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Summary 
 

Engineering systems today are exposed to various uncertainties. It has been demonstrated in 

many studies that designing flexible systems is an effective means to improve system 

performance in uncertain environment. A Mobility-on-Demand (MoD) system involves a fleet of 

vehicles strategically located at stations across the transportation network. Vehicle fleets can 

comprise bicycles, low emission cars, or electric vehicles. The stations mainly consist of parking 

areas for cars or bikes, and charging facilities if electric vehicles are used. Its performance is 

largely affected by both short-term demand fluctuations and long-term usage pattern changes. 

This thesis explores the “flexibility paradigm” to determine where and how to locate stations in 

an urban environment, i.e. number of parking spots, and allocate vehicles in one-way MoD 

systems making explicit considerations of uncertainty. A simulation-based approach is used for 

system modeling and solution computation. The systematic simulation-based approach and its 

advantages in terms of analyzing flexible systems are first introduced through a case study on an 

urban infrastructure. Then, the thesis applies the simulation-based approach to integrate the 

rebalancing operation – an operational-level flexibility – into the planning decisions of MoD 

systems, which deals with short-term demand fluctuations. A solution approach based on a 

discrete-event simulator (DES) and a computation algorithm combining Particle Swarm 

Optimization (PSO) and Optimal Computation Budget Allocation (OCBA) is devised to 

calculate the optimal planning decisions. The study then proceeds to analyze strategic flexibility 

– a capacity phasing or staging strategy – in MoD systems so as to target the uncertainty from 

long-term usage pattern changes. The same solution approach is adopted but modified to 

determine the optimal parameters of the flexible strategy. Also, inspired from the successful 

implementation of the PSO+OCBA algorithm, a computational framework combining 
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population-based search algorithms and the OCBA technique is proposed as another perspective 

to mitigate computational complexity in optimizing the flexible systems via simulation. This 

thesis provides distinct insights on the design and management of MoD systems as well as 

optimization of flexible transportation and engineering systems under uncertainty. 
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Chapter 1 Introduction 

1.1 Design and management of Mobility-on-Demand (MoD) systems 

Urbanization is progressing at a high speed. According to the World Fact book, 

until 2010, 50.5% percent of the total population is living in urban areas, and the 

size of urban population is growing by 1.85% annually (De Lessio et al., 2013). 

The deepening urbanization leads to a rapid growth of demand for various urban 

recourses, like land usage and energy consumption, which requires urban system 

designers to think forward and provide efficient and sustainable solutions. 

Among the challenges faced by urban system designers is the design and 

management of urban transportation systems. Due to the convenience of 

point-to-point transportation and increasingly lower prices, private automobiles 

have become a most common choice for urban mobility. It has been reported that 

in 2009, almost 90% of American workers choose private automobiles as the 

usual commute mode, contrasting with less than 10% who use public transit 

(Santos et al., June 2011). Even in Singapore where the charge of Certificate of 

Entitlement is severely high, the number of cars is still increasing ("Singapore 

Land Transport: Statistics In Brief 2013," 2013).  

Consequently, scores of problems are emerging due to the popularity of private 

cars. The existing capacity of roads in a given city may no longer be able to carry 

increasing traffic flows, leading to frequent traffic congestion. In addition, more 

public space is occupied due to the mounting parking demand. Furthermore, more 

and more vehicle exhausts, such as CO2, exacerbates the issue of air pollution. 
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Such situations call up more advocates for public transportation. However, 

traditional public transportation networks relying on buses and subways may not 

be able to satisfy the diverse needs on urban mobility, e.g. the last-mile and 

first-mile connectivity issue in daily commutes, which refers to the provision of 

travel service from a public transportation node to home or workplace(Wang & 

Odoni, 2014). Meanwhile, the growing size of the urban population often renders 

public transportation systems overloaded, especially during peak hours, further 

motivating people to use private cars in an ongoing vicious cycle. Admittedly, 

taxis can work as a supplement for public transportation and provide a more 

flexible form of mobility, but is a costly alternative and cannot be utilized by mass 

population as a regular transportation mode. 

As a response to these challenges, Mobility-on-Demand (MoD) systems have 

drawn more and more attention in recent years. A MoD system, also referred as 

vehicle-sharing system (VSS) in this thesis, involves a fleet of vehicles 

strategically located at stations across the transportation network. Vehicle fleets 

can comprise bicycles, low emission cars, or electric vehicles (Nair & 

Miller-Hooks, 2011). Stations mainly consist of parking areas for cars or bikes, 

and charging facilities if electric vehicles are used. Figure 1.1 illustrates a the 

integration of existing transpiration network with a MoD system using electric 

vehicles.  

MoD systems are perceived as a promising alternative for urban mobility due to 

the ease of use and potentially large overall societal benefits. For example, for 

car-sharing systems, users enjoy the convenience and comfort of private 
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automobiles without the associated high costs, insurance requirements, need to 

refuel, service and repair demands, or parking problems ("Mobility on Demand: 

Future Transportation in Cities," 2008). Such benefits help to alleviate people’s 

reliance on private cars, so that more parking areas can be freed up for other 

public uses, and consequently, alleviate road congestions. 

 

Figure 1.1 Illustration of a typical MoD system using electric vehicles 
 

The design and operations of a MoD system involve multiple stakeholders. As 

illustrated in Figure 1.2, these major players can be roughly categorized into three 

groups. Resource providers are the group who possess and provide critical 

resources essential for the establishment and survival for a MoD system. Local 

government is one major resource provider who has the control over land, 

planning consent, and political support (as most MoD systems are subsidized). 

Meanwhile, vehicle providers can exist in various forms. They can be vehicle 

rental companies, e.g. Enterprise Rent-A-Car who provides corporate rental 

services, independent vehicle manufacturers, such as Honda who is one of the 

main partners with Zipcar (http://www.zipcar.com), and the mother company who 

owns the MoD system, which actually forms a more and more popular business 

model in auto industries with manufactures like Daimler and BMW starting up 

http://www.zipcar.com/
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subsidiaries to provide MoD services. Financial support is another key resource 

for a MoD system, which comes from investors and / or creditors. Operating 

company is the one who determines the use of resources obtained from the 

aforementioned three parties. It makes planning decisions like how and where to 

set up stations and purchasing of vehicles, as well as operational decisions that 

respond to real-time demand realizations. While resource provides and operating 

company may encounter conflicts of interest somehow, they are both largely 

affected by customers who pay the price to the operating company and enjoy the 

MoD service. There are close interactions between the decisions and behaviors of 

the three groups of stakeholders and which, in return, have a collective effect on 

the performance of a MoD system. This study takes the perspective of an 

operating company of the MoD system. Therefore, the author mainly concerns 

with how to make better planning and operating decisions to obtain a sustainable 

growth of the system as well as the company.        

 

Figure 1.2 Major stakeholders in a MoD system 
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Existing MoD systems can be generally categorized into two types: one-way or 

two-way systems. For two-way sharing systems, users are required to return the 

used vehicle to the station where it was picked up. Car-sharing systems are mostly 

two-way. Companies like Zipcar and Hertz (https://www.hertz.com) currently 

operate such systems. Compared with the two-way sharing systems, one-way 

MoD systems are more flexible: users can walk to a nearby station to pick up a 

vehicle, and then they may drop it off at any station near their final destination.  

Initially, most one-way MoD systems consisted of bike-sharing systems that 

gradually became a popular choice for urban mobility, such as Vélib in Paris 

(http://www.velib.paris.fr) and Hubway in Boston (http://www.thehubway.com). 

Recently, more and more one-way car-sharing systems have been implemented, 

with the success of Car2go (https://www.car2go.com) in North America 

indicating great potential for such systems. Because of the usage mode, one-way 

MoD systems are more likely to be utilized as a connection to existing public 

transport modes or as a substitute. As for the ownership of the system, currently a 

large proportion of car-sharing systems are operated by private companies, while 

for bike-sharing systems, they can be managed by local transportation authority, 

or public–private partnership, like Austin-B Cycle (http://austinbcycle.com), or 

even purely privately owned, like Citi Bike (http://www.citibikenyc.com) and 

Zagster (http://zagster.com/). 

Admittedly there exists difference between car-sharing and bike-sharing systems, 

e.g. size of fleet and average travel distance, this study does not address these two 

types of one-way sharing systems seperatedly in terms of modelling and 

https://www.hertz.com/
http://www.velib.paris.fr/
http://www.thehubway.com/
https://www.car2go.com/
http://austinbcycle.com/
http://www.citibikenyc.com/
http://zagster.com/
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evaluation. As mentioned earlier, this study origins from the standpoint of a 

private company operating such systems, designing and managing either 

bike-sharing or car-sharing systems is motivated by the same objectives and faced 

with similar challenges. On the one hand, due to the large social benefit associated 

with MoD systems, as well as high cost of operating such systems in the urban 

area, particularly regarding the land cost as well as purchasing cost of electric 

vehicles if used, either car-sharing systems (Dudley, 2013) or bike-sharing 

systems (Tangel, 2014) are subsidized by the local government. Therefore, it is 

believed that at the inception stage of the system, no matter for bike-sharing 

systems or car-sharing systems, level of service (LoS) may be the first priority as 

it is critical to establish a large customer base to demonstrate the value of the 

subsidy and build a reputation. Nevertheless, for the long-term survival of the 

system that is owned privately, profitability may be still placed at a high priority. . 

On the other hand, Successfully deploying and operating one-way bike-sharing 

and car-sharing systems is faced with similar challenges. In addition to the 

demand being difficult to predict and highly fluctuating, which calls for dynamic 

decision-making and prompt actions, the inherent imbalance of urban traffic flows 

frequently leads to an inefficient use of the system: areas with higher rates of 

vehicle return may become overstocked with a large number of idle vehicles that 

could be better used if relocated to places where they are needed. Also, the 

performance of a MoD system is largely influenced by the intricate interactions 

between different levels of decisions, among which the trade-offs may not be very 

explicit. Because of such similarities in operating objectives and challenges, this 
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study adopts the same practice as Nair and Miller-Hooks (2011) that does not 

distinguish between bike-sharing and car-sharing systems. 

Given the aforementioned complexity involved in designing and operating 

one-way MoD systems, particularly with respect to managing the fluctuating and 

uncertain demand, this study adopts a different perspective of engineering design 

that addresses uncertainties by designing flexible systems.   

1.2 Flexibility in engineering design 

The only thing that never changes today is change itself. During the past several 

decades, we have witnessed tremendous changes in almost every aspect of human 

life, technology, economy, politics, etc. Take Internet as an example, it had been 

roughly estimated that in 2001 the number of global Internet users was only 495 

million, and in just three years, the number doubled. In 2011, the number became 

2,265 million (ITU). Meanwhile, various examples have shown that human 

beings are never good prophets for these changes. A. Wooldridge said “In the 

early 1980s, consultants at McKinsey and Company were hired by ATT to 

forecast the growth in the mobile market until the end of the millennium. They 

projected a world market of 900,000. Today [in 1999] 900,000 handsets are sold 

every three days” (de Neufville & Scholtes, 2011). These situations indicate that 

there is a need to develop an approach that can address the uncertainties inherent 

in a system, a process, or an organization. One of such approaches is designing 

flexible systems. 
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Flexibility – also referred in this thesis as a real option – is defined as the “right, 

but not the obligation to change a project or system in the face of uncertainty” 

(Trigeorgis, 1996). For example, a water catchment system can be designed with a 

flexibility to expand its original capacity in the future if necessary (Deng et al., 

2013). Likewise, MoD system can also be designed with flexibilities such as a 

case where some vehicles or parking spots may be reserved for future expansion 

of the system. 

There are generally two classes of flexibilities. Managerial flexibilities (also 

referred as real options “on” systems) involve high-level decisions, like real 

options to defer or stage an investment, abandon, switch, alter the operating scale, 

or grow a system, or find combinations of multiple real options (Trigeorgis, 1996). 

The other category is technical flexibilities (also referred as real options “in” 

systems) that are those inherited in the design configurations, which typically 

enable the managerial flexibility decisions (i.e. exercising the real options). Most 

of the past studies in this field focus on quantifying the economic value of 

flexibilities. Some commonly used analytical methods rely on a binomial lattice 

(John C Cox et al., 1979), decision analysis (Babajide et al., 2009) and Monte 

Carlo simulation (Deng et al., 2013).  

Typically, systems are designed and evaluated under deterministic projections of 

the main uncertainties that affect their lifecycle performance (de Neufville & 

Scholtes, 2011). The most common practice consists of three phases: first, by 

collecting and analyzing relevant data, the scenario with the highest likelihood of 

occurrence is identified, which projects the major external drivers of the system, 
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such as customer demand, market share, product price, etc.; then, according to 

those predictions, system designers generate design concepts and select design 

parameters that enable the system to perform optimally under the most likely or 

expected scenario; finally, it is the design evaluation, of which a standard 

methodology, like discounted cash flow (DCF) analysis, sensitivity analysis, 

scenario planning, etc., is applied. The result achieved through such practice is 

usually the “point optimal” design. 

