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Summary
Multi-objective optimization is an area that deals with decision making based on multiple

criteria, and is concerned with mathematical optimization problems that involves two or more

conflicting objectives that need to be optimized simultaneously. It has been extensively applied

in many fields of engineering, logistics, economics, bioinformatics, finance and any many other

applications in real-life. Differential evolution is a simple but powerful evolutionary optimization

algorithm with many successful applications. The primary aim of this thesis is to develop a novel

opposition-based self-adaptive differential evolution algorithm in the context of multi-objective

optimization and to implement the algorithm to solve both theoretical and real-life application

problems with vastly different characteristics and representation schemes.

First of all, a novel opposition-based self-adaptive hybridized differential evolution algo-

rithm (OSADE) is devised. This is achieved by incorporating opposition-based learning into a

self-adaptive mechanism for the control parameters (mutation factor and crossover rate) of Dif-

ferential Evolution, and is then hybridized with the multi-objective evolutionary gradient search

(MO-EGS) which acts as a form of local search. OSADE is applied on a comprehensive suite

of test benchmark problems and compared with several state-of-the-art evolutionary algorithms.

The experimental results indicate that OSADE is able to achieve superior optimization perfor-

mance for the problems tested on. In addition, OSADE is also able to achieve good scalability in

terms of both the number of decision variables and objective functions.

OSADE is also extended to handle many-objectives optimization whereby its opposition-

based self-adaptive mutation scheme is joined with an opposition-based local mutation scheme,

and one of the schemes will be selected according to a linear decreasing probability rule. The

formulated novel mutation scheme is then incorporated into a grid-based framework whereby

grid concept is used to determine the mutual relationship of individuals in a grid environment,

and the fitness of the individuals in the population are distinguished by a set of grid criteria.

v



The resultant grid-based DE variant is termed as GrDE and is tested on a set of many-objective

problems from the DTLZ and WFG test suites. Experimental results demonstrated the proposed

novel algorithm GrDE is as competitive as the other algorithms under comparison in terms of

achieving a well-approximated and well-distributed solution set for the many-objective problems

in this thesis.

Finally, a study of the extension of OSADE to solve a multi-objective multiple travelling

salesmen problem (MmTSP) is conducted. For this study, the opposition-based self-adaptive dif-

ferential evolution operator found in the original OSADE is being implemented in a decomposition-

based framework instead of the domination-based framework as used in the original OSADE. As

the DE operator is originally intended for continuous optimization, it cannot be directly applied

for the MmTSP which is a combinatorial problem. As such, a heuristic rule known as the Small-

est Position Value (SPV) rule is applied in the algorithm to convert the solutions in real-number

representation as found by the DE operation into chromosomes of integer-value representation

so that the evaluation of the solutions according to the MmTSP can be achieved. In order to

enhance the algorithm, the DE operator is then hybridized with the multi-point evolutionary gra-

dient search (EGS) to act as a form of local search. The simulation results reveal that the proposed

resultant algorithm D-OSADE is able to generate a set of diverse solutions with good proximity

results.
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Chapter 1

Introduction

In our daily lives, we are constantly dealing with multiple criteria decision making in many differ-

ent areas. In fact, many real-world problems in a wide spectrum of applications, like engineering,

finance, logistics, bioinformatics and many others, involve the difficult task of optimizing several

conflicting objectives simultaneously. For example, an investment manager will need to consider

both the maximization of returns and the minimization of risk when he makes an investment deci-

sion. This is the case of risk-return tradeoff, and an investment can render higher returns only if it

is subject to higher risk, and therefore the two objectives are conflicting. Such a type of problem

is commonly known as a multi-objective optimization problem (MOOP). MOOP is not a trivial

optimization problem because no single solution is optimal for all the objectives in the problem.

As such, the search methods catered for MOOP must be able to find a set of alternative solutions

that is representative of the tradeoff between the different conflicting objectives. In addition, the

presence of complex, non-linear, non-differential or even high dimensional search space could

result in additional difficulties when solving the MOOPs. Due to these challenges, it is seen that

most deterministic methods face difficulties when dealing with MOOPs, and hence unable to ob-

tain reasonable solutions within limited computational resources. In addressing these issues, the

use of stochastic search techniques are seen to be a better alternative technique over deterministic

methods in dealing with MOOPs [1, 2].
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CHAPTER 1. INTRODUCTION

As seen from literature, the use of evolutionary algorithms (EAs) are shown to be effec-

tive in solving basic MOOPs. EAs are population-based approaches that draw inspiration from

biological evolution [3, 4], and they are usually stochastic by nature and comprise several gen-

eral characteristics. First and foremost, EAs are able to sample multiple candidate solutions in

a single simulation run. Another important feature in EAs is the adoption of the idea of the

survival-of-the-fittest to allow candidate solutions of better fitness to be retained after they have

been found. Lastly, EAs utilize several stochastic mechanism inspired from biological evolution

which include reproduction, mutation, recombination and selection to explore the search space.

With these characteristics, we are able to find the successful use of EAs in a wide range of ap-

plication problems. Some examples of EAs being used in applications include the optimization

of jobs scheduling in large-scale grid applications [5], computational optics [6], telecommunica-

tions [7], and economic power dispatch [8], just to name a few.

Over the decades, several different EAs that have been developed to handle MOOPs, and

examples include genetic algorithms, evolutionary programming, evolutionary strategies, and

particle swarm optimization, just to name a few. However, there are certain limitations associated

with EAs as gathered from the understanding from literature. Firstly, there is no guarantee that

optimal solutions can be found by EAs in a finite amount of time. The use of EAs also involves

certain control parameters that are required to be tuned for optimal performance, and this may

involve a tedious process of trial and error for the parameter tuning before they can be used

for the handling of the problems in an effective and efficient way. Besides these, EAs may

also suffer from other weaknesses like loss of diversity, slow convergence and stagnation of

population, and these weaknesses will become even more prominent in the event if the EAs are

being presented with multi-modal problems which possess several local and global optima. In

multi-modal problems which may be seen in some practical applications, EAs may also take

a considerable amount of time to locate the global optima or may even get trapped in a local

optima. Hence this will create difficulties for researchers in terms of balancing both solution
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accuracy and convergence rate for such type of problems in multi-objective optimization.

Differential evolution (DE) is a simple and efficient population-based EA that has been

reported in several studies on its high robustness, fast convergence speed and good solution

quality, which makes it a very popular EA in the evolutionary computation community. Due

to such strengths seen in DE, the use of this EA may offer an answer to some, but not all, of the

aforementioned limitations. In order to overcome these limitations, several improvement works

have been performed on DE so as to allow it to be able to meet the the aim of balancing solution

accuracy and convergence rate while maintaining diversity in the population for different types

of MOOPs. In order to achieve fast convergence speed and effective global search capability

concurrently, researchers have explored the use of hybridizing different EAs for MOOPs as well

as formulating memetic algorithms which integrates local search in EAs, and these efforts can

also be found in DE [9,10]. Researchers have also introduced the use of adaptive or self-adaptive

DE variants [11–14] that eliminates the need to undergo the tedious trial-and-error process of

tuning the control parameters in DE to an optimal setting for the problems tested on. However,

there is still a lot of room for improvement in the aspect of improving DE as a whole, and this

thesis aims to explore feasible ways of enhancing the basic DE algorithm to handle a wide range

of MOOPs.

1.1 Multi-objective Optimization

Multi-objective (MO) optimization is an area of multiple criteria decision making, and is con-

cerned with mathematical optimization problems that involve two or more objectives that are

required to be optimized simultaneously. The principles behind MO optimization has been ex-

tensively over the years, and MO optimization is also widely applied in many applications fields

that include engineering, finance, logistics, and bioinformatics, just to name a few. This section

presents the basic fundamentals and principles behind MO optimization.
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1.1.1 Basic Concepts

A multi-objective optimization problem (MOOP) is a non-trivial and complicated problem which

involves the simultaneous optimization of several contradicting objectives in order to satisfy

problem constraints. A MOOP consists of a set of objective functions that can either be maxi-

mized or minimized subject to a set of constraints that limit the set of possible outcome which is

also known as the solution space. Without any loss of generality, an MOOP can be mathemati-

cally formulated in the minimization case as follows:

Minimize:

f(x) = (f1(x), f2(x), ..., fm(x)) (1.1)

subject to:

g(x) ≤ 0

h(x) = 0

where f(x) is the set of objective functions, f(x) ∈ Rm,Rm is the objective space, m is the

number of objective functions, x = (x1, x2, ..., xn) is the decision vector, x ∈ Rn, Rn is the

decision space, n is the number of decision variables, g is the set of inequality constraints, and h

is the set of equality constraints.

In an MOOP, it is different from a single-objective optimization problem as there is no

single optimal solution but the optimal solutions exist as a set of non-dominated solutions which

is representative of the tradeoff between the multiple conflicting objectives. This set of non-

dominated solutions is also known as the Pareto optimal set whereby the solutions in this set

cannot be improved in any objective without causing degradation in at least one of the objectives.

As such, the role of fitness assignment to every solution for the MOOP is of high importance as

this will promote the survival of fitter and less crowded solutions to the next generation.
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1.1.2 Pareto Optimality and Pareto Dominance

The concepts of Pareto optimality and Pareto dominance are fundamental in MO optimization,

with Pareto dominance forming the basis of solution quality.

Let v = (v1, ..., vn) and w = (w1, ..., wn) represent two decision vectors of solutions that

consist of n decision variables. Through the definition of Pareto dominance, there can be three

possible relationships in the minimization case between two solutions [15–17] as follows:

1. Strong dominance: v strongly dominates w (v ≺ w) if and only if

fi(v) < fi(w) ∀i ∈ {1, 2, ...,m} (1.2)

2. Weak dominance: v weakly dominates w (v � w) if and only if

fi(v) ≤ fi(w) for i ∈ {1, 2, ...,m} and ∃ fi(v) < fi(w) for at least one i (1.3)

3. Incomparable: v is incomparable with w (v ∼ w) if and only if

∃i ∈ {1, 2, ...,m} : fi(v) > fi(w) and ∃j ∈ {1, 2, ...,m} : fj(v) < fj(w) (1.4)

Objective 1

Objective 2

Region 1 (Strong Dominance)

Region 2 (Strong Dominance)

Region 3 (Incomparable)

Region 3 (Incomparable)

X

Figure 1.1: Illustration of Pareto dominance

In Figure 1.1, we use a two-objective minimization example to illustrate and further explain

the dominance relationships between solutions. Let X be the reference solution in this example,
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and the different dominance relationships are represented in three different regions. Solution X

is said to strongly dominate the solutions that are resided in Region 1 because it is better in both

objectives. However, the solution X is strongly dominated by solutions that are located in Region

2 since these solutions have values in both the objectives when compared to solution X. There

are some solutions that are located on the boundaries of Region 1 and Region 3, and they possess

the same objective values in one of the objectives as solution X, but solution X has a lower value

in another objective. As such, solution X is said to weakly dominate these solutions. Lastly, the

solutions that are found in Region 3 are superior in one of the objectives, but inferior in the other

objective when compared to solution X. Hence these solutions are said to be incomparable to

solution X.

In the context of MO optimization, a feasible decision vector x∗ ∈ Rn and its corresponding

outcome, which can be represented as f(x∗) ∈ Rm, is Pareto optimal if there does not exist

another decision vector that dominates it. The set of all the Pareto optimal decision vectors is

called the Pareto optimal set (PS) and the corresponding outcome, which is also known as the

objective vectors, is often called the Pareto optimal front (PF) [3]. An example of the Pareto

optimal front of an MOOP with two objectives is as illustrated in Figure 1.2. For simplicity, the

terms ’weakly dominate’ and ’strongly dominate’ will both be referred to as ’dominate’ for the

rest of the thesis. In the figure, solutions B and C dominate solution E, and the solutions A, B,

C and D are non-dominated to each other. The set of non-dominated solutions (A, B, C, and D)

forms the Pareto optimal front.

1.1.3 Multi-objective Optimization (MO) Goals

Real-world MO optimization problems usually have complex objective functions and constraints,

and the information regarding the Pareto optimal front and its tradeoff is usually limited or not

known a priori. In the absence of any clear preference on the part of the decision-maker, the
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Objective 1

Objective 2

Infeasible
Region

Pareto Optimal Front

A

B

C

D

E

Figure 1.2: Illustration of Pareto optimal front

ultimate goal of MO optimization is to discover the entire tradeoff. However, by definition, this

set of objective vectors is potentially an infinite set, and it is likely not possible to find the entire

tradeoff. Moreover, the presence of too many alternatives could also be too overwhelming for

the decision-making process. As such, it could be more practical to settle for the discovery of as

many non-dominated solutions as possible with limited computational resources. More precisely,

the aim of MO optimization is to find an approximate set of solutions that is as close to the

Pareto optimal front as possible. The approximate set should satisfy the following optimization

goals [15, 18].

1. Minimize the distance between the obtained solutions and the Pareto optimal front.

2. Obtain a good distribution of the obtained solutions along the Pareto optimal front.

3. Maximise the spread of the obtained solutions along the Pareto optimal front.

The first goal of convergence or proximity is the first and foremost consideration of all

optimization problems, whereas the other two optimization goals of maximizing diversity and

spread of solutions are entirely unique to MO optimization. The second goal which is related

to diversity defines how well is the coverage of the obtained solutions in the optimal space,

while the third goal which is related to spacing defines how evenly the obtained solutions are

being distributed in the optimal space. The rationale of finding a diverse and evenly distributed
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approximate set of solutions close to the Pareto optimal front is to provide the decision-maker

with sufficient information about the tradeoffs between the multiple solutions before the final

decision is made. It should also be noted that the goals of convergence and diversity are somewhat

conflicting in nature, and this explains why multi-objective optimization is much more difficult

than single-objective optimization.

1.1.4 Different Approaches for Multi-objective Optimization

In the past few decades, we are able to see many approaches for multi-objective optimization

frameworks that are being proposed to solve MOOPs. An approach for multi-objective optimiza-

tion simply refers to the way how an optimization algorithm adopts for the handling of multiple

conflicting objectives. Here, an overview of the general classification of the different approaches

for multi-objective optimization is presented as follows:

1. Preference-based Approach: The fundamental concept behind this approach is the aggre-

gation of the multiple conflicting objectives in an MOOP into a single-objective optimization

problem or to use preference knowledge of the problems so that the focus can be on certain

objectives in the problem to be optimized. EAs that are commonly used for the solving of

single-objective optimization problems can then be applied to solve the aggregated function.

An example of this approach can be found in [19]. However, the preference-based approach

has two major drawbacks. First, it is only able to obtain only one approximate optimal solu-

tion in a simulation run. Secondly, the approach requires the specification of a weight vector

or the preference information of decision-makers for aggregation purposes.

2. Domination-based Approach: This approach allows the simultaneous optimization of all

objectives in order to solve an MOOP. In this approach, fitness assignment to every solution is

an imperative feature for the assurance of the survival of the fittest to the next generation. The

concept of Pareto dominance is applied in this approach to compare and define the quality of

every solution with regards to the entire solution set. As this approach is able to generate a
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set of tradeoff solutions in an effective manner, it is highly popular among researchers in the

field of evolutionary multi-objective optimization. However, the drawback of this approach

is the weakening of the selection pressure when the number of objectives increases in the

optimization problem. In addition, this approach must also be complemented with a diversity

preservation scheme so that the goal of achieving a diverse set of solutions can be attained

together with the goal of convergence.

3. Decomposition-based Approach: In this approach, an MOOP is being decomposed into

several subproblems where each subproblem is formed using an aggregation-based technique,

and all the subproblems will then be optimized concurrently. For this approach, the fitness

of a solution will depend purely on the value of the aggregated objective. Hence the issue

of the weakening of selection pressure encountered for domination-based approach in higher

dimensional space will not be experienced in decomposition-based approach. Besides this,

the approach does not need a diversity preservation scheme to be included as required in

the domination-based approach. In the decomposition-based approach, the proper choice of

uniformly distributed weight vectors can lead to a diverse set of solutions being produced

if the subproblems are optimized well. The advantages seen in this approach has led to an

increasing attention by the research community in recent years.

1.2 Evolutionary Algorithms in Multi-objective Optimization

From literature, many optimization techniques have been used to handle MOOPs. However, the

use of evolutionary algorithms (EAs) is one of the most popular approach for solving MOOPs.

As such, the emphasis of this thesis is on the implementation of EAs, and in particularly the use

of Differential Evolution (DE) for the solving of MOOPs. In this section, the basic concept of a

typical MOEA and its general flow in multi-objective optimization will be presented. In addition,

a brief description of DE and its general flow will also be mentioned in the section as well.
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1.2.1 Multi-objective Evolutionary Algorithms (MOEAs)

Multi-objective Evolutionary Algorithms (MOEAs) [3] are computing paradigms that utilize

mechanisms inspired by biological evolution in driving the search towards optimal solutions.

The success of this computing paradigm is mainly attributed to the underlying concepts of the

survival-of-the-fittest and genetic recombination as found within MOEAs. MOEAs have gained

their reputation as suitable tools or optimization due to two main reasons. First of all, MOEAs

do not require any background knowledge of the problem when performing optimization. Sec-

ondly, MOEAs also do not require any gradient or directional information when they explore the

search space. MOEAs generally involve heuristic genetic searches which allow them to perform

searches in any fitness landscape in an efficient manner.

The basic idea of a typical MOEA is presented in Figure 1.3 . First, a set of solutions is ran-

domly generated to form an initial population. The population will undergo evolution and a set of

fitter solutions will be preserved over the evolutionary process. During the evolutionary process,

the solutions will first be evaluated to obtain their objective values. This is followed by a fitness

assignment process for all the solutions as their objective values cannot be directly translated as

their fitness level. This is due to the fact that MOOPs involve multiple conflicting objectives that

have to be simultaneously optimized. A simple way for the assignment of fitness to solutions is by

the aggregation technique as performed in both preference-based and decomposition-based ap-

proaches for multi-objective optimization. Another method will be to determine the domination

relationships between solutions as seen in domination-based approach. Next a selection process

is followed in order to identify fitter solutions to become parent solutions to undergo genetic op-

erations. A detailed description of the selection operators can be found in [20, 21]. These parent

solutions will then mate among themselves through crossover operation for reproduction of off-

spring. In the crossover operation, two solutions are randomly chosen from the parent population

which is also known as the mating pool. Exchanges of the alleles of the solutions will be done so

that the offspring will inherit the characteristics from both the parent solutions. One of the factors
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driving the successes of MOEAs in the exploration of search space lies in the proper implemen-

tation of the crossover operators like the single-point crossover or the multi-point crossover [22].

Besides the crossover operation, some of the generated offspring will also undergo mutation by

means of the random perturbation of some alleles. The aim of the use of mutation operators like

swap mutation, bit-flip mutation and polynomial mutation is to prevent the search from getting

stuck in some local optima. After the genetic operations, both the generated offspring as well as

the parent solutions will be stored in an archive. The fundamental principle of the evolutionary

process which is the concept of the survival-of-the-fittest [23] follows. Through this concept,

fitter solutions between the parent solutions and the offspring as determined by their fitness level

will be selected into a new population that will undergo evolution in the next generation. The

process is iterated until a stopping criterion is met. In MOEAs, the output solutions from the

evolutionary process are multiple tradeoff solutions instead of a single best solution as found

in typical EAs. It is also to be highlighted that MOEAs are required to maintain diversity of the

promising solutions throughout the evolutionary process and this poses another level of challenge

to them as well.

Begin 
     Initialization: Randomly initialize a population of N solutions 
     Evaluation: Evaluate all the solutions in the population  
     Do While ("Stopping Criterion is not satisfied") 

Fitness assignment: Assign fitness to the population according to a fitness assignment 
scheme 

      Selection: Select a set of parent solutions 
 Variation: Perform crossover and mutation to the parent solutions to create offspring 

Evaluation: Evaluate all offspring and store the offspring in an archive 
Archiving: Store all parents and offspring in an archive 
Elitism: Perform fitness assignment on all solutions in archive and select N best solutions to 
form a   new population for the next generation 

     End Do 
     Output: Output the final set of solutions 
End 

Figure 1.3: Pseudo-code of a typical MOEA

11



CHAPTER 1. INTRODUCTION

1.2.2 Differential Evolution in Multi-objective Optimization

Differential evolution (DE) [24] is arguably one of the most powerful stochastic population-based

algorithm for continuous global optimization in current practice. The basic operation of DE is

very similar to most standard EAs. However, what makes DE different from traditional EAs is

that the DE algorithm and its variants perturb the population individuals of the current generation

with the scaled differences of randomly selected and distinct population individuals. Hence DE

does not need any predefined probability distribution as it uses self-referential mutation for the

generation of offspring, and adapts the step length intrinsically along the evolutionary process.

The basic process flow of a typical DE algorithm is as illustrated in 1.4.

Begin 
     Initialization: Randomly initialize a population 
     Do While ("Stopping Criterion is not satisfied") 
      Evaluation: Calculate the fitness of each solution in the population 

Mutation: Generate a mutant vector for each solution (target vector) in the population using a 
differential mutation strategy.        
Crossover: Perform crossover between the mutant vector and target vector to form a trial 
vector. 
Selection: Compare trial vector with target vector using the greedy criterion to determine 
whether the trial vector will become a member of the next generation. Replace the target 
vector with the trial vector if the latter has a better fitness. 

     End Do 
End 

Figure 1.4: Pseudo-code of a typical DE algorithm

Due to its simplicity and efficiency, it attracted a great amount of attention from researchers

and engineers since its inception in 1995 [25], and this in turn led to the introduction of many

DE variants for the improvement of the original DE algorithm for use in both theoretical and

application problems [26, 27]. Due to the success of DE in single-objective optimization, the

implementation of DE for multi-objective optimization has also been gaining research interest

and attention from the research community [28, 29]. DE is also suitable to be integrated in any

frameworks catered for multi-objective optimization due to the fact that a typical DE algorithm

shares a common algorithmic flow as a typical MOEA. Thus, the fitness assignment approach
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and the diversity preservation mechanism in the aforementioned approaches for multi-objective

optimization can be directly employed by DE.

1.3 Opposition-Based Learning (OBL)

In the field of machine intelligence, there are several methods of handling challenging hyper-

dimensional problems, and these include search and optimization techniques like genetic algo-

rithms, connectionist approaches like neural networks, and feedback-oriented algorithms like

reinforcement agents. Opposition-Based Learning (OBL) is a novel technique that originated

from Tizhoosh [30] in 2005, and since then, this technique has emerged into a rapidly growing

research area with several works [31–35] being proposed for the studying of both theoretical

models and technical methods to handle different complex problems. The main underlying idea

of Opposition-Based Learning in optimization lies in the concurrent consideration of an estimate

and its corresponding opposite estimate that is closer to the global optimum, and this is done with

the aim of arriving at a better candidate solution.

1.4 Self-adaptation in Evolutionary Algorithms

For the implementation of evolutionary algorithms (EAs), users not only have to decide on the

appropriate encoding scheme and the evolutionary operators, but also need to determine the

suitable parameter settings that are able to lead to the success of the algorithms. In order to

achieve this, trial-and-error parameter and operator tuning is involved and this process is often

time-consuming and this may lead to high computational costs being incurred. As such, re-

searchers have looked into different approaches for the adaptation of parameters and operators

in EAs [36–38]. From literature [39], there are three distinct categories of parameter adapta-

tion techniques: deterministic, adaptive and self-adaptive control rules. For the deterministic

method, the parameter values are modified according to certain predetermined logic and does not
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consider any form of feedback from the search process. Adaptive rules integrate some form of

feedback from the search process to guide in the parameter adaptation. As for the self-adaptive

approach, the parameters are directly encoded into the population individuals, which will then

undergo evolution together with the individuals. Hence self-adaptation will allow an evolution

strategy in an evolutionary algorithm to adapt itself to any general class of optimization problems

by reconfiguring the involved parameters accordingly without any user interaction. Self-adaptive

rules mainly utilize the feedback from the search process such as the fitness values of individu-

als to help in the updating of parameters. Through this, parameter values that are involved with

the fitter individuals will also have a higher chance of survival. In summary, self-adaptation has

been found to be highly advantageous for the modifying parameter values in an automatic way

throughout the evolutionary search process [40, 41].

1.5 Research Gaps and Goals/Scope

In this section, the main motivations for the work performed in this thesis as well as the goals of

the research are described.

1.5.1 Research Gaps

Over the years, many new algorithms have been developed for MOOPs but their optimization

performance in complex MOOPs still calls for improvements. This creates research gaps for the

study on MOOPs which can be summarized as follows:

1. EAs have been extensively used in the solving of MOOPs. However, EAs suffer from sev-

eral limitations like slow convergence, loss of diversity, stagnation of population, and often

requires the need for a tedious trial-and-error process to determine optimal settings for the

control parameters within them. Moreover, there is no assurance that optimal solutions can be

found by the EAs as well. This calls for a need to explore the development of better algorithms

that are able to overcome such limitations when handling MOOPs.
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2. In real-world application problems, many of them are subject to more than three objectives

and these problems are often referred to as many-objective problems. Many EAs are usually

able to work well on problems with two or three objectives, but their performance deteriorate

as the number of objectives increases. Hence there is a growing need to look into better

approaches for EAs to handle this class of problems. Moreover, there are not many studies on

the use of DE in the solving of many-objective problem and hence this leads to a motivation

to explore this aspect.

3. Several attempts have been carried out to study the performance of different EAs in solving

permutation-based problems like the multiple traveling salesman problem (mTSP). However,

there are not many studies on the solving of multi-objective multiple traveling salesman prob-

lem. Furthermore, none has studied the performance of a self-adaptive differential evolution

under the decomposition-based approach for multi-objective optimization.

1.5.2 Research Goals/Scope

The main aim of this study is to propose a DE algorithm that can solve a variety of MOOPs in an

effective and efficient manner. The specific goals of this research are:

1. To develop an algorithm for MOOPs using an opposition-based self-adaptive differential evo-

lution variant hybridized with a local search (OSADE).

2. To study the optimization performance of OSADE developed under the domination-based

approach in a wide range of MOOPs.

3. To extend the use of OSADE in many-objective optimization problems.

4. To extend OSADE into a decomposition-based approach for multi-objective optimization and

adapt it for solving a permutation-based problem like the multi-objective multiple travelling

salesman problem (MmTSP).
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The proposed algorithm, OSADE, employs the incorporation of opposition-based learning

into a self-adaptive mechanism for differential evolution. The use of opposition-based learning

is proposed as it can increase the probability of finding a near-optimal setting for the DE con-

trol parameters during the self-adaption process in the algorithm. With near-optimal settings

being derived during the evolutionary process, better solutions can also be generated throughout

the evolutionary process as well. In addition, hybridization of the novel opposition-based DE

operator with the multi-objective evolutionary gradient search (MO-EGS) is done with the aim

of improving the exploitation abilities of the overall algorithm. The extension of OSADE in

many-objective optimization may provide an alternative approach on the use of DE in handling

many-objective problems. For this, another novel DE mutation scheme is formulated by the syn-

ergy of the original opposition-based self-adaptive mutation scheme from OSADE with a local

mutation scheme that is also incorporated with opposition-based learning. This mutation scheme

is then incorporated into a grid-based framework to arrive at a novel DE variant called GrDE

which displays promising results in terms of achieving a well-approximated and well-distributed

set of solutions for the many-objective problems that it was tested on. Lastly, OSADE is extended

to handle a multi-objective multiple traveling salesman problem (MmTSP) whereby its mutation

scheme is being incorporated into the decomposition-based approach for multi-objective opti-

mization. The search behaviour of the algorithm is further enhanced by hybridizing it with the

multi-point evolutionary gradient search (EGS) which acts as a form of local search. As DE

is originally intended for continuous optimization, this study also presents an avenue for DE to

be used for permutation-based combinatorial optimization problems by incorporating a heuristic

rule that allows the conversion of parameters with float values into permutation-based parame-

ters required in the problem. The focus of this thesis is on the implementation of DE variants

to handle MOOPs. However, there are many variances of MOOPs, and it would not be possible

to consider all of them. Thus, the MOOPs considered in this thesis will be limited to a list of

mentioned benchmark global continuous test problems in Section 2.8 and a permutation-based
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combinatorial optimization problem. Other problems like combinatorial binary MOOPs, con-

strained MOOPs, and other real-world application problems will not be included in the scope of

this thesis.

1.6 Contributions

In this thesis, an opposition-based self-adaptive differential evolution algorithm for solving a va-

riety of multi-objective optimization problems has been devised. This algorithm is also extended

to handle many-objective optimization problems and the multi-objective multiple traveling sales-

man problem which is a permutation-based combinatorial optimization problem. The design,

implementation, results and analysis of the proposed algorithms in this study are also provided

in detail. The itemized contributions of this thesis are listed below:

1. A novel memetic algorithm termed as OSADE is proposed by hybridizing a newly formulated

opposition-based self-adaptive differential evolution variant with the multi-objective evolu-

tionary gradient search as a form of local search. This marks the potential in the synergy

between a self-adaptive DE and local search for solving multi-objective optimization prob-

lems. This contribution is realized in Chapter 3.

2. The potential of OSADE is further explored by extending it handle many-objective optimiza-

tion. This study investigates the formulation of a novel mutation scheme which is then in-

tegrated into a grid-based framework to formulate a new grid-based differential evolution

variant which displays promising performance in solving many-objective problems. This con-

tribution is realized in chapter 4.

3. A first attempt to adapt a self-adaptive DE algorithm for solving the multi-objective multiple

traveling salesman problem (MmTSP) has been carried out in this thesis. For this, OSADE

is extended by integrating its mutation scheme into the decomposition-based approach for

multi-objective optimization, and a heuristic rule is applied to allow DE to be used in this
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combinatorial optimization problem. In this approach, the resultant decomposition-based dif-

ferential evolution variant is hybridized with the multi-point evolutionary gradient search so

as to allow further exploitation of the solutions found. Through this study, an adaptation ap-

proach for DE, which is originally catered for continuous optimization, is also suggested for

the solving of permutation-based combinatorial optimization problems. This contribution is

realized in chapter 5.

1.7 Organization of the Thesis

The potential of using the differential evolution for solving MOOPs gives the primary motiva-

tion for the research studies presented in this thesis. In order to achieve the aforementioned

aims, an opposition-based self-adaptive differential evolution algorithm and algorithms that are

extended from the former have been devised. The details of the proposed algorithms and their

implementation to solve multiple MOOPs with different difficulties and problem nature are then

presented.

The organization of the remaining chapters of this thesis is as follows. Chapter 2 starts by

giving an overview of some state-of-the-art MOEAs under the different approaches for multi-

objective optimization. This will be followed by a review of the origins of the differential evo-

lution (DE) algorithm, and extensive overview of basics, development and applications of DE.

Some other popular MOEAs that are either widely considered in the thesis or commonly used

in evolutionary computation will also be introduced. The chapter also gives a description of the

various performance metrics that are used to provide a quantitative analysis of the simulation

results in the thesis. This will then be followed by a description of the different test problems

that are used for comparison of performance between the proposed algorithm and the other state-

of-the-art algorithms considered.

Chapter 3 presents the opposition-based self-adaptive differential evolution (OSADE) that

involves the domination-based approach for multi-objective optimization. Opposition-based
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learning is incorporated in a self-adaptive mechanism that allows the control parameters of dif-

ferential evolution to be adapted according to the evolutionary process. The multi-objective

evolutionary gradient search is then hybridized with the resultant differential evolution variant to

act as a form of local search for OSADE. The performance of this novel algorithm is tested using

a wide suite of benchmark test problems with a scalable number of decision variables and objec-

tive functions that pose different challenges for the algorithm. The results on the comparison of

the algorithm with other state-of-the-art algorithms will be presented in detail.

Chapter 4 describes a novel grid-based differential evolution algorithm that is based on

the OSADE mentioned in Chapter 3. For the implementation, opposition-based learning is be-

ing incorporated into a local mutation scheme, and this scheme is then joined with the origi-

nal opposition-based self-adaptive mutation scheme from the OSADE using a linear decreasing

probability rule. The resultant mutation scheme is then integrated into a grid-based framework to

form a novel grid-based differential evolution variant called GrDE. The proposed algorithm will

be compared with several state-of-the-art evolutionary algorithms that were previously tested on

many-objective problems as seen in literature. For this study, the comparison results, sensitivity

analysis and computational time analysis are being presented.

Chapter 5 studies the optimization performance of a decomposition-based OSADE (D-

OSADE) in solving a multi-objective multiple salesmen traveling problem (MmTSP). Unlike

the previous implementations where the test problems are in real-number representation, the

permutation-based representation is studied here. For this study, the mutation scheme from OS-

ADE is being incorporated into the decomposition-based approach for multi-objective optimiza-

tion, and then hybridized with multi-point evolutionary gradient search to enhance the search

behaviour. As DE is used for the generation of offspring containing parameters with float values,

hence a heuristic rule will be applied for the conversion of the float values into permutation-based

ones that are suitable for the evaluation of the MmTSP.

Finally, Chapter 6 presents the conclusions of this thesis and discusses future work.
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Chapter 2

Literature Review

MOEAs represent a class of stochastic optimization algorithms for multi-objective optimization

that emulate the process of natural evolution which consists of operations inspired by biological

evolution processes including reproduction, mutation, recombination, natural selection and sur-

vival of the fittest. Over the years, many studies have been carried out to look into the algorithmic

issues of MOEAs, and this chapter will first provide a short overview of evolutionary computa-

tion before looking into some of the state-of-the-art MOEAs under the different frameworks of

multi-objective optimization. This will be followed by a comprehensive review of Differential

Evolution which will cover the origin, basics, development and applications of DE. A review of

some state-of-the-art MOEAs that are widely considered in this thesis will also be highlighted

in detail. Besides these, a description of the performance metrics that are used for performance

assessment of all the algorithms in this study will be provided. Finally, the different test problems

that are used to test the efficiency of the algorithms in the study will be presented.

2.1 Evolutionary Computation

More than a few decades ago, a number of researchers proposed ideas of mimicking the under-

lying mechanisms found in biological evolution for the development of algorithms to handle op-

timization problems. The ideas eventually became known as Evolutionary Computation, which
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can be regarded as a branch of computational intelligence that can be characterized by the type of

algorithms that is involved. The algorithms are collectively referred to as evolutionary algorithms

which are population-based meta-heuristic optimization algorithms. These algorithms are based

on the concept of simulating the evolution of population individuals via processes of selection

and reproduction. These processes are dependent on the fitness levels of the individuals as de-

fined by an environment. In summary, evolutionary computation is based on an iterative progress

such as the evolution of a population, and the selection of individuals in the population is done

via a random search conducted under simultaneous processing and guided by processes based on

biological mechanisms of evolution.

2.2 Multi-objective Evolutionary Algorithms

In this section, a review of three general classifications of the approaches used in multi-objective

optimization is presented. Some state-of-the-art algorithms that were developed based on these

frameworks will also be highlighted.

1. Preference-based Approach

In the preference-based approach [3, 42–45], the underlying concept is to perform aggre-

gation of the multiple conflicting objectives in MOOPs using classical methods into a single-

objective optimization problem, or to use preference knowledge of the problems so that the focus

will just be on certain objectives to be optimized. A fundamental technique commonly used in

this approach is the weighted sum method which basically involves the multiplication of every

conflicting objective in the problem by a user specified weight value, and then combining them

through summation into a single objective to be optimized.

The main issue that lies with the preference-based approach is that it is only able to obtain

a single solution in one simulation run. Hence the goal of achieving a set of tradeoff solu-

tions of good proximity and diversity for multi-objective optimization cannot be achieved with

this approach with a single simulation run. Besides this, this approach also requires preference
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knowledge on the MOOPs, in terms of appropriate weight values or predefined values from users,

to be furnished to the optimizers. Due to such concerns, the emphasis placed on the research in

this approach revolves on how to employ preference information effectively when performing

optimization.

2. Domination-based Approach

The main working principles behind the domination-based approach lies in the assignment

of a fitness value to every solution in the population for the optimization of all objectives in an

MOOP. This concept was first initiated by Goldberg [1], but there were no concrete works from

him to support this concept in terms of its suitability in handling MOOPs. Instead, Fonseca and

Fleming [46] proposed the multi-objective genetic algorithm (MOGA), which is considered the

first formal MOEA based on the domination-based approach for MOOPs. In this algorithm, the

fitness of a solution is first determined according to the number of solutions that dominates it,

and it will then be used to determine the rank of the solutions. Next the fitness of the solutions

under the same rank will be shared using a fitness sharing mechanism. Through these two steps,

MOGA is able to maintain a set of non-dominated solutions in a single simulation run.

Srinivas and Deb [47] proposed the non-dominated sorting genetic algorithm (NSGA) which

is somewhat similar to the MOGA but uses a newly proposed ranking and sharing mechanism. In

NSGA, the solutions are basically ranked according to the level of domination, and the solutions

belong to a previous rank will be ignored during the ranking procedure at a particular rank level.

At the same time, diversity of the solutions is being maintained via a fitness sharing mechanism,

and a stochastic remainder selection scheme will be followed which gives a higher probability of

selecting solutions from a lower front.

However, the element of elitism is absent in both MOGA and NSGA. Moreover, these al-

gorithms also requires a sharing parameter to be specified. In addition, the NSGA also incurs

higher computational complexity when compared to other MOEAs. To overcome these lim-

itations, elitism mechanisms such as an external archive of solutions are being proposed and
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included in MOEAs with the aim of maintaining a good distribution of optimal solutions. With

the concept of elitism in mind, the strength Pareto evolutionary algorithm (SPEA) was proposed

by Zitzler and Thiele [48], whereby an external archive or population is used to maintain a set

of non-dominated solutions discovered during the evolutionary process. If the predefined size

of the external population is reached, the crowded solutions as determined by a clustering algo-

rithm will also be discarded. The SPEA2 was later proposed by Zitzler et al. [49] with improved

versions of fitness assignment, archiving and diversity preservation mechanism with the aim of

enhancing the SPEA.

On the other hand, Deb et al. came up with the NSGA-II [50] which is an improved version

of the NSGA. In NSGA-II, it preserves a set of archived solutions at the start of the evolutionary

process whereby N parent solutions and N child solutions are being stored in an archive. Non-

dominated sorting will then be applied on the entire archive of 2N solutions to classify them into

different domination ranks based on their domination relationship with each other. Due to the

fact that only the best N solutions are to be selected as parents for the next generation, hence

a parameter called the crowding distance will be calculated for every solution in the archive.

The crowding distance is basically a proximity measure between a solution and its neighbours,

and the less crowded solutions will be favoured and selected as parents. As contrasted with the

NSGA, NSGA-II comes with lower computational complexity, incorporates elitism, and does

not require the specification of a sharing parameter. With these good features, NSGA-II has

established itself as one of the most reputable and widely used MOEA that is used to solve many

real-world problems. In addition, NSGA-II also serves as a baseline algorithm for many MOEAs.

However, NSGA-II displays poor performance in MOOPs with more than three objectives. This

is due to the fact that many solutions are non-dominated to each other in a higher objective space.

Hence the ranking and crowding mechanisms in NSGA-II will not be suitable in identifying the

superior solutions efficiently for many-objective problems.

Over the past decade, the dominance-based approach has become of the most focused re-
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search areas in multi-objective optimization. This is because this approach allows a set of tradeoff

solutions to be generated in a single simulation run which is useful and appropriate for the case of

multi-objective optimization. Besides this, diversity preservation of solutions is viable by consid-

ering the distribution of the solutions in a regulated population. However, the primary limitation

of the dominance-based approach is that its selection pressure decreases when the number of

objectives in a problem is being increased. As such, this approach is mainly suitable for handling

MOOPs with two or three objective functions. Moreover, some of the diversity preservation

schemes in the MOEAs that are based on this approach are also dependent on certain sharing

parameter values which needs to be predefined a priori before the optimization process.

3. Decomposition-based Approach

The decomposition-based approach operates by decomposing an MOOP into multiple sub-

problems and these subproblems will then be optimized simultaneously. In most of the algo-

rithms that are based on this approach, the use of Pareto dominance concept is absent or might

only be applied to a certain extent.

