑥 = 𝜇𝑥,𝐵𝐵 + 7 ⋅ 𝜎𝑥,𝐵𝐵; 𝑡𝑦 = 𝜇𝑦,𝐴𝐴 + 7 ⋅ 𝜎𝑦,𝐴𝐴.  

 

2.4 Method 

We introduce a new genotype calling strategy for Illumina arrays, iCall, which 

performs multi-sample calling at a single SNP to improve accuracy across the 

full allele frequency spectrum. This algorithm adopts the classical three-

component student’s t-mixture model framework that Illuminus adopts, but 

focuses on deriving appropriate penalties to find the best seeding parameters 

to initialize the EM procedure to recognize the variety of situations where 

calling becomes difficult, such as when (i) the MAF is low; (ii) the total 

number of samples for joint calling is small; or (iii) the hybridization 

intensities deviate substantially from usual. iCall is implemented in C++ for 

use on Linux operating systems and is available for download at 

http://www.statgen.nus.edu.sg/~software/icall.html 

 

http://www.statgen.nus.edu.sg/~software/icall.html
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Similar to Illuminus and GenCall, iCall is a population-based algorithm. iCall 

also uses the normalized hybridization intensities for the respective two alleles 

at each SNP that is generated from the proprietary software GenomeStudio as 

the input. We generally define the two alleles as A and B, and let (𝑥𝑗 , 𝑦𝑗) 

denote the normalized intensities for sample 𝑗 at a specific SNP. The iCall 

algorithm transforms the normalized intensities to the contrast-strength 

coordinate system (𝑐𝑗, 𝑠𝑗). 

 

2.4.1 Identifying the parameters to initialize calling 

The performance of the genotype calling can depend crucially on the set of 

initial calls used to seed the algorithm, especially if the mathematical 

framework for initializing the calls is similar to the framework for subsequent 

calling. For instance, if the initial set of calls already assumes the presence of 

only one genotype cluster, subsequent iterations of a calling algorithm will 

usually remain within the same domain space unless the empirical data 

provides a strong motivation to introduce additional genotype clusters.  

 
Figure 11. Histograms of the absolute value of the contrast coordinates for 12 

370 samples at three SNPs with different MAFs, corresponding to a (A) common 

SNP (MAF≥5%); (B) low-frequency or rare SNP (0%<MAF<5%); and (C) 

monomorphic SNP (MAF=0%). This figure has been adapted from Figure 2 in 

Zhou et al. (2014) Bioinformatics Vol. 30 no. 12 [62]. 

iCall adopts a framework to generate the initial set of calls, by considering the 

information presented by the absolute contrast measurements (or |𝑐𝑗|). When 
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considered across multiple samples, the density profile of the absolute contrast 

can inform the potential locations of each genotype clusters (Figure 11). A 

common SNP will usually yield a density profile with two distinct peaks 

(around 0 and 1 for |𝑐𝑗| respectively), while a rare or low-frequency SNP will 

give a profile with a small peak near 0 and a significantly larger peak around 

1, and a monomorphic SNP will yield only one peak around 1. To model this, 

we consider two scenarios: (i) the first assumes a normal distribution for 

|𝑐𝑗 | ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2), and this aims to capture the situation when the SNP is 

monomorphic; (ii) the second aims to identify the situation for a non-

monomorphic SNP and assumes a two-component normal mixture model for 

|𝑐𝑗| such that |𝑐𝑗  | ~ 𝑝 ⋅ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇1, 𝜎1
2) + (1 − 𝑝) ⋅ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇2, 𝜎2

2) 

with 0 ≤ 
1

< 
2

≤  1 and all the parameters (𝑝, 𝜇1, 𝜇2, 𝜎1
2, 𝜎2

2) are estimated 

from the data within an EM algorithm framework. The first scenario is 

actually a special case of the second scenario where 𝑝 = 
1

= 𝜎1
2 = 0.  

 

In order to identify which scenario is more appropriate for the observed data, 

we defined a penalized log likelihood score. We assign a penalty term on 

small values of  (𝜇2 − 𝜇1) for both scenarios (in scenario, 𝜇1 = 0,  𝜇2 = 𝜇). 

Without this penalty term, the two-component mixture model will always 

yield a higher log-likelihood due to the better fit of the data into two normal 

distributions with smaller variances.  

 

The penalized log-likelihood functions are calculated as  

∑ log (𝜙(|𝑐𝑗|; 𝜇, 𝜎2)) + 𝑛 ⋅ 𝑆(𝜇)𝑗 ,       for scenario 1   
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∑ {log (𝜙 (|𝑐𝑗|𝑗∈class1
; 𝜇1, 𝜎1

2)) + log (𝜙 (|𝑐𝑗|𝑗∈class2
; 𝜇2, 𝜎2

2))}𝑗 +  𝑛 ⋅

𝑆(𝜇2 − 𝜇1),     for scenario 2   

where the penalty term 𝑆(𝑥) = log (
𝜓(𝑥 | meanlog=0.4,variancelog=0.4)

∫ 𝜓(𝑦|meanlog=0.4,variancelog=0.4)𝑑𝑦 
1
0

), 𝑛 

represents the number of samples used for the joint calling, 𝜓(⋅) is the pdf of a 

lognormal distribution with mean and variance of the distribution on the log 

scale equal to meanlog and varriancelog, and 𝜙(⋅) is the density function of a 

normal distribution. The intuition here is when the values for 𝜇1 and 𝜇2 are not 

significantly different, the calling algorithm prefers to combine the two 

components instead of forcing the presence of two clusters.  

 

The scenario with the higher log-likelihood is chosen to generate eight sets of 

location parameters to initialize the genotype calling in a three-component  

univariate Gaussian mixture model for 𝑐𝑗, where the eight sets are 

 

if scenario 1 yields the higher log-likelihood, or  
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if scenario 2 yields the higher log-likelihood, and 𝑡1 and 𝑡2 are chosen from 

the trimmed empirical distribution of 𝑐𝑗 as  

𝑡1 =
𝑄𝑐

0.999+𝑄𝑐
0.001

2
− 0.95 ×

𝑄𝑐
0.999−𝑄𝑐

0.001

2
  

and 

𝑡2 =
𝑄𝑐

0.999+𝑄𝑐
0.001

2
+ 0.95 ×

𝑄𝑐
0.999−𝑄𝑐

0.001

2
  

where 𝑄𝑐
𝑥 denotes the 100𝑥 quantile value of the distribution of the empirical 

contrast values. This allows the initialization parameters to be guided by the 

observed contrast values, which is particularly useful in the situation where the 

intensities for the genotype clusters are shifted significantly.  

 

2.4.2 Initializing the genotype calling  

iCall uses the same calling structure as Illuminus where the latent genotype 

variable 𝑔𝑗 ∈ {1,2,3,4}. The density function of 𝑿𝒋 = (𝑐𝑗 , 𝑠𝑗),  under the three-

component bivariate truncated t mixture model, is given by 

𝐹(𝑋𝑗) = ∑ 𝑘𝜓𝑘(𝑿𝒋|𝑴𝒌,𝐤,𝑘)

3

𝑘=1

 

where 

𝜓1(𝑿𝒋|𝑴𝟏,𝟏,1) =
𝑓(𝑿𝒋|𝑴𝟏,𝟏, 1)

1 − ∫ 𝑓(𝑿𝒋|𝑴𝟏,𝟏,1)𝑑𝑐
−1

−∞

 

𝜓2(𝑿𝒋|𝑴𝟐,𝟐, 2) =
𝑓(𝑿𝒋|𝑴𝟐,𝟐, 2)

∫ 𝑓(𝑿𝒋|𝑴𝟐,𝟐, 2)𝑑𝑐
1

−1

 

𝜓3(𝑿𝒋|𝑴𝟑,𝟑, 3) =
𝑓(𝑿𝒋|𝑴𝟑,𝟑, 3)

1 − ∫ 𝑓(𝑿𝒋|𝑴𝟑,𝟑, 3)𝑑𝑐
∞

1

 

with 𝑓(𝑿𝒋|𝜧𝒌, 𝚺𝒌, 𝜈𝑘) representing the density function of a bivariate t 

distribution with location parameter 𝜧𝒌, variance-covariance matrix 𝐤 at 𝜈𝑘 
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degrees of freedom, and {λ1, λ2, λ3} representing the proportion of each 

genotype that follows the HWE.  

 

Genotype variable {𝑔𝑗} is assigned to the one whose posterior probability is 

higher than a threshold (default threshold is 0.8 in iCall). The parameters 

{𝜧𝟏,𝜧𝟐,𝜧𝟑, 𝚺𝟏, 𝚺𝟐, 𝚺𝟑, λ1, λ2, λ3} and the latent genotype {𝑔𝑗} are updated by 

the EM algorithm.  

 
Figure 12. The first penalty term penalizes on small distances between the 

heterozygous cluster and the two homozygous clusters. 

To initializing this EM procedure, iCall uses a three-component univariate 

truncated Gaussian mixture model with equal weights for the contrast 

measurements to generate the first iteration of latent genotype {𝑔𝑗
(1)

}. The joint 

density probability of (𝑐𝑗, 𝑔𝑗) is given by 

𝐹(𝑐𝑗, 𝑔𝑗|𝜇
(1), 𝜇(2), 𝜇(3), 𝜎(1), 𝜎(2), 𝜎(3)) = ∑ [ℎ𝑘(𝑐𝑗|𝜇

(𝑘), 𝜎(𝑘))]
𝐼(𝑔𝑗=𝑘)

3

𝑘=1

 

where 

ℎ1(𝑐𝑗|𝜇
(1), 𝜎(1)) =

𝜙(𝑐𝑗 ; 𝜇
(1),𝜎(1))

1−∫ 𝜙(𝑦 ; 𝜇(1),𝜎(1))𝑑𝑦
−1
−∞

  

ℎ2(𝑐𝑗|𝜇
(2), 𝜎(2)) =

𝜙(𝑐𝑗 ; 𝜇
(2),𝜎(2))

∫ 𝜙(𝑦 ; 𝜇(2),𝜎(2))𝑑𝑦
1
−1

  

ℎ3(𝑐𝑗|𝜇
(3), 𝜎(3)) =

𝜙(𝑐𝑗 ; 𝜇
(3),𝜎(3))

1−∫ 𝜙(𝑦 ; 𝜇(3),𝜎(3))𝑑𝑦
∞
1
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with 𝜙(⋅) representing the density function of a univariate normal distribution. 

Each of the eight sets of location parameters is used as (𝜇(1), 𝜇(2), 𝜇(3)). The 

same standard deviation of 0.1 is assumed for the three genotype classes in the 

first three guided starts, and  0.05 (𝑄𝑐
0.999-𝑄𝑐

0.001) for the three genotype 

classes in the other five guided starts. Moreover, two penalized log-likelihood 

functions were calculated to select two sets of parameters among the eight, 

which take the form of 

like1 = ∑ log (F(𝑐𝑗, 𝑔𝑗|𝜇1, 𝜇2, 𝜇3, 𝜎1, 𝜎2, 𝜎3)) + 𝑛 ⋅
𝑆(𝜇2−𝜇1)+𝑆(𝜇3−𝜇2)

2

n
j=1   

like2 = ∑ log (F(𝑐𝑗, 𝑔𝑗|𝜇1, 𝜇2, 𝜇3, 𝜎1, 𝜎2, 𝜎3)) + 𝑛 ⋅
𝑆(𝜇2−𝜇1)+𝑆(𝜇3−𝜇2)

2
−n

j=1

10 × ∑
(𝑂𝑖−𝐸𝑖)

2

𝐸𝑖

3
𝑖=1   

where S(⋅) is the same as in Section 2.4.1. Note that  {𝜇1, 𝜇2, 𝜇3, 𝜎1, 𝜎2, 𝜎3} are 

empirically updated according to {𝑔𝑗
(1)

}, which are often different from 

{𝜇(1), 𝜇(2), 𝜇(3), 𝜎(1), 𝜎(2), 𝜎(3)}. 

 

The intuition behind the two penalty terms is: the first term, 𝑛 ⋅

𝑆(𝜇2−𝜇1)+𝑆(𝜇3−𝜇2)

2
, penalizes on small distances between the heterozygous 

cluster and the two homozygous clusters, while the second term, 

−10∑
(𝑂𝑖−𝐸𝑖)

2

𝐸𝑖

3
𝑖=1 , penalizes on genotype call configuration at a SNP that 

deviates further from the state of HWE. Of the eight guided starts, we identify 

the two guided starts (seed1, seed2) that yield the highest like1 and like2 

respectively, and these two guided starts are subsequently used to seed the 

genotype calling. Note that the two sets of seeding start may be identical if the 
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same guided start yields the highest penalized log-likelihoods in both 

calculations.  

 

2.4.3 Genotype calling 

Each of the two sets of seeding starts is used to initialize the three-component 

bivariate truncated t mixture model that Illuminus adopts. The calling 

algorithm adopts an EM framework to yield two sets of genotype call 

configurations, each initialized from one of the two seeding starts.  

 

The EM procedure used is described as follows. In the M-step, the means, 

variance-covariance matrixes and mixture proportions are updated by 

maximizing the log-likelihood function conditional on the assigned genotypes. 

In the E-step, we do not calculate the Q function (the expected value with 

regard to the conditional distribution of latent genotypes given the intensities 

and the parameters). Instead, we assign a genotype to each sample as which 

has posterior probability exceeds a threshold, 0.8.   

