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Summary 

The Parkinson’s Disease-associated protein, Leucine-rich Repeat Kinase 2 

(LRRK2), is expressed in myeloid cells such as macrophages and dendritic cells 

(DCs) and is possibly involved in the host immune response against pathogens. In the 

context of inflammatory bowel disease, LRRK2, together with the ncRNA repressor 

of the nuclear factor of activated T cells (NFAT) (NRON) complex has been reported 

to be a negative regulator of NFAT. However, as of now the role of LRRK2 and the 

NRON complex has not been looked at in the context of fungal infection. 

This project investigates LRRK2 and the calcineurin/NFAT pathway in DCs. 

DCs were found to express LRRK2 and that LRRK2 indeed negatively regulate the 

NFAT pathway in response to Aspergillus. In steady state DCs, LRRK2 and NFAT 

were found to be localized on endosomes and lysosomes. When DCs were stimulated 

with Aspergillus, LRRK2 expression was found to be decreased on both the gene and 

protein level, and this is possibly achieved by the degradation of LRRK2 by the non-

canonical autophagy induced by fungi. In addition, the NFAT pathway itself was 

found to be regulated by phagocytosis and early stages of autophagy, but not by late 

stages of autophagy. The degradation of LRRK2 by autophagy was further 

investigated by looking at LRRK2 expression in lysosomes of DCs and by electron 

microscopy. Aspergillus-stimulated DCs were found to have an increase presence of 

multilamellar bodies, and that these multilamellar bodies expressed LRRK2. Also, 

components of the NRON complex were knocked down in DCs to see how this 

affects DC IL-2 production in response to Aspergillus, and it was observed, contrary 

to expectations, that the NRON complex components were not regulating NFAT 

pathway negatively as LRRK2. When other cytokines produced by Aspergillus-

stimulated DCs were looked at, it was found that the different NRON complex 
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components were also influencing the cytokine response is that downstream of other 

signaling pathways other than the Ca2+-NFAT-IL-2 axis. 

The results shed new light on the complexity of control of the NFAT pathway 

by LRRK2 and the endosome-lysosome network, and hint at a more complicated role 

for the NRON complex protein members in the immune response of DCs to 

Aspergillus. 

 

(358 words)  
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Chapter 1. Literature Review 

 

1.1. The Ca2+/calcineurin/NFAT pathway 

The nuclear factor of activated T cell (NFAT) family proteins were first 

discovered as transcription factors that bind to the human IL-2 promoter in T cells 

(Shaw et al., 1988). The NFAT family comprises five members, namely NFAT1 (also 

known as NFATc2 or NFATp), NFAT2 (also known as NFATc1 or NFATc), NFAT3 

(also known as NFATc4), NFAT4 (also known as NFATc3 or NFATx), and NFAT5 

(also known as TonE-BP or NFATL1) (Crabtree & Olson, 2002). Of the five 

members, the first 4 are regulated by Ca2+ signaling. Normally, NFAT resides in the 

cytoplasm in its phosphorylated, inactive state. In addition, cytoplasmic NFAT is 

bound by calcineurin, a phosphatase complex composed of three subunits: a catalytic 

A subunit, a regulatory B subunit and calmodulin. In innate immune cells, response to 

lipopolysaccharide (LPS) binding to toll-like receptor 4 (TLR4) or particulate β-

glucan binding to dectin-1, SYK activates phospholipase Cγ2 (PLCγ2), inositol 

triphosphate (IP3) and subsequent Ca2+ flux into the cell (Fric et al., 2012). NFAT 

signaling is initiated when the free concentration of intracellular Ca2+ rises above the 

threshold of 400nM. This concentration of intracellular calcium is considered to be 

sufficient to activate calcineurin by withdrawal of an inhibitory peptide from this 

complex. Activated calcineurin catalyzes the dephosphorylation of NFAT, allowing 

NFAT to translocate to the nucleus and induce transcription of target genes (Wu et al., 

2007) (Figure 1). NFAT has been found to mediate diverse functions in numerous 

other immune and non-immune cell types as reviewed in Fric et al. (2012) (Table 1). 

NFAT phosphorylation for export back to the cytoplasm is rapidly accomplished by 

first nuclear priming kinase, dual-specificity tyrosine kinase 1a (Dyrk1a) or protein 
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kinase A (PKA), and then glycogen synthase kinase 3 (GSK-3). It is this efficient 

mechanism of NFAT nuclear export that enables discrimination of stimuli that lead to 

brief versus prolonged Ca2+ signals (Wu et al., 2007). 

 

!
Figure 1: The NFAT pathway in DCs (Fric et al., 2012). NFAT is a transcription factor. At resting 
state, NFAT is phosphorylated and is located in the cytoplasm of the cell. Ligand binding to PRRs, 
TLR4 or dectin, initiates downstream signaling which leads to calcium flux. The increase of calcium 
concentration in the cell activates calmodulin and the calcineurin complex, leading to the activation of 
NFAT by dephosphrylation. NFAT translocation to the nucleus and gene transcription. One of the 
cytokines produced by DCs downstream of NFAT signaling is IL-2. 

 

One of the cytokines expressed downstream of the NFAT pathway is 

interleukin-2 (IL-2). 

 
 
 
1.2. IL-2 

 IL-2 is a cytokine first identified in the 1970s as the factor in conditioned 

medium derived from phytohemagglutinin (PHA)-stimulated human blood 

lymphocytes that could generate T cells from bone marrow cells suspensions (Morgan 

et al., 1976). IL-2 is produced mainly by T lymphocytes, but also to some extent by 
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natural killer (NK) cells and natural killer T (NKT) cells. This cytokine is now known 

to be important not just for T cell survival, but all facets of lymphocyte function. For  

example, IL-2 is important in influencing CD8+ T cells in all aspects of an immune 

response, such as their initial expansion, contraction, formation of memory, and also 

their secondary expansion (Boyman & Sprent, 2012). 

 
 
Table 1: Different functions of NFAT transcription factors in myeloid cells (Fric et al., 2012) 

Cell Type NFAT Function Ref. 

Dendritic Cells NFAT1 
NFAT2 

Regulation of DC life cycle/apoptosis of terminally 
differentiated DCs in response to LPS (Zanoni et al., 2009) 

Regulation of IL-2, IL-10 and IL-12 expression 

(H. S. Goodridge et al., 
2007; Granucci et al., 
2003; Granucci et al., 
2004; Zanoni et al., 
2005) 

Activation of NK Cells (Granucci et al., 2004; 
Granucci et al., 2006) 

Macrophages 

NFAT1 
NFAT2 
NFAT4 
NFAT5 

Regulation of IL-6, IL-10, and IL-12 and TNFα 

(Elloumi et al., 2012; H. 
S. Goodridge et al., 
2007; Granucci et al., 
2006; Liu et al., 2011) 

Regulation of multiple TLR-induced genes, eg. Nos2 
(inducible nitric oxide synthase (iNOS)) (Buxade et al., 2012) 

Mast Cells NFAT1 
NFAT2 

Regulation of mast cell activation during hypoxia (Walczak-Drzewiecka 
et al., 2008) 

Enhanced mast cell survival after FcεRI activation 
due to regulation of A1 expression 

(Kitaura et al., 2004; 
Xiang et al., 2001) 

Regulation of IL-13 and TNF expression (Klein et al., 2006) 

Neutrophils NFAT2 
NFAT4 

Regulation of IgE-mediated expression of 
cyclooxygenase and release of prostaglandin (Vega et al., 2007) 

Resistance to C. albicans infection – genes involved 
include IL-10, Cox2, Egr1, and Egr2 (Greenblatt et al., 2010) 

Eosinophils NFAT2 
NFAT4 Degranulation, cytokine release, apoptosis (Jinquan et al., 1999; 

Meng et al., 1997) 

Basophils NFAT2 Regulation of IL-4 production (Qi et al., 2011; 
Schroeder et al., 2002) 

Megakaryocytes NFAT2 
NFAT3 

Role in megakaryocyte differentiation (Kiani et al., 2007) 
Mediates CD154 expression (Crist et al., 2008) 

Osteoclasts NFAT2 Master regulator of osteoclastogenesis 
(Negishi-Koga & 
Takayanagi, 2009; 
Takayanagi, 2007) 

NK cells NFAT1 
NFAT2 

Inducible NFAT expression (Aramburu et al., 1999) 

Mediates CD16-induced activation of cytokine genes (Dybkaer et al., 2007; 
Wang et al., 2007) 

Role in cytotoxicity and cell proliferation (Dybkaer et al., 2007; 
Kim et al., 2010) 
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1.2.1. Dendritic cells and IL-2 

 It has been shown that dendritic cells (DCs) also have the ability to 

produce IL-2 (Granucci et al., 2001; Wuest et al., 2011; Zelante et al., 2012). 

DCs are instrumental in the immune system for inducing pathogen-specific 

responses. Two types of DCs are reported in literature: Plasmacytoid DCs 

(pDCs), and classical DCs (cDCs) as reviewed by Merad et al. (2013). In 

particular, pDCs are part of a small DC subset distinct from the cDCs in their 

morphology and resembling plasma cells. cDCs, on the other hand, encompass 

all DCs that are not pDCs, such as the cluster of differentiation (CD)8+ and 

CD11b+ resident lymphoid DCs, tissue-migratory DCs, and Langerhans cells. 

cDCs function as sentinels, hence they are sensitive to environmental stimuli. 

In the laboratory, murine DCs are often cultured in vitro from bone 

marrow-derived progenitors using cytokines such as colony stimulating factor 

(CSF)-2 (also known as granulocyte-macrophage colony-stimulating factor 

(GM-CSF), or fms-like tyrosine kinase 3 ligand (Flt3L)). DCs generated by 

culturing in GM-CSF was thought to be the semi- and non-adherent fraction of 

the culture that is enriched in CD11c+ Major histocompatibility complex class 

II+ (MHCII+) cells resembling tissue DCs (Inaba et al., 1992). However, it was 

recently reported that this CD11c+MHCII+ semi- to non-adherent fraction 

actually composed of two cell populations – DCs and macrophages – that 

differ from each other in terms of functionality and gene expression (Helft et 

al., 2015). Culturing bone marrow progenitors in Flt3L, on the other hand, it is 

possible to generate three types of cDC subsets: B220-

CD11bhighCD172ahighCD24lowClec9A− cDCs, 
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CD11blowCD172alowCD24highClec9A+ cDCs, and B220+ pDCs (Merad et al., 

2013). 

In line with their role as sentinels of the body, DCs express several 

pathogen recognition receptors (PRRs). Dectin-1 is one such PRR that is 

classified as a C-type lectin receptor (CLR) and is found on numerous immune 

cells of both human and mice. β-glucans (either β(1→3)- or β(1→6)-linked 

glucans) are the only ligand of dectin-1 (Brown, 2006). Upon binding to β-

glucans, dectin-1 clusters at the β-glucan particle and induces the formation of 

a “phagocytic cup”. Signaling is then initiated by SRC kinase-mediated 

phosphorylation of the immunoreceptor tyrosine-based activation motif 

(ITAM)-like motif located on the cytoplasmic tail of dectin-1. This recruits 

SH2-domain-containing protein spleen tyrosine kinase (SYK). These events 

occur within 1 minute of binding of β-glucan to dectin-1, and are dependent 

on that the β-glucan is particulate or immobilized on a surface. Soluble β-

glucans do not induce these events (Goodridge et al., 2011). SYK then 

activates the caspase recruitment domain-containing protein 9 (CARD9) 

pathway. Dectin-1 also activates the RAF pathway. Both these pathways 

activate canonical and non-canonical nuclear factor kappa-light-chain-

enhancer of activated B cells (NFκB) and downstream gene expression 

(Geijtenbeek & Gringhuis, 2009). Another pathway that is activated by dectin-

1 in DCs is the Ca2+/calcineurin/nuclear factor of activated T cells (NFAT) 

pathway (Goodridge et al., 2007). 

NFAT signaling has been shown to regulate cytokine IL-2 expression 

in DCs stimulated in vitro with whole glucan particles (WGP) (Fric et al., 

2014), which are a particulate form of β-glucan derived from the yeast 
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Saccharomyces cereviseae. Also, it has been reported that the NFAT pathway 

is activated in DCs in response to live Candida albicans and zymosan, another 

type of particulate β-glucan, binding to dectin-1 and this leads to the 

production of cytokines including IL-2 (Goodridge et al., 2007). Given that 

IL-2 is important for the survival and activation of T cells (Boyman & Sprent, 

2012), and that major T helper (Th) cell populations that arise as a response to 

fungal infection include inflammatory Th1 and Th17 cell types as well as the 

immunosuppressive T regulatory (Treg) cell type (Romani, 2011), these point 

to a possible role of DC-derived IL-2 in fungal immunity. 

In contribution to understanding how DC-derived IL-2 is involved in 

the emergence of the Th response in fungal infections in vivo, the laboratory 

recently discovered that the environmental fungus, Aspergillus fumigatus, 

induces IL-2 expression production in lung CD103+ DCs through the Ca2+-

Calcineurin-NFAT signaling pathway. This expression of IL-2 in DCs was 

found to be important for T cell proliferation and modulation of Th17 

polarization, as well as for controlling lung inflammation and susceptibility to 

invasive pulmonary Aspergillosis. Single-cell mass cytometry by time-of-

flight (CyTOFTM mass cytometer) analysis of expanded pulmonary T cells 

revealed that the conditional lack of IL-2 expression in DCs leads to the 

expansion of a subset of T cells with a phenotype similar to that of IL-17+ T 

memory stem cells were increased, and that express a higher amount of β-

catenin (Figure 2). These results are the first to identify a biologically relevant in 

vivo function for IL-2 production by DCs as well as a new function for the Ca2+-

Calcineurin-NFAT–IL-2 signaling pathway as a regulator of TH17 cell plasticity 

and functionality. β-catenin stabilization is known to exert a powerful effect on 
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the prevention of inflammatory disease, yet we demonstrated that not only 

does it act to enhance survival of existing Treg cells and promote 

unresponsiveness in precursors of T effector cells,!but it also associates with 

IL-23s ability to differentiate and stabilize a pool of memory stem cells that 

represent a durable source of mostly pathogenic TH17 cells.  Thus, although 

IL-23 has been already described as being pathogenic in TH17-dependent 

innate immunity (Wu et al., 2013), our data provide the first evidence that, in 

mature TH17 cells, a balance between IL-2 and IL-23 productions by CD103+ 

DCs regulates TH17-cell longevity and function in the lung. Targeting the IL-

23–IL- 17 immune axis might represent therapeutically useful means of 

controlling immunopathology in infection (Zelante et al., 2015). 