An early adoption of the decomposition-based approach can be found in the multi-objective

genetic local search algorithm (MOGLS) proposed by Ishibuchi et al. [51]. In MOGLS, aggre-

gation of the multiple objectives of an MOOP is first performed using a weighted sum technique.

A pair of parent solutions is then chosen during the selection phase to undergo crossover and mu-

tation so as to generate an offspring. Optimization will be performed on the offspring using local

search where the fitness function of the offspring is represented by an aggregated weighted-sum

function. In every local search operation, a new vector with weight information will be randomly

generated. Besides this, an external archive is also being used to store the non-dominated so-

lutions. At the end of every local search operation, an offspring which is non-dominated when

compared to any parent or archived solutions will be inserted into the archive. Any solutions in

the archive that are dominated by the newly added solutions will also be discarded. For MOGLS,

Pareto dominance is partially applied here for the comparison of the offspring with the parent

24



CHAPTER 2. LITERATURE REVIEW

and archived solutions.

The MOEA based on decomposition (MOEA/D) proposed by Zhang and Li [52] is regarded

as a state-of-the-art MOEA based on the decomposition-based approach for multi-objective op-

timization. In this algorithm, an MOOP is first decomposed into several subproblems whereby

each subproblem is constructed by using a weighted sum or Tchebycheff method. Hence each

subproblem is treated as a scalar objective optimization problem. A set of uniformly distributed

weight vectors will be generated for the purpose of aggregation. The neighbourhood relationship

between the subproblems will be decided with the help of the values of the Euclidean distances

between the weight vectors. For the optimization of a subproblem, only its neighbouring solu-

tions will be taken into consideration, and this will be ensured by performing genetic operations

between a subproblem and its neighbouring solutions. Updating will be done to that subproblem

and its neighbouring solutions with the best solution in terms of aggregated fitness value. It is

also to be noted that there is no dedicated population pool for archiving and elitism in MOEA/D,

and there is no specific elitism mechanism placed in the algorithm. However, elitism is being

applied indirectly when updating is done to the nearest neighbours of a subproblem after the

comparison of their fitness values to that of the newly generated solution for the subproblem.

With this, MOEA/D provides a remedy for the issue of weakened selection pressure experienced

by the domination-based MOEAs when dealing with many-objective problems. Besides this,

there is also no requirement for a diversity preservation scheme to be specified for MOEA/D

as there is already preserved diversity in the predefined weight vectors. With these advantages,

MOEA/D gains its popularity in the research community for the handling of MOOPs.

Due to the good performance seen in MOEA/D, an improved version known as the MOEA/D-

DE was proposed in [53]. The key difference between MOEA/D and MOEA/D-DE is that the

differential evolution (DE) operator is being used instead of GA as the search heuristic in the

latter. As the DE operator involves the generation of an offspring with three distinct parent

solutions, a wider range of offspring can be produced. With the DE operator being used in

25



CHAPTER 2. LITERATURE REVIEW

MOEA/D-DE, the exploration ability of the algorithm can be enhanced. This in turn leads to

a more effective exploration of the search, which will be particularly useful when dealing with

problems with complicated Pareto sets. Another difference between the original MOEA/D and

the MOEA/D-DE lies in the maximal number of subproblems that are allowed to be replaced

by an offspring. In the original MOEA/D, the maximal number allowed can be as much as the

neighbourhood size (T ). However, this may cause the diversity among the population individuals

to be reduced significantly if an offspring is of higher quality than its parent and the neighbours

of the parent as the offspring will replace all of them. In order to overcome this shortcoming in

the original MOEA/D, the maximal number of subproblems that are allowed to be replaced by

an offspring will be bounded to a parameter nT where nT is set to a much smaller value than T .

Ever since the successful implementation of both MOEA/D and MOEA/D-DE, more initia-

tives have been put in by the research community to either improve the original MOEA/D or to

apply it in real-world problems. In a new version known as the MOEA/D with dynamic resource

allocation (MOEA/D-DRA), different computational efforts are allocated to different subprob-

lems. This algorithm was tested on CEC’09 unconstrained MOOPs, and has been named as the

best performing MOEA in the CEC’09 competition for unconstrained multi-objective optimiza-

tion. In another effort by Nebro and Durillo [54], a study on the parallelization of MOEA/D was

conducted. As for real-world problems, MOEA/D has been employed in flowshop scheduling

problems [55], and in applications related to the optimization of passive vehicle suspension [56],

antenna arrays synthesis [57], and sensor network routing problems [58], just to name a few.

2.3 History of Differential Evolution

Differential evolution (DE) was introduced by Kenneth Price and Rainer Storn in 1996, and it

traces its origin from attempts to solve the Chebyshev polynomial fitting problem with the use

of genetic annealing [59]. Genetic annealing is a population-based, combinatorial optimization

algorithm that is based on genetic algorithms and simulated annealing techniques. It basically
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introduces the concept of evolution into the annealing process, and implements a thermodynamic

annealing criterion via thresholds. However genetic annealing is unable to solve the Chebyshev

problem well despite its successful application in the solving of several combinatorial tasks. As

such, Price converted the bit-string encoding and logical operations in genetic annealing into

floating-point representation and arithmetic operations respectively, and this resulted in the cre-

ation of the differential mutation operator. Storn also proposed the creation of separate parent

and child populations in order to adapt to the parallel machine architectures. In addition, Price

and Storn eliminated the annealing criterion as well. Through these, the Differential Evolution

algorithm was formed, and Price and Storn were able to solve the Chebyshev problem effectively

and efficiently with it.

2.4 Fundamentals of Differential Evolution

The aim of Differential Evolution is to evolve a population of NP D-dimensional parameter vec-

tors representing the candidate solutions or individuals at G generation which are denoted by

Xi,G = (x1
i,G, ..., x

D
i,G), i = 1, 2, ..., NP towards the global optima. The initial population is

generated by uniformly randomizing individuals within the search space which is bounded by a

predefined set of minimum and maximum parameter bounds denoted by Xmin = (x1
min, ..., x

D
min)

and Xmax = (x1
max, ..., x

D
max). The following equation shows how the initialization is per-

formed for the j th parameter of the i th individual at generation G = 0.

xji,0 = xjmin + randj(0, 1)× (xjmax − x
j
min) j = 1, 2, ..., D (2.1)

where randj (0, 1) represents a uniformly distributed random real number between 0 and 1.

2.4.1 Mutation operation of Differential Evolution

After the initialization stage, mutation will be performed to produce a mutant vector Vi,G for

every individual Xi,G, which is also referred to as the target vector, in the current population. At
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every generation G , a mutant vector Vi,G can be generated for the target vector using a mutation

strategy. Below are five different mutation strategies that are commonly used in implementations

involving the DE algorithm.

DE/rand/1 : V j
i,G = Xj

r1,G + F · (Xj
r2 −X

j
r3) (2.2)

DE/best/1 : V j
i,G = Xj

best + F · (Xj
r1 −X

j
r2) (2.3)

DE/rand− to− best/1 : V j
i,G = Xj

i + F · (Xj
best −X

j
i ) + F · (Xj

r1 −X
j
r2) (2.4)

DE/best/2 : V j
i,G = Xj

best + F · (Xj
r1 −X

j
r2) + F · (Xj

r3 −X
j
r4) (2.5)

DE/rand/2 : V j
i,G = Xj

r1 + F · (Xj
r2 −X

j
r3) + F · (Xj

r3 −X
j
r5) (2.6)

In the above mutation strategies, the indices r1, r2, r3, r4, andr5 are mutually exclusive

integers that are randomly generated in [1, NP] where NP is the number of individuals in the

current population, and the indices must also be different from the index i, and j = (1, 2, ..., D)

whereD is the number of decision variables. The generation of the indices will be done for every

mutant vector. F represents a control parameter which is known as the scaling factor. It is a real

and constant value which is usually between 0 and 2, and is used to control the amplification of

the difference vectors in the mutation strategies. Xbest,G is the individual with the best fitness

value in the population at generation G.

2.4.2 Crossover operation of Differential Evolution

After the mutation stage, crossover will be applied between a target vector Xi,G and its corre-

sponding mutant vector Vi,G so as to produce a trial vector Ui,G = (u1
i,G,u

2
i,G, ...,u

D
i,G). The
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main purpose of crossover operation is to increase the diversity of the perturbed parameter vec-

tors. In the most fundamental version of the DE algorithm, the binomial crossover is used which

is demonstrated as follows:

uji,G =


vji,G if (randj [0, 1] ≤ CR) or (j = jrand)

xji,G otherwise
(2.7)

where j = {1, 2, ..., D} and D is the total number of decision variables. CR is the crossover rate

which is a constant specified by the user and is within the range [0, 1]. This control parameter

helps in determining the number of parameter values that are copied from the mutant vector to

the trial vector. jrand is an integer randomly chosen from the range [1, D] and is used to ensure

that the trial vector will get at least one parameter from the mutant vector and hence the trial

vector will definitely be different from the target vector. In the binomial crossover operation, the

jth parameter of the mutant vector Vi,G will be copied to the corresponding element of the trial

vector Ui,G if randj [0, 1] ≤ CR or if j = jrand where randj [0, 1] is a random real number

between 0 and 1. Otherwise the jth parameter will be copied from the corresponding target

vector Xi,G. Besides the binomial crossover, there is another form of crossover operator known

as the exponential crossover. For this type of crossover, the parameters of the trial vector Ui,G are

obtained from the corresponding mutant vector Vi,G from a randomly chosen parameter index

until the first occurrence of randj(0, 1) > CR. The remaining parameters of the trial vector

Ui,G will be copied from the corresponding target vector Xi,G.

2.4.3 Selection operation of Differential Evolution

The final stage of the Differential Evolution algorithm is the selection operation. All the parame-

ter values of the trial vector Ui,G will be checked to ensure that they are within a specified set of

lower and upper bounds. If any of the parameter values exceed the bounds, then it will be set to

a randomly generated value within the pre-specified range. Next, the trial vectors will be evalu-
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ated according to the optimization problem to obtain the objective function values, and they will

then undergo the selection operation. For this, the objective function value of every trial vector

f(Ui,G) will be compared to that of its corresponding target vector f(Xi,G) in the current pop-

ulation. In this comparison, minimization of the problem is assumed. If the objective function

value of the trial vector is lesser or equal to that of its corresponding target vector, the trial vector

will replace the target vector and enters the population for the next generation. Otherwise, the

trial vector will be ignored and the target vector will be retained in the population for the next

generation. The selection operation is demonstrated as follows:

Xi,G+1 =


Ui,G, if f(Ui,G) ≤ f(Xi,G)

Xi,G, otherwise
(2.8)

The above-mentioned steps of mutation, crossover and selection operations will be repeated until

the predefined termination criterion is met.

2.5 Development of Differential Evolution

Due to the promising results achieved by Differential Evolution, researchers are motivated to

exploit the potential of this algorithm. As such, the researchers are constantly working on the

development of improved variants of the DE algorithm for the purpose of enhancing its opti-

mization performance. In this section, an overview of the contemporary research efforts is being

presented.

2.5.1 Control Parameters in Differential Evolution

There are mainly three control parameters in Differential Evolution whereby the setting of their

values will have a strong influence on the optimization performance of the algorithm. As such,

researchers have provided certain suggestions on ways to choose the values for these control
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parameters. Firstly, Storn and Price [24] suggested that the population size NP for DE should

be set between 5D and 10D whereD is the dimensionality of the problem. For the scaling factor

F , they suggested an initial value of 0.5, and a range of [0.4, 1] for F to be effective. As for the

crossover rate CR, a first reasonable value can be 0.1. However if the problem is near unimodal

or if fast convergence is desired, then CR can adopt a larger value like 0.9. In the event of

premature convergence, the increase of either the mutation factor F or the population size NP

could be helpful.

In [60], different parameter settings for DE were experimented on the Sphere, Rosenbrock

and Rastrigin functions. From the experimental results, it was demonstrated that both the search-

ing capability and convergence speed of DE are very sensitive to the control parameter settings.

The authors suggested that the population size NP should be between 3D and 8D, and F and

CR to be 0.3 and 0.9 respectively.

In another study [61], it was suggested that F can be set within the range of [0.4, 0.95] with

0.9 as a good initial choice. As for the setting of CR, it would depend on the type of problem to

be handled. If the problem is a separable one, CR could be set to a lower value between [0, 0.2],

and if the problem is non-separable and multi-modal, then a larger value of 0.9 would be more

appropriate for CR. However, the characteristics of real-life problems are usually unknown,

and hence the authors concluded that it would be difficult for an appropriate value for CR to be

chosen beforehand.

From these, it can be seen that there are different conclusions drawn on the rules for the

manual setting of the control parameter values in DE. This may be attributed to the differences

in the type of benchmark problems chosen for the studies, the type of trial vector generation

strategies used, or even the combinations of the parameter values used. Due to the conflicting

conclusions, researchers become uncertain on the appropriate guideline for the setting of param-

eters in DE, especially when applying the algorithm to real-life problems.

In order to address this issue, researchers have proposed different techniques to eliminate
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the need for manual tuning of the DE parameters. In [62], Das et al. proposed two different meth-

ods to relieve the need for the setting of the scaling factor F . The first was a random variation

method for F within the range of [0.5, 1], and the second was to linearly reduce F with increas-

ing generation count from a maximum to a minimum value. Many researchers also turned to the

adaptation of the control parameters F and CR. For example, the Fuzzy Adaptive Differential

Evolution (FADE) [11] was introduced by Liu and Lampinen which uses fuzzy logic controllers

to adapt the search parameters for the mutation and crossover operations. From the experimen-

tal results on a set of standard test functions, it is seen that the FADE algorithm outperformed

the conventional DE algorithm on higher dimensional problems. In [63], Zaharie proposed a

parameter adaptation method for DE based on the idea of controlling the population diversity.

The concept was then extended by Zaharie and Petcu [64] who developed an adaptive Pareto DE

algorithm for multi-objective optimization and further explored a parallel implementation for it.

Another effort by Abbass [65] saw the self-adaptation of the crossover rate for DE for multi-

objective optimization, whereby the crossover rate is being encoded into every individual so as

to allow it to be evolved together with the decision variables of the individual. As for the scaling

factor F , it is generated for each variable using a Gaussian distribution N(0, 1).

Following these efforts, more works that focus on the adaptation of control parameters in

DE were reported. In [66], Omran et al. proposed a self-adapted scaling factor F which is

quite similar to the adaptation of crossover rate CR in [65]. This approach is known as the SDE

whereby the generation of the crossover rate CR is done for every individual using a normal

distribution N(0.5, 0.15). It was seen that this approach fared better than other versions of DE

when compared on a set of four benchmark problems. Adaptation of the population size in

DE was also proposed in a study by Teo who developed the Differential Evolution with Self-

Adapting Populations (DESAP) algorithm [14] based on the self-adaptive Pareto DE by Abbass

mentioned above. Another innovative approach known as the jDE was introduced by Brest et

al. [67] whereby both the control parameters F and CR are being encoded as extended variables
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in every individual, and these parameters are being adjusted by two new parameters τ1 and τ2.

In jDE, a set of F values was allocated to the individuals in the population. A random number

rand1 was then uniformly generated in the range of [0, 1]. If rand1 < τ1, then F will be preset

to a new random value, otherwise it will remain unchanged. For the case of CR, the adaptation

was similar to how it was being performed for F except that another random uniformly generated

number rand2 was being compared to τ2 instead.

2.5.2 Strategies For Trial Vector Generation in Differential Evolution

An important aspect in Differential Evolution algorithm lies in the trial vector generation strategy

it uses. Besides the strategies provided by Storn [24] for Differential Evolution, researchers

have proposed several different strategies to improve the performance of the conventional DE.

In the conventional DE, the base vector in the trial vector generation is just a randomly selected

population vector without any consideration of the fitness of the vector. In order to guide the trial

vector generation in a better manner, Price [68] suggested that a base vector can be formed by

combining a target vector with a randomly selected vector which has a lower or equal objective

function value to that of the target vector. In another study, Fan and Lampinen proposed the

Trigonometric Mutation DE (TDE) algorithm [69] which involves a novel trigonometric mutation

scheme that is used alongside with the mutation scheme from the original DE. The choice of the

mutation scheme to be used is decided stochastically by an additional control paramter Mt. It

is seen that this DE variant is able to outperform the conventional DE algorithm when compared

on certain benchmark and real-world problems.

A detailed empirical study was conducted by Mezura-Montes et al. [27] to compare eight

different DE trial vector generation strategies so as to identify the suitable strategies for different

optimization problems according to their characteristics. The first five strategies are namely

rand/1/bin, rand/1/exp, best/1/bin, best/1/exp, and current-to-rand/1/bin [70], and these strategies

involve discrete recombination. The next two strategies involve arithmetic recombination and
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they are current-to-rand/1 and current-to-best/1 [71]. The last strategy is the rand/2/dir [72]

which incorporates objective function information. A total of 13 scalable test functions were

chosen from [73], and they can be classified under four different categories which are namely

uni-modal and separable, uni-modal and non-separable, multi-modal and separable, and multi-

modal and non-separable. From the experimental results obtained, certain conclusions can be

drawn from this study. Firstly, it was found that the use of binomial crossover always lead

to better performance over exponential crossover. For both uni-modal and separable, and uni-

modal and non-separable problems, best/1/bin strategy turned out to be the most competitive one.

However for the case of multi-modal and separable problems, both rand/1/bin and rand/2/dir were

as competitive as best/1/bin. Lastly, for the case of multi-modal and non-separable problems,

both rand/1/bin and rand/2/dir performed much better than best/1/bin.

2.5.3 Hybridization involving Differential Evolution

Hybridization is considered to be another way of improving the performance of the DE algo-

rithm. Zhang and Xie [74] introduced the DEPSO which is a hybrid between the PSO and the

classical DE, and it is shown to outperform both PSO and DE when tested on a set of benchmark

functions. In another research effort by Das et al. [75], a novel scheme was proposed to improve

the performance of particle swarm optimization (PSO) by a vector differential operator borrowed

from DE. Sun et al. [76] proposed the hybridization of DE with Estimation of Distribution Algo-

rithm (EDA) to formulate the DE/EDA algorithm which utilizes the local information obtained

by the DE mutation and the global information retrieved from a population of solutions by EDA

modeling.

2.5.4 Multi-modal problems involving Differential Evolution

As seen in some real-world optimization problems, there is often a need to locate not just one

optimum but rather an entire set of global or local optimal. Such problems are also known

34



CHAPTER 2. LITERATURE REVIEW

as multi-modal optimization problems, and DE has also been extended to handle this class of

problems as well. For this, DE has been modified to establish its capability in deciding the

number of subpopulations required in a multi-modal problem, and to determine the minimal

spanning distance between individuals of each subpopulation. In another approach knowen as

the ’island model’, it was adopted in the multi-resolution multi-population DE by Zaharie [77]

and in the MultiDE by Hendershot [78] to handle multi-modal problems. DE was also extended

with a crowding scheme to formulate the crowding DE that is able to track and maintain multiple

optima as seen in another piece of work by Thomsen [79], and it is observed that this proposed

algorithm outperformed the well-known fitness sharing scheme that penalizes similar candidate

solutions.

2.5.5 Applications involving Differential Evolution

Since the inception of DE, it has been applied by scientists and engineers in a wide range of

optimization problems that include engineering design for digital filters [80] and gas circuit

breakers [81], neural networks and fuzzy systems [82, 83], scheduling tasks in terms of plant

scheduling [84] and heterogenous multiprocessor scheduling [85], image processing [86,87] and

even in bioinformatics whereby DE is being used to find predictive genes subsets in microar-

ray data [88]. These examples demonstrate the usefulness of DE in not just theoretical but also

practical applications as well.

2.6 Frequently Considered MOEAs

In this section, the details of four state-of-the-art MOEAs are presented. These evolutionary algo-

rithms are either frequently considered in this thesis or commonly used in the area of evolutionary

computation.
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2.6.1 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

NSGA-II [50] is one of the most well-known domination-based algorithms for multi-objective

optimization. As the fitness assignment operators of NSGA-II are being used by some of the

proposed algorithms in this thesis, a detailed description of the operation in NSGA-II will be

highlighted in this section. NSGA-II is also one of the algorithms that will be compared with the

proposed algorithms in this thesis. The process flow of NSGA-II is presented in Figure 2.1.

Begin 
1. Initialization: At generation � � �, randomly generate � solutions as the initial 

population, ������ 
2. Evaluation: Evaluate all solutions in ������ 
Do While ("Stopping Criterion is not satisfied") 

3. Fitness assignment: Perform Pareto ranking and crowding distance to the 
population ������  

For �=0 to � 
4. Selection: Select parent solutions to perform genetic operations using binary 

tournament selection 
5. Crossover: Perform crossover to the selected parent solutions to generate an 

offspring 
6. Mutation: Perform mutation to the offspring 

End for 
7. Evaluation: Evaluate all offspring and store the offspring in an archive � 
8. Archiving: Combine parent and offspring solutions ���	�
 � � 
9. Elitism: Perform Pareto ranking and crowding distance to ���	�
 � �. Select 

the best � solutions to form new population ����� � ��. � � � � � 
End Do 
10. Output: Output the final set of solutions ������ 

End 

Figure 2.1: Pseudo-code of NSGA-II

The algorithm begins by the random generation of N solutions for an initial population

Pop(g = 0). Evaluation of all the solutions in Pop(g) is then performed to obtain their objective

values. This is followed by the fitness assignment to all the solutions in the population according

to Pareto ranking and crowding distance. Through the use of binary tournament selection, two

chromosomes are then randomly selected into tournament, and the fitter one that has a lower

rank or a greater crowding distance will be selected. The selection process will pick a pair of

parent solutions, and crossover is then performed on the chosen parent solutions to generate an

offspring. The offspring will then undergo mutation whereby random perturbation will be applied

to it. The selection, crossover and mutation operations will be repeated N times in order for N

36



CHAPTER 2. LITERATURE REVIEW

offspring to be generated. Evaluation of the offspring is then performed and they are then stored

in a temporary archive A. The parent solutions and the offspring will then be merged to form

a combined population Pop(g) ∪ A which is of 2N in size. The combined population is sorted

again according to non-domination, and elitism is applied whereby only the best N solutions

with lower Pareto ranks or greater crowding distances are selected to form a new population

Pop(g + 1) for the next generation. The same procedure will be iterated over generations until

the predefined stopping criterion is met.

The concept of the use of Pareto ranking and crowding distance operator in NSGA-II is as

explained here. A solution X is considered to be fitter than another solution Y if and only if

all the objective function values of solution X are lesser than those of solution Y (for the case

of minimization problems). However, the solutions X and Y are incomparable if and only if

the objective function values of solution X are not all smaller than those of solution Y . With

the application of this concept, solutions in the population are first ranked accordingly to their

rank of domination. Solutions which are not dominated by any other solutions will be given

Rank 1 (lowest rank) while the solutions that are solely dominated by the solutions of the lowest

rank will be given Rank 2, and so forth. As such, this would mean that the solutions with lower

ranks are considered to be fitter than those with higher ranks. For illustration purposes, this

ranking mechanism is displayed in Figure 2.2. With the use of natural selection, the solutions

with lower ranks will have a better chance of being selected over those solutions with higher

ranks. However, if there is a tie in the ranks between two solutions, then the one with a greater

crowding distance is preferred. Figure 2.3 provides an illustration of how the crowding distance

parameter is being measured for a solution X . The calculation is performed by summing over

its two nearest neighbour, which means that the crowding distance is a total summation from D1

to D4. As for the solutions located at the boundary positions of the front (solutions Y and Z in

Figure 2.3), their crowding distances will be set to infinity so as to increase the chance of these

solutions surviving a tournament selection indefinitely. Through this procedure, the algorithm
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will have a better ability to produce a set of diverse solutions.

Objective 1

Rank 1

Rank 2

Objective 2

Figure 2.2: Pareto-based ranking

Objective 1

Objective 2

D1

D2

D3

D4X

Y

Z

Figure 2.3: Crowding distance measurement

In NSGA-II, the genetic operations depend on whether the variable representation is in

terms of binary number or real number. For the case of binary-number representation, single

point crossover is used. The degree of crossover is controlled by a crossover probability (pc),

and it works by randomly dividing a chromosome into two parts, which is then followed by

an exchange of the parts between two parent solutions. As for the mutation operation, bit-flip

mutation is used which is basically performed by a random flipping of an allele according to a

mutation probability (pm).

If the variable representation is in real number, simulated-binary crossover (SBX) will be

38



CHAPTER 2. LITERATURE REVIEW

implemented instead. As for the mutation operation, the polynomial mutation operator will be

applied to the offspring. In the SBX operation, two parent solutions (x1 and x2) are selected

from the population and a random real number u between [0, 1] is generated. The creation of the

offspring is as follows:

x̄ = 0.5[(x1 + x2)− β̄|x2 − x1|] (2.9)

x̄ = 0.5[(x1 + x2) + β̄|x2 − x1|] (2.10)

∫ β̄

0
ρ(β)dβ = u

ρ(β) =


0.5(ϕ+ 1)βϕ if β ≤ 1

0.5(ϕ+ 1) 1
βϕ+2 otherwise

where β is the spread factor which follows a polynomial probability distribution ϕ(β) andϕ is the

distribution index which defines the probability for the creation of child solutions that are distant

from or near to the parent solutions. As for the polynomial mutation operation, an offspring is

produced in the following way:

x̄ =


x1 + σ(xL − xU ) if u < pm

x1 otherwise
(2.11)

σ =


(2u)1/(ϕ+1) if u < 0.5

1− (2− 2u)1/(ϕ+1) otherwise
(2.12)

where xL and xU are the lower and upper bounds for the decision variable x respectively. ϕ is

the distribution index and and u is a random real number between [0, 1].

39



CHAPTER 2. LITERATURE REVIEW

2.6.2 The Strength Pareto Evolutionary Algorithm 2 (SPEA2)

The SPEA2 [49] is an improved version of the Strength Pareto Evolutionary Algorithm (SPEA),

and it is regarded as one of the most important multi-objective evolutionary algorithm that uti-

lizes the elitism approach. The SPEA [48] has displayed good performance when compared with

other multi-objective evolutionary algorithms, and this explains why it is used as a reference for

comparison in several works or in different applications [89, 90]. In SPEA2, it differs from its

predecessor in terms of having a fine-grained fitness assignment strategy, and the clustering tech-

nique utilised in the predecessor is replaced by another truncation method that prevents boundary

solutions from being discarded during environmental selection. The process flow of SPEA2 is

presented in Figure 2.4.

Begin 
1. Initialization: At generation g = 0, randomly generate N solutions as the initial 
population, Pop(g), and create an empty archive, A  

     Do While ("Stopping Criterion is not satisfied") 
 2. Archiving: Copy all the non-dominated individuals in Pop(g) to A  
      3. Fitness Assignment: Perform fitness assignment according to a fine-grained     
              Fitness assignment strategy to the combined population made up of Pop(g) and A  

4. Environmental Selection: Copy al the non-dominated individuals from the  
    combined population to the archive for the next generation. Perform truncation to  
    the new archive  
For i=0 to N 
      5. Mating Selection: Select parent solutions to perform genetic operations using  
          binary tournament selection 
      6. Crossover: Perform crossover to the selected parent solutions to generate  
          offspring 
      7. Mutation: Perform mutation to the offspring 
End for 
g = g + 1 

     End Do 
     8. Output: Output the final set of solutions Pop(g) 
End 

Figure 2.4: Pseudo-code of SPEA2

Pertaining to the fitness assignment of SPEA2, a fine-grained fitness assignment strategy

which factors in density information is used. Every individual i in the population Pop(g) and

the archive A is given a strength value S(i), where S(i) represents the number of solutions it

dominates, and can be defined as follows:

S(i) = |{j | j ∈ Pop(g) +A ∧ i � j}| (2.13)
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where | • | denotes the cardinality of a set, + represents the multiset union and the symbol �

refers to the Pareto dominance relation. With the S values, the raw fitness R(i) of an individual

i is computed as follows:

R(i) =
∑

j ∈ Pop(g)+A,j � i

S(j) (2.14)

This means that the raw fitness of an individual i in SPEA2 is calculated on the basis of the

strength value of solutions in both the population and archive which dominate it. This is different

from SPEA where only the archive members are considered for the computation of the raw

fitness. It is to be highlighted that the raw fitness is to be minimized, which implies that a value

of R(i) = 0 (for the case of a non-dominated individual) is favoured over a higher R(i) value

(for the case where the individual i is dominated by many individuals).

It is to be mentioned that this raw fitness assignment scheme may not be effective in situa-

tions when most of the individuals do not dominate each other. Therefore, the authors of SPEA2

included additional density information to differentiate individuals possessing similar raw fitness

values. For this, the distances of every individual i to all the individuals j in the population and

archive is measured in the objective space and stored in a list. Sorting will be performed to the

elements in the list in terms of increasing order, and the kth element in the list will give a dis-

tance σki . For this, k is set to be the square root of the sample size [91], and thus k =
√
N + N̄

where N and N̄ are the population size and archive size respectively. The density estimate D(i)

for individual i will be taken as the inverse of distance to the kth nearest neighbour and this is

represented by:

D(i) =
1

σki + 2
(2.15)

The fitness of individual i represented by F (i) will be given by F (i) = R(i) + D(i). As for

the archive updating process in SPEA2, it is different from SPEA in two ways. First of all, the

41



CHAPTER 2. LITERATURE REVIEW

number of individuals in the archive is maintained at the same size. Secondly, the truncation

method utilized in SPEA2 will prevent the boundary solutions from being eliminated. Hence for

the environmental selection stage in SPEA2, all the non-dominated solutions from the archive

and the current population will be firstly be updated to the archive Ag+1 of the next generation

as follows:

Ag+1 = {i | i ∈ Pop(g) +A ∧ F (i) < 1} (2.16)

The environmental selection is completed if the non-dominated front is of the same size as the

archive. If this does not happen, there will be two situations whereby the archive is too small or

too big. For the first case, the best N̄ − |Ag+1| dominated individuals in the previous population

and archive will be placed into the new archive for the next generation. This is performed by

sorting the multiset Pop(g) +A according to the fitness values, and following by the placement

of the first N̄ − |Ag+1| individuals i with F (i)≥ 1 from the resultant ordered list to the new

archive Ag+1. However if the size of the current set of non-dominated individuals exceeds the

size of the archive, truncation is performed which will iteratively discard individuals from Ag+1

until the size of the archive is reached. For every iterative step in the truncation process, the

individual which has the lowest distance to another individual is discarded. In the event if there

are several individuals with the same lowest distance, the second smallest distance will then be

considered and so forth.

2.6.3 MOEA with Decomposition (MOEA/D)

The MOEA/D algorithm [52] is widely used in this thesis as an algorithm for comparison, and

its pseudo-code is as presented in Figure 2.5.

At the start of the algorithm, a set of uniformly distributed weight vectors λ1,...,λN is first

generated where N is the predefined size of subproblems. Next, the Euclidean distance between

all weight vectors is computed. For every weight vector i, Q closest neighbouring solutions
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(B(i) = {i1, ..., iQ}, i ∈ [1, N ]) to it in terms of Euclidean distance will be identified. N

solutions are then randomly generated to form the initial population Pop(g = 0). Evaluation

of all the solutions in Pop(g) is then performed so as to obtain their objective values FV . The

best objective values of the population will then be used as an initial reference point (z∗) for the

aggregation function that is used in the algorithm.

Begin 
1. Initialization 

a) Generate a set of uniformly distributed weight vectors (��

� � ��

�) 
b) Calculate the Euclidean distance among the weight vectors. Determine the � 

neighboring solutions (���� � ��

�

� � � �

�

�� � � ���	�) for each weight vectors 
according to the shortest Euclidean distance. 

c) At generation 
 � �, randomly generate 	 solutions to be the initial population, 
��	
 � �
. Evaluate the solution and set ���

� �	�

�


, � � ��� �	 
d) Initialize reference point of the Tchebycheff approach (��) by setting the value of �� 

to be the lowest objective values of the solutions 
Do while (“Stopping Criterion is not satisfied”) 

For � � ��� 
2. Selection: Randomly select two solutions from �	�
 
3. Crossover: Perform crossover to the parent solutions to generate an offspring 
4. Mutation:  Perform mutation to the generated offspring 
5. Evaluation: Evaluate the generated offspring (�) to obtain the corresponding 

objective values, �	�
  
6. Update of ��: For � � ��� ����if �

�

�

 �

�

�

�

�, then set �
�

�

� �

�

�

�

� 
7. Fitness assignment: Assign fitness (
�� ) to each solution using Tchebycheff 

approach 
8. Update Solution: For � � �	�
 , if 
��

�

���

�

� �

�

�

� 


��

�

�

�

��

�

� �

�

� , then set 
�

�

� � and ���

� �	�
 
End For  

End Do 
End 

Figure 2.5: Pseudo-code of MOEA/D

The Tchebycheff approach is an aggregation technique that can be used in MOEA/D for

the decomposition of an MOOP into N scalar optimization subproblems, and the aggregation

function according to this approach will be presented here for the subproblem j as follows:

gte(x|λj , z∗) = max
1≤i≤m

{λji |fi(x)− z∗i |} (2.17)

where m is the number of objective functions and fi is the objective value for the ith objective

function. In the evolutionary process, the aim of the MOEA/D is to minimize all N subproblems
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simultaneously in a single simulation run.

After the initiation stage, the evolutionary process begins. For each subproblem i, two

neighbouring solutions will be randomly selected from B(i). The SBX crossover operator is

then applied on the selected parents to create an offspring. The offspring will then undergo poly-

nomial mutation. Evaluation of the generated offspring y will be followed in order to obtain the

corresponding objective value f(y). The reference point z∗ will then be updated if z∗j > fj(y).

The fitness (gte) of the aggregated scalar function will also be calculated for all subproblems and

the offspring as well. Lastly, updating of solution will be done in the following manner. For

every neighbouring solution j for a subproblem i where j ∈ B(i), it will be replaced by the

offspring y if the fitness of the offspring y is better than that of the neighbouring solution j. The

above-mentioned procedures will be iterated until a stopping criterion is met.

2.6.4 Multi-objective Evolutionary Gradient Search (MO-EGS)

The multi-objective evolutionary gradient search (MO-EGS) is widely used as a local search

technique in some of the proposed algorithms in this thesis. Evolutionary gradient search (EGS)

[92] is a hybrid of both gradient search and evolutionary strategies which encompasses the merits

of their features. It has been shown that the hybridization of an evolutionary algorithm with

gradient search is able to improve the optimization performance of the search algorithm [93]. The

key concept in EGS involves a robust evolutionary process that exploits gradient information of

the trajectory of solutions and utilizes this information to arrive at movements in the search space

that will lead to the generation of good solutions. The two main steps in EGS are 1) estimation

of gradient, and 2) updating of solution with a steepest descent method. Iteration of these two

main steps is performed until a predefined stopping criterion is attained. For the MO-EGS [94],

EGS was extended to cater towards MO optimization by using an external archive to store all the

non-dominated solutions. A recurrent truncation process will be applied to eliminate the most

crowded archive members based on a niche count if the archive size reaches a predefined value.
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In this way, elitism is achievable and MO-EGS will be able to find a set of uniformly distributed

and diverse solutions closer to the true Pareto front.

Begin 
      1. Input: Define the initial step size �

�

. � � �  
      Do while (“Stopping criterion is not achieved”) 

For � � ������ (Number of parent solutions) 
2. Initial Solution:  Select a solution �

�

 from the selection pool  
3. Reproduction: Randomly generate N local neighbours 	

�

 by perturbing �
�

 
using normal mutation 
������   

 4. Evaluation: Compute the objective function values F(�
�

) of �
�

  
 5. Archiving: Update the non-dominated solutions in an archive  

6. Direction: Estimate the global gradient vector as follows:   
 

   �� ��

∑

����

�

���

	




�

�

���

�

�


�

�

�

���



∑

����

�

���

	




�

�

���

�

�


�

�

�

���



 

 
  7. Offspring generation: Produce an offspring q as follows: 
 
   � � ��

�

���

�

��� 
 
  8. Update parameter: Update the mutation step size �

���

 as follows:  
 

   �

���

� ��

��

�

�������

�



�

	 ���

�

�

�

�


�����������������	�

  

where � � �� 
 

  9. Update solution: Update the parent solution �
�

 as follows: 
 
   �

�

� �����

�



�

	 ���

�

� 
 

10. Output:  Output �
�

 
End for �  

     End Do 
End 

Figure 2.6: Pseudo-code of MO-EGS

The procedural steps of the MO-EGS are presented in Figure 2.6. The algorithm starts

by defining the initial step size σ0. A step size is required in MO-EGS to control the mutation

strength to be applied for the generation of the local neighbors and the offspring. Upon the selec-

tion of an initial parent solution, N local neighbours will be randomly generated by perturbing

this solution using normal mutation with zero mean and σ2 variance. Next the global gradient

direction is to be estimated from the local neighbours according to the formula in step 6. An

offspring q will then be created in step 7, and this is followed by updating the mutation step size

σ with the control of a factor ε which is recommended to be 1.8 according to [94]. The solution

will then be updated in step 9 and the process is iterated until the stopping criterion is achieved.

45



CHAPTER 2. LITERATURE REVIEW

2.7 Performance Metrics

In the context of multi-objective optimization, the goal is to find a set of tradeoff solutions that

are able to meet the common goals in multi-objective optimization which are namely proximity,

diversity and distribution of solutions. In order to conduct quantitative measurement of the gen-

erated solution set, it is important to identify a set of suitable performance metrics for this. There

has been an increasing concerns on the choice of performance metrics, and comparative studies

have been done by many researchers [18, 95–99] where a suite of unary performance metrics

pertinent to the goals of proximity, diversity and distribution has been used. From here, four

performance metrics or indicators that are widely used for the quantitative comparison between

algorithms on the different goals of multi-objective optimization are being selected and applied

in this thesis. The performance metrics are as follows:

1. Generational Distance (GD): This indicator is a representative metric which provides a

quantitative measurement for the proximity goal of multi-objective optimization.

2. Inverted Generational Distance (IGD): This indicator is a representative metric which pro-

vides a quantitative measurement for the proximity, diversity and distribution goals of multi-

objective optimization.

3. Hausdorff Distance (HD): This indicator is a representative metric which provides a quanti-

tative measurement for the proximity, diversity and distribution goals of multi-objective opti-

mization.

4. Hypervolume (HV): This indicator is a representative metric which provides a quantitative

measurement of the for the proximity, diversity and distribution goals of multi-objective opti-

mization.

The mathematical description of the performance metrics is provided in Appendix A.
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2.8 Test Problems

In order to examine the optimization performance of an MOEA, it is important to employ the

use of benchmark test problems which are able to test the ability and efficiency and identify

any potential pitfalls of an MOEA. In order to achieve this, the test problems should possess

different characteristics and difficulties. From literature, there is a large range of test prob-

lems designed for multi-objective optimization [100–103], and a total of 93 state-of-the-art test

problems will be used in Chapter 3 and Chapter 4 of this thesis. These test problems include

Zitzler-Deb-Thiele’s (ZDT) Test Problems [104], Deb-Thiele-Laumanns-Zitzler’s (DTLZ) Test

Problems [105], CEC’09 (UF) Test Problems [106], and Walking Fish Group (WFG) Test Prob-

lems [107]. There is a total of 5 ZDT problems and 10 UF problems. For the case of DTLZ and

WFG test problems, they are scalable in terms of the number of objective functions. A total of

42 DTLZ test instances and 36 WFG test instances with varying number of objective functions

within these two test suites will be considered in this thesis. The details of these test problems

in terms of their mathematical formulation, characteristics, and difficulty levels can be found in

Appendix B.

