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SUMMARY 

The business value of an online community greatly depends on the number of active 

users in this online community.  However, it is never easy to establish and maintain 

a large user base. In this thesis, we investigate how to motivate users’ voluntary 

contribution by gamification (Study 1), and how to incorporate the interaction 

between different groups of users to maintain a stable user base (Study 2). In 

addition to establish a large user base, it is also important for online community, 

especially those social media sites, to attract a group of influential users. These 

influential users are used to be celebrities or experts who post contents consumed 

by a large number of ordinary users, thus helping to maintain an active user base. 

In this thesis, we examine whether these influential users can obtain economic 

return from their social media participation (Study 3). 

 In Study 1, we investigate the impact of a hierarchical badge system on 

users’ voluntary contribution on four kinds of activities (answering, commenting, 

revision, and asking) in a Q&A website. Our results confirm that almost all badges 

motivate users to contribute more in related activities. There is a spillover effect to 

other activities. Furthermore, our results reveal that gold badges are more powerful 

than silver badges and silver badges are more influential than bronze badges. Hence, 

there is a ranked ordering in efficiency of badges corresponding to difficulty levels. 

Our results present strong empirical evidence that confirms the effectiveness of 

gamification. 

 In Study 2, we investigate the network effect in online community. 

Empirically, we examine how the increase of user participation drives the decrease 
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of senior users’ participation at English Wikipedia. We find that the decrease of 

senior users’ contribution is caused by the negative network effect of the new users 

who generated low-quality contribution. Our results indicate that it is the quality of 

user contribution that moderates the direction of direct network effect in online 

community. Our findings suggest there should be a balance between the quantity 

and the quality of user contribution. 

 In Study 3, we quantify the economic value of celebrities’ participation and 

popularity in social media. Specifically, we study whether NBA players’ 

participation and popularity in Twitter help them earn higher salaries. Our results 

suggest that both NBA players’ participation and popularity in Twitter helps them 

to earn higher salaries. Furthermore, we investigate the impact of social media on 

salary inequality among NBA players. Our analysis suggests an interesting U-shape 

effect: above-average and below-average players are benefited more than average 

players. Our results imply that the salary inequality among NBA players is 

decreased due to the emergence of social media. This study not only confirms the 

business value of social media but also reveal the societal impact of social media. 

The notable findings from this thesis provide significant contributions to the 

literature on online community and social media in the field of Information 

Systems. Our research also offers helpful and practical suggestions to industry 

practitioners.  

 



VIII 
 

List of Tables 

Table 2-1 Definitions of Variables ....................................................................... 30 

Table 2-2 Summary Statistics for the Micro-level Data Analysis ........................ 30 

Table 2-3 Summary Statistics for the Macro-Level Data Analysis ...................... 31 

Table 2-4 Quality of Matching ............................................................................. 36 

Table 2-5 PSM Estimation Results ....................................................................... 40 

Table 2-6 PSM Estimation Results with Additional Control Variables ............... 47 

Table 2-7 Results of the Fixed Effects Model (DV = Answering) ....................... 54 

Table 2-8 Results of Fixed Effects Model (DV = Commenting) ......................... 55 

Table 2-9 Results of Fixed Effects Model (DV = Revision) ................................ 56 

Table 2-10 Results of Fixed Effects Model (DV = Asking) ................................. 57 

Table 2-11 FE Estimates with Separated Phases (DV = Answering) ................... 61 

Table 2-12 FE Estimates with Separated Phases (DV = Commenting) ............... 62 

Table 2-13 FE Estimates with Separated Phases (DV = Revision) ...................... 63 

Table 2-14 FE Estimates with Separated Phases (DV = Asking) ......................... 64 

Table 3-1 Definition of Variables ......................................................................... 86 

Table 3-2 Descriptive Statistics of Active Users at English Wikipedia ............... 86 

Table 3-3 Results of Fixed-Effect Panel Regression Model ................................. 92 

Table 3-4 Results of Sensitivity Analysis Regarding Time Window Size ........... 93 

Table 3-5 Results of Difference-in-Differences Model ........................................ 96 

Table 3-6 Report of Wikipedia Article Rating ..................................................... 99 

Table 3-7 DID Estimates with Percentages of Anonymous Contribution .......... 103 

Table 4-1 Definition of Variables ....................................................................... 124 



IX 
 

Table 4-2 Descriptive Statistics .......................................................................... 124 

Table 4-3 Results of DID Estimates ................................................................... 133 

Table 4-4 Results of CEM .................................................................................. 134 

Table 4-5 Results of Heckman Selection Model ................................................ 137 

Table 4-6 Results of Quantile Regression .......................................................... 140 

 

 



X 
 

List of Figures 

Figure 3-1 the Editing Interface of Wikitext ......................................................... 74 

Figure 3-2 the Editing Interface of Visual Editor ................................................. 74 



1 
 

1. General Introduction 

Online community has become an integral part in our daily life. Today, we are 

accustomed to engage in a variety of online communities especially social media 

sites, to meet our different needs. For example, we share funny stories/moments on 

Facebook, search for promising jobs on LinkedIn, watch intriguing videos on 

YouTube, and so on. According to web analytics site Statisticbrain.com, as of 2014, 

there are more than 1.3 billion monthly active users on Facebook and over 645 

million active registered users on Twitter.  LinkedIn has already acquired over 259 

million users from more than 200 countries and territories (Nishar 2013).  

With expectation to directly interact with a vast number of online 

community members and further convert these community members to customers, 

firms are actively engaging in online community, considering online community 

especially social media as a valuable marketing channel. It is reported that 69% of 

small business owners are engaged in some kinds of social media platform (e.g., 

Twitter, Facebook, and LinkedIn) and about 78% of them plan to allocate more 

budgets on social media marketing (Protalinski 2011). The expenditure on social 

media marketing in US is expected to grow 34% yearly and reach 3.1 billion USD 

in 2014 (Forrester Research 2009). 

1.1. Ordinary Users 

Despite the immeasurable value embedded in online community, developing and 

maintaining an active online community is never an easy task. In their business 

model, online communities provide a virtual platform for users to start 

conversations across a broad range of topics as well as marketing tools and services 
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for firms to target their potential customers. Firms investing in online community 

care how many people their advertisings can reach and how effective their 

advertisings are. Therefore, online community is a multi-sided platform in which 

its business value origins from the large user base. However, ordinary users in 

online community generally do not receive monetary rewards in return. It is 

challenging to incentivize users to participate voluntarily and have active 

engagement in online community.  

In understanding the motivations for ordinary users’ voluntary participation 

and engagement in online community, there exists extensive research conducted by 

scholars in the field of Information Systems, (Bateman et al. 2011; Faraj and 

Johnson 2011; Kankanhalli et al. 2005; Ma and Agarwal 2007; Ren et al. 2007; 

Wasko and Faraj 2000).  However, most existing literature is survey-based and little 

research has been done on investigating the impact of badge system, which is a key 

element in the gamification framework. In this thesis, Study 1 helps to fill in this 

research gap and investigate the impact of a hierarchical badge system on ordinary 

users’ voluntary contribution on four kinds of activities (answering, commenting, 

revision, and asking) in a Q&A website. Our results confirm that almost all badges 

motivate users to contribute more in related activities. There is a spillover effect to 

other activities. Furthermore, our results reveal that gold badges are more powerful 

than silver badges and silver badges are more influential than bronze badges. Hence, 

there is a ranked ordering in efficiency of badges corresponding to difficulty levels. 

Overall, our results present strong empirical evidence that confirms the value of the 

hierarchical badges system and the effectiveness of gamification in stimulating 
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voluntary participation and continued engagement. This study enriches the 

literature on online community and adds to the growing literature on gamification 

in Information Systems.  

Although we use the objective data from an online Q&A website in this 

study, our findings is not limited to traditional online communities but also applied 

to online social network platforms. Social media platform like Foursquare1 and 

Weibo2 also launch their badge systems. The impact of badge system in social 

media platform is estimated to be larger than in traditional online communities due 

to the fact that user interaction is more frequent and user identity is more prominent 

in social media platform.  

We also notice that purely emphasizing on the increase of user participation 

may not always bring a positive outcome. This can be demonstrated by the case of 

English Wikipedia. In July 2013, English Wikipedia simplified the editing interface 

to increase the participation of new users but it turned out to drive senior users away 

(DailyMail 2013).  This real-world case serves as an example to challenge the 

theoretical prediction of the positive network effect which states the incentive for a 

user to participate increases with the increase of the number of other users (Shapiro 

and Varian 2013; Zhang and Zhu 2011). In this thesis, Study 2 investigates the 

network effect in online community. Empirically, we examine how the increase of 

new users’ participation drives the decrease of senior users’ participation at English 

Wikipedia. We find that it is the quality of user contribution that moderates the 

                                                 
1 http://www.4squarebadges.com/foursquare-badge-list/ 

2 http://www.techinasia.com/weibo-badges/ 
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relationship between the size of user base and the level of user participation. Our 

results suggest that there should be a balance between the quantity and the quality 

of user contribution. This study extends our understanding of the phenomenon of 

network externality in online community, therefore contributing to both the 

literature of online community in Information Systems and the literature of network 

externality in Economics.  

Our conclusions drawn from the case of Wikipedia can be naturally 

generalized to other online communities, especially those communities such as 

Q&A websites providing service based on high-quality user contribution.   

1.2. Influential Users 

Recently, social media make users more connected and facilitate more frequent 

interaction than traditional online community. The emergence of social media has 

equipped influential users with the power to express themselves and significantly 

influence others in social network, which they never before experience in 

traditional online communities. For example, Lance Armstrong’s retweeting the 

marketing topic of “#ineedanewphone” on Twitter, generated 65 million 

impressions within 24 hours and leaded to a double-digit sales increase in wireless 

platform of Radio Shack (Slutsky 2011). The impact of influential users in social 

media has drawn the attentions of researchers. Research on the impact of influential 

users is mainly conducted in the field of new product marketing and scholars find 

that influential users or opinion leaders can significantly influence the adoption of 

new products such as prescription (Iyengar et al. 2011; Nair et al. 2010). Another 
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stream of research related to influential users is on how to identifying the influential 

users in social media (Aral and Walker 2012; Li and Du 2011; Nair et al. 2010).  

However, there is little research investigating the economic impact of 

influential users’ participation and popularity in social media. In this thesis, Study 

3 aims to quantify the economic value of celebrities’ participation and popularity 

in social media. Specifically, we study whether NBA players’ participation and 

popularity in Twitter help them earn higher salaries. Our results suggest that both 

NBA players’ participation and popularity in Twitter helps them to earn higher 

salaries. Furthermore, we investigate the impact of social media on salary inequality 

among NBA players. Our analysis suggests an interesting U-shape effect: above-

average and below-average players are benefited more than average players. Our 

results imply that the salary inequality among NBA players is decreased due to the 

emergence of social media. This study not only confirms the business value of 

social media but also reveal the societal impact of social media, thus contributing 

to the literature of social media in Information Systems and the literature of wage 

inequality of Economics.  

Our analyses based on the sample of NBA players can be generalized to 

other professional sports leagues.  The leagues and player association which care 

players’ welfare can encourage players to actively participate and engage in social 

media. Those bottom players in the league are strongly recommended to engage in 

social media since their salaries are below the poverty line of the league and they 

benefit most from social media than other players. 
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2. Study 1: The Impact of Badge System on Voluntary 

Contributions  

2.1. Introduction 

Since the inception of the Internet, the number as well as the size of online 

communities has proliferated over time. Among the myriads of online communities 

facilitating private provisioning of public goods, questions and answers (Q&A) 

sites have a special place because of their contribution to knowledge creation. A 

Q&A site enables users to post questions and to help each other by answering 

questions posted by others. Launched in 2006, Yahoo! Answers is an early-mover 

in this domain. In April 2012, Yahoo! Answers had about 50 million unique visitors 

per month.3  Following the success of Yahoo! Answers, a number of Q&A sites 

have flourished in recent years serving niche areas with unique design elements. 

One such popular Q&A site is Stack Overflow, created in 2008, enables computer 

programmers from all around the world to help each other with technical questions. 

Given the huge success of Stack Overflow, Stack Overflow launched the Stack 

Exchange in 2010, a network of Q&A sites on topics ranging from computer 

science to cooking. As of November 2012, the Stack Exchange network has 99 

Q&A sites over 64 million monthly unique visitors.4 On March 24, 2011, Facebook 

also launched Facebook Questions to catch the wave of Q&A communities. 

Most users of online communities participate without getting monetary 

rewards in return. Therefore, it is a challenging proposition to incentivize users to 

                                                 
3 http://siteanalytics.compete.com/answers.yahoo.com/ 
4 http://stackexchange.com/about 
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contribute constantly and have active engagement in community sites. Similar to 

other communities on the Internet, the success of Q&A sites heavily depends on 

users’ voluntary contributions because these sites can survive only if there are 

meaningful contributions from community members in terms of both quality and 

quantity of questions and answers. To minimize the adverse effect of free-riding 

behavior among community members, these sites should also maintain an 

acceptable ratio of answers to questions. This requires a deeper understanding of 

the motives of users and subsequently designing proper incentive mechanisms to 

facilitate engagement in different community activities.  

Gamification, which is the use of game mechanisms and elements in non-

game contexts (Deterding et al. 2011), can be a solution to alleviate the incentive 

problem and to motivate large-scale participation at Q&A sites. Game design 

principles, such as points, badges, levels, status, can be embedded into the incentive 

structure to drive engagement in various community activities. By effectively 

employing game mechanisms, voluntary contributions to Q&A sites can be induced.  

Despite the adoption of various game design elements in online 

communities, there is limited scholarly research that empirically quantifies the 

significance of gamification for community participation and engagement. This 

paper attempts to fill this gap by examining the value of a hierarchical badges 

system on user activities in an online Q&A community, namely Stack Overflow. 

The hierarchical badges system deployed by Stack Overflow embeds several game 

elements, including badges, levels (i.e., categories of badges), points (i.e., 

reputation scores), and leader boards, to motivate users take part in community 
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activities. Users contributing on the Q&A site are awarded badges and earn points 

based on the type as well as the level of their site activities. Earning badges and 

points sometimes requires acknowledgement of user contributions by other 

community members (i.e., peers) through up-votes, acceptance, and views. Hence, 

badges reflect both the quantity and the quality of voluntary contributions. 

Furthermore, each badge belongs to a category based on the difficulty level in 

earning it, namely bronze, silver or gold, and there is a hierarchy among badge 

categories. A gold badge requires more participation than a silver badge, which in 

turn requires more participation than a bronze badge. We explicitly study the 

influence of earned badges in voluntary contributions. After controlling for other 

factors, such as reputation and tenure, we assess the impact of individual badges 

and badge categories in gamifying contributions and therefore inducing community 

activities from users.  

In this study we consider participation in four major community activities 

that earned badges seek to incentivize. These activities are (i) asking questions, (ii) 

answering questions, (iii) making revisions, and (iv) making comments. Our data 

set consists of a detailed history of 58,479 registered users on the Q&A site from 

2009 to 2012, including a complete record of four activities performed and specific 

badges earned by each user.  We perform our data analyses in two levels: micro 

level and macro level. In the micro-level analysis, we examine the impact of a 

specific badge on user activities by estimating a difference-in-differences model. 

We aggregate user activities a week before and after a user receives a particular 

badge. We use the propensity score matching technique to form a control group of 
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users. Our results reveal that almost all badges motivate users to contribute more in 

related activities of badges. Furthermore, we find that even activities that are not 

specified in the requirements of earning a badge are affected by the status of getting 

the badge. Surprisingly, we find that even a negative badge correlates with more 

user activities. In the macro-level analysis, we analyze a three-year panel data set 

and estimate a fixed-effects model to investigate the impact of three categories of 

badges, namely gold, silver, and bronze, on user activities. We show that the 

influences of three categories of badges on answering, commenting and revisions 

activities are qualitatively the same. In addition, there is a ranked-efficiency 

relationship among the categories of badges. Gold badges provide a powerful 

stimulus than silver badges and silver badges are more influential than bronze 

badges, in terms of ability to induce user participation. Furthermore, our analysis 

shows that the hierarchical badges system induces more voluntarily contribution 

from users once users obtain a badge from a higher category. Thus, the hierarchical 

badges system not only facilitates differential influence among badge categories, 

but also gives rise to positive externalities across them. Hence, we conclude that 

the hierarchical badges system is highly effective in inducing continuous 

contributions to the community. Different from other three activities, we 

demonstrate that badges do not seem to motivate users much to ask questions.  

To the best of our knowledge, none of the existing studies investigates the 

quantitative impact of badges and categories among badges on user activities in an 

online community using econometrics models. Prior studies either focused on 

identifying motivations behind user participation (Wasko and Faraj 2000) or 
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studied the impact of network effects in online communities (Gu et al. 2007b; 

Zhang and Wang 2012; Zhang and Zhu 2011). The main contribution of this paper 

is two-fold. First, we quantify the influence of a hierarchical badges system on 

voluntary user contributions. We characterize the significance of rewarding 

contributions using badges and having a hierarchy among badges in facilitating 

sustained contributions from users over time. Since online communities endow 

users with an assortment of badges, our results provide insights into the optimal 

badges system design. Overall, we add to the literature in online communities by 

providing evidence that badges enable users to boost the intrinsic motivations for 

voluntary contributions to Q&A sites, rather than being a source of extrinsic 

motivation only. In theory, users participate in a Q&A site because of intangible 

and psychological benefits and badges could bring tangible benefits into the 

equation. However, if a user only cared about the benefit associated with one badge, 

he/she would stop contributing after obtaining that badge. On the contrary, our 

findings suggest that users participate significantly more after earning badges. This 

implies that awarded badges boost the intrinsic motivations of users, creating a 

positive reinforcement loop between badges and contributions, thereby facilitating 

continuous user engagement over time. Second, although gamification has potential 

applications in every industry, there is limited empirical evidence that quantifies 

the value of gamification. Our results provide much needed evidence that game 

design techniques work in promoting incentives to achieve the real world objectives. 

Specifically, we shed light on the value of the use of gamification techniques in 

inducing voluntary participation in Q&A community activities. To the best of our 
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knowledge, we present the first large-scale empirical evidence that shows the 

effectiveness of gamification in increasing engagement in online communities.  

2.2. The Relevant Literature  

From the early days of the Internet, we have witnessed an explosive growth of 

information produced in various online communities. This increase is largely 

attributed to users spending time and effort to share their knowledge voluntarily 

with other community members without getting any monetary reward in return. 

Researchers from different disciplines made inquiries to study the motivations 

behind such large-scale “unselfish” behavior using a wide range of research 

methodologies. Since we study the role of game elements to motivate unpaid 

knowledge contributions, our research is relevant to three streams of research in 

prior studies: voluntary participation in online communities, private provision of 

public goods, and gamification. 

2.2.1. Voluntary Participation in Online Communities 

In theory, a person is motivated to act only when the expected benefits associated 

with posting questions or answers exceed their anticipated costs, such as time and 

effort. Motivation theories in psychology attempting to explain the drivers of 

individuals’ behavior have distinguished two main types of motivations: intrinsic 

and extrinsic (Ryan and Deci 2000). Intrinsic motivation exists if an individual is 

driven to perform an activity due to satisfaction from the activity itself. Intrinsic 

motivation is based on the pleasure generated by the activity rather than relying on 

an external reward. In contrast, extrinsic motivation occurs when the activity is 

performed in order to attain an external or separable outcome. Because there exist 
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few extrinsic motivations for the users of online communities, IS researchers 

primarily focused on studying the sources of intrinsic motivations to explain 

voluntary contribution on the Internet. By using behavioral research methods such 

as surveys and case studies, IS researchers have identified a number of intrinsic 

motivations that could drive user participation in online communities. This section 

discusses the motivations identified in prior studies. 

In one of the earliest studies Wasko and Faraj (2000) investigated why users 

share knowledge in three programming communities using a survey and content 

analysis. They identified three categories of benefits: tangible return (e.g., answers 

to questions or monetary rewards), intangible return (e.g., entertaining and 

learning), and community interest (e.g., interacting with users, altruism, reciprocity, 

and advancing the community). They observed that the community interest is the 

most important one among three categories of benefits in inducing participation. 

With similar methodologies, many researchers have studied related research 

questions in different contexts. The main contribution of each paper lies in a unique 

focus on a specific type of intrinsic motivation and/or in studying an unexplored 

form of online community. For example, Daugherty et al. (2005) surveyed online 

panel5 participants and found that learning and gaining information is the strongest 

motivation. Wasko and Faraj (2005) surveyed participants of a legal professional 

online community and showed that reputation and social capital are two key 

motivations in this context. The enjoyment of reputation and social image has also 

                                                 
5 An online panel is a consortium of registered persons who have agreed to take part in online research on a 

regular basis. 
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been documented in a number of other studies (Constant et al. 1994; Constant et al. 

1996; Daugherty et al. 2005; Marett and Joshi 2009; Ren and Kraut 2011; Tiwana 

and Bush 2005). Participants in online communities may also take part in 

community activities due to self-efficacy, which means users capitalize on their 

ability to find solutions in order to accomplish challenging goals (Compeau and 

Higgins 1995). For example, Sun et al. (2011) found that self-efficacy is the most 

important motivation on TaskCn, a crowd-sourcing site, while Jin et al. (2012) 

reached the same conclusion on Yahoo! Answers China. A motivation similar to 

self-efficacy is that individuals may fulfill entertainment needs while participating 

in online communities, either through communications with other users or 

interacting with them to solve problems (Kankanhalli et al. 2005; Marett and Joshi 

2009; Ren and Kraut 2011; Sutanto et al. 2011). 

Because of the popularity of Facebook and other social networking 

platforms, recent studies about online communities focused more on social aspects. 

In general, reciprocity, social capital, and community interests were highlighted as 

three major categories of intrinsic motivations. Reciprocity, a practice of 

exchanging things with others for mutual benefit, refers to making valuable 

contributions to the community after reading helpful posts on the same community 

(Chiu et al. 2006; Faraj and Johnson 2011; Hall and Graham 2004). In the literature, 

social capital is defined as the resources embedded within networks of human 

relationships (Nahapiet and Ghoshal 1998). Using the social capital theory in 

studying online communities, it is hypothesized that users engage in knowledge 

contribution to build mutual trust and to establish long-term relationship. Raban 
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(2009) showed the importance of social capital on Google Answers. Other 

researchers provide similar evidence in other online communities (Chiu et al. 2006; 

Ren and Kraut 2011; Ren et al. 2007; Ren et al. 2012; Tiwana and Bush 2005). 

Lastly, members of an online community may feel identified with the group when 

this group of people shares common interests or characteristics. If members 

experience a strong sense of community, they may become altruistic and committed 

to actively contribute knowledge (Bateman et al. 2011; Ma and Agarwal 2007). Oh 

(2012) showed that altruism is the most important motivation among 10 

motivations on Yahoo! Answers for health-care related questions. 

As for the influence of extrinsic motivations, particularly monetary rewards, 

studies have revealed counterintuitive results. Contrary to economic theories, 

researchers have identified situations in which providing monetary incentives does 

not necessarily increase contributions to online communities. Conducting an survey 

based experiment among the members of a German Q&A site, Garnefeld et al. 

(2012) found that monetary incentives can increase community members’ 

participation only in the short term. This finding is consistent with the real-world 

business cases. Google Answers, which once offered monetary rewards to 

incentivize users to contribute actively, could not succeed whereas Yahoo! 

Answers thrived to be the largest Q&A site without offering any monetary rewards 

to its contributors. 

Our study is different from the studies mentioned above in the following 

ways. First, in conventional sense, a badge could serve as an extrinsic 

stimulus/motivation for participation. Users contribute because they want to earn 
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badges. However, if a user only cared about the benefit associated with one badge, 

he/she would stop contributing after obtaining that badge. In this paper, we adopt 

the perspective of the emerging theory of gamification and argue that a badge, when 

it is earned, enhances the intrinsic motivations of users associated with participation 

activities, instead of being just a source of extrinsic motivation. Users participate 

significantly more after earning badges because awarded badges boost the intrinsic 

motivations of users, creating a positive reinforcement loop between badges and 

contributions, thereby facilitating continuous user engagement over time (Please 

see section 2.2.3 for more details.) For example, after getting a badge, the user could 

feel an increased sense of community identity or enjoy more fun in interacting with 

or helping to other users in the same community. Consistent with our arguments, 

our findings show that earned badges indeed enhance participants’ intrinsic 

motivations that result in more contributions to community activities in the 

subsequent period. Second, almost all of the existing studies use surveys to directly 

solicit participation motivations from the users of online communities. In contrast, 

this study utilizes field data and econometric methods to quantify how a 

hierarchical badges system, a unique form of non-monetary incentive mechanism, 

may affect user activity levels on a Q&A site. In other words, our focus is on badges, 

not on the aforementioned motivations. Third, our study sheds light on how 

different categories of badges in a hierarchy vary in terms of influence on 

participation levels to different site activities. Fourth, our econometric analyses 

using a large sample from a real Q&A site complement prior studies because 

survey-based studies may suffer from the sampling bias due to the low response 
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rate and also in survey studies, all measured variables are solicited from the 

respondents, making it challenging to rule out alternative unobservable covariates 

for the observed significant relationships (Wang and Noe 2010). 