This kind of design practice based on deterministic forecasts and the assumption 

of fixed design parameters, however, may not help decision-makers identify and 

operate a system that performs well in the real world. In this case, the system may 

perform optimally only when the predicted scenario happens; while in other cases, 

the system stays passively and may not be able to perform well under unexpected 

and/or unfavorable conditions. Besides, standard design and evaluation analysis, 

which relies mostly on deterministic forecasts as inputs, can also mislead decision 

makers (de Neufville & Scholtes, 2011). This is because the response of 

engineering systems is typically not linear; and according to Jensen’s inequality 

(Jensen, 1906) as shown in Equation 1.1, the value of the function containing 

random variables does not equal to the value of the function under the expected 

value of those random variables. The benefits obtained from possible upside 

scenarios (e.g. higher product prices or demand) may not balance the losses 

incurred from potential downside scenarios (e.g. lower prices or demand). 
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𝒇[𝐄(𝒙)] ≠ 𝐄[𝒇(𝐱)]                                                        1.1 
Due to the reasoning above, a paradigm shift in systems design and evaluation is 

in need. The new methodology should enable systems to act pro-actively in the 

face of a variety of situations. Moreover, such adaptability needs to be considered 

as one of the metrics to assess the value of systems.  

Designing flexible systems is one effective solution. This approach challenges the 

main assumptions of standard design and project evaluation approaches: the use 

of deterministic forecast and fixed design parameters. Under the “flexibility 

thinking”, designers are required to consider a large number of possible scenarios 

and prepare for changes in these operating conditions, so that systems can better 

exploit the realized situations to capture extra profits or avoid excessive losses. 

Many recent studies have shown that flexibility can improve expected lifecycle 

performance (e.g. net present value, cost savings) by 10% to 30% as compared to 

the output from standard design and evaluation methods. This can be significant 

in the design and management of engineering systems, such as those considered 

in this thesis, since these typically represent large irreversible investments in 

infrastructures, in the order of $ million and $ billion. Flexibility typically 

improves such performance by reducing system exposure to downside risks (i.e. 

like an insurance policy), while providing contingencies to capitalize on upside 

opportunities. The net effect is typically to shift the entire distribution of possible 

performance outcomes towards better value, therefore improving the expected 

lifecycle performance of the system as a whole. 
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Finding the optimal flexible design, however, is not an easy task. For complex 

engineering systems, estimating their life-cycle performances can be very 

time-consuming, even without considering flexibility and optimization. For 

example, for a reservoir simulator, depending on the complexity of the reservoir 

and the resolution of each grid box, each simulation run over the field's lifecycle 

may take a few hours to a few days (Lin, 2008). Flexibility analysis further 

exacerbates the computational problem, since many scenarios and a variety of 

flexible designs are accounted for, which makes it even more difficult to assess 

the performance of candidate designs and find the optimal one. In this case, 

advanced computational techniques need to be developed. 

1.3 Objectives and significance of the study 

In sum, rapid urbanization results in unprecedented challenges to existing urban 

transportation network. As a response, MoD system emerges as a viable and 

promising solution. Due to unbalanced and highly fluctuating demand, however, 

effectively designing and managing MoD systems, particularly one-way systems, 

still remains a problem to be solved. This study aims to apply “flexibility thinking” 

to target the technical aspect of the aforementioned problem, as many past studies 

suggest that constructing a flexible system leads to better management of 

uncertainties in engineering systems. More specifically, the study intends to 

devise a methodology that provides systematic decision-support to the planning 

and operations of the one-way MoD systems that are exposed to both short-term 

(e.g. daily demand variations) and long-term (overall usage pattern changes) 

demand uncertainty. Definitions with more details of short-term and long-term 
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uncertainty are provided in the next chapter. The specific research objectives are 

as follows: 

• Develop a design procedure that provides high-level guidance on how to 

design and evaluate flexible engineering systems. 

• Develop and solve a mathematical model that aims at finding the optimal 

planning decisions for a MoD system, where vehicle redistribution 

activities are considered as an operational level flexibility to address 

short-term demand fluctuations. 

• Develop and solve a mathematical model that aims to determine the 

optimal flexible strategy for deploying a MoD system that copes with 

long-term demand uncertainty. 

The contribution of this study stems from two aspects. On the one hand, with 

respect to MoD systems, it is the first study that integrates strategic planning and 

operational-level decisions into one decision-making framework. In addition to 

accounting for short-term stochastic demand fluctuations, this study is also the 

first to investigate flexible deployment strategies in MoD systems as a strategy to 

address long-term (and growing) demand uncertainty. On the other hand, 

regarding the methodological aspect, a computational framework based on an 

Optimal Computation Budget Allocation (OCBA) technique is first applied to the 

domain of optimization on flexibilities in engineering systems, which 

demonstrates another opportunity to solve the computational issues often 

encountered in optimizing flexible engineering systems. 
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1.4 Organization 

This thesis contains 6 chapters, organized as follows. Chapter 2 reviews the 

background literature relevant to this study. Chapter 3 introduces a four-step 

simulation-based procedure that is used to analyze and evaluate flexible 

engineering systems design concepts. It also demonstrates that incorporating 

flexibilities can improve the performance of engineering systems and illustrates 

how simulations can be applied as an analytical framework to model and evaluate 

flexible systems design concepts. In chapter 4, this study explores the operational 

design and rebalancing dynamics in MoD systems that are used to deal with 

short-term demand uncertainty. In Chapter 5, a strategic level flexibility is 

incorporated into the deployment plan of the MoD system to accommodate 

another layer of uncertainty, the long-term usage pattern changes. Chapter 6 

concludes the whole thesis, discusses results limitations and validity issues, and 

identifies opportunities for future research. 
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Chapter 2 Literature Review 

This thesis is motivated by two bodies of research, i.e. studies investigating the 

planning and operations of MoD systems, and the ones exploring how to 

incorporate flexibilities into engineering systems. Past studies from these two 

communities are first presented. After that, this chapter concludes with the major 

research questions addressed by this study. 

2.1 Research on MoD systems 

The literature on the quantitative planning and detailed operation of MoD systems 

was virtually non-existent until a few years ago, but has been growing rapidly in 

recent years. Existing studies can be roughly categorized into three sub-streams: 

data analytics, strategic planning, and rebalancing operations. Some of these 

studies address bike-sharing systems, while others pertain to car-sharing systems. 

Authors in the area of data analytics focus on understanding and characterizing 

the usage patterns of MoD systems.  For example, Vogel et al. (2011) apply 

clustering analysis to the ride data from Vienna’s bike-sharing system, “Citybike 

Wien,” identifying five distinct such clusters based on pickup and return patterns 

over time. Borgnat et al. (2011) rely on non-stationary statistical modeling and 

data mining to describe the evolution of the dynamics of movements within the 

Vélib system in Paris. The spatial and temporary demand patterns are also 

described, and the social behavior of the users is explained. O’Brien et al. (2014) 

applied a similar approach to analyze the usage data of bike-sharing systems. 

However, their analysis is considered as the first to take a global view of 

bike-sharing characteristics, as data from 38 systems globally was used to identify 
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the special and temporal patterns of different types of bike-sharing systems. Using 

demographics and travel survey data, Ciari et al. (2010) develop an agent-based 

simulation (ABS) model to estimate and predict demand for a car-sharing system 

during its planning phase.  

The second category of papers presents models that deal with strategic planning 

issues. Lin et al. (2013) formulate a mixed integer programming model for 

optimizing the design of bike-sharing systems. Although the model encompasses 

a wide range of strategic decisions, their analysis is deterministic and does not 

capture dynamic behavior, such as the daily or even weekly fluctuations of 

demand that these systems experience. Rickenberg et al. (2013) devised a decision 

support system to optimize the location and sizing of car sharing systems. 

Although demand is assumed to be stochastic, their analysis lacks essential details, 

as only aggregated demand in a day is considered, and not the sequence of 

demand. However, a system design that targets aggregated demand may be 

installed with excessive capacity, as within a day, the traffic flows between 

stations somehow help to improve the utilization of the system, which, however, 

is not accounted in their analysis. For example, the travel demand from area A to 

area B can be partially resolved by the vehicles driven by customers from area B 

to area A earlier in the day, but taking an aggregated demand approach ignores 

such situation. Considering demand variations within a day, Raviv and Kolka 

(2013) explore the optimal number of vehicles to be made available at each 

station at the beginning of each day. They formulate a penalty cost function and 

further utilize it in a simulation-based optimization model to search for the best 
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solution. Forma et al. (2015) takes a further step by considering the whole 

network of the system instead of a single station. They first define clusters of 

stations, and then try to find the optimal initial vehicle distribution among clusters 

by taking into account the penalty cost of unsatisfied customers, and the operating 

cost of transporting vehicles to achieve the ideal vehicle distribution plan. Shu et 

al. (2010) slightly simplify this same problem and adopt a linear approximation 

optimization model. Their analysis captures broader considerations by 

incorporating the day-to-day demand changes within a week. They also 

demonstrate the benefits of redistributing vehicles at the beginning of each day. 

Jorge et al. (2012) similarly apply a mixed integer programming model developed 

by Correia and Antunes (2012) to solve a similar problem under the deterministic 

environment, and further evaluate the solution via an ABS model. Romero et al. 

(2012) applied a simulation-optimization approach to find out the optimal 

locations of docking stations for a bicycle-sharing system. Bi-level programming 

was adopted where microscopic customer behaviors were accounted for. The 

study by Kumar and Bierlaire (2012) is oriented from a different perspective. 

Instead of applying operational research, their analysis is built upon a statistical 

model where they established a relationship between the “attractiveness” of 

stations and the socio-demographic-economic profile of the population residing 

nearby. In this way, new stations can be decided according to the ranking of 

attractiveness. García-Palomares et al. (2012) also solved the problem from 

another perspective by adopting a GIS approach to determine the optimal location 

of bike stations. The main contribution of their study is to apply GIS to extract 
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demand information that serves as the input for the location-allocation model to 

calculate the final solution.  

The above studies are helpful to determine an initial configuration of a MoD 

system. However, an essential part of daily operations, namely rebalancing of 

vehicle supplies, is missing from the formulations. In practice, imbalanced traffic 

flows frequently leave some stations empty of vehicles and others in need of 

additional parking space to accommodate an excess of vehicles. This necessitates 

redistributing vehicles and rebalancing of supplies as part of the daily operations 

of a MoD system.  

Pavone et al. (2012) use a fluid-model approximation to develop quasi-optimal 

rebalancing policies. They first identify the conditions under which a MoD system 

reaches equilibrium, and then propose a simple optimization model to compute 

fixed rebalancing rates in such an equilibrium state. Schuijbroek, Hampshire, and 

Hoeve (2013) model vehicle flows at each station through a M/M/1/K queuing 

system which is then used to obtain an equation for computing bounds on the 

inventory of vehicles needed at each station. In addition, a cluster-first 

route-second heuristic model is proposed to obtain optimal routings of the 

rebalancing vehicles. Nair and Miller-Hooks (2011) and Nair et al. (2013) apply 

chance constraint programming to model the problem. An advanced algorithm is 

also developed to transform the stochastic problem to a set of mixed integer 

programming problems. Unlike the previous studies that analyze a particular 

period in a day, Vogel et al. (2014) formulated a mixed integer programming 

model to find the rebalancing operations for every time period of a day, and a 
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hybrid metaheuristic algorithm was devised to find the solution. Kek et al. (2009) 

devise a decision support tool to determine the optimal rebalancing strategy. They 

apply the model to data from a Singapore-based car-sharing system and 

demonstrate the significant cost reduction that can be achieved through the 

introduction of vehicle relocation operations. Smith et al. (2013) takes a further 

step by exploring not only how to optimally rebalance vehicles, but also the best 

strategy for employing rebalancers. 

2.2 Research on flexibilities in Engineering Design 

There are three major research areas related to designing flexible engineering 

systems: concept generation, design space exploration, and process management.   

Research on concept generation is concerned with devising effective methods and 

guidelines to organize such activities. Each flexible concept is comprised of (1) a 

strategy, and (2) enablers in design and management (Cardin, 2014). A strategy 

decides how the system will change when a certain situation happens; while 

enablers are the design features incorporated into the system initially that makes 

the strategy feasible in the future. Cardin et al. (2013) employ brainstorming, 

prompting, analogy, and explicit lecture to assist designers identify possible 

flexible strategies for an emergency system. They also evaluate the effectiveness 

of these ideation techniques in terms of generating flexible concepts. Fricke and 

Schulz (2005) extract general design principles that can be applied to enable 

changes in the system throughout its lifecycle. Similarly, Skiles et al. (2006) 

summarize principles and facilitators that enable products to acquire new or 

enhanced functionality in case of future requirements. Mikaelian et al. (2011) also 
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propose generalized principles of designing enablers of flexible concepts. In 

addition, a number of modeling tools that analyze how flexibility initiates changes 

between system components are also proposed, such as the Change Propagation 

Analysis (Suh et al., 2007) Particularly, De Lessio et al. (2013) applies Design 

Structure Matrix (DSM) to identify the flexibility within a MoD system, Their 

analysis provides a high-level view of the structure of MoD system using DSM 

covering aspects like strategy, organization, infrastructure, stakeholders, 

operations and technology. The DSM is further utilized in the Change Propagation 

Anlaysis to discover the potential area to incorporate flexibility in the system.  In 

sum, studies on concept generation aims to facilitate and inspire designers to 

generate “sketches” of the flexible concepts that will be analyzed in much more 

details later, namely the phase of design space exploration. 