2.9 Summary

In this chapter, a detailed literature review on both MOEAs and differential evolution has been

conducted. First, a discussion on the different state-of-the-art MOEAs under the three main

approaches of multi-objective optimization (preference-based approach, domination-based ap-

proach, and decomposition-based approach) was covered. This was followed by a comprehen-

sive review of the background details of Differential Evolution. This chapter also provided a

detailed description of four different state-of-the-art MOEAs that are widely considered in this

thesis. Lastly, the performance metrics and benchmark test problems that are used in the thesis

were also presented.
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Chapter 3

A Novel Opposition-based Self-adaptive

Differential Evolution (OSADE)

Under the framework of evolutionary paradigms, many evolutionary algorithms have been de-

signed for handling multi-objective optimization problems. Each of the different algorithms may

display exceptionally good performance in certain optimization problems, but none of them can

be completely superior over one another. As such, different evolutionary algorithms are being

synthesized to complement each other in view of their strengths and the limitations inherent in

them. In this chapter, a novel memetic algorithm known as the Opposition-based Self-adaptive

Differential Evolution algorithm (OSADE) is proposed by incorporating opposition-based learn-

ing into a self-adaptive mechanism for the control parameters of differential evolution, and then

hybridizing it with the multi-objective evolutionary gradient search (MO-EGS) as a form of local

search. Experimental studies are conducted to compare the optimization performance of OSADE

with some state-of-the-art evolutionary algorithms.
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3.1 Chapter Objectives

The main objective of this chapter is to present the development of a novel memetic algorithm

termed as OSADE, and to compare the optimization performance of OSADE under a compre-

hensive suite of unconstrained continuous multi-objective optimization test problems with several

state-of-the-art evolutionary algorithms. Through this chapter, the potential of synthesizing an

opposition-based self-adaptive differential evolution with local search for multi-objective opti-

mization is being investigated.

3.2 Introduction

Multi-objective Evolutionary Algorithms (MOEAs) [3] are defined as a broad class of population-

based stochastic optimization techniques that draws inspiration from biological evolution to solve

multi-objective optimization problems (MOOPs) [4,108–110]. With the reputation of being pow-

erful global optimization tools, MOEAs achieve remarkable results when they are applied to sev-

eral practical optimization problems that involve multiple non-commensurable with competing

criteria relating to the design specifications and constraints. However, MOEAs in general have

weaknesses like loss of diversity, slow convergence, stagnation of population etc. For the case of

multi-modal problems that possess several local and global optima, such issues associated with

MOEAs will become even more prominent. Also, MOEAs may take considerable amount of

time to locate the local optimal. With these overall concerns associated with MOEAs, several

research efforts were initiated to develop optimization techniques to address these concerns here.

In the development of these optimization techniques which comprise gradient techniques and

stochastic algorithms, researchers are generally concerned with convergence rate and solution

accuracy.

For general multi-modal problems, gradient techniques have the tendency to be trapped in

local minima rather than reaching a global solution. This is not desirable as the ability to find
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the global minimum is usually considered of higher importance compared to convergence speed.

On the other hand, stochastic algorithms like evolutionary algorithms, simulated annealing (SA)

or even particle swarm optimization (PSO) have better effectiveness in finding the global min-

imum as compared to gradient techniques. However, stochastic algorithms may have slower

convergence rate which may be of a hindrance when it comes to practical applications. This

means that convergence speed and robustness of optimization algorithms may not be achievable

simultaneously.

Differential evolution (DE) [71] is an efficient evolutionary algorithm known for its sim-

plicity and ease of use, and it is also recognized as one of the most powerful stochastic real-

parameter optimization algorithms in current use. In the operation of DE, it follows similar

computational steps as seen in most traditional EAs. However, the distinguishing difference be-

tween this state-of-the-art algorithm and the other EAs is that DE involves the perturbation of the

current generation individuals with the scaled differences of other randomly selected and distinct

population members. Therefore, there is no separate probability distribution for generating new

offsprings. As compared to most standard evolutionary algorithms, DE requires fewer parame-

ters, and has a faster convergence rate in most cases together with stronger global convergence

ability and robustness. Due to the multiple criteria nature of most real-world problems, DE has

also been extended to handle multi-objective optimization [111–113]. Despite the strengths wit-

nessed in DE, it is inevitable that there are still certain drawbacks in this evolutionary algorithm

when placed under certain problems, applications or environment. For example, DE may suffer

from stagnation whereby the algorithm does not progress in finding new solutions. It may also

experience premature convergence especially in multi-modal problems, as there is possibility of

DE being trapped in local optima [114]. Like other evolutionary algorithms, the performance

of DE may also deteriorate in higher dimensional search space in terms of increasing decision

variables or with many objectives [115]. In addition, DE is known to possess strong exploration

capability which helps to locate the region of global optimum, but it is slow when it comes to
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the exploitation of the solutions [116]. As such, these leads to continuous efforts by researchers

in enhancing DE to overcome the weaknesses described above, and this is witnessed by several

important works [69, 117] on the enhancement of DE with the aim of formulating variants with

improved performance in terms of robustness and faster convergence, as well as the ability in

maintaining diversity.

In order to achieve fast convergence and effective global search capability concurrently, re-

searchers have turned to the use of memetic algorithms, which can be viewed as a combination

of two or more methods like evolutionary algorithms or with other specialized methods like local

search. From literature review, a wide range of works on memetic algorithms [118–121] that fo-

cus on improving convergence can be found. These algorithms were demonstrated to have their

strengths in the problems that they were tested on. Even for practical engineering problems, they

have also proven their efficiency and reliability in various types of applications [122–124] like

aerodynamic design, inverse problems and power systems. There were also attempts of hybridiz-

ing DE with other evolutionary algorithms like Particle Swarm Optimization and Evolutionary

Programming [9, 125, 126] so as to improve the convergence speed and robustness of it.

The performance of DE is also highly attributed to the setting of its control parameters

which are namely the mutation factor, the crossover rate and the population size. In many cases,

parameter tuning via trial-and-error is involved for the setting of the control parameters which

calls for several tedious experimental runs in order to determine the optimized parameter values

for the DE algorithm so as to ensure its success. However, this is time-consuming and hence re-

quiring more computational cost. Moreover, a fixed parameter setting may not be appropriate for

every type of problem or even for the different evolutionary stages of the optimization process for

solving a problem. As such, researchers introduced the use of different adaptive or self-adaptive

mechanisms in several DE variants [11–14] to dynamically update the control parameters without

requiring any preceding knowledge of the relationship between the settings of the control param-

eters and the properties of the optimization problems given. Such an approach can improve the
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convergence rate for a given optimization problem if the control parameters are adapted to appro-

priate values at the different stages of the evolutionary process. From the reported results, these

adaptive and self-adaptive DE variants are able to demonstrate improvement in the convergence

performance over the classic DE in terms of speed and reliability when compared over several

test benchmark problems.

This chapter attempts to address the issues of DE as discussed above by exploring a memetic

algorithm for multi-objective optimization. This chapter also presents a more in-depth study of

the algorithm by using it to handle a comprehensive set of 38 test benchmark MOOPs, and

studying its performance in terms of scalable problems. The algorithm termed as OSADE is

a hybridization of a novel Opposition-based Self-adaptive Differential Evolution variant with

the Multi-objective Evolutionary Gradient Search (MO-EGS), and the fundamental idea of this

hybridization is based on the assumption that combining the two algorithms may complement the

limitations of each optimizer while maintaining their strengths. The use of the novel DE variant

not only contributes to stronger global search, but also eliminates the need to manually tune the

DE parameters to their optimized values. On the other hand, the use of MO-EGS as a form of

local search is able to enhance the overall exploitation ability of OSADE.

The remainder of this chapter is organized as follows. Section 3.3 presents the existing work

that implement the hybridization of DE with other evolutionary algorithms, as well as some of

the self-adaptive DE algorithms that are found in literature. Section 3.4.3 presents a detailed

description of the proposed algorithm OSADE. The test problems and the other algorithms that

are used for comparison as well as the implementation are outlined in Section 3.5. Section 3.7

presents the experimental results and discussions, and a summary is provided in Section 3.8.

3.3 Related Works

This section reviews some past works that involve the hybridization of DE with other evolution-

ary algorithms, as well as some of the self-adaptive DE algorithms that are found in literature.
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Hybridization can be defined as the integration of the best features of two or more algorithms

in order to arrive at a new algorithm that could possibly perform better than the original parent

algorithms when compared over certain benchmark test problems or even application-specific

ones. The DEPSO [74] is a hybrid of high popularity which basically switches between the par-

ticle swarm optimization algorithm (PSO) and DE at odd and even iterations respectively, and

it achieved better convergence over its ancestor algorithms when tested on certain constrained

optimization problems. Sun et al. proposed a new hybrid algorithm DE/EDA [76] that combines

DE with the Estimation of Distribution Algorithm (EDA) whereby the technique utilizes a prob-

ability model for the determination of promising search regions so that emphasis can be placed

on these areas for the search process. Based on the experimental results, this DE/EDA algorithm

is seen to perform better than both DE and the EDA. In another approach by Das et al. [127], the

selection strategy of the basic DE was modified by adopting the concepts of simulated annealing

(SA) so that the probability of accepting the inferior solutions can be varied during evolution.

Works involving the integration of local search methods with DE can also be readily found.

Local search algorithms mainly involve the exploration of the vicinity of a candidate solution

in the search space until a locally optimal point is located or when a certain time period has

passed. In order to improve the performance of classical DE, Noman and Iba [116] combined

an adaptive local search with the simplex-based crossover scheme (SPX) originally proposed by

Tsutsui et al. [128] for real-coded genetic algorithms, and incorporated the resultant crossover-

based local search with DE to give forth the DEahcSPX which demonstrated better performance

over classical DE in terms of convergence speed over a set of benchmark problems.

In self-adaptive DE algorithms, the main control parameters are dynamically adapted to

the characteristic of the fitness landscapes of different optimization problems during the evo-

lutionary search process. As such, the trial and error method of tuning the parameters is not

required. A novel approach known as the SaDE [129] encompasses the self-adaptation of trial

vector generation strategies and their associated control parameters according to the past experi-
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ence of the generation of promising solutions. For the control parameters, the mutation factors

F are randomly generated at every generation according to a normal distribution. In this way,

both small and large values of F can be generated which assists in local and global search abili-

ties respectively during the entire evolutionary process. For the crossover probabilities CR, they

are generated at every five generations according to a normal distribution. Brest et al. [67] pro-

posed the jDE that is based on the classic DE/rand/1/bin. In this approach, the individuals are

encoded with the values of control parameters F and CR which exist in the individuals as ex-

tended variables. The values of F and CR are initialized at the start, and they are updated at

every generation according to a uniform distribution. This approach is done in the belief that

better parameter values of F and CR may lead to better individuals that will likely survive and

in turn produces better offspring, and hence propagating better parameter values of F and CR to

the next generation.

There are also some works on self-adaptive DE variants catered for multi-objective opti-

mization. MOSaDE [130] was extended from SaDE mentioned earlier to solve problems in the

multi-objective domain. This algorithm was evaluated on a set of 19 benchmark problems and

satisfactory performance was obtained for most of the problems. The MOSaDE was later en-

hanced with objective-wise learning strategies (called OW-MOSaDE) to tackle problems with

multiple conflicting objectives [131]. In MOSaDE, one set of parameters is learnt for all objec-

tives, but in OW-MOSaDE, one set of parameters is learnt for each objective. This results in

better performance of the OW-MOSaDE over the original MOSaDE. In another piece of work

by Zamuda et al. [132], a self-adaptive DE algorithm (DEMOwSA) based on DEMO [28] was

proposed whereby the adaptation of the F and CR parameters are derived from evolutionary

strategies. The algorithm was tested on 19 test functions and managed to achieve good results on

the test suite.
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3.4 Opposition-based Self-Adaptive Differential Evolution (OSADE)

OSADE incorporates opposition-based learning into a self-adaptive mechanism for the DE con-

trol parameters (mutation factor and the crossover probability), and is then hybridized with the

MO-EGS which acts as a form of local search to enhance the exploitation abilities of the overall

algorithm. The algorithm follows the mutation and crossover strategies from the classical DE

commonly known as the DE/rand/bin/1. As OSADE is designed to solve multi-objective opti-

mization problems, there is no single best solution but rather a set of Pareto-optimal solutions.

As such, the non-dominated sorting, ranking and elitism techniques as found in NSGA-II are

incorporated into OSADE for the comparison of the quality of the solutions found so as to obtain

the Pareto optimal solutions.

3.4.1 Background

In order to improve convergence and eliminate the need to determine optimized control parameter

values for differential evolution, the approach in the self-adaptive mechanism in DEMOwSA

[132] is being extended for this study. This approach traces its principles to a self-adaptive

mechanism found in evolutionary strategies whereby the mutation factor F and the crossover

rate CR of differential evolution are being encoded in every individual of the population. This

means that there will be two additional variables in every individual, and they will also undergo

the evolutionary process for their values to be adjusted appropriately in a self-adaptive manner

for every generation.

Inspiration was drawn from another approach [35] to enhance the above-mentioned self-

adaptation method so as to achieve the aim of finding near-optimal values for the DE control

parameters during the evolutionary process. This approach mentioned in [35] uses the concept

of Opposite Number which is based on Opposition-Based Learning [30]. As seen from several

evolutionary optimization methods, the use of random guesses or estimates are frequently used

when we are looking for a solution to a problem. At the same time, the evolutionary optimization
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methods will also work towards the search for the optimal solution and this incurs computational

time which is related to the distance between the estimated solutions and the optimal one. How-

ever, the guess might be far from the exact solution as it may be based on past experience or

could be totally random. Hence, in order to accelerate convergence towards the optimal solution,

the opposite number of the estimated solution will be also checked as there will be 50% chance

that the estimated solution will be further from the optimal one compared to the opposite solution

according to probability theory.

The concept of the Opposite Number in Opposition-Based Learning is employed in this

study and its definition is as follows:

x̄ = y + z − x (3.1)

where x ∈ [y, z] is a real number, and x̄ represents the Opposite Number. In higher dimension-

ality, the definition of Opposite Number can be extended to the Opposite Point [30]. Let there

be a Point P = (x1, x2, ...xD) in the D-dimensional space where x1, x2, ...xD ∈ R where R

represents all real numbers, and xi ∈ [yi, zi]∀(1, 2, ..., D). The Opposite Point P̄ = will then be

defined as follows:

x̄i = yi + zi − xi (3.2)

If Opposition-Based Learning is applied to multi-objective optimization, the point P can

represent a candidate solution in the D-dimensional space, and with P̄ as its Opposite Point.

Both the points will be evaluated concurrently to determine the fitter one. If F (P̄ ) ≥ F (P )

where F (•) represents a fitness function that measures the fitness of candidate solutions, then the

Opposite Point P̄ can replace P ; otherwise P will still be the chosen candidate solution.
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3.4.2 Novel Opposition-based Self-adaptive Differential Evolution operator

This section provides a description of the proposed novel opposition-based self-adaptive differen-

tial evolution operator that is used in OSADE. Firstly at the parent generation G, for every target

vector xGi , three other vectors xGr1, xGr2 and xGr3 are randomly selected whereby r1 6= r2 6= r3 6= i,

and r1, r2, r3 ∈ {1, 2, ..., NP} where NP is the size of the population. In OSADE, every in-

dividual is encoded with values of the DE control parameters F and CR that exist as extended

variables. These encoded values, which are initialized as zero at the start of every run, are needed

in the opposition-based self-adaptive mechanism for the control parameters.

The key difference between the self-adaptive mechanism in DEMOwSA and the one pro-

posed here for OSADE is that opposition-based learning is being applied in the updating of the

mutation factor. It is to be highlighted that the adaptation of DE parameters in OSADE utilizes

weighted averaging of the encoded parameter values from four different individuals instead of

simple averaging as used in DEMOwSA. The current individual and three randomly selected

individuals are compared based on their Pareto ranks and/or niche counts to determine the best

individual which will be awarded the highest weightage of 0.4 for its contribution to the averag-

ing of the parameter values. Individuals with better Pareto ranks are preferred as they are nearer

to the optimal Pareto front, and the selection of individuals with lower niche counts promotes di-

versity [133]. Hence this approach allows fitter individuals to give a higher contribution towards

the adaptation of the parameter values so as to achieve near-optimal DE control parameter values.

The weight factors assigned to the subsequent ranked individuals will then be decremented by

0.1. The computation of the current average values of F and CR for the parent generation G

which are denoted by 〈FG〉i and 〈CRG〉i are as follows:

〈FG〉i =
ω1 × Fi,G + ω2 × Fr1,G + ω3 × Fr2,G + ω4 × Fr3,G

ω1 + ω2 + ω3 + ω4
(3.3)
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〈CRG〉i =
ω1 × CRi,G + ω2 × CRr1,G + ω3 × CRr2,G + ω4 × CRr3,G

ω1 + ω2 + ω3 + ω4
(3.4)

where ω1, ω2, ω3 and ω4 are the weight factors assigned to the four different individuals xGi , xGr1,

xGr2, and xGr3 .

With the current average values of F and CR for the parent generation, the values of the

F and CR for the child generation G + 1 which are denoted by F̄i,G+1 and C̄Ri,G+1 are then

adapted according to the following formulae as follows:

F̄i,G+1 = 〈FG〉i × eτN(0,1) (3.5)

C̄Ri,G+1 = 〈CRG〉i × eτN(0,1) (3.6)

where τ = 1
8×
√

2D
, D is the number of decision variables in the problem, and N(0, 1) repre-

sents a randomly generated number under Gaussian distribution. Both F̄i,G+1 and C̄Ri,G+1 are

adapted between the a predefined set of lower and upper bounds for the control parameters. Next,

the Opposite Number [35] of the mutation factor F is generated as follows:

¯F oppi,G+1 = Fupper + Flower − F̄i,G+1 (3.7)

whereby Fupper and Flower are the upper and lower bounds for the parameter F . Two different

mutant vectors are then generated using the value of F and its Opposite Number, and they are

compared according to Pareto dominance whereby the non-dominated one will be the offspring.

If both the mutant vectors are non-dominated to each other, one of them will be randomly selected

to enter the child population.
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Lastly, the encoded values of both F and CR in the individual xi,G+1 are updated. The

updating of F will depend on the outcome of the selection of the mutant vector. If the selected

mutant vector is the one created using F̄i,G+1 as generated by equation 3.5, then the encoded

value of F in xi,G+1 will be updated with this F value; otherwise the encoded value will be

updated with the Opposite Number of F̄i,G+1. However for the case of encoded value of CR in

xi,G+1, it will always be updated with the value of C̄Ri,G+1 as generated by equation 3.6.

3.4.3 Algorithmic Framework

The algorithm starts by the random generation of an initial candidate population which is then

evaluated and fitness assignment is conducted for all the solutions. OSADE is designed to solve

multi-objective optimization problems where there is no single best solution but rather a set of

Pareto-optimal solutions. As such, the non-dominated sorting, ranking and elitism techniques

as found in NSGA-II are incorporated into OSADE for the comparison of the quality of the

solutions found so as to obtain the Pareto optimal solutions. Binary tournament selection is

then performed to choose promising solutions for reproduction. In the reproduction stage, the

novel opposition-based self-adaptive differential evolution operator is used for the generation of

offspring. Through reproduction, N child solutions are produced and archived. M solutions are

then selected from archive to undergo local search (MO-EGS), and the solutions generated will be

added to the archive. The updated archive will become the child population of the generation, and

will be combined with the parent population. Elitism is performed to select the parent population

for the next generation. The process is iterated until the stopping criterion is met. The pseudo

code of OSADE is as explained in Figure 3.1.
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Begin 
   1. Initialization: At generation g = 0, randomly generate N solutions as the initial population, Pop (g) 
   2. Evaluation: Evaluate all the solutions in Pop (g) 
   Do while (“Stopping criterion is not met”) 
  3. Fitness Assignment: Assign fitness to every individual in Pop(g)) using Pareto ranking and 

crowding distance. 
 4. Selection: Select N parent solutions using binary tournament selection. 
 5. Reproduction: Use the novel opposition-based self-adaptive Differential Evolution (DE) operator to 

create N offspring 
 6. Evaluation: Evaluate all offspring and store all offspring in a fixed size temporary archive A 
 7. Selection: Select M individuals via binary tournament selection from A for the local search 
 8. Local Search: Perform the MO-EGS on the M individuals to generate offspring. Add the offspring 

to A if they are not dominated by any of the archived members. If the predetermined archive size of A 
is reached, eliminate the most crowded archive member. 

 9. Archiving: Combine the parents and offspring to form a merged population Pop (g) � A 
 10. Elitism: Perform Pareto ranking and crowding distance calculation for Pop1 (g) � A. Select the 

best N solutions to form a new population Pop (g+1). g = g + 1 
   End Do 
   11. Ouput: Output the final set of solutions Pop (g)  
End  

Figure 3.1: Pseudo-code of OSADE

3.5 Problem Description and Implementation

A total of 38 benchmark test problems from Section 2.8 were chosen to test the optimization

performance of the proposed algorithm OSADE in terms of convergence to the true Pareto front

as well as the ability in maintaining a set of diverse solutions. The test problems used included

ZDT problems, DTLZ problems, UF problems, and WFG problems. For the test problems, they

may possess two, three or five objective functions, and have a scalable number of decision vari-

ables. These problems were chosen because they cover different characteristics of multi-objective

optimization, namely convex Pareto front, non-convex Pareto front, discrete Pareto front, multi-

modality and non-uniformity of solution distribution. The presence of these characteristics will

be able to pose challenges to an evolutionary multi-objective optimization algorithm.

Five state-of-the-art algorithms, namely NSGA-II, MOEA/D-SBX, NSDE, MOEA/D-DE

and the MO-EGS were chosen for performance comparison with OSADE. NSGA-II [50] is a

popular algorithm in evolutionary multi-objective optimization as it has the ability to achieve

promising solutions for most of the MOOPs. This algorithm uses Pareto ranking and crowding

distance as fitness assignment operators, binary tournament selection, uniform crossover, bit-

60



CHAPTER 3. A NOVEL OPPOSITION-BASED SELF-ADAPTIVE DIFFERENTIAL EVOLUTION (OSADE)

flip mutation, and parent-offspring archiving. The non-dominated sorting differential evolution

(NSDE) [134, 135] is an extension of the basic differential evolution to cater towards multi-

objective optimization. It adopts the non-dominated sorting, ranking and elitism techniques

found in NSGA-II, but the main difference between them is that the NSDE uses the differen-

tial evolution mutation operator instead of the SBX operator.

For the MOEA/D-SBX [52] and MOEA/D-DE [53], they are evolutionary algorithms that

decompose any given MOP into a number of single-objective sub-problems. Every sub-problem

is optimized simultaneously during the evolutionary search process. For the decomposition of

the MOOP, the Tchebycheff approach [42] is used in these two algorithms for this study. The

difference between MOEA/D-SBX and MOEA/D-DE lies in their genetic operators whereby

the SBX crossover operator is employed together with polynomial mutation for MOEA/D-SBX

while MOEA/D-DE uses the DE/rand/1 crossover with polynomial mutation.

Lastly for the MO-EGS [94], it is extended from the Evolutionary Gradient Search (EGS)

[92], and it basically combines the strong features from gradient search and evolutionary strate-

gies. The details of its implementation can be found in Section 2.6.4.

In order to draw a fair comparison of different optimization algorithms, performance met-

rics that are relevant and applicable to the goals of MO optimization of proximity and distribu-

tion should be utilized. In our study, Inverted Generational Distance (IGD) [136] and Hausdorff

Distance [137] were used as the performance metrics for the assessment of the optimization per-

formance achieved by the algorithms. IGD is a unary indicator whereby the distance of every

solution in the optimal Pareto front to the obtained Pareto front is being calculated. HD computes

the distance between the optimal Pareto front and the generated solution set, and takes the maxi-

mum value between the modified generational distance and inverted generational distance. With

this, both proximity and diversity issues will be taken into consideration. For these two metrics,

a lower value indicates better performance.

A comparative study of OSADE, NSGA-II, MOEA/D-SBX, NSDE, MOEA/D-DE and
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MO-EGS was carried out to examine their optimization performance in the test problems de-

scribed earlier. All algorithms were implemented in C++ and ran on an Intel Core i3, 2.8 GHz

personal computer. For OSADE, its control parameters F and CR will be self-adapted in the

evolutionary process, and therefore their values were not fixed. However, the upper and lower

bounds for the F and CR control parameters as well as their initial values would need to be

defined. For the other algorithms under comparison, their parameter settings used in this study

followed the ones used in their original studies. The overall experimental and parameter settings

are as summarized in Table 3.1.

Table 3.1: Parameter settings

Parameter Settings
Population size (for all algorithms except MOEA/D-
SBX and MOEA/D-DE

100 for problems with 2 objectives
300 for problems with 3 objectives
500 for problems with 5 objectives
1500 for problems with 7 objectives

Population size (MOEA/D-SBX and MOEA/D-DE 100 for problems with 2 objectives
300 for problems with 3 objectives
495 for problems with 5 objectives
1716 for problems with 7 objectives

Stopping criterion 50000 evaluations for problems with 2 objectives
150000 evaluations for problems with 3 objectives
250000 evaluations for problems with 5 objectives
750000 evaluations for problems with 7 objectives

Number of decision variables for ZDT problems 300 for ZDT1, ZDT2 and ZDT3, and 100 for ZDT4 and ZDT6
Number of decision variables for DTLZ problems 12 for DTLZ1 and DTLZ3

120 for all the other DTLZ problems
Number of decision variables for UF problems 30
Number of decision variables for WFG problems 30
Number of independent runs 30
Mutation rate 1/n (where n denotes the number of decision variables
Crossover rate for NSGA-II 0.8
Crossover rate for NSDE 0.8
Mutation scale factor for NSDE 0.5
Distribution index in SBX 20
Distribution index in polynomial mutation 20
Neighbourhood size for MOEA/D algorithms 20
Number of local neighbours for MO-EGS 10
Initial encoded F and CR values in OSADE 0
Lower Bound of F and CR in OSADE 0.1
Upper Bound of F and CR in OSADE 0.9

3.6 Investigation on Proposed Self-Adaptive Mechanism

As this chapter involves the proposal of an opposition-based self-adaptive mechanism for the

DE algorithm, an initial study was conducted to investigate the effect of how the proposed self-

adaptive mechanism is able to lead to an improvement in the optimization performance of differ-
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ential evolution. For this investigation, the proposed opposition-based self-adaptive mechanism

was incorporated into a non-dominated sorting differential evolution algorithm and was then

compared with a conventional non-dominated sorting differential evolution (termed as normal

DE) using three selected test problems. The three problems used were namely UF5, WFG4, and

DTLZ2 with 3 objectives, and the number of decision variables used in the problems was set

according to the settings found in Table 3.1. In order to perform both convergence and diversity

analysis on the performance between the two algorithms, the mean GD and IGD evolution plots

of the algorithms for the three test problems are being plotted in Figure 3.2-3.4.

For the UF5 problem, it is observed that the DE with the proposed self-adaptive mechanism

has a slightly faster initial convergence rate when compared to the normal DE, and the advantage

of the use of the self-adaptive mechanism is seen at about 10,000 fitness evaluations where the

DE with the self-adaptive mechanism achieves a much faster convergence rate and better conver-

gence performance over normal DE with consistently lower GD values attained till the end of the

evolutionary process. The IGD values obtained by the DE with the self-adaptive mechanism are

also lower than the values obtained by normal DE which suggests better diversity of the solution

set as well. For the WFG4 problem, the DE with the proposed self-adaptive mechanism achieves

significantly better convergence rate over the normal DE as seen from the GD evolution plot.

Moreover, there is also clear advantage on the use of the mechanism as seen by the lower GD

and IGD values obtained by the DE with the self-adaptive mechanism over normal DE through-

out the entire evolutionary process. Lastly for the DTLZ2 problem, there is obvious superiority

by the DE with the self-adaptive mechanism over the normal DE as seen by a much faster conver-

gence rate and much lower GD and IGD values obtained at the end of the evolution. In summary,

it can be deduced that the use of the proposed opposition-based self-adaptive mechanism in DE is

able to lead to faster convergence rate as well as stronger ability in achieving better convergence

and diversity in the solution sets found by DE incorporated with the mechanism. This suggests

that performance improvement can be achieved if the proposed mechanism is being used in DE
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algorithm when handling the benchmark test problems in this study.
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Figure 3.2: GD/IGD evolution plots by DE with and without proposed self-adaptive mechanism for UF5
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Figure 3.3: GD/IGD evolution plots by DE with and without proposed self-adaptive mechanism for WFG4

3.7 Simulation Results and Discussions

Comparative studies were conducted for the performance evaluation of the six algorithms under a

comprehensive suite of benchmark test functions. Simulation results in terms of the measurement

of the average values of the Inverted generational distance (IGD) and the Hausdorff distance

(HD) over 30 simulation runs are presented in Tables 3.2-3.6. The parentheses beside the test

problems indicate the number of objectives (M ) and decision variables (D) for the problems.
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Figure 3.4: GD/IGD evolution plots by DE with and without proposed self-adaptive mechanism for
DTLZ2

The best entries in terms of mean values are also marked in boldface. The Wilcoxon ranksum

test was also conducted at the 5% significance level to determine whether the best performing

algorithm differ from the results of competitors in a statistically significant way. The entries

which are significantly different from the best entries will also be indicated by the symbol †.

3.7.1 Comparative studies for ZDT problems

ZDT test problems [104] are a set of simple bi-objective optimization problems that are scal-

able in the number of decision variables, and have different characteristics in the Pareto optimal

front such as convexity, concavity, discontinuity, local optimality and non-uniformity. As most

evolutionary algorithms are able to solve the ZDT problems without difficulties, the number of

decision variables was set to ten times its original settings in this study. This would then pose

greater challenges to the algorithms due to a larger search space. The results indicate that OS-

ADE has the overall best performance. A notable achievement by OSADE is the ability for it to

reach convergence for ZDT4 while all the other algorithms are unable to do so for this problem.

ZDT4 problem is an extremely multi-modal problem with the presence of many local optima,

and therefore it is likely that the other algorithms encountered difficulties by getting trapped in

the local optima. The overall good performance achieved by OSADE may be attributed to the
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Table 3.2: Results obtained by the algorithms for ZDT problems

Problem(M,D) Algorithm IGD HD (with p=2)
ZDT1(2,300) NSGA-II-SBX 0.1977±0.0295† 0.0206±0.0032†

MOEA/D-SBX 0.2994±0.0318† 0.0302±0.0032†
NSDE 1.2669±0.1233† 0.2978±0.0601†

MOEA/D-DE 1.0660±0.0353† 0.1075±0.0037†
MO-EGS 0.0967±0.0906† 0.3010±0.3644†
OSADE 0.0041±0.0001 0.0008±0.0001

ZDT2(2,300) NSGA-II-SBX 0.3763±0.0562† 0.0386±0.0058†
MOEA/D-SBX 0.4685±0.1384† 0.0555±0.0187†

NSDE 2.5621±0.2239† 0.3165±0.0628†
MOEA/D-DE 1.8994±0.1689† 0.1938±0.0175†

MO-EGS 0.1067±0.1108† 0.3810±0.6440†
OSADE 0.0044±0.0001 0.0006±0.0001

ZDT3(2,300) NSGA-II-SBX 0.1566±0.0204† 0.0194±0.0035†
MOEA/D-SBX 0.3095±0.0395† 0.0314±0.0036†

NSDE 0.8378±0.1102† 0.2150±0.0284†
MOEA/D-DE 0.9092±0.0439† 0.1059±0.0050†

MO-EGS 0.1141±0.1015† 0.1939±0.3093†
OSADE 0.0047±0.0004 0.0014±0.0001

ZDT4(2,100) NSGA-II-SBX 25.317±2.0645† 2.7240±0.2120†
MOEA/D-SBX 29.050±3.6618† 2.9541±0.3694†

NSDE 27.684±6.2070† 4.0101±0.8528†
MOEA/D-DE 35.385±8.4533† 3.5936±0.8524†

MO-EGS 0.6790±0.4208† 0.3555±0.3335†
OSADE 0.0053±0.0002 0.0009±0.0001

ZDT6(2,100) NSGA-II-SBX 0.9193±0.0558† 0.0935±0.0056†
MOEA/D-SBX 0.6167±0.0391† 0.0631±0.0039†

NSDE 5.5319±0.2267† 0.5563±0.0228†
MOEA/D-DE 3.7095±0.2538† 0.3733±0.0255†

MO-EGS 0.0024±0.0001 0.0083±0.0185†
OSADE 0.0026±0.0003 0.0025±0.0002

complementary effects of the opposition-based self-adaptive DE and the MO-EGS as a form of

local search.

3.7.2 Comparative studies for DTLZ problems

The suite of DTLZ problems created by Deb et al. [138] is scalable to any number of objectives

and decision variables. Hence for this study, the DTLZ problems consisted of either three or five

objective functions. The number of decision variables in DTLZ1 and DTLZ3 was set to 12 as they

are highly multi-modal and hence more difficult problems. For the other DTLZ problems, they

are generally easier to solve and hence the number of decision variables was set to 120 instead.

For the case of DTLZ problems with three objective functions, OSADE achieves competitive

performance when compared to the other algorithms in this study. From the simulation results,

OSADE either achieves the lowest IGD and HD values, or comes close to the best values, for

most of the DTLZ problems. However for the case of DTLZ5 and DTLZ6, OSADE did not fare
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Table 3.3: Results obtained by the algorithms for DTLZ problems (3-objectives)

Problem(M,D) Algorithm IGD HD (with p=2)
DTLZ1(3,12) NSGA-II-SBX 0.0006±0.0001 0.0019±0.0011†

MOEA/D-SBX 0.0008±0.0001† 0.0013±0.0001
NSDE 0.0444±0.0667† 4.5010±0.7898†

MOEA/D-DE 0.0069±0.0018† 0.1569±0.4036†
MO-EGS 19.238±9.5019† 2.2134±1.2701†
OSADE 0.0006±0.0001 0.0013±0.0001

DTLZ2(3,120) NSGA-II-SBX 0.0019±0.0001† 0.0036±0.0001†
MOEA/D-SBX 0.0015±0.0001 0.0029±0.0001

NSDE 0.0719±0.0100† 0.4964±0.0639†
MOEA/D-DE 0.0025±0.0001† 0.0117±0.0105†

MO-EGS 3.4349±0.7449† 0.2398±0.0473†
OSADE 0.0015±0.0001 0.0453±0.0570†

DTLZ3(3,12) NSGA-II-SBX 0.0017±0.0001† 0.0038±0.0007†
MOEA/D-SBX 0.0015±0.0001 0.0029±0.0001

NSDE 0.1478±0.1141† 12.172±4.0629†
MOEA/D-DE 0.0023±0.0023 0.0260±0.0345†

MO-EGS 41.071±52.124† 3.3025±3.4263†
OSADE 0.0015±0.0001 0.0038±0.0012†

DTLZ4(3,120) NSGA-II-SBX 0.0022±0.0001 0.0043±0.0002
MOEA/D-SBX 0.0081±0.0068† 0.0132±0.0104†

NSDE 0.4348±0.0365† 1.0623±0.0241†
MOEA/D-DE 0.4417±0.0270† 0.7655±0.0427†

MO-EGS 27.214±0.2098† 1.6295±0.0125†
OSADE 0.0024±0.0003 0.0321±0.0041†

DTLZ5(3,120) NSGA-II-SBX 0.0009±0.0001 0.0015±0.0001
MOEA/D-SBX 0.0009±0.0001 0.0014±0.0001

NSDE 0.0239±0.0056† 0.1343±0.0452†
MOEA/D-DE 0.0010±0.0001 0.0022±0.0001†

MO-EGS 3.9459±0.9802† 0.6006±0.0266†
OSADE 0.0598±0.0021† 1.2112±0.0121†

DTLZ6(3,120) NSGA-II-SBX 1.6099±0.0352† 2.8740±0.0571†
MOEA/D-SBX 0.7098±0.0349† 1.2720±0.0654†

NSDE 1.9219±0.1212† 4.0637±0.1495†
MOEA/D-DE 0.1062±0.0562† 0.2465±0.1000

MO-EGS 0.3675±0.0516† 4.3460±0.2491†
OSADE 0.0049±0.0009 5.0802±0.0190†

DTLZ7(3,120) NSGA-II-SBX 0.0037±0.0001 0.0081±0.0001†
MOEA/D-SBX 0.0065±0.0001† 0.0079±0.0001

NSDE 0.0911±0.0161† 0.6551±0.1314†
MOEA/D-DE 0.0151±0.0020† 0.1441±0.0345†

MO-EGS 0.1341±0.0218† 0.0074±0.0007
OSADE 0.0041±0.0001† 0.0076±0.0002

so well when compared to the other algorithms. For DTLZ5, it is observed that the algorithms

that incorporate the use of SBX operator yield better results when compared to the algorithms

with the DE operator. This suggests that the use of DE operator may not be that powerful in

tackling problems with degenerate Pareto front.

In DTLZ problems with five objective functions, the results demonstrate that OSADE

achieves the overall best performance for DTLZ1, DTLZ3 and DTLZ7 when pitted against all the

algorithms under comparison. For DTLZ2, OSADE achieves the lowest IGD value but not for the

HD metric. For DTLZ4, DTLZ5 and DTLZ6, it is observed that the decomposition-based algo-

rithms generally displayed better performance in terms of better IGD and HD values than the rest
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Table 3.4: Results obtained by the algorithms for DTLZ problems (5-objectives)

Problem(M,D) Algorithm IGD HD (with p=2)
DTLZ1(5,12) NSGA-II-SBX 1.6105±0.9697† 8.6632±2.7045†

MOEA/D-SBX 0.0196±0.0003† 0.0196±0.0003†
NSDE 4.4756±1.5371† 12.266±0.9618†

MOEA/D-DE 18.770±11.729† 22.209±11.740†
MO-EGS 12.706±1.6501† 1.4095±0.2941†
OSADE 0.0028±0.0001 0.0028±0.0001

DTLZ2(5,120) NSGA-II-SBX 0.0692±0.0044† 0.0704±0.0058†
MOEA/D-SBX 0.0538±0.0023† 0.0538±0.0023

NSDE 0.2714±0.2210† 1.0752±0.0594†
MOEA/D-DE 0.0556±0.0004† 0.0556±0.0004†

MO-EGS 5.3918±0.4946† 0.4062±0.0483†
OSADE 0.0125±0.0003 0.1181±0.0310†

DTLZ3(5,12) NSGA-II-SBX 5.4124±1.3374† 21.852±1.5717†
MOEA/D-SBX 0.0493±0.0023† 0.0493±0.0023

NSDE 15.625±2.2059† 32.773±0.7238†
MOEA/D-DE 69.095±26.876† 71.656±26.245†

MO-EGS 43.464±32.848† 5.5862±2.1677†
OSADE 0.0122±0.0005 0.2206±0.2750†

DTLZ4(5,120) NSGA-II-SBX 0.3921±0.0623† 0.3921±0.0623†
MOEA/D-SBX 0.0567±0.0049 0.0567±0.0049

NSDE 1.4805±0.0437† 1.4805±0.0437†
MOEA/D-DE 0.6201±0.0498† 0.6201±0.0498†

MO-EGS 26.983±0.2091† 1.9432±0.0143†
OSADE 1.3938±0.0160† 1.3938±0.0160†

DTLZ5(5,120) NSGA-II-SBX 0.2509±0.0312† 0.4495±0.0135†
MOEA/D-SBX 0.0193±0.0004 0.0193±0.0004

NSDE 0.0482±0.0393† 0.9584±0.0169†
MOEA/D-DE 0.0190±0.0001 0.0190±0.0001

MO-EGS 4.3806±0.8635† 0.6802±0.2133†
OSADE 0.1590±0.0062† 1.0276±0.0221†

DTLZ6(5,120) NSGA-II-SBX 6.0927±0.0425† 6.0927±0.0425†
MOEA/D-SBX 0.9352±0.0267† 0.9352±0.0267†

NSDE 5.06490±0.447† 5.1273±0.3514†
MOEA/D-DE 0.6051±0.1533† 0.6079±0.1488

MO-EGS 0.3873±0.0965† 4.1574±0.0704†
OSADE 0.0532±0.0025 4.2545±0.1387†

DTLZ7(5,120) NSGA-II-SBX 0.0284±0.0014† 0.0456±0.0104†
MOEA/D-SBX 0.1227±0.0001† 0.1227±0.0001†

NSDE 0.1298±0.0405† 0.9822±0.0173†
MOEA/D-DE 0.2897±0.0296† 0.2897±0.0296†

MO-EGS 0.3540±0.0999† 0.0849±0.1359†
OSADE 0.0199±0.0001 0.0199±0.0001

for these three problems. This demonstrates the better ability of the decomposition-based algo-

rithms in solving many-objective problems over domination-based algorithms. This is attributed

to the fact that decomposition-based algorithms allows better selection of promising solutions by

the use of aggregated fitness values. For the other domination-based algorithms in this study, the

domination behaviour between solutions is required to be determined before deciding on which

are the superior solutions. However, as the number of objective functions increases, the domi-

nation behaviour will be weakened. Hence it will be harder for domination-based algorithms to

select the better solutions in the higher objective space.

