
National University of Singapore

Doctoral Thesis

Smartphone-based Decentralized

Public-transport Applications

Submitted by:

Kartik Sankaran

Supervisors:
Associate Professor Chan Mun Choon

Professor Akkihebbal L. Ananda

Department of Computer Science
School of Computing

National University of Singapore

February 2016

National University of Singapore

Doctoral Thesis

Smartphone-based Decentralized

Public-transport Applications

Submitted by:

Kartik Sankaran
(B.Eng., PES Institute of Technology)

Supervisors:
Associate Professor Chan Mun Choon

Professor Akkihebbal L. Ananda

A Thesis submitted for the degree of
Doctor of Philosophy

Department of Computer Science
School of Computing

National University of Singapore

February 2016

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its

entirety. I have duly acknowledged all sources of information which have been used in the

thesis.

This thesis has not been submitted for any degree in any university previously.

—————————–

Kartik Sankaran

February 22nd, 2016

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Chan Mun Choon, for his support and

guidance throughout my graduate study at NUS. I respect him for his energy and commitment to all

his students. During paper deadlines, he often works together with us, many times late into the night.

During the difficult times of my PhD, he has always encouraged me and guided me. My success is all

due to his support. I am happy to get an opportunity to continue my research work under him after

PhD as well.

I would like to thank Prof. Ananda A. L., who was my supervisor during the first four years of

my PhD. He has always supported and encouraged me. He is more than a supervisor to his students,

and has often spent time with us outside university. I look forward to meeting him once he is back in

Singapore this year.

I thank Prof. Li-Shiuan Peh, who was my unofficial supervisor during the final three years of my

PhD. Her suggestions, comments, and reviews during our weekly meetings and during paper deadlines

were invaluable. She is always prompt in giving me feedback on my writing. I thank her for her guidance

and support during my graduate study, and am happy to continue working under her after PhD.

I would like to thank the internal reviewers, Prof. Ben Leong and Prof. Bhojan Anand, and the

external reviewer, Prof. Jakob Eriksson, for their invaluable comments and feedback on my thesis.

Special thanks to Prof. Jakob Eriksson, who took time out from his New Zealand trip to attend my

defense over Skype.

My parents and sister have been pillars of support throughout my PhD, and have always encouraged

and helped me. They made sure that my graduate study went smoothly, and have frequently come all

the way to Singapore to spend time with me during the final two years of my PhD when I was unable

to travel out of Singapore. I thank them for their support.

I would like to thank all my paper co-authors: Pravein GK, Minhui Zhu, Xiang Fa Guo, and Wang

Hui, for all of their valuable contributions to the papers. I would also like to thank Fang Zhao, Ajinkya

Ghorpade, and Zuo Bingran from SMART FM for helping us during our research evaluation. Special

thanks to Jason Gao and his colleagues in MIT who helped me collect data traces in Boston.

I thank all my colleagues in the CIR lab, including Padmanabha Venkatagiri Seshadri, Xiang Fa Guo,

Pravein GK, Girisha Durrel De Silva, Mobashir Mohammad, Nimantha Baranasuriya, Luo Chengwen,

vi

Wang Hui, Hong Hande, Paramasiven Appavoo, Chaodong Zheng, Sudipta Saha, as well as past-CIR lab

members Mostafa Rezazad, Prashanth Raghu, Shao Tao, Manjunath Doddavenkatappa, Fai Cheong, and

Hwee Xian Tan. Although we work independently on different problems, we frequently have productive

discussions, both technical as well as philosophical. Everyone in the CIR lab is helpful to one another,

making our lab a nice place to do research work. Special thanks to Dr. Padmanabha, who reviewed my

thesis and gave me helpful comments and suggestions. He also constantly encourages everyone in the

lab.

I thank all my friends, in particular Anusha Kopparam, Madhuri M S, Sampreet Sharma, Roshni

MD, and Priya D, for their support during my long PhD study. They find time to Skype and chat in

spite of living in different cities and time zones in the world. I treasure the letters and hand-made cards

they posted to me over the last few years.

I would like to thank the National University of Singapore and the Singapore government for giving

me the opportunity to pursue a PhD degree, and for granting me a scholarship for study. Finally, I

would like to thank all other people who helped me directly or indirectly during my PhD.

Contents

Summary xi

List of Publications xiii

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Transportation: a country’s lifeline . 1

1.2 Tackling congestion using public-transport . 2

1.3 Smartphones for public-transport apps . 3

1.4 Challenges and limitations of existing apps . 3

1.4.1 Detecting the travel context . 4

1.4.2 Bus route and bus-stop detection . 5

1.4.3 Deploying specialized applications . 6

1.5 Thesis contributions . 7

1.6 System architecture . 11

1.7 Thesis structure . 12

2 Related work 15

2.1 Features of public-transport apps . 15

2.1.1 Directions . 15

2.1.2 Estimated Time of Arrival (ETA) . 16

2.1.3 Next bus . 16

2.1.4 Activity diaries . 16

2.1.5 Other services . 17

2.2 Context detection using smartphones . 17

2.2.1 GPS . 18

2.2.2 Cellular and WiFi . 18

2.2.3 Accelerometer . 19

2.2.4 Audio . 20

2.2.5 Light . 20

2.2.6 Magnetic . 20

2.2.7 Barometer . 20

2.3 Bus route and bus-stop detection . 21

2.3.1 Traditional GPS-based approaches . 21

2.3.2 Approaches using cell ID . 23

2.3.3 Approaches using low-power sensors . 23

viii CONTENTS

2.3.4 Subway-specific approaches . 24

2.4 Web-based applications using DTN . 25

2.4.1 HTTP-over-DTN browsing . 26

2.4.2 Web-based DTN apps . 26

2.4.3 PhoneGap . 26

2.4.4 QR codes . 27

2.4.5 Upcoming HTML5 APIs . 27

2.4.6 DTN middleware for smartphones . 27

2.4.7 Service-adaptation middleware . 28

2.4.8 Dynamix . 28

3 Barometer-based transportation context detection 31

3.1 Introduction . 31

3.2 Motivation . 34

3.3 Background . 36

3.4 Methodology . 39

3.4.1 Activity definitions . 40

3.4.2 Intuition behind barometer context detection . 40

3.4.3 Overview of the context detection algorithm . 42

3.4.4 Pre-processing . 42

3.4.5 Vehicle detection . 44

3.4.6 Walk and Idle detection . 45

3.4.7 High-level stitching . 46

3.4.8 Choice of thresholds and window sizes . 46

3.5 Evaluation . 47

3.5.1 Accuracy . 49

3.5.2 Simulation using map elevation data . 59

3.5.3 Latency . 60

3.5.4 Power usage . 61

3.5.5 Fusion of barometer and accelerometer . 63

3.6 Discussion . 64

3.6.1 Sensor batching . 64

3.6.2 Combining temperature with pressure . 65

3.6.3 Integration with the FMS app . 65

3.7 Conclusion . 66

4 Barometer-based vehicle context detection 67

4.1 Introduction . 67

4.2 System overview and motivation . 70

4.2.1 System overview . 70

4.2.2 Motivation for using the Barometer . 75

4.2.3 Motivation for user collaboration . 78

4.3 System implementation . 79

4.3.1 Background . 79

4.3.2 Overview of steps involved . 83

4.3.3 Assumptions . 83

4.3.4 Data smoothing . 84

4.3.5 Journey clustering (at home) . 85

CONTENTS ix

4.3.6 Route recognition and bus-stop detection (real-time) 86

4.3.7 Collaboration (real-time) . 88

4.3.8 Bus-stop discovery (at home) . 89

4.4 Evaluation . 90

4.4.1 Real-world data . 91

4.4.2 Simulation . 96

4.5 Phone implementation . 99

4.5.1 Execution time . 99

4.5.2 Power consumption . 100

4.6 Discussion . 102

4.7 Conclusion . 103

5 On-the-go application deployment 105

5.1 Introduction . 105

5.2 Design and implementation . 109

5.2.1 Web app support . 110

5.3 Adding context-awareness . 111

5.3.1 Motivation for context-awareness . 111

5.3.2 Integrating context into the framework . 112

5.4 Sample DTN web application . 113

5.4.1 Use of context-awareness . 115

5.5 Evaluation . 116

5.5.1 Server versus device-to-device . 116

5.5.2 Deployment latency . 118

5.5.3 Performance overhead . 118

5.5.4 Memory overhead . 120

5.5.5 Evaluation of context-awareness . 121

5.6 Discussion . 125

5.7 Conclusion . 125

6 Conclusion and future work 127

6.1 Contributions . 127

6.2 Future work . 130

Bibliography 133

Summary

Transportation is the lifeline of a country. Population growth has put a strain on road networks, causing

delays due to congestion, particularly in cities of developing countries. Use of public-transport such

as buses and trains is critical to reduce road congestion and improve overall efficiency of the transport

system. Smartphone-based applications that provide users with information about transit routes, transit

stops, and estimates of travel time during public-transport journeys are the key to make users choose

public-transport over the convenience of a car. Existing smartphone-based applications make strong

assumptions about the availability of cellular data connectivity and route maps, and fail to work in

developing countries where these are often unavailable. These applications also typically track user

location, causing concerns about privacy and battery consumption, leading users even in developed

countries to turn off these applications.

In this thesis, we propose novel techniques for building public-transport applications on smartphones

that are decentralized, and do not require cellular data or information from route maps. We use a

new sensor modality - the barometer - together with local collaboration between users in the same

bus to tackle the key challenges of context detection, route and transit-stop detection, and on-the-go

deployment of applications. Our system makes very few assumptions about infrastructure, enabling it

to work even in developing countries where other approaches fail. Since our system uses the barometer

instead of location sensors, it reduces concerns about location privacy and reduces power consumption,

encouraging even users in developed countries to use such applications. The use of the barometer also

makes the system largely independent of user hand movement and phone placement, removing the need

for training typically required by other systems.

This thesis work is the first in the literature to propose and implement novel uses of the barometer

sensor for public-transport applications, and to demonstrate that smartphone-based public-transport

applications can work even with limited infrastructure. It paves the way for future research work in

building decentralized and location-‘less’ smartphone applications.

List of Publications

1. Kartik Sankaran, Akkihebbal L. Ananda, Mun Choon Chan, and Li-Shiuan Peh. Dynamic Frame-

work for Building Highly-Localized Mobile Web DTN Applications. In Proceedings of the 9th ACM

MobiCom workshop on Challenged networks, CHANTS Sept 2014.

2. Kartik Sankaran, Minhui Zhu, Xiang Fa Guo, Akkihebbal L. Ananda, Mun Choon Chan, and

Li-Shiuan Peh. Using Mobile Phone Barometer for Low-Power Transportation Context Detection.

In Proceedings of the 12th ACM Conference on Embedded Networked Sensor Systems, SenSys Nov

2014.

3. Kartik Sankaran, Akkihebbal L. Ananda, Mun Choon Chan, and Li-Shiuan Peh. Dynamic Frame-

work for building highly-localized mobile web DTN applications. Computer Communications,

Volume 73, Part A, Jan 2016.

List of Figures

1.1 Manual user input of bus number and route . 4

1.2 LTA Application with all services bundled into one application. 7

1.3 Barometer as a power-efficient location sensor alternative 8

1.4 Overview of system architecture. 13

2.1 ETA and Bus-stop countdown features . 17

3.1 MEMS piezoresistive barometer . 37

3.2 Height variations for different user states . 41

3.3 Algorithm overview for barometer-based context detection 42

3.4 Smoothing barometer data . 43

3.5 Barometer context detection on a rainy day . 54

3.6 Barometer context detection on a windy day . 54

3.7 Google context detection while waiting for a bus . 56

3.8 Google’s context detection on a subway . 57

3.9 Barometer context detection on a subway . 58

3.10 Power profile of Google and barometer algorithms . 62

3.11 Variation of temperature and pressure outdoors when IDLE 66

4.1 Overview of system operation using an illustrative example 71

4.2 Barometer signals for same journey on different days . 76

4.3 Barometer as a power-efficient location sensor alternative 77

4.4 Number of users on the same bus with different journeys 79

4.5 DTW matching . 80

4.6 Warp path in DTW matrix . 81

4.7 Algorithm overview for bus route and bus-stop detection 84

4.8 Open-ended DTW . 86

4.9 Subset and Overlap DTW matching . 89

4.10 Trade-off between latency and detection accuracy. 93

4.11 CDF of errors for subset matching. 94

4.12 CDF of errors for overlap matching. 96

4.13 ETA error for collaborative and server approaches . 97

4.14 Effect of app penetration rate on ETA . 97

4.15 Execution Time for Clustering, Incremental clustering and Journey detection. 100

4.16 Power profiles for Clustering, Journey detection, GPS, and 4G upload. 101

5.1 Design of the framework . 110

5.2 Bus Stop Web App . 114

5.3 Power of server (LTE) v/s device-to-device (WiFi) . 118

xvi LIST OF FIGURES

5.4 Overhead during file transfer . 120

5.5 CDF of number of users on a bus with protocols still running 124

List of Tables

1.1 Challenges tackled in this thesis . 8

1.2 Placement of this thesis work w.r.t. related work . 11

2.1 Smartphone sensors used for context detection and their limitations 21

2.2 Smartphone sensors used for route and transit-stop detection 25

2.3 Existing DTN Frameworks . 28

3.1 Limitations of existing sensors for low-power activity detection 34

3.2 Summary of barometer chips on popular phones . 39

3.3 Summary of collected sensor trace data . 48

3.4 Barometer algorithm versus Google (accelerometer) and FMS (GPS+accelerometer) algo-

rithms in Singapore . 50

3.5 Barometer algorithm versus Google (accelerometer) algorithm in China 50

3.6 Confusion matrix for the barometer-based algorithm . 52

3.7 Confusion matrix for Google’s algorithm . 52

3.8 Confusion matrix for FMS algorithm . 52

3.9 Barometer algorithm accuracy for different locations . 53

3.10 Simulation results for context detection accuracy . 58

3.11 Different terrain characteristics . 59

3.12 Latency of the barometer and Google’s algorithms . 60

3.13 Power usage . 63

3.14 Fusing barometer and Google algorithms . 64

4.1 Summary of collected journey traces . 91

4.2 Confusion matrix for Journey Clustering . 92

4.3 Power measurements . 102

4.4 Power consumption on a bus . 102

5.1 Examples of Social-Proximity Applications on Android . 105

5.2 Students’ applications using the framework . 115

5.3 Power measurements . 117

5.4 Breakdown of framework performance overhead . 119

5.5 Memory Overhead . 120

5.6 Power saved by using context awareness in the framework 123

Chapter 1

Introduction

1.1 Transportation: a country’s lifeline

Transportation is regarded as the lifeline of a country. It allows goods and people of the

working class to move across different parts of the city quickly and efficiently. This has

great impact on the economic growth of the country as a whole, and any disruptions or

delays in the transportation system are considered major issues.

The growing population and increasing demand for goods has put a strain on existing

transportation systems, particularly on road networks. This is caused by an increased

number of vehicles travelling on roads [1]. For example, in the USA, a population growth

of 20% over 20 years caused traffic to jump by 236% [2]. There are over 1 billion cars in

the world today, which is expected to double by 2020 [2].

The increasing number of vehicles on roads causes delays due to congestion, especially

at peak hours in the morning and evening when travel is more common. For example, in

certain areas of Hong Kong, the increasing traffic during morning peak hour has reduced

overall journey speed to even lower than 10 kmph, which is not much faster than the

average walking speed of 5 kmph [3]. Congestion is even more common in developing

countries where the road infrastructure has not kept up with the growing population.

2 Introduction

1.2 Tackling congestion using public-transport

Tackling congestion on roads is challenging. Detecting and identifying congestion hotspots

itself is difficult, since it requires significant economic expenditure in traffic monitoring

systems to measure vehicle flow and speed.

Alleviating congestion hotspots is hard due to limited availability of land for expan-

sion of road networks. Methods such as electronic road pricing in Singapore reduce the

number of vehicles during peak hours, but are not sufficient.

A key approach to reducing congestion is providing reliable, efficient, and cheap

public-transport as an alternative for travel. Public-transport vehicles include buses,

trains, trams, and subways, which act as shared passenger transport services.

Public-transport increases the overall efficiency of the transportation system by mov-

ing a larger number of people across the city using a smaller number of vehicles. Using

public-transport effectively decreases the number of cars on roads, reducing the strain

on congestion hotspots.

The major problem faced when tackling congestion using public-transport is encour-

aging people to choose public-transport over the convenience of a car. Not only should

the public-transport system be improved, but people need to be incentivized to shift

from using cars to using public-transport. However, more is needed than just economic

incentives.

A survey of commuters in Boston and San Francisco reveals that people are willing

to ride a bus or train as long as they have the proper tools to plan and manage their

commute [4]. This includes information about transit stops, delays, and time of travel

along routes. By putting such information in the hands of the people, they are better

informed and in control of their choices rather than left wondering whether they will reach

their destination on time. This has led transport agencies to provide useful information

about the public-transport system online, and increasingly, using smartphone apps.

1.3 Smartphones for public-transport apps 3

1.3 Smartphones for public-transport apps

The sales of smartphones has surpassed the sales of feature phones [5]. With increasing

penetration rate and computational power, smartphones have become a new means for

providing useful information about public-transport to commuters.

Traditionally, transport agencies supplied information about the public-transport

system after processing real-time traffic data from pre-installed infrastructure, such as

road induction loops, speed sensors, and GPS devices installed on buses. However many

cities, especially in developing countries, lack widespread monitoring infrastructure, and

it is prohibitively expensive to install these systems.

Smartphones have opened up a new and cost-effective alternative to these systems

by crowd-sourcing vehicle location data from users’ smartphones. Utilizing the location

sensor available on smartphones, these applications track users travelling on buses and

trains, crowd-sourcing location data to a central server, which then processes this data

to track the real-time location of public-transport vehicles, and estimate travel time.

1.4 Challenges and limitations of existing apps

Public-transport applications based on smartphones are a cost-effective alternative to

pre-installed infrastructure. However, in order to provide useful functionality, they need

to tackle the following major challenges: detecting user context, detecting the bus route,

detecting bus-stops, and deployment of specialized application services. We discuss

existing solutions to these challenges below, as well as limitations of existing solutions.

Note that in this thesis, although we use the term ‘bus’, our work is applicable to

other public-transport vehicles such as trains, and our evaluation involves traces from

both buses and trains. For ease of exposition, we use the term ‘bus’ instead of the more

general term ‘public-transport vehicle’, unless specified otherwise.

4 Introduction

1.4.1 Detecting the travel context

Before displaying the Estimated Time of Arrival (ETA) to the user, public-transport

applications first need to automatically detect when the user is travelling. Applications

from LTA [6] and Moovit [7] place the burden on users by requiring them to manually

press a button once they have boarded the bus, as shown in Figure 1.1a. Other ap-

plications utilize the low-power sensors on the phone to automatically detect the user’s

context. For example, Google Now [8] depends on Google’s Activity Recognition [9] that

uses the accelerometer to detect if the user is idle, walking, or in a vehicle, in order to

trigger the location sensor.

(a) Starting a bus trip (b) Specifying the bus service

Figure 1.1: Public-transport application by Moovit that requires users to manually
indicate when they are on the bus, and which bus service they are travelling on.

The accelerometer is the predominant sensor used for context detection due to its low

power consumption, and because it does not have coverage issues faced by GPS and WiFi.

However, accelerometer-based approaches suffer from problems caused by arbitrary hand

movements while the user is waiting at a bus-stop, resulting in false vehicle detections.

1.4 Challenges and limitations of existing apps 5

They are also often unable to detect vehicles with smooth movement, such as in the

SMRT trains in Singapore, where there are very few vibrations, and the accelerometer

incorrectly detects user context as idle. For example, in our experiments, we found that

Google’s Activity Recognition algorithm has a low idle detection accuracy of 25% while

the user is waiting for a bus, and only 15% vehicle detection accuracy on the circle line

metro in Singapore. While the accelerometer typically has high accuracy for walking

detection, good idle and vehicle detection still remains challenging.

1.4.2 Bus route and bus-stop detection

After the application has detected that the user is in a bus, it then needs to automatically

identify the bus route and subsequently detect when the bus has reached a bus-stop in

that route. For bus route identification, applications from Moovit and LTA ask the user

to manually input the bus service number they are travelling in, as shown in Figure 1.1b.

Google Now, on the other hand, tracks the user via the location sensor to automatically

guess the route, based on past recurring journeys recorded in the user’s travel history

stored at the Google server.

For bus-stop detection, applications use publicly available bus route maps, which

include bus-stop locations. By tracking the real-time location of the travelling user,

applications can detect when the bus has reached a bus-stop in its route.

Throughout the bus journey, travel times between bus-stops are uploaded via cellular

network to a central server, where they are stored as part of a historical travel time

database of all users. The server uses this database to give estimates of arrival time to

the destination stop.

The above techniques based on user location tracking have several drawbacks. First,

the location sensor, especially GPS, is power-hungry and drains smartphone battery

quickly. Second, recording user location history on a server, or even locally on the phone,

causes location privacy concerns, as this data carries risk of unauthorized access. Users

6 Introduction

often turn off such tracking applications to save battery and have better privacy. Third,

locations sensors have coverage issues, often inaccurate or unavailable in subways and

in urban canyons. Fourth, existing solutions fail to work in developing countries, where

cellular data and even route maps may be unavailable (e.g. Dhaka in Bangladesh, Manila

in Philippines, and Mexico City1). This provides motivation for research work in public-

transport applications that can address these limitations and that can be applicable even

to cities in developing countries.

1.4.3 Deploying specialized applications

Another challenge faced by public-transport applications is deployment of specialized

applications, such as providing information about bus wheelchair access, availability

of nearby cycle rental pitstops, and on-the-spot traveller satisfaction surveys. Often,

these applications are developed separately, and deployed as multiple apps on the app

store. This becomes problematic for users, who need to install and update multiple (but

related) applications on their smartphone.

One way to tackle this problem is to create a unified application. For example, the

Land and Transport Authority of Singapore released a mobile application that contains

all these services [6], handling everything from cycling to bus arrival times, as shown in

Figure 1.2.

However, as applications become more automatic and intelligent, running all these

services in the background is unnecessary, considering that users are often only interested

in a few of these services, and use these on-the-go for short periods of time. Updating,

adding, and removing new services is difficult as well. For example, transport authorities

who conduct on-the-spot satisfaction surveys would need to modify the already bulky

app, make users update the app, and ask users to rate their happiness during the few

minutes they are at the bus-stop or bus. After the survey is finished, uninstalling the

1http://www.wired.com/2015/08/nairobi-got-ad-hoc-bus-system-google-maps/

1.5 Thesis contributions 7

(a) (b) (c)

Figure 1.2: LTA Application with all services bundled into one application.

service is equally cumbersome. These problems highlight the need for an easier and

better way to deploy these specialized applications.

Table 1.1 summarizes the three challenges faced by smartphone-based public-transport

applications, existing solutions to these challenges, and their limitations. In the next

section, we discuss how these limitations are addressed.

1.5 Thesis contributions

In this thesis, we propose novel techniques to address the challenges and limitations

highlighted in Table 1.1. To do this, we use a new modality - the barometer sensor2

- that provides a tradeoff between pure phone motion sensors and absolute location

sensors. The barometer measures surrounding air pressure, which can be translated into

height above sea level (altitude) in metres. It can be used to measure characteristic

2available on Nexus 3/4/5/6, Galaxy S3/4/5/6, iPhone 6, and many more

8 Introduction

Table 1.1: Challenges faced by smartphone-based public-transport applications, exist-
ing solutions, and their limitations.

Existing Solutions Limitations Advantage of our work

Challenge 1: Travel context detection

Manual user input [6, 7] Burden on user Automatic context detection
GPS/WiFi-based [10, 11, 12, 13] Coverage issues 100% coverage
Accelerometer-based [9, 14, 15] Confusion cases caused by hand movement Unaffected

Challenge 2: Bus route and bus-stop detection

Based on location tracking [16, 17, 18] High-power consumption Low-power
No location privacy Privacy respected
Coverage issues 100% coverage
Reliance on route maps Route maps not required
Requires cellular data connectivity Uses phone-to-phone comms

Challenge 3: Deploying on-the-go apps

Using multiple/unified app [6] Cumbersome to install/uninstall/update apps Easy to add/remove/update apps

Figure 1.3: Barometer, which provides height variations, can act as a power-efficient
alternative to absolute location.

terrain variations along roads when the user travels to the destination, and act as a

power-efficient alternative to absolute location, while respecting location privacy. This

is illustrated in Figure 1.3, which shows how height variation measured by the barometer

can be used to get an idea how ‘far’ the user is from the destination, even without actual

absolute location.

The barometer is unaffected by hand movement, allowing the user to place and

1.5 Thesis contributions 9

use the phone in any way without affecting the sensor’s output. The measured height

variations during travel are stable since the terrain of the land does not change often.

Due to these reasons, the barometer is a suitable modality to use for location-‘less’

operation of public-transport applications.

To overcome the absence of a central server or cellular data connectivity (such as in

developing countries), we exploit local data available from users travelling in the same

bus to provide key application functionality such as bus-stop detection and ETA, that

works without prior-access to route maps.

Finally, we have written a framework that uses phone-to-phone communication for

easy and flexible on-the-go localized deployment of applications written in Javascript,

that can run in the browser with support of the framework for communication and

context detection.

Use of the barometer sensor, use of local data collaboration between users in the

same bus, and use of a framework for on-the-go deployment, form the basis of our thesis

work. Table 1.1 lists the advantages of our system against the limitations of existing

work.

Table 1.2 shows the placement of our thesis work w.r.t. related work and key public-

transport application features. Compared to related work, our system makes only few

assumptions on infrastructure and route map availability, and is hence applicable even

to developing countries where other approaches fail to work. In this thesis, we focus on

bus-stop countdown and ETA application features, while next bus feature is subject of

future work.

To summarize, the contributions of this thesis are as follows:

1. Barometer-based transportation context detection: We propose and im-

plement the first research work in literature that uses only the barometer for low-

power transportation context detection of the states idle, walking, and vehicle.

Unlike existing approaches that have high user dependence and require extensive

10 Introduction

training, our barometer-based approach is inherently independent of the user. It

has similar detection accuracy while consuming lower power. In the situations

where the user is waiting for a bus, and while travelling on smooth vehicles, exist-

ing accelerometer-based techniques have less than 25% detection accuracy, while

our approach has almost 100% accuracy.

2. Barometer-based vehicle context detection: We propose novel techniques

for using only the barometer and local collaboration of users in the same bus

for bus route and bus-stop detection. Our approach makes only few assumptions

on infrastructure and availability of route maps, enabling it to work in even in

developing countries where other approaches fail, since it is decentralized and does

not require an Internet connection. In developed countries, it provides better

location privacy and reduces the smartphone’s power consumption.

3. On-the-go deployment of applications: We propose and implement a dy-

namic framework on Android for deploying on-the-go applications written in Javascript

to users in proximity of places of interest, such as near public-transport stops. Users

are notified of received apps, and can run them in the browser with support of the

framework for communication without the Internet. After usage, the application is

stopped by closing the browser tab, or automatically when users leave the place of

interest. Our deployment framework removes the need for users to install multiple

applications beforehand on their phone, and allows users to choose ‘specialized’

applications tailored to their needs. To illustrate this, we have implemented a

simple on-the-go application to help the physically challenged (wheelchair) people

board the bus.

We have evaluated our contributions using more than 60 hours of real-world barome-

ter transportation traces from 3 countries and 15 volunteers during their daily commute,

as well as using over 900 km of elevation data of 5 cities from Google Maps, and using

1.6 System architecture 11

Table 1.2: Placement of this thesis work w.r.t. related work and key public-transport
application features.