Design space exploration is associated with the quantitative evaluation and 

optimization of flexible designs. The value of flexibility (VoF) can be assessed 

from several perspectives. The classical works in pricing financial options (Black 

& Scholes, 1973; John C. Cox et al., 1979) are the origins of the real options 

valuation. Later, the binomial approach by John C. Cox et al. (1979) is applied to 

value options on real investments, hence real options (Trigeorgis, 1996). This 

approach has also been applied to assessing the value of real options in 

engineering systems (de Weck et al., 2004). Decision tree is another method to 

calculate the VoF, when the number of decisions is limited and the uncertainty can 

be modeled by discrete random variables. This method has been adopted to 

evaluate the VoF in oil deployment projects (Babajide et al., 2009). An important 
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aspect of these two methodologies is that the evaluation process relies on dynamic 

programming where the decision rule essentially is decided by optimizing at each 

decision point based on expected value. This kind of approach, however, may not 

capture well the full realm of possible decision rules. Besides, as the number of 

decision-making periods and states increases, the computation may become 

intractable. Although the assumption of path-independency in the binomial 

approach allows a recombination structure to relief the computational burden, 

such assumption of path-independency may not hold for engineering systems. 

This is because different realizations of uncertainty may lead to distinct changes 

on system configurations, which consequently results in a disparity in realizations 

of the next time period. For instance, higher water price might trigger the upgrade 

on the efficiency of urban water systems, which may lead to lower water price in 

the next period. Another approach to assess the VoF is simulation that can be more 

generally applied. It has fewer restrictions on the number of time periods being 

considered as well as the distribution of uncertainties. Besides, this approach 

considers decision rules as explicit variables in the modeling framework, so that 

the model itself can be modified without too much endeavor so as to capture a 

wider range of design configurations. 

Another community looks into efficient search mechanisms to explore the design 

space. Finding the optimal design for a flexible engineering system might be very 

daunting in some cases. First, a large number of design alternatives might be 

under consideration. For example, in a MoD system, flexibility can exist in 

multiple levels of decisions, e.g. changing the location and capacity of stations as 
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a strategic-level flexibility or re-allocating vehicles in daily operations as an 

operational-level one. Besides, at each level of decisions exist many possible 

flexible designs or decision rules. Second, due to the complexity of the flexible 

system itself, there might be a lack of explicit mathematical formulation in terms 

of evaluating performance, which is commonly seen in the design of stochastic 

discrete-event systems, such as queuing networks (Shi, 2000).  

Under this circumstance where analytic models cannot be formulated,  

simulation is gaining in popularity as the approach to model and analyze flexible 

designs. However, given the long planning horizon, which is very common in 

flexible design optimization, added by the intricate interactions within the system, 

obtaining a good statistical estimate of the performance of each design alternative 

is generally very time-consuming. Therefore, if requiring estimates with good 

quality and the design space is relatively large, the computation cost involved in 

searching the optimal flexible design can be prohibitively high. Past studies (Lin, 

2009; Wang, 2005; Yang, 2009) have addressed this problem mainly by applying 

metamodels (or screening models), which intends to quickly estimate the 

performance of design alternatives via low-fidelity models and other statistical 

methods. The low-fidelity models are achieved by simplifying the physical 

relationship between performance and design variables, and/or representing the 

performance function by an approximate functional relationship. Once a 

metamodel is obtained, in principle, appropriate deterministic optimization can be 

applied to obtain an estimate of the optimal solution (Fu, 2002).  
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The last question that follows the calculation of the optimal flexible design goes 

into what is the favorable condition for its implementation and operation. 

Research on process management provides guidelines and techniques for such 

activities. Smit and Trigeorgis (2009) study the runaway capacity expansion 

option for two European airports, and show the importance of information-sharing 

and the timing of exercising flexibilities. Recently, another approach using serious 

gaming has been more and more applied to the design problems of engineering 

systems. This approach is defined as experience-focused, experimental, rule-based, 

interactive environments where participants learn by taking actions and by 

experiencing their effects through feedback mechanisms that are deliberately built 

into and around the game (Ligtvoet & Herder, 2012). Cardin et al. (2015) apply 

serious gaming to the design and management of flexible urban emergency 

systems. Their simulation platform suggests a way of experimentally studying and 

evaluating the effectiveness of training and other uncertainty management 

techniques. 

2.3 Summary of research gaps 

In the existing literature on MoD systems, it is common that the problems of 

planning/designing a MoD system and operating it are decomposed into several 

parts and then solved independently. Relocation/rebalancing decisions are made 

under an assumed system configuration and, conversely, the configuration of the 

system is determined without consideration of the impact of the 

relocation/rebalancing policies. In reality, however, ignoring the close interactions 

between these two sets of decisions may lead to significant problems and to 
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poorly design and operating of MoD systems. For example, stations may be 

deployed with a larger capacity than would otherwise be necessary if rebalancing 

policies were taken into account. As demonstrated in a case study by Lin et al. 

(2013) on a bicycle-sharing system, bicycle stocks at stations can be 

overestimated by thousands if rebalancing policies are not considered. In fact, two 

studies have furthered the investigation on the interactions between planning and 

operational decision-making for MoD systems. Cepolina and Farina (2012) apply 

a simulation-based approach to determine the optimal distribution of vehicles for 

a MoD system consisting of Personal Intelligent City Accessible Vehicles 

(PICAVs) that solves the mobility problem in pedestrian area. Their analysis 

captures the variability in customers’ travel patterns, and what’s more, 

incorporates a relocation policy relying on a system supervisor to instruct 

customers to complete the relocation task. However, such rebalancing practice 

may not be easily executed in reality, especially for car-sharing systems where 

switching destination stations may lead to a relatively long walking distance, 

which consequently discourages customers to comply with such policy. In 

contrast, the paper by Boyacı et al. (2015) assumes that system operators takes the 

responsibility of rebalancing. Although their study provides interesting results on 

integrating the location and sizing issue of stations in MoD systems with 

operational decisions, the analysis is only deterministic since daily fluctuations in 

demand are not well captured. In fact, because of this deterministic approach, 

rebalancing decisions are made at the same time as planning decisions, even 

though rebalancing decisions are supposed to react in real-time to the realization 
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of demand. In addition, the paper deals with a reservation-based system in which 

system operators are entitled with the power to choose among customers; however, 

for some VSS such as Car2go, reservations are not compulsory, let alone the fact 

that some VSS are purely on-demand, like the UCR IntelliShare system (Barth et 

al., 2000). Such systems allow greater flexibility for customers, but are generally 

more difficult in terms of system management. In sum, the existing literature does 

not provide an approach that helps to determine the initial set-up configuration of 

a MoD system considering the influence from operational decisions as well as the 

stochasticity of demand. Ignoring such influence may ultimately suggest a system 

design that suffers from inefficient use of resources and operating difficulties. 

Moreover, not only are there very few studies capturing the short-term demand 

fluctuations, studies dealing with long-term uncertainty on overall usage patterns 

are almost nonexistent. However, as the total amount of urban population as well 

as its distribution constantly changes, accompanied by other factors that influence 

people’s behaviors on using MoD systems, e.g. reconfiguration of urban planning, 

assuming a constant overall usage pattern of such system seems unrealistic. The 

differing environment requires the configuration of a MoD system to evolve over 

time. Such situations suggest an opportunity of applying “flexibility thinking” to 

the design and management of MoD systems. In fact, one past study by Fassi et al. 

(2012) has already taken one further step by building a discrete-event simulation 

model to test growth strategies for two-way car-sharing systems where increasing 

demand is under consideration. Albeit their study demonstrates the importance of 

restructuring the system constantly, it can only be considered as a preliminary step 
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to incorporate flexibilities into MoD systems. First, the study deals with two-way 

MoD systems where the design and especially the operational part of such 

systems is not so complicated as one-way systems, since the latter needs to 

address the unbalance traffic flows. Second, the study only considers too limited 

number of scenarios to be perceived as a stochastic analysis. Finally, although the 

simulation platform can be applied as a test bed for different combinations of 

flexible strategies, it does not provide any recommendation on how to find the 

optimal one. Given that the design space of flexible strategies can be very large, it 

may not be realistic to try every combination and then decide the best one, which, 

therefore, requires a proper optimization technique to be developed.  

Above all, there exist two research gaps in the design and management of MoD 

systems, 1) an approach that integrates operational decisions into the strategic 

planning of the system as to better deal with the daily (short-term) demand 

fluctuations, and 2) a different deployment strategy that stems from a long-term 

forward view in system planning as to enable the system to adapt to changing 

usage patterns. . 

Introducing flexibilities into engineering system, particularly regarding finding 

the optimal one to implement, however, can be computationally intractable. This 

study applies a simulation-based approach to the MoD system. In addition to the 

general benefits of the simulation approach, which is introduced earlier (i.e. ease 

of modelling a variety of flexible designs and uncertainties), there are other 

practical considerations. As demonstrated in past studies related to MoD systems, 

the operational-level decisions, namely rebalancing operations, play a very critical 
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role in the overall performance of the system. The major advantage of applying a 

simulation-based approach is that the microscopic behaviors of frequent 

redistribution of vehicles within the system can be easily modeled; hence their 

influence on the final decisions is accounted for. Otherwise, if the analytic model 

is adopted, the computational complexity might be intractable. For example, in a 

system with eight stations, if hourly rebalancing is adopted and 17 hours are 

considered, 64 decision variables need to be created for just a one single 

rebalancing action, then it will be a number of 64*17=1,088 decision variables 

needed for just one day in one scenario. Such computational complexity can 

increase exponentially as the number scenarios and the number of stations 

increases.  

Nevertheless, as introduced earlier, the computational issue may still remain a 

problem when the simulation-based approach is taken. Existing studies on this 

topic resorts to metamodel techniques, however, there may be some limitations 

with respect to using those surrogate models. First, it might be difficult to directly 

replicate the metamodelling techniques used by one specific problem to another. 

Different systems may prefer different functional models, which are the models 

with a generalized form does not necessarily apply to a particular kind of problem, 

with some systems appropriately represented by polynomial models or even linear 

models, while others requiring more advanced ones such as Gaussian process. 

Furthermore, in some cases, as indicated in Osorio and Chong (2014), functional 

models are not sufficient to capture the main system characteristics. Consequently, 

this calls for the development of physical models that represent the fundamental 
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working principle of the system, but generally it requires significant efforts spent 

on the theoretical aspect of the systems. In the case of MoD systems, so far, there 

are no such physical models, either analytic equations or generalized laws that 

explain how different levels of decisions interact with each other as to influence 

the system performance. Second, the beauty of applying simulation to model and 

evaluate flexibilities is the ease of formulating different decision rules, which, 

however, may require significant effort to develop in a metamodel that suits each 

set of the decision rule. Such case results in difficulty in the comparison between 

the formulations of the decision rules. Last but not the least, the accuracy of 

metamodels is another concern, especially in the presence of uncertainties. On 

one hand, it has been found that the accuracy for evaluating the standard deviation 

of performance and the probability of constraint feasibility largely depends on the 

capability of a metamodel in capturing the nonlinearity and variations of a 

behavior (Jin et al., 2003). Therefore, for a system with significant randomness, 

using certain metamodels might not be sufficient to capture the variations of the 

system. A Kriging model performs relatively well in capturing various forms of 

functions, but the construction process can be very time-consuming and fitting 

problems due to singularities have been observed (Jin et al., 2003). On the other 

hand, when dealing with high dimensional stochastic problems, developing the 

metamodel itself may be challenging. For a single design point, a large number of 

runs may be required to obtain a good estimate of the performance, since the 

accuracy of the estimate cannot be improved faster than the rate O(1/√n) in the 

Monte Carlo simulation. Hence, when encountered with high dimensional 
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problems, the overall computation cost can be very large. For example, in order to 

fit a reasonable metamodel via polynomial regression, the sample size should be 

at least two or three times the number of model coefficients (Jin et al., 2003). In 

sum, instead of using metamodelling techniques, it may worth exploring other 

techniques to resolve the computational complexity involved in optimizing 

flexible systems designs under explicit consideration of uncertainty.  

Table 2.1 lists the major literatures that motivate this thesis. The contribution of 

this thesis poses on two aspects. In the domain of MoD systems, the thesis intends 

to propose a systematic methodology that addresses all the issues summarized in 

the table. Meanwhile, the thesis also would like to explore other opportunities to 

solve the computational complexity inherited in the optimization process of the 

flexible MoD systems, other than using metamodeling. This might provide further 

insights and instructions applicable to other flexible engineering systems.   

In conclusion, this thesis aims to address the following research questions: 

1) how to account for the influence of operational-level decisions and the 

stochasticity of demand when determining the configuration of a MoD 

system; 

2) how to formulate flexibility into the deployment strategy of a MoD system 

as to address the uncertain usage pattern changes; 

3) how to address the computational complexity in finding an optimal 

flexible MoD system 
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Table 2.1 Literatures motivating this thesis 

 

The objectives and contributions of this thesis summarized in Section 1.3 aim to 

address the aforementioned research gaps and answer the research questions. The 

next chapter provides an overview of the simulation-based methodology that is at 

the heart of this thesis, and used to analyze MoD systems in Chapter 4-5. It also 

provides an example study showing how the method is used to analyze a complex 

engineered system considering uncertainty and flexibility explicitly. 