It is observed that OSADE generally displays better performance for DTLZ1, DTLZ3 and
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DTLZ7, and competitive performance for DTLZ2, with both three and five objective functions.

DTLZ1 and DTLZ3 are highly multi-modal problems, and the success of OSADE in handling

these problems well is likely attributed to the strong exploratory capabilities inherent in its DE

operator which allows the algorithm to escape from local optimal. As for DTLZ2, the local

search phase in OSADE helps in producing adequate selection pressure towards the large spher-

ical Pareto front in the high-dimensional objective domain. The good performance shown by

OSADE for DTLZ7 could also be attributed by the strong exploratory nature of its DE operator

complemented by the local search component as this helps the algorithm in discovering the dis-

tributed sub-populations in all the disconnected Pareto-optimal regions. In addition, the archival

method used in OSADE is also effective in maintaining the solutions found in the disconnected

Pareto-optimal regions. As such, these factors may explain why OSADE is able to handle the

DTLZ7 problem well.

3.7.3 Comparative studies for UF problems

UF problems are a set of difficult Multi-objective optimization problems (MOOPs) with com-

plicated shapes of Pareto-sets (PS) proposed for the CEC 2009 competition [106]. In these

problems, the number of decision variables is scalable but it shall be retained as 30 for all UF

problems. For this test suite, UF1 to UF7 are test instances with two objective functions while

UF8 to UF10 consist of three objective functions. In general, UF test instances possess arbitrary

prescribed Pareto set (PS) shapes, which could be useful for the study of how multi-objective evo-

lutionary algorithms deals with complicated PS shapes with varying nature of the Pareto front

(PF). From the IGD and HD results, we are able to witness OSADE achieving the overall best

performance for this suite of test problems.

Figures 3.5-3.7 display the Pareto fronts of UF1 generated from the different algorithms.

The solutions plotted are the non-dominated solutions obtained from all 30 simulation runs. From

the comparison of the different evolved Pareto fronts, it is clear that OSADE is able to maintain
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Table 3.5: Results obtained by the algorithms for UF problems

Problem(M,D) Algorithm IGD HD (with p=2)
UF1(2,30) NSGA-II-SBX 0.1200±0.0245† 0.0461±0.0085†

MOEA/D-SBX 0.1257±0.0497† 0.0511±0.0214†
NSDE 0.0523±0.0128† 0.0244±0.0186†

MOEA/D-DE 0.0488±0.0289 0.0224±0.0154†
MO-EGS 0.1588±0.0956† 0.0599±0.0295†
OSADE 0.0404±0.0051 0.0169±0.0025

UF2(2,30) NSGA-II-SBX 0.0478±0.0102† 0.0214±0.0062†
MOEA/D-SBX 0.0574±0.0296† 0.0303±0.0161†

NSDE 0.0450±0.0056† 0.0179±0.0026†
MOEA/D-DE 0.0342±0.0236 0.0170±0.0128†

MO-EGS 0.0510±0.0045† 0.0197±0.0018†
OSADE 0.0204±0.0012 0.0082±0.0005

UF3(2,30) NSGA-II-SBX 0.2370±0.0403† 0.0897±0.0137†
MOEA/D-SBX 0.3092±0.0532† 0.1162±0.0198†

NSDE 0.1387±0.0092† 0.0471±0.0092
MOEA/D-DE 0.0744±0.0138 0.0300±0.0138

MO-EGS 0.1748±0.0099† 0.1107±0.0188†
OSADE 0.2087±0.0101† 0.0698±0.0035†

UF4(2,30) NSGA-II-SBX 0.0538±0.0022† 0.0173±0.0009†
MOEA/D-SBX 0.0566±0.0047† 0.0187±0.0019†

NSDE 0.0730±0.0078† 0.0235±0.0024†
MOEA/D-DE 0.0824±0.0078† 0.0264±0.0025†

MO-EGS 0.1495±0.0076† 0.0477±0.0025†
OSADE 0.0408±0.0012 0.0130±0.0001

UF5(2,30) NSGA-II-SBX 0.3047±0.1036† 0.0261±0.0111†
MOEA/D-SBX 0.4359±0.0993† 0.0288±0.0093†

NSDE 0.8773±0.1742† 0.1310±0.0350†
MOEA/D-DE 0.6670±0.1384† 0.0649±0.0228†

MO-EGS 1.3705±0.2850† 0.2439±0.0424†
OSADE 0.1494±0.0119 0.0132±0.0001

UF6(2,30) NSGA-II-SBX 0.1462±0.0465† 0.0559±0.0181†
MOEA/D-SBX 0.1744±0.0548† 0.0681±0.0197†

NSDE 0.0442±0.0088† 0.0170±0.0043†
MOEA/D-DE 0.0465±0.0291 0.0232±0.0136†

MO-EGS 0.0698±0.0091† 0.0339±0.0041†
OSADE 0.0240±0.0043 0.0121±0.0002

UF7(2,30) NSGA-II-SBX 0.1683±0.1340† 0.0712±0.0528†
MOEA/D-SBX 0.3224±0.1380† 0.1326±0.0514†

NSDE 0.0329±0.0090† 0.0183±0.0088†
MOEA/D-DE 0.0234±0.0063 0.0123±0.0043†

MO-EGS 0.0723±0.0040† 0.0278±0.0015†
OSADE 0.0178±0.0020 0.0083±0.0012

UF8(3,30) NSGA-II-SBX 0.2203±0.0047† 0.1828±0.0076†
MOEA/D-SBX 0.1607±0.0379† 0.0793±0.0216†

NSDE 0.1478±0.0143† 0.0607±0.0198†
MOEA/D-DE 0.0937±0.0082 0.0967±0.0539†

MO-EGS 0.1168±0.0173 0.0517±0.0079†
OSADE 0.1098±0.0028 0.0464±0.0011

UF9(3,30) NSGA-II-SBX 0.1710±0.0423† 0.0756±0.0172†
MOEA/D-SBX 0.1220±0.0566† 0.0548±0.0290†

NSDE 0.1822±0.0671† 0.0706±0.0332†
MOEA/D-DE 0.1058±0.0485† 0.1585±0.0534†

MO-EGS 0.1995±0.0622† 0.0434±0.0115†
OSADE 0.0805±0.0022 0.0296±0.0010

UF10(3,30) NSGA-II-SBX 0.3274±0.0596 0.2872±0.2685†
MOEA/D-SBX 0.3257±0.1810 0.1326±0.0565

NSDE 2.4853±0.2086† 0.8295±0.0696†
MOEA/D-DE 0.6108±0.0047† 0.2138±0.0218†

MO-EGS 5.1364±0.7926† 1.8028±0.1555†
OSADE 0.3197±0.0456 0.5281±0.2944†

a good diverse set of solutions when compared to the other algorithms. In terms of convergence,

OSADE has an evolved Pareto front which is closer to the Pareto optimal front as compared to

the other algorithms.
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Figure 3.5: Pareto front of UF1 generated from NSGA-II-SBX and MOEA/D-SBX
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Figure 3.6: Pareto front of UF1 generated from NSDE and MOEA/D-DE
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Figure 3.7: Pareto front of UF1 generated from MO-EGS and OSADE
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In order to explore further on the convergence performance of all the algorithms used in this

study, the evolutionary trajectories of the average HD values by all the algorithms for the UF1

problem are being plotted on Figures 3.8. From the plot, it is observed that OSADE achieves

faster convergence as compared to the other algorithms whereby it takes about 10,000 fitness

evaluations to find the approximate Pareto front. Moreover, OSADE also achieves the best con-

vergence performance when compared to the other algorithms.

In order to solve UF problems well, algorithms need to be able to generate solution sets

of higher diversity in order to explore the search space effectively, especially during the early

stages of the search due to the presence of complicated Pareto sets in these problems. It has also

been indicated that algorithms like the MOEA/D-SBX may not be suitable in dealing with the

test instances in the UF test suite as the population in MOEA/D-SBX may lose diversity and the

SBX operator in MOEAs have the shortcomings of producing inferior solutions [53]. As OSADE

is inherently a DE variant, hence it possesses strong exploratory capability that is able to produce

a set of diverse solutions, and this makes it suitable and effective for solving UF problems.

0 10000 20000 30000 40000 50000
0

0.2

0.4

Evaluations

H
D

 

 

NSGA−II−SBX
MOEA/D−SBX
NSDE
MOEA/D−DE
MO−EGS
OSADE

Figure 3.8: Evolutionary trajectories of mean HD by all the algorithms for UF1
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3.7.4 Comparative studies for WFG problems

The final set of test problems used in this study is also a set of difficult MOOPs known as the

WFG problems [107] that involve various transformation types. WFG problems are also scalable

in terms of the number of objectives and the decision variables. In this study, two objectives

and 30 decision variables were applied for the WFG problems. The decision vector used in the

WFG problems consists of two position-related parameters and 28 distance-related parameters.

In general, WFG problems are mainly subjected to bias, shift and reduction transformations.

Bias transformations will impact the search process by biasing the fitness landscape which leads

to substantially more solutions in some regions of the search space. As for shift transformations,

the location of the optima can be set subject to skewing by bias transformations. This allows the

avoiding of extremal or medial parameters that has optimal values at zero. Reduction transforma-

tions allow the incorporation of secondary parameters which can create dependencies between

the position and distance-related parameters. If the reduction is done before the shift transforma-

tion, the objectives of the problem can be made effectively non-separable. As such, the WFG test

suite provides a wide range of challenging problems with characteristics that are not available in

other test suites. As seen from the simulation results, OSADE is able to generate a set of solutions

with the best IGD and HD values in four WFG problems which include WFG1, WFG5, WFG6

and WFG8. Due to the bias or shift transformations, most of the solutions in WFG problems are

located in a certain section of the search space. As such, the use of local search in OSADE can

help in the determination of favourable search direction towards the optima, and this enhances

overall convergence ability of OSADE.

Figures 3.9-3.11 display the Pareto fronts of WFG1 generated from the different algorithms.

It could be seen that all the algorithms were unable to converge to global optimality for this

problem. However, it is observed that the evolved Pareto front by OSADE is the nearest to the

Pareto optimal front as compared to all the other algorithms. This demonstrates that OSADE

obtains better performance in terms of both proximity and diversity when compared to the other
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Table 3.6: Results obtained by the algorithms for WFG problems

Problem(M,D) Algorithm IGD HD (with p=2)
WFG1(2,30) NSGA-II-SBX 1.3881±0.0889† 0.3344±0.0257†

MOEA/D-SBX 1.1814±0.1142† 0.2740±0.0314†
NSDE 1.2669±0.0118† 0.2836±0.0026†

MOEA/D-DE 1.2308±0.0033† 0.2755±0.0007†
MO-EGS 1.2441±0.0048† 0.2793±0.0012†
OSADE 0.6882±0.0195 0.1542±0.0044

WFG2(2,30) NSGA-II-SBX 0.1017±0.0652† 0.0454±0.0335†
MOEA/D-SBX 0.1567±0.0374† 0.0663±0.0184†

NSDE 0.0306±0.0100 0.0076±0.0022
MOEA/D-DE 0.0500±0.0064† 0.0153±0.0021†

MO-EGS 0.3351±0.0549† 0.0834±0.0179†
OSADE 0.0339±0.0003 0.0083±0.0001

WFG3(2,30) NSGA-II-SBX 0.0250±0.0014† 0.0062±0.0004
MOEA/D-SBX 0.0299±0.0033† 0.0073±0.0008†

NSDE 0.0245±0.0011 0.0062±0.0003
MOEA/D-DE 0.0292±0.0026† 0.0071±0.0006†

MO-EGS 0.1833±0.0392† 0.0416±0.0088†
OSADE 0.0338±0.0008† 0.0077±0.0002†

WFG4(2,30) NSGA-II-SBX 0.0184±0.0008† 0.0047±0.0003†
MOEA/D-SBX 0.0155±0.0005 0.0039±0.0001

NSDE 0.0994±0.0036† 0.0223±0.0038†
MOEA/D-DE 0.0791±0.0103† 0.0185±0.0024†

MO-EGS 0.1585±0.0113† 0.0357±0.0026†
OSADE 0.0186±0.0004† 0.0077±0.0006†

WFG5(2,30) NSGA-II-SBX 0.0671±0.0010† 0.0152±0.0003†
MOEA/D-SBX 0.0665±0.0007† 0.0154±0.0002†

NSDE 0.0733±0.0011† 0.0168±0.0002†
MOEA/D-DE 0.0673±0.0002† 0.0156±0.0004†

MO-EGS 0.0794±0.0102† 0.0183±0.0024†
OSADE 0.0608±0.0014 0.0138±0.0003

WFG6(2,30) NSGA-II-SBX 0.0482±0.0041† 0.0109±0.0009†
MOEA/D-SBX 0.0447±0.0070† 0.0101±0.0016†

NSDE 0.0819±0.0204† 0.0185±0.0045†
MOEA/D-DE 0.0818±0.0182† 0.0184±0.0041†

MO-EGS 0.1110±0.0096† 0.0255±0.0024†
OSADE 0.0354±0.0041 0.0081±0.0009

WFG7(2,30) NSGA-II-SBX 0.0172±0.0007† 0.0046±0.0007†
MOEA/D-SBX 0.0141±0.0001 0.0037±0.0001

NSDE 0.0332±0.0018† 0.0077±0.0018†
MOEA/D-DE 0.0180±0.0008† 0.0044±0.0008†

MO-EGS 0.1083±0.0117† 0.0246±0.0027†
OSADE 0.0159±0.0003† 0.0044±0.0001†

WFG8(2,30) NSGA-II-SBX 0.0802±0.0038† 0.0185±0.0009†
MOEA/D-SBX 0.0766±0.0054† 0.0177±0.0012

NSDE 0.1272±0.0121† 0.0288±0.0027†
MOEA/D-DE 0.1118±0.0112† 0.0254±0.0026†

MO-EGS 0.2172±0.0095† 0.0490±0.0023†
OSADE 0.0705±0.0007 0.0164±0.0002†

WFG9(2,30) NSGA-II-SBX 0.0200±0.0019† 0.0053±0.0005†
MOEA/D-SBX 0.0177±0.0013 0.0048±0.0002

NSDE 0.0335±0.0008† 0.0081±0.0008†
MOEA/D-DE 0.0348±0.0194† 0.0084±0.0193†

MO-EGS 0.1594±0.0263† 0.0366±0.0059†
OSADE 0.0194±0.0003† 0.0053±0.0001†

algorithms for this problem.

The evolutionary trajectories of the mean HD values by all the algorithms for the WFG1

problem are being plotted in Figure 3.12. From the plot, it is observed that the initial convergence

in OSADE is much faster than all the other algorithms for this problem, and it may also take more

than 50,000 evaluations for OSADE to fully converge. Despite this, its convergence performance
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Figure 3.9: Pareto front of WFG1 generated from NSGA-II-SBX and MOEA/D-SBX
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Figure 3.10: Pareto front of WFG1 generated from NSDE and MOEA/D-DE
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Figure 3.11: Pareto front of WFG1 generated from MO-EGS and OSADE

75



CHAPTER 3. A NOVEL OPPOSITION-BASED SELF-ADAPTIVE DIFFERENTIAL EVOLUTION (OSADE)

is still superior over all the other algorithms for this problem. The fast convergence rate achieved

by OSADE suggests that the opposition-based self-adaptive mechanism for the DE parameters

(F and CR) can lead to their optimal values being found more effectively and efficiently as the

evolutionary process progresses. With the constant updating of the DE parameters to their near-

optimal values during the evolutionary process, fitter solutions can be produced by the OSADE

algorithm for the test problems. With fitter solutions going into the next generations, this will in

turn propagate near-optimal DE parameter values for the subsequent generations as well. In this

way, faster and better overall convergence is then achievable by the OSADE.
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Figure 3.12: Evolutionary trajectories of mean HD by all the algorithms for WFG1

3.7.5 Summary of Comparative studies

Table 3.7: Frequencies of ranks on test problems using IGD

Rank
Algorithm 1 2 3 4 5 6

NSGA-II-SBX 4 6 14 6 5 3
MOEA/D-SBX 7 9 8 6 4 4

NSDE 2 2 4 18 16 4
MOEA/D-DE 3 5 14 11 7 4

MO-EGS 1 5 3 3 3 23
OSADE 25 7 1 3 2 0

The summary of the optimization results achieved by the different algorithms in this study

is presented in terms of their rank frequencies shown in Tables 3.7-3.8. From these two tables,
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Table 3.8: Frequencies of ranks on test problems using HD

Rank
Algorithm 1 2 3 4 5 6

NSGA-II-SBX 1 13 9 6 5 3
MOEA/D-SBX 11 8 9 4 2 4

NSDE 2 2 4 5 15 10
MOEA/D-DE 4 5 7 11 8 2

MO-EGS 1 4 4 5 8 16
OSADE 20 5 5 4 1 3

Table 3.9: Number of test problems where OSADE significantly outperforms a competing algorithm

Number of Test Problems
Algorithm IGD HD

NSGA-II-SBX 23 20
MOEA/D-SBX 22 18

NSDE 25 20
MOEA/D-DE 20 20

MO-EGS 25 20

it can be observed that the proposed algorithm OSADE has the overall best ranking in most of

the test problems. The Wilcoxon ranksum test was also performed on the simulation results, and

for every algorithm compared against OSADE, the number of test instances whereby the latter

significantly outperforms it according to both the performance metrics (IGD and HD) is being

stated in Table 3.9.

The overall best performance achieved by OSADE demonstrates that the novel opposition-

based self-adaptive mechanism for the mutation scale factor in the DE operator is able to improve

the optimization performance of basic differential evolution. This self-adaptive mechanism not

only eliminates the need to fix the DE parameters (mutation scale factor F and crossover rate

CR) at the start of the optimization process, but also increases the probability of finding optimal

settings for the parameters. With optimal settings for the parameters, better solutions can be

generated throughout the evolution process. This in turn allows OSADE to be able to achieve

better and accelerated convergence for the test problems.

The promising results achieved by OSADE can also be attributed to hybridization of the

earlier mentioned DE variant with the MO-EGS to act as a form of local search. For every

generation, the DE variant, which is the earlier phase of OSADE, is capable of strong global

search to find promising solutions in the search space. All the solutions obtained in the DE phase
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will be stored in an archive before the algorithm gets enhanced by the embedded local search

(MO-EGS) during the later phase of OSADE. By archiving the solutions from the DE phase, this

allows the retention of good solutions found during global search. A certain number of solutions

from the DE phase are chosen via binary tournament selection for local search to generate child

solutions which are then updated to the archive as long they are not being dominated by any

existing members in this archive. MO-EGS is effective in the exploitation of solutions in the

search space. In this way, a larger selection pressure can be induced which helps towards overall

convergence of the algorithm. Through the hybridization, exploration and exploitation of the

search space can then be balanced for OSADE which aids in convergence while maintaining

diversity.

3.7.6 Scalability Studies

In this section, the performance of the algorithms under comparison in terms of their scalability

in decision variables and objective functions is examined for some selected test problems. Scal-

ability in decision variables increases the difficulty of the problems due an enlargement of the

search space, and this will lead to an increase in the number of possible moves towards optimal-

ity. For the case of scalability in objective functions, such problems are termed as many-objective

problems [139–141] whereby there is generally lesser selection pressure devoted to every non-

dominated individual in the problem. This is attributed to the fact that most individuals in the

population are non-dominated in the earlier evolution stages, and this makes it difficult for the

evolutionary algorithm in determining the fitter solutions. Moreover, as the dimensionality of

the objective space increases, it is also harder for the algorithm to decide on which solutions are

non-dominated against other solutions.

DTLZ2 and DTLZ3 were selected for the study of the scalability in the number of objec-

tive functions. In order to examine the performance of the algorithms in many-objective prob-

lems, these problems were scaled to a larger number of objective functions which poses greater
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challenge to the algorithms in their search for a high dimensional Pareto front. The number of

decision variables D was also fixed according to D = M + K−1 where M is the number of

objectives and constant K = 10. The population size was varied according to the number of

objectives as indicated in Table 3.1. The performance metric of IGD for the two test problems

with (a) 3 objectives, (b) 5 objectives, and (c) 7 objectives is as displayed in the box-plots in

Figures 3.13-3.15. The indices of the algorithms as used in the box-plots are explained in Table

3.10.

Table 3.10: Indices of the algorithms

Index Algorithm
1 NSGA-II-SBX
2 MOEA/D-SBX
3 NSDE
4 MOEA/D-DE
5 MO-EGS
6 OSADE

For DTLZ2 with 3 objectives, it is observed that OSADE achieves better performance than

all the other algorithms except MO-EGS. However, when the number of objectives was being

scaled to 5 or 7, OSADE is seen to achieve better, if not comparable, performance than the MO-

EGS while outperforming all the other algorithms as well. For the case of DTLZ3 with 3 and

objectives, OSADE achieves comparable performance with the MOEA/D algorithms by reaching

convergence while outperforming the rest. When the number of objectives was scaled to 7 for

the DTLZ3 problem, only OSADE and MOEA/D-SBX were able to reach full convergence. The

good performance achieved by OSADE in these test instances demonstrates that OSADE is able

to scale well with the number of objective functions when compared to other algorithms in this

study.

As for the study of the scalability of decision variables, the UF1 and the DTLZ1 with 3

objectives were selected. In order to observe the behavior of the algorithms for problems with a

very large number of decision variables, the performance metric of the HD values obtained by

all the algorithms for these problems are plotted in Figures 3.16-3.17. In the plots, the number

of decision variables spans from 100 to 1000 and 50 to 500 for UF1 and DTLZ1 respectively.
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From the figures, it can be observed that OSADE performs very well for UF1 and outperforms all

the other algorithms. For the case of DTLZ1, it can be observed that the performance of all the

algorithms deteriorates with the increase in the number of decision variables due to the increas-

ing ease of the algorithms getting trapped in the local optima in this highly multi-modal problem.

This observation demonstrates the weakness of the OSADE as well as the other MOEAs. In sum-

mary, OSADE performs better than the other algorithms in terms of the scalability in the number

of decision variables except for the MOEA/D algorithms as seen from the results obtained. This

may also suggest that MOEA/D algorithms are less susceptible to be trapped at local optima as

compared to the other algorithms for high dimensional problems.
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Figure 3.13: Performance metric of IGD for DTLZ2/DTLZ3 (3 objectives and 12 decision variables)

3.7.7 Sensitivity Analysis of Bounds for DE Control Parameters

In OSADE, the self-adaptive mechanism involves the setting of the mutation factor F and the

crossover rate CR which are the two important parameters for the differential evolution (DE)

operator. For all the experiments in the previous sections, they were conducted based on the

setting of lower and upper bounds for both DE parameters as 0.1 and 0.9 respectively. This

setting will be referred to as the original settings in this sub-section. This section investigates the

effect when the bounds are varied, and tries to provide a recommended setting for the algorithm.
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Figure 3.14: Performance metric of IGD for DTLZ2/DTLZ3 (5 objectives and 14 decision variables)
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Figure 3.15: Performance metric of IGD for DTLZ2/DTLZ3 (7 objectives and 16 decision variables)

To study the sensitivity of OSADE to the lower and upper bounds, experiments for the UF and

WFG test suites were repeated by using different combinations of F and CR. In Table 3.11,

the values of the lower and upper bounds for all the different combinations of the bounds are

stated. For all the experiments, the bounds were first varied for the mutation factor F but with

the original settings being applied to the bounds for the crossover rate CR. Next the bounds for

CR were varied while keeping the values of the bounds for F at the original settings. The other

parameters in OSADE related to the self-adaptive mechanism were kept unchanged.

In Tables 3.12-3.15, the mean IGD values obtained by OSADE for all the UF problems

using different combinations of the lower and upper bounds of both F and CR are being dis-
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Figure 3.16: Performance metric of HD for UF1 versus number of decision variables
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Figure 3.17: Performance metric of HD for DTLZ1 versus number of decision variables
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Table 3.11: Lower and upper bounds for different combinations (cases) of DE parameters F and CR

Case
1 2 3 4 5 6 7 8 9 10

Lower Bound 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.1 0.3 0.1
Upper Bound 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.5 0.5 0.3

played. The values in parentheses beside every IGD value represent the ranks for a particular

combination of the lower and upper bounds as compared to the other combinations for the test

problem. For every test problem, the top four entries for every case in terms of the lowest IGD

values will be marked in boldface in all the tables.

Table 3.12: IGD measurement for UF1-UF5 with varying bounds for F

Test Problem
Case UF1 UF2 UF3 UF4 UF5

1 0.0404(5) 0.0204(6) 0.2087(7) 0.0408(5) 0.1494(7)
2 0.0370(2) 0.0184(3) 0.1987(2) 0.0405(3) 0.1419(5)
3 0.0326(1) 0.0177(2) 0.2030(4) 0.0404(2) 0.1354(2)
4 0.0377(3) 0.0174(1) 0.2006(3) 0.0424(9) 0.1649(9)
5 0.0485(6) 0.0258(7) 0.2054(6) 0.0414(7) 0.1487(6)
6 0.0517(8) 0.0195(5) 0.1978(1) 0.0411(6) 0.1221(1)
7 0.0395(4) 0.0194(4) 0.2129(9) 0.0401(1) 0.1756(10)
8 0.0550(9) 0.0284(10) 0.2108(8) 0.0418(8) 0.1401(4)
9 0.0486(7) 0.0273(8) 0.2157(10) 0.0405(3) 0.1567(8)

10 0.0659(10) 0.0281(9) 0.2053(5) 0.0426(10) 0.1400(3)

Table 3.13: IGD measurement for UF6-UF10 with varying bounds for F

Test Problem
Case UF6 UF7 UF8 UF9 UF10

1 0.0240(6) 0.0178(4) 0.1098(7) 0.0805(6) 0.3197(5)
2 0.0193(3) 0.0551(7) 0.0982(3) 0.0778(5) 0.3451(7)
3 0.0105(1) 0.0102(1) 0.0132(4) 0.1216(8) 0.4320(9)
4 0.0117(2) 0.0107(2) 0.1126(10) 0.1737(10) 0.6647(10)
5 0.0333(7) 0.0665(8) 0.1087(6) 0.0484(3) 0.2872(4)
6 0.0201(5) 0.0297(6) 0.0955(1) 0.0877(7) 0.3202(6)
7 0.0199(4) 0.0269(5) 0.1123(9) 0.1355(9) 0.3706(8)
8 0.0371(8) 0.1000(10) 0.0973(2) 0.0302(2) 0.2601(2)
9 0.0374(9) 0.0107(3) 0.1054(5) 0.0513(4) 0.2748(3)

10 0.0614(10) 0.0845(9) 0.1121(8) 0.0202(1) 0.2521(1)

Table 3.14: IGD measurement for UF1-UF5 with varying bounds for CR

Test Problem
Case UF1 UF2 UF3 UF4 UF5

1 0.0404(7) 0.0204(5) 0.2087(7) 0.0408(5) 0.1494(8)
2 0.0374(4) 0.0194(3) 0.1951(5) 0.0426(7) 0.1468(7)
3 0.0375(5) 0.0191(2) 0.1932(3) 0.0446(9) 0.1465(6)
4 0.0283(1) 0.0190(1) 0.1794(1) 0.0457(10) 0.1266(3)
5 0.0427(9) 0.0209(6) 0.2041(6) 0.0393(3) 0.1454(5)
6 0.0415(8) 0.0201(4) 0.1886(2) 0.0415(6) 0.1275(4)
7 0.0348(2) 0.0209(7) 0.1949(4) 0.0436(8) 0.1144(1)
8 0.0446(10) 0.0216(10) 0.2202(9) 0.0379(2) 0.1721(9)
9 0.0403(6) 0.0215(9) 0.2175(8) 0.0403(4) 0.1147(2)

10 0.0350(3) 00214(8) 0.2225(10) 0.0356(1) 0.1734(10)
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Table 3.15: IGD measurement for UF6-UF10 with varying bounds for CR

Test Problem
Case UF6 UF7 UF8 UF9 UF10

1 0.0240(8) 0.0178(4) 0.1098(7) 0.0805(7) 0.3197(8)
2 0.0153(3) 0.0288(6) 0.1010(3) 0.0560(4) 0.2982(6)
3 0.0121(2) 0.0134(3) 0.1243(10) 0.0395(1) 0.3032(7)
4 0.0102(1) 0.0103(1) 0.1009(2) 0.0614(5) 0.2945(4)
5 0.0201(5) 0.0471(9) 0.1045(5) 0.0975(9) 0.3304(10)
6 0.0174(4) 0.0300(7) 0.1230(9) 0.0556(3) 0.3281(9)
7 0.0219(6) 0.0327(8) 0.1195(8) 0.0423(2) 0.2772(1)
8 0.0296(9) 0.0281(5) 0.1044(4) 0.1030(10) 0.2967(5)
9 0.0385(10) 0.0133(2) 0.1055(6) 0.0861(8) 0.2843(2)

10 0.0232(7) 0.0514(10) 0.0947(1) 0.0668(6) 0.2857(3)

For UF problems, it is observed that Case 3 (lower bound = 0.5, upper bound = 0.9) and

Case 4 (lower bound = 0.7, upper bound = 0.9) have the highest occurrences of being in the top

four cases in the experiments of varying the mutation factor F and crossover rate CR respec-

tively. It was mentioned in Section 3.7.3 that UF problems require the algorithm to be able to

have strong exploratory capability so as to generate a diverse set of solutions. If the mutation

factor F is ranged between 0.5 and 0.9, it could potentially be adapted to larger values dur-

ing evolutionary process to provide stronger exploration in the search space, and could also be

adapted to a smaller value of 0.5 to increase the convergence rate. As such, this may allow a

balance between exploration and exploitation when OSADE handles the UF problems. As for

the crossover rate, a range between 0.7 to 0.9 may allow sufficiently fast convergence and yet

allowing adequate chance for mutation of the individuals in the population.

The results for the mean IGD values obtained by OSADE for all the WFG problems using

different combinations of the lower and upper bounds of both F and CR are displayed in Tables

3.16-3.19. The values in parentheses beside every IGD value represent the ranks for a particular

combination of the lower and upper bounds as compared to the other combinations for the test

problem. Similarly, the top four entries for every case in terms of the lowest IGD values for every

test problem will also be marked in boldface in all the tables.

For WFG problems, Case 9 is observed to be the case of having the most occurrences of

being in the top four cases in both experiments of varying the DE parameters separately. Due to

the nature of the WFG problems whereby the solutions are located at certain part of the search
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Table 3.16: IGD measurement for WFG1-WFG5 with varying bounds for F

Test Problem
Case WFG1 WFG2 WFG3 WFG4 WFG5

1 0.6882(4) 0.0339(6) 0.0338(6) 0.0186(6) 0.0608(3)
2 0.8082(7) 0.0338(5) 0.0325(4) 0.0185(4) 0.0615(5)
3 0.8805(8) 0.0328(2) 0.0311(3) 0.0187(8) 0.0626(7)
4 0.9184(10) 0.0321(1) 0.0296(1) 0.0187(8) 0.0627(9)
5 0.6196(3) 0.0342(9) 0.0348(8) 0.0186(6) 0.0626(7)
6 0.7830(6) 0.0337(4) 0.0333(5) 0.0180(1) 0.0607(2)
7 0.8812(9) 0.0330(3) 0.0309(2) 0.0188(10) 0.0605(1)
8 0.5263(2) 0.0341(8) 0.0359(9) 0.0183(3) 0.0610(4)
9 0.7547(5) 0.0339(6) 0.0343(7) 0.0185(4) 0.0624(6)

10 0.4150(1) 0.0594(10) 0.0369(10) 0.0182(2) 0.0628(10)

Table 3.17: IGD measurement for WFG6-WFG9 with varying bounds for F

Test Problem
Case WFG6 WFG7 WFG8 WFG9

1 0.0354(7) 0.0159(8) 0.0705(5) 0.0194(2)
2 0.0342(6) 0.0155(6) 0.0717(7) 0.0197(8)
3 0.0376(9) 0.0157(7) 0.0739(8) 0.0193(1)
4 0.0390(10) 0.0169(10) 0.0764(10) 0.0198(9)
5 0.0337(5) 0.0151(4) 0.0699(3) 0.0199(10)
6 0.0307(1) 0.0154(5) 0.0714(6) 0.0195(6)
7 0.0360(8) 0.0161(9) 0.0741(9) 0.0196(7)
8 0.0330(3) 0.0149(2) 0.0682(2) 0.0194(2)
9 0.0332(4) 0.0149(2) 0.0702(4) 0.0194(2)
10 0.0323(2) 0.0144(1) 0.0679(1) 0.0194(2)

Table 3.18: IGD measurement for WFG1-WFG5 with varying bounds for CR

Test Problem
Case WFG1 WFG2 WFG3 WFG4 WFG5

1 0.6882(9) 0.3339(6) 0.0338(6) 0.0186(6) 0.0608(3)
2 0.6175(3) 0.0327(1) 0.0305(1) 0.0188(9) 0.0623(9)
3 0.6543(6) 0.0337(3) 0.0316(3) 0.0186(6) 0.0617(7)
4 0.8206(10) 0.0327(1) 0.0305(1) 0.0188(9) 0.0623(9)
5 0.6618(7) 0.0340(8) 0.0345(8) 0.0183(3) 0.0615(6)
6 0.5787(1) 0.0341(10) 0.0337(5) 0.0185(5) 0.0608(3)
7 0.6428(4) 0.0337(3) 0.0317(4) 0.0187(8) 0.0617(7)
8 0.6446(5) 0.0339(6) 0.0352(9) 0.0182(2) 0.0605(2)
9 0.5795(2) 0.0340(8) 0.0344(7) 0.0184(4) 0.0599(1)

10 0.6665(8) 0.0338(5) 0.0355(10) 0.0177(1) 0.0613(5)

Table 3.19: IGD measurement for WFG6-WFG9 with varying bounds for CR

Test Problem
Case WFG6 WFG7 WFG8 WFG9

1 0.0454(5) 0.0159(7) 0.0705(5) 0.0194(4)
2 0.0573(10) 0.0165(9) 0.0727(9) 0.0201(9)
3 0.0394(9) 0.0160(8) 0.0717(7) 0.0200(7)
4 0.0393(8) 0.0165(10) 0.0727(9) 0.0201(9)
5 0.0337(3) 0.0152(4) 0.0695(1) 0.0192(2)
6 0.0369(6) 0.0153(5) 0.0706(6) 0.0198(6)
7 0.0382(7) 0.0157(6) 0.0720(8) 0.0200(7)
8 0.0334(2) 0.0150(2) 0.0699(4) 0.0196(5)
9 0.0352(4) 0.0151(3) 0.0698(2) 0.0192(2)

10 0.0311(1) 0.0148(1) 0.0698(2) 0.0191(1)
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space, the need for diversity may not be as great as compared to UF problems. Hence, a small

mutation factor between 0.3 and 0.5 will allow smaller jumps to other points in the search space.

As for the adoption for the similar range for crossover rate, this will allow good control of which

and the number of components to be mutated in every individual in the current population.

In conclusion, it is recommended that the bounds for F are to be set between 0.5 to 0.9 and

CR to be between 0.7 to 0.9 for the case of UF problems. On the other hand, it may be suitable to

adopt the range of bounds for both DE parameters to be between 0.3 and 0.5 for the case of WFG

test suite. These analyses suggest that the setting of the bounds for the self-adaptive mechanism

in OSADE may be problem-dependent in order to achieve the best results for the problems to be

handled.

3.8 Summary

In view of the increasing complexity and dimensionality seen in several optimization problems

today, there is a strong need to find ways to improve the efficiency and effectiveness of evolution-

ary algorithms. With memetic algorithms as a possible solution to allow fast convergence and

strong global search capability with robustness, this gave motivation for the proposal of a novel

memetic algorithm based on differential evolution in the context of multi-objective optimization

to be presented in this chapter. Unlike most other differential evolution variants, OSADE elimi-

nates the need of fixing the DE control parameters at the start of evolution which usually requires

a tedious trial-and-error process. With opposition-based learning being incorporated into the

self-adaptive mechanism, this may give a higher probability of finding near-optimal settings for

the DE control parameters in the proposed algorithm throughout the evolutionary process. As the

control parameters of OSADE gets adapted to near-optimal settings in the evolutionary process,

better solutions can be generated throughout the evolutionary process as well. In OSADE, its

DE operator is also hybridized with the multi-objective evolutionary gradient search (MO-EGS)

to act as a form of local search which helps to improve the exploitation abilities for the overall
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algorithm. As such, OSADE will be able to complement the strengths of a novel opposition-

based self-adaptive differential evolution (DE) algorithm, which balances the exploration and

exploitation abilities as found in the original DE, together with MO-EGS which utilizes gradi-

ent information which brings forth higher selection pressure. Through the validation of OSADE

using a suite of carefully selected test benchmark problems for continuous multi-objective opti-

mization, it is observed that OSADE achieves overall better performance in terms of convergence

and diversity over the other algorithms compared in this chapter. In addition, OSADE can be rec-

ommended for solving multi-modal problems as well as problems with complicated Pareto sets

as seen from its superior optimization performance in such types of problems when compared to

the other algorithms in this study.
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Chapter 4

A Grid-based Differential Evolution for

Many-objective Optimization

In this chapter, the OSADE algorithm presented in the previous chapter is being extended to han-

dle many-objective optimization problems. The opposition-based self-adaptive mutation scheme

found in OSADE is first incorporated with a newly formulated opposition-based local muta-

tion scheme, whereby one of the schemes will be selected using a linear decreasing probability

rule. The resultant mutation scheme is then integrated into a grid-based framework to form a

novel grid-based differential evolution variant called GrDE. Empirical studies show that GrDE

displays promising results in terms of finding a well-approximated and well-distributed set of

solutions for the many-objective problems tested on.

4.1 Chapter Objectives

The main objective of this chapter is to explore the possibility of extending OSADE into a grid-

based differential evolution algorithm for handling many-objective problems. The chapter also

seeks to explore the formulation of another novel mutation strategy and integrating it into a grid-

based framework that is catered towards many-objective optimization.
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4.2 Introduction

Many real-world optimization problems involve several objectives to be met simultaneously, and

these problems are termed as multi-objective optimization problems (MOOPs) [4, 108–110]. As

the objectives are conflicting in nature, there is usually no single optimal solution to MOOPs

but rather a set of Pareto-optimal solutions. Through the decades, population-based evolutionary

algorithms (EAs) [3] have been successfully applied to a wide range of multi-objective optimiza-

tion problems as they are able to obtain an approximate set of Pareto-optimal solutions in a single

run.

In recent years, many-objective optimization has been gaining increasing attention and

popularity among researchers in the evolutionary multi-objective optimization (EMO) commu-

nity [142], [143]. Many-objective optimization problems are multi-objective optimization prob-

lems with four or more objectives, and these problems are seen in various engineering applica-

tions [140, 144–148]. The motivation for the increasing efforts to work on this area is attributed

to the realization that existing state-of-the-art EMO algorithms do not scale well with the number

of objective functions [149, 150]. This is due to the fact that most solutions in the current popu-

lation will become non-dominated to each other as the number of objectives increases. As such,

the Pareto dominance-based fitness assignment method commonly used in most EMO algorithms

will have problems inducing a strong selection pressure towards the Pareto front.