!
Figure 2: The influence of cytokines IL-2 and IL-23 on Th17 polarization by CD103+ 
DCs. IL-2 and IL-23 from CD103+ DCs are important for the induction of Th17 cell responses 
in fungal infection (left). This IL-2 production from CD103+ DCs is mediated by the NFAT 
pathway (inset). In the absence of IL-2, Th17 cells had a phenotype more similar to IL-17+ T 
memory stem cells (right). It was found that IL-2 affects the polarization of Th17 cells 
through the modulation of STAT phosphorylation (Zelante et al., 2015). 
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1.2.1.1. D1 cells 

In 1997, an in vitro cell model of DCs, called D1 cells, was 

described. These cells were generated by culturing single cell 

suspensions of spleens obtained from C57BL/6 mice in conditioned 

medium produced by NIH-3T3 cells overexpressing rGM-CSF. The 

survival of D1 cells is dependent on the cytokine, GM-CSF. D1 cells, 

like bone-marrow derived DCs, have the phenotype of immature DCs. 

They express CD11c, FcγII/III receptor and F4/80. D1 cells also 

express major histocompatibility complex class I (MHC class I) and 

MHC class II, as well as co-stimulatory molecules CD40 and B7.1 

(Winzler et al., 1997). While their PRR and cytokine receptor 

expression has not been reported in literature, D1 cells have been 

successfully induced to undergo maturation by microbial stimuli such 

as LPS (Schuurhuis et al., 2000; Winzler et al., 1997), β-glucan (Fric et 

al., 2014; Yu et al., 2015), bacteria (Granucci et al., 2001) and fungi 

(Zelante et al., 2015), as well as inflammatory cytokines such as tumor 

necrosis factor-α (TNFα) or IL-1β (Winzler et al., 1997). Maturation 

leads to D1 cells upregulating their MHC class II, B7.2 and CD40 

surface expression (Winzler et al., 1997). 
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1.3. LRRK2 

1.3.1. LRRK2 and its expression in the immune system 

First discovered in genome-wide linkage studies of patients of 

Parkinson’s Disease (Funayama et al., 2002; Paisán-Ruíz et al., 2004), the 

leucine-rich repeat kinase 2 (LRRK2) protein is part of the ROCO protein 

family (Lewis, 2009). It is 2527-amino acids long and consists of six defined 

domains – the N-terminal ankyrin repeats domain (ANK), leucine-rich repeats 

domain (LRR), Ras of complex proteins domain (ROC), C-terminal of ROC 

domain (COR), a serine/threonine kinase domain, and lastly a C-terminal 

WD40 domain (Figure 2). Currently, little is known about the function of 

these domains. The function of the ANK and LRR domains in the LRRK2 

protein is unclear, but it has been speculated that the ANK domain is involved 

in protein polymerization (Lu et al., 2010). The ROC domain, and the COR 

domain have GTPase activity (Deng et al., 2011; Smith et al., 2005; West et 

al., 2007). The WD40 domain is a conserved protein interaction domain, 

shown to be needed for the autophosphorylation of the LRRK2 protein, and 

could be important in the dimerization and function of LRRK2 (Greggio et al., 

2008). 

 

 

!
Figure 3: Schematic diagram of the LRRK2 protein domains. The LRRK2 protein 
consists of 6 domains – the N-terminal ankyrin repeats domain (ANK), leucin-rich repeats 
domain (LRR), Ras of complex proteins domain (ROC), C-terminal of ROC domain (ROC), a 
kinase domain, and lastly a WD40 domain (adapted from Lewis (2009)). 
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The majority of studies on LRRK2 have been focused on linking 

various point mutations in the various domains of LRRK2 with Parkinson’s 

Disease (as reviewed by Mata et al. (2006)), and the contribution of mutated 

LRRK2 protein to neuronal toxicity (Jorgensen et al., 2009; Smith et al., 2005; 

West et al., 2007). Studies have also shown a possible involvement of the 

immune system in Parkinson’s Disease pathogenesis. Inflammation is thought 

to lead to the neurodegeneration and neurotoxicity seen in Parkinson’s Disease 

(Liu, 2006; Whitton, 2007). Also, it is known that patients of Parkinson’s 

Disease are often hospitalized for various types of infections such as urinary 

tract infection and pneumonia (Gerlach et al., 2011). In addition, LRRK2 has 

now been genetically linked to two other chronic inflammatory diseases, 

Crohn’s Disease (Barrett et al., 2008) and leprosy (Sun et al., 2011; Zhang et 

al., 2009), and is being studied as a potential therapeutic option for Human 

Immunodeficiency Virus-1 (HIV-1) associated neurocognitive disorders 

(HANDS) (Marker et al., 2012). These studies give initial clues to the 

involvement of LRRK2 in the immune system. 

Studies have shown that in addition to being expressed in many body 

tissues including regions of the brain (Paisán-Ruíz et al., 2004), LRRK2 is 

also expressed in cell populations of the human immune system. LRRK2 is 

highly expressed in human peripheral blood mononuclear cell (PBMC) 

fractions, CD14+ monocytes and CD19+ B cells (Gardet et al., 2010; Hakimi et 

al., 2011; Thévenet et al., 2011). Interestingly, the mRNA expression of 

LRRK2 may not correlate with protein levels in the cell, as was found in 

comparison of the CD14+16− and CD14+CD16+ monocyte populations by 

Thévenet et al. (2011). While the mRNA level expression of LRRK2 was 
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comparable between these two monocyte populations, LRRK2 protein was 

expressed 14-fold more in the CD14+CD16+ monocytes than the CD14+16− 

population (Thévenet et al., 2011). LRRK2 is expressed also in human 

CD11b+ DCs and CD56+ NK cells (Gardet et al., 2010), but not in red blood 

cells or granulocytes (Hakimi et al., 2011). In human T cells, information 

regarding LRRK2 expression is not consistent among studies. While some 

report that both CD4+ and CD8+ cells express LRRK2 (Hakimi et al., 2011; 

Thévenet et al., 2011), the level of LRRK2 expression differed between 

studies. Another study found that LRRK2 was not expressed in CD4+ T cells, 

but expression in CD8+ T cells were not consistent across human tissue 

datasets and cDNA library (Gardet et al., 2010). 

In mice, LRRK2 expression is reported to be present in bone marrow-

derived macrophages (BMDMs) and bone marrow-derived dendritic cells 

(BMDCs), CD4+ T cells (Liu et al., 2011), as well as in B cells (Maekawa et 

al., 2010) (in particular only in B-2 cells but not B-1 cells (Kubo et al., 2010)). 

In addition, Hakimi et al. (2011) also looked at LRRK2 expression in mouse 

BMDMs via western blotting, and found that a high molecular weight (HMW) 

variant (<290kD) of LRRK2 was present in these cells, as well as the lysates 

of PBMC fractions, but not detected in the lysate of other cell types. The 

composition and significance of this LRRK2 HMW variant is currently 

unknown. 
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1.3.2. LRRK2 and inflammatory diseases 

Other studies looking at the involvement of LRRK2 in inflammatory 

diseases, as well as in the response to microbes and pathogen-associated 

molecular patterns (PAMPs) have given some clues regarding the role of this 

protein in these contexts. 

Besides Parkinson’s Disease, LRRK2 has been associated with 

inflammatory bowel disease (IBD), specifically with the chronic inflammatory 

condition of Crohn’s disease (Barrett et al., 2008; Törkvist et al., 2010), but 

not with another IBD called ulcerative colitis (Gardet et al., 2010; Törkvist et 

al., 2010). Also, macrophage-differentiated THP-1 cells and PBMCs exposed 

to the inflammatory cytokine interferon gamma (IFNγ) have increased LRRK2 

expression on both the gene and protein level (Gardet et al., 2010). In the 

context of experimental colitis, sublethally irradiated mice exhibit worse 

disease symptoms when they were reconstituted with bone marrow from 

LRRK2-deficient mice. This suggested that LRRK2 could be controlling 

inflammation, rather than promoting it. Also, the role of LRRK2 in 

inflammation has been studied in the context of exposure to several microbial 

PAMPs. It has been shown that LRRK2 mRNA levels are significantly 

upregulated in BMDMs that have been exposed to a variety of TLR ligands 

(Poly I:C, LPS, R837 and CpG), while stimulation of TLR2 ligand 

Pam3CSK4 led to a decrease of LRRK2 mRNA compared to the unstimulated 

control. LRRK2 protein levels were also upregulated in BMDMs following 

lentiviral transduction. In contrast, when the NOD-like receptor (NLR) ligands 

L18 and C12 were used to stimulate BMDMs, they did not seem to induce an 

increase in LRRK2 protein levels (Hakimi et al., 2011). Similarly, in 
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microglia, LPS stimulation also causes an upregulation of LRRK2 (Gillardon 

et al., 2012; Moehle et al., 2012) and this was seen in a dose- and time-

dependent manner (Moehle et al., 2012). In support of this, knock down of 

LRRK2 in microglia attenuates the inflammation response to LPS (Kim et al., 

2012). However, contradictory to these studies is the study by Liu et al. (2011) 

that found LPS induced downregulation of protein levels in BMDMs. The 

discrepancy might be explained by the different durations of stimulation in 

these studies – Liu et al. (2011) only performed stimulations in time points up 

to one hour, while Hakimi et al. (2011), Gillardon et al. (2012) and Moehle et 

al. (2012) stimulated their cells for much longer periods of 5, 18 and 12 hours 

respectively. Furthermore, LRRK2 may have different functions in different 

cell types. In addition, LRRK2 phorphorylation at serine residues S910 and 

S935 post-TLR stimulation in BMDMs (Dzamko et al., 2012) and as well in 

microglia in response to HIV-1 Tat protein (Marker et al., 2012) has been 

shown. While the significance of these phosphorylations are not yet known, it 

could be a way for microbes to influence LRRK2 function, as suggested by 

Marker et al. (2012). 

Further evidence of LRRK2 involvement in the response to 

extracellular microbial signals is presented by Moehle et al. (2012), who 

showed that small molecular inhibitors of LRRK2 kinase function led to 

attenuation of pro-inflammatory signaling in response to LPS-treated 

microglia. However this is contradicted by the study done by Gillardon et al. 

(2012) who found that in FVB mice-derived microglial cells that have been 

transduced with GTPase-mutated LRRK2, where the GTPase activity is 

decreased, had significantly increased production of TNFα, but significantly 
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downregulated secretion of the anti-inflammatory cytokine IL-10 in response 

to LPS. This result was surprising since there is evidence of counter-regulation 

of the kinase and GTPase function of LRRK2 between each other (Biosa et al., 

2013; Taymans et al., 2011; Xiong et al., 2012). 

 

1.3.3. LRRK2 as a signaling molecule 

In addition, given that LRRK2 is a large protein with GTPase activity 

and kinase function, it is not surprising that is involved in various signaling 

pathways. For example, LRRK2 has been shown to be involved in pathways 

that are activated downstream of TLR activation, including the NFκB 

pathway. It has been shown that LRRK2 phosphorylation at Ser910, Ser935 

and Ser955 can be mediated by various components of the NFκB pathway 

following TLR stimulation (Dzamko et al., 2012). 

 Also, it has been shown that LRRK2 can activate the NFκB pathway 

independent of its kinase activity (Gardet et al., 2010). The mitogen-activated 

protein kinase (MAPK) pathway is another pathway that LRRK2 has been 

found to interact with. Gloeckner et al. (2009) has shown that LRRK2 is able 

to phosphorylate MAP kinase kinase kinases (MKKK). Also, LRRK2 

Parkinson’s Disease mutants, such as the mutants G2019S and I2020T which 

have an increase in kinase activity (West et al., 2005), have been found to 

increase phosphorylation of MAP kinase kinase 6 (MKK6) (Gloeckner et al., 

2009), MKK4 (Chen et al., 2012) and overactivation of the MAPK pathway, 

leading to increased autophagy levels (Bravo-San Pedro et al., 2013). Other 

pathway that LRRK2 is involved in include the Wnt pathway in dopaminergic 

neuron cutures (Berwick & Harvey, 2012; Sancho et al., 2009) and the 
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nicotinic acid adenine dinucleotide phosphate (NAADP)-sensitive lysosomal 

Ca2+ signaling in the context of autophagy (Gómez-Suaga et al., 2012). The 

involvement of LRRK2 in the immune context of both the Wnt and NAADP-

sensitive lysosomal Ca2+ pathway is currently not known. 

 

1.3.4. LRRK2 in autophagy and protein degradation 

Autophagy is a type of lysosomal degradation pathway initially found 

to be used by single-celled eukaryotes to regulate energy and nutrient usage, 

but now has been found to occur also in cells of higher organisms. There are 

three main types of autophagy, including macroautophagy, chaperone 

mediated autophagy (CMA) and microautophagy (Levine et al., 2011) (Figure 

4). Macroautophagy, most often referred to in literature as just autophagy, is 

noted by the formation of the autophagosome. The autophagosome is a 

double-membraned structure that arises by elongation of a phagophore around 

a target until the phagophore fuses with itself. The autophagosome is able to 

fuse with a lysosome to form the autolysosome, allowing its contents to be 

degraded (Liu et al., 2012). CMA differs from macroautophagy as it involves 

selective transport of cytosolic soluble proteins across the lysosomal 

membrane to be degraded (Orenstein et al., 2013). Microautophagy involves 

the local deformation of the lysosomal membrane that internalizes parts of the 

cytoplasm in the process of doing so (Li et al., 2012; Mijaljica et al., 2011).  
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!
Figure 4: The three different types of autophagy (Cuervo, 2011). Autophagy refers to the 
cellular process of degradation of intracellular organelles. There are three main types of 
autophagy – (a) macroautophagy, (b) microautophagy and (c) chaperone-mediated autophagy. 
(a) Macroautophagy is characterized by the formation of a double membraned 
autophagophore phagophore that encircles proteins and organelles for degradation. The 
double membrane autophagophore eventually merges with a lysosome to form a 
autophagolysosome where the contents will be degraded. (b) Microautophagy is the small 
invagination of the lysosome membrane to uptake proteins and organelles directly into the 
lysosome for degradation. (c) Chaperone-mediated autophagy is the uptake of target proteins 
to the lysosome for degradation in conjunction with a chaperone protein, such as the heat 
shock cognate protein 70 (HSC70). 

