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Summary

With the proliferation of geographic applications, a large amount of geographic data

have been created, such as the geo-textual data and geotagged images. Meanwhile,

location-based services are developed to provide people with information of their

surrounding environments. Two types of location-based queries are developed for

the geo-textual data and the geotagged images respectively. Recent study on spatial

keyword search focused on the processing of spatial keyword queries which retrieve

objects that match particular keywords within a spatial region. Besides, spatial

image search is proposed to find similar images and information about the query

image. However, such a huge amount of geographic data also pose a question: how

can we find the exact information we want? Interactive methods have been studied

widely to find the right information based on human-computer interaction. In this

thesis, we focus on the location-based services and study the advanced interactive

methods in these services using inverted index.

We propose a general framework to process the location-based keyword queries

interactively. The proposed framework adopts a unifying strategy for processing dif-

ferent variants of spatial keyword queries. We adopt the autocompletion paradigm

that generates the initial query as a prefix matching query. If there are few matching

results, other variants of spatial keyword search are performed as a form of relaxation

that reuses the processing performed in the earlier phase. The types of relaxation

allowed include spatial region expansion and exact/approximate prefix/substring

xi



matching. Moreover, since the autocompletion paradigm allows appending char-

acters after the initial query, we look at how query processing performed for the

initial query and relaxation can be reused in such instances. Compared to existing

work which processes variants of spatial keyword query as new queries over different

indexes, our approach offers a more compelling way to efficient and effective spatial

keyword search.

For the location-based image search, it can be modeled as the nearest neighbor

search in high-dimensional spaces. Due to the “curse of dimensionality” problem,

it is very expensive to process the nearest neighbor (NN) query in high-dimensional

spaces; and hence, approximate approaches, such as Locality-Sensitive Hashing (LSH),

are widely used for their theoretical guarantees and empirical performance. Current

LSH-based approaches target at the `1 and `2 spaces, while, as shown in the existing

work, the fractional distance metrics (`p metrics with 0   p   1) can provide more

insightful results than the usual `1 and `2 metrics for data mining and multimedia

applications. However, none of the existing work can support multiple fractional

distance metrics using one index. We propose LazyLSH that answers approximate

nearest neighbor queries for multiple `p metrics. Different from previous LSH ap-

proaches which need to build one dedicated index for every query space, LazyLSH

uses a single base index to support the computations in multiple `p spaces, thereby

significantly reducing the index maintenance overhead. LazyLSH can provide more

accurate results for approximate kNN search under fractional distance metrics.

Finally, we design and develop an interactive augmented reality system for shop-

ping, called ARShop, to provide the above location-based services. The main ob-

jective of our system is to enhance users’ shopping experience. A user can input a

shopping list and issue a location-based query using a photo of his/her surrounding

environment. Based on the shopping list and the user-uploaded photo, the ARShop

system can direct the user to shops that contain items in his/her shopping list.
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Chapter 1

Introduction

1.1 Background and Motivation

We are living in the age of big data where the amount of accessible data is almost

limitless. Terabytes or even petabytes of data are being accumulated daily from

a wide variety of sources such as news sites and social networks. The amount of

accessible data is almost limitless. Such a huge amount of data also bring a question:

how can we find the exact information we want? Interactive search methods are

meant to address this problem of finding the right information based on human-

computer interaction.

In search engines, the most important issue to be resolved is how to improve users’

search experience. Regarding search experience, effectiveness is a critical factor in

evaluating the performance of search engines. It depends on whether search engines

can return the exact information that users want. In order to support effective search,

interactive search is proposed to indicate users’ preferences [118, 143].

It is known that information retrieval is an interactive and iterative process [115].

The idea of interactive search was first proposed in [130]. Swanson [130] pointed out

that the essential role in information retrieval is a trial-and-error process, which

indicates that a query needs to be formulated and refined several times to get the

expected results. Later, Efthimiadis [49] identified two query stages: the initial stage

1



Interactive 
Search

Auto-
complete

Spelling

SynonymsSuggestions

New search 
methods

Figure 1.1: Interactive Search

and the query reformulation stage. In the initial stage, the initial query is constructed

and answered. If the initial query does not return the expected search results, users

can further reissue a query in the query reformulation stage. In this stage, the initial

query is adjusted manually or with the assistance of the system. Such a process is

referred to as the query formulation or query recommendation [7, 57].

Generally, interactive search can be divided into five categories, as presented in

Figure 1.1.

1. Autocompletion: predicts what users might be searching for. Autocomple-

tion is a widely used mechanism to get the desired information quickly and

with as little knowledge and effort as possible [12]. It predicts what words

users want to type in without typing in the words completely. A straightfor-

ward method to achieve the autocompletion function is to apply prefix search

to search engines using prefix tree [44]. Subsequent methods are proposed to

relax the constraint of matching the terms from the beginning, such as sub-

string matching using suffix tree [96]. Currently autocompletion is widely used

2



in commercial search engines for its effectiveness.

2. Spelling correction: identifies and corrects spelling errors. Approximate

string search is an error-tolerant design to handle the cases when the input

query text or the texts in the database contain typos. It finds strings that

match a query string approximately and it is usually done by returning strings

with small edit distances to the query [104].

3. Synonyms: recognizes words with similar meanings. A synonym is a word

or phrase that means exactly or nearly the same as another word or phrase in

the same language. When users issue queries, answers should contain terms

with similar meanings. Finding synonyms can be conducted by searching terms

for determining synonyms or other replacement terms used in an information

retrieval system [135]. This technique has been used by various search engines

including Google [81].

4. Query suggestions: provides search alternatives. Query suggestions are im-

plemented in search engines to provide better user experience to suggest rele-

vant queries. Recently, query logs, which can be considered as a rich source of

knowledge on user behaviors, have been widely used to in query suggestions.

Useful information is extracted by analyzing query logs and used to suggest

alternative queries [16, 75, 76].

5. New search methods: creates new ways to search, e.g. “search by image”

and “voice search”. Conventional keyword search might not be used easily

to describe complicated objects such images or audio. In order to facilitate

searching such complicated objects, new search methods are proposed, such

as search by image [45, 95, 51, 9, 107] and search a song by only a part of it

[101, 78].

3



With the proliferation of geographic applications, a large amount of geographic

data have been created, and the geographically encoded data are ubiquitous these

days. For example, business owners can easily create and register their businesses

online using Google Places for Business1. Rich information about a company, such

as the company name, address, descriptions and contact numbers, can be included.

Besides the abundant geo-textual data, a large number of photos and videos are

created together with geographical locations using online map services such as Flickr

and Panoramiom. Such a large amount of geographic data pose a challenge of storing

and retrieving the geographic data efficiently and effectively.

In the meanwhile, there are plenty of location-based services developed because

GPS-embedded smart phones are widely used nowadays. Location-based services are

defined as services that are enhanced by the location information [46]. Commercial

location-based services include Google Maps2, Foursquare3 and Facebook Places4.

They use the location functionalities of mobile phones, such as the GPS and WiFi

positioning, to provide people with information of their surrounding environments.

Questions about the surrounding environments can be answered using location-based

services. We proceed to illustrate two types of location-based questions with exam-

ples.

• Location-based Keyword Query: An example of the location-based key-

word query is “Where is the nearest restaurant or ATM machine?” Users can

issue a location-based keyword query by specifying a query location and a set

of keywords such as “restaurant” and “ATM machine”.

• Location-based Image Query: An example of the location-based image

1 http://www.google.com/business/placesforbusiness/

2 https://maps.google.com/

3 https://foursquare.com/

4 https://www.facebook.com/about/location/
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Figure 1.2: Location-based Keyword Query

query is “What is the tourist attraction in front of me?” Users can issue a

location-based image query by specifying a query location and an image of the

surrounding environment.

Merlion 

Figure 1.3: Location-based Image Query

One type of location-based services is the location-based keyword search, as shown

in Figure 1.2. Users type in a set of keywords and specify a spatial area to issue a

query. It is a special case of keyword search, in which the spatial information is

also considered. Keyword search is a practical information retrieval mechanism to

retrieve data on the World Wide Web effectively. It is commonly used because of its

5



user-friendly interface. In addition, it provides the functionality that users do not

need to know either a query language or the underlying structure of the data. It

is widely used in commercial search engines on top of documents to find the query

terms. Typically, a keyword is associated with a document when the keyword is

contained in the document. When users type in a set of keywords, search engines

usually return the documents that are associated with the query keywords. In this

thesis, we combine autocompletion and spelling correction in the context of location-

based keyword search as a type of interactive search.

Another type of location-based services is the location-based image query, as

shown in Figure 1.3. Users submit images of the surrounding environments as queries,

which can be considered as image search. Image search is introduced to find related

images from the Web [52, 86], and it can be regarded as the nearest neighbor search

in high-dimensional space as images are usually represented as high-dimensional

vectors [139, 80]. It has been integrated into commercial search engines, such as

Google Image search5, to improve the effectiveness of the search. We then study the

location-based image search as a new search method in interactive search.

Besides effectiveness, efficiency is another important issue for search engines. In

order to support fast query processing, many index structures have been proposed

over the past decades. In particular, the inverted index structure is widely used in

many applications, such as keyword search [154], graph search [34] and image search

[32], for its simplicity and efficiency. A typical inverted index structure is represented

as a collection of lists. Each list is a key-value pair, in which the key is a term and

the value is a list of object identifiers containing the term. When a query comes, we

first extract the terms that the query has. Then we can easily retrieve the identifiers

of the objects containing those terms using an inverted index.

In this thesis, we focus on the advanced interactive techniques utilized in the

5 http://www.google.com/imghp/
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context of location-based services. In particular, based on the two types of location-

based queries, advanced interactive methods towards effective search are presented.

In order to achieve real-time human-computer interaction, we propose new index

structures, which are based on inverted indexes, to support the advanced interactive

search.

1.1.1 Interactive Methods in Location-based Keyword Query

Keyword search is receiving increasing interest in the context of spatial databases

recently, namely spatial keyword query. Typically, given a spatial region and a set

of keywords, spatial keyword search returns points of interest (POIs) locating in the

spatial region and containing all the keywords [65]. To achieve this goal, a range of

techniques have been proposed to efficiently process spatial keyword queries [33].

Spatial keyword search is generally used in map services to return POIs. It has

received much attention in the research community recently [33]. In order to ensure

effective retrieval, interactive methods were proposed to spatial keyword search, in-

cluding autocompletion [13, 74], and the allowance of errors in keyword matching

[140, 4].

On the one hand, autocompletion [12, 126] is a feature that predicts what users

want to type in without typing in the words completely. It is effective and widely

used in commercial search engines and integrated into spatial databases recently.

In [13], the spatial prefix query is proposed to implement autocompletion in spatial

keyword search. A POI is returned if it is located in the query area and the query

text is a prefix of its textual content.

On the other hand, the allowance of errors in keyword matching is the technique

of finding strings that match a query string approximately [99]. It is an error-

tolerant design to handle the cases when the input query text contains typos. While

such extensions [13, 74, 140, 4] are useful in their own right, they adopt different
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indexes and query processing methods, making it difficult to incorporate all of these

extensions in a single system.

Having observed that different types of relaxation have different levels of complex-

ity and have dependencies among themselves, we propose a general framework, called

INSPIRE, for processing the spatial prefix query and its relaxation. We adopt a uni-

fying strategy for processing different variants of spatial keyword query. We adopt

the autocompletion paradigm that generates the initial query as a prefix matching

query. If there are few matching results, other variants of the spatial keyword search

are performed as a form of relaxation that reuses the processing done in the ear-

lier phase. The types of relaxation allowed include spatial region expansion and

exact/approximate prefix/substring matching.

If no or few results are returned, we incrementally process different types of re-

laxation until sufficient results are returned. In particular, the spatial region of the

prefix query is first expanded, followed by relaxation of different degrees on string

dimension: the substring query, the approximate prefix query and the approximate

substring query. As a result, our approach can support fuzzy type-ahead search

in the context of spatial keyword query, which provides real-time human-computer-

interaction for users. Our approach can be viewed as a combination of autocomple-

tion and spelling correction in interactive search.

1.1.2 Interactive Methods in Location-based Image Query

In addition to text data, geographically encoded images are becoming more and more

common. Users can easily create, tag and share customized photos with the help

of image sharing services, such as Flickr and Panoramiom. In location-based image

queries, one typical application is landmark recognition. Landmark recognition has

become an active research topic in the last decade. It determines where a photo is

taken based on the image database collected from the Web. It is useful in many
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applications such as location recognition [69] and photo tourism [128, 150]. It can

be viewed as a type of new search method in interactive search.

In landmark recognition, the nearest neighbor (NN) search is used to retrieve

similar images of the query image. The input of the nearest neighbor search is a geo-

encoded image, which can be considered as a high-dimensional vector. Compared

to textual data, a high-dimensional vector representing an image can be viewed as a

“keyword”. Therefore, the nearest neighbor search on high-dimensional data used in

landmark recognition can be considered as a special case of spatial keyword search.

State-of-the-art kNN processing techniques have been proposed for low-dimensional

cases. However, due to the “curse of dimensionality”, the same techniques cannot

be directly applied to high-dimensional spaces. It was shown that conventional kNN

processing approaches become even slower than the naive linear-scan approach [42].

One compromise solution is to adopt the approximate kNN technique which returns k

points within distance cR from a query point, where c is the approximation ratio and

R is the distance between the query point and its true pkqth nearest neighbor. The

intuition is that in high-dimensional spaces, approximate results with error bounds

are good enough for most applications.

To process approximate kNN queries, several methods have been proposed [8, 68,

3, 98], among which, locality-sensitive hashing (LSH) [68] is widely used for its the-

oretical guarantees and empirical performance. In essence, the LSH scheme is based

on a set of hash functions from the locality-sensitive hash family which guarantees

that similar points are hashed into the same buckets with higher probabilities than

dissimilar points. The LSH scheme was first proposed by Indyk and Motwani et al.

[68] for the use in the binary Hamming space, and later was extended for the use in

the Euclidean space by Datar et al. [42] based on the p-stable distribution (e.g., the

Cauchy distribution is 1-stable and the Gaussian distribution is 2-stable).

The effectiveness of high-dimensional applications was shown to be sensitive to
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the choice of distance functions [2]. Although the Manhattan (`1) and Euclidean (`2)

metrics can reveal some important properties of the data, `p metrics with 0   p   1,

i.e., fractional distance metrics, can provide more insightful results from both the

theoretical and empirical perspectives for content-based image retrievals [67] in high-

dimensional spaces.

This brings us a challenging problem: how to answer approximate kNN queries

under multiple fractional distance metrics. A naive method is to build an LSH index

for every possible p value, which is obviously too expensive. Moreover, due to the

lack of closed form density and distribution functions for p-stable distributions when

p � 1 or 2, it is not trivial to generate p-stable random variables and build an

optimal index structure for the fractional distance metrics. To address the problem,

we propose LazyLSH as an efficient mechanism to process approximate kNN queries

in different `p spaces.

LazyLSH builds an LSH index in a predefined `p space, which is referred to as the

base space. Using this materialized index, LazyLSH can answer approximate kNN

queries in a user-specific query space. The word “Lazy” is borrowed from the lazy

learning algorithms [145] in which generalization beyond the training data is delayed

until a query is issued. LazyLSH means that we do not build an index for every query

space. Instead, we reuse the index constructed in the base space to answer queries

in the user-specific query space. Our analysis shows that if two points are close in

an `p1 space, then they are likely to be close in another `p2 space. We also find that

a locality-sensitive hash function built in the base space is still locality-sensitive in

the query space when certain conditions hold. With this observation, LazyLSH can

answer approximate kNN queries in different `p spaces to support the processing of

location-based image queries under different distance functions.
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Figure 1.4: Overview of ARShop

1.1.3 ARShop: Interactive Augmented Reality System for
Shopping

We develop a system, called ARShop, to utilize the above interactive methods in

location-based services. The main objective of ARShop is to enhance the shopping

experience for users. This system can also be used for tourist navigation in amuse-

ment parks such as Disneyland and Universal Studios.

First, ARShop provides shop owners with cloud-based tools to digitize their shops.

A shop owner can create a digital shop and upload images of the shop. The shop

owner can further add annotations on their uploaded photos to indicate the shop’s

name and available products in the shop.

For shoppers, ARShop provides them with a tool to input their shopping lists.

A user can submit a shopping list or a photo of his/her surrounding environment to

issue a query. Then our system can direct the user to find the items in the shopping

list. The system supports two primary functions, which is shown in Figure 1.4:
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• Locating shops that contain items in a user’s shopping list. This function is

done by performing spatial keyword queries. The user’s shopping list is taken

as queries and used to match with the annotations from the shop owners. As

a result, we can find the shops that contain items in a user’s shopping list.

• Locating the user’s position. This function is done by image matching as GPS

may not be accurate when used indoor. The photo of his/her surrounding

environment is taken as a query and used to compare with the nearby images.

Therefore, the ARShop system can infer the current location of the user, and

direct the user to the shops that contain items in the user’s shopping list.

1.2 Gap and Purpose

After reviewing the existing work on interactive methods in the context of location-

based services, we summarize some research gaps for the current study as follows.

1. While the extensions of spatial keyword search are useful in their own right,

they adopt different indexes and query processing approaches, making it diffi-

cult to incorporate all of these extensions in a single system. To address this

problem, we aim to develop a general framework for integrating these exten-

sions of spatial keyword search to provide real-time fuzzy type-ahead search on

geo-textual data.

2. The approximate nearest neighbor search used in spatial image search has been

well studied for the Euclidean distance in high dimensional space. However,

none of the existing work can support multiple fractional distance metrics using

one index. To address this problem, we aim to develop a method to answer ap-

proximate nearest neighbor queries under multiple fractional distance metrics

using one index.
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The aim of this study is to develop interactive search techniques to facilitate

searches in location-based services. The specific objectives of this research are to:

1. Develop a general framework for the interactive location-based keyword search,

which allows the processing of the extended spatial keyword queries. Under this

framework, we order and perform the query relaxation incrementally, starting

from the least expensive to the most. This is done by ensuring that the re-

laxation performed at later stages can reuse the results from the earlier query

processing and relaxation as much as possible.

2. Develop an index structure that builds an LSH index in a predefined `p space.

Based on the materialized index, approximate kNN queries under multiple

fractional distance metrics can be answered using this single materialized LSH

index. This technique can be used to support image search, which can be

viewed as a new type of search method in interactive search.

3. Build an interactive augmented reality system for shopping. This system can

support the spatial keyword search and spatial image search. By integrating

these two location-based services, this system can infer the current location of

a user and direct the user to shops that contain items in the user’s shopping

list.

The theoretical frameworks and devised algorithms of this study may have sig-

nificant impacts on two aspects:

1. Different types of relaxation are processed under a unified framework. In this

case, common index structures can be used and results obtained at earlier

steps can be reused at later steps. The incremental solution may be significant

because it can be extended to other applications.
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2. Approximate kNN queries in different `p spaces can be answered using a single

materialized LSH index. In addition, our method can also process multiple

queries in different `p spaces simultaneously. Therefore, such a method can

help us explore high-dimensional data and may provide insights into various

applications such as classifications and clusterings.

Our work on the interactive spatial keyword search was published in [148]. Its

corresponding demo was published in [147]. The work on the approximate nearest

neighbor search to support spatial image queries will be published in [149]. Besides,

the ARShop System can be found in http://shopbyar.com/ARShop/.

1.3 Organization

The rest of this thesis is organized as follows:

• Chapter 2 reviews the related work. The surveyed topics include interactive

methods used in text searches and augmented reality techniques.

• Chapter 3 presents our work on the interactive spatial keyword search. A frame-

work, named INSPIRE, is proposed to combine autocompletion with fuzzy

search to answer location-based keyword queries to improve user experiences.

A system which performs query relaxation on spatial prefix query is demon-

strated.

• Chapter 4 presents a foundation to support spatial image search. A method,

called LazyLSH, is presented to answer approximate nearest neighbor queries

for multiple `p metrics using one inverted index.

• Chapter 5 presents our ARShop system that uses the augmented reality tech-

nology to enhance the users’ shopping experience. By integrating spatial key-
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word search and spatial image search, ARShop can direct users to the shops

that contain items in a user’s shopping list.

• In Chapter 6, we conclude this thesis and discuss possible future extensions of

the current work.
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Chapter 2

Literature Review

In this chapter, a literature review over advanced interactive search is conducted.

We mainly focus on the topics of spatial keyword search and image search, which

are typical applications of interactive search. First, existing work of query recom-

mendation to facilitate interactive keyword search is surveyed. Then, we narrow the

scope of interactive keyword search in the context of spatial databases in which the

existing work of spatial keyword search and its extensions is reviewed. Finally, we

review existing work of locality-sensitive hashing to perform approximate neighbor

queries, which is used in spatial image search.

2.1 Query Recommendation

Web search queries issued by users are often short, typically with only one or two

keywords each [127]. To assist users in formulating queries, modern search engines

are equipped with machine intelligence to provide interactive search such as query

recommendation [25, 63, 97, 94, 89]. In this section, the relative work of query

recommendation is reviewed. First, query recommendation methods are highlighted.

Then the query measurement of recommended queries is discussed.

In order to improve the quality and effectiveness of keyword search, query recom-

mendation has been extensively studied in the past decades. Query recommendation
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is implemented in search engines to provide better user experience to recommend

relevant queries. Recently, query logs have been widely used to in query recommen-

dation. Query logs are considered as a rich source of knowledge on user behaviors.

The main challenge in analyzing query logs lies in extracting useful relations from

the raw lists of user actions. Many different methods have been proposed to extract

useful relations in query logs. Among those methods, term co-occurrence [16, 76],

query clickthrough [75, 41, 111, 97], and query chains [110, 61, 62] are the most used

types of information in query logs when recommending a query.

Term co-occurrence [16, 76] is a technique that measure the similarity between

terms. Terms with a high number of co-occurrence are relevant to each other. By

capturing the similarity between query terms, the terms that are relevant to the

original query can be recommended to users.

Most of the proposals use query logs that contain query click information [75, 41,

111, 97]. By representing the relationship between queries and URLs into a bipartite

click graph, many researchers have investigated techniques, such as random walks

and hitting time of queries, for learning the underlying query-document relevance.

When queries are considered independently, log files only provide implicit feed-

back on a few results at the top of the result set for each query because users very

rarely look further down the list. Different from the click-though methods, query

chain based methods take the advantage of user intelligence in reformulating queries

[110, 61, 62]. Query chain based methods improve from the click-though methods

by useing a sequence of relative queries instead of one query only. Another benefit

of using query chains is that relevant judgments can also be deduced on the many

more documents seen during the entire search session.
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2.1.1 Quality Measurement of Query Recommendation

In this subsection, the quality measurement of the query recommendation is pre-

sented. The quality of the recommended terms is a major concern for a query rec-

ommendation system, which reflects whether the recommended terms can actually

deduce the search intent of the user. Regarding the search quality, a good query

recommendation system should have the following properties [89].

1. Relevancy: Recommended queries should be semantically relevant to the orig-

inal query.

2. Diversity: The recommendation should cover search intents of different inter-

pretations of the original query.

3. Ranking: Higher relevant queries should be ranked ahead of less relevant ones

in the recommendation list.

Based on these properties, some representative solutions are highlighted.

2.1.1.1 Query Relevancy

Semantic relevance among information resources can play an effective role in in-

formation retrieval, and there are several different approaches to measure semantic

similarities. In the context of query recommendation, there are a number of studies

based on query logs [75, 41, 111, 97]. Many of these studies derive click-through

bipartite graph from query logs to measure query relevancy. Based on the assump-

tion that the URLs a user clicked reflect his search intent, queries that share more

common clicked URLs are more similar.

Another direction to retrieve query similarity is mining query concepts [114, 21,

35, 53, 102]. The search terms, whose concept is similar to the concept of the original

query, are recommended to the user. The concepts can be extracted explicitly or
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implicitly. In [114, 21, 35, 102], concepts are derived explicitly by building ontology-

based taxonomy. On the other hand, in [53], concepts are extracted implicitly from

the query relation graphs, which is from query relations mined using association

rules. Queries that frequently co-occur in the same sessions are considered highly

associated, and so they are connected in the graph. Subsets of queries that are

strongly connected in the graph are taken as concepts.

Although query relevancy ensures that recommended items are similar to the

original query, it may produce many redundant items. To address this problem,

result diversification is introduced.

2.1.1.2 Result Diversification

Result diversification has recently attracted much attention as a means of increasing

user satisfaction in recommender systems and Web search. The basic idea of result

diversification is that search results should be not only relevant to the user query,

but also relevant and different from each other.

Many different approaches have been proposed in the related literature for the

diversification problem. Recently, Drosou et al. [48] surveyed the methods in result

diversification and summarized three types of approaches to result diversification.

They are (1) content-based approach, i.e. results that are dissimilar to each other,

(2) novelty-based approach, i.e. results that contain new information when compared

to previously seen ones, and (3) coverage-based approach, i.e. results that belong

to different categories. The authors conducted the first all-around evaluation of the

existing work on result diversification. Various definitions of the result diversification

problem are surveyed.

Although result diversification ensures that recommended items are diversified,

the recommended items are equally weighted. In this case, popular items do not have

high weights. To address this problem, result ranking is introduced to ensures that
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higher relevant queries are ranked ahead of less relevant ones in the recommendation

list.