  

Articles Rebalancing 
operations 

Strategic 
planning 

Daily demand 
fluctuations 

Long-term 
uncertainty 

(Pavone et al., 
2012; Schuijbroek, 
Hampshire, & van 
Hoeve, 2013) 

✔  ✔  

(Correia & 
Antunes, 2012; Lin 
et al., 2013) 

 ✔   

(Barth et al., 2000; 
Jorge et al., 2014) 

 ✔ ✔  

(Boyacı et al., 
2015) 

✔ ✔   

This thesis ✔ ✔ ✔ ✔ 
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Chapter 3 Methodological Approach: Simulation-Based Analysis 
 

This chapter illustrates how simulation is incorporated into the design procedure 

to formulate and evaluate flexible design alternatives under uncertainty. A 

four-step procedure is introduced in this chapter that starts with the standard 

design practice and proceeds gradually towards the “flexibility thinking”, which 

gives designers a continuous education on “thinking out of box”. A case study on 

water management systems is presented as demonstration to offer a step-by-step 

explanation on the use of the simulation-based procedure for uncertainty and 

flexibility analysis. While the author fully acknowledges that water management 

systems is not the main application domain of this thesis, a similar analytical logic 

is used in Chapters 4-5 to analyze MoD systems under uncertainty and flexibility, 

although some steps, e.g. the deterministic analysis, may be skipped to focus on 

assessing the value of flexibility. Thus, it is deemed important to dedicate one 

chapter to introduce thoroughly the methodological approach. Also, this study has 

been published in Deng et al. (2013). 

This chapter serves illustrates some of the drawbacks in standard design and 

project evaluation practice. It also highlights some the advantages of recognizing 

flexibility as a way to improve a system performance in the face of uncertainty. 

Also, the study illustrates the pros and cons of using a simulation-based approach 

to model and evaluate the performance of different design alternatives, including 

flexible ones, and explains why the thesis takes a simulation-based approach. 
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3.1 Procedure for designing and evaluating flexibilities via simulation 
This study proposes a four-step procedure to design and evaluate flexible systems 

when simulation is applied to estimate system performance under uncertainty. The 

procedure is based on and modified from a design process proposed in a past 

study (Cardin et al., 2007). Similar to the original one, this proposed methodology 

is also a step-wise process for designing and evaluating flexibility in design of 

complex systems, starting with the baseline model and further stepping into the 

uncertainty analysis and the flexibility analysis. One additional step of sensitivity 

analysis is added to provide more reliable results.  

3.1.1 Step 1: Baseline model 

The starting point of the procedure is to build a baseline model. The objective 

here is to understand the main components of the system that influence its full life 

cycle performance. Costs and benefits involved in the system are calibrated by 

defining necessary design parameters and design variables. Additionally, 

assumptions are made on the working principle of the system. Following that, a 

preliminary deterministic cost-benefit analysis (Boardman et al., 2006) can be 

carried out. This step captures the standard practice in terms of design and project 

evaluation. 

3.1.2 Step 2: Uncertainty analysis 

In this step, designers need to model major uncertainty drivers, and investigate 

design alternatives under a range of possible scenarios. It is in this step that 

simulation model is built and begins to play a role in the analysis.  
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Historical data on the uncertainty drivers is first collected and calibrated into 

stochastic or probability models, like Geometric Brownian Motion (GBM) and 

normal distribution. Then, simulation is applied to assess the performance of 

design alternatives under these uncertainties. Through this analysis, designers 

capture a more comprehensive picture about the pros and cons of the design 

alternatives, compared with the deterministic analysis in Step 1. After these two 

steps, a simulation is obtained that is able to evaluate the system performance 

under uncertainty. The results can be displayed by a multi-metric table, where 

multifold indicators, e.g. expected value, value at risk, and value at gain, are 

shown for decision-makers who may have different risk profiles. Such tables will 

be presented in the analysis of this thesis. However, in terms of final 

decision-making, it assumes that decision-makers are risk-neutral. 

3.1.3 Step 3: Flexibility analysis 

In this step, designers first need to generate flexible design concepts. A complete 

flexible concept is defined by four elements: uncertainty source, flexible strategy, 

flexible enabler, and decision rule (Cardin et al., 2013). Flexible strategies are the 

actions designers can take when a particular path of uncertainties is realized (e.g. 

expand the capacity of the system if demand turns out to be higher than 

prediction), while flexible enablers are the design configurations that make the 

strategies feasible from a design and management standpoint. A decision rule is a 

triggering mechanism that is commonly represented by an “if” statement that 

specifies clearly when the flexible strategies will be exercised, based on some 

uncertainty realizations. For example, in the case of the HCSC building (Guma et 
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al., 2009), the flexible concept can be “in order to deal with the uncertainty from 

working space demand, extra strength is added into the load bearing walls so that 

the building can be expanded if the working space is not enough”. In this case, 

adding extra strength is the flexible enabler and capacity expansion is the flexible 

strategy, while the “if” statement about the working space is the decision rule. 

After flexible concepts are formulated and the parameters (e.g. triggering point of 

exercising flexibilities) are determined, they are programmed into the simulation 

model and evaluated under the same condition as in step 2. The Value of 

Flexibility (VoF) is calculated by Equation 3.1. 

𝑉𝑉𝑉 = 𝐸𝐸𝐸𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑓𝑑𝑓𝑑𝑑 − 𝐸𝐸𝐸𝑉𝑓𝑏𝑑𝑓𝑓𝑓𝑑𝑓 𝑑𝑓𝑑𝑓𝑑𝑑                           3.1 
 

This thesis does not explicitly formulate the cost of flexibility into the analytical 

process, which means VoF obtained by the above equation does not take account 

into the additional cost associated with enabling the system to possess such 

flexible features. Such assumptions results from the complexity inherited in the 

process of estimating such cost and may be highly subject to the profile of a 

decision-maker. For example, in the context of a MoD system, an expansion 

option may require the company to sign a contract with the local government who 

reserves some parking spaces for the MoD company to expand in the future. It is 

very difficult to estimate such contract cost. Besides, it is heavily case-by-case 

depended, which is largely affected by negotiation power of the company as well 

as the characteristics of geographic area. As such, formulating cost of flexibility is 

beyond the scope of this thesis. In contract, the thesis focuses on estimating the 
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VoF, which, in fact, provides an upper bound of the cost of flexibility. 

Decision-makers can compare the VoF and cost of flexibility later as to determine 

whether to implement the flexible design or not. 

3.1.4 Step 4: Sensitivity analysis 

Finally, sensitivity analysis is carried out in order to assess how the results 

obtained respond to changes in underlying assumptions. This step can be seen as a 

way to test the robustness of the design alternatives in response to the variations 

that may happen to the assumptions. There are several standard mathematical 

methods that can be applied in terms of doing sensitivity analysis. For example, 

one-factor-at-a-time method (OFAT) (Czitrom, 1999) is one of simplest and most 

common approaches. 

3.2 Case study - valuing flexibilities in urban water management 
systems via simulation 
This section presents a study where flexibility is incorporated into urban water 

management systems as intelligent decision-making mechanisms that enables the 

system to mitigate potential impact from downside risks and increase 

opportunities for upside gains over a range of possible futures. A simulation-based 

approach is applied here to estimate the performances of the system under 

different conditions, namely with and without flexibility.  

The study further illustrates how the four-step procedure is implemented on a 

real-world urban infrastructure application. While not directly connected to the 

analysis of MoD systems, the case demonstrates the use of simulation for 

analyzing a complex system under uncertainty as done in Chapter 4, and 
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estimating the VoF, which is crucial to Chapter 5. The numerical results obtained 

in this study also indicate whether a flexible system is able to outperform a more 

rigid, fixed design alternative, which in this case is achieved by reducing the 

initial investment and adapting to the changing environment. 

3.2.1 Case introduction 

As part of an effort to investigate possible solutions for next-generation water 

infrastructure systems, which aims to reduce damage caused by floods in rainy 

seasons and reuse of the run-offs, a new technology based on porous pavements 

and green roofs is being proposed. The technology allows rainwater to infiltrate 

into the sub-surface layer where it is temporarily stored. For porous pavements, 

the sub-surface layer is filled with porous materials, while for the green roofs, the 

vegetation cover and space underneath function as the storage facility. The stored 

rainwater is then either detained in the ground, or harvested by the pipe installed 

under pavements or the underneath space of green roofs. Later this harvested 

water can be recycled as “grey” water or be channeled to reservoirs. By 

implementing this technology, revenues (as cost savings of re-using rainwater) are 

generated. Besides, the porous pavements and green roofs reduce frequency and 

peak flow rate of rainwater that enters the drainage system. Consequently, less 

space is required for drainage, and the likelihood of flooding damage is also 

reduced (Zhang & Buurman, 2010). 

A test site has been chosen for a preliminary analysis on the possibilities and 

limitations of this innovative solution. The site is located within the Kent Ridge 

campus of the National University of Singapore (NUS). The size of the catchment 
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has an area of about 8.2 ha. The land use distribution of the catchment comprises 

the following: 41% of bushes, 35.5% of other green areas, mostly grass patches 

on mild and steep slopes, 16.8% of rooftop and 4.77% of road areas. 

There are two considered design alternatives: a traditional expansion of the 

current drainage canal system (referred as design A) and alternative based on 

catchment measures of porous pavements and green roofs (referred as design B). 

Although design B has several aforementioned advantages compared with design 

A, since design B incurs a higher construction cost and maintenance cost, analysis 

is needed to better understand the costs and benefits. Also, one aims to assess 

whether there is potential to further improve the economic performance of those 

two design alternatives under uncertainties by applying the flexibility analysis. 

3.2.2 Step 1: Baseline DCF model 

The following is the list of notations used in the analysis. 

Areatotal      Total area of the test site under study (m2) 

Areap         Area that can be deployed to porous pavements (m2) 

Arear         Area that can be deployed to green roofs (m2) 

DCA          Drainage capacity of canals in design A (m3) 

DCB          Drainage capacity of canals in design B (m3) 

Dc            Depth of canals (m) 

Areac         Area of existing canals (m2)          
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AExpc        Area of expanded canals in design A (m2)          

SCp           Storage capacity of porous pavements (m3) 

SCr          Storage capacity of green roofs (m3) 

Dp           Depth of porous materials in porous pavements (m) 

Drc           Depth of vegetation covers in green roofs (m) 

Drs           Depth of underneath space in green roofs (m) 

Pp            Porosity of porous materials in porous pavements  

Pr            Porosity of vegetation covers in green roofs  

Rep           Recycle efficiency of porous pavements                      

Rer           Recycle efficiency of green roofs 

CapexA        Initial investment of design A ($) 

CapexB        Initial investment of design B ($) 

Uf            Unit flood damage cost ($/m3) 

UmA          Unit maintenance cost of design A ($/m2) 

Ump          Unit maintenance cost of porous pavements ($/m2) 

Umr          Unit maintenance cost of green roofs ($/m2) 

Uc            Unit cost of water treatment   ($/m3)                   
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dr            Discounted rate     

ACk           Annual cost in kth year ($)        

ARk          Annual revenue in kth year ($)                

Prk           Unit water price in kth year ($/m3) 

RQik          Rainfall quantity of the ith rain of the kth year (m) 

RNk          Number of rain events of the kth year 

The assumptions for the design parameters and input data needed in the case 

study are shown in Table 3.1. The cost information is based on personal 

communications with the design team members. Although it may not be perfectly 

accurate, it is based on experienced designers’ inputs and reflects the essence of 

the system to some degree. The annual rainfall information is summarized from 

the online published data of National Environmental Agency ("Weather 

Statistics," 2013). 
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Table 3.1 Assumptions on parameters  
Assumptions on parameters 

Catchment area (m2) 82000 Pave area (m2) 7500 Roofs area (m2) 13000 

Recycle efficiency 
(roofs) 

0.45 Recycle 
efficiency 
(pavements) 

0.65 Depth of canals (m) 0.5 

Existing area of 
canals (m2) 

2600 Expanded area of 
canals (m2) 

5400 Porosity 
(pavements) 

0.3 

Depth (pavements) 
(m) 

0.3 Porosity (roofs) 0.6 Depth (vegetation 
of roofs) (m) 

0.15 

Depth (space 
underneath of roofs) 
(m) 

0.3 CAPEX (design 
A) ($) 

150,000 CAPEX (design B) 
($) 

421,875 

Maintenance cost 
(pavements) ($/m2) 

1.0 Maintenance cost 
(roofs) ($/m2) 

1.2 Maintenance cost 
(canals) ($/m2) 

0.85 

Water price ($/m3) 1.7 Water treatment 
cost ($/m3) 

0.3 Flood damage cost 
($/m3) 

0.5 

Average NO. of rain 
events (year) 

178 Average rainfall 
in one rain (mm) 

13.16 CAPEX (Flexible 
B) ($) 

300,000 

Expansion cost 

(pavements) 

($/112.5m3) 

70,000 Expansion cost 

(roofs) ($/650m3) 

50,000 Expansion cost 

(canals) ($/740m3) 

48,000 

 

For design A, the following equations (Equation 3.2 - Equation 3.4) are developed. 