Very little research has been done in an online community setting to 

investigate when, how much, and which types of reinforcement, such as badges, 

should be used to increase membership participation in online communities 

(Tedjamulia et al. 2005). Gazan (2011) summarized the recent research in design 

science about Q&A sites. Addressing the lack of research in this area from a social 

psychology perspective, Antin and Churchill (2011) proposed five theoretical 

lenses to study badges: goal setting, instruction, reputation, status or affirmation, 

and group identification. To the best of our knowledge, there is no rigorous 

econometric analysis that explicitly studied the effect of badges in online 

community participation. There only exist several remotely related studies that 

examined other design features, such as reputation systems (Chen et al. 2010), 

feedback systems (Moon and Sproull 2008), and knowledge validation processes 

(Durcikova and Gray 2009), on the quantity and quality of knowledge contribution. 

Although badges have become a widely popular mechanism to induce online user 

engagement, thanks to the success of mobile social networking site Foursquare, 

there still exists limited scholarly research that investigates the effect of badges on 

user participation in online communities. Our study is an attempt to fill the gap in 

this direction. 
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2.2.2. Private Provision of Public Goods 

The earliest research related to voluntary contributions appeared in the literature on 

the private provision of public goods. Public good is defined as the good that 

individuals cannot be effectively excluded from its use and use by one individual 

does not reduce availability to others (Samuelson 1954). Textbook examples of 

public goods include parks and light houses. Several significant innovations over 

the Internet created a new set of public goods, produced entirely from free user 

contributions, such as open source software, Wikipedia, online communities, and 

YouTube. Since the benefits of public goods are enjoyed by everyone but the 

production cost is accrued to an individual, the free-rider problem and under-supply 

of public goods is a typical equilibrium outcome in theoretical models (Andreoni 

1988). 

One main proposition for empirical testing is that the free-rider problem is 

aggravated when the group size increases: the average level of individual 

contribution declines as group size increases. Extant studies focused on finding 

remedies to alleviate the free-rider problem, such as using government policies or 

incentive mechanisms to reimburse (or penalize) users to produce more (or less) 

public goods with positive (or negative) externalities.6 However, most theoretical 

models failed to explain the phenomenon of extensive donations in the charitable 

sector of the economy (Andreoni 1988). A remedy for the inconsistency between 

theoretical models and empirical evidence is the impure altruism models (e.g. 

                                                 
6 Interested readers could refer to Chen, Y. 2008. "Incentive-Compatible Mechanisms for Pure Public Goods: 

A Survey of Experimental Research," Handbook of Experimental Economics Results (1), pp. 625-643. and 

Chaudhuri, A. 2011. "Sustaining Cooperation in Laboratory Public Goods Experiments: A Selective Survey 

of the Literature," Experimental Economics (14:1), pp. 47-83. for a recent comprehensive literature review. 
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Andreoni (1989), Andreoni (1990), Cornes and Sandler (1994), and Steinberg 

(1987)). In these models, individual contributors obtain utility from not only the 

total provision of public good but also their own private benefits (or warm glow), 

such as enjoyment of helping others and moral satisfaction. In this case, these 

private benefits are positively related to group size because individual’s enjoyment 

of helping others is amplified by the number of recipients. As group size increases, 

the motivation of pure altruism fades away while private benefits increase and lead 

to a rise of “social effects”, sustaining individual contributions in a large group 

(Zhang and Zhu 2011).  

In Stack Overflow and other Q&A sites, the knowledge base is accessible 

to all Internet users and thus it is a typical example of public goods. However, to 

the best of our knowledge, empirical studies in economics have not examined 

private provisioning in the context of Q&A sites. 7  Furthermore, most of the 

findings in the private provision of public goods literature may not be applicable to 

our context due to the following reasons. First, majority of empirical studies 

examined voluntary contributions using experiments on a small group of users, 

which is very different from Q&A sites with many users. Second, some theoretical 

models focused on how to redistribute the costs and profits, which is also not 

relevant to Q&A sites, where there is no monetary reward and it is difficult to 

reimburse users for their time and effort. Third, a number of studies investigated 

how group size correlates with public good provisions, which is also different from 

                                                 
7 The only exception is Chen, Y., Ho, T.-H., and Kim, Y.-M. 2010. "Knowledge Market Design: A Field 

Experiment at Google Answers," Journal of Public Economic Theory (12:4), pp. 641-664. who conducted a 

field experiment at Google Answers by manipulating the monetary rewards to users. 
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the main issue studied in our study. We focus on the effects of a hierarchical badges 

system. Specifically, we analyze how badges and categories among them may 

enhance individual contributors’ warm-glow effect to induce contributions.  

2.2.3. Gamification 

Online games are hugely popular among many users because they tap into the 

drivers of user engagement, such as challenge, achievement, competition, 

entertainment, and interactivity.8 Organizations now realize that some elements of 

game design can be applied to business and social processes to promote desired 

behavior, leading to the emergence of the concept of gamification. Gamification 

refers to the use of game elements and techniques in non-game contexts to drive a 

game-like player behavior (Wu 2011). It can be viewed as a new paradigm for 

enhancing brand awareness and loyalty, innovation, and user engagement 

(Werbach 2013).9 The definition of gamification has three components. The first 

component of game elements and techniques comprises game design principles, 

game dynamics, player profiles, and other aspects of games. Users are incentivized 

for participation and performance using points, badges, leaderboards, levels & 

status (Burke 2011). The second component is the non-game context which can 

                                                 
8 The motivations behind playing games and game design mechanisms have been widely studied in the 

literature. The interested readers can refer to Olson, C.K. 2010. "Children's Motivation for Video Game Play 

in the Context of Normal Development," Review of General Psychology (14:2), pp. 180-187., Ryan, R.M., 

Rigby, C.S., and Przybylski, A. . 2006. "The Motivational Pull of Video Games: A Self-Determination 

Theory Approach," Motivation and Emotion (30:4), pp. 344-360., Yee, N. 2006. "Motivations for Play in 

Online Games," Cyber Psychology & Behavior (9:6), pp. 772-775., and Fogg, B. 2009. "A Behavior Model 

for Persuasive Design," Proceedings of the 4th international Conference on Persuasive Technology: ACM, 

p. 40.. 
9 This trend is predicted to intensify over time. It is estimated that more than 70% of Global 2000 organizations 

will employ at least one gamified application by 2014 Gartner. 2011. "Gartner Predicts over 70 Percent of 

Global 2000 Organisations Will Have at Least One Gamified Application by 2014," Barcelona, Spain.. 

Furthermore, over 50% of organizations that manage innovation processes are expected to gamify these 

processes by 2015 ibid.. 
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include work, innovation, marketing, education, health and fitness, environment 

and community participation. The third component refers to game-like player 

behavior, such as competition, interaction, collaboration, learning, addiction, and 

engagement (Wu 2011). Gamifying a system or application requires defining its 

objectives, deriving desired user behaviors, devising extrinsic rewards that should 

appeal to users, and implementing game mechanics to connect desired behaviors to 

extrinsic rewards (Zichermann and Cunningham 2011). It is important to note that 

a gamified application is not a game. Building on the findings about human 

motivations related to game playing, gamification creates just an environment that 

induces desired behavior to facilitate continuous engagement in a business context 

(Werbach 2013). Gamification should not be assessed through the lenses of 

conventional incentive theory. While the presence of an explicit reward induces a 

desired behavior in many incentive structures, the induced behavior is typically 

short-lived or does not occur again after the receipt of the reward. Gamification, on 

the other hand, aims to achieve the reoccurrence of the desired behavior. Extrinsic 

rewards presented to users upon the occurrence of the desired behavior, such as 

points and badges, incentivize continuous engagement with the help of game 

mechanisms, causing the repetitive behavior-reward combination to occur 

(Kankanhalli et al. 2012).  

Several anecdotal cases suggest the benefits achievable through 

gamification. For example, a call center company in the US, LiveOps, used game 

elements to motivate call center agents. Since then, sales have improved by 8-12% 

and call time has reduced by 15% (Silverman 2011). Yahoo’s gamification of its 
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web-based ethics training module has achieved a 99 % completion rate (Ashraf 

2011). DevHub, which enables users to create their own blogs and web sites using 

site tools, reported that average revenue per user increased four-fold after 

gamification, with around 80% of users completing their sites (Takahashi 2010). 

Foursquare, a mobile location-based application, has successfully driven its users 

to “check-in” at their nearby locations using gamification techniques. Nike+ system, 

which tracks pace, distance, time, and calories burned while users run or walk using 

a little sensor in shoes and let users set personal goals and compete with friends, 

achieved tremendous success by capitalizing on gamification and the underlying 

game mechanisms.   

While case studies and practitioner articles provide useful insights 

regarding gamification benefits, there is no rigorous academic research to test these 

results for greater credibility. The hierarchical badges system used by Stack 

Overflow embeds several game design elements to elicit voluntary participation 

and continuous engagement, thereby creating a perfect environment to test the 

effectiveness of gamification. In addition, Stack Overflow is one of the most cited 

gamified applications in practice (Werbach 2013). First, it offers various badges 

designed to induce different community activities. Contributors earn badges that 

reflect their type as well as the level of participation and involvement in the 

community. This is like earning points and trophies as users accomplish tasks in 

games. Second, there are categories of badges (bronze, silver, and gold) and a 

hierarchy among the categories. The ordering among the badge categories is similar 

to the levels in games, corresponding to difficulty in achievement and advancement. 
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Third, users engage with each other through social communication channels, such 

as voting contributions up or down, accepting an answer as the correct answer, and 

visiting contribution pages, making revisions and leaving comments on others’ 

contributions. This engagement brings interactivity that promotes relatedness to 

others. Fourth, users are ranked in leaderboards based on their contributions and 

earned badges, enabling users to compare their own performance with others and 

stimulating competition, just like games. 

Although gamification rewards desired behavior using extrinsic motivators, 

such as points and badges, continuous engagement in the long run depends heavily 

on how gamified applications tap into intrinsic motivations of users (Werbach 

2013). For instance, gamified marketing applications can initially encourage 

customers to buy more by allowing them to track their points and accordingly offer 

discounts. However, long term engagement with the application is likely to hinges 

on how users internalize these motivations by developing loyalty and identification 

with the brand. Self-determination theory argues that extrinsic motivations must be 

integrated into intrinsic motivations for engagement (Ryan and Deci 2000). 

Similarly, badges offered by Stack Overflow can elicit contributions from users 

because badges bring tangible benefits in the short run. The effectiveness of the 

hierarchical badges system in the long run ultimately depends on whether earned 

badges can enhance the intrinsic motivations of users.  Our empirical results reveal 

that the hierarchical badges system is effective because it helps users internalize the 

extrinsic motivations and builds a positive reinforcement loop between badges and 

contributions, thereby facilitating continuous engagement from users over time.  To 
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the best of our knowledge, this study presents the first empirical evidence that 

confirms (i) the effectiveness of gamification in eliciting and sustaining desired 

behavior and (ii) the value of hierarchical badges system in online community 

participation and engagement. 

2.3. Data Description 

2.3.1. Sample Construction 

Our data come from Stack Overflow, which is the most popular Q&A site for 

programmers. Stack Overflow was launched in August 2008. From its 

establishment till today, Stack Overflow has attracted over 1.1 million users and 

these users have generated over 3 million questions and 6.1 million answers with 

an answered rate over 80%. We employed the Stack Exchange APIs to crawl data 

from August 2008 to January 1st 2012. We excluded the observations in 2008 

because user activities were relatively unstable due to the nascence of Stack 

Overflow. We observe that more than 50% users (29,450 out of the first 50,622) 

who registered during this period later dropped out. We also excluded users who 

registered after January 1st 2011 to ensure that all users in our sample have an 

activity period of more than a year. After this step, there were 354,029 users left in 

our sample. Our final sample period included three years of data from January 1st 

2009 to January 1st 2012. 

Our initial assessment of the panel dataset revealed that a large fraction of 

the registered users were rather inactive during the entire three years: about 40% 

(128,933/354,029) of users had a reputation score of 1, meaning that they had not 

engaged in any activity after registration (since 1 reputation score is given directly 
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by the system upon registration).10 These users with almost no activity after sign 

up might deteriorate our data analysis. Therefore, we excluded users if a user’s 

cumulative reputation score was never greater than 200 throughout the three year 

sample period.  The threshold of 200 is determined by Stack Overflow and it could 

be the most objective value for us to define users with basic level of contribution. 

According to Stack Overflow, users with reputation score less than 200 are not 

tracked in the reputation league on stackoverflow.com. On average, users who have 

less than 200 reputation score posted less than one question or one answer per 

month. In fact, a user can earn 200 reputations in one day by engaging in 

community activities.  Therefore, the 200 rule is a reasonable cutoff to characterize 

our sample for analysis. Note that this cutoff does not imply that we only consider 

users with continuous contribution over time. A user might earn necessary 

reputation by having a burst of activity in one week and being inactive in the rest 

of the weeks. Alternatively, a user might build the necessary reputation by 

contributing little by little over weeks during the three year period. In either case, 

we keep the user in our data set for analysis. With this cutoff rule, the percentage 

of users dropped from the sample was 83% (295,550/354,029). At the end, our final 

data set consisted of 58,479 users. 

The scraped data include cross-sectional user profiles and user-level panel 

datasets. A user profile contains a user id, display name, self-reported age, and self-

reported location in an unstructured format. A user-level panel dataset consists of a 

                                                 
10 Reputation points are earned by posting good questions and helpful answers on Stack Overflow. In addition, 

users can earn reputation points for suggesting edits. For the detailed rules to obtain reputation points on 

Stack Overflow, please refer to “http://stackoverflow.com/faq#reputation”. 

http://stackoverflow.com/faq#reputation
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detailed history of reputation, types of badges received, and types of activities 

engaged in with a time stamp, which is at seconds-level.11 

The unit of analysis in our study is at user-week level. We conduct the 

analysis at weekly instead of daily level to avoid weekend effects. Weekly analysis 

is a more reasonable choice compared to longer periods, such as bi-weekly or 

monthly analysis because the impact of a specific badge may not last longer than 

one week. In addition, if we aggregated data for more than one week, it would be 

more difficult, if not impossible, to isolate the overlapping impacts of badges 

because a user is more likely to receive multiple badges in the same period. 

2.3.2. Dependent Variables: User Activities 

Stack Overflow records four types of user activities and we use the level of each of 

these activities as a dependent variable in this study. These four activities are (i) 

answering (the number of questions answered), (ii) commenting (the number of 

comments to posted questions or answers), (iii) revision (the number of revisions 

to posted questions or answers), and (iv) asking (the number of questions asked). 

Among all activities, "answering" is the most vital activity in our research 

context. In Stack Overflow, getting users to answer questions is relatively more 

challenging than getting users to ask questions. Users who submit their questions 

may not seek, and therefore motivated by, an external reward such as a badge, 

because they are likely to consider answers to their questions as tangible benefit. 

However, users who answer questions do not earn much obvious benefit in return 

                                                 
11 Specifically, Stack Overflow uses the UNIX time stamp. For example, 1335966004 could be converted to 

“Wed, 02 May 2012 13:40:04 GMT”. 
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for their time and effort. Therefore, it is utmost important to offer them non-

monetary psychological stimulus, such as badges. 

 “Commenting” is another essential activity that enhances user interactions 

to improve the quality of questions and answers. Users can comment on each 

other’s questions and answers. Comments could be as short as “Thank you!” or 

could include constructive suggestions. The increased level of interaction among 

users is likely to influence users’ perceived community identity and induce users to 

engage more on the Q&A site.  

 “Revision” activity is designed to imitate Wikipedia for building a high-

quality knowledge base at Stack Overflow. Stack Overflow encourages users to 

collaborate in revising their questions and answers. After several rounds of 

revisions by users, the quality of both questions and answers may improve 

drastically. In a sense, revisions help Stack Overflow become the most valuable 

online reference for programmers, which subsequently drives more users to the site.  

2.3.3. Badges and Independent Variables 

Our independent variables are related to badges. In Stack Overflow, a user is 

awarded with a badge when his/her participation reaches a threshold in one or 

several types of activities. The earned badge will appear on the member’s user page 

and user card. Therefore, badges could induce not only direct psychological effects 

but also indirect effects via the social image.12 

                                                 
12 This is consistent with the quote from Joel Spolsky, the cofounder of Stack Overflow: “The number of badges 

you’ve earned is displayed on your user card for everyone to see. Most people claim not to care about badges, 

but as soon as you think someone is seeing what you’re doing, you start to care about it more.” 
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The total number of badges in Stack Overflow is 73.13  Badges can be 

categorized along several dimensions. Some badges are awarded based on the 

cumulative number of activities while others are awarded based on the number of 

activities within a specific time period. For instance, the badge “Commentator” is 

awarded when a user leaves 10 comments. In contrast, the badge “Fanatic” is earned 

if a user visits the site each day for 100 consecutive days. In addition, some badges 

are awarded based the quality of user activities, not just the number. Peers endorse 

the quality of a contribution with their votes and/or visits. For instance, the badge 

“Popular Question” is given when a user asks a question with 1000 views by others, 

confirming the quality of the asked question. 

Badges are classified by Stack Overflow into three categories (Gold, Silver, 

or Bronze) in terms of the hierarchical difficulty in obtaining them. For instance, 

“Popular Question” is a bronze badge (Asked a question with 1000 views), 

“Notable Question” (Asked a question with 2500 views) is a silver badge, and 

“Famous Question” is a gold badge (Asked a question with 10000 views). In this 

example, a user must have earned the bronze badge before he could be qualified for 

the silver or gold badge. The obtained badge is not replaced by the badges in higher 

levels; instead, the user keeps all the badges. Badges and their hierarchy provide us 

with an opportunity to examine the relative effectiveness of a hierarchical badges 

system in inducing continuous user participation. Out of 73 badges, 35 are bronze, 

25 are silver, and 13 are gold badges. There are 14 sets of hierarchical badges. Only 

                                                 
13 Stack Overflow continuously introduces new badges into their badges system. This number is as of May 

2012.  
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5 among them are three-level (Gold, Silver, and Bronze) and the others are two-

level (either Bronze and Silver or Silver and Gold).  

We also notice that there are a few badges with “negative” connotations, 

hereafter referred to as negative badges. For example, “Tumbleweed” is earned 

when a user asks a question with no votes, no answers, no comments, and low views 

for a week”. Another example is “Unsung Hero”, which means a user has at least 

10 answers with a score of zero, and those answers make up at least 25% of all of 

the user’s accepted answers. Since most of the badges at Stack Overflow dress up 

users with a positive social image, these negative badges give us a unique 

opportunity to examine whether they encourage or discourage users’ activities. 

We carry out our empirical analyses in two steps. In the first step, we 

consider a micro-level (badge-level) analysis. We analyze the value of 27 badges 

in detail. We are interested in finding how each of these badges affects user 

engagement. We calculate the number of activities before and after a user has 

obtained a specific badge. Then we use the propensity score matching to construct 

a control group of users who did not obtain badges in the same period. By 

comparing the average change in activities of treatment and control groups, we 

quantify the impact of the specific (target) badge. In other words, our approach is 

similar to the difference-in-differences method. The weakness of this approach is 

that we cannot fully isolate the effects from multiple badges because users may 

receive several badges in a given week. Another concern is that the users may truly 

pursue hard-to-obtain rare badges, and yet they first get easier badges, which are 
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not the ones that motivate the users, on the way to the target badge. Therefore, we 

complement our first analysis with a macro-level analysis. 

In the second step, using standard panel data methods, we investigate how 

much gold, silver, and bronze badges awarded to users affect the level of their 

subsequent activities. Further, we conduct analysis on subsamples, which are 

defined based on the stage of engagement of users on Stack Overflow. Our results 

support our conjecture that badges have both economically and statistically 

significant impacts on encouraging user participation and continuous engagement.  

The definitions of variables used in this study are given in Table 2-1 while 

the descriptive statistics reported in Table 2-2 and Table 2-3 summarize the average 

weekly levels of activities and the numbers of observations used in micro-level  and 

macro-level analysis, respectively. 
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Table 2-1 Definitions of Variables 
 Variable Name Definition 

Dependent 

Variables 

Answering Number of questions answered  

Commenting Number of comments posted  

Revision Number of revisions made  

Asking Number of questions asked  

Independent 

Variables 

Tenure Number of months since a user has joined 

Stack Overflow  

Reputation Natural logarithm of reputation score  

Cum_reputation Natural logarithm of cumulative reputation 

score  

Gold Number of gold badges received  

Silver Number of silver badges received  

Bronze Number of bronze badges received  

Cum_gold Cumulative number of gold badges received  

Cum_silver Cumulative number of silver badges received  

Cum_bronze Cumulative number of bronze badges received  

 

Table 2-2 Summary Statistics for the Micro-level Data Analysis 
Activity Mean Std.dev Min Max 

Answering 6.401 13.496 0 248 

Commenting 11.050 24.588 0 666 

Revision 5.028 15.274 0 1326 

Asking 0.546 1.371 0 72 

Observations 270,761 user-badge pairs from 58,479 users14 

 

                                                 
14 For different badges, we have different numbers of user-badge pairs. Therefore, we have different numbers 

of observations for different badges and we report here the sum of the user-badge pairs over all 27 badges 

studied.  
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Table 2-3 Summary Statistics for the Macro-Level Data Analysis  
Activity Mean Std. dev. Min Max 

Answering 0.679 3.227 0 204 

Commenting 1.199 5.920 0 708 

Revision 0.440 3.890 0 3018 

Asking 0.232 0.864 0 72 

Tenure 11.845 7.997 0 36 

Reputation 0.803 1.535 0 9.387 

Cum_reputation 4.441 2.339 0 12.320 

Gold 0.002 0.049 0 4 

Silver 0.033 0.197 0 10 

Bronze 0.137 0.515 0 29 

Cum_gold 0.086 0.409 0 25 

Cum_silver 1.294 3.564 0 265 

Cum_bronze 8.001 8.576 0 702 

Observations 4,070,427 user-week pairs from 46,571users15 

                                                 
15 Please note that the sample size for the macro-level analysis is different from that for the micro-level analysis. 

This is due to the following reasons. First, the number of users considered in both analyses is different because 

of two variables: “cumulative reputation” and “cumulative number of badges”. Since we cannot accurately 

calculate these variables for users who registered before 2009, we drop these users from the macro-level 

analysis sample to reduce the potential bias. Second, for the same user, the number of weekly observations 

is different. In the micro-level analysis, we only include observations one week before and one week after 

getting any one of 27 badges. In the macro-level analysis, we include all weekly observations throughout the 

three-year sample period. Since a large fraction of observations in the macro-level panel dataset are zero or 

a small number, the means of dependent variables at the macro-level are much smaller than those at the 

micro-level. While the micro-level analysis depicts the short-term impact, the macro-level analysis captures 

the long-term effect of badges. Therefore, these two analyses complement each other to provide a more 

complete picture about how badges correlate with contributions. 
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2.4. Micro-Level Analysis 

To investigate the effect of individual badges, we use propensity scoring and 

regression methods to exclude alternative explanations. We report the results for 27 

badges (Please refer to Table A1 in the Appendix for the definitions of these 

badges). These 27 badges out of 73 badges were selected based on the following 

two criteria. First, we excluded badges designed to motivate novice users to explore 

site features. For example, “Editor” is awarded for the first edit. These trivial 

badges are owned by almost all users. Also, the impacts of these badges are less 

stable since users who earned those badges are relatively new to Stack Overflow. 

Second, we included all the badges that are awarded based on four main 

contribution activities because the levels of these activities are used as dependent 

variables in the analysis. After these steps, we ended up with 27 distinct badges. 

There are 9 badges for asking questions, 11 badges for answering questions, 2 

badges for commenting, and 5 badges for revisions in our sample, including 3 

negative badges.  

2.4.1. Propensity Score Matching Analysis 

Our analysis in this section is conducted as follows. Take a target badge “Nice 

Answer” as an example. First, we identify each date that a user gets the badge “Nice 

Answer”. Second, for the user who earned the target badge, we aggregate the 

number of contributions made by the user to each of the 4 activities 7 days before 

and 7 days after that date, separately. As a result, for each user-badge pair, we 

obtain 8 numbers representing the activity levels. The weekly number of 

contributions to activity j before and after the badge awarding date is denoted by 
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𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗0 and 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗1, respectively. The subscript i refers to the 

target badge. Third, we can compare the average number of activities 7 days before 

and after the date a user obtained the target badge. In other words, we test whether 

H0: E[𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗1] > E[𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗0]. 

To establish the causal relationship that getting a badge motivates users to 

contribute more, it is not sufficient to show that each user’s activity increases after 

getting a badge. There are several alternative explanations that may give rise to the 

same increase in contributions. First, it could be that all users participate more over 

time. Second, there exist unobservable variables that correlate with getting the 

target badge and the increased activity level. For instance, having more free-time 

to spent on Stack Overflow or the altruistic personality could be the true cause of 

getting a badge and contributing more in activities. 