System type Bus-stop countdown and ETA feature Next Bus feature

Location and server-based CoopTracking [17], Google Now [8],
using route maps LTA App [6], Moovit App [7]

Location-‘less’ and server-based CellID [19, 20], CTrack [21] Cell ID [20]
using route maps

Location-‘less’ and server-‘less’ This Thesis Work Future Work
without route maps

trace-based simulation of 4 bus routes involving more than 1500 users over 100 days.

1.6 System architecture

Figure 1.4 gives an overview of the architecture of our system. We envision the system

as a decentralized set of mobile nodes, where each node is a smartphone carried by a

user, capable of sensing, computation, storage, and communication with nearby phones.

Users can either install applications beforehand from the app store, or receive appli-

cations on-the-go and open them in the browser. Some applications may have special

purposes and target only a subset of users, such as a wheelchair person who would like

to check for wheelchair access and inform the bus driver for boarding.

Figure 1.4 shows the components running on each user’s phone. At the highest layer

are the end-user applications, either native apps from the app store, or Javascript apps

deployed on-the-go and running in the browser. At the lowest layer are the components

in the mobile operating system providing access to the barometer sensor and phone-to-

phone communication.

Our thesis contributions are at the middle layer between the applications and the

operating system. They consist of the following sub-systems:

1. Transportation (travel) context detection: This sub-system runs the con-

text detection algorithm for the states idle, walking, and vehicle using the barom-

eter, corresponding to our first thesis contribution.

12 Introduction

2. Vehicle context detection: This sub-system runs the bus route and bus-stop

detection using the barometer and phone-to-phone communication, corresponding

to our second thesis contribution.

3. Deployment framework: This is the framework for on-the-go deployment

of applications to users in the public-transport system, running Delay-Tolerant

Network (DTN) protocols for communication, corresponding to our third thesis

contribution.

The three sub-systems above are not independent, but are coupled with one another.

The vehicle context detection (bus route and bus-stop detection) is turned on when

the user is in a vehicle, to extract barometer data during the journey. The framework

depends on the idle context detection to turn off power-consuming deployment protocols

when the user is at home or work, and listen for on-the-go applications only when

travelling.

Applications in turn use the APIs provided by the three sub-systems to perform

end-user functionality, such as providing a bus-stop countdown, destination alarms, and

estimating the arrival time to the destination.

We have implemented all components of our system on Android for power and ex-

ecution time measurements. Additionally, we have provided the context detection and

deployment framework APIs to students of the CS4222 Wireless and Sensor Network

course in NUS for use in their course projects. A list of applications developed by

students that uses these APIs is available online3.

1.7 Thesis structure

The remainder of the thesis is organized as follows: Chapter 2 discusses related work,

as well as their limitations, providing the motivation for our thesis. Chapter 3 describes

3http://www.comp.nus.edu.sg/~kartiks/nusdtn/cs4222/project.html

http://www.comp.nus.edu.sg/~kartiks/nusdtn/cs4222/project.html

1.7 Thesis structure 13

Figure 1.4: Overview of system architecture.

our barometer-based system for low-power transportation context detection. Chapter 4

describes our techniques for bus route and bus-stop detection using the barometer and

phone-to-phone communication. Chapter 5 describes the design and evaluation of the

dynamic framework for deploying localized transport apps. Chapter 6 concludes this

thesis and discusses future work.

Chapter 2

Related work

In this chapter, we discuss existing work in the literature related to the three challenges

tackled in this thesis: context detection, bus route and bus-stop detection, and deploy-

ment of on-the-go applications. At the same time, we also discuss their limitations.

First, we describe the features provided by typical public-transport applications in

Section 2.1. Then, we discuss related works that use smartphone sensors for context

detection in Section 2.2. Section 2.3 describes related work in bus route and bus-stop

detection. Section 2.4 discusses previous work in web-based applications that use DTN.

2.1 Features of public-transport apps

Smartphone-based public-transport applications provide various features to assist users

both before and during their commute. These features can be broadly divided into five

categories described below.

2.1.1 Directions

This feature allows users to ask for directions to a particular destination. The suggested

route may be static, i.e. based on static bus route maps and timetable schedules, or may

16 Related work

be dynamic, taking into consideration current traffic conditions. This feature is mainly

only used before travelling to a new destination.

2.1.2 Estimated Time of Arrival (ETA)

Once the user has boarded the bus, one of the key features of public-transport appli-

cations is to provide an estimated time of arrival (ETA), together with a countdown

of bus-stops remaining before reaching the destination. They additionally pop-up no-

tifications (or vibrate the phone) to remind users when they have nearly reached their

destination.

Figure 2.1 shows examples of three popular public-transport applications from Sin-

gapore’s Land and Transport Authority (LTA) [6], Moovit [7], and Google Now [8],

displaying a bus-stop countdown and ETA while users are on the bus. This feature is

extremely useful to users travelling on a bus service for the first time, to users having

long and tiring bus journeys during their daily commute, and to users who are visually

challenged.

2.1.3 Next bus

Another important feature is checking the arrival time of buses while waiting at the

bus-stop. This is an extension of the previous feature, in which ETA information is

additionally provided to users at bus-stops.

2.1.4 Activity diaries

Another useful feature provided by public-transport applications is automatic activity

diaries that record the travel history of the user. Not only are these diaries useful to

users, but they are also useful to transport authorities to easily conduct travel surveys to

understand user travel patterns and better improve the public-transport system. Moves

2.2 Context detection using smartphones 17

(a) LTA App (b) Moovit App (c) Google Now

Figure 2.1: Public-transport applications by LTA, Moovit, and Google Now, providing
bus-stop countdown, estimated remaining travel time, and notifications to users before
reaching the final stop.

[22] and Future Mobility Survey [23, 24] are examples of applications that provide activity

diaries and conduct travel surveys.

2.1.5 Other services

Public-transport applications may also provide additional specialized applications to

users, such as access to road traffic cameras, information about bus wheelchair access,

wheelchair navigability maps, availability of nearby cycle rental pitstops, and on-the-spot

traveller satisfaction surveys.

2.2 Context detection using smartphones

Research has been done in context detection using sensors for several years, differing in

the type of user activities detected, sensors used, and classification techniques. An exten-

18 Related work

sive survey is presented in [25]. The accelerometer is the predominant sensor used, with

28 out of 36 papers listed using it. Other commonly used sensors include GPS, Cellular,

WiFi, and other sensors. In the following, we focus on prior work using these sensors,

describing their limitations, while Section 3.2 discusses how the barometer overcomes

these limitations.

2.2.1 GPS

GPS is an extremely useful sensor for activity detection, since it provides the physical

location of the user. A series of GPS readings can be analysed to calculate speed and

bearing, typically used in combination with the accelerometer features to achieve higher

classification accuracy. Reddy et al. [11] and Ryder et al. [12] use GPS in conjunction

with the accelerometer to detect the modes idle/walking/running/bike/vehicle, and ob-

serve that GPS contributes to an increase in accuracy of about 10%. The Future Urban

Mobility Survey (FMS) application [23, 24] uses GPS and the accelerometer to detect

the modes walking/car/bus/MRT/bike, observing an increase of 27% in accuracy over

just using the accelerometer sampled at 10 Hz. In contrast, Zheng et al. [10] uses solely

GPS data to detect the modes walking/driving/bus/bike, by extracting additional fea-

tures such as heading change rate, stop rate, and velocity change rate. The trade-off in

GPS accuracy is its high power usage and low coverage indoors, underground, and in

urban canyons [26]. To reduce power usage, GPS is turned on adaptively rather than

periodically, using the accelerometer and/or cell tower change as a trigger. However, the

power usage remains high outdoors, where charging sockets are typically unavailable.

2.2.2 Cellular and WiFi

Movement can also be detected from changes in the cellular and WiFi signals. Anderson

and Muller [27] use the fluctuation in cellular signal strength to figure out if the user

is stationary/walking/driving, as does Sohn et al. [28]. Using signal strength is chal-

2.2 Context detection using smartphones 19

lenging, since it can change unpredictably even when the user is stationary. Nawaz et

al. [13] use a more robust WiFi beacon reception ratio as opposed to signal strength,

to detect if a user has parked or is driving a car. An algorithm called BeaconPrint

[29] uses the cellular/WiFi beacon IDs to detect movement, without requiring any sig-

nal strength information. Since WiFi has shorter range and the network deployment is

denser, change in signal is observed faster than change in cellular signal. However, WiFi-

based techniques work only in urban areas with dense WiFi access points. Cellular has

better coverage, but the cell size can vary significantly, making cellular-based detection

difficult to generalize.

2.2.3 Accelerometer

The lowest-power and most predominant sensor used for context detection is the ac-

celerometer. Features extracted from the accelerometer data are used as input for a su-

pervised machine learning algorithm, which classifies the user activities [30, 31, 32, 33].

Due to classifier complexity, majority of prior work perform the classification offline

[14] instead of in real-time. Reddy et al. [11] implement their classifier on Nokia N95

phones, while performing the training offline, as does [34]. To avoid orientation prob-

lems, orientation-independent features (such as combined magnitude) can be used [14].

However, extensive training is still required to account for user and phone position

dependence. Unlike Cellular and WiFi, the accelerometer is capable of fine-grained clas-

sification of vehicular modes. Hemminki et al. [15] implement a three-stage classifier

on Android to detect travelling on bus/train/metro/tram/car, at a power consumption

of 85 mW (excluding base-power consumption). Our barometer-based approach can be

used as a low-power trigger for higher-power finer-grained vehicular classification.

20 Related work

2.2.4 Audio

The audio sensor (microphone) has been used for varied purposes in the literature, such

as crowd counting [35] and analysing human conversation networks [36]. Pravein et al.

[35] use the high frequency audio tones emitted by the smartphone’s speakers to estimate

the number of people in a particular area. Chengwen et al. [36] use the microphone to

non-intrusively analyze human conversation networks. Audio, while extremely useful, is

affected by ambient noise, such as in a bus or in crowded areas.

2.2.5 Light

The light sensor has been mainly used for indoor/outdoor detection. Zhou et al. [37] use

the light sensor together with the magnetic and cell ID sensors to detect when the user

is indoors or outdoors. However, the limitation of the light sensor is that it is affected

by variable lighting conditions, such as cloud cover and presence of windows.

2.2.6 Magnetic

The magnetic sensor is often used in conjunction with other inertial sensors to re-orient

the sensor readings in terms of the earth’s magnetic axis. It has been used together with

the accelerometer in dead reckoning [38, 39], and has also been used for indoor/outdoor

detection together with the light and cell ID [37]. Like the audio and light sensors, the

magnetic sensor is susceptible to interferences from the environment. Electrical devices

in the surroundings have a sharp effect on the magnetic sensor’s output.

2.2.7 Barometer

The barometer has been used for aiding GPS [40], which was the initial reason for its

introduction into Android smartphones. Tanigawa et al. [41] uses the barometer as

an aid in removing the accelerometer drift. Due to its excellent relative accuracy, the

barometer has been used for floor-change detection [42, 43]. Stairs and elevator can be

2.3 Bus route and bus-stop detection 21

Table 2.1: Smartphone sensors used for context detection and their limitations

Sensor Limitation

GPS [11, 12, 23, 24, 10] High Power and incomplete coverage

Cellular/WiFi [27, 28, 13, 29] Variable cell sizes and low WiFi coverage

Accelerometer [14, 11, 34, 15, 30, 31, 32, 33] Position dependence and extensive training

Light [37] Affected by cloud cover and presence of windows

Audio [35, 36] Affected by ambient noise

Magnetic [37, 38, 39] Affected by magnetic interference from electrical devices

easily distinguished using vertical speed thresholds. [42] uses a sampling rate of 1 Hz,

similar to our work. A higher sampling rate of 15 and 25 Hz can be used to reduce noise

[43]. However, since newer barometer chips support internal hardware smoothing, such

a high sampling rate is no longer required. So far, the barometer has been used only as

an aid to other sensors. To the best of our knowledge, no prior work has used only the

barometer for detection of the modes idle/walking/vehicle.

Table 2.1 summarizes the different sensors that have been used for context detection,

as well as their limitations. These limitations are not faced by the barometer sensor,

since it is unaffected by external factors except air pressure.

2.3 Bus route and bus-stop detection

We classify the related work for bus route and bus-stop detection into three categories:

those that use GPS, those that use the cell ID, and those that use other low-power

sensors. In this section, we give an overview of work done in each category, while

highlighting their limitations.

2.3.1 Traditional GPS-based approaches

Majority of papers in the literature use GPS data [16, 17, 18, 44, 45, 46]. While the pa-

pers discussed here have differing (but traffic-related) goals, their methodologies involve

techniques for detecting routes and transit-stops.

22 Related work

Co-operative transit tracking [17] uses crowd-sourced GPS data from smartphone

users to predict the arrival time of buses. They use prior-available route maps to identify

which bus route the user is travelling in. They also use the accelerometer to detect train

stops (and hence stations) in the underground subway where GPS is unavailable.

However, GPS is power-hungry, and uploading location data causes concerns about

location privacy. Without route maps, identifying bus-stops is challenging. While the

accelerometer can be used in vehicles where vehicle stops usually map to stations (such

as in subways), this is challenging in buses, where stops may be due to traffic lights or

congestion. GPS additionally has low coverage in urban canyons, a problem not faced

by the barometer, which can be used even underground.

EasyTracker [16], unlike [17], does not require route maps, but instead uses unlabelled

GPS data from buses to construct the map automatically, and identifies bus-stops by

spotting ‘stop-locations’ in the data. The generated map and bus-stops are then used

for arrival-time prediction. Similar to our work, the prediction does not require the

real-world bus route IDs and bus-stop IDs.

Since [16] identifies ‘stop-locations’, traffic signals and stop signs may be falsely

indicated as bus-stops. In contrast, our approach detects bus-stops by matching the

barometer signal data between users in the same bus, and identifies only those points

where users get on/off the bus.

VTrack [18] tackles the problems of high-power consumption and low-coverage in

GPS by combining it with the alternate lower-power but noisier WiFi to estimate a

user’s trajectory. They use the detected trajectory and fused locations to discover road

segments with congestion, and suggest alternative routes with shorter travel times. While

their approach works well in identifying routes, transit-stop detection is not tackled.

2.3 Bus route and bus-stop detection 23

2.3.2 Approaches using cell ID

Cell ID, which consumes much lower power than GPS, has also been used for bus route

and bus-stop detection [19, 20], and for travel time estimation [21]. Zhou et al. use

the cell ID to detect the bus route taken by users and predict bus arrival times [19], as

well as to provide the next bus feature [20]. They observe that each bus route can be

distinguished by the characteristic sequence of Cell-IDs during travel, and that bus-stops

can be distinguished using the set of visible cell IDs.

While their system works well, it has three limitations: First, the system detects

the user getting into the bus and subsequent bus-stops using the microphone to detect

the ‘tap’ sound of the transport cards, which are typically unavailable in developing

countries. Second, they use a server-based system, which assumes availability of cellular

data connection. Third, from our experience of using the cell ID, we have observed that

the actual set of cell IDs observed depends on the phone, whether the SIM is inserted

or not, on the cellular network type (2G/3G), and on the service provider. These can

lead to differing sets of cell IDs depending on the user’s phone and SIM.

2.3.3 Approaches using low-power sensors

Recent papers have used sensors other than GPS for route detection (but not for transit-

stop detection), such as the gyroscope and battery current.

The gyroscope has been used to identify a user’s significant routes [47]. Using the

idea that each journey can be identified by a characteristic sequence of vehicle turns

detected by the gyroscope’s z-axis, the authors are able to distinguish the user’s journey

in real-time. Similar to our work, this work allows for the gyroscope signal data to be

stretched on the time-axis to reduce the effect of congestion. While the gyroscope may

work well in a car, it is problematic in public-transport where the user would normally

use and move the phone, triggering false vehicle turns. The amplitude of the gyroscope

can also vary depending on the sharpness of turns. The gyroscope also would not work

24 Related work

in those parts of the journey with no turns (such as on the highway). The barometer,

in contrast, is not affected by hand movement or position (hand, bag, pocket), and can

provide distinguishing signal features throughout the journey.

PowerSpy [48] uses the battery current drawn in the smartphone as a distinguishing

feature for each route. Observing that the current drawn by the cellular radio depends

on the distance to the cell tower, the authors show that the current signal on a route

remains similar even across days, and is possibly characteristic to the route. They then

use this to estimate the user’s location during travel. Unfortunately, the current drawn

by the cellular radio alone is difficult to estimate when there are multiple applications

running on the phone. Furthermore, the signal would change if the environment near

the cell tower changes, for example during building construction or trimming of tree

branches. The signal also suffers from hysteresis during cellular handoff, i.e. the signal

measured on a road segment depends on the previous road segment (and hence cell)

travelled on.

While the use of the cell ID, gyroscope, and battery current consume much lower

power than GPS, they suffer from several problems described above, none of which are

faced by the barometer sensor.

2.3.4 Subway-specific approaches

Several works are targeted specifically to subways where GPS is unavailable [49, 50, 17].

These works use the accelerometer to detect train stations, which is possible since trains

do not stop in between stations. M-Loc [50] is closest to our work since it does not require

route maps beforehand, and uses the barometer and magnetic sensors to distinguish

the route. Their observation that the barometer signals are unique for different routes

matches our observations.

However, these approaches are targeted for trains and subways, and are not applicable

to buses, since they rely on detecting the train station using the accelerometer. Transit-

2.4 Web-based applications using DTN 25

Table 2.2: Smartphone sensors used for route and transit-stop detection

Sensor Limitation

GPS [16, 17, 18, 44, 45, 46] High Power and incomplete coverage

Cell ID [19, 20, 21] Cell IDs depend on phone, SIM, network (2G/3G), service provider

Accelerometer [49, 50, 17] Not applicable to buses

Gyroscope [47] Affected by hand movement

Radio Battery Current [48] Affected by environment and hysteresis

stop detection using the accelerometer does not work for buses which stop for various

other reasons (traffic lights, congestion, etc). Subways are less challenging than buses

due to their fast speed, fixed stops, and much smaller number of route possibilities. In

contrast, our thesis work is applicable to both buses and subways.

The barometer sensor has been used in prior works for aiding the GPS lock [40], and

for floor-change detection [42, 43]. To the best of our knowledge, no prior work has used

the barometer for bus route and bus-stop detection.

Table 2.2 gives a list of sensors that have been used for route and transit-stop detec-

tion, as well as their limitations. The barometer sensor used in this thesis does not face

these limitations, since it is unaffected by hand movement and external factors other

than air pressure.

2.4 Web-based applications using DTN

Our framework communicates using the Delay-Tolerant Network (DTN) [51] of smart-

phones carried by users. In this section, we discuss work related to web-based applica-

tions that communicate over the DTN, grouped under different categories. By describing

limitations of existing work, we also provide a motivation for development of our dynamic

deployment framework.

26 Related work

2.4.1 HTTP-over-DTN browsing

Efforts have been made to use DTN for web browsing [52, 53, 54, 55]. These papers con-

centrate on techniques for better serving browsing requests over DTN, such as bundling

of related HTTP requests, pre-fetching, and caching. The underlying DTN is hidden

from the webpages.

Our framework focuses on deploying DTN web apps, as opposed to web pages. Web

apps are similar to mobile apps: they are self-contained, i.e. they contain all the scripts

and web pages required for the app to work. Also, DTN web apps are fully aware of the

underlying DTN, using the DTN API exposed by our framework.

2.4.2 Web-based DTN apps

Web apps such as Facebook and blogging have been written to use DTN [56, 57]. While

these apps are ‘DTN-aware’, the work concentrates on how the apps work using DTN,

and does not support localized dynamic deployment of web apps and protocols on-the-go.

2.4.3 PhoneGap

PhoneGap is a framework for creating cross-platform mobile apps using web technologies.

Each web app runs in the PhoneGap container, which is essentially a ‘super-browser’:

apps can access phone details (such as user contacts) via PhoneGap, normally not ac-

cessible to regular web apps. PhoneGap apps, while written in Javascript, are installed

just like native apps. The advantage is that several app code versions are not required

for different mobile platforms.

However, since the app must be installed like a native application, installation of

PhoneGap apps do not meet the lightweight and convenience requirements of locally

deployed applications. In addition, they lack access to DTN APIs.

2.4 Web-based applications using DTN 27

2.4.4 QR codes

QR codes are useful to direct mobile users to web pages online by scanning codes using

their camera. While these codes are convenient to post near places of interest, they

require users to look for and manually scan the codes. Discovering web apps is not

‘automatic’ like in our framework.

2.4.5 Upcoming HTML5 APIs

Several APIs are being developed in order for web-based apps to access functionality on

smartphones that was not possible before, such as access to sensors [58]. New APIs under

the umbrella term ‘WebRTC’ are being developed for real-time communication between

web browsers [58], including audio, video, and data. However, WebRTC is meant for

real-time communication, and is not suitable for phone-to-phone communication between

phones without Internet in proximity applications.

Our framework provides DTN APIs to applications for communication. Since it is

dynamic, it enables applications to modify and use their own protocol stacks suitable

for their needs (written in Java), bundled together with the application.

2.4.6 DTN middleware for smartphones

Several middleware have been written on mobile for development of DTN applications.

Table 2.3 provides a list of existing middleware, along with the type of API exposed,

and a brief description of each. To the best of our knowledge, these middleware do not

expose their API to web applications (with an exception of Bytewalla, discussed below),

limiting their use to native mobile applications only.

In addition, unlike our framework, these middleware are static, i.e. the underlying

protocols are fixed at compile-time and shared by multiple applications. It is not possible

to load and unload protocols on-the-fly, a feature required by our ‘use-and-discard’ web

applications.

28 Related work

Table 2.3: Existing DTN Frameworks

Framework API exposed to developers Brief Description

Haggle [59] Publish-Subscribe API (attribute-based) Uses a search-based data-centric protocol

Mist [60] Publish-Subscribe API (topic-based) Uses a reliable broadcast with fragmentation

MaDMAN [61] Sockets API Switches between TCP/IP and DTN protocol stack

ubiSOAP [62] Service-Oriented API Floods WSDL files and SOAP messages

MobiClique [63] Social-Networking API Built on top of Haggle

DoDWAN [64] Publish-Subscribe API (attribute-based) Floods WSDL files and SOAP messages (with attributes)

Bytewalla [65] Bundle Protocol API First implementation of the Bundle Protocol on Android

2.4.7 Service-adaptation middleware

The work in [66] proposes a middleware that acts as a bridge between DTN apps written

in different languages and DTN bundle service daemons running on different platforms.

Bytewalla is the daemon running on Android, while PCs run the DTN2 service daemon.

This middleware enables web applications to access DTN. However, like the web-based

apps discussed earlier, it does not support localized deployment of web apps and proto-

cols on-the-fly.

2.4.8 Dynamix

Dynamic frameworks are quite popular in the context-aware computing domain [67, 68].

In particular, a framework called Dynamix [68] provides context-awareness to web appli-

cations, by means of context-awareness components loaded at run-time. Architecturally,

this framework is closest to our framework.

Although architecturally similar, Dynamix focuses on context-awareness, and its

APIs are oriented around receiving ‘context events’. In contrast, our framework’s (DTN)

APIs are communication-oriented. Dynamix’s context-aware components are self-contained,

while our protocol components are linked in the form of protocol stacks for each appli-

cation.

Writing code to handle dynamic loading and unloading of components is complicated

and error-prone when components are inter-dependent. Our framework handles this

dynamism automatically: for example, the app is transparent to a change in the routing

2.4 Web-based applications using DTN 29

protocol, and the routing protocol is transparent to a change in the link layer protocol.

To summarize this section, existing work have limitations with respect to the re-

quirements of lightweight and convenient locally deployed DTN web applications. Our

framework has been designed to address these limitations and make such dynamic DTN

applications possible.

Chapter 3

Barometer-based transportation

context detection

3.1 Introduction

With smartphones now reaching the computational power of personal computers, they

are expected to behave intelligently: they should silently understand what the user is

doing, help in ongoing or future tasks, and adapt accordingly. Google Now (July 2012)

and Siri (Oct 2011), for example, behave as intelligent personal assistants. Cover [69],

an Android application released in Oct 2013, automatically adapts the applications dis-

played on the lockscreen based on whether the user is at home/work/travelling. Google

utilizes the user’s activity and movement to improve the quality of location readings [70].

A key pre-requisite of such intelligent smartphone behaviour is context-awareness.

The phone needs to continuously understand what the user is doing. Context is typically

derived from the multitude of sensors on the phone. Since the phone’s battery life-time

is critical, context-detection algorithms must run at extremely low-power. In this regard,

Apple and Google have taken the first steps forward to reducing power consumed for

walking and step detection, by introducing the M7 co-processor [71] (Sept 2013) and

32 Barometer-based transportation context detection

step counter [72] (Oct 2013) to offload sensor processing from the main CPU when the

phone is asleep.

Transportation (or travel) context detection is a special case of context-awareness

where the phone automatically understands the user’s daily commute. Such awareness

is immensely useful for maintaining activity diaries, conducting surveys, and urban plan-

ning. For example, Moves [22], the first to make use of Google’s Activity Recognition

API [9], is a popular application that maintains an activity diary for the user, and was

featured in the Google I/O session in May 2013 when the API was introduced.

Being one of the lowest power sensors available on the phone, the accelerometer is

the predominantly used sensor in transportation context detection [25]. It can detect

acceleration in the phone’s three axial directions. Using supervised machine learning

and features extracted from the accelerometer readings, user activity can be classified

as IDLE, WALKING or VEHICLE.

Although the accelerometer is low-power, its readings are phone orientation and po-

sition dependent, as well as user and vehicle dependent. The machine learning algorithm

needs to be trained for all these different possibilities. To detect walking and vehicle

activities accurately, sampling rate is typically 10 Hz and above. The high sampling

rate, 3 axial directions, and position dependence make the classification complicated

and increases power consumption (Section 3.5.4).

We present an alternative approach to context detection using only the barometer,

a sensor now found in an increasing number of devices today1, which measures the

air pressure. Pressure can in turn be translated to altitude (height above sea level).

Barometers were initially introduced on Android phones to reduce the delay of the

GPS fix by providing the z co-ordinate (altitude). Since the MEMS sensor is sensitive

enough to measure even a 1 metre change in height, they are also used for floor-change

detection, and can differentiate between travelling on stairs/elevator. Some applications

1Nexus 3/4/5/6, Galaxy S3/4/5/6, Galaxy Note 1/2/3, iPhone 6, and many more

3.1 Introduction 33

are attempting to crowd-source pressure data for weather forecasting [73, 74]. Fitness

applications use change in height to better estimate calorie consumption.

We present the first work that uses only the barometer for transportation context

detection. The barometer is inherently orientation and position independent. Using a

low sampling rate of 1 Hz, coupled with the new sensor batching hardware, and using

relatively simple processing based on intuitive logic, we demonstrate that the barometer

can be used for basic context detection of the user activities IDLE, WALKING, and

VEHICLE at extremely low power. These states are sufficient to characterise typical

transportation context, and can act as a trigger for other higher-power finer-granularity

classification of vehicular modes.

We evaluate our approach using 47 hours of transportation traces from 3 countries

and 13 individuals. We compare the accuracy and power consumption to two other ap-

proaches: Google’s accelerometer-based Activity Recognition algorithm [9], which runs

at low power, and Future Urban Mobility Survey’s (FMS) GPS and accelerometer server-

based approach [23, 24], an app developed by the Singapore-MIT Alliance for Research

and Technology (SMART), in conjunction with the Singapore government’s Household

Interview Travel Survey (HITS). FMS is the first smartphone survey app to have been

field tested on a large deployment of over 1000+ users in Boston and Singapore, designed

as an alternative to traditional surveys done via in-person interviews in HITS.