As there are no mechanisms of generating revenues, the analysis only needs to 

quantify the costs involved. There are two categories of costs under consideration. 

Flood damage cost is calculated based on the occurrence of the rain events where 

the rainfall quantity exceeds the drainage capacity. Maintenance cost is a variable 
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cost that links with the drainage area. The maintenance cost is related to activities 

of physical cleansing, maintenance and minor structural repairs of drains and 

canals. 

ACk = � max(0,  RQik ∗ Areatotal − DCA) ∗ Uf
RNk

i=1

+ (Areac + AExpc) ∗ UmA 3.2 

                      

DCA = (Areac + AExpc) ∗ Dc                                              3.3 
                                                                                                      

NPVA = −CapexA −�
ACk

(1 + dr)k

50

k=1

                                         3.4 

                                                                                                

As to design B, more refined equations (Equation 3.5 – Equation 3.10) are 

developed, since not only costs need to be quantified but also the revenues 

generated as cost savings. In this case, the extra rainwater, that can neither be 

evacuated through drainage canals nor be captured by the new catchment 

measures, incurs flood damage cost. For the existing drainage canals, the 

maintenance cost is estimated by the same approach with design A. For porous 

pavements, the maintenance cost is mainly for required annual vacuum-sweeping 

activities, while for green roofs, it is used to carry out cleansing and vegetation 

maintenance. The area that installs this new catchment measure and the unit cost 

determines the total maintenance cost. The calculation of revenues is based on 

rainfalls, recycle efficiency and storage capacity, as indicated in Equation 3.9. 
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ACk = ∑ max�0,  RQik ∗ Areatotal − DCB − min�SCp, RQik ∗
RNk
i=1

Areap� − min(SCr, RQik ∗ Arear)� ∗ Uf + Uc ∗ (min�SCp, RQik ∗

Areap� ∗ Rep + min(SCr, RQik ∗ Arear) ∗ Rer) + Areac ∗ UmA +

Areap ∗ Ump + Arear ∗ Umr    3.5 

DCB = Areac ∗ Dc    3.6 

SCp = Areap ∗ Dp ∗ Pp    3.7 

SCr = Arear ∗ (Drc ∗ Pr + Drs)    3.8 

ARk = ∑ (min�SCp, RQik ∗ Areap� ∗ Rep + min(SCr, RQik ∗ Arear) ∗
RNk
i=1

Rer) ∗ Prk    3.9 

NPVB = −CapexB + �
ARk − ACk
(1 + dr)k

50

k=1

 
  3.10  

Based on the aforementioned assumptions and models, the deterministic analysis 

is carried out, where the two design alternatives are evaluated under deterministic 

values of unit water price, the number of rain events and the rainfall in a single 

rain event ( 𝐸𝑃𝑘 =1.7$/m3, 𝑅𝐸𝑘 =178, 𝑅𝑅𝑓𝑘 =13.16mm, ∀𝑖,𝑘 ). Table 3.2 

summarizes the computation results. The deterministic DCF analysis shows that 

overall introducing porous pavements and green roofs may be more cost 

beneficial than the canal expansion alternative, as the former shows a less 

negative NPV compared with design A.  



 

42 
 

Table 3.2 Results of deterministic analysis 
 Design A  Design B  Best Design 

NPV ($) -266,846 -252,274 Design B 

 

3.2.3 Step 2: Uncertainty analysis 

In this step, a simulation model is built as to assess the performance of the two 

design alternatives given that rainfalls and water prices subject to certain 

probabilistic models. The simulation model plays a core role in the rest of the 

analysis as the platform to test the performance of different design alternatives 

under the stochastic environment and varied assumptions. Results from this step 

provide a more comprehensive assessment on the design alternatives. 

3.2.3.1 Assumptions 

1) For the unit water price, the study relies on Geometric Brownian Motion 

(GBM) Process, captured by Equation 3.11 with drift assumed to be 1%, 

volatility 2% and 𝐸𝑃0 1.7 $/m3.  

𝑑𝐸𝑡 = 𝜇𝐸𝑡𝑑𝑑 + 𝜎𝐸𝑡𝑑𝑊𝑡                                           3.11 
* 𝜇-drift, 𝜎-volatility, 𝑊𝑡-Wiener Process 

2) Two major types of rain events are considered: normal rain events and 

storms. Normal rain events are simulated using only one scenario. 

Scenarios of storms are generated from IDF curves that are constructed by 

a company monitoring the rainfalls in Singapore.  

3) Return period: 10 years. Based on Public Utilities Board (PUB) code of 

practice for surface water drainage ("Code of Practice-Drainage Design 
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and Considerations," 2011), since the area is less than 100 ha, a return 

period of 10 years is sufficient. The return period of each IDF curve also 

indicates the probability of the scenario. For example, for the scenario that 

has a return period of 1 month, the probability that it can happen in a 

specific day is 1/30. This assumption also indicates that only the ten IDF 

curves with return periods no more than 10 years are used to simulate 

storms. 

4) Duration of a single rain event is normally distributed between 5 minutes 

and 420 minutes, with a mean of 60 and a variance of 100. 

5) Only one rain event occurs in a single day. 

3.2.3.2 Procedure of generating rainfalls in the simulation model 

Under the assumptions above, the rainfall scenarios during the life cycle of the 

project have been simulated as follows (Figure 3.1). 
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Figure 3.1 Procedure of generating rainfalls 
 

1) Reverse engineering of the IDF curves by using nonlinear regression to 

calibrate the relationship between rain durations and intensities. 

2) Calculate the rainfall of the normal rain event using the equations in 

Figure 3.1. 

3) Apply the procedures described in the dashed box of Figure 3.1 to 

generate the rainfall scenario of a single day.   

4) Repeating step 3) by 365 x 50 x N times, N scenarios of daily rainfalls in 

50 years are obtained.  

3.2.3.3 Evaluation results 

2000 scenarios that contain the information of water prices and rainfalls are 

generated as to estimate the ENPV of the two design alternatives. Figure 3.2 
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shows the scenarios of yearly water prices, while Figure 3.3 illustrates the 

distribution of rainfalls. 

 

Figure 3.2 Yearly water price in the planning horizon 
 

 

Figure 3.3 Histogram of rainfall in a single event 
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Combined with results from the deterministic analysis in the previous section and 

the uncertainty analysis, a probabilistic distribution (Figure 3.4) and a 

multi-criteria comparison table (Table 3.3) are constructed.  

 

Figure 3.4 Distribution of NPV of Design A and Design B 
 

Table 3.3 Multi-metrics table of Design A and Design B 

  
Deterministic 
NPV  ENPV  P5(VAR)  P95(VAG)  

Standard 
error 

Design A -$266,846 -$310,207 -$321,648 -$299,584 $149 

Design B -$252,274 -$90,956 -$103,443 -$78,419 $169 

Better Design  Design B Design B Design B Design B NA 

 

As indicated from the above results, if only the deterministic analysis is referred 

as the basis of decision-making, although the ranking of design alternatives 

remains the same, the economic value of two design alternatives is either 

overestimated or underestimated. For design A, as shown in the cumulative 
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probability curve, the likelihood that the realized NPV is smaller than the 

deterministic NPV is 1, which means the probability that such NPV can be 

obtained in the reality is negligible. This finding is supported by the Jensen’s 

inequality (Jensen, 1906) shown in Equation 1.1. As we take the average of 

uncertainty drivers (unit price, rainfall quantity and number of rainfall events), the 

NPV in the upside scenarios cannot be averaged out by the downside scenarios. In 

fact, since here the flood cost is incurred when the rainfall is higher than the 

drainage capacity, as long as the assumed deterministic value of single rainfall is 

lower than the drainage capacity, there is no flood damage cost resulted in the 

whole life cycle of the system. In reality, however, the rainfall is subjected to high 

fluctuations, which leads to the presence of storms that lead to flood damage cost. 

The Flaw of Averages (Savage, 2000) is also observed in the result of design B 

but just turns out in an opposite direction. As shown in Figure 3.4, the 

deterministic value of NPV is even away from the lower tail of the CDF curve, 

which means the chance of obtaining such a low NPV in real world is very slim. 

As for the standard deviation, since design A is only subjected to the fluctuation 

of rainfall, while design B is influenced by rainfall and price of water, the 

variance of design A is relatively lower. 

3.2.3.4 Further discussion 

To further investigate how the two design alternatives perform under different 

scenarios, especially on the aspect of preventing flood damage, the flood damage 

costs under different rainfalls ranging from 0mm to 300mm are calculated. Figure 

3.5 shows the computation results. 
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Figure 3.5 Flood functions of Design A and Design B 
 

Based on Figure 3.5, when the rainfall is higher than 20mm, flood damage occurs 

to design B, while this threshold is almost doubled for design A. This indicates 

that there is a higher chance of flood damage in design B. Besides, since the 

rainfall in a single rain event is rarely higher than 160mm (shown in Figure 3.3), 

mostly higher flood damage costs happen to design B rather than design A.  

This seemly counter-intuitive result may come from the fact that only a small 

proportion of the test area (40.02%) can be deployed to either green roofs or 

porous pavements. Therefore the rain dropping to other area that is not covered by 

the new technology can only be evacuated through existing drainage canals. 

Meanwhile, compared with design A that expands the capacity of canals, the 

drainage capacity in design B is much smaller. Because of the reasoning above, 

design B is more vulnerable to rainfall fluctuations in terms of flood damage. 
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3.2.4 Step 3: Flexibility analysis 

In this step, flexibility is incorporated into both design A and design B. The 

conceptual designs are coded into the simulation model. The same number of 

scenarios (2000) is generated as to estimate their performances. 

3.2.4.1 Flexible Designs 

For design A, the flexible design is described as follows. The existing canals are 

not expanded at the beginning. If the number of floods happening within one year 

exceeds ten times, the drainage capacity will be expanded until it reaches the 

upper bound (5000m3). This expansion option is further explained using the 

following expressions.  

if ∑ 1𝑅𝑅𝑖𝑖∗𝐴𝐴𝑓𝑏𝑡𝑡𝑡𝑡𝑡≥𝐷𝐷𝐴(𝑅𝑅𝑓𝑘)𝑅𝑅𝑖
𝑓=1 ≥ 10 & (𝐷𝐷𝐴 + 𝐸𝐸𝐸𝐸𝑖𝐸𝐸) ≤ 𝑚𝑚𝐸𝑚  

Then  CapacityExpansion == true  

 * 1RQik∗Areatotal≥DCA(𝑅𝑅𝑓𝑘) is the indicator function of 𝑅𝑅𝑓𝑘 

As for design B, the same area is deployed for the new technology but only half 

of the depth is deployed for the pavements and the underneath space of roofs. If 

the number of floods happening within one year exceeds ten times, the storage 

capacity will be expanded by enlarging the depth until it reaches the upper bound. 

Details of this expansion option are shown below. 

For green roofs, 

if ∑ 1𝑅𝑅𝑖𝑖∗𝐴𝐴𝑓𝑏𝑟≥𝑆𝐷𝑟(𝑅𝑅𝑓𝑘)𝑅𝑅𝑖
𝑓=1 ≥ 10 & (𝐸𝐷𝐴 + 𝐸𝐸𝐸𝐸𝑖𝐸𝐸) ≤ 𝑚𝑚𝐸𝐴  
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 Then  CapacityExpansion == true  

 *1RQik∗Arear≥SCr(𝑅𝑅𝑓𝑘) is the indicator function of 𝑅𝑅𝑓𝑘 

For porous pavements, 

if ∑ 1𝑅𝑅𝑖𝑖∗𝐴𝐴𝑓𝑏𝑝≥𝑆𝐷𝑝(𝑅𝑅𝑓𝑘)𝑅𝑅𝑖
𝑓=1 ≥ 10 & (𝐸𝐷𝑝 + 𝐸𝐸𝐸𝐸𝑖𝐸𝐸) ≤ 𝑚𝑚𝐸𝑝  

 Then  CapacityExpansion == true  

 * 1RQik∗Areap≥SCp(RQik) is the indicator function of RQik 

3.2.4.2 Evaluation Results 

By summarizing results from the flexibility analysis and the uncertainty analysis,  

Figure 3.6 and Table 3.4are obtained. Figure 3.6 shows the distribution of the NPV 

of all alternatives, while Table 3.4 summarizes the information on the predefined 

metrics. 



 

51 
 

 

Figure 3.6 Distribution of NPV of all design alternatives 
 

Table 3.4 Multi-metrics comparison table of all design alternatives 

  ENPV  P5(VAR)  P95(VAG)  
Standard 

error 

Design A -$310,207 -$321,648 -$299,584 $149 

Design B -$90,956 -$103,443 -$78,419 $169 

Flexible A -$265,367 -$297,644 -$234,641 $432 

Flexible B $14,843 -$3,121 $30,151 $257 

Better Design  Flexible B Flexible B Flexible B NA 

 

For design B, based on Equation 3.12, the value of flexibility is $105,799. The 

results show that incorporating flexibility makes design B profitable as ENPV 

turns out to be positive. One interesting observation is that the value of flexibility 

closely corresponds to the difference in CAPEX between flexible design B and 

baseline design B ($121,875). This indicates that baseline design B may be 

designed with unnecessary storage capacity whereas flexible design B gains the 
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advantage by reducing the redundant initial investment. This is further confirmed 

by the fact that among the 2000 times of simulation, porous pavements are 

expanded only in a small proportion of scenarios (197 out of 2000), and it has 

never reached the maximum capacity, while the expansion option is never 

exercised for green roofs. 