 

In addition, reports of non-canonical autophagy have been emerging in 

literature. Non-canonical autophagy differs from canonical autophagy in terms 

of their usage of the autophagy-related gene (ATG) proteins and deviation 

from the normal formation of the autophagosome. There are a few flavors of 

non-canonical autophagy that have been reported in literature under specific 

contexts, such as beclin 1-independent autophagy, autophagy that bypasses the 

initiation step by the unccordinated-51 (UNC-51)-like kinase-1 (ULK1) 
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complex, or autophagy that does not require the sequential recruitment of the 

ATG proteins. Also, the formation of non-canonical autophagy structures, 

such as the formation of the autophagosome from multiple isolation 

membranes, or the recruitment of the autophagy-associated protein, 

microtubule-associated 1A/1B-light chain 3 II (LC3-II), to single-membrane 

phagosomes during phagocytosis of engaged TLRs, have also been reported 

(reviewed in Codogno et al. (2012)). It is also reported in literature that there 

is a non-canonical autophagy in the form of LC3-associated phagosomes that 

is triggered by Dectin-1 activation and degrades β-glucans in DCs, and that 

could regulate fungal antigen processing and presentation (Ma et al., 2012). 

 

  1.3.4.1. Detection of autophagy 

Autophagy can be detected in various ways, and the vast 

majority of published methods are regarding the detection of 

macroautophagy. 

The most traditional way of detecting autophagy is by looking 

at subcellular structures via transmission electron microscopy, 

allowing one to look for characteristic double-membraned 

autophagosomes. However, the shortcoming of looking at autophagy 

by transmission electron microscopy is that it is not easy to quantify 

autophagy by this method in an objective manner (Mizushima et al., 

2010; Tanida & Waguri, 2010). 

A way to quantify autophagy is to use florescence electron 

microscopy to detect the formation of cytoplasmic punctate LC3 

formations that are associated with autophagosomes, which can then 
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be counted either manually or with software tools. However, punctate 

LC3 formations can also occur in a non-autophagy specific manner 

when LC3 aggregates occur when it is co-expressed with other 

aggregate-prone proteins (Mizushima et al., 2010; Tanida & Waguri, 

2010). 

As the use of transmission electron microscopy and 

fluorescence microscopy for the measurement of autophagy has their 

specific shortcomings, it is recommended that they be used in 

conjunction with other methods. Other methods to quantify autophagy 

involve the use of biochemical assays to detect LC3-I to LC3-II 

conversion and LC3-II turnover. LC3-I is the cytosolic form of LC3. 

When autophagy occurs, LC3 localizes to autophagic membranes and 

is conjugated to phosphatidylethanoamine to become LC3-II. By 

detecting this LC3-1 to LC3-II conversion by western blot, autophagy 

can thus be quantified. LC3-II turnover can also be measured by 

western blot, by measuring the relative density of the LC3-II band in a 

treated sample when compared to the untreated control (Mizushima et 

al., 2010; Tanida & Waguri, 2010). 

Sequestome 1 (SQSTM1), also known as p62, is an LC3 

binding protein that autophagy-dependent for its degradation. p62 

protein levels can be easily monitored by western blot. Its degradation 

can be used as marker for autophagy induction, while its accumulation 

has been used as indication for inhibition or defective autophagy 

degradation (Barth et al., 2010; Bjørkøy et al., 2009; Juenemann & 

Reits, 2012). 
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1.3.4.2. The link between LRRK2 and autophagy 

In Parkinson’s disease, the dysregulated clearance of α-

synuclein is thought to be one of the mechanisms behind Lewy body 

pathology. Indeed it has been shown that LRRK2 is important to 

regulate α-synuclein clearance in neurons (Tong et al., 2010). A 

possible mechanism for this could be autophagy, as the link between 

deficient autophagy and the accumulation of LRRK2 and α-synuclein 

has been shown in neurons (Friedman et al., 2012). 

Numerous studies show that LRRK2 and autophagy are linked. 

Certain mutations of LRRK2 that are associated with Parkinson’s 

disease, such as the G2019S kinase domain mutation (Bravo-San 

Pedro et al., 2013) and the R1441C GTPase domain mutant (Hakimi et 

al., 2011), have been shown to result in altered autophagy levels. 

However it is not clear if LRRK2 is regulating the autophagic process 

negatively or positively. The knock down or absence of LRRK2 has 

been shown to increase autophagy in some studies (Alegre-Abarrategui 

et al., 2009; Tong et al., 2010). However this is contradicted by other 

studies that show that the knock down or absence of LRRK2 had no 

effect on autophagic activity (Gardet et al., 2010; Liu et al., 2011), or 

that autophagy could also be induced by overexpression of LRRK2 

(Gómez-Suaga et al., 2012). Furthermore, LRRK2 itself could be 

degraded by autophagy, specifically by CMA as LRRK2 contains 8 

putative motifs specific for CMA-targeted degradation (Orenstein et 

al., 2013) (Figure 5). In addition, Orenstein et al. (2013) show that 

LRRK2 could be taken up selectively when incubated with isolated 
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lysosomes, and that LRRK2 can also degraded in lysosomes. However, 

while the study showed that the degradation of G2019S mutant 

LRRK2 is affected compared to the wild-type protein, the study did 

not define what circumstances promote or inhibit this degradation of 

LRRK2 by CMA in a physiological setting. Nevertheless, the study by 

Orenstein et al. (2013) demonstrates that while LRRK2 seems to be 

involved in autophagy regulation, autophagy itself could also be 

controlling LRRK2 intracellular protein levels. 

 

 

 

 

 

 

1.3.5. LRRK2 and endocytosis 

 Several reports have emerged about LRRK2 involvement in the 

endocytic-related processes. Firstly, LRRK2 has been shown to localize to 

endosomic structures such as the endosomes themselves (Schreij et al., 2015), 

endosomal-autophagic organelles and multivesicular bodies (MVBs) (Alegre-

Abarrategui et al., 2009). LRRK2 has also been shown to interact with various 

proteins that make up the molecular machinery of endosomic processes, such 

as Rab5b (Yun et al., 2015), Rab7 (Gómez-Suaga et al., 2014), clathrin-light 

chains and Rac1 (Schreij et al., 2015). In experiments done in neurons, 

LRRK2 has been shown to be important in synaptic vesicle endocytosis 

through the regulation of endophilin A in Drosophila (Matta et al., 2012), or 

Figure 5: Chaperone mediated autophagy (CMA)-targeting motifs located in the LRRK2 
protein (Orenstein et al., 2013). The LRRK2 protein has been reported to contain 8 putative 
CMA-targeting motifs within its protein sequence, as indicated in the figure. 
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endophilin A1 in mammals (Arranz et al., 2014) by phosphorylation with 

implications on neurological transmission function. 

 

1.4. NRON complex 

As mentioned, LRRK2 is involved in the NFAT pathway, and in this respect 

Liu et al. (2011) reported that LRRK2 negatively regulates this pathway in 

collaboration with the Noncoding repressor of NFAT (NRON) complex, which 

comprises of a Noncoding repressor of NFAT (NRON) and 11 other proteins 

(CSE1L, KPNB1, TNPO1, EIF3S6, CUL4B, PSMD11, UREB1, DDX3X, IQGAP1, 

PPP2R1A and SPAG9). Four of these proteins – IQ motif-containing GTPase 

activating protein 1 (IQGAP1), karyopherin (importin) β 1 (KPNB1), protein 

phosphatase 2 regulatory subunit A (PPP2R1A) and 26S proteasome non-ATPase 

regulatory subunit 11 (PSMD11) – when knocked down in cells resulted in NFAT 

activation, while overexpression led to NFAT suppression instead (Willingham et al., 

2005). In T cells, it has been found that NRON and IQGAP are associated with 

phosphorylated NFAT and calmodulin. NRON is also complexed with inhibitory 

NFAT kinases casein kinase 1 (CK1), GSK3 and (DYRK). Upon PMA and 

ionomycin stimulation of T cells, NFAT dissociates from the NRON complex, 

IQGAP1 and NFAT kinases, and is instead associated with calcineurin and becomes 

dephosphorylated (Figure 6). It is possible that the NRON complex functions by 

bringing NFAT close to kinases that maintains it in an inactive state in the cytoplasm, 

and blocks the interaction between NFAT and calcineurin (Sharma et al., 2011). 

Given that IQGAP1 is a calmodulin-binding protein, and KPNB1 is a nuclear 

transport factor (Willingham et al., 2005), the NRON complex could be a ready 

source of calmodulin and nuclear transport proteins (Sharma et al., 2011). In the study 
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of Liu et al. (2011), they found that in BMDMs the inhibition of NFAT by LRRK2 is 

accomplished via the NRON complex. Also that LRRK2 was found to bind 5 of the 

11 proteins associated with this complex, and overexpression of LRRK2 enhanced 

binding of NFAT1 with IQGAP, chromosome segregation 1-like (CSE1L) and 

transportin-1 (TNPO1). This regulation of NFAT by LRRK2 was found to be 

independent of its kinase function. Given the importance of the NFAT pathway in the 

regulation of T cell development and function (as reviewed by Macian (2005)), it was 

interesting to note that LRRK2 expression is observed to be much lower in T cells 

than in BMDMs and BMDCs (Liu et al., 2011). 

 

!
Figure 6: Interaction of the NRON complex with NFAT (Sharma et al., 2011).  NRON, IQGAP1, 
importin and inhibitory kinases associate with NFAT in the cell cytoplasm at resting state (left). When 
T cells are stimulated, NRON and IQGAP1 dissociate, allowing NFAT kinases to promote NFAT 
nuclear translocation (right). LRRK2 was reported to interact with components of the NRON complex, 
including IQGAP, CSE1L and TNPO1. Overexpression of LRRK2 has also been shown to enhance 
binding of NFAT these proteins (Liu et al., 2011). It is likely that this interaction keeps NFAT nuclear 
translocation from occurring. 

 

In conclusion, the complexity of the role of LRRK2 in the immune system is 

only just emerging. While it is starting to be recognized that the dysregulation of the 

immune system and autophagic processes by LRRK2 mutants could play a role in the 

pathogenesis of Parkinson’s disease, the understanding of the actual physiological 

role of LRRK2 is poor. Recent studies indicate that LRRK2 is involved in the 

response to pathogens as LRRK2 expression is altered in response to PAMPs. Also, 
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given the link between LRRK2, autophagy and endosomes, it could have a role in 

microbial clearance by autophagy degradation. Furthermore, LRRK2 is implicated 

very much in the endosomic-autophagic process, and possibly could act as a signaling 

hub where various pathways converge downstream of PRRs. However how it 

functions in this context is still not clear. Future studies are needed to dissect the 

function of LRRK2 in the immune system, which could shed light not only on its role 

in the defense against pathogens, but also in the general role of LRRK2 in controlling 

inflammatory responses. These studies could be important to understand if targeting 

LRRK2 would be a viable therapeutic target for the treatment of both inflammatory, 

infectious or neurologic diseases. 

 
 
1.5. Significance of study 

A. fumigatus is an ubiquitous environmental fungi that causes life threatening 

infections in humans of compromised immune status, such as allergic 

bronchopulmonary aspergillosis and invasive aspergillosis. Invasive aspergillosis in 

particular causes mortality in 40-90% of cases (Dagenais & Keller, 2009). Given its 

threat to human health, it is important to understand better the mechanisms behind the 

immune response to this fungus. 

The role of LRRK2 in the immune response to microbes is only just being 

studied. In light of the recent finding that LRRK2 and the NRON complex are 

negatively regulating the NFAT transcription factor (Liu et al., 2011), and that 

LRRK2 levels increase with LPS exposure in microglial cells (Gillardon et al., 2012; 

Moehle et al., 2012), it will be interesting to see how LRRK2 and NRON complex 

component levels change in response to fungal stimulation as this is not yet studied in 

depth. Furthermore, the regulation of the Ca2+-NFAT-IL-2 by LRRK2 and the NRON 
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complex in DCs and the implications this has on the downstream T cell response in 

fungal infection has not been explored in detail yet. 

Also important to investigate is how LRRK2 levels change with time. As it 

has been shown that LRRK2 levels increase with time of exposure to LPS, perhaps 

this increase in LRRK2 levels in longer exposure times could have an effect on 

autophagy (Moehle et al., 2012) and clearance of pathogens. An increase of LRRK2 

levels could also maintain NFAT in its cytoplasmic inactive form, perhaps as a 

control mechanism to turn down NFAT-cytokine transcription when it is no longer 

required. 

With regards to β-glucan, only Liu et al. (2011) has shown the involvement of 

LRRK2 in the response to zymosan (a yeast-derived β-glucan) through the NFAT 

pathway, however their study did not look into autophagy. In addition, while it has 

been shown that autophagy can be induced by β-glucan (Ma et al., 2012) as well as 

Aspergillus fumigatus (De Luca et al., 2012), these studies do not look at the possible 

role of LRRK2 in the autophagic process. Hence there remains a gap in knowledge 

concerning the relationship between β-glucan or fungi, autophagy, and the LRRK2-

NFAT pathway. As previous studies suggest that autophagy and LRRK2 could be 

regulating each other (Alegre-Abarrategui et al., 2009; Gómez-Suaga et al., 2012; 

Orenstein et al., 2013; Tong et al., 2010), it would be also interesting to see how they 

interact in the context of fungal infection, and what impact this would have on the 

Ca2+-NFAT-IL-2 pathway. 

 Also, it is interesting to note the diverse roles LRRK2 has in signaling, in 

autophagy and in endosomic processes. A recent report, through in silico proteome 

analysis, has proposed endosomes to serve as a platform where the presence of 

scaffold proteins mediate the crosstalk of different signaling pathways by recruiting 
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molecules of these pathways to the endosome. Interestingly, the paper has reported 

GSK3β, one of the proteins involved in the phosphorylation of NFAT, to be one of 

these signaling molecules that is able to be recruited to these endosomic scaffolds 

(Pálfy et al., 2012). This hints at a possible association of the NFAT pathway with 

endosomes, and it could serve as a way to regulate this pathway. 