We chose FMS and Google as baselines due to their wide deployment and usage. In

our evaluation, we find that our barometer-based approach consumes 26% lower power

in comparison to Google, and has comparable accuracy to both Google as well as FMS.

In addition to real-world trace data, we have also evaluated our algorithm using over

900 km (30,000 data points) of elevation data available from Google Maps from 5 cities.

The accuracy results from the map data are similar to the real-world trace data, and

provide convincing evidence that sufficient elevation changes do occur in practice for the

barometer to detect the user’s context.

34 Barometer-based transportation context detection

Table 3.1: Limitations of existing sensors for low-power activity detection

Sensor Power Limitations Barometer advantage

GPS Very high Lack of indoor/underground coverage Usable everywhere
High power usage Ultra-low-power

WiFi/Cellular High/Moderate Requires dense access points/cellular towers No external infrastructure

Accelerometer Low Extensive training required Simple calibration based on terrain
Classification complexity Simple processing

Position dependence Inherently position independent

We have implemented our approach on Android. It runs in real-time on the phone

locally, without requiring an Internet connection.

This chapter is organised as follows: Section 3.2 describes the motivation of using

the barometer for context detection. A brief background is given in Section 3.3, and

the context detection methodology is described in Section 3.4. Section 3.5 evaluates our

approach. This is followed by a discussion in Section 3.6, and Section 3.7 concludes the

chapter.

3.2 Motivation

Prior work have used multiple sensors including GPS, Cellular, WiFi, and the accelerom-

eter for context detection. Then why it is advantageous to use the barometer for the

same purpose?

Although several sensors are available, each has its own set of limitations in low-

power activity detection, listed in Table 3.1. GPS consumes high power, and has poor

coverage indoors and underground. In contrast, the barometer sensor is one of the lowest

powered sensors on the phone, and can be used everywhere. WiFi and cellular-based

approaches are better than GPS power-wise, but do not work without sufficient density

of access points and cell towers. The barometer, on the other hand, is not dependent on

any external infrastructure.

The accelerometer, like the barometer, is low power, and not dependent on external

infrastructure. Consequently, it has become popular for context detection. However,

3.2 Motivation 35

even the accelerometer has drawbacks. By nature, the accelerometer data is dependent

on the phone’s position (is the phone in a bag, pocket, or hand), and its orientation. Ad-

ditionally, the readings vary from user to user, and vehicle to vehicle. Every user handles

a phone differently, and different vehicles may produce different vibrations in the phone

while moving. These dependencies can be offset by using orientation-independent fea-

tures and training the machine learning algorithm with each dependency case. However,

addressing these dependencies adds to the cost and complexity of the system, increas-

ing the power consumption. Majority of prior accelerometer-based work implement the

classification offline instead of on the phone due to this reason.

As we demonstrate later, the barometer is inherently position independent, requires

simple processing and only minor calibration based on the terrain, overcoming the draw-

backs of the accelerometer.

To summarize, the barometer has the following advantages:

• Position independence: The barometer measures air pressure, and is inherently

position independent, as long as the phone is not kept in an air-tight environment.

• Simpler calibration: The accelerometer depends on the position, orientation,

user, and vehicle, and requires sufficient training to work well in all cases. The

barometer reduces dependencies drastically: it only requires calibration of a few

parameters using the overall characteristics of the terrain of the land, which re-

mains relatively unchanged over time.

• Better WAIT detection: In transportation applications, one of the important

aspects of the journey is the waiting time. While the accelerometer is excellent for

detecting when the phone is stationary, it faces problem when the user fiddles or

makes minor movements with the phone, triggering false positives. This is espe-

cially problematic when the accelerometer is used to trigger higher power sensors

like GPS. The barometer, unaffected by phone movements, yields fewer false pos-

36 Barometer-based transportation context detection

itives compared to the accelerometer for user movement (Section 3.5.1 compares

the accuracy of the accelerometer and the barometer for the WAIT state).

• Lower-power: The barometer’s lower sampling rate and simpler processing re-

duces the power consumption. Accelerometer-based approaches typically require

a sampling rate of 10 Hz or higher, consuming higher power.

The accelerometer data in 3 axial directions is both a boon and a bane. It provides

more information, but complicates processing. This work ultimately tries to answer the

question: Is one-dimensional height data more useful than three-dimensional accelerom-

eter data? In other words, can more be done with less data?

3.3 Background

In order to better understand the barometer sensor’s characteristics, strengths, and

sources of error, it is constructive to look at the MEMS barometer at a deeper level.

Popular MEMS barometers are of the piezoresistive type. They consist of a thin

diaphragm over a small air cavity of near vacuum pressure [75]. Piezoresistors are

arranged on the diaphragm in the form of a wheatstone bridge circuit (Figure 3.1). The

external atmosphere exerts a pressure over the diaphragm, causing it to get depressed

into the air cavity. This deflection causes a change in resistance of the piezoresistors,

which in turn changes the voltage output of the wheatstone bridge. Using two or more

calibration points, the change in voltage can be translated into corresponding air pressure

values in millibar. The entire MEMS package is extremely small (for example, Bosch’s

BMP280 barometer on Nexus 5 measures 2 x 2.5 x 0.95 mm).

Possible sources of error in the barometer are as follows:

• Vibration: One would expect that a phone movement or vibration would cause a

major deflection in the diaphragm, leading to unpredictable pressure values. How-

3.3 Background 37

Air Cavity

Diaphragm

Cross-

Section

Top

View

R1

R2

R4

R3

Figure 3.1: Simplified cross-section of MEMS piezoresistive barometer (adapted from
[76])

ever, this is not the case. We conducted an experiment where we vibrated a Nexus

4 phone in the phone’s 3 axial directions (one by one) using strong approximately

1 cm oscillations. However, this did not cause a change in the noise value (1 metre

without smoothing), nor cause outliers. This is perhaps due to the small size of

the diaphragm (in contrast, the MEMS accelerometer uses tiny rods in order to

amplify vibrations).

• Temperature: A temperature above or below the room temperature (25 deg)

causes a change in the resistance of the piezoresistors, leading to errors. Earlier

barometer chips used a thermistor to compensate for this temperature error. Cur-

rent chips contain a temperature sensor bundled into the package. The driver

reads both the pressure as well as the temperature, and compensates for the error

in software. Since the errors are usually second order or higher, a quadratic com-

pensation is more effective than a linear compensation [77]. Since the barometer

driver is part of the Android Open Source Project, we can check which phones per-

form the necessary temperature compensation (Table 3.2). Our experiments with

38 Barometer-based transportation context detection

Galaxy S3 show us that the error caused by using a linear instead of a quadratic

correction is small, and does not affect our context detection algorithm.

• Installation bias and aging drift: Installation bias (offset caused by soldering)

is taken care of at the end of the phone’s production line. Aging drift, which causes

a drift in absolute pressure values as the barometer chip grows older, is in the order

of months, and does not affect our algorithm which runs at a small time scale of a

few minutes.

• Weather drift: Change in weather can cause a change in the air pressure, and

consequently a change in the calculated height, even when the phone is still. Typ-

ical weather drift is a few metres in an hour, but intense storms can cause a drift

of 3 to 4 metres even in 10 minutes. We discuss and evaluate weather effects in

more detail in Section 3.5.1.

• Sunlight and wind: The diaphragm and resistors, if exposed, will be affected by

sunlight and wind. However, the barometer is protected under the phone’s outer

case from direct light. The MEMS package contains only a tiny air hole to capture

air pressure, protecting it from wind. This matches our observations in windy

weather (section 3.5.1).

Barometer chips come with the capability to internally oversample and smooth pres-

sure values to reduce noise. Our inspection of the driver code, and the chip specifications,

tell us that the chips are already configured at optimized settings on Android. Table 3.2

summarises the chips found on popular phones.

Air pressure (in millibar) can be translated into height (in metres) above sea level.

The absolute accuracy of the height depends on the sea level reference pressure used,

and the time of the day. In other words, for the same reference level, the barometer

can very well report significantly different altitudes at different times of the day. To get

an accurate estimation of altitude, the mean sea level pressure for the phone’s region

3.4 Methodology 39

Table 3.2: Summary of barometer chips on popular phones

Baro Chip Phones Temp Sensor Temp Compensation Oversampling Noise filter

LPS331AP (STM) Galaxy S3 Yes Linear (on chip) Yes No

BMP180 (Bosch) Galaxy Nexus/S4, Nexus 4 Yes Quadratic (in driver) Yes No

BMP280 (Bosch) Nexus 5 Yes Quadratic (in driver) Yes Yes

needs to be fetched from a local weather website at that time of the day, and used as a

reference.

However, our context detection algorithm does not require absolute accuracy, but

rather good relative accuracy. Barometer chips on newer phones are sensitive enough to

measure a change in the height of even 1 metre, the reason why it is so useful for floor-

change detection. The barometer’s good relative accuracy is a strength exploited by our

algorithm. Note that the height resolution is limited by the noise, which is approximately

1 metre without filtering. Nexus 5’s chip, which performs internal filtering, has a lower

noise value than other chips.

The study in [43] tests whether the change in height (i.e. relative accuracy) varies on

different phones. Although different phones can report different absolute height values,

the change in height values on different phones while moving are in sync.

In summary, by looking deeper into the MEMS barometer, we find that the main

source of height error is the weather drift. We will evaluate the impact of weather drift

in Section 3.5.1.

3.4 Methodology

In this section, we describe how exactly we use the barometer to detect the states of

IDLE, WALKING and VEHICLE.

40 Barometer-based transportation context detection

3.4.1 Activity definitions

Before describing our methodology, we need to first define the meaning of each state

to avoid ambiguity. The state VEHICLE includes both motorised and non-motorised

vehicles (including cycling). The state IDLE is not as strict as the typical definition in

accelerometer-based works, since the barometer is unaffected by hand movement. If a

user moves around in the same room or floor of a building, we still consider it as an IDLE

state. We argue that in the context of transportation, such movements should be clearly

differentiated from the WALKING and VEHICLE states since these movements include

important transportation context such as waiting at bus stops, taxi stands and subway

platforms. This definition also yields fewer false positives compared to the accelerometer

when movement is used to trigger high power sensors such as GPS.

The states IDLE, WALKING, and VEHICLE are sufficient to characterise typical

transportation context. Several popular applications such as Cover [69] and Moves

[22] already make use of these fundamental three states. The VEHICLE state can

also act as a trigger for other higher-power finer-granularity classification of vehicular

modes. Similarly, additional sensors can be utilized to differentiate between stationary

and waiting for transport.

3.4.2 Intuition behind barometer context detection

This section describes the intuitive logic behind barometer-based context detection.

Roads are not perfectly flat. Their height changes slightly even when it is not visually

obvious to the naked eye. The barometer is sensitive enough to measure this change in

height when a vehicle moves along a road. Vehicle detection is based on the intuition

that vehicles, because of their higher speed, tend to see more ups and downs and more

rapid height changes, than walking in the same period of time (Note that vehicle bumps

and jerks do not cause significant changes in height).

The graphs in Figure 3.2 explain this idea pictorially. The graphs are examples of

3.4 Methodology 41

traces we collected, that plot the variation in the height value and the user’s ground truth

versus time (In the graphs, the state LAZY is the same as IDLE). As can be observed,

the number of ups and downs and the rate of height change increase considerably when

the user is in a vehicle (Figures 3.2a, 3.2b and 3.2c). On the other hand, a user walking

about in the same floor of a mall (considered as IDLE by our definition) sees very little

change in height, and no ups and downs at all (Figure 3.2d). A user who is walking on

a road does see change in height, but however does not experience the large number of

ups and downs as in VEHICLE. The height variation between WALKING, IDLE, and

VEHICLE can be best observed in Figure 3.2a.

LAZY_MOVEMENT

WALKING

STAIRS_ESCALATOR_LIFT

BUS

 1200 1400 1600 1800 2000 2200 2400
 188

 190

 192

 194

 196

 198

 200

G
ro

u
n
d

 T
ru

th

H
e
ig

h
t

(m
)

Time (sec)

Ground Truth
Height

(a) Commute on a bus in Boston

LAZY_MOVEMENT

WALKING

BUS

 1200 1400 1600 1800 2000 2200 2400
 24

 26

 28

 30

G
ro

u
n
d

 T
ru

th

H
e
ig

h
t

(m
)

Time (sec)

Ground Truth
Height

(b) Commute on a bus in Singapore

LAZY_MOVEMENT

VEHICLE_STOPPED

VEHICLE_MOVING

SUBWAY_MRT

 0 500 1000 1500 2000 2500 3000
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56

G
ro

u
n
d

 T
ru

th

H
e
ig

h
t

(m
)

Time (sec)

Ground Truth
Height

(c) Subway ride in Singapore

WALKING

STAIRS_ESCALATOR_LIFT

 0 200 400 600 800 1000
 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

G
ro

u
n
d

 T
ru

th

H
e
ig

h
t

(m
)

Time (sec)

Ground Truth
Height

(d) Walking between floors in a mall

Figure 3.2: Some examples of height variation against time for different user states

To summarise, context detection using the barometer is based on the intuitive logic

that users in vehicles see more rapid changes in height, including larger number of ups

42 Barometer-based transportation context detection

Jump Detection Peak DetectionPre-processing Walk DetectionHeight

VEHICLE VEHICLE WALKING

IDLE

Figure 3.3: Overview of barometer-based transportation context detection

and downs. Users who are walking see a gradual change in height. Users who are idle

do not see any change in height.

3.4.3 Overview of the context detection algorithm

Figure 3.3 gives a high-level overview of the barometer context detection algorithm.

It consists of four stages: Pre-processing, jump detection (Jumpdet), peak detection

(Peakdet), and walk detection.

Jumpdet and peakdet are jointly responsible for VEHICLE detection. Based on the

order of the stages, it can be seen that a determination of the VEHICLE state overrides

a determination of the WALKING state. This is due to the fact that the barometer is

better at detecting vehicles than it is at WALKING (section 3.5.1).

The following sections discuss each stage of the algorithm in order.

3.4.4 Pre-processing

The barometer is sampled at a frequency of 1 Hz. Phones like the Nexus 4 return values

at a higher sampling rate (typically 4 Hz), in which case the sampling rate is clamped

to 1 Hz in code. In phones like the Nexus 5, due to internal smoothing in hardware, the

values are returned at a lower rate, usually about every 2 seconds. In this case, linear

interpolation is used to convert the actual rate into 1 Hz.

The pressure values returned by the barometer driver on Android is in millibar. This

3.4 Methodology 43

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 0 200 400 600 800 1000 1200 1400 1600 1800

H
e
ig

h
t

(m
)

Time (sec)

Unprocessed
Processed

Figure 3.4: Barometer data after processing

is converted to height in metres using the standard pressure-to-height formula [78]:

h = 44330 ∗

(
1−

(
p

p0

) 1
5.255

)

where h is the altitude in metres, while p and p0 are the measured air pressure and sea

level reference pressure respectively in millibar. This conversion of pressure into height

is available as a helper method in Android. The sea level reference does not matter in

our algorithm, since we only use relative height change.

The height values are typically noisy (1 metre noise on average). They are smoothened

using a simple filter:

currentHeight = α ∗ sensorHeight+ (1− α) ∗ prevHeight

where α is 0.1. On Nexus 5, the barometer chip performs smoothing internally, and is

not required in code. Figure 3.4 shows an example of the barometer sensor data after it

has been smoothened.

44 Barometer-based transportation context detection

3.4.5 Vehicle detection

The following two sections describe the logic used to detect the VEHICLE state, namely

Jumpdet and Peakdet.

Jump detection (Jumpdet)

Vehicles that move at a high speed, or vehicles that move on highly sloped roads tend

to observe a large rate of height change. In other words, they undergo ‘jumps’ in height,

both in the up and down direction. We can detect such vehicles using what we term as

‘Jump Detection’ (Jumpdet).

We define a ‘jump’ as a height change of more than 0.8 metres in 5 seconds. For

every height reading obtained from the barometer (1 Hz), we check if there is jump in

height, by calculating the difference with a height reading obtained 5 seconds earlier.

We keep track of the number of jumps observed in a 200 second sliding window, along

with their sign (up or down).

Our experiments have shown us that walking does not cause height jumps, even on

sloped roads, since the speed of walking is limited. An exception to this is when a

person takes the stairs/escalator or the elevator, all of which make it easier for a person

to gain/lose vertical height with less effort. We can distinguish this from vehicle using

the intuition that vehicles move both up and down, unlike a person that moves only up

or only down the stairs/elevator.

When we observe that the ratio of the number of positive to negative jumps in the

sliding window is in the range [30%, 70%], we classify the movement as vehicle. For the

ratio to be meaningful, we calculate it only when the total number of jumps is more

than 10. By capping the ratio to [30%, 70%], we ensure that we are seeing both positive

as well as negative jumps in the sliding window of time, before deciding that the user’s

state is vehicle.

3.4 Methodology 45

Peak detection (Peakdet)

Vehicles may move at a slower speed on roads that are not highly sloped, due to slow

traffic or frequent stops. In such cases, Jumpdet fails to work since the rate of height

change is not large enough. Instead, we detect such vehicles using what we term as ‘Peak

detection’ (Peakdet).

Peakdet is based on the intuition that vehicles, due to their higher speed, observe a

larger number of ups and downs in a given period of time compared to a person on foot.

Every height reading from the barometer is fed through peak detection, a simple but

online signal processing algorithm that can detect peaks and valleys of specified vertical

size in a signal (in our case, we set the size to 1 meter).

While roads can be hilly, they are not undulating, i.e. the distance between ups and

downs in a road are large and not small. Our experiments have shown us that a person

on foot takes more than 200 seconds to cover the distance between undulations on highly

sloped road, due to the large distance between them and slow walking speed.

Peakdet keeps track of the number of peaks and valleys in the height signal in a 200

second sliding window. If the number of peaks is more than 1, then the movement is

classified as vehicle.

3.4.6 Walk and Idle detection

A user who is walking would see gradual rather than rapid changes in height (excep-

tions are while travelling on the stairs/escalator/elevator). The detection of IDLE and

WALKING is based on the fact that the height varies while walking, but is stable while

idle.

Our algorithm calculates the stddev value of the height in a 200 second sliding

window. When the stddev rises above a threshold (0.3 metres), we classify the movement

as walking, and idle otherwise.

Due to the weather drift, the height tends to change over time, even when the user

46 Barometer-based transportation context detection

is idle. However, weather drift occurs over a larger time scale, and does not affect our

algorithm which runs on a time scale of 200 seconds. Section 3.5.1 analyses the affect of

extreme weather on our algorithm.

3.4.7 High-level stitching

The vehicle detection described in the previous sections leads to a fragmented output

due to long vehicle stops (for example at traffic lights). These fragments need to be

stitched together to capture the transportation context at the user’s level. We employ a

simple stitching algorithm: Two vehicle detections occurring less than 2 minutes apart

are stitched together. This simple algorithm stitches the vehicle states together into a

transportation journey more meaningful to the user and applications. To avoid false

vehicle detections while idle or walking, vehicle state detections of less than 30 seconds

duration are ignored.

3.4.8 Choice of thresholds and window sizes

In our algorithm, we use four configuration values, namely: the jump threshold (0.8

metres), the peakdet vertical height threshold (1 metre), the walking stddev threshold

(0.3 metres), and the sliding window size (200 seconds). These values are characteristic

of the overall terrain of the land.

For our algorithm, we have chosen the configuration values experimentally based on

10 hours of barometer traces collected before our evaluation’s traces. In our evaluation

using real-world traces and map elevation data, we find that the same configuration

values however work well even in places with different terrains (Section 3.5), and find

that the algorithm performs well even without re-calibration.

3.5 Evaluation 47

3.5 Evaluation

We evaluate our work based on the accuracy, power consumption, and latency, comparing

it with two other approaches:

1. Google Activity Recognition: This is an accelerometer-based context detec-

tion algorithm implemented by Google [9]. Released in May 2013, it is part of the

Google Play API, and is capable of detecting the modes IDLE, WALKING, VE-

HICLE, and CYCLING. Since it runs at very low power, we use this as a baseline

for power consumption. The activity detection runs at an update interval specified

by the application developer. Unless otherwise specified, in our evaluation the up-

date interval is set to 10 seconds, since that is the highest frequency possible. We

have used the Activity Recognition algorithm present in the Google Play Services

version 4.3, which was the latest version available in March 2014 when the trace

data was collected.

2. Future Urban Mobility Survey (FMS) App: This is a GPS and accelerometer-

based context detection implemented by the Singapore-MIT Alliance for Research

and Technology (SMART) group in Singapore, in conjunction with the Singapore

government’s Household Interview Travel Survey (HITS). They have developed a

smartphone application for iOS and Android, called FMS, to conduct household

travel surveys as an alternative to the traditional HITS approach of conducting

in-person interviews. It is the first survey application to be deployed and tested

on a large scale, on over 1000+ users in Boston and Singapore. Since volunteers

took both the FMS and HITS survey, the accuracy of the app has been thoroughly

validated using the ground truth. The FMS application works by uploading sensor

data to the FMS server, which in turn runs the context-detection using machine

learning. Users can access the FMS website to validate the travel information. To

reduce power consumption and minimize data upload, the FMS application duty

48 Barometer-based transportation context detection

Table 3.3: Summary of collected sensor trace data

Country Volunteers Total hours Vehicle hours Walking hours Idle hours

Singapore 7 15 6.5 6.4 2.1

Boston (USA) 6 55.95 3.75 7.8 44.4

China 1 108.5 22 1.5 85

cycles even the accelerometer, and uses a very low sampling rate of 2 Hz when it

is turned on. The accelerometer in turn is used as a trigger for the GPS, which is

sampled at 1 Hz, and duty cycled even during the vehicle journey.

Our evaluation is based on 178 hours of barometer traces (of which 47 hours are

transportation journey traces) collected from 3 countries with the help of 13 volunteers.

15 hours of data was collected from Singapore by 7 volunteers, while 10 hours of data was

collected from Boston (USA) by 6 volunteers. In addition, 22 hours of data was collected

from a cross-country train in China by a single individual. During the data collection,

the barometer sensor data was logged to the sdcard of the phone at a frequency of 1

Hz. For Singapore, volunteers additionally collected context output from the Google

algorithm and the FMS application.

Table 3.3 provides a summary of the traces collected from each country. There are

more than 32 hours of vehicle activity and 15 hours of walking activity in total. As

volunteers in Boston often leave the apps running on the phone for a long period of time

while they are in office after they have completed their journeys, there are more than 40

hours of idle or stationary activity in this set of traces. This was also the case in China,

with 85 hours of idle activity.

Volunteers were instructed to run the apps while carrying phones during their daily

commute. No special instructions were given on how to carry the phones, and none

of the journeys were decided beforehand. Volunteers recorded the ground truth by

pressing buttons on the phone. Ground truth included activity at the user’s level; low-

level ground truth such as vehicle stops and minor walking stops were not logged. Use of

3.5 Evaluation 49

this high-level ground truth yields a more realistic analysis of performance of the activity

detection algorithms at the user’s level.

In addition to these journey traces, we have also collected additional barometer traces

to analyse the effect of weather drift (Section 3.5.1), and to compare the accuracy of

our barometer-based algorithm with Google’s algorithm in a special case of the IDLE

state (waiting) in Section 3.5.1, and in a special case of the VEHICLE state (subway)

in Section 3.5.1.

The phones used by volunteers include Nexus 5, Nexus 4, Galaxy S3, and Galaxy

S4, all updated to Jelly Bean. Our barometer-based detection algorithm processes the

collected barometer data via a discrete-event trace-based simulator. The simulator is

written such that the barometer algorithm code written in the simulator can be directly

copied into the phone’s application code. Since the simulator is deterministic and op-

erates at a relatively large time scale (1 second) compared to processing, the output of

the simulator matches that of running on the phone. Several traces have been checked

to see that this is indeed the case, to ensure simulator correctness.

The Google and FMS algorithms are not simulated. The output of Google algorithm’s

detection is logged into a file in the phone, while the FMS detection results are available

on the FMS website in the ‘Activity Diary’ of each user.

3.5.1 Accuracy

Accuracy is calculated by splitting each trace’s timeline into intervals, and checking

whether the context determined by the three algorithms matches the ground truth in

each interval. The accuracy is calculated as the fraction of the total number of intervals

that the user activity is correctly identified. An interval size of 200 seconds was chosen to

effectively eliminate intermittent short-duration states (our accuracy calculation discards

any interval where there is a transition in the ground truth).

For fairness of comparison, we have implemented a majority voting scheme for

50 Barometer-based transportation context detection

Table 3.4: Barometer algorithm versus Google (accelerometer) and FMS
(GPS+accelerometer) algorithms in Singapore

Baro FMS Google GoogleSmooth

Idle 76% 33% 76% 76%

Walking 54% 46% 79% 91%

Vehicle 81% 90% 31% 34%

Overall 69% 68% 56% 62%

Table 3.5: Barometer algorithm versus Google (accelerometer) algorithm in China

Baro Google GoogleSmooth

Idle 99% 97% 98%

Walking 23% 40% 50%

Vehicle 78% 24% 25%

Overall 93% 82% 83%

smoothing of the Google algorithm’s fragmented output using a window size of 200

sec (this gave better results compared to smaller window sizes). In this chapter, we refer

to the smoothened Google algorithm as ‘GoogleSmooth’.

Since all three algorithms are only available for Singapore, we will first present the

accuracy comparison for this set of traces. Table 3.4 summarizes the results of the accu-

racy calculation for the traces from Singapore, for each algorithm and user state. Clearly,

each algorithm has its own strengths and weaknesses. The Google activity recognition,

which is accelerometer-based, performs well for IDLE (76%) and WALKING (79%) de-

tection, but doesn’t perform well for VEHICLE detection, achieving only 31% accuracy

(the evaluation in Section 3.5.1 further illustrates this point). FMS, due to its use of

GPS, has good VEHICLE accuracy (90%), but performs poorly in IDLE and WALK-

ING detection. Both accuracies are below 50%. Our barometer-based approach does

well for VEHICLE and IDLE detection, due to its independence of vehicular vibrations

and user movements. The accuracy for WALKING state detection is however much

lower.

Table 3.6 shows the confusion matrix for the barometer-based algorithm for Singa-

3.5 Evaluation 51

pore. There are two factors that contribute to the lower WALKING accuracy. Due

to the long sliding window used in the barometer-based detection, the algorithm has

a significant latency before it decides the user has gotten off the vehicle. WALKING

states which usually happen right after VEHICLE states are classified incorrectly. The

second factor is the terrain of the land. Sometimes, roads may not be sloped enough

for the height to significantly change while walking. This is an inherent limitation of

our approach. If the threshold for height change is set too low, then changes in the

barometer readings caused by drift or environmental changes will be wrongly classified

as walking. We fix the WALKING detection problem by fusing the barometer and the

accelerometer in Section 3.5.5.

Tables 3.7 and 3.8 show the confusion matrices for Google activity recognition and

FMS. The main source of error in Google’s approach is in the VEHICLE detection. As

the vehicle journey includes rides on subway which can be smooth between stations, and

periods of traffic congestion on bus where movement is slow, the algorithm maps these

vehicles states to the idle state in 38% of the cases. As for the FMS approach, it is

unable to correctly determine the difference between idle and walking states in many

instances.

The reason for the low detection accuracy of IDLE and WALKING by the FMS

application is two-fold. First, it samples the accelerometer at a frequency of 2 Hz, which

is much lower than related work in the literature, in order to save power and amount of

data uploaded. Second, to reduce CPU awake power consumption, it duty cycles even

the accelerometer, and hence there are periods of time where the accelerometer data

may be unavailable. Note that unlike majority of related work, FMS is a real large-scale

deployment, and needs to prioritize power over accuracy.