𝑉𝑉𝑉𝐵 = 𝐸𝐸𝐸𝑉𝑓𝑓 − 𝐸𝐸𝐸𝑉𝑓                                               3.12 
                                                                                                                                                                               

For design A, the economic performance is also improved by considering the 

flexibility of a staged capacity deployment approach. According to Figure 3.4, the 

extra value brought by this expansion option is $44,840. The expansion decisions 

made through the simulation indicate that the improvement on design A is also 

achieved through reducing excessive capacity of the inflexible design. It is found 

that in less than 10% of the simulation does the drainage capacity of canals 

expands above 4000m3, and mostly (over 70%) a capacity of 3520m3 is 

considered sufficient based on the decision rule. The trade-off between the 

economy of scale and the time value of money may be another factor that leads to 

the better performance of flexible design A. The influence from the economy of 

scale suggests that a larger capacity deployed all at once is a more economic 

decision, while the time value of money favors that more investment should be 

placed later. In the case of design A, the latter factor seems to impose more impact 

on the final result.   

The analysis does not make explicit assumptions on the cost of flexibility, as 

accurate information regarding cost of these flexible designs, e.g. opportunity cost 
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of reserving the land for capacity expansion, cannot be obtained. However, the 

VoF calculated provides an upper bound of the associated cost the flexibility, 

which can be an important reference for making decisions on the implementation 

of these two flexible designs. 

3.2.5 Step 4: Sensitivity analysis 

After the flexibility analysis has been carried out, the best design alternative, 

flexible design B in this case study, is selected and subjected to the sensitivity 

analysis. Namely, the performance of flexible design B is reevaluated under the 

change of major assumptions made in Table 3.1. Recycle efficiency, maintenance 

cost, treatment cost, discounted rate expansion cost, and flood damage cost are 

assumed to be major influences on the performance of flexible design B. OFAT is 

applied in the sensitivity analysis. The values of the aforementioned factors are 

varied by ± 20% and 5% at a time, and then the ENPV of flexible design B is 

reevaluated under the new inputs. 

According to Figure 3.7, the variation of expansion costs imposes almost no 

influence on the ENPV. This evidence supports the conclusion made on the 

flexibility analysis, that the expansion is rarely exercised. On the other hand, the 

recycle efficiency of green roofs is shown to affect the performance of flexible 

design B most, which is even stronger than that of the discounted rate. The 

observation here contrasts to the recycle efficiency of porous pavements that does 

not influence the result so much. This difference between porous pavements and 

green roofs is also observed on the maintenance cost where green roofs lead to a 

stronger degree of changes on the ENPV. The observation may be resulted from 
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the fact, that a larger area is deployed for roofs so that the ENPV depends more on 

the change of roofs. Water treatment cost also influences the result to a certain 

degree that is close to that of the maintenance cost of pavements, but higher than 

that of the unit flood cost. The relatively weak effect of unit flood cost may be 

explained by the low frequency of flood. This result also indicates the robustness 

of choosing design B, as in the worst case, the ENPV of flexible design B is still 

far better than flexible design A. Even a higher unit flood cost cannot diminish the 

advantage of flexible design B. 

 

Figure 3.7 Sensitivity analysis of ENPVfb 
 

By varying the same factors, this study also applies the OFAT to the VoFB. 

Results are shown in Figure 3.8. Due to the negligible influence of expansion cost 

and maintenance cost on the result, Figure 3.8 does not include these factors. 

According to Figure 3.8, discounted rate is the most critical factor on the VoF. The 
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result on discounted rate also corresponds to the conclusion made in the flexibility 

analysis that a higher discounted rate contributes to a higher VoF. It is also 

interesting to note that increasing recycle efficiency of pavements leads to lower 

value of flexibility. One reason for this observation is that higher recycle 

efficiency may prefer developing a larger capacity at the beginning so as to 

generate more revenues by re-using more rainwater. On the contrary, the influence 

from the recycle efficiency of roofs is almost negligible. This is explained by the 

fact that the capacity of roofs is never expanded in the simulation. Treatment cost 

and flood damage cost only have a slight effect on the result. 

 

Figure 3.8 Sensitivity analysis of VoFB 
 

3.2.6 Case study summary 

This case study presents an application of the four-step procedure to the design 

and evaluation of an emerging water catchment technology. Several interesting 

findings are observed in this part of the analysis. 
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First, the comparison between the results from the uncertainty analysis and the 

deterministic analysis shows that the typical system design approach and 

evaluation might lead to suboptimal system performance and flaws in the 

evaluation results. It is found that deterministic analysis results in considerably 

inaccurate evaluation of design alternatives. The results here further confirm with 

the observation made by other studies (de Neufville & Scholtes, 2011).  

Second, it is demonstrated in this case study again that designing flexible systems 

can be effective in improving the life cycle performance. For example, for flexible 

design B, the extra benefits are brought by reducing the initial excessive capacity, 

and by enabling an expansion option, so that the system is able to avoid 

unnecessary initial investment if downside scenarios happen (e.g. low cost 

savings by “grey water” that cannot balance the cost of the system). Meanwhile, 

the system is prepared to handle upside scenarios (e.g. high unit price of water 

which makes the system more profitable). This action is similar to buying 

insurance for the system by which the distribution of the system performance is 

shifted to the right side. This improvement on economic performance results from 

incorporating flexibility is also observed on design A. 

However, flexible designs may not always result in improvement on system 

performance. As shown in the sensitivity analysis, there are many factors one 

would need to consider, such as the time value of money and opportunity cost. 

Although in the case study flexible design B is shown to be the best even under 

variations of assumptions, designers need to be careful about the trade-offs 
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between those factors so that the system performance can be maximized when 

dealing with different systems. 

Finally, the procedure in this study where the simulation model plays a central 

role can be generalized into the applications of other engineering systems. Since 

different systems are subjected to distinct costs and benefits, and faced with their 

respective source of uncertainties, details of modeling and computation may need 

to be adjusted to suit the particular system at hand. In addition, the way of 

combining historical data and IDF curves to simulate daily rainfall scenarios can 

be easily modified to another region with different IDF curves or requirements of 

return periods. 

In sum, the case study is the first application of the “flexibility thinking” on the 

design and deployment of porous pavement and green roof technologies, as a way 

to recuperate and store grey water from natural rain events. It provides an 

example of how these ideas can be considered in urban water management 

systems and how this new catchment technology can be better deployed. The 

proposed methodology is general, and can be applied to the analysis of other 

engineering systems. This is demonstrated by using a similar analytical approach 

in Chapters 4-5 of this thesis, focusing on MoD transportation systems. 

3.3 Summary 
This chapter introduces the four-step procedure to analyze complex systems under 

uncertainty and flexibility, where the core analytical technique relies a 

simulation-based approach. The procedure is applied to value the flexibilities in 

design and management of urban water management systems.  
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Results from the case study support the argument that accounting for uncertainty 

and incorporating flexibility is an effective approach to enhance system 

performance. Equipped with the capability to change in the future, an engineering 

system is thus able to take the advantage of unexpected favorable condition as 

well as reducing exposure to downside scenarios. 

On the other hand, the case study also shows that simulation plays an important 

role in estimating system performance more generally. The study demonstrates 

several advantages of simulation in the context of evaluating and optimizing 

systems design alternatives, both more rigid and flexible. First, a simulation 

model can be easily modified to cater to different formulations of flexible 

decision rules as well as varied assumptions on uncertainty modeling. Although in 

the case study, only one formulation of decision rule is considered for each design 

alternative, restructuring decision rule in the simulation model only requires a 

simple step, namely recoding the “if” statement. In fact, other approaches to 

modeling and evaluating flexibilities, such as mixed integer programming that 

relied on dynamic programming in the aspect of evaluation (Wang, 2005), may 

impose limitations on the decision rules being evaluated, and may be trapped in 

the curse of dimensionality when confronted with a multitude of decision periods 

and states. Besides, the ease of implementation of a simulation-based approach is 

also seen in performing a sensitivity analysis.  

Second, the use of decision rule, which is the common practice of formulating 

flexibility in a simulation-based approach, is a direct extension of existing design 

and evaluation approaches, and is analyzed via a systematic step-wise process for 
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more practical impact in engineering practice. For example in the case study, for 

the flexible drainage system, when the operators find that the number of flooding 

events exceeds a pre-specified level, they start to expand the capacity of the 

canals according to the decision rule. A similar strategy is used when analyzing 

MoD systems for flexibility in Chapter 5.  

Finally, although only evaluation and comparison between a given set of standard 

and flexible designs are considered, there is more and more research related to 

simulation-based optimization techniques, which provides ample grounds to find 

optimal flexible design solutions. Comparing between optimal fixed (or rigid) 

designs and optimal flexible designs is an approach followed in the next chapters 

of this thesis. 

However, there are also challenges when adopting a simulation-based approach to 

analyze complex systems under uncertainty and for flexibility. The main issue 

comes from the large computation cost, especially when optimization must be 

done. On the one hand, the decision space can be very large. As simulation model 

is able to adapt to different formulations of decision rules, and for each decision 

rule, there may be a considerable number of possible combinations for the 

decision variables. Therefore, identifying the optimal flexible design may not be 

an easy task. On the other hand, mostly, flexibility is planned for a relatively 

longer time horizon, which means the simulation model can grow to a very large 

computational scale. Consequently, estimating the performance of the candidate 

solutions may require a large amount of computation budget. Due to the reasoning 

above, it is critical to develop an approach to enhance the computational 
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efficiency when simulation model is employed for analyzing complex systems 

under uncertainty and for flexibility. 

The simulation-based analytical procedure introduced in this chapter provides a 

straightforward and readily-executable approach to design, analyze, and evaluate 

systems design alternatives. It offers designers a step-by-step framework on the 

“flexibility paradigm”. Besides, the idea of using simulation further enhances 

wider applicability. The analytical logic that guides the case study in this chapter 

plays an essential role in the rest of this thesis. More advanced techniques relative 

to the simulation-based approach are considered to make a fair comparison 

between different systems design alternatives, some being more rigid, some being 

more flexible, and to overcome the computational challenges that such extensive 

analysis may create. 

In sum, this chapter first indicates a direction to the research questions proposed 

in Section 2.3, suggesting that designing flexibility is an effective approach to 

deal with uncertainties and taking a simulation-based approach is advantageous in 

terms of modelling and evaluating flexibilities. Meanwhile, it also points out a 

challenge that may be encountered when a simulation-based approach is adopted, 

namely the computational cost. 
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Chapter 4 Integrating Operational Decisions into the Planning of 

MoD systems under Short-term Demand Fluctuation 

This chapter targets the planning and operating issues of one-way MoD systems 

under short-term demand uncertainty. More specifically, it aims to assist 

stakeholders to determine where and how to set up stations and allocate vehicles 

when faced with stochastic and imbalanced demand. The use of “short-term” here 

indicates that although there are fluctuations in demand realization, the overall 

usage pattern remains the same. The main operational decisions, rebalancing 

activities, are incorporated as sub-problems, by which their influence on the 

higher-level decisions, and ultimately the overall performance of the system, is 

accounted for. The rebalancing operations can be perceived as an 

operational-level flexibility that helps to address the variations of daily demand. 

The target problem can be illustrated in Figure 4.1 as an example. The geographic 

region in the figure contains two residential areas and one CBD. It is further 

divided into eight subareas with dots representing their centers. The subareas 

represent clusters of adjacent stations. Within each station cluster, there is no 

difference for customers to pick up or drop off vehicles at any specific station. 

Uncertain and imbalanced numbers of customers will travel between the subareas 

throughout the day. If customers cannot find any available vehicles within their 

origin subarea, the demand will be lost, while customers who cannot find 

available parking spots within their destination subarea will drop off the vehicle at 

a nearby location, but incur extra parking expenses to be paid by the operating 

company. Constrained by such user behaviors, this study devises a 
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decision-support tool to help determine the following parameters for each subarea: 

1) the number of parking spots to be rented and 2) the number of vehicles to be 

placed at the beginning of the day. The objective is to assist designers to render a 

system configuration that satisfies an adequate level of service (LoS) with a 

minimal overall cost. 