In the literature, there are two popular methods to eliminate these alternative 

explanations. One can either include control variables in a panel regression setting 

or use the Propensity Score Matching (PSM) method suggested by Rosenbaum and 

Rubin (1983). The idea of PSM is to use a set of control variables to select some 

observations that are most similar to the observations in the treatment group. The 

matched observations are used to form a control group. If the dependent variable 

only correlates with those control variables, then this method produces results as 

good as a randomized experiment while excluding the impact of unobservable 

heterogeneity. In other words, using PSM we try to show that  

H0: E[𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗1 − 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗0|𝑤𝑖𝑡ℎ 𝑡𝑎𝑟𝑔𝑒𝑡 𝑏𝑎𝑑𝑔𝑒 𝑖] 

> E[𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗1 − 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗0|𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡𝑎𝑟𝑔𝑒𝑡 𝑏𝑎𝑑𝑔𝑒 𝑖]. 
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Therefore, our hypothesis testing is similar to the well-known difference-

in-differences approach for establishing causality. 

An attractive feature of PSM is that matching estimates facilitate a causal 

interpretation (Angrist and Pischke 2008). We choose PSM over regression as the 

baseline analysis also due to the following reasons. First, observations in our 

treatment group could be quite different from the majority of observations. Some 

badges, such as most gold badges, are very difficult to obtain. Only few users can 

earn those badges and their behavior could be very different from the rest of the 

population. In a panel regression, we compare frenzy users with the mainstream 

users who typically contribute much less. By PSM, for each observation in the 

treatment group, we can construct a control group of users with contribution 

patterns, similar to the user in the treatment group. Second, badges are awarded to 

users across three years, creating another layer of complexity of applying panel 

regression. By PSM, we can isolate the short-term impacts of a badge one week 

before and after the badge awarding date. In a panel regression, it is much more 

difficult to transform the data to achieve the same goal. 

In this paper, our control group is constructed as follows. For each user-

badge pair comprising the treatment group in our sample, we find the ten most 

similar users who did not receive the target badge 7 days before and 7 days after 

the treatment group user received the target badge. The similarity between two 

users is calculated by the Euclidean distance in 4 with the 4 dimensions being the 

numbers of 4 activities 7 days before the badge awarding date. Following 

Brynjolfsson et al. (2011), we use the 10-nearest neighbor matching algorithm with 
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replacement. In other words, for each user-badge pair in the treatment group, we 

identify 10 users who did not earn the target badge, but they had the most similar 

levels of activities during the week before the treatment user earned the target badge. 

That is, users in our control group exhibited a very similar activities pattern to the 

user in the treatment group, except receiving the target badge. The average numbers 

of activities in the control group are used to benchmark against the numbers derived 

from the treatment group. 

Next, for each specific badge i and activity j, we use a simple regression 

model to investigate the impact of a badge on contributions to a given activity. The 

dependent variable is the first-differenced, weekly number of activities to eliminate 

any user-specific, time invariant heterogeneity (Wooldridge 2009). Formally, the 

dependent variable is  

 ∆𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗 = 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗1 − 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗0 .  

The estimation model is given by  

∆𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗 =  𝛽0𝑖𝑗 +  𝛽1𝑖𝑗 ∗ 𝐵𝑎𝑑𝑔𝑒𝑖 + 𝑢𝑖𝑗 ,                                            (1) 

where 𝐵𝑎𝑑𝑔𝑒𝑖 is a dummy variable and equals to one when a user  receives the 

target badge i at t=1, which means the user is in the treatment group. In this 

estimation, 𝛽1𝑖𝑗  captures the average treatment effect. As long as the variable 

𝐵𝑎𝑑𝑔𝑒𝑖  is uncorrelated with the error term 𝑢𝑖𝑗 , the OLS estimator of 𝛽1𝑖𝑗  is an 

unbiased and consistent estimator of the badge effect on the activity level. 

𝛽1𝑖𝑗 =  E[∆𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗|𝐵𝑎𝑑𝑔𝑒𝑖 = 1] − E[∆𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖𝑗|𝐵𝑎𝑑𝑔𝑒𝑖 = 0]. 

In other words, our estimation is as robust as a randomized experiment when 

cov(Badgei, 𝑢𝑖𝑗)=0. 
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2.4.2. Micro-level Results and Discussion 

Before discussing the results of PSM estimation, we first examine the quality of 

matching since this is the foundation for us to establish causality. In Table 2-4, we 

use a set of Question badges (Popular/Notable/Famous Question) to demonstrate 

the quality of matching.  

Table 2-4 Quality of Matching 
  Activity Type 

Badge 

Name 
 Answering Commenting Revision Asking 

Popular 

Question 

Treatment 

Group 
1.780 4.431 1.946 1.053 

Control 

Group 
0.081 0.144 0.225 0.028 

Matched 

Control 

Group 

1.984 4.473 1.830 0.882 

Notable 

Question 

Treatment 

Group 
1.694 4.046 1.934 0.878 

Control 

Group 
0.081 0.144 0.225 0.028 

Matched 

Control 

Group 

1.910 4.209 1.830 0.823 

Famous 

Question 

Treatment 

Group 
1.644 3.803 2.608 0.740 

Control 

Group 
0.079 0.147 0.222 0.027 

Matched 

Control 

Group 

1.846 4.042 2.077 0.758 

 

As shown in Table 2-4, the imbalance of covariates between treatment 

group and control group has been dramatically improved after matching.  Take the 

case of “Popular Question” for example. Before matching, there are large 

differences across all contribution activities between treatment group and control 

group.  The absolute values of the difference of means for answering, commenting, 

revision, and asking activities are 1.669, 4.287, 1.721, and 1.025, respectively. 
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After matching, these values have been shrunk to 0.204, 0.042, 0.116, and 0.171, 

respectively.   We also noted that the means of four contribution activities of control 

group for “Popular Question” and “Notable Question” are identical, with the 

accuracy to three decimal places. This is because of the fact that these two badges 

are easy to earn and bestowed almost every day. Therefore, the control group (those 

who did not receive the target badge at the same day when the subject in the 

treatment group received the target badge) for these two badges are similar with a 

large overlap.  

In estimation with the matched sample, we suspect potential 

heteroskedasticity in our data set. Therefore, we employed the Breusch-Pagan test 

to confirm the existence of heteroskedasticity and corrected our OLS estimator with 

robust estimate of variance. Estimated coefficients from robust OLS estimator are 

reported in Table 2-5. All estimated coefficients are positive. Only 5 out of 108 

coefficients are not significant and only 10 out of 108 coefficients are not 

significant at 1% level. Our results clearly suggest that getting a badge is correlated 

with more participation in all four activities in the week right after the badge is 

awarded. Some badges seem to be very influential: “Archaeologist” is associated 

with 44.134 more revisions in the following week. In sharp contrast, on average, 

users in the sample of our micro-level analysis only contribute 5.028 revisions per 

week. It is interesting to note that even the activities that are not considered in the 

definition of a badge are affected. All estimated coefficients are positive for non-

related activities. For instance, “Notable Question” is bestowed when a user asked 

a question with 2,500 views. Obviously, this badge does not have any direct 
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relationship with the other three activities. However, a user engages more in all 4 

activities after getting this badge. The findings in Table 2-5 imply that earning a 

badge changes the user contributions drastically across all types of community 

activities.  

Our results suggest that even a negative badge could induce more 

participation. We can explain this surprising result from two different angles 

depending on whether users view these badges as a carrot or a stick. First, negative 

badges may prevent users from making contributions that are not appreciated, even 

considered as scam, by the community at large, thereby discouraging users from 

posting valueless questions and answers in subject areas that are of interest to many 

users. Hence, a negative badge may work as a stick to deter participation that dilutes 

the quality of content in popular areas on Stack Overflow. However, earned badges 

cannot be revoked on Stack Overflow. Hence, users of negative badges can only 

make valuable contributions in the subsequent periods to offset their negative social 

image from negative badges. This argument is also consistent with the findings in 

prior studies about shame aversion. In a lab experiment, Savikhina and Sheremetab 

(2010) showed that aversion from shame (avoid being recognized as the least 

contributor) is a more powerful motivator than being recognized as the largest 

contributor to public goods. Masclet et al. (2003) documented that nonmonetary 

sanctions lead to more contributions to public goods. Andreoni and Petrie (2004) 

and Soetevent (2005) provided empirical evidence that people donate more when 

being observed by others. Second, negative badges could be interpreted as fun and 

challenging badges to collect in the eyes of some users. To obtain those badges, 
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users are encouraged to post questions and answers in less popular and/or low 

visibility subject areas. Hence, a negative badge can be considered as a carrot to 

reward participation in order to improve content in niche areas. That is, these 

badges can act as a positive stimulus for some users in the first place. Therefore, it 

should not be surprising that positive stimulus leads to a positive behavior. To sum 

up, irrespective of which angle users view the negative badges, they facilitate more 

contribution. 
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Table 2-5 PSM Estimation Results 
 Activity Type 

Badge Name Answering Commenting Revision Asking 

Popular 

Question 

0.573*** 

(0.015) 

1.530*** 

(0.033) 

0.689*** 

(0.026) 

0.377*** 

(0.008) 

Notable 

Question 

0.553*** 

(0.024) 

1.475*** 

(0.051) 

0.677*** 

(0.047) 

0.350*** 

(0.012) 

Famous 

Question 

0.632*** 

(0.062) 

1.439*** 

(0.117) 

0.421  

(0.267) 

0.338*** 

(0.025) 

Nice Question 1.294*** 

(0.045) 

3.824*** 

(0.105) 

1.569*** 

(0.098) 

0.523*** 

(0.016) 

Good Question 1.421*** 

(0.111) 

3.644*** 

(0.245) 

1.229*** 

(0.229) 

0.350*** 

(0.033) 

Great Question 1.939*** 

(0.448) 

4.146*** 

(0.809) 

2.017*** 

(0.420) 

0.472*** 

(0.072) 

Favorite 

Question 

1.607*** 

(0.197) 

3.563*** 

(0.441) 

1.602*** 

(0.282) 

0.323*** 

(0.053) 

Stellar Question 2.246*** 

(0.546) 

4.258*** 

(1.326) 

1.804**  

(0.597) 

0.227** 

(0.113) 

Nice Answer 4.879*** 

(0.047) 

7.729*** 

(0.085) 

3.476*** 

(0.067) 

0.177*** 

(0.004) 

Good Answer 4.015*** 

(0.108) 

6.768*** 

(0.202) 

3.223*** 

(0.197) 

0.174*** 

(0.009) 

Great Answer 3.734*** 

(0.333) 

5.694*** 

(0.545) 

1.987*** 

(0.345) 

0.195*** 

(0.030) 

Enlightened 5.959*** 

(0.102) 

9.666*** 

(0.193) 

4.126*** 

(0.158) 

0.146*** 

(0.007) 

Guru 4.148*** 

(0.238) 

6.992*** 

(0.470) 

2.927*** 

(0.455) 

0.168*** 

(0.016) 

Necromancer 1.740*** 

(0.085) 

3.133*** 

(0.153) 

1.604*** 

(0.185) 

0.235*** 

(0.015) 

Populist 3.134*** 

(0.420) 

5.223*** 

(0.864) 

1.623*** 

(0.505) 

0.224*** 

(0.036) 

Reversal 4.995*** 

(1.777) 

14.220*** 

(5.160) 

7.125*** 

(2.259) 

0.180  

(0.157) 

Revival 1.617*** 

(0.106) 

2.771*** 

(0.177) 

1.677*** 

(0.226) 

0.176*** 

(0.015) 

Commentator 3.853*** 

(0.060) 

7.084*** 

(0.079) 

1.654*** 

(0.034) 

0.666*** 

(0.013) 

Pundit 3.899*** 

(0.292) 

9.505*** 

(0.699) 

3.152*** 

(0.480) 

0.186*** 

(0.029) 

Archaeologist 2.125*  

(1.168) 

7.642**  

(3.527) 

44.134*** 

(11.745) 

0.046 

(0.085) 

Excavator 1.045*** 

(0.099) 

2.380*** 

(0.204) 

2.732*** 

(0.292) 

0.169*** 

(0.019) 

Strunk & White 5.332*** 

(0.334) 

10.049*** 

(0.663) 

13.065** 

(1.139) 

0.212*** 

(0.032) 

Copy Editor 3.931*** 12.244*** 2.628  0.072  
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(0.861) (2.023) (4.424) (0.056) 

Proofreader 2.463*** 

(0.456) 

5.445*** 

(1.115) 

5.754*** 

(1.733) 

0.107*** 

(0.039) 

Tenacious 2.119*** 

(0.178) 

2.731*** 

(0.290) 

1.177*** 

(0.189) 

0.178*** 

(0.020) 

Unsung Hero 3.214*** 

(0.337) 

3.817*** 

(0.512) 

2.147*** 

(0.587) 

0.221*** 

(0.037) 

Tumbleweed 0.815*** 

(0.053) 

1.800*** 

(0.090) 

0.485*** 

(0.055) 

0.473*** 

(0.023) 

Robust standard errors are in parentheses:  

*** p<0.01, ** p<0.05, * p<0.1
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The results in Table 2-5 show that different earned badges have varying 

impacts on user activities. This finding has several implications for Stack Overflow 

for designing an effective badges system. First, comparing the set of badges about 

asking questions with the set of badges about answering questions, we can conclude 

that badges designed for answering activity are more impactful. For example, 

Nice/Good/Great Questions and Answers badges provide a direct comparison for 

this conclusion. This seems to suggest that Stack Overflow could devise additional 

badges based on answering activity. Second, we observe that, in general, across 

four activities, the influence of badges on asking questions is the smallest. This 

indicates that users post their questions when they are seeking answers and 

therefore may not post useless questions just to game the system to earn badges. 

One limitation of our study is that we do not have enough information to analyze 

the quality of questions asked. Therefore, we cannot conclude whether additional 

questions induced by badges lead to information overloading problem at Stack 

Overflow. If the administrators of Stack Overflow observe abusing behavior in 

posting meaningless questions, Stack Overflow can reduce the number of question 

badges or introduce more badges related to quality questions. Third, these 8 

question badges are designed based on 3 different types of quality metrics (i.e., 

number of views, number of scores from up-votes, and number of favorites by other 

users.). Our results suggest that question badges are more effective when awarded 

based on positive endorsement by community members (i.e., voting up and adding 

as favorites) than based on the number of views only. All these findings seem to 

support the adoption of badges in this context; users seem to pursue badges and 
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follow community norms at the same time. Fourth, the influence of badges on 

posting comments is very large and positive, implying that badges encourage users 

to be more socially active in terms of commenting on existing questions and 

answers. With the boost of sociability, users may feel more confident and capable 

about making contribution to the community through comments and the other three 

activities. This result is consistent with entertainment needs and sense of 

community being the key motivations on Q&A sites. Fifth, commenting badges 

“Commentator” and “Pundit” are different only in one additional criterion, which 

is about the quality of comments. Comparing the coefficients of these two badges 

reveals that adding a quality threshold induces more comments, indicating that 

Stack Overflow could consider introducing more badges with two criteria: one 

about quantity and one about quality of induced activities. Lastly, not many users 

have revision badges. Given that editing previous posts improves the quality of 

content and make Stack Overflow a valuable online information repository similar 

to Wikipedia, Stack Overflow should encourage more user participation for 

collaboratively editing active posts and therefore should introduce more revision 

badges and/or make it easy to earn badges for editing by lowering the threshold of 

the number of edits needed. 

Because of the inclusion of a control group, our research design rules out 

the possibility that our findings are due to a common covariate, such as time trend. 

The PSM method also excludes the effects of unobserved covariates that are highly 

correlated with four weekly activity levels. For example, it is plausible that some 

users contribute more than others when they have more free time. Because they 
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play more, they may get the target badge and contribute more in the following week. 

However, “free” users without the target badge should have also contributed more 

a week before the badge awarding date. Since we use the previous week’s activities 

as the selection variables to form a control group in PSM, our analysis effectively 

compares the difference in the activity levels of two groups of free users in the 

following week. Therefore, the difference in activity levels in the following week 

can be attributed to the target badge, not to “time spent on Stack Overflow”. 

Similarly, our research design also excludes other unobserved covariates, such as 

altruistic personality. 

However, our current approach does not rule out the alternative explanation 

due to possible correlation among badges. For example, if two badges are usually 

earned simultaneously, then it could be that one badge, not the other, motivates 

users to contribute more. A similar alternative explanation is that users might only 

care about gold badges and because of that zeal, we observe increasing activities 

for bronze and silver badges. To address these potential issues, we conduct more 

robustness checks in the next section, and subsequently perform a macro-level 

analysis. 

2.4.3. Robustness Checks for Micro-Level Analysis 

To strengthen our causality argument that received badges motivate users to 

contribute more, we explored a number of alternative models. First, a user might 

receive multiple badges of the same type on the same day. Therefore, we might 

have overestimated the effects of badges in Section 2.4.2. We checked our sample 

to verify that this possibility does not pollute our results. We found that most badges 
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are not awarded daily except few frequently obtained badges like “Nice Question”. 

In our data set, there are 2,877,348 user-badge pairs (for all 73 badges on Stack 

Overflow) with only 1.5% (44,172 out of 2,877,348) badges are received by the 

same user on the same day. Therefore, multiple badges awarded on the same day 

may only slightly inflate our estimates but do not change the qualitative nature of 

our results. Second, another concern against causality claim in Section 2.4.2 is that 

using the levels of four activities may not fully account for all unobservable 

covariates in selection of the control group. The generic weakness of the PSM 

approach is that unlike instrumental variables, PSM can only control for the 

observable covariates. Although levels of four activities right before getting a badge 

may capture a wide range of unobservable covariates, this approach is not perfect. 

To alleviate this issue, we included all available control variables in model (1) to 

verify our findings. Specifically, we added the number of gold, silver, and bronze 

badges awarded in t=0 and the life-time cumulative gold, silver, and bronze badges 

awarded upon t=0. The new estimation results reported in Table 2-6 are 

qualitatively similar to those in Table 2-5. Third, PSM analysis assumes that we 

can properly construct a control group for each user in the treatment group. Instead 

of using a control group, we can also compare each user’s activity level before 

earning a badge to his/her activity level after earning the badge.  We used the paired 

t-test to compare the average number of activities 7 days before and after the date 

a user obtained a target badge. Only 3 out of 108 t statistics were negative.16 

However, these negative values were not significant at all.  These results confirm 

                                                 
16 Paired t-test results are available from the authors upon request. 
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the PSM findings that earned badges motivate users to contribute more in 

community activities. 
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Table 2-6 PSM Estimation Results with Additional Control Variables 
 Activity Type 

Badge Name Answering Commenting Revision Asking 

Popular 

Question 

0.550*** 

(0.027) 

1.506*** 

(0.049) 

0.613*** 

(0.032) 

0.372*** 

(0.008) 

Notable 

Question 

0.447*** 

(0.053) 

1.344*** 

(0.089) 

0.589*** 

(0.052) 

0.360*** 

(0.013) 

Famous 

Question 

0.480*** 

(0.156) 

1.004*** 

(0.261) 

0.521** 

 (0.244) 

0.332*** 

(0.027) 

Nice Question 1.107*** 

(0.061) 

3.440*** 

(0.112) 

1.483*** 

(0.098) 

0.508*** 

(0.017) 

Good Question 0.997*** 

(0.152) 

3.061*** 

(0.280) 

0.908*** 

(0.220) 

0.351*** 

(0.034) 

Great Question 1.443*** 

(0.497) 

2.927*** 

(0.911) 

1.611*** 

(0.384) 

0.479*** 

(0.075) 

Favorite 

Question 

1.109*** 

(0.236) 

2.511*** 

(0.484) 

1.204*** 

(0.233) 

0.322*** 

(0.055) 

Stellar Question 2.217*** 

(0.532) 

5.290*** 

(1.328) 

1.584**  

(0.611) 

0.397*** 

(0.125) 

Nice Answer 3.863*** 

(0.050) 

6.191*** 

(0.095) 

2.843*** 

(0.064) 

0.169*** 

(0.004) 

Good Answer 3.222*** 

(0.110) 

5.531*** 

(0.235) 

2.791*** 

(0.173) 

0.172*** 

(0.010) 

Great Answer 2.545*** 

(0.349) 

3.885*** 

(0.609) 

1.503*** 

(0.364) 

0.188*** 

(0.032) 

Enlightened 4.876*** 

(0.101) 

8.082*** 

(0.198) 

3.597*** 

(0.152) 

0.145*** 

(0.007) 

Guru 3.224*** 

(0.245) 

5.535*** 

(0.508) 

2.532*** 

(0.494) 

0.170*** 

(0.017) 

Necromancer 1.553*** 

(0.095) 

2.788*** 

(0.159) 

1.434*** 

(0.164) 

0.228*** 

(0.015) 

Populist 2.365*** 

(0.445) 

3.788*** 

(0.882) 

1.426*** 

(0.502) 

0.222*** 

(0.039) 

Reversal 4.429*** 

(1.580) 

11.424** 

(4.571) 

6.082*** 

(2.174) 

0.148  

(0.128) 

Revival 1.522*** 

(0.103) 

2.609*** 

(0.166) 

1.246*** 

(0.157) 

0.171*** 

(0.015) 

Commentator 2.513*** 

(0.050) 

4.473*** 

(0.065) 

0.844*** 

(0.035) 

0.591*** 

(0.012) 

Pundit 3.492*** 

(0.285) 

9.023*** 

(0.695) 

2.166*** 

(0.474) 

0.168*** 

(0.030) 

Archaeologist 1.492  

(0.970) 

4.988*  

(3.009) 

40.542*** 

(9.412) 

0.054  

(0.100) 

Excavator 0.941*** 

(0.097) 

2.040*** 

(0.199) 

2.074*** 

(0.273) 

0.171*** 

(0.019) 

Strunk & White 4.916*** 

(0.333) 

9.306*** 

(0.655) 

12.023*** 

(1.070) 

0.193*** 

(0.032) 

Copy Editor 3.905*** 12.687*** 3.567  0.069  
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(0.923) (2.196) (4.250) (0.064) 

Proofreader 2.488*** 

(0.412) 

5.406*** 

(0.978) 

5.227*** 

(1.208) 

0.111*** 

(0.040) 

Tenacious 1.822*** 

(0.172) 

2.435*** 

(0.294) 

0.967*** 

(0.185) 

0.180*** 

(0.021) 

Unsung Hero 2.848*** 

(0.354) 

3.573*** 

(0.555) 

2.649*** 

(0.819) 

0.213*** 

(0.038) 

Tumbleweed 0.823*** 

(0.048) 

1.687*** 

(0.086) 

0.415*** 

(0.061) 

0.465*** 

(0.022) 

Robust standard errors are in parentheses:  

*** p<0.01, ** p<0.05, * p<0.1
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2.5. Macro-Level Panel Analysis 

In the previous section, we characterized the causal relationship between earning a 

specific badge and increased incentive to contribute to four activities. Our 

identification hinged on the relative increase in activity levels in the week following 

the week after receiving a badge. Although we quantified and showed the 

significance of earned badges in inducing contributions from users, we could not 

say much about whether this increase was short-lived (i.e., affecting contributions 

to the next period only) or whether badges could facilitate continuous user 

participation. These limitations are caused by the lack of proper methods in 

assessing contributions in multiple periods and attributing the change in 

contributions to a specific badge that was awarded. First, a contributing user is 

likely to earn multiple badges (same kind and/or different kinds) over time. This 

makes it difficult to tease out the effect of each badge. Second, there might be 

individual specific factors, such as experience and reputation, that might affect the 

contributions of users, and these factors themselves change with time. Third, 

badges that were received in previous periods, i.e., badge history of users, might 

impact the incentive provided by a badge received in the current period. Fourth, 

badges are categorized into three groups (bronze, silver and gold) based on the 

difficulty in earning them, and some badges are interdependent because of this 

hierarchy. Due to the reasons mentioned above, one cannot accurately estimate the 

value of a badge in inducing contributions using micro-level analysis only. 

Therefore we complement our micro-level analysis with a macro-level analysis. 

Instead of assessing the impact of individual badges in a cross sectional setting, we 
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consider the categories of badges and analyze the average value of a badge based 

on its category using panel data. Our objective is not only to quantify the influence 

of badges but also to assess the effectiveness of the hierarchical badges system in 

inducing continuous user participation. 

2.5.1. Baseline Panel Regression 

To examine the average effect of a badge based on its badge category (i.e., bronze, 

silver, or gold) on user participation in each activity, we estimate a fixed effects 

model as follows 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖,𝑗,𝑡

= 𝛼𝑖𝑗 + 𝛽1,𝑗𝑡𝑒𝑛𝑢𝑟𝑒𝑖,𝑡−1 + 𝛽2,𝑗𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1

+ 𝛽3,𝑗𝑐𝑢𝑚_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1 + 𝛽4,𝑗𝑔𝑜𝑙𝑑𝑖,𝑡−1 + 𝛽5,𝑗𝑠𝑖𝑙𝑣𝑒𝑟𝑖,𝑡−1

+ 𝛽6,𝑗𝑏𝑟𝑜𝑛𝑧𝑒𝑖,𝑡−1 + 𝛽7,𝑗𝑐𝑢𝑚_𝑔𝑜𝑙𝑑𝑖,𝑡−1 + 𝛽8,𝑗𝑐𝑢𝑚_𝑠𝑖𝑙𝑣𝑒𝑟𝑖,𝑡−1

+ 𝛽9,𝑗𝑐𝑢𝑚_𝑏𝑟𝑜𝑛𝑧𝑒𝑖,𝑡−1 + 𝜀𝑖,𝑗,𝑡                                                   (2) 

where the 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑖,𝑗,𝑡 captures the number of times user i contributed to 

activity j  in week t, and  𝑔𝑜𝑙𝑑𝑖,𝑡−1 , 𝑠𝑖𝑙𝑣𝑒𝑟𝑖,𝑡−1 , and 𝑏𝑟𝑜𝑛𝑧𝑒𝑖,𝑡−1  are the total 

numbers of gold, silver, and bronze badges user i received in week t-1, respectively. 