Table 3.5 compares the barometer approach with Google’s algorithm in China. As

in the case of Singapore, Google performs relatively better for WALKING, while our

barometer algorithm has better accuracy for VEHICLE, in contrast to Google’s poor

52 Barometer-based transportation context detection

Table 3.6: Confusion matrix for the barometer-based algorithm

Idle Walking Vehicle

Idle 76% 19% 5%

Walking 19% 54% 27%

Vehicle 6% 13% 81%

Table 3.7: Confusion matrix for Google’s algorithm

Idle Walking Vehicle Unknown

Idle 76% 0% 0% 24%

Walking 10% 79% 0% 11%

Vehicle 38% 6% 31% 25%

VEHICLE accuracy. Majority of vehicle data from China was collected in a cross-

country train, in order to cover larger area of terrain. These results convince us further

that sufficient terrain variations indeed occur for the barometer to detect user activity.

Note that the WALKING detection accuracy of Google’s algorithm is much lower in

China (40%) compared to Singapore (79%) since the volunteer in China was with his

kids, and may not have marked the ground truth for the short WALKING periods as

accurately as for the long VEHICLE cross-country train. For Singapore and Boston, on

the other hand, any trace where the ground truth was discovered to be marked incorrect

during interview with the volunteer was discarded. For China, however, we did not

discard the trace since only a single trace was available.

The effect of smoothing on Google’s algorithm (GoogleSmooth) can be seen in Tables

3.4 and 3.5. While smoothing improves WALKING detection, the VEHICLE accuracy

remains low since Google outputs IDLE majority of the time in subways/trains. Conse-

quently, the overall accuracy did not improve much for Google’s algorithm by smoothing.

Table 3.8: Confusion matrix for FMS algorithm

Idle Walking Vehicle

Idle 33% 34% 33%

Walking 37% 46% 17%

Vehicle 6% 4% 90%

3.5 Evaluation 53

Table 3.9: Barometer algorithm accuracy for different locations

Singapore Boston China

Idle 76% 85% 99%

Walking 54% 40% 23%

Vehicle 81% 72% 78%

Overall 69% 79% 93%

Location dependence

In this section, we evaluate the accuracy for Boston and China using the algorithm

settings designed for Singapore. This allows us to test how sensitive the setting of

our algorithm is, and also allows us to test the barometer value sensitivity at different

locations. Note that besides having different terrain variation, Boston has a very differ-

ent weather pattern, in particular temperature ranges, than Singapore (Boston traces

were collected during the polar vortex in 2014). Table 3.9 shows the accuracy of our

barometer-based algorithm for all 3 countries together. Note that the IDLE traces of

Boston and China are included in the accuracy calculation, to check for any effect of

weather patterns on IDLE detection.

As we can see from the table, the accuracy of the VEHICLE and IDLE detection

still remained high, indicating that barometer-based detection can potentially work well

in different locations even without re-calibration. However, the WALKING detection

remains low and indicates a need for addition sensor fusion technique to complement the

barometer-based algorithm to improve accuracy. This will be discussed in Section 3.5.5.

Weather dependence

Unlike the accelerometer and GPS, the barometer is affected by drift due to weather. To

analyse the effect of weather on our barometer-based algorithm, we separately collected

29 hours of traces with raining and windy weather conditions from Singapore. The

phone was kept idle and we check if changes in the barometer readings under such

54 Barometer-based transportation context detection

OTHER

IDLE

WALKING

 0 20000 40000 60000 80000 100000 120000
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58
 60
 62
 64
 66
 68
 70

B
a
ro

m
e
te

r
C

o
n
te

x
t

H
e
ig

h
t

(m
)

Time (sec)

Barometer context
Height

Figure 3.5: Barometer context detection during a rainy day (ground truth = IDLE).
Shows diurnal pressure cycles.

OTHER

IDLE

VEHICLE

 0 200 400 600 800 1000 1200 1400
-23

-22

-21

-20

B
a
ro

m
e
te

r
C

o
n
te

x
t

H
e
ig

h
t

(m
)

Time (sec)

Barometer context
Height

Figure 3.6: Barometer context detection during a windy day (ground truth = IDLE)

3.5 Evaluation 55

weather conditions can trigger false positives and detect IDLE as either WALKING or

VEHICLE.

The accuracy of IDLE detection was found to be 96%, indicating that weather does

not have a significant impact on the barometer-based algorithm. This is due to the fact

that weather drift tends to be on a larger time scale than the sliding window of our

algorithm (which is set to 200 sec). Rather than cause unpredictable height variations

as one might expect, weather drift is usually in one direction, and gradual, typically

following the diurnal pressure cycles. This is shown in Figure 3.5. Similarly, windy

weather does not produce significant drift in the barometer. An example of how the

readings change is shown Figure 3.6.

Finally, during the period of traces collection in Singapore and Boston, there are

periods of dry weather (extended periods without rainfall), heavy thunderstorms, and

snowfall. This further demonstrates that our approach of using the barometer sensors

to determine relative height change is not significantly affected by weather patterns.

Accuracy of WAIT state

To illustrate how barometer can be advantageous for IDLE detection, we collected a

separate 30 minute trace of waiting at a bus stop, running both the barometer and

Google algorithms, while holding the phone in the hand.

We observed that even minor movements of the hand (while web browsing, for exam-

ple), causes the accelerometer-based Google algorithm to get confused and output the

state as UNKNOWN (see Figure 3.7). Consequently, it has a low accuracy for IDLE

detection of just 25%. The barometer, in contrast, is unaffected by hand movements,

and the accuracy is almost 100%.

56 Barometer-based transportation context detection

UNKNOWN

IDLE

VEHICLE

 0 200 400 600 800 1000 1200 1400 1600 1800
 28

 30

 32

 34

G
o
o
g

le
 C

o
n
te

x
t

H
e
ig

h
t

(m
)

Time (sec)

Google context
Height

Figure 3.7: Google context detection while waiting at bus stop for 30 minutes (ground
truth = IDLE)

Accuracy of subway state

Use of the accelerometer to determine vehicle movement depends significantly on the

movement patterns of the vehicle in use. This is unlike the use of the barometer, where

height change is relevant. To illustrate this issue, we collected a vehicle trace on the

subway, running both the barometer and Google algorithms.

The subway ride between two stations is generally quite smooth with limited vibra-

tions and jerks, except near stations. The accelerometer-based Google algorithm has

difficulty classifying the user’s state as VEHICLE, and has a poor accuracy of only 15%.

A sample 1 hour subway ride segment is shown in Figure 3.8 where Google’s approach

often classifies the state as IDLE.

On the other hand, the barometer relies only on air pressure to detect height change.

This approach has a high detection accuracy of almost 100%. While it may not be

obvious to a human, there is substantial height variations in the paths travelled by the

subway both in underground tunnels and on above the ground train tracks, making it

easy for the barometer to detect a subway ride. The same activity segment but with

3.5 Evaluation 57

UNKNOWN

IDLE

WALKING

VEHICLE

 0 500 1000 1500 2000 2500 3000 3500 4000
 24

 28

 32

 36

 40

 44

 48

 52

 56

 60

 64

 68

 72

 76

 80

G
o
o
g

le
 C

o
n
te

x
t

H
e
ig

h
t

(m
)

Time (sec)

Height
Google context

Figure 3.8: Google’s context detection on Subway (ground truth = VEHICLE)

output states determined by our algorithm is shown in Figure 3.9.

The better accuracy of the barometer over the accelerometer in vehicle can be ad-

ditionally observed from the results in the China cross-country train, where Google’s

algorithm had a poor accuracy of 24%, while our barometer-based algorithm accuracy

was 78%. To summarize, although the accelerometer works well in vehicles with sub-

stantial vibrations (such as in cars and buses), it performs poorly in smooth vehicles like

subways. The barometer works well irrespective of the type of vehicle.

Note on Google’s algorithm

The version of Google’s algorithm used in our evaluation was the Google Play Services

4.3, the latest version available at the time of collection of trace data in March 2014.

Google appears to have significantly modified their activity recognition algorithm in

subsequent releases of Google Play Services, which can now distinguish between WALK-

ING and RUNNING. The algorithm is also more sensitive to phone movement, enabling

it to better detect subway rides. We compared the accuracy of Version 4.3 (March 2014)

and Version 5.0 (August 2014)2 in the subway. The new version has a significantly higher

2The apk of every Google Play Services release is available online and can be installed for accuracy

58 Barometer-based transportation context detection

OTHER

IDLE

WALKING

VEHICLE

 0 500 1000 1500 2000 2500 3000 3500 4000
 24

 28

 32

 36

 40

 44

 48

 52

 56

 60

 64

 68

 72

 76

 80

B
a
ro

m
e
te

r
co

n
te

x
t

H
e
ig

h
t

(m
)

Time (sec)

Height
Barometer context

Figure 3.9: Barometer context detection on Subway (ground truth = VEHICLE)

Table 3.10: Accuracy of barometer-based context detection algorithm using map ele-
vation data at different speeds

Vehicle (50 kmph) Vehicle (35 kmph) Vehicle (25 kmph) Walk (5 kmph) Walk (8 kmph)

Kansas City 96% 93% 89% 73% 56%

San Francisco 92% 90% 76% 74% 66%

Lausanne 84% 83% 79% 58% 50%

Singapore 99% 99% 98% 63% 32%

Boston 99% 97% 91% 66% 58%

accuracy of 81%, compared to the older version with accuracy of 22%.

However, the extra sensitivity of the new version also leads to a larger number of

VEHICLE false positives caused by minor hand movement. We compared the accuracy

of the old and new version while waiting for a bus. The old version detected 3% VEHI-

CLE false positives, while the new version performed poorly with 88% VEHICLE false

positives (Note that both the old and new version have a low WAITING detection accu-

racy, since the old version reports UNKNOWN most of the time, as observed in Section

3.5.1). This comparison shows that while the extra sensitivity in the new version enables

better subway detection, it causes a large number of false positives due to minor hand

movement when the user is idle.

comparison

3.5 Evaluation 59

Table 3.11: Comparison of terrain characteristics (stddev in brackets)

Avg Elevation Avg Peak
Change (m) Distance (m)

Kansas City 0.84 (0.99) 479 (494)

San Francisco 1.05 (1.17) 645 (709)

Lausanne 1.04 (1.19) 395 (536)

Singapore 0.69 (0.65) 332 (252)

Boston 0.56 (0.66) 476 (435)

3.5.2 Simulation using map elevation data

In addition to real-world trace data, we have manually pulled over 900 km (30,000 data

points) of elevation data from non-overlapping roads of 5 cities from Google Maps. Using

the map elevation data, we can evaluate the accuracy of our algorithm in a larger number

of places over larger geographic areas having substantially different terrains, especially

where we do not have real-world trace data available. An additional advantage is that

we can vary the speed of travel and check the effect on the accuracy.

Map elevation data was collected from roads in Kansas City (USA), San Francisco

(USA), Lausanne (Switzerland), as well as from Singapore and Boston. Data was col-

lected at 30 meter points, which is the highest resolution possible. Elevation data in

between points are interpolated. This data has been used to emulate the barometer

sensor data, and fed to our algorithm to evaluate accuracy.

Table 3.10 shows the accuracy our barometer-based algorithm at different speeds.

Two walking speeds (5 and 8 kmph) and three vehicle speeds (25, 35 and 50 kmph) are

considered. 5 kmph is the average walking speed of a person, while 8 kmph is a fast

pace. Note that the accuracy of vehicle for speeds higher than 50 kmph is expected to be

higher, since number of ups and downs encountered would also be higher, and is hence

not shown in Table 3.10.

Note that even in places like Kansas, sufficient terrain variations occur while travel-

ling for the barometer to distinguish between user states. Even at very low vehicle speed

60 Barometer-based transportation context detection

Table 3.12: Latency (sec) for each user state for the barometer and Google’s algorithms
(stddev in brackets)

Baro Google

Idle 176 (142) 78 (66)

Walking 158 (138) 26 (24)

Vehicle 211 (192) 122 (135)

of 25 kmph, the accuracy is high, which increases with increasing speed. The walking

detection accuracy is lower, but can be fixed using fusion with the accelerometer (Section

3.5.5).

Table 3.11 compares the terrain characteristics of the 5 cities, calculated using over

30,000 elevation data points, each spaced at 30 meters intervals, collected manually

over non-overlapping roads from Google Maps. Average Peak Distance is the average

distance between ups and downs on the road. In other words, if you plot a graph of

elevation versus distance travelled, peak distance is the distance between two peaks in

the graph. Smaller the value, more undulated the terrain, i.e. more peaks and valleys are

encountered over the same distance travelled. From Table 3.11, Lausanne and Singapore

have the most undulated terrain.

Average Elevation Change is the average change in elevation for every 30 metres

of distance travelled. A higher value of average elevation change indicates higher road

steepness. From Table 3.11, San Francisco and Lausanne have the steepest roads.

The accuracy of our barometer-based algorithm using map elevation data over these

different terrains gives us confidence that this approach can indeed be generalized to

other cities as well.

3.5.3 Latency

The barometer and Google’s algorithms run in real-time on the phone. In this section we

compare the latency of these algorithms (FMS, in contrast, uploads data to the server

and does post-processing). Latency is calculated as the average delay between transition

3.5 Evaluation 61

to a user state, and detection of that state by the algorithm in question (for example, the

average delay between a person starting to walk and the walk activity being detected).

Table 3.12 lists the latency for each user state for both Google’s and the barometer

algorithms.

The Google algorithm’s IDLE latency is low since it has been designed to detect

even short vehicle/walking stops. However, applications typically prefer to ignore short

user stops (detected by Google’s algorithm), and rather focus on longer stops (de-

tected by our barometer-based algorithm) which indicate higher-level user activities like

home/office/shopping.

For the VEHICLE state, both Google’s and the barometer algorithms have higher

latencies (2 to 3.5 min). This is due to the poor VEHICLE detection of Google’s al-

gorithm and the long sliding window of our barometer-based algorithm. The impact of

this latency on applications depends on the journey duration. Analysis of real-world bus

trip data from Singapore over 2,256,911 bus trips shows that the average duration of a

bus ride is 14 minutes, while the maximum duration can be as large as 156 minutes. For

long bus trips, we expect the vehicle latency to be acceptable, since it is a fraction of

the total bus trip duration.

Applications interested in the WALKING state (Eg: Fitness apps) require low la-

tency. We exploit the low latency of walking detection of Google’s algorithm by fusing

both the barometer and the accelerometer together in Section 3.5.5.

Note that although Google’s activity detection has overall lower latency than our

proposed barometer-based algorithm, the output of Google’s algorithm is highly frag-

mented, a consequence of it being too reactive to state change.

3.5.4 Power usage

In this section, we compare the power consumption of the barometer-based context

detection to Google’s Activity Recognition. Measurements were performed on a Galaxy

62 Barometer-based transportation context detection

S3 using the Monsoon Power Monitor. Our application is run in the background after

acquiring a wake lock to keep CPU processing on. The screen and all wireless interfaces

as well as data sync are kept switched off. The Android OS is an unmodified and

unrooted version 4.3, which came bundled with the phone from the manufacturer.

The barometer data is sampled using the Android sensor manager API. Note that

although we specify a sampling rate of 1 Hz to the sensor manager, the Galaxy S3 driver

returns data at a higher rate of 5 Hz. However, we clamp and process data at 1 Hz in

our code.

Google’s algorithm does not run continuously. It runs for 5 seconds each time it

is triggered. For an update interval of 10 seconds, the program is triggered every 10

seconds, runs for 5 seconds, and sleeps for the remaining 5 seconds (Figure 3.10b). In

contrast, the barometer-based algorithm runs continuously. The power consumption can

be further reduced if sensor batching is utilized. This is dicussed in Section 3.6.

Since the accelerometer sampling rate and calculations involved are higher, the power

usage is also correspondingly high. The barometer, on the other hand, consumes lower

power due to its low sampling rate and simple calculations involved (refer to Figures

3.10a and 3.10b).

(a) Power profile of barometer-based context
detection

(b) Power profile of Google’s context detection

Figure 3.10: Power profile of Google and barometer algorithms

Table 3.13 shows the power consumption. The power values listed for the barometer

and the Google approaches include the base CPU awake power, the sensing power, as

3.5 Evaluation 63

Table 3.13: Power usage

Power (mW)

CPU Idle 25

CPU Awake 85

Google 120

Baro 88

well as the computation power.

In spite of running continuously, the barometer-based algorithm consumes 32 mW

lower power than the accelerometer-based algorithm. Google consumes 35 mW over

the base power, while the barometer uses only 3 mW over the base power, a significant

improvement.

We had a detailed discussion with the authors of [43] on the measurement methodol-

ogy. The power measurement methodology in their work differs significantly from ours

in several aspects. First, they run the power measuring app in the foreground rather

than background. Second, they do not process sensor data but log sensor readings to

the sdcard. Finally, the accelerometer and the barometer were read and processed at

different frequencies. Conversely, as we elaborated at the beginning of this section, we

run our power measuring app in the background, process the sensor readings (either

with Google’s algorithm for the accelerometer or ours for the barometer), and do not

save the readings to sdcard.

3.5.5 Fusion of barometer and accelerometer

We can fuse both the barometer and the accelerometer together to increase detection

accuracy. Although the power consumption increases compared to using a single algo-

rithm, with the advent of sensor hubs and offloading of activity detection into hardware,

power consumption may reduce drastically, making it worthwhile to fuse multiple sensors

for higher context detection accuracy.

In this research work, we found that the barometer and the accelerometer have com-

64 Barometer-based transportation context detection

Table 3.14: Fusing barometer and Google algorithms

Baro Google Fusion

Idle 76% 76% 76%

Walking 54% 79% 88%

Vehicle 81% 31% 77%

Overall 69% 56% 81%

plementary strengths and weaknesses: the barometer is good for IDLE and VEHICLE

detection, but poor in WALKING detection, while the accelerometer is good for WALK-

ING detection, but poor in IDLE and certain VEHICLE detections. A simple fusion

technique can combine the strengths of both the sensors, by first giving precedence to

the accelerometer for WALKING, and then to the barometer for other states.

Table 3.14 shows the accuracy using fusion of the barometer and Google algorithms.

The overall accuracy improves drastically over using a single sensor. Fusion also fixes

the WALKING detection problem faced by the barometer.

3.6 Discussion

In this section, we discuss two issues pertaining to the use of the barometer for context

detection:

3.6.1 Sensor batching

The main source of power consumption in current activity detection algorithms is the

need to keep a wake lock on the main processor to process sensor data continuously.

Hardware implementations such as the M7 co-processor reduce this power, but are in-

flexible. A new hardware feature has been introduced in the Nexus 5, called sensor

batching, where sensor data can be buffered while the processor sleeps, and processed in

a batch later when the processor wakes. This provides a nice balance between power and

software flexibility. The number of readings that can be buffered is limited by the sam-

3.6 Discussion 65

pling rate and the size of the data. The low sampling rate of the barometer (1 Hz) makes

it excellent for sensor batching, compared to the 3-axial accelerometer which requires

higher sampling rates and larger data. The barometer data can be buffered for several

minutes even when using small-size buffers. With sensor batching, the barometer would

become truly ultra low power. Unfortunately, we were unable to tap into the battery of

the Nexus 5 for power measurements, and so are unable to provide an evaluation of the

effect of sensor batching on the power consumption.

3.6.2 Combining temperature with pressure

One potential way to improve the WALKING detection is the use of the temperature

along with the pressure. Barometer chips contain embedded temperature sensors, so

reading the temperature comes at no extra cost. Air pressure and temperature are

co-related. When the phone is idle, a change in pressure would be associated with a

corresponding change in temperature. While walking, this co-relation is disturbed since

the change in pressure gets additionally affected by the change in altitude. This could

act as an indicator for the WALKING state. In our measurements of the pressure and

the temperature indoors on the Galaxy S4 (which has an ambient temperature sensor),

this co-relation appeared to be correct. However, when we performed measurements

outdoors while idle, this co-relation does not seem to hold, as seen in Figure 3.11.

Ideally, even when outdoors, when the user is idle, pressure and temperature should

show a co-relation. One reason this is not the case is perhaps the slower reaction of the

temperature sensor to change in the temperature, or low resolution. Further exploration

of this idea using higher quality and higher resolution sensors is left as future work.

3.6.3 Integration with the FMS app

We are looking into integrating our algorithm into the FMS App, to eliminate the ‘move-

ment’ false positives often generated by the accelerometer which trigger the high-power

66 Barometer-based transportation context detection

 26
 26.2
 26.4
 26.6
 26.8

 27
 27.2
 27.4
 27.6
 27.8

 28
 28.2
 28.4
 28.6
 28.8

 29
 29.2
 29.4

 0 200 400 600 800 1000 1200 1400
-23

-22

-21

-20

T
e
m

p
 (

ce
ls

iu
s)

H
e
ig

h
t

(m
)

Time (sec)

Temp
Height

Figure 3.11: Variation of temperature and pressure outdoors when IDLE

location service. This can help reduce power consumption since the location service will

not run unnecessarily.

3.7 Conclusion

In our work, we demonstrate an alternative approach for low-power transportation con-

text detection using only the barometer sensor, a relatively new sensor now present in

an increasing number of phones. Unlike the accelerometer, the predominant sensor in

use today, the barometer is unaffected by phone position and orientation, but instead

depends only on the overall terrain of the land. Using a low sampling rate of 1 Hz, and

simple processing based on intuitive logic, we show that the barometer can be used for the

detection of the states IDLE, WALKING, and VEHICLE while consuming 32 mW lower

power than even the accelerometer, at the same time achieving comparable accuracy to

Google’s Activity Recognition algorithm and the FMS application. The barometer also

solves the problems of the accelerometer in detecting the WAITING state, and cer-

tain vehicles like the subway. Finally, we found that fusion of the barometer and the

accelerometer combines the strengths of each sensor.

Chapter 4

Barometer-based vehicle context

detection

4.1 Introduction

The sales of smartphones has surpassed the sales of feature phones [5]. With increasing

penetration rate and computational power, smartphones have opened up new possibili-

ties for the way applications work.

Applications for aiding users travelling by public-transport have been and continue

to be important in urban cities for reducing road congestion. Traditionally, such appli-

cations operate by collecting traffic data from costly pre-installed infrastructure (such

as road induction loops and GPS devices installed in public-transport vehicles). Smart-

phones have opened up a new alternative for crowd-sourcing vehicle location data from

the users’ smartphones.

Two fundamental requirements of such smartphone-based public-transport applica-

tions is the detection of bus routes and bus-stops, i.e. identifying which bus route a

user has taken, and when a bus has reached a bus-stop in its route. This is necessary in

order to provide functionality such as bus-stop arrival time prediction, and reminding

68 Barometer-based vehicle context detection

users that they have almost reached their destination stop, features provided by apps

like NextBus Muni1, Moovit2, and SBS iris3.

Existing techniques for bus route and bus-stop detection rely on tracking the user’s

(and thereby vehicle’s) location using GPS/WiFi/Cell-ID during the journey, and up-

loading this data to a central server. The server in turn uses this data to determine

which bus route a user has taken, and when a bus has reached a bus-stop in the route.

The location of bus-stops is known either from prior-available bus route maps, or is

determined by processing unlabelled GPS traces from several users [16].

However, these techniques suffer from multiple drawbacks. First, the privacy of

users is violated by tracking their location and uploading to a server. Second, using the

location sensor, in particular the GPS module on the phone, consumes significant power.

Third, majority of existing works assume prior-availability of route maps with locations

of bus-stops for detection to work. Finally, users need to upload their data through the

cellular network, which may hinder user deployment due to sharply reducing data limit

for cellular data plans.

In this chapter, we propose a new smartphone-based technique for bus route and

bus-stop detection using the barometer sensor. We show that by using just the readings

from the barometer sensor, we can detect the bus route taken by the user. By match-

ing barometer measurements between users in the same bus, we can also detect with

reasonable accuracy when a bus has reached a bus-stop in its route. We then use the

knowledge of bus route and bus-stops to perform bus journey time prediction.

To clarify what exactly our technique tries to accomplish, consider a user who takes

bus numbers A and B everyday, with 5 stops and 10 stops respectively. When the user

takes Bus A, our technique is able to distinguish the route (i.e. it is A and not B),

detects when the bus reaches each of the 5 stops in route A, and uses this information

1www.nextbus.com
2www.moovitapp.com
3www.sbstransit.com.sg/iris

www.nextbus.com
www.moovitapp.com
www.sbstransit.com.sg/iris

4.1 Introduction 69

to predict when the bus will reach the destination stop. Note that the real-world bus

route IDs and bus-stop IDs are not required for doing the prediction. Also, note that

while we use the terms ‘bus journeys’ and ‘bus-stops’, our approach is applicable to any

transit-stop and public-transport vehicle, such as subway stations in a subway journey

(see Section 4.4 for our evaluation on buses and trains).

Unlike existing approaches, our work does not need the user’s location, is completely

de-centralized, requires no knowledge of bus routes beforehand and works without an

Internet connection. Our system can thus be deployed with minimum support and

infrastructure, including cities in developing countries where Internet and cellular data

is not widely available, and where even route maps are not available (e.g. Dhaka in

Bangladesh, Manila in Philippines, and Mexico City4).

The key contributions in this chapter are the following: (1) We describe a novel use

of the barometer sensor for detecting bus routes and bus-stops providing location privacy

and lower power consumption. (2) Using an approach based on Dynamic Time Warping

(DTW), we show that it is possible to group a user’s journeys across multiple days into

correct clusters with high accuracy using only barometer readings. (3) We propose a

variation of the DTW algorithm so that even when journeys overlap only partially, data

from different users over different time periods can be combined to extract information

that is not available on a single device: intermediate bus stops, and untraversed portions

of the bus route, which are useful for journey time prediction.

We evaluate our approach using 61 real-world barometer traces of 7 different journeys

using 3 volunteers and 5 different phones. We also evaluate using a simulation of real-

world bus traces from 4 bus routes involving more than 1500 users over 100 days. The

results show that we are able to detect bus routes and bus-stops with reasonable accuracy.

Our route clustering technique has a precision of 87% and recall of 81%, and we can

detect bus-stops with an average error of 2 minutes. We show that we can use local data

4http://www.wired.com/2015/08/nairobi-got-ad-hoc-bus-system-google-maps/

70 Barometer-based vehicle context detection

from users in the same bus predict bus-stop arrival time with an average error of 1.22

minutes. We have also implemented our system on Android, and demonstrated that the

power consumption is much lower compared to a traditional GPS-based system.

The rest of this chapter is organized as follows: Section 4.2 gives an overview of

our system, while Section 4.3 describes its implementation. We evaluate our work in

Section 4.4. Section 4.5 describes our application implementation on Android. Section

4.6 discusses future work, while Section 4.7 concludes the chapter.

4.2 System overview and motivation

This section gives a brief overview of our system’s operation and functionality. We then

provide the motivation for the use of the barometer sensor for low-power low-latency

operation.

4.2.1 System overview

We explain the operation and functionality of our system using an illustrative example,

depicted in Figure 4.1, of 2 users and a tourist travelling on the same bus. User A gets

on the bus at bus-stop B1, and gets off at bus-stop B3, while user B gets on at B2, and

gets off at B4. The tourist gets on at bus-stop B3 and gets off at bus-stop B4.

Figure 4.1 illustrates the functionality provided by our system during the bus journey

from the point of view of each user. It also shows the terrain variation in terms of altitude

observed indirectly using the barometer sensor on each user’s smartphone. In addition,

the figure also shows a high-level view of the operations occurring behind the scenes in

the system. As depicted in the figure, our system operates in three modes: single-user,

multiple-user, and tourist.