2.1.1.3 Result Ranking

Ranking is an important component in search engines to show the most relevant

results in front of the recommendation list [151, 29]. Recently, diversity is used along

with some other ranking criterion, most commonly that of relevance to the users

query. In this case, diversity and relevance are both considered in the result ranking.

Therefore, the advantages of diversity and relevance can be both reserved in the

result ranking.

To the best of our knowledge, the first work in which the two measures were com-

bined is [27], in which marginal relevance, i.e. a linear combination of relevance and

diversity, is proposed as a criterion for ranking results retrieved by IR systems. After

that, Gollapudi et al. [58] considered the combination of relevance and diversity and

presented eight intuitive axioms that diversification systems should satisfy. However,

it is shown that not all of them can be satisfied simultaneously. The combination of

these two criteria has also been studied in [144] as an optimization problem.

2.2 Keyword Search in Spatial Databases

In the previous section, we survey the query recommendation as an interactive

method used in keyword search. In this section, we narrow the scope of interac-

tive keyword search in the context of spatial database. Existing work on spatial

keyword search and its various extensions is highlighted.

Keyword search in spatial databases has been receiving significant attention re-

cently [152, 65, 43, 38, 116, 141, 142, 26, 33]. It is considered as a combination of

spatial query and keyword search. It contains both spatial and textual constraints.

In order to process the spatial keyword search efficiently, various hybrid index struc-
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tures have been proposed to support the spatial keyword search.

Recently, a survey paper on spatial keyword search was published. Chen et al.

[33] surveyed the spatial keyword search and summarized three types of general

spatial keyword queries. They are (1) boolean kNN query, (2) top-k kNN query,

and (3) boolean range query. These three types of spatial keyword queries can be

illustrated with examples.

Example 2.1 (boolean kNN query). Retrieve the k objects nearest to the user’s loca-

tion such that each objects text description contains the keywords “coffee”, “western”,

and “restaurant”.

Example 2.2 (top-k kNN query). Retrieve the k objects with the highest ranking

scores, measured as a combination of their distances to the query location and the

relevance of their text description to the query keywords “coffee”, “western”, and

“restaurant”.

Example 2.3 (boolean range query). Retrieve all objects whose text descriptions

contain the keywords “coffee”, “western”, and “restaurant” and whose locations are

within 2 km of the query location.

The authors conducted the first all-around evaluation of the existing work on spa-

tial keyword search. Detailed experimental evaluation on different parameter settings

was performed for the three types of common spatial keyword queries. By survey-

ing and subjecting existing spatial textual indexing techniques, the paper offered

structure that may help the area of spatial keyword search progress more effectively.

2.2.1 Extensions of Spatial Keyword Search

In the subsection above, the existing work of traditional spatial keyword search is

discussed. Next the techniques to facilitate spatial keyword search are reviewed. In
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order to ensure effective and user-friendly retrieval, various extensions were done to

spatial keyword search including autocompletion [13, 74] and the allowance of errors

in keyword matching [140, 4].

On the one hand, autocompletion is a widely used mechanism to get the desired

information quickly and with as little knowledge and effort as possible [12]. It predicts

what words users want to type in without typing in the words completely. It is

effective and is widely used in commercial search engines and integrated into spatial

databases recently. A straightforward method to achieve the autocompletion function

is to apply prefix search to search engines. Prefix search is proposed and integrated

to spatial databases, in order to support the autocompletion function. Roy et al. [13]

extended the prefix search over spatial databases. The textual attribute is modeled

as a full string. A spatial object is returned if it is located in the query region, and

the query string is a prefix of the object’s textual content. Ji et al. [74] conducted

the location-based instant search. Unlike [13], they modeled the textual content as a

set of keywords. If the textual content of an object matched all the input keywords

and contains a term where the last query keyword is its prefix, it is returned to the

user.

On the other hand, approximate string search is a technique for finding strings

that match a query string approximately. Approximate string search is an error-

tolerant design to handle the cases when the input query text contains typos. It

has been studied recently in the context of spatial databases. Yao et al. [140]

studied the approximate string search in spatial databases. The authors used the

similarity between the min-wise signature of a node and the query string to prune

branches in the tree. However, the method may produce false negatives because

of the probabilistic nature of the min-wise signature. Alsubaiee et al. [4] further

investigated this problem to ensure that all the results are returned. However, these

methods are proposed at the word level, which require users to type at least one full
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word in a query. As a result, the approximate query cannot be supported in the

location-based instant search.

Besides the standalone autocompletion and approximate string search, Chaudhuri

et al.[31] further argued that search engines should support autocompletion and

error tolerance at the same time. The authors proposed efficient solutions to extend

error-tolerant functions over prefix queries in document searches. To the best of

our knowledge, supporting error-tolerant autocompletion has not yet been studied

in spatial databases. This remains a gap for our study to investigate efficiently

supporting error-tolerant autocompletion in spatial keyword search. Besides, the

above-mentioned extensions [13, 74, 140, 4] are useful in their own right. However,

they adopted different indexes and query processing approaches, making it difficult

to incorporate all of these extensions in a single system. In the next chapter, a

system, called INSPIRE, is presented to support these extensions of spatial keyword

search.

2.3 Locality-Sensitive Hashing

In the previous sections, we survey the iterative search methods in the context of geo-

textual databases. However, there are cases that textual information is not applicable

such as the iterative search in augmented reality applications, in which queries are

images instead of keywords. Krevelen and Poelman [134] recently surveyed the state

of technologies, applications and limitations related to augmented reality. It offers

a comprehensive overview of the augmented reality and provides a suitable starting

point to this field.

To facilitate finding similar images in an image database, images are represented

as high-dimensional visual features such as color histograms, Gist features [47] and

bag-of-word features [73] using SIFT [91], SURF [14] descriptions. In augmented
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reality applications, one essential operation is to find the similar features of the query

feature. This operation is basically the nearest neighbor query in high-dimensional

spaces. In this section, we review techniques of the nearest neighbor search in high-

dimensional spaces.

2.3.1 Similarity Search and kNN Processing

In this thesis, we mainly focus on the `p distance and we begin with the definition

of the `p distance.

Definition 2.1 (`p distance). The distance between any two d-dimensional points ~o

and ~q in the `p space, denoted as `pp~o, ~qq, is computed as:

`pp~o, ~qq � p

gffe ḑ

i�1

|oi � qi|p (2.1)

In particular, `pp~o, ~qq returns the Manhattan distance and Euclidean distance

when p equals to 1 and 2 respectively. If 0   p   1, `pp~o, ~qq is called the fractional

distance metric [2]. In similarity search, if `pp~o, ~qq ¤ r, we say the point ~o is within

the ball of radius r centered at the point ~q, denoted as Bpp~q, rq.

Definition 2.2 (Ball Bpp~q, rq). Given a point ~q P Rd, and a radius r, the ball of

radius r centered at point ~q in `p space is defined as Bpp~q, rq = t~v P Rd|`pp~v, ~qq ¤ ru.

The similarity search problem is of fundamental importance to a variety of ap-

plications such as classification [40], clustering [112], semi-supervised learning [153],

collaborative filtering [123] and near-duplicate detection [18]. Given a query object

qo represented as a high-dimensional vector, a typical similarity search retrieves the

k-nearest neighbors (kNNs) of qo using a specific distance function.

kNN search has been well studied in low-dimensional spaces [117, 121]. However,

retrieving the exact results becomes a nontrivial problem when the dimensionality
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increases due to the “curse of dimensionality”. It has been shown that the average

query time with an optimal indexing scheme is superpolynomial with the dimension-

ality [108]. When the dimensionality is sufficiently large, conventional kNN search

approach becomes even slower than the linear scan approach [42]. To address the

problem, approximate nearest neighbor search is introduced as an alternative solu-

tion, which trades off the accuracy to speed up the search process. Formally, the

approximate nearest neighbor query is defined as follows:

Definition 2.3 (Npp~q, k, cq problem). Given a dataset D, a point ~q P Rd, a cardinal-

ity k, an approximate ratio c, and an `p space, the c-approximate k nearest neighbors

search returns a set of k points Npp~q, k, cq = t~o1, . . . , ~oku, where points are sorted in

ascending order of their distances to ~q in the `p space, and ~oi is a c-approximation

of the real ith nearest neighbor. Let ~o�1 , . . . , ~o
�
k be the real kNNs in ascending order of

their distances to ~q. Then `pp~oi, ~qq ¤ pc� `pp~o�i , ~qqq holds for all i P r1, ks.

The Npp~q, k, cq problem can be answered by issuing a set of approximate range

queries with increasing radii. The approximate range query is defined as:

Definition 2.4 (Rp(~q, r, c) problem). Given a dataset D, a query point ~q P Rd,

Rp(~q, r, c) returns a point ~o1 P D, where ~o1 P Bpp~q, crq, if there exists a point

~o P Bpp~q, rq.

2.3.2 Locality-Sensitive Hashing

One typical solution is to employ the Locality-Sensitive Hashing (LSH) because of

its precise theoretical guarantees and empirical performance. LSH is first introduced

by Indyk and Motwani [68]. It tries to map close points to the same hash bucket.

Let H be a family of functions mapping Rd to some universe U . For any two points

~o, ~q P Rd, consider a process in which we choose a function h from H at random, and
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analyze the probability of hp~oq � hp~qq. The family H is called locality-sensitive if it

satisfies the following conditions.

Definition 2.5 (Locality-sensitive hashing). Let dp�, �q be a distance function of a

metric space. A family H is called (r, cr, p1, p2)-sensitive if for any two points ~o, ~q

P Rd, satisfying

(1) if dp~o, ~qq ¤ r, then PrHrhp~oq � hp~qqs ¥ p1,

(2) if dp~o, ~qq ¡ cr, then PrHrhp~oq � hp~qqs   p2,

(3) c ¡ 1, and

(4) p1 ¡ p2.

Various LSH families have been discovered for different distance metrics [6], such

as the Hamming distance between binary vectors [68], the Jaccard distance between

sets [22, 20], the arccos distance measuring the angles between vectors [28], the

Manhattan distance [5, 42], and the Euclidean distance [42]. In particular, the LSH

family for the `p distance is found based on the p-stable distribution [42].

Definition 2.6 (p-stable distribution). A distribution G over R is called p-stable, if

there exists p ¥ 0 such that for any n real numbers v1, ..., vn and i.i.d. random vari-

ables X1, ..., Xn with distribution G, the variable
°
i viXi has the same distribution

as the variable p°i |vi|pq1{pX, where X is a random variable with distribution G. It

has been proved that stable distributions exist for p P p0, 2s [42]. In particular,


 The Cauchy distribution, with a density function fpxq � 1
π

1
1�x2 , is 1-stable;


 The Gaussian distribution, with a density function fpxq � 1?
2π
e�x

2{2, is 2-stable.

Using the p-stable distribution, one can generate a d-dimensional vector ~a by

setting its element as a random value from the p-stable distribution. Given two

vectors ~v1, ~v2 P Rd, (~a.~v1 � ~a.~v2) is distributed as `pp~v1, ~v2qX, where X is a random

variable with the same p-stable distribution. Based on the above observations, Datar
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et al. [42] proposed the following LSH family for the `p distance. The basic idea of

LSH is that an LSH function produces a hash bit of a data point by projecting the

data point to a random hyperplane. A data point in Rd is projected onto a random

line ~a, which is segmented into equi-width intervals with length r0. Formally, the

proposed LSH function in the `p space is defined as:

hp~vq � t
~a.~v � b

r0
u, (2.2)

where the projection vector ~a P Rd is constructed by picking each coordinate from a

p-stable distribution.

Given ~v1, ~v2 P Rd, let s � `pp~v1, ~v2q. The probability that ~v1 and ~v2 collide under

a hash function hp�q, denoted as pps, r0q, can be computed as follows:

pps, r0q �
» r0
0

1

s
fpp t

s
qp1� t

r0
qdt, (2.3)

where fpp�q is the probability density function of the absolute value of the p-stable

distribution, and pps, r0q is monotonically decreasing with s when r0 is fixed [42]. As

a result, the LSH family of the `p distance is (1, c, p1, p2)-sensitive with p1 � pp1, r0q
and p2 � ppc, r0q. For special cases such as p equals to 1 and 2, we can compute the

probabilities using the corresponding density functions.


 For the Cauchy distribution (p � 1), we have

pps, r0q � 2
arctanpr0{sq

π
� 1

πpr0{sq lnp1� pr0{sq2q (2.4)


 For the Gaussian distribution (p � 2), we have

pps, r0q � 1� 2normp�r0{sq � 2?
2πpr0{sq

p1� e�pr
2{2s2qq, (2.5)

where normp�q is the cumulative distribution function of the standard normal distri-

bution.
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The above LSH family was employed to process the approximate nearest neighbor

queries in the `p space. Statistics guarantees that the nearby points in the projected

hyperplane are likely to be close to each other in the original space. Next we generally

introduce the LSH methods to answer the approximate nearest neighbor queries in

the `p space and then discuss two most related methods to our approach: E2LSH

and C2LSH.

Several approaches were proposed to answer approximate nearest neighbor queries

in Euclidean space [42, 93, 132, 55, 129]. In those approaches, E2LSH [42] is the first

LSH method that supports approximate nearest neighbor queries in the Euclidean

space. The main drawback of E2LSH is that it needs to build multiple indexes with

different radii, resulting in high maintenance overhead. To address the issue of high

storage cost, multi-probe LSH [93] is proposed. It not only checks the data points

that fall in the same bucket as the query point, but also probes multiple buckets

that are likely to contain results in a hash table, which leads to the use of fewer hash

tables. However, it still suffers from the need for building hash tables at different

radii.

LSB-tree [132] is the first work that does not need to build hash tables at different

radii. It groups hash values as a one-dimensional Z-order value and indexes it in a

B-tree. Index entries for different radii can be retrieved in corresponding ranges in

the B-tree. In addition, an LSB forest with multiple trees can be built to improve the

search performance. C2LSH [55] further improves the LSB-tree method by introduc-

ing techniques of collision counting and virtual rehashing. It uses one hash function

per hash table so that the number of hash buckets to read does not increase exponen-

tially when the query radius increases. Furthermore, SRS [129] projects data points

from the original high-dimensional space into a low-dimensional space via 2-stable

projections. The major observation is that the `2 distance in the projected space over

the `2 distance in the original space follows a chi-squared distribution, which has a

29



sharp concentration bound. Therefore, SRS can index the data points in the low-

dimensional projected space and use the chi-squared distribution to perform queries.

In this case, the index size is significantly reduced.

LSH variants are proposed to address the drawbacks of the traditional LSH meth-

ods. Traditional LSH methods suffer from the disadvantage of generating a large

number of the false positives. To address this problem, BayesLSH [124] is proposed.

It integrates the Bayesian statistics and performs candidate pruning and similarity

estimation using LSH. It can quickly prune away false positives, which leads to a

significant speedup. Traditional LSH methods also suffer from the disadvantage of

accessing many candidates, which brings a larger number of random I/Os. To ad-

dress this, SortingKeys-LSH [90] is presented to order the compound hash keys so

that the data points are sorted accordingly in the index to reduce the I/O cost. Next

we discuss two most related methods: E2LSH [42] and C2LSH [55].

E2LSH: E2LSH [42] is the first proposed LSH method to answer the Rp(~q, r,

c) problem in Euclidean space where p � 2, which is defined as: As can be seen, the

Rp(~q, r, c) problem is a decision version of the Npp~q, k, cq problem. E2LSH exploits

LSH functions to address the R2(~q, r, c) problem in the following way. First, a set

of m LSH functions h1p�q, . . . , hmp�q are randomly chosen from an (r, cr, p1, p2)-

sensitive family H, and they are concatenated to form a compound hash function

gp�q, where gp~pq = (h1p~pq, . . . , hmp~pq) for a point ~p P Rd. By using a compound hash

function instead of a single LSH function, the probability that two faraway points

collide can be largely reduced. Then, the hash function gp�q is used to map all the

data to a hash table. The above two steps are repeated for L times and accordingly,

L compound hash functions g1p�q, . . . , gLp�q are used to produce L hash tables.

When a query ~q comes, the points from buckets g1p~qq, . . ., gLp~qq are retrieved

until all the points or the first 3L points are found. For each retrieved point ~v, it

is returned if ~v P B2pq, crq. A Npp~q, k, cq query can be answered by issuing a series
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of R2(~q, c, r) queries using gradually increasing search radii. For this purpose, hash

tables with different radii must be built, incurring high storage cost.

C2LSH: To avoid building many hash tables for different radii, C2LSH [55] is

proposed by changing the original hash function to:

hp~vq � t
~a.~v � b�

r0
u, (2.6)

where b� is uniformly drawn from t0, crlogc tdspr0q2u, c is the approximation ratio, t is

the largest coordinate value, and d is the dimensionality of the data. It is proved

that the hash function is (1, c, p1, p2)-sensitive.

First, a materialized index is built for a set of base LSH functions with a small

interval r0. Then, C2LSH reuses the materialized index to retrieve objects at different

radii without explicitly building hash tables for different radii. This process is referred

to as virtual rehashing. To answer an R2(~q, r, c) query, C2LSH modifies the hash

function as:

Hrp~vq � t
hp~vq
r

u (2.7)

Note that the Hrp~vq is (r, cr, p1, p2)-sensitive. Virtual rehashing simplifies the

process of retrieving the objects hashed to Hrp~qq by guaranteeing that it is identical

to retrieving objects in the buckets within rth~a,bp~vq
r

u � r, t
h~a,bp~vq
r

u � r � r � 1s in the

base hash function.

In addition, C2LSH estimates the probability of being the nearest neighbor using

the collision count. If the number of an object colliding with a query exceeds a

certain threshold, namely the collision count threshold θ, the object is likely to be a

neighbor. Such an object is considered as a candidate and retrieved for computing

its real distance to the query.

As a result, a Npp~q, k, cq query can be answered by C2LSH by issuing a set of

R2(~q, c, r) queries with increasing radii. C2LSH is claimed to be correct if these two
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properties hold with a constant probability.


 P1: If ~v P B2p~q, rq, then the number of ~v’s collision with the query ~q is at least θ.


 P2: The total number of false positives is smaller than β|D|, where |D| is the

cardinality of the database D.

In P1, the number of collisions θ is related to the number of base hash functions,

which is denoted as η. Given an error probability ε and a false positive rate β, θ and

η must be carefully tuned for the best performance.

Lemma 2.1. If η and θ are set to:

η � r
ln 1

ε

2pp1 � p2q2 p1� zq2s, where z �
d

ln 2
β

ln 1
ε

, (2.8)

θ � zp1 � p2
1� z

η, (2.9)

then PrrP1s ¥ 1� ε and PrrP2s ¥ 0.5. [55]

Therefore, both P1 and P2 hold with a constant probability when the parameters

are set as above, and C2LSH can correctly answer the R2(~q, c, r) query.

2.3.3 Fractional Distance Metric

Euclidean distance [37, 64, 125, 15, 117] is widely used in kNN search. However, it

was shown that when the dimensionality is high, the Euclidean distance introduces

the concentration problem [17]. Namely, the distance between any random pair of

high dimensional data points is almost identical. Therefore, the effectiveness of the

Euclidean distance in the high-dimensional space is not clear [66, 2].

To address the concentration problem, one direction it to consider partial similar-

ities, which have been drawn increasing attention in the last decade [82, 133, 23, 131].

Tung et al. [133] introduced the k-n-match model to discover the partial similarity

in n dimensions, where n is a given integer smaller than dimensionality and these n
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dimensions are determined dynamically to make the query and the returned results

be the most similar. It has been shown that the k-n-match model yields better result

than the traditional kNN query in identifying similar objects by partial similarities.

Another direction is to investigate different distance metrics. Aggarwal et al.

[66, 2] examined the “curse of dimensionality” problem from the perspective of dis-

tance metrics. They found that the Manhattan distance (`1) metric is more effective

than the Euclidean distance (`2) metric in the high-dimensional space. They further

introduced and examined the fractional distance (`p for 0   p   1) metrics, which

are less concentrated. It was shown that the fractional distance metrics provide more

meaningful results from both the theoretical and empirical perspectives. Their ex-

perimental results verified that fractional distance metrics improve the effectiveness

of standard clustering algorithms.

Later, fractional distance metrics have been applied to applications such as content-

based image retrieval [67, 136]. The experiments showed that the performances of

fractional distance metrics outperform the `1 and `2 metrics. In particular, the `0.5

distance consistently outperforms both `1 and `2 metrics in their experiments. Still,

the experimental results showed that the optimal `p metric is application-dependent

and needs to be learned for each dataset.

Recently, it was argued that the analysis of the concentration phenomenon is

based on the assumption of independent and identically distributed variables [54],

which might not be true in real datasets. The authors showed that the optimal `p

metric is actually application-dependent. In order to explore the high-dimensional

data, it is important to support different distance metrics. Hence, users can try and

select the best `p metric for their applications. However, to the best of our knowledge,

none of the existing LSH approaches can support multiple distance metrics. LazyLSH

is the first work that supports approximate kNN processing in multiple fractional

metrics using a single index, which will be presented in Chapter 4.
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Chapter 3

INSPIRE: A Framework for
Incremental Spatial Prefix Query

Relaxation

Geo-textual data are generated in abundance. Recent studies focused on the process-

ing of spatial keyword queries which retrieve objects that match certain keywords

within a spatial region. To ensure effective retrieval, various extensions were done

including the allowance of errors in keyword matching and autocompletion using

prefix matching. In this chapter, we propose INSPIRE, a general framework, which

adopts a unifying strategy for processing different variants of spatial keyword queries.

We adopt the autocompletion paradigm that generates an initial query as a prefix

matching query. If there are few matching results, other variants are performed

as a form of relaxation that reuses the processing done in the earlier phase. The

types of relaxation allowed include spatial region expansion and exact/approximate

prefix/substring matching. Moreover, since the autocompletion paradigm allows ap-

pending characters after the initial query, we look at how query processing done for

the initial query and relaxation can be reused in such instances. Compared to the

existing work which process variants of spatial keyword query as new queries over

different indexes, our approach offers a more compelling way to efficient and effective

spatial keyword search. Extensive experiments substantiate our claims.
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3.1 Motivation

As the growth in geographical applications like Google Earth and Foursquare, geo-

textual data are generated in abundance. To retrieve such data effectively, recent

studies focused on the processing of spatial keyword queries which retrieve objects

that match certain keywords within a spatial region. In order to ensure effective

and user-friendly retrieval, a popular paradigm is to support search-as-you-type as

illustrated in Example 3.1.

Example 3.1. In Figure 3.1a, a user wants to search for “Staples Center”. He

zooms in the region of Staples Center and types “staples ce”. Object A is returned

because it is in the viewport and starts with “staples ce” in its text.

We call this query a Spatial Prefix (SP) query [13], and a point of interest (POI)

is returned if it is located in the query region and the query text is a prefix of its

textual content.

However, it is possible that no or few POIs are returned due to human error: (1)

the query range (represented by the viewport) is wrongly specified by the user who

is not familiar with the query region; (2) the query text does not satisfy the prefix

condition due to typos in the query text or data uploaded by users. Query relaxation

must be done to ensure that useful answers are returned. Such relaxation can be

done in two ways: (1) expand the spatial region to a larger region; (2) relax the

prefix condition to more general textual conditions. To relax the prefix condition,

the first natural choice is to relax it to the substring query, which requires that the

query text is an exact substring of the textual content of an object. A second type of

relaxation is performed by allowing mismatches in keyword search but limiting the

matching to start at the prefix. This is called approximate prefix query. If both of

these types of relaxation fail to produce enough number of results, we would then
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allow approximate string matching to be applied to any part of the textual content.

This third type of relaxation is named approximate substring query.

Example 3.2. Figure 3.1b shows a case of relaxing the spatial constraint. The

considered spatial region is enlarged and object B is added to the result. Figures

3.1c-e show the cases of relaxing the prefix condition. In Figure 3.1c, the prefix

constraint is relaxed to the substring matching and object C is added. In Figure 3.1d,

the constraint is relaxed to the approximate prefix matching and object D is added.

If at least three objects are required, the approximate substring matching is applied

as in Figure 3.1e. Objects A, C, D and E are returned.

As shown in Example 3.2, different queries may need different types and degrees

of relaxation. Determining what relaxation to perform and performing each type of

relaxation efficiently are major challenges. While existing methods handle some of

these types of relaxation as a single query [13, 74, 140, 4], performing all these differ-

ent types of relaxation means re-issuing a new query every time. This is inefficient

especially when these queries are answered using different indexes in different work.

Moreover, in the context of search-as-you-type, users can append characters to the

initial query even as the initial query is being processed, giving rise to a new query

which we refer to as an appending query.

Example 3.3. In an interactive search, the user types two more characters “nt” to

the query in Example 3.2. The text of the appending query becomes “staples cent”.

Instead of processing the appending query from scratch, we can use the results of the

previous query and start processing it from the last type of relaxation, which is the

approximate substring matching. Therefore, objects A, C, D and E are returned.