 

 

Chapter 2. Aims 

This study explores: 

1) The role of LRRK2 and the NRON complex in the NFAT pathway in DCs 

2) The possible association of LRRK2 and NFAT with endosomes and 

lysosomes, and 

3) The relationship between the NFAT pathway and autophagy in the 

immune response to Aspergillus in DCs 
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Chapter 3. Materials and Methods 

 

3.1. Mice 

8-week old wild type C57BL/6 mice used for experiments were bred and kept 

under specific pathogen-free conditions in the Biomedical Resource Centre, 

Singapore. All experiments and procedures were approved by the Institutional Animal 

Care and Use Committee (IACUC) of A*STAR (Biopolis, Singapore) (Authorization 

No.: IACUC 110626) in accordance with the guidelines of the Agri-Food and 

Veterinary Authority (AVA) and the National Advisory Committee for Laboratory 

Animal Research (NACLAR) of Singapore. 

 

3.2 Expansion of LRRK2-/- bone marrow in mice 

Bone marrow harvested from the femurs and tibias of one LRRK2-/- mouse of 

C57BL/6 background was kindly provided by Prof Zhihua Liu. In order to have 

enough cells for experiments, the LRRK2-/- bone marrow obtained was expanded by 

transplantation in wild type C57BL/6 mice for experiments. Prior to bone marrow 

transplant, recipient mice were lethally radiated with two doses of 6 Gy that were 

separated by 4 hours before being injected intravenously with 2 to 5×106 bone 

marrow cells in phosphate buffered saline (PBS). Reconstituted mice survived the 

procedure, and were allowed at least 6 weeks post-transplant for reconstitution to 

occur before the bone marrow was harvested from their femurs and tibias for DC 

culture. 
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3.3. Fungal cells 

Aspergillus fumigatus Fresenius, anamorph strain AF293 (MYA-4609, ATCC, 

Manassas, Virginia, USA) was used for experiments. Conidia were obtained by 

culturing the fungi in Sabouraud dextrose agar plates. Swollen conidia and hyphae 

were obtained by allowing conidia to germinate in liquid yeast extract peptone 

dextrose (YPD) 37°C. In addition, a red fluorescent protein (RFP)-expressing A. 

fumigatus AF293 strain used in this study was obtained from Prof. Eric Pearlman 

(Case Western Reserve University, Cleaveland, OH, USA). 

 

3.4. Cell culture and stimulation 

BMDCs were generated by culturing bone marrow of mice in culture medium 

containing the cytokine GM-CSF. Bone marrow was extracted by flushing the femurs 

and tibias of mice with PBS. The collected bone marrow was treated with 

Ammonium-Chloride-Potassium (ACK) lysing buffer to lyse erythrocytes. The 

remaining cells post-lysis were cultured in suspension plates with Iscove’s Modified 

Dulbeccos Medium (IMDM) (HyClone, Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) containing 10% fetal bovine serum (FBS) (Euroclone, Milan, 

Italy) 2mM L-glutamine (Gibco, Life Technologies, Carlsbad, Carlifornia, USA), 

100U/mL Penicillin/Streptomycin (Gibco, Life Technologies, Carlesbad, California, 

USA), supplemented with 10% supernatant from a GM-CSF-producing B16 

melanoma cell line to a final concentration of 20ng/mL GM-CSF to generate BMDCs. 

Mature BMDCs were harvested after 7 days of culture. Maturation of the DCs were 

monitored by flow cytometry analysis by staining with fluorochrome-conjugated 

monoclonal antibodies that are specific for CD11c and MHCII that were purchased 

from BD Pharmingen (San Jose, CA, USA), eBioscience (San Diego, CA, USA) or 
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Biolegend (San Diego, CA, USA), examined using the LSR-II (Becton Dickinson, 

San Jose, CA, USA) and subsequently analyzed using the FlowJo software (Tree Star, 

Ashland, OR, USA). Cells were considered mature when there was more than 70% 

CD11c+MHCII+ present in culture. 

The long term GM-CSF cytokine-dependent DC cell line, D1 (Winzler et al., 

1997), was grown in suspension plates with IMDM containing 10% FBS (Australian 

origin, Gibco, Life Technologies, Carlsbad, California, USA) 2mM L-glutamine, 

100U/mL Penicillin/Streptomycin and 55µM β-mercaptoethanol (Gibco, Life 

Technologies, Carlsbad, CA, USA), supplemented with 30% supernatant from 

NIH/3T3 cells transfected to produce GM-CSF to a final concentration of 10ng/mL. 

In all stimulation experiments, cells were stimulated with A. fumigatus in a 1: 

10 (fungi:cell) ratio as it was previously determined that the fungal stimulation does 

not cause significant cytoxicity at this concentration. Prior to stimulation with A. 

fumigatus swollen conidia, cells were harvested and seeded on suspension plate to rest 

overnight. Pharmaceuticals used in experiments include Cyclosporin A (Cell 

Signaling Technology, Danvers, MA, USA), FK506 (Cell Signaling Technology, 

Danvers, MA, USA), 3-methyladenine (Sigma Aldrich, St Louis, MO, USA), 

Rapamycin (Sigma Aldrich, St Louis, MO, USA), Bafilomycin A1 from Streptomyces 

griseus (Calbiochem, Merck Millipore, Billerica, MA, USA), Cytochalasin D (Sigma 

Aldrich, St Louis, MO, USA), Leupeptin hemisulfate (Sigma Aldrich, St Louis, MO, 

USA), and Ammonium chloride (Sigma Aldrich, St Louis, MO, USA). Drugs used at 

their indicated concentrations have been reported before in literature, and in the 

laboratory have been shown not to cause cytotoxicity to the cells. 
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3.5. Intracellular Ca2+ mobilization assay 

Intracellular Ca2+ concentration over time post-stimulation was measured by a 

Fluo4-NW assay kit. Briefly, D1 (1 × 105 cells/well) were seeded in black 384-well 

plates from Perkin Elmer and placed in culture at 37 ºC with 5% CO2 to rest 

overnight. After resting, cells were incubated for 45 min in darkness with 100 µL 

Hanks’ balanced salt solution (HBSS) containing 20 mM HEPES, 2.5 mM probenecid 

and Fluo4-NW (Invitrogen, Life Technologies, Carlsbad, CA, USA). Fluorescence 

was measured with a Victor4 spectrophotometer (PerkinElmer, Waltham, MA, USA; 

excitation, 485nm; emission, 535 nm) every 0.5 sec for 80 sec after injection of the 

stimuli. All experiments were performed at 37 ºC. F values were normalized by the 

first point (F0) after the injection of the stimuli, and the percentage (F/F0*100) is 

shown. 

 

3.6. NFAT nuclear translocation 

D1 NFAT translocation-firefly luciferase reporter cells that were generated in 

the laboratory were used to assess NFAT nuclear translocation in response to 

stimulation. These cells were generated by transducing the D1 cells with Cignal Lenti 

NFAT Reporter with firefly luciferase (SABiosciences, Qiagen, Venlo, Limburg, 

Netherlands). NFAT nuclear translocation was detected by ONE-Glo™ Luciferase 

Assay System (Promega, Madison, WI, USA) and the luminescence signal quantified 

with the GloMax®-Multi Detection System Luminometer module (Promega, Madison, 

WI, USA). 
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3.7. Gene knock down by shRNA lentiviral particles 

In order to knockdown genes of components of the NRON complex, 

MISSION® Lentiviral Particles (Sigma Aldrich, St Louis, MO, USA) with the 

pLKO.1-puro vector containing shRNA sequences targeting NRON, CSE1L, sperm-

associated antigen 9 (SPAG9) and PPP2R1A were used. Those targeting CSE1L, 

SPAG9 and PPP2R1A were commercially available, and two different sequences 

were purchased for each gene target. The table below details the gene reference 

identification number (NM ID) and The RNAi Consortium (TRC) clone identification 

number (clone ID) for the shRNA lentiviral particles targeting these genes (Table 2). 

 

Table 2: Details of commercially purchased MISSION® Lentiviral Particles 
Gene target NM ID TRC Clone ID 
CSE1L NM_023565 TRCN0000174506 

TRCN0000174691 
SPAG9 NM_027569 TRCN0000176696 

TRCN0000177089 
PPP2R1A NM_016891 TRCN0000012624 

TRCN0000012626 
 

shRNA lentiviral particles for targeting NRON were not commercially 

available, hence two sequences (ACGGTGGGTTTATGACAAATT and 

ACGGGTGCTGGATGACATATT) were custom designed and packaged into 

lentiviral particles by Sigma Aldrich (St Louis, MO, USA). 

MISSION® pLKO.1-puro Non-Target shRNA Control Transduction Particles 

(Sigma Aldrich, St Louis, MO, USA) were used as a transduction control. 

For the transduction, 1.6x104 D1 cells were seeded and rested overnight in 

antibiotic-free D1 medium. The next day, the medium was replaced with antibiotic-

free D1 medium containing 2µg/mL SureEntryTM transduction reagent 

(SABiosciences, Qiagen, Venlo, Limburg, Netherlands). The D1 cells were then 

transduced with MISSION® Lentiviral Particles at multiplicity of infection (MOI) 10 
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and allowed to incubate for 20 hours at 37°C, 5% CO2. After 20 hours incubation, the 

medium containing the lentivirus particles was aspirated out, replaced with complete 

D1 medium, and allowed to rest for 48 hours at 37°C, 5% CO2. After being allowed 

to rest, successfully transduced cells were selected 4 days by replacing the medium 

with D1 medium containing 0.5µg/mL of puromycin dihydrochloride (Calbiochem, 

Merck Millipore, Billerica, MA, USA), which was found to be the minimum 

concentration of puromycin to cause cell death in D1 cells. Cells remaining after the 

selection were then allowed to re-expand to reach suitable numbers for cryofreezing. 

For cryofreezing, cells were resuspended in freezing medium (90% v/v FBS, 10% v/v 

DMSO (Sigma Aldrich, St Louis, MO, USA)), and left overnight in a Mr. FrostyTM 

freezing container (Thermo Scientific, Waltham, MA, USA) at -80°C prior to long 

term storage in liquid nitrogen. 

Cells were thawed and passaged two times in D1 medium containing 

0.5µg/mL of puromycin dihydrochloride prior to stimulation. 

 

3.8. Lysosome enrichment/isolation 

Lysosomes were enriched from D1 cells as described by Graham (2001). 

Briefly, D1 cells were harvested from suspension plates and washed with PBS. The 

cell pellet was then resuspended in ice cold homogenization medium (0.25M sucrose, 

1mM EDTA, 10mM HEPES, pH 7) and homogenized in a Wheaton type Dounce 

tissue grinder (Wheaton, Millville, NJ, USA) on ice until above 90% cell breakage 

was observed under the microscope by staining with PBS containing 0.04% v/v 

Tryphan blue (Sigma Aldrich, St Louis, MO, USA). The homogenate was then 

centrifuged at 800g for 10 minutes to pellet nuclei and cell debris. The resulting 

supernatant from the centrifuge was mixed with bovine serum albumin (final 
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proportion of 4% v/v) and Percoll (final proportion of 22% v/v). The mixture was 

then ultracentrifuged for 30 minutes at 36 000g without brake activation. After 

centrifugation, a visible band of the enriched lysosomes can be seen near the bottom 

of the tube. 400µL fractions, including that containing the enriched lysosomes were 

collected, and Igepal CA-630 (final proportion of 0.5% v/v) was used to solubilize the 

lysosome membranes. Solubilized fractions were centrifuged at 100 000g for 2 hours 

to pellet the Percoll, and the resulting supernatants were obtained for analysis by 

western blotting. 

 

3.9. Cytokine detection 

Cell culture medium was assayed for cytokine production by sandwich 

enzyme-linked immunosorbent assay (ELISA) for IL-2, IL-12/IL-23p40 and IL-23. 

The NFAT and NFκB pathway activation downstream of dectin-1 stimulation are 

known to result in the production of these cytokines (Dennehy et al., 2009; Rogers et 

al., 2005). While IL-2 is a cytokine more controlled by the NFAT pathway 

(Goodridge et al., 2007), IL-12/IL-23p40 and IL-23 are cytokines whose production is 

more influenced by the NFκB pathway (Romani, 2011), hence these cytokines post-

stimulation were looked at to see which of these two pathways was more influenced 

by LRRK2. 

IL-2 and IL-12/IL-23p40 were assayed using commercially available antibody 

pairs and standards from Biolegend (San Diego, CA, USA) and eBioscience (San 

Diego, CA, USA) respectively. Briefly, cytokine-specific capture antibody was coated 

in bicarbonate buffer overnight at 4°C in 96-well NUNC MaxiSorp® plates 

(eBioscience, San Diego, CA, USA). Wells were washed three times with PBS 

containing 0.05% v/v Tween-20 in between each of the following steps with a NUNC 
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12-channel Immuno Washer (Thermo Scientific, Waltham, MA, USA). After 

overnight incubation, well surfaces were blocked for 1 hour with PBS containing 5% 

w/v bovine serum albumin (Merck Millipore, Darmstadt, Germany). Following 

blocking, the appropriate cytokine standards and culture supernatants were diluted 

with the same buffer used for blocking as required and incubated in the wells for 2 

hours. Following that, cytokine-specific biotin-labeled antibody was diluted in the 

blocking buffer and incubated in the wells for 1 hour, after which ExtrAvidin®-

Peroxidase (Sigma Aldrich, St Louis, MO, USA) was diluted in blocking buffer and 

was incubated for 20 minutes. Finally, the ELISA signal was developed using 

3,3’,5,5’-Tetramethylbenzidine (eBioscience, San Diego, CA, USA) and the 

developing was stopped by adding 2N sulfuric acid at a 1:1 proportion. Measurements 

were detected using the TECAN infinite m200 together with the i-controlTM software 

(Maennedorf, Switzerland; measurement wavelength 450nm, reference wavelength 

570nm). 

IL-23 was assayed using mouse IL-23 ELISA Ready-SET-Go!® (Second 

generation assay) (Affymetric eBioscience, San Diego, CA, USA) according to 

manufacturer’s instructions. This assay is specific for IL-23 as it uses an IL-23-

specific p19 capture antibody, and a detection antibody for the IL-23/IL-23p40 

subunit. 