M-step: 

𝑴𝒌 = (
∑ 𝑐𝑗𝑗 ⋅ 𝐼(𝑔𝑗 = 𝑘)

∑ 𝐼(𝑔𝑗 = 𝑘)𝑗

,
∑ 𝑠𝑗𝑗 ⋅ 𝐼(𝑔𝑗 = 𝑘)

∑ 𝐼(𝑔𝑗 = 𝑘)𝑗

)        𝑘 = 1,2,3  

𝚺𝒌 = [
𝑣𝑎𝑟(𝑐𝑔𝑗=𝑘) 𝑐𝑜𝑣(𝑐𝑔𝑗=𝑘, 𝑠𝑔𝑗=𝑘)

𝑐𝑜𝑣(𝑐𝑔𝑗=𝑘, 𝑠𝑔𝑗=𝑘) 𝑣𝑎𝑟(𝑐𝑔𝑗=𝑘)
]        𝑘 = 1,2,3  

𝑝𝐴 =
∑ 2 × 𝐼(𝑔𝑗 = 1) + 𝐼(𝑔𝑗 = 2)𝑗

∑ 2 × 𝐼(𝑔𝑗 ≠ 4)𝑗

 

𝑝𝐵 =
∑ 2 × 𝐼(𝑔𝑗 = 3) + 𝐼(𝑔𝑗 = 2)𝑗

∑ 2 × 𝐼(𝑔𝑗 ≠ 4)𝑗

 

(𝜆1,    𝜆2,    𝜆3) = (𝑝𝐴
2,   2𝑝𝐴𝑝𝐵,    𝑝𝐵

2) 
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E-step: 

𝑔𝑗 = argmax𝑘{𝜆𝑘𝜓k(𝑿𝒋|𝑴𝐤,𝐤,k),   𝑘 = 1,2,3} 

The default is to accept the genotype call configuration initialized with seed1, 

except when the evidence against HWE is more significant in the 

configuration generated by seed1 than the configuration generated by seed2 and 

likelihood in the configuration generated by seed1 is smaller than which is 

generated by seed2, in which case the genotype calls generated with seed2 are 

accepted as the final calls. This minimizes the inadvertent miscalling that 

happens due to shifts in genotype clouds resulting in genotype calls that tend 

to deviate from HWE.  

 

2.4.4 Chromosomes X, Y and mitochondria 

For calling genotypes at SNPs on the mitochondria and the non-pseudo-

autosomal regions of the sex chromosomes, the genotype calling additionally 

require information on the gender of each sample which determines the 

direction of hybridization inactivation. For SNPs on chromosome X, 

genotypes for females are determined in the same fashion as autosomal SNPs, 

while the genotypes for males will only be called as either AA or BB. For 

SNPs on chromosome Y, NULL calls will be produced for females and the 

calling only considers the intensity data for male samples and similarly yields 

genotype calls of either AA or BB. The situation is reversed for SNPs on the 

mitochondria, where NULL calls will be produced for males and the calling 

only considers the intensity data for female samples and produces calls of 

either AA or BB. 
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2.5 Application to Data from Exome Microarray & Method Comparison 

The performance of iCall was compared against four single-stage genotype 

calling algorithms: GenCall, optiCall, Illuminus and GenoSNP. Intensity data 

were available for 12,370 samples that have been genotyped on the Illumina 

exome chip, of which 348 samples came from the Singapore Integrative 

Omics Project (iOmics) and 12,022 samples came from multiple complex 

disease studies that have been genotyped at a single facility at the Genome 

Institute of Singapore. 

 

To compare the performance of different genotype calling algorithms, we need 

to derive a set of gold standard calls that we subsequently assumed to be 

perfect for benchmarking the genotype calls made by different algorithms. 

Whole genome sequencing is a completely different method for calling 

genotypes, which is regarded as a good comparison. Of the 348 iOmics 

samples, 81 samples have been additionally whole-genome sequenced to a 

target coverage of 30-fold as part of the Singapore Sequencing Studies 

(http://www.statgen.nus.edu.sg/), and the sequence calls after quality checks 

for these samples were regarded as the gold standard calls that were 

subsequently used to benchmark the performance of the different methods. 

A total of 16,428 SNPs were present on the exome chip that overlapped with 

the polymorphic variants identified from the high-coverage sequencing. These 

SNPs were classified as common (MAF≥5%, 13,542 SNPs), low frequency 

(1%≤MAF≤5%, 1356 SNPs) and rare (MAF≤1%, 1,530 SNPs) according to 

the GenCall genotypes for all 12,370 samples. 

 

http://www.statgen.nus.edu.sg/
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In order to evaluate how the number of samples available for joint calling 

impact the algorithms, we thinned the dataset into four smaller sets with 500, 

1000, 3000 and 5000 samples, which always included the 81 samples with 

gold standard calls. Genotypes are generated by running iCall, optiCall, 

Illuminus and GenoSNP on the datasets of different size and accuracies are 

assessed only based on the gold standard subset. Because of the resource 

limitation, GenCall genotypes were available for the 348 iOmics samples and 

12,022 samples independently. Therefore, in comparison, we only provide 

accuracy of GenCall with sample size of 348. GenoSNP is a single sample 

caller where the performance is not affected by the size of the available 

samples 

 

The performance of iCall, optiCall, Illuminus and GenoSNP is evaluated using 

five metrics: (i) call rate, defined as the percentage of valid genotype calls that 

are not assigned as NULL; (ii) concordance, defined as the percentage of valid 

genotype calls that are identical to the gold standard calls; (iii) overall 

concordance, defined as the percentage of genotype calls out of all possible 

calls that are identical to the gold standard calls, and is calculated as the 

product of the call rate and the concordance; (iv) minor allele concordance for 

rare and low-frequency SNPs, defined as the percentage of the heterozygous 

and minor allele-homozygous calls that are identical to the gold standard calls 

out of the total number of such calls made for these SNPs; and (v) missed 

minor allele call rate, defined as the percentage of the heterozygous and minor 

allele homozygous calls that are not identified out of the total number of 

available minor allele calls in the gold standard. The last two metrics 
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effectively evaluate the true positive and false negative rates for making a 

genotype call involving at least one minor allele at a low-frequency or rare 

SNP. The calculations of all five metrics are made using only the 81 samples 

for which there are gold standard calls available. In the gold standard subset, 

there are 1,222,885 valid calls (not NULL call) in total, where 14,063 minor 

allele calls belong to the 1,356 low-frequency SNPs and 6,371 minor allele 

calls belong to the 1,530 rare SNPs. 

 

On the basis of call rates and concordance with the gold standard calls, iCall 

yielded the highest overall concordance rate and call rate regardless of the 

sample size (Table 1). We observed that GenCall yielded the highest 

concordance rate but tend to be more conservative at making calls, but still 

managed to deliver an overall concordance rate that was consistently higher 

than the performance by optiCall. The performance of Illuminus and 

GenoSNP were comparatively less satisfactory, with GenoSNP yielding an 

overall concordance rate that was below 97%. 

 

When evaluating the ability to correctly call genotypes carrying at least one 

copy of the minor allele that is present in the dataset at a frequency<5%, iCall 

consistently yields the highest accuracy and the lowest missed allele calls 

compared with GenCall, optiCall, Illuminus and GenoSNP at low-frequency 

SNPs (Table 1). For example, iCall achieved a minor allele concordance rate 

of 97.140% and 97.168% at the sample sizes of 500 and 12,370 respectively, 

compare with compared with optiCall at 96.932 and 97.033%, respectively, 

and the next-best performing algorithm (GenCall) at 97.083% at the sample 
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size of 348 (Table 1). At rare SNPs, iCall similarly delivered the highest minor 

allele concordance rates across all sample sizes considered (at least 97.435%, 

with all other methods delivering concordance<97%). This suggests that 

whenever iCall made a call involving a minor allele, it was more likely to be 

correct than existing algorithms. 
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Table 1. Comparison of iCall against optiCall, Illuminus, GenCall and GenoSNP at 16 428 SNPs at different sample sizes for calling, where genotypes from 

whole-genome sequencing of 81 samples are used as benchmark. This figure has been adapted from Table 1 in Zhou et al. (2014) Bioinformatics Vol. 30 no. 

12 [62]. 

 
Among the 16 428 SNPs considered, 13 542 are common SNPs, 1356 are low-frequency SNPs and 1530 are rare SNPs. Within the gold standard, there are 1 222 885 

valid genotype calls in total, which include 14 063 minor allele calls at low-frequency SNPs and 6371 minor allele calls at rare SNPs. 
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Table 2. Comparison of iCall+zCall, GenCall+zCall and optiCall+zCall at 16 428 SNPs at different sample sizes for calling, where genotypes from whole-

genome sequencing of 81 samples are used as benchmark. This figure has been adapted from Table 2 in Zhou et al. (2014) Bioinformatics Vol. 30 no. 12 [62]. 

 
Among the 16 428 SNPs, 13 542 are common SNPs, 1356 are low-frequency SNPs and 1530 are rare SNPs. Within the gold standard, there are 1 222 885 valid 

genotype calls in total, 14 063 minor allele calls at low-frequency SNPs and 6371 minor allele calls at rare SNPs. 

 



53 

 

However, a high minor allele concordance can be achieved by a conservative 

algorithm that only calls the easy-to-call minor allele genotypes but misses out 

on most of the genuine minor allele calls. We additionally evaluated the extent 

that each caller is missing genuine minor allele calls. For low-frequency SNPs, 

iCall consistently exhibited the lowest missed minor allele call rate (with a 

maximum of 2.915%), compared with 2.958% for GenCall and 3.029% for 

optiCall with 12 370 samples. However, for rare SNPs, iCall was more 

conservative and made less minor allele genotype calls than optiCall, 

especially when the sample size is large (missed minor allele call rate of 3.280 

and 2.967% for iCall and optiCall, respectively) although the genotype calls 

by iCall are much more likely to be correct (concordance of 97.546% by iCall 

versus 94.166% by optiCall). As the number of samples available for joint 

calling increases, optiCall appears to be more liberal at making minor allele 

calls, whereas iCall appears to be stable. GenCall, Illuminus and GenoSNP 

consistently performed poorly when measured with these two minor allele 

metrics. 

 

zCall is a post-processing caller that uses intensities and genotypes generated 

from a standalone caller as input data. We also compare the performance of 

GenCall+zCall, optiCall+zCall and iCall+zCall (Table 2). The results show 

that zCall improves the genotype calls generated from all the three callers. 

However, zCall improves GenCall in a higher degree than iCall in calling 

minor alleles, with the greatest degree of improvement observed for GenCall 

genotypes. GenCall+zCall is slightly better than iCall+zCall with marginally 

higher overall concordance rate (GenCall+zCall at 97.681% and 97.684% with 
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sample sizes of 500 and 12,370 respectively, against iCall+zCall’s 97.681% 

and 97.683%) and concordance rate (GenCall+zCall’s 97.685% against 

iCall+zCall’s 97.682%-97.685%). But iCall+zCall is slightly better than 

GenCall+zcall in calling minor alleles at both low-frequency and rare SNPs. 

optiCall+zCall exhibited the same characteristics as optiCall, where it is more 

aggressive in calling minor allele genotypes but at the expense of making 

more erroneous calls. 

 

2.6 Discussion 

We have introduced iCall, a method for calling genotypes that yields 

comparatively better performance than existing genotype calling algorithms, 

particularly in accurately calling the genotypes involving minor alleles at low-

frequency or rare SNPs. One important aspect of genotype calling is that 

determining the genotypes accurately is straightforward for the majority of the 

SNPs, but there are SNPs where the MAF is considerably lower or when the 

hybridization profiles differ from the usual that require more robust 

considerations to accurately determine the genotypes. Our method improves 

on the framework of Illuminus by using a series of penalty functions to 

identify the optimum parameters to seed the EM model. The availability of a 

large dataset that has been genotyped on the exome chip meant that we could 

evaluate the performance of existing algorithms across different sample sizes. 

 

We have benchmarked the genotype calls obtained from different methods 

against a set of gold standard calls that was derived from deep sequencing. As 

a stand-alone caller, iCall performs the best in terms of delivering the most 
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accurate genotype calls while minimizing the number of missed calls, 

particularly for genotypes involving minor alleles at low-frequency and rare 

SNPs. The better performance at low-frequency and rare SNPs was similarly 

observed when iCall was incorporated as part of a two-stage calling process 

with zCall. 

 

We have compared iCall against existing methods using two additional 

metrics that specifically focused on the ability to call the genotypes that 

involved at least one minor allele at rare and low-frequency SNPs. This is in 

line with the intended purpose of the exome microarray for finding low-

frequency or rare SNPs that are associated with phenotypes. Measuring how 

accurately and sensitively a calling algorithm can call a heterozygous or minor 

allele-homozygous genotype is thus more important. After all, an algorithm 

that erroneously calls a rare SNP as major-allele monomorphic will have 

attained a concordance of at least 98%. In quantifying the association evidence 

at rare or low-frequency SNPs, it is common to pool allele counts across 

similar SNPs in a genomic region to assess allelic burden [72-75]. Erroneously 

calling the presence of a minor allele genotype, or the failure to call a minor 

allele genotype when it exists, can thus directly impact the power and false-

positive rate of the association analyses. 

 

One challenge with assessing the quality of rare variant genotyping calls is the 

lack of a gold standard reference for the true genotypes of a given SNP in a 

given sample [57]. The three ways available for assessing rare variant 

genotypes calls are: (i) to calculate transmission rates and Mendelian 
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inheritance errors from a large dataset of related individuals; however, data for 

this approach are usually not available. (ii) An alternative approach is to 

simulate rare variants by sampling from common, high-quality, and well-

accepted SNP genotype data and comparing the new call rate and genotype 

information with the original genotype calls; however, this sampling usually 

assumes Hardy-Weinberg Equilibrium and the intensities of those high-quality 

calls often have clear classification profile and less noises. These properties 

are sometimes not true for real data. (iii) Use different platforms to genotype 

the samples and obtained the consistent set of calls to be the gold standard. 

Extracting consistent genotype calls from different platforms could eliminate 

much of the non-biological noises introduced in the genotyping procedure 

caused by different microarray designs or other technical sources of variation. 