Meanwhile, 𝑐𝑢𝑚_𝑔𝑜𝑙𝑑𝑖,𝑡−1 , 𝑐𝑢𝑚_𝑠𝑖𝑙𝑣𝑒𝑟𝑖,𝑡−1 , and 𝑐𝑢𝑚_𝑠𝑖𝑙𝑣𝑒𝑟𝑖,𝑡−1 are the 

cumulative numbers of gold, silver, and bronze badges received upon week t-1, 

respectively. 𝑡𝑒𝑛𝑢𝑟𝑒𝑖,𝑡−1 , 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1 , and 𝑐𝑢𝑚_𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1  serve as 

control variables in this panel model. Tenure captures the influence of user 

experience since the users’ activity patterns may change with experience. 

Reputation score is an aggregate measure of the quality and relevance of a user’s 

involvement and can therefore be considered as a proxy for how much the 
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community trusts the user’s contributions. Finally, 𝛼𝑖𝑗  is the fixed effect that 

captures the activity-specific individual unobserved heterogeneity.  

The results for the answering activity are shown in Table 2-7. The results 

pertaining to the other three activities are given in Table 2-8, Table 2-9, and Table 

2-10. From Model (c), which is the specification given in (2), we can see that the 

coefficients in front of the number of gold, silver, and bronze badges are all positive 

and significant across all three activities (answering, commenting, and revision). 

Since cumulative number of badges (whether gold, silver or bronze) increases at 

the same rate as the number of badges, we need to add two coefficients when 

analyzing the marginal impact of a badge in a badge category. Using the estimated 

coefficients in Table 2-7, Table 2-8, and Table 2-9, we can easily calculate that 

marginal impacts (i.e., sums of two estimated coefficients) of badges are always 

positive. For instance, getting a bronze, silver, or gold badge is associated with 

0.683, 0.744, or 1.319 more answers, respectively.17 Similarly, getting a bronze, 

silver or gold badge is associated with 0.864, 1.462, or 2.011 (0.351, 0.934, or 1.781) 

more comments (revisions), respectively.  This implies that any kind of badge 

received in the current period increases the level of contribution to any of the three 

activities in the next period. Hence, badges are effective in motivating user 

participation irrespective of the users' history of badges. Furthermore, there is a 

ranked ordering among categories of badges in terms of their influence.  We 

observe a sharp increase in contributions facilitated by categories of badges, 

                                                 
17 These numbers are calculated from Table 2-6, column (c).as (0.683=0.706-0.023), (0.744=0.845-0.101), and 

(1.319=1.531-0.212). 
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consistent with the levels of difficulty in earning them. Across all these three 

activities, a gold badge received in the current period induces more user 

participation in the next period than a silver badge. Similarly, a silver badge 

received in the current period induces more user participation in the next period 

than a bronze badge. These findings suggest the importance of the hierarchical 

badges system. This hierarchy is like moving to the next (higher) level in computer 

games. Having more participation with a higher level of badge also proves that the 

hierarchical badges system is effective in facilitating continuous user engagement. 

As for the influence of the cumulative number of gold, silver, and bronze 

badges, all the estimated coefficients are significantly negative or non-significant. 

One exception is the influence of cumulative number of gold badges on revision 

activity (The estimated coefficient is positive, but significant at the 10% level only). 

These results indicate that users who have already earned many badges may 

contribute less. That is, between two users with the same number of badges earned 

in the current period, the user with less cumulative number of badges contributes 

more to the Q&A site in the next period. Because each additional badge of any kind 

still leads to more activities, this finding just suggests a diminishing positive effect 

of badges over the cumulative number of badges. There are several possible 

explanations behind this finding. First, users may get bored after having obtained 

many badges and the stimulus from badges may reduce. Second, users with a higher 

cumulative number of badges are more likely to have fewer unearned badges left 

for them to pursue. Third, users may first pursue the badges that are more attractive 

to them, leading to a diminishing impact over the history of badges earned. 
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To explore more about this pattern, we included squared terms of cumulative 

number of badges in Model (d) to see if the diminishing rate is accelerating. Except 

one, all of the coefficients of these square terms are insignificant. Thus, there is no 

accelerating diminishing effect of cumulative number of badges. All these results 

are consistent across badge categories and across contribution activities. 



54 
 

Table 2-7 Results of the Fixed Effects Model (DV = Answering) 
Variables (a) (b) (c) (d) 

Tenure 
-0.014*** 

(0.001) 

-0.028*** 

(0.001) 

-0.001 

(0.003) 

0.003 

(0.002) 

Reputation  
0.475*** 

(0.006) 

0.407*** 

(0.005) 

0.409*** 

(0.005) 

Cum_reputation  
0.027*** 

(0.006) 

0.058*** 

(0.012) 

0.067*** 

(0.007) 

Gold   
1.531*** 

(0.097) 

1.553*** 

(0.093) 

Silver   
0.845*** 

(0.039) 

0.858*** 

(0.039) 

Bronze   
0.706*** 

(0.015) 

0.706*** 

(0.015) 

Cum_gold   
-0.212*** 

(0.066) 

-0.287*** 

(0.058) 

Cum_silver   
-0.101*** 

(0.022) 

-0.114*** 

(0.013) 

Cum_bronze   
-0.023** 

(0.011) 

-0.033*** 

(0.005) 

Cum_gold2    
0.026* 

(0.015) 

Cum_silver2    
0.000 

(0.000) 

Cum_bronze2    
0.000 

(0.000) 

Constant 
0.842*** 

(0.009) 

0.506*** 

(0.020) 

0.300*** 

(0.021) 

0.297*** 

(0.020) 

R-squared 0.001 0.054 0.088 0.089 

The sample includes 4,070,427 user-week pairs and 46,571unique users.  

Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2-8 Results of Fixed Effects Model (DV = Commenting) 
Variables (a) (b) (c) (d) 

Tenure 
0.000 

(0.001) 

-0.047*** 

(0.002) 

-0.025*** 

(0.006) 

-0.024*** 

(0.007) 

Reputation  
0.732*** 

(0.014) 

0.626*** 

(0.010) 

0.627*** 

(0.010) 

Cum_reputation  
0.177*** 

(0.016) 

0.246*** 

(0.024) 

0.251*** 

(0.020) 

Gold   
2.125*** 

(0.173) 

2.147*** 

(0.169) 

Silver   
1.471*** 

(0.092) 

1.470*** 

(0.089) 

Bronze   
0.922*** 

(0.030) 

0.922*** 

(0.029) 

Cum_gold   
-0.114 

(0.117) 

-0.214* 

(0.121) 

Cum_silver   
-0.009 

(0.040) 

-0.006 

(0.037) 

Cum_bronze   
-0.058*** 

(0.016) 

-0.063*** 

(0.010) 

Cum_gold2    
0.026 

(0.036) 

Cum_silver2    
-0.000 

(0.000) 

Cum_bronze2    
0.000 

(0.000) 

Constant 
1.196*** 

(0.017) 

0.382*** 

(0.056) 

0.206*** 

(0.050) 

0.207*** 

(0.048) 

R-squared 0.000 0.046 0.062 0.062 

The sample includes 4,070,427 user-week pairs and 46,571unique users.  

Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2-9 Results of Fixed Effects Model (DV = Revision) 
Variables (a) (b) (c) (d) 

Tenure 
0.004*** 

(0.001) 

-0.018*** 

(0.001) 

-0.009*** 

(0.003) 

-0.011*** 

(0.003) 

Reputation  
0.305*** 

(0.007) 

0.257*** 

(0.005) 

0.256*** 

(0.005) 

Cum_reputation  
0.090*** 

(0.007) 

0.106*** 

(0.012) 

0.105*** 

(0.009) 

Gold   
1.563*** 

(0.160) 

1.579*** 

(0.156) 

Silver   
0.976*** 

(0.066) 

0.967*** 

(0.065) 

Bronze   
0.367*** 

(0.017) 

0.367*** 

(0.016) 

Cum_gold   
0.218* 

(0.114) 

0.125 

(0.106) 

Cum_silver   
-0.042 

(0.026) 

-0.031* 

(0.018) 

Cum_bronze   
-0.016* 

(0.008) 

-0.013** 

(0.006) 

Cum_gold2    
0.020 

(0.030) 

Cum_silver2    
-0.000 

(0.000) 

Cum_bronze2    
-0.000 

(0.000) 

Constant 
0.394*** 

(0.010) 

0.018 

(0.027) 

-0.054** 

(0.023) 

-0.053** 

(0.023) 

R-squared 0.000 0.016 0.023 0.024 

The sample includes 4,070,427 user-week pairs and 46,571unique users.  

Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2-10 Results of Fixed Effects Model (DV = Asking) 
Variables (a) (b) (c) (d) 

Tenure -0.005*** 

(0.000) 

-0.006*** 

(0.000) 

-0.002*** 

(0.001) 

0.001* 

(0.000) 

Reputation  0.056*** 

(0.001) 

0.050*** 

(0.001) 

0.051*** 

(0.001) 

Cum_reputation  0.004*** 

(0.001) 

0.027*** 

(0.003) 

0.030*** 

(0.002) 

Gold   -0.008 

(0.012) 

-0.007 

(0.012) 

Silver   -0.014*** 

(0.004) 

-0.004 

(0.004) 

Bronze   0.088*** 

(0.002) 

0.088*** 

(0.002) 

Cum_gold   -0.032*** 

(0.009) 

-0.017* 

(0.010) 

Cum_silver   0.018*** 

(0.004) 

0.006** 

(0.003) 

Cum_bronze   -0.023*** 

(0.003) 

-0.027*** 

(0.002) 

Cum_gold2    0.001 

(0.003) 

Cum_silver2    0.000*** 

(0.000) 

Cum_bronze2    0.000*** 

(0.000) 

Constant 0.292*** 

(0.002) 

0.244*** 

(0.003) 

0.238*** 

(0.004) 

0.235*** 

(0.003) 

R-squared 0.002 0.011 0.022 0.024 

The sample includes 4,070,427 user-week pairs and 46,571unique users.  

Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1 
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Interestingly, the impact of badges on users’ activity of asking questions is 

different from the other three activities. From Table 2-10 (Model (c)), we can see 

that getting a bronze, silver, or gold badge is associated with 0.065, 0.004 or -0.04 

more questions, respectively. First, these numbers are much smaller than the 

numbers for the other three activities. Although they are statistically significant, 

economic significance is lacking.  Hence, users do not seem to be motivated much 

by badges to ask questions. This is intuitive because typically users ask questions 

when they genuinely seek answers. Users do not need external rewards such as 

badges to boost their incentive to post their questions. Possible solutions through 

other users' answers to their questions might provide enough stimuli. This finding 

is also consistent with the results we derived for individual badges in Section 2.4. 

Second, the number of gold badges is negatively correlated with the number of 

questions asked. One possible explanation for this finding is that users might prefer 

to engage in different activities on the site. While some users mostly seek help by 

asking questions, some other users enjoy helping community members by 

answering their questions. Since gold badges are mainly awarded for the answering 

activity, a small group of users who primarily provide answers also earn the 

majority of gold badges. Another possible reason is that users with gold badges are 

more knowledgeable in programming and therefore less likely to ask questions. 

Since answering questions is the most vital activity for the continued 

success of the Stack Overflow, and the contributions from experienced community 

members are the key to continuous user participation, the result regarding the effect 

of “tenure” on answering activity is worthy of discussion. With only tenure 
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included in the regression (Model (a)), the coefficient is negative, indicating that 

users answer less as their experience grows in the community. This effect is 

qualitatively the same even when we include “reputation” (Model (b)). However, 

after including badges into the regression, the coefficient of tenure on answering 

activity becomes insignificant (in both Models (c) and (d)). The change of the 

significance of the estimated coefficient may suggest that conditional on the 

number of badges, users do not necessarily contribute less answers as their 

experience grows, implying that badges help alleviate the negative effect of tenure. 

This finding provides evidence that the badges system is indeed effective in 

motivating experienced users to continuously contribute to the community. 

Furthermore, we can observe that reputation plays a significant role in community 

involvement. The coefficients of reputation and cumulative reputation are positive 

and significant in all models and across all types of activities. That is, the greater 

the reputation of a user, the greater his/her involvement level.  Since reputation is 

a reflection of the quality and relevance of user participation, the finding that users 

with higher quality submissions contribute more to the Q&A is instrumental in 

achieving the status of being reliable and trusted information source for 

programmers. Overall, we can conclude that the use of the hierarchical badges 

system enables Stack Overflow to facilitate both continuous user engagement and 

quality user engagement. 

2.5.2. Panel Regression with Sub-Samples by Badge History 

The analysis in section 2.5.1 assumes that the influence of a badge category remains 

constant as users go through different phases over time in terms of their 
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contributions. It is possible that the behavior of users may change as they evolve 

from a novice to a senior community member. Therefore, the motivation provided 

by a badge, thus contribution induced, can differ depending on the categories of 

earned badges in a user’s badge history. To examine this issue, we estimated the 

fixed effects model with separated time phases. First, for each user, we partitioned 

time dimension into four phases based on the badge history of the user: (i) no 

badges, (ii) only bronze badges, (iii) only silver and bronze badges, and (iv) all 

categories of badges. Next, we reran the fixed effects model using the sub-samples 

from the last three phases. In model (e), we included all observations after a user 

has received his first bronze badge but before the user has received his first silver 

badge. Similarly, in model (f), we included all observations after a user has received 

his first silver badge but before the user has received his first gold badge. Finally, 

model (g) includes all observations after a user received his first gold badge. Table 

2-11 presents the results for the fixed effects model with separated phases (when 

DV = answering). The results pertaining to other three activities are given in Tables 

Table 2-12, Table 2-13, and Table 2-14. 
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Table 2-11 FE Estimates with Separated Phases (DV = Answering) 
Variables (e) (f) (g) 

Tenure 0.017*** 

(0.001) 

0.021*** 

(0.003) 

0.012 

(0.019) 

Reputation 0.261*** 

(0.004) 

0.282*** 

(0.005) 

0.512*** 

(0.017) 

Cum_reputation -0.001 

(0.004) 

-0.103*** 

(0.021) 

-0.723*** 

(0.192) 

Bronze 0.406*** 

(0.008) 

0.654*** 

(0.027) 

0.748*** 

(0.067) 

Cum_bronze -0.030*** 

(0.003) 

-0.043*** 

(0.005) 

0.005 

(0.041) 

Silver  0.463*** 

(0.019) 

0.769*** 

(0.068) 

Cum_silver  -0.112*** 

(0.014) 

-0.193*** 

(0.064) 

Gold   0.928*** 

(0.082) 

Cum_gold   -0.237* 

(0.131) 

Constant 0.265*** 

(0.014) 

1.304*** 

(0.106) 

7.845*** 

(1.187) 

R-squared 0.053 0.055 0.092 

Observations 2,007,205 1,450,082 247,319 

Number of users 45,389 35,460 6,050 

Robust standard errors in parentheses  

*** p<0.01, ** p<0.05, * p<0.1
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Table 2-12 FE Estimates with Separated Phases (DV = Commenting) 
Variables (e) (f) (g) 

Tenure 0.002** 
(0.001) 

0.020*** 
(0.005) 

0.013 
(0.032) 

Reputation 0.391*** 
(0.005) 

0.447*** 
(0.008) 

0.834*** 
(0.030) 

Cum_reputation 0.071*** 
(0.006) 

0.054 
(0.038) 

-0.735* 
(0.380) 

Bronze 0.501*** 
(0.011) 

0.946*** 
(0.038) 

1.353*** 
(0.119) 

Cum_bronze 0.011** 
(0.005) 

-0.096*** 
(0.011) 

-0.025 
(0.072) 

Silver  0.679*** 
(0.034) 

1.508*** 
(0.149) 

Cum_silver  -0.083*** 
(0.027) 

-0.208* 
(0.110) 

Gold   1.164*** 
(0.160) 

Cum_gold   -0.282 
(0.225) 

Constant 0.162*** 
(0.021) 

1.306*** 
(0.189) 

10.015*** 
(2.366) 

R-squared 0.047 0.040 0.051 

Observations 2,007,205 1,450,082 247,319 

Number of users 45,389 35,460 6,050 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1
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Table 2-13 FE Estimates with Separated Phases (DV = Revision) 
Variables (e) (f) (g) 

Tenure -0.002*** 

(0.000) 

0.004 

(0.003) 

-0.011 

(0.024) 

Reputation 0.118*** 

(0.002) 

0.183*** 

(0.004) 

0.461*** 

(0.024) 

Cum_reputation 0.022*** 

(0.002) 

0.117*** 

(0.023) 

0.317 

(0.355) 

Bronze 0.142*** 

(0.005) 

0.460*** 

(0.025) 

0.967*** 

(0.106) 

Cum_bronze 0.016*** 

(0.002) 

-0.030*** 

(0.006) 

0.012 

(0.033) 

Silver  0.352*** 

(0.026) 

1.206*** 

(0.163) 

Cum_silver  -0.039*** 

(0.011) 

-0.184*** 

(0.061) 

Gold   0.958*** 

(0.128) 

Cum_gold   0.001 

(0.279) 

Constant -0.018** 

(0.009) 

-0.105 

(0.121) 

-0.141 

(2.444) 

R-squared 0.027 0.019 0.018 

Observations 2,007,205 1,450,082 247,319 

Number of users 45,389 35,460 6,050 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1
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Table 2-14 FE Estimates with Separated Phases (DV = Asking) 
Variables (e) (f) (g) 

Tenure 0.004*** 

(0.000) 

0.004*** 

(0.001) 

-0.003** 

(0.002) 

Reputation 0.055*** 

(0.001) 

0.034*** 

(0.001) 

0.025*** 

(0.002) 

Cum_reputation 0.003** 

(0.001) 

-0.018*** 

(0.004) 

-0.051*** 

(0.018) 

Bronze 0.085*** 

(0.002) 

0.031*** 

(0.003) 

0.013** 

(0.005) 

Cum_bronze -0.017*** 

(0.001) 

-0.031*** 

(0.003) 

-0.011** 

(0.005) 

Silver  0.021*** 

(0.004) 

-0.005 

(0.007) 

Cum_silver  0.014*** 

(0.003) 

0.015** 

(0.007) 

Gold   0.036*** 

(0.011) 

Cum_gold   -0.023** 

(0.012) 

Constant 0.252*** 

(0.004) 

0.529*** 

(0.022) 

0.806*** 

(0.110) 

R-squared 0.015 0.013 0.012 

Observations 2,007,205 1,450,082 247,319 

Number of users 45,389 35,460 6,050 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Our results reveal that the motivation provided by badges gets stronger once 

users obtain a badge from a higher difficulty category, implying that there are 

externalities among categories of badges. For instance, the marginal effect of a 

bronze badge in models (e), (f) and (g) are 0.376, 0.611, and 0.753, respectively. 

Hence, although earning a bronze badge always incentivizes users to answer more 

questions, users with at least a silver badge answer more questions than users with 

bronze badges only. Similarly, users with at least a gold badge answer more 

questions than the users with bronze and silver badges only. This relationship is 

also true for silver badges. The marginal effect of a silver badge in models (f) and 

(g) are 0.351 and 0.576, respectively. Thus, although earning a silver badge always 

incentivizes users to answer more questions, users with at least a gold badge answer 

more questions than users with bronze and silver badges only. Furthermore, the 

increasing marginal impact of a badge category (whether bronze or silver) together 

with a higher-level earned badge is also true for other two activities: commenting 

and revision (see Table 2-12 and Table 2-13). One possible explanation is that as 

users get more difficult badges, they also learn how to contribute to the site more 

efficiently, and subsequently the effort cost for them to participate gets lower. 

Another likely reason is that more experienced users become more emotionally 

attached to the Q&A community; they may have more virtual friends and have 

established more valuable social identity through higher categories of earned 

badges. Irrespective of the underlying mechanism for this result, it is clear that there 

are positive externalities from higher categories of badges to lower categories of 

badges on Stack Overflow. 
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Overall, we can conclude that the hierarchical badges system used by Stack 

Overflow is highly effective in promoting desired behavior. Having different 

categories of badges not only facilitates a hierarchical ordering in efficiency (as 

discussed in section 2.5.1), it also boosts the marginal influence of lower badge 

categories. A gold badge directly induces more activities than a silver badge. 

Similarly, a silver badge directly induces more activities than a bronze badge. 

However, there are also externalities. A gold badge indirectly increases the 

contribution induced by a silver badge. Likewise, a silver badge indirectly increases 

the contribution induced by a bronze badge. Taken together, these two effects give 

rise to continuous participation and engagement in the community.    

2.5.3. Robustness Checks for Macro-level Analysis 

First, although no direct monetary reward exists to reimburse users for their 

contributions, users can receive indirect benefits accruing from their contributions 

to the community. In particular, some contributors might use Stack Overflow as a 

platform to signal their ability and competence to potential employers. Being 

recognized as a knowledgeable programmer with many badges on the profile can 

help users get new jobs and/or advance their careers.  Hence, users can spend their 

time and effort to contribute high-quality answers not only because of their 

motivations fostered by earned badges, but also due to indirect monetary rewards 

resulting from spillover effects to the labor markets. We are aware that one group 

of participants on Stack Overflow is also users of “Stack Overflow Career,” an 

online labor market for programmers.18  To be specific, 2,071 users out of 46,571 

                                                 
18 http://careers.stackoverflow.com 
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total users in our dataset participate in the Stack Overflow Career.  To ensure that 

our results regarding the impact of earned badges are not driven by the group of 

career-focused contributors, we excluded users who participated in Stack Overflow 

Career from our sample and reran our econometric analysis. Our results remain 

qualitatively the same after excluding the Stack Overflow Career users. 

Second, there may be time trends such as seasonality effects or holiday 

effects which affect users’ contribution activities but is currently not captured in 

the panel regression model. To show that our estimates are not affected by the time 

trends, we included dummies of calendar time and reran the panel regression 

models. Our results are qualitatively the same.  

2.6. Concluding Remarks 

In this paper, we examine the impacts of virtual badges on user contributions at the 

Stack Overflow Q&A site. Specifically, we assess the extent to which users are 

incentivized by earned badges in their contributions to four major activities: 

answering questions, commenting, making revisions, and asking questions. We 

present strong empirical evidence that confirms the value of the hierarchical badges 

system in motivating users to participate more and have a continuous engagement. 

Our data analyses consist of two complementary parts: the micro-level analysis and 

the macro-level analysis. While the objective of micro-level analysis is to study the 

individual effect of each specific badge, the objective of macro-level data analysis 

is to investigate the relative effectiveness of badges with different difficulty levels.  

In our micro-level data analysis, we examine the impact of a specific badge 

on user activities by estimating a difference-in-differences model. We aggregate 
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user activities a week before and after a user receives a specific badge. To eliminate 

alternative explanations, we utilize propensity score matching to form a control 

group. Comparing the differences in the numbers of activities before and after the 

badge awarding date in the control group and the treatment group, we confirm that 

almost all kinds of badges motivate users to contribute more in all four types of 

activities. Interestingly, badges stimulate users to participate more in activities that 

are not specified in the rule set for getting badges. Furthermore, we find that even 

negative badges could motivate users to engage more in site activities. Overall, our 

findings imply that receiving any kind of badge might affect one or more latent 

variables associated with users, positively influencing them to contribute more in 

all activities. Finally, we show that our results from the micro-level analysis are 

robust to a number of control checks and alternative explanations. 

In our macro-level data analysis, we examine the influences of three 

categories (gold, silver, and bronze) of badges on user activities by estimating a 

fixed effects panel model. These badge categories capture the relative difficulty in 

earning them because a gold badge requires more contribution than a silver badge, 

and a silver badges requires more contribution than a bronze badge. We show that 

the impacts of three categories of badges on answering, commenting and revision 

activities are qualitatively similar. On average, our results show that gold badges 

are the most impactful while bronze badges are the least impactful. Hence, there is 

a ranked ordering in efficiency of badges corresponding to difficulty levels. 

Furthermore, our analysis shows that the hierarchical badges system helps cultivate 

users’ loyalty to the community because the contribution induced by a badge 
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category increases once users obtain a badge from a higher category. Hence, we 

can conclude that the hierarchical badges system exhibiting both ranked influence 

and positive externalities across badge categories is the true force behind 

continuous user engagement and participation. Different from other three activities, 

we observe that badges do not seem to motivate users much to ask questions. This 

is intuitive because getting answers to asked questions provide enough incentive, 

and users do not need an external stimulus, such as badges.  

Taking micro-level and macro-level analyses together, our research 

provides strong empirical evidence that gamification through the use of the 

hierarchical badges system at Stack Oveflow Q&A site promotes voluntary 

participation and continuous engagement. Initially, badges provide extrinsic 

motivations for participation and induce users to take part in community activities. 

Once users engage in community activities and earn badges for their contributions, 

users subsequently start to internalize tangible benefits because earned badges tap 

into and enhance the intrinsic motivations of users. Hence, the hierarchical badges 

system is highly effective in eliciting and sustaining desired contributions from 

community users because it facilitates a positive reinforcement loop between 

badges and contributions. 