Again, it is obvious that the appending query in the example can be handled by

issuing it as a completely new query, but doing so will obviously be not efficient.
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Figure 3.1: Spatial Prefix Query and Its Relaxation

In order to provide better solutions for the issues we discussed, we propose a gen-

eral two-level inverted index that can support all types of relaxation that we have

mentioned. The proposed structure has an object-level index to support function-

alities and a node-level index to accelerate query processing. Using this two-level

index, we propose several variants of the string filtering techniques to effectively

remove data objects that do not satisfy the query condition.

Having observed that different types of relaxation have different levels of complex-

ity and have dependencies among themselves, we propose INSPIRE, an INcremental

Spatial PrefIx query RElaxation framework, to process the spatial prefix query and

its relaxation. Similar to the strategy shown in Figure 3.1, the initial query is a spa-
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tial prefix query. If no or few results are returned, we incrementally process different

types of relaxation until sufficient results are returned. In particular, the spatial re-

gion of the prefix query is first expanded, followed by relaxation of different degrees

on the string dimension: the substring query, the approximate prefix query and the

approximate substring query.

By ordering these types of relaxation in an appropriate order, we can use the

dependencies between them to optimize our query processing through the reuse of

previous results. To further reduce the computational cost, we adapt selectivity

estimation techniques to determine whether certain relaxation should be conducted.

If the estimated selectivity does not meet a given threshold, we can simply go to the

next-level relaxation. We will refer to the intermediate result reuse and selectivity

estimation as intra-query optimization.

If a query is an appending query that is formed from a previous query by ap-

pending characters, we also look into how processing can be reused in such cases.

In particular, we notice that a time-consuming process for answering a query is to

merge inverted lists to obtain candidate results. We thus further optimize the pro-

cessing of merging lists in appending queries. This is formalized as our inter-query

optimization.

Our main contributions are summarized as follows:

1. We first identify the relationships among different types of relaxation for the

spatial prefix query, and then propose a framework for incrementally processing

the relaxation for a spatial prefix query (in Section 3.2).

2. We build a one-size-fits-all index (in Section 3.3) to support all types of relax-

ation (in Section 3.4).

3. During the incremental relaxation paradigm, we propose various result reuse

methods to accelerate the processing of both non-appending and appending
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queries, namely intra-query optimization (in Section 3.5) and inter-query opti-

mization (in Section 3.6).

4. We conduct a comprehensive experimental study over three real data sets to

demonstrate the efficiency and effectiveness of our methods (in Section 3.7).

3.2 The INSPIRE Framework

Our objective is to build a one-size-fits-all search engine for spatial prefix query and

its various types of relaxation. In this section, we first introduce the preliminaries

for such a search engine. Then we formally state our problem and introduce our

INSPIRE framework.

3.2.1 Preliminary

Hilbert-encoded Quadtree: Quadtree [50] is widely adopted to facilitate fast

retrieval of objects in multi-dimensional space. In a two-dimensional Quadtree, each

node represents a bounding box covering a part of the space. The root node covers

the whole space, and the leaf node contains indexed points, while the internal node

has four children, one for each quadrant obtained by dividing the area covered in

half along both axes.

A Hilbert curve [120] is a space-filling curve, which maps multi-dimensional data

to one dimension. The Hilbert curve is defined recursively: each cell is divided into

four subcells at each subsequent level. The sequential order of a cell in a curve is

identified by its Hilbert code.

Definition 3.1 (Hilbert Code (hc)). Given a Quadtree node n, its Hilbert code hc

is a concatenation of the Hilbert code of its parent node and n’s local order. Hilbert

code hc1 is defined to be ahead of hc2, if hc1 has a smaller value at the first different

bit of hc1 and hc2.
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Example 3.4. The Hilbert curve of level-two in Figure 3.3 is constructed from the

Hilbert curve of level-one in Figure 3.2. When the local order is defined in range

r0, 3s, the Hilbert codes of the nodes in the left-upper corner are 1.0, 1.1, 1.2 and 1.3

respectively. Node 1.0 is ahead of node 1.1.

We integrate a Hilbert curve with a Quadtree as in [10]. As a result, we sequen-

tialize the cells of a Quadtree to efficiently retrieve places located in a given spatial

region. We call this a Hilbert-encoded Quadtree, on which we will build our novel

index to handle the spatial prefix query and its various types of relaxation.

Example 3.5. Figure 3.4 shows a Hilbert-encoded Quadtree of eleven objects. A

Quadtree is first built. The maximum capacity of each leaf node is set to two. Then

a Hilbert curve is built to link the nodes of the Quadtree, which is plotted as the dotted

curve. Each leaf node is attached with a Hilbert code to represent its sequential order

in the Hilbert curve.

String Filtering: The approximate search is used to handle cases when queries

have errors. Among the literature for handling approximate string query, most work

builds solutions based on the concept of q-grams [60, 137, 87, 31].

Definition 3.2 ((Positional) q-gram). A q-gram tk is a sequence of q characters in

string s. A positional q-gram (tk,p) is a pair of q-gram tk with its position p in string

s.
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To support approximate string queries, Gravano et al. proposed an efficient

solution for edit similarity join [60]. The edit distance constraint is relaxed to a

weaker constraint based on the number of matching q-grams.

Definition 3.3 (Matching (Positional) q-gram). A q-gram tk1 matches tk2 if tk1 =

tk2. Given an edit distance threshold τ , a positional q-gram (tk1, p1) matches (tk2,

p2) if tk1 = tk2 and |p1 � p2| ¤ τ .

However, one problem of [60] is that a string candidate pair cannot be discarded

unless all their q-grams have been compared. To quickly filter out candidate pairs,

a prefix-based filtering is proposed [137]. We summarize some widely adopted filters

in the approximate string search as follows.

Definition 3.4 (Filters of String Approximation). Given strings s, t, and an edit

distance threshold τ , the following filters are used to check whether the edit distance

between s and t is within τ .

(1) Length Filtering (LF) [60]: ||s| � |t|| ¤ τ .

(2) Count Filtering (CF) [60]: s and t must share at least LBs,t,τ,q = (max(|s|, |t|)
- q + 1) - q * τ matching q-grams.

(3) Position Filtering (PoF) [60]: s and t must share at least LBs,t,τ,q matching

positional q-grams.

(4) Prefix Filtering (PrF) [137]: the first (q * τ + 1) positional q-grams of s and

t must have at least one match.

3.2.2 Problem Statement

The problem we are going to address is to efficiently answer the spatial prefix query

and its various types of relaxation. It can be reduced to two problems: (1) To design

an incremental relaxation paradigm, and the relaxation is triggered if no or few results

are returned. (2) To provide the search-as-you-type feature for the interactive search.
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Table 3.1: Table of Notations for Chapter 3

n a node of a Quadtree O a spatial object
n.hc the hilbert code of n pJ reserved position
θ result size threshold τ edit distance threshold
ω string query type < prefix ratio
Q1
ω appending query Qω previously-formed query

RespQωq result set of Qω ε scarce threshold
SpQωq estimated selectivity of Qω

Sωpn, sq estimated selectivity of string s in n for string type ω
qc (qp) q value for q-gram (positional q-gram)

NSpn,Qωq node snippet of node n with respect to Qω

LBs,τ,q min match threshold, (|s| - q + 1) - q * τ
UBpJ,τ,q length bound, ppJ - τ + q - 1)

The frequently used notations are summarized in Table 4.2. Each spatial object

O is defined as a tuple (O.id, O.loc, O.str), where O.id is an identification, O.loc =

plat, lngq the latitude and longitude, and O.str the textual content. A spatial prefix

query is defined as:

Definition 3.5 (Spatial Prefix Query). A Spatial Prefix (SP) query Qp = (rng, str)

consists of two parts: (1) the spatial region Qp.rng, which can be retrieved from the

user’s viewport; (2) the query string Qp.str.

A spatial object O is an answer to a SP query Qp if: (1) O.loc is in Qp.rng,

and (2) Qp.str is a prefix of O.str. When a spatial prefix search returns no or few

results, we relax the query in order to obtain sufficient results. The spatial prefix

query can be relaxed in two ways: (1) relax the spatial constraint, or (2) relax the

prefix constraint.

Definition 3.6 (Relaxation of Spatial Region). Given an SP query Qp = (rng, str),

the relaxation on the spatial region leads to a Spatial Prefix query in a Relaxed region

(SPR) Qr
p = (rng1, str), where Qp.rng � Qr

p.rng
1.
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Obj Description 

O1 starbucks 

O2 espn star sport  
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Figure 3.4: Hilbert-encoded Quadtree of Eleven Objects

Definition 3.7 (Relaxation of Prefix Constraint). Given an SP query Qp = (rng,

str), the relaxation on the prefix constraint leads to a relaxed query Qω = (rng,

str, (τ)), where ω is one of the following string queries: exact substring query (s),

approximate prefix query (ap) [31] and approximate substring query (as) [59]. τ is

an edit distance threshold for the latter two types of approximations. Therefore, the

three types of relaxation of the prefix constraint are:

(1) Spatial Substring (SS) query: Qs.

(2) Spatial Approximate Prefix (SAP) query: Qap.

(3) Spatial Approximate Substring (SAS) query: Qas

Example 3.6. Figure 3.4 shows a spatial database. The textual contents of the

objects are shown on the right, while the locations are shown on the left. Table 3.2

illustrates an example of an SP query, Qp = (r, “star”), and its relaxation.

As reported in [88], users usually input a query letter by letter, and newly typed

characters are appended to the previous query forming a new query at any moment.
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Table 3.2: Spatial Prefix Query and its Relaxation
Query type Notation Query Result

SP Qp = (r, “star”) O5, O6

SPR Qr
p = (r1, “star”) O5, O6, O9, O10

SS Qs = (r, “star”) O5, O6

SAP Qap = (r, “star”, 1) O4, O5, O6, O7

SAS Qas = (r, “star”, 1) O3, O4, O5, O6, O7, O8

We call this type of query an appending query. Processing of appending queries is

important to achieve the search-as-you-type paradigm for the interactive search.

Definition 3.8 (Appending Query Q1
ω). Given two queries Qω and Q1

ω, Q1
ω is an

appending query of Qω if (1) Qω.rng=Q1
ω.rng, and (2) Qω.str is a prefix of Q1

ω.str.

Example 3.7. In the interactive search, the user then issues another query Q1
p =

(r, “starbu”), which is an appending query of Qp = (r, “star”). The answer to Q1
p

is O6.

3.2.3 Framework

We use RespQωq to denote the result set of a spatial query Qω. For a spatial prefix

query and its various types of relaxation, we identify the following relationships:

Observation 3.1 (Inter-relaxation Relationships).

(1) RespQpq � RespQr
pq,

(2) RespQpq � RespQsq � RespQasq,
(3) RespQpq � RespQapq � RespQasq

Besides, we observe the inter-query relationship between a previously-formed

query and its appending query. Further details will be presented in Section 3.6.1.

Observation 3.2 (Inter-query Relationships).

(1) RespQpq � RespQ1
pq, (2) RespQr

pq � RespQ1r
p q,
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Figure 3.5: The INSPIRE Framework

(3) RespQsq � RespQ1
sq, (4) RespQapq � RespQ1

apq,
(5) RespQasq � RespQ1

asq

The above two containment relationships motivate us to propose an incremental

relaxation strategy, called INcremental Spatial PrefIx query RElaxation (INSPIRE).

As shown in Figure 3.5, the INSPIRE framework processes the spatial prefix query

in the following way. Given an incoming query Q1
ω, we first check whether Q1

ω is an

appending query of another query Qω that has been processed previously.

Case 1: If Q1
ω is not an appending query, we process it as a new SP query. If

the result size of Q1
p is not less than a certain threshold θ, the results are returned.

Otherwise, the relaxation is applied incrementally: the SPR query is first processed,

followed by the SS, SAP and SAS queries.

Case 2: If Q1
ω is an appending query of Qω, we process it from where Qω stops.

We first reuse RespQωq to form the candidate results of Q1
ω. If sufficient results are
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found, processing for Q1
ω stops; otherwise, we further relax Q1

ω in an incremental way

as what we have done in Case 1.

In Case 1, the incremental relaxation for a non-appending query may contain

several phases, and Observation 3.1 identifies the commonality among relaxation

at different levels. It motivates us to reuse the results of the less relaxed queries

(computed in earlier phases) to process the query in the new phase. Furthermore,

we propose a method to estimate the selectivity of a query, denoted as SpQ1
ωq, ahead

of processing it; as a result, if SpQ1
ωq is smaller than the threshold, we can skip the

relaxation and go to the relaxation at the next level. The reuse and estimation form

the intra-query optimization, which will be presented in Section 3.5.

In Case 2, Observation 3.2 brings two optimization opportunities: (1) We can

reuse the results of previously-formed query Qω w.r.t. the appending query Q1
ω.

(2) We do not process Q1
ω from scratch; instead, we process Q1

ω from where Qω

stops. They are formalized as our inter-query optimization, which will be presented

in Section 3.6.

3.3 Two-level Inverted Index

To support INSPIRE, we need a one-size-fits-all index that can answer the spatial

prefix query and support the computation of its different types of relaxation. We

propose an index structure comprising two parts: a Hilbert-encoded Quadtree in the

main memory, which is described in Section 3.2.1, and a two-level inverted index on

the disk. We introduce such an index in this section.

3.3.1 Spatial q-gram

As shown in Section 3.2.1, building an inverted index on q-grams is a natural choice

in string search. To answer a spatial prefix query and its relaxation, we propose a

two-level inverted index, which is essentially an adaption of the inverted index from
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the granularity of q-gram to a finer level of granularity called spatial q-gram.

Definition 3.9 (Spatial (Positional) q-gram). A spatial q-gram ζ = (hc, tk) contains

a Hilbert code hc and a q-gram tk. A spatial positional q-gram ξ = (hc, tk, p) consists

of a Hilbert code hc and a positional q-gram (tk, p).

The spatial q-gram links the Hilbert code and the q-gram to capture the spatial

and textual information of an object. By extending the concept of matching q-gram

in Definition 3.3, the matching spatial q-gram is defined and will be used to prune

objects that cannot satisfy the textual constraint (see Section 3.4.1).

Definition 3.10 (Matching Spatial q-gram). Spatial q-grams ζ1 and ζ2 match if

ζ1.hc � ζ2.hc and ζ1.tk � ζ2.tk. Spatial positional q-grams ξ1 and ξ2 match w.r.t. a

threshold τ , if ξ1.hc � ξ2.hc, ξ1.tk � ξ2.tk and |ξ1.p� ξ2.p| ¤ τ .

3.3.2 Object-level & Node-level Inverted Index

Once the Hilbert-encoded Quadtree is constructed, we build a two-level inverted index.

To obtain the spatial and textual information of an object, we build an object-level

inverted index on spatial q-grams by setting a spatial q-gram as the key and the

objects containing the spatial q-gram as the value.

Besides the object-level inverted index, we need to know the number of objects

having a particular q-gram in a node to estimate the selectivity to optimize the

query processing. Thus, we attach a count to each leaf node of the Quadtree to

record the number of objects containing a particular q-gram in a node. By setting a

q-gram as the key and a list of (Hilbert-code, count) pairs as the value, we build a

coarse-grained index, called node-level inverted index. We will present the selectivity

estimation later in Section 3.5.1.

Example 3.8. Table 3.3a illustrates the object-level inverted index of the database

in Figure 3.4. The first entry, (0.2,“sta”) Ñ {O2}, indicates that O2 is located in
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Table 3.3: Two-level Inverted Index

Spatial 3-gram IDs 

(0.2, “sta”) O2 

(0.2, “tar”) O2 

(2.0.3.0, “sta”) O5 , O6 

(2.0.3.0, “tar”)  O5 , O6 

...... ...... 

Spatial positional  
2-gram 

IDs 

(0.2, “ar”, 7)  O2 

(0.2, “st”, 5)  O2 , O3 

(0.2, “ta”, 6)  O2 

(2.0.3.0, “ar”, 2) O5 , O6 

(2.0.3.0, “st”, 0)  O5 , O6 

(2.0.3.0, “ta”, 1) O5 , O6 

...... ...... 

3-gram (Hilbert code, count) list 

“sta” (0.1, 1), (0.2, 1), (0.3, 1), (2.0.1, 1),  
(2.0.3.0, 2),(2.0.3.2, 1), (2.0.3.3, 1) 

“tar” (0.1, 1), (0.2, 1), (0.3, 1), (2.0.1, 1),(2.0.3.0, 2) 

...... ...... 

positional 2-gram (Hilbert code, count) list 

(“ar”, 2) (0.1, 1), (0.3, 1), (2.0.1, 1), (2.0.3.0, 2) 

(“ar”, 7) (0.2, 1) 

(“st”, 0) (0.1, 1), (0.3, 1), (2.0.1, 1), (2.0.3.0, 2), 
(2.0.3.2, 1), (2.0.3.3, 1) 

(“st”, 5) (0.2, 2) 

(“st”, 7) (2.0.3.2, 1) 

(“ta”, 1)  (0.1, 1), (0.3, 1), (2.0.1, 1), (2.0.3.0, 2), 
(2.0.3.3, 1) 

(“ta”, 6)  (0.2, 1) 

...... ...... 

(a) Object-level  
Inverted Index 

(b) Node-level Inverted Index 

the leaf node with Hilbert code “0.2” and has a 3-gram “sta”. Table 3.3b shows the

node-level inverted index. From the first entry “sta” Ñ {(0.1, 1), . . . , (2.0.3.3, 1)},

we know that there is one object located in node “0.1” and containing a 3-gram “sta”,

etc.

B� trees are built on the keys in the inverted index for quick access to index

entries. The keys of the inverted index are sorted. For example, the spatial positional

q-gram is sorted by the Hilbert code, then by the alphabetical order of the q-gram and

the q-gram position. The values of the node-level and object-level inverted indexes

are sorted by the Hilbert code of a node and the object ID respectively to support

the filters in Section 3.4.1.
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3.3.3 Combining q-gram with positional q-grams

Positional q-gram is proposed to accelerate the processing of SP, SPR and SAP

queries at the expense of large storage space [60, 137, 146]. However, as reported in

[127], the average number of words per query is small (2.35) and the number of words

per query is smaller than three in most cases (87.4%). Thus, it is not worthwhile

to store all positional q-grams. Instead, we only store the positional q-grams with

position less than a certain value, referred to as reserved position pJ. The setting of

pJ will be presented in the experiment.

A compromise between storage and efficiency is made for storing less positional

q-grams. However, it leads to a problem that SS and SAS queries cannot be sup-

ported. As compensation, we also store q-grams (NOT positional). Compared to the

large storage required for positional q-grams, the storage of q-grams is much smaller.

Therefore, we can store q-grams with larger q value to achieve better performance.

For ease of illustration, we use (qp) qc to denote the q value for (positional) q-grams

. As a result, inverted indexes based on positional qp-grams and qc-grams are built

as shown in Table 3.3.

3.3.4 Index Implementation & Maintenance

Index Implementation: Our index structure consists of two parts: the Hilbert-

encoded Quadtree in the main memory and the two-level inverted index on the disk.

B� trees are built on the keys in our two-level inverted index for quick access to index

entries. Two B� trees are used to store the object-level inverted index (for spatial

qc-grams and spatial positional qp-grams respectively), and two B� trees to store the

node-level inverted index (for qc-grams and positional qp-grams respectively).

The keys are ordered to fast retrieve index entries.

• The qc-gram is ordered by the alphabetical order of the qc-gram.
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• The positional qp-gram is first ordered by alphabetical order of the qp-gram and

then by the position.

• The spatial qc-gram is first ordered by the sequential order of the hilbert code,

then by the alphabetical order of the qc-gram.

• The spatial positional qp-gram is first ordered by the sequential order of the

hilbert code, then by the alphabetical order of the qp-gram and last by the

position.

In addition, the value parts are also ordered to facilitate the processing of the

node-level and object-level filters described in Section 3.4.1.

• For the node-level inverted index, the value is ordered by the object ID.

• For the object-level inverted index, the value is ordered by the sequential order

of the hilbert code of the node.

Index Maintenance: The construction and maintenance of our proposed index

contain three parts: insertion, deletion and update. The details are listed as follows.

Insertion: Inserting a new spatial object contains two parts. One is inserting the

object to the Hilbert-encoded Quadtree, which completes in two steps: (1) inserting

the object to the Quadtree and (2) updating the Hilbert code if a node is split.

The other is updating the two-level inverted index. For the object-level inverted

index, we retrieve the inverted lists for the spatial (positional) q-grams of the new

object and insert the object id to the lists. For the node-level inverted index, we get

the inverted lists for the (positional) q-grams of the object and add one to the count

of the node where the object is located.

When a node overflows, it is split into four new nodes. First we delete the inverted

entries for the parent node. Then we update the statistics of (positional) q-grams
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for the new nodes and the information of spatial (positional) q-grams for the objects

in the new nodes.

Deletion: When deleting an existing object, the inverse operations are per-

formed. Deletion also contains two parts. One is deleting the object from the

Hilbert-encoded Quadtree, which completes in two steps: (1) deleting the object

from the Quadtree and (2) updating the Hilbert code if we need to collapse the

sibling nodes and merge them into one.

The other is updating the two-level inverted index. For the object-level inverted

index, we retrieve the inverted lists for the spatial (positional) q-grams of the object

and delete the object id in the lists. For the node-level inverted index, we get the

inverted lists for the (positional) q-grams of the object and subtract one from the

count of the node where the object is located.

When we delete an object from a leaf node, we get the number of remaining

objects in the leaf and its sibling nodes. If the number is smaller than the max

capacity of the Quadtree, we need to merge the nodes into one. First we delete the

inverted entries for the leaf node and its siblings. Then we update the statistics of

(positional) q-grams for the merged node and the information of spatial (positional)

q-grams for the objects in the merged node.

Update: When updating an existing spatial object, we first check whether

the object moves to a different leaf node of the Hilbert-encoded Quadtree. If so,

we treat this update as a deletion of the existing object and a new insertion of the

updated object. Otherwise, we only need to update the two-level inverted index

correspondingly.

3.3.5 Space Requirement

Given that there are u unique q-grams in a database and a text has v q-grams,

Navarro and Baeza-Yates[105] assumed that q-grams are uniformly distributed and
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proved that the average number of unique q-grams in the text is Θpminpv, uqq. We

analyse the required index space based on it.

We assume that the text of an object has v q-grams on average. After inserting

n spatial objects in the database to the Hilbert-encoded Quadtree, it ends up with

m leaf nodes. The number of leaf nodes is deeply affected by the fanout of a node,

which is an important parameter to be discussed in Section 3.7. Each leaf node

contains (n{m) spatial objects and (nv{m) q-grams on average. Based on [105],

each node contains Θpminpnv{m,uqq unique q-grams on average. Thus, there are

(m � Θpminpnv{m,uqq) inverted lists in the object-level inverted index on average,

and the average length of these inverted lists is Θpmaxpnv{mu, 1qq. As a result, the

space requirement for the object-level inverted index is O pnvq.
For the node-level inverted index, the portion of unique q-grams that a leaf node

contains is minpnv{mu, 1q. Consequently, the average length of these inverted lists

is Θ(min (nv{u, m)). Since there are u inverted lists, the space requirement for

the node-level inverted index is O pmuq. We will show the empirical sizes in the

experimental section.

3.4 Query Processing

In INSPIRE, the SP query is first processed. If its result size is smaller than the

result size threshold θ, different types of relaxation are applied incrementally. In this

section, we present how a single query is processed. For processing an appending

query, we will present it in Section 3.6.

As shown in Algorithm 1, processing a query Qω has two key steps: (1) get the

candidate nodes (lines 1-2), and (2) get the results for each candidate node (lines

6-10).

First, we present how to get the candidate nodes. We get the leaf nodes of the
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Algorithm 1: Answering Qω

1 IntrpQωq Ð getIntrNodeSnippet(Qω) ;

2 FtNode Ð nodeLevelFilter(Qω) ;

3 CanNode Ð IntrpQωq X FtNode ;

4 foreach n P CanNode do
5 CanObj Ð Objpn,Qωq ;

6 FtObj Ð objectLevelFilter(Qω, n) ;

7 CanObj Ð CanObj X FtObj ;

8 foreach o P CanObj do
9 if verifyObject(o) then

10 Result Ð Result Y o ;

11 return Result ;

Quadtree that intersect with Qω.rng, denoted as IntrpQωq (line 1). Then the node-

level filter takes IntrpQωq as the input and removes the nodes that cannot satisfy

the string constraint (line 2). For each node nPIntrpQωq, its snippet is retrieved.

Definition 3.11 (Node Snippet). The node snippet of a node n with respect to a

query Qω, denoted as NSpn,Qωq, contains: (1) n.hc: the Hilbert code of node n.

(2) Objpnq: the objects located in node n.

(3) Obj(n, Qω): the objects located in node n and Qω.rng. Objpnq and Obj(n, Qω)

are used to estimate the selectivity of a query, which will be illustrated in Section

3.5.1.