In addition, selected supernatant samples were analyzed using the Milliplex 

Multi Analyte Panels (MAP) Mouse TH17 Magnetic Bead Panel Immunology 

Multiplex Assay (MTH17MAG-47K) in conjunction with the Luminex MAGPIX® 

system (Merck Millipore, Billerica, MA, USA). Cytokines in this kit included CD40 

Ligand, TNFβ, TNF-α, MIP-3α/CCL20, IL-33, IL-31, IL-28B, IL-27, IL-23, IL-22, 
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IL-21, IL-17F, IL-17E/IL-25, IL-17A, IL-15, IL-13, IL-12 (p70), IL-10, IL-6, IL-5, 

IL-4, IL-2, IL-1β, IFN-γ and GM-CSF. 

 

3.10. Western blot 

 3.10.1. General western blot protocol 

A general western blot protocol was used to assay protein expression 

for the majority of proteins looked at. Briefly, whole cell lysates were 

obtained by lysing cells in radioimmunoprecipitation assay (RIPA) buffer 

containing 1x cOmplete, EDTA-free Protease Inhibitor Cocktail (Roche, 

Basel, Switzerland), 1x PhosSTOP Phosphatase Inhibitor Cocktail (Roche, 

Basel, Switzerland), and 1mM phenylmethanesulfonylfluoride (PMSF). The 

protein concentration in the cell lysates were measured using the PierceTM 

660nm Protein Assay Kit (Thermo Scientific, Waltham, MA, USA) and 

colormetric readings were obtained by measuring the wavelength at 660nm 

using the TECAN infinite m200 together with the i-controlTM software 

(Maennedorf, Switzerland). Protein lysates were diluted with Laemmli buffer 

containing 2.5% v/v β-mercaptoethanol (Sigma Aldrich, St Louis, MO, USA) 

and heated at 95°C for 10 minutes prior to separation on sodium dodecyl 

sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) in Tris-glycine-

SDS buffer, along side the Precision Plus Protein Dual Color standards protein 

ladder (Bio-Rad, Hercules, CA, USA). Up to 50µg of protein was loaded into 

each well for separation. The SDS-PAGE gel was run at 60V till all samples 

entered the resolving gel, before increasing the running voltage to 110V until 

the dye front had travelled to the end of the gel. The separated proteins were 

then transferred to polyvinylidene fluoride (PVDF) membrane in Tris-glycine 
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buffer containing 10% v/v methanol at either 240mA for 2 hours, or 200mA 

for 4 hours. 

 

 3.10.2 Western blot protocol for LRRK2 

LRRK2 is a high molecular weight protein, and on western blot it is 

predicted to run in the range of 250kDa and above. As the general western blot 

protocol was found not optimal to assay protein levels of LRRK2 in whole cell 

lysates, a different approach was adopted. For whole cell lysates analyzed for 

LRRK2, lysates were first concentrated using the Vivaspin 500 molecular 

weight cut off (MWCO) 100 000 columns (Satorius, Goettingen, Germany), 

which enriches the lysates for proteins of higher molecular weight. Despite 

using these higher MWCO columns to concentrate the cell lysates, the highly 

expressed 37kDa protein, glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) could still be detected downstream and was used as housekeeping 

control protein. 

Protein concentration of the cell lysates were measured post-

concentration using the PierceTM 660nm Protein Assay Kit (Thermo Scientific, 

Waltham, MA, USA) as described above. To assay for LRRK2, the 

NuPAGE® Large Protein Analysis System (Life Technologies, Carlsbad, CA, 

USA) was adopted. Protein lysates were diluted with NuPAGE® LDS Sample 

Buffer (Life Technologies, Carlsbad, CA, USA) and heated at 70°C for 10 

minutes prior to separation on precast NuPAGE® Novex® 3-8% Tris-Acetate 

protein gels (Life Technologies, Carlsbad, CA, USA), in NuPAGE® Tris-

Acetate SDS Running Buffer (Life Technologies, Carlsbad, CA, USA), 

alongside the HiMarkTM Pre-stained Protein Ladder (Life Technologies, 
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Carlsbad, CA, USA). A maximum of 10µg of protein was loaded into the 

wells for separation. The gel was run at 150V until the dye front had travelled 

to the end of the gel. The separated proteins were then transferred to PVDF 

membrane in NuPAGE® Transfer Buffer (Life Technologies, Carlsbad, CA, 

USA) containing 10% v/v methanol at 15V for 18 hours. 

 

PVDF membranes post-transfer were blocked in PBS or Tris-buffered saline 

containing 0.1% v/v Tween-20, and either 5% w/v non-fat milk or 5% w/v bovine 

serum albumin (Merck Millipore, Billerica, MA, USA). All antibodies were incubated 

with this same blocking solution. In between incubation steps, the membranes were 

washed with PBS or Tris-buffered saline containing 0.1% v/v Tween-20. 

Chemiluminescence signal was obtained by incubating the membranes for 2 minutes 

with SuperSignalTM West Pico Chemiluminescent Substrate (Thermo Scientific, 

Waltham, MA, USA), Western Lightning Plus ECL (PerkinElmer, Waltham, MA, 

USA), or SuperSignalTM West Femto Maximum Sensitivity Substrate (Thermo 

Scientific, Waltham, MA, USA). The luminescent signal was recorded by exposing 

the blots to Amersham Hyperfilm MP autoradiography film (GE Healthcare, Little 

Chalfont, UK). After exposure, the films were developed with Carestream® Kodak® 

autoradiography GBX developer and fixer solutions (Sigma Aldrich, St Louis, MO 

USA). Films were scanned at 300dpi and band pixel density analyzed from the film 

scans by ImageJ software (NIH, Bethesda, MD, USA). 

Antibodies used for western blot include: LRRK2 Rabbit Monoclonal 

Antibody Clone: MJFF2 (Epitomics, Abcam, Cambridge, UK), LC3B antibody (Cell 

Signaling Technology, Danvers, MA, USA), Purified anti-mouse CD107a (LAMP-1) 

Clone: 1D4B (Biolegend, San Diego, CA, USA), anti-TATA binding protein (TBP) 
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Clone: 1TBP18 (Abcam, Cambridge, UK), Rab5 (C8B1) Rabbit mAb (Cell Signaling 

Technology, Danvers, MA, USA), JIP4/SPAG9 (D72F4) XP® Rabbit mAb (Cell 

Signaling Technology, Danvers, MA, USA), Anti-PPP2R1A antibody [6F9] (Abcam, 

Cambridge, UK), and GAPDH Antibody, Clone: 6C5 (Merck Millipore, Billerica, 

MA, USA). 

 

 

3.11. RNA extraction, real-time quantitative PCR 

Cells were lysed with 1mL of TRIzol® reagent (Ambion, Life Technologies, 

Carlsbad, CA, USA) and flash frozen on dry ice prior to storage at -80°C. To extract 

RNA, 200µL (20% v/v) of chloroform (Merck, Kenilworth, NJ, USA) was added to 

each sample. Each sample was then shaken vigorously, and then centrifuged at 15 

000rpm, 4°C for 15 minutes. This separated the sample into a top organic phase 

containing the RNA, a thin interface containing DNA, and a bottom organic phase 

containing protein. The top supernatant was aspirated and transferred to a new tube. 

An equal volume of 70% v/v ethanol was added and mixed to the sample. RNA was 

extracted from this mixture using the RNeasy mini kit (Qiagen, Venlo, Limburg, 

Netherlands) according to the manufacturer’s instructions. 

Extracted RNA samples were then treated with DNase using the TURBO 

DNA-freeTM Kit (Ambion, Life Technologies, Carlsbad, CA, USA) according to 

manufacturer’s instructions. The RNA content of each sample was then quantified 

using the NanodropTM 1000 (Thermo Scientific, Waltham, MA, USA). 2µg of RNA 

was retro-transcribed into cDNA using the High Capacity Reverse Transcription Kit 

(Applied Biosystems, Life Technologies, Carlsbad, CA, USA) according to 

manufacturer’s instruction. The obtained cDNA was then used for real-time 
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quantitative PCR. The Brilliant SYBR® Green QPCR Mastermix and Reference Dye 

(Stratagene, Agilent Technologies, Santa Clara, CA, USA) was used to set up the 

real-time quantitative PCR reaction, and the samples were run in the MX3000P 

Instrument (Stratagene, Agilent Technologies, Santa Clara, CA, USA). Gene 

expression data was analyzed using the MxPro QPCR software (Stratagene, Agilent 

Technologies, Santa Clara, CA, USA). 

Below is a table of primer sequences targeting mouse genes used in this study 

(Table 3): 

Table 3: List of real-time quantitative PCR primers 
Gene Forward primer (5’-3’) Reverse Primer (5’-3’) 
CSE1L GTGGGAAAGGACAGGAAACA AAACCTTGGTGATCGTTTGC 
GAPDH TTGAGGTCAATGAAGGGGTC TCGTCCCGTAGACAAAATGG 
LRRK2 GATGTCAGTACGCCCCTGAT CTGCCAGCGCTATGATGTTA 
NRON CAGTAAAGGAGCAGTAGTGGAAACAG TGGGGGGAGCGAATGGCATCGGGAAC 
PPP2R1A CAACCTGGATTGGTGGAACG GATCCACTAGCCAGGCCATA 
SPAG9 AAACCTCAGGGACTCCAGGT CCCCACCACTGCTACTTTGT 
 

 

3.12. Immunofluorescence confocal microscopy 

D1 cells were seeded and stimulated in µ-slide 8-well chambers (Ibidi, 

Martinsried, Germany). Post-stimulation, cells were fixed in 2% paraformaldehyde 

(Sigma Aldrich, St Louis, Missouri, USA), and permeabilized in PBS containing 

0.1% Saponin (Sigma Aldrich, St Louis, MO, USA), 0.2% gelatin (Fluka Analytical, 

Sigma Aldrich, St Louis, MO, USA) and 5% bovine serum albumin (Merck 

Millipore, Darmstadt, Germany). Cells were stained and washed using PBS 

containing 0.01% Saponin and 0.2% gelatin. 

In order to understand whether the autophagy induced by A. fumigatus was 

macroautophagy (marked by intracellular LC3 punctae (Mizushima et al., 2010)) or 

non-canonical autophagy, cells were stained with a primary LC3B antibody (Cell 

Signaling Technology, Danvers, MA, USA) and a secondary goat α-rabbit IgG 



! 39!

antibody conjugated to Alexa Fluor® 488 (Invitrogen, Life Technologies, Carlsbad, 

CA, USA). In addition, 4',6-diamidino-2-phenylindole (DAPI) (Invitrogen, Life 

Technologies, Carlsbad, CA, USA) was used to stain the cell nuclei. Images were 

acquired on an Olympus FV1000 confocal microscope in conjunction with the 

Fluorview FV1000 software (Olympus, Tokyo, Japan).!

 

 

3.13. Transmission electron microscopy 

To visualize subcellular structures formed in response to stimuli, D1 cells 

were prepared for transmission electron microscopy post-stimulation. 

Stimulated D1 cells were harvested from the suspension plate with 2mM 

EDTA in PBS, and washed with 0.2M sodium cacodylate buffer (pH 7.4). Cells were 

then fixed in cacodylate fixative buffer (0.1M sodium cacodylate, 2% 

paraformaldehyde, 3% gluteraldehyde) overnight at 4°C. The cells were then washed 

with 0.2M sodium cacodylate buffer and dehydrated on an alcohol series (30%, 50%, 

70%, 80%, 90% and 100%) for 15 minutes each. Specimens were then embedded into 

acrylic resin. Ultrafine sections were obtained by cutting into the resin specimens with 

a glass blade on an ultramicrotome, and mounted on nickel grids. The grids were then 

washed with PBS, and then stained with antibodies LRRK2 Rabbit Monoclonal 

Antibody Clone: MJFF2 (Epitomics, Abcam, Cambridge, UK) and Purified anti-

mouse CD107a (LAMP-1) Clone: 1D4B (Biolegend, San Diego, CA, USA), followed 

by secondary antibodies that have been conjugated with either 5nm or 15nm gold 

particles (Cytodiagnostics, Burlington, ON, Canada). All antibody incubations were 

done in PBS containing 1% bovine serum albumin. After antibody staining, grids 

were post-fixed with cacodylate fixative buffer for 15 minutes, and then stained with 
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2% uranyl acetate. Micrographs were taken with an EM 208 transmission electron 

microscope (Phillips, Amsterdam, Netherlands). 

 

3.14. Graphs and Statistics 

Statistical significance of experiments was determined either by Student’s  t-

test one-way ANOVA as indicated. For statistics generated by one-way ANOVA, the 

differences between individual groups were compared using the Bonferroni’s 

Multiple Comparison post-test. All graphs and statistics were generated using the 

Graphpad Prism® software version 6.0 (Graphpad Software, La Jolla, CA, USA). 
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Chapter 4. Results 

 

4.1. Aspergillus fumigatus activates the Ca2+-NFAT-IL-2 response in DCs 

 It has been reported that DCs (D1 cells) exposed to particulate β-glucan, a 

polysaccharide found in fungal cell walls, show an activation of the Ca2+-NFAT-IL-2 

pathway (Fric et al., 2014). The fungus, A. fumigatus, also contains β-glucan in its cell 

wall. However in resting A. fumigatus conidia, this β-glucan exposure on the fungal 

surface is limited as due to the presence an outer crystalline rodlet layer. It is only 

when the fungus germinates that this rodlet layer is lost, resulting in increased β-

glucan exposed on the fungal surface (Dague et al., 2008). As a result, A. fumigatus 

show increasing amounts of β-glucan on their surface as they germinate from conidia, 

to swollen conidia and lastly to hyphae stage. In line with this, the lab has also shown 

that NFAT-IL-2 pathway activation is proportionate to the amount of β-glucan by 

using these different germination stages of A. fumigatus (Zelante et al., 2015). 

Here, D1 cells were stimulated with A. fumigatus swollen conidia. DCs show 

cytosolic Ca2+ influx (Figure 7A), increased NFAT translocation (Figure 7B, 7C) and 

IL-2 cytokine production (Figure 7D) in response to Aspergillus swollen conidia. 