In our study, we used the third approach.  More careful assessment could be 

done by including approach (i) and approach (ii) to evaluate the performance 

of iCall in future work. 

 

Automated algorithms for calling genotypes have contributed to the success of 

large-scale genomic studies, and this is likely to continue with the continuous 

introduction of next-generation genotyping microarrays designed with 

knowledge gained from large-scale sequencing studies, querying up to 5 

million SNPs across the genome or variants found specifically in the exons. 

Although these technologies provide the opportunity to investigate new 

hypotheses on the evolution of the human genome and the genetic etiology of 

diseases and traits, this can only happen if the content in the human genome 

can be accurately determined. We have introduced a calling algorithm that 
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provides a better accuracy in calling genotypes for rare and low-frequency 

SNPs, and consistently performs well at common SNPs. 

 

2.7 Supplementary Information 

2.7.1 Intensity Data 

iCall, optiCall, Illuminus, GenCall use the normalized hybridization intensities 

for the respective two alleles at each SNP that is generated from the 

proprietary software GenomeStudio as the input, whereas GenoSNP uses the 

raw intensities as input instead of normalization hybridization intensities. 

 

12022 samples from multiple complex disease studies that are being carried 

out at the Genome Institute of Singapore:  

GSGT Version     1.9.4 

Processing Date   6/26/2013 8:01 AM 

Content          Exome_Asian_30K_ExomePlus_15031624_B.bpm 

 

348 samples from Singapore Integrative Omics Project: 

GSGT Version    1.9.4 

Processing Date 9/11/2013 3:57 PM 

Content         Exome_Asian_30K_ExomePlus_15031624_B.bpm 

 

2.7.2 Genotype Calling Algorithm Implementation 

2.7.2.1  GenCall 

12022 samples from multiple complex disease studies that are being carried 

out at the Genome Institute of Singapore:  
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GSGT Version     1.9.4 

Processing Date   6/26/2013 8:01 AM 

Content          Exome_Asian_30K_ExomePlus_15031624_B.bpm 

 

348 samples from Singapore Integrative Omics Project: 

GSGT Version    1.9.4 

Processing Date 9/16/2013 12:39 PM 

Content         Exome_Asian_30K_ExomePlus_15031624_B.bpm 

 

2.7.2.2 optiCall 

The version of optiCall used is: tss101-opticall-76a3850f251a (updated in 

2012-10-15). We ran optiCall with default parameters using command: 

./opticall -in sample_intensity.txt -out sample_opticall 

 

2.7.2.3 Illuminus 

The Illuminus program was obtained by requesting from the author on date 

2012-10-17. We ran Illuminus with default parameters using command: 

./Illuminus -i sample_intensity.txt -o sample_Illuminus -c  

 

2.7.2.4 GenoSNP 

The version of GenoSNP used is: GenoSNP_Exe_v1.3. We ran GenoSNP with 

default parameters using command: 

./GenoSNP -snps snpfile.txt -samples samplefile.txt -calls calls.txt  

 

2.7.2.5 iCall 
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The iCall program we used can be downloaded at 

http://www.statgen.nus.edu.sg/~software/icall.html. We ran iCall with default 

parameters using command: 

./iCall -i sample_intensity.txt -o sample_iCall -c  

 

2.7.2.6 zCall 

The version of zCall used is: zCall_Version3.3_GenomeStudio. We ran zCall 

with default parameters. We applied zCall to intensity and calls generated by 

default caller GenCall, optiCall, and iCall and ran zCall respectively, with 

command: 

STEP1: Python  findMeanSD.py  -R  zCall_input.txt > my.mean.sd.txt 

STEP2: Rscript  findBetas.r  my.mean.sd. txt  my.betas.txt  1 

STEP3: python findThresholds.py -B my.betas.txt -R zCall_input.txt -Z 7 -I 

0.2 > my.output.threshold. txt 

STEP4: python zCall.py -R zcall_input.txt  -T my.output.threshold.txt -O 

my.output.root.for.tped_tfam 

 

2.7.3 Whole Genome Sequencing Genotyping 

Whole-genome sequencing genotype were obtained on Illumina Hiseq 2000 

platform at a deep coverage of 30-fold. Among the 81 sequencing samples, 45 

samples came from Singapore Sequencing Malay Project (SSMP), 36 samples 

came from Singapore Sequencing Indian Project (SSIP) (Table 3). 

Table 3. The resources of whole genome sequencing data. 45 samples came from 

SSMP and 36 samples came from SSIP.  

Sample.ID 
Ethni

c Sample.ID 
Ethni

c Sample.ID 
Ethni

c 
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ME-1QK9PV6 
Mala

y 
ME-G5VVJWS 

Mala

y 
ME-

WA1WVCC 
India

n 

ME-2DY341S 
Mala

y 
ME-GCXTDKT 

Mala

y 
ME-WSU2EF6 

India

n 

ME-2LK97T1 
Mala

y 
ME-GF98MZ5 

Mala

y 
ME-WXX4H6D 

India

n 

ME-34PV687 
India

n 
ME-GTJBBGA 

India

n 
ME-X915CPN 

India

n 

ME-5JUYB3D 
Mala

y 
ME-HCL8VLX 

Mala

y 
ME-

XHNW5GG 
India

n 

ME-5SMRK9M 
India

n 
ME-HR7SP2B 

Mala

y 
ME-

Y5YHAWK 
Mala

y 

ME-69QXS73 
Mala

y 
ME-IL2JEBQ 

India

n 
ME-YIQ4TX1 

India

n 

ME-6D8MVP3 
Mala

y 
ME-IR7CT2Z 

Mala

y 
ME-YWBM8JR 

India

n 

ME-6E5M6ZY 
Mala

y 
ME-ISBZ269 

Mala

y 
ME-ZR962SS 

Mala

y 

ME-6PTNSHM 
Mala

y 
ME-JA7MIHW 

Mala

y 
ME-ZS5EI5A 

Mala

y 

ME-7G29KYE 
India

n 
ME-JLH2YFN 

Mala

y 
ME-1W363FP 

Mala

y 

ME-7R5VPTN 
India

n 
ME-K62U8HX 

India

n 
ME-3S3MIXQ 

Mala

y 

ME-88VI9T6 
Mala

y 
ME-LFNREY2 

India

n 
ME-6BZLEI6 

Mala

y 

ME-8BNI435 
Mala

y 
ME-LIBZ5CL 

India

n 
ME-

AWKAXEF 
Mala

y 

ME-8N76Z3J 
India

n 
ME-LL1YTLG 

Mala

y 
MECA0710190

2 
India

n 

ME-8YNDYMF 
Mala

y 
ME-LVW6UAR 

Mala

y 
MECA0803221

4 
Mala

y 

ME-9CFKAVL 
Mala

y 
ME-

LWMDWTB 
India

n 
ME-

DCHWYRB 
Mala

y 

ME-9JZJEXG 
India

n 
ME-MFW9KEJ 

Mala

y 
ME-FGKB1M2 

India

n 

ME-A4D116T 
India

n 
ME-NHIM15G 

Mala

y 
ME-HBA2T3S 

Mala

y 

ME-A5F6GSV 
India

n 
ME-NU63IA8 

India

n 
ME-LJ3Y9SP 

India

n 

ME-AS9L56T 
India

n 
ME-Q9LIAKM 

India

n 
ME-M5E8X6U 

Mala

y 

ME-B8U42YS 
Mala

y 
ME-R2ZU9N9 

India

n 
ME-

MHH1MLY 
Mala

y 

ME-BXH58LW 
India

n 
ME-SKZLAZ8 

India

n 
ME-SWPVF5V 

Mala

y 

ME-DRHR42A 
Mala

y 
ME-T4SIGJB 

India

n 
ME-VZU46ZV 

India

n 

ME-EG31367 
India

n 
ME-T5AKQPW 

India

n 
ME-WI8KCKR 

India

n 
ME-

EMM3MTN 
Mala

y 
ME-USH3597 

Mala

y 
ME-XC14WVV 

Mala

y 
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ME-F45PX59 
India

n 
ME-VKP2PDU 

Mala

y 
ME-YLF7IFK 

Mala

y 

 

2.7.3.1 Singapore Sequencing Malay SNP discovery and quality 

control 

The SNP discovery and quality control are performed in two ways: (i) single-

sample SNP calling using CASAVA with the small variant caller module; (ii) 

multi-sample SNP calling using SAMTOOLS 0.1.17 [76]. The final set of 

SNPs that are used in our study only included those that have been discovered 

by both CASAVA and SAMTOOLS.  

 

CASAVA – Quality Control 

 Remove the candidate SNPs that possesses a Q(snp) <20. 

 Remove the candidate SNPs that possesses call depth greater than 3 

times the mean sequencing depth of the chromosome. 

 Removed all heterozygous SNPs for SNPs discovered in chromosome 

Y and mitochondria.  

 

SAMTOOLS – Quality Control 

 Remove the candidate SNPs that possesses variant quality ≤ 3 

 Remove the candidate SNPs that possesses read depth smaller than 3 

or higher than maximum read depth (mean read depth + 3 × standard 

deviation of read depth). 

 Remove the candidate SNPs within 10bp of a gap. 

 Removed all heterozygous SNPs for SNPs discovered in chromosome 

Y and mitochondria.  
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2.7.3.2 Singapore Sequencing Indian SNP discovery and quality 

control 

The SNP discovery and quality control are performed in two ways: (i) single-

sample SNP calling using CASAVA with the small variant caller module; (ii) 

multi-sample SNP calling using GATK 2.1.8 [77]. The final set of SNPs that 

are used in our study only included those that have been discovered by both 

CASAVA and GATK.  

 

CASAVA – Quality Control 

 Remove the candidate SNPs that possesses a Q(snp) <20. 

 Remove the candidate SNPs that possesses call depth greater than 3 

times the mean sequencing depth of the chromosome. 

 Removed all heterozygous SNPs for SNPs discovered in chromosome 

Y and mitochondria.  

 

GATK – Quality Control 

 Firstly, use GATK to realign the bam file, remove the duplicates and 

recalibrate the bases.  

 SNPs are called by recalibrating variants with SNP call annotations 

(QD, HaplotypeScore, MQRankSum, ReadPosRankSum, FS, MQ, 

InbreedingCoeff, and DP) and removing the candidate SNPs whose 

variant quality score is below 99.0. 
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Table 4. Comparison of TMRCA methods 
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CHAPTER 3.  STATISTICAL EVALUATION OF TMRCA 

ALGORITHMS 

3.1 Modern Methods of Estimating TMRCA  

The inference of the divergence time between populations has been of 

fundamental interest in the study of population evolution. There is broad 

consensus for the “Out-of-Africa” hypothesis which states that modern human 

arose about 200,000 years ago in Africa and spread throughout the continents 

around 100,000 years ago. This was followed by several waves of major 

population dispersals across the globe, although the exact nature of the 

population divergence remains debatable. Existing methods to estimate 

population divergence time differ in their methodological frameworks and 

demographic assumptions, and require different types of genetic data as input. 

These fundamental differences often result in the methods producing 

inconsistent estimates of the population divergence time, further confounding 

attempts to robustly uncover the history of human migration, especially when 

most population genetic studies do not employ multiple methods to estimate 

the time to the most recent common ancestor (TMRCA). Therefore, a 

systematic evaluation of the existing methods is needed to provide guidance 

for researchers who attempt to investigate population divergence time. 

 

3.2 Theories in Population Genetics 

3.2.1 Coalescent Theory 

In this session, we will discuss the main ideas of coalescent theory briefly in 

the absence of selection, complex population structure and unfixed population 

size. 
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3.2.1.1 Poisson Process 

The Poisson process is a fundamental theory in coalescent theory. A Poisson 

process is a stochastic process counting events that occur independently and 

randomly in the time. In a Poisson process with rate 𝜆, the probability of an 

event happens in the time interval (𝑡, 𝑡 + 𝛿𝑡) is 𝜆𝛿𝑡 and the time before the 

first event or between two adjacent events follows an exponential distribution 

with mean 1/𝜆.  

 

Consider two Poisson processes, process A and process B of rate 𝑎 and 𝑏 

respectively. The combined process (defining an event as either A or B) is a 

Poisson process of rate (𝑎 + 𝑏). Moreover, given an event occurs, the 

probability that the event is A equals 𝑎/(𝑎 + 𝑏) and the probability that the 

event is B equals 𝑏/(𝑎 + 𝑏).  

 

3.2.1.2 Coalescent Process  

 
Figure 13. An example of a genealogical tree of a sample of 6 genes. The column 

on the right shows the equivalent relations of the genealogy. 

Consider a sample of 𝑛 genes taken at the present time. Let 𝜏 represent a time 

moving backward before the samples are taken. Genes are defined in the same 

equivalent class at time 𝜏 if they have a common ancestor. For example in 

Figure 13, there are six genes sampled at time 0. At time 𝜏, gene 1 and gene 2 
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have a common ancestor; gene 5 and gene 6 have another common ancestor. 

Hence, there are four equivalent classes at time τ. The equivalence relation 

can be described by 

{(1), (2), (3), (4), (5), (6)}     at time 0 

{(1,2), (3), (4), (5,6)}             at time τ 

 

If amalgamating two equivalence classes in an equivalent relation can produce 

a new equivalence relation (e.g. in Figure 13, amalgamating (4) and (5,6) 

results in equivalent relation {(1,2), (3), (4,5,6)}), this amalgamating is called 

a coalescence and the process of successive amalgamations is called a 

coalescence process [42]. Let 𝜙1 = {(1,2,3,… , 𝑛)} and 𝜙𝑛 =

{(1), (2), (3),… , (𝑛)} be two equivalence relations. Kingman (1982) uses a 

stochastic model to describe the coalescence process moving from 𝜙𝑛 to 𝜙1. 