Our study inevitably has some limitations. Some of these could be fruitful 

avenues for future research. First, we acknowledge that it is very difficult to isolate 

the effect of each specific badge even with our sophisticated PSM approach. The 

effect of one badge may be confounded with the effect from other badges. A 

different research design is required to better tease out the influence of each badge. 
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One possibility is to leverage on advanced econometric approaches such as 

regression discontinuity (Imbens and Lemieux 2008). Second, although our study 

documents the efficacy of having badges and levels among badges in providing 

stimuli to users for continuous engagement, this study does not show the detailed 

link between intrinsic motivational factors and badges. In order to propose an 

optimal hierarchical badges system, one has to understand the underlying 

psychological constructs that are triggered by earned badges in motivating users to 

contribute constantly on the Q&A site. More research using survey and 

experimental methodologies is needed to map the intrinsic motivational factors, 

such as a sense of community and relatedness, entertainment needs, competition,   

to the drivers of activities triggered by badges. Third, because our data are crawled 

from the registered users on stackoverflow.com, we do not have any information 

on lurkers, who regularly read but never post anything on stackoverflow.com. 

Controlling this self-selection issue and analyzing how badges could turn lurkers 

into contributors could be another future research direction. Fourth, since we 

observe that users have different behavior patterns on stackoverflow.com, future 

research can classify users into different groups, such as askers and answerers 

(Gazan 2011). This research direction could shed more light on the activities 

patterns of different stereotypes of users. Fifth, our study does not assess the quality 

of activities. In reality, badges can influence both quantity and quality of activities. 

Studying the quality dimension requires textual analysis, and therefore beyond the 

focus of this study. The other interesting research direction is to examine whether 

users exhibit “variety seeking” behavior when seeking badges, similar to its 
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counterpart in marketing (McAlister and Pessemier 1982). The last but not the least, 

one can examine how the newly launched Stack Career Exchange may affect the 

motivation of users to contribute on Stackoverflow.com. 
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3. Study 2: The Unexpected Outcome of Increased User 

Participation 

3.1. Introduction 

In the last decade, we have seen the proliferation of online community, which 

facilitates the interactive information exchange on a variety of topics in a large 

group of people. The conventional wisdom suggests that the success of online 

community greatly depends on the size of user base. To make the process of 

information exchange smoothly and frequently, an online community has to 

maintain a large pool of users who are willing to contribute their time and effort. 

The larger user base of an online community, the more attractive and useful this 

online community is. Therefore, online communities are eager to acquire more 

users to gain competitive advantage. They take different actions to attract new users 

based on their current condition. For example, Facebook, the currently largest 

social networking website in the world, plans to scale up its free service to offer 

free mobile network access in developing countries, in aim to provide a more 

connected virtual world to its users (Facebook 2015). Twitter, another iconic social 

networking website, introduced the new homepage in April 2015 with the goal to 

attract more new users by simplifying the website interface (Mohan 2015). 

However, is the conventional wisdom always true? Do additional users 

always bring positive value to the communities? The conventional wisdom is 

intuitively the hypothesis of positive network effect in Economics (Shapiro and 

Varian 2013): the more users in an online community, the more utility a user can 

derive from joining and participating in this online community, thus leading to both 

higher user acquisition rate and user retention rate. There is an implicit assumption 
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in developing this hypothesis: the homogeneity of users in an online community 

and the alignment of interests of all users within the same online community (Gu 

et al. 2007a). On the contrary, we argue that users in an online community could be 

heterogeneous and there are complex interactions among different groups of users 

within the same online community. Attracting more new users may have a negative 

effect on existing active users if users are heterogeneous and their interests are not 

aligned. In this paper, we test our conjecture with the real-world case of Wikipedia.  

In 2013, Wikipedia initiated to replace its old editing tool Wikitext with a 

new visual editor (Protalinski 2013). The Wikitext is like Latex, a markup language 

for word processing, which requires an investment of time to learn how it works. It 

involves programming, compiling, and debugging of the document edited in 

Wikitext in order to specify the content and format displayed onscreen. Even an 

experienced user may make simple mistakes in editing the Wikipedia articles by 

Wikitext. Unlike Wikitext, the new visual editor is similar to Microsoft Word, a 

WYSIWYG (What You See Is What You Get) editor, in which content and format 

onscreen during editing appears in a form closely corresponding to its displayed 

appearance. Figure 3-1 and Figure 3-2 present the differentiated editing interfaces 

of Wikitext and visual editor to edit the same article of “Information system” at 

Wikipedia.  
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Figure 3-1 the Editing Interface of Wikitext 

 

 

Figure 3-2 the Editing Interface of Visual Editor 

 

 

The change of editing interface thus greatly simplifies the process of editing 

Wikipedia articles and encourages new users to try their first-time editing on 

English Wikipedia. The Wikipedia Foundation anticipated the enhanced user 

interface would attract more new editors and also help existing senior editors to 

easily contribute to topics that needed further improvement. In July 2013, English 

Wikipedia improved their user interface by replacing the originally inconvenient 

editing tool Wikitext with the new user-friendly visual editor. English Wikipedia 
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observed a significantly increasing number of new users after the change of editor. 

This policy change happening on Wikipedia brings us an ideal research setting to 

investigate our research question:   

How does an enlarged user base affect senior users’ participation in an 

online community? 

In the empirical examination of our research question, we first establish the 

causality between the launch of visual editor and senior users’ participation with 

the observational data from Wikipedia.  In our research context of English 

Wikipedia, the impact of an enlarged user base is captured by the launch of visual 

editor because the change of editor suddenly attracted a large number of new users. 

We collect our data set from the English Wikipedia and examine the effect of the 

launch of visual editor on senior users’ contribution. Our data set is a daily panel 

data of 5,191 senior users before the launch of visual editor at English Wikipedia. 

For each user, we obtain his complete editing history data with textual information. 

We examine the behavior change of senior users’ contribution using a fixed-effect 

panel regression. Our results suggest that, after the launch of visual editor, senior 

users increased their contribution in a short run (with the time window of 2 weeks) 

but decreased their contribution in a long run (with the time window of 2.5 months).  

On average, a senior user submitted 14.9% more in addition in the short run but 

submitted 22.9% less in addition in the long run. Similarly, a senior user on average 

submitted 9.9% more in deletion in the short run but submitted 13.9% in deletion 

in the long run. To establish the causal relationship between the launch of visual 

editor and the decrease of senior users’ contribution, we use the senior users at 
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German Wikipedia as control group and estimate a Difference-in-Differences (DID) 

model. We pick users at German Wikipedia as the control group because German 

Wikipedia is not part of the project of visual editor. The significant results of the 

DID model indicate that, because of the launch of visual editor, senior users’ 

contribution at English Wikipedia decreased by 2.8%, 3.4%, and 11.2% in the 

number of submission, the number of characters added, and the number of 

characters deleted, respectively.  

We propose the decrease of senior users’ contribution is caused by the 

negative network effect of the new users who mostly generated low-quality 

contribution. To capture this negative network effect, we use the anonymous 

contribution because low-quality contribution of new users is more likely to be 

submitted anonymously. We estimate the DID model with the treatment being the 

percentage of anonymous contribution a senior user experienced after the launch of 

visual editor. Our identification relies on the exogenous shock on the quality level 

of anonymous users’ contribution. After the launch of visual editor, anonymous 

users, including those who edit the Wikipedia articles in a malicious manner that is 

intentionally disruptive, can easily submit their contribution. In contrast, 

anonymous users have to learn the markup language Wikitext to submit their 

contribution before this policy change. Lowering the bar for anonymous users to 

contribute consequently lowers the average quality level of anonymous users’ 

contribution. The DID estimates show that, comparing to the contribution of senior 

users without anonymous collaborators, the contribution of senior users with 

anonymous collaborators could decrease by up to 22.5%, 62.9%, and 35.7%, in 
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submission, addition, and deletion, respectively. We find that the more a senior user 

experienced the anonymous contribution after the launch of visual editor, the less 

he would contribute. We conclude that the negative network effect as a result of 

lowering the bar of contribution is the major cause driving the senior users away 

and is harmful to the sustainability of online community. It is the quality dimension 

of new users’ contribution that determines whether the network effect (the 

relationship between the size of user base and the level of user participation) is 

positive or negative. 

Our research contributes to the literature in two ways. First, in this paper, 

we find that the interaction between different groups of users (senior uses and new 

users) plays an important role in sustaining an online community. Our research 

suggests that incorporating the complex dynamics of different groups of users is 

important to study the evolvement of online community. Second, we find that an 

increase of the number of new users can lead to the decrease of senior users’ 

participation. This is different from the theoretical prediction of positive direct 

network effect which predominantly stated in the literature of network effect (Katz 

and Shapiro 1985). Our research suggests that the quality dimension of user 

contribution is the crucial factor in determining the direction of network effect and 

extend the understanding of network effect in the context of online community 

(Asvanund et al. 2004; Gu et al. 2007b; Zhang and Zhu 2011).   

Our research also provides helpful suggestions to practitioners who manage 

online community: the administrators of online community should make a tradeoff 

between the quantity and the quality of user contribution. For every online 
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community, it is critical to acquire new users to build a large user base. However, 

a larger number of new users do not sufficiently guarantee a better online 

community with higher quality. Since there are different groups of users in the same 

online community, making a policy change to please new user may meanwhile 

make senior or loyal users unsatisfied. Administrators should keep an eye on 

balancing the needs of different groups of users so as to achieve a better ecosystem 

in online community.  

3.2. Related Literature 

Our research is related to two streams of literature: the literature on online 

community in the field of Information Systems and the literature on network effect 

in the field of Economics.  

3.2.1. Online Community 

The sustainability of online community is a fundamental research question in the 

research area of online community. In online community, most users voluntarily 

contribute their time and effort without monetary rewards. Therefore, it is important 

to understand users’ motivations of participation so as to induce their continued 

engagement and establish a sustainable online community.  

In the field of Information Systems, researchers primarily focused on 

identifying intrinsic motivations that drive voluntary user participation in online 

community. Most extant studies are done by behavioral research methods such as 

surveys and case studies. The main contribution of each paper lies in a unique focus 

on a specific type of intrinsic motivation and/or in studying an unexplored form of 

online community. For instance, Constant et al. (1994) and Constant et al. (1996) 
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found that reputation and social image play an important role in users’ participation 

in online community. Compeau and Higgins (1995) revealed that self-efficacy, 

which means users capitalize on their ability to find solutions in order to accomplish 

challenging goals, could be the source of user engagement in online community. 

This is further confirmed in the research done by Sun et al. (2011) in the context of 

a crowd-sourcing website (TaskCn) and Jin et al. (2012) in the context of a Q&A 

website (Yahoo! Answers China). Other motivations identified in the research on 

traditional online community includes learning and gaining information (Daugherty 

et al. 2005), entertainment needs (Kankanhalli et al. 2005; Sutanto et al. 2011), and 

so on. Recently, the bloom of social network websites has shifted the researcher’ 

attentions to the social aspect of intrinsic motivations. In a broad sense, social 

capital (Ren et al. 2007; Ren et al. 2012), reciprocity (Chiu et al. 2006; Faraj and 

Johnson 2011), and community interest (Bateman et al. 2011; Ma and Agarwal 

2007) are considered as three major categories of intrinsic motivations for users to 

develop mutual benefits and maintain a long term relationship within the same 

online community.  

The extant literature investigating users’ motivations to participate in online 

community implicitly assume that the interests of different users in the same 

community are aligned and therefore an increased number of users will lead to a 

positive outcome. In this paper, we explore the interaction between two different 

groups of users (senior users and new users) in online community and view the 

online community from the perspective of ecosystem. Our research suggests senior 

users and new users may have conflicted interests and the interaction between 
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different groups of users plays an important role in the sustainability of online 

community. Researchers who are interested in the evolvement of online community 

could take into consideration the complex dynamics of different groups of users in 

their theoretical development.  

3.2.2. Network Effect 

Network effect (also called network externality or demand-side economies of scale) 

means that the value of a goods or service depends on the number of other users 

using it as well (Katz and Shapiro 1985; Katz and Shapiro 1992; Shapiro and Varian 

2013). In literature, there are two forms of network effect that has been extensively 

studied. The first one is direct network effect, suggesting an increase in usage leads 

to a direct increase in the value of the product or service. The textbook example of 

direct network effect is the telephone network. The utility of a telephone increases 

with the number of other users the owner can reach. The more people who own a 

telephone, the more utility the telephone can bring to each owner. Another one is 

the indirect network effect, suggesting an increase in the usage of a product or 

service drives an increase in the value of its complementary product or service, 

which in turn increases the value of the original.  A classic example of 

complementary product is the software such as the Office Suite to Windows 

Operating Systems.  The more customers use Windows, the more software will be 

developed for Windows. This in turn leads to higher valuation of Windows to 

customers.  

We focus on the direct network in this paper. In the context of online 

community, it works in the same way as the telephone network. The utility of an 
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online community increases with the number of people a user can communicate. 

Zhang and Zhu (2011) examined the relationship between group size and users’ 

incentive to contribute with a natural experiment at Wikipedia. In their seminal 

paper, they find that the positive network effect (or “social effects” in their paper) 

dominates the free-riding incentives and helps to sustain online community. Their 

results are intuitive and consistent with the theoretical prediction of positive 

network effect. On the other hand, there exist a handful of papers documenting an 

interesting phenomenon: the negative network effect in online community. Butler 

(2001) found that as the user size increases in an online community, although the 

user gain (measured by the available resource in an online community) increases, 

this online community experiences a significant “churn” rate. Consistent with the 

observation of Butler (2001), Gu et al. (2007a) found that an increase of sharers 

leads to exits of existing sharers in an Peer-to-Peer (P2P) music sharing community. 

In the same context of P2P music-sharing network, Asvanund et al. (2004) stated 

that there are both positive and negative network effects. Their results suggest users 

contribute additional value to the network at a decreasing rate with the size of 

network (the decreasing positive network effect) and users incur additional costs 

on the network at an increasing rate with the size of network (the increasing 

negative network effect) due to the congestion on shared resources. Understanding 

the direction and the moderator of network effect is important because it helps 

online community managers to maintain an optimal size of user base. However, in 

the papers documenting the negative network effect in online community, scholars 

related population changes at the aggregate level with population status in the 
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community (Gu et al. 2007a). The lacking of individual level data limits scholars’ 

capability to establish causality and explore the underlying mechanism of negative 

network effect.   

 In this paper, we emphasize that, in addition to the quantity of user 

contribution, it is also important to take into consideration the quality of user 

contribution so as to leverage on the network effect to sustain an online community. 

We examine how the positive network effect becomes negative by a natural 

experiment at English Wikipedia to establish the causality and investigate the 

underlying mechanism. We point out the quality of new users’ contribution 

determines whether the network effect is positive or negative in the context of 

online community. Our research also suggests that contribution cost or learning 

cost, which can be implemented as the difficulty of user interface, could be applied 

as an effective way to achieve the balance between the quantity and quality of user 

contribution.  

3.3. Background and Data 

Wikipedia is a multilingual, web-based and free-content encyclopedias project 

supported by the Wikipedia Foundation and based on the model of openly editable 

content.19 Wikipedia is created in 2001 and has become one of the largest reference 

websites on Internet. There are more than 73,000 active contributors working on 

more than 35,000,000 articles in 290 languages. As of June 2015, the number of 

monthly unique visitors of Wikipedia has reached 439 million.  

                                                 
19 Please refer to the official webpage (https://en.wikipedia.org/wiki/Wikipedia:About) for further information.  

https://en.wikipedia.org/wiki/Wikipedia:About
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Among all the Wikipedia websites in different languages, English 

Wikipedia is the largest website with 4,939,075 articles and on average 750 new 

articles per day (Wikimedia Foundation 2015). However, after reaching its peak in 

2007, the number of new users (or “Wikipedians”) at English Wikipedia dropped 

and the retention rate remained low ever since (Wikimedia Foundation 2011). To 

acquire more new contributors, Wikipedia foundation introduced the visual editor 

to replace the original markup language Wikitext as the default editing tool and 

make Wikitext as an “opt-in” feature to edit Wikipedia articles.20 Before the launch 

of visual editor, new users have to learn the markup language Wikitext to edit 

Wikipedia articles. The Wikipedia foundation consider the markup language 

Wikitext as the entry obstacle for new users to contribute and will drive some 

potentially good contributors away. Therefore the Wikipedia foundation developed 

the visual editor, a WYSIWYG (What You See Is What You Get) editor. The 

difference between Wikitext and visual editor at Wikipedia is analogous to the 

difference between Latex and Word. The visual editor is made as the default editor 

for all users on July 15th 2013 at English Wikipedia for all users. The introduction 

of visual editor at English Wikipedia is considered as a successful move to acquire 

new contributors. It is described as "the most significant change in Wikipedia's 

short history" (The Economist 2011) and “the best update in the years” (Softpedia 

2013). However, on September 24th 2013, English Wikipedia reverted to using 

Wikitext as the default editing tool and kept visual editor as the “opt-in” feature 

                                                 
20 Please refer to https://en.wikipedia.org/wiki/Wikipedia:VisualEditor for more information on visual editor.  

https://en.wikipedia.org/wiki/Wikipedia:VisualEditor
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instead after observing the significant drop of senior users’ participation and 

receiving the widespread complaints from users. 21 

To study our research questions, we collect our data set from the English 

Wikipedia (http://en.wikipedia.org). This data set contains the users’ complete 

editing history data with textual information. To investigate how the launch of 

visual editor affects contribution level of senior users, we pick the set of senior 

users who are active at English Wikipedia before the launch of visual editor as our 

sample. The visual editor at English Wikipedia is made as the default editing tool 

on July 15th 2013 and this is reverted on September 24th 2013. The time period for 

visual editor to be the default editing tool is around 2.5 months. Therefore, we set 

the time window of 2.5 months and focus on the user contribution in the time period 

2.5 months before and after the launch date of visual editor (from May 1st 2013 to 

September 23rd 2013). To construct our sample, we identify 5,191 senior users who 

are active before the policy change made in July 2013. The sample of active users 

(also called “very active wikipedians” at English Wikipedia) includes those who 

contribute 100 times or more in May and June 2013. The threshold of 100 is 

determined by Wikipedia Foundation.22  

At Wikipedia, users are identified by the user ID if they are registered. For 

unregistered users, they are identified by the IP address when they are connected to 

Wikipedia. Because the same user can connect to Wikipedia with different IP 

addresses at different time and the same IP address can be mapped to different users, 

                                                 
21 Interesting readers can refer to https://www.mediawiki.org/wiki/VisualEditor for more information on the 

roll-out timeline of visual editor at Wikipedia.  

22 Please refer to https://stats.wikimedia.org/EN/TablesWikipediansEditsGt100.htm for more details.  

https://www.mediawiki.org/wiki/VisualEditor
https://stats.wikimedia.org/EN/TablesWikipediansEditsGt100.htm
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we only focus on those registered users in this paper. We also filter out 

administrators and “bots” (the automated or semi-automated robot at Wikipedia) 

since they may exhibit different contribution pattern from normal users. Therefore, 

the 5,191 subjects included in our sample are registered users without administrator 

privileges.  

For each contribution submitted by each user, we have the submission ID, 

the page ID of the Wikipedia article the contribution is submitted to, the user ID, 

the timestamp of the submission, the number of characters added or deleted in this 

submission and the hash-coded textual information of this submission. Our data 

includes all observations of detailed submission information from May 1st 2013 to 

September 23rd 2013.  

We use this completed editing history data to generate three dependent 

variables for our econometric analysis: the number of times a user submitted his 

contribution, the number of characters added and the numbers of characters deleted. 

We also follow literature to include tenure and the squared term of tenure as control 

variable.  

We use Table 3-1 to present the definition of variables and Table 3-2 to 

summarize the descriptive statistics of variables.  
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Table 3-1 Definition of Variables 

 Variable Name Definition 

Dependent 

Variables 

𝑆𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑡 

Natural logarithm of the number of 

times a user i submits his 

contribution to Wikipedia articles 

on day t.  

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑡 

Natural logarithm of the number of 

characters a user i added to 

Wikipedia articles on day t. 

𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑖𝑡 

Natural logarithm of the number of 

characters a user i deleted on 

Wikipedia articles on day t. 

Independent 

Variables 

𝐴𝑓𝑡𝑒𝑟𝑡 

A dummy variable to indicate 

whether the time period is after the 

launch of visual editor. 

𝑇𝑒𝑛𝑢𝑟𝑒𝑖𝑡 
The number of weeks since a user i 

has joined Wikipedia on day t.  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝑖 

The daily average of the percentage 

of anonymous contribution 

(measured by the total number of 

characters added and deleted) to the 

Wikipedia articles edited by the 

user i after the launch of visual 

editor. 

 

Table 3-2 Descriptive Statistics of Active Users at English Wikipedia 

Variable Name 
Mean S.D. Min Max 

𝑆𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑡 1.248 1.332 0.000 5.497 

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑡 3.689 3.791 0.000 14.711 

𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑖𝑡 2.165 3.001 0.000 14.779 

𝐴𝑓𝑡𝑒𝑟𝑡 0.479 0.500 0 1 

𝑇𝑒𝑛𝑢𝑟𝑒𝑖𝑡 229.230 147.608 0 645 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝑖 0.050 0.066 0.000 0.994 

Observations 
708,591 observations from 5,191 users 
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3.4. Empirical Analysis 

To empirically examine our research question, we first establish the causality 

between the launch of visual editor and senior users’ participation with the data 

from Wikipedia.  In the context of English Wikipedia, the impact of an enlarged 

user base is captured by the launch of visual editor because the change of editor 

suddenly attracted a large number of new users. We estimate the fixed-effect panel 

regression model with different time windows to examine both the short-term and 

long-term change of senior users’ contribution after the change of editor. We then 

proceed to construct a control group for the active users at English Wikipedia with 

the similar users at German Wikipedia and estimate the Difference-in-Differences 

model. Finally, to further verify it is the negative network effect of the new users 

who generated low-quality contribution that causes the decrease of senior users’ 

contribution, we rely on the exogenous shock on the quality level of anonymous 

contribution as a result of the launch of visual editor. We estimate the Difference-

in-Differences model with the treatment being the average intensity a senior user is 

influenced by the unqualified contribution of anonymous users.  

3.4.1. The Behavior Change of User Contribution 

We now examine the behavior change of user contribution with the fixed-effect 

panel regression model (Wooldridge 2010):  

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖𝑡 = 𝛽0 + 𝛽1𝐴𝑓𝑡𝑒𝑟𝑡 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 + 𝛼𝑖 + 𝜀𝑖𝑡, (1) 

where i indexes the users and t indexes the days.  

The dependent variable 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖𝑡 is the daily contributions of active 

users to Wikipedia articles. We use three different measures to capture a user’s 
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contribution: the number of submissions, the number of characters added, and the 

number of characters deleted. The numbers of characters added and deleted are 

considered differently because the editing efforts involved in these two forms of 

contribution are different (Zhang and Zhu 2011). To account for the skewness of 

the distribution of users’ contribution, we take the logarithmic form of users’ 

contribution as our dependent variables. 𝐴𝑓𝑡𝑒𝑟𝑡 is a dummy variable which equals 

1 if the time period is after the launch of Visual editor, and 0 otherwise. As for 

control variables, we include tenure and the squared term of tenure, as suggested 

by the literature (Zhang and Zhu 2011). Tenure is measured by the number of weeks 

since a user has joined the online community of Wikipedia. The squared term of 

tenure is also included to capture the potential non-linear effect. Finally, the fixed 

effect 𝛼𝑖 captures time-invariant unobserved player-specific effects, and 𝜀𝑖𝑡 is the 

residual error term. 

We examined the behavior change of user contribution by applying 

different time windows. The visual editor is launched at English Wikipedia on July 

15th 2013. To investigate the short-term behavior change, we estimated the panel 

regression with a time window of 2 weeks. In other words, we include those 

observations 14 days before and after the launch date of Visual editor at English 

Wikipedia (from July 1st 2013 to July 29th 2013). Since the launch of Visual editor 

is reverted on September 23rd 2013, we have observations of around 2.5 months 

after the launch of Visual editor. To investigate the long-term behavior change, we 

estimated the panel regression with a time window of 2.5 months. In investigation 
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of the long-term behavior change, we include the observations from May 1st 2013 

to September 23rd 2013.  

Table 3-3 summarized the regression results. The estimates with a time 

window of 2 weeks are summarized in column (1) to (3) while the estimates with a 

time window of 2.5 months are summarized in column (4) to (6). The estimated 

coefficients of tenure are all negative across all models, indicating a user’s 

contribution decreases as he continually participates in the online community of 

Wikipedia. As for the estimated coefficient of the squared term of tenure, we find 

that it is not significant in the results estimated with the time window of 2 weeks 

but is significantly positive in the results estimated with the time window of 2.5 

months. This suggests that users’ contribution decreases at a decreasing rate with 

tenure in a long run.  

In Model (1) and (4), we use the number of submission as dependent 

variable. We find that users significantly submitted more in a short run but 

significantly submitted less in a long run. Since the dependent variable is in the 

form of natural logarithm, the estimated coefficient should be interpreted as semi-

elasticity. For the short-term behavior change, users submitted 5.2% more in the 2 

weeks after the launch of Visual editor, in comparison to his own submission in the 

2 weeks before the launch. Similarly, for the long-term behaviour change, users 

submitted 7.7% less in the 2.5 months after the launch of visual editor, in 

comparison to his own submission in the 2.5 months before the launch.  