Then we show how to get the result objects for each candidate node. For a

candidate node n, Obj(n, Qω) is retrieved when getting the snippet of n. The object-

level filter of node n takes Obj(n, Qω) as the input and prunes the objects that

cannot meet the string constraint (line 6). Finally, the candidate objects are verified

whether they truly satisfy the textual constraint (lines 8-10).
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3.4.1 Node-level and Object-level Filters

Filters are used at two levels: nodeLevelFilter() and objectLevelFilter() to filter nodes

and objects that cannot satisfy the string constraint respectively. Recall Definition

3.4, string filters have been proposed in the literature for approximate queries. To

cater for the processing of query Qω based on our two-level inverted index, we propose

variants of them at the node level and object level respectively. Given a query text

s and an edit distance threshold τ , the node-level and object-level filters are:

Definition 3.12 (Node-level Filters).

CFn: a node n must have at least LBs,τ,qc = (|s|-qc+1)-qc � τ matching qc-grams.

PoFn: a node n must have at least LBs,τ,qp matching positional qp-grams.

PrFn: a node n must have at least one matching positional qp-gram in the first (qp

τ τ+1) positional qp-grams of s.

Definition 3.13 (Object-level Filters in Node n).

CFo: an object o must have at least LBs,τ,qc matching spatial qc-grams in node n.

PoFo: an object o must have at least LBs,τ,qp matching spatial positional qp-grams

in node n.

PrFo: an object o must have at least one matching spatial positional qp-gram in the

first (qp τ τ+1) spatial positional qp-grams of s in node n.

Table 3.4 shows the filters used for each type of query. Column 1 is the query type,

columns 3 and 2 specify the filters adopted and the condition to trigger such filters,

while column 4 specifies the minimum match threshold for a qualified candidate to

pass the filter.

In particular, PoF can only be applied when the query length is not greater than

UBpJ,τ,qp , where UBpJ,τ,qp = (pJ - τ + qp - 1). Similarly, PrF can be applied when τ is

not greater than (pJ{q) in SAP queries. Otherwise, we cannot get all the matching
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Table 3.4: Filters used in a particular query
Query Condition Filter min match

SP & SPR
|s| ¤ UBpJ,0,qp PoF LBs,0,qp

|s| ¡ UBpJ,0,qp CF LBs,0,qc

SS CF LBs,0,qc

SAP
τ ¤ pJ{qp PrF 1

|s| ¤ UBpJ,τ,qp PoF LBs,τ,qp

|s| ¡ UBpJ,τ,qp CF LBs,τ,qc

SAS CF LBs,τ,qc

positional qp-grams from the proposed index because we only store the positional

qp-grams with position less than pJ (recall Section 3.3.3).

The essence of the node-level and object-level filters is to obtain the candidate

nodes and objects that appear at least a certain number of times on the given inverted

lists. It is formalized as the list merging problem in [122, 87]. The minimum number

of appearances corresponds to the min match threshold in the 4th column of Table

3.4.

For the node-level filters, the lists are retrieved from the node-level inverted index

using the matching (positional) q-grams. For the object-level filters, the lists are

retrieved from the object-level inverted index using the matching spatial (positional)

q-grams constructed from the candidate node and the query text.

Here, we present how a query is processed using an example. We show how to

answer an SAP query, Qap � pr, “star”, 1), where τ � 1 and Qap.r is shown in Fig.

3.4.

Example 3.9. First, we retrieve the intersecting leaves IntrpQapq: {0.2, 1, 2.0.0,

2.0.3.0, 2.0.3.1, 2.0.3.2, 2.0.3.3}.

Second, we use the node-level filters to prune the nodes that cannot satisfy the

string constraint. Here, we only describe PoFn. PoFn with minimum match LBs,τ,qp �
1 is used. The matching positional 2-grams for Qap.str=“star” are (“st”, 0), (“st”,

1), (“ta”, 0), (“ta”, 1), (“ta”, 2), (“ar”, 1), (“ar”, 2), (“ar”, 3). The inverted
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lists for the matching positional 2-grams are retrieved and the intersection opera-

tion is performed between each inverted list and IntrpQapq. The nodes appearing at

least LBs,τ,qp � 1 time in the inverted entries are candidates. By employing the list

merging algorithms [87], we get the candidate nodes, CanNode: {2.0.3.0, 2.0.3.2,

2.0.3.3}.

Third, we apply the object-level filters to prune objects in each candidate node.

The procedure is similar to that of node-level filters. The major difference is that

we retrieve objects from the object-level inverted index using matching spatial posi-

tional q-grams. Take node 2.0.3.0 as an example. The Hilbert code (2.0.3.0) and

the matching positional 2-grams form the matching spatial positional 2-grams (recall

Definition 3.10). By employing the object-level filters in node 2.0.3.0, we obtain the

candidate objects: {O5, O6}.

Finally, O5 and O6 are checked by the query constraints. They are returned as

answers.

3.4.2 Complexity Analysis

As shown in Algorithm 1, the node-level filters are first applied to obtain candidate

nodes. For each candidate node, the object-level filters are applied to get candidate

objects. We adopt the MergeSkip algorithm [87] for these filters to get candidates,

which takes O pwLq time, where w is the number of merging lists and L is the average

length of these lists. Suppose a query contains w q-grams, there are w lists to be

merged. As stated in Section 3.3.5, L = O pmq for the node-level inverted index

and L = O pnv{muq for the object-level inverted index. Suppose that the number of

candidate nodes is c, the object-level filters are applied c times. Therefore, Algorithm

1 can be processed in O pwm� cwnv{muq.
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3.5 Intra-Query Optimization

Recall the framework in Section 3.2.3, since we adopt an incremental relaxation, it

will be beneficial if we could skip processing a certain type of relaxation, whose result

size does not exceed the result size threshold. It motivates our first optimization:

estimating the selectivity of a query before its processing is triggered. In addition, we

can use the dependencies between the relaxation at different levels to optimize our

query processing through reuse of intermediate results. These two form intra-query

optimization. In this section, we present how to exploit such intra-query optimization

to accelerate the processing of the incremental relaxation.

3.5.1 Selectivity Estimation

Given a spatial query Qω=(rng,str,τ), we compute its selectivity SpQωq in a bottom-

up manner. We first retrieve the set of leaf nodes that intersect with Qω.rng, denoted

as IntrpQωq. For each node n P IntrpQωq, we estimate the selectivity for string

Qω.str of query type ω in node n, denoted as Sωpn,Qω.strq. As we calculate SpQωq,
we need to multiply Sωpn,Qω.strq by the proportion of node n inside Qω.rng. Similar

to [1], we assume that objects are uniformly distributed inside each node. Thus this

proportion is calculated as |Obj(n, Qω)|/|Objpnq|. Finally, we sum up the calculated

values to obtain SpQωq:

SpQωq �
¸

nPIntrpQωq

|Objpn,Qωq|
|Objpnq| Sωpn,Qω.strq, (3.1)

where IntrpQωq, |Objpn,Qωq| and |Objpnq| can be retrieved from getIntrNodeSnip-

pet(Qω) (line 1 in Algorithm 1). Next we show how to compute Sωpn,Qω.strq.
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3.5.1.1 Baseline method: Markov Estimator

The Markov Estimator (ME) is used to estimate the substring selectivity in relational

databases [70, 30]. It is based on the Markov chain assumption, which states that

“the probability of observing a q-gram in a sequence depends only on the q-gram

immediately preceding it, and is independent of all other preceding q-grams.” We

apply the Markov Estimator to estimate the substring selectivity of a node. For

example, the substring selectivity of “star” in node n is:

MEspn, “star”q � P p“star”|“sta”q � P p“sta”q � |n|

� P p“tar”|“ta”q � P p“sta”q � |n|

� Cnp“sta”q � Cnp“tar”q{Cnp“ta”q, (3.2)

where Cnptkq is the number of objects containing the q-gram tk in node n, and can be

retrieved from the node-level inverted index using tk as the key. The same example

can be used to present the prefix selectivity estimation of a node.

MEppn, “star”q � P pp“star”, 0q|“star”q � P p“star”q � |n|

� pCnp“st”, 0q{Cnp“st”qq �MEspn, “star”q, (3.3)

where Cnptk, pq is the number of objects containing the positional q-gram (tk, p) in

n, and can be retrieved from the node-level inverted index using (tk, p) as the key.

The term pCnptk, pq {Cnptkqq is denoted as the prefix ratio <.

However, Chaudhuri et al. [30] discovered that the Markov Estimator underesti-

mates the true selectivity when a query contains a short identifying substring.

Definition 3.14 (Short Identifying Substring [30]). A substring t1 of t is a short

identifying substring if

(1) the selectivity of t1 is close to the selectivity of t, and

(2) t1 is much shorter than t.
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3.5.1.2 Scarce q-gram method

As shown in [30], if string t contains a short identifying string t1, the estimated

selectivity of t1 is much closer to the true selectivity of t. It motivates us to define

scarce q-gram at the node level, which is an analogy of t1, and use the selectivity of

the scarce q-gram to estimate the selectivity of the query text t in the node.

Definition 3.15 (Scarce q-gram in a Node). A q-gram tk in node n is scarce if the

proportion of objects containing tk in node n is less than a threshold ε.

A scarce q-gram is actually a short identifying substring, because: (1) the selec-

tivity of the scarce q-gram in a node is close to the selectivity of the original query in

the same node because its value is small and is an upper bound of the true selectivity,

and (2) q-grams are short.

For each q-gram of string t, the number of objects containing the q-gram in node

n can be retrieved from the node-level inverted index. Among all the retrieved values

in node n, we use CK
n ptq to denote the minimum value for the q-grams of t. Similarly,

we use CK1
n ptq to denote the minimum value for the positional q-grams of t in node

n.

As stated in Equation 3.1, we use Sspn, tq to denote the substring selectivity of

string t in node n. If (CK
n ptq{|Objpnq|)   ε, there exist scarce q-grams in node n for

t. Then we set the value of Sspn, tq to CK
n ptq. Otherwise, we set the value of Sspn, tq

to MEspn, tq. Therefore, we get:

Sspn, tq �
"
CK
n ptq if (CK

n ptq/|Objpnq|)   ε
MEspn, tq otherwise

By integrating the scarce q-gram with the Markov Estimator, the prefix selectivity
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of a string t in node n is:

Sppn, tq �

$''''&
''''%

minpCK
n ptq, CK1

n ptqq if ((CK1
n ptq{|Objpnq| ε)

&(CK
n ptq{|Objpnq| ε))

CK1
n ptq else if CK1

n ptq{|Objpnq| ε
CK
n ptq � < else if CK

n ptq{|Objpnq| ε
MEppn, tq otherwise

The selectivity is estimated for SPR and SS queries only, but not for SAP and

SAS queries because additional information is required [85], which will bring more

storage cost.

3.5.2 Reuse of Query Results

Besides the selectivity estimation, our incremental processing provides another opti-

mization opportunity: reusing the result of the relaxation in earlier phases to accel-

erate the processing of a relaxed query.

Rule I. Reusing final results of the relaxation in earlier phases. The inter-

relaxation relationships (Observation 1) indicate the inclusion relationships between

relaxation at different levels. Therefore, we can reuse the less relaxed query’s results

as a part of the more relaxed query.

Rule II. Reusing common intermediate results. Recall Section 3.4, all types

of relaxation are processed over our one-size-fits-all index, many intermediate results

among queries can be reused as well, including:

a. Reusing the snippets (Definition 3.11). When the spatial region is relaxed, the

SPR query is applied. Suppose that the snippet of node n is NSpn,Qpq = (n.hc,

Objpnq, Objpn,Qpq) for a SP query Qp, it becomes NS(n, Qr
p) = (n.hc, Objpnq,

Objpn,Qr
pq) for the relaxed SPR query Qr

p. When processing node n in Qr
p, we only

need to verify the objects in (Objpn,Qr
pq z Objpn,Qpq).

When the prefix constraint is relaxed, the SS, SAP and SAS queries are applied.

Since they share the same spatial region, the intersecting nodes remain the same.
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In addition, the snippet of each intersecting node remains unchanged. Thus, this

information can be reused.

b. Reusing filtering results. As shown in Table 3.4, we notice that (1) SP and

SPR queries share the same PoF and CF filters; (2) SP and SS queries share the

CF filter when the query length is greater than UBpJ,0,qp ; (3) SAP and SAS queries

share the CF filter when the query length is greater than UBpJ,0,qp . These filtering

results can be reused.

c. Reusing the result of an SP query in the selectivity estimation. We can use the

number of results of an SP query as the lower bound when estimating the selectivity

of the SPR and SS queries (if needed), instead of computing the selectivity from

scratch for these types of relaxation.

d. Reusing SPR’s selectivity to estimate SS’s selectivity. Based on Equation

3.3, MEspn, tq can be computed using MEspn, tq = MEppn, tq{<. Since MEppn, tq is

already computed in estimating SPR’s selectivity, we can reuse MEppn, tq to compute

the selectivity of the later SS query.

Example 3.10. Suppose we have answered an SP query Qp= (r,“star”) in Example

3.6, we need to answer its relaxed SPR query Qr
p=(r1, “star”). By Observation

3.1, we obtain RespQpq � RespQr
pq and RespQpq = {O5, O6}. Thus, RespQr

pq must

contain {O5, O6}. This shows the application of Rule I.

According to the framework shown in Figure 3.5, before the processing of Qp.r

is triggered, we estimate S(Qr
p) first. By Rule II.c, we only need to estimate the

selectivity for the nodes that are not contained in Qp.r. We are not required to

estimate the selectivity for the nodes that are contained in Qp.r, such as node 2.0.3.0,

because we have obtained their results.

By Rules I and II.a, we do not revisit the objects in Qp.r. We only need to visit

object O2, node 0.1 and 2.0.1. By Rule II.b, SP and SPR queries share the same
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PoF filter. We notice that node 0.2 is removed by PoFn previously. Consequently,

we do not visit node 0.2 when we process Qr
p.

3.6 Inter-query Optimization

Recall the framework in Section 3.2.3, we point out the relationship between a query

and its appending query, and highlight the relationships between their results in

Observation 3.2. Next, we present how to exploit the inter-query relationship to

accelerate the processing of appending queries.

3.6.1 Processing Appending Queries

Before discussing how to process appending queries, we need to prove Observation

3.2, because it is a foundation of our methods. For a string query and its appending

query, we observe the following properties.

Observation 3.3. Given strings s,t,u, where s is a prefix of t, and an edit distance

threshold τ , these properties hold:

(1) If s is not a prefix of u, t is not a prefix of u.

(2) If s is not a substring of u, t is not a substring of u.

(3) If s is not an approximate prefix of u under τ , t is not an approximate prefix of

u under τ .

(4) If s is not an approximate substring of u under τ , t is not an approximate

substring of u under τ .

Proof. Properties (1), (2) and (3) can be easily derived from property (4). Here

we prove property (4) by contrapositive. We use D(*,*) to denote the edit distance

between two strings, which is calculated by:

Dpar0, is, br0, jsq � min

$&
%

Dpar0, i� 1s, br0, j � 1sq � dpai, bjq
Dpar0, i� 1s, br0, jsq � 1
Dpar0, is, br0, j � 1sq � 1

,
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where dpai, bjq=0 if ai=bj, and dpai, bjq=1 if ai�bj. When we match ai to bj, one

substitution is required if ai�bj. The substitution is not needed if we do not match

ai to bj. Therefore, we get D(a[0,i],b[0,j])¥D(a[0,i-1],b[0,j-1]).

By the definition of approximate substring, we suppose D(t,uri, js)=τ . We get

D(t[0, |t|-1], u[i, j]) ¥ D(t[0, |t|-2], u[i, j-1]) ¥ . . . ¥ D(t[0, |s|-1],u[i, j-(|t|-|s|)]) =

D(s, u[i, j-(|t|-|s|)]).
As a result, we get a substring of u, whose edit distance to s is within τ . In other

words, s is an approximate substring of u under the edit distance threshold τ .

By Definition 3.8, the difference between a spatial query Qω and its appending

query Q1
ω is: Qω.str is a prefix of Q1

ω.str. Thus, we can easily derive the inter-query

relationship (Observation 3.2) from Observation 3.3.

Based on the inter-query relationship, we process a query in the following way,

as shown in Figure 3.5. Whenever a query Q1
ω is coming, we first check whether it is

an appending query of the previous query Qω. If Q1
ω is an appending query of Qω,

we process Q1
ω from where Qω stops. In addition, we use the results of Qω to form

the candidate results of Q1
ω. Otherwise, Q1

p is a non-appending query. We process it

as a fresh SP query.

Such inter-query relationship plus our incremental paradigm bring two immediate

benefits: (1) When processing Q1
ω, instead of starting from scratch, we could start

from the type of relaxation where Qω stops. Therefore, processing relaxation at

previous levels can be skipped. (2) The result of Qω, i.e. RespQωq, can be output to

Q1
ω as candidates in the corresponding relaxation, and we only need to check whether

each object in RespQωq satisfies the string condition for Q1
ω, as Qω.rng=Q1

ω.rng.
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3.6.2 Merging Inverted Lists for Appending Queries

When the above reuse does not bring enough number of results for Q1
ω, we need to

further relax Q1
ω and process it by adopting Algorithm 1. The most time consuming

part is to get candidates by applying the filters shown in Section 3.4.1, i.e. to get

the objects that appear at least m times in the given inverted lists. It is formalized

as the list merging problem in [122, 87]. Note that the value of m corresponds to the

minimum match threshold, which is shown in Table 3.4.

Now, our problem becomes: given a set of lists Lold, we have found the candidate

set Cold, of which an id appears at least m times in Lold. When a new set of inverted

lists Lnew comes for the appending query (brought by the new q-grams), we need to

find a set of candidates Cnew, of which an id appears at least m1 times in the set

(Lold
�
Lnew).

We propose a novel algorithm to address this problem, where our idea is to

reuse the results computed for Qw to efficiently merge the lists when processing its

appending query Q1
w. When processing Qw, we find these properties:

Property 3.1. For each id in Cold, we have its number of occurrences in Lold, which

is at least m.

Property 3.2. For all the ids not in Cold, they appear at most (m-1) times in Lold.

Based on the above two properties, we process the ids in and outside Cold sepa-

rately. There are three cases.

Case (1): m1¥(m+|Lnew|). For each id in Cold, by Property 3.1, we do not

need to visit Lold again and can directly check whether it has enough number of

appearances in Lnew. For all the ids not in Cold, by Property 3.2, they appear at

most (m-1+|Lnew|) in (Lold
�
Lnew), which is less than m1. Thus, they cannot be in

Cnew.
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Case (2): m¤m1 (m+|Lnew|). For each id in Cold, the same method is applied

as Case (1). For the ids not in Cold, we present how to process them in Section

3.6.2.1.

Case (3): m1 m. We need to restart merging the inverted lists in (Lold
�
Lnew)

to get Cnew.

3.6.2.1 Processing the ids not in Cold of Case (2)

We continue to show how to process the ids not in Cold of Case (2). Based on

Property 3.2, we find:

Property 3.3. For the ids not in Cold, if a minimum of m1 occurrences is required

in (Lold
�
Lnew), they must appear at least (m1-m+1) times in Lnew.

The MergeSkip algorithm [87] is proposed to efficiently merge lists using a heap

structure. The heap is used to record the frontiers of the inverted lists. If a minimum

ofm occurrences is required, the heap returns the pmqth smallest record in each round,

whose value is t. The records smaller than t are skipped in the inverted index because

they cannot appear more than m times.

Similar to the MergeSkip algorithm, we maintain a heap Hall for frontiers of the

lists in (Lold
�
Lnew). In addition, we maintain another heap Hnew for frontiers of

the lists in Lnew. In each round, Hall returns the pm1qth smallest record, whose value

is tall, while Hnew returns the (m1-m+1)th smallest record whose value is tnew. By

Property 3.3, the records smaller than max(tall,tnew) are skipped because they cannot

appear more than m1 times.

Example 3.11. Figure 3.6 shows an example of merging lists for the ids not in Cold.

Given m = 3, we need to get the candidates with minimum m1 = 4 occurrences in

(Lold
�
Lnew). We use Hall to store the frontiers of all the lists in Figure 3.6(b) and

Hnew to store the frontiers of the lists in Lnew in Figure 3.6(c). In round one, Hall
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Figure 3.6: Merging Lists of Case (2)

outputs the 4th smallest number, which is 24. Hnew outputs the 2nd smallest number,

which is 50. Since max(50,24) = 50, the records smaller than 50 are skipped, as the

black arrows on the right show. In contrast, only the records smaller than 24 are

skipped in MergeSkip algorithm.

When the new inverted lists are added for the appending query, the MergeSkip

algorithm merges the lists from scratch, while our algorithm optimizes this pro-

cess by reusing the intermediate results computed from the previously-formed query.

Therefore, we do not need to merge the lists from scratch for Cases (1) and (2).

3.7 Experiment

In this section, we aim to study four issues: (1) how the intra-query optimization

boosts the performance of INSPIRE for non-appending queries, i.e. query reuse and

selectivity estimation; (2) how the inter-query optimization accelerates the process-

ing of the appending queries in INSPIRE; (3) compare INSPIRE against existing work

for each specified type of relaxation to show that there is a need for a single, unify-

ing framework to support spatial prefix query and its different types of relaxation;

(4) compare INSPIRE against existing map services to show the effectiveness of our

approach in the context of local search.
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Table 3.5: Statistics of the used data sets in Chapter 3
Property OSM GNIS SGP
Number of records 1,616,295 2,078,921 12,918,933
Size (MB) 103.7 136.7 867.2
Max text length (characters) 173 104 200
Average text length (characters) 18 19 19

3.7.1 Experiment Setting

Data sets: We report results over three real POI data sets in the United States:

OSM, GNIS and SGP. OSM is downloaded from the OpenStreetMap project1 which

contains around 1.6 million POIs. GNIS is extracted from the Geographic Names

Information System2 and contains the geographic name usage in the U.S. Govern-

ment, including about two million records. SGP is obtained from the SimpleGeo’s

Places3 and has thirteen million records. SGP is then merged and maintained by

Factual, which is a popular location service platform. The statistics are shown in

Table 3.5.

Query set: To ensure that the queries have nonempty results, we generate queries

in the following way: we randomly select 1000 objects with the length of the textual

content larger than 5. Unless otherwise specified, we use the first keyword as the

query text to make it compatible with some existing methods that can only process

queries at the word level. The result size threshold θ is set to 10. The edit distance

threshold τ is set to 20% of the query length for SAP and SAS queries.

We normalize the latitude and longitude into [0, 1]. Thus, the query range is

denoted by the percentage of coverage in the geographic space. Six spatial ranges

with the selected object as the center are generated: 0.0052, 0.012, 0.022, 0.042, 0.062

and 0.082. The first (last) range is at a town (state/province) level. By default, we

1 http://www.openstreetmap.org/

2 http://geonames.usgs.gov/domestic/download data.htm

3 http://s3.amazonaws.com/simplegeo-public/places dump 20110628.zip
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Figure 3.7: Impact of the max capacity

use the 0.01�0.01 range at a city level and expand the query region by doubling the

area in the SPR query.

Comparisons: TAS [13] and FEH [74] are proposed to provide type-ahead search in

spatial databases. Besides, LBAK [4] and MHR [140] are proposed to allow approximate

keyword matching in spatial databases. We compare with TAS for SP queries, FEH

for SP and SS queries, LBAK and MHR for SAP and SAS queries. In particular, TAS

and LBAK are memory resident while FEH and MHR are disk resident. The parameters

of the baseline algorithms are set to the default values in the original papers. Our

methods are implemented in JAVA. All experiments are run on a Quad-Core AMD

Opteron Processor 8356 @ 2.29 GHz with 128 GB main memory. Queries are run

under a heap with the max size of 4 GB.

Parameter Choice:

According to [79], the performance of a Quadtree depends on the tiling level,

which in turn depends on the max capacity of a Quadtree node. So we study the

performance of each type of relaxation w.r.t. different choices of the max capacity.

We test values from 512 to 10240 for GNIS and from 512 to 10240 for SGP, as shown

in Figure 3.7. The time for the values from 512 to 3072 is omitted on SGP as it is

much longer than that of the rest.

We take all types of queries into consideration when choosing an appropriate max

capacity. For each type of query, the max capacity with the shortest running time
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Table 3.6: Index Construction Time and Index Size

Index
OSM GNIS SGP

Time(mins) Size(MB) Time Size Time Size
INSPIRE 2.7 346 3.6 448 21.5 3857
TAS [13] 2.0 150 3.4 194 20.1 1445
FEH [74] 5.1 306 7.3 405 33.6 2704
MHR [140] 4.2 663 7.4 857 37 5332
LBAK [4] 1.0 253 1.4 291 9.5 2541

is assigned a score of 1 while the scores for the rest are computed as the proportion

of the running time to the shortest one. The score of the overall performance for

each max capacity is the summation of its scores for all the five types of queries.

We choose the parameter with the lowest score, which indicates the best overall

performance. As a result, we set the max capacity to 3072, 3072 and 10240 for OSM,

GNIS and SGP respectively.

In addition, the length of qc-gram and positional qc-gram is set to 3 and 2 respec-

tively, which is the same as the setting in [77]. The reserved position pJ is set to 9.

By Definitions 3.12 and 3.13, up to four edit operations can be supported by PrF. If

there is an error in every five characters, PrF can be applied when the query length

is less than 20.

Index Construction: We build our index based on the above parameters.

Table 3.6 shows the construction time and the size of our proposed index for the

chosen parameters and the compared indexes. Overall, LBAK builds the index in the

shortest time, while TAS has the smallest index size. Our index is around the medium

in the term of construction time and the index size.