The coalescence process can be typically illustrated by a genealogical tree.  

 

Let 𝜁 represent an equivalence relation and η represent any possible 

equivalence relation that can be obtained after a coalescence occurs on 𝜁. 

Suppose there are 𝑘 equivalent classes in 𝜁, and thus there are 𝐶2
𝑘 possible 

coalescences. According to Kingman’s coalescent theory, the time to the next 

coalescence event is an exponential distribution of mean 1/𝐶2
𝑘. Let 𝑇𝑘 be the 

time to the next coalescence event when there are 𝑘 equivalent classes present 

in the coalescent process and 𝑇𝑀𝑅𝐶𝐴 be the coalescent time to the most recent 

common ancestor (MRCA) of 𝑛 genes. Then 𝑇𝑀𝑅𝐶𝐴 = ∑ 𝑇𝑘
𝑛
𝑘=2 . 

 

3.2.1.3 Relation between Coalescent Theory and Wright Fisher Model 



67 

 

The equivalent class in coalescent theory is equivalent to a lineage in the 

Wright Fisher model (see Section 1.7.5). On one hand, let 𝑇𝑘 be the time to the 

next coalescence event when there are 𝑘 equivalent classes present in the 

coalescent process. Then 𝑇𝑘 ∼ Exponential(𝐶2
𝑘).  On the other hand, consider 

𝑘 lineages in a diploid population of size 𝑁0 (𝑘 ≪ 𝑁0) and let 𝑊𝑘 represent 

the number of generations until any two of the 𝑘 lineages have a common 

ancestor. Then 𝑊𝑘 ∼ Exponential(𝐶2
𝑘/2𝑁0). Therefore, the relations between 

time in generations in the Wright-Fisher model and coalescence time is 

𝑊𝑘 = 𝑇𝑘 × 2𝑁0 

 

3.2.1.4 Coalescent theory with Recombination 

When recombination is included in the coalescent process, recombination 

events can be modelled by a Poisson process with rate 𝑅/2 (𝑅 = 4𝑁0𝑟 and 𝑟 

is the recombination rate). Define an event to be either a recombination or a 

coalescence and suppose that there are 𝑘 equivalent classes at time 𝜏 in the 

process. The probability that an event occurs in (𝜏, 𝜏 + 𝛿𝜏) is 
1

2
𝑘(𝑘 − 1)𝛿𝜏 +

1

2
𝑘𝑅𝛿𝜏 =

1

2
𝑘(𝑘 + 𝑅 − 1)𝛿𝜏, and the probability that the event occurring is a 

recombination is 𝑅/(𝑘 − 1 + 𝑅).  

 

3.2.1.5 Scaling with 𝑁0
𝑟𝑒𝑓

 

If we want to use the reference population size 𝑁0
𝑟𝑒𝑓

 as the scaling factor, 

define the relative population size 𝜆 =
𝑁0

𝑟𝑒𝑓

𝑁0
 (𝜆 could be a function of time 𝑡). 

𝑇𝑘 can be modelled by a Poisson process of rate 𝜆𝐶2
𝑘 (also denoted as 

coalescence rate 𝐶 = 𝜆𝐶2
𝑘). Considering recombination (𝑅 = 4𝑁0

𝑟𝑒𝑓
𝑟), 𝑇𝑘 can 
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be modelled by a Poisson process of rate 𝜆𝐶2
𝑘 +

1

2
𝑘𝑅. The coalescent time in 

generations is 2𝑁0
𝑟𝑒𝑓

× coalescence time. 

 

3.2.2 Full Data Likelihood Calculation based on Substitution Markov model 

3.2.2.1 Jukes-Cantor Model 

 
Figure 14. Jukes-Cantor model. The four nucleotides substitute in a Markovian 

manner. 

In order to make any statistical inference about the genealogy, we need to 

compute the likelihood of a genealogy given the observed DNA sequences. 

The DNA substitution model first introduced by Jukes and Cantor in 1969 [78] 

is a one parameter continuous time Markov model (Figure 14), which assumes 

that transition rates between any two nucleotides are equal and that all sites in 

the sequence are independent. Hence the likelihood is the product of the 

probabilities taken across sites and the main problem is to calculate the 

likelihood at one site.   

 

Assuming the continuous time Markov model has four states {A, T, C, G} and 

the transition rate matrix 𝑄 has the form as follows. 

 𝑄 =

[
 
 
 
 
 −

3𝑢

4

𝑢

4
𝑢

4
−

3𝑢

4

𝑢

4
    

𝑢

4
𝑢

4
    

𝑢

4
𝑢

4
     

𝑢

4
𝑢

4
     

𝑢

4

−
3𝑢

4

𝑢

4
𝑢

4
−

3𝑢

4 ]
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So the transition matrix 𝑃(𝑡) = exp(𝑡𝑄) has the form as follows. 

𝑃(𝑡) = [

1 − 3𝑎𝑡 𝑎𝑡

    𝑎𝑡 1 − 3𝑎𝑡

𝑎𝑡           𝑎𝑡

𝑎𝑡           𝑎𝑡

𝑎𝑡       𝑎𝑡

𝑎𝑡       𝑎𝑡

1 − 3𝑎𝑡 𝑎𝑡

   𝑎𝑡 1 − 3𝑎𝑡

], where 𝑎𝑡 =
1−exp(−𝑢𝑡)

4
 

and where 𝑃𝑖𝑗(𝑡), 𝑖, 𝑗 ∈ {𝐴, 𝑇, 𝐶, 𝐺} represents the probability that a lineage 

which is initially in state 𝑖 will be in state 𝑗 after 𝑡 units of time. The stationary 

distribution is defined by π = (0.25, 0.25, 0.25, 0.25).  

 
Figure 15. An example of a genealogy of 3 genes. Vertices 1-3 represent present 

genes, vertices 4 represent an ancestral gene and vertex 0 represents their 

MRCA. Edges v1-4 represent the length of time past for a coalescence event.    

Given a genealogy at one site, the probability of obtaining a give set of alleles 

at the tips can be computed as the product of the base substitution probabilities 

of all lineages. For example in Figure 15, there are three gene samples at one 

locus. The likelihood is 

𝐿 = ∑∑𝜋𝑠0
𝑃𝑠0𝑠4

(𝑣4)𝑃𝑠4𝑠1
(𝑣1)

𝑠4𝑠0

𝑃𝑠4𝑠2
(𝑣2)𝑃𝑠0𝑠3

(𝑣3) 

where 𝑠𝑖 represents the state (base) at point 𝑖; 𝑣𝑖 represents the waiting time 

for a coalescence; 𝜋𝑠0
 represents the prior probability of the states at point 0.  

 

3.2.2.2 Felsenstein’s Estimation Method 

In 1981, Felsenstein extended Jukes-Cantor Model and proposed a four-

parameter continuous time Markov model [79]. In Felsenstein’s model, the 

stationary distribution 𝜋 could be any probability and the transition probability 

𝑃(𝑡) can be subsequently derived from 𝜋 by the relation: 
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𝑃𝑖𝑗(𝑡) = 𝑒−𝑢𝑡𝐼𝑖𝑗 + (1 − 𝑒−𝑢𝑡)𝜋𝑗 

where 𝐼𝑖𝑗 = 1 if 𝑖 = 𝑗.  

Felsenstein suggested the stationary distribution 𝜋 to be the base composition 

proportions in the samples under the study.  

 

3.2.3 Ancestral Recombination Graph 

 
Figure 16. Illustration of ARG of a sample of three genes. (A) Two 

recombination occurred at t2 and t4. These recombination separate the gene into 

three segments (b1, b2), (b2, b3) and (b3, b4) (ancestral material colored in yellow, 

green and blue, respectively; non-ancestral material colored in grey). (B) The 

corresponding genealogies of (b1, b2), (b2, b3) and (b3, b4) are colored in yellow, 

green and blue respectively.  

Recombination plays a critical role in reproduction. Recent studies on 

haplotype patterns and LD structures show that recombination harbors a 

considerable amount of information about recent population history [80]. In 

the scenario assuming no recombination, each sequence has a single ancestor 

in its parent generation. Thus all sequences ultimately have a single common 

ancestor and the inheritance relationships of them could be represented by a 

genealogical tree. In the scenario with recombination, sequences would be 

broken up by recombination events into segments that have different 

genealogies. An ancestral recombination graph (ARG) has been proposed to 

depict the coalescent process integrating a series of coalescent and 

recombination events. 
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In an ARG, assuming at a time point of the coalescent process, there is a set of 

𝑘 lineages, the 𝑖th lineage of which contains ancestral gene material at 𝑚𝑖 

ordered non-overlapping intervals on a continuous unit interval 𝒙𝒊 =

{(𝑥𝑖1, 𝑦𝑖1), (𝑥𝑖2, 𝑦𝑖2), … , (𝑥𝑖𝑚𝑖
, 𝑦𝑖𝑚𝑖

) }. The coalescence process can be 

modelled by a Poisson process with coalescent rate 𝜆𝐶 and recombination rate 

𝜆𝑅, where  𝜆𝐶 = ∑ 𝐼𝑖𝑗𝑖≠𝑗 , 𝜆𝑅 = 𝑅/2∑ (𝑦𝑖𝑚𝑖
− 𝑥𝑖1)𝑖 , and 𝑅 = 4𝑁𝑒𝑟.  

 

If a coalescence occurs, the resulting lineage contains the union of the 

ancestral material intervals of the two coalescing lineages (e.g. Figure 16A at 

time t1 and t3). If a recombination occurs, one lineage splits into two at a 

splitting point uniformly distributed in the interval (𝑥𝑖1, 𝑦𝑖𝑚𝑖
) (e.g. Figure 16A 

at time t2 and t4). If one interval is represented by only one lineage, this 

interval has already found its MRCA and is removed from the process (e.g. 

Figure 16A at time t3 and t5, interval (𝑏1, 𝑏2) and interval (𝑏2, 𝑏3) are removed 

respectively). The coalescence process of a sample of size 𝑛 starts at 𝑘 =

𝑛,𝑚𝑖 = 1, 𝑥𝑖1 = 0, 𝑦𝑖1 = 1 for 𝑖 = 1,… , 𝑛 and ends when all the samples (0, 

1) have identified the MRCA. Hence, with recombination, samples could have 

different genealogies and a different MRCA (Figure 16B).  

 

Since ARG is not a tree, MCMC method suffers from a huge computational 

burden because of the exponentially increasing number of lineages. Hence a 

type of MCMC method uses multiple loci models assuming recombination 

within loci and free-recombination and an independent probabilistic property 

between loci, and explores the posterior distribution by simulating ARG for 

each locus independently. The size of each locus is often between several 
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hundred to thousand base pairs and it is challenging to scale to the whole 

genome. 

 

3.2.4 Sequential Markov Coalescent Model (SMC) 

Simulating historical sequences through ARG to infer the genealogical history 

is severely restricted by the computational burden as the length of the region 

increases. To overcome this difficulty, McVean developed a Markovian 

model, the sequential Markov coalescent model (SMC), which considerably 

simplifies the model and makes the simulation of genomic size sequences 

possible and likelihood inference tractable [81].  

 

In the standard coalescent model, the coalescence rate 𝜆𝐶 = ∑ 𝐼𝑖𝑗𝑖≠𝑗 , where 

𝐼𝑖𝑗 = 1 for all 𝑖 and 𝑗 if 𝑖 ≠ 𝑗.  In McVean’s SMC, 𝐼𝑖𝑗 = 1 if 𝑖 ≠ 𝑗 and the 𝑖th 

lineage and the 𝑗th lineage share common ancestral material. This 

modification largely reduces the space complexity of ARG, and more 

importantly, provides the process Markovian properties.  

 

The algorithm of sequential Markov coalescent model (SMC) 

Assuming a continuous ancestral gene material (0, 1), the sequential Markov 

coalescent algorithm is described below (Figure 17). 

 
Figure 17. Illustration of the sequential Markov coalescent model with 5 genes. 

The cross-mark indicates the point of recombination, which is uniformly 

distributed on the genealogy. The branch above the recombination point is 

removed, resulting in a floating branch which coalesces with existing lineages at 
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the rate proportional to the number of lineages present. The figure has been 

adapted from a similar figure in reference [81]. 

a. Simulate a standard coalescent history at point 𝑥 = 0. The resulting 

genealogical tree has a total branch length of 𝑇(𝑥).  

b. The distance of the first recombination from 𝑥 (to the right) is 

exponentially distributed with rate 𝑅𝑇(𝑥)/2. If the point of the 

recombination event is less than 1, the recombination breaks up the 

gene. The left emerging region follows the old genealogy, and the right 

emerging follows a new genealogy sampled as follows: The time point 

when the recombination event occurs is drawn uniformly from the old 

genealogy and the older portion of the selected branch is erased, 

resulting in a floating lineage. The floating lineage coalesces with the 

remaining genealogy at rate proportional to the number of lineages 

present and forms a new genealogy. Update 𝑥 to the left end of the 

right emerging region and calculate tree length 𝑇(𝑥) for the new 

genealogy. 

c. Repeat process b until the position of next recombination event occurs 

beyond 1. 

 

 

 

SMC’ 
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Figure 18. Illustration of the SMC’ model with 5 genes. The cross-mark 

indicates the point of recombination, which is uniformly distributed on the tree. 

The floating branch coalesce with existing lineages at the rate proportional to 

the number of lineages present before erasing the branch above the 

recombination point. (a) represents the situation that the floating branch 

coalesces with branch other than its ancestral branch; (b) represents the 

situation that the floating branch coalesces with its own ancestral branch (in this 

case, the recombination event will not change LD pattern).  