Calcineurin is a Ca2+-sensitive Ser/Thr phosphatase that functions in the NFAT 

pathway to activate NFAT for nuclear translocation (Wu et al., 2007). The use of 

calcineurin inhibitors, Cyclosporin-A and FK506, resulted in a decrease of IL-2 

production from D1 cells in response to Aspergillus swollen conidia (Figure 7E), 

showing that this response is indeed dependent on the Ca2+-NFAT-IL-2 pathway. 
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Figure 7: Aspergillus fumigatus activates the Ca2+-NFAT-IL-2 response in DCs. (A) Ca2+ 
measurements of D1 cells in response to A. fumigatus swollen conidia in comparison to the HBSS 
control over time. Data is displayed as the mean±SEM of five biological replicates and statistical 
significance determined by one-way ANOVA with Bonferonni’s post-test. (B) NFAT translocation as 
measured by luminescence signal in fungal-stimulated NFAT-luciferase reporter D1 cells. Data is 
displayed as the mean luminescence signal±SEM of three biological replicates and statistical 
significance determined by Student’s t-test. (C) Immunofluorescent staining of NFATc2 (green) in D1 
cells treated with RFP-expressing A. fumigatus swollen conidia as published in Zelante et al. (2015). 
Magnification is at 100x and is representative of three independent experiments. (D) IL-2 production 
from D1 cells stimulated with A. fumigatus swollen conidia. Data is displayed as the mean cytokine 
concentration±SEM of two biological replicates. (E) IL-2 production from D1 cells stimulated for 8 
hours with A. fumigatus swollen conidia in the presence or absence of calcineurin inhibitors, 
Cyclosporin A (1µg/mL) and FK506 (0.1µg/mL). Cells were treated with Cyclosporin A and FK506 
for 1 hour prior to stimulation. Statistical significance was determined by one-way ANOVA with 
Bonferroni’s post-test. Data is displayed as the mean cytokine concentration±SEM of two biological 
replicates. Differences found to be statistically significant are indicated (* - p<0.05; ** - p<0.01; *** - 
p<0.001; **** - p<0.0001). Abbreviations used: A. fumigatus swollen conidia (A-sw); Cyclosporin A 
(CsA); Hank’s Balanced Salt Solution (HBSS); Untreated (Unt). 

 



! 43!

4.2. LRRK2 is expressed in DCs and is degraded in response to Aspergillus 

fumigatus 

LRRK2 is known to regulate NFAT translocation in response to TLR ligands 

(Liu et al., 2011). In addition, it has been reported that LRRK2 is expressed in the 

human CD11b+ DC population (Gardet et al., 2010), as well as in BMDCs (Liu et al., 

2011), hence the expression and role of LRRK2 in DCs exposed to Aspergillus 

swollen conidia was studied here in order to better understand any cross-regulation 

between NFAT-IL-2 axis and LRRK2. 

LRRK2 expression at the mRNA and protein level were investigated in D1 

cells at resting state as well as in D1 cells stimulated with swollen conidia. It was 

found that at resting state, DCs expressed LRRK2 on both the mRNA (Figure 8A) and 

the protein level (Figure 8B). In response to stimulation with swollen conidia, LRRK2 

levels in DCs were found to be downregulated on both the mRNA as well as the 

protein level. This downregulation started to be observed 3 hours post-stimulation on 

both the mRNA and protein level, however on the mRNA level it was not found to be 

statistically significant. At 8 hours post-stimulation, downregulation of LRRK2 on the 

gene level was found to be statistically significant, while LRRK2 protein levels 

decreased further. The downregulation of LRRK2 was further maintained on protein 

level at 18 hours, and on gene expression level 24 hours post-stimulation, showing 

that Aspergillus is able to influence LRRK2 gene expression on both transcriptional 

and translational level. 

 

! !
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Figure 8: LRRK2 is expressed in DCs and is degraded in response to Aspergillus fumigatus. (A) 
Expression of level of LRRK2 mRNA in D1 cells post-stimulation with A. fumigatus swollen conidia. 
Data is displayed as the mean gene expression±SEM of two biological replicates and normalized to the 
housekeeping protein, GAPDH. Differences found to be statistically significant by one-way ANOVA 
with Bonferonni’s Multiple Comparison post-test are indicated (NS – non-significant; **** - 
p<0.0001). (B) Protein expression level of LRRK2 in whole cell lysates of D1 cells stimulated with A. 
fumigatus swollen conidia. For densitometry analysis, band densities for LRRK2 were normalized to 
the band density of the housekeeping protein, GAPDH, after which the density LRRK2 band of the 
treated sample was compared with that of the untreated sample. Data is representative of two 
independent experiments. Abbreviations used: Untreated (Unt); A. fumigatus swollen conidia (A-sw). 

 

 

4.3. LRRK2 and NFAT are localized on lysosomes and endosomes of DCs 

 It has been reported that LRRK2 is degraded in lysosomes (Orenstein et al., 

2013). In order to understand better the subcellular localization of LRRK2 in DCs 

until now never described, lysosomes and early endosomes were enriched from D1 

cells by gradient centrifugation protocol (adapted from Graham (2001)), and the 

protein content of the fractions enriched with these organelles were analyzed by 

western blot. Fractions analyzed were negative for the nuclear marker, TBP, 

indicating that there was no contamination with nuclear material. 

It was found that LRRK2 was present in fractions that also expressed 

lysosomal-associated membrane protein 1 (LAMP-1) and Rab5, which are markers 

for lysosomes and early endosomes respectively. This is in line with literature that has 

reported LRRK2 localization to endosomes and their related structures (Alegre-
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Abarrategui et al., 2009; Schreij et al., 2015). NFAT1 was also found in the same 

fractions as well (Figure 9A).  

To investigate the intracellular localization of these proteins in a more specific 

manner, electron microscopy along with gold-conjugated secondary antibodies were 

used to visualize their location in DCs. LAMP-1 staining was used to better identify 

and recognize the morphology and structure of DC lysosomes. By electron 

microscopy, lysosomes appeared LAMP-1 positive, spherical, enclosed by one 

membrane, with a diameter of 70-150 nm, homogenous and electron-dense interior. 

Endosomes appears LAMP-1 negative and poorly electron-dense (Figure 9B). 

Interestingly, both LRRK2 (Figure 9C) and NFAT1 (Figure 9D) were found localized 

on endosomic structures. 

Interpreting the results from both methodology used, lysosome enrichment 

showed that LRRK2 and NFAT localize to endosomes and to lysosomes in steady 

state DCs, while electron microscopy showed that they localize to endosomes. The 

finding of LRRK2 in lysosomes is consistent with a previous publication that LRRK2 

can be taken up into these cellular organelles (Orenstein et al., 2013). In addition, as 

endosomes have been proposed to be signaling hubs where components of signaling 

pathways can localize and interact (Pálfy et al., 2012), the finding of LRRK2 and 

NFAT on endosomes could imply that the endosomes serve to bring these two 

components of the NFAT signaling pathway together for interaction. Therefore, the 

compartmentalization in endosomes likely has an important function to regulate the 

phosphorylation of NFAT and the subsequent translocation and gene transcription in 

the nucleus.  
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Figure 9: LRRK2 and NFAT are localized on lysosomes and endosomes. (A) Western blot analysis 
of presence of NFAT, TBP, Rab5, LRRK2 and LAMP-1 in a representative protein fraction obtained 
from the enrichment of lysosomes from D1 cells. Lysate from the protein fraction was run on both 
SDS-PAGE and NuPAGE® to probe for the proteins indicated. Data is representative of 3 independent 
experiments (B-D) D1 cells were processed for immune-electron microscopy, stained for LAMP-1, 
LRRK2 or NFAT1, and labeled with appropriate secondary antibodies conjugated with 5nm or 15nm 
gold particles (size of particles indicated in superscript). Lysosomic (Lys) and endosomic (Endo) 
structures are as indicated. Electron micrographs of D1 cells show LAMP-1 positive lysosome (B), as 
well as endosomic structures positive for LRRK2 (C), NFAT1 (D). Size of scale bars are as indicated. 
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4.4. Aspergillus fumigatus swollen conidia activate the non-canonical autophagic 

pathway in DCs 

Lysosomes are known to be involved in the maturation of autophagic vesicles. 

Given that autophagy is activated by β-glucan (Ma et al., 2012) and A. fumigatus (De 

Luca et al., 2012), autophagy was investigated in D1 cells stimulated with Aspergillus 

swollen conidia in order to establish a possible role of the autophagic response in the 

regulation of the NFAT translocation.  

D1 cells stimulated with swollen conidia showed the formation of LC3-

positive phagosomes (Figure 10A) similar to that induced by β-glucan (Ma et al., 

2012) and A. fumigatus (Kyrmizi et al., 2013) in other studies. By electron 

microscopy, it was determined that the resulting phagosomes were not formed by the 

double-membranes characteristic of classical autophagy (Figure 10B), which is in line 

with the findings of Kyrmizi et al. (2013). Taken together, the observations from 

immunofluorescent staining of LC3 and electron microscopy indicate that the 

autophagic response induced by A. fumigatus in DCs is non-canonical.  

To further confirm the finding of A. fumigatus-induced non-canonical 

autophagy, molecular methods were used. During classical autophagy, LC3 

conversion from LC3-I to LC3-II, LC3-II turnover, and p62 degradation is observed. 

This LC3 conversion, LC3-II turnover and p62 degradation can be monitored by 

western blot (Mizushima et al., 2010). In experiments, A. fumigatus-stimulated DCs 

were observed to have LC3-I to LC3-II conversion and higher LC3-II turnover 

(Figure 10C). For p62, two protein bands were detected by western blot, of which the 

higher band corresponded to its expected molecular weight of 60kD and thus was 

used for densitometry analysis. The lower band ran at around 50kD, and while no 

other report was found to show this smaller lower band, it might be corresponding the 
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second smaller isoform of p62 that is missing 38 amino acids as found in the UniProt 

database (UniProt ID: Q64337). Nevertheless, both bands of p62 were not degraded 

(Figure 10C). This indicated that while swollen conidia did induce autophagy in DCs, 

it was not classical autophagy. 

In addition, it was found that there was an increase of subcellular 

multivesicular structures present in DCs stimulated with swollen conidia. By electron 

microscopy, these structures expressed LAMP-1 as well as LRRK2 and comprised of 

several multilamellar vesicles, some of which are enclosed within other vesicles 

(Figure 10D). These structures strongly resemble multilamellar bodies, which are 

lysosomal organelles comprising of multiple concentric layers of membrane, that have 

been shown to require autophagy for its formation (Hariri et al., 2000). 

Therefore taking into account all observations described thus far, the 

germinated form of Aspergillus is able to trigger both the non-canonical autophagic 

response in D1 cells, as well as the activation of the NFAT-IL-2 axis. In addition, 

LRRK2 and NFAT were found on lysosomes and endosomes where LRRK2 could 

plays the important role of regulating NFAT translocation in to the nucleus. 
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Figure 10: Aspergillus fumigatus swollen conidia activate non-canonical autophagy in DCs. (A) 
Immunofluorescent staining of LC3 (red) in A. fumigatus swollen conidia-stimulated D1 cells. Data is 
representative of two independent experiments. (B) Electron micrograph of phagosome formation by 
DCs incubated for 3 hours with A. fumigatus swollen conidia. The bottom panel is zoomed in from the 
area indicated in the top panel. Data is representative of two independent experiments. (C) Expression 
of LC3 and p62 proteins by western blot in whole cell lysates of D1 cells stimulated for 24 hours with 
A. fumigatus swollen conidia. Densitometry for LC3 was performed on the LC3-II band to measure 
LC3-II turnover, while densitometry analysis of p62 was done on the upper band corresponding 
roughly to its expected molecular weight of 60kD. Data is representative of two biological replicates 
(D) Multilamellar bodies (encircled in yellow dashed lines) observed by electron microscopy in A. 
fumigatus swollen conidia-stimulated D1 cells and labeled for LAMP-1 or LRRK2 with 5nm or 15nm 
gold particles (size of particles indicated in superscript). Cells were incubated with the fungi for 3 
hours. Size of scale bars are as indicated. Abbreviations used: Untreated (Unt); A. fumigatus swollen 
conidia (A-sw). 

!
!
!
4.5. The Ca2+-NFAT-IL-2 axis is influenced by early autophagic events, 

phagocytosis and lysosomal maturation, but not by late autophagic events 

Based on the previous findings that DCs were able to activate the NFAT-IL-2 

axis in response to Aspergillus swollen conidia, two types of autophagy inhibitors, 3-

methyladenine (3-MA) and Bafilomycin-A, were used to investigate whether this axis 

is mediated by autophagic response. 3-MA is a PI3 kinase inhibitor. As the initiation 

of autophagosome formation requires Class III PI3 kinase activity, 3-MA functions by 

inhibiting autophagy in the early stages of its initiation. Bafilomycin-A, on the other 

hand, inhibits the last step of autophagosome cargo degradation by preventing the 

autophagosome-lysosome fusion as well as lysosome acidification (Mizushima et al., 

2010). When these two drugs were used in experiments, it was found that the NFAT 

translocation and IL-2 cytokine production in DCs stimulated with Aspergillus 

swollen conidia was significantly decreased upon inhibition of the early stages of 

autophagy by 3-MA, but not with an inhibitor of the late stage of autophagy, 

Bafilomycin (Figure 11A). 

In addition, the NFAT pathway in stimulated DCs was also significantly 

decreased when cells were treated with the phagocytosis inhibitor, Cytochalasin D 

(Figure 11B), showing that the induction of the NFAT pathway downstream of dectin 
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is dependent on phagocytosis. DCs were also treated with a combination of Leupeptin 

and ammonium chloride to inhibit lysosomal maturation by preventing acidification, 

and it was observed that NFAT translocation increased, while IL-2 production 

decreased in drug-exposed DCs in response to fungi (Figure 11C). 

!

!
 