Intuitively speaking, senior users’ contribution should increase after 

Wikipedia replaced the inconvenient markup language Wikitext with the 
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convenient visual editor as the default editing tool: the cost for users to edit drops 

significantly and thus it induce senior users to contribute more at Wikipedia. This 

positive effect consists of two components. First, the simplified and more 

convenient editing tool helps senior users to edit Wikipedia articles more easily 

than ever. Second, the reduced cost to edit Wikipedia articles will attract more new 

users to contribute. Due to the positive network effect, the more new users 

participate in Wikipedia, the more senior users will contribute. The latter 

component of positive effect is the motivation for Wikipedia to introduce visual 

editor (The Economist 2011). However, the drop of contribution cost may also have 

the negative side effect: it will induce low quality contribution to Wikipedia articles 

by unqualified new users. In the past, a new user must learn the complex and tedious 

markup language Wikitext before he obtains the capability to edit the Wikipedia 

articles. Hence, only those new users who are more willing to improve the content 

quality of Wikipedia articles will incur the learning cost to master Wikitext and 

contribute their knowledge. After Wikipedia adopted visual editor, suddenly 

everyone including those who want to make casual changes for fun can edit 

Wikipedia articles. In this case, senior users have to spend more effort to maintain 

the content quality by revising the Wikipedia articles continually. Senior users may 

become tired after many revisions or reversion and become less motivated to 

contribute their knowledge. The net effect of visual editor on user contribution 

depends on the dominant effect between the positive effect and the negative effect, 

leading to different behavior patterns of user contribution in a short run and in a 

long run. If the positive effect dominates the negative effect, senior users’ 
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contribution will increase in both a short run and a long run. On the other hand, if 

the negative effect dominates the positive effect, senior users’ contribution will 

increase in a short run but decrease in a long run. Our results with the dependent 

variable as the number of submission reveal that the negative effect is the dominant 

effect. 

We observe the same behaviour pattern in the results with dependent 

variables as the number of characters added and deleted. The addition and deletion, 

different measures to capture the amount of content a user contributed and his 

incurring effort, significantly increased in the short run but significantly decreased 

in the long run. On average, a senior user submitted 14.9% more in addition in the 

short run but submitted 22.9% less in addition in the long run. Similarly, a senior 

user on average submitted 9.9% more in deletion in the short run but submitted 

13.9% in deletion in the long run. These consistent results help us to rule out an 

alternative explanation for the decrease of the number of senior users’ submission 

in the long run: after the introduction of the visual editor, it is possible that a senior 

user could utilize the user-friendly interface and edit more content in one 

submission other than submitting the same amount of content multiple times. 

However, we find that senior users not only contribute less in terms of the number 

of times they submit their contribution (measured by submission), but also 

contribute less in terms of the content they contribute (measured by addition and 

deletion). Our results also suggest that addition, the form of contribution relatively 

involving more time and effort, is more affected by the introduction of visual editor 

than deletion. 
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Table 3-3 Results of Fixed-Effect Panel Regression Model 

Specification Short-term Behavior Change Long-term Behavior Change 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Submission Addition Deletion Submission Addition Deletion 

       

After 0.052*** 0.149*** 0.099*** -0.077*** -0.224*** -0.139*** 

 (0.009) (0.028) (0.023) (0.005) (0.015) (0.012) 

Tenure -0.047*** -0.131*** -0.092*** -0.022*** -0.060*** -0.033*** 

 (0.005) (0.015) (0.012) (0.001) (0.002) (0.001) 

Tenure2 -0.000 -0.000 -0.000 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Constant 12.295*** 34.772*** 23.178*** 5.348*** 14.981*** 8.936*** 

 (0.886) (2.632) (2.162) (0.098) (0.284) (0.227) 

       

Observations 141,357 141,357 141,357 708,591 708,591 708,591 

R-squared 0.002 0.002 0.001 0.015 0.014 0.008 

Number of id 5,191 5,191 5,191 5,191 5,191 5,191 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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We also conduct sensitivity analysis to test the robustness of our results 

regarding different time window sizes. We tried three different time window sizes: 

1 week, 1 month, and 1.5 months. We find that senior users contribute significantly 

more in a short run (using 1-week and 1-month samples) but contribute 

significantly less in a long run (using 1.5-months sample). These results are 

consistent with the findings we mentioned above.  

The results of this sensitivity analysis are summarized in Table 3-4. The 

estimates with a time window of 1 week are summarized in column (1) to (3) while 

the estimates with a time window of 1.5 months are summarized in column (4) to 

(6). The estimates with a time window of 1 month are quantitatively the same to 

that with a time window of 1 week. Since it is more convincing to examine the 

short-term behavior using the 1-week sample, we choose to report the estimates 

with 1-week sample.  

Table 3-4 Results of Sensitivity Analysis Regarding Time Window Size 

Specification Time Window of 1 Week Time Window of 1.5 Months 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Submission Addition Deletion Submission Addition Deletion 

       

After 0.058*** 0.161*** 0.109*** -0.022*** -0.051*** -0.039*** 

 (0.011) (0.032) (0.027) (0.006) (0.018) (0.014) 

Tenure -0.055*** -0.145*** -0.117*** -0.036*** -0.103*** -0.058*** 

 (0.011) (0.033) (0.027) (0.001) (0.003) (0.002) 

Tenure2 -0.000 -0.000** -0.000 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Constant 15.632*** 44.335*** 31.252*** 7.766*** 22.539*** 13.359*** 

 (1.880) (5.637) (4.660) (0.190) (0.555) (0.447) 

       

Observations 73,105 73,105 73,105 443,998 443,998 443,998 

R-squared 0.001 0.001 0.001 0.011 0.010 0.006 

Number of id 5,191 5,191 5,191 5,191 5,191 5,191 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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3.4.2. Identification of the Impact of Visual Editor 

Our results of the fixed-effect panel regression model show that senior users’ 

contribution decreased significantly in a long run after the launch of visual editor. 

Nevertheless, this fixed-effect panel regression model compares the user behavior 

before and after the launch of visual editor. One potential concern is that the 

significant drop of senior users’ contribution may be attributed to the effect of time 

trend. That is, a senior user tends to contribute less as time goes by. Including tenure 

and its squared term in regression to some extent solves this problem. To establish 

a causal relationship that the launch of visual editor causes the drop of senior users’ 

contribution, we construct a control group from the pool of users at German 

Wikipedia and estimate a Difference-in-Differences model.  

We pick users at German Wikipedia as control group for two reasons. First 

and foremost, German Wikipedia did not introduce the visual editor.23 Second, 

German Wikipedia is comparable with English Wikipedia, in terms of size. 

According to the multilingual statistics of Wikipedia, German Wikipedia is the 

second largest Wikipedia next to English Wikipedia (the largest Wikipedia), 

ordering by the number of articles.24 In this paper, we include the active senior users 

(those who contribute 100 times or more in May and June 2013) at German 

Wikipedia as our control group. In our extended sample, there are 5191 users in the 

treatment group and 1611 users in the control group with observations from May 

1st 2013 to September 23rd 2013. 

                                                 
23 https://www.mediawiki.org/wiki/VisualEditor (accessed August 2015). 

24 https://en.wikipedia.org/wiki/Wikipedia:Multilingual_statistics (accessed August 2015). 

https://www.mediawiki.org/wiki/VisualEditor
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After constructing the control group for users at English Wikipedia, we 

estimate the following Difference-in-Differences (DID) econometric model 

(Wooldridge 2010) with the observations from May 1st 2013 to September 23rd 

2013 to quantify the long-term impact of visual editor on user contribution: 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖𝑡

= 𝛽0 + 𝛽1𝐴𝑓𝑡𝑒𝑟𝑡 + 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖 × 𝐴𝑓𝑡𝑒𝑟𝑡 + 𝛽3𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖

+ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 + 𝛼𝑖 + 𝜀𝑖𝑡, (2) 

where 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖  is the treatment dummy variable which equals 1 for English 

Wikipedia users and 0 for German Wikipedia users. Meanwhile, 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖 ×

𝐴𝑓𝑡𝑒𝑟𝑡 is the interaction term of 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖 and 𝐴𝑓𝑡𝑒𝑟𝑡 and captures the treatment 

effect in the DID model. The DID model is the classical econometric model to 

estimate the treatment effect and establish causal relationship and therefore is 

widely applied in IS researches (Chan and Ghose 2013; Ghose et al. 2014).  

We summarized the results of DID estimation in Table 3-5. The estimated 

results of DID model with dependent variables as submission, addition, and 

deletion, are presented in columns (1), (2), and (3), respectively. The results of DID 

model are consistent with those of the baseline fixed-effect panel regression model.  

As reported in Table 3-5, the estimated coefficients of the interaction term 

capturing the treatment effect are significantly negative across all models with 

different measures of user contribution, suggesting senior users’ contribution drops 

significantly after the launch of visual editor at English Wikipedia. More 

specifically, senior users’ contribution decreased by 2.8%, 3.4%, and 11.2% in the 
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number of submission, the number of characters added, and the number of 

characters deleted, respectively.  

Table 3-5 Results of Difference-in-Differences Model 

 (1) (2) (3) 

VARIABLES Submission Addition Deletion 

    
After -0.064*** -0.221*** -0.062*** 
 (0.006) (0.017) (0.014) 

Treated × After -0.028*** -0.034** -0.112*** 

 (0.005) (0.015) (0.012) 

Tenure -0.020*** -0.057*** -0.030*** 
 (0.000) (0.001) (0.001) 

Tenure2 0.000*** 0.000*** 0.000*** 
 (0.000) (0.000) (0.000) 

Constant 5.151*** 14.718*** 8.309*** 
 (0.088) (0.258) (0.204) 

    
Observations 936,300 936,300 936,300 
R-squared 0.014 0.013 0.007 
Number of id 6,802 6,802 6,802 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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3.4.3. Identification of the Negative Network Effect 

We have shown the causal relationship between the launch of visual editor and the 

decrease of senior users’ contribution at English Wikipedia by the Difference-in-

Differences model. However, the decrease of senior users’ contribution can be 

attributed to other alternative explanations relevant to visual editor other than the 

negative network effect of the new users who generated low-quality contribution. 

For instance, even though Wikipedia anticipate the new visual editor is user-

friendly and designed to induce more input from contributors, contributors may 

actually find the visual editor is horrible because of the immature nature of visual 

editor.  In other words, there is a gap between the anticipation of Wikipedia and the 

actual user experience of visual editor. Furthermore, assuming that the visual editor 

is indeed more convenient for senior users to edit Wikipedia articles, senior users 

need to incur a certain cost in the switching of editing tools from the original 

markup language Wikitext to the new visual editor. Some senior users who 

mastered the Wikitext may be not willing to incur the switching cost and therefore 

contribute less.  

The English Wikipedia offers us an opportunity of natural experiment to 

identify the negative network effect. We use the anonymous contribution to capture 

this negative network effect because low-quality contribution of new users is more 

likely to be submitted anonymously. It is plausible to assume that the contribution 

by anonymous users on average is of lower quality than that by senior users because 

(1) anonymous or new users may not have the same level of expertise as senior 

users to provide added value of  the content of Wikipedia articles; (2) anonymous 
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or new users may not have the same level of experience as senior user to maintain 

the organization and readability of Wikipedia articles; and (3) anonymous users 

may include those who edit the Wikipedia articles in a malicious manner that is 

intentionally disruptive.  

In Table 3-6, we present the results in the report of Wikipedia article rating 

(Wikimedia Foundation 2010) to justify our assumption. In the project of article 

rating, Wikipedia asked both anonymous users and registered users to rate the same 

set of Wikipedia articles in the period from September 22nd 2010 to October 4th 

2010. The quality of a Wikipedia article is rated in four dimensions: well-sourced, 

neutral, complete, and readable. As shown in Table 3-6, anonymous users are easier 

to give high rating than registered users, across four different quality measures. This 

indicates anonymous users on average has a lower standard than registered users. 

We also find that the standard deviation of the rating of anonymous users are larger 

than that of registered users, across four different quality measures. This suggests 

there is a wider dispersion of quality among anonymous users than among 

registered users. Based on these descriptive statistics, we think it is reasonable to 

assume that the contribution by anonymous users on average is of lower quality 

than that by senior users since all senior users are registered users. Hence, senior 

users need to spend additional efforts to maintain the quality level of Wikipedia 

articles by revising anonymous contribution, in comparison to their own 

contribution.  
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Table 3-6 Report of Wikipedia Article Rating 
 User Type Well-sourced Neutral Complete Readable 

Mean Anonymous 3.8 3.7 3.6 3.9 

 Registered 2.5 3.3 2.4 3.1 

S.D Anonymous 1.45 1.48 1.48 1.4 

 Registered 1.32 1.15 1.23 1.13 

Num. of Rating Anonymous 2086 1967 2013 2041 

 Registered 540 517 537 531 

 

Our identification of the negative network effect relies on the exogenous 

decrease of the quality level of anonymous users’ contribution. Before the launch 

of visual editor, the cost of learning markup language Wikitext serve as a bar to 

prevent low-quality anonymous users as well as associated low-quality anonymous 

contribution. However, the launch of visual editor suddenly lower the bar and let 

these low-quality anonymous users freely edit the Wikipedia article, leading to a 

drop of the quality level of anonymous contribution. If the decrease of senior users’ 

contribution is really driven by the negative network externality of unqualified 

contribution, we expect that, after the launch of visual editor, senior users who are 

exposed more to the anonymous contribution will have higher possibility to 

contribute less. Hence, we estimate the following Difference-in-Differences model: 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖𝑡

= 𝛽0 + 𝛽1𝐴𝑓𝑡𝑒𝑟𝑡 + 𝛽2𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝑖 × 𝐴𝑓𝑡𝑒𝑟𝑡

+ 𝛽3𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝑖 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 + 𝛼𝑖 + 𝜀𝑖𝑡, (3) 

where 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝑖 is the daily average of the percentage of 

anonymous contribution (measured by the total number of characters added and 

deleted) to the Wikipedia articles edited by the user i after the launch of visual 
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editor. Thus, 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝑖 captures the daily average intensity a user 

is influenced by the unqualified contribution. 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝑖 × 𝐴𝑓𝑡𝑒𝑟𝑡 

is the interaction term of 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝑖 and 𝐴𝑓𝑡𝑒𝑟𝑡 and captures the 

effect of unqualified contribution after the launch of visual editor.  

Table 3-7 summarized the results of DID estimates of the effect of visual 

editor on user contribution with different percentage of anonymous contribution. 

Columns (1), (2), and (3) present the results estimated by Ordinary Least Square 

(OLS) estimator while columns (4), (5), and (6) show the results estimated Fixed-

Effect (FE) estimator.  

The estimated coefficient of 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝑖  is significantly 

positive across Models (1), (2), and (3), indicating users who edit Wikipedia articles 

with more anonymous contribution contribute more in terms of submission, 

addition, and deletion.  

The percentage of anonymous contribution could also capture a user’s 

preference or expertise in contribution to Wikipedia articles. For example, if a 

contributor consistently works on Wikipedia articles related to trivial topics like 

current affairs that everyone can easily understand and contribute, he need to 

cooperate with a large number of contributors including anonymous contributors. 

On the contrast, if he prefers to work on Wikipedia articles related to relatively 

advanced topics such as econometrics that only someone who has the domain 

knowledge can contribute while the crowd is less interested in modification, he is 

likely to collaborate with a small number of contributors. Therefore, the 

significantly positive coefficient of 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐴𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠𝑖 suggests that users 
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who edit popular Wikipedia articles with more unknown collaborators would 

contribute more. This is the evidence of positive network effect which is 

documented in Zhang and Zhu (2011).  

Interestingly, the estimated coefficient of the interaction term is 

significantly negative across Models (1), (2), and (3), suggesting that users edit 

Wikipedia articles with more anonymous contribution contribute significantly less 

AFTER the launch of visual editor. Our results showed the evidence of negative 

network effect.  

We conclude that it is the quality dimension of new users’ contribution that 

determines whether the network effect is positive or negative in the context of 

Wikipedia. Before the launch of visual editor, senior users enjoy the positive 

network effect. If a senior user perceives a large number of unknown collaborators 

are constructively contributing to the Wikipedia articles he is editing, he feels more 

motivated to contribute. After this launch, the average quality of unknown 

collaborators’ contribution drops and senior users suffer from the negative network 

effect. If a user experiences a large number of unqualified contributions from 

unknown collaborators, he has less motivation to contribute.  

Our results are also related to the notable finding of “conditional cooperator” 

in the field of behavioral economics. In the literature of private provision of public 

good, the theoretical prediction is the free-riding behavior. However, the analytical 

models assuming the rationality of agents fail to explain the phenomenon of 

extensive donations in the charitable sector of the economy (Andreoni 1988). To 

adjust the inconsistency between the theory and reality, as one of the promising 
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remedies, analytical models incorporating the heterogeneity of social preference 

are proposed. These models give rise to the “conditional cooperators”, whose 

contribution to the public goods is positively correlated either with his ex-ante 

belief about the contribution made by his peers (Chaudhuri 2011). Field 

experiments to test the theory of conditional cooperator are conventionally 

conducted in the context of public donation (Frey and Meier 2004; Heldt 2005; 

Shang and Croson 2009). In this paper, we reveal the phenomenon of conditional 

cooperators in the new context of online community. Our results are consistent with 

the theory of conditional cooperators, suggesting a senior user’s contribution is 

conditional on his belief about the contribution quality made by other users. 

Moreover, we show that a subject’s belief about the contribution quality made by 

others is more important than his belief about the contribution quantity made by 

others, at least in the case of English Wikipedia.  

In Table 3-7, column (4), (5), and (6), we present the results estimated by 

fixed-effect estimators. The estimated coefficient of the interaction term capturing 

the treatment effect is qualitatively unchanged. Our estimated results showed that, 

comparing to the contribution of those editing Wikipedia articles without 

anonymous contribution, the contribution of users editing Wikipedia articles with 

anonymous contribution could decrease by up to 22.5%, 62.9%, and 35.7%, in 

submission, addition, and deletion, respectively.25  

                                                 
25 These numbers are interpreted as upper bound because the percentage of anonymous contribution to the 

Wikipedia articles edited by the target user cannot be 1.  
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Table 3-7 DID Estimates with Percentages of Anonymous Contribution 

Model Specification OLS FE 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Submission Addition Deletion Submission Addition Deletion 

       

After -0.228*** -0.635*** -0.404*** -0.067*** -0.191*** -0.123*** 

 (0.003) (0.010) (0.008) (0.006) (0.016) (0.013) 

PercentageAnonymous -0.217*** -0.602*** -0.346*** -0.225*** -0.629*** -0.357*** 

× After (0.040) (0.115) (0.092) (0.040) (0.115) (0.092) 

PercentageAnonymous 0.938*** 1.686*** 5.166***    

 (0.169) (0.459) (0.358)    

Tenure -0.000 0.001 0.002*** -0.020*** -0.056*** -0.031*** 

 (0.000) (0.001) (0.000) (0.001) (0.002) (0.001) 

Tenure2 0.000*** 0.000*** -0.000 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Constant 1.253*** 3.625*** 1.762*** 5.192*** 14.560*** 8.671*** 

 (0.026) (0.071) (0.056) (0.102) (0.298) (0.239) 

       

Observations 708,591 708,591 708,591 708,591 708,591 708,591 

R-squared 0.012 0.010 0.006 0.014 0.012 0.008 

Number of id 5,191 5,191 5,191 5,191 5,191 5,191 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1
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3.5. Concluding Remarks 

The business value of an online community is rooted in the number of active users 

in this online community. An intuitive idea for online communities to grow their 

business value is to acquire more users. However, the policy changes made to 

acquire new users as well as the group of new users may have a negative impact on 

existing users. This can be illustrated by the case of the launch of visual editor at 

English Wikipedia: increased participation of new users turns out to drive seniors 

away. In this paper, we use econometric analysis to investigate the underlying 

mechanism.  

 We first employed the fixed-effect panel regression model to investigate the 

behavior change of senior users after the launch of visual editor. We estimated the 

fixed-effect model with different time windows to examine the behavior change of 

senior users in the short run and in the long run. We find that, after the launch of 

visual editor, senior users’ contribution significantly increased in the short run but 

significantly decreased in the long run, in terms of the number of submissions, the 

number of characters added, and the number of characters deleted.  

To establish the causal relationship between the launch of visual editor and 

the drop of senior users’ contribution, we construct a control group for senior users 

at English Wikipedia with the similar senior users at German Wikipedia and 

estimate a difference-in-differences model. The estimates of difference-in-

differences model are consistent with those estimated by the baseline fixed-effect 

panel regression model. Our results suggest that the policy change related to visual 

editor indeed caused the decrease of senior users’ contribution.  
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To verify whether the negative network effect of low-quality contribution 

is the underlying mechanism, we estimated the DID model with the treatment being 

the percentage of anonymous contribution a senior user experienced after the 

launch of visual editor.  We find that senior users who edit Wikipedia articles with 

more anonymous contribution contribute more before the launch of visual editor. 

However, after the policy change that lowered the bar for anonymous contribution, 

senior users become less motivated if they experience more anonymous 

contribution. We conclude that the quality of user contribution plays an important 

role in determining the direction of network effect in the context of online 

community.  

Our study also has limitations and provides research opportunities for future 

research. First, in this paper, our findings suggest the quality of user contribution 

determines the direction of network effect and Wikipedia can achieve a balance 

between the quantity and the quality of user contribution by the learning cost for 

new users to participate. Our findings in the context of English Wikipedia can be 

naturally generalized to other online communities such as Q&A website. However, 

the optimal learning cost for different online communities may depend on the 

classification of online communities. Therefore, it is interesting to explore how to 

design the entry barrier based on the differentiation and competition of online 

communities. Furthermore, online community such as Wikipedia is a special type 

of public goods (Samuelson 1954), it would be interesting to explore whether our 

findings can be generalized to other types of public goods.  
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4. Study 3: The Monetary Value of Twitter Followers 

4.1. Introduction 

The inception of social media has greatly changed the way we communicate with 

each other and consequently our daily life has been reshaped. We observe that an 

increasingly large number of new social network sites, such as Twitter and 

Facebook, are emerging to meet different kinds of humans’ needs. According to 

web analytics site Statisticbrain.com, as of 2014, there are over 645 million active 

registered users on Twitter and more than 1.3 billion monthly active users on 

Facebook. The boom of social media platforms brings firms new marketing 

opportunities. As an on-going transformation, firms start learning to reach a vast 

number of audiences and directly interact with their potential consumer on social 

media. It is reported that 69% of small business owners are engaged in some kinds 

of social media platform (e.g., Twitter, Facebook, and LinkedIn) and about 78% of 

them plan to allocate more budgets on social media marketing (Protalinski 2011). 

The expenditure on social media marketing in USA is expected to grow 34% yearly 

and reach 3.1 billion USD in 2014 (Forrester Research 2009).  

An inspiring example of social media marketing can be illustrated by the 

successful story of Radio Shack, an electronic retailer in USA (Slutsky 2011). By 

posting a trending topic using the hash tag “#ineedanewphone” on Twitter, Radio 

Shack quickly gained 65 million impression counts for this marketing tweet within 

24 hours, ending up with a double-digit sales increase in the three days that 

followed the promoted trend. "The ROI on this social-media initiative was 

stratospheric for us," The CMO of Radio Shack said. 
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Similar to firms, individuals also benefit from the emerging self-promotion 

avenue. Take professional athletes for another example. Athletes’ popularity is one 

of the key factors in determining their court time and salary. However, before the 

introduction of Twitter, only superstars and some middle-class players had access 

to mainstream media as the marketing channel for promoting their image. The 

majority of ordinary players have few chances to reach out to fans to improve their 

popularity. Thanks to social media, there is a new avenue for ordinary athletes to 

manage fan loyalty: nowadays they can interact with fans on social media and 

cultivate a larger fan base by posting entertaining contents on Twitter or Facebook. 

For example, National Basketball Association (NBA) is a business valued over 19 

billion USD. 75% of NBA players have a Twitter account with 214,539 Twitter 

followers on average. 

Despite abundant examples of social media marketing, there is little 

scholarly research supporting the business value of social media. To fill this gap, 

we strive to prove that celebrities’ participation and popularity on Twitter can be 

translated into real-world monetary outcomes, thus providing evidence of economic 

return to their social media marketing efforts. In this study, we examined the 

economic value of celebrities’ participation and popularity in social media in the 

context of NBA. We choose NBA as our research context because the sample of 

NBA players is well-defined, in comparison to other celebrities such as actors and 

musicians. In addition, NBA players’ performance and income can be measured 

more objectively than other professions and their demographics are also publicly 
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available. This provides us an adequate set of control variables in data analysis. Our 

research questions are thus:  

1. Do NBA players earn more salary after they participate in Twitter? 

2. Do NBA players earn more salary if they have more Twitter 

followers? 

Popularity is an important asset for celebrities (e.g. professional athletes, 

musicians, and movie stars) whose income (business value) is highly dependent on 

their fan base. That’s why we observe celebrities such as NBA players are eager to 

create a Twitter account and conduct self-promotion by communicating with 

Twitter followers to cultivate a large fan base.  