This chapter provides a methodology that determines the initial configuration of a 

MoD system at its inception stage. It is assumed that at this stage, the priority 

resides on building a large customer base that can only be attained by providing 

an adequate LoS. As previously demonstrated in Singapore, poor service quality 

can be a main reason for a car-sharing system’s demise ("End of the Road for 

Honda Car Sharing Scheme," 2008) Besides, as short-term demand uncertainty is 

the major concern in this chapter, more attention is placed on the operational-level 

decisions. Therefore, the chapter formulates the problem as a cost-minimization 

problem that is constrained by the LoS. Details of the optimization model are 

presented in the next section.    
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Figure 4.1 Illustration of the problem 

4.1 A simulation-based methodology 
In order to deal with the stochasticity of demand and model the rebalancing 

operations, this study relies on a simulation-based methodology. A constrained 

optimization model is first formulated and later solved using a simulation-based 

optimization approach. The solution  approach consists of 1) a discrete event 

simulator (DES), which is applied to estimate the objective function of each 

candidate solution considering the stochastic demand and hourly rebalancing 

operations, and 2) a computational algorithm based on Particle Swarm 

Optimization (PSO) and Optimal Computation Budget Allocation (OCBA). The 

figure below illustrates the overall methodology. 
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Figure 4.2 Overall methodology 
4.1.1 Optimization model 

𝑚𝑖𝑚 𝐷𝑓�𝐸𝑓
𝑓𝑖𝑅

+ 𝑤 ∗ 𝑣 + 𝑅(𝐸, 𝑣) + 𝐸(𝐸, 𝑣) 
4.1 

𝑔(𝐸, 𝑣) ≤ 𝛼 4.2 

                         
𝐸𝑓 ≥ 𝑣𝑓   ∀ 𝑖𝑖𝐸  4.3 

𝑣𝑓 = 𝑣 ∗ 𝜆𝑖1
∑ 𝜆𝑖1𝑁
𝑖=1

 4.4 

∑ 𝑣𝑓𝑅
𝑓=1 =  𝑣 4.5 

𝑣𝑓 , 𝐸𝑓 ≥ 0,∈ 𝐼𝑚𝑑𝐸𝑔𝐸𝑃 4.6 

In the optimization model, 𝐷𝑓 is the rent cost of one parking spot at subarea i; 𝐸 

is a vector whose dimension is equal to the number of subareas and the value of 

its component is the number of parking spots at each subarea (also referred as 

capacity of each subarea) ; 𝑤 is the depreciated daily cost of one vehicle; 𝑣 is 

the total number of vehicles in the system; 𝑣𝑓 is the number of vehicles placed at 
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subarea i at the beginning of the day; 𝑅(𝐸, 𝑣) represents the rebalancing cost, 

which is a function of 𝐸 and 𝑣; 𝐸(𝐸, 𝑣), which is also a function of 𝐸 and 𝑣, 

represents the extra parking cost incurred when customers arrive at the destination 

subarea but cannot find any available parking spots, hence having to park 

somewhere nearby that is not rented in advance; 𝑔(𝐸, 𝑣) is the customer loss rate 

due to the lack of available vehicles upon arrival proportional to the total number 

of customers approaching the system; α is the requirement on the maximum 

customer loss rate; and 𝜆𝑓1 is the arrival rate of customers at subarea i during the 

first time segment of an operating day. Time segments are explained in the 

following section where the simulator is introduced. 

As indicated in Equation 4.1, the objective of the optimization model is to 

minimize the overall daily cost, including rent cost for parking spots, depreciation 

cost of vehicles, and rebalancing cost. The practice of adopting daily cost has 

been seen in other studies, e.g., (Cepolina & Farina, 2012; Jorge et al., 2012). 

Equation 4.2 defines the main constraint of this optimization model, which sets an 

upper bound on the rate of lost customers. This constraint can be regarded as 

placing a requirement on the LoS that the system is able to provide. Equation 

4.3-Equation 4.6 define the search space. In our optimization model, instead of 

directly optimizing each 𝑣𝑓  , we optimize the total number of vehicles and apply 

the distribution rule specified by Equation 4.3-Equation 4.5. Basically, the 

heuristic rule allocates vehicles to each subarea at the beginning of the day in 

proportion to the customer arrival rates during the first time segment while being 

constrained by the capacity of the subarea. In the section of further analysis, this 
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study will test the efficiency of the heuristic allocation rule by comparing the 

results obtained under such a rule to the results of an optimization analysis where 

the initial vehicle distribution is individually optimized. 

For easier execution in computation, similar to the work by Cepolina and Farina 

(2012), the aforementioned model is transformed into the following relaxed 

model. In this transformed optimization model, violation of constrain 4.2 is 

incorporated into the objective function as a penalty cost. 𝜇 is considered as a 

large number since LoS is an important performance metric in this analysis. 

𝑚𝑖𝑚 𝑓(𝐸, 𝑣) = 𝐷𝑓�𝐸𝑓
𝑓𝑖𝑅

+ 𝑤 ∗ 𝑣 + 𝑅(𝐸, 𝑣) + 𝐸(𝐸, 𝑣) + 𝜇 ∗ (𝑔(𝐸, 𝑣) − 𝛼)2              

    

𝐸, 𝑣 𝑖 𝐷, 𝐷 is the decision space                                         4.8 
                                      

Since there is no analytical expression for 𝑓(𝐸, 𝑣), this study builds a discrete 

event simulator (DES) to estimate its value given 𝐸 and 𝑣. Provided with the 

decision variables, parameters, and the number of simulations (for example, K), 

the simulator can generate the required number of sample points containing the 

rebalancing cost (𝑃𝑘), the extra parking cost (𝐸𝑘), and the rate of lost customers 

(𝑔𝑘) under each realization of demand. Then, the value of the objective function is 

estimated using the following equation. The following section provides more 

details about the DES. 

𝑓(𝐸, 𝑣)~𝐷𝑓�𝐸𝑓
𝑓𝑖𝑅

+ 𝑤 ∗ 𝑣 +
∑ 𝑃𝑘 + 𝐸𝑘 + 𝜇 ∗ (𝑔𝑘 − 𝛼)2𝐾
𝑘=1

𝐾
                 4.9 
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4.1.2 Discrete event simulator (DES) 

The discrete event simulator (DES) was established using MATLAB. The 

randomness of the demand and a sub-optimization model to calculate rebalancing 

operations are coded into the simulator. The “passing of time” in the simulator is 

based on a fixed time increment. 

4.1.2.1 Assumptions 

This study makes several assumptions to define the behavior of customers and 

operators in the MoD system. These assumptions are coded into the simulator and 

applied to guide its progress. 

1) 17 hours are simulated and analyzed (07:00-24:00) every day. Each time step 

in the simulation model represents 10 minutes in reality. 

2) The travel demands between subareas are modeled as non-stationary Poisson 

processes. For each time step, there is an O-D matrix representing the arrival 

rates of the Poisson distributions that calibrate the travel demand between 

subareas. 

3) Two concepts related to demand modeling are defined in this study: time 

segment and demand pattern. The time segment is defined as a period in a 

day in which the same O-D matrix applies for each time step. The demand 

pattern characterizes the demand during a whole day. More specifically, one 

particular demand pattern contains the O-D matrixes for all the time 

segments in a day. 
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4) Within each subarea, there may be one or more stations; it makes no 

difference at which station within a subarea customers pick up or return 

vehicles. However, if a subarea runs out of vehicles, customers who demand 

vehicles there will be lost. Similarly, if a subarea runs out of parking spots, 

customers will not travel to another subarea and will have to drop off the 

vehicle at a nearby location; while in this case, there will be temporary 

parking expenses incurred to the system operators Equation 4.10 accounts 

for the calculation of lost demand, whereas Equation 4.11 shows the 

calculation of the extra parking spaces needed. 𝑠𝑓𝑡 is the number of vehicles 

at subarea i in time step t, while 𝑑𝑓𝑖𝑡 is the simulated demand originating 

from subarea i and heading towards subarea j in time step t. In the simulation 

model, if the number of vehicles is not sufficient to satisfy all of the 

simulated demands, the satisfied demand between any two subareas will be 

proportioned according to the simulated demands, but the sum of all satisfied 

demands will be equal to the number of vehicles available. 

𝑙𝑓𝑡 = max (∑ 𝑑𝑓𝑖𝑡 − 𝑠𝑓𝑡𝑅
𝑖∈𝑅,𝑖≠𝑓 , 0)    ∀i, jϵN,∀tϵT                    4.10 

                

ℎ𝑓𝑡 = max (s𝑓𝑡 − 𝐸𝑓 , 0)       ∀i, jϵN,∀tϵT                          4.11 
                  

5) The DES incorporates an option to conduct rebalancing activities. In 

occasions when rebalancing is performed, at the beginning of every hour, an 

integer-programming model is applied to compute the rebalancing scheme. It 

is assumed that a number of part-time drivers are hired to perform the 

operations and how much they are paid depends on the number of vehicles 
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being transported and the distance between two subareas. The next section 

presents the formulation of the optimization model for calculating the 

rebalancing operations.   

6) Rental time of vehicles is modeled as travel time between two subareas. 

Stopovers are not addressed separately in this study. Instead, this study 

assumes that a trip chain that involves multiple stops can be decomposed into 

several trips without stopovers. This assumption is the natural consequence 

resulting from how the customers are charged. Most MoD system charge 

customers by the usage time of the vehicle. In this case, even if customers 

have multiple stopovers, they will choose to end the current trip before their 

activities and restart a new trip after they finish the activity, which is 

perceived as a more economic choice. Therefore, the thesis does not make 

special consideration on trips with stopovers. 

4.1.2.2 Integer-programming model for hourly rebalancing 

𝑚𝑖𝑚 � �𝑃𝑓𝑖𝑡𝛾𝑓𝑖
𝑓𝑖𝑅𝑖𝑖𝑅,≠𝑓,

 
4.12 

𝐿𝑓𝑡  ≤ s𝑓𝑡 − � 𝑃𝑓𝑖𝑡
jϵN,≠i

+ � 𝑃𝑖𝑓𝑡
jϵN,≠i

≤ 𝑈𝑓𝑡 
4.13 

∑ 𝑃𝑓𝑖𝑡jϵN,≠i ≤ s𝑓𝑡       4.14 

𝑃𝑓𝑖𝑡 ≥ 0,∈ Integer     4.15 

rijt is the number of vehicles rebalanced out from subarea i to subarea j at the end 

of time t; γij is rebalancing cost of transferring one vehicle from subarea i to 
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subarea j at the end of time t; Uit and Lit are the upper bound and lower bound 

of vehicles that can be stocked at the subarea for the next hour. 

As indicated in the model, the objective is to find the optimal rebalancing 

operation that minimizes cost and guarantees each subarea can meet a specified 

operational LoS in the next hour. Despite the LoS on satisfying arriving customers, 

a requirement is also set for the rate of successfully returning vehicles to the 

existing parking lots. Inspired by Schuijbroek, Hampshire, and Hoeve (2013), this 

model calculates the upper and lower bounds of vehicles that can be stocked at 

each subarea to meet the required LoS on vehicle returns and pickups, 

respectively. This formulation is indicted in Equation 4.13. Constraint 4.14 limits 

the rebalanced-out vehicles to no more than the total number of existing vehicles 

in the subarea, while Equation 4.15 constrains the solution to non-negative 

integers. 

The following equations indicate how to calculate the bounds under different 

situations. To simplify the computation, instead of formulating vehicle returns and 

pick-ups as an M/M/1/K queue, as done by Schuijbroek, Hampshire, and Hoeve 

(2013), this paper identifies three situations and calibrates the arrival and 

departure of vehicles for each situation by a probability distribution. Here, 𝜆𝑓𝑡 

and 𝜇𝑓𝑡 are the vehicle return rate and the customer arrival rate, respectively, for 

the next hour after time t. 

1) λ𝑓𝑡 = 0, 𝜇𝑓𝑡 ≠ 0  

𝑈𝑓𝑡 = 𝐸𝑓                                                                  4.16 
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𝐿𝑓𝑡  = 𝑚𝑃𝑔𝑚𝑖𝑚𝑘 ∑
(𝜇𝑖𝑡)𝑥𝑓−𝜇𝑖𝑡

𝑓!
𝑘
𝑓=0 ≥ 1 − 𝛼  4.17 

                                                            
2) 𝜇𝑓𝑡 = 0, λ𝑓𝑡 ≠ 0 

𝐿𝑓𝑡 = 0 4.18 

𝑈𝑓𝑡 = 𝐸𝑓 − 𝑚𝑃𝑔𝑚𝑖𝑚𝑘 ∑
(𝜆𝑖𝑡)𝑥𝑓−𝜆𝑖𝑡

𝑓!
𝑘
𝑓=0 ≥ 1 − 𝛼  4.19 

3) 𝜇𝑓𝑡 ≠ 0, λ𝑓𝑡 ≠ 0 

𝐿𝑓𝑡 = 𝑚𝑃𝑔𝑚𝑖𝑚𝑘 ∑ 𝐸(𝐸, 𝜇𝑓𝑡, 𝜆𝑓𝑡)0
𝑓=−∞ + ∑ 𝐸(𝐸, 𝜇𝑓𝑡, 𝜆𝑓𝑡)𝑘

𝑓=0 ≥ 1 − 𝛼  4.20 

𝑈𝑓𝑡 = 𝐸𝑓 − 𝑚𝑃𝑔𝑚𝑖𝑚𝑘 ∑ 𝐸(𝐸, 𝜆𝑓𝑡, 𝜇𝑓𝑡)0
𝑓=−∞ + ∑ 𝐸(𝐸, 𝜆𝑓𝑡, 𝜇𝑓𝑡)𝑘

𝑓=0 ≥ 1 − 𝛼  4.21 

* P is the Skellam distribution 

Equation 4.16-Equation 4.17 show the calculation when there are only vehicle 

pickups in the next hour. In this case, the upper limit of stocked vehicles is simply 

the capacity of that subarea, as indicated in Equation 4.16, although there must 

also be a minimum number of vehicles so that a certain number of arriving 

customers can be served, which is the (1 − α) -th quantile of the Poisson 

distribution calculated by Equation 4.17. Similarly, Equation 4.18 and Equation 

4.19 show the case when there are only vehicle returns. With no customers 

requiring vehicles, the lower bound of the vehicle stock is zero, while the upper 

bound is the total capacity minus the (1 − α) -th quantile of the Poisson 

distribution for vehicle returns since a sufficient number of parking spaces must 

be reserved for the coming vehicles in the next hour. When both returns and 

pickups exist, as shown in Equation 4.20 and Equation 4.21, the (1 − α)-th 
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quantile of the Skellem distribution used to calibrate the difference between two 

Poisson distributions is applied to calculate the upper and lower bounds.  