3.7.2 Comparison between Variants of INSPIRE

In Sections 3.5 and 3.6, the intra-query optimization and inter-query optimization

are proposed to accelerate the processing of non-appending and appending queries

respectively. So we would like to study the effectiveness of these optimizations.
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Figure 3.8: Relaxation of the SP query

3.7.2.1 Intra-query Optimization

We first study the impact of each of the two intra-query optimization techniques to

accelerate the processing of the non-appending queries : result reuse and selectivity

estimation (in Section 3.5). Note that, for each technique under test, the other one

is turned on by default.

Result Reuse: We compare the running time of the relaxed queries with reuse

to that without reuse. As shown in Figure 3.8, we find that the performance of each

relaxed type boosts up by four times for SGP on average. The SP query takes more

time for the reuse version as common intermediate results and processing are saved.

Compared to the extra cost of the SP query, it is worth applying this optimization as

the benefit that it brings is significant. For OSM and GNIS, the performance boosts

up by three times on average.

Selectivity Estimation: We compare our method using the scarce q-grams

to the baseline method, which uses the Markov Estimator as described in Section

3.5.1.1.

Note that a query is triggered if its estimated selectivity is greater than the result

size threshold θ. Therefore, the terms positive and negative are defined as whether

the estimated selectivity is greater than or less than θ respectively. Accordingly,

when both the true selectivity and the estimated selectivity are greater than θ, we

71



0

0.2

0.4

0.6

0.8

1

0.003% 0.010% 0.040% 0.160% 0.360% 0.640%

V
al
u
e

Range 

SPR:scarce‐precis SPR:baseline‐precis

SS:scarce‐precis SS:baseline‐precis

(a) precision on OSM

0

0.2

0.4

0.6

0.8

1

0.003% 0.010% 0.040% 0.160% 0.360% 0.640%

V
al
u
e

Range 

SPR:scarce‐precis SPR:baseline‐precis

SS:scarce‐precis SS:baseline‐precis

(b) precision on GNIS

0

0.2

0.4

0.6

0.8

1

0.003% 0.010% 0.040% 0.160% 0.360% 0.640%

V
al
u
e

Range 

SPR:scarce‐precis SPR:baseline‐precis

SS:scarce‐precis SS:baseline‐precis

(c) precision on SGP

0

0.2

0.4

0.6

0.8

1

0.003% 0.010% 0.040% 0.160% 0.360% 0.640%

V
al
u
e

Range 

SPR:scarce‐recall SPR:baseline‐recall
SS:scarce‐recall SS:baseline‐recall

(d) recall on OSM

0

0.2

0.4

0.6

0.8

1

0.003% 0.010% 0.040% 0.160% 0.360% 0.640%

V
al
u
e

Range 

SPR:scarce‐recall SPR:baseline‐recall
SS:scarce‐recall SS:baseline‐recall

(e) recall on GNIS

0

0.2

0.4

0.6

0.8

1

0.003% 0.010% 0.040% 0.160% 0.360% 0.640%

V
al
u
e

Range 

SPR:scarce‐recall SPR:baseline‐recall

SS:scarce‐recall SS:baseline‐recall

(f) recall on SGP

Figure 3.9: Precision and Recall

refer to it as true positive. The scarce threshold ε is set to 0.01.

Figure 3.9 shows the precision and recall for the SPR and SS queries in differ-

ent query ranges. Overall, our approach has a much higher recall than the baseline

method, and it is at least 0.8 across all query ranges for SGP. In contrast, the recall

of the baseline is low for SS queries so that many queries that should be processed

are skipped. The baseline approach has higher precision than ours, because it under-

estimates the selectivity when a query contains scarce q-grams. However, a potential

problem of such high precision is to bring more time complexity in processing the

relaxed query at the next level as they may lose the possibility to reuse the results

got in earlier phases.

3.7.2.2 Inter-query Optimization

In this part, we would like to study the impact of the inter-query optimization

(proposed in Section 3.6) to accelerate the processing of the appending queries. The

non-optimized approach is the one treating an appending query as a fresh query.
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Figure 3.10: Impact of inter-query optimization w.r.t. appending characters
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Figure 3.11: Impact of inter-query optimization w.r.t. query ranges

We first investigate the impact of the number of appending characters, ranging

from 1 to 5. From Figure 3.10, We find: (1) The processing time increases as

the number of appending characters increases, because more inverted lists need to

be merged to get candidates. (2) On average our inter-query optimization brings

around three times acceleration on the three data sets.

Next, we study how the performance of the appending query varies with respect to

different query ranges, while the number of appending characters is randomly selected

from one to five for each query to simulate real cases. From Figure 3.11, we find

that the method with optimization scales better than the one without optimization

on SGP. This same finding exists on OSM and GNIS as well.
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Figure 3.12: Comparisons of SP & SS Queries w.r.t. query ranges
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Figure 3.13: Comparisons of SP & SS Queries w.r.t. query ranges

3.7.3 Comparison to Other Approaches

In this subsection, we compare INSPIRE (which is equipped with all the aforemen-

tioned optimizations) with existing mothods. However, all state-of-the-art work only

studies a certain type of relaxation for the spatial prefix query (see Chapter 2.2 for

more details). As such, we have to compare INSPIRE with each individual type of

relaxation even though it is not a fair comparison for a general framework. For each

type of relaxation, we divide the query set into two parts: appending queries and

non-appending queries.

3.7.3.1 SP & SS Queries

We compare with TAS [13] for SP queries, and FEH [74] for SP and SS queries. Figure

3.12 plots the average running time in different query ranges. We find: (1) INSPIRE
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outperforms TAS when the query range is small, while TAS has better performance

when the query range increases. This is because TAS retrieves candidates on the tex-

tual dimension first and then verifies candidates on the spatial dimension. However,

INSPIRE performs in the opposite way. TAS achieves the best performance on SP

queries in some cases as it is optimized to answer the spatial prefix query. It uses

a trie-like index so that it works well but can only answer SP queries. Although

INSPIRE loses to TAS on SP queries in those some, it can handle all types of queries.

(2) Besides, INSPIRE outperforms FEH on both SP and SS queries. (3) Moreover, the

running time of appending queries is shorter than that of non-appending queries. In

particular, for SP queries, the running time of appending queries is almost 0 because

the results of previously-formed queries can be used directly.

Furthermore, we investigate the impact of query lengths. Figure 3.13 demon-

strates the query performance for lengths ranging from 3 to 8. INSPIRE outperforms

TAS when the query text is short. This is because TAS uses a trie-like index to retrieve

candidate objects that satisfy the prefix condition. Then all the candidate objects

are verified against the spatial condition one by one to get the final results. When

the query text is short, the candidate size could be huge. Thus the verification time

is long. We also find that INSPIRE outperforms FEH, mainly because FEH needs to

retrieve inverted entries at each level of its spatial index.

3.7.3.2 SAP & SAS Queries

For SAP and SAS queries, no existing work has addressed the search-as-you-type

problem at the q-gram level, so no direct comparison can be made. Instead, we

compare with two approaches (LBAK [4] and MHR [140]) at the word level. They

require users to type at least one full word for a query. Accordingly, we form queries

by extracting the first word from each query of our query set. Again, we note that

it is not a fair comparison because INSPIRE works at the q-gram level.
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Figure 3.14: Comparisons of SAP & SAS Queries w.r.t. query ranges
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Figure 3.15: Comparisons of SAP & SAS Queries w.r.t. edit distances

Figure 3.14 shows the average running time of different query ranges. LBAK

achieves the best performance while INSPIRE gives intermediate performance. One

reason is that INSPIRE is proposed in a more general setting, which handles approx-

imate queries in the search-as-you-type paradigm4. Another reason is that LBAK is

memory-based, thus disk access is not required. Although it is not a fair comparison,

the performance of INSPIRE is at the same level as that of the state of the art.

Impact of edit distance threshold: Next, we test the performance for dif-

ferent values of the edit distance threshold τ . We randomly select objects with the

length of the first keyword greater than 17 from both data sets. Then we add one,

two, three, and four errors respectively to the query to evaluate the performance.

The errors are randomly generated by skipping letter, doubling letters, reversing

4 LBAK, for example, cannot handle both exact and approximate substring queries.
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Figure 3.16: Efficiency

letters, replacing letter, or inserting letter.

Figure 3.15 shows the average running time for different τ values. For the non-

appending queries, LBAK achieves the best result. For the appending queries, INSPIRE

is the best because the results of the previously-formed queries can be reused. We

do not plot the results of MHR because the minimum running time for MHR is 280

milliseconds.

3.7.3.3 Overall Performance

At the framework level, we would like to see INSPIRE ’s overall performance in a

real usage scenario, where we do not know which type of relaxation is sufficient to

obtain enough number of results. Since all of the existing approaches study a single

type of relaxation, we construct a baseline framework as an integration of the state

of the art for each type of relaxation, and compare with INSPIRE equipped with the

proposed inter-query and intra-query optimizations. In particular, TAS is tailored for

SP queries, while FEH is tailored for SS queries and LBAK is tailored for SAP and SAS

queries.

Figure 3.16 shows the accumulated time when different types of relaxation stop.

INSPIRE outperforms such an integrated framework. Especially for appending queries,

INSPIRE handles them almost for free due to the various result reuse algorithms that

we have proposed. In contrast, a simple integration of existing methods does not
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have such benefit, because the existing methods answer one type of particular query

using an optimized index structure. Although our method loses for some particular

types of queries, our INSPIRE framework outperforms the existing methods as a

system to provide relaxation for spatial prefix query. This finding confirms the need

for a single, unifying framework to support the spatial prefix query and its different

types of relaxation.

3.7.4 Effectiveness Study

We conduct an effectiveness study on local search to simulate the real-life search

scenario. Queries are issued in a small spatial region such as a city. We test five

online map services, including Google Maps, Bing, Yahoo!, Here and OpenStreetMap.

Only Google and Yahoo! provide the instant search feature. We use the SGP data

set in INSPIRE for this effectiveness study.

For the query set, we first find tourist attractions from the five cities with the

largest population in the USA: New York (NY), Los Angeles (LA), Chicago (CH),

Houston (HO) and Philadelphia (PH). Then we extract the texts from these tourist

attractions and generate four types of queries:

Type I. the query is a prefix of the text;

Type II. the query is a substring of the text;

Type III. the query is a prefix of the text, with typos;

Type IV. the query is a substring of the text, with typos.

For each city, four types of queries are formed on the attractions in the city, and each

type contains ten queries.

Evaluation Method: We invite twenty participants to take part in the task

of scoring the top-5 results from the three systems. To conduct a fair evaluation,

the source of each result is kept anonymous. The participants are asked to score the

quality of each result by using the Cumulated Gain-based evaluation [71] metric (from
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Figure 3.17: Effectiveness

0 to 5 points, 5 means the best while 0 means the worst). Each participant grades

the results of three cities. Therefore, for each result, there are twelve participants

grading it. The average score is presented in Figure 3.17.

Results: We first report the summarized result, which is shown in Figure 3.17.

For query Types I and II, the three systems perform equally well. For Types III

and IV, INSPIRE outperforms Google Maps. The results of Yahoo! Maps are not

shown because it does not support error-tolerant search. The reason why INSPIRE

performs better is that INSPIRE in essence is able to answer error-tolerant instant

search. Google Maps, though, probably adopts a global search strategy to serve the

users from all over the world.

We then explain the results using some selected examples, which are listed in

Table 3.7. For Types I and II, the three maps return correct results in most cases.

Still, some results are not related to the issued query. We show two sample results

for Q3. From the column on the right side, INSPIRE returns a POI in Houston.

The query text is an approximate prefix of the text of the POI. However, the POIs

returned from the other two systems are spatially far away from the query region. For

Types III and IV with typos, INSPIRE can correct the typos in the queries and return

reasonable answers. In contrast, Google Maps does not always perform well. For Q5

and Q7, Google Maps again returns distant POIs from the query region, probably

because their names match the queried text. This approach is a double-edged sword.
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Table 3.7: Query Examples

Type I Q1:(CH, “navy pier”) Q2:(NY, “times square”)
Inspire

navy pier in CH times square in NYGoogle
Yahoo!

Type II Q3:(HO, “race park”)
Inspire

sam houston race park

ace park & ride in HO

Google
delaware park
in Wilmington

Yahoo!
in HO seven flags race park

in Dickson

Type III Q4:(LA, “doger stadium”) Q5:(NY, “yangkee”)
Inspire

dodger stadium in LA
yankee stadium in NY

Google
yangkee logistics

in Singapore

Type IV Q6:(HO, “otdoor theatre”) Q7:(LA, “librart”)
Inspire miller outdoor theatre library tower in LA
Google in HO librarti sa in Switzerland

On one hand, it suggests distant objects that possibly match the query terms, which

is pretty good if the user is searching on a global scale. On the other hand, it dwarfs

the approximate answers which are local. Depending on users’ intention, this may or

may not be helpful. However, in our context of local search, the local answers surely

play a more important role.

From the above effectiveness study, we find: (1) the search strategy proposed

in INSPIRE fulfills the need for context-aware local search; (2) INSPIRE is a good

complement to online Web services on context-aware local search. When a user

conducts a local search, the user would continuously zoom in a particular spatial

region in the viewport. Therefore, the local search pattern can be easily detected

and the local search can be optimized using INSPIRE to improve the user experience.
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3.8 Implementation of INSPIRE

In this section, we present the implementation details of INSPIRE. We adopt the

client-server architecture to build the system, which is shown in Figure 3.18. On the

client side, when a user performs a query, he/she would first zooms in the particular

spatial region that he/she wants to search. Together with the text typed by the

user, the query is sent to the server for processing. After the query is processed, the

results are sent back and displayed. An online system [147] can be found here5.

On the server side, INSPIRE contains two major components: (1) the one-size-

fits-all index in Section 3.3 that can answer the spatial prefix query and support

the computation of its different types of relaxation; (2) a query processor to handle

queries issued from the client side. It adopts the incremental search strategy to

process a spatial keyword query, which is presented in Section 3.2.3. The server is

built using JSP and Apache Tomcat.

On the client side, INSPIRE includes two main components: (1) a user-friendly

map interface to provide interactive search and result display, which is implemented

using Google Maps API; (2) a local query processor to answer appending queries

5 http://dbgpucluster-2.d2.comp.nus.edu.sg:8080/MESA/
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if the appending queries can be answered using the local cached results to save

computational cost. The client side is implemented using JavaScript.

3.8.1 User-friendly Interface

The user-friendly Interface is used to provide interactive search and display results.

For the interaction part, we provide a control panel to let users specify the input

parameters if they wish. Therefore, customized search can be achieved. Advanced

users can issue their queries on demand, while common users can just use the default

setting to issue queries. For the result display part, we use different colors to visualize

the results returned from different types of relaxation. As a result, results can be

differentiated. This is motivated by the fact that users usually prefer the exact

matching results to the approximate matching results. Besides, users can click the

spatial objects shown on the map for further information.

3.8.2 Local Query Processor

As described previously, the autocompletion paradigm allows additional characters

to be appended after the initial query. To save the communication cost between the

client and the server, we cache the results of the previous-issued query. When an

appending query comes, before the client posts the query to the server, the local query

processor first checks whether the local cached results can answer the appending

query. If yes, the answer set can be reused and the appending query is not necessary

to be sent to the server; otherwise, the client needs to send the appending query to

the server. Then the server side processes the appending query and returns the new

results to the client.

All in all, we group these key components into a system to provide the spatial

prefix search and its different types of relaxation. The techniques, like spatial q-

gram, two-level inverted index and the unifying search strategy, are proposed to
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make the spatial prefix query and its various types of relaxation more efficient and

effective. Each of those techniques is an indispensable component of our system,

whose ultimate goal is to efficiently and effectively process fuzzy type-ahead query

in the context of spatial keyword search.

3.8.3 System interface

Then we would like to demonstrate how INSPIRE handles spatial prefix search and

its different types of relaxation effectively and efficiently, and how it enhances user

experience by providing the error-tolerant autocompletion feature in the context of

spatial keyword search. Users will be able to experience how INSPIRE facilitates

spatial keyword search because they do not need to type a full query text to issue a

query. We use the datasets described in Section 3.7 in the demonstration.

The interface is shown in Figures 3.19. It consists of two parts: a control panel

(upper part) and a display panel (lower part). The control panel is composed of four

components: (1) a query text field to let users type queries; (2) a drop-down list to
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input the number of required results; (3) anther drop-down list to specify the type of

relaxation; and (4) two slider bars to indicate the degrees of relaxation. If the type of

relaxation is specified, INSPIRE directly performs the particular type of relaxation.

The slider bars are used to indicate what degrees of relaxation a user prefers. For

example, users can decide how much to expand in the spatial region and what edit

distance threshold to use in approximate prefix/substring queries.

Besides, the display panel is composed of two parts: a result list and a map view.

In the result list, the results of a query are shown in different colors. The color

indicates that the result is returned from which type of relaxation. In addition, the

results returned from the relaxation in earlier phases are ranked higher than those

results returned from the relaxation in later phases because users usually prefer the

exact matching results to the approximate matching results. In the map view, the

returned objects are also shown on the map. When users click a result on the map,

its further information pops up.

To summarize, we showed the three features of INSPIRE.

1. INSPIRE can answer each type or degree of relaxation on its own. If a user

specifies a particular type of relaxation for a query, INSPIRE can directly

perform the type of relaxation. This feature can be shown by choosing different

types of relaxation to be performed on the control panel.

2. INSPIRE provides efficient error-tolerant autocompletion. We show that the

results can be returned in real time to fulfill real-time user-computer interaction

requirement.

3. INSPIRE equips a user-friendly interface to interact with users and visualize

the results in a proper way. Using this interface, customized search can be

supported to meet the needs of different users. We present this feature by
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showing results of queries issued in different places. For example, advanced

users can control which type of relaxation to perform for a particular query.

3.9 Summary

In this chapter, we proposed INSPIRE, a general framework, which adopts a unifying

strategy for processing different variants of spatial keyword queries. We observed

that relaxation can be done by expanding the spatial region or loosening the prefix

matching constraint. To maximize query reusability, we adopted an incremental way

to perform relaxation. Then we built a one-size-fits-all index to support all types of

relaxation. To accelerate query processing, we proposed our intra-query optimization

covering common result reuse and selectivity estimation. Moreover, we observed that

the search-as-you-type paradigm allows appending characters after the initial query,

so we proposed the inter-query optimization to reuse the results of the initial query

in processing its appending query, instead of processing it from scratch. As a result,

INSPIRE is able to decide the most appropriate relaxation for a spatial prefix query,

and outperforms most existing work.
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Chapter 4

LazyLSH: Approximate Nearest

Neighbor Search for Multiple

Distance Functions with a Single

Index

In the previous chapter, we study the interactive method of spatial keyword search.

However, spatial keyword search is not applicable when text is not available. In

such cases, new search methods are proposed to search complicated objects such as

images, because conventional keyword search might not be used easily to describe

such complicated objects. As a result, new search methods, e.g. “search by image”

and “voice search”, are proposes to support the retrieval of such complicated objects.

In this chapter, we focus on the spatial image search, which is essentially modeled as

the nearest neighbor search in high-dimensional spaces. We attempt to present an

efficient solution to approximate nearest neighbor search in high-dimensional spaces.

Due to the “curse of dimensionality” problem, it is very expensive to process the

nearest neighbor (NN) query in high-dimensional spaces; and hence, approximate

approaches, such as Locality-Sensitive Hashing (LSH), are widely used for their theo-

retical guarantees and empirical performance. Current LSH-based approaches target

at the `1 and `2 spaces, while as shown in previous work, the fractional distance met-
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rics (`p metrics with 0   p   1) can provide more insightful results than the usual

`1 and `2 metrics for data mining and multimedia applications. However, none of

the existing work can support multiple fractional distance metrics using one index.

In this chapter, we propose LazyLSH that answers approximate nearest neighbor

queries for multiple `p metrics with theoretical guarantees. Different from previous

LSH approaches which need to build one dedicated index for every query space,

LazyLSH uses a single base index to support the computations in multiple `p spaces,

significantly reducing the maintenance overhead. Extensive experiments show that

LazyLSH provides more accurate results for approximate kNN search under frac-

tional distance metrics.

4.1 Motivation

State-of-the-art kNN processing techniques have been proposed for low-dimensional

cases. However, due to the “curse of dimensionality”, the same techniques cannot

be directly applied to high-dimensional spaces. It was shown that conventional kNN

processing approaches become even slower than the naive linear-scan approach [42].

One compromise solution is to adopt the approximate kNN technique which returns k

points within distance cR from a query point, where c is the approximation ratio and

R is the distance between the query point and its true pkqth nearest neighbor. The

intuition is that in high-dimensional spaces, approximate results are good enough for

most applications.

To process approximate kNN queries, several methods have been proposed [8, 68,

3, 98], among which, locality-sensitive hashing (LSH) [68] is widely used for its the-

oretical guarantees and empirical performance. In essence, the LSH scheme is based

on a set of hash functions from the locality-sensitive hash family which guarantees

that similar points are hashed into the same buckets with higher probabilities than
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Table 4.1: Classification accuracy

Dataset
Classification accuracy (%)

Real 1NN LazyLSH (Approximate 1NN)
`1.0 `0.5 `0.6 `0.7 `0.8 `0.9 `1.0

Ionos 90.9 92.0 91.7 91.7 91.7 91.7 91.5
Musk 93.5 94.0 93.8 93.5 93.4 93.4 93.5
BCW 92.8 93.3 93.3 93.1 93.0 92.6 92.8
SVS 67.5 67.8 68.9 67.8 67.4 67.2 67.5

Segme 91.9 92.1 92.1 92.4 92.3 92.1 91.9
Giset 96.2 94.9 95.7 96.4 96.4 96.8 96.5
SLS 90.0 87.8 88.3 88.7 89.2 90.0 89.8
Sun 9.5 9.0 9.3 9.3 9.4 9.4 9.5

Mnist 96.3 95.1 95.4 95.7 95.9 96.0 96.2

dissimilar points. The LSH scheme was first proposed by Indyk et al. [68] for the use

in the binary Hamming space, and later was extended for the use in the Euclidean

space by Datar et al. [42] based on the p-stable distribution.

It was observed that the effectiveness of high-dimensional search is sensitive to

the choice of distance functions [2]. Although the Manhattan (`1) and Euclidean (`2)

metrics are widely used, it was shown that `p metrics with 0   p   1, called fractional

distance metrics, can provide more insightful results from both the theoretical and

empirical perspectives for data mining applications [2, 39] and content-based image

retrievals [67]. Furthermore, it was shown that the optimal `p metric is application-

dependent and need to be tuned or adjusted for each application [2, 39, 67, 54].

As an example, Table 4.1 shows the accuracy of the kNN classifier [40] under

different `p metrics. We test Mnist [84], Sun [47] and seven datasets from the UCI

ML repository1. The ground-truth classification results are provided by the datasets

themselves. For each query point, we retrieve its nearest neighbor and assign it to

the same class tag as its nearest neighbor. For `p metrics (0.5 ¤ p ¤ 1), we compute

1 http://archive.ics.uci.edu/ml/
The used datasets are: Ionosphere (Ionos), Musk, Breast Cancer Wisconsin (BCW), Statlog Vehicle
Silhouettes (SVS), Segmentation (Segme), Gisette (Giset), Statlog Landsat Satellite (SLS).
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the approximate 1NN using our LazyLSH technique. For comparison, we also show

the results of the true 1NN in the `1 space. We highlight the highest accuracy for

LazyLSH in bold font. The results indicate that the best classification result may be

obtained using different fractional distance metrics for different datasets. There is

no way to know which fractional distance is optimal for a specific dataset. Therefore,

before implementing a system, we need an approach that can explore the data using

different distance metrics, such that we can select the proper one to achieve the best

mining results.

Unfortunately, due to the lack of closed form density functions for p-stable distri-

butions when p � 1 or 2, it is non-trivial to generate p-stable random variables and

build an optimal index structure for fractional distance metrics. Moreover, the con-

ventional approach of building one index for each possible value of p will incur very

high cost in terms of computational time and space requirement (with the number of

possible values of p being potentially infinite). To address this problem, we propose

LazyLSH as an efficient mechanism to process approximate kNN queries in different

`p spaces using only one single index.

LazyLSH builds an LSH index in a predefined `p0 space, which is referred to as the

base space. Using this materialized index, LazyLSH can answer approximate kNN

queries in a user-specific query space. The word “Lazy” is borrowed from the lazy

learning algorithms [145] in which generalization beyond the training data is delayed

until a query is issued. LazyLSH means that we do not build an index for every query

space. Instead, we reuse the index constructed in the base space to answer queries

in the query space. Our analysis shows that if two points are close in an `p1 space,

then they are likely to be close in another `p2 space. We also find that a locality-

sensitive hash function built in the base space is still locality-sensitive in the query

space when certain conditions hold. With this observation, LazyLSH adopts the

strategy of having “one index for many fractional distance metrics”. Figure
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Figure 4.1: LazyLSH Overview

4.1 illustrates the basic idea. A single materialized LSH index is built using a specific

distance function, based on which, we can approximately process kNN queries for

other fractional distance metrics.