Marjoram modified SMC and proposed SMC’ in 2006 [82]. SMC’ did a slight 

modification that the older portion of the branch where the recombination 

occurs is deleted after the new line is added (Figure 18). In this way, it allows 

coalescence between two lineages resulting from a recombination (Figure 

18b).  

 

3.3 Methods for Estimating TMRCA 

Many of the existing population genetics inference and methodologies have 

been built on the foundation of the coalescent theory [21, 83, 84], although 

these can be generally classified according to the type of genetic data used as 

input and the assumptions about population demography (Table 4). For 

example, one class of methods for estimating the time to the most recent 

common ancestor (TMRCA) considers multiple neutral loci each of around 

1,000 bases only in multiple populations, such as MIMAR[85, 86] and GPho-

CS [87]. Another class of methods infers the TMRCA from full chromosomal 

information, such as CoalHMM [88], PSMC [89] and MSMC [90]. The third 
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class of methods essentially infers the TMRCA on the extent of linkage 

disequilibrium (LD), population diversity measured by the FST parameter and 

population allele frequency, such as the approaches by Hayes and colleagues 

(abbreviated subsequently as T-LD) [26, 91], by McEvoy and colleagues 

(abbreviated subsequently as T-FST) [24], and DADI [92]. These methods 

differ by the type of input data required (sequence-level information or 

summary statistics), and by the assumption around the presence of genetic 

recombination during migration [92]. 

 

These different methods can also be classified by the statistical framework 

used in the design of the methods. Notably, MIMAR and GPho-CS are 

Markov chain Monte Carlo (MCMC)-based methods which implement an 

MCMC algorithm to sample the posterior distribution of the TMRCA 

parameter, and possess the advantage of incorporating greater complexity in 

the model to allow for recombination and gene flows through migration. 

However, such methods are typically computationally expensive and scaling 

up to allow whole-genome sequences to be considered as input remains 

intractable. Conversely, methods such as CoalHMM, PSMC and MSMC adopt 

a hidden Markov model (HMM) framework which assumes a Markovian 

behavior when considering recombination events. This reduces the computing 

burden and has been extended to allow the whole genomic sequence to be 

analyzed. T-LD and T-FST derive the TMRCA by computing statistics 

measuring the extent of LD or FST, while DADI infers the TMRCA between 

two populations from a diffusion approximation of the allele frequency 

spectrum.    
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In the following sections, we review the methodologies of eight existing 

methods used to estimate TMRCA (T-LD, T-FST, MIMAR, GPho-CS, DADI, 

CoalHMM, PSMC and MSMC). 

 

3.3.1 Statistical Estimators of TMRCA  

We reviewed two methods for estimating population divergence time using 

genotyping data. T-LD is a statistical estimator of TMRCA based on LD 

structure and T-FST is another statistical estimator based on LD and FST 

information.  

 

3.3.1.1 T-LD 

Conceptual framework of T-LD 

Hayes uses the decline in correlation of LD between two offspring populations 

with increasing genetic distance to estimate their divergence time. LD 

structure should be the same in offspring populations right after their 

divergence from ancestral population. Hence the correlation between LD of 

two daughter populations (𝑟𝑝𝑜𝑝) should be 1.0 right after divergence, and 

decays with time due to recombination. If LD is measured by correlation 

coefficient 𝑟, Hill and Robertson showed that 𝑟𝑝𝑜𝑝 decays in a manner that 

after 𝑇 generations over genetic distances (𝑐) of 𝑟𝑝𝑜𝑝 = 𝑒−2𝑐𝑇, assuming 

constant population size and finite unselected random mating population [93]. 

 

 

Methodology 
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a. Extract the sites that are segregating (polymorphic) in all populations 

under the study. Estimate LD by correlation coefficient 𝑟 in each 

population separately for each pair of SNPs of genetic distance between 

0.005cM and 0.1cM and adjust by (1/n) to account for sample size. 

b. r values are binned into 19 categories with equal length of genetic distance 

and incremental upper boundaries from 0.01cM to 0.1cM. For each LD 

bins, estimate the correlation of LD (𝑟𝑝𝑜𝑝) between two populations of 

interest.  

c. Regress 𝑟𝑝𝑜𝑝 onto genetic distance to obtain the divergence time 𝑇. 

 

3.3.1.2 T-FST 

Conceptual framework of T-FST 

Under neutral evolutionary theory, the population genetic differentiation 

sources from gene drift and can be estimated by 𝐹𝑆𝑇. The extent of gene drift 

depends on effective population size (𝑁0) and the population divergence time 

(𝑇) such that 𝐹𝑆𝑇 ≈ 𝑇/(2𝑁0) [94]. According to Hill and Robertson, LD 

between markers far apart reflects recent 𝑁0 and the LD between markers 

closed together reflects ancient 𝑁0. Sved and Nei (1987) both reported that 

E(𝑟2) ≈ 1/(2 + 4𝑁0𝑐 ) is approximately true for 𝑁0  
1

2𝑐
 generations ago, 

where 𝑟2 is the square of genetic correlation coefficient and 𝑐 is the genetic 

distance [91, 94, 95]. Therefore, the effective population size can be estimated 

by LD structure and population divergence time can be thus derived. 
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Methodology 

a. Extract the sites that are segregating (polymorphic) in all populations 

under the study. Compute the average of the SNP-wise 𝐹𝑆𝑇.  

b. Estimate LD by the square of correlation coefficient 𝑟2 in each population 

separately for each pair of SNPs of genetic distance from 0.005cM to 

0.1cM. Adjust 𝑟2 values for each population by (1/𝑛) to account for 

experimental sample size. Similar to T-LD, 𝑟2 are binned into 19 

categories. The effective population size is computed by[
1

𝐸(𝑟2)
− 2] /4𝑐 

for each bin and a single point estimation takes the average of the 19 

values for each population separately. 

c. The harmonic mean of the effective population sizes of the two 

populations of interest (𝑁0) is computed and the population divergence 

time is estimated as 𝑇 ≈ 2𝑁0𝐹𝑆𝑇. 

 

3.3.2 MCMC methods 

Many Bayesian methods have been established to estimate the evolutionary 

parameters including effective population size and population divergence time 

through simulating genealogies or ARGs based on coalescence theory and 

inferring parameters from their posterior distributions.  

 

3.3.2.1 MIMAR 

MIMAR is a multilocus model for estimating population parameters under 

isolation-migration model allowing recombination [85]. The parameters of 

interest include three population mutation rate, (𝜃𝐴, 𝜃1 and 𝜃2), one or two 

migration rates (𝑚 assuming symmetric migration or (𝑚1, 𝑚2) assuming 
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asymmetric migration), a divergence time (𝑇) and a recombination rate (𝑅), 

where 𝜃 = 4𝑁0𝑢 and 𝑢 represents the mutation rate per site per generation. 

Hence 𝑁0 and 𝜃 are equivalent with a fixed 𝑢. MIMAR explores the posterior 

probabilities of 𝚯 = {𝜃1, 𝜃2, 𝜃𝐴, 𝑚, 𝑇, 𝑅} and infers the parameters through 

MCMC. 

 

The data that MIMAR utilizes are the segregating sites summaries for multiple 

independent neutral loci, each of which has a length of hundreds of base pairs. 

The segregating sites summaries used by MIMAR are 𝑿 = (𝑆1, 𝑆2, 𝑆𝑠, 𝑆𝑓), 

where 𝑆1 and 𝑆2 are numbers of polymorphisms unique to the samples from 

populations 1 and 2 respectively; 𝑆𝑠 is the number of shared SNP between the 

two samples; and 𝑆𝑓 is the number of fixed variants in either sample. MIMAR 

assumes loci are independent to each other, and thus the likelihood is the 

product of the likelihood of each locus. Although it is hard to obtain the 

analytical formula for the full likelihood at one locus (P(𝚯|𝑿) , where 𝑿 is the 

observed data at a single locus), 𝑃(𝚯|𝑿) can be expressed by a Bayesian 

framework. 

𝑃(𝚯|𝐗) ∝ 𝑓(𝚯)∫𝑓(𝑿|𝐺, 𝚯)𝑓(𝐺|𝚯)𝑑𝐺
G

 

Given an ARG 𝐺 and parameter 𝚯, the likelihood 𝑓(𝑿|𝐺, 𝚯) can be either 

derived from coalescent theory or estimated from a traditional substitution 

model. The conditional probability 𝑓(𝐺|𝚯) can be evaluated using coalescent 

theory. The prior distributions 𝑓(𝚯) for  𝜃1, 𝜃2, 𝜃𝐴, 𝑇 and log(𝑚) are uniform 

with provided or default boundaries. MIMAR designs a Metropolis-Hasting 
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MCMC procedure to sample the parameters and infers the population 

divergence time using the expected value of its stationary distribution.  

 

3.3.2.2 GPho-CS 

 
Figure 19. Illustration of the model of GPho-CS. There are eight lineages, with 

two from population A, four from population B and two from population C. The 

genealogy is compatible with a known phylogeny tree with two migration bands. 

The scaled population mutation rates for population A, B, C and ancestral 

population AB and ABC are θA, θB, θC, θAB and θABC respectively. This figure has 

been adapted from a similar figure in reference [87]. 

GPho-CS is a Bayesian MCMC method which utilizes sequence alignments at 

many neutral loci to explore the posterior distribution of population sizes and 

population divergence times with a known phylogeny of multiple populations. 

GPho-CS assumes no intralocus recombination and allows multiple migration 

bands. In our application, we assume two populations and an isolation-

migration model. 

 

Consider a known population phylogeny (tree) 𝑇. For each population 𝑝, the 

population mutation rate 𝜃𝑝 and population divergence time 𝜏𝑝 are the 

parameters of interest (Figure 19). Input observations are haploid (or diploid) 

sequence alignments at multiple loci {𝑿𝒊} (𝑖 represents locus 𝑖). GPho-CS 

uses MCMC to sample parameters according to their joint posterior density, 

using two main components: (a) the computation of the data density function 
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𝑃({𝑿𝒊}, {𝐺𝑖}, {𝜃𝑝}, {𝜏𝑝}, {𝑚𝑏}|𝑇) and (b) the update scheme for 

({𝜃𝑝},{𝜏𝑝},{𝐺𝑖},{𝑚𝑏}), where 𝐺𝑖 represents the genealogy for locus 𝑖 and 𝑚𝑏 

represents the migration rate of migration band 𝑏.  

 

With several independent assumptions, the data density function is expressed 

by: 

 𝑃({𝑿𝒊}, {𝐺𝑖}, {𝜃𝑝}, {𝜏𝑝}, {𝑚𝑏}|𝑇) =

(∏ 𝑃(𝜃𝑝)𝑝 )(∏ 𝑃(𝜏𝑝)𝑝 )(∏𝑃(𝑚𝑏))(∏ 𝑃(𝐺𝑖|𝑇, {𝜃𝑝}, {𝜏𝑝}, {𝑚𝑏})𝑃(𝑿𝒊|𝐺𝑖)𝑖 ) 

where the prior 𝑃(𝜃𝑝), 𝑃(𝜏𝑝) and 𝑃(𝑚𝑏) are Gamma distribution; 

𝑃(𝐺𝑖|𝑇, {𝜃𝑝}, {𝜏𝑝}, {𝜏𝑚}, {𝑚𝑏}) is computed based on coalescent theory and 

𝑃(𝑿𝒊|𝐺𝑖) is computed by Felsenstein’s substitution model [79]. GPho-CS uses 

a series of Metropolis-Hastings procedure, to update the layers of ‘latent’ 

variables ({𝐺𝑖}, {𝜃𝑝}, {𝜏𝑝}, {𝑚𝑏}) one by one.  

 

3.3.3 HMM Methods 

To model the recombination events more effectively and utilize information of 

whole-genome alignment, hidden Markov models have been favored by 

researchers. In the following section, we review three HMM-based methods 

that are able to utilize whole-genome data to infer TMRCA. 

 

3.3.3.1 CoalHMM 

CoalHMM is a hidden Markov model that utilizes a pair of whole-genome 

haploid alignments, one each from the populations to estimate population 

parameters under an isolation model [88]. It assumes that the process is 

Markovian along the alignments and only considers the genealogies of pairs of 
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adjacent nucleotides. CoalHMM uses a discrete state Markov model to depict 

the coalescent time along the sequences (coalescent HMM model), and uses 

continuous time finite state Markov models (CTMC) to describe the ancestry 

of two adjacent nucleotides back in time. The CTMC helps when computing 

the transition probability of the coalescent HMM model. 

 

CTMC 

CoalHMM used two CTMCs to model the ancestry of two adjacent 

nucleotides: one-sequence system and two-sequence system. Back in time, 

when two populations are isolated, the process of adjacent nucleotides on each 

alignment is modelled by one-sequence system separately. When two 

populations merged, the process is modelled by a two-sequence system. The 

hidden states of the one-sequence system and the two-sequence system are 

shown in Table 5 and Table 6 respectively.  

Table 5. The hidden states of two adjacent nucleotides in one sequence system. 

Linked edge means the two nucleotides are on the same sequence. This table has 

been adapted from a similar figure in reference [88] . 

Index 1 2 

State   

 

Table 6. The hidden states of two adjacent nucleotides in two sequences system.  

Open circle means the two sequences found MRCA at the locus, whereas filled 

circle means MRCA is not found yet. Linked edge means the two nucleotides are 

on the same sequence. {ΩB, ΩL, ΩR, ΩE } represent the state sets of non-coalescence 

on both nucleotides, coalescence at left nucleotide, coalescence at right 

nucleotide, coalescence at both nucleotides, respectively. This table has been 

adapted from a similar figure in reference [88]. 

Set Ω𝐵 Ω𝐿 Ω𝑅 Ω𝐸 

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

State 
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The CTMCs have transition rate matrices 𝑸𝟏 and 𝑸𝟐 and transition matrix 

𝑷𝟏(𝒕) = exp (𝑸𝟏𝑡) and 𝑷𝟐(𝒕) = exp (𝑸𝟐𝑡) for the one-sequence and two-

sequence system, respectively. 