4.2 System overview and motivation 71

User A's
Home

Bus-stop B1 Bus-stop B2 Bus-stop B3
User A's

Office
Bus-stop B4

Walk WalkBus Journey

User A

Bus Journey
User B

Tourist

Altitude

Time

Context
Detection

Route
Recognition

Context
Detection

Bus-stop
Detection

T1: App recognises the bus route,
displays the bus-stop countdown

and ETA to User A

T2: App detects bus-stop B2,
informs User A that
1 stop is remaining

T5: App detects bus-stop B3,
and gives a destination arrival alarm

to remind User A to get off

Graph 1: Open-ended
Dynamic TIme Warping

Altitude

Time

Altitude

Time

Route
Recognition

Bus-stop detection
and Collaboration

T4: After route recognition, User A and User B
exchange their bus journey (one historical trace)

to discover each other's bus-stops

T3: App recognises
User B's bus route

Real-time barometer data

Historical trace

Altitude

Time

Graph 2: Overlap
DTW matching

A's trace

B's trace

Bus-stop B2 discovered

Bus-stop B3 discovered

T5: App now detects the
newly discovered stop B3

T7: App gives a
destination arrival

alarm to User B

Altitude

Time

Collaboration Bus-stop detection

T7: App informs the
tourist about arrival

at bus-stop B4

T6: User B passes information
about this bus route to

the tourist

Altitude

Time

Graph 3: Bus-stop annotated
barometer trace for this bus route

Bus-stop B1 Bus-stop B4

Bus-stop B3Bus-stop B2

User B's
Home

Walk

Context
Detection

F
ig

ur
e

(a
):

 S
in

gl
e-

us
er

F
ig

ur
e

(b
):

 M
ul

tip
le

-u
se

rs
F

ig
ur

e
(c

):
 T

ou
ris

t

T4

T4

T6

T6

Figure 4.1: Overview of system operation using an illustrative example.

72 Barometer-based vehicle context detection

Single-user (Figure 4.1 (a))

In single-user mode, each user runs the application locally on his/her phone with no

real-time collaboration or data sharing with other users. This is illustrated using the

example of user A in Figure 4.1.

User A walks from home to bus-stop B1, where he gets into the bus. The system runs

a low-power context detection algorithm to detect when the user has boarded the bus. It

then runs a route recognition algorithm to determine which of his historical routes user

A is most likely travelling on. At time T1, after route recognition, the system displays

details about the recognised bus route to the user, including the number of bus-stops

remaining, the ETA, and the name of the next bus-stop. Following this, the system runs

a bus-stop detection algorithm to track the bus’s location in real-time in terms of stops

along the route. For example, at time T2, the system detects arrival at bus-stop B2, and

updates the bus-stop countdown accordingly. Finally, at time T5, when the bus reaches

the destination at bus-stop B3, the system rings an alarm to remind user A to get off the

bus. The system detects the user getting off the bus and starting to walk, and switches

back to running only low-power context detection.

For route recognition and bus-stop detection, the system applies open-ended dynamic

time warping (shown in Graph 1 in Figure 4.1, and described in Section 4.3) using real-

time barometer sensor data from user A’s smartphone, and a historical barometer trace

for that bus route, annotated with points corresponding to the positions of bus-stops

(shown in Graph 3 in Figure 4.1). The barometer traces for bus routes can be collected

and annotated by either the transport authorities, or crowd-sourced by other users and

downloaded to the phone beforehand. Unlike works involving low-power motion sensors,

which usually require extensive data collection over several users and/or training, the

barometer trace is independent of the user and phone placement, and one data trace

is usually sufficient for any user. In Section 4.3, we explain in detail about the route

recognition and bus-stop detection process.

4.2 System overview and motivation 73

Multiple-users (Figure 4.1 (b))

Many cities in developing countries do not have consolidated bus route maps (Section

4.1). Transport services are chaotically operated by multiple private operators, bus-

stops are not designated or marked by any signs, and people are often not even aware

of available bus routes and stops along the route. In such situations, co-operation from

transport operators is limited, and manually collecting annotated barometer traces with

bus-stop positions is time consuming and difficult to do without bus route maps. In

such cases, we need a method to automatically ‘discover’ bus-stops along the route,

based on the points where users get on/off. Our system provides bus-stop discovery

using real-time sharing of barometer data between multiple users in the same bus. This

is in addition to the functionality provided in the single-user mode.

Multiple-user operation is described using the example of users A and B in Figure

4.1, who travel along different parts of the same bus route. After user B has boarded

the bus at bus-stop B2, the system recognises the most likely route at time T3 based

on user B’s historical traces. However, unlike in the single-user case, the locations of

intermediate bus-stops is unknown, except for the source and destination stops.

Once both users’ smartphones have completed route recognition, they exchange one

historical trace of their respective bus journeys using direct phone-to-phone communi-

cation. This exchange can happen at anytime during the journey when both users are

in the bus, enabling the system to perform neighbour discovery at a lower duty cycle to

save power. In Figure 4.1, this exchange occurs at time T4. Processing the exchanged

traces enables both users to discover each other’s source and destination bus-stops. In

this example, users A and B became aware of all 4 bus-stops in the route after their

data exchange. After collaborating for bus-stop discovery, the system can now perform

bus-stop detection of intermediate stops as in the single-user mode, shown at time T5

and T7 for user B, where she is notified of the newly discovered bus-stop B3. By ex-

changing data with more users with different but overlapping journeys, more bus-stops

74 Barometer-based vehicle context detection

are discovered over time, and in the steady state, each user ends up with an annotated

barometer trace for the entire bus route (shown in Graph 3 in Figure 4.1), but obtained

automatically rather than manually. While the data exchange could be performed via

a server, using phone-to-phone communication on the bus removes the need for setting

up a server and Internet connectivity, both of which may not be available in developing

cities in spite of the high smartphone penetration.

Bus-stop discovery is performed using a variant of dynamic time warping called

overlap matching. This is shown in Graph 2 in Figure 4.1, and is explained in Section

4.3.

Tourist (Figure 4.1 (c))

Over a longer time scale, once sufficient data is exchanged, the entire bus-route with the

associated bus-stop information is derived and stored locally on each user’s smartphone.

When a tourist or a commuter gets onto the bus for the first time, he/she can obtain

the bus-stop and journey time information for each stop on the route, on encountering

one of the regular commuters who runs the application.

This is illustrated in Figure 4.1, where the tourist obtains bus route information from

user B at time T6, enabling the system to inform the tourist on arrival at bus-stop B4

at time T7 where he gets offs the bus.

Applications

This thesis focuses on using the barometer sensor for bus route recognition and bus-stop

discovery and real-time stop detection. We have built an application to provide bus-stop

countdown, destination reminder alarms, and real-time tracking of the bus in terms of

stops, to demonstrate how these techniques can be integrated into a single application.

While not explored in this thesis, we expect that our techniques can be easily applied

to additionally act as a back-end to systems providing next bus arrival services, by

4.2 System overview and motivation 75

tracking bus location even in between stops using historical barometer traces annotated

with high frequency GPS data. Our barometer-based system can act as a power-efficient

alternative or complement systems using GPS devices. In this thesis, however, we focus

on the underlying challenges of route recognition and bus-stop discovery that enable

applications to provide these functionalities.

4.2.2 Motivation for using the Barometer

Prior works have used GPS, cell-ID, gyroscope, battery current, and magnetometer. In

our system, we instead use the barometer sensor5, a low-power sensor that measures air

pressure. This can be converted into elevation (height/altitude) above sea level. This

section provides the motivation for using the barometer over other sensors.

During a vehicle journey, changes in elevation as small as 0.5 metre can be sensed

by the barometer. When plotted as a time-series graph, the barometer signal effectively

shows the terrain variation in terms of relative altitude change as the user travels to the

destination.

A key observation that motivates this work is that terrain, measured using the barom-

eter sensor, for the same bus route, remains fairly stable across different days and differ-

ent smartphones. As an example, Figures 4.2a and 4.2b show the changes in elevation

for the same journey, but on 2 different days and 2 different phones (Galaxy S4 and LG

Nexus 5). As can be observed, the signals have a stable and unique set of features. This

is expected since the terrain rarely changes. Consequently, variation in height provides

a sufficient and stable signature for route matching. Note that it is not necessary for

the height/terrain measurements to be similar in absolute values across different days.

Instead, similarity is required only for the relative variations.

Unlike other low-power sensors, the barometer output is unaffected by user hand

movement and phone placement, removing the need for training or extensive data col-

5available on Nexus 3/4/5/6, Galaxy S3/4/5/6, iPhone 6, and many more

76 Barometer-based vehicle context detection

lection typically required by other systems. In contrast to GPS, the barometer operates

at a low power and provides continuous data even when duty cycled.

The barometer can be used as a proxy for location to track the bus. This is illustrated

in Figure 4.3, which shows how terrain variation measured by the barometer can be used

to get an idea how ‘far’ the user is from the destination, even without actual absolute

location.

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800

H
e
ig

h
t

(m
)

Time (sec)

Height

(a) Journey on day 1 on Nexus 5

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800

H
e
ig

h
t

(m
)

Time (sec)

Height

(b) Same journey on day 2 on Galaxy S4

Figure 4.2: Barometer time-series signal for the same journey on different days and
different phones (note that journeys are typically of different durations, although they
appear similar in this figure).

To summarize, the barometer has the following advantages over other sensors:

1. Low-power: Using the barometer saves power over using GPS, even while oper-

ating at low detection latency.

2. Continuous sampling: Using the sensor batching feature available on many

smartphones, the barometer can be duty cycled without losing sensor data when

the CPU is asleep. GPS, in contrast, misses location data when the GPS chip is

turned off.

3. Phone position and hand movement: Unlike sensors like gyroscope, the

barometer signal is insensitive to the phone position and user’s hand movement.

4.2 System overview and motivation 77

Figure 4.3: Barometer, which provides height variations, can act as a power-efficient
alternative to absolute location.

4. Full coverage: Unlike GPS, barometer has 100% coverage, working even when

the vehicle is underground.

5. Signal stability: GPS, Cell-ID, and battery current are sensitive to changes in the

environment, and are thereby more noisy. On the other hand, barometer measures

terrain indirectly and yields a relatively stable signal as long as the terrain remains

unchanged.

Terrain variations in cities

Our use of the barometer is based on the assumption that there is terrain variation during

travel. As observed in previous works [79, 80], there is indeed sufficient terrain variation

in many cities for the barometer to be exploited. In our evaluation, we observe that not

only is there sufficient terrain variation, but this variation it is sufficiently unique per

user to recognise bus routes.

78 Barometer-based vehicle context detection

Weather effects

Change in air pressure due to weather affects the barometer output. However, as also

observed by prior works [79, 80], weather drift in the barometer occurs over a long period

of time, typically 3 to 4 metres over 1 to 2 hours. During travel, change in air pressure

due to vehicle movement over undulating terrain dominates over change in air pressure

due to weather, and weather has negligible effect on our system.

4.2.3 Motivation for user collaboration

Traditional approaches use a central database and crowdsourcing of data from all users

travelling in public transport. However, in developing cities, setting up and maintaining

a server can be challenging, and Internet connectivity may be limited in spite of high

smartphone penetration.

We envision the set of smartphones as a ‘mobile distributed database’ consisting of

mobile nodes travelling in the public transport network, each node containing useful

data. When a user gets into a bus, he/she only has access to local data from other users

travelling in the same bus. In this thesis, we show that it is possible, from this collection

of local data only, to derive information about the bus journey and obtain a reasonable

estimate of arrival time to various bus stops (Section 4.4.2).

To further motivate the feasibility and usefulness of local data sharing, we look at the

statistics of a real public bus transportation system in a large urban city which consists

of 235 bus routes and 2,256,911 trips over a single day. Figure 4.4 shows the CDF of the

number of users on the same bus with different (source, destination) stops.

From the figure, it can be seen that when a user gets into the bus, 70% of the time

there are more than 10 other users in the same bus with different (source, destination)

stops, i.e. they have different but overlapping journeys. This implies that it is often

possible for users to extract information about intermediate bus-stops.

4.3 System implementation 79

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

C
u
m

u
la

ti
v
e
 F

re
q

u
e
n
cy

Number of users on same bus with different (source, destination) stops

CDF

Figure 4.4: CDF of Number of users on the same bus with different (source, destina-
tion) bus-stops.

4.3 System implementation

In this section, we describe the processing done on the barometer data to provide our

system’s functionality, that was illustrated in Section 4.2. First, we give a background

on Dynamic Time Warping, different variants of which are used in our system. Then,

we describe how the route recognition and bus-stop detection is performed.

4.3.1 Background

In this work, we use different variants of Dynamic Time Warping (DTW) to find the

dissimilarity between two barometer signals, as well as to match signals between different

users. Here, we give a high-level description of the basic version of the DTW algorithm,

while its variants are discussed later.

Dynamic Time Warping (DTW) is an algorithm for finding the dissimilarity (or

distance) between two time series which have been warped (compressed or stretched) by

different amounts at different parts of the time axis. While originally proposed for speech

recognition [81], it is now widely used in several domains, including gesture recognition,

80 Barometer-based vehicle context detection

-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38

 0 100 200 300 400 500 600 700 800

H
e
ig

h
t

(m
)

Time (sec)

Data1
Data2

Figure 4.5: Example of DTW matching between two barometer signals (Data 1: offset
by +20m).

bioinformatics, and data mining in general [82].

The barometer signal is essentially a time series, being an ordered sequence of times-

tamped height values. In this chapter, the term ‘signal’ refers to the time series of

barometer height values.

Figure 4.5 shows an example of DTW matching between two barometer signals. The

DTW algorithm not only outputs the dissimilarity value between the signals, but also

maps the points in one signal to corresponding points in the other signal, as shown by

the black lines in the figure. When a signal is stretched or compressed, it is possible that

one point is mapped to multiple other points in the other signal.

For illustration purpose, in Figure 4.5 (and similar figures in the rest of this chapter),

we purposely add an offset to one of the signals on the y-axis, to show a gap between the

two signals even though there may be none. In figures appearing later, we also sometimes

offset one of the signals along the time axis for the same reason. In the processing, all

timestamps and height values are relative to the origin. Also, note that the signals are

typically of unequal total duration, depending on vehicle speed during the journey.

While several distance measures exist for computing the dissimilarity between two

4.3 System implementation 81

1

1

|X|

|Y|

i

j

Time Series X

T
im

e
 S

e
r
ie

s
Y

T
im

e

Time Series X

Time

Figure 4.6: Warp path in DTW (image as appears in [85])

signals, including Euclidean distance and Edit distance [83], we chose DTW for three

reasons: First, it operates on continuous signals, avoiding the need to discretize height

values. Second, it allows for warping w.r.t. the time axis, making it possible to match

barometer signals that have been stretched or compressed due to differing vehicle speeds

during the journey. Third, unlike Edit distances, which are more suited for noisy signals,

DTW particularly works well for clean signals like barometer [84]. To the best of our

knowledge, this is the first work that applies DTW to a barometer signal.

If X is a time series consisting of N height values {x1, x2, ..., xN}, and Y is a time

series of M height values {y1, y2, ..., yM}, then the mapping of points from one signal X

to the other signal Y can be alternatively represented by a warp path going a matrix

L of size N ×M , as shown in Figure 4.6. If the warp path passes through the matrix

element L(i, j), then the ith point of X is mapped to the jth point of Y . These mappings

correspond to the black lines shown in the graph in Figure 4.5. As can be observed in

Figure 4.6, the warp path is often restricted to start at element (1, 1) and end at element

(N,M).

82 Barometer-based vehicle context detection

If L is a local distance matrix (i.e. each element L(i, j) stores the distance between

xi and yj), then the DTW dissimilarity value between the two signals X and Y is the

summation of all L(i, j) elements the warp path passes through. In simple terms, the

dissimilarity value is the sum of the distances between mapped points.

The DTW algorithm finds the best warp path through the matrix L that results in

the smallest dissimilarity value. In other words, it finds the best mapping between points

of the two signals such that the sum of distances between mapped points is minimum.

In simple terms, it finds the best warp path from (1, 1) to (N,M) in the local distance

matrix L.

DTW, as the name suggests, uses dynamic programming to find the best warp path.

It constructs a cumulative distance matrix C (instead of a local distance matrix), and

calculates each element C(i, j) as follows:

C(i, j) = distance(xi, yj) + min{C(i, j − 1), C(i − 1, j − 1), C(i − 1, j)} (4.1)

with the base conditions C(0, j) and C(i, 0) as infinity, with the exception of C(0, 0)

which is set to 0.

After this calculation, each element (i, j) in the cumulative distance matrix C stores

the value of the best warp path from element (0, 0) to the element (i, j). The DTW

dissimilarity value is thus stored in C(N,M). The base conditions ensure that the warp

path starts at (x1, y1), while choosing the dissimilarity value from element C(N,M)

ensures that the warp path ends at (xN , yM). The warp path can be obtained by

backtracking from C(N,M).

DTW has a space and time complexity of O(N×M). If only the dissimilarity value is

required, and not the warp path (as is the case in this work), then the space complexity

can be reduced to O(N).

In our algorithm implementation, we use the symmetric2 step pattern for the warp

4.3 System implementation 83

path [86], which ensures that all points of both signals are mapped, and no points are

skipped (skipping points is more suited for noisy signals). It also makes it simpler to

normalize the DTW dissimilarity value by dividing by the total length of both sequences:

Dissimilaritynormalized = C(N,M)/(N +M) (4.2)

While the un-normalized DTW dissimilarity value is the summation of distances be-

tween mapped points (see Figure 4.5), the normalized DTW dissimilarity value can be

interpreted as the average distance between two mapped points in the two signals.

4.3.2 Overview of steps involved

Figure 4.7 shows an overview of the steps involved in our system. It consists of four major

steps: Journey clustering, Route discovery and bus-stop detection, Collaboration, and

Bus-stop discovery. Two of the steps (route and bus-stop detection and collaboration)

are performed on the bus itself and have real-time constraints, while the other two

(journey clustering and bus-stop discovery) are performed when the user is at home,

and hence do not have real-time constraints.

The user acts as a mobile node in a distributed data store, where the node is the

user’s smartphone, storing historical journey data of the user. This data builds up on

the phone each day.

Note that while we use the term ‘bus’ and ‘bus-stop’, our system works for other

modes of public transport, such as trains and subways (see Section 4.4 for our evaluation

on buses and trains).

4.3.3 Assumptions

Our system makes the same assumption as prior works [19, 47, 48, 16] that there is

a low-power context detection system running on the phone to detect when the user

84 Barometer-based vehicle context detection

Journey Clustering

(at home)

User gets into bus

Route recognition and

bus-stop detection

(after waiting L min)

Collaboration

(with N users every S min)

User gets off bus

Bus-stop discovery

(at home)

Figure 4.7: Overview of our Methodology

gets on/off a bus. This can be accomplished using low-power sensors like accelerometer

[87], or using the microphone [19]. In our system, we use the barometer-based context

detection algorithm described in Chapter 3.

4.3.4 Data smoothing

When the user gets into the bus, the phone starts logging barometer sensor data. The

barometer is sampled at 1 Hz, and is smoothed to eliminate noise. Height values are

stored relative to the height at the start of the journey, as explained in Section 4.3.1.

When the user gets off the bus, logging is stopped. The logged barometer height values

constitute the journey data, which is later annotated with additional information.

4.3 System implementation 85

4.3.5 Journey clustering (at home)

The first step in our system is journey clustering, performed when user is at home and the

phone is being charged. In the typical case where a user travels on two public-transport

vehicles per day, after 30 days of travel, the user would have roughly 60 journey data

points. To make the system scalable, the data points for the same journey are clustered

into different clusters. In the example above, we would expect to obtain two clusters of

30 data points each, assuming to-and-fro trips from home to work everyday involving

a single vehicle. Note that if both home-to-work and work-to-home trips consisted of

2 vehicle journeys each (for example in a bus and train), then the user would have 4

vehicle journeys per day, 120 data points in a month, and they would be clustered into

4 clusters.

We use the basic version of DTW (Section 4.3.1) to calculate a dissimilarity matrix

for all journeys. If there are J number of journeys, then the dissimilarity matrix is of

dimensions J × J , where J(i, j) stores the dissimilarity value between the ith and jth

journey. Note that the dissimilarity matrix is not built from scratch, rather it is built

incrementally as journey data is added everyday.

The journeys are then clustered by using the calculated dissimilarity matrix in k-

medoids [88], a clustering technique suitable when only the dissimilarity matrix is avail-

able (as opposed to co-ordinates in space), and is more resilient to outliers than k-means.

The system is designed to run with minimum user involvement and the number of

clusters is not assumed to be known. To find the value of ‘k’, the number of clusters, we

use the Silhouette method [89], which like k-medoids, can work using only the dissimi-

larity matrix. It also does not assume any distribution of cluster points. The silhouette

method outputs a value between [-1, 1] for each data point, where 1 indicates good tight

clustering, 0 indicates that the point is an outlier, and -1 indicates that the point should

be put into the neighbouring cluster. The overall silhouette value of a clustering result

is the median of the silhouette values of all data points (again, using the median is more

86 Barometer-based vehicle context detection

-28
-26
-24
-22
-20
-18
-16
-14
-12
-10

-8
-6
-4
-2
 0
 2
 4
 6
 8

 10
 12
 14

 0 100 200 300 400 500 600 700 800

H
e
ig

h
t

(m
)

Time (sec)

Real-time Signal
Journey Signal

Figure 4.8: Open-ended DTW for real-time journey detection (Real-time signal offset
by +10m).

resilient to outliers). If ‘k’ is too small or too large, then the silhouette value drops. We

run k-medoids for k = 2 to J , and choose the value of ‘k’ which gives the maximum

overall silhoutte value.

After clustering, representative journeys are chosen (one per cluster), by choosing the

data point in a cluster with the highest silhouette value. These representative journeys

are used for route recognition. Without clustering and choosing such representative

journeys, route recognition would need to process all the J journey data points, which

is not scalable.

Note that the time consuming computation of the clustering step is not the clustering

itself, but the calculation of dissimilarities. This is characterized in Section 4.5.

4.3.6 Route recognition and bus-stop detection (real-time)

As a result of the clustering step, we obtain a number of journey clusters. We choose

a representative data point for each cluster (the point in a cluster with the highest

silhouette value), and use these points for route recognition.

Once the user gets into the bus, the phone has to first automatically detect which of

4.3 System implementation 87

his/her prior representative bus journeys the user is currently on (in other words, match

which journey cluster the current journey belongs to), but in real-time and with small

delay.

This can be accomplished using Open-ended DTW [90] (OE-DTW), a version of

DTW where a real-time incoming signal can be matched to the beginning portion (prefix)

of a full journey signal, as shown in Figure 4.8. Recall in Section 4.3.1 that the DTW

dissimilarity value is obtained from the matrix element C(N,M) in Figure 4.6, ensuring

that the warp path ends there. If X is instead a real-time signal (current journey data),

and Y is the full journey signal (cluster representative), the best OE-DTW match of X

into a prefix of Y can be found by searching for the minimum dissimilarity value from

the rightmost matrix column (C(N, j), for 1 ≤ j ≤ M). The warp path then starts at

C(0, 0), but now ends at C(N, jmin), mapping all points in signal X but only to a prefix

of Y (jmin is the j value that yields the minimum dissimilarity value in the rightmost

column). jmin, an index into the full journey signal Y , gives us an idea how far into

the barometer signal we have travelled. In Figure 4.8, the blue (longer) signal is cluster

representative Y , while the red (shorter) signal is the real-time journey X.

To detect which journey the user is currently on, the dissimilarity value is computed

between the current journey and every cluster representative. The representative with

the smallest dissimilarity is considered as the detected journey.

This step involves a trade-off between latency and accuracy. The longer we wait

before doing the detection, the more real-time data we have for the current journey,

making detecion more accurate. In our system, we wait for a duration of L minutes

before performing detection. The impact of L on accuracy is evaluated in Section 4.4.

Once the route has been recognised, the OE-DTW algorithm is continued in order

to detect bus-stops. The OE-DTW algorithm, as shown in Figures 4.8 and 1.3, gives

us an idea how ‘far’ the user has travelled towards the destination, and when the user

reaches a bus-stop. These bus-stop points are annotated in the historical traces, using

88 Barometer-based vehicle context detection

the bus-stop extraction step described later.

4.3.7 Collaboration (real-time)

After a user performs route recognition, the user then communicates using phone-to-

phone communication (Bluetooth/WiFi-Direct) with other users in the same bus, and

exchanges the best cluster representative, that is output from the journey detection step,

along with any previously detected bus-stop data. Note that the cluster representative

exchanged is of a prior user journey on the bus. The ongoing (and hence incomplete)

journey data on the bus is not exchanged.

The bulk of the data exchanged is the barometer signal of the cluster representative,

which due to the low sampling rate of 1 Hz, is only a few kB in size. For example,

considering a a 30 minute journey, the barometer signal would have about 1800 times-

tamped height values. Each value is 8 bytes (4 bytes for timestamp, 4 bytes for height

value), so the signal size is only 14 kB without compression.

As explained in the next step, we would like to exchange data with a variety of users

getting on/off different bus stops. To achieve this, we communicate with N users every

S min, where S is ideally the average time to travel between bus-stops in the city. A

high value of N and low value of S involves more collaboration but at the expense of

power. Suitable values for N and S is evaluated in Sections 4.4 and 4.5.

Without collaboration, users only have barometer data for their own journeys, and

can identify only their own source and destination bus-stops. Collaboration not only

enables bus-stop discovery for intermediate stops (explained next), but also enables the

user to obtain annotated barometer data for parts of the bus route before the source

stop and after the destination stop, by appending the barometer data from other users.

This is useful for tourists when they receive route information from neighbouring bus

users.

4.3 System implementation 89

4.3.8 Bus-stop discovery (at home)

At the end of the bus journey, the phone obtains the barometer signals from several users

on the same bus. In this step, we match these signals to identify those points in the

barometer signal corresponding to intermediate bus-stops. This step can be performed

at the same time as clustering, when the user is at home and the phone is being charged.

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 200 400 600 800 1000 1200 1400

H
e
ig

h
t

(m
)

Time (sec)

Data1
Data2

(a) Subset matching (Data 1: offset by
+7.5m,+600sec)

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 100 200 300 400 500 600 700 800

H
e
ig

h
t

(m
)

Time (sec)

Data1
Data2

(b) Overlap matching (Data 1: offset by
+10m,+300sec)

Figure 4.9: Different cases for matching signals between two users: Subset and Overlap
matching.

Different users in the bus most likely have different (source, destination) bus-stops.

Considering a pair of users in the bus, two cases arise: either one user’s journey is a

subset of the other’s journey, or the two users’ journeys only overlap, as illustrated in

Figure 4.9a and Figure 4.9b respectively.

In bus-stop discovery, we identify those points in the barometer signal corresponding

to bus-stops. For example, in Figure 4.9a, if the blue (longer) signal is User A, and

the red (smaller) signal is User B, then we would like to find the 2 points in User A’s

signal where User B got on and got off. These 2 points would correspond to bus-stops.

Similarly, we would like to do the same in the case of overlapped journeys in Figure 4.9b.

This matching is possible using two versions of DTW. For subset matching, we use a

version of DTW called open-ended open-beginning DTW (OE-OB-DTW) [91], as shown

in Figure 4.9a, which is an extension of OE-DTW. By modifying the base conditions in

90 Barometer-based vehicle context detection

Section 4.3.1 to set the leftmost column to zero (C(0, j) = 0 for 0 ≤ j ≤ M), we allow

the warp path to start at any position in the signal Y . Similar to OE-DTW, we check

the rightmost column for the minimum dissimilarity value. So, the warp path starts

anywhere in the leftmost column, and ends anywhere in the rightmost column, covering

only a subset of Y , the larger signal. In the graph in Figure 4.9a, the blue (larger) signal

is Y , while the red (smaller) signal is X.