In order to get more precise results, we propose a method called query-centric

rehashing to search the base index and retrieve nearby objects. We further observe

that during the processing of queries under different `p metrics, many common index

entries are probed. This finding motivates us to optimize the processing of multiple

queries under different `p metrics concurrently by sharing their I/Os.

We summarize the contributions as follows.

• We propose a novel method called LazyLSH to answer approximate nearest

neighbor queries under multiple `p metrics. Compared to the costly naive

method which builds an LSH index for every p value to cover all possible

fractional distance metrics, LazyLSH maintains only a single copy of LSH index

in the base space, significantly reducing the storage overhead.

• We give a theoretical proof that when certain conditions hold, locality-sensitive

hash function can be extended to support the fractional distance metrics. This

is the first work that gives a theoretical bound for the approximate kNN pro-

cessing using LSH with the fractional distance metric.

• We propose two novel optimization methods, namely query-centric rehashing

91



Table 4.2: Table of Notations for Chapter 4

D database
d dimensionality
~q query point

h�i p�q based materialized hash function
~a random vector in the hash function
b offset in the hash function
c approximation ratio
X random variable

`pp~o, ~qq the `p distance between ~o and ~q
p the subscript used in the `p space or `p distance
δ radius in the `p space
r radius in the `1 space
δK lower bound of the `1 distance given `p � δ
δJ upper bound of the `1 distance given `p � δ

Bpp~q, rq the ball of radius r centered at ~q in the `p space
η the number of required hash functions
θ the collision count threshold

and multi-query optimization, to improve the effectiveness and efficiency of

performing queries.

• We experimentally verify the effectiveness and efficiency of our proposed LazyLSH

using both synthetic and real datasets. Experimental results show that LazyLSH

provides more accurate results for approximate kNN search under fractional

distance metrics, and it can be used as a supervision to optimally choose the

metric for different applications.

The rest of this chapter is organized as follows. Section 4.2 briefly reviews the pre-

liminaries on LSH. Section 4.3 presents the technical details of the proposed LazyLSH

method. Section 4.4 shows the processing of approximate range queries and approxi-

mate kNN queries. Then, we experimentally evaluate the proposed method in Section

4.5. Finally, we conclude this chapter in Section 4.6. For the ease of presentation,

we summarize our notations in Table 4.2.
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4.2 LazyLSH

In this section, we present LazyLSH as an efficient mechanism to process approximate

kNN queries in different `p spaces. We begin with an overview, and then illustrate

the technical details of LazyLSH.

4.2.1 Overview

In Chapter 2.3, we reviewed the existing methods of LSH. In previous work such as

E2LSH and C2LSH, an LSH index is built for the `2 space, while Aggarwal et al.

[2] showed that the fractional distance metrics (0   p   1) provide more meaningful

results and improve the effectiveness of information retrieval algorithms. Extending

techniques in E2LSH and C2LSH to support an arbitrary fractional distance metric

is not a trivial task. We present LazyLSH, a novel approach that can process ap-

proximate nearest neighbor queries using different fractional distance metrics with a

single LSH index.

LazyLSH is proposed based on the intuition that given p, s ¡ 0, if two points are

close in the `p space, then they are likely to be close in the `s space. Let ε � |p� s|.
The property holds with a higher probability for a smaller ε. This property can

be extended as: the pr, cr, p1, p2q-sensitive hash function in the `p space is pδ, cδ,
p11, p

1
2q-sensitive in the `s space if certain conditions hold. We will give a detailed

theoretical analysis for this property later in this section.

Using this property, LazyLSH can transform the hash functions between different

`p spaces. LSH families for the `1 and `2 metrics have been well studied [6, 132,

55]. As the `1 metric is closer to the fractional distance metrics, in LazyLSH, we

materialize the LSH index in the `1 space as our base index. We generate η base

hash functions h�1p�q, . . ., h�ηp�q. In particular, h�i p�q is constructed as:

h�i p~vq � t
~ai.~v � b�i

r0
u, (4.1)
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where ai is a random vector whose each entry is drawn from the 1-stable (Cauchy)

distribution and the other parameters are the same as the ones in Equation 2.6. Each

base hash function h�i is (1, c, p1, p2)-sensitive, with p1 � pp1, r0q, p2 � ppc, r0q as

presented in Equation 2.3. How to select a proper η will be discussed later.

Using the materialized index, LazyLSH can answer the approximate kNN queries,

as stated asNpp~q, k, cq in Definition 2.3, with probabilistic guarantees. For the ease of

presentation, we first show our observation that a pr, cr, p1, p2q-sensitive hash func-

tion in the `p space is pδ, cδ, p11, p12q-sensitive in another `s space in this section. Then

we illustrate how the LazyLSH method answers Rpp~q, r, cq and Npp~q, k, cq queries in

Section 4.3.

4.2.2 LSH in an `p Space

If there exists a point ~o P Bpp~q, δq, the Rp(~q, δ, c) query returns a point ~o1 if ~o1 P
Bpp~q, cδq. We observe that Bpp~q, δq and B1p~q, rq share a lot of common areas if r is

carefully tuned for δ. Figure 4.2 plots a B1p~q, rq ball in blue and a Bpp~q, δq ball in

red, where 0   p   1. The shadow region represents the intersection of B1p~q, rq and

Bpp~q, δq which takes over a large portion of Bpp~q, δq. This observation motivates us

to use a ball B1p~q, rq in the `1 space to approximate Bpp~q, δq in the `p space for the

query Rp(~q, δ, c).

Given two points ~q, ~o P Rd, with `pp~q, ~oq � δ, we can compute the distance lower

bound and upper bound in the `1 space, denoted as δK and δJ respectively. Figure

4.3 shows the geometric interpretations of δK and δJ for 0   p   1 and p ¡ 1. The

values of δK and δJ are computed as:

δK �
"

d�δ
p?d if 0   p   1

δ if p ¥ 1
δJ �

"
δ if 0   p   1

d�δ
p?d if p ¥ 1

(4.2)

Our goal is to use an `1 ball B1p~q, rq to approximate the `p ball Bpp~q, δq specified

by the query Rp(~q, δ, c). The radius r significantly affects the search performance. If
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Figure 4.2: Use B1p~q, rq to approximate Bpp~q, δq (Best viewed in color)

lp= δ 

l1= δ⊥ l1= δT 

(a) 0   p   1

lp=δ 

l1= δ⊥ l1= δT  

(b) p ¡ 1

Figure 4.3: Bounds of `p distance

r   δK, we may fail to retrieve many candidate results, leading to high false negatives.

On the other hand, if r ¡ δJ, many irrelevant objects are retrieved, generating many

false positives. Therefore, a proper r should be chosen in the range of [δK, δJ] for

B1p~q, rq to approximate Bpp~q, δq.
Given a query Rp(~q, δ, c) and a based (1, c, p1, p2)-sensitive hash function h�i p�q,

we modify h�i p�q as follows:

hri p~vq � t
~ai.~v � b�i
r0r

u, (4.3)

where r is in [δK, δJ] as discussed above. It is easy to see that hri p�q is (r, cr, ppr, r0rq,
ppcr, r0rq)-sensitive in the `1 space, where pp�, �q is defined in Equation 2.3. We
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further observe the following lemma.

Lemma 4.1. Let pps, rq � ³r
0

1
s
fpp tsqp1� t

r
qdt as shown in Equation 2.3. For any real

number c ¡ 0, pps, rq � ppcs, crq.

Proof. We know:

ppcs, crq �
» cr
0

1

cs
fpp t

cs
qp1� t

cr
qdt

Let

x � t{c,

Then we get:

ppcs, crq �
» r
0

c
1

cs
fppcx

cs
qp1� cx

cr
qdx

�
» r
0

1

s
fppx

s
qp1� x

r
qdx � pps, rq l

By Lemma 4.1, we get ppr, r0rq � pp1, r0q � p1 and ppcr, r0rq � ppc, r0q � p2,

where p1 and p2 are the same p1 and p2 defined in the base materialized hash function

h�i p�q.
Recall that our LSH index is built in the `1 space. The LSH family guarantees

that close points in the `1 space are likely to be hashed into the same bucket. We

are interested in whether an LSH function in the `1 space is still locality-sensitive in

another `p space. Given a pr, cr, p1, p2q-sensitive hash function hri p�q in the `1 space,

we define the following events for any two points ~o, ~q P Rd:

e1 : hri p~oq � hri p~qq.
e2 : `pp~o, ~qq ¤ δ. e3 : `pp~o, ~qq ¡ cδ. where c ¡ 1
e4 : `1p~o, ~qq ¤ r. e5 : `1p~o, ~qq ¡ cr. where c ¡ 1

To verify whether the modified hash function hri p�q is locality-sensitive in the `p

space, we need to calculate the probability of e1 given e2 and the probability of e1
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given e3, i.e. Prpe1|e2q and Prpe1|e3q respectively. Let ec represent the complemen-

tary of event e. By Bayes’ Theorem, we compute a lower bound of Prpe1|e2q:

Prpe1|e2q � Prpe1 ^ e4|e2q � Prpe1 ^ ec4|e2q

� Prpe4|e2qPrpe1|e4 ^ e2q � Prpec4|e2qPrpe1|ec4 ^ e2q

(Note: Prpe1|e4 ^ e2q ¥ Prpe1|e4q ¥ p1, and

`pp~o, ~qq ¤ δ implies `1p~o, ~qq ¤ δJ )

¥ Prpe4|e2qp1 � p1� Prpe4|e2qqppδJ, r0rq

� Prpe4|e2qp1 � p1� Prpe4|e2qqpp1, r0r
δJ
q (4.4)

This is because pps, rq is monotonically decreasing with s when r is fixed. We infer

pp1, r0r
δJ
q ¤ p1 from δK ¤ r ¤ δJ. For simplicity, we use p11 to denote Prpe4|e2qp1 �

p1 � Prpe4|e2qqpp1, r0rδJ q. Consequently, we get p11 ¤ p1. Similarly, we compute an

upper bound of Prpe1|e3q:

Prpe1|e3q �Prpe1 ^ e5|e3q � Prpe1 ^ ec5|e3q

�Prpe5|e3qPrpe1|e5 ^ e3q � Prpec5|e3qPrpe1|ec5 ^ e3q

(Note: Prpe1|e5 ^ e3q ¤ Prpe1|e5q ¤ p2, and

`pp~o, ~qq ¡ cδ implies `1p~o, ~qq ¡ cδK )

¤Prpe5|e3qp2 � p1� Prpe5|e3qqppcδK, r0rq

�Prpe5|e3qp2 � p1� Prpe5|e3qqppc, r0r{δKq

¤
"
p2 if p2 ¥ ppc, r0r{δKq, i.e. r ¤ δK

ppc, r0r{δKq otherwise

(Note: we set δK ¤ r ¤ δJ )

�ppc, r0r{δKq (4.5)
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Then, we use p12 to denote ppc, r0r{δKq. Based on the above two inequalities, we

have the following theorem:

Theorem 4.1. Given an pr, cr, p1, p2q-sensitive hash function hri p�q in the `1 space,

we find the following two conditions hold for a distance threshold δ in another `p

space, where δK ¤ r ¤ δJ:

(1) if `pp~o, ~qq ¤ δ, then Prrhri p~oq � hri p~qqs ¥ p11,

(2) if `pp~o, ~qq ¡ cδ, then Prrhri p~oq � hri p~qqs   p12,

where p11 and p12 are stated as stated above.

p11 � Prpe4|e2qp1 � p1� Prpe4|e2qqpp1, r0r
δJ
q

p12 � ppc, r0r{δKq

4.2.3 Computing Internal Parameters

To ensure the correctness of LazyLSH, two parameters are needed to compute. One

is the radius r of an `1 ball B1p~q, rq to approximate the `p ball Bpp~q, δq for query

Rp(~q, δ, c). The other is the number of required hash functions to be built. Then

we present how to compute them.

Recall the definition of LSH, we must have p11 ¡ p12 so that the locality-sensitive

hash function hri p�q is useful in the `p space. By substituting p11 and p12, we have p12 �
ppc, r0r{δKq � ppcδK{r, r0q   p11 ¤ p1 � pp1, r0q. Note that pps, rq is monotonically

decreasing with s when r is fixed. Thus, we get cδK{r ¡ 1 as a necessary condition,

which infers r   cδK. Besides, we have δK ¤ r ¤ δJ as we explained before. In

summary, r must be chosen properly in the range of [δK,minpδJ, cδKq] in order for

p11 ¡ p12 to hold. In details, r is a parameter for the functions of p11 and p12. p
1
2 can

be simply computed using Equation 2.4 when we build the base LSH index in the

`1 space, while computing p11 is a nontrivial task. We begin with a lemma on the

conditional probability.
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Lemma 4.2. Prp`sp~x, ~yq ¤ r|`pp~x, ~yq ¤ δq � Prp`sp~u,~vq ¤ cr|`pp~u,~vq ¤ cδq for any

s, p, c ¡ 0.

Proof. For any ~x, ~y P Rd, let ~u � c~x and ~v � c~y. Then, we have

`sp~u,~vq �p
ḑ

i�1

pui � viqsq1{s

�p
ḑ

i�1

pcxi � cyiqsq1{s

�c `sp~x, ~yq

Therefore, we get `sp~x, ~yq ¤ r ðñ `sp~u,~vq ¤ cr. Similarly, `pp~x, ~yq ¤ δ ðñ
`pp~u,~vq ¤ cδ. Note ~u and ~x, ~v and ~y are one-to-one corresponding. Thus, we get

Prp`sp~x, ~yq ¤ r|`pp~x, ~yq ¤ δq � Prp`sp~u,~vq ¤ cr|`pp~u,~vq ¤ cδq

Based on Lemma 4.2, we can reduce the problem of calculating Prpe4|e2q to

the computation of Prp`1p~o, ~qq ¤ r | `pp~o, ~qq ¤ 1q, where δ � 1 and δK ¤ r  
minpδJ, cδKq. Prp`1p~o, ~qq ¤ r|`pp~o, ~qq ¤ 1q can be computed as follows:

Prp`1p~o, ~qq ¤ r|`pp~o, ~qq ¤ 1q � V olpB1p~q, rq
�
Bpp~q, 1qq

V olpBpp~q, 1qq , (4.6)

where V olp�q outputs the volume of a given shape.

The challenge, however, is that computing the volume of pB1p~q, rq
�

Bpp~q, 1qq
for a random p and r exactly is very expensive if not impossible. Alternatively, we

use the Monte Carlo method [19] to estimate Prp`1p~o, ~qq ¤ r|`pp~o, ~qq ¤ 1q. Basically,

this estimation is done by randomly sampling points in Bpp~q, 1q and then calculating

the percentage of the sampled points in B1p~q, rq. Suppose we randomly sample n
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Algorithm 2: Sampling a point in Bpp~o, 1q [24]

input : dimensionality d, `p space
output: a random point ~y in Bpp~o, 1q, where ~o is the origin

1 Generate d independent random real scalars ξi � G̃p1
p
, pq ;

2 Construct a vector ~x P Rd of components xi � siξi, where si is an independent

random sign;

3 Construct z � w1{d, where w is a random variable uniformly distributed in the

interval [0, 1] ;

4 return ~y � z ~x
`pp~x,~oq ;

points in Bpp~q, 1q, and find m points are in B1p~q, rq as well. m
n

is roughly equal to

Prp`1p~o, ~qq ¤ r|`pp~o, ~qq ¤ 1q if the number of samples is large enough.

Prp`1p~o, ~qq ¤ r|`pp~o, ~qq ¤ 1q � m

n
, (4.7)

Note that the location of the center does not affect the probability. As a result,

we sample points in Bpp~o, 1q, where ~o represents the origin. Given a d-dimensional

space and a p value, we can randomly sample points in Bpp~o, 1q using Algorithm 2

[24]. In line 1, ξi is a random variable generated from a Generalized Gamma density

function.

Definition 4.1 (Generalized Gamma density [83]). A random variable x P R is

generalized gamma distributed with three parameters λ ¡ 0, β ¡ 0 and υ ¡ 0,

denoted as x � G̃pλ, β, υq, when x has density function:

fpxq � υ{λβ
Γpβ{υqx

β�1e�px{λq
υ

, x ¥ 0. (4.8)

Let λ � 1, a � β{υ and c � υ, we can get a generalized gamma distribution with

two parameters a ¡ 0 and c ¡ 0, denoted as x � G̃pa, cq. The density function is:

fpxq � c

Γpaqx
ca�1e�x

c

, x ¥ 0. (4.9)
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Algorithm 3: Calculating Prp`1p~o, ~qq ¤ r|`pp~o, ~qq ¤ 1q
input : dimensionality d, `p space, the number of sample points n, the

number of buckets b
output: an array p storing Prp`1p~o, ~qq ¤ r|`pp~o, ~qq ¤ 1q with different values of

r

1 Initialize an array r of b dimensions recording the radii,

rris � δK � pi� 1q � minpδJ,cδKq�δK
b

for 0 ¤ i   b;

2 Initialize an array c of b dimensions to record the number of points in B1p~o, rq,
cris Ð 0 for 0 ¤ i   b;

3 for k Ð 0 to n� 1 do
4 ~v Ð a random point in Bpp~o, 1q;
5 Compute `1p~o,~vq ; /* ~o is the origin */

6 Find the minimal index j such that rrjs ¥ `1p~o,~vq;
7 for iÐ j to b� 1 do
8 cris Ð cris � 1;

9 for iÐ 0 to b� 1 do

10 pris Ð cris
n

;

11 return p;

The formula involves the gamma function Γptq (t ¡ 0), which is computed as:

Γptq �
» 8

0

xt�1e�xdx, t ¡ 0. (4.10)

We can obtain a random Generalized Gamma variable x � G̃pa, cq from a Gamma

random variable z � Gpa, 1q as x � z1{c [83]. As a result, we can efficiently generate

sample points in Bpp~o, 1q using Algorithm 2.

Then we compute Prp`1p~o, ~qq ¤ r|`pp~o, ~qq ¤ 1q w.r.t. different values of r. As

δK ¤ r ¤ minpδJ, cδKq, we divide [δK,minpδJ, cδKq] into b buckets. So the bucket

length φ is pminpδJ, cδKq � δKq{b. Afterwards, we set r to pδK � φq, pδK � 2φq, . . .,
minpδJ, cδKq respectively and compute Prp`1p~o, ~qq ¤ r|`pp~o, ~qq ¤ 1q, as described in

Algorithm 3.

We initialize a counter to record the number of sample points that are located in

B1p~o, rq for each radius r (line 2). Then, we randomly sample n points in Bpp~o, 1q.
For each sampled point ~v, we calculate its distance `1p~v, ~oq to ~o in the `1 space.

101



For all the radii r greater than `1p~v, ~oq, we know that the sample point ~v is inside

B1p~o, rq. Then we add one to the corresponding counters (lines 6-8). After sampling

n points, we output Prp`1p~o, ~qq ¤ r|`pp~o, ~qq ¤ 1q for different values of r (lines 9-

11). Algorithm 2 is an offline process. This approximation becomes more accurate if

we sample more points and maintain more buckets. In the experiments, we set the

number of sample points n to 1,000,000 and the number of buckets b to 1000.

Once we get the value of Prp`1p~o, ~qq ¤ r|`pp~o, ~qq ¤ 1q, which is equal to Prpe4|e2q,
we can compute p11 and p12 as shown in Equations 4.4 and 4.5. In particular, pp�, �q
is computed as the one in Equation 2.4, because we build the base index in the `1

space. Figure 4.4 plots the values of p11 and p12 w.r.t. r for `0.5 in R128 when the

approximate ratio c is set to 2. The x axis represents the ratio of r to δK, i.e. ( r
δK

).

As can be seen in the figure, p12 increases smoothly. In contrast, p11 increases slowly at

the beginning. When the ratio reaches 1.4, p11 increases dramatically. When the ratio

reaches around 1.55, p11 exceeds p12 and grows slowly at the end. We are interested

in the cases when p11 ¡ p12.

Recall that a (1, c, p1, p2)-sensitive hash function requires p1 ¡ p2. In addition,

the number of base hash functions η must be set to a certain value to ensure the

correctness of the algorithm, which is related to pp1 � p2q as shown in Equation 2.8

[55]. Equation 2.8 shows that the greater pp1�p2q is, the less base hash functions are

required, resulting in less storage overhead. Therefore, we choose an optimal radius

r, denoted as r̂, by maximizing pp11 � p12q.

r̂ � arg max
r

pp11 � p12q (4.11)

For different `p spaces, the optimal r̂ varies. We precompute and save the values

of r̂ for different `p spaces, which is used when processing a query. Besides, we store

the values of p11 and p12 when r � r̂ which are denoted as p̂11 and p̂12 respectively. They

are used to compute the number of required hash functions η when building the index
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and the collision count threshold θ in processing a query as shown in Equations 2.8

and 2.9. Figure 4.5 plots pp̂11 � p̂12q w.r.t. different `p spaces in R128, where the

approximate ratio c is set to 2. When p   1, pp̂11� p̂12q drops when p decreases. When

p   0.44, p̂11 is always smaller than p̂12, which indicates that the hash function built in

the `1 space is no longer locality-sensitive in the corresponding `p space when c � 2.

When p ¡ 1, pp̂11 � p̂12q drops significantly when p increases. When p ¡ 1.18, p̂11 is

always smaller than p̂12.

Next, we calculate the number of required hash functions η for different `p spaces.

We use ηp to denote the number of required hash functions to support queries in the

`p space, and it is computed as

ηp � r
ln 1

ε

2pp̂11 � p̂12q2
p1� zq2s, where z �

d
ln 2

β

ln 1
ε

(4.12)

where ε and β are the same as the ones defined in Equation 2.8. Figure 4.6 plots

ηp w.r.t. different `p spaces in R128, where c � 2, ε � 0.01 and β � 0.0001. When

p   1, ηp increases when p decreases, because ηp is inversely proportional to pp̂11� p̂12q.
Suppose we want to support a query R0.6p~q, δ, cq in the `0.6 space. Correspondingly,

at least η0.6 hash functions are needed to be materialized for the base index. Suppose

we materialize η0.6 hash functions as the base index. Using η0.6 base hash functions,

queries Rpp~q, r, cq can be answered in the `p spaces where ηp ¤ η0.6, as shown by the

dashed line (0.6 ¤ p ¤ 1.1) in Figure 4.6.
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4.3 Query Processing

In this section, we discuss how to leverage LazyLSH to process approximate range

queries (Rpp~q, δ, cq) and nearest neighbor queries (Npp~q, k, cq) in different `p spaces.

4.3.1 Processing Rpp~q, δ, cq

Equation 4.12 indicates that we can find ηs and ηs1 with s   s1 and ηs � ηs1 . Namely,

two spaces share the same η value. This idea is also shown in Figure 4.5, where we

get the same value of |p̂11� p̂12| in `0.6 and `1.1. Suppose we have materialized ηs hash

functions as the base index, where 0   s   1. Rpp~q, δ, cq queries can be answered in

a series of `p spaces using the base index, where s ¤ p ¤ s1.

We use the B1p~q, r̂δq ball in the `1 space to approximate the Bpp~q, δq ball in the

`p space as described in the previous section. We also precompute the corresponding

p̂11 and p̂12 for the query `p space. To answer an Rpp~q, δ, cq query, we modify the base

hash function h�i p�q as hr̂δi p�q

hr̂δi p~vq � t
h�i p~vq � ph�i p~qq mod tr̂δuq � t3r̂δ

2
u

r̂δ
u (4.13)

(h�i p~qq mod tr̂δu) can be viewed as a random integer as ~q is not known before-

hand. Thus, (t3r̂δ
2
u � ph�i p~qq mod tr̂δu)) is a random positive integer, and hr̂δi p�q is

pr̂δ, cr̂δ, p1, p2q-sensitive in the `1 space. Based on Theorem 4.1, we know that hr̂δi p�q
is also pδ, cδ, p̂11, p̂12q-sensitive in the `p space.

Given a query Rpp~q, δ, cq and the base hash functions, if an object collides with

~q more than θp times, the object is considered as a candidate. In particular, θp is

defined as:

θp � zp̂11 � p̂12
1� z

ηs, (4.14)

The Rpp~q, δ, cq query is processed by retrieving the objects that are hashed to the

same bucket as ~q for hδr̂i p�q. We adopt the virtual rehashing method [55]. If a point
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Algorithm 4: Answering Rpp~q, δ, cq
1 T Ð a hash table to record the collision count for each database object ;

2 C Ð a list to record the candidates ;

3 r̂ Ð the radius of B1p~q, r̂q to approximate Bpp~q, 1q ;

4 for iÐ 0 to ηs � 1 do
5 Compute hδr̂i p~qq ;

6 Read the IDs that are hashed in the range of r h�i p~qq � t δr̂
2
u, h�i p~qq � t δr̂

2
u s

for h�i p�q ;

7 foreach object ~v P IDs do
8 T r~vs Ð T r~vs � 1 ;

9 if pT r~vs ¡ θpq ^ p~v R Cq then
10 C Ð C

�t~vu ;

11 if `pp~v, ~qq   cδ then
12 return ~v ;

13 if |C| ¡ β|D| then
14 return NULL ;

~v has the same hash value as the query, i.e. hδr̂i p~vq � hδr̂i p~qq, we can get the value

range of h�i p~vq by expanding the equation.

h�i p~qq � t
δr̂

2
u ¤ h�i p~vq ¤ h�i p~qq � t

δr̂

2
u (4.15)

From the above equation, we observe that the points hashed into the range of

r h�i p~qq� t δr̂
2
u, h�i p~qq� t δr̂

2
u s in h�i p�q will collide with the query point which is mapped

to the same bucket hδr̂i p~qq. We can see that the center of this range is the query point.