 

 

where 𝐶 =
𝑁0

𝑟𝑒𝑓

𝑁0
 is the coalescence rate, 𝑅 = 2𝑁0

𝑟𝑒𝑓
𝑟 is the scaled 

recombination rate, and 𝑁0
𝑟𝑒𝑓

is the reference effective population size.  

 

Coalescent HMM Model 

CoalHMM used a discrete state Markov model to depict the coalescent time 

along the alignments. The hidden states are discretized coalescent time 

intervals with break points 𝜏1, 𝜏2, … , 𝜏𝑘−1 and 𝜏𝑘 = ∞, where 𝜏1 represents the 

divergence time. State 𝑖 is the event that a coalescence occurs in [𝜏𝑖, 𝜏𝑖+1]. The 

distribution of the CTMC states when entering the HMM at state 𝑖 is given by 

𝜋𝑖 = 𝜋1 exp(𝑸𝟐(𝜏𝑖 − 𝜏1)) for 𝑖 = 1, … , 𝑘. The transition probability from 

state 𝑖 to state 𝑗 is then given by (𝑅 ∈ 𝑗|𝐿 ∈ 𝑖) =
𝑃(𝐿∈𝑖,𝑅∈𝑗)

𝑃(𝐿∈𝑖)
=

𝑃(𝐿∈𝑖,𝑅∈𝑗)

𝑒−𝐶𝜏𝑖−𝑒−𝐶𝜏𝑖+1
 . 

When 𝑖 = 𝑗, 

 𝑃(𝐿 ∈ 𝑖, 𝑅 ∈ 𝑗) = 𝑃(𝑋(𝜏𝑖) ∈ 𝛺𝐵, 𝑋(𝜏𝑖+1) ∈ 𝛺𝐸|𝑃(𝜏1) = 𝜋1) 

= ∑ ∑ (𝜋1𝑒
𝑸𝟐(𝜏𝑖−𝜏1))

𝑘
(𝑒𝑸𝟐(𝜏𝑖+1−𝜏𝑖))

𝑘𝑙𝑙∈𝛺𝐸𝑘∈𝛺𝐵
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When i<j, 

𝑃(𝐿 ∈ 𝑖, 𝑅 ∈ 𝑗) = 𝑃(𝑋(𝜏𝑖) ∈ Ω𝐵, 𝑋(𝜏𝑖+1) ∈ Ω𝐿, 𝑋(𝜏𝑗) ∈ Ω𝐿, 𝑋(𝜏𝑗+1) ∈ Ω𝐸|𝑃(𝜏1) = 𝜋1)  

= ∑ ∑ ∑ ∑ (𝜋1𝑒
𝑸𝟐(𝜏𝑖−𝜏1))

𝑘
(𝑒𝑸𝟐(𝜏𝑖+1−𝜏𝑖))

𝑘𝑙
(𝑒𝑸𝟐(𝜏𝑗−𝜏𝑖+1))

𝑙𝑚
(𝑒𝑸𝟐(𝜏𝑗+1−𝜏𝑗))

𝑚𝑠
𝑠∈Ω𝐸𝑚∈Ω𝐿𝑙∈Ω𝐿𝑘∈Ω𝐵

  

When i>j, 

𝑃(𝐿 ∈ 𝑖, 𝑅 ∈ 𝑗) = 𝑃(𝐿 ∈ 𝑗, 𝑅 ∈ 𝑖)  

The transition probabilities calculated in this way are exact the probability 

according to coalescent theory with recombination. 

 

Emission probabilities are the probabilities that a given pair of nucleotides 

differs in a given time, which is computed by Jukes-Cantor substitution 

models. In the discrete model, the mid-point of corresponding time interval is 

used. 

 

There are two common ways to estimate parameters: (a) maximum likelihood 

parameters optimized by a modified Newton-Raphson algorithm where 

derivatives are computed numerically; (b) MCMC. In our applications, we 

used MCMC to estimate the parameters since it is more robust. 

 

3.3.3.2 PSMC 

 
Figure 20. PSMC uses a hidden Markov model to infer the historical population 

size based on the basis of the local density of heterozygotes. The hidden states 

are discretized TMRCAs and the transitions are ancestral recombination events. 
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Homozygotes and heterozygotes are colored in red and blue respectively. The 

figure has been adapted from a similar figure in reference [89].  

PSMC is a case of sequential Markov coalescence model that infers the piece-

wise constant ancestral effective population size from two chromosomes [89] 

(Figure 20). When PSMC is applied to a pseudo-diploid sequence which each 

haploid sequence from one population, the divergence time could be 

qualitatively inferred as the time when the effective population size increase to 

infinity.  

 

The hidden states are discretized coalescent time intervals [𝜏𝑖 , 𝜏𝑖+1], 𝑖 =

1, … , 𝑘. Within each coalescent time interval, PSMC has a free parameter 

representing effective population size. The transition probability and emission 

probability of continuous-state HMM are given below and those of discrete-

state HMM are computed by taking the integral on the intervals. The 

maximum likelihood parameters are obtained through Viterbi Learning EM 

algorithm. 

 

The transition probability is derived from the SMC model and given by: 

𝑝(𝑡|𝑠) = (1 − 𝑒−𝜌𝑡)𝑞(𝑡|𝑠) + 𝑒−𝜌𝑠𝛿(𝑡 − 𝑠) 

where 𝜌 is the scaled recombination rate, 𝛿(⋅)is the Dirac delta function and 

𝑞(𝑡|𝑠) = λ(t) ∫
1

𝑠
× exp (−∫ λ(ν)dν

𝑡

𝑢
)𝑑𝑢

min{𝑠,𝑡}

0
 is the transition probability 

conditional on there being a recombination event, where 𝜆(𝑡) =
𝑁0

𝑟𝑒𝑓

𝑁0(𝑡)
 is the 

relative population size at state 𝑡. 
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The emission probability is determined by an exponential distribution of rate 𝜃 

(scaled mutation rate): 𝑒(1|𝑡) = 𝑒−𝜃𝑡, 𝑒(0|𝑡) = 1 − 𝑒−𝜃𝑡, where 1 means 

heterozygote and 0 means homozygote. 

 

3.3.3.3 MSMC 

MSMC is a multi-sequence extension of PSMC that also infers the piece-wise 

constant ancestral effective population size [90]. The hidden state of MSMC is 

the first coalescence represented by a triplet (𝑡, 𝑖, 𝑗), where 𝑡 is the first 

coalescence time and 𝑖 and 𝑗 are the labels of the two lineages with regard to 

the first coalescence. Coalescence time is also discretized into intervals with 

boundaries [𝜏𝑖, 𝜏𝑖+1], 𝑖 = 1,… , 𝑘. Suppose there are 𝑀 haploid sequences, then 

MSMC has 𝐶2
𝑀𝑘 hidden states. The transition probability and emission 

probability are derived under the SMC’ framework and parameters are 

optimized by the Baum-Welch algorithm [82]. 

 

When MSMC is applied to two populations, three coalescence rates, 

𝜆𝑖
1(𝑡), 𝜆𝑖

2(𝑡) and 𝜆𝑖
12(𝑡), are used, where 𝜆𝑖

1(𝑡) and 𝜆𝑖
2(𝑡) represent the within 

population coalescence rates for population 1 and population 2 and 𝜆𝑖
12(𝑡) 

represents the cross population coalescence rate. MSMC defines the cross-

coalescence rate(𝑡) = 2𝜆𝑖
12(𝑡)/(𝜆𝑖

1(𝑡) + 𝜆𝑖
2(𝑡)) as a measure of relative gene 

exchange rate between two populations. A population divergence process is 

shown if the cross-coalescence rate decreases from around one to close to 

zero. 

 

3.3.4 Differential Approximation Methods 
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3.3.4.1 DADI 

DADI is a diffusion approximation approach which utilizes multi-population 

allele frequency spectrum (AFS) to infer population evaluation parameters 

under a particular demographic model [96]. The basic idea is: firstly solve a 

diffusion equation of relative allele frequency, then calculate the expected 

AFS and compare it with observed AFS, and iterate the above steps to find the 

optimal parameters which maximize the likelihood.   

 

Given a number of sequences from 𝑃 populations, with 𝑛𝑖 sequences from 

population 𝑖, AFS is defined as a (𝑛1 + 1) × (𝑛2 + 1) × …× (𝑛𝑃 + 1) 

dimensional matrix with each entry 𝑆[𝑑1, 𝑑2, … , 𝑑𝑃] (0 ≤ 𝑑𝑖 ≤ 𝑛𝑖 , 𝑖 = 1, … , 𝑃) 

counting the biallelic polymorphic sites that the number of derived allele 

occurrence is 𝑑𝑖 in population 𝑖 [97]. Let 𝜙(𝒙, 𝑡) be the process of the density 

of derived mutations having relative allele frequency 𝒙 (𝑥𝑖 ∈ [0,1], 𝑖 =

1, … , 𝑃) at a forward time 𝑡. Under Wright-Fisher model, 𝜙(𝒙, 𝑡) follows the 

diffusion equation: 

𝜕

𝜕𝜏
𝜙 =

1

2
∑

𝜕2

𝜕2𝑥𝑖

𝑥𝑖(1−𝑥𝑖)

λi
𝜙 − ∑

𝜕

𝜕𝑥𝑖

(𝛾𝑖𝑥𝑖(1 − 𝑥𝑖) +𝑖=1,2,…,𝑃𝑖=1,2,…,𝑃

∑ 𝑀𝑖←𝑗(𝑥𝑗 − 𝑥𝑖)𝑗=1,2,…,𝑃 )𝜙   

where 𝜆𝑖 = 𝑁𝑖/𝑁𝑟𝑒𝑓 represents the relative population size of population 𝑖, 𝛾𝑖 

represents the scaled fitness coefficient of variants in population 𝑖, 𝑀𝑖←𝑗 

represents the scaled migration rate from population 𝑗 to population 𝑖. 

Boundary conditions are no-flux except where all population frequencies are 0 

or 1. Complex demographic structure can be modelled by altering the 

parameters or dimensionality of 𝜙. The diffusion process 𝜙 can be solved 
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through a finite different method and the expected AFS can be subsequently 

derived in the form of: 

𝑀[𝑑1, 𝑑2, … , 𝑑𝑃] = ∫ …∫ ∏ (
𝑛𝑖

𝑑𝑖
) 𝑥𝑖

𝑑𝑖(1 − 𝑥𝑖)
𝑛𝑖−𝑑𝑖  𝜙(𝑥1, 𝑥2, … , 𝑥𝑃)𝑑𝑥𝑖

𝑖=1,…,𝑃

1

0

1

0

 

DADI assumes the entries of AFS to be independent Poisson variables of 

mean 𝑴. Hence the likelihood of parameter 𝚯 can be derived as below and 

maximum likelihood parameters can subsequently obtained: 

𝐿(𝚯|𝑺) = ∏ ∏
𝑒−𝑀[𝑑1,𝑑2,…,𝑑𝑃]𝑀[𝑑1, 𝑑2, … , 𝑑𝑃]𝑆[𝑑1,𝑑2,…,𝑑𝑃]

𝑆[𝑑1, 𝑑2, … , 𝑑𝑃]!
𝑑𝑖=0…𝑛𝑖𝑖=1…𝑃

 

 

3.4 Simulation and Real Data Application 

We perform a comparison of the eight methods for estimating the TMRCA (T-

LD, T-FST, MIMAR, DADI, GPho-CS, CoalHMM, PSMC, and MSMC) to 

gauge their relative performance as measured by the robustness and accuracy 

of the TMRCA estimates. This is achieved through a series of simulations 

under four different population demography scenarios: (i) a simple-isolation 

model; (ii) an isolation-migration model; (iii) a bottleneck-nonbottleneck 

model; and (iv) a bottleneck-bottleneck model. The simple-isolation model is 

the simplest, which assumes a random mating ancestral population that splits 

instantaneously into two descendant populations with no subsequent gene 

flow. The isolation-migration model extends the simple-isolation model by 

allowing for migration after the population split. The bottleneck-nonbottleneck 

model simulates the demographic history of African and non-African 

populations, where studies have suggested the presence of demographic 

bottlenecks in non-African populations but not in African populations [22, 96, 
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98]. The bottleneck-bottleneck model simulates the demographic history of 

two non-African populations. These eight methods are subsequently applied to 

estimate the TMRCA between Southeast Asian Malays and South Asian 

Indians, with deep whole-genome sequencing data from these two 

populations. 

 

3.4.1 Methods 

3.4.1.1 Simulating demographic models  

 
Figure 21. Illustration of the four demographic scenarios considered in our 

simulation study. An ancestral population diverged into two populations 

(population_1 and population_2) at time Tsplit. N1, N2 and Na are the effective 

population size of population_1, population_2 and the ancestral population, 

respectively. (i) simple-isolation-model: ancestral population split into two 

populations at 20Kya. (ii) isolation-migration-model: a symmetric migration rate 

is added after the split. (iii) bottleneck-nonbottleneck-model: ancestral 

population split into two populations at 60Kya after which population_2 has 

constant effective population size and population_1 experienced a bottleneck. 

(iv) bottleneck-bottleneck-model: ancestral population split into two populations 

at 40Kya, after which both population_1 and population_2 have population size 

declined instantly and afterwards increased exponentially. 