Another difficulty encountered in many-objective problems is in the aspect of the visual-

ization of solutions. Usually, the decision maker for a problem will choose the final solution set

based on a set of non-dominated solutions according to his or her preference. When there is an in-

crease in the number of objectives, the visualization of non-dominated solutions obtained will be

much tougher. As such, the selection of the final solutions will be very difficult in many-objective

optimization.

As seen from literature, researchers have proposed the modification of Pareto dominance

relation in order to impose stronger selection pressure towards the Pareto front. Some exam-
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ples of the modifications reflected in these studies include ε-dominance [151], preference-order

ranking [152], k-optimality [144], and fuzzy Pareto dominance [153] just to name a few. Ex-

perimental results for these methods demonstrate that they are able to steer a better search to-

wards the Pareto front as compared to the conventional Pareto dominance relation. It is also

observed that non-Pareto based fitness assignment techniques like ranking dominance [154], av-

erage rank [155], as well as some distance-based ranking methods [141, 156–158] are able to

be considered for use in evolutionary many-objective optimization due to promising results that

they displayed in terms of convergence towards the optimum. However, the drawback in these

non-Pareto based techniques is that they may direct the final Pareto set to a certain sub-regions

of the Pareto front [159, 160]. Another approach of non Pareto-based fitness assignment tech-

niques is to incorporate quality indicator functions such as hypervolume or epsilon indicators for

scalability improvement [161,162]. Another idea proposed is to assign fitness to solutions in the

population based on a number of different scalarizing functions [163, 164].

Another perspective of handling many-objective problems is to enhance the diversity main-

tenance mechanism in EMO algorithms. As the size of the objective space is being increased

in these problems, there will be stronger contention between convergence and diversity require-

ments [165,166]. In most of the diversity maintenance techniques like niche, crowding distance,

and clustering, they are not able to provide strong selection pressure towards the Pareto front in

high objective space, and these techniques may even cause hindrance to the evolutionary search

process due to their preference for dominance resistant solutions [166]. A possible way of han-

dling this problem is to lower the diversity requirement during the selection process. For this,

a diversity management operator which is able to balance both the convergence and diversity

requirements was proposed by Adra and Fleming [165]. In [167], it is demonstrated that the

performance of NSGA-II could be improved should zero distance instead of infinity distance be

assigned to boundary solutions.

Dimensionality reduction is another approach which involves the objective selection for the
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problem. This approach is based on the idea that not every objective in the problem is required

for the definition of the Pareto front. The decrease in the number of objectives provides a remedy

for the difficulty of the visualization of solutions in high dimensional space whereby the objective

vectors are mapped into a lower-dimensional space for visualization [168–170] which was done

via the use of both linear and nonlinear correlation-based dimensionality reduction techniques

based on principal component analysis and maximum variance unfolding. On the other hand, we

are also able to see dimensionality reduction approach based on Pareto dominance proposed by

Xue et al. [171].

From above-mentioned studies, we are able to find several different promising approaches

to address the difficulties found in many-objective optimization problems. However, there is still

a strong need to explore further improvements on EMO algorithms so that they can be more

effectively applied on many-objective optimization problems [172]. From literature, we are able

to see past attempts for the use of grid in EMO algorithms. This is motivated by the fact that

the use of grid is able to allow the distribution of solutions to be reflected clearly during the

evolutionary process as every solution can be represented by its own grid location. This in turn

allows the information on both convergence and diversity to be available concurrently. As the

location of a solution is able to be determined, its performance in terms of convergence and

diversity can be estimated through the comparison of grid locations with other solutions. In

addition, the use of grid-based criterion is able to provide the quantitative difference between

the objective values among solutions instead of just comparing them qualitatively as seen in

the case of Pareto dominance criterion. As such, the use of grid-based criterion might be more

promising than Pareto dominance criterion in many-objective problems in consideration of rising

selection pressure from the quantitative comparison of objective values among solutions [140,

159]. However, the potential of the use of grid has not been fully exploited in most of the existing

grid-based EMO algorithms as they are only able to achieve good performance on problems with

two or three objectives and not for the case of many-objective optimization problems.

91



CHAPTER 4. A GRID-BASED DIFFERENTIAL EVOLUTION FOR MANY-OBJECTIVE OPTIMIZATION

As seen from the promising results from the Grid-based Evolutionary Algorithm (GrEA)

proposed by Yang et al. [173], this gives forth motivation to propose a grid-based Differential

Evolution (DE) algorithm called the GrDE for the solving of many-objective optimization prob-

lems. The aim of this study is to explore how the integration of a novel differential evolution

variant into the framework of the grid-based EA (GrEA) would be able to enhance differential

evolution as an EMO algorithm to be considered for many-objective optimization. The perfor-

mance of the GrDE algorithm will be investigated by comparing it with five other state-of-the-art

EMO algorithms using a set of test benchmark many-objective optimization problems.

4.3 Related Works

As seen in the past decade, we are able to find several grid-based EMO algorithms [174–177]

being proposed and studied by many researchers in the EMO community. A very early initiative

in the use of grid can be found in the Pareto-based evolution strategy (PAES) that was introduced

by Knowles et al. [178] to ensure that the diversity of the archive population is being maintained.

To achieve this, the estimation of the crowding distance of a solution has to done with the number

of solutions having the same grid location as itself. If the size of an archive is reached, a non-

dominated solution can enter it by replacing one of the solutions possessing the highest crowding

degree only if it has a lower crowding distance.

In the dynamic multi-objective evolutionary algorithm (DMOEA) [179], the use of grid is

different from the approach in PAES as it is being used to contain the convergence and diversity

information of the solutions. In the approach here, there is assignment of a grid-based rank and a

density value to every cell located in the grid according to the Pareto dominance relation and the

grid position of solutions.

The idea of ε-dominance as pioneered by Laumanns et al. [151] can be perceived as a grid-

based technique that balances the convergence and diversity requirements of an EMO algorithm.

Based on this concept, the ε-MOEA was developed by Deb et al. [174] which segregates the
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objective space into hyperboxes according to the size of epsilon ε whereby there is only one

solution present in each hyperbox. However, ε-dominance may lead to the loss of boundary

solutions during the evolutionary process of ε-MOEA. As such, a variant of the algorithm known

as Pareto adaptive ε-dominance was being proposed by Hernandez Diaz et al. [180].

Other efforts involving the use of grid-based techniques include a dynamic grid resizing

strategy introduced by Rachmawati et al. [176] which is able to discover the settings for the

grid sizes according to certain metrics, and perform the varying of the size of hyperboxes when

required. In another recent work, a steady-state algorithm known as the territory-based EMO

algorithm was being developed by Karahan et al. [181] which basically marks out a territory

around individuals in order to achieve diversity maintenance.

Studies for the above-mentioned implementations show that they are able to perform well

on problems with two or three objectives. However, there are not much works on these grid-

based algorithms being applied on many-objective problems. A noticeable attempt to utilize

the properties of grid for many-objective optimization can be found in the grid-based fitness

strategy (GrFS) [182]. In this initiative, the authors formulated three fitness assignment crite-

ria based on the grid coordinates of the individuals which will be used to increase the selection

pressure towards the Pareto optimal front. The promising experimental results obtained from

this initiative led to the motivation towards the development of the grid-based evolutionary algo-

rithm (GrEA) which encompasses an extended and more comprehensive study in the handling

of many-objective optimization. In GrEA, the concept of grid dominance was proposed for the

comparison of individuals during the mating and environmental selection processes. Another

distinctive feature in GrEA lies in a carefully designed density estimator for the population in-

dividuals. The density estimation for an individual factors in the consideration of the number of

its neighbouring individuals and also the difference in the distance between the neighbours and

itself. In addition, the fitness adjustment technique in GrEA is an improved version from the one

in GrFS which aims to prevent partial overcrowding of the solutions and to steer the evolutionary
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search towards different directions in the archive population.

4.4 Background

4.4.1 Grid Environment

In the proposed grid-based differential evolution algorithm, the framework as found in GrEA

[173] is adopted whereby the positions of individuals in the objective space are based on grid. As

the population gets refreshed during the evolutionary process, the location and size of the grid

are required to be adjusted accordingly so that the new population will be enclosed within it. The

construction of the adaptive grid environment in GrEA is based on the concepts drawn from the

adaptive genetic algorithm (AGA) proposed by Knowles and Corne [175].

In the grid environment, every individual has a grid location which needs to be calculated

using the lower and upper boundaries of the grid in every objective. The below formulae from

[173] demonstrates how the boundaries are being calculated for a population P :

lbM = minM (P )− (maxM (P )−minM (P ))/(2×div) (4.1)

ubM = maxM (P ) + (maxM (P )−minM (P ))/(2×div) (4.2)

In the formulae, lbM and ubM represent the lower and upper grid boundaries of the Mth

objective respectively, and minM (P ) and maxM (P ) denote the the minimum and maximum

values for the Mth objective among the individuals of a population P . For div, it represents the

number of divisions of the objective space in every dimension. From here, the objective space of

M dimension will be segregated into divM hyperboxes, and the width wM of each hyperbox is

calculated as follows:

wM = (ubM − lbM )/div (4.3)

94



CHAPTER 4. A GRID-BASED DIFFERENTIAL EVOLUTION FOR MANY-OBJECTIVE OPTIMIZATION

where lbM and ubM represent the lower and upper grid boundaries of the Mth objective respec-

tively. With equation 4.3, the grid coordinate (location) of an individual in the Mth objective

GM (x) is formulated as follows:

GM(x) = bFM (x)− lbM/wMc (4.4)

where b•c represents the floor function, and FM (x) is the objective function value of the indi-

vidual x.

With the grid coordinate parameter being described for an individual x, this leads to the

explanation of the following two concepts from [173] that are required to be used for the com-

parison between different individuals.

1. Definition of Grid Dominance:

Let x, y ∈ P where P is the population which is used for the construction of the grid environ-

ment. The individual x is grid-dominated by another individual y if and only if Gi(x) ≤ Gi(y)

for all i ∈ (1, 2, ...,M) and Gj(x) < Gj(y) for some j ∈ (1, 2, ...,M) whereby M is the num-

ber of objectives. There is similarity between Pareto dominance and Grid dominance if the actual

objective values of the individuals are being replaced by their grid coordinates. The relationship

between Pareto dominance and Grid dominance is as described. If a solution X dominates solu-

tion Y in terms of Pareto dominance, Y will not dominate X in terms of Grid dominance, and

vice versa. However, solution X is said to grid-dominate solution Y if X is slightly inferior to

Y in some objectives but much better than Y in all the other objectives.

Hence grid dominance is a relaxed form of Pareto dominance relation. The degree of re-

laxation is dependent on the number of divisions div which is a fixed parameter set by the user

beforehand, and the setting will lead to convergence and diversity requirements to be adjusted

adaptively with the evolution of the population. If the population is widely distributed in the

objective space, which is often the case at the initial evolution stage, the relaxation degree will
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be larger due to a larger size of a cell in the grid environment and this leads to higher selection

pressure to be provided. However, as the population evolves towards a more concentrated Pareto

front region, the relaxation degree will become smaller, and this will lead to the emphasis on

diversity instead.

2. Definition of Grid Difference:

Let x, y ∈ P , and the grid difference between them can be represented as follows:

GD(x,y) =
N∑

M=1

|GM(x)−GM(y)| (4.5)

The number of divisions div has an impact on the grid difference. When div is larger, the size

of a cell in the grid becomes smaller which leads to a higher grid difference value between

individuals.

4.4.2 Grid-based Criteria for Fitness Assignment

The proposed algorithm in this chapter, GrDE, adopts the grid-based criteria from the algorithm

GrEA [173] for the purpose of fitness assignment for the individuals. In order to evolve the

population towards the optimum and encourage diversity of solutions along the obtained trade-

off surface, the fitness of individuals should contain information in terms of both convergence and

diversity. To achieve this, three grid-based criteria from [173], which are namely grid ranking

GR, grid crowding distance GCD, and grid coordinate point distance GCPD, will be used

for the fitness assignment of individuals. GR and GCPD are meant for the evaluation of the

convergence of individuals whereas GCD will be used for gauging the diversity of individuals

in the population.

The definition of GR is as described:

GR(x) =
N∑

M=1

GM (x) (4.6)
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where GM (x) represents the grid coordinate of individual x in the Mth objective, and N is the

total number of objectives.

GR can be used to provide rankings of individuals based on their grid locations. If a solution

performs better than other solutions in most of the objectives, it would have a higher possibility

of attaining a lower GR value. However, the GR value of an individual can also be influenced

by the difference in a single objective. This is illustrated in Figure 4.1 whereby individual C has

a worse GR value compared to individual A (4 versus 3) because the advantage in f1 is lesser

than the disadvantage in f2.

For GCD, it is regarded as a density estimator, and it is defined as follows:

GCD(x) =
∑

y∈N(x)

M −GD(x, y) (4.7)

where M is the number of objectives and N(x) represents the set of neighbours of x. Density

estimation of solutions is also of high importance in the fitness assignment process as a good dis-

tribution of solutions can direct the search towards the entire Pareto front. In most of the existing

grid-based density estimation methods, the number of solutions is being tracked in a single hy-

perbox, and this leads to a limitation as the distribution of solutions is not clear when the number

of hyperboxes increases exponentially especially for the case of many-objective problems. To

overcome this limitation, the region for the solutions under consideration is being expanded, and

the distribution of the neighbours of a solution is also being considered in the density estimation

here. Hence in the context here, a solution y is regarded as a neighbour of solution x if the grid

difference between them is less than the number of objectives M . Figure 4.1 gives an illustration

of how the GCD is being calculated. In the figure, the neighbours of an individual C are B and

D, and the GCD of C is calculated to be (2-1) + (2-1) = 2.

In certain situations, the GR and GCD may not be able to provide discrimination between

individuals despite them being able to give a good measure of convergence and diversity between
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individuals. This is because GR and GCD are of integer values as the computation of GR and

GCD are based on the grid coordinates of individuals. This in turn means that some individuals

may possess similar GR and GCD values as seen in an example shown in Figure 4.1 whereby

individuals B and D have the same GR and GCD values. Therefore in such cases, it would

not possible to differentiate them based on GR and GCD values. To overcome this, another

metric termed as grid coordinate point distance GCPD is formulated as an additional method

of differentiating individuals in the grid environment. The GCPD metric is defined as follows:

GCPD(x) =

√√√√ N∑
M=1

(
FM (x)− (lbM +GM (x)× wM )

wM
)2 (4.8)

where FM (x) and GM (x) represent the objective function value and grid coordinate (location)

of the individual x respectively in the Mth objective, and lbM and wM denote the lower bound

of the grid and the hyperbox width respectively in the Mth objective, and N is the total number

of objectives. For the case of GCPD metric, a lower value is preferred. The illustration of the

GCPD criterion is as shown in Figure 4.1 with the use of individuals E and F .

These three grid-based criteria GR, GCD and GCPD as described in this section will be

used for the comparison of individuals during the selection process in the GrDE algorithm as

they are able to provide indication of how well the population individuals have evolved during

the optimization process.

4.5 Development of Proposed Algorithm GrDE

In this section, the development of the proposed grid-based differential evolution GrDE is dis-

cussed. GrDE adopts the basic procedures found in NSGA-II [50] but the differences lie in the

fitness assignment and the mating and environmental selection processes, as well as the repro-

duction stage whereby a novel differential evolution operator is used.
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Objective 1

Objective 2

A(3,0)

B(3,1)

C(4,2)

D(3,1)

E(3,3)

F(3,3)

GCPD

(GR,GCD)

Figure 4.1: Grid fitness assignment using GR, GCD and GCPD

4.5.1 Mating Selection

The mating selection in GrDE is executed using a binary tournament selection strategy. For this

process, two different individuals are first selected from the current population on a random basis.

These two individuals are compared in terms of both Pareto and grid dominance. The individual

that Pareto-dominates or grid-dominates the other one will be chosen to enter the mating pool

for reproduction. However if both individuals are non-dominated to each other in terms of both

Pareto and grid dominance, the GCD metric will be employed to compare the two individuals,

and the individual with a lower GCD value will be chosen. If there is still a tie between the two

individuals when their GCD values are compared, then one of them will be randomly selected

for the mating pool.
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4.5.2 Novel Mutation Strategy in GrDE

In this study, a novel mutation strategy is formulated for the reproduction stage in GrDE. For

this, the opposition-based self-adaptive differential evolution operator from OSADE is extended

by incorporating it with a modified local mutation scheme that originated from RDEL [183]

so as to enhance the local search tendency and to accelerate the convergence of the differential

evolution technique. In the local mutation scheme of RDEL, the best and worst individuals of the

population of every generation are required to be identified. However, RDEL is catered towards

single-objective optimization and hence the way to identify the best and worst individuals will

not be applicable in the context of multi-objective optimization. As every individual in GrDE is

being assigned GR, GCD and GCPD values, the values of these metric will be used for the

comparison of all the individuals so as to identify the best and worst individuals. The comparison

processes to identify the best and worst individuals in a generation is as explained in Figure 4.2

and Figure 4.3.

Require: Define best solution as b in Population P, and every j-th individual as pj 

Begin 
1:  Initialization: Let b = p1 

2:  for j = 2 to |P| do 

3:      if GR(pj) < GR(b) then 
4:          b = pj 

5:     else if GR(pj) = GR(b) then 
6:         if GCD(pj) < GCD(b) then 
7:             b = pj 
8:         else if GCD(pj) = GCD(b) then 
9:             if GCPD(pj) < GCPD(b) then 
10:      b = pj 
11:  end if 
12:       end if 
13:    end if 
14: end for 
15: return b 
End 

Figure 4.2: Pseudo-code of function in GrDE for finding best individual

The novel mutation strategy is made up of an opposition-based self-adaptive mutation

scheme based on DE/rand/1 [71] and a local mutation scheme with opposition-based learn-

ing [30] incorporated. One of them will be selected for the mutation of an individual as decided

by a linear decreasing probability rule.

The opposition-based self-adaptive mutation scheme in GrDE as based on OSADE is as
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Require: Define worst solution as w in Population P, and every j-th individual as pj 

Begin 
1:  Initialization: Let w = p1 

2:  for j = 2 to |P| do 

3:      if GR(pj) > GR(w) then 
4:          w = pj 

5:     else if GR(pj) = GR(w) then 
6:         if GCD(pj) > GCD(w) then 
7:             w = pj 
8:         else if GCD(pj) = GCD(w) then 
9:             if GCPD(pj) < GCPD(w) then 
10:      w = pj 
11:  end if 
12:       end if 
13:    end if 
14: end for 
15: return w 
End 
 

Figure 4.3: Pseudo-code of function in GrDE for finding worst individual

described. At the start of the parent generation G, three vectors xGr1, xGr2 and xGr3 are randomly

selected for every target vector xGi whereby r1 6= r2 6= r3 6= i, and r1, r2, r3 ∈ {1, 2, ..., NP}

and NP is the size of the population. In GrDE, every individual will be encoded with values of

the DE control parameters F and CR that exist as extended variables. These encoded values,

which are initialized as zero at the start of every run, are needed in the opposition-based self-

adaptive mutation scheme for the self-adaption process of the control parameters.

In the self-adaptation mechanism, the four vectors xGi , xGr1, xGr2 and xGr3 will first be com-

pared with each other in terms of their GR, GCD and GCPD values. This approach is slightly

different from the original scheme in OSADE whereby the comparison is based on Pareto ranks

and niche counts. Through the comparison, the best individual ranked among the four in terms

of the lowest GR and/or GCD or GCPD will be given the highest weight factor ω of 0.4 for

its contribution towards the calculation of the current average values of F and CR. The weight

factors assigned to the subsequent ranked individuals will be decremented by 0.1. The encoded

values of F and CR in all the four vectors will be used for the calculation of the current average

values of F and CR for the parent generation G which are denoted by 〈FG〉i and 〈CRG〉i and

the computation is as follows:

〈FG〉i =
ω1 × Fi,G + ω2 × Fr1,G + ω3 × Fr2,G + ω4 × Fr3,G

ω1 + ω2 + ω3 + ω4
(4.9)
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〈CRG〉i =
ω1 × CRi,G + ω2 × CRr1,G + ω3 × CRr2,G + ω4 × CRr3,G

ω1 + ω2 + ω3 + ω4
(4.10)

where ω1, ω2, ω3 and ω4 are the weight factors assigned to the four different individuals xGi , xGr1,

xGr2, and xGr3 . The values of the F and CR for the child generation G+ 1 which are denoted by

F̄i,G+1 and C̄Ri,G+1 are calculated by the following formulae as follows:

F̄i,G+1 = 〈FG〉i × eτN(0,1) (4.11)

C̄Ri,G+1 = 〈CRG〉i × eτN(0,1) (4.12)

where τ = 1
8×
√

2D
, D is the number of decision variables in the problem, and N(0, 1) represents

a randomly generated number under Gaussian distribution. Both F andCR are bounded between

a predefined set of lower and upper bounds of 0.1 and 0.9 respectively. The Opposite Number

[35] of the mutation factor F̄i,G+1 is then generated as follows:

¯F oppi,G+1 = Fupper + Flower − F̄i,G+1 (4.13)

where Fupper and Flower are the upper and lower bounds for the parameter F .

The local mutation scheme used in GrDE as based on RDEL allows every vector to learn

from the position of the best and worst individuals in the population of a particular generation.

Through this scheme, the generation of the new position of every mutant vector will be guided

towards the same direction of the best individual while avoiding the direction of the worst. In the

original local mutation scheme from RDEL, it involves two mutation factors which are randomly

generated for the mutant vector generation of the DE algorithm. However, in the local mutation
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scheme in GrDE, opposition-based learning is incorporated for the mutation factors. A random

value between [0, 1] will be generated for the first mutation factor for the local mutation scheme,

and the second mutation factor will be the Opposite Number of the first mutation factor. This

is performed as the use of the Opposite Number as based on opposition-based learning may

increase the probability of finding an optimal solution, and in the case here, an optimal setting

for the mutation factors. The resultant local mutation scheme is as follows:

Vi,G+1 = Xr1,G + F · (Xbest,G −Xr1,G) + Fopp · (Xworst,G −Xr1,G) (4.14)

The opposition-based self-adaptive mutation scheme is then joined with the local mutation

scheme through a linearly decreasing function as presented in Figure 4.4.
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Figure 4.4: Pseudo-code of Novel Mutation Strategy in GrDE

In the pseudo code of the novel mutation strategy, the current generation number and the

maximum number of generations are represented by G and GENS respectively. F1 is a ran-

domly generated number within [0, 1] and it will be used together with its Opposite Number

F1 opp in the local mutation scheme. As for F2, it is the mutation factor generated using equa-

tion 4.11, and it will also be used together with its Opposition Number F2 opp in the opposition-

based self-adaptive mutation scheme. One of the schemes will be selected using a linear decreas-

ing probability rule, and the selected scheme will generate two different mutant vectors which

will be compared against each other. The dominant one in terms of grid and/or Pareto dominance

will be chosen to enter the offspring population that will be combined with the parent population

for environmental selection.
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Lastly, the encoded values of both F and CR in the individual xi,G+1 will be updated

if the opposition-based self-adaptive mutation scheme is being used. The updating of F will

depend on the outcome of the selection of the mutant vector. If the selected mutant vector is

the one created using F̄i,G+1 as generated by equation 4.11, then the encoded value of F in

xi,G+1 will be updated with this F value; otherwise the encoded value will be updated with the

Opposite Number of F̄i,G+1. However the encoded value of CR in xi,G+1 will take on the value

of C̄Ri,G+1 as generated by equation 4.12 regardless of which mutant vector is being selected as

a trial vector for the next generation.

4.5.3 Environmental Selection

In GrDE, the environmental selection process is based on the one found in GrEA [173]. The

process starts by partitioning the combined population, which is made up of the previous parent

population and a newly created child population, into different fronts (F1, F2, ..., Fi) by using the

fast non-dominated sorting technique similar to the one found in NSGA-II. Likewise to NSGA-

II, GrDE also identifies the critical front which is often the first front in many-objective problems

due to the fact that many solutions in these problems are non-dominated to each other. The

fitter solutions are then selected to enter the parent population of the next generation based on

their fitness values. However, this may lead to a loss in diversity due to the fact that adjacent

solutions usually have similar fitness values. Hence there is a high chance of adjacent solutions

being eliminated or preserved together. Due to this shortcoming, a GR adjustment mechanism is

included in the environmental selection process of GrEA, and this will also be followed in GrDE.

The aim of the GR adjustment is to achieve a good balance of convergence and diversity in the

archive. The mechanism will be elaborated in a later section of this chapter.

Upon the completion of the segregation of the candidate solutions in the population differ-

ent fronts, the individuals in the first non-dominated fronts starting F1 will be updated into the

archive. Once the updating is completed, the grid-related information of the individuals will be

104



CHAPTER 4. A GRID-BASED DIFFERENTIAL EVOLUTION FOR MANY-OBJECTIVE OPTIMIZATION

initialized, whereby the fitness of the individuals in terms of GR, GCD and GCPD will be

calculated. Calculation of GR and GCPD will be done using Equations 4.6-4.7 and they will

be assigned to the individuals. As for the GCD value for an individual, the calculation has to

be performed by taking into account the crowding relation among the individuals in the archive

set. As such, the GCD value is first initialized to zero before performing the re-calculation.

Next the best individual of the considered front will be identified by comparing the three criteria

GR, GCD and GCPD among the individuals in the front. A lower value in all the criteria is

preferred. Lastly, GR adjustment will be performed on some of the adjacent individuals of those

individuals that are being picked to enter the archive.

The GR adjustment mentioned earlier will be done by penalizing three groups of individu-

als that are related to the picked individuals using different degrees of punishment. For the group

of individuals that possess the same grid coordinate as that of the picked individuals, their GR

values will be increased by M + 2 where M is the number of objectives of the optimization

problem. For a second group of individuals which are being grid-dominated by the picked in-

dividual, their GR will be also increased by M . The final group contains individuals which are

not grid-dominated by the picked individual and also having a different grid coordinate from the

picked individual. The GR of these individuals will be increased by a value between 0 to M −1.

For this, a neighbour individual y of a picked individual x is imposed a punishment of having

its GR increased by (M −GD(x, y) where GD(x, y) is the grid difference between individual

x and individual y. The individuals that are grid-dominated by the neighbour individual y will

also be imposed the same punishment as that of y. This is to prevent these individuals from

being archived earlier than competing individuals that are fitter than them in the aspect of grid

dominance.
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4.5.4 Algorithmic Framework

The GrDE algorithm starts with the creation of an initial population through random generation

of N solutions. A grid environment as described in Section 4.4.1 is then set up for the current

population Pop(G), and the individuals in Pop(G) will undergo fitness assignment based on the

three grid-based criteria as mentioned in Section 4.4.2. Next, mating selection is executed to

identify promising individuals to undergo reproduction using the novel DE mutation strategy in

GrDE to generate offspring. This is followed by the environmental selection process to pick N

best solutions through elitism for survival to the next generation. The process is iterated until the

stopping criterion is achieved. The pseudo code of GrDE is as explained in Figure 4.5.

Begin 
   1. Initialization: At generation g = 0, randomly generate N solutions as the initial population, Pop(g) 
   2. Evaluation: Evaluate all solutions in Pop(g). 
   Do while (“Stopping criterion is not met”) 
  3. Grid Setting: Construct the grid environment for Pop(g). 
 4. Fitness Assignment: Assign fitness to every solution in Pop(g) in terms of GR, GCD and GCPD 

values. 
5. Mating Selection: Select N parent solutions using binary tournament selection. 

 6. Reproduction: Identify the best and worst individuals of the current population. Use the novel 
mutation strategy to create new offspring. 

 7. Evaluation: Evaluate all offspring and store them in an archive A. 
 8. Archiving: Combine the parent solutions and all the offspring Pop(g) � A. 
 9. Environmental Selection: Partition the combined population Pop(g) � A into different fronts using 

the fast non-dominated sorting approach and identify the critical front to be archived. Select N best 
solutions from the critical front according to their fitness in terms of GR, GCD and GCPD values to 
form a new population Pop(g+1). Impose penalty in terms of GR adjustment to the “related” 
individuals of selected individuals. g = g +1. 

    End Do 
    10. Ouput: Output the final set of solutions Pop(g)  
End 

Figure 4.5: Pseudo-code of GrDE

4.6 Implementation

4.6.1 Test Problems

A total of 62 benchmark test instances from the DTLZ and WFG test suites as mentioned in Sec-

tion 2.8 were chosen to test the optimization performance of the proposed algorithms in terms of

converging to the true Pareto front as well as its ability in maintaining a set of diverse solutions in

a higher objective space. The selected test instances are also scalable to any number of objectives
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and decision variables.

In the DTLZ test suite, DTLZ2, DTLZ4, DTLZ5 and DTLZ7 are able to challenge the

ability of an evolutionary algorithm in handling problems with different shapes and locations. As

for DTLZ1, DTLZ3 and DTLZ6, they are able to pose more difficulties for algorithms in terms

of converging to the Pareto front due to their characteristics like multi-modality. As for the WFG

test suite, the problems involve different transformation types like bias or shift transformations

which are not found in other test suites, and they can also create challenges for evolutionary

algorithms.

4.6.2 Performance Metrics

In this study, Inverted Generational Distance (IGD) [136] and Hypervolume (HV) [3] were cho-

sen as the performance metrics for the assessment of the optimization performance achieved by

the algorithms. IGD is a unary indicator whereby the distance of every solution in a reference

optimal Pareto front to the obtained Pareto front is being calculated, and it will be used for the

evaluation of the performance of the algorithms on the DTLZ problems as their optimal fronts

are known. A lower IGD value will indicate better performance. HV will be used to assess the

performance of the algorithms on the WFG problems as their Pareto front is unknown. For HV

calculation, the scaling of the search space and the choice of the reference point are two important

issues to be considered. As the objectives in the WFG problems have different ranges of values,

the objective values of the obtained solutions for the WFG problems were normalized according

to the range of the obtained Pareto front of the problem. As for the reference point r, it was set to

be at 1.1 times of the upper bound of the Pareto front as per the recommendation in [184] so as

to emphasize the balance between convergence and diversity of the obtained solution set. For the

case of HV metric, a higher value attained will mean that better performance is being achieved

by the algorithm.
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4.6.3 Algorithms Under Comparison

For this study, five state-of-the-art EMO algorithms were chosen for performance comparison

with the proposed algorithm GrDE. The ε-dominance based Multiobjective Evolutionary Al-

gorithm (ε-MOEA) [174] is a steady-state algorithm that exploits the ε-dominance relation to

enhance selection pressure towards the Pareto front. The algorithm basically segregates the ob-

jective space into several hyperboxes of size ε. Each hyperbox is allocated only a single solution

based on ε-dominance as well as the distance from different solutions to the utopia point in the

hyperbox. From some works, it is seen that ε-MOEA is able to display good performance on

many-objective problems [167, 185] despite not being specifically designed for them.

Hypervolume Estimation Algorithm (HypE) [186] is an indicator-based algorithm for many-

objective optimization. Monte Carlo simulation is being used in this algorithm for the approxi-

mation of the hypervolume value (HV), and this leads to significant reduction in the amount of

time required for HV calculation. This in turn enables hypervolume-based search to be readily

applied on many-objective problems.

Multiple Single Objective Pareto Sampling (MSOPS) [187] is an aggregation-based ap-

proach that adopts the idea of single-objective aggregation optimization to perform parallel

search for points that exist on the Pareto front. As MSOPS is able to strike a good balance

between convergence and diversity, this makes it a popular algorithm to be considered for many-

objective optimization problems [167].

Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) [52] is a pop-

ular aggregation-based EMO algorithm that basically converts a multiobjective problem into

several single-objective problems that are to be handled simultaneously. MOEA/D is found to

display good performance in both multi-objective [53] and many-objective [188] optimization

problems.

Grid-based Evolutionary Algorithm (GrEA) [173] is a recently proposed algorithm catered

towards many-objective optimization. The basic procedures in GrEA are similar to the ones
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found in NSGA-II, but it exploits the potential of grid-based approach to strengthen the selection

pressure towards the optimal direction while maintaining a uniform distribution among solutions.

As such, the concepts of grid dominance and grid difference are introduced for the determination

of the mutual relationship of individuals in grid environment. Three grid-based relations, namely

grid ranking, grid crowding distance and grid coordinate point distance, are incorporated into the

fitness of individuals so as to distinguish them during the selection processes. GrEA is seen to

be competitive with other state-of-the-art algorithms in terms of finding a well-approximated and

well-distributed solution set when tested on some many-objective optimization problems.

4.6.4 Experimental Settings

Comparative studies of the proposed algorithm GrDE with the other algorithms mentioned in

Section 4.6.3 were carried out to examine their performance in the test problems. The codes

for GrDE, GrEA and MOEA/D were implemented in C++, while the codes for ε-MOEA, HypE

and MSOPS were implemented in C. The simulations were performed on an Intel(R) Core(TM)

i3-2100T CPU, 2.5GHz PC. Table 4.1 provides the summary of the general experimental settings

for all the algorithms used in this study. The number of fitness evaluations for the DTLZ test suite

followed the similar settings as found in [173] so as to ensure fair comparison for the algorithms.

As for the WFG test suite, the number of fitness evaluations followed the recommendations

from [189]. The additional settings in terms of the number of grid divisions div in GrDE and

GrEA, as well as the ε values for the ε-MOEA are stated in Table 4.2 and Table 4.3 for the DTLZ

and WFG problems respectively according to the number of objectives M in the problem.
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Table 4.1: Parameter settings

Parameter Settings
Population size 100 for all algorithms except MOEA/D and ε-MOEA
Population size (MOEA/D) 120 for 4 objectives, 126 for 5 objectives, 126 for 6 objectives,

84 for 7 objectives, 120 for 8 objectives, and 55 for 10 objec-
tives

Population size (ε-MOEA) Determined by the ε value, and the value of ε is set accordingly
so that the population size is close to 100

Stopping criterion 30000 evaluations DTLZ2, DTLZ4, DTLZ5, and DTLZ7
100000 evaluations for DTLZ1, DTLZ3, and DTLZ6
50000 evaluations for all WFG problems

Number of independent runs 30
Number of objectives for DTLZ problems 4, 5, 6, 8, 10
Number of objectives for WFG problems 4, 5, 7
Number of decision variables for DTLZ problems n = m+K − 1, where m is the number of objectives. K is

5 for DTLZ1, 10 for DTLZ2 to DTLZ6, and 20 for DTLZ7
Number of decision variables for WFG problems (2m− 1) + 20 where m is the number of objectives.
Crossover probability 1.0
Mutation probability 1/n (where n denotes the number of decision variables
Distribution index in SBX 20
Distribution index in polynomial mutation 20
Number of weight vectors in MSOPS 100
Scalarizing function in MOEA/D Tchebycheff function
Neighbourhood size for MOEA/D 10% of population size
Initial encoded F and CR values for vectors in GrDE 0
Lower Bound of F and CR in GrDE 0.1
Upper Bound of F and CR in GrDE 0.9

Table 4.2: Additional settings for GrDE, GrEA and ε-MOEA for DTLZ suite with different objectives M

M=4 M=5 M=6 M=8 M=10
Problem div ε div ε div ε div ε div ε
DTLZ1 10 0.0520 10 0.0590 10 0.0554 10 0.0549 11 0.0565
DTLZ2 10 0.1312 9 0.1927 8 0.2340 7 0.2900 8 0.3080
DTLZ3 11 0.1385 11 0.2000 11 0.2270 10 0.1567 11 0.8500
DTLZ4 10 0.1312 9 0.1927 8 0.2340 7 0.2900 8 0.3080
DTLZ5 35 0.0420 29 0.0785 14 0.1100 11 0.1272 11 0.1288
DTLZ6 36 0.1200 24 0.3552 50 0.7500 50 1.1500 50 1.4500
DTLZ7 9 0.1050 8 0.1580 6 0.1500 5 0.2250 4 0.5600

Table 4.3: Additional settings for GrDE, GrEA and ε-MOEA for WFG suite with different objectives M

M=4 M=5 M=7
Problem div ε div ε div ε
WFG1 9 0.0920 9 0.0950 9 0.0980
WFG2 9 0.5250 9 0.5550 9 0.5950
WFG3 9 0.9275 9 0.9560 9 0.9850
WFG4 9 1.5250 9 1.7250 9 1.8750
WFG5 9 1.3450 9 1.5655 9 1.7550
WFG6 9 1.5465 9 1.6540 9 1.7550
WFG7 9 1.2535 9 1.4355 9 1.6545
WFG8 9 1.6550 9 1.7650 9 1.8545
WFG9 9 1.8335 9 1.9550 9 2.0545

4.7 Simulation Results and Discussions

4.7.1 Performance Comparison for DTLZ problems

Comparative studies were conducted for the performance evaluation of the six algorithms under a

comprehensive suite of DTLZ test functions. The DTLZ problems created by Deb et al. [138] are
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scalable to any number of objectives and decision variables. For this study, the DTLZ problems

used contain four, five, six, eight or ten objective functions. The number of decision variables in

these problems was set accordingly to the number of objectives as shown in Table 4.1. Simulation

results in terms of the measurement of the mean values of the Inverted Generational Distance

(IGD) are presented in Table 4.4 according to test problems. The best entries in terms of mean

values are also marked in boldface. In order to judge whether the results of the best performing

algorithm differ from the results of competitors in a statistically significant way, the Wilcoxon

ranksum test [190] was conducted at the 5% significance level. The entries which are significantly

different from the best entries are indicated by the symbol †.

DTLZ2 is a problem that comes with a spherical Pareto front, and it might be considered as

a relatively easy test problem. However, this test problem can be used to investigate the ability

of a multi-objective evolutionary algorithm (MOEA) in scaling up its performance in a large

number of objectives. As seen from the IGD results, the proposed algorithm GrDE achieves the

best performance among all the other algorithms in this study for this problem with respect to all

the considered number of objectives. DTLZ4 is a modified DTLZ2 with a different meta-variable

mapping, and is used to investigate the ability of an MOEA in maintaining a good distribution of

solutions. Once again, GrDE outperforms all the other algorithms for DTLZ4 for all considered

number of objectives.

For DTLZ1 and DTLZ3, these two problems are highly multi-modal, and they bring forth a

stiff challenge for the algorithms to find the global optimal front. From the IGD results, it is clear

that GrDE generally outperforms all the other algorithms for most of the DTLZ1 problems for

all considered number of objectives except 10. As for DTLZ3, this problem is characterized by

the presence of a vast number of local optima, and algorithms face the challenge of preventing

themselves from getting trapped in the local optima. Again, GrDE is able to achieve the best

IGD values in DTLZ3 test instances with four, five and six objectives. For the case of DTLZ3

with eight objectives, GrEA achieves the best performance while MOEA/D outperforms the rest
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for both DTLZ1 and DTLZ3 with 10 objectives.

In both DTLZ5 and DTLZ6, these problems possess degenerate Pareto optimal fronts.

DTLZ5 tests the ability of an MOEA in finding a lower-dimensional Pareto front while working

with a higher-dimensional objective space. For this problem, GrEA achieves the best perfor-

mance on the problem with four objectives, but MSOPS takes the overall lead by attaining the

best performance for this problem with respect to all the other considered number of objectives.

However, GrDE is unable to perform as well as the other algorithms for the case of the DTLZ5

problem, and this suggests that the DE operator may not be that effective in handling problems

with degenerate Pareto optimal front and therefore this could be a potential weakness of DE.

On the other hand for DTLZ6, GrDE achieves good performance for this problem with four and

five objectives. However, its performance deteriorates as the number of objectives increased.

Instead, MOEA/D emerges as the top performing algorithm for this problem with six, eight and

10 objectives.

Lastly for DTLZ7, this problem is characterized by having a large number of disconnected

Pareto-optimal regions in the search space, and challenges the ability of an MOEA in maintaining

sub-populations in different Pareto-optimal regions. For this problem, GrDE generally achieves

better, if not comparable performance over HypE, MSOPS and MOEA/D. It also performs better

than ε-MOEA for this problem with five and 10 objectives. However, GrEA still emerges as

the overall best performing algorithm for DTLZ7 with respect to all the considered number of

objectives.