Figure 11: The Ca2+-NFAT-IL-2 axis is influenced by early autophagic events, phagocytosis and 
lysosomal maturation, but not by late autophagic events. NFAT translocation and IL-2 production 
of NFAT-luciferase reporter D1 cells that have been stimulated with A. fumigatus swollen conidia for 6 
hours in the presence and absence of drugs inhibiting specific cellular processes. (A) Fungus-
stimulated D1 cells in the presence and absence of the type III Phosphatidylinositol 3-kinase inhibitor, 
3-methyladenine (10mM), or the vacuolar H+ ATPase inhibitor, Bafilomycin (50nM), which inhibits 
the early and late stage of autophagy respectively. (B) Fungus-stimulated D1 cells in the presence or 
absence of the phagocytosis inhibitor, Cytochalasin D (2µg/mL). (C) D1 cells stimulated with fungi in 
the presence or absence of the lysosomal acidification inhibiting combination of Leupeptin (100µM) 
and ammonium chloride (20mM) (Leu/A). Data is displayed as the mean±SEM of five (in the case of 
Leu/A) or eight biological replicates. Differences found to be statistically significant by one-way 
ANOVA with Bonferonni’s Multiple Comparison post-test are indicated (NS – non-significant; *** - 
p<0.001; **** - p<0.0001). Abbreviations used: Untreated (Unt); A. fumigatus swollen conidia (A-sw); 
Vehicle non-treated control (NT); 3-methyladenine (3MA); Bafilomycin (Baf); Cytochalasin D 
(CytoD), combination of Leupeptin and ammonium chloride (Leu/A). 

 

Together, the results show that early events that occur after fungal stimulation, 

such as phagocytosis and the early part of the autophagy pathway, are important in the 

activation of the NFAT pathway, but not late-stage autophagy. The findings that the 

NFAT-IL-2 pathway is influenced by autophagy are in line with what has been 
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described here thus far. The induction of non-canonical autophagy as well as the 

downregulation of LRRK2 expression in A. fumigatus-stimulated DCs raises the 

possibility of autophagy being responsible for the degradation of LRRK2, resulting in 

the activation of NFAT. This is further supported by the presence of LRRK2 in 

lysosomic-endosomic structures and multilamellar bodies. Therefore, in the early 

stages of the non-canonical autophagic response, LRRK2 may probably undergo 

progressive degradation, and regulate NFAT translocation from the endosomes to the 

nucleus. 

 

 

4.6. The absence of LRRK2 in DCs leads to increased IL-2 production in 

response to Aspergillus fumigatus 

Results so far show that LRRK2 is expressed in lysosomes and endosomes in 

DCs, and that the expression was downregulated with Aspergillus treatment. Hence 

whether the absence of LRRK2 could be involved in the regulation of the NFAT-IL-2 

response was investigated, since Liu et al. (2011) has reported LRRK2 as a negative 

regulator of the NFAT pathway. In line with these results, LRRK2-/- BMDCs (Figure 

12A) showed a significant increase in IL-2 production when stimulated with 

Aspergillus swollen conidia, while cytokines that were influenced more by the NFκB 

pathway, IL-12/IL-23p40 and IL-23 (Romani, 2011), did not show significant 

changes (Figure 12B), showing that LRRK2 regulates the NFAT pathway in response 

to the fungus Aspergillus. Therefore, LRRK2 deficiency may disentangle a possible 

dysregulation of the NFAT-IL-2 cascade in response to the germinated fungus 

Aspergillus. 
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Figure 12: The absence of LRRK2 in DCs leads to increased IL-2 production in response to 
Aspergillus fumigatus. (A) Western blot of LRRK2 of wild type (closed circles) and LRRK2-/- (open 
circles) BMDCs in response to 3 hours of fungal stimulation with A. fumigatus swollen conidia. (B) IL-
2, IL-12/IL-23p40, and IL-23 cytokine production of wild type (closed circles) and LRRK2-/- (open 
circles) BMDCs in response to fungal stimulation with A. fumigatus swollen conidia. Data is displayed 
as the mean cytokine concentration±SEM of two biological replicates. Differences found to be 
statistically significant by one-way ANOVA with Bonferonni’s Multiple Comparison post-test are 
indicated (* - p<0.05; ** - p<0.01; **** - p<0.0001). Abbreviations used: Untreated (Unt); A. 
fumigatus swollen condia (A-sw). 

 

 

4.7. Expression of NRON complex components in Aspergillus-stimulated DCs 

 Liu et al. (2011) also reported that LRRK2 physically associated with certain 

components of the NRON complex, and that NRON was important for mediating the 

regulation of NFAT nuclear translocation by LRRK2, hence the expression of four 

members of the NRON complex - NRON, PPP2R1A, CSE1L and SPAG9 – were 

looked at in D1 cells in response to Aspergillus swollen conidia. Gene expression 

analysis shows that components of the NRON complex are expressed in DCs, and 

could be negatively influenced by fungal exposure (Figure 13A). CSE1L and NRON 

in particular were found to be consistently downregulated on the gene expression 

level in DCs exposed to fungi. Expression of PPP2R1A also seemed to be 

downregulated in DCs upon exposure to Aspergillus, but to a lesser magnitude 
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compared to CSE1L or NRON. On the other hand, SPAG9 gene expression did not 

show much change in DCs treated with Aspergillus with respect to the untreated cells 

(Figure 13A). 

On the protein level, the expression of the NRON complex components, 

PPP2R1A, CSE1L and SPAG9, could also be detected at basal level. Interestingly, 

Aspergillus-stimulated D1 cells showed marked downregulation of the PPP2R1A 

protein. This was not seen in the case of CSE1L and SPAG9 (Figure 13B). NRON 

was not looked at by western blot as it is not a protein. Altogether, this shows that 

Aspergillus by inducing phagocytosis and autophagy may also influence the 

expression of other components of the NRON complex as LRRK2 in DCs. 

 

!
 

Figure 13: Expression of NRON complex components in Aspergillus-stimulated DCs. (A) Gene 
expression of NRON, PPP2R1A, CSE1L and SPAG9 in D1 cells in response to 8 hour stimulation with 
A. fumigatus swollen conidia. Data is expressed as the mean relative expression±SEM of two technical 
replicates and normalized to the GAPDH gene expression level. (B) Protein expression of PPP2R1A, 
CSE1L and SPAG9 by western blot in fungal-stimulated D1 cells. Abbreviations used: Untreated 
(Unt); A. fumigatus swollen conidia (A-sw). 
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4.8. Knock down of components of the NRON complex in DCs 

 Liu et al. (2011) reported that in addition to the NRON regulatory RNA, 

LRRK2 was found bound to 5 proteins of the NRON complex (IQGAP, CSE1L, 

PPP2RA, TNPO1 and PSMD11). In order to investigate the yet unexplored role of the 

NRON complex in DCs, D1 cells were knocked down for NRON, IQGAP, CSE1L, 

PPP2R1A (a subunit of the PPP2RA protein), or SPAG9 using shRNA-containing 

lentiviral particles. The shRNA vector in the lentiviral particles also encode for the 

mammalian gene for puromycin resistance, hence cells that are successfully 

transduced will be able to survive when puromycin is used as a selection factor in 

culture medium. D1 cells were thus selected with puromycin post-tranduction. 

Post-silencing, it was observed that the vast majority of D1 cells were 

sensitive to puromycin, which meant that they are very resistant to the gene silencing 

by shRNA-containing lentiviral particles and did not transduce successfully. However 

a small number of cells did survive the puromycin selection. These cells were 

presumed to be successfully transduced, and thus were expanded in culture. The 

success of knock down was then assessed for the degree of gene knock down on the 

mRNA and protein level (Figure 14). 

 Silencing on the gene level was assessed by qPCR (Figure 14A). From qPCR, 

it was hard to judge if the knock down of PPP2R1A, CSE1L and SPAG9 were 

successful as there was little or no change in gene expression levels compared to the 

cells transduced with control shRNA. For NRON silencing, the last replicate was 

judged to have the best knock down efficiency, with a knock down of 57% of gene 

expression level compared with the control transduced cells. 

 Silencing on the protein expression level was judged by western blot for 

PPP2R1A, CSE1L and SPAG9 (Figure 14B). NRON silencing cannot be assessed by 
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western blot as it is a regulatory RNA, not a protein. For PPP2R1A, CSE1L and 

SPAG9, the last replicates for each gene silencing was judged to have the lowest 

protein expression compared with the control transduced cells with a knock down of 

expression between 32-63%, and hence they were selected for further cytokine 

analysis. 

 

  

 

Figure 14: Knock down of components of the NRON complex in DCs. Knock down of NRON, 
PPP2R1A, CSE1L and SPAG9 in D1 cells were assessed by qPCR and western blot post-selection with 
0.5µg/mL of puromycin. (A) mRNA expression of NRON, PPP2R1A, CSE1L and SPAG9 in D1 cells 
tranduced with lentivirus particles containing shRNA targeting the gene indicated, and treated with A. 
fumigatus swollen conidia for 8 hours. Data is expressed as the mean relative expression±SEM of two 
technical replicates and normalized to the GAPDH gene expression level. (B) Protein expression of 
PPP2R1A, CSE1L and SPAG9 in A. fumigatus swollen conidia-treated D1 cells tranduced with 
lentiviruses particles containing shRNA targeting the gene indicated. One experiment of silencing for 
each gene was done, and all replicates of the silencing are displayed. Replicates judged to have the 
most degree of knock down were selected for further analysis (highlighted in red). Arabic numerals 
refer to the two different shRNA sequences used for the silencing. Abbreviations used: A. fumigatus 
swollen conidia (A-sw); D1 cells transduced with non-targeting control shRNA (Ctrl). 
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One observation of the data presented in Figure 14 was that the GAPDH band 

intensity decreased with A. fumigatus stimulation compared to the untreated sample 

despite loading the same amount of protein in the well for western blot. This was not 

observed in prior experiments that do not involve shRNA silencing, hence the shRNA 

silencing could have been a causative factor for this observation. Despite this 

observation, the intensity of the GAPDH band was used to normalize the band 

intensity of the protein of interest of the same sample. 

 

 

4.9. Knock down of other components of the NRON complex does not control the 

NFAT-IL-2 axis as LRRK2 in DCs 

 The cells assessed to have the most level of knock down through qPCR and 

western blot were selected for further analysis. Since Aspergillus, as shown in Figure 

13 and 14, led to a decrease in NRON complex expression, silencing of the NRON 

components was expected to lead to a dysregulation of the NFAT-IL-2 cascade in 

response to the fungus Aspergillus. Surprisingly, no increases in IL-2 release in 

response to Aspergillus stimulation from silenced D1 cells were observed. Only 

knocking down of SPAG9 led to a decrease of IL-2 production by DCs, underlining a 

more prominent role of LRRK2 in regulating the NFAT translocation from the 

endocytic vesicles to the nucleus (Figure 15). This also may suggest that some 

components of the NRON complex are indeed positively regulating the NFAT 

pathway in response to Aspergillus in contrast to the negative regulation for LRRK2. 
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Figure 15: Knock down of other components of the NRON complex does not control the NFAT-
IL-2 axis as LRRK2 in DCs. IL-2 cytokine production at 8 hours post-exposure from A. fumigatus 
swollen conidia-stimulated D1 cells that were knocked down for NRON, SPAG9, PPP2R1A or CSE1L 
through the use of shRNA-lentiviral particles. Data is displayed as the mean cytokine 
concentration±SEM of two biological replicates. Differences between Aspergillus-stimulated cells 
found to be statistically significant by one-way ANOVA with Bonferonni’s Multiple Comparison post-
test are indicated (NS – non-significant; *** - p<0.001). Abbreviations used: Untreated (Unt); A. 
fumigatus swollen condia (A-sw); D1 cells transduced with non-targeting control shRNA (Ctrl). 

 

 
4.10. Individual NRON complex components regulate the cytokine response in 

Aspergillus-treated DCs 

 The analysis of how the NRON complex components could affect the DC 

response to fungi was further extended to other cytokines as IL-1β, IL-6, IL12/IL-

23p40, IL-22, IL-23 and TNFα (Figure 16). 

Of these cytokines, it was found that the production of IL-12/IL-23p40 and 

TNFα were not affected by the knock down of any of the four NRON complex 

components. The other cytokines were affected differently depending on which 

component was knocked down. DCs knocked down for NRON had significantly 

decreased production of IL-6, and IL-23, but not IL-1β or IL-22. DCs knocked down 

for SPAG9 had significantly increased IL-1β, IL-6 and IL-22 production. The knock 

down of PPP2R1A significantly decreased IL-6 production by around 50%, but only 

slightly decreased IL-22 production. The knock down of CSE1L only led to a 

significant decrease in IL-6 production, but not other cytokines (Figure 16A). Figure 
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16B summarizes the main observations of how cytokines produced by Aspergillus-

stimulated DCs were affected by the knock down of NRON, SPAG9 or PPP2R1A. 

This multiple cytokine regulation may underline a possible role of the NRON 

complex in regulating multiple transcriptional events.  
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Figure 16: Individual NRON complex components regulate the cytokine response in Aspergillus-
treated DCs. (A) Cytokine production at 8 hours post-exposure from A. fumigatus swollen conidia-
stimulated D1 cells that were knocked down for NRON, SPAG9, PPP2R1A or CSE1L through the use 
of shRNA-lentiviral particles. Data is displayed as the mean cytokine expression±SEM of two 
biological replicates. Differences between Aspergillus-stimulated cells found to be statistically 
significant by one-way ANOVA with Bonferonni’s Multiple Comparison post-test are indicated (* - 
p<0.05; ** - p<0.01; *** - p<0.001; **** - p<0.0001). (B) Table summarizing the main observations 
of cytokine production in response to fungal stimulation as a result of knocking down the stated genes 
in D1 in comparison with that of control-shRNA transduced control cells. Abbreviations used: 
Untreated (Unt); A. fumigatus swollen condia (A-sw); D1 cells transduced with non-targeting control 
shRNA (Ctrl).  
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Chapter 5. Discussion 

 LRRK2 was first discovered in 2002 in association with Parkinson’s Disease 

(Funayama et al., 2002), and since then it has been shown to be involved in various 

signaling pathways and cellular processes. It is also evident that this protein has a role 

in the immune system. In this respect, it has been shown to be genetically associated 

with other inflammatory diseases (Barrett et al., 2008; Liu et al., 2011; Törkvist et al., 

2010), expressed in various immune cell populations and is modulated in cells in 

response to inflammation and PAMPs. Literature has shown that LRRK2 is expressed 

in DCs (Gardet et al., 2010; Liu et al., 2011). Also, LRRK2 was reported to be a 

negative regulator of the NFAT pathway in BMDMs (Liu et al., 2011), a pathway that 

is activated downstream of the dectin 1 (Goodridge et al., 2007). However, as of now 

the role of the LRRK2 protein in DCs and in fungal immunity has not been explored. 