We simulated genetic sequences for two populations under four different 

demographic scenarios (Figure 21) with the ms program [35], where 10 

iterations were generated for each scenario. In each iteration, 1001 sequences 

of length 10Mb are generated, comprising: one sequence from an outgroup 
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population, and 500 sequences each from the two target populations. Our 

simulations were specifically designed to evaluate the ability to estimate the 

TMRCA for two populations that diverged between 20,000 to 60,000 years 

ago, and we assumed the outgroup population to have diverged from the two 

target populations 4,100,000 years ago. We assumed a mutation rate per site 

per year of 10-9, a generation time of 25 years and a recombination rate of 5 × 

10-9. The four demographic models are: (i) Simple-isolation model: that 

assumed an ancestral population with an effectively population size (Ne) of 

10,000, which split into two populations 20,000 years ago with the same 

effective population size of 10,000; (ii) Isolation-migration model: that 

assumed the same set-up as the simple-isolation model except with the 

addition of migration (migration rate = 0.01%) between the two populations 

immediately after the split; (iii) Bottleneck-nonbottleneck model: that assumed 

an ancestral population with Ne = 5,000, which split into two populations 

60,000 years ago such that one population has an Ne = 5,000 and the other 

population has Ne declining exponentially from 5,300 to 1,000 at t = 23,000 

years ago, and increasing exponentially to 10,000 at present; (iv) Bottleneck-

bottleneck model: that assumed an ancestral population with Ne = 5,000, 

which split into two populations 40,000 years ago such that both populations 

have an Ne = 1,000 immediately after the split, and which increased 

exponentially to 10,000 at present. Our simulations produced an average of 

98,175 SNPs in the simple-isolation model; 98,705 SNPs in the isolation-

migration model; 57,677 SNPs in the bottleneck-nonbottleneck model; and 

62,920 SNPs in the bottleneck-bottleneck model.  
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3.4.1.2 Estimating TMRCA of Southeast Asian Malays and South Asian 

Indians with whole genome sequencing data 

To estimate the TMRCA of Southeast Asian Malays and South Asian Indians, 

whole genome sequencing data for 96 Malays from the Singapore Sequencing 

Malay Project (SSMP) 22 and 36 Indians from the Singapore Sequencing 

Indian Project (SSIP) 23 were used. These individuals were sequenced on the 

Illumina HiSeq 2000 at a target depth of 30-fold, where the alignment and 

variant calling were performed with CASAVA and SAMtools for the Malay 

data, and with CASAVA and GATK for the Indians. The consensus calls were 

used as input for T-LD, T-FST, DADI and MIMAR; whereas PSMC, MSMC, 

GPho-CS and CoalHMM used the variant calls obtained from their individual 

analysis pipeline. For T-LD, T-FST and DADI, all 96 Malays and 36 Indians 

were used to estimate the TMRCA. To avoid any effect of uneven sample 

sizes, we randomly selected 36 Malays to match the 36 Indians for the analysis 

with MIMAR. For the analysis with PSMC, MSMC, CoalHMM and GPho-

CS, one individual each from SSMP (SS6002734) and SSIP (SS6003427) 

were selected. The analyses were performed independently across 22 

autosomal chromosomes, which were subsequently used to derive the mean 

and 95% confidence interval for the TMRCA estimate.  

 

3.4.1.3 Analysis of TMRCA with T-LD and T-FST 

In the estimation of the TMRCA between two populations, T-LD and T-FST 

consider genomic sites that are polymorphic in at least one of the two 

populations. To minimise the impact of ascertainment bias, the analyses are 

restricted to SNPs with MAFs ≥ 5% in the combined set of chromosomes from 
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both populations as suggested by McEvoy and colleagues [24].  In the four 

scenarios considered in the simulation, there were on average 29,038 common 

SNPs in the simple-isolation model; 29,166 common SNPs in the isolation-

migration model; 6,772 common SNPs in the bottleneck-nonbottleneck model; 

and 7,980 common SNPs in the bottleneck-bottleneck model. For the TMRCA 

of Malays and Indians, there were 295,317 segregating sites shared by the 

Malays and Indians.  

 

3.4.1.4 Analysis of TMRCA with DADI 

DADI estimates TMRCA from the allele frequency spectrum of the variants 

present in the genomic region. For the simulation study, 500 sequences from 

each of the two populations were used to derive the allele frequency spectrum, 

where the outgroup sequence was used to determine the original and derived 

alleles. We specified three grid sizes (100, 200, 300) to extrapolate to an 

infinitely fine grid, and we assumed the default setting with an isolation model 

in all the DADI analyses of the simulation data. In addition, we also applied 

DADI to the simulation data assuming the specific model setting for the 

different demographic scenarios, to evaluate how DADI will perform with 

prior knowledge of the underlying demographic history between the two 

populations. Specifically, for the bottleneck-nonbottleneck scenario in which 

two populations split at T, where the two populations subsequently have 

effective population sizes of Ne1 and Nes, where Nes decreases exponentially 

to Neb at Tb before increasing exponentially to Nef at present, the parameters 

(Ne1, Nes, Neb, Nef, Tb, T) are estimated simultaneously. Similarly, for the 

bottleneck-bottleneck scenario, two populations split at T, and the ith 
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population has an effective population size of Neib immediately after the split, 

which increases exponentially to Neif at present, for i = 1, 2, the parameters 

(Ne1b, Ne1f, Ne2b, Ne2f, T) are simultaneously estimated.  

 

For the analyses of the TMRCA between Malays and Indians, all 132 samples 

(96 Malays, 36 Indians) were used to compute the allele frequency spectrum 

across the 16,681,861 SNPs, where we ran two separate analyses assuming the 

isolation model and the bottleneck-bottleneck model. The bottleneck-

bottleneck model adopted the same design as in the analysis of the simulation 

data, except the project sample size was bounded between 70 and 120, and 

three grid sizes (140, 180, 200) were used for extrapolation.  

 

3.4.1.5 Analysis of TMRCA with GPho-CS 

GPho-CS considers neutral loci defined across multiple samples. For the 

simulations, we consider two haploid sequences from each population. The 

selected haploid sequences are divided into 10,000 segments each of length 

1000 bases, and a constant population size was assumed. We assumed the 

absence of migration in three scenarios except that of the isolation-migration 

model where we ran GPho-CS with and without migration bands. For the 

analyses of the simulated data, a burn in of 100,000 steps and 200,000 

samplings were chosen. For estimating the TMRCA of Malays and Indians, 

37,563 neutral one kilobase loci were identified, which removed sites under 

selection, with low sequencing quality and poor alignment [87]. The filtering 

criteria included removing simple repeats, recent transposable elements, 

indels, sites with effective coverage < 5, regions now showing conserved 
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synteny in human/chimpanzee alignments, recent segmental duplications, 

CpGs, and sites likely to be under selection such as exons of protein-coding 

genes, noncoding RNAs, and conserved noncoding elements. GPho-CS was 

applied to five haploid sequences at multiple loci, which included two 

haplotype sequences from SS6002734, two haplotype sequences from 

SS6003427, and one chimpanzee reference sequence. The haploid sequences 

for the two human samples were phased using SHAPEIT [99] against the 

reference data from Phase 3 of the 1000 Genomes Project [100]. The 

chimpanzee reference haploid sequence was used to calibrate the mutation rate 

against the divergence time of 6.5 million years ago for human and 

chimpanzee, inferring an average mutation rate per site per year of 6.96 × 10-

10, which is consistent with the literature applying GPho-CS to estimate 

population divergence time [87].    

 

3.4.1.6 Analysis of TMRCA with MIMAR 

In the analysis of the simulation data with MIMAR, we considered one 

hundred haploid sequences from each of the two populations, where the 

original and derived alleles were determined from the outgroup population. 

The selected sequences are segmented into regions each of length 1000 bases, 

where we selected 900 non-adjoining loci (1-1000 bp, 2001-3000 bp, 4001-

5000bp, to 1,798,001-1,799,000 bp) for analysis, and further divided them into 

30 subsets in order to control the acceptance rate of the MCMC process to be 

at least 5% as recommended. The MCMC was run with a burn-in of 100,000 

runs, and where we recorded 300,000 samplings afterwards. The default 

demographic model assumed an isolation model that was applied to all four 
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scenarios in the simulation study, where we further assumed the scaled 

population mutation rates for the ancestral and two offshoot populations to be 

sampled from a Uniform[0.0001, 0.002] distribution. The population 

divergence time in generations was sampled from a Uniform[500, 3000] 

distribution for three of the four scenarios, except for the bottleneck-

nonbottleneck scenario where the population divergence time in generations 

was assumed to be sampled from a Uniform[1000, 5000] distribution. 

Separately, we also applied MIMAR under the same demographic model used 

to simulate the data. Specifically, for the isolation-migration model, we added 

a prior for the logarithm of scaled migration record log(4𝑁𝑒𝑚) as a Uniform 

[-5, 3] distribution; for the bottleneck-nonbottleneck model, the population 

size was allowed to decrease exponentially between [T, 0.38 T] years ago at 

rate 4.5 ×  10−5, and increasing exponentially between [0.38 T, 0] years ago 

at rate 1 × 10−4; for the bottleneck-bottleneck model, the population size 

increased exponentially at a rate of 5.8 ×  10−5 immediately after the split.  

 

As MIMAR considers only neutral loci, for the estimation of the TMRCA for 

Malays and Indians we extracted 37,563 one kilobase loci following the 

filtering procedure as suggested by the analysis with GPho-CS [87]. As 

MIMAR is computationally expensive and cannot handle thousands of loci 

simultaneously, each chromosome is divided into subsets each containing 30 

one-kilobase loci. Similarly we assumed a burn-in of 100,000 runs, recorded 

300,000 samplings, with a Uniform[0.0001, 0.002] prior for the population 

mutation rates of the ancestral population and the two populations (Malay, 

Indian), and a divergence time in generations distributed as Uniform[500, 
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3000]. A point estimate is derived for each chromosome as the average across 

the subsets, and the mean divergence time and corresponding 95% confidence 

interval were obtained from the point estimates of the 22 autosomal 

chromosomes.  

 

3.4.1.7 Analysis of TMRCA with CoalHMM, PSMC and MSMC 

CoalHMM and PSMC consider only two haploid sequences from the two 

populations. PSMC differs from all the other methods as it does not provide a 

point estimate for the TMRCA, instead it estimates the effective population 

size as a step function across time, and the TMRCA is qualitatively 

determined as the time point when the effective population size increases to 

infinity. We adopted an effective population size threshold of 100,000 to 

determine the TMRCA. MSMC is highly similar to PSMC, except that it 

allows multiple haploid sequences from a population to be considered, where 

we apply MSMC to two haploid sequences from each population. While 

MSMC does not provide a point estimate for TMRCA, it provides a “cross-

coalescence rate” which measures the relative gene flow between two 

populations. This is similarly a step function across time, and takes values 

between 0 and 1. The cross-coalescence rate decreases from 1 to 0, which 

translates to a decline in gene flow between two populations. As with PSMC, 

the estimation of TMRCA from MSMC is qualitatively determined, and we 

adopted a cross-coalescence rate threshold of 0.5 to identify the TMRCA.  

 

For the estimation of the TMRCA between Malays and Indians, the haploid 

sequences from the same two individuals (SS6002734, SS6003427) were 
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phased in the manner as described for the analysis with GPho-CS, and were 

analysed with CoalHMM and PSMC. The same effective population size 

threshold of 100,000 was used to determine a point estimate for the TMRCA. 

For the analysis by MSMC, all four phased sequences for the two individuals 

were used, and a cross-coalescence rate threshold of 0.5 was used to determine 

the point estimate for the TMRCA.  

 

3.4.1.8 Evaluating performance of TMRCA estimation 

The estimation of the TMRCA by each of the eight methods is evaluated using 

the simulation data with two metrics: (i) the mean error rate (expressed in 

percentage); and (ii) the corresponding 95% confidence interval across the 10 

iterations in each of the four demographic scenarios. The error rate for the ith 

iteration is defined as 
𝑇𝑖−𝑇0

𝑇0
 × 100%, and 𝑇𝑖 , 𝑖 = 1,… ,10 represents the 

TMRCA estimated in the ith iteration, and 𝑇0 represents the simulated 

population divergence time.  

 

All simulation data for the four demographic models, as well as the command 

line inputs and customized scripts for executing or implementing the eight 

methods are available for download at 

http://www.statgen.nus.edu.sg/~TMRCA/.  

 

3.4.2 Results  

3.4.2.1 Comparisons of eight methods with simulations  

http://www.statgen.nus.edu.sg/~TMRCA/
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Figure 22. Mean error rate and 95% confidence interval are obtained from 10 

iterations. Except MIMAR-prior and DADI-prior, the estimations are obtained 

with simple isolation model. MIMAR-prior and DADI-prior show the results 

obtained with prior knowledge of the demographic model for scenario (ii), (iii) 

and (iv). 

We compared the performance of the eight different methods for estimating 

TMRCA with 10 sets of simulated data from each of four demographic 

settings, that assumed a: (i) simple-isolation model; (ii) isolation-migration 

model; (iii) bottleneck-nonbottleneck model; and (iv) bottleneck-bottleneck 

model. The two simulated populations were designed to diverge 20,000 years 

ago for the simple-isolation and isolation-migration models; 60,000 years ago 

for the bottleneck-nonbottleneck model; and 40,000 years ago for the 

bottleneck-bottleneck model. The performance of the eight methods was then 

measured using two metrics: (i) the mean error rate (MER); and (ii) the 

corresponding 95% confidence interval (see Section 3.4.1 Methods for 

details), where a MER closer to zero with narrower confidence intervals 

spanning zero is more desirable, across all four scenarios.  
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We separated the evaluation of the eight methods according to the type of 

input data considered, such as: (i) genotyping data; (ii) sequencing data across 

tens of thousands of short loci; and (iii) whole-genome sequencing data.  