In order to explore further on the convergence performance of all the algorithms used in

this study, the evolutionary trajectories of the average IGD for the six algorithms on the DTLZ2

and DTLZ4 problems with 10 objectives are plotted as shown in Figures 4.6-4.7.

As seen from both the evolutionary trajectories, it is clear that GrDE achieves better perfor-

mance than the other five algorithms. In the plot for DTLZ2, it is observed that both the ε-MOEA

and GrEA achieve fast convergence during the initial evolutionary stage, but GrDE outperforms
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Table 4.4: Results in terms of IGD measurement for DTLZ problems

Algorithm Test Instance (m,n)
DTLZ1(4,8) DTLZ1(5,9) DTLZ1(6,10) DTLZ1(8,12) DTLZ1(10,14)

ε-MOEA 4.85E2±2.4E-3† 6.95E2±8.3E-3† 9.68E2±8.5E-2† 3.17E1±3.2E-1† 4.08E2±3.7E-1†
HypE 1.46E1±7.4E-3† 3.25E+1±4.2E-1† 5.47E1±6.1E-1† 1.15E+0±1.6E+0† 1.58E+0±1.6E+0†
MSOPS 5.82E2±3.0E-3† 8.57E2±3.6E-3† 1.85E1±1.2E-1† 7.82E1±7.0E-1† 1.65E+0±1.0E+0†
MOEA/D 9.63E2±1.1E-4† 1.21E1±1.5E-4† 1.39E1±6.2E-3† 1.85E1±5.6E-3† 2.23E1±6.4E-3
GrEA 4.65E2±5.2E-3† 6.36E2±7.6E-3† 8.57E2±1.2E-2† 1.09E1±5.0E-3 2.92E1±1.0E-1†
GrDE 3.84E2±1.1E-3 5.32E2±4.1E-3 6.87E2±3.3E-3 1.07E1±1.1E-2 3.26E1±1.7E-1†
Algorithm DTLZ2(4,13) DTLZ2(5,14) DTLZ2(6,15) DTLZ2(8,17) DTLZ2(10,19)
ε-MOEA 1.36E1±2.6E-3† 1.98E1±1.4E-2† 3.12E1±6.6E-3† 4.51E1±1.5E-2† 5.42E1±2.3E-2†
HypE 2.47E1±3.8E-2† 4.26E1±7.3E-2† 4.81E1±5.4E-2† 6.12E1±5.0E-2† 6.89E1±5.8E-2†
MSOPS 1.77E1±1.4E-2† 3.64E1±2.6E-2† 3.71E1±2.0E-2† 5.78E1±3.4E-2† 7.67E1±4.2E-2†
MOEA/D 2.15E1±2.0E-3† 2.69E1±1.0E-3† 4.17E1±1.8E-2† 6.34E1±7.2E-2† 7.32E1±6.6E-2†
GrEA 1.29E1±2.3E-3† 1.76E1±2.9E-3† 2.96E1±5.4E-3† 3.93E1±4.8E-3† 4.88E1±2.8E-3†
GrDE 1.08E1±1.4E-3 1.56E1±4.4E-3 1.96E1±9.9E-3 3.22E1±2.2E-2 2.60E1±2.1E-2
Algorithm DTLZ3(4,13) DTLZ3(5,14) DTLZ3(6,15) DTLZ3(8,17) DTLZ3(10,19)
ε-MOEA 1.42E1±8.8E-3† 2.27E1±3.5E-2† 4.68E1±1.2E-1† 1.21E1±1.4E+3† 2.05E1±2.4E-3†
HypE 1.04E+0±7.2E-1† 4.75E+0±5.4E+0† 2.66E+0±1.8E+0† 7.45E+0±9.6E+0† 6.24E+0±6.0E+0†
MSOPS 1.07E+1±6.7E+0† 2.91E+1±1.4E+1† 4.67E+1±1.6E+1† 6.12E+1±1.8E+1† 6.38E+1±2.0E+1†
MOEA/D 2.15E1±1.8E-3† 2.63E1±8.0E-4† 4.11E1±3.4E-2† 6.14E1±7.6E-2 6.36E1±5.4E-2
GrEA 1.54E1±4.6E-2† 2.84E1±8.1E-2† 4.42E1±1.6E-1† 5.56E1±2.2E-1 7.72E1±2.6E-1†
GrDE 1.09E1±2.4E-3 1.51E1±2.4E-3 4.02E1±2.4E-3 6.05E1±2.4E-3 7.65E1±2.4E-3†
Algorithm DTLZ4(4,13) DTLZ4(5,14) DTLZ4(6,15) DTLZ4(8,17) DTLZ4(10,19)
ε-MOEA 4.17E1±2.6E-1† 6.35E1±3.4E-1† 6.05E1±1.8E-1† 6.52E1±1.2E-1† 6.29E1±9.4E-2†
HypE 4.96E1±3.4E-1† 7.03E1±2.7E-1† 6.72E1±1.2E-1† 9.31E1±6.3E-2† 1.12E+0±6.2E-2†
MSOPS 1.45E1±4.5E-3† 3.24E1±3.4E-2† 3.79E1±1.2E-2† 5.52E1±2.6E-2† 8.23E1±4.3E-2†
MOEA/D 5.27E1±2.6E-1† 5.75E1±3.2E-1† 6.48E1±1.4E-1† 7.58E1±8.5E-2† 8.34E1±8.3E-2†
GrEA 1.93E1±1.2E-1† 2.18E1±9.6E-2† 3.01E1±4.8E-3† 4.05E1±3.0E-3† 4.94E1±2.8E-3†
GrDE 1.09E1±1.6E-3 1.51E1±4.8E-3 1.97E1±9.3E-3 2.71E1±1.2E-2 2.42E1±1.9E-2
Algorithm DTLZ5(4,13) DTLZ5(5,14) DTLZ5(6,15) DTLZ5(8,17) DTLZ5(10,19)
ε-MOEA 4.83E2±5.4E-3† 8.97E2±7.8E-3† 1.30E1±1.3E-2† 1.61E1±2.2E-2† 1.72E1±2.3E-2†
HypE 1.23E1±4.2E-2† 1.53E1±5.5E-2† 1.76E1±6.0E-2† 1.78E1±6.8E-1† 1.57E1±4.9E-2†
MSOPS 3.02E2±3.2E-3† 3.00E2±4.4E-3 1.88E2±1.8E-3 2.56E2±2.6E-3 4.07E2±4.1E-3
MOEA/D 2.66E2±1.2E-4† 4.65E2±1.4E-3† 6.98E2±4.5E-3† 1.09E1±7.6E-3† 1.97E1±1.2E-2†
GrEA 1.83E2±3.4E-3 4.36E2±2.1E-2† 9.62E2±1.5E-2† 2.35E1±3.6E-2† 3.48E1±6.0E-2†
GrDE 3.73E2±2.0E-3† 1.18E1±6.8E-2† 1.81E1±2.5E-2† 3.41E1±7.2E-2† 7.58E1±5.9E-2†
Algorithm DTLZ6(4,13) DTLZ6(5,14) DTLZ6(6,15) DTLZ6(8,17) DTLZ6(10,19)
ε-MOEA 4.65E1±2.6E-2† 1.69E+0±1.7E-1† 2.72E+0±2.9E-1† 1.96E+0±1.4E+0† 3.75E+0±2.2E+0†
HypE 2.24E+0±3.0E-1† 1.82E+0±4.3E-1† 2.26E+0±6.2E-1† 5.82E+0±4.0E+0† 8.96E+0±1.6E-1†
MSOPS 4.21E+0±6.3E-1† 6.61E+0±5.3E-1† 6.83E+0±5.4E-1† 6.79E+0±4.3E-1† 6.71E+0±4.8E-1†
MOEA/D 8.11E2±2.8E-2† 1.22E1±3.6E-2† 1.58E1±3.5E-2 1.87E1±2.6E-2 2.73E1±3.0E-2
GrEA 7.05E2±3.2E-2† 1.46E1±4.2E-2† 4.55E1±9.0E-2† 5.89E1±3.8E-1† 9.38E1±7.6E-1†
GrDE 3.70E2±4.3E-3 1.11E1±1.1E-2 7.25E1±3.3E-2† 7.45E1±1.4E-2† 1.21E+0±2.7E-3†
Algorithm DTLZ7(4,23) DTLZ7(5,24) DTLZ7(6,25) DTLZ7(8,27) DTLZ7(10,29)
ε-MOEA 3.48E1±1.7E-1† 6.32E1±2.2E-1† 5.88E1±2.0E-1† 8.94E1±5.2E-1† 1.20E+0±3.8E-1†
HypE 4.87E1±1.8E-1† 8.92E1±2.0E-1† 9.91E1±1.7E-1† 1.06E+0±4.3E-2† 1.23E+0±8.2E-2†
MSOPS 1.56E+0±4.2E-1† 7.60E+0±1.4E+0† 1.07E+1±2.6E+0† 1.97E+1±2.0E+0† 2.69E+1±3.3E+0†
MOEA/D 5.15E1±7.3E-2† 6.46E1±8.6E-2† 7.57E1±6.2E-2† 1.05E+0±1.4E-1† 1.58E+0±2.1E-1†
GrEA 1.87E1±6.4E-3 3.25E1±1.3E-2 4.86E1±1.5E-2 7.66E1±3.6E-2 1.08E+0±3.7E-2
GrDE 3.58E1±1.2E-2† 4.68E1±5.8E-2† 6.08E1±6.7E-2† 1.10E+0±2.9E-2† 1.12E+0±2.2E-2

them with an even faster initial convergence, and having a clear advantage of having lower IGD

values than these two algorithms till the end of 30,000 evaluations. As for the case of DTLZ4,

the ε-MOEA comes close to GrDE in terms of the convergence rate at the initial stage, but GrDE

outperforms it as well as the other competing algorithms with lower IGD values being attained

throughout the remaining stages of the evolutionary process.

In summary, GrDE achieves the lowest mean IGD values for 19 out of the 35 DTLZ test
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instances, and significantly outperforms all the other algorithms in 17 of these instances accord-

ing to statistical test. The good performance achieved by GrDE in DTLZ problems may be

attributed to the ability of the mutation strategies in the proposed algorithms in striking a good

balance between exploration and exploitation. Through the linearly decreasing probability rule

in the mutation strategy, the opposition-based self-adaptive mutation scheme, which is based on

the DE/rand/1 mutation strategy that favours exploration, will have a higher chance of being en-

gaged during the earlier evolutionary stages. During the later stages of the evolutionary process,

the local mutation scheme that favours exploitation will have a greater chance of being employed

and this helps in inducing a higher selection pressure. The use of grid criteria also played an

important role by helping to select better solutions in higher objective space.
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Figure 4.6: Evolutionary trajectories of average IGD for the algorithms on 10-objective DTLZ2

4.7.2 Performance Comparison for WFG problems

Comparative studies were also conducted for the performance evaluation of the six algorithms

using the WFG test suite whereby its problems involve various transformation types. WFG test

suite creates a big challenge for algorithms in terms of obtaining a well-converged and well-

distributed solution set due to different complexities being introduced in the WFG problems

which include multi-modality, non-separability and flat bias. WFG problems are also scalable in
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Figure 4.7: Evolutionary trajectories of average IGD for the algorithms on 10-objective DTLZ4

terms of the number of objectives and the number of decision variables. In this study, the WFG

problems used involve four, five and seven objectives, and the number of decision variables

for these problems was also set accordingly to the number of objectives as found in Table 4.1.

Simulation results in terms of the measurement of the average Hypervolume (HV) values over

30 simulation runs are presented in Table 4.5 according to the WFG test problems. The best

entries in terms of mean values are also marked in boldface. The Wilcoxon ranksum test was

also conducted at the 5% significance level to determine whether the results of best performing

algorithm differ from the results of the competitors in a statistically significant way. The entries

which are significantly different from the best entries will be indicated by the symbol †.

WFG1 is characterized by the presence of flat bias and it is observed that MSOPS emerges

as best performing algorithm for all the considered number of objectives, and the proposed algo-

rithm GrDE achieves competitive results when compared to MSOPS. For the case of WFG2 and

WFG3, both these two problems contain non-separable reduction and is characterized by a linear

shift from WFG1. In addition, WFG2 is characterized by a disconnected front while the WFG3

has a degenerate one. For these two problems, GrDE achieves the overall best results for all the

considered number of objectives.

WFG4 is characterized by multi-modality and results show that GrDE outperforms all the
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other algorithms for this problem for all considered number of objectives. As for WFG5, it is

a deceptive problem with weighted sum reduction from WFG4, and GrDE also takes the over-

all lead for this problem in all the considered number of objectives as well. WFG6 is another

problem that has nonseparable reduction which is more difficult than the one found in WFG2

and WFG3. As for WFG7, it is separable and uni-modal like WFG1, but the position-related

parameters of WFG7 are dependent on its distance-related parameters and other position-related

parameters. For both WFG6 and WFG7 with four and five objectives, GrEA is seen to be the

best performing algorithm, whereas GrDE outperforms all the other algorithms for WFG6 and

WFG7 with 7 objectives.

Lastly for WFG8 and WFG9, they are also problems that involve parameter dependency,

whereby the distance-related parameters in WFG8 have dependency on its position-related pa-

rameters and other distance-related parameters which in turn makes it a nonseparable problem as

well. As for WFG9, it has the similar type of parameter dependency as WFG7, and its distance-

related parameters also depend on other position-related parameters. On top of this, WFG9 is also

deceptive on its position-related parameters. From the simulation results, it is seen that GrDE

achieves the best outcome for WFG8 and WFG9 in all the number of objectives considered.

In summary, the proposed algorithm GrDE outperforms all the other algorithms in 20 out

of the 27 WFG test instances in terms of mean HV values, Out of the 20 test instances, GrDE

significantly outperforms all the other algorithms in 18 of them according to statistical test. In

order to demonstrate the evolutionary process of the algorithms under comparison, the trajecto-

ries of the average HV achieved by the algorithms for the WFG2 problem with seven objectives

are plotted in Figure 4.8.

As seen from the plot, the trajectory of the proposed algorithm GrDE increases more rapidly

than the other algorithms, and maintains an advantage over the rest till the end of the evolutionary

process. The overall good results seen for GrDE on the WFG problems may be attributed to the

overall design of the proposed algorithm that allows good balance of exploration and exploitation
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Table 4.5: Results in terms of HV measurement for WFG problems

Algorithm Test Instance (m,n)
WFG1(4,26) WFG1(5,28) WFG1(7,32)

ε-MOEA 6.96E1±6.3E-2† 6.72E1±6.9E-2† 6.83E1±6.2E-2†
HypE 6.08E1±8.6E-2† 5.75E1±6.4E-2† 6.11E1±6.5E-2†
MSOPS 9.35E1±1.1E-2 9.50E1±8.1E-3 9.43E1±6.6E-3
MOEA/D 6.63E1±9.2E-2† 6.81E1±9.9E-2† 6.83E1±8.6E-2†
GrEA 7.51E1±4.5E-2† 7.20E1±5.3E-2† 6.90E0±4.1E-2†
GrDE 9.11E1±7.6E-3† 9.17E1±1.1E-2† 9.31E1±1.7E-2†
Algorithm WFG2(4,26) WFG2(5,28) WFG2(7,32)
ε-MOEA 8.21E1±5.7E-2† 7.98E1±5.1E-2† 7.79E1±5.5E-2†
HypE 7.98E1±5.1E-2† 6.53E1±8.4E-2† 5.99E1±1.1E-1†
MSOPS 9.21E1±1.0E-2† 9.36E1±8.7E-3† 9.48E1±6.6E-3†
MOEA/D 8.73E1±1.0E-1† 8.64E1±2.9E-1† 8.18E1±2.7E-1†
GrEA 9.00E1±1.3E-2† 9.23E1±9.2E-3† 9.29E1±7.5E-3†
GrDE 9.31E1±1.1E-2 9.43E1±9.5E-3 9.55E1±1.1E-2
Algorithm WFG3(4,26) WFG3(5,28) WFG3(7,32)
ε-MOEA 5.57E1±4.1E-2† 4.86E1±6.1E-2† 4.93E1±5.3E-2†
HypE 4.81E1±5.7E-2† 4.15E1±3.4E-2† 3.62E1±3.4E-2†
MSOPS 5.93E1±8.2E-3† 6.01E1±1.7E-2† 5.66E1±2.0E-2†
MOEA/D 4.87E1±1.7E-2† 4.11E1±1.6E-2† 3.13E1±3.5E-2†
GrEA 8.19E1±8.0E-3† 8.99E1±8.5E-3† 9.11E1±7.8E-3†
GrDE 8.68E1±4.7E-3 9.21E1±9.3E-3 9.23E1±7.9E-3
Algorithm WFG4(4,26) WFG4(5,28) WFG4(7,32)
ε-MOEA 4.64E1±2.7E-2† 3.97E1±2.3E-2† 3.59E1±1.3E-2†
HypE 2.33E1±4.8E-2† 1.94E1±4.4E-2† 1.87E1±1.8E-2†
MSOPS 4.45E1±1.5E-2† 5.28E1±1.6E-2† 4.66E1±1.9E-2†
MOEA/D 3.00E1±4.3E-2† 3.41E1±7.3E-2† 2.84E1±5.2E-2†
GrEA 5.49E1±2.8E-3† 6.26E1±5.2E-3† 6.94E1±4.9E-3†
GrDE 5.69E1±2.9E-3 6.35E1±3.4E-3 7.12E1±5.6E-3
Algorithm WFG5(4,26) WFG5(5,28) WFG5(7,32)
ε-MOEA 4.74E1±2.4E-2† 4.41E1±3.5E-2† 4.04E1±2.7E-2†
HypE 2.40E1±3.8E-2† 1.74E1±4.1E-2† 1.88E1±2.7E-2†
MSOPS 4.24E1±4.4E-3† 4.58E1±1.4E-2† 3.97E1±2.9E-2†
MOEA/D 2.74E1±5.6E-2† 3.11E1±5.4E-2† 3.95E1±6.2E-2†
GrEA 5.44E1±2.4E-3† 5.85E1±4.5E-3† 6.27E1±3.1E-3†
GrDE 5.58E1±4.0E-3 5.99E1±1.1E-2 6.42E1±1.3E-2
Algorithm WFG6(4,26) WFG6(5,28) WFG6(7,32)
ε-MOEA 4.97E1±2.3E-2† 4.98E1±3.0E-2† 4.51E1±2.4E-2†
HypE 2.65E1±5.2E-2† 2.41E1±7.2E-2† 2.24E1±8.3E-2†
MSOPS 4.65E1±1.5E-2† 5.32E1±1.8E-2† 4.47E1±3.2E-2†
MOEA/D 2.87E1±2.2E-2† 3.76E1±1.1E-2† 3.46E1±1.0E-2†
GrEA 5.58E1±2.4E-3 6.43E1±3.6E-3 7.01E1±6.4E-3
GrDE 5.48E1±5.2E-3† 6.29E1±1.1E-2† 7.03E1±2.1E-2
Algorithm WFG7(4,26) WFG7(5,28) WFG7(7,32)
ε-MOEA 4.64E1±2.7E-2† 4.41E1±4.3E-2† 4.05E1±2.6E-2†
HypE 2.67E1±5.4E-2† 1.87E1±4.7E-2† 1.68E1±3.0E-2†
MSOPS 4.56E1±8.5E-3† 5.44E1±9.1E-3† 4.53E1±2.6E-2†
MOEA/D 2.82E1±8.5E-3† 3.45E1±1.4E-†2 2.58E1±3.9E-2†
GrEA 5.52E1±1.6E-3 6.41E1±2.4E-3 6.98E1±1.9E-3
GrDE 5.50E1±1.6E-3 6.39E1±3.6E-3 7.01E1±8.7E-3
Algorithm WFG8(4,26) WFG8(5,28) WFG8(7,32)
ε-MOEA 4.63E1±3.4E-2† 4.39E1±2.7E-2† 4.21E1±3.2E-2†
HypE 2.85E1±3.9E-2† 2.73E1±6.3E-2† 2.62E1±4.1E-2†
MSOPS 4.54E1±9.1E-3† 5.22E1±1.7E-2† 3.55E1±1.8E-2†
MOEA/D 4.81E1±2.0E-2† 5.55E1±4.3E-2† 7.30E2±4.8E-2†
GrEA 5.36E1±8.3E-3† 6.08E1±5.3E-3† 6.28E1±9.1E-3†
GrDE 5.47E1±6.2E-3 6.23E1±8.4E-3 6.47E1±5.2E-2
Algorithm WFG9(4,26) WFG9(5,28) WFG9(7,32)
ε-MOEA 4.46E1±2.9E-2† 4.19E1±4.3E-2† 3.81E1±3.5E-2†
HypE 2.47E1±4.3E-2† 1.87E1±5.3E-2† 1.82E1±3.6E-2†
MSOPS 4.26E1±2.4E-2† 4.81E1±2.0E-2† 4.03E1±4.0E-2†
MOEA/D 1.83E1±7.9E-3† 2.07E1±3.3E-2† 1.91E1±2.8E-2†
GrEA 5.39E1±3.3E-3† 6.19E1±8.2E-3† 6.77E1±6.2E-3†
GrDE 5.48E1±2.1E-3 6.37E1±5.3E-3 6.95E1±7.4E-3
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in its reproduction operators, while also having the ability to select fitter solutions in higher

objective space due to the use of grid-based criteria.
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Figure 4.8: Evolutionary trajectories of average HV for the algorithms on 7-objective WFG2

4.7.3 Computational Time Analysis

The primary focus of this section is to compare the computational cost between the proposed

algorithm GrDE and the other competing algorithms in this chapter. Table 4.6 presents the aver-

age computational times required by all the algorithms used in this study for solving the DTLZ2

problem with different number of objectives. From the results shown in Table 4.6, it is observed

that lesser computational time are incurred by ε-MOEA, MSOPS, MOEA/D and GrEA when

compared to the proposed algorithm GrDE in all the number of objectives considered. How-

ever, HypE generally incurs more computational time than all the other algorithms including

GrDE. It is noted that the computational cost of GrDE is slightly more than that of GrEA, and

this is attributed to the use of the novel mutation strategy that is based on the synthesization of

an opposition-based self-adaptive differential evolution mutation scheme with a local mutation

scheme. Despite a slower implementation of the proposed algorithm compared to the GrEA, the

computational cost incurred is within 5.5 seconds even if the number of objectives hits 10. This

is considered to be acceptable in view of the advantages witnessed in the proposed algorithm as
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seen from its superiority over the other algorithms under comparison for certain test problems as

demonstrated in the previous sections.

Table 4.6: Computational time (in seconds) used by the various algorithms for solving DTLZ2 with 4, 5,
6, 8 and 10 objectives

Algorithm 4 objectives 5 objectives 6 objectives 8 objectives 10 objectives
ε-MOEA 1.62 1.87 2.13 2.62 3.03

HypE 8.36 11.45 14.03 17.22 20.54
MSOPS 1.83 2.04 2.39 2.72 3.12

MOEA/D 1.97 2.18 2.47 2.88 3.25
GrEA 2.53 2.86 3.35 4.27 5.21
GrDE 2.76 3.05 3.62 4.52 5.45

4.7.4 Effects of Population Sizing on Optimization Performance

Test problems of DTLZ1 with 5 objectives and 9 decision variables (DTLZ1-5-9) and DTLZ2

5 objectives and 14 decision variables were used in the experimental studies for this section.

Simulations were conducted on the proposed algorithm GrDE and GrEA with a population size

of 100, 200, 300, 400, and 500, and the results are tabulated in Table 4.7. The simulations stopped

at 100,000 fitness evaluations for the case of DTLZ1 and 30,000 fitness evaluations for DTLZ2.

In Table 4.7, the best entries for values of the mean, median and standard deviation among the

different cases of population sizes used in both the algorithms are marked in boldface.

From the results shown in Table 4.7, it can be deduced that GrEA prefers a larger number

of generations rather than a larger population size for better performance. On the other hand, it is

observed from the results that the proposed algorithm GrDE generally prefers a larger population

size rather than a larger number of generations for better performance. This could be due to

the difference in the type of genetic operators used in the algorithms. In GrDE, it basically

uses the DE genetic operators which involves the random selection of three distinct individuals

from the population for the generation of the mutant vector for every target vector. With a larger

population size, there is a larger pool of distinct population individuals for the selection which not

only enhances diversity but may also lead to a higher probability of finding the global minimum

as well. However, as seen from the results achieved by GrDE for the DTLZ2 problem, it is
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observed that there is a slight deterioration of optimization performance when the population

size was increased beyond 300 for the DTLZ2. Hence this suggests that the population sizing in

GrDE may be problem-dependent. In summary, a larger population sizing for GrDE is generally

preferred but this needs to carefully managed so that optimal performance can be achieved.

Table 4.7: IGD metric for DTLZ1 and DTLZ2 with different population size

GrDE
DTLZ1-5-9 DTLZ2-5-14

Population Size Mean Std Dev Median Mean Std Dev Median
100 0.0532 0.0016 0.0525 0.1590 0.0044 0.1586
200 0.0413 0.0019 0.0411 0.1341 0.0059 0.1327
300 0.0405 0.0015 0.0401 0.1290 0.0066 0.1260
400 0.0381 0.0017 0.0375 0.1307 0.0039 0.1312
500 0.0338 0.0018 0.00334 0.1390 0.0050 0.1380

GrEA
DTLZ1-5-9 DTLZ2-5-14

Population Size Mean Std Dev Median Mean Std Dev Median
100 0.0636 0.0597 0.0076 0.1760 0.0029 0.1756
200 0.3907 0.1420 0.3986 0.1849 0.0032 0.1861
300 0.3915 0.1350 0.4238 0.1971 0.0036 0.1965
400 0.3921 0.1008 0.4344 0.2134 0.0084 0.2112
500 0.3421 0.1362 0.3727 0.2516 0.0056 0.2502

4.7.5 Sensitivity Analysis of Bounds for DE Control Parameters

In the proposed algorithm GrDE, the opposition-based self-adaptive mechanism requires the defi-

nition of the lower and upper bounds for the DE parameters which are namely the mutation factor

F and crossover rate CR. In all the experiments mentioned in the previous sections, the bounds

were set to 0.1 and 0.9 for the lower and upper bound respectively for both DE parameters. This

setting will be referred to as the original settings in this section. This section investigates the

effect when the bounds are varied, and tries to provide a recommended setting of the bounds for

the proposed algorithm. The results on the DTLZ problems with 5 objectives are demonstrated

for brevity. In order to study the sensitivity of GrDE to the lower and upper bounds, experiments

for the DTLZ problems were repeated by using different combinations of F and CR. In Table

4.8, the values of the lower and upper bounds for all the different combinations of the bounds are

stated. For all the experiments, the bounds were first varied for the mutation factor F but with the

original settings being applied to the bounds for the crossover rate CR. Next the bounds for CR
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were then varied and the bounds for F were fixed at the original settings. The other parameters

in GrDE related to the self-adaptive mechanism remained unchanged.

Table 4.8: Values of bounds for the different combinations (cases) of DE parameters F and CR

Case
1 2 3 4 5 6 7 8 9 10

Lower Bound 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.1 0.3 0.1
Upper Bound 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.5 0.5 0.3

In Tables 4.9-4.10, the average IGD values obtained by the proposed algorithm GrDE for

all the experiments using different combinations of the lower and upper bounds of both F and

CR are displayed. The values in parentheses beside every IGD value represent the ranks for a

particular combination of the lower and upper bounds as compared to the other combinations for

the test problem. For every test problem, the top four entries for every case in terms of the lowest

IGD values are marked in boldface in all the tables.

Table 4.9: Average IGD values for GrDE with varying bounds (all 10 cases) for F for DTLZ problems

Test Problem
Case DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

1 0.0532(1) 0.1593(7) 0.1511(1) 0.1571(3) 0.1183(8) 0.4675(5) 0.1106(9)
2 0.2685(7) 0.1642(9) 0.5846(9) 0.1600(8) 0.1429(9) 0.4449(3) 0.0718(6)
3 0.1413(4) 0.1572(3) 0.1873(3) 0.1571(3) 0.1130(7) 0.4402(1) 0.0906(7)
4 0.1008(3) 0.1717(10) 0.2908(4) 0.1746(10) 0.1458(10) 0.4440(2) 0.2110(10)
5 0.2716(8) 0.1571(2) 0.1694(2) 0.1559(1) 0.0805(3) 0.4972(9) 0.0443(1)
6 0.0542(2) 0.1627(8) 0.3105(5) 0.1568(2) 0.0994(5) 0.4949(8) 0.0967(8)
7 0.2370(6) 0.1584(6) 0.4118(7) 0.1599(7) 0.1001(6) 0.4481(4) 0.0705(5)
8 0.2236(5) 0.1574(4) 0.3964(6) 0.1598(6) 0.0543(1) 0.4823(6) 0.0524(3)
9 0.3582(10) 0.1578(5) 0.7260(10) 0.1607(9) 0.0759(2) 0.4927(7) 0.0652(4)

10 0.2720(9) 0.1560(1) 0.5157(8) 0.1579(5) 0.0808(4) 0.5205(10) 0.0501(2)

Table 4.10: Average IGD values for GrDE with varying bounds (all 10 cases) for CR for DTLZ problems

Test Problem
Case DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

1 0.0532(2) 0.1593(8) 0.1511(1) 0.1571(5) 0.1183(7) 0.1106(8) 0.4675(5)
2 0.0534(4) 0.1585(6) 0.4989(8) 0.1555(1) 0.1052(6) 0.1353(9) 0.4580(4)
3 0.0548(9) 0.1622(10) 0.5754(9) 0.1627(10) 0.1419(10) 0.0870(7) 0.4258(1)
4 0.0521(1) 0.1620(9) 0.6604(10) 0.1580(6) 0.1251(9) 0.1455(10) 0.4355(3)
5 0.0560(8) 0.1572(5) 0.1523(2) 0.1569(4) 0.1192(8) 0.0640(4) 0.5257(10)
6 0.0544(6) 0.1556(3) 0.2730(4) 0.1613(8) 0.0642(1) 0.0649(5) 0.4719(6)
7 0.0544(6) 0.1587(7) 0.4265(7) 0.1586(7) 0.1005(5) 0.0529(2) 0.4353(2)
8 0.0532(2) 0.1554(2) 0.3307(5) 0.1558(2) 0.0889(4) 0.0623(3) 0.4826(7)
9 0.0541(5) 0.1545(1) 0.1535(3) 0.1621(9) 0.0686(2) 0.0455(1) 0.5020(8)

10 0.0746(10) 0.1556(3) 0.3537(6) 0.1562(3) 0.0799(3) 0.0665(6) 0.5156(9)

For the mutation factor F , it is observed that through the use of the bounds under Case 5

(lower bound = 0.1, upper bound = 0.7), there were 2 DTLZ problems that achieve first ranking in
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terms of the lowest IGD among all the different combinations for the bounds, and also achieving

second placing for another 2 DTLZ problems and a third placing for a last DTLZ problem. This

performance is seen to be better than all the other cases of the combinations for the mutation

factor parameter. As such, Case 5 is considered as the best combination for the bounds for the

mutation factor in the opposition-based self-adaptive mechanism in the proposed algorithms.

For the case of the crossover rate CR, the use of the bounds under Case 9 (lower bound =

0.3, upper bound = 0.5) generated results of 2 DTLZ problems achieving first placing and another

2 more DTLZ problems with a second and a third ranking respectively. With this performance,

this combination for the bounds is regarded as the best one for the crossover rate in the opposition-

based self-adaptive mechanism used in the proposed algorithm.

With this, it may be recommended that the bounds for the mutation factor F to be set

between 0.1 and 0.7, and the crossover rate CR to be between 0.3 and 0.5. Through the recom-

mended bounds, the mutation factor could potentially be adapted to an adequately large value

for exploration in the search space, and be adapted to lower values to increase the convergence

rate. This would help to strike a balance between exploration and exploitation when the pro-

posed algorithm handles many-objective problems. As for the crossover rate, the range of 0.3

to 0.5 will allow the proposed algorithm to achieve good control on which and the number of

components to be mutated in every individual of the current population. As sensitivity analysis

for the parameters was only performed for the DTLZ problems, future work could be performed

to investigate the effects of varying the bounds for WFG problems as the setting of the bounds

for the self-adaptive mechanism in the proposed algorithm may be problem-dependent in order

to achieve the best outcome for the problems handled.

4.8 Summary

In view of the growing need for better and efficient methodologies for evolutionary many-

objective optimization, a grid-based differential evolution algorithm termed as GrDE has been
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proposed in this study to handle many-objective optimization problems. For the development

of the algorithm, a novel mutation strategy has been formulated and then incorporated into a

grid-based framework to form the proposed grid-based differential evolution algorithm termed

as GrDE. In the novel mutation strategy for GrDE, the opposition-based self-adaptive mutation

scheme from OSADE is integrated with a newly formed opposition-based local mutation scheme

via a linear decreasing probability rule.

Comprehensive simulation studies have been conducted to investigate how the differential

evolution variant proposed in this study would perform when being incorporated into a grid-based

framework to handle a suite of widely used test problems that are able to pose different challenges

for evolutionary algorithms. Through an extensive comparison of the proposed algorithms with

five other state-of-the-art evolutionary algorithms, it is seen that GrDE is very competitive with

the other algorithms in terms of achieving a well-approximated and well-distributed solution set

for the many-objective test problems. In total, the proposed algorithm significantly outperforms

the other algorithms in 35 out of all 62 test instances. The good performance achieved by the

proposed algorithm may be attributed to the complementary effect of using the opposition-based

self-adaptive mutation scheme which has strong exploratory abilities together with the local mu-

tation scheme that comes with strong exploitation abilities. With this coupling, a good balance

between convergence and diversity can be achieved which is an important factor in evolutionary

many-objective optimization. Furthermore, the use of the opposition-based self-adaptive mu-

tation not only eliminates the need to pre-define the DE control parameters, but also increases

the probability of finding optimal settings for the control parameters throughout the evolutionary

process and this helps to generate better solutions as well. Moreover, the use of the grid-based

criteria in the proposed algorithms allows a good refection of the information of convergence

and diversity simultaneously, and this helps to increase the selection pressure in the proposed

algorithm to derive better solutions in higher objective space. From the results obtained in this

study, it is recommended that GrDE can be a suitable optimization algorithm for handling many-
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objective problems with multi-modality. However, it is observed that the GrDE did not fare as

well as the other algorithms for problems with degenerate Pareto optimal front like the DTLZ5.

This could be a limitation of the DE operator, and requires further investigation.

Investigation of the effects of different population sizing for GrDE has also been conducted.

It is observed that a larger population size is generally preferred over a larger number of genera-

tions for the proposed algorithm. However, the sizing might be problem-dependent, and therefore

the sizing of the population needs to be carefully managed to ensure that optimal performance can

be achieved. Besides this, the effects of varying the lower and upper bounds for the differential

evolution control parameters (mutation factor and crossover rate) in the opposition-based self-

adaptive mutation mechanism is also being studied as well. Through the study, it is observed that

an appropriate setting for the bounds for both control parameters may bring upon better general

performance by the proposed algorithm. Lastly, computational time analysis was also carried out

and it is observed that the GrDE incurs slightly more computational cost than the GrEA. How-

ever, the increase in the computational cost is acceptable due to the better performance achieved

by it over other algorithms when compared over certain test problems.
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Chapter 5

An Opposition-based Self-adaptive

Differential Evolution with

Decomposition for Solving the

Multi-objective Multiple Traveling

Salesman Problem

The multiple Traveling Salesman Problem (mTSP) is a complex combinatorial optimization

problem, which is a generalization of the well-known Traveling Salesman Problem (TSP), where

one or more salesmen can be used in the solution. In this chapter, a novel differential evolution

algorithm termed as D-OSADE is developed to solve a Multi-objective Multiple Salesman Prob-

lem (MmTSP). In D-OSADE, the opposition-based self-adaptive differential evolution operator

from OSADE is incorporated into the decomposition-based framework, and is then hybridized

with the multi-point evolutionary gradient search (EGS) which acts as a form of local search to

enhance the search behaviour. Simulation studies will be carried out to examine the optimiza-
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tion performances of the proposed algorithm on the MmTSP with different number of objective

functions, salesmen, and problem sizes in terms of the number of cities to be visited. The ef-

fectiveness and efficiency of the algorithm will also be tested and benchmarked against several

state-of-the-art multi-objective evolutionary paradigms.

5.1 Chapter Objectives

The main objectives of this chapter is to look into the adaptation of OSADE, which is originally

intended for continuous optimization, for the handling of a combinatorial optimization problem

the multi-objective multiple travelling salesman problem (MmTSP). The chapter also seeks to

extend OSADE into a decomposition-based approach for multi-objective optimization, and in-

vestigates the optimization performance of the resultant algorithm by comparing it with several

state-of-the-art evolutionary algorithms using the MmTSP.

5.2 Introduction

The multiple traveling salesman problem (mTSP) is a complex combinatorial optimization prob-

lem, which is considered as a generalization of the famous and widely known Traveling Salesman

Problem (TSP), whereby more than one salesman is allowed to be used in the solution. In the

mTSP, there is a set of n cities to be visited by m salesmen (where m< n), and all the salesmen

will be required to start and end at a single depot after routing through the ordered cities. The ob-

jective of the mTSP is to determine a route for every salesman such that the total cost of the route

is minimized and every city is only to be visited once by only one salesman. For the cost, it can

in terms of time, distance, expense etc. In the event if m = 1, the mTSP problem will become the

classical TSP. mTSP naturally becomes more sophisticated than the TSP as there is requirement

to assign a set of cites to every salesman in an optimal order, while ensuring that the total cost for

all the salesmen is being minimized. However, the mTSP has not received as much attention in

126



CHAPTER 5. AN OPPOSITION-BASED SELF-ADAPTIVE DIFFERENTIAL EVOLUTION WITH DECOMPOSITION FOR
SOLVING THE MULTI-OBJECTIVE MULTIPLE TRAVELING SALESMAN PROBLEM

terms of research efforts when compared to the TSP. Due to the fact that the TSP belongs to the

class of NP-complete problems, it is clear that the mTSP is an NP-hard problem due to the high

complexity involved in it. Hence the mTSP will require heuristic approaches as they are able to

obtain approximate optimal solutions within specific time or computational limitations.

Moreover, most scheduling problems in real-world situations involve the simultaneous opti-

mization of several conflicting objectives. In multi-objective optimization framework, there is no

single optimal solution but rather a set of non-dominated solutions which is representative of the

tradeoff between the multiple objectives of a problem. As such, fitness assignment is a critical

component of the multi-objective evolutionary framework as it contributes to the identification

of better solutions for the next generation. Over the decades, a substantial amount of research

efforts has been placed in formulating different fitness assignment techniques for multi-objective

optimization, and the Pareto domination-based approach is considered to be one of the most pop-

ular [50]. However, the weakness in this approach is seen when the number of objectives in the

problem scales up. This is due to the fact that most of the solutions are non-dominated to each

other when the number of objectives increases and this result in difficulties during the selection

of promising solutions. In recent years, a decomposition-based approach is being introduced

whereby it makes use of traditional aggregation methods to convert the task of approximating the

Pareto front into the optimization of a number of single-objective optimization subproblems. As

such, this approach does not require the differentiation of the domination behaviour among the

solutions in a population, and hence the decomposition approach can be a good alternative to the

frequently used domination-based approach in multi-objective optimization.

Differential Evolution (DE) is a relatively new evolutionary algorithm developed by Storn

and Price [25], and is considered to be one of the most powerful and effective stochastic real-

parameter optimization algorithms in current use. The advantages in using DE lies in its sim-

plicity and ease of implementation, and yet reliable and fast. In addition, it requires only a few

control parameters to be set by a user. As such, there is a rapidly growing interest in the research
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in DE as seen by numerous reported works on DE. However, there are very few studies on the

use of differential evolution for solving the mTSP.