For overlap matching, as shown in Figure 4.9b, we modify the base conditions to set

the leftmost column to zero (C(0, j) = 0 for 0 ≤ j ≤ M), like in OE-OB-DTW. Unlike

OE-OB-DTW, we check the topmost row for the minimum dissimilarity value (C(i,M),

for 1 ≤ i ≤ N). This ensures that the warp path starts in the leftmost column and ends

in the topmost row, mapping a prefix of signal X to a postfix of signal Y . In the graph

in Figure 4.9b, the blue (lower) signal is Y , while the red (higher) signal is X.

To our knowledge, we are not aware of another use-case of the overlap version of

DTW, and so far have not found a name for it in the literature. In this chapter, we refer

to the 2 variants as subset and overlap matching.

After a initial build-up period involving iterations of the above steps, each user

obtains a barometer signal for each journey annotated with bus-stop points. This is

useful to provide a ‘countdown’ of bus-stops as the user travels to his/her destination,

and upload the location of the bus to a server, if Internet connectivity is available.

4.4 Evaluation

We evaluate our system using real-world barometer data as well as in a trace-based

simulation. We present 4 sets of results for real-world data, and 2 sets of results for

simulation, described in the following sections.

4.4 Evaluation 91

Table 4.1: Summary of collected journey traces

Sl No. Journey Type Data points Journey duration Num of stops Distance (km)

1 Bus 9 5-10 min 4 1.8

2 Train 9 15-20 min 5 8.9

3 Bus 9 15-24 min 8 3.1

4 Bus 10 15-20 min 9 4.3

5 Train 10 19-24 min 6 11.9

6 Bus 10 10-15 min 8 2.7

7 Car 4 12-17 min N/A 12.6

4.4.1 Real-world data

We have collected 61 real-world barometer traces from 7 different journeys using 3 vol-

unteers and 5 Android phones (Galaxy S3/4, Nexus 4/5/6) in different positions (hand,

bag, pocket). The traces are from the volunteers’ daily commute, and are not controlled

journeys. Out of the 61 traces, 26 traces were collected during peak hours with slow

traffic and congestion. Table 4.1 summarizes the traces collected.

The following sections evaluate the 4 different steps in our system using the real-world

traces.

Journey clustering

To evaluate clustering, we assume that all 61 traces have been collected by a single

individual, and need to be clustered into different journey clusters using k-medoids and

the silhouette method discussed in Section 4.3.

Table 4.2 shows the confusion matrix after clustering. The ground truth clusters are

shown as rows, and the detected clusters are shown as columns. As can be seen, the

silhouette method detected 8 instead of 7 clusters.

The clustering results are however quite good. 4 clusters (Journey 2, 4, 5, 7) are

perfectly identified, and 1 cluster (Journey 6) is almost correctly identified. The 2

clusters (Journey 1 and 3) are partially correct, with 6 points each correctly identified.

3 points of Journey 3 are placed in a fictitious detected cluster 8. This is not very

92 Barometer-based vehicle context detection

Table 4.2: Confusion matrix for Clustering. Rows are ground truth clusters and
columns are detected clusters.

1 2 3 4 5 6 7 8 Remark

1 6 0 0 0 0 3 0 0 Harmful

2 0 9 0 0 0 0 0 0 Correct

3 0 0 6 0 0 0 0 3 Not harmful

4 0 0 0 10 0 0 0 0 Correct

5 0 0 0 0 10 0 0 0 Correct

6 0 0 0 0 0 9 0 1 Almost correct

7 0 0 0 0 0 0 4 0 Correct

problematic since splitting of clusters simply yields multiple cluster representatives for

the same journey during journey detection. However, 3 points of Journey 1 are grouped

with detected cluster 6, which already has 9 points from Journey 6, which can possibly

lead to a wrong choice of cluster representative for Journey 6. The reason for the bad

clustering of Journey 1 is because it is an extremely short journey with little terrain

variations, and hence lacks prominant signal features.

In spite of 1 harmful cluster, the overall clustering result is good, with a precision

of 87.1% and recall of 81.9%, a RAND index of 95.9%, and an adjusted RAND index of

82.1%.

The good clustering result demonstrates two points: First, that there is sufficient

terrain data variation between journeys to distinguish them, and second, that the barom-

eter yields a stable and clean signal irrespective of hand movement, phone position, and

orientation.

Note that our traces are of relatively short journeys, often in slow-moving vehicles.

We expect clustering to be even better for longer journeys and faster vehicles, which

would generate a larger number of features in the barometer signal. Also, note that

clustering is performed only for that particular user’s journeys, and requires that the

signals are unique only for that user. The barometer signal does not need to unique

w.r.t. the global set of barometer signals of all journeys in a city for all users.

4.4 Evaluation 93

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
cc

u
ra

cy

Latency (min)

Accuracy

Figure 4.10: Trade-off between latency and detection accuracy.

Journey Detection

We use the real-world traces to evaluate the trade-off between latency and accuracy

during journey detection, in order to choose a suitable value for L in Section 4.3.

We vary the latency L from 0.5 min to 24 min in 0.5 min increments, and calculate

the detection accuracy over each of the 61 journeys in turn. For each journey, we take

only the first L minutes of data, and match using OE-DTW to the other 60 traces, and

calculate the accuracy.

Figure 4.10 shows the variation of Accuracy v/s Latency. As expected, with more

latency, the accuracy improves to about 75% in 4 minutes. This indicates that a suitable

value of L is 4 minutes.

Analysis of real data from a public bus transportation system in Singapore consisting

of 235 bus routes and 2,256,911 trips over a single day shows that the average duration

of a bus ride is 14 minutes, while the maximum duration can be as large as 156 minutes.

This shows us that the 4 min latency is quite reasonable, especially for longer bus rides.

94 Barometer-based vehicle context detection

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9

C
D

F

Error of partial matching (in 1 minute bins)

Error CDF

Figure 4.11: CDF of errors for subset matching.

Subset Matching

Out of the 61 traces collected, 33 traces over the 6 public-transport journeys were addi-

tionally annotated with ground truth of the bus-stop points. We use the ground truth

data to evaluate subset and overlap matching for bus-stop extraction, described in this

and the next section.

To evaluate subset matching, for each cluster, we consider all possible pairs of traces.

For each pair of traces (note that both belong to the same cluster and hence the same

journey), we slice one of the traces, where the slice length is measured in terms of number

of bus-stops. Each trace is sliced all possible ways. For example, in a trace containing

5 bus-stops (1, 2, 3, 4, 5), with a slice length of 2 bus-stops, the different possible slices

are (1, 3), (2, 4), and (3, 5).

We then match the slice to the other trace (full journey) in the trace pair using subset

matching, which yields the positions of the bus-stop points in the full signal. Finally,

we calculate the error between the detected point and the ground truth bus-stop point

in terms of time along the time-axis in the full journey signal. This process is repeated

for all trace pairs in all clusters, and for all possible slice lengths.

4.4 Evaluation 95

Figure 4.11 shows the CDF of errors in the form of 1 minute error bins. On the y-axis,

a error of 3 min indicates that the error bin is 2 to 3 minutes. From the CDF, it can be

seen that the more that 75% of the time, the error is 3 minutes or less. Note that while

the ideal error is 0 min, the baseline error is the time a bus waits at a bus-stop (typically

about 0.5 min on average, and goes to a few minutes for peak-hour bus-stops). This is

because a bus-stop is in reality not indicated by just one point on the barometer signal,

but by several consecutive points when the bus waits at the bus-stop. For example, if a

bus waited at a stop for 2 minutes, then this stop corresponds to 2 minutes of consecutive

points in the barometer signal.

Note that the slice length counter-intuitively does not affect the error. For example,

a larger slice does not mean that the detection is more accurate. In reality, it depends

on the features present in the signal. For example, a short slice with prominant signal

features can match better than a long slice that has long periods of no height change at

its ends. Consequently, we find that the error distribution and average error are almost

the same for different slice lengths.

Overlap matching

We evaluate overlap matching in a similar manner as subset matching by slicing traces

in different ways. Again, for each cluster, we consider all possible pairs of traces. For

each pair, we slice both traces such that they overlap by B bus-stops. For example, if a

journey consists of 5 stops (1, 2, 3, 4, 5), and the overlap is 2 bus-stops, then the possible

ways to slice each trace pair is {(1,3) , (1,5)}, {(1,4) , (2,5)}, and {(1,5) , (3,5)}.

These overlapping slices are matched using DTW overlap matching and the error is

calculated as in the previous section. Similar to the previous result, we find that the

overlap length does not effect the error, and the average error and distribution remains

similar for different overlap lengths.

Figure 4.12 shows the CDF of errors in the form of 1 minute bins as before. It

96 Barometer-based vehicle context detection

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9 10

C
D

F

Error of overlap matching (in 1 minute bins)

Error CDF

Figure 4.12: CDF of errors for overlap matching.

performs slightly better than subset matching, with more than 75% of errors being 3

minutes or less.

Considering that our technique does not use location at all, we feel that the average

error of 2 min in bus-stop detection for subset and overlap matching is quite acceptable.

4.4.2 Simulation

After users in the bus detect their journeys, they not only exchange barometer data to

extract bus-stops, but also exchange their historical travel times, useful for arrival-time

prediction. While a centralized approach has access to historical travel times of all users

that have ever taken a particular bus route, the collaborative approach only has access

to local data available on the bus itself. In this section, we evaluate, using simulation,

whether this local data is sufficient to give a reasonable estimate of journey time.

We run our simulation using 100 days of real-world bus data over 4 bus routes in a

busy (and often congested) shopping district in a large urban city, using the data of over

1500 different users travelling on these routes (Only 4 bus routes were chosen in order to

keep the simulation scalable). We estimate the journey time as the average of historical

4.4 Evaluation 97

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100

Jo
u
rn

e
y
 T

im
e
 E

st
im

a
ti

o
n
 e

rr
o
r

(s
e
c)

Day number

Local data Client-Server data

Figure 4.13: Comparison of average prediction error between local data (overall average
error 1.22 min) and client-server data (overall average error 1.18 min) over 100 days.

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70 80 90 100

Jo
u
rn

e
y
 t

im
e
 e

st
im

a
ti

o
n
 e

rr
o
r

(s
e
c)

Percentage of local bus users collaborated with

Estimation error

Figure 4.14: Journey time estimation error over 15 days v/s percentage of local users
collaborated with on the bus.

98 Barometer-based vehicle context detection

travel times, first using a centralized approach that has access to all users’ data, and

second, using a collaborative approach that has access to only local data available from

users in the bus itself.

Arrival-time prediction

Figure 4.13 shows the error in journey time estimation over 100 days for both the cen-

tralized as well as the collaborative approach. The collaborative approach initially has

higher error than the centralized approach for the first few days. As each user builds

up historical data (although at much slower rate than centralized approach), this local

data is sufficient to give a reasonable estimate of the journey time, and is within 14% of

the client-server estimation in just the first 15 days. The overall average error over 100

days for the collaborative approach is 1.22 min, which is close to the client-server error

of 1.18 minutes.

This simulation illustrates that we can use local data from the users on the bus to

give a reasonable estimate of journey time without having to use a central server.

Percentage of collaboration

The previous simulation results assume that users collaborate with all other users in the

bus. We now evaluate what percentage of users in the bus are sufficient to provide local

data for journey time estimation.

Figure 4.14 shows the average estimation error over the first 15 days of simulation

versus the percentage of users collaborated with on the bus. As the percentage of users

(and hence local data) involved in collaboration increases, the estimation error decreases.

However, the trade-off is the power consumption of communicating with many users. A

collaboration with 20% of users is a good trade-off, leading to a estimation error that is

21% higher than the centralized approach.

In the worst case, in a bus filled with 100 users, the user may need to collaborate

4.5 Phone implementation 99

with 20 users. However, note that this is the total collaboration over the entire duration

of the journey. In the next section, we show that even when communicating with 10

users every 5 minutes of the journey, we still consume significantly lower power than the

GPS-based approach.

4.5 Phone implementation

We have implemented our system on Android to evaluate the execution time and power

consumption, and compare with the traditional GPS-based approach. The Android

phone used in our evaluation is Samsung Galaxy S4 running Android 4.3, without any

modifications or rooting.

4.5.1 Execution time

In our system, journey detection is performed in real-time when the user is on the bus,

and hence must be completed quickly. Clustering is performed once a day when the user

is at home and the phone is on charge, and execution time is not as critical. However,

unlike other steps in our system, the execution time of clustering is quadratic with

increasing number of journeys, and care must still be taken to ensure scalability.

The graph in Figure 4.15 shows how the execution time of clustering and journey de-

tection varies with increasing number of journeys. In our measurements, we use journeys

with 1200 samples (about 20 minutes each). Clustering involves O(N2
J) DTW calcula-

tions, where NJ is the number of journeys, since it calculates the dissimilarity between

all pairs of journeys. This is not scalable since the execution time can quickly grow to

several minutes, which is unacceptable even if the phone is on charge.

However, instead of calculating the dissimilarity matrix from scratch, it can be built

incrementally as journeys are added everyday. This is scalable since the user can only

go on a limited number of journeys everyday. If the number of journeys per day is

100 Barometer-based vehicle context detection

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16 18 20

E
x
e
cu

ti
o
n
 t

im
e
 (

se
c)

Number of traces

Clustering
Incremental-Clustering

Detection

Figure 4.15: Execution Time for Clustering, Incremental clustering and Journey de-
tection.

assumed to be constant (typically 2 to 4 vehicle journeys everyday), then the complexity

reduces to O(NJ) DTW calculations. This is much more scalable, as seen in Figure 4.15.

Extrapolating the graph, the execution time for incremental clustering is only 25 seconds

even for 60 journeys. After this, the system can start throwing away old journeys to add

new ones.

Journey detection involves O(NC) DTW calculations, where NC is the number of

journey clusters. This is scalable since the user has only a limited number of significant

journeys. Figure 4.15 shows that even for the user having 20 journey clusters, the

detection calculation can be completed under 2.5 seconds on the bus.

4.5.2 Power consumption

Here, we compare the power consumption of device-to-device collaboration between users

in the same bus, as performed in our system, versus a GPS and server-based approach.

Power consumption was measured using the Monsoon Power Meter6, with the phone

screen switched off. Wherever possible, other sub-systems and applications on the phone

6http://www.msoon.com/LabEquipment/PowerMonitor/

http://www.msoon.com/LabEquipment/PowerMonitor/

4.5 Phone implementation 101

irrelevant to the measurement were turned off.

(a) Clustering (b) Journey detection

(c) GPS sampling (d) 4G Cellular upload

Figure 4.16: Power profiles for Clustering, Journey detection, GPS, and 4G upload.

Table 4.3 shows the power consumption of different phone operations, with duration

where applicable. Note that clustering was performed on 10 journeys (involving 45

DTW calculations), detection was performed with 10 cluster representatives (involving

10 DTW calculations), Bluetooth sending includes the connection set-up and sending 30

minutes of barometer journey data to a neighbouring phone, and the 4G upload includes

the tail power and upload of 60 seconds of GPS samples. Figure 4.16 shows the power

profiles of clustering, detection, GPS sampling, and 4G cellular upload.

Using these power measurements, we calculated the power consumption on the bus

for our collaborative-based system and compared it to the traditional GPS-based system.

In our system, clustering is performed only once a day at home for a few seconds, and

so the large power (about 1.5 W) is acceptable. On the bus, we assume that the phone

initiates Bluetooth discovery, and communicates with 10 other users over Bluetooth LE

every 5 minutes (chosen as the average time for the bus to travel between bus-stops).

For the GPS-based system, we assume the GPS is sampled for 1 minute, after which

102 Barometer-based vehicle context detection

Table 4.3: Power measurements

Power (mW) Duration (sec)

CPU (Asleep) 28 N/A

CPU (Awake) 116 N/A

Clustering 1522 7.3

Detection 734 1.9

Bluetooth (Discovery) 161 14.7

Bluetooth (Sending) 257 2.1

4G (Upload) 508 10.3

GPS Sampling 254 60.0

Table 4.4: Power consumption on a bus

Technique Power (mW)

Traditional GPS-based 130.0

Collaboration-based 56.5

it is turned off for 2 minutes. After the 1 minute of sampling, the GPS samples are

uploaded via 4G to a server. This cycle is repeated every 3 minutes.

Table 4.4 compares the power consumption of the collaborative-based approach ver-

sus the GPS-based approach on a bus. Our collaborative approach consumes 56.5%

lower power than the GPS-based approach, due to the use of Bluetooth LE and small

size of data exchanged.

4.6 Discussion

This chapter proposed a new approach for bus route and bus-stop detection using the

phone’s barometer and user collaboration, without using the user’s location. Using this

detection, and exchange of travel time data with other users on the bus, we give an

estimate of arrival-time to the destination by averaging historical data.

Several works such as [92, 93, 94] exploit spatial and temporal patterns in historical

travel data to give better predictions of journey time. The basic observation is that the

travel time on a road segment depends on not only the time of day (temporal patterns),

4.7 Conclusion 103

but also on neighbouring road segments (spatial patterns) [95]. In particular, it depends

on the upstream road segments, i.e. on the data of those road segments that lie ahead

of the destination.

These works all have global knowledge of the road network, and have access to data

from infrastructural sensors or crowd-sourced GPS. Our approach enables the extraction

of bus-stops and travel times for road segments beyond the destination, required for

better prediction, but in a distributed manner, which can be used to train a prediction

model locally on each phone.

However, applying the same prediction techniques in [92, 93, 94] to our collaborative

barometer approach is still challenging for two reasons: First, barometer signals are

not easily mapped to road segments. Second, real-time arrival-time prediction requires

real-time data from users on road segments upstream, who are in different vehicles, and

requires vehicle-to-vehicle (V2V) communication. Identification of prediction models

suitable for barometer data, that can handle missing data and work together with V2V

communication, is the subject of ongoing work.

4.7 Conclusion

In this chapter, we proposed a new technique for bus route and bus-stop detection

by matching the smartphone barometer sensor signals between users in the same bus.

Unlike existing approaches, our work does not need the user’s location, is completely

de-centralized, requires no knowledge of bus routes beforehand and does not require an

Internet connection. We evaluated our technique using 61 real-world barometer traces of

7 different journeys, as well as in a trace-based simulation of 4 bus routes involving more

than 1500 users over 100 days. The results show that we are able to detect bus routes

and bus-stops with reasonable accuracy, give an estimate of journey time close to the

centralized approach, while consuming 56% lower power than a GPS-based approach.

Chapter 5

On-the-go application deployment

5.1 Introduction

Proximity-based smartphone applications have recently gained increasing popularity. In

these applications, users interact with other users around them. Table 5.1 lists some

of the popular proximity applications, along with the number of users who downloaded

the application, and their average rating out of five. Many of these have more than 10

million downloads, and have high user ratings.

The rise of proximity applications has sparked an interest in scalable and energy-

efficient device-to-device technologies such as LTE-direct and Bluetooth LE beacons.

Proximity applications utilizing device-to-device technologies are advantageous over client-

Table 5.1: Examples of Social-Proximity Applications on Android

Application Description Downloads Rating out of 5

Foursquare1 Find interesting places nearby, check-in for discounts 10,000,000+ 4.2

Badoo2 Chatting, dating, making friends with people nearby 10,000,000+ 4.5

Groupon3 Finding local deals and discounts 10,000,000+ 4.6

Skout4 Discovering and meeting new people around 10,000,000+ 4.1

Circles5 Finding people nearby with mutual interests 1,000,000+ 4.5

Sonar6 Connect with friends and like-minded people nearby 1,000,000+ 4.1

GrabTaxi7 Finding and booking nearby cabs 100,000+ 4.1

106 On-the-go application deployment

server solutions since they are more power efficient, do not require external infrastructure,

and do not need access to users’ location.

Device-to-device technologies are expanding proximity applications to include not

just interaction with people, but with physical places as well, such as bus-stops, stores,

theatres, and restaurants. For example, users can check for daily specials in nearby

restaurants, and movie combo offers in nearby theatres. In this thesis, we particularly

focus on specialized applications services for users in proximity of public-transport transit

stops.

Each place of interest is typically associated with its own dedicated application on

the phone. Users need to install these apps in order to use them. However, as the

number of places of interest grows, installing large number of apps quickly becomes

wasteful and annoying to the user. Even for the same place of interest, there may

be multiple applications available. For example, as explained in Chapter 1, several

specialized public-transport applications are available to check for wheelchair access and

navigability, availability of nearby cycle pitstops, and conducting on-the-go satisfaction

surveys. Introducing new applications and updating existing applications is problematic

as well.

To solve this problem, what is needed is lightweight and convenient installation of

proximity applications when the user is near the place of interest, in addition to good

device-to-device communication. When users go away, the apps should no longer be ac-

tive nor installed on the phone. This allows users to have highly-localized interactions,

with apps engaging users only when necessary, perhaps even only for a brief period of a

few minutes. This is especially relevant in the public-transport context, since applica-

tions engage users only when they commute, but are unused for the rest of the day.

One possible solution for such highly-localized applications is to deploy native mobile

apps ‘on-the-go’ to users who are in proximity to places of interest over device-to-device

communication links. This eliminates the need to install apps beforehand and need for

5.1 Introduction 107

Internet connection to the server. Delay-Tolerant Networks (DTN) [51] are best suited

to deploy apps since they exploit device-to-device technologies. In contrast to Mobile

Ad-Hoc Network (MANET) protocols, DTN protocols work even in the face of high user

mobility. Unlike client-server solutions, DTN does not require an Internet connection to

a central server, nor does it need access to a user’s location, being inherently locality-

specific.

Installation of native apps ‘on-the-go’ is however still not lightweight, since the user

has to follow the tedious app installation steps. More importantly, users are wary of

giving permission to unknown apps to access their phone’s storage and private details.

Use of web-based applications, as opposed to native applications, solves this problem as

web applications run in the browser’s security sandbox. Installation is lightweight since

it only involves opening a web page. The browser informs the user when a web app

attempts to access private details like location, which can be denied. Users are willing

to allow such interactions since it is more akin to browsing a website.

While web-based apps do not have the full freedom of native applications, they are

still quite powerful, having access to location, camera, and even the phone’s sensors.

However, they are currently limited to communication over sockets. To enable their full

potential, web-based apps need access to communication over the DTN, thus making use

of upcoming device-to-device technologies.

In this work, we propose and implement a dynamic framework for developing and

deploying highly-localized web-based applications written in Javascript. This framework

deploys these apps to users near the places of interest. The phone notifies the user of

received apps, and if found interesting, can be opened in the mobile browser, and run

with support of the framework for communication. After use, the web app can be closed

either manually, or automatically when the user leaves the place of interest.

The framework is ‘context-aware’, using the low-power barometer sensor on the phone

to detect when the user is IDLE, WALKING, or in a VEHICLE, as described in Chapter

108 On-the-go application deployment

3.

Context-awareness reduces power consumption of the framework in the following

two ways: First, it restricts deployment of web apps to only those users in a relevant

context (Eg: users walking nearby a store). Second, it enables automatic switching off of

plugged-in DTN protocols when the user context changes (Eg: when the user gets into a

bus). Consequently, context-awareness drastically reduces unnecessary communication

between phones, saving power.

We have implemented our framework on Android, and ported it to desktop. It sup-

ports both native and web mobile applications. Our analysis of the framework shows

that the memory and performance overhead incurred is small. Using real-device mea-

surements, we show that adding context awareness reduces power consumption by at

least 53%. In addition, we show via trace-based simulation of real-world public bus

transport data that unnecessary communication between phones in a bus is reduced by

87%.

As an example application, we have implemented a simple on-the-go application

for bus-stops to help the physically challenged. The app informs users when buses are

arriving at the pick-up point, and is customized to physically challenged (wheelchair)

users to help them inform bus drivers that they would like to board.

By supporting both Android and web applications, the framework exposes DTN

APIs to a large community of developers. Since protocols are plugged in dynamically, it

is easy to modify to adapt to current advances in DTN protocols and device-to-device

communication without re-compilation of the framework.

This chapter is organized as follows: Section 5.2 describes the design of the frame-

work. Section 5.3 discusses how context-awareness benefits the framework. Section 5.4

describes our sample application. Section 5.5 evaluates the framework. Section 5.6

discusses future work, while Section 5.7 concludes the chapter.

5.2 Design and implementation 109

5.2 Design and implementation

In this section, we give a high-level overview of the design and implementation of our

framework. As shown in Figure 5.1, it consists of three parts: the framework itself, the

deployment application, and the Android/Web applications.

The framework consists of APIs, and protocol components implementing these APIs,

all loaded at run-time. To support dynamic loading of code, the middleware uses the

Apache Felix implementation of the OSGi specification [96]. It runs as a background

(bound) service in Android.

We have written a simple Forwarding Layer API for applications to access routing

protocols. This API supports multi-hop message transfers over the DTN. We also have

a Link Layer API for one-hop communication, which supports neighbour discovery and

connection-oriented communication, implemented by link layer components (Bluetooth,

WiFi-direct), and used by forwarding layer components. Dynamically loaded APIs are

advantageous since OSGi allows multiple incompatible versions of the API to co-exist

without breaking applications.

Although Figure 5.1 shows only two protocols and a single protocol stack, the frame-

work supports multiple protocol stacks, with protocols dependencies arranged in a di-

rected acyclic graph. Every application can potentially load and use its own protocols, or

even share protocol stacks. Protocol components are given a user-readable name in their

config files. Applications can request for protocols with the specified name. Changing

protocols involves loading a different protocol and giving it the same config name.

API components are broken into proxy and stub parts, in accordance with Android’s

inter-process communication (AIDL). The proxy and stub parts contain logic that shields

upper layers from change in underlying protocols at run-time by saving state information,

and hides underlying AIDL.

The deployment app is a ‘special’ DTN application that is used to deploy web apps,

110 On-the-go application deployment

Deployment/Collection Tool

Forwarding Layer API Proxy

Forwarding Layer API Stub

Link Layer API Proxy

Link Layer API Stub

Link Layer Protocol Implementation

(Eg: Bluetooth)

Core DTN

Framework

Forwarding Protocol Implementation

(Eg: Epidemic Routing)

Android Apps

Javascript Forwarding Layer

API

Web Apps (browser)

Local Web Server

Transportation Context

Detection (using sensors)

Figure 5.1: Design of the framework

protocols components (jar files), and even native applications (it also supports collection

of logs over DTN for debugging purposes). The user is notified of received web apps,

which are opened in the browser, while protocol stacks are loaded into the framework.

5.2.1 Web app support

Web apps are provided with two Javascript libraries DtnMessage.js and FwdLayerAPI.js.

The first contains convenience methods for creating DTN messages, while the second ex-

poses the Forwarding layer API.

5.3 Adding context-awareness 111

The framework runs a local embedded web server which receives DTN API calls from

web apps via AJAX, and translates them into corresponding Java calls. To overcome

the same-origin policy restriction, the server supports Cross-origin resource sharing8. To

enable web apps to receive DTN messages, the Javascript code uses AJAX long polling9.

The framework runs on Android as well as PCs. A subset of the Android libraries

were implemented on the PC so that the framework can compile and run largely without

modification. The framework currently has full support for native Android applications,

while web app support is in the prototype stage.

5.3 Adding context-awareness

5.3.1 Motivation for context-awareness

In this section, we add context-awareness to the framework to solve two practical prob-

lems faced during on-the-go deployment of web apps. The first problem is that appli-

cations are deployed to everyone in proximity of a place of interest. Not only does this

waste power, but this unnecessarily disturbs users who may not be a suitable target of

the application. For example, a shop that wants to advertise an ongoing special sale

using a web app would prefer to deploy the app to users walking nearby, but not to

users travelling in vehicles on a nearby road.