Furthermore, wage/salary inequality is a critical social issue and is 

continuously increasing since the 1980s. In the 2014-15 season of NBA, the 

highest-paid player (Kobe Bryant) earns 23.5 million USD while the lowest-paid 

player (Orlando Sanchez) earns only 15,000 USD, with the average salary in NBA 

being 4,203,105 USD. Social media can potentially help not so well-known athletes 

to reach out to their fans and gain increased exposure. However, it is not easy to 

predict who can benefit more from the increased exposure on social media: the 

more famous ones or the relatively less famous ones? Therefore, we are also 

interested in how social media changes the income inequality.   

3. Does players’ participation in Twitter affects salary inequality in 

NBA? 

Our data set is a yearly panel data of 539 NBA players who are in the rosters 

of NBA from 2005 to 2014 with their associated salary, performance statistics, 



109 
 

demographics, the registration date of Twitter account, and historical number of 

Twitter followers. We first investigate the impact of a player’s participation in 

Twitter on his salary using a difference-in-differences (DID) model. Our results 

suggest that participation in Twitter helps a player to increase his salary by 861,628 

US dollars on average. As a robustness check, we performed full covariate 

matching by Coarsen Exact Matching (CEM) to account for potential sample 

selection issues. The results are consistent with the estimates in the DID model. In 

quantifying the economic value of popularity, which is measured by the number of 

Twitter followers, we estimate a Heckman two-stage model with matched sample 

to alleviate the self-selection into Twitter bias. We find that doubling the number 

of Twitter followers of an NBA player is correlated with an increase of 682,122 US 

dollars in his salary.  In sum, this study presents rigor empirical evidence of the 

economic value of players’ participation and popularity on Twitter.  

To investigate the change of salary inequality caused by Twitter, this study 

employs quantile regression to compare the relative gain from Twitter for players 

at different quantiles of salary. Our analysis reveals an interesting polarization 

pattern: above-average players and below-average players benefited more than 

average players. We also notice that the return of social media efforts is largest for 

players at the lowest 10% quantile (i.e. bottom players). Moreover, considering that 

players at the lower quantiles (those at the 0.10 quantile) benefit much more from 

Twitter than those at higher quantiles and the number of players at lower quantiles 

is much larger than those at higher quantiles, we conclude income inequality in the 

NBA has been reduced due to the emerging of social media. 



110 
 

Our study differs from prior research on social media in following ways. (1) 

The contribution of this paper lies in demonstrating the economic value of 

microblogging platform. Most existing evidence relevant to the business value of 

social media is founded in Facebook and other social media sites while 

microblogging platform remains untouched and the business model of 

microblogging platform is still questionable. Our study provides compelling 

empirical evidence to support the business model of microblogging platform, thus 

contributing to the literature on the business value of social media in Information 

Systems. (2) This paper focuses on the added value that social media brings to 

individuals while extant research mainly focus on the benefits of social media to 

firms. In this paper, we rigorously quantify the monetary value of celebrities’ 

participation and popularity in microblogging social media. Our study proves the 

effectiveness of individual users’ self-promotion in social media. (3) To the best of 

our knowledge, our study presents the first tested societal value of social media, 

while existing research only emphasize the business value of social media. We 

revealed the fact that salary inequality among NBA players is decreased because of 

player’s adoption of social media. Our study identifies a completely new source of 

the change of wage inequality and contributes to the literature on wage inequality 

in the field of labor economics. Our study also provides meaningful and practical 

suggestions to professional sports leagues and player associations which care 

players’ welfare: they can encourage players to actively participate and engage in 

social media, especially for those bottom players. 
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4.2. Related Literature 

Microblogging platform has its appealing features to attract more celebrities than 

other social media sites. For example, Twitter is reported to be a better social media 

platform than Facebook for celebrities who pursue visibility and popularity because 

of its openness (Motwani 2013). Twitter is an open platform in which everyone can 

view each other’s tweets, giving the content generated by celebrities the boost of 

visibility they desire. In contrast, Facebook is relatively closed and designed for 

communication among a group of people with closer relationship and most 

conversations are private, thus limiting celebrities’ self-promotion. Consequently, 

celebrities such as NBA players prefer to engage in Twitter instead of Facebook 

and we decide to investigate the impact of celebrities’ social media participation 

and popularity in the context of microblogging platform instead of other social 

media sites such as Facebook.  

To the best of our knowledge, there is no econometric analysis with modern 

identification strategies that examines the economic value of celebrities’ 

participation and popularity in microblogging platforms although microblogging 

platforms such as Twitter have become an integral part in today’s business 

landscape. We also attempt to study whether social media affects income inequality. 

This can extend the current understanding on the “polarization phenomenon of 

wage distribution” and the societal impact of information technology. Our research 

is thus relevant to three streams of prior studies: microblogging platform, the 

business value of social media, as well as wage inequality.   
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4.2.1. Microblogging Platform 

Microblogging is a broadcast medium that similar to blogging. A microblog differs 

from a traditional blog in that its content is typically smaller (Kaplan and Haenlein 

2011). Twitter is the most famous microblogging platform. On Twitter, users can 

share tweets (text messages up to 140 characters long) with their followers. 

Followers are those who subscribe to a users’ timeline of tweets. This is like using 

Rich Site Summary (RSS) feed service to receive timely updates from favorite 

blogs. The following behavior on Twitter creates a directed social network in which 

there is a link from user A to user B if user A chooses to follow user B. With over 

645 million active registered users, Twitter is already part of everyone’s daily life 

in the mobile era.  

The popularity of microblogging platform has attracted increasing 

attentions from academic research. Extant literature, mostly in Computer Science, 

focuses on studying the structure and nature of the Twitter’s social network. For 

example, one popular topic is information diffusion in this network (Bakshy et al. 

2011; Goel et al. 2012; Kwak et al. 2010; Nair et al. 2010; Romero et al. 2011; 

Weng et al. 2010; Wu et al. 2011). However, academic research on Twitter from 

social science is still scant (Toubia and Stephen 2013). There exist only few studies 

related to Twitter or microblogging platform published in top journals in 

Information Systems. The only exception we found is the research conducted by 

Ghose et al. (2012). In their study, Ghose et al. (2012) investigated the difference 

of Internet browsing behavior between mobile phones and personal computer users 

using data from a Twitter-like microblogging platform. They found that ranking 
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effects are higher and preferences for geographically proximate brands are also 

higher on the mobile Internet. Although their study is conducted in the context on 

microblogging platform, their focuses are different from our research questions. In 

this paper, we aim to empirically investigate the economic value of NBA players’ 

participation and popularity in Twitter.  

4.2.2. The Business Value of Social Media 

Our study is closely related to the IS literature on the business value of social media. 

Aral et al. (2013) proposed a framework for social media research. Research in this 

area can be characterized by the level of analysis: user and society, platform and 

intermediaries, and firms and industries. In their framework, social media’s value 

and strategy describe how users, platforms, and firms create the value from using 

social media and how they can create strategies that best satisfy their needs. Aral et 

al. (2013) also pointed out that social media may have both a direct effect 

(improving the outcomes of decisions) and a strategic effect (changing the 

decisions). Our paper is relevant to research conducted at the firm level.  

At the firm level, researchers investigated the outcome of social media after 

firms or industries adopted social media. These studies mainly focus on the direct 

effect of social media. For instance, Goh et al. (2013) demonstrated that firm’s 

engagement in social media helps to promote sales and concluded that user 

generated content is more impactful than marketer generated content. Rishika et al. 

(2013) found that a firm’ social media effort is effective to induce customer 

participation, which leads to an increase of customers’ visit frequency and 

profitability.  Luo et al. (2013) shown that firm equity value can be predicted by 
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social media and social media metrics have substantially stronger predictive power 

than those conventional online behavioral metrics (Google searches and Web 

traffic). On the other hand, Wu (2013) revealed the strategic effect of social media: 

the introduction of social network tool not only improved employees’ productivity 

(the outcome of decisions) but also changed employees’ network position 

(changing the decisions) and found that social communication is more correlated 

with reduced risk of layoff than with information diversity. None of these studies 

are conducted in the context of microblogging platforms. In fact, we found that the 

effectiveness of firm’s social media marketing in microblogging platforms has not 

yet been touched in extant literature, particularly in top IS journals.  

Our study is conducted at the level of users. Very little research has been 

done to investigate the effectiveness of social media and how individuals can 

participate and engage in social media to meet their needs. To the best of our 

knowledge, there is no empirical research quantifying the value of popularity in 

microblogging platform like Twitter. 

4.2.3. Wage Inequality 

Our research is also related to the issue of wage inequality, which has been widely 

studied in economics. In a broad sense, the change of wage inequality boils down 

to the change in wage-setting institutions and skill biased technical changes.  

Institutional factors such as unionization have been shown to affect wage 

inequality. Empirical research mainly focuses on the 1980s during which the 

increase of wage inequality in the United States is accelerated and economists are 

eager to find out the reasons driving such phenomenon. Freeman (1991) shown that 
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de-unionization explains about 20 percent of the increase in the overall wage 

inequality for men during the 1980s. DiNardo et al. (1996) further found that a large 

proportion (around 40 percent) of the increase in the higher tail inequality for men 

in the 1980s can be attributed to the decline in unionization. However, due to the 

secular decline in unions, unionization does not has a significant impact on wage 

inequality later in the 1990s (Card et al. 2004).    

The other line of research of wage inequality focuses on skill biased 

technical change (SBTC). The overall wage inequality has ceased growing since 

the late 1980s while the upper tail inequality rise as rapidly in the 1990s as in the 

1980s (Autor et al. 2008). SBTC is identified by economists as the key source of 

upper tail inequality (Acemoglu 2002; Katz and Auctor 1999). Economists state 

that the wide application of computer helps college educated labor to establish 

increasing productivity advantages over those non-college educated labor, thus lead 

to a demand shift and employment change. One shortcoming for the traditional 

model in previous literature is that it assume there is a one-to-one match between 

skills (or education background) and tasks (or working activity) but the dynamics 

between skills, tasks and technologies is complex in reality. In recent years, the role 

of task or routine offers a new perspective to evaluate the impact of SBTC. 

Acemoglu (2011) proposed a task-based model which incorporates the endogenous 

assignment of skills to tasks and the substitution for certain tasks resulted from 

technology change. Similarly, Autor et al. (2006)  and Autor and Dorn (2013) 

proposed the model of computerization as well as the hypothesis of routinization to 

characterize the pattern of “polarization” in the U.S labor market, in which 
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employment polarizes into high-wage and low-wage jobs at the cost of middle-

wage jobs. They argued that the middle-wage jobs are associated with high level of 

routine tasks and significantly replaced by automating routines from technology 

advances. On the other hand, technology advances like the wide application of 

information technology, complement abstract cognitive tasks, which are related to 

high-wage jobs, and have little impact on non-routine manual tasks, which are 

related to low-wage jobs.   

Our study aims to investigate the impact of social media on wage inequality. 

To the best of our knowledge, the effect of social media has not been touched in 

existing literature on wage inequality. In our context, social media may result in a 

pattern of polarization in the wage distribution in NBA. In NBA, in addition to his 

performance, a player’s popularity is also a key factor in determining his salary. 

For instance, Ertug and Castellucci (2013) found that, while there is no significant 

effect of the average status of players on the teams’ season performance (measured 

by the qualification for the Playoffs as well as the advancement to Conference 

Semifinals, Conference Finals, and NBA Finals), there is a positive and significant 

effect of the average status of players on the teams’ revenue (measured by the teams’ 

ticket income). The popularity of a superstar (a player with high status), is an 

intangible asset to his team and help his team to increase revenue through ticket 

sales and merchandise. Therefore, an NBA team is willing to give a superstar player 

a higher salary than ordinary players not only for his superior performance but also 

for his high popularity. In their paper, Ertug and Castellucci (2013) also found that 



117 
 

when an NBA team’s revenue is low relative to its aspiration, this team will display 

a preference for recruiting high-popularity players than high-performance players.   

Upon its emergence, social media may amplify the existing superstar effect. 

Superstar players enjoy their salary premium over other players because of widened 

reach to fans and increased popularity among fans. Superstar players with 

professional marketing team can conduct effective marketing activities on social 

media, thus benefiting more from social media than average players without 

marketing team. On the other hand, social media serves as a new marketing avenue 

for bottom players. In the past, superstars and some middle-class players can obtain 

promotion by league and sponsorship from brands while bottom players have few 

chances to improve their popularity. Today, all bottom players can have the equal 

opportunity as superstars and middle-class players to interact with their fans and 

establish a larger fan base by social media. Therefore, bottom players may also 

benefit more from social media than average players. If these two effects work 

concurrently, the overall outcome would be the polarization in the salary 

distribution in NBA.   

4.3. Data Description 

In this study, we conducted our research in the context of NBA. We choose NBA 

as our research context for several reasons. First, compared to other celebrities on 

Twitter such as politicians, actors and musicians, the sample (the set) of NBA 

athletes is well-defined and the sample size is large enough yet manageable. 

Otherwise, we may face the sampling issue about who should be included or 

excluded into our sample. Second, an NBA player’s performance can be measured 
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more objectively than other professions. All major professional sports leagues 

regularly publish a large number of performance metrics for fans to read over the 

Internet. Each NBA player’s demographics are also publicly available. This 

provides us an adequate set of control variables in regressions. Third, we choose 

NBA among the four largest professional sports leagues in USA (NFL, MLB, NBA, 

and NHL) since the adoption rate of Twitter is the highest in NBA than the other 

three sports leagues. We found that many NBA players have opened a Twitter 

account and actively interact with their fans while only a few of NFL/MLB/NHL 

players have registered a Twitter account. As a consequence, NBA players have 

cultivated a larger fan base on Twitter even though NFL and MLB have larger 

offline fan bases than NBA. This can be illustrated by the number of followers of 

Most Valuable Player (MVP) in these four professional sports leagues: the MVP of 

NBA (LeBron James) has 12.6 million followers whereas the MVP of NHL (Alex 

Ovechkin) and MLB (Miguel Cabrera) have 0.766 and 0.437 million followers, 

respectively. In contrast, the MVP of NFL (Peyton Manning) does not have a 

Twitter account. Because we analyze the impact of Twitter by DID and Heckman 

selection model in a panel regression, it is better to analyze a sample in which most 

players, especially famous players, have adopted Twitter so that we can compare 

their salaries before and after the adoption of Twitter. Hence, we decide to choose 

NBA instead of other three sports leagues as our research context. 

Our sample consists of 539 NBA players who are in the rosters of NBA 

from 2005 to 2014. We scraped their salary, performance statistics, and 

demographics from NBA’s official website and ESPN.com to construct a yearly 
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panel data set. To make sure the scraped data are accurate, we also scraped relevant 

data from Basketball-reference.com and check the consistency of data from 

different sources for triangulation. For players who have a Twitter account, we 

collected their social media information including the date they registered account 

on Twitter and their historical number of Twitter followers.  

Unlike the information related to players’ salary, performance, and 

demographics, players’ social media information is difficult to collect. The date a 

player opened a Twitter account can be collected from his profile page on Twitter. 

However, some players (e.g., Kobe Bryant) do not want to disclose their 

registration date on his profile page. For such players, we cannot directly collect 

their registration date but need to rely on Twitter API (Application Programming 

Interface) and develop a program to fetch data from Twitter. The statistics of 

historical number of followers are even more difficult to collect. Because the 

historical follower data is critical for social media analysis and thus of high business 

value, Twitter do not allow researchers or developers to access the historical 

follower data by their designed API. We have to obtain the historical follower data 

from third-party data providers (e.g. Twittercounter.com and Gnip.com) that have 

granted data access privileges from Twitter. These data providers usually employ a 

freemium pricing model. For example, Twittercounter.com allows us to track the 

historical number followers of every Twitter account but it is only free for historical 

follower data recorded in the last three months. For historical follower data beyond 

the period of three months, we need to pay 29 USD for each account queried. To 

collect the historical follower data for NBA players in our sample, we developed a 
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program to fetch data from Twittercounter.com and ran it regularly on a three-

month basis. This technical difficulty to collect social media information partially 

explains why there exist few empirical studies conducted in the context of Twitter 

although microblogging platform is an important and interesting topic in the field 

of Information Systems.   

4.3.1. Dependent variable 

Our dependent variable is the annual salary of NBA players. In professional sports 

leagues, salary is the most important source of income for most players. Only a few 

superstars in the league can receive endorsement from brands. Even for those 

superstars, the ratio of endorsement to players’ total income drops dramatically 

from the most famous one to less popular ones. We can observe this trend in the 

list of 10 NBA’s highest-paid players (Badenhausen 2013). Kobe Bryant tops the 

list with his impressive income of 59.8 million USD dollars. Within his total income, 

32 million dollars come from endorsement. On the other hand, in the bottom of this 

list, Pau Gasol earned 21.5 million USD dollars in income which largely driven by 

his playing salary of 19 million USD dollars. To account for the skewness of the 

distribution of NBA players’ salaries, we take the logarithmic form of salary as our 

dependent variable.  

4.3.2. Independent variables 

Twitter Account 

To indicate whether an NBA player has opened a Twitter account, we construct a 

dummy variable based on the registration date of the focal player’s Twitter account. 

For players who own a Twitter account, this dummy variable equals 1 after 
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(including) the year during which a player joined Twitter and 0 for previous years. 

For those who do not have a Twitter account, this dummy variable is 0 across all 

years. This variable is the main treatment variable in our DID analysis. 

Twitter Followers 

In literature, popularity is associated with the notion of acceptance (Bukowski and 

Hoza 1989; Coie et al. 1982; Newcomb and Bagwell 1995). On Twitter, we 

generally follow the ones we accept or appreciate so that we can be informed about 

everything related to the people we are interested in. In this sense, users who follow 

a celebrity on Twitter can be considered as fans of the focal celebrity. The number 

of followers of a celebrity is the direct measure of his fan base on Twitter and can 

be used to proxy his popularity on Twitter.  

4.3.3. Control variables 

We included a set of control variables suggested by literature (Ertug and Castellucci 

2013; Massey and Thaler 2013): efficiency rating, team-selection honor, 

demographics , minutes on court, position dummy, to control for confounding 

factors that may affect an NBA player’s salary. 

Efficiency Rating 

It is intuitive that a player’s better performance can help his team to win more 

games and to improve the probability to win championship. Since winning 

percentage and championships are highly correlated with the ticket sales and the 

market value of teams, a player’s salary is largely determined by his on-court 

performance (Massey and Thaler 2013). There are many performances metrics used 

in NBA. To alleviate the multi-collinearity issue among performance metrics, we 
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need to pick one variable and the most useful predictor of performance is Player 

Efficiency Rating (PER) proposed by Hollinger (2005).26  PER is a per-minute 

rating for a player’s performance and is standardized by the league average in each 

year. Furthermore, to fully control for a player’s performance, including PER of 

one single season is not sufficient since a player’s performance may fluctuate from 

season to season. Instead, we follow the literature to use a weighted average of PER 

to control for a player’s performance.27  

Team-Selection Honor 

In NBA, it is an honor for a player to be selected into the All-NBA teams 

(first/second/third teams). Only the few elite players in the league can be bestowed 

this honor. In each NBA season, the All-NBA teams are selected based on a voting 

conducted by a panel of sportswriters and broadcasters in United States and Canada. 

For each position, the player who receives the most votes is selected into the first 

team, the player who receives the second most votes is selected into the second 

team, and so on. Being selected into the All-NBA teams is an indicator for a player 

to be a star. Therefore, we include a player’s team-selection honor to control for 

potential superstar effect. To allow for lagged effect for such honors, we followed 

the literature and construct a discrete variable to indicate whether the focal player 

has been selected into first/second/third team in the previous three seasons (Ertug 

and Castellucci 2013).  

                                                 
26 John Hollinger is an NBA analyst since 1996 and is recognized as a leader in basketball's rising statistical 

analysis movement in the past decade. He was an analyst and writer for ESPN and is currently in the position 

of Vice President for NBA team Memphis Grizzlies.  

27 Interested readers can refer to Ertug, G., and Castellucci, F. 2013. "Getting What You Need: How Reputation 

and Status Affect Team Performance, Hiring, and Salaries in the Nba," Academy of Management Journal 

(56:2), pp. 407-431. for details on how to compute a weighted average of PER with a decay function. 



123 
 

Other Control Variables 

A player’s demographics (tenure) as well as game-related variables (minutes on 

courts and position dummies) are also included. In literature (Ertug and Castellucci 

2013; Massey and Thaler 2013), researchers used to include tenure as control for 

experience. Tenure captures the impact of a player’s experience since an NBA 

player can improve his professional skill with his increased experience. The 

squared-term of tenure is included to control for potential diminishing effect of 

experience and also the performance of players may degenerate as they become too 

old.  

A player’s minutes on courts is included to control for the extent to which 

he is utilized by his team and is a direct measure of the amount of the player’s 

contribution to his team. Similar to efficiency rating, we use a weighted average of 

minutes on courts as a control variable. We also apply the logarithmic 

transformation to handle the skewness of distribution. 

Last but not least, we include a set of position dummies. In a basketball 

game, each team on court is a five-man lineup, therefore leading to five different 

positions: Center (C), Power Forward (PF), Small Forward (SF), Shooting Guard 

(SG), and Point Guard (PG). Players in different positions bear different 

responsibilities and on average receive different amount of salary. Hence, there 

exist position-level heterogeniety. Also, some NBA players can play two positions. 

Therefore, we manually consolidate the position coding from different data sources 

(NBA, ESPN, and Basketball-reference.com), ending up with a set of 16 position 

dummies to control for players’ position-level fixed-effects. 
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Table 4-1 presents the definition of variables and Table 4-2 summarizes the 

descriptive statistics of variables. 

Table 4-1 Definition of Variables 

 Variable Name Definition 

Dependent 

Variable 
Log_salary Natural logarithm of a player’s salary 

Independent 

Variables 

Efficiency_rating 
Average performance. A player’s performance is 

measured by Player Efficiency Rating (PER). 

Team_selection 

A flag to indicate whether the focal player has been 

selected as first/second/third team in the previous three 

seasons.  

Tenure Number of years since a player has entered NBA  

Join 
A dummy variable to indicate whether the focal player 

has registered a Twitter account.  

Log_minutes_played The average number of minutes a player played on court  

 Log_followers Natural logarithm of the number of  Twitter followers  

 Age A player’s age 

 

Table 4-2 Descriptive Statistics 
Variable Name Obs. Mean S.D. Min Max 

Log_salary 2283 15.259 0.919 10.650 17.137 

Efficiency_rating 2283 8.541 2.459 -6.569 18.929 

Team_selection 2283 0.117 0.475 0 3 

Tenure 2283 8.302 3.351 4 21 

Join 2283 0.238 0.426 0 1 

Log_minutes_played 2283 1.948 0.228 0.920 2.309 

Log_followers 365 11.657 1.529 7.578 16.353 

Age 2283 28.916 3.706 21 42 
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4.4. Empirical Research Design 

4.4.1. The Impact of Twitter Account 

We first present results of Difference-in-Differences model (Wooldridge 2010) to 

show how a player’s participation in Twitter helps him to obtain a higher salary. 

We model the logarithm of player 𝑖’s salary in year 𝑡 as 

𝑙𝑜𝑔𝑠𝑎𝑙𝑎𝑟𝑦𝑖𝑡 = 𝛽1𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑡−1 + 𝛽2𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑡−1

+ 𝛽3𝑡𝑒𝑛𝑢𝑟𝑒𝑖𝑡−1 + 𝛽4𝑡𝑒𝑛𝑢𝑟𝑒𝑖𝑡−1
2 + 𝛽5𝑗𝑜𝑖𝑛𝑖𝑡−1

+ 𝛽6𝑙𝑜𝑔_𝑚𝑖𝑛𝑢𝑡𝑒𝑠_𝑝𝑙𝑎𝑦𝑒𝑑𝑖𝑡−1 + 𝛽7𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑡−1 + 𝜃𝑡 + 𝛼𝑖

+ 𝜀𝑖𝑡,                                                                                                      (1) 

where independent variables are in the previous time period (t-1) because the salary 

is determined before each NBA season in year t and depends on the performance 

in the previous year. The variable of interest 𝑗𝑜𝑖𝑛𝑖𝑡−1  is a treatment dummy 

variable which equals 1 after (including) the year during which a player joined 

Twitter and 0 for previous years. Meanwhile, 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑡−1  measures 

player 𝑖’s performance and 𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑡−1 is a proxy for the potential super-

star effect. We also include 𝑡𝑒𝑛𝑢𝑟𝑒𝑖𝑡−1  and 𝑡𝑒𝑛𝑢𝑟𝑒𝑖𝑡−1
2  to control for the 

influence of experience. To further control game-related factors, the minutes a 

player has played in the previous season and a set of position dummies are included. 

Finally, 𝜃𝑡  captures the effect of time trend, the fixed effect 𝛼𝑖  captures time-

invariant unobserved player-specific effects, and 𝜀𝑖𝑡 is the residual error term.  

The DID model is the canonical econometric model to estimate the 

treatment effect and establish causal relationship (Chan and Ghose 2013; Ghose et 

al. 2014). It helps us to control for unobservable individual heterogeneity (e.g. 
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personality) and rule out alternative explanations stemming from unobservable 

individual heterogeneity.  