This study investigates the integration of an opposition-based self-adaptive DE operator

from OSADE with the decomposition-based frameworks, and then hybridizing the resultant DE

variant with multi-point evolutionary gradient search (EGS) which acts as a form of local search

before using the overall algorithm to handle the multi-objective multiple traveling salesmen prob-

lem (MmTSP). To the best of our knowledge, there are no recorded works on the use of any

decomposition-based self-adaptive differential evolution algorithms that are being proposed to

solve the MmTSP, and this gives motivation for us to propose D-OSADE to tackle such a prob-

lem. The DE operator from OSADE is used in the proposed algorithm because it is simple

and efficient, and the need to tune and fix the DE control parameters is eliminated due to the

opposition-based self-adaptive mechanism in it. As the DE operator is originally intended for

continuous optimization with floating point values, a heuristic rule needs to be applied in order

to enable it to be used for combinatorial optimization. For this, the Smallest Position Value (SPV)

rule [191] is applied in the proposed algorithm here. The MmTSP found in Shim et al. [192] is

employed as the problem in this study whereby the objective function is being formulated to

be the weighted sum of the total traveling cost of all salesmen and the highest traveling cost

by any single salesman. The proposed algorithm is then compared with several state-of-the-art

multi-objective evolutionary algorithms through simulation studies conducted on different test

instances of the MmTSP with different number of objectives, salesmen and cities.

The rest of this chapter is organized as follows. The following section presents a literature

review on some of the previous works on the mTSP, as well as a brief explanation of the multi-

point EGS and the Smallest Position Value (SPV) that are used in D-OSADE. The description

of the problem used in this study is presented in Section 5.4, and the details of the proposed

algorithm will be highlighted in 5.5. The test problems and parameter settings for the experiments

are outlined in Section 5.6. This will be followed by Section 5.7 which presents the simulation
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results and discussion. The summary of this study will be given in Section ??.

5.3 Background

In this section, a literature review is presented on some of the previous works on the mTSP

where focus is placed on some of the evolutionary approaches for the mTSP. For a more rigorous

review on the works that engaged the use of non-evolutionary techniques for the mTSP, it can be

found in [193]. An overview of the multi-point EGS and the SPV that are used in the proposed

algorithm will also be presented.

5.3.1 Related Works

Over the years, the traveling salesman problem received a large amount of attention with several

approaches being introduced for the solving of the problem and these approaches include neural

network [194], tabu search [195] and branch-and-bound [196]. Some of these methods are exact

algorithms, and the others are near-optimal or approximate algorithms. For the exact algorithms,

they employ integer linear programming approaches with additional constraints.

As for the mTSP, it received less attention compared to the TSP. A detailed review of the

known approaches for the mTSP can be found in [197]. Some of the approaches are exact

algorithms of the mTSP whereby some of the constraints of the problem are being relaxed, and

an example of this is found in [198]. There is also another piece of work found in [199] whereby

the approach is based on the Branch-and-Bound algorithm. Due to the combinatorial complexity

of the mTSP, heuristic is being applied in the solution. Russell [200] proposed one of the first

heuristic approach for the mTSP, and another such approach can be found in Potvin et al. [201].

Another solution based on neural network can be in found in Hsu et al. [202].

More recently, the use of genetic algorithms (GAs) for the solving of TSP emerged [203],

and a survey of the solving of the general TSP using GA can be found in [204] . The pioneering

effort of using GA to solve the mTSP was initiated by Zhang et al. [205] whereby simple GA
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with natural representation is being used for the scheduling of multiple teams of photographers

to visit a large number of schools. In the problem, the goal is to minimize both the total distance

traveled and the time taken while satisfying the time constraints as well as the requirement for

two schools to be visited by each team daily. However in this work, there is no elaboration on

how the manipulation of the multiple teams is done in their chromosome representation.

In Tang et al. [206], a hot rolling scheduling problem in Shanghai Baoshan Iron and Steel

Complex was being investigated whereby the problem was being modeled as an mTSP first. Real-

life production constraints were then put into consideration in the problem whereby the goal is

to schedule multiple turns within the same shift. With the use of a proposed one-chromosome

representation, the mTSP was then transformed into a classical TSP. In this implementation, the

best solutions obtained during every stage are always being selected to become one of the parent

chromosomes for the crossover operation.In another study [207], a vehicle scheduling problem

was treated like an mTSP due to the involvement of multiple vehicles in the routing. For this

study, a two-chromosome representation was proposed whereby the first chromosome specifies

the cities, and the second one is used to indicate which vehicle is to be tasked to visit the city

specified in the first chromosome. In Carter et al. [208], a two-part chromosome representation

was proposed for the mTSP. In this implementation, the chromosome for a gene consists of two

different parts. The permutation of the cities is being assigned in the first part of the chromosome

whereas the second part of the chromosome is catered for the number of cities to be visited by

each salesman. As such, there is an additional number of m genes in the chromosome for m

salesmen. From the results obtained, it is seen that the proposed representation derived better

results when compared to the one-chromosome representation for most of the test instances.

An improved version of the genetic algorithm that is based on one-chromosome repre-

sentation was proposed by Zhao et al. [209] for the tackling of the mTSP. In this algorithm, a

pheromone-based crossover operator that utilizes heuristic information including edge lengths

and adjacency relations as well as pheromone levels is used for the creation of offspring. In
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addition, local search is also being used to act as the mutation operator.

In a recent study by Kiraly et al. [210], a multi-chromosome representation of mTSP solu-

tions was proposed whereby every chromosome contains the route allocated to every salesman.

As such, each solution has m associated chromosomes. It is to be mentioned that the crossover

and mutation operators were also specially designed to handle the representation for this work.

In another recent study by Shim et al. [192], the estimation of distribution algorithm (EDA) is

being integrated into the decomposition framework, and is further enhanced by hybridizing the

decomposition EDA with different local search metaheuristics. In that study, the problem is being

reformulated to tailor the focus on the mTSP with single depot, and to consider the minimization

of the total traveling cost while balancing the workload among all the salesmen. The proposed

algorithms in that study were tested and compared against several state-of-the-art algorithms to

test their effectiveness and efficiency. It was observed that the proposed algorithms achieved the

best performance in most of the problem settings studied.

5.3.2 Evolutionary Gradient Search (EGS)

Local search has been proven to be able to enhance the performance of global search in evo-

lutionary algorithms [211, 212] where it is being used to exploit the local optimal in a specific

region. The evolutionary gradient search (EGS) is used as a form of local search in this chapter,

and an overview of the EGS will be presented here.

Gradient search is a classical method for continuous parameter optimization whereby gra-

dient direction is being retrieved to guide in the search. In every run, a single solution will be

produced. Evolutionary gradient search (EGS) is a recent approach proposed by Arnold and Sa-

lomon [92] which is basically a hybrid of both gradient search and evolutionary strategies which

encompasses the merits of their features. Due to it potential, the use of EGS has also been ex-

tended in [94,213]. In EGS, multi-directional searches are conducted, and the gradient will be the

direction derived from the evolutionary movement instead of the single movement of a solution.
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The pseudo-code of the multi-point EGS can be referred to Figure 5.1.

The EGS starts by defining the initial step size σ0. A step size σ is required in EGS to control

the mutation strength to be applied for the generation of the local neighbors and the offspring.

Upon the selection of an initial solution to undergo local search, N local neighbours will be

randomly generated by perturbing the initial solution using normal mutation with zero mean and

σ2 variance. Next the global gradient direction is to be estimated from the local neighbours

according to the formula in step 6 of Figure 5.1. A gradient offspring will then be created in step

7, and this is followed by the updating the mutation step size in step 8 with the control of a factor

ε which is recommended to be 1.8 according to [214]. The solution will then be updated in step

9 and the EGS process is iterated until the stopping criterion is achieved.

Begin 
      1. Input: Define the initial step size �

�

. � � �  
      Do while (“Stopping criterion is not achieved”) 

For � � ������ (Number of parent solutions) 
2. Initial Solution:  Select a solution �

�

 from the selection pool  
3. Reproduction: Randomly generate N local neighbours 	

�

 by perturbing �
�

 
using normal mutation 
������   

 4. Evaluation: Compute the objective function values F(�
�

) of �
�

  
 5. Archiving: Update the non-dominated solutions in an archive  

6. Direction: Estimate the global gradient vector as follows:   
 

   �� ��

∑

����

�

���

	




�

�

���

�

�


�

�

�

���



∑

����

�

���

	




�

�

���

�

�


�

�

�

���



 

 
  7. Offspring generation: Produce an offspring q as follows: 
 
   � � ��

�

���

�

��� 
 
  8. Update parameter: Update the mutation step size �

���

 as follows:  
 

   �

���

� ��

��

�

�������

�



�

	 ���

�

�

�

�


�����������������	�

  

where � � �� 
 

  9. Update solution: Update the parent solution �
�

 as follows: 
 
   �

�

� �����

�



�

	 ���

�

� 
 

10. Output:  Output �
�

 
End for �  

     End Do 
End 

Figure 5.1: Pseudo-code of the evolutionary gradient search algorithm
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5.3.3 Small Position Value (SPV) Rule

A heuristic rule known as the Smallest Position Value (SPV) was proposed by Tasgetiren et

al. [215] to allow the continuous particle swarm optimization to be applied to all classes of

sequencing problems, which are NP-hard in literature. The Smallest Position Value approach was

also applied in [191] which involves the use of a standard differential evolution algorithm along

with the SPV and a unique solution representation to solve the generalized traveling salesman

problem.

The SPV rule can be explained using Table 5.1 which shows the solution representation of a

vector in differential evolution (DE). In every vector, there is a continuous set of floating values,

and these values do not represent any sequence. Hence the SPV rule can be used to determine the

sequence of the cities visited by salesmen in the traveling salesman problem as implied by the

variable values in the vector. According to the SPV rule, the smallest position value is at xki4 =

0.153, and hence the dimension j = 4 is assigned to be the first city ski1 = 4 in the sequence (Si) of

the cities to be visited. The second smallest position value is at xki2 = 0.204, and this would mean

that the dimension j = 2 is assigned to be the second city to be visited, and so on and so forth for

the remaining dimensions. Therefore this means that dimensions are sorted according to the SPV

rule, which in turn means that xkij values are used to construct the sequence Si. In addition, every

value in the sequence will be unique and there will not be any repetition of the integer values in

the sequence. This representation is also unique in finding new solutions as the positions in every

vector will be updated at each iteration k in the differential evolution algorithm. Thus there will

be different sequences at each iteration k.

Table 5.1: Solution representation of vector in DE (for Smallest Position Value rule)

j 1 2 3 4 5
xkij 0.678 0.204 0.893 0.153 0.432
skij 4 2 5 1 3
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5.4 Problem Description

As seen from literature, the goal in the mTSP is to either minimize the total traveling cost of

all salesmen or to minimize the highest traveling cost incurred by any single salesman [216].

However in the study here, it shall focus on the problem formulated in [192]. This mTSP will

be based on a single depot, and taking into consideration of both the objective of minimizing the

total traveling cost as well as the objective of balancing the workload among all the salesmen. To

achieve this, the objective functions in the mTSP are formulated as a weighted sum of the total

traveling cost of all salesman and the highest traveling cost by any single salesman. As the mTSP

here is to be considered in a multi-objective setting, the problem will be formulated as follows:

Minimize:

FT (x) = ω1 × TTCTx + ω2 ×HTCTx, T = 1, 2, ...,K

where

TTCT (x) =
m∑
j=1

ITCjT (x)

HTCT (x) = max
1≤j≤m

(ITCjT (x))

ITCjT (x) =

nj−1∑
i=1

CjT (vi,j , vi+1,j)

+ CjT (vnj ,j , v1,j)

In the above formulated problem, x ∈ π, where π represents the decision space, vi,j is the ith

city to be visited by salesman j, and T is the number of objective functions in the problem. In the

objective functions, TTC is the total traveling cost of all salesmen, HTC is the highest traveling

cost incurred by any single salesman, and ITC is the individual traveling cost of a salesman.

The number of salesmen is denoted by m, and nj represents the number of cities traveled by

the salesman j. CjT (vi,j , vi+1,j) is the traveling cost (for the Tth objective) between cities at

locations i and i + 1 for salesman j. Lastly, ω1 and ω2 denote the weights that are used to
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balance between the total traveling cost and the highest traveling cost such that ω1 + ω2 = 1.0. In

this study, the weights of ω1 and ω2 are set to 0.5 each as per the recommendation from the study

conducted in [192]. In addition, all the cities must be visited only once and each salesman must

be tasked to visit at least one city in his traveling route for the problem here.

5.5 Proposed Algorithm

The framework of the proposed algorithm is presented in this section. The algorithm is ba-

sically made up of four main mechanisms which are namely the chromosome representation,

decomposition, reproduction based on an opposition-based self-adaptive differential evolution

operator and local search. For the chromosome representation, one-chromosome representation

from [206] is employed to represent the order of the cities to be traveled by the m salesmen.

This representation approach creates m − 1 pseudo-cities (denoted by integer values < 0) for

the chromosome. The pseudo-cities will represent the same initial starting city for all salesmen.

Hence, every chromosome will consist of n+m− 1 genes.

An illustration of the chromosome representation can be found in Figure 5.2 whereby there

are three salesmen and nine cities. The sequence in the representation shows that the first sales-

man starting from the initial city 0 and then visiting cities 4, 8 and 3 in that order of, and the

second salesman will start from the initial city (city indicated by -1) and then visits cities 5 and 1

in that order. The third salesman starts from the initial city (city indicated by -2) and visits cities

2, 7 and 6 in that order.

0 4 8 3 -1 5 1 -2 2 7 6

Figure 5.2: One-chromosome representation

With the chromosome representation in place, the proposed algorithm will then involve

the incorporation of the opposition-based self-adaptive differential evolution operator into the

decomposition framework from MOEA/D. For the implementation here, the assignment of the
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fitness to every solution is based on the Tchebycheff approach. In this classical aggregation

approach, the reference point z∗ and a set of uniformly distributed weight vectors λ1, ...,λS ,

where S is the number of subproblems, are being generated. The population will be decomposed

into S scalar optimization subproblems based on the Tchebycheff formulation and the fitness

value of the ith subproblem is formulated as follows:

gte(x|λi, z∗) = max
1≤k≤T

{
λik|Fk(x)− z∗k|

}
(5.1)

Inputs: 
1) Stopping criterion 
2) Population size, X  or number of subproblems, S 
3) A set of evenly distributed weight vectors for decomposition, �

�

� � � �

�

 
4) Number of neighbours for each weight vector, P 
5) Number of traveling salesmen in the problem, m 
6) Number of cities for the problem, n 
7) Number of local neighbours for the local search, N 

Output: 
1) A set of solutions in both decision and objective space as found by the optimizing algorithm 

Step 1: Initialization: (at Generation G = 0) 
a) Randomly generate initial population, Pop1_DE (G) that contains � vectors with floating 

values. 
b) Compute the Euclidean distance between all the weight vectors and group the  � closest 

neighbours to every sub-problem � as denoted by ���� ��

�

�

�

� � � �

�

	 where �� � ��� �� 
c) Convert the vectors in Pop1_DE (G) with floating values into chromosome-based solutions 

with integer values using the Smallest Position Value (SPV) rule, and place the chromosome-
based solutions denoted by 


�

 where �� � ��� �� in another population Pop1 (G) 
d) Evaluate the fitness of every chromosome individual in Pop1 (G) 
e) Initialize the reference point �� � 	�

�

�

� 
 
 
 � �

�

�

��by setting it to the minimum objective value of 
the initial population 

Step 2: Reproduction: 
a) Use the opposition-based self-adaptive differential evolution operator, and store the resultant 

trial vectors from the the DE operation in an offspring population PopQ_DE (G+1) 
b) Convert the vectors in PopQ_DE (G+1) into their equivalent chromosome offspring solution 

denoted by �
�

�using SPV rule and place them in PopQ (G+1). 
c) Evaluate the fitness of every chromosome-based solution �

�

 in PopQ (G+1). 
d) Penalize the chromosome solution if any salesman is not assigned any city by multiplying the 

objective value with a constant    
Step 3: Update solution: 
     For � � ��� � � do 

a) Update of ��: For � � ��� ��, if �
�

�

���

�

	�

�

�, then set if �
�

�

���

�

	�

�

� 

b) Update of neighbouring solutions: For �� � �	��, if �����

���

�

� �

�

� � ����


�

���

�

��

�

���, then set 



�

���

�  and ���

� �	�

�

�   
End do 

Step 4: Local search: 
a) Perform local search if activated. Next apply Step 3 to update the newly created offspring 

solutions from local search 
Step 5: Stopping criterion: 

a) If stopping criterion is achieved, then terminate. Else, go back to Step 2 

Figure 5.3: Pseudo-code of D-OSADE

The pseudo code of the proposed algorithm is as described in Figure 5.3. In the initializa-

tion stage, the algorithm starts by determining the P nearest neighbours to each weight vector
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according to Euclidean distance calculation. This means that every subproblem i would have

P neighbours which are denoted by B(i) = {i1, ..., iP }. As a differential evolution variant is

being used as the reproduction operator in the proposed algorithm, the initial population is then

randomly generated with population candidates which are vectors with floating values instead

of chromosomes with integer values as per the structure as shown in Figure 5.2. This is to fa-

cilitate the reproduction process for generation of new individuals using the opposition-based

self-adaptive differential evolution operator. The objective values are also required to be calcu-

lated based on the problem described in Section 5.4 during the initialization stage so that the

reference point z∗ can be initialized. In order to evaluate the initial population, the initial popu-

lation of vectors with floating point values has to be converted into chromosome-based solutions

with integer values and stored in a separate population meant for the chromosome-based solu-

tions. To achieve this, the Smallest Position Value (SPV) rule mentioned in Section 5.3.3 will be

applied. The converted solutions will be evaluated according to the problem, and the F-values

(FV) will be updated with the objective values from evaluation of the chromosome-based solu-

tion y. The minimum objective value of the initial population will also be used to initialize the

reference point z∗.

For the next stage, reproduction based on the opposition-based self-adaptive DE mutation

scheme from OSADE will be performed, and the detailed pseudo code of this scheme is pro-

vided in Figure 5.4. At the start of a parent generation G, three randomly selected vectors xGr1,

xGr2 and xGr3, whereby i 6= r1¬r2 6= r3, and r1, r2, r3 ∈ 1, 2, ..., S where S is the size of the

population, will be used for the DE mutation operation together with the target vector xGi . In

every individual, the values of the control parameters (mutation factor F and crossover rate CR)

will exist as extended variables whereby they will be initialized to zero at the start of every run.

These encoded values are required in the opposition-based self-adaptive mutation scheme for the

self-adaption process of the parameters whereby the current F and CR values for a particular

generation will be calculated based on the averaging of the encoded values from the four indi-
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For � = 1 to � do 
a) Randomly select 3 vectors �

��

� ,  �
��

�  and �
��

� , whereby �� � �

�

���

�

���

�

�, and 
�

�

� �

�

��

�

��

�

���� ��

� 
b) Retrieve the encoded F and CR values from �

�

� , �
��

� ,  �
��

�  and �
��

�  
c) Calculate the average values of F and CR which are denoted by 〈	

�

〉

�

 and  〈��
�

〉

�

 for the 
parent population using the encoded values from �

�

� , �
��

� ,  �
��

�  and �
��

� : 
 

〈

	

�

〉

�

��

	

���

� 	

����

��	

����

��	

����

	

�

〈

��

�

〉

�

��

��

���

� ��

����

� ��� ����

����

	

�� 

 
d) Calculate the updated F and CR denoted by  	

� ����

and ��
� ����

�for the offspring 
population as follows: 
 
	



� ����

��

〈

	

�

〉

�

����

�������,  ��



�����

��

〈

��

�

〉

�

����

������� 
  
where � � �
��

√

��, D is the number of decision variable, and ����� represents a 
randomly generated number. F and CR are bounded between 0.1 and 0.9 

 
e) Generate the Opposite Number of 	

� ����

 as follows: 
 
	����



� ����

��	

�����

��	

	
���

��	



�����

   where 	
�����

 and 	
	
���

 are the bounds for F 
 

f) Create 2 trial vectors �� and �� 
g) Randomly select an integer from (1,D) to be jrand, and perform differential mutation: 
For j = 1 to D do 

      If rand (0, 1) ≤ ��

�����

 or j = jrand then 
   ��

���

���

����

��	

�����

� ��

����

���

����

 
  ��

���

���

����

��	����

� ����

� ��

����

���

����

 
      Else  

��

���

���

� ��

,  ��
���

���

� ��

 
      End If 

End For 
h) Let the offspring be represented by �

� ����

 
i) Convert the trial vectors ��

���

 and  ��
���

 from vectors with floating point values to 
become    
two trial chromosome solutions (�� and���) with integer values using SPV rule. 

j) Evaluate both �� and �� according to the problem, and compare them as follows: 
  If �� dominates �� then 

   �

� ����

� ��;  	
� ����

��	



�����

;  ��
�����

����



�����

 
         Else if �� dominates �� then 

�

� ����

� ��;  	

� ����

��	����



� ����

;  ��
�����

����



�����

 
            Else if �� and �� are non-dominated to each other then 

If rand (0, 1) < 0.5 then 
    �

� ����

� ��;  	

� ����

��	



� ����

;  ��
�����

����



�����

 
Else 

�

� ����

� ��;  	
� ����

��	����



� ����

;  ��
�����

����



�����

 
End if 

              End if 
k) �

� ����

 enters the offspring population PopQ_DE (G+1) 
    End do 
 
 

Figure 5.4: Pseudo-code of Opposition-based self-adaptive DE mutation scheme in D-OSADE

viduals (xGi , xGr1, xGr2 and xGr3). For this study, simple averaging of the encoded values will be

done instead of weighted averaging from the original OSADE algorithm. This is because the

decomposition-based approach is used in D-OSADE instead of the domination-based approach,

and hence Pareto ranks and niche counts will not be available for the use of comparison of in-

dividuals as used in the weighted averaging of F and CR as performed in the original OSADE
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algorithm. The average values of the parameters F and CR in the parent generation as denoted

by 〈FG〉i and 〈CRG〉i are calculated using the encoded values of F and CR from all the four vec-

tors (xGi , xr1
G, xr2

Gandxr3
G) as per step c of Figure 5.4. With 〈FG〉i and 〈CRG〉i, the values

of F and CR for the child generation G+ 1 which are denoted by ¯Fi,G+1 and ¯CRi,G+1 are then

calculated by the formulae shown in step d of Figure 5.4. The Opposite Number of the mutation

factor ¯Fi,G+1 will then be generated in step e of Figure 5.4, and is denoted by ¯F oppi,G+1.

Next, two mutant vectors (V 1 and V 2) will be created for the actual DE mutation operation

as in step g of Figure 5.4. ¯Fi,G+1 will be used in the mutation operation for the generation of

the mutant vector V 1, whereas ¯F oppi,G+1 will be used for the case of the mutant vector V 2.

The two mutant vectors will then be converted using SPV rule into two equivalent chromosome

solutions, namely C1 and C2, and they will be evaluated according to the problem before being

compared to find the dominant one. If both are non-dominated to each other, one of them will be

randomly selected. The outcome of the comparison will determine which chromosome will enter

the chromosome-based offspring population. If the outcome is favourable towards solution C1,

the vector V 1 will enter the DE offspring population, otherwise the vector V 2 will be the one

entering the DE offspring population. At the same time, the encoded value of the mutation factor

F in the individual Xi will be updated with ¯Fi,G+1 if the comparison outcome mentioned above

favours chromosomeC1, otherwise the encoded value of the mutation factor will be updated with

¯F oppi,G+1. For the case of crossover rate, the encoded value in individual Xi will be updated

with ¯CRi,G+1 regardless of the comparison outcome.

As the SPV rule is used to handle the conversion of vectors in the DE offspring with floating

point values into their equivalent chromosome-based solutions with integer values representing

the sequence of the cities visited by the salesmen, every gene in the chromosome will have

a unique integer value. As such, there will not be any cases of chromosome-based solutions

having repeated or unallocated cities. Hence there will be no requirement for any repair of

chromosomes [192] as per what is being performed in all the other algorithms compared in this
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study. However, in the event if some salesmen are not being allocated any city in their traveling

route, then there will be a penalty given to the objective values of these solutions which do

not satisfy all the constraints. This will be done by multiplying the original objective values of

these solutions by a constant value K which is set to 10 in the implementation here, and the

penalty will also be applied to all the other competing algorithms as well. Once the reproduction

stage is completed, the reference point z∗ mentioned above will be updated with the minimum

value of the objective functions. Next, every of the chromosome-based solutions y, as converted

from the solutions from the opposition-based self-adaptive differential mutation operation, will

be compared with all the neighbouring solutions where the inferior solutions will be replaced by

the fitter ones.

Local search in the form of EGS will be performed when it is being activated after a certain

number of generations depending on the number of cities in the test instance. Once the local

search is activated, it will be applied in every generation after that. The entire procedure will

be repeated until the stopping criterion is achieved. As mentioned in [192], EGS is a suitable

local search meta-heuristic to be employed in the decomposition-based framework due to the

fact that aggregation function is readily available in the framework and hence it can be used in

the determination of the gradient in EGS. However, as EGS is originally meant for continuous

optimization problems, hence a modification was done in [192] so as to adapt the EGS for the

MmTSP which is a permutation-based problem. In this modified version of the EGS, N local

neighbours are first generated through the swapping of genes in the chromosomes. Aggregation

is then done on the chromosome-based solutions with the weighted sum approach by using the

set of uniformly distributed weight vectors λ1, ...,λS derived earlier in the algorithm.

Next, the estimation of the global gradient direction will be performed according to step

5 in Figure 5.1. An offspring will be produced next as per step 6 of Figure 5.1 which requires

xi to be floating point value. However, the chromosome-based solution xi cannot be directly

applied for step 6 as it contains integer values representing the cities. To handle this, an average
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cost is calculated between the chromosome solution and its local neighbours, and the cost will

be assigned to the xi in step 6. The offspring q is then updated according to step 6, but q is of

floating point value and cannot be used to represent a city. As such, a candidate city that has

the nearest q cost value to the original city has to be determined. An example can be used to

illustrate this whereby the value of q at a particular instance is 50 with city 1 being the original

city, and a salesman is tasked to visit cities 4 and 6. The traveling cost between the original city

and the two other cities will first be calculated. If the traveling cost between city 1 and 4 is 150

and 100 between city 1 and 6, then city 6 will be chosen as the candidate city as the traveling

cost of 100 is closer to the current cost value of q which is 50 as mentioned above. In step 7 of

Figure 5.1, the common mutation step size σt that is used in the generation of the offspring q will

be adjusted according to the quality of the offspring derived from the estimated gradient. The

gradient offspring will also be updated to the population according to step 3 of Figure 5.3. The

process goes back to step 2 of Figure 5.3 until the stopping criterion is met.

It is to be noted that diversity of solutions is maintained through the pre-selected weight

vectors in this decomposition-based DE algorithm. The concept is similar to what is being uti-

lized in classical aggregation algorithms whereby different weight settings are used to generate

an estimated optimal solution for every weight setting. However, the difference is that a set of

solutions is maintained in every simulation run for the algorithm here rather than performing

several runs as seen in classical aggregation approaches. Even though there is no specific steps

for applying elitism, elitism is still implicitly ensured in step 3b of Figure 5.3, whereby the P

closest neighbours (parent solutions) are being updated through the comparison of their fitness

values with those of the offspring solutions.

5.6 Experimental Design

Comparative studies of the proposed algorithm D-OSADE with some state-of-the-art algorithms

were carried out to examine their performance in all the test instances of the MmTSP formulated
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Table 5.2: Parameter settings for experiments

Parameter Setting
Population size, X Number of cities, n
Number of subproblems, S X
Number of cities, n 100, 300, 500
Number of salesmen, m 2, 5, 10 for 100 cities

2, 5, 10, 30 for 300 cities
2, 5, 10, 20, 50 for 500 cities

Number of objective functions, T 2 and 5
Number of local neighbours, N 10
Stopping criterion (Number of fitness evaluations) 200,000 for 100 cities; 600,000 for 300 cities;

1,000,000 for 500 cities
Crossover and mutation rate in NSGA-II and MOEA/D 0.8 and 0.005
Initial step size (σ0) and ε in EGS 300 and 1.8
Local search activation After 100,000 fitness evaluations for 100 cities

After 300,000 fitness evaluations for 300 cities
After 500,000 fitness evaluaions for 500 cities

in this study. A total of 24 multi-objective multiple salesmen problem (MmTSP) test instances

with different number of objectives T , salesmen m and cities n were studied in this chapter.

These problems are represented in the following convention T5m5n100, which indicates that the

MmTSP test instance is a five-objective problem that involves five salesmen and 100 cities. For

these problems, an n x n cost matrix is randomly formed for each objective in the range between

0 and 1000. The proposed algorithm was pitted against five other state-of-the-art algorithms to

observe how well they are able to handle the MmTSP whereby the results are compared using the

Inverted Generational Distance (IGD) performance metric [217] and Pareto front. IGD is a unary

indicator whereby the Euclidean distance of every solution in a reference optimal Pareto front to

the obtained Pareto front is being calculated. A smaller IGD implies better proximity and spread.

As the optimal solution set to the MmTSP is unknown, estimated optimal Pareto fronts will be

derived from the non-dominated solutions found from all the algorithms under comparison in all

the simulation runs.

Five state-of-the-art EMO algorithms were chosen for performance comparison with the

proposed algorithm. These five algorithms are namely the decomposition-based Estimation of

Distribution Algorithm (EDA) with Evolutionary Gradient Search (UMEGS) [192], decomposition-

based Estimation of Distribution Algorithm (UMDAD) [192], Multi-objective Evolutionary Al-

gorithm based on Decomposition (MOEA/D) [52], Estimation of Distribution Algorithm with

142



CHAPTER 5. AN OPPOSITION-BASED SELF-ADAPTIVE DIFFERENTIAL EVOLUTION WITH DECOMPOSITION FOR
SOLVING THE MULTI-OBJECTIVE MULTIPLE TRAVELING SALESMAN PROBLEM

non-dominated sorting genetic algorithm-II (UMGA) [218] and the non-dominated sorting ge-

netic algorithm-II (NSGA-II) [50]. It is to be mentioned that the EDA used in the algorithms men-

tioned here are based on univariate modeling (UM) [219, 220]. The UMEGS is an evolutionary

multi-objective optimization (EMO) algorithm that is formed by hybridizing a decomposition-

based EDA and the EGS. The UMDAD is a pure decomposition-based EDA that uses UM. As for

the MOEA/D, it is a popular aggregation-based EMO algorithm that basically converts a multi-

objective problem into several single-objective problems that are to be handled simultaneously.

UMGA is another EDA that is integrated with the NSGA-II. Lastly for the NSGA-II, it is a very

popular and widely used MOEA that is based on the concept of domination [50]. Table 5.2 pro-

vides the summary of the parameter settings required for the experiments for all the algorithms

in this study.

5.7 Results and Discussions

Simulations were carried out to study the performance of the six algorithms applied on the

MmTSP with different number of objective functions, salesmen, and cities. In this study, the

proposed algorithm D-OSADE was applied on the MmTSP with two and five objective functions

which are also varied with different problem settings in terms of the number of salesmen and

cities.

5.7.1 Results for Two Objective Test Instances

In this section, the simulation results on the MmTSP instances with two objectives are presented.

For ease of visualization, the optimization results (mean ± standard deviation) for the different

test instances are presented in table form. Table 5.3 present the IGD metric for the total traveling

cost of all salesmen of the solutions obtained by the different algorithms, and the corresponding

IGD metric for the highest traveling cost of any single salesman in the solutions obtained by the

algorithms will be presented in Table 5.4. In each table, the best result for every test instance
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with different problem settings, in terms of lowest mean IGD value, will highlighted in bold.

From the results shown in Table 5.3, it is seen that D-OSADE generates the best solutions

in most of the problem settings. This could be attributed to the complementary effect of the

use of the opposition-based self-adaptive DE operator which is strong in global exploration,

and the usage of the gradient information through the EGS which enhances local exploitation

leading to the enhancement of the algorithm in the search for more diverse solutions. Another

observation derived from Table 5.3 is that the total traveling cost increases with the increase in

the number of salesmen. This is due to the rise in difficulty of the optimization task when there

are more salesmen involved as the optimizers will need to determine the route for every salesman

while keeping the total traveling cost to a minimum at the same time [192]. Moreover, all the

salesmen will also need to return to the home city, and additional traveling cost may be incurred

if the last city assigned to the salesmen is far from the depot. In both D-OSADE and UMEGS,

gradient information is used as EGS is embedded in both the algorithms. With the increase in the

number of salesmen, the gradient information gets weakened. Therefore the use of local search

to exploit the information for the search may become less effective. However, D-OSADE is able

to perform better than the UMEGS and this may be attributed to the DE operator which is of

strong exploration capability and can result in the promotion of diversity of solutions.

In Table 5.4, IGD metric for the highest traveling cost of any salesman of the solutions

generated by the algorithms is presented. It can be observed that both D-OSADE and UMEGS

achieve good performance in this aspect in terms of achieving the best IGD results in most of the

test instances. This observation suggests that D-OSADE and UMEGS are able to allow a good

distribution of the workload among the salesmen in these test instances. Another observation is

that MOEA/D is able to produce solutions with the lowest traveling cost for any single salesman

for test instances of problem settings of 10 salesmen in both 100 and 300 cities as well as 30

salesmen in 300 cities even though it did not achieve any best results in terms of the total traveling

cost of all the salesmen in all the two objective test instances. As for UMDAD, it tends to
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produce better outcome for test instances with a more cities (500) but its results are inferior for

test instances with lesser cities (100).

In Figure 5.5, the evolved Pareto front of the total traveling cost generated by all the al-

gorithms applied on the MmTSP with two objective functions, two salesmen, and 100 cities is

as displayed. From the figure, it is observed that D-OSADE is able to produce a set of diverse

solutions with good proximity when compared to the other algorithms. In terms of IGD measure-

ment, D-OSADE has the lowest value for this test instance among all the algorithms, and this

indicates better convergence performance and better ability in terms of producing a set of solu-

tions with better diversity when compared with the other algorithms. From the figure, it can also

observed that UMEGS produces a diverse set of solutions but is inferior to the other algorithms

in terms of proximity for the solutions. On the other hand, UMDAD is seen to have the worst

performance as it has poor solution diversity despite having good proximity. It is also observed

that the domination-based algorithms (NSGA-II and UMGA) achieve better performance than

the decomposition-based algorithms except D-OSADE and UMEGS.

For the similar test instance with two objective functions, two salesmen, and 100 cities,

the convergence plots by the different algorithms are as shown in Figure 5.6. It is clear that

the convergence speed of D-OSADE is better than all the other algorithms at the initial stage of

evolution. After the initial stage, the other algorithms achieve about the same convergence rate

as D-OSADE except UMGA. It is observed that UMDAD converges at a slower rate and was

outperformed by most of the other algorithms. This could be due to the possibility of poorer

diversity preservation ability in UMDAD as seen from its Pareto front in Figure 5.5. The poor

diversity preservation in UMDAD is likely to result in the algorithm failing to further explore

and exploit the other promising regions in the search space. For the case of UMEGS, it has

the similar convergence speed as the UMDAD until the number of fitness evaluations reaches

100,000. This is because both UMDAD and UMEGS are almost similar algorithms except that

the latter has EGS being embedded as a form of local search that is activated after a certain
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number of fitness evaluations which is 100,000 for the case of this test instance. As such, the

convergence speed for UMEGS improved tremendously after local search kicks in. However for

D-OSADE, its opposition-based self-adaptive DE mutation operation allows a good exploration

and exploitation of the search space and hence giving it an edge over UMEGS from the start

of the evolution. With the local search being activated after 100,000 fitness evaluations for D-

OSADE, it is observed that there is further improvement in its optimization performance in terms

of IGD measurement as there is further enhancement of diversity through the further exploitation

of more neighbouring solutions. This in turn helps D-OSADE to become the best performing

algorithm during the later stages of evolution.
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Figure 5.5: Evolved Pareto front of total travelling cost generated by the different algorithms applied to
the MmTSP with two objective functions, two salesmen, and 100 cities

Table 5.3: IGD metric for total travelling cost for all salesmen of the solutions obtained by various algo-
rithms for the MmTSP with two objective functions, m salesmen, and n cities

Test Instance UMEGS UMDAD MOEA/D UMGA NSGA-II D-OSADE
T2m2n100 3588±823 10985±473 7538±963 5875±753 6024±628 2455±647
T2m5n100 4876±1074 11638±792 8375±695 7784±794 6972±683 3968±805
T2m10n100 8875±653 12332±525 8926±728 9628±837 8477±692 8267±583
T2m2n300 5648±794 28126±695 28482±1032 26238±1526 25928±1503 5382±706
T2m5n300 8103±1775 28632±785 28916±1442 26962±1513 27564±2356 7753±1548
T2m10n300 17730±4303 29736±1688 29854±735 32395±1594 28182±2415 16988±4020
T2m30n300 31205±1785 35374±1073 325842±1684 43288±1337 38635±2508 31865±1802
T2m2n500 8358±2735 57362±662 59673±1325 54845±2331 56788±1846 8672±2845
T2m5n500 12114±2428 58384±843 58926±2021 55837±1471 57439±2125 11428±2133
T2m10n500 33680±13853 58827±786 59947±1855 62018±24532 58003±1730 34090±13039
T2m20n500 52195±2016 59546±684 61549±1642 66438±2348 62824±1056 50014±1884
T2m50n500 58870±2924 65681±1495 69838±1705 82725±2810 77581±1304 59258±2842

Next, the Pareto front for the total traveling cost generated by all the algorithms applied
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Figure 5.6: Convergence curve of total travelling cost generated by the various algorithms applied to the
MmTSP with two objective functions, two salesmen, and 100 cities

on the MmTSP with two objective functions, 20 salesmen, and 500 cities is being displayed

in Figure 5.7. From the figure, it is observed that the decomposition-based algorithms (D-

OSADE, UMEGS, UMDAD, and MOEA/D) achieve better Pareto fronts than the domination-

based algorithms (UMGA and NSGA-II). For the decomposition-based algorithms, D-OSADE

and UMEGS are seen to generate more diverse solutions compared to UMDAD. However, the

solutions generated by D-OSADE and UMDAD have better proximity than UMEGS. In terms of

IGD measurement shown in Table 5.3, it is clear that D-OSADE has a better performance than

both UMEGS and UMDAD. This is because D-OSADE has a set of diverse solutions which is

much better than UMDAD, and has better proximity when compared to UMEGS. For the case of

the domination-based algorithms (UMGA and NSGA-II), they are inferior in proximity as seen

from their Pareto fronts in Figure 5.7, and this explains why the IGD values of the decomposition-

based algorithm are generally better than the IGD values of the domination-based algorithms. In

terms of convergence speed of the different algorithms as indicated in Figure 5.8, there are sim-

ilar observations between this test instance and the previous one with two objective functions,

2 salesman and 100 cities. From the observations, it can be concluded that the decomposition-

based algorithms have better scalability in the number of decision variables as compared to the
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domination-based algorithms. For the case of D-OSADE, it has the best IGD value among all

the algorithms for this test instance. This is due to its strong exploratory capability which helps

to guide the search process, which is then complemented by the use of local information in the

evolutionary process which helps the algorithm to further explore and exploit the search space.