The second problem is that once users finish interacting with the web application

deployed to them, they may forget to close the browser tab (for example by minimizing

the browser and switching to another mobile app), leaving the DTN protocols running in

the background even when the user goes away from the place of interest, wasting power.

To solve these two problems, we extend the framework by adding context-awareness

(specifically, awareness of the user states IDLE, WALKING, and VEHICLE), determined

8http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
9Use of WebSockets is discussed in Section 5.6

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

112 On-the-go application deployment

using the low-power barometer sensor on the phone, described in Chapter 3. Context-

awareness enables the framework to:

1. Restrict deployment to relevant users: Web apps are deployed to only those

users in a relevant context. For example, users who have been idle in the same

place for a long time, or users travelling in vehicles on nearby roads should not

receive web apps.

2. Automatically switch off DTN protocols: Once the user goes away from a

place of interest, indicated by a change in context (for example leaving the mall

by car/bus), the DTN protocols deployed with the application are switched off

automatically.

5.3.2 Integrating context into the framework

By restricting deployment and switching off protocols, power consumption of the frame-

work is significantly reduced (see the evaluation in Section 5.5).

First, based on the user state, the deployment app is switched off. Users who are

idle for a long time in the same place, and users travelling in vehicles do not receive

on-the-go web apps since deployment is switched off. This saves significant power since

people often stay indoors (home/office) for extended periods of time, and there is no

need to unnecessarily run the deployment app during those periods. Users in vehicles

that rapidly pass by places of interest are also not disturbed by deployed apps.

Second, protocols deployed along with web apps are turned off when the user changes

state. For example, if the user forgets to close the web app, and goes away from the

place of interest by bus/car, the protocols are turned off to prevent unnecessary com-

munication. Applications can control in which states their protocols should be turned

off by modifying their configuration files.

Section 5.4.1 describes the usefulness of context-awareness with respect to our sample

5.4 Sample DTN web application 113

application. Section 5.5 evaluates the power saved by adding context-awareness to the

framework.

5.4 Sample DTN web application

To demonstrate the usefulness of on-the-go apps, and illustrate how these apps work

from the user’s perspective, we wrote a simple app for bus-stops and terminals to help

the physically disabled as well as regular commuters board buses. This app is a web

version of a DTN Android application written by students of the National University

of Singapore (the framework has been used for two semesters by student groups in the

Wireless and Sensor Networks course to build DTN apps for project work).

In bus terminals, commuters would like to know when the bus driver has been in-

structed to go to the pick-up point. Rather than install the LTA (Land Transport

Authority) application from the play store beforehand, they can use the web app for a

more localized and brief interaction. Physically disabled, such as wheelchair commuters,

require assistance to board buses at bus stops and terminals. They need to inform

drivers in advance so that they can board first, using a customized version of the app to

do this. Our web app uses DTN to enable bus drivers to announce their allotted pick

up time, regular commuters to receive this information, and wheelchair commuters to

request drivers to assist them while boarding.

Since the framework has been ported to desktop, and supports multiple applications

and users on a single device, the web app was developed locally before deploying it to

mobile devices. This is especially important since it is easier to debug code using tools

available in desktop browsers.

A device (laptop/mobile) located at the bus stop (alternatively can be placed on

buses) deploys the web app wirelessly over the DTN to commuters nearby. Users car-

rying mobile devices running the framework receive the deployed app on-the-fly. In our

114 On-the-go application deployment

prototype, received web apps are displayed in the notification bar. If interested, users

can open the app in their browser. The user can choose a customized interface: for

example, wheelchair people can choose the web app specialized to help them.

The app for regular users only displays arrival information sent by drivers (Bus

driver’s interface is shown in Figure 5.2a). Wheelchair people have the additional capa-

bility to inform drivers in advance that they would like to board, as shown in Figure 5.2b.

Customized DTN protocols can be optionally bundled with the web app, and plugged

into the framework at run-time. After usage (i.e. the commuter has boarded), the app

can be simply closed in the browser. The framework automatically releases resources

used by the app.

(a) For bus drivers (b) For Wheelchair people

Figure 5.2: Bus Stop Web App

Our sample application demonstrates the advantages of localized web apps: localized

interactions, lightweight installation, and secure execution in the browser. Most impor-

tantly, these apps exploit device-to-device communication. In the future, our app will

be extended to use swipe gestures and audio for the blind.

5.4 Sample DTN web application 115

Table 5.2: Students’ applications using the framework (note that these are Android,
not web apps)

Application Description

MaxTix Last-minute movie ticket sales, re-selling, and ticket transfer

TunePulze Sharing fitness information and songs during workouts

LiftMeUp Rapid response and aid to elderly people who have fallen down

DeleCab Collaboration between users to share the same cab

ChallengeMe Interactive competitions between people in extreme sports

DisabledPersonTransport Notifying and helping physically challenged people to board buses

vWant Multimedia streaming based on crowd-preference

MyRadius Share and discover information about local events and special sales

SoChat Share ideas, files, ask questions to students around

WhereToFirst Collects and displays crowd/queue information of nearby shops

5.4.1 Use of context-awareness

Our sample application targets users who are standing near a bus-stop. However, without

context-awareness, the app is also unnecessarily deployed to users travelling in vehicles

on the road, or to users in nearby home and office buildings.

Furthermore, once the user finishes using the application and gets into the bus, he/she

might forget to close the browser tab (by minimizing the browser), leaving the DTN

protocols running in the background. As the bus travels from stop to stop and passengers

get in and out, the running protocols unnecessarily waste power by communicating with

newly boarded users.

These problems are reduced using the context-awareness of the framework. By turn-

ing off deployment in phones of users who are in vehicles, or who have been idle for a

long period of time in the same place, deployment to these users are avoided. In addi-

tion, by specifying that the protocols must be switched off when the user is in a vehicle,

the framework automatically switches off protocols once the user has boarded the bus.

This prevents unrequired communication, and consequently saves power. Section 5.5

evaluates the power saved by adding context-awareness to the framework.

116 On-the-go application deployment

Another example of the use of context-awareness is the application vWant10 devel-

oped by a student group using the framework to automatically pull music preferences

of users sitting around a multimedia screen, and play relevant music based on majority

crowd preference. Their application determines whether the user is idle or walking, and

does not pull music preferences from those who are walking.

Table 5.2 gives a summary of the Android applications developed by students using

our framework. More detailed description of our students’ apps, documentation, APIs,

and tutorials are available at the framework’s website11.

5.5 Evaluation

In this section, we first compare the use of centralized server versus device-to-device

communication with respect to power usage and latency experienced. We then evaluate

the performance and memory overhead of our framework implementation. Finally, we

analyse the power saved by adding context-awareness to the framework.

5.5.1 Server versus device-to-device

Existing proximity applications have to use a central server to calculate whether a phone

(user) is close to a place of interest. The phone uploads its location to the server, which

informs it when it is nearby interesting places. Uploading over the cellular network is

costly in terms of power. Use of device-to-device technologies can reduce the power

consumed, but requires periodic ‘device discovery’. In this section, using power profile

measurements on the Monsoon power meter, we quantify and compare the power usage

of server-based versus device-to-device technologies, and show that there is indeed a

power saving in spite of the device discovery process.

The power consumption depends on the frequency of location updates (for server-

10Demo video: https://www.youtube.com/watch?v=DAm9gAY_uAo
11Framework website: http://www.comp.nus.edu.sg/~kartiks/nusdtn/

https://www.youtube.com/watch?v=DAm9gAY_uAo
http://www.comp.nus.edu.sg/~kartiks/nusdtn/

5.5 Evaluation 117

Table 5.3: Monsoon power meter measurements

Operation Power (mW)

CPU (asleep) 25

CPU (awake) 85

LTE (active) 2000

LTE (tail) 490

WiFi (scan) 300

based solution) and on frequency of device discovery (for device-to-device technologies).

The lower the frequency, the lower the power consumed, but at the expense of latency.

We assume the device at the ‘place of interest’ (eg: bus stop) is powered externally, and

only focus on the user’s phone’s power usage here.

We consider the case where location updates to the server occur over the LTE net-

work, while the device-to-device technology used is WiFi-direct. Using the Monsoon

power meter, we measured the power profile for sending a small (ping) packet to a server

on a Galaxy S3 phone, as well as the power profile for device scanning. Table 5.3 lists

the power values measured. Unlike WiFi-direct, LTE suffers from a long tail (more than

12 seconds) after the packet has been sent.

Based on these measurements, we calculated the power consumption at different

frequency of location updates/device scans, shown in Figure 5.3. For the same latency,

server-based approaches would consume higher power. For example, at a (reasonable) 20

second worst-case latency, the power saving of using device-to-device technologies is 86%.

Thus, use of device-to-device communication can benefit future proximity applications

by being more power-efficient. Although the power to transfer web apps is not included

in Figure 5.3, we expect that the higher bandwidth between devices would make such

5https://play.google.com/store/apps/details?id=com.joelapenna.foursquared
6https://play.google.com/store/apps/details?id=com.badoo.mobile
7https://play.google.com/store/apps/details?id=com.groupon
8https://play.google.com/store/apps/details?id=com.skout.android
9https://play.google.com/store/apps/details?id=com.discovercircle10

10https://play.google.com/store/apps/details?id=me.sonar.android
11https://play.google.com/store/apps/details?id=com.grabtaxi.passenger

https://play.google.com/store/apps/details?id=com.joelapenna.foursquared
https://play.google.com/store/apps/details?id=com.badoo.mobile
https://play.google.com/store/apps/details?id=com.groupon
https://play.google.com/store/apps/details?id=com.skout.android
https://play.google.com/store/apps/details?id=com.discovercircle10
https://play.google.com/store/apps/details?id=me.sonar.android
https://play.google.com/store/apps/details?id=com.grabtaxi.passenger

118 On-the-go application deployment

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 3 5 7 9 11 13 15 17 19 21 23 25 27 29

P
o
w

e
r

U
sa

g
e
 (

m
W

)

Time interval (sec)

Device-to-device
LTE

Figure 5.3: Power of server (LTE) v/s device-to-device (WiFi)

transfers faster and lower power than LTE as well.

5.5.2 Deployment latency

The latency between a device arriving at a place of interest and receiving the deployed

web app is important to users. As explained earlier, this is a function of the discovery

interval used (set to 10 seconds in our deployment tool). We measured the deployment

latency and found it to be 6.4 seconds on average, which is reasonable. This can be

modified to tradeoff savings in power (Figure 5.3).

5.5.3 Performance overhead

In DTN, devices exchange information when they come into range of one another. It is

critical that data is transferred as quickly as possible during the limited contact duration

time. Here we measure the performance overhead introduced by the framework during

the data transfer.

Two aspects of the framework cause overhead during communication: the Inter-

process communication (IPC) where data is copied from the DTN application to the

5.5 Evaluation 119

Table 5.4: Breakdown of Framework Overhead during File Transfer (time is in millisecs)

File size Metadata size Proxy IPC Stub Transfer time Overhead% Overhead% (no IPC)

256 kB 32 kB 5.66 81.03 8.40 581.12 16.36 2.42

512 kB 32 kB 8.93 25.03 8.20 752.50 5.60 2.28

1 MB 32 kB 6.53 76.09 6.75 1464.98 6.10 0.91

2 MB 32 kB 7.32 25.04 36.18 2137.29 3.21 2.04

4 MB 32 kB 13.47 25.67 8.66 4309.97 1.11 0.51

framework, and the use of API Proxy/Stub (see Figure 5.1). We expect the Proxy/Stub

overhead to be independent of data size, since it does not involve any data copying. We

expect IPC overhead to vary linearly with data size. Note that IPC occurs only when

data is initially passed from the DTN app to the routing protocol. After the initial copy,

it is buffered in the framework for forwarding to other devices opportunistically.

To reduce IPC overhead for large data (such as audio/pictures), the framework allows

data to be transferred from the app via files in the phone’s storage. This removes the

need for data copy, and is more convenient for the app. Only (optional) ‘metadata’ needs

to be copied via IPC. For example, a mall application advertising a special sale would

transfer product photos via files, while smaller textual data like name and price would

be transferred via IPC.

Figure 5.4 shows the overhead involved for file transfer between two phones running

the framework. The transfer was done using TCP over a 802.11b interface. Each data

point is an average of 30 trials. The overhead is small compared to the transfer time,

especially for moderate to large file sizes. Table 5.4 shows a breakdown of the overhead.

As expected, Proxy/Stub overhead is independent of data size. IPC overhead is due to

the large metadata size (32 kB) used in the experiment, but is independent of the file

size. Overhead is 6% and lower for moderate to large file sizes. If IPC is not involved

(i.e. if data is already buffered in the framework), then the overhead is even lower.

120 On-the-go application deployment

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 100 1000 10000

T
im

e
 (

m
ill

is
e
cs

)

File size (kB)

Total Transfer time
Overhead time

Figure 5.4: Overhead during file transfer

Table 5.5: Memory Overhead

Part of the Framework Memory

API Proxy (application-side) 1.1 MB

Middleware Service (nothing plugged in) 8.9 MB

Middleware Service 9.1 MB
(2 APIs + 2 Protocols, no messages)

5.5.4 Memory overhead

Here we measure the extra memory used by the framework. In our implementation, the

API Proxy class occupies memory in the application memory space. The middleware

itself runs as a service, and occupies memory separately from the application. Table 5.5

shows the memory overhead, evaluated using the Eclipse Memory Analyser.

Android imposes a limit on the amount of heap occupied. This limit varies from

one Android version to another, and with RAM size. Assuming a limit of 32 MB, this

leaves 23 MB of heap for message buffering. If each message is 1 MB, we can buffer 20

messages, which is too few. However, bulk of data is in the form of pictures/audio stored

as files on the sdcard, and not in heap memory. The buffer contains only the message’s

metadata. If metadata is 32 kB, then the phone can buffer about 700 messages. As

5.5 Evaluation 121

newer phones have more and more RAM, we do not expect the 9 MB overhead to be

significant.

5.5.5 Evaluation of context-awareness

In this section, we evaluate the context-awareness added to the framework. First, using

real-device measurements, we analyse the power saved by adding context awareness

to the framework to restrict deployment and turn off protocols. Second, using real-

world bus transport data, we estimate the reduction in number of users involved in

communication by switching off protocols.

Power saved using context-awareness

As explained previously in Section 5.3, we add context-awareness to save power by

restricting deployment and switching off protocols, reducing unnecessary phone-to-phone

communication. This is particularly significant when users are idle in the same place

for extended periods, such as in home or office, and phones should not be running the

deployment app and application protocols. However, performing context detection all

the time adds to the power consumption of the system.

In this section, using real-device measurements, we evaluate the additional power

consumption overhead of running a framework with context detection against a frame-

work running without context awareness, and calculate the energy savings.

Majority of the power consumption in the framework running without context aware-

ness is due to neighbour discovery and phone-to-phone communication. Since the amount

of communication involved (and hence the power saving of context awareness) depends

on the traffic generated by the mobile web application, we measure the power consump-

tion in two cases when the framework runs without context-awareness: without any

communication traffic (only neighbour discovery runs every minute), and with commu-

nication traffic (each device sends a 10 kB message every 2 minutes), which act as two

122 On-the-go application deployment

baselines for comparison.

In this experiment, we use 5 Android phones (1 Galaxy S4, 3 Galaxy S3, and 1

Nexus 4) deployed in different locations in a room, with the Galaxy S4 phone connected

to the Monsoon power meter. The phones perform neighbour discovery and phone-to-

phone communication using Bluetooth LE, while running the framework and a traffic

generating application. Other subsystems, including screen and WiFi, are turned off

during the experiment. Neighbour discovery is performed once every minute, and in the

case where traffic is generated, each device sends a 10 kB message to all other phones

every 2 minutes. Note that using additional phones or higher traffic would only increase

the power consumption of the baselines.

We measure the average power consumption over 30 minutes for each of the following

three cases:

1. Framework running without context awareness (no traffic) [Baseline 1]: Since no

traffic is generated, we expect majority of the power consumption to be from

neighbour discovery at the link layer protocol.

2. Framework running without context awareness (with traffic) [Baseline 2]: Since

traffic is generated by the application, we expect a larger power consumption due

to phone-to-phone communication in addition to neighbour discovery.

3. Framework with added context awareness (with traffic): We expect the context

detection to report that the user is idle, and protocols and deployment to be

switched off automatically. So, the power consumption is expected to be largely

due to the overhead of context detection.

Table 5.6 lists the power consumption from measurements on the power meter for the

three cases above (excluding the CPU base power of 95 mW).

From the power measurements, we can see that by using context awareness, we save

53% power of the first baseline, and 71% power of the second baseline running without

5.5 Evaluation 123

Table 5.6: Comparison of power consumption of framework using context awareness
versus without context awareness

Energy (mJ) Duration (sec) Power (mW)

Without context awareness (no traffic) [Baseline 1] 84620 1800.42 47

Without context awareness (with traffic) [Baseline 2] 136833 1800.43 76

With added context awareness (with traffic) 39616 1800.72 22

context awareness. Thus, by using context, we achieve significant savings in the power

consumption by switching protocols and deployment off, especially important when the

user is at home or office for several hours.

Reducing unnecessary communication

While the previous section evaluated the power savings using real-device measurements,

in this section we evaluate using trace-based simulation of real world bus transport data

how context-awareness reduces unnecessary communication between phones with respect

to our sample application, which is deployed to users waiting at a bus-stop.

Once users have finished interacting with the application, they board the bus. How-

ever, users may forget to close the application, leaving it running the background while

they are in the bus. As the bus travels from stop to stop, and other users get in and out,

the protocols unnecessarily waste power by communicating with newly boarded users. If

the bus is crowded, this can lead to a large power wastage. However, by automatically

switching off protocols using context-awareness, this problem can be avoided.

To analyse the impact of using context-awareness in the real world, we have written

a trace-based simulator using a day of real-world transport data from public buses in

Singapore, containing data of over 1,000,000 users, and over 2000 buses. The transport

data contains the timestamped information of when buses arrive at every bus-stop, and

information of users getting in and out (using their transport ezlink card). The simulator

uses this data to keep track of which users are present in what buses, and how crowded

the buses are at each stop.

124 On-the-go application deployment

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

C
D

F

Number of users with protocols still running

With context-awareness
Without context-awareness

Figure 5.5: CDF of number of users on a bus with protocols still running

Figure 5.5 shows the CDF of the number of users in a bus with protocols unnecessarily

still running without context-awareness when the bus arrives at a bus-stop. Without

switching off protocols, these users unnecessarily communicate with other newly boarded

users, wasting power.

Protocols are switched off once the bus starts moving. Figure 5.5 shows the CDF of

number of users on the bus with protocols still switched on after using context-awareness.

We find that the number of such ‘active’ users is drastically reduced compared to the

case without context-awareness. On an average, there is an 87% reduction in number of

users involved in unnecessary communication.

Thus, we can see that in a real-world bus system, context-awareness and automati-

cally switching off protocols drastically reduces the unnecessary communication between

users in a bus. Since the simulation does not consider users walking outside the bus,

the communication saving is expected to be even larger in the real-world compared to

simulation.

5.6 Discussion 125

5.6 Discussion

• Use of WebSockets instead of AJAX: We will be re-writing our Javascript

code to use WebSockets, now increasingly supported in mobile browsers, suitable

for push-based notifications of messages received, to replace the AJAX long polling

currently used.

• Security in protocol components: While apps run in the browser sandbox,

protocol components loaded in the framework have dangerous access to Android

libraries. OSGi enables fine-grained control over the libraries accessible by loaded

components. In the future, we will use this to restrict a protocol’s access to the

phone, following the permission model of Android but on a protocol level.

5.7 Conclusion

In this chapter, we proposed a dynamic framework for deployment of on-the-go appli-

cations written in Javascript. These apps free users of the burden of installing multiple

native proximity applications on the phone. They are lightweight, easy to open/close in a

browser, and operate only when the user requires proximity interactions. To demonstrate

their usefulness, we wrote a simple app for bus stops to help the physically disabled. We

evaluated our framework and found that it has low overhead, and that adding context-

awareness saves significant power. In the future, we will be enhancing our framework’s

web app support and analyse the performance of localized web apps in a real setting.

Chapter 6

Conclusion and future work

In this chapter, we first summarize the research contributions of this thesis. Our contri-

butions lead to new research ideas that we are currently working on, which are discussed

here as future work.

6.1 Contributions

The goal of this thesis is to develop new techniques for smartphone-based public-transport

applications deployed on-the-go that make fewer assumptions on infrastructure than ex-

isting solutions, enabling them to work even in cities of developing countries. At the

same time, our techniques also provide location privacy and reduce power consumption

when used in cities of developed countries.

To do this, we proposed new techniques to tackle the core challenges of context

detection, bus route and bus-stop detection, and deployment of specialized application

services, required to provide useful public-transport application functionality, while ad-

dressing the limitations faced by existing solutions. In this thesis, we made the following

contributions:

1. Barometer-based transportation context detection: We proposed and

128 Conclusion and future work

implemented the first research work in literature that uses only the barometer for

low-power transportation context detection of the states idle, walking, and vehicle.

Unlike existing approaches that have high user dependence and require extensive

training, our barometer-based approach is inherently independent of the user. It

has similar detection accuracy while consuming lower power. In the situations

where the user is waiting for a bus, and while travelling on smooth vehicles, existing

accelerometer-based techniques have less than 25% detection accuracy, while our

approach has almost 100% accuracy.

2. Barometer-based vehicle context detection: We proposed novel techniques

for using only the barometer and local collaboration of users in the same bus for

bus route and bus-stop detection. Our approach is the first research work that

makes the fewest assumptions on infrastructure and availability of route maps,

enabling it to work in even in developing countries where other approaches fail,

since it is decentralized and does not require an Internet connection. In developed

countries, it provides location privacy and reduces power consumption. This work

is the first to demonstrate a novel use of the barometer sensor for bus route and

bus-stop detection.

3. On-the-go deployment of applications: We proposed and implemented a

dynamic framework on Android for deploying on-the-go applications written in

Javascript to users in proximity of places of interest, such as near public-transport

stops. Users are notified of received apps, and can run them in the browser with

support of the framework for communication without the Internet. After usage,

the application is stopped by closing the browser tab, or automatically when users

leave the place of interest. Our deployment framework removes the need for users to

install multiple applications beforehand on their phone, and allows users to choose

‘specialized’ applications tailored to their needs. To illustrate this, we implemented

6.1 Contributions 129

a simple on-the-go application to help the physically challenged (wheelchair) people

board the bus.

We evaluated our techniques using over 60 hours of real-world barometer transporta-

tion traces from 3 countries and 15 volunteers during their daily commute, as well as

using over 900 km of elevation data of 5 cities from Google Maps. We also implement a

trace-based simulation of 4 bus routes involving more than 1500 users over 100 days. The

results showed that our context detection algorithm achieves 23% better accuracy than

Google’s Activity Recognition, while consuming 26% lower power. Our route clustering

technique has a precision of 87% and recall of 81%, and we can detect the destination

bus-stop with an average error of 2 minutes. Finally, we showed that collaboration be-

tween users in the same bus can be used to predict remaining travel time with an average

error of 1.22 minutes.

We implemented our techniques on Android for power and execution time mea-

surements. In addition, we provided context detection and DTN framework APIs to

students of the CS4222 Wireless and Sensor Network course in NUS, for use in their

course projects.

This thesis has two key insights. First, the barometer can act as a power-efficient

alternative to absolute location, while still respecting location privacy. It is unaffected

by hand movement, yielding clean and stable signals. Second, the users in the same bus

have a rich set of local data that can be used to extract points of bus-stops and give

an estimate of arrival time. These insights can be used to create a decentralized and

location-‘less’ application.

Our contributions lead to new research ideas, which are discussed in the next section

as future work.

130 Conclusion and future work

6.2 Future work

Our contributions open up new research ideas that we are currently working on. Here,

we discuss them as future work. These research ideas are also important steps towards

our goal of building a location-‘less’ transport application using smartphones.

1. Semi-supervised activity diary using barometer: In this thesis, we used

barometer to detect the user states idle, walking, and vehicle. A more challenging

and important problem in the literature is detection of high-level user activities,

such as home, office, shopping, school, meetings, etc., and commute between these

places. Existing works track user location using smartphones [97], and reverse

geocode to guess high-level activities, typically using supervised machine learning

techniques when the place name is not sufficient to identify the activity [98]. How-

ever, this requires sufficient training data. Supervised detection models are also

difficult to tailor to each user’s unique set of activities.

An alternative to supervised learning is semi-supervised learning, where the user

is involved in labeling his/her activities for a few data points (for example, Google

asks the user to label the locations of home and work after installing Google Now,

and to specify if they travel by car or public-transport). This has two advantages:

the need for training is removed, and activities can be tailored since the labeling

is done by that specific user.

Semi-supervised approaches are more commonly used in detecting fine-grained

user activities at the same place, such as sleeping, sitting, bathing, etc. in a user’s

home [99, 100, 101]. They use low-power motion sensors like accelerometer and

devices like RFIDs. However, these low-power sensors cannot be used for creating

activity diaries where the user goes to several places, and existing semi-supervised

techniques for making these travel diaries still depend on location sensors.

In this future work, we intend to use the barometer for semi-supervised detection

6.2 Future work 131

of user activites, even when the user travels between different places. From data

we have collected, we find that the barometer signal, observed over the entire day,

exhibits characteristic patterns in the signal while the user travels between places.

Semi-supervised techniques have been used previously in speech recognition to

recognise frequently used words and phrases in a new language [102]. We intend

to apply these techniques to extract frequent patterns occurring in the barometer

signal, which can be labeled by the user. An important advantage of applying

speech recognition techniques is that context of the phrase is important - that is,

not just the word, but how the word is placed in the sentence is also significant.

This applies to activity diaries as well, where ‘taking bus 241’ can be a part of

different journeys to different places.

The main advantage of using barometer is the power efficiency w.r.t. GPS. New

phones come with sensor batching, where barometer data can be buffered for sev-

eral minutes without waking up the main processor. Another advantage is that

barometer signals are clean and stable, unlike signals from accelerometer and GPS

that are noisy.

If this research work is successful, we intend to replace the context-detection com-

ponent in this thesis with this system, to yield a richer set of user activities.

2. Fully-fledged public-transport app functionality: In this thesis, we im-

plemented new techniques catering to a subset of the features of public-transport

applications, namely bus-stop countdown and ETA. However, we did not focus on

other important application features, such as bus service number identification and

next bus arrival.

In this thesis, although we distinguish different journeys from one another and

detect bus-stop points, we do not identify the bus service number nor the bus-

stop IDs, since we assume the lack of route maps. In the case where route maps

132 Conclusion and future work

are available, barometer data could potentially be used to guess the bus service

number and identify bus-stop IDs as well.

Using bus route maps, which in turn contain locations of bus-stops, we pulled ter-

rain data for over 150 bus routes in Singapore using Google Maps. Our preliminary

results show that by just using the barometer signal trace and the Google Map

data, we are able to guess the top likely bus service numbers and bus routes that

the user has taken, provided that the search space is not made too large.

Terrain data pulled from Google Maps for that bus route can be annotated with

bus-stop IDs, and this can be used for bus-stop detection, instead of relying on

collaboration with other users.

Two improvements this would provide over the current system are: First, bus

service numbers and bus-stop IDs and names can be displayed to the user, which

is more informative. Second, this method uses data from Google Maps, which

is easy to obtain compared to users travelling on buses and collecting barometer

data.

Pushing information to users waiting at bus-stops without cellular data connectiv-

ity, and without vehicle-to-vehicle communication, is impossible. However, if data

connectivity is available, then collaboration can potentially be done at a server in-

stead of on the bus. Such a system would be very power efficient since the bulk of

the power consumption caused by neighbour discovery during collaboration would

be removed and the location sensor is not used.