Thus, we refer to the proposed hash function hr̂δi p�q as the query-centric rehashing

function.

Figure 4.7 presents the advantage of the proposed query-centric rehashing func-

tion. Suppose ~q is the query point. The first line represents the based hash function

h�p~qq, where points ~v, ~q and ~o are hashed to buckets 8, 9 and 13 respectively. The

solid rectangle represents our proposed query-centric rehashing function for radius

r � 3, 9, whereas the dashed rectangle represents the original rehashing function in
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Equation 2.7. For the query-centric rehashing function hrp�q, ~q and ~v are hashed to

the same bucket when r � 3, while ~q and ~o are hashed to the same bucket when

r � 9. In contrast, for Hrp�q, ~q and ~o are hashed to the same bucket when r � 9,

while ~q and ~v are hashed to the same bucket when r � 27. We notice that the query

point ~q is actually closer to ~v compared with ~o, and thus ~q should collide with ~v

in the same bucket first. Our proposed query-centric rehashing function can hold

this property while Hrp�q cannot. In particular, Hrp�q might perform poorly in some

cases, for example, when a query point is hashed to the bucket whose id is a multiple

of the radius.

Algorithm 4 shows the pseudo code of processing an Rpp~q, δ, cq query. An object

with collision count larger than θp is considered as a candidate and its real distance

to the query is computed. The algorithm stops until β|D| candidates are found. The

algorithm is sound if the following two properties hold with a constant probability.

1. P 1
1: If ~v P Bpp~q, δq, then the number of ~v’s collision with the query ~q is at least

θp.

2. P 1
2: The total number of false positives is smaller than β|D|, where |D| is the
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Algorithm 5: Answering Npp~q, k, cq
1 T Ð a hash table to record the collision count for each database object ;

2 C Ð a list to record the candidates ;

3 r̂ Ð the radius of B1p~q, r̂q to approximate Bpp~q, 1q ;

4 δ Ð 1
r̂

;

5 while TRUE do
6 for iÐ 0 to ηs � 1 do
7 if δ � 1

r̂
then

8 IDsÐ the points that are hashed to h�i p~qq ;

9 else
10 IDsÐ the points that are hashed in r h�i p~qq� t δr̂

2
u, h�i p~qq� t δr̂

2c
u� 1 s

or r h�i p~qq � t δr̂
2c
u� 1, h�i p~qq � t δr̂

2
u s for h�i p�q ;

11 foreach object ~v P IDs do
12 T r~vs Ð T r~vs � 1 ;

13 if pT r~vs ¡ θpq ^ p~v R Cq then
14 C Ð C

�t~v} ;

15 if p|t~o|~o P C ^ `pp~o, ~qq   cδu| ¥ kq _ p|C| ¡ k � β|D|q then
16 return the kNNs in C with the smallest `p distance to ~q ;

17 δ Ð δ � c ;

cardinality of a database D.

Corollary 4.1 guarantees the correctness of the algorithm.

Corollary 4.1. Given a error probability ε and a false positive rate β, if ηp is set as

the one in Equation 4.12, we have PrpP 1
1q ¥ p1� εq and PrpP 1

2q ¥ 1{2

Proof. This is a corollary of Lemma 1 in [55]. We refer readers to [55] for more

details.

4.3.2 Processing Npp~q, k, cq

The nearest neighbor query can be processed in a similar way. Algorithm 5 presents

the general idea which can be viewed as the processing of a set of Rpp~q, δ, cq queries

with increasing radii. We initialize the starting radius to be 1
r̂

and issue an Rpp~q, δ, cq
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query. If not enough results are found, we increase the radius to be cδ and issue a

new range query. The process continues until enough results are returned.

We iteratively retrieve the points that are hashed into the range of r h�i p~qq� t δr̂
2
u,

h�i p~qq�t δr̂
2
u s for h�i p�q, because they collide with the query point for the modified hash

function. However, as we have visited the points that are hashed in r h�i p~qq � t δr̂
2c
u,

h�i p~qq � t δr̂
2c
u s in the last iteration when the radius is pδ{cq, we skip those IDs (line

10).

The algorithm stops if (1) we have obtained k candidates whose `p distance to q

is smaller than cδ, or (2) we have found more than k�β|D| candidates with collision

count larger than θp (lines 15-16 ). The stop conditions are defined based on P 1
1 and

P 1
2 respectively. In particular, P 1

1 guarantees that a candidate will be found definitely,

and P 1
2 ensures that there are no more than β|D| false positives. Therefore, we can

stop the algorithm early and return the approximate kNNs of q in the query `p space.

4.3.3 Multi-query Optimization

For the processing of queries under different `p metrics, the only difference is that the

algorithm requires a different collision threshold for an object to become a candidate.

For fractional distance metrics, the smaller the p is, the larger the collision threshold

is. This requires that more index entries need to be retrieved for the fractional

distance metrics with a smaller p. The good news is that the index entries for a

larger collision threshold (a smaller p) cover the index entries for a smaller collision

threshold (a larger p), which means that no additional sequential I/O is required

when we process queries in different `p spaces simultaneously for the same query

point.

This finding motivates us to perform multiple queries under different `p metrics

concurrently by sharing their I/Os. For example, suppose we need to answer queries

Npp~q, k, cq for p � 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. We can group them and answer
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them simultaneously. The I/O cost of processing these multiple queries is roughly

the same as the I/O cost of processing a single N0.5p~q, k, cq query with additional

random I/Os for retrieving candidates of other `p metrics.

4.3.4 Extending LazyLSH to Other Existing Methods

LazyLSH is orthogonal to most previous work on LSH. LazyLSH targets at answer-

ing approximate nearest neighbor queries in different `p spaces using a single index.

The same index structure of C2LSH is used to process approximate nearest neighbor

queries. Besides C2LSH, LazyLSH can also adopt other index structures. For in-

stance, LazyLSH can be easily combined with the E2LSH structure. The difference

is how to choose the optimal value of r̂ in Equation 4.11. To fit the E2LSH structure

and its variants [42, 90], we choose r̂ with a different optimization method. As stated

in [42], ρ � ln 1{p11
ln 1{p12 is a parameter to be minimized in the algorithm. The smaller ρ is,

the more precise results are returned. Therefore, we choose a radius r such that ρ is

minimized, formally,

r̂ � arg min
r

ln 1{p11
ln 1{p12

. (4.16)

SRS [129] proposed a tiny index to support approximate nearest neighbor queries

in the `2 space. It is reported that the index size of SRS is at least one order

of magnitude smaller than that of C2LSH [55]. SRS projects data points from the

original high-dimensional space into a low-dimensional space via 2-stable projections.

The major observation is that the square of the ratio of the `2 distance between

two points in the projected space to the `2 distance between them in the original

space follows the standard chi-squared distribution. Therefore, SRS can index the

data points in the low-dimensional projected space and process approximate nearest

neighbor queries for high-dimensional points with theoretical guarantees based on the

chi-squared distribution. However, such 2-stable projection restricts SRS to build its
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index in the `2 space. In contrast, our LazyLSH method is proposed based on the

intuition that given p ¡ 0 and s ¡ 0, if two points are close in the `p space, then

they are likely to be close in the `s space as well. Let ε � |p� s|. The property holds

with a higher probability for a smaller ε. In order to better support the approximate

queries in fractional spaces, we materialize the base index in the `1 space.

To test whether the index built in the `2 space can answer approximate queries

in fractional spaces, we try to use an `2 ball to approximate an `0.5 ball. We set the

approximate ratio c � 3. Our experimental result showed p11   p12 when the dimen-

sionality is greater than five, which means that the LSH functions in the `2 space

might not necessarily be locality-sensitive in the `0.5 space when the dimensionality

increases. Based on the analysis above, we conclude that it is hard to integrate SRS

into LazyLSH to support queries in fractional distances because SRS has its restric-

tion on building its index in the `2 space. However, if there is a subsequent method

which can build a tiny index in the `1 space, it should be easy to extend LazyLSH

to the method.

4.4 Experiments

In this section, we study the performance of LazyLSH with various datasets. We

mainly focus on the following two issues: (1) How the index size changes with different

parameter settings. (2) How LazyLSH performs with respect to the efficiency and

effectiveness on various datasets.
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4.4.1 Datasets and Queries

In the experiments, synthetic datasets and four real datasets are used: Mnist2 [84],

Inria3 [72], LabelMe4 [119] and Sun5 [138]. The statistics of the synthetic datasets

and real datasets are summarized in Tables 4.3 and 4.4 respectively.

Synthetic datasets: We use synthetic datasets to study the influences of the

dimensionality and the cardinality. We first fix the cardinality to be 40,000 and

generate datasets with different dimensionality as {100, 200, 400, 800, 1600}. Then

we fix the dimensionality to be 400 and generate datasets with different cardinality as

{100k, 200k, 400k, 800k, 1.6m}. The value of each dimension is an integer randomly

chosen from [0, 10000]. For each synthetic dataset, we randomly generate 50 query

points as a query set.

Inria: The Inria dataset contains 1,491 holiday photos. 4,455,091 SIFT fea-

tures [92] are extracted from the images, and each feature is represented as a 128-

dimensional point. The value of each dimension is an integer in the range of [0, 255].

We randomly select 50 feature points as our query set and remove those features

from the dataset during the query processing to avoid returning the same feature.

SUN: SUN is a dataset containing 108,753 images, each of which is attached

with a class label to indicate which scene category the image belongs to. We obtain

the GIST feature [47] of each image and generate a corresponding 512-dimensional

data point. The value of each dimension is normalized to be an integer in the range

of [0, 10,000]. We randomly pick 50 data points as a query set.

LabelMe: LabelMe is a dataset containing 207,909 images. We apply the pro-

cessing method of SUN to the LabelMe dataset. Hence, the size of LabelMe is

2 http://yann.lecun.com/exdb/mnist/

3 http://lear.inrialpes.fr/∼jegou/data.php

4 http://labelme.csail.mit.edu/Release3.0/

5 http://sundatabase.mit.edu/
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207,859.

Mnist: Mnist is a dataset consisting of 60,000 pictures of handwritten digits.

Each picture has a class label representing which digit the picture shows. Each

picture is represented as a 784-dimensional point, of which each dimension is an

integer ranging from 0 to 255. In addition, Mnist contains a test set of 10,000 points.

We randomly choose 50 points to form a query set.

Table 4.3: Parameter Settings for the synthetic datasets

Notation Description Values

|D| Cardinality 100k, 200k, 400k, 800k, 1.6m
d Dimensionality 100, 200, 400, 800, 1600
c Approximate ratio 2, 3, 4, 5, 6
p Supported `p space 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Table 4.4: Statistics of the real datasets and index sizes

Dataset d 7 points value range η0.5 index size(MB)

Inria 128 4,455,041 [0, 255] 1358 23824
SUN 512 108,703 [0, 10,000] 916 1100

LabelMe 512 207,859 [0, 10,000] 959 2061
Mnist 784 60,000 [0, 255] 845 498

4.4.2 Evaluation Metrics

We follow the previous methods [132, 55, 56, 129] and adopt three metrics in our

evaluations.

Space Consumption. The space is measured by the number of required hash

tables and the index size.

Query Efficiency. The query efficiency is measured by the average number of

I/Os of answering a query. If a block of an inverted list (4KB per block) is loaded

into memory, the number of simulated I/Os (sequential) is increased by 1. If an
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object is visited to compute its distance to the query, the number of simulated I/Os

(random) is increased by 1.

Overall Ratio. The approximate ratio is defined as how many times farther a

reported neighbor is compared to the real nearest neighbor. Formally, for aNpp~q, k, cq
query, t~o1, . . . , ~oku are the reported results sorted in ascending order of their distances

to ~q. Let t~o�1 , . . . , ~o�ku be the true kNNs sorted in ascending order of their distances

to ~q. The approximate ratio is calculated as:

1

k

ķ

i�1

`pp~oi, ~qq
`pp~o�i , ~qq

(4.17)

The I/O cost and the overall ratio are averaged over queries. Unless otherwise

specified, we materialize η0.5 hash functions for the index so that queries can be

answered in the `p spaces, where 0.5 ¤ p ¤ 1. By default, queries are issued in the

`0.5 space.

Competitors. To the best of our knowledge, LazyLSH is the first work of

supporting approximate nearest neighbor queries on multiple distance functions with

a single index. Moreover, existing approaches do not support fractional distance

metrics. There is no direct competitor of our approach. Alternatively, we modify

C2LSH [55] and SRS [129] as competitors.

C2LSH : We build the index of C2LSH in the `1 space. Then we retrieve pk � 100q
candidates in the `1 space, and select the top-k points from the candidate set with

the smallest `p distance to the query.

SRS : We build the index of SRS in the `2 space because SRS uses the 2-stable

distribution. We retrieve the candidates in the `2 space, and select the top-k points

from the candidate set with the smallest `p distance to the query. The number of

projected dimensions in SRS is set to 6 as the experimental setting in [129]. The

approximate ratio c is set to 3 for comparison.
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Implementation. Our algorithms were implemented in C++. All experiments

were conducted on a PC with Intel Core i7-3770 CPU @ 3.40GHz, 8GB memory,

500GB hard disk, running Ubuntu 12.04LTS. The page size was set to 4 KB in the

experiments.

4.4.3 Study on Synthetic Datasets

We use synthetic datasets to study the index size w.r.t. different parameter settings.

As discussed in Section 4.2.3, the index size is affected by four parameters: (1) the

cardinality of the dataset |D|, (2) the dimensionality d, (3) the approximate ratio c,

and (4) the range of supported `p spaces, where ηp hash functions are built for the base

index. Table 4.3 shows the parameter settings of the synthetic datasets. The default

values are underlined in the third column. We study the required index size w.r.t

each parameter by varying one parameter and setting the other three parameters to

the default values, as presented in Table 4.5.

Effect of the cardinality |D|: Table 4.5a shows the index size w.r.t |D|. When

|D| increases, the number of required hash functions increases, and so does the index

size.

Effect of the dimensionality d: Table 4.5b shows the index size w.r.t d. It

is worth noting that the index size decreases when d increases. This is because ηp

changes with pp̂11 � p̂12q as shown in Equation 4.12 and pp̂11 � p̂12q varies w.r.t different

numbers of dimensions. Figure 4.8 shows the relationship between the value of

pp̂11� p̂12q and the dimensionality. The solid line in this figure plots pp̂11� p̂12q when the

approximate ratio c � 3. As can be seen, pp̂11 � p̂12q first decreases rapidly with the

dimensionality and reaches the smallest value when d � 16. Then pp̂11� p̂12q increases

slowly when the dimensionality increases. This explains the reason why the index

size decreases with d when d ¡ 100 for the synthetic datasets. Please note that the

horizontal axis in Figure 4.8 is shown on a logarithmic scale with base 2.
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Table 4.5: Index size w.r.t. different parameter settings

(a) Index size vs. the cardinality |D|

|D| 100k 200k 400k 800k 1.6m
η0.5 923 979 1025 1071 1116

Size(MB) 1063 2211 4557 9250 18291

(b) Index size vs. the dimensionality d

d 100 200 400 800 1600
η0.5 1223 1108 1025 966 879

Size(MB) 5011 4778 4557 4360 3997

(c) Index size vs. the approximate ratio c

c 2 3 4 5 6
η0.5 7114 1025 570 425 355

Size(MB) 31609 4557 2531 1889 1577
I/Os 672184 77532 37252 24922 18712
Ratio 1.011 1.053 1.075 1.084 1.089

(d) Index size vs. the range of supported `p spaces

p 0.5 0.6 0.7 0.8 0.9 1.0
ηp 1025 711 579 507 462 432

Size(MB) 4557 3157 2576 2252 2051 1916

Effect of the approximate ratio c: Table 4.5c shows the index size w.r.t

c. When c increases, the index size decreases. The reason can be also explained by

Figure 4.8. As shown in the figure, for a fixed dimension, pp̂11 � p̂12q increases when c

increases, which leads to the smaller index size. When c � 2, the number of required

hash functions η0.5 is around seven times of η0.5 for c � 3.

In addition, we test the number of I/Os and the overall ratio when processing

approximate queries with different approximate ratio c. We notice that: (1) the

number of I/Os decreases significantly as c increases. The number of I/Os when

c � 2 is about nine times of that when c � 3, because of the difference in index
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Figure 4.8: pp̂11 � p̂12q w.r.t d in the `0.5 space

size. (2) the overall ratio increases with c because a larger approximation ratio is

applied, which means that we can get more accurate results when we use a smaller

c. Therefore, c can be viewed as a parameter to be set as a trade-off between query

accuracy and efficiency (index size). To make it comparable to C2LSH, which used

c � 2 or 3 in its experiment [55], we set c � 3 for LazyLSH in the rest of the

experiments.

Effect of the range of supported `p spaces: Table 4.5d shows the index size

w.r.t the range of supported `p spaces. To support a larger range of `p spaces, we

need to materialize more hash functions. For instance, we need 2.37x hash functions

to support queries in a range of `p spaces, where 0.5 ¤ p ¤ 1, compared to the

number of hash functions required for the single `1 space.

4.4.4 Study on Real Datasets

4.4.4.1 Index Size

We first study the index size for the real datasets. We materialize η0.5 hash functions

as the base index so that queries Rpp~q, δ, cq can be supported in a range of `p spaces,

where 0.5 ¤ p ¤ 1. Table 4.4 shows the number of hash functions required and

the index size for the real datasets. When the dimensionality increases, fewer hash

functions are required. This observation is consistent with the result of the synthetic

datasets shown in Table 4.5b.
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Figure 4.9: I/O costs on real datasets w.r.t. the `p distance

4.4.4.2 I/O Cost of Processing Queries

Next we study the performance of LazyLSH in terms of the I/O cost of processing a

query.

I/O Cost w.r.t. the query `p space: Figure 4.9 plots the average I/Os of

processing a query w.r.t. the `p space where the number of nearest neighbors k is

set to 100. The query processing in the `0.5 space incurs more I/O overhead than

the `1 space. Generally, a smaller p will lead to a higher I/O cost. This is because

the processing of queries in the `0.5 space requires a higher collision threshold for an

object to become a candidate and more index entries are needed to read. In the `1

space, the performance of LazyLSH is similar to C2LSH. The average I/O costs for

these two methods are at the same level. However, C2LSH can only support queries

in the `1 space, while in contrast, LazyLSH is designed to support queries in a larger

range of `p distances. Please note that the I/O cost of SRS is not reported as the
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Figure 4.10: I/O costs on real datasets w.r.t. the number of k

provided implementation6 is in-memory and SRS is based on the `2 distance. Still,

it is obvious that SRS can achieve the best performance in terms of I/O cost as its

index size is one order of magnitude smaller than that of C2LSH as reported in [129].

Even though SRS has small I/O cost, its reliance on the 2-stable distribution in the

`2 space constrains us from using its technique as the base index structure, which is

explained in Section 4.3.4

I/O Cost w.r.t. the number of k: Figure 4.10 plots the average I/Os of

processing a query w.r.t. the number of returned nearest neighbors. The horizontal

axis k represents how many nearest neighbors are returned, ranging from 10 to 100.

We observe that there is a slight increase of I/Os on all the four datasets when k

increases. This indicates that users can issue a query with a larger k to get more

precise nearest neighbors with a few additional I/Os.

6 https://github.com/DBWangGroupUNSW/SRS
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I/O Cost w.r.t. the multiple-query optimization:

One application of using LazyLSH is to select the optimal `p metric, which is

shown to be highly application-dependent [54]. One way is to use classifier methods

to select the best `p metric. In particular, we retrieve the approximate kNNs in dif-

ferent `p spaces. Then we select the optimal `p metric with the highest classification

accuracy as shown in Table 4.1. This approach requires performing approximate kNN

queries in different `p spaces, which can be processed as the multi-query optimization

in Section 4.3.3.

Figure 4.11 presents the average I/Os of processing a single query versus the

average I/Os of processing multiple queries concurrently. We try to find the kNNs

of the same data point in different `p spaces (six queries in the `0.5, `0.6, `0.7, `0.8, `0.9

and `1 spaces in this experiment). The queries of different `p spaces are processed

together by sharing their I/Os, as they all probe some common hash buckets. As

indicated in the figure, processing multiple queries concurrently only incurs a few

more I/Os than processing a single query. This observation motivates us to process

queries of different `p distances in a batch, instead of processing them individually.

With the help of the multiple-query optimization, we can easily get the approximate

kNNs of different `p metrics and choose the optimal `p metric for a particular dataset

based on classification methods such as the kNN classifier as presented in Table 4.1

in the introduction.
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4.4.4.3 Running Time of Processing Queries

This experiment analyzes the query time of LazyLSH versus that of the linear scan

method. As presented in Table 4.1 and Section 4.4.4.2, we need to retrieve approxi-

mate kNNs in different `p spaces to test the accuracy of the kNN classifier in order

to pick the optimal `p metric.

We first study the effect of the multi-query optimization in terms of query time.

We use the synthetic dataset with cardinality of 400k and dimensionality of 400

in this experiment. We set the approximate ratio c � 3, 4, 5, 6 and the number of

returned points k � 100. The result for c � 2 is skipped as the I/O cost for c � 2

is much higher than others as shown in Table 4.5c. The single query is performed

in the `0.5 space, and the multiple queries are preformed in the `0.5, `0.6, `0.7, `0.8,

`0.9 and `1 spaces using our multi-query optimization. Figure 4.12 shows that the

average query time of the two methods. The query time of LazyLSH with c � 4 for

the single query is at the same level as that of linear scan. However, the running

time of linear scan increases dramatically when multiple queries are answered. In

contrast, the running time of LazyLSH for processing multiple queries remains at

the same level as that for performing the single query. This finding is consistent to

the result in Figure 4.11, because the number of I/Os increases by a small amount

when processing the multiple queries.

In addition, Figure 4.12 shows that the running time decreases as the approximate
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ratio c increases. In fact, the choice of c can be viewed as a trade-off between

accuracy and query time. As it is shown in Figure 4.15, LazyLSH achieves the

highest accuracy among the LSH competitors in performing approximate queries

using fractional distance metrics. We are interested in how the accuracy changes

given different settings of c. Figure 4.13 presents the average overall accuracy ratio

of performing queries w.r.t c in different `p spaces. The accuracy shown in the figure

is fairly high. Even for c � 6, the overall ratio in the `0.5 space is smaller than

1.1. This finding indicates that we can set c to be larger for faster speed while

the accuracy remains acceptable. We find that c � 5 or 6 might be good choices

considering the trade-off between accuracy and query time.

Next we study the query time with respect to the dimensionality. We use the syn-

thetic datasets with cardinality of 400k and dimensionality of 100, 200, 400, 800 and

1600. Figure 4.14 presents the average running time for processing multiple queries

with different dimensionality. The average running time of the linear scan method

increases linearly with the dimensionality because the CPU time of computing the

distance to the query grows linearly. Please note that the results of linear scan for

d � 800 and 1600 are not shown for better viewing of the results of LazyLSH, and

the results follow the trend. In contrast, the query time of LazyLSH remains at the

same level for different dimensionality. When the approximate ratio is greater than

or equal to 4, LazyLSH achieves better results in terms of query time compared to

the linear scan method. In addition, LazyLSH gains more speedup when the num-

ber of dimensions increases, because the number of required hash functions does not

increase linearly as presented in Table 4.5b. Again, the running time decreases given

a larger approximate ratio c. In order to balance the accuracy and query time, we

can use a larger c for those datasets with low dimensionality, and use a smaller c for

those datasets with high dimensionality.
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Figure 4.15: Average overall ratios on real datasets

4.4.4.4 Overall Ratio

Overall Ratio for queries in fractional metrics: We then compare LazyLSH

with existing work in the context of the overall ratio. Figure 4.15 presents the average

overall ratio for queries in the `0.5 space. In general, LazyLSH outperforms C2LSH

in terms of the overall ratio. In most cases, the overall ratio of LazyLSH is less than

1.02. In contrast, C2LSH does not perform well for queries in the `0.5 space, because

C2LSH is designed to answer queries in the `1 or `2 spaces and it is not optimized to

answer queries for fractional distances such as the `0.5 distance. Therefore, LazyLSH

has better performance in terms of the overall ratio.

Impact of the query-centric rehashing: Next we study the impact of the

query-centric rehashing. To achieve a fair comparison, the queries are conducted

in the same index with different rehashing methods. In particular, the queries are

conducted in the `1 space and the approximate 100 NNs are returned. Figure 4.16
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plots the average overall ratio for different rehashing methods. We notice that our

query-centric rehashing method outperforms the original rehashing method on all

the four datasets. This is because the query-centric rehashing method is likely to

retrieve nearby points, while the original rehashing method may retrieve distant

points in some cases as stated in Figure 4.7.