Hence this leads to D-OSADE being able to achieve both good proximity as well as a diverse set

of solutions for this test instance.
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Figure 5.7: Evolved Pareto front of total travelling cost generated by the different algorithms applied to
the MmTSP with two objective functions, 20 salesmen, and 500 cities
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Figure 5.8: Convergence curve of total travelling cost generated by the various algorithms applied to the
MmTSP with two objective functions, 20 salesmen, and 500 cities
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Table 5.4: IGD metric for highest travelling cost of any salesman of the solutions obtained by various
algorithms for the MmTSP with two objective functions, m salesmen, and n cities

Test Instance UMEGS UMDAD MOEA/D UMGA NSGA-II D-OSADE
T2m2n100 1853±594 7459±254 5253±682 4630±614 4430±558 1537±483
T2m5n100 1804±543 3045±563 2134±452 2353±463 2265±623 1685±517
T2m10n100 1275±502 1453±538 535±391 1237±405 1435±349 1053±509
T2m2n300 3502±1218 20534±704 19364±587 17883±1437 18135±1012 3362±1035
T2m5n300 3755±1756 12004±375 9913±489 9345±583 8743±980 3549±1516
T2m10n300 2014±883 2588±892 1035±635 3863±1164 3176±993 1842±728
T2m30n300 1023±358 984±426 632±424 2734±553 2395±514 904±464
T2m2n500 5728±2163 43459±1188 42845±803 38662±1993 38854±1834 5822±2036
T2m5n500 6354±2819 18043±9835 16034±8735 16534±7452 17135±1238 6163±2762
T2m10n500 3939±1663 4073±1402 2948±1432 6703±1303 6654±1504 3766±1483
T2m20n500 1788±937 1885±969 1833±1125 4652±670 3645±915 1703±1053
T2m50n500 935±415 1124±428 1310±573 3254±612 3569±846 1022±528

5.7.2 Results for Five Objective Test Instances

In this section, the number of objectives of the mMTP is increased to five, and the optimization

results (mean± standard deviation) achieved by the different algorithms will be presented. Table

5.5 shows the IGD metric for the total travelling cost of all salesmen of the solutions obtained

by the algorithms for the MmTSP with five objective functions and different number of salesmen

and cities. The corresponding IGD metric for the highest traveling cost of any single salesman

of the solutions obtained by the algorithms will be presented in Table 5.6. In each table, the best

result for every test instance with different problem settings, in terms of lowest mean IGD value,

will be highlighted in bold.

From Table 5.5, it can be observed that the performance of the decomposition-based algo-

rithms (D-OSADE, UMEGS and MOEA/D) are generally better compared to the domination-

based algorithms (UMGA and NSGA-II) for most of the test instances. The superiority in the

performance of the decomposition-based algorithms is attributed to the use of aggregation-based

fitness assignment for the solutions. In the decomposition-based approach, the aggregated fit-

ness values of the solutions are being compared during the selection of the solutions for the next

generation. In this way, solutions of better fitness will always be selected for reproduction in the

next generation. However, for the concept of domination as used in UMGA and NSGA-II, the

fitness assignment to each solution is performed based on the ranks of domination. For the case

here with five objective functions, it is considered as a many-objective problem where most of
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the solutions are non-dominated against each other and hence they are given lower domination

ranks. As such, it will be more difficult for the promising solutions to be selected for survival and

reproduction in the domination-based algorithms. Among the decomposition-based algorithms,

D-OSADE and UMEGS are able to produce better solutions than UMDAD and MOEA/D, and

this is due to the use of local information derived from the EGS embedded in them which helps

to further explore and exploit the search space. However, D-OSADE has the best IGD values

in more of the five-objective test instances when compared with the UMEGS, and this demon-

strates the good ability of the opposition-based self-adaptive DE operator in the exploration of

the search space for promising solutions.

In Table 5.6, the IGD metric for the highest traveling cost of any salesman of the solutions

generated by the algorithms is presented. It can be observed that both D-OSADE and UMEGS

achieve good performance in this aspect. For MOEA/D, it is able to produce solutions with

lowest traveling cost for any single salesman for test instances with problem settings of 100

cities with both five and 10 salesmen even though its performance in terms of total traveling

costs is not considered superior. In summary, D-OSADE achieves the overall best performance

in most of the five objective test instances under different problem settings as seen from the IGD

results from Tables 5.5-5.6. This suggests that D-OSADE is able to achieve the objectives of

minimizing the total traveling cost as well as to balance the workload among all the salesmen.

Table 5.5: IGD metric for total travelling cost for all salesmen of the solutions obtained by various algo-
rithms for the MmTSP with five objective functions, m salesmen, and n cities

Test Instance UMEGS UMDAD MOEA/D UMGA NSGA-II D-OSADE
T5m2n100 8675±703 15035±893 8965±253 14983±568 14215±836 8048±652
T5m5n100 10537±1202 14208±677 11284±716 18043±805 17835±897 9855±1024

T5m10n100 13058±1004 15865±452 14853±952 23955±1388 23782±1225 12631±959
T5m2n300 17452±2305 44872±1283 46388±1643 56124±2405 55268±1624 18024±2490
T5m5n300 22843±3528 44620±7825 46894±2341 57305±3562 57253±3812 21953±3227

T5m10n300 30638±1525 43956±1493 52884±1978 62360±4216 51038±2750 28945±1238
T5m30n300 47114±2013 53285±1205 74195±4125 96234±2538 94239±3627 48033±2406
T5m2n500 25843±2214 63046±802 96238±463 96378±2937 94035±3210 24793±2004
T5m5n500 24385±5317 63848±1925 97035±4528 96817±3914 95294±3575 25154±5428

T5m10n500 38240±1263 63724±1136 103205±2952 103852±3820 98253±4783 37228±1184
T5m20n500 42855±2854 64083±1572 109450±1954 108836±4028 101205±6231 43016±2977
T5m50n500 70140±4052 79370±3015 151287±4782 151635±5063 152745±5274 71556±4365
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Table 5.6: IGD metric for highest travelling cost of any salesman of the solutions obtained by various
algorithms for the MmTSP with five objective functions, m salesmen, and n cities

Test Instance UMEGS UMDAD MOEA/D UMGA NSGA-II D-OSADE
T5m2n100 4983±1130 7012±421 5204±443 9612±624 9623±442 4811±1032
T5m5n100 3715±1458 3617±602 2725±374 7523±1327 5882±1235 3588±1325
T5m10n100 2023±445 2210±352 1723±493 4884±1103 4793±812 1925±484
T5m2n300 9342±1132 27303±998 26302±1304 32167±1445 31248±745 9036±988
T5m5n300 8548±2845 12184±558 9610±1388 19335±4193 17738±4828 8395±2651
T5m10n300 3651±1679 4305±1563 4362±1123 9523±1983 9693±2366 4052±1823
T5m30n300 1326±410 1832±516 3305±510 6546±695 6814±1142 1223±365
T5m2n500 11035±1820 48838±1668 49635±1834 53037±1772 50127±1635 12226±1633
T5m5n500 9937±2655 16932±1134 22346±5882 35238±5108 26304±4020 10233±2912
T5m10n500 5573±2417 5922±1824 12164±3784 17443±2237 16637±1884 5433±2104
T5m20n500 2738±1218 3380±1327 8136±1299 14374±1821 12205±2568 2556±1050
T5m50n500 1517±663 1894±683 4612±873 7102±1002 7203±773 1735±754

5.7.3 Sensitivity Analysis of Bounds for DE Control Parameters

In the proposed algorithm D-OSADE, the opposition-based self-adaptive mutation scheme re-

quires the definition of the lower and upper bounds for the DE parameters (mutation factor F

and crossover rate CR). In all the simulation runs performed in the previous sections, the bounds

were set to 0.1 and 0.9 for the lower and upper bound respectively for both DE parameters. This

setting will be referred to as the original settings in this section. This section investigates the

effect when the bounds are varied, and tries to provide a recommended setting for the bounds for

D-OSADE.

The results on the T5m2n100, T5m2n300 and T5m2n500 are demonstrated for brevity. For

the study of the sensitivity of D-OSADE to the lower and upper bounds, experiments for these

test instances were repeated by using different combinations of F and CR. In Table 5.7, the

values of the lower and upper bounds for all the different combinations of the bounds are stated.

For all the experiments, the bounds were first varied for F but with the original settings being

applied to the bounds for CR. Next the bounds for CR were varied with the bounds for F being

fixed at the original settings. The other parameters in D-OSADE related to the self-adaptive

mechanism remained unchanged.

Table 5.7: Values of bounds for the different combinations (cases) of DE parameters F and CR

Case
1 2 3 4 5 6 7 8 9 10

Lower Bound 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.1 0.3 0.1
Upper Bound 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.5 0.5 0.3
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In Tables 5.8-5.9, the mean IGD values obtained by D-OSADE for all the experiments

using different combinations of the lower and upper bounds of both F and CR are displayed.

The values in parentheses beside every IGD value represent the ranks for a particular combination

of the lower and upper bounds as compared to the other combinations for the test instance. For

every test instance, the top four entries for every case in terms of the lowest IGD values will be

marked in boldface in all the tables.

Table 5.8: Mean IGD values for D-OSADE with varying bounds for F for different test instances

Test Instance
Case T5m2n100 T5m2n300 T5m2n500

1 8048(4) 18024(3) 24793(2)
2 8219(5) 18993(7) 25329(6)
3 7983(2) 17645(1) 24603(1)
4 8012(3) 17836(2) 24994(4)
5 8316(7) 18327(4) 24885(3)
6 8297(6) 18530(5) 25124(5)
7 7810(1) 18678(6) 25594(7)
8 8428(8) 19252(9) 25660(8)
9 8471(9) 19003(8) 26017(10)

10 8507(10) 19493(10) 25881(9)

Table 5.9: Mean IGD values for D-OSADE with varying bounds for CR for different test instances

Test Instance
Case T5m2n100 T5m2n300 T5m2n500

1 8048(3) 18024(3) 24793(4)
2 8578(9) 19027(9) 25667(8)
3 8524(8) 19206(10) 25843(9)
4 8706(10) 18803(8) 26018(10)
5 8345(5) 18338(5) 25126(6)
6 8449(7) 18529(6) 24990(5)
7 8401(6) 18661(7) 25439(7)
8 7783(1) 17895(2) 24504(3)
9 7921(2) 17783(1) 24018(1)

10 8153(4) 18265(4) 24378(2)

For the mutation factor F , it is observed that through the use of the bounds under Case

3 (lower bound = 0.5, upper bound = 0.9), there are 2 out of the 3 test instances achieving

first ranking in terms of the lowest IGD among all the different combinations for the bounds.

As such, Case 3 is considered a better combination for the bounds for the mutation factor F

in D-OSADE. As for the case of crossover rate CR, Case 9 (lower bound = 0.3, upper bound

= 0.5) is considered to be a better combination for the bounds for the crossover rate as 2 of

the 3 test instances achieved first ranking with this combination of the bounds. With this, it

is recommended that the bounds for the mutation factor F to be set between 0.5 and 0.9, and
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the crossover rate CR to be set between 0.3 and 0.5. Through these recommended bounds, the

mutation factor could potentially be adapted to an adequately large value for exploration in the

search space, and be adapted to lower values to increase the convergence rate. This in turn helps

to strike a balance between exploration and exploitation. As for the crossover rate, the range of

0.3 to 0.5 will allow D-OSADE to achieve good control on which and the number of components

to be mutated in every individual of the current population.

5.8 Summary

This chapter studied the potential of an opposition-based self-adaptive differential evolution vari-

ant hybridized with local search in dealing with the multi-objective multiple traveling salesman

problem (MmTSP). For the MmTSP, it is formulated as a weighted sum of the total traveling

cost of all salesman and the highest traveling cost by any single salesman, and this allows the

consideration of both the goals of minimizing the total traveling cost as well as to balance the

workload among all the salesmen. The proposed algorithm takes into account of both the global

information from its differential evolution operation together with the local information in terms

of the trajectory of movements for the overall search process. Furthermore, the utilization of

the decomposition-based approach of multi-objective optimization also helps the proposed al-

gorithm D-OSADE in generating a set of promising tradeoff solutions in most of the instances

of the MmTSP. Comparative studies were conducted between the proposed algorithm and five

state-of-the-art MOEAs, and the results demonstrate that D-OSADE is able to scale well in both

the decision space and objective space as it is able to generate a set of diverse solutions with good

proximity for most of the test instances of the MmTSP used in this chapter.
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6.1 Conclusions

The primary aim of this thesis is to propose novel differential evolution variants that are able to

solve a variety of multi-objective optimization problems (MOOPs) effectively. In chapter 3, a

memetic algorithm that hybridizes a novel opposition-based self-adaptive differential evolution

with the multi-objective evolutionary gradient search has been designed. The novel self-adaptive

mechanism based on opposition-based learning as found in OSADE not only eliminates the need

of fixing the DE control parameters at the start of evolution which usually requires a tedious

trial-and-error process, but also give a higher probability of finding near-optimal settings for the

DE control parameters in the proposed algorithm throughout the evolutionary process. As the

control parameters of OSADE gets adapted to near-optimal settings in the evolutionary process,

better solutions can be generated throughout the evolutionary process as well. Simulation results

showed that the proposed algorithm OSADE is able to achieve overall better performance in

terms of convergence and diversity over several state-of-the-art algorithms when tested in a wide

range of unconstrained continuous multi-objective optimization problems. The performance of

OSADE in terms of its scalability in both the number of decision variables and the number of

objective functions has also been investigated, and it is observed that OSADE scales well with an
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increase in the number of decision variables as well as the number of objective functions when

compared to the other state-of-the-art algorithms. These results suggest that OSADE is suitable

for use in solving complex and difficult MOOPs. Despite the strengths seen in OSADE, it is seen

to be less effective in handling problems with degenerate Pareto front, and this also indicates a

potential weakness in differential evolution.

In chapter 4, the optimization performance of a proposed novel grid-based differential evo-

lution algorithm (GrDE) extended from OSADE has been extensively examined by comparing

the algorithm with several state-of-the-art algorithms in a suite of many-objective optimization

problems. From the simulation results, GrDE is seen to be very competitive with the the other

algorithms in terms of achieving a well-approximated and well-distributed solution set for the

many-objective test problems. The results suggest that the coupling of the opposition-based self-

adaptive mutation scheme with the local mutation scheme in GrDE can lead to a good balance of

convergence and diversity which is crucial in solving many-objective problems well. In addition,

GrDE is formulated in a grid-based environment which involves the use of certain grid-based

criteria. The use of these criteria can help to reflect the information of both convergence and

diversity concurrently in a better manner, and this can lead to an increase in the selection pres-

sure within GrDE which in turn helps to derive better solutions in higher objective space. From

further investigation, it is also found out that a larger population size is generally preferred over

a larger number of generations for the proposed algorithm. In addition, it is also noticed that

GrDE shares the same weakness as OSADE, whereby it is seen to be less effective in handling

problems with degenerate Pareto front.

In chapter 5, a study has been conducted to examine the capability of OSADE in solv-

ing the multi-objective multiple travelling salesmen problem (MmTSP). For this, the mutation

scheme from OSADE is incorporated into the decomposition-based approach of multi-objective

optimization, which is then hybridized with a multi-point evolutionary gradient search to act as

a form of local search. Through the simulation studies, it is found that the proposed algorithm
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D-OSADE scales well in both the decision space and objective space as it is able to generate a

set of diverse tradeoff solutions with good proximity as indicated by better IGD results achieved

when compared to the other competing algorithms in the study. The capability of D-OSADE

in terms of generating a sequence of cities in approximate optimal ordering also implies that

D-OSADE can be used to deal with any scheduling or logistic problems which are permutation-

based in nature. Through the study in this chapter, the use of a differential evolution variant for

permutation-based problems is demonstrated and this is of considerable importance and contri-

bution as the differential evolution algorithm is originally intended for continuous optimization.

6.2 Future Work

Based on the research work conducted in this thesis, some possible research directions that de-

serve future investigations are recommended here. Firstly, further work can be performed to look

into the self-adaptation of the population size in the proposed algorithms in this thesis. This

is because the population size is also an important control parameter, and it would be useful

for the user if this control parameter is not required to be pre-defined at the start of simulation

runs. Moreover, if the population can be adapted to optimal settings throughout the evolutionary

process, it may lead to the generation of better individuals that will in turn bring upon better

optimization performance.

The performance of differential evolution is also greatly dependent on the mutation strate-

gies involved for the generation of trial vectors. Future work can be placed on the research

and formulation of effective mutation strategies that possess diverse characteristics, which also

means that the employed strategies in the differential evolution operator should be able to demon-

strate distinct capabilities when handling different types of problems at different evolution stages

during optimization. With this, a better candidate pool can also be created for the differential

evolution algorithm. As such, this can be considered as an attractive area for future research for

the extension of the proposed algorithms in this thesis.
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In chapter 5, the D-OSADE has been proposed to handle the multi-objective multiple trav-

eling salesman problem which is considered a real-life permutation-based problem. With such

a potential witnessed in this opposition-based self-adaptive differential evolution algorithm, fu-

ture work can be placed to look into the use of D-OSADE to handle other scheduling problems

in the area of logistics for example. Even though the traveling salesman problem is closely re-

lated to other real-world scheduling and logistic problems, the application of D-OSADE in the

traveling salesman problem and other real-world scheduling problems may consist of several dif-

ferences. These differences may arise in the solution representation, constraints, and the level of

conflict between objective functions, among others. As such, there is another possible avenue of

future work to adapt D-OSADE in general for the handling of different real-work permutation-

based problem like school timetable scheduling problems, network routine problems, and gene

sequencing problem, just to name a few. When handling these real-world problems, a priori

knowledge of the problems may need to be taken into account through local search or a specific

enhancement operator that is to be used during the optimization process. With the incorporation

of this knowledge, the search capability of the algorithm may be better enhanced to allow better

solutions to be generated.

This thesis has implemented opposition-based self-adaptive differential evolution variants

in general, to study global continuous MOOPs, scalable MOOPs, many-objective problems as

well as permutation-based MOOPs. Many other characteristics and issues of MOOPs, which are

out of the scope of this thesis, could be studied in future. These issues include multi-modality,

presence of constraints, uncertainty, and framework. Multi-modality is always a challenging

issue in optimization, and efforts can be channeled to look into this area. Besides this, MOOPs in

real-life applications often come with constraints, and hence the area of constrained optimization

can also be studied.

Many cost functions of real-world problems are uncertain in nature. The cost functions

may be subject to noise in the objective space, which is commonly known as noisy MOOPs.
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The objective functions may also be subject to noise in the decision space, and this is commonly

referred to as robust MOOPs. In the cost functions of some MOOPs, the Pareto optimal solutions

may vary over time, and this is commonly known as dynamic MOOPs. Studies of self-adaptive

DE algorithms in these aspects are considerably lacking, and therefore they can be explored

in future work. As for the framework issue, the proposed algorithms in this thesis are being

developed in both domination-based and decomposition-based approaches. However, there has

been no study of the development of self-adaptive DE algorithms using the preference-based

approach. Hence, this is also a possible research direction for exploration in the future.

Last but not least, the concept of the novel self-adaptive scheme proposed in this thesis may

also be employed in other population-based algorithms. The self-adaptive scheme in this thesis

is general enough to used for the adaptation of the control parameters in other population-based

algorithms like Genetic Algorithms (GAs) or the Particle Swarm Optimization (PSO). Thus, this

is also a promising research direction that is worthy of exploration in the future.
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Appendix A
Performance Metrics

Four performance metrics that are applied in this thesis are illustrated in this section. For description
purposes, PF ∗ is a set of evolved solutions and PF is the set of Pareto optimal solutions. The definitions
of the indicators are presented below.

1. Generational Distance (GD): Generational distance (GD) [221] is a unary performance indicator
which is defined as

GD =

√∑N
i=1 d(p∗, p)2i

N

where N is the number of solutions in PF ∗, p ∈ PF , p∗ ∈ PF ∗, and d(p∗, p)i is the minimum
Euclidean distance in the objective space between p∗ and p for each member i. GD illustrates the
convergence ability of the algorithm by measuring the closeness between the Pareto optimal front and
the evolved Pareto front. Thus, a lower value of GD shows that the evolved Pareto front is closer
to the Pareto optimal front. This indicator is a representative metric which provides a quantitative
measurement for the proximity goal of multi-objective optimization.

2. Inverted Generational Distance (IGD): Inverted generational distance (IGD) is a unary indicator
which performs a near-similar calculation as done by GD [217, 222]. The difference is that GD calcu-
lates the distance of each solution in PF ∗ to PF while IGD calculates the distance of each solution
in PF to PF ∗. In this indicator, both convergence and diversity are taken into consideration. A lower
value of IGD implies that the algorithm has better optimization performance.

3. Hausdorff Distance (HD): Hausdorff Distance (HD) is a unary indicator which combines the prop-
erties of GD and IGD, and it basically takes the maximum value between the modified GD and IGD.
In this way, both convergence and diversity are taken into consideration. A lower value of HD implies
that the algorithm has better optimization performance.

4. Hypervolume (HV): Hypervolume (HV) is a metric that gives the volume (in objective space) that is
dominated by a solution set S. It can be defined as

HV = volume(∪|S|i=1vi)

where S is the solution set and R is the reference set, and vi is the hypercube constructed with a
reference point and a solution ~si ∈ S as the diagonal corners of the hypercube. The reference point
can be found by constructing a vector of the worst objective function values. This metric quantifies
and encapsulates both the convergence and diversity information of the solution set S. Hence, if the
solutions in S are closer to the true Pareto front, the value of HV will be larger. In addition, a higher
HV could also indicate that the solutions in S are distributed more evenly in the objective space.
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Appendix B
Multi-objective Test Problems

A multi-objective optimization problem (MOOP) can be characterized by two main aspects which
are namely fitness landscapes and Pareto optimal front geometries. For the case of fitness landscapes,
an MOOP may be scalable in terms of its number of objective functions. As the number of conflicting
objective functions in an MOOP increases to more than three, the problem will be harder to solve as the
selection pressure for selecting fitter individuals will be reduced. This is because in an objective space of
higher dimensionality, more individuals will be non-dominated against each other during the evolutionary
process. This may lead to a hindrance in the search towards optimality or may cause the population to
get trapped in a local optima. Besides this, it is also challenging for an optimizer to search over all the
promising regions in a large fitness landscape. An MOOP may also be scalable in terms of the number
of decision variables in it. The complexity of an MOOP will increase with an increase in the number
of decision variables in it. This is due to an enlargement of the search space and also an increase in the
number of possible moves towards optimality.

Another characteristic of fitness landscape is modality. If an MOOP consists of only a single op-
timum, it will be known as a unimodal problem. However, if an MOOP has many local optima, then it
is a multimodal problem. A multimodal MOOP may create challenges for optimizers as they may get
stucked in local optima. If the multimodal MOOP consists of a deceptive optimum, it will be more diffi-
cult to solve as the true optimum is placed in an unlikely place for the case of a deceptive MOOP. Another
characteristic seen in the fitness landscape is the presence of the mapping from the decision space to the
objective space. For this, a problem is bias if a set of evenly distributed samples are being mapped to an
unevenly distributed region in an objective space. This is challenging for an MOEA as a set of evenly dis-
tributed tradeoff solutions has to be generated by the MOEA. Besides this, an MOOP may be separable or
nonseparable. For separable problems, every decision variable can be optimized independently. However,
this may not be possible for the case of nonseparable problems as there will be some level of dependencies
between the decision variables in such problems.

For the aspect of Pareto optimal front geometries in MOOP, there can be a few types of geometries
which are namely convex, concave, linear, disconnected, degenerate, and mixed geometries of Pareto op-
timal front. A Pareto optimal front is considered as convex if the set of tradeoff solutions encompasses
its convex hull. If a Pareto optimal front is concave, the set of tradeoff solutions will cover its concave
hull. If the set of tradeoff solutions is both convex and concave, the Pareto optimal front is considered as
linear. An MOOP has a degenerate Pareto front when the optimal front is of one dimension lower than
its objective space. This may challenge an MOEA in terms of generating a set of diverse tradeoff solu-
tions. For the case of a disconnected Pareto optimal front, it may consist of several discontinuous subsets
of solutions. Finally, a mixed Pareto optimal front is one that contains several connected subsets with
different geometries. A more throughout review, description, and analysis of different multi-objective test
problems can be referred to [107]. In Table 1, a list of test problems used in this thesis is given with their
characteristics stated.

The ZDT test problems are extracted from [104].
ZDT1

f1(x) = x1

f2(x) = g(x)

[
1−

√
f1(x)

g(x)

]

g(x) = 1 + 9

(∑n
i=2 xi
n− 1

)

ZDT2

Same as ZDT1, except

f2(x) = g(x)

[
1−

(
f1(x)

g(x)

)2
]
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Table 1: Multi-objective test problems. S refers to scalable, m is the number of objective functions, K is a
scalar parameter, n is the number of decision variables, SP refers to separable, NS refers to nonseparable,

D refers to deceptive, U refers to unimodal, and M refers to multimodal.

Instance m n Domain Geometry SP/NS U/M Bias
ZDT1 2 30(S) [0,1]n Convex SP U NO
ZDT2 2 30(S) [0,1]n Concave SP U NO
ZDT3 2 30(S) [0,1]n Disconnected SP M NO
ZDT4 2 30(S) [0,1]×[-5,5]n−1 Convex SP M NO
ZDT6 2 30(S) [0,1]n Concave SP M YES

DTLZ1 3(S) m+K − 1(S) [0,1]n Linear SP M NO
DTLZ2 3(S) m+K − 1(S) [0,1]n Concave SP U NO
DTLZ3 3(S) m+K − 1(S) [0,1]n Concave SP M NO
DTLZ4 3(S) m+K − 1(S) [0,1]n Concave SP U YES
DTLZ5 3(S) m+K − 1(S) [0,1]n Degenerate NS U NO
DTLZ6 3(S) m+K − 1(S) [0,1]n Degenerate NS U YES
DTLZ7 3(S) m+K − 1(S) [0,1]n Disconnected SP M NO

UF1 2 30(S) [0,1]×[-1,1]n−1 Convex SP M NO
UF2 2 30(S) [0,1]×[-1,1]n−1 Convex NS M NO
UF3 2 30(S) [0,1]n Convex NS M NO
UF4 2 30(S) [0,1]×[-2,2]n−1 Concave NS M NO
UF5 2 30(S) [0,1]×[-1,1]n−1 Linear NS M NO
UF6 2 30(S) [0,1]×[-1,1]n−1 Linear, Disconnected NS M NO
UF7 2 30(S) [0,1]×[-1,1]n−1 Linear NS M NO
UF8 3 30(S) [0,1]2×[-2,2]n−2 Concave SP M NO
UF9 3 30(S) [0,1]2×[-2,2]n−2 Linear, Disconnected SP M NO

UF10 3 30(S) [0,1]2×[-2,2]n−2 Concave NS M NO
WFG1 2(S) 30(S) [0,2i] i ∈ {1, ..., n} Convex, Mixed SP U YES
WFG2 2(S) 30(S) [0,2i] i ∈ {1, ..., n} Convex, Disconnected NS U NO
WFG3 2(S) 30(S) [0,2i] i ∈ {1, ..., n} Linear, Degenerate NS M NO
WFG4 2(S) 30(S) [0,2i] i ∈ {1, ..., n} Concave SP M NO
WFG5 2(S) 30(S) [0,2i] i ∈ {1, ..., n} Concave SP D NO
WFG6 2(S) 30(S) [0,2i] i ∈ {1, ..., n} Concave NS U NO
WFG7 2(S) 30(S) [0,2i] i ∈ {1, ..., n} Concave SP U YES
WFG8 2(S) 30(S) [0,2i] i ∈ {1, ..., n} Concave NS U YES
WFG9 2(S) 30(S) [0,2i] i ∈ {1, ..., n} Concave NS M,D YES

ZDT3

Same as ZDT1, except

f2(x) = g(x)

[
1−

√
f1(x)

g(x)
− f1(x)

g(x)
sin(10πx1)

]

ZDT4

Same as ZDT1, except

g(x) = 1 + 10(n− 1) +

n∑
i=2

[
x2i − 10cos(4πxi)

]

ZDT6
f1(x) = 1− exp(−4x1)sin6(6πx1)

f2(x) = g(x)

[
1−

(
f1(x)

g(x)

)2
]

g(x) = 1 + 9

[∑n
i=2 xi
n− 1

]0.25
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The DTLZ test problems are extracted from [105].
DTLZ1

f1(x) = (1 + g(x)) 0.5

(
m−1∏
i=1

xi

)

f2(x) = (1 + g(x)) 0.5

(
m−1∏
i=1

xi

)
(1− xm−1)

...

fm(x) = (1 + g(x)) 0.5(1− x1)

g(x) = 100

[
(n−m+ 1) +

n∑
i=m

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

)]

DTLZ2

f1(x) = (1 + g(x))

[
m−1∏
i=1

cos(0.5πxi)

]

f2(x) = (1 + g(x))

[
m−2∏
i=1

cos(0.5πxi)

]
sin(0.5πxm−1)

...

fm(x) = (1 + g(x)) sin(0.5πx1)

g(x) =

n∑
i=m

(xi − 0.5)2

DTLZ3

Same as DTLZ2, except

g(x) = 100

[
(n−m+ 1) +

n∑
i=m

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

)]

DTLZ4

Same as DTLZ2, except

xi = xαi , i ∈ {m, ..., n}, α = 10

DTLZ5

Same as DTLZ2, except

xi =
1 + 2g(x)xi
2(1 + g(x))

, i ∈ {2, ...,m− 1}

DTLZ6

Same as DTLZ5, except
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g(x) =

n∑
i=m

x0.1i

DTLZ7
f1(x) = x1

...

fm−1(x) = xm−1

fm(x) = (1 + g(x))

[
m−

m−1∑
i=1

(
fi(x)

1 + g(x)
(1 + sin(3πfi(x)))

)]

g(x) = 1 + 9

( ∑n
i=m xi

n−m+ 1

)

The UF test problems are extracted from [106].
UF1

f1(x) = x1 +
2

|J1|
∑
i∈J1

[
xi − sin(6πx1 +

iπ

n
)

]2

f2(x) = 1−
√
x1 +

2

|J2|
∑
i∈J2

[
xi − sin(6πx1 +

iπ

n
)

]2
J1 = {i|i is odd and 2 ≤ i ≤ n} and J2 = {i|i is even and 2 ≤ i ≤ n}

UF2
f1(x) = x1 +

2

|J1|
∑
i∈J1

y2i

f2(x) = 1−
√
x1 +

2

|J2|
∑
i∈J2

y2i

J1 = {i|i is odd and 2 ≤ i ≤ n} and J2 = {i|i is even and 2 ≤ i ≤ n}

yi =

{
xi −

[
0.3x21cos(24πx1 + 4iπ

n ) + 0.6x1
]

cos(6πx1 + iπ
n ) i ∈ J1

xi −
[
0.3x21cos(24πx1 + 4iπ

n ) + 0.6x1
]

sin(6πx1 + iπ
n ) i ∈ J2

UF3

f1(x) = x1 +
2

|J1|

[
4
∑
i∈J1

y2i − 2
∏
i∈J1

cos(
20yiπ√

i
) + 2

]

f2(x) = 1−
√
x1 +

2

|J2|

[
4
∑
i∈J2

y2i − 2
∏
i∈J2

cos(
20yiπ√

i
) + 2

]
J1 = {i|i is odd and 2 ≤ i ≤ n} and J2 = {i|i is even and 2 ≤ i ≤ n}

yi = xi − x
0.5(1.0+ 3(i−2)

n−2 )
1 , i ∈ {2, ..., n}

UF4
f1(x) = x1 +

2

|J1|
∑
i∈J1

h(yi)

f2(x) = 1− x21 +
2

|J2|
∑
i∈J2

h(yi)
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J1 = {i|i is odd and 2 ≤ i ≤ n} and J2 = {i|i is even and 2 ≤ i ≤ n}

yi = xi − sin
(

6πx1 +
iπ

n

)
, i ∈ {2, ..., n}

h(t) =
|t|

1 + e2|t|

UF5

f1(x) = x1 +

(
1

2N
+ ε

)
|sin(2Nπx1)|+ 2

|J1|
∑
i∈J1

h(yi)

f2(x) = 1− x1 +

(
1

2N
+ ε

)
|sin(2Nπx1)|+ 2

|J2|
∑
i∈J2

h(yi)

J1 = {i|i is odd and 2 ≤ i ≤ n} and J2 = {i|i is even and 2 ≤ i ≤ n}, N = 10 and ε = 0.1

yi = xi − sin(6πx1 +
iπ

n
), i ∈ {2, ..., n}

h(t) = 2t2 − cos(4πt) + 1

UF6

f1(x) = x1 + max{0, 2(
1

2N
+ ε)sin(2Nπx1)}+

2

|J1|

[
4
∑
i∈J1

y2i − 2
∏
i∈J1

cos(
20yiπ√

i
) + 2

]

f2(x) = 1− x1 + max{0, 2(
1

2N
+ ε)sin(2Nπx1)}+

2

|J2|

[
4
∑
i∈J2

y2i − 2
∏
i∈J2

cos(
20yiπ√

i
) + 2

]
J1 = {i|i is odd and 2 ≤ i ≤ n} and J2 = {i|i is even and 2 ≤ i ≤ n}, N = 2 and ε = 0.1

yi = xi − sin
(

6πx1 +
iπ

n

)
, i ∈ {2, ..., n}

UF7
f1(x) = 5

√
x1 +

2

|J1|
∑
i∈J1

y2i

f2(x) = 1− 5
√
x1 +

2

|J2|
∑
i∈J2

y2i

J1 = {i|i is odd and 2 ≤ i ≤ n} and J2 = {i|i is even and 2 ≤ i ≤ n}

yi = xi − sin
(

6πx1 +
iπ

n

)
, i ∈ {2, ..., n}

UF8

f1(x) = cos(0.5x1π)cos(0.5x2π) +
2

|J1|
∑
i∈J1

[
xi − 2x2sin(2πx1 +

iπ

n
)

]2

f2(x) = cos(0.5x1π)sin(0.5x2π) +
2

|J2|
∑
i∈J2

[
xi − 2x2sin(2πx1 +

iπ

n
)

]2

f3(x) = sin(0.5x1π) +
2

|J3|
∑
i∈J3

[
xi − 2x2sin(2πx1 +

iπ

n
)

]2
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J1 = {i|3 ≤ i ≤ n, and i− 1 is a multiplication of 3}

J2 = {i|3 ≤ i ≤ n, and i− 2 is a multiplication of 3}

J3 = {i|3 ≤ i ≤ n, and i is a multiplication of 3}

UF9

f1(x) = 0.5
[
max{0, (1 + ε)(1− 4(2x1 − 1)2)}+ 2x1

]
x2 +

2

|J1|
∑
i∈J1

[
xi − 2x2sin(2πx1 +

iπ

n
)

]2

f2(x) = 0.5
[
max{0, (1 + ε)(1− 4(2x1 − 1)2)} − 2x1 + 2

]
x2+

2

|J2|
∑
i∈J2

[
xi − 2x2sin(2πx1 +

iπ

n
)

]2

f3(x) = 1− x2 +
2

|J3|
∑
i∈J3

[
xi − 2x2sin(2πx1 +

iπ

n
)

]2
J1, J2, and J3 are the same as J1, J2, and J3 from UF8, and ε = 0.1

UF10
f1(x) = cos(0.5x1π)cos(0.5x2π) +

2

|J1|
∑
i∈J1

[
4y2i − cos(8πyi) + 1

]
f2(x) = cos(0.5x1π)sin(0.5x2π) +

2

|J2|
∑
i∈J2

[
4y2i − cos(8πyi) + 1

]
f2(x) = sin(0.5x1π) +

2

|J3|
∑
i∈J3

[
4y2i − cos(8πyi) + 1

]
J1, J2, and J3 are the same as J1, J2, and J3 from UF8

yi = xi − 2x2sin
(

2πx1 +
iπ

n

)
, i ∈ {3, ..., n}

The WFG test problems are extracted from [107].
Common format of WFG test problems:
Given:

z = {z1, ..., zk, zk + 1, ..., zn}

Minimize:
fj=1:m(x) = Dxm + Sjhj(x1, ..., xm−1)

where

x = {x1, ..., xm}
= {max(tpm, A1)(tp1 − 0.5) + 0.5, ...,max(tpm, Am−1)(tpm−1 − 0.5) + 0.5, tpm}

tp = {tp1, ..., tpm}←|tp−1←|...←|t1←|z[0,1]
z[0,1] = {z1,[0,1], ..., zn,[0,1]}

= {z1/z1,max, ..., zn/zn,max}

Constants:

Sj=1:m = 2m, D = 1, A1:m−1 = 1, k is the number of position-related parameters, and

l is the number of distance-related parameters
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Shape functions (hj=1:m):

Linear: represented by linear1:m(x1, ..., xm−1)

Convex: represented by convex1:m(x1, ..., xm−1)

Concave: represented by concave1:m(x1, ..., xm−1)

Mixed Convex and Concave: represented by mixed1:m(x1, ..., xm−1)

Disconnected: represented by disc1:m(x1, ..., xm−1)

Transformation functions:

Polynomial bias transformation: represented by b poly(y, α)

Flat region bias transformation: represented by b flat(y,A,B,C)

Parameter dependent bias transformation: represented by b param(y,y
′
A,B,C)

Linear shift transformation: represented by s linear(y,A)

Deceptive shift transformation: represented by s decept(y,A,B,C)

Multi-modal shift transformation: represented by s multi(y,A,B,C)

Weighted sum reduction transformation: represented by r sum(y,w)

Non-seperable reduction transformation: represented by r nonsep(y, A)

WFG1

hj=1:m−1 = convexj
hm = mixedm (with α = 1 and A = 5)

t1i=1:k = yi

t1i=k+1:n = s linear(yi, 0.35)

t2i=1:k = yi

t2i=k+1:n = b flat(yi, 0.8, 0.75, 0.85)

t3i=1:n = b poly(yi, 0.02)

t4i=1:m−1 = r sum({y(i−1)k/(m−1)+1, ..., yik/(m−1)},
{2[(i− 1)k/(m− 1) + 1, ..., 2ik/(m− 1)]})

t4m = r sum({yk+1, ..., yn}, {2(k + 1), ..., 2n})

WFG2

hj=1:m−1 = convexj
hm = discm (with α = β = 1 and A = 5)

t1 is the same as t1 from WFG1 (linear shift)

t2i=1:k = yi

t2i=k+1:k+l/2 = r nonsep({yk+2(i−k)−1, yk+2(i−k)}, 2)

t3i=1:m−1 = r sum({yi−1k/(m−1)+1, ..., yik/(m−1)}, {1, ..., 1})
t3m = r sum({yk+1, ..., yk+l/2}, {1, ..., 1})

WFG3

hj=1:m = linearj
t1:3 are the same as t1:3 from WFG2
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WFG4

hj=1:m = concavej
t11:n = s multi(yi, 30, 10, 0.35)

t21:m−1 = r sum({y(i−1)k/(m−1)+1, ..., yik/(m−1)}, {1, ..., 1})
t2m = r sum({yk+1, ..., yn}, {1, ..., 1})

WFG5

hj=1:m = concavej
t1i=1:n = s decept(yi, 0.35, 0.001, 0.05)

t2 is the same as t2 from WFG4

WFG6

hj=1:m = concavej
t1 is the same as t1 from WFG1

t2i=1:m−1 = r nonsep({y(i−1)k/(m−1)+1, ..., yik/(m−1)}, k/(m− 1))

t2m = r nonsep({yk+1, ..., yn}, l)

WFG7

hj=1:m = concavej

t1i=1:k = b param
(
yi, r sum({yi+1, ..., yn}, {1, ..., 1}),

0.98

49.98
, 0.02, 50

)
t1i=k+1:n = yi

t2 is the same as t1 from WFG1

t3 is the same as t2 from WFG4

WFG8

hj=1:m = concavej
t1i=1:k = yi

t1i=k+1:n = b param
(
yi, r sum({yi, ..., yi−1}, {1, ..., 1}),

0.98

49.98
, 0.02, 50

)
t2 is the same as t1 from WFG1

t3 is the same as t2 from WFG4

WFG9

hj=1:m = concavej

t1i=1:n−1 = b param
(
yi, r sum({yi+1, ..., yn}, {1, ..., 1}),

0.98

49.98
, 0.02, 50

)
t1n = yn

t2i=1:k = s decept(yi, 0.35, 0.001, 0.05)

t2i=k+1:n = s multi(yi, 30, 95, 0.35)

t3 is the same as t2 from WFG6

182