In support of observations of Liu et al. (2011), the study here demonstrates 

that LRRK2 is indeed involved as a negative regulator of the NFAT pathway in the 

DC response to fungi. Unlike pure β-glucan, fungi are able to bind to both CLRs and 

TLRs, hence they are capable of inducing both the NFAT and the NFκB pathway. As 

with the study of Liu et al. (2011) in BMDMs, this study shows that LRRK2 

specifically controls the NFAT pathway in DCs, as the absence of LRRK2 only 

affected IL-2 and not cytokines IL-12/IL-23p40 and IL-23. While this finding is 

contrary to a previous report that found LRRK2 to be able to activate the NFκB 

pathway (Gardet et al., 2010), the cells used in this particular study were human 

embryonic kidney (HEK293T) cells, hence the difference in experimental context 

could likely account for this contradiction.  

The kinetics of LRRK2 expression in Aspergillus-stimulated DCs was also 

looked at, and it was interesting that Aspergillus could induce and maintain a decrease 
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of LRRK2 expression on both the gene and protein level in DCs for as long as 18 

hours or 24 hours post-stimulation. The mechanism of this maintained 

downregulation in the DC response to Aspergillus is not explored in this study, 

however literature offers some clues to explain this observation on the protein level. 

Autophagy could be the mechanism responsible for degrading the LRRK2 

protein as it has been shown that LRRK2 localizes to lysosomes and can be degraded 

by CMA in neurons (Orenstein et al., 2013). In a similar way, the present study here 

shows that LRRK2 is localized to endosomes and lysosomes in steady state DCs, and 

that Aspergillus is able to induce a non-canonical type of autophagy in DCs that is 

reminiscent of LC3-positive phagosomes, previously reported by Ma et al. (2012), 

Kyrmizi et al. (2013) and Nicola et al. (2012). Ma et al. (2012) also reports that the 

recruitment of LC3II to phagosomes was important for fungal antigen processing and 

presentation, however whether this form of non-canonical autophagy is also 

responsible for LRRK2 degradation will need to be investigated in future studies. 

Future possible experiments to delineate if autophagy has an impact on cellular levels 

could include the use of cells that are knocked out or overexpressing LC3 in 

experiments to see if this has an influence on LRRK2 levels in the cell. 

The use of transmission electron microscopy allowed the observation of 

LRRK2-positive multilamellar body formation in Aspergillus-stimulated DCs, further 

strengthening the relationship of LRRK2 with lysosomes and autophagy. 

Multilamellar bodies are reported to be part of the lysosomal pathway and its 

formation is dependent on autophagy and lysosomal degradation (Hariri et al., 2000), 

and the localization of LRRK2 to these structures is supported by what has been 

previously reported in cultured human cells (Alegre-Abarrategui et al., 2009). 
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Also studied here is the relationship of the endosome-lysosome network with 

the Ca2+-NFAT-IL-2 pathway. Up till now in literature, the subcellular localization of 

NFAT in resting cells has only been reported as the cytoplasm. Here in this study, it is 

demonstrated for the first time that NFAT can also be localized to the endosomes and 

lysosomes in steady state cells. Endosomes have recently been proposed to be hubs 

where the interaction between signaling pathways occurs due to the localization of 

numerous signaling components, including signaling enzymes and transcription 

factors, as well as scaffolds that can bind and mediate crosstalks between different 

pathways on endosomal membranes. Interestingly, GSK3-β, a protein involved in 

phosphorylating NFAT, has also been shown to localize to the endosomal membrane 

and this is thought to serve to isolate it from interaction with other signaling 

components (Pálfy et al., 2012). In addition, LRRK2 interaction with various proteins 

involved in the endocytic network have been recently demonstrated (Gómez-Suaga et 

al., 2014; Schreij et al., 2015; Yun et al., 2015). Liu et al. (2011) has also reported 

LRRK2 to be bound to 5 of the 11 proteins of the NRON complex. In view of these 

reports, the localization of LRRK2 and possibly also other NRON complex 

components to endosomes and lysosomes at steady state could serve to regulate 

NFAT, and this is possibly accomplished by keeping NFAT from translocating to the 

nucleus through sequestering it at the endosomal and lysosomal membrane. Future 

studies utilizing the electron microscopy in conjunction with antibodies specific for 

NRON complex components are needed to determine these proteins are able to 

localize to these cellular structures just as LRRK2 and NFAT. 

How the NFAT pathway is influenced by the events following the engagement 

of dectin 1 by Aspergillus in DCs was also investigated here. The dependency of 

phagocytosis on IL-2 production in response to particulate β-glucan in DCs has been 
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previously demonstrated (Fric et al., 2014), hence in this study the finding that the 

NFAT-IL-2 axis in response to Aspergillus is also dependent on this cellular process 

was expected. What was interesting was that early, but not late autophagic events are 

also required to activate the NFAT-IL-2 pathway. When taken together with previous 

findings that NFAT nuclear translocation in response to fungi is an early event 

occurring 0.5 to 3 hours post-stimulation (Zelante et al., 2015), a probable explanation 

for these findings is that NFAT could be sequestered on early endosomic membranes 

after dectin 1 engagement, and that by late stages of autophagy that NFAT would 

have already dissociated from endosomic/lysosomic membranes and hence is not 

influenced by this phase of the autophagy process. This hypothesis of NFAT 

association and subsequent dissociation from autophagic membranes should be 

investigated in future studies perhaps by demonstrating co-localization of NFAT with 

LC3 at the phagosomes containing fungi with time by the use of confocal microscopy, 

or by electron microscopy. 

Four components, NRON, PPP2R1A, CSE1L and SPAG9, of the NRON 

complex were also looked at, and it was found that expression levels of NRON and 

PPP2R1A in particular were downregulated in DCs in response to Aspergillus 

stimulation, just as LRRK2. This is in line with what has been reported that the 

NRON complex, together with LRRK2, mediates NFAT translocation regulation (Liu 

et al., 2011) since a downregulation of NRON complex components would likely lead 

to a dissociation of this regulatory complex. A knock down of these components was 

carried out to investigate whether other than LRRK2 other components may affect 

NFAT nuclear translocation in DCs. IL-2 production from Aspergillus-stimulated 

DCs knocked down for any of these components was found not to be significantly 

affected, or was decreased as in the case when SPAG9 was knocked down. This 
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indicates that perhaps NRON, PPP2R1A and CSE1L alone are not sufficient to 

regulate the NFAT-IL-2 axis. SPAG9, on the other hand, individually could be 

positively regulating the NFAT-IL-2 axis, rather than inhibiting it. 

More interestingly, the individual components were regulating DC cytokine 

response differently from one another, implying that they may not work in concert. 

While looking at cytokine response alone is not sufficient to conclude specifically, 

results also indicate that their regulation of fungal immunity in DCs is not confined 

only to the NFAT pathway. For instance, NRON seems to also positively regulate IL-

6 and IL-23 as well, which are cytokines that are produced downstream of the NFκB 

pathway, contrary to literature indicating that this regulatory RNA does not control 

this pathway (Willingham et al., 2005). While it is challenging to knock down genes 

in DCs, it would be beneficial to have cells that are double or triple knocked out for 

NRON complex components to further delineate the role of the NRON complex in its 

interaction with LRRK2 and its regulation of the NFAT-IL-2 pathway in response to 

fungal stimulus. 

For SPAG9, CSE1L and PPP2R1A, besides being known to be part of the 

NRON complex (Liu et al., 2011; Willingham et al., 2005), their reported functions in 

literature were not originally immunological. SPAG9 has been proposed as a 

biomarker for diagnosis in carcinoma of the breast (Kanojia et al., 2009), 

endometrium (Yu et al., 2012), cervix (Garg, Kanojia, Salhan, et al., 2009), thyroid 

(Garg, Kanojia, Suri, et al., 2009) and colon (Kanojia et al., 2011), and has been 

proposed to be involved in the tumorogenesis and growth. CSE1L is a nuclear 

exportin protein that is involved in the cell cycle, and like SPAG9 has also been 

associated with various carcinomas (as reviewed in Behrens et al. (2003)). PPP2R1A 

is a subunit of protein phosphatase 2A (PP2A). PP2A has been implicated in meiosis 
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and mitosis in numerous studies (Hu et al., 2014; Porter et al., 2013) and is currently 

being explored as a treatment target for pancreatic cancer (Chien et al., 2015). More 

related to the context of this study, PP2A proteins have been shown to interact with 

signaling pathways such as the TLR-TRIF signaling (Woo et al., 2012), Ras signaling 

(Ory et al., 2003) as well as Ca2+/Calmodulin-dependent protein kinase B/Akt (PKB) 

activation (Fedida-Metula et al., 2012). In relation to neurological disorders PP2A has 

been suggested as a possible treatment target for neurological disorders Alzheimer’s 

Disease (Sontag & Sontag, 2014) and has been recently implicated in Tau pathology 

of Parkinson’s Disease (Arif et al., 2014). This study hints that the function of 

SPAG9, CSE1L and PPP2R1A may also be related to the immune response to 

pathogens. Future focused studies will be required to dissect their role in 

immunological signaling pathways. Also, while this study was only confined to these 

components of the NRON complex, the analysis should be expanded to the other 

members of this complex in future work as it is likely that the other members could 

also be regulated, and also be involved in controlling the response to Aspergillus in 

DCs. 

Lastly, while this study was focused on DCs, macrophages too play a role in 

the immune response to fungi. Alveolar macrophages present in the lung are the first 

line of defense against inhaled fungal spores. Like DCs, macrophages are also capable 

of sensing fungal PAMPs through the presence of PRRs on their surface. In response 

to dectin engagement, macrophages are capable of coordinating the immune response 

to fungi by the production of cytokines IL-12, IL-10, TNFα, and macrophage 

inflammatory protein type 2 (MIP-2) (Segal, 2007). Macrophages also express NFAT, 

and NFAT has been shown to activate downstream of dectin activation (Goodridge et 

al., 2007). Given that Liu et al. (2011) have also demonstrated through the use of 
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LRRK2-deficient mice that the production of IL-6 and IL-12 from macrophages 

stimulated with zymosan, an extract of the cells wall of yeast that activates both 

dectin 1 and TLR2, is NFAT-dependent, the role of LRRK2 in the immune response 

of macrophages to fungi should also be explored. 

Autophagy also occurs in macrophages, and in this respect Ma et al. (2012) 

and Kyrmizi et al. (2013) have both demonstrated that the formation of LC3-positive 

phagosomes also occur in macrophages incubated with fungi, and that the recruitment 

of LC3 is important for macrophage signaling and function in response to fungi. In 

particular, Kyrmizi et al. (2013) show that the recruitment of LC3 is needed for 

macrophage ROS production and killing of Aspergillus spores. It would thus also be 

interesting to investigate further the role that LRRK2 and autophagy play in 

macrophage fungal defense. 
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Chapter 6. Conclusion 

 To conclude, this study has shown that DCs do indeed express LRRK2 and 

that it negatively regulates the NFAT pathway activated in response to Aspergillus. At 

resting state in DCs, LRRK2 together with NFAT was observed to localize to 

endosomes and lysosomes. Upon Aspergillus binding to dectin 1 in DCs, non-

canonical autophagy as well as multilamellar body formation is triggered. Taking into 

account the findings of previously published reports, the sequestration of LRRK2 in 

the multilamellar bodies could lead to the dissociation of the NRON complex. This 

allows calcineurin, now activated by the Ca2+ flux induced by dectin 1 engagement, to 

dephosphorylate NFAT, allowing NFAT to translocate to the nucleus and to activate 

gene transcription. At 8 hours post-stimulation, LRRK2 expression in DCs was 

observed to be reduced, and a possible mechanism for this is through autophagic 

protein degradation (Figure 17). 

Therefore, the role of the NRON complex in immune response of DCs to 

Aspergillus has been shown to be more complex than previously thought, and their 

interaction with other signaling pathways activated in the immune response will add a 

new dimension to their currently known cellular functions. Given that DCs have an 

important role in the immune system as antigen presenting cells and initiating the 

appropriate adaptive immune response, future in vivo studies could elucidate better 

the immunological function of LRRK2 and the NRON complex eventually in T cell 

priming. The knowledge obtained from such studies not only sheds light on the 

control of the NFAT pathway, but also could have implications in other diseases 

associated with LRRK2 such as Crohn’s Disease, IBD and Parkinson’s Disease. 
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!
Figure 17: The regulation of the NFAT pathway in DCs is likely accomplished by cellular 
sequestration and autophagy. This schematic describes a hypothesis to explain the observations of 
this work. At resting state in DCs, NFAT is localized on endosomes and lysosomes along with LRRK2 
and the NRON complex (left panel). When Aspergillus engages dectin 1, autophagy and the formation 
of multilamellar bodies is triggered, sequestering LRRK2 there, and likely inducing a disassembly of 
the NRON complex. Calcineurin, activated by the Ca2+ flux triggered as well by dectin 1 binding to 
Aspergillus, is then able to mediate the dephosphorylation and activation of NFAT (middle panel). 
After 8 hours post-stimulation, LRRK2 levels in the cell was observed to be decreased, and this 
possibly occurs through autophagic degradation (right panel). 
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NGS L.O.R. (Singapore) 
Presented a poster entitled: 
Modulation of the LRRK2/NFAT Pathway In Response to Aspergillus fumigatus 
Morphotypes 
Wong Yoke Wei Alicia, Teresa Zelante, Jan Fric, Tay Hock Soon, and Paola 
Ricciardi-Castagnoli 
 
12th-18th January 2013 
Gordon Research Seminar (GRS) and Gordon Research Conference (GRC) on 
Immunology of Fungal Infections (Texas, USA) 
Presented a poster entitled: 
Modulation of the Immune System in Response to Fungi through NFAT Pathway 
Wong Yoke Wei Alicia, Teresa Zelante, Jan Fric, Tay Hock Soon, and Paola 
Ricciardi-Castagnoli 
 
15th – 22nd April 2012 
7th ENII EFIS/EJI Spring School of Advanced Immunology (Sardinia, Italy) 
Presented a poster entitled: 
IL-2 production by Dendritic Cells: a novel innate cytokine in antimicrobial defense 
Teresa Zelante, Jan Fric, Wong Yoke Wei Alicia, Tay Hock Soon, and Paola 
Ricciardi-Castagnoli. 
!