 

Three methods (T-LD, T-FST, DADI) are applicable when only chip-based 

genotyping data is available. We observed that T-FST and DADI yielded more 

accurate TMRCA estimations in the setting assuming a simple-isolation model 

between two populations (Figure 22), with the former exhibiting the lowest 

MER of -0.5% (95% CI: -5.5%, 4.4%) and the latter exhibiting a MER of -

1.2% (95% CI: -4.2%, 1.8%). T-LD yielded a higher MER (-8.9%, 95% CI: -

13.3%, -4.6%). However, in the setting assuming an isolation-migration 

model, all three methods performed poorly with moderate MERs 9.7%-24%) 

but with corresponding confidence intervals that were significantly distant to 

zero. In the setting assuming a bottleneck-nonbottleneck model, while all three 

models yielded MERs >10%, the confidence intervals for T-LD and DADI 

encapsulated zero, with that for T-LD narrower than that for DADI. T-FST 

yielded a significant underestimation of the TMRCA with a MER of -46.3%, 

and worryingly exhibited a tight 95% confidence interval (-48.9%, -43.6%). 

For the bottleneck-bottleneck scenario, only the 95% confidence interval from 

T-LD encapsulated zero MER, whereas DADI yielded a gross overestimation 

of the TMRCA (MER = 110.0%, 95%CI: 98.6%, 121.4%). In an ideal 

situation where DADI was implemented knowing what the underlying 

demographic model was, the error rates and the variability of the TMRCA 

estimations were reduced, although this did not yield estimates that were close 

to the true TMRCA except for the isolation-migration model.  
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When sequence data is available for short regions in the genome, GPho-CS 

produced TMRCA estimates with moderate error rates for three scenarios 

(except the isolation-migration model)(MERs<24%), where the corresponding 

confidence intervals for the simple-isolation and bottleneck-nonbottleneck 

encapsulated zero MER (Figure 22). Another MCMC-based approach, 

MIMAR, yielded relatively smaller MER and variability than GPho-CS 

(MERs<16%), although the estimates tend to be consistently over (simple-

isolation) or under (bottleneck-nonbottleneck, bottleneck-bottleneck). 

Intriguingly, implementing MIMAR with prior knowledge of the underlying 

demographic model yielded considerably poorer estimates for the isolation-

migration and bottleneck-nonbottleneck scenarios, and only improved the 

estimate for the bottleneck-bottleneck scenario.  

 

For the three HMM-based methods that allow whole-genome sequence data, 

CoalHMM and MSMC yielded comparable performance where each of the 

two methods yielded confidence intervals that encapsulated zero for three 

scenarios and where the corresponding MERs were also small. CoalHMM 

appeared to be most uncertain in the simple-isolation model, whereas MSMC 

performed poorer in the isolation-migration scenario. Compared to these two 

methods, PSMC exhibited greater variability and MERs across all four 

demographic models.    
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3.4.2.2 Estimating TMRCA of Southeast Asian Malays and South Asian 

Indians  

 
Figure 23. Illustrate the point estimation and corresponding 95% confidence 

interval of TMRCA for Southeast Asian Malays and South Asian Indians by the 

eight methods. DADI.SI and DADI.BB show the estimates of DADI with 

isolation model and bottleneck-bottleneck-model respectively. 

The eight methods were applied to whole-genome sequencing data for 96 

Southeast Asian Malays and 36 South Asian Indians, where data from the 22 

autosomal chromosomes were analyzed independently by each of the eight 

methods and combined subsequently to derive the mean and 95% confidence 

intervals of the estimates (Figure 23). DADI was implemented assuming both 

the simple-isolation model (DADI.SI) and the bottleneck-bottleneck model 

(DADI.BB). The analyses with the different methods yielded a broad range of 

TMRCA estimates, with GPho-CS reporting the lowest estimate of 6,594 

(95% CI: 5,652, 7,537) years ago (ya), to T-FST reporting the highest estimate 

of 59,429 ya (95% CI: 56,242, 62615). Our previous simulation results 

suggested that T-LD, CoalHMM and MSMC were likely to yield the most 

robust estimates regardless of the underlying demographic model, and it was 

reassuring that the TMRCA estimates for Malays and Indians from these three 

methods were comparable (T-LD = 24,173ya, CoalHMM = 17,546ya,  MSMC 

= 27,508ya). PSMC also yielded a comparable estimate of 20,715ya (95% CI: 
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20,011, 21,419), whereas the remaining methods yielded estimates exceeding 

30kya.  

 

3.5 DISCUSSION 

Estimating the TMRCA between two populations has always been a topic of 

great interest in population genetics, and there are presently a number of 

methods that leverage on different genetic features and are built on a variety of 

statistical frameworks to perform this estimation. We set out to compare the 

accuracy and robustness of eight of these methods with a series of simulations 

that assumed different underlying demography between two diverged 

populations. The results of our simulations suggested that T-LD, CoalHMM 

and MSMC were more likely to deliver estimates that were robust to a variety 

of background demography. The consistency in performance and accuracy 

across different demographic models is important, as often one does not know 

a priori what the underlying demographic model between two populations will 

be. The high variability in the TMRCA estimates observed in either the 

simulations or the analysis of the Malay and Indian data by some of the 

methods (such as DADI and GPho-CS) is worrying, as this suggests that the 

derived point estimates by these methods are susceptible to fluctuations even 

though the independent inputs were essentially from the different 

chromosomes of the same individuals.  

 

In general, HMM-based methods tend to be more computationally efficient 

compared to MCMC-based methods. For example, the analysis of the Malay 

and Indian whole-genome sequencing data using HMM-based methods such 
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as CoalHMM, PSMC and MSMC can be completed in hours on a standard 

Linux-based processor, whereas MCMC-based methods such as MIMAR and 

GPho-CS required several days to a few weeks to complete the same analysis 

across 22 chromosomes. The computational burden also means that MCMC-

based methods could not model recombination effectively, and the analysis 

was necessarily restricted to short segments. Conversely, the computational 

dexterity of HMM-based approaches allows both recombination events to be 

modelled and for full chromosomal data to be analyzed.   

 
Figure 24. Illustrate the estimation of TMRCA by (A) PSMC and (B) MSMC on 

whole-genome sequencing data for the 22 autosomal chromosomes from 

Southeast Asian Malays and South Asian Indians. Both the effective population 

size (panel A) and the cross-coalescence rate (panel B) are modelled as step 

functions. The divergence time for the two populations is defined for (A) PSMC 

as the time when the effective population size increases to infinity, which in 

practice is implemented as a threshold such as 100,000 in our study; (B) MSMC 

as the most recent time when the cross-coalescence rate decreases below an 

arbitrarily selected threshold, which in our study the threshold is selected as 0.5. 

A key challenge in the implementation of PSMC and MSMC is in the 

selection of the thresholds for the effective population size and cross-

coalescence rate respectively to determine divergence time (Figure 4). 

Presently there are no recommended or default thresholds for these two 

approaches, and the TMRCA estimates are sensitive to the choice of the 

thresholds. For example, the TMRCA estimate for the PSMC analysis of the 

Malay and Indian data changes from 20,715 ya to 36,824 ya, if the threshold 

on the effective population size changes from 1,000,000 to 50,000.  
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GPho-CS produced a considerably lower TMRCA estimate for the Malay and 

Indian whole-genome sequencing data, and this may be due to two reasons: (i) 

GPho-CS has previously reported lower accuracy to infer recent events [87]; 

and (ii) GPho-CS relied on a different mutation rate. Presently, the method 

calibrates the mutation rate from the number of mutation events from an 

outgroup species to which the divergence time has to be assumed [87]. By 

including a chimpanzee sequence in the model and assuming the divergence 

time from chimpanzee to be 6.5 Mya, this produced an average mutation rate 

of 6.96 ×  10−10, which is only 70% of the default mutation rate of 10−9 for 

the chimpanzees. While this may be a reasonable calibration given the 

exclusion of CpG and regions under selection, this is based on the assumption 

that chimpanzees and modern humans exhibited identical mutation rates per 

site per year and generation time. A recent study suggested revising the 

mutation rate to 5 × 10−10 per site per year for studies on modern human 

evolution [53], which was the value we have used for the genome-wide 

average mutation rate. As such, a comparable mutation rate for neutral sites 

should thus be lower than 5 ×  10−10. Assuming we scaled the mutation rate 

used in GPho-CS to be correspondingly 70% of 5 × 10−10, this would 

produce a point estimate for the TMRCA as 13,188 ya (95% CI: 11,304, 

15,074). However, this highlights the dependency that TMRCA estimation has 

on the parameters assumed.     

 

We have evaluated eight statistical methods commonly used in population 

genetics to estimate TMRCA. The performance of these methods varies 
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according to the parameter settings assumed, as well as the background 

demographic model producing the split of the two populations. Our 

simulations have considered only four relatively simple demographic 

scenarios, and certainly these are not exhaustive and in no way representative 

of the complex migration and demographic changes populations undergo in 

reality. The effective population size is confounding in TMRCA analysis, and 

an accurate effective population size is crucial for estimating divergence time. 

Among those methods, DADI, PSMC and MSMC have higher resolution in 

effective population size. Worryingly, the divergence time estimates of these 

methods did not always concur. On the basis of our findings, we recommend 

the use of T-LD, CoalHMM and MSMC for estimating TMRCA with 

genotyping and whole-genome sequencing data respectively.  
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CHAPTER 4.  CONCLUSION  

Microarray genotyping data has dominated genetic research in the last decade. 

Mature data analysis protocols and techniques have been established. 

Because of the International HapMap Project, large scale genotyping data 

covering almost all common SNPs in human of most major populations are 

available for research communities and facilitates relevant research fields such 

as genome-wide association studies (GWAS) and population genetics. With 

the advent of next generation sequencing, favorable attention is being drawn 

towards variants found in the lower frequency spectrum. Burgeoning whole 

genome sequencing studies provide fine scale genetic data and the majority of 

the newly discovered variants tend to be rarer in the population. Customized 

microarrays designed for follow-up studies tend to cover lower frequency 

variants that are identified through population sequencing efforts. Existing 

genotyping algorithms are typically designed for common SNPs, and as such 

the lower frequency variants present significant challenges for the existing 

genotype calling algorithms.  

 

Our method, iCall, serves as a robust genotyping algorithm for common, low-

frequency and rare variants and yields an accuracy at least comparable to, if 

not better than, existing methods. Accurate genotype calling across the allele 

frequency spectrum is meaningful for all downstream genetic researches not 

only for population evolution study, but more importantly for genome-wide 

association study and personalized molecular diagnostics. Successful 

molecular diagnostics applications include Human Papillomavirus (HPV) 

genotyping assay for high-risk and low risk HPV genes [101]; the Cystic 
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Fibrosis and Hydatidiform Mole genotyping assay for adults of reproductive 

age in newborn screening [102, 103]; apolipoprotein E genotyping assay for 

Alzheimer's disease [104]. These clinical applications tend to focus on rare 

and highly hereditary disorders. They are empirical evidence supporting the 

common disease rare variant etiology theory, which emphasizes the 

importance of robust genotyping algorithm for a wide allele frequency 

spectrum, especially the lower end. 

 

Although there is now a higher proportion of low frequency variants on 

customized microarrays, microarrays do have some intrinsic limitations. 

Microarrays are pre-designed according to prior knowledge of the queried 

genome, and limited in the number of SNPs on each platform. Microarrays 

thus suffer from ascertainment bias, namely arrays are ineffective in the case 

of incomplete or outdated genome annotations [105]. The advent of next 

generation sequencing has mitigated this problem. NGS does not require prior 

knowledge of the genome, but directly and comprehensively sequences the 

whole region or whole genome, so it accurately profiles the genome of the 

individual. Because of NGS, haplotype information of all types of 

polymorphism on individual genomes has become more affordable and 

accessible.  

 

Population genetics research infers population history based on 

heterozygosity, allele frequency, LD and pattern of genetic variation which 

can be changed by a variety of genetic and demographic forces. Hence fine 

scale sequencing data of full allele frequency spectrum is one prerequisite for 
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population genetics research. Microarray-based methods underutilize the 

genomic information and often have poor statistical power. The sequencing-

based methods and whole genome sequencing data for estimating population 

divergence times while taking into account the historical recombination events 

have only been available recently. Population parameters, such as population 

divergence time, effective population size, recombination rate and migration 

rate are important factors for understanding common historical features in the 

diversification of human populations. Our work comparing the existing 

methods for estimating population divergence time provides a reference for 

future work for elucidating global population structure as well as population 

evolution history.  

 

4.1 Future work for iCall  

Population stratification and genotype errors are two known confounding 

factors in association study [106]. Our iCall algorithm is a population-based 

genotyping method which requires large sample sizes to locate the intensity 

clouds. Combining datasets from multiple populations for joint calling creates 

large dataset, but could also introduce calling errors. We have assumed Hardy-

Weinberg Equilibrium in iCall, but HWE is not necessarily true for a 

combined dataset. For example, a SNP that is fixed in allele A in population 1 

and fixed in allele B in population 2 presents in genotype AA and BB but not 

AB in the combined population. Thus iCall could be improved by jointly 

evaluating population information in its calling process. We could explore a 

Bayesian hierarchical framework to depict the genotype polymorphism of 

multiple populations. By using a Dirichlet distribution to model the frequency 
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of minor alleles in different populations, we might allow variation in allele 

frequencies across populations.   

 

4.2 Future Work for TMRCA 

Apart from the population divergence time, the recombination rate and the 

effective population size are two important parameters in population genetics, 

but their correlation can confound the joint inference of the two parameters. 

Therefore, accurate TMRCA estimation relies on robust estimations of 

effective population size and recombination rate. More evaluations on the 

robustness of the existing methods on other parameters are necessary to boost 

our confidence in the estimation. To obtain a better understanding about the 

global population structure, population divergence time among global major 

populations as well as rare populations is worth exploring through existing 

robust TMRCA algorithms and will provide interesting insight into human 

genetic evolution. 
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