To establish a stronger causal relationship, we further use matching as our 

robustness check to handle the potential sample-selection issue. One most 

important self-selection issue is that superstar players may be more willing to 

engage in social media to interact with their fans. To account for this issue, we 

apply matching to construct a control group. In this paper, we construct our control 

group as follows. For each subject in the treatment group, we find the player who 

does not join Twitter in the same year but with most similar attributes as the treated 

subject (i.e. one-to-one matching).  We expect that a player’s decision of joining 

Twitter is related to 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑛𝑔  and 𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛  because a high-

profiled player (which can be proxied by 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑛𝑔 and 𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛) 

has more incentives to join Twitter. We also expect a player’s decision to join 

Twitter is related to his age since an older player is less likely to be a tech-savvy 

user of any IT products, and thus having fewer interests in joining Twitter. 

We use the state-of-the-art matching algorithm in the literature. We need to 

find a doppelganger in the control group for each treated subject with similar 

attributes under the constraint that matching must be conducted in the same 

season/year. The seminal paper about matching (Rosenbaum and Rubin 1983) 

applies semi-parametric matching techniques such as Propensity Score Matching 

(PSM). In this paper, we follow Azoulay et al. (2013) and Malter (2014) to apply 

Coarsen Exact Matching (Blackwell et al. 2009; Iacus et al. 2011), a faster yet 

accurate non-parametric matching (full covariate matching) approach to construct 
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our control group. Coarsen Exact Matching (CEM) has several advantages over 

traditional PSM such as automatic restriction to common empirical support and 

guaranteed balance of covariates ex ante. The algorithm in CEM coarsen the joint 

distribution of covariates into a finite number of bins and then perform matching if 

and only if both treated subjects and control subjects can be found in the same bin, 

thus automatically satisfying the common empirical support.28 Researchers can rely 

on the default binning algorithm or manually specify the number of bins used in 

matching, therefore ensuring the degree of balance of covariates ex ante.29 CEM is 

also proved to outperform other matching approaches including PSM, Mahalanobis 

distance matching, and genetic matching in terms of bias, standard deviation, root 

mean square error, and computational speed (Iacus et al. 2012). With such 

advantages and conveniences to perform matching, CEM is getting increasingly 

recognized and adopted in recent publications in top journals (e.g. Azoulay et al. 

(2013) and Malter (2014)).  

Next, with the matched player data sample, we rerun the DID model given 

in Equation (1) with the matched sample. As documented in literature, the 

combination of DID analysis and matching sample can significantly reduce the bias 

stemming from both observable and unobservable confounding factors and can 

enhance the consistency of estimates (Rishika et al. 2013; Stewart and Swaffield 

2008).  

                                                 
28 Common support requires overlap in the covariate distribution between treatment group and control group.  

29 The degree of balance of covariates is generally measured by the mean difference of covariates between 

treatment group and control group. 
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4.4.2. The Impact of Twitter Followers 

We further proceed to quantify the economic value of a player’s popularity on 

Twitter. This is equivalent to estimating the monetary value of the number of 

Twitter followers. The number of Twitter followers of a player can be observed 

only if he has joined Twitter. This can lead to biased estimate if a player’s decision 

to join Twitter (i.e. treatment assignment) is not uncorrelated with the explanatory 

variables. To tackle the potential selection bias, we estimate a Heckman selection 

model (Heckman 1979) which is the most commonly employed econometric tool 

to correct selection bias when the dependent variable is salary and is widely applied 

in the field of Information Systems (Bapna et al. 2013; Gu and Ye 2014; Hui et al. 

2013; Lin et al. 2013). The bias is corrected through a two-step procedure. In step 

1, we estimate a Probit model and compute the selection bias correction term from 

the estimate. The dependent variable of selection equation is a latent variable 𝑗𝑜𝑖𝑛𝑖
∗, 

which can be considered as the propensity to be assigned to treatment group.  In 

step 2, the correction term is included in a regression model to obtain unbiased 

estimate of the effect of Twitter followers of a player on his salary. The 

specification of Heckman selection two-stage model is given as follows: 

Selection equation 

𝑗𝑜𝑖𝑛𝑖
∗ = 𝛾1𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑛𝑔𝑖 + 𝛾2𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛾3𝑎𝑔𝑒𝑖 + 𝛼 + 𝜀1𝑖    (2) 

𝑗𝑜𝑖𝑛𝑖 = {
1, 𝑖𝑓 𝑗𝑜𝑖𝑛𝑖

∗ > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                       (3) 

𝑃𝑟𝑜𝑏(𝑗𝑜𝑖𝑛𝑖 = 1|𝑧𝑖) = Φ(𝑧𝑖
′𝛾),                   (4) 

where 𝑧𝑖 is a vector of the set of covariates included in Equation (2). 

Regression equation 
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𝑙𝑜𝑔_𝑠𝑎𝑙𝑎𝑟𝑦𝑖 = 𝛽1𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑛𝑔𝑖 + 𝛽2𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛽3𝑡𝑒𝑛𝑢𝑟𝑒𝑖

+ 𝛽4𝑡𝑒𝑛𝑢𝑟𝑒𝑖
2 + 𝛽5𝑙𝑜𝑔_𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑖 + 𝛽6𝑙𝑜𝑔_𝑚𝑖𝑛𝑢𝑡𝑒𝑠_𝑝𝑙𝑎𝑦𝑒𝑑𝑖

+ 𝛽7𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 + 𝜃𝑡 + 𝛼𝑖

+ 𝜀2𝑖 ,                                                                               (5) 

where 𝜀1~𝑁(0,1), 𝜀2~𝑁(0, 𝜎), and  𝑐𝑜𝑟𝑟(𝜀1, 𝜀2) = 𝜌. 

In the Heckman’s first-stage model, as described above, a player’s decision 

to join Twitter is expected to be related to 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑛𝑔, 𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, 

and 𝑎𝑔𝑒. In the second-stage model, a player’s salary is regressed on the variable 

of interest (𝑙𝑜𝑔_𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟) and other control variables. 

In literature, both matching and Heckman selection model can be applied to 

alleviate the potential biases caused by sampling issues. Matching can tackle the 

sample selection on observable covariates to enhance the proof of causality. It has 

been proven to be an effective alternative to including those observable covariates 

as control variables in the regression. Parallelly, Heckman selection model can 

correct the bias when the unobservable subjects/samples exhibit systematically 

different patterns of the dependent or independent variables. In this paper, we 

employ Heckman selection model with matched sample to take advantages of both 

approaches (Goh et al. 2013), thus facilitating to establish stronger causal 

relationship. Furthermore, we also estimate the Heckman selection model with full 

sample to prove the robustness of our estimates.  

4.4.3. The Impact of Twitter Account on Salary Inequality 

The aforementioned empirical models aim to measure the average effects of Twitter 

account and followers on players’ salaries. But we are also interested in the changes 



130 
 

in the distribution of salary among NBA players. We would like to explore which 

kind of player (superstar player, average player, or bottom player) can benefit more 

from the participation in Twitter. In econometrics literature, quantile regression 

(Koenker 2005) is a powerful tool to model distribution even though the underline 

story is complex and multidimensional (Angrist and Pischke 2008). In this study, 

we employ quantile regression with matched sample to investigate whether players’ 

participation in Twitter affects the salary inequality in NBA. The model 

specification is given as follows: 

𝑄[𝑙𝑜𝑔𝑠𝑎𝑙𝑎𝑟𝑦𝑖𝑡
|𝑥𝑖𝑡−1, 𝑞]

= 𝛽𝑞1𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑡−1 + 𝛽𝑞2𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑡−1

+ 𝛽𝑞3𝑡𝑒𝑛𝑢𝑟𝑒𝑖𝑡−1 + 𝛽𝑞4𝑡𝑒𝑛𝑢𝑟𝑒𝑖𝑡−1
2 + 𝛽𝑞5𝑗𝑜𝑖𝑛𝑖𝑡−1

+ 𝛽𝑞6𝑙𝑜𝑔_𝑚𝑖𝑛𝑢𝑡𝑒𝑠_𝑝𝑙𝑎𝑦𝑒𝑑𝑖𝑡−1 + 𝛽𝑞7𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑡−1 + 𝜃𝑡 + 𝛼𝑖

+ 𝜀𝑖𝑡                                                                                                          (6) 

such that 𝑃𝑟𝑜𝑏[𝑙𝑜𝑔𝑠𝑎𝑙𝑎𝑟𝑦𝑖𝑡 ≤ 𝑥𝑖𝑡−1
′𝛽𝑞|𝑥𝑖𝑡−1] = 𝑞,                                (7) 

where is 𝑥𝑖𝑡−1 is a vector of the set of covariates included in Equation (6) and 0 <

𝑞 < 1. 

In quantile regression, no assumption is needed on the distribution of 

dependent variable conditional on covariates or about its conditional variance, thus 

making the nonparametric specification flexible (Greene 2011). 

4.5. Model Estimation and Results 

4.5.1. The Impact of Twitter Account 

We summarized the results of DID estimates in Table 4-3. The estimates of a fixed-

effect panel regression model with all control variables are reported in column (1). 
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The estimates of the DID model in Equation (1) are shown in column (2). 

Meanwhile, column (3) present results of DID model in combination with CEM 

using matched sample. 

As reported in column (1), it is intuitive that a player’s efficiency rating and 

minutes played on court in previous season have significantly positive impacts on 

his salary. In addition, a player’s tenure has a significantly positive but diminished 

effect. The estimated coefficient of 𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 is positive but not significant. 

If we only include a player’s efficiency rating and his team-selection honor, the 

estimated coefficients of 𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 is significantly positive. However, we 

found that the impact of 𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 become insignificant once we control for 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑛𝑔 and 𝑡𝑒𝑛𝑢𝑟𝑒. Specifically speaking, the estimated coefficient 

of 𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 become insignificant after we add the squared-term of 𝑡𝑒𝑛𝑢𝑟𝑒. 

Existing literature seems to ignore the diminishing effect of 𝑡𝑒𝑛𝑢𝑟𝑒.  

As shown in column (2), the DID estimate of the impact of a player’s 

decision to join Twitter is 0.144. Because our dependent variable (𝑙𝑜𝑔_𝑠𝑎𝑙𝑎𝑟𝑦) is 

in the form of natural logarithm, the estimated coefficient should be interpreted as 

semi-elasticity: participation in Twitter on average helps a player to increase his 

salary by 14.4%. The mean of salary in our sample is 5,983,530 US dollars, thus 

suggesting participation in Twitter increases a player’s salary by 861,628 US 

dollars on average. 

The DID estimates with matched sample are presented in Table 4-3, column 

(3). In our data set, 102 subjects in the treatment group are matched one-to-one by 

CEM. The results of CEM are summarized in Table 4-4. The measures of matching 
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performance include the mean difference of covariates between treatment and 

control group as well as the mean differences in different quantiles of covariates 

between treatment and control group. Take the variable of 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑛𝑔 for 

example. The mean difference of 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑛𝑔  between treatment and 

control group before matching is 0.6703 while that after matching is -0.00938. 

Similarly, the mean difference in the 0.95 quantile of 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_𝑟𝑎𝑡𝑖𝑛𝑔 between 

treatment and control group before matching is 1.6422 while that after matching is 

-0.176. We also obtain good matching for 𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 and 𝑎𝑔𝑒. As indicated 

in Table 4-4, the mean differences of 𝑡𝑒𝑎𝑚_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 and 𝑎𝑔𝑒 are both 0 after 

matching. In all, after matching by CEM, the imbalance of covariates between 

treatment and control group has been substantially reduced. 

In DID model with matched sample, the estimated coefficients of 𝑗𝑜𝑖𝑛 is 

still positively significant. The magnitude of 0.128 is also close to the estimated 

coefficient (0.144) in the DID model in column (2). This robustness check confirms 

that a player’s participation in Twitter indeed causes the increase of his salary. By 

comparing the R-squared for columns (2) and (3), we also notice that the R-squared 

increased dramatically when applying DID with the matched sample, suggesting 

matching did increase the explanatory power of DID model. Following the 

calculation above, we conclude that participation in Twitter on average increases a 

player’s salary by 12.8%, which is equivalent to approximately 765,891 US dollars. 
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Table 4-3 Results of DID Estimates 
 (1) (2) (3) 

VARIABLES FE 

Control 

DID 

Panel 

DID, CEM 

Panel 

    

Join  0.144*** 0.128** 

  (0.052) (0.063) 

Efficiency_rating 0.064*** 0.064*** 0.046** 

 (0.014) (0.014) (0.023) 

Team_selection 0.014 0.010 0.128 

 (0.045) (0.045) (0.090) 

Tenure 0.254*** 0.247*** 0.334*** 

 (0.023) (0.023) (0.036) 

Tenure2 -0.014*** -0.014*** -0.019*** 

 (0.001) (0.001) (0.002) 

Log_minutes_played 1.601*** 1.587*** 1.560*** 

 (0.135) (0.135) (0.214) 

Position dummies -included- -included- -included- 

Time dummies -included- -included- -included- 

Constant 10.582*** 10.643*** 10.353*** 

 (0.255) (0.255) (0.403) 

    

Observations 2,283 2,283 751 

R-squared 0.299 0.302 0.419 

Number of player_id 539 539 204 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4-4 Results of CEM 

Variable  Efficiency_rating Team_selection Age 

Mean difference Before .6703 .01482 -.59427 

After -.00938 0 0 

0.05 quantile 

difference 

Before 6.8711 0 1 

After 0.0217 0 0 

0.25 quantile 

difference 

Before 0.6989 0 -1 

After 0.0494 0 0 

0.5 quantile difference Before 0.9444 0 -1 

After -0.009 0 0 

0.75 quantile 

difference 

Before 0.4711 0 -1 

After -0.102 0 0 

0.95 quantile 

difference 

Before 1.6422 0 -2 

After -0.176 0 0 
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4.5.2. The Impact of Twitter Followers 

The results of Heckman selection model are summarized in Table 4-5. The 

estimates of Heckman selection model with matched sample are presented in 

columns (1) and (2) where the results of second-stage model are shown in column 

(1) and results of first-stage model are shown in column (2). Similarly, the estimates 

of Heckman selection model with full sample are presented in columns (3) and (4). 

As shown in Table 4-5, column (1), the estimated coefficient of 

𝑙𝑜𝑔_𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 is 0.114 and significantly positive. Since both dependent variable 

and independent variable are in logarithmic form, this estimated coefficient should 

be interpreted as elasticity: if a player’s Twitter follower increases by 100%, his 

salary increases by 11.4%. That is, if a player can double his Twitter followers by 

active engagement in social media, he can achieve 11.4% increase in salary. 

Considering that the mean of salary in our sample is 5,983,530 US dollars, this 

11.4% increase in salary can be translated to an average increase of 682,122 US 

dollars.  

Furthermore, the parameter 𝜌  is the correlation between the unobserved 

determinants of a player’s propensity to join Twitter (i.e. the error term in the first 

stage) and unobserved determinants of a player’s salary (i.e. the error term in the 

second stage). As presented in Table 4-5, column (1), 𝜌 = 0 in our case, suggesting 

that there is no sample-selection issues after using a matching sample and our 

estimates are unbiased (Wooldridge 2010). The estimated coefficient of 

𝑙𝑜𝑔_𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 with full sample, which is shown in column (3), is also significantly 
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positive, a result that is consistent with that in column (2) and further confirms the 

robustness of our results. 

Since players who engage more by posting more entertaining contents can 

attract more followers, popularity measured by the number of Twitter followers can 

be considered as the outcome of the social media efforts spent by the players.  Our 

analysis quantifies the value of Twitter account and the number of Twitter followers 

and our results can be used as a yardstick for the players to decide how much efforts 

and money they should spend on Twitter to maximize their benefit. Our findings 

also provide evidence of the effectiveness of Twitter as communication channel for 

managing loyal fans or loyal customers in the NBA context. As a result, other 

celebrities or firms should have more confidence in investing in marketing efforts 

on microblogging media.  
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Table 4-5 Results of Heckman Selection Model 
 (1) (2) (3) (4) 

VARIABLES Log_salary Join Log_salary Join 

     

Efficiency_rating 0.138*** -0.046 0.037* 0.087*** 

 (0.027) (0.034) (0.022) (0.016) 

Team_selection 0.035 -0.238 0.028 -0.065 

 (0.246) (0.240) (0.076) (0.074) 

Tenure 0.212***  0.209***  

 (0.051)  (0.035)  

Tenure2 -0.011***  -0.010***  

 (0.003)  (0.002)  

Log_minutes_played 1.564***  1.972***  

 (0.270)  (0.195)  

Log_follower 0.114***  0.070***  

 (0.040)  (0.026)  

Position dummies -included- -included- -included- -included- 

Time dummies -included- -included- -included- -included- 

Fixed-effect -included- -included- -included- -included- 

age  0.091***  -0.020** 

  (0.017)  (0.009) 

Constant 8.912*** -2.800*** 10.729*** -1.143*** 

 (0.575) (0.590) (0.465) (0.297) 

     

Observations 653 653 2,097 2,097 

Selection 𝜌 0.000   -0.883 

Wald 𝜒2 319.94  392.59  

Log-likilihood -441.412  -1180.992  

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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4.5.3. The Impact of Twitter Account on Salary Inequality 

The results of quantile regression with matched sample are summarized in Table 

4-6. As shown in Table 4-6, the 0.50 quantile coefficient (with magnitude 0.028) is 

smallest and is not significant among all quantile estimates. Next, we find that the 

0.75 quantile coefficient (with magnitude 0.066) and 0.90 quantile coefficient (with 

magnitude 0.089) are much larger than the 0.50 quantile coefficient (with 

magnitude 0.028). The 0.75 quantile coefficient is two times larger than the 0.50 

quantile coefficient, implying above-average players can benefit more from 

participation in Twitter than average players. The impact of participation in Twitter 

is even larger for those players in the 0.90 quantile (i.e., superstar players). The 

0.90 quantile coefficient is three times larger than the 0.50 quantile coefficient. This 

is not surprising since superstar players generally have agents to build a good public 

relationship with media and their fans while those average and above-average 

players do not. Also, after joining Twitter, superstars can broadcast to millions of 

followers whereas ordinary players only have tens thousands of followers. The 

huge fan base provides various “branding” opportunities of the focal athlete. 

On the other hand, although the 0.25 quantile coefficient is not significant, 

its magnitude is slightly larger than the 0.50 quantile coefficient. This is a signal 

that below-average players might gain more from Twitter than average players. It 

can be further illustrated by the 0.10 quantile coefficient. The most interesting 

finding in our results is that the 0.10 quantile coefficient (with magnitude 0.195) is 

the largest, implying that bottom players gain most from participation in Twitter 

and catch up with players in higher quantiles in terms of salary. This effect for 
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players with the lowest salary is striking in that it is two times larger than that for 

superstar players. The reason could be that Twitter helps a number of low-paid 

players get increased exposure to media and improved popularity among fans, thus 

leading to the increases in the salaries of these players.  

If we consider players at the 0.50 quantile as the baseline case, we can infer 

that social media helps the players at both lower quantiles and higher quantiles to 

earn more. In other words, social media benefit both bottom players and superstar 

player at the cost of average players. We borrow the terminology from Autor et al. 

(2006) and characterize this pattern as polarization in the salary distribution in NBA. 

Moreover, given that players at the lower quantiles (those at the 0.10 quantile) 

benefit much more from Twitter than those at higher quantiles and the number of 

players at lower quantiles is much larger than those at higher quantiles, income 

inequality in the NBA has been reduced due to the emerging of social media. 
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Table 4-6 Results of Quantile Regression 

 (1) 

0.10 

quantile 

(2) 

0.25 

quantile 

(3) 

0.50 

quantile 

(4) 

0.75 

quantile 

(5) 

0.90 

quantile 

VARIABLES Log_salary Log_salary Log_salary Log_salary Log_salary 

      

Join 0.195* 0.037 0.028 0.066* 0.089** 

 (0.108) (0.054) (0.051) (0.035) (0.043) 

Efficiency_rating 0.154*** 0.141*** 0.106*** 0.097*** 0.083*** 

 (0.032) (0.017) (0.016) (0.010) (0.012) 

Team_selection -0.007 -0.018 -0.024 0.002 -0.062 

 (0.079) (0.107) (0.081) (0.045) (0.042) 

Tenure 0.335*** 0.279*** 0.256*** 0.262*** 0.231*** 

 (0.080) (0.040) (0.036) (0.023) (0.028) 

Tenure2 -0.020*** -0.015*** -0.014*** -0.014*** -0.011*** 

 (0.004) (0.002) (0.002) (0.001) (0.001) 

Log_minutes_played 2.542*** 2.482*** 2.082*** 1.820*** 1.584*** 

 (0.241) (0.144) (0.145) (0.099) (0.117) 

Position dummies -included- -included- -included- -included- -included- 

Time dummies -included- -included- -included- -included- -included- 

Fixed-effect -included- -included- -included- -included- -included- 

Constant 7.227*** 7.752*** 9.489*** 10.243*** 11.074*** 

 (0.470) (0.272) (0.278) (0.200) (0.233) 

      

Observations 751 751 751 751 751 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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4.6. Concluding Remarks 

In this paper, we applied econometric analysis to empirically investigate the 

economic value of celebrities’ participation and popularity in social media within 

the context of NBA. Specifically, we studied whether NBA players’ participation 

and popularity in Twitter help them earn higher salaries and players with higher-

income or lower-income can benefit more from Twitter. We present empirical 

evidence of the business value of Twitter for NBA players at the individual level 

and Twitter could reduce the salary gap between lowest-paid players and average 

players, a surprising finding about the positive impact of the use of Twitter. 

We examined the value of celebrities’ participation in social media by 

estimating a difference-in-differences (DID) model with a panel data set. The DID 

estimates suggested NBA players’ participation in social media has a positive 

impact on their salaries. To control for the potential sample selection of players’ 

participation in Twitter, we used Coarsen Exact Matching (CEM) to construct a 

control group and rerun the DID model with matched sample. The DID model in 

combination with matched sample helps us to control potential bias stemming from 

both observable and unobservable factors. The DID estimate with matched sample 

confirmed that players’ participation in Twitter helps them to gain higher salaries. 

The robustness of our results indicates participation in social media indeed brings 

huge economic value to celebrities such as NBA players.  

In investigating the value of celebrities’ popularity in social media, we 

measure a player’s popularity in Twitter by his number of Twitter followers. We 

applied the Heckman two-stage model to control for potential sample selection 
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issues since Twitter followers are only observable for players who decided to 

participate in Twitter. We estimated the Heckman two-stage with both matched 

sample and full sample. Both estimates suggest that higher level of popularity in 

Twitter helps NBA players to gain higher salaries.  

To find out which type of players can benefit more from Twitter, we employ 

quantile regression and investigate the impact of players’ participation in social 

media on salary inequality among players. We found that: (i) superstar players (and 

above-average players) benefit more than average players and (ii) bottom players 

(and below-average players) can also benefit more than average players. Our results 

exhibit a pattern of polarization in the salary distribution in NBA. Moreover, the 

first effect increases salary inequality while the second effect decreases salary 

inequality. Thus, the net effect depends on both the relative impact of these two 

distinct effects and NBA players’ salary distribution. In reality, since players at the 

lower quantiles benefit much more from Twitter than those at higher quantiles and 

the number of players at lower quantiles is much larger than those at higher 

quantiles, income inequality in the NBA has been reduced due to the proliferation 

of social media.  

Our study also has limitation and provides research opportunity for future 

study. First, the sample in our study is a group of NBA players. Therefore, our 

findings could be generalized to other professional athletes but the stronger 

generalizability to musicians, movies stars, or politicians may need further 

empirical analyses. Furthermore, the monetary value of Twitter followers of small, 

medium, and large companies in different industries may require customized 
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analysis case by case and is clearly beyond the scope of this paper. Second, a 

number of existing studies of Twitters analyze the textual contents of tweets for 

building predictive models. A combination of those text mining studies with our 

econometric analysis could provide more insightful business implications regarding 

enhancing the business value of using microblogging sites.
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APPENDIX 

Table A1. Definitions of the Badges used in the Micro-Level Analysis 

Badge Name Definition / Rule 

Popular 

Question 

Asked a question with 1,000 views 

Notable 

Question 

Asked a question with 2,500 views 

Famous 

Question 

Asked a question with 10,000 views 

Nice Question Question score of 10 or more 

Good 

Question 

Question score of 25 or more 

Great 

Question 

Question score of 100 or more 

Favorite 

Question 

Question favorited by 25 users 

Stellar 

Question 

Question favorited by 100 users 

Nice Answer Answer score of 10 or more 

Good Answer Answer score of 25 or more 

Great Answer Answer score of 100 or more 

Enlightened First to answer and accepted with at least 10 upvotes 

Guru Accepted answer and score of 40 or more 

Necromancer Answered a question more than 60 days later with score of 5 or more 

Populist Highest scoring answer that outscored an accepted answer with score 

of more than 10 by more than 2x 

Reversal Provided answer of +20 score to a question of -5 score 

Revival Answered more than 30 days later as first answer scoring 2 or more 

Commentator Left 10 comments 

Pundit Left 10 comments with score of 5 or more 

Archaeologist Edited 100 posts that were inactive for 6 months 

Excavator Edited first post that was inactive for 6 months 

Strunk & 

White 

Edited 80 posts 

Copy Editor Edited 500 posts 

Proofreader Approved or rejected 100 suggested edits 

Tenacious Zero score accepted answers: more than 5 and 20% of total 

Unsung Hero Zero score accepted answers: more than 10 and 25% of total 

Tumbleweed Asked a question with no votes, no answers, no comments, and low 

views for a week 

 