However, aggregating the barometer data at a global level at the server is more

challenging than at a local level in the bus. The challenge lies in identifying which

users are in the same bus route, in order to suitably piece together barometer data.

Addressing this challenge is left as future work.

Bibliography

[1] Land and Transport Authority of Singapore: Publications and research. http:

//www.lta.gov.sg/content/ltaweb/en/publications-and-research.html.

[2] IBM traffic congestion: Overview. http://www.ibm.com/smarterplanet/sg/en/

traffic_congestion/ideas/.

[3] Report on study of road traffic congestion in Hong Kong, December 2014.

[4] How smartphones can improve public transit. http://www.wired.com/2011/04/

how-smartphones-can-improve-public-transit/.

[5] Smartphones finally overtook dumbphone sales. http://techcrunch.com/2013/

08/14/gartner-q2-smartphone/.

[6] Lta mytransport application. http://www.mytransport.sg.

[7] Moovit application. http://moovitapp.com.

[8] Google now. https://www.google.com/landing/now/.

[9] Google’s Activity Recognition API. http://developer.android.com/google/

play-services/location.html.

[10] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Understanding

mobility based on gps data. In Proceedings of the 10th International Conference on

http://www.lta.gov.sg/content/ltaweb/en/publications-and-research.html
http://www.lta.gov.sg/content/ltaweb/en/publications-and-research.html
http://www.ibm.com/smarterplanet/sg/en/traffic_congestion/ideas/
http://www.ibm.com/smarterplanet/sg/en/traffic_congestion/ideas/
http://www.wired.com/2011/04/how-smartphones-can-improve-public-transit/
http://www.wired.com/2011/04/how-smartphones-can-improve-public-transit/
http://techcrunch.com/2013/08/14/gartner-q2-smartphone/
http://techcrunch.com/2013/08/14/gartner-q2-smartphone/
http://www.mytransport.sg
http://moovitapp.com
https://www.google.com/landing/now/
http://developer.android.com/google/play-services/location.html
http://developer.android.com/google/play-services/location.html

134 BIBLIOGRAPHY

Ubiquitous Computing, UbiComp ’08, pages 312–321, New York, NY, USA, 2008.

ACM.

[11] Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani

Srivastava. Using mobile phones to determine transportation modes. ACM Trans.

Sen. Netw., 6(2):13:1–13:27, March 2010.

[12] Jason Ryder, Brent Longstaff, Sasank Reddy, and Deborah Estrin. Ambulation: A

tool for monitoring mobility patterns over time using mobile phones. In Proceedings

of the 2009 International Conference on Computational Science and Engineering -

Volume 04, CSE ’09, pages 927–931, Washington, DC, USA, 2009. IEEE Computer

Society.

[13] Sarfraz Nawaz, Christos Efstratiou, and Cecilia Mascolo. Parksense: A smartphone

based sensing system for on-street parking. In Proceedings of the 19th Annual

International Conference on Mobile Computing & Networking, MobiCom ’13,

pages 75–86, New York, NY, USA, 2013. ACM.

[14] Shuangquan Wang, Canfeng Chen, and Jian Ma. Accelerometer based transporta-

tion mode recognition on mobile phones. In Proceedings of the 2010 Asia-Pacific

Conference on Wearable Computing Systems, APWCS ’10, pages 44–46, Washing-

ton, DC, USA, 2010. IEEE Computer Society.

[15] Samuli Hemminki, Petteri Nurmi, and Sasu Tarkoma. Accelerometer-based trans-

portation mode detection on smartphones. In Proceedings of the 11th ACM Con-

ference on Embedded Networked Sensor Systems, page 13. ACM, 2013.

[16] James Biagioni, Tomas Gerlich, Timothy Merrifield, and Jakob Eriksson. Easy-

tracker: Automatic transit tracking, mapping, and arrival time prediction using

smartphones. In Proceedings of the 9th ACM Conference on Embedded Networked

Sensor Systems, SenSys ’11, pages 68–81, New York, NY, USA, 2011. ACM.

BIBLIOGRAPHY 135

[17] Arvind Thiagarajan, James Biagioni, Tomas Gerlich, and Jakob Eriksson. Co-

operative transit tracking using smart-phones. In Proceedings of the 8th ACM

Conference on Embedded Networked Sensor Systems, SenSys ’10, pages 85–98,

New York, NY, USA, 2010. ACM.

[18] Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts, Samuel Madden, Hari

Balakrishnan, Sivan Toledo, and Jakob Eriksson. Vtrack: Accurate, energy-aware

road traffic delay estimation using mobile phones. In Proceedings of the 7th ACM

Conference on Embedded Networked Sensor Systems, SenSys ’09, pages 85–98, New

York, NY, USA, 2009. ACM.

[19] Pengfei Zhou, Yuanqing Zheng, and Mo Li. How long to wait? predicting bus

arrival time with mobile phone based participatory sensing. Mobile Computing,

IEEE Transactions on, 13(6):1228–1241, June 2014.

[20] Pengfei Zhou, Shiqi Jiang, and Mo Li. Urban traffic monitoring with the help of bus

riders. In Distributed Computing Systems (ICDCS), 2015 IEEE 35th International

Conference on, pages 21–30, June 2015.

[21] Arvind Thiagarajan, Lenin Ravindranath, Hari Balakrishnan, Samuel Madden,

and Lewis Girod. Accurate, low-energy trajectory mapping for mobile devices.

In Proceedings of the 8th USENIX Conference on Networked Systems Design and

Implementation, NSDI’11, pages 267–280, Berkeley, CA, USA, 2011. USENIX As-

sociation.

[22] Moves application. http://www.moves-app.com/.

[23] Carlos Carrion, Francisco Pereira, Rudi Ball, Fang Zhao, Youngsung Kim, Kalan

Nawarathne, Naijia Zheng, Chris Zegras, and Moshe Ben-Akiva. Evaluating fms:

A preliminary comparison with a traditional travel survey. In 93rd Annual Meeting

of the Transportation Research Board, 2014.

http://www.moves-app.com/

136 BIBLIOGRAPHY

[24] Caitlin D Cottrill, Francisco Camara Pereira, Fang Zhao, Ines Ferreira Dias,

Hock Beng Lim, Moshe E Ben-Akiva, and P Christopher Zegras. Future mobility

survey: Experience in developing a smartphone-based travel survey in singapore.

Journal of the Transportation Research Board, 2354:59–67, 2013.

[25] OzlemDurmaz Incel, Mustafa Kose, and Cem Ersoy. A Review and Taxonomy of

Activity Recognition on Mobile Phones. BioNanoScience, 3(2):145–171, 2013.

[26] Cheng Bo, Xiang-Yang Li, Taeho Jung, Xufei Mao, Yue Tao, and Lan Yao. Smart-

loc: Push the limit of the inertial sensor based metropolitan localization using

smartphone. In Proceedings of the 19th annual international conference on Mobile

computing & networking, pages 195–198. ACM, 2013.

[27] Ian Anderson and Henk Muller. Practical activity recognition using gsm data.

Technical Report CSTR-06-016, Department of Computer Science, University of

Bristol, July 2006.

[28] Timothy Sohn, Alex Varshavsky, Anthony LaMarca, MikeY. Chen, Tanzeem

Choudhury, Ian Smith, Sunny Consolvo, Jeffrey Hightower, WilliamG. Griswold,

and Eyal Lara. Mobility detection using everyday gsm traces. In Paul Dourish

and Adrian Friday, editors, UbiComp 2006: Ubiquitous Computing, volume 4206

of Lecture Notes in Computer Science, pages 212–224. Springer Berlin Heidelberg,

2006.

[29] Jeffrey Hightower, Sunny Consolvo, Anthony LaMarca, Ian Smith, and Jeff

Hughes. Learning and recognizing the places we go. In Proceedings of the 7th

International Conference on Ubiquitous Computing, UbiComp’05, pages 159–176,

Berlin, Heidelberg, 2005. Springer-Verlag.

[30] Gerald Bieber, Philipp Koldrack, Christopher Sablowski, Christian Peter, and

Bodo Urban. Mobile physical activity recognition of stand-up and sit-down tran-

BIBLIOGRAPHY 137

sitions for user behavior analysis. In Proceedings of the 3rd International Confer-

ence on PErvasive Technologies Related to Assistive Environments, page 50. ACM,

2010.

[31] Apiwat Henpraserttae, Surapa Thiemjarus, and Sanparith Marukatat. Accurate

activity recognition using a mobile phone regardless of device orientation and lo-

cation. In Body Sensor Networks (BSN), 2011 International Conference on, pages

41–46. IEEE, 2011.

[32] Toshiki Iso and Kenichi Yamazaki. Gait analyzer based on a cell phone with a

single three-axis accelerometer. In Proceedings of the 8th conference on Human-

computer interaction with mobile devices and services, pages 141–144. ACM, 2006.

[33] Jun Yang. Toward physical activity diary: motion recognition using simple ac-

celeration features with mobile phones. In Proceedings of the 1st international

workshop on Interactive multimedia for consumer electronics, pages 1–10. ACM,

2009.

[34] Pekka Siirtola and Juha Röning. Recognizing human activities user-independently

on smartphones based on accelerometer data. International Journal of Interactive

Multimedia & Artificial Intelligence, 1(5), 2012.

[35] Pravein Govindan Kannan, Seshadri Padmanabha Venkatagiri, Mun Choon Chan,

Akhihebbal L Ananda, and Li-Shiuan Peh. Low cost crowd counting using audio

tones. In Proceedings of the 10th ACM Conference on Embedded Network Sensor

Systems, pages 155–168. ACM, 2012.

[36] Chengwen Luo and Mun Choon Chan. Socialweaver: collaborative inference of

human conversation networks using smartphones. In Proceedings of the 11th ACM

Conference on Embedded Networked Sensor Systems, page 20. ACM, 2013.

138 BIBLIOGRAPHY

[37] Pengfei Zhou, Yuanqing Zheng, Zhenjiang Li, Mo Li, and Guobin Shen. IOdetector:

A generic service for indoor outdoor detection. In Proceedings of the 10th acm

conference on embedded network sensor systems, pages 113–126. ACM, 2012.

[38] Chengwen Luo, Hande Hong, and Mun Choon Chan. Piloc: A self-calibrating

participatory indoor localization system. In Information Processing in Sensor

Networks, IPSN-14 Proceedings of the 13th International Symposium on, pages

143–153. IEEE, 2014.

[39] Anshul Rai, Krishna Kant Chintalapudi, Venkata N Padmanabhan, and Rijurekha

Sen. Zee: zero-effort crowdsourcing for indoor localization. In Proceedings of the

18th annual international conference on Mobile computing and networking, pages

293–304. ACM, 2012.

[40] Jieying Zhang, E. Edwan, Junchuan Zhou, Wennan Chai, and O. Loffeld. Per-

formance investigation of barometer aided gps/mems-imu integration. In Position

Location and Navigation Symposium (PLANS), 2012 IEEE/ION, pages 598–604,

April 2012.

[41] M. Tanigawa, H. Luinge, L. Schipper, and P. Slycke. Drift-free dynamic height

sensor using mems imu aided by mems pressure sensor. In Positioning, Navigation

and Communication, 2008. WPNC 2008. 5th Workshop on, pages 191–196, March

2008.

[42] S. Vanini and S. Giordano. Adaptive context-agnostic floor transition detection

on smart mobile devices. In Pervasive Computing and Communications Work-

shops (PERCOM Workshops), 2013 IEEE International Conference on, pages 2–7,

March 2013.

BIBLIOGRAPHY 139

[43] Kartik Muralidharan, Azeem Javed Khan, Archan Misra, Rajesh Krishna Balan,

and Sharad Agarwal. Barometric phone sensors–more hype than hope! 15th

International Workshop on Mobile Computing Systems and Applications, 2014.

[44] Wei Shen, Yiannis Kamarianakis, Laura Wynter, Jingrui He, Qing He, Rick

Lawrence, and Grzegorz Swirszcz. Traffic velocity prediction using gps data: Ieee

icdm contest task 3 report. In Data Mining Workshops (ICDMW), 2010 IEEE

International Conference on, pages 1369–1371. IEEE, 2010.

[45] Dihua Sun, Hong Luo, Liping Fu, Weining Liu, Xiaoyong Liao, and Min Zhao. Pre-

dicting bus arrival time on the basis of global positioning system data. Transporta-

tion Research Record: Journal of the Transportation Research Board, (2034):62–72,

2007.

[46] Dalia Tiesyte and Christian S Jensen. Similarity-based prediction of travel times

for vehicles traveling on known routes. In Proceedings of the 16th ACM SIGSPA-

TIAL international conference on Advances in geographic information systems,

page 14. ACM, 2008.

[47] Sarfraz Nawaz and Cecilia Mascolo. Mining users’ significant driving routes with

low-power sensors. In Proceedings of the 12th ACM Conference on Embedded Net-

work Sensor Systems, SenSys ’14, pages 236–250, New York, NY, USA, 2014.

ACM.

[48] Yan Michalevsky, Gabi Nakibly, Aaron Schulman, and Dan Boneh. Power-

spy: Location tracking using mobile device power analysis. arXiv preprint

arXiv:1502.03182, 2015.

[49] Jingyu Hua, Zhenyu Shen, and Sheng Zhong. We can track you if you take the

metro: Tracking metro riders using accelerometers on smartphones. arXiv preprint

arXiv:1505.05958, 2015.

140 BIBLIOGRAPHY

[50] Haibo Ye, Tao Gu, Xianping Tao, and Jian Lu. Crowdsourced smartphone sensing

for localization in metro trains. In A World of Wireless, Mobile and Multimedia

Networks (WoWMoM), 2014 IEEE 15th International Symposium on, pages 1–9.

IEEE, 2014.

[51] Kevin Fall. A delay-tolerant network architecture for challenged internets. In

Proceedings of the 2003 conference on Applications, technologies, architectures,

and protocols for computer communications, SIGCOMM ’03, pages 27–34, New

York, NY, USA, 2003. ACM.

[52] Jörg Ott and Dirk Kutscher. Bundling the web: Http over dtn. Proceedings of

WNEPT, 2006.

[53] Aruna Balasubramanian, Yun Zhou, W Bruce Croft, Brian Neil Levine, and Aruna

Venkataramani. Web search from a bus. In Proceedings of the second ACM work-

shop on Challenged networks, pages 59–66. ACM, 2007.

[54] Jay Chen, Lakshminarayanan Subramanian, and Jinyang Li. Ruralcafe: Web

search in the rural developing world. In Proceedings of the 18th International

Conference on World Wide Web, WWW ’09, pages 411–420, New York, NY, USA,

2009. ACM.

[55] Mikko Pitkanen, Teemu Karkkainen, and Jörg Ott. Opportunistic web access via

wlan hotspots. In Pervasive Computing and Communications (PerCom), 2010

IEEE International Conference on, pages 20–30. IEEE, 2010.

[56] Anders Lindgren. Social networking in a disconnected network: fbdtn: facebook

over dtn. In Proceedings of the 6th ACM workshop on Challenged networks, pages

69–70. ACM, 2011.

[57] L Peltola. Dtn-based blogging. Helsinki University of Technology, Department of

Communications and Networking, 2007.

BIBLIOGRAPHY 141

[58] HTML5 DeviceOrientation event specification. http://www.w3.org/TR/

orientation-event/.

[59] Erik Nordström, Per Gunningberg, and Christian Rohner. Haggle: a data-centric

network architecture for mobile devices. In Proceedings of the 2009 MobiHoc S3

workshop on MobiHoc S3, MobiHoc S3 ’09, pages 37–40, New York, NY, USA,

2009. ACM.

[60] M. Skjegstad, F.T. Johnsen, T.H. Bloebaum, and T. Maseng. Mist: A reliable and

delay-tolerant publish/subscribe solution for dynamic networks. In New Technolo-

gies, Mobility and Security (NTMS), 2012 5th International Conference on, pages

1–8, 2012.

[61] A. Petz and C. Julien. The madman middleware for delay-tolerant networks. In

Poster at HotMobile 2010 (Proceedings of the 11th workshop on Mobile computing

systems and applications), 2010.

[62] Mauro Caporuscio, Pierre-Guillaume Raverdy, Hassine Moungla, and Valerie Is-

sarny. ubisoap: A service oriented middleware for seamless networking. In Proceed-

ings of the 6th International Conference on Service-Oriented Computing, ICSOC

’08, pages 195–209, Berlin, Heidelberg, 2008. Springer-Verlag.

[63] Anna-Kaisa Pietiläinen, Earl Oliver, Jason LeBrun, George Varghese, and

Christophe Diot. Mobiclique: middleware for mobile social networking. In Pro-

ceedings of the 2nd ACM workshop on Online social networks, WOSN ’09, pages

49–54, New York, NY, USA, 2009. ACM.

[64] Frdric Guidec and Yves Maho. Opportunistic content-based dissemination in dis-

connected mobile ad hoc networks. In International Conference on Mobile Ubiq-

uitous Computing, Systems, Services and Technologies, UBICOMM 2007, pages

49–54, 2007.

http://www.w3.org/TR/orientation-event/
http://www.w3.org/TR/orientation-event/

142 BIBLIOGRAPHY

[65] H. Ntareme and S. Domancich. Security and performance aspects of bytewalla: A

delay tolerant network on smartphones. In Wireless and Mobile Computing, Net-

working and Communications (WiMob), 2011 IEEE 7th International Conference

on, pages 449–454, 2011.

[66] Hao Zhuang, Hervé Ntareme, Zhonghong Ou, and Björn Pehrson. A service adap-

tation middleware for delay tolerant networks based on http simple queue ser-

vice. In Proc. of the 6th Workshop on Networked Systems for Developing Regions

(NSDR’12), 2012.

[67] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hallsteinsen,

Jorge Lorenzo, Alessandro Mamelli, and Ulrich Scholz. Software engineering for

self-adaptive systems. chapter MUSIC: Middleware Support for Self-Adaptation in

Ubiquitous and Service-Oriented Environments, pages 164–182. Springer-Verlag,

Berlin, Heidelberg, 2009.

[68] Darren Carlson, Bashar Altakrouri, and Andreas Schrader. Ambientweb: Bridging

the web’s cyber-physical gap. In Internet of Things (IOT), 2012 3rd International

Conference on the, pages 1–8. IEEE, 2012.

[69] Cover is an android-only lockscreen that shows apps when you need them. http:

//techcrunch.com/2013/10/24/cover-android/.

[70] Google’s Fused Location API, Google I/O 2013. https://www.youtube.com/

watch?v=URcVZybzMUI.

[71] Apple M7. http://en.wikipedia.org/wiki/Apple_M7.

[72] Google adds low-power step counting to android 4.4. http://mobihealthnews.

com/26977/google-adds-low-power-step-counting-to-android-4-4/.

http://techcrunch.com/2013/10/24/cover-android/
http://techcrunch.com/2013/10/24/cover-android/
https://www.youtube.com/watch?v=URcVZybzMUI
https://www.youtube.com/watch?v=URcVZybzMUI
http://en.wikipedia.org/wiki/Apple_M7
http://mobihealthnews.com/26977/google-adds-low-power-step-counting-to-android-4-4/
http://mobihealthnews.com/26977/google-adds-low-power-step-counting-to-android-4-4/

BIBLIOGRAPHY 143

[73] Weathersignal. https://play.google.com/store/apps/details?id=com.

opensignal.weathersignal.

[74] Pressurenet. https://play.google.com/store/apps/details?id=ca.

cumulonimbus.barometernetwork.

[75] Semefab Limited. MEMS Pressure Sensors: Technologies and Fabrication. 2011

Whitepaper.

[76] Stephen Ming-Chang Hou. Design and fabrication of a MEMS-array pressure

sensor system for passive underwater navigation inspired by the lateral line. PhD

thesis, Massachusetts Institute of Technology, 2012.

[77] Hardware and software guidelines for use of the LPS331AP, November 2012.

[78] Greg Milette and Adam Stroud. Professional Android Sensor Programming. Wiley,

2012.

[79] Kartik Sankaran, Minhui Zhu, Xiang Fa Guo, Akkihebbal L. Ananda, Mun Choon

Chan, and Li-Shiuan Peh. Using mobile phone barometer for low-power transporta-

tion context detection. In Proceedings of the 12th ACM Conference on Embedded

Network Sensor Systems, SenSys ’14, pages 191–205, New York, NY, USA, 2014.

ACM.

[80] Bo-Jhang Ho, Paul Martin, Prashanth Swaminathan, and Mani Srivastava. From

pressure to path: Barometer-based vehicle tracking. In Proceedings of the 2nd

ACM International Conference on Embedded Systems for Energy-Efficient Built

Environments, pages 65–74. ACM, 2015.

[81] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for

spoken word recognition. Acoustics, Speech and Signal Processing, IEEE Transac-

tions on, 26(1):43–49, 1978.

https://play.google.com/store/apps/details?id=com.opensignal.weathersignal
https://play.google.com/store/apps/details?id=com.opensignal.weathersignal
https://play.google.com/store/apps/details?id=ca.cumulonimbus.barometernetwork
https://play.google.com/store/apps/details?id=ca.cumulonimbus.barometernetwork

144 BIBLIOGRAPHY

[82] Eamonn J Keogh and Michael J Pazzani. Scaling up dynamic time warping for

datamining applications. In Proceedings of the sixth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 285–289. ACM, 2000.

[83] Michel Marie Deza and Elena Deza. Encyclopedia of distances. Springer, 2009.

[84] AnYuan Guo and Hava Siegelmann. Time-warped longest common subsequence

algorithm for music retrieval. 2004.

[85] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear

time and space. Intelligent Data Analysis, 11(5):561–580, 2007.

[86] Toni Giorgino. Computing and visualizing dynamic time warping alignments in r:

the dtw package. Journal of statistical Software, 31(7):1–24, 2009.

[87] Samuli Hemminki, Petteri Nurmi, and Sasu Tarkoma. Accelerometer-based trans-

portation mode detection on smartphones. In Proceedings of the 11th ACM Con-

ference on Embedded Networked Sensor Systems, SenSys ’13, pages 13:1–13:14,

New York, NY, USA, 2013. ACM.

[88] Leonard Kaufman and Peter Rousseeuw. Clustering by means of medoids. North-

Holland, 1987.

[89] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis. Journal of computational and applied mathematics, 20:53–65,

1987.

[90] Paolo Tormene, Toni Giorgino, Silvana Quaglini, and Mario Stefanelli. Matching

incomplete time series with dynamic time warping: an algorithm and an applica-

tion to post-stroke rehabilitation. Artificial intelligence in medicine, 45(1):11–34,

2009.

BIBLIOGRAPHY 145

[91] Yasushi Sakurai, Christos Faloutsos, and Masashi Yamamuro. Stream monitoring

under the time warping distance. In Data Engineering, 2007. ICDE 2007. IEEE

23rd International Conference on, pages 1046–1055. IEEE, 2007.

[92] Muhammad Tayyab Asif, Justin Dauwels, Chong Yang Goh, Ali Oran, Esmail

Fathi, Muye Xu, Menoth Mohan Dhanya, Nikola Mitrovic, and Patrick Jaillet.

Spatial and temporal patterns in large-scale traffic speed prediction. Intelligent

Transportation Systems, IEEE Transactions on, 15(2):794–804, 2014.

[93] Wanli Min and Laura Wynter. Real-time road traffic prediction with spatio-

temporal correlations. Transportation Research Part C: Emerging Technologies,

19(4):606–616, 2011.

[94] Wei Shen and L. Wynter. Real-time road traffic fusion and prediction with gps

and fixed-sensor data. In Information Fusion (FUSION), 2012 15th International

Conference on, pages 1468–1475, July 2012.

[95] Ella Bolshinsky and Roy Freidman. Traffic flow forecast survey. Technion–Israel

Institute of Technology.–2012.–Technical Report.–15 p, 2012.

[96] OSGi Alliance. About the osgi service platform. 2007 Technical Whitepaper.

[97] Dan Feldman, Andrew Sugaya, Cynthia Sung, and Daniela Rus. idiary: From gps

signals to a text-searchable diary. In Proceedings of the 11th ACM Conference on

Embedded Networked Sensor Systems, page 6. ACM, 2013.

[98] Fang Zhao, Ajinkya Ghorpade, Francisco Câmara Pereira, Christopher Zegras,

and Moshe Ben-Akiva. Stop detection in smartphone based travel surveys. In 10th

International Conference on Transport Survey Methods, Australia, 2014.

146 BIBLIOGRAPHY

[99] Tâm Huynh, Mario Fritz, and Bernt Schiele. Discovery of activity patterns using

topic models. In Proceedings of the 10th international conference on Ubiquitous

computing, pages 10–19. ACM, 2008.

[100] Donald J Patterson, Dieter Fox, Henry Kautz, and Matthai Philipose. Fine-grained

activity recognition by aggregating abstract object usage. In Wearable Computers,

2005. Proceedings. Ninth IEEE International Symposium on, pages 44–51. IEEE,

2005.

[101] Liang Wang, Tao Gu, Hanhua Chen, Xianping Tao, and Jian Lu. Real-time ac-

tivity recognition in wireless body sensor networks: from simple gestures to com-

plex activities. In Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2010 IEEE 16th International Conference on, pages 43–52. IEEE, 2010.

[102] Alex S Park and James R Glass. Unsupervised pattern discovery in speech. Audio,

Speech, and Language Processing, IEEE Transactions on, 16(1):186–197, 2008.

	Summary
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Transportation: a country's lifeline
	Tackling congestion using public-transport
	Smartphones for public-transport apps
	Challenges and limitations of existing apps
	Detecting the travel context
	Bus route and bus-stop detection
	Deploying specialized applications

	Thesis contributions
	System architecture
	Thesis structure

	Related work
	Features of public-transport apps
	Directions
	Estimated Time of Arrival (ETA)
	Next bus
	Activity diaries
	Other services

	Context detection using smartphones
	GPS
	Cellular and WiFi
	Accelerometer
	Audio
	Light
	Magnetic
	Barometer

	Bus route and bus-stop detection
	Traditional GPS-based approaches
	Approaches using cell ID
	Approaches using low-power sensors
	Subway-specific approaches

	Web-based applications using DTN
	HTTP-over-DTN browsing
	Web-based DTN apps
	PhoneGap
	QR codes
	Upcoming HTML5 APIs
	DTN middleware for smartphones
	Service-adaptation middleware
	Dynamix

	Barometer-based transportation context detection
	Introduction
	Motivation
	Background
	Methodology
	Activity definitions
	Intuition behind barometer context detection
	Overview of the context detection algorithm
	Pre-processing
	Vehicle detection
	Walk and Idle detection
	High-level stitching
	Choice of thresholds and window sizes

	Evaluation
	Accuracy
	Simulation using map elevation data
	Latency
	Power usage
	Fusion of barometer and accelerometer

	Discussion
	Sensor batching
	Combining temperature with pressure
	Integration with the FMS app

	Conclusion

	Barometer-based vehicle context detection
	Introduction
	System overview and motivation
	System overview
	Motivation for using the Barometer
	Motivation for user collaboration

	System implementation
	Background
	Overview of steps involved
	Assumptions
	Data smoothing
	Journey clustering (at home)
	Route recognition and bus-stop detection (real-time)
	Collaboration (real-time)
	Bus-stop discovery (at home)

	Evaluation
	Real-world data
	Simulation

	Phone implementation
	Execution time
	Power consumption

	Discussion
	Conclusion

	On-the-go application deployment
	Introduction
	Design and implementation
	Web app support

	Adding context-awareness
	Motivation for context-awareness
	Integrating context into the framework

	Sample DTN web application
	Use of context-awareness

	Evaluation
	Server versus device-to-device
	Deployment latency
	Performance overhead
	Memory overhead
	Evaluation of context-awareness

	Discussion
	Conclusion

	Conclusion and future work
	Contributions
	Future work

	Bibliography