4.5 Summary

In this chapter, we proposed an efficient mechanism called LazyLSH to answer ap-

proximate kNN queries under fractional distance metrics in high-dimensional spaces.

We observed that an LSH function in a specific `p space can be extended to support

queries in other spaces. Based on this observation, we materialized a base LSH in-

dex in the `1 space and used it to process approximate kNN queries in different `p

spaces. We conducted extensive experiments on synthetic and real datasets, and the

experimental results showed that LazyLSH provides accurate results and improves

existing machine learning algorithms for retrieving approximate kNN under different

fractional distance metrics.
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Chapter 5

ARShop: An Interactive Shopping

System using Augmented Reality

In this chapter, we introduce a system called ARShop, which is a one-stop solution

to enhance the shopping experience for users by using the augmented reality (AR)

technology. For mall or shop owners, ARShop provides them with cloud-based tools

to digitize their shops. A shop owner can create a digital shop and upload images of

the shop. The shop owner can further add annotations on their uploaded photos to

indicate the shop’s name and available products in the shop. For shoppers, ARShop

provides them with a tool to input their shopping lists. Based on a shopping list,

ARShop equips the INSPIRE framework described in Chapter 3 to perform spa-

tial keyword queries to find the nearby shops, whose annotations match with the

user-specific shopping list. In addition, ARShop provides shoppers with a mobile

application to search for items in their shopping lists by taking photos of their sur-

rounding environments. ARShop takes the user-uploaded photo as a query and finds

the similar photos in the database using the LazyLSH method described in Chapter

4. Annotations of the user-interested items are popped up on the similar photos.
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5.1 Motivation

We are living in the cyber-physical world, where the physical space and the virtual

space interact simultaneously. While the physical space is virtually enhanced with

information, the virtual space is continuously refreshed with real-world information

[106]. For example, important events in the physical world are captured through

mobile devices and materialized within the virtual world. Correspondingly, events

within the virtual world, such as a sales promotion, can affect the physical world.

The development of Augmented Reality (AR) technologies has made it possible

to link these two spaces together into a co-existing space. We are on the verge of

ubiquitously adopting AR technologies to enhance our perception of reality in new

and enriched ways. AR combines real and virtual objects in a real environment. It

is a live view of the physical world whose elements are augmented by the computer-

generated sensory input such as videos, graphics and GPS data.

Over the past few decades, researchers and developers have found many areas that

could benefit from the augmentation [134]. With today’s high-end smart phones and

the latest AR technologies, such as Google Glass1, Microsoft HoloLens2 and Oculus

Rift3, artificial information about the environment can be overlaid on the real world.

The information about the surrounding real world becomes interactive and digitally

manipulable.

Among the AR applications, the AR technology used in landmark recognition has

become an active research topic in the last decade [128, 150, 69]. Landmark recog-

nition can determine where a photo is taken based on the image database collected

from the Web. The integration of landmark recognition and the AR technology can

be used in tourism and sightseeing to suit the convenience of tourists. In such AR

1 http://www.google.com/glass/

2 https://www.microsoft.com/microsoft-hololens/

3 https://www.oculus.com/
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applications, information of tourist attractions is presented on the screen of a user’s

mobile or tablet. For example, when a user visits a tourist attraction, he/she wants to

search for the introductory information about the attraction. He/she takes a photo

of the attraction. Then the introductory description is popped up and augmented

on the photo.

Besides Landmark recognition, AR applications have been used in various fields

such as gaming [109] and navigation [113, 103]. In this chapter, we narrow our

scope of AR applications in the context of navigation. In particular, we focus on

the shopping scenario in order to enhance the shopping experience by using the AR

technology. Consider the following shopping scenario.

Example 5.1. A user goes shopping in an unfamiliar shopping mall. He/she has

a shopping list and wants to buy the items in the shopping list. In order to quickly

locate those items, the user launchs an AR application and takes a photo of his/her

surrounding environment. Based on the user-uploaded image, the AR application

analyses the image and directs the user to find the items in the shopping list.

As stated in the previous example, such an AR application can enhance users’

shopping experience. Our goal is to build an AR system, which can direct a

user to find the items in the shopping list by recognizing the photo of the

user’s surroundings. To this end, we present ARShop, which is a one-stop solution

to enhance the shopping experience for users by using the AR technology. A user

can either input a shopping list in a Web interface or a mobile application. When

he/she enters a shop, he/she takes a photo of his/her surroundings. The application

can infer the current location of the user and direct him/her to find the items in the

shopping list.

To fulfill our goal, an ideal system should have the following features, which are

also the motivations of the ARShop system.
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Feature 1: Capturing photos with enriched location information. Loca-

tion information can help users find a wide variety of location-specific information. In

outdoor environments, we can easily retrieve the longitude and latitude using GPS.

Due to the complexity of electromagnetic wave propagation in indoor environments,

the GPS approaches used for outdoor positioning become less accurate when used

indoor. Instead, other positioning methods, such as Wi-Fi positioning, are used in

indoor environments [11]. Recent studies also show that with the help of compass

which measures the Earth’s magnetic field, indoor positioning system achieves even

higher accuracy [36, 100].

Current mobile devices have built-in sensors that measure location, orientation,

and various environmental conditions. We provide a mobile application to record the

information of GPS, Wi-Fi and compass. When a user takes a photo using the mobile

application, the location information is attached to the photo. For shop owners, they

can use the mobile application to take photos in their shops. When they upload the

images to the server, the location information is also attached. For shoppers, the

location information can help to retrieve nearby images from the database.

Feature 2: Effective shop management. First of all, the ARShop system

requires shop owners to digitize their shops. A effective shop management tool should

be provided for shop owners to manage their shops.

A shop owner can create a digital shop and then upload images of the shop to the

server using the mobile application as mentioned previously. The shop owner can

also add annotations on the images to point out the shop’s name and the available

products in the images. These annotations are used to match with a user’s shopping

list. If an annotation matches with an item in the user’s shopping list, it indicates

that the shop probably has a product, which is of interest to the user. Furthermore,

shop owners can also record linkages between different images to indicate that same

objects exist in these images. This operation can help us to link the images of a shop
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together to form a virtual model of the shop. In this way, shop owners can manage

and digitalize their shop effectively.

Feature 3: Efficient query processing to achieve the real-time human-

computer interaction. If there exists an annotation that matches with a user’s

shopping list, this annotation should be popped up in association with the image

on the mobile screen in real time. Such operations must be processed efficiently to

achieve the real-time human-computer interaction.

In the context of our AR application, there are two types of time-consuming

operations.

1. Spatial keyword search: it is used to map the items in a user’s shopping list

to the images’ annotations. As the images are geo-tagged, the annotations are

also attached with a location to reduce the query cost.

2. Spatial image search: images are usually represented as high-dimensional points.

Retrieving similar images of a query image is actually preforming the nearest

neighbor search in high-dimensional spaces.

For the first type of operations, we use the INSPIRE framework described in

Chapter 3 to speed up the processing of spatial keyword queries. For the second

type of operations, we use the LazyLSH method described in Chapter 4 to speed up

the processing of approximate nearest neighbor queries in high-dimensional spaces.

Therefore, our system can handle these two types of operation efficiently and fulfill

the real-time human-computer interaction requirement.

Integrating all the above features, we demonstrate ARShop as shown in Figure

5.1. The major advantages of ARShop are summarized as follows:

1. ARShop holds a website and a mobile application to interact with users. AR-

Shop also provides user-friendly interfaces for users to manage and browse a

virtual shop.
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Figure 5.1: Overview of ARShop

2. ARShop provides a mobile application to direct users to the items in their

shopping lists using the AR technology.

3. ARShop equips advanced indexing techniques, including INSPIRE and LazyLSH,

to support different types of queries efficiently to achieve real-time human-

computer interaction.

5.2 System Architecture

The ARShop system adopts the client-server architecture, which is shown in Figure

5.2. On the client side, we build a website and create an Android application for

both shop owners and shoppers. On the server side, we build a data management

tool that supports the storage and retrieval of data.

On the client side, ARShop has a website and a mobile application. Shop own-

ers can use the website to manage their shops. They can upload images of their

130



Images

Annotations Users

Shops

Back-end (server)

Front-end (website client)

Image 
upload/view

Annotation 
creation

Image links 
creation

Front-end (mobile client)

Image
taking/upload

Shopping list 
creation

Nearby shops 
annotation 

retrieval

Application 
programming 
interface (API)

LazyLSH
Index

INSPIRE
Index

Storage layer Index layer Application 
layer

Figure 5.2: System architecture of ARShop

shops and add annotations on the images to specify available products in the shops.

Furthermore, shop owners can also record linkages between different images to indi-

cate that same objects exist in these images. For shoppers, they can use the mobile

application to input their shopping lists and upload photos of their surroundings

as queries. Then the mobile application displays the similar nearby images, whose

annotations match with the items in users’ shopping lists.

The server consists of three layers: (1) the storage layer, (2) the index layer and

(3) the application layer.

• In the storage layer, data such as users, shops and annotations are stored in

MySQL, while the image files are stored in the file system.

• In the index layer, inverted indexes are built to support the location-based

services.
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• In the application layer, application programming interfaces (APIs) are defined

and implemented to enable the client-server interactions.

5.2.1 Storage Layer

In the storage layer, we use MySQL to store the information of users, shops, images

and annotations.

1. Each shop is created by a shop owner, which is also a user of the system. The

shop owner can upload images to the shop.

2. Each image is represented as a Bag-of-Word vector as well as a number of

low-level SIFT features [91].

3. Each image has its GPS, orientation as well as WIFI signal information when

it is taken.

4. Each annotation has its content stored as text. It is associated with an image

and has its position in the image stored in the database.

Correspondingly, an ER diagram is shown in Figure 5.3.

5.2.2 Index Layer

In order to support fast query processing, inverted indexes are built in the index

layer. ARShop makes use of the two types of inverted indexes proposed in this thesis

to support location-based services.

Shop owners can add annotations onto images to indicate the available products.

These annotations are stored as text and used to match with a user’s shopping list.

In order to achieve fast keyword search when retrieving relevant annotations that

match with a user’s shopping list, these annotations are indexed using the proposed

INSPIRE method, which is introduced in Chapter 3.
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Figure 5.3: ER diagram of ARShop

When a user submits a query image, the similar images are retrieved. This

processing is conducted by the LazyLSH method, which is introduced in Chapter 4.

Correspondingly, the LazyLSH index is needed to build in order to achieve fast kNN

processing.

5.2.3 Application Layer

The application layer provides APIs for (1) uploading/retrieving images, (2) upload-

ing/retrieving annotations of an image and (3) most importantly retrieving similar

images.

The “retrieving similar images” API requires the client to upload an image of a

user’s surroundings. The server first uses the location information associated with

the uploaded image as well as the user’s shopping list to filter out irrelevant images

in the database. After that the server extracts the high-dimensional representation

of the uploaded image, and finds the similar images in the database. The relevant
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Figure 5.4: Overview of the Website

images are then returned in the descending order of similarities.

5.3 Demonstration

The ARShop system contains a Web interface and a mobile application. In this

section, we demonstrate the ARShop system.

5.3.1 ARShop Website

The ARShop website4 is a Web interface for shop owners. It currently consists of

three features, namely (1) uploading images, (2) adding annotations to images and

(3) adding links between images.

Figure 5.4 presents an overview of the website. Shop owners can manage their

shops using this website. For example, shop owners can create digital shops and

upload images to shops. In addition, they can also delete images of a shop. This

function is used when a shop is decorated and enables shop owners to upload a new

4 http://www.shopbyar.com/ARShop/
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(a) Adding Annotations

(b) Adding links

Figure 5.5: Web Interfaces

set of images of the shop.

When shop owners click one of the image thumbnails, the full image will be

shown, and they can select some areas in the image and add annotations to them,

as shown in Figure 5.5a. Besides the name of the shop, shop owners can enter

detailed information about the items for sale. This function can make it easier for

the annotations to match with the items in shoppers’ shopping lists.

Shop owners can also add links between images by clicking the “add link” button

in Figure 5.5a, and it will bring them to the “add link” mode shown in Figure 5.5b.
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Figure 5.6: Mobile application for shop owners

In the “add link” mode, shop owners can select overlapping areas between images

and add them as “links”. The links added by shop owners will help to perform

geometric reasoning among images in the database.

5.3.2 Mobile Application

While the ARShop website is for the shop owners to digitize and manage their shops,

our ARShop mobile application is the key to enhance the shopping experience of

shoppers. Currently, it implements two functionalities for shoppers: (1) searching

nearby images by a shopping list and (2) searching nearby images by taking a photo

of surrounding environments. Additionally, this mobile application also allows shop

owners to take and upload images.

For shop owners:

Figure 5.6a shows the main interface of the application. When swiping to the

left, shop owners enter the interface for taking photos, as shown in Figure 5.6b. The

photos taken will be associated with GPS, WIFI and orientation information and

stored in the phone. Later the shop owners can view these photos by pressing the
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(a) Shopping List (b) Search by Shopping List (c) Search by Image

Figure 5.7: Mobile application for shoppers

“Photos” button in the main interface, as shown in Figure 5.6c. Then they can select

the images by long tapping them to enter the selection mode, upon completion they

can choose to upload or delete the selected images, as shown in Figure 5.6d.

For shoppers:

When shoppers tap on the “Nearby” button in the main menu, they will be

asked to input items into the shopping list, as shown in Figure 5.7a. After that the

application will retrieve the nearby images, which have annotations matching with

the items in the shopping list, as shown in Figure 5.7b. This query is conducted by

the INSPIRE framework mentioned in Chapter 3. Besides searching nearby images

in the shopping list, users can also take a picture of the surroundings, upload it to

the server and the server will analyse the picture and return similar images with

annotations, as shown in Figure 5.7c. This is performed by the LazyLSH method

introduced in Chapter 4.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we studied advanced interactive methods using inverted index in the

context of location-based services. Two types of location-based services are studied,

including the location-based keyword search and the location-based image search.

For the location-based keyword search, we combined autocompletion and spelling

correction, which are two types of interactive search methods, to improve the search

effectiveness. For the location-based image search as a new search method in inter-

active search, we studied the approximate search to quickly return similar results to

improve the efficiency.

We surveyed the interactive search techniques used in location-based services in

Chapter 2. In particular, we reviewed the existing work of query recommendation to

facilitate interactive keyword search. Then, we focused on the interactive keyword

search in the context of geo-textual databases including spatial keyword search and

its various extensions. We also reviewed the existing methods of approximate nearest

neighbor search, especially the locality-sensitive hashing method.

For the location-based keyword search, we presented our work on the interactive

spatial keyword search in Chapter 3. We proposed INSPIRE, a general framework,

which adopts a single, unifying strategy for processing different variants of spatial
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keyword query. In particular, we observed that the relaxation can be done by ex-

panding the spatial region or loosening the prefix matching constraint. For loosening

string matching constraint, we adopted an incremental way to perform relaxation

to maximize query reusability. The relaxation is applied by first allowing exact

substring matching, then approximate prefix matching followed by approximate sub-

string matching to maximize query reusability. Then we built a one-size-fits-all index

to support all types of relaxation. To accelerate query processing, we proposed our

intra-query optimization covering common result reuse and selectivity estimation.

Moreover, we observed that the search-as-you-type paradigm allows appending char-

acters after the initial query, so we proposed the inter-query optimization to reuse the

results of the initial query in processing its appending query, instead of processing it

from scratch. As a result, INSPIRE can decide the most appropriate relaxation for a

spatial prefix query, and support fuzzy type-ahead search to provide realtime human-

computer interaction. We demonstrated the efficiency, practicality and effectiveness

of our proposed approaches using a comprehensive experimental evaluation.

For the location-based image search, we presented our work on supporting the ap-

proximate nearest neighbor search under fractional distance metrics in high-dimensional

spaces in Chapter 4. We observed that an LSH function in a specific `p space could

be extended to support queries in other spaces. Based on this observation, we pro-

posed LazyLSH, which materializes a base LSH index in the `1 space and use the

materialized index to process approximate kNN queries in different `p spaces. Exten-

sive experiments on synthetic and real datasets show the efficiency and effectiveness

of our proposed method which provides accurate results under fractional distance

metrics. Using LazyLSH, existing machine learning algorithms can be improved for

retrieving approximate kNN under different fractional distance metrics.

In Chapter 5, we demonstrated ARShop, which is an interactive augmented real-

ity system for shopping. ARShop provides location-based services including spatial
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keyword search and spatial image search. For shop owners, ARShop provides them

with a Web interface to digitize their shops. For shoppers, they can input shopping

lists and issue queries using photos of their surrounding environments using our mo-

bile application. Based on the shopping list and the photo of the user’s surrounding

environment, the ARShop system can direct the user to shops that contain items in

his/her shopping list.

6.2 Future Work

Although our system provides efficient solutions to support advanced interactive

search in the context of location-based services, there still exist situations that it

cannot handle well.

For the spatial keyword search, our INSPIRE method uses a fixed strategy to

perform query relaxation. Users are required to specify some parameters before

issuing queries, which might be difficult for the users without background knowledge.

In the future work, we would like to investigate other relaxation strategies such as

relaxing the edit distance threshold progressively so that similar results are returned

first. Another possible improvement on spatial prefix search is to take semantics

into account and organize results in appropriate orders by ranking and diversifying

results. In addition, we can extend the query relaxation to other applications such

as searching trajectories or graph data.

For the spatial image search, our LazyLSH method can support the approximate

nearest neighbor search under fractional distance metrics in high-dimensional spaces.

The `p metrics essentially aggregate the difference between each dimension of the two

objects. This approach has two drawbacks:

1. It leaves many partial similarities uncovered since the distance computation is

based on the fixed set of dimension.
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2. The distance is often affected by a few dimensions with high dissimilarity.

In the future work, we aim to study partial similarities, which can also address

the concentration problem in high-dimensional spaces. Next we plan to study how

to support exact or approximate kNN search in a user-specific subspace or under a

user-specific weighted distance function.

For the ARShop system, even though we can find similar images given a user-

uploaded photo, the recognition accuracy is still a problem. There exist cases that

two images are close in their high-dimensional representation, but they are in fact

not similar when judged by humans. How to improve the recognition accuracy for

image search is still an on-going research problem. In addition, we will use spatial

information to help search similar images. We will investigate techniques like indoor

positioning using Wi-Fi signals to infer the indoor position of a user. We plan to use

a two-level clustering method to group images in the database, which first clusters

images by Wi-Fi signals then further clusters images by their virtual features. Using

such a method, we can quickly find similar images for a query image with its location

information including GPS and Wi-Fi signals.

142



Bibliography

[1] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in spatial
databases. In SIGMOD, pages 13–24. ACM, 1999.

[2] C. Aggarwal, A. Hinneburg, and D. Keim. On the surprising behavior of
distance metrics in high dimensional space. In ICDT, volume 1973, pages
420–434. Springer, 2001.

[3] N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast johnson-
lindenstrauss transform. In STOC, pages 557–563. ACM, 2006.

[4] S. Alsubaiee, A. Behm, and C. Li. Supporting location-based approximate-
keyword queries. In SIGSPATIAL GIS, pages 61–70. ACM, 2010.

[5] A. Andoni and P. Indyk. Efficient algorithms for substring near neighbor prob-
lem. In SODA, pages 1203–1212. Society for Industrial and Applied Mathe-
matics, 2006.

[6] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. COMMUNICATIONS OF THE ACM,
51(1):117–122, 2008.

[7] Y. Arens, C. A. Knoblock, and W.-M. Shen. Query reformulation for dynamic
information integration. Springer, 1996.

[8] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed di-
mensions. In SODA, pages 271–280. Society for Industrial and Applied Math-
ematics, 1993.

[9] J. R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey,
R. C. Jain, and C.-F. Shu. Virage image search engine: an open framework for
image management, 1996.

[10] M. Bader. Space-Filling Curves: An Introduction With Applications in Scien-
tific Computing, volume 9. Springer, 2012.

[11] P. Bahl and V. N. Padmanabhan. Radar: An in-building rf-based user location
and tracking system. In INFOCOM, volume 2, pages 775–784. IEEE, 2000.

143



[12] H. Bast and I. Weber. Type less, find more: fast autocompletion search with
a succinct index. In SIGIR, pages 364–371. ACM, 2006.

[13] S. Basu Roy and K. Chakrabarti. Location-aware type ahead search on spatial
databases: semantics and efficiency. In SIGMOD, pages 361–372. ACM, 2011.

[14] H. Bay, T. Tuytelaars, and L. Gool. Surf: Speeded up robust features. In
ECCV, pages 404–417. Springer, 2006.

[15] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An
efficient and robust access method for points and rectangles. In SIGMOD,
pages 322–331, 1990.

[16] D. Beeferman and A. Berger. Agglomerative clustering of a search engine query
log. In SIGKDD, pages 407–416. ACM, 2000.

[17] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest
neighbor meaningful? In ICDT, pages 217–235. 1999.

[18] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable
string similarity measures. In SIGKDD, pages 39–48. ACM, 2003.

[19] K. Binder and D. Heermann. Monte Carlo simulation in statistical physics: an
introduction. Springer Science & Business Media, 2010.

[20] A. Broder. On the resemblance and containment of documents. In Compression
and Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

[21] A. Broder. A taxonomy of web search. SIGIR Forum, 36(2):3–10, 2002.

[22] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clus-
tering of the web. In WWW, pages 1157–1166. ACM, 1997.

[23] A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, and R. Kimmel. Partial
similarity of objects, or how to compare a centaur to a horse. International
Journal of Computer Vision, 84(2):163–183, 2008.

[24] G. Calafiore, F. Dabbene, and R. Tempo. Uniform sample generation in lp
balls for probabilistic robustness analysis. In CDC, volume 3, pages 3335–
3340. IEEE, 1998.

[25] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-aware
query suggestion by mining click-through and session data. In SIGKDD, pages
875–883. ACM, 2008.

[26] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword
querying. In SIGMOD, pages 373–384. ACM, 2011.

144



[27] J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for
reordering documents and producing summaries. In SIGIR, pages 335–336.
ACM, 1998.

[28] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In
STOC, pages 380–388. ACM, 2002.

[29] S. Chaudhuri and G. Das. Automated ranking of database query results. In
CIDR. Citeseer, 2003.

[30] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity estimation for string
predicates: overcoming the underestimation problem. In ICDE, pages 227–
238. IEEE, 2004.

[31] S. Chaudhuri and R. Kaushik. Extending autocompletion to tolerate errors.
In SIGMOD, pages 707–718. ACM, 2009.

[32] D. Chen, S. Tsai, V. Chandrasekhar, G. Takacs, R. Vedantham, R. Grzeszczuk,
and B. Girod. Inverted index compression for scalable image matching. In Data
Compression Conference, pages 525–525, 2010.

[33] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query processing:
An experimental evaluation. VLDB, 6(3):217–228, 2013.

[34] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: Towards verification-free query
processing on graph databases. In SIGMOD, pages 857–872. ACM, 2007.

[35] S.-L. Chuang and L.-F. Chien. Towards automatic generation of query taxon-
omy: a hierarchical query clustering approach. In ICDM, pages 75–82. IEEE,
2002.

[36] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and M. Wise-
man. Indoor location sensing using geo-magnetism. In Proceedings of the 9th
international conference on Mobile systems, applications, and services, pages
141–154. ACM, 2011.

[37] J. G. Cleary. Analysis of an algorithm for finding nearest neighbors in euclidean
space. ACM Trans. Math. Softw., 5(2):183–192, 1979.

[38] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant
spatial web objects. Proc. VLDB Endow., 2(1):337–348, 2009.

[39] G. Cormode, P. Indyk, N. Koudas, and S. Muthukrishnan. Fast mining of
massive tabular data via approximate distance computations. In ICDE, pages
605–614. IEEE, 2002.

145



[40] T. Cover and P. Hart. Nearest neighbor pattern classification. Information
Theory, IEEE Trans. on, 13(1):21–27, 1967.

[41] N. Craswell and M. Szummer. Random walks on the click graph. In SIGIR,
pages 239–246. ACM, 2007.

[42] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In SCG, pages 253–262. ACM,
2004.

[43] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases.
In ICDE, pages 656–665. IEEE, 2008.

[44] R. De La Briandais. File searching using variable length keys. In Papers
Presented at the the March 3-5, 1959, Western Joint Computer Conference,
IRE-AIEE-ACM ’59 (Western), pages 295–298, 1959.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255, 2009.

[46] S. Dhar and U. Varshney. Challenges and business models for mobile location-
based services and advertising. Commun. ACM, 54(5):121–128, 2011.

[47] M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, and C. Schmid. Evaluation
of gist descriptors for web-scale image search. In CIVR, pages 19:1–19:8. ACM,
2009.

[48] M. Drosou and E. Pitoura. Search result diversification. SIGMOD Rec.,
39(1):41–47, 2010.

[49] E. N. Efthimiadis. Query expansion. Annual review of information science and
technology, 31:121–187, 1996.

[50] R. Finkel and J. Bentley. Quad trees a data structure for retrieval on composite
keys. Acta Informatica, 4(1):1–9, 1974.

[51] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query
by image and video content: the qbic system. Computer, 28(9):23–32, 1995.

[52] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query
by image and video content: the qbic system. Computer, 28(9):23–32, 1995.
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