Infeasibility may occur when calculating solutions for the rebalancing 

optimization model, e.g., when the total number of vehicles is not sufficient to 

satisfy the required LoS or when extra parking spaces are needed to accommodate 

excessive vehicles. In the case of infeasibility, no rebalancing will be executed in 

the next hour. 

4.1.2.3 Simulation procedure 
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•  

Figure 4.3 Simulation procedure 
 

Figure 4.3 illustrates the process of the simulator starting with the first time step 

of the day. At the beginning of each time step, it calculates the number of 

temporary parking spots needed (ℎ𝑓𝑡) by comparing the number of vehicles at 

each subarea to the total number of parking spots rented as part of the 

pre-determined planning decisions. Next, the simulator generates demands for 

each subarea (𝑑𝑓𝑖𝑡), calculates the satisfied demand (𝑢𝑓𝑖(𝑡+𝑡𝑖𝑖)), lost demand (𝑙𝑓𝑡) 



 

74 
 

based on the travel time between subareas (𝑑𝑓𝑖). If this time step is the beginning 

of every hour, then the integer-programming model introduced earlier is applied 

to calculate the rebalancing operations. Following that, the number of arriving 

vehicles at each subarea in the subsequent time steps is further updated based on 

the optimization results of the integer-programming model. The simulator then 

moves to next time step and updates the number of vehicles at each subarea. This 

process is repeated until the simulation reaches the end of the day. 

4.1.3 Computational procedure 

This section addresses the computation issues arising in connection with the 

simulation-based optimization model. There are two main questions to be 

answered: 1) how do we identify potentially good solutions within the decision 

space and 2) how do we efficiently estimate their performance so that the 

computational effort is minimized. To answer these questions, this study modifies 

and implements a hybrid computation procedure combining PSO and OCBA. 

PSO aims to achieve an efficient search, while OCBA reduces the computational 

budget essential for comparing candidate solutions.    

4.1.3.1 Particle swarm optimization (PSO)  

Particle Swarm Optimization (PSO) is a population-based optimization technique 

developed by Eberhart and Kennedy (1995). The algorithm works similarly to the 

way individual members (or “particles”) in a group of birds or fish collaborate in 

search of the location of food (the optimal solution in the context of optimization). 

In the algorithm, the solutions are represented by the location of a swarm of 

particles that moves within the decision space to seek the best location. The 
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swarm of particles represent the candidate solutions generated in each iteration. 

The goodness of each location is determined by the objective function value. 

Initially, the locations of all particles are randomly generated within the decision 

space. In later iterations, each particle moves towards its personal best location 

(pbest) and the global best location across the whole swarm (gbest). The search 

stops when a specified criterion is satisfied, e.g., after a maximum number of 

iterations or after only limited improvement can be achieved. Figure 4.4 shows 

how one particle in a swarm moves from one iteration to another. 

 

Figure 4.4 Illustration of PSO 
 

Because PSO can be easily implemented for a vast array of problems, it has been 

applied to many fields including communication networks, control, robotics and 

even entertainment (Poli, 2008). In particular, its efficiency in terms of solving 

transportation problems is also demonstrated by Goksal et al. (2013). The 
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convergence of this algorithm was theoretically studied and explained in Clerc 

and Kennedy (2002).  

However, the efficiency of PSO may be affected when stochasticity is introduced 

into the search process, because information, namely the ranking of the goodness 

of locations, may be diluted by noise. In such cases, the particles may move 

towards locations where their performance is not better. Therefore, many studies 

have introduced optimal computing budget allocation (OCBA) into PSO, which 

aims to obtain a more accurate ranking of solutions using a limited simulation 

budget. Such practice leads to higher efficiency in terms of updating the solutions 

and, hence, better performance of the search algorithm (Pan et al., 2006; Zhang et 

al., 2011).  

4.1.3.2 Optimal computing budget allocation (OCBA)  

Optimal computing budget allocation (OCBA) derives from the concept of ordinal 

optimization that emphasizes the relative order of candidate solutions rather than 

their exact performance. The underlying principle is that, instead of spending 

great effort estimating the exact performance of every solution by running a large 

number of simulations, a ranking of solutions with sufficient accuracy can be 

obtained using a smaller computational budget. Studies on OCBA aim to 

generalize certain rules to determine the optimal allocation of the budget.  

The accuracy of the ranking of solutions is measured by the probability of correct 

selection - or P(CS) - which is defined to give the probability that the selected 

best design is indeed the true best design (Dai, 1996). According to Shi (2000), 
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P(CS) is approximated by Equation 4.22 and Equation 4.23. The derivation of the 

equations is not presented here and readers can refer to Shi (2000) if interested. 

Several budget allocation rules have been derived to maximize P(CS). One such 

rule comes from Chen et al. (2000), whose numerical experiments supported that 

their allocation rule generally led to better results than others’. Therefore, Chen et 

al. (2000)’s allocation rule is adopted in this study. Equation 4.24-Equation 4.26 

provide the details of this allocation rule. In brief, in each iteration, this rule picks 

the best solution and allocates a simulation budget according to its relative 

variance; for the rest of the solutions, the rule attempts to allocate more of the 

simulation budget to ones with a larger sample variance or a better sample mean. 

Readers can find more details about how this rule is deduced in Chen et al. 

(2000). 

𝐸𝑐𝑑(𝑓𝑓𝑡𝑏𝑓𝑓 𝑓 𝑏𝑑𝑑 𝑖) = 𝐸�𝑋𝚤� <  𝑋𝚥� � = 𝜙 ( 𝑋𝚥���−𝑋𝚤���

�
𝑠𝑖
2

𝑁𝑖
+
𝑠𝑖
2

𝑁𝑖

)                             4.22 

               

𝐸𝑐𝑑(𝑓 𝑓𝑑 𝑓𝑓𝑑𝑡 𝑑𝑓𝑑𝑓𝑑𝑑) ≈ ∏ 𝐸𝑐𝑑(𝑓𝑓𝑡𝑏𝑓𝑓 𝑓 𝑏𝑑𝑑 𝑖)
𝑑
𝑓≠𝑖                                 4.23 

                 

𝑅𝑖
𝑅𝑖

= (𝑑𝑖 𝛿𝑏,𝑖⁄
𝑑𝑖 𝛿𝑏,𝑖⁄ )，𝑖, 𝑗 ∈ 𝐸,  𝑖 ≠ 𝑗 ≠ 𝑏                                       4.24 

                         

𝐸𝑓 = 𝑠𝑓�∑
𝑅𝑖
2

𝑑𝑖
2

𝑘
𝑓=1,𝑓≠𝑓                                                     4.25 

                                    

𝛿𝑓,𝑓 = 𝑋𝚤� − 𝑋𝑓���                                                          4.26 
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𝑚 is the number of solutions 

𝜙 is the standard normal distribution 

𝑋𝚤�  is the posterior distribution of the unknown mean 𝑋𝑓, 𝑋𝚤�~𝐸(𝑋𝚤� , 𝑑𝑖
2

𝑅𝑖
) 

𝑋𝚤�  and 𝑠𝑓2 are the sample mean and the sample variance of solution i 

𝐸𝑓 is the number of simulations allocated to solution i 

b is the best solution based on sample mean 

4.1.3.3 Computation procedure in this study 

This study developed a new version of PSO+OCBA to solve the optimization 

problem. The motivation is to guarantee a certain level of accuracy on the ranking 

of solutions in each iteration, namely to satisfy a pre-defined P(CS). In such a 

case, PSO is expected to update the solutions more effectively. The target of 

achieving a certain level of P(CS) was not emphasized in past studies. The 

modified computation procedure is as follows. 

1. Randomly generate the initial locations of all particles in the feasible design 

space. 

2. Apply OCBA to estimate the performance of all particles at their current 

locations: 

i. Perform an equal number of simulations for all particles. 

ii. Calculate P(CS) using Equation 4.22 and Equation 4.23. 

iii. If P(CS) is satisfied or the maximum budget allowed for a single 
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solution (MAS) is reached, go to step 3; if not, increase the total value of 

the simulation budget, use Equation 4.24-Equation 4.26 to allocate the 

extra budget, run simulations accordingly, and go back to step ii. 

3. Based on the results obtained from step 2, update pbest and gbest, and the 

velocity and location of each particle. 

4. For each particle, use OCBA to determine its pbest between the new location 

and the existing pbest:   

i. Perform an initial number of simulations for the new location. 

ii. Use Equation 4.22 to estimate the P(CS) between the new location and 

the existing pbest. 

iii. If P(CS) is satisfied or MAS is reached, update pbest and go to step 5; if 

not, use Equation 4.24-Equation 4.26 to allocate the extra budget, run 

simulations accordingly, and go back to step ii. 

5. For the current set of pbests, use OCBA to select the gbest: 

i. Use Equation 4.22-Equation 4.23 to estimate P(CS). 

ii. If P(CS) is satisfied or MAS is reached, update gbest and go to step 6; if 

not, use Equation 4.24-Equation 4.26 to allocate extra budget, run 

simulations accordingly, and go back to step i. 

6. Check if either the maximum number of iterations is reached, or if gbest does 

not change for a number of consecutive iterations. If either is true, stop; if not, 

go to step 3. 

4.2 Application 

4.2.1 Case study of a prototype problem  
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This section presents a case study on a prototype problem. It illustrates the use of 

the proposed methodology and tests the efficiency of the methodology with 

respect to finding an optimal VSS design. A sensitivity analysis is also conducted 

to see how different factors may influence the final decision. In addition, to 

demonstrate the efficiency of the OCBA technique in terms of accelerating the 

computation process, the study performs additional numerical experiments where 

OCBA is removed from the optimization algorithm.   

The analysis is implemented in MATLAB on a desktop computer (Intel 3.30 GHz 

Core i5 and 8 GB of memory) with a Microsoft Windows 7 operating system. At 

every six time steps, the IBM CPLEX optimizer for MATLAB is called to solve 

the hourly rebalancing optimization model.  

4.2.1.1 Problem setting 

The prototype problem is assumed to be a proposed VSS based in Singapore that 

includes three subareas. The whole geographic region is shown in Figure 4.5. The 

picture is provided by Map data ©2015, Google, Urban Redevelopment Authority. 

The three subareas are centered at Clement Mass Rapid Transit (MRT) (S1), Boon 

Lay MRT (S2), and Raffles Place MRT (S3) stations. 

Only one demand pattern is considered in the prototype case. Table 4.1 displays 

the hourly arrival rates of the Poisson distributions used to model the travel 

demands. Assumptions of the daily costs are shown in Table 4.2. Except for the 

temporary parking cost is referred from the market rate in Singapore, all other 

costs are adopted from Jorge et al. (2014). For convenience of presentation, all 
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costs here are displayed in Euros as Jorge et al. (2014) do in their study. The 

required LoS is set to 0.8, which means α is assumed to be 0.2. 

 

Figure 4.5 Geographic setting in the simplified problem 
 

Table 4.1 Hourly arrival rates at different time segments in a day 
  0700-0900 0900-1700 1700-1900 1900-2400 

  S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

S1 0 0 1 0 0 1 0 0 0 0 0 0 

S2 0 0 1 0 0 1 0 0 0 0 0 0 

S3 0 0 0 1 1 0 1 1 0 1 1 0 

 

Table 4.2 Cost parameters 
Daily cost of unit 
capacity at each subarea  

Daily cost of one 
vehicle  

Rebalancing cost per 
vehicle per 10mins 

Temporary parking cost 
per one space per 10mins 

2 (for S1 and S2), 4 
(for S3) 

17 2 
0.17 (for S1 and S2), 0.33 
(for S3) 
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4.2.1.2 Optimization results 

In this section, the proposed methodology is applied to identify the optimal 

system configuration for the aforementioned problem. The optimization analysis 

is conducted under two conditions: with and without hourly rebalancing activities. 

Under each condition, the optimization algorithm is run five times to allow fair 

comparisons between the two conditions, as well as to determine the robustness of 

the computation procedure. The parameters of PSO are set according to Eberhart 

and Shi (2000) with inertial weights of 0.729 and constriction factors of 1.49445. 

The number of particles in a swarm is set to 10, which is a relatively smaller 

number, to reduce the computation effort demanded by each iteration. The study 

sets MAS as 250, since under this condition the simulation is already well 

converged. The parameter μ is assumed to be 20000. This choice is tuned by 

running several rounds of optimization under different values, and this value of μ 

resulting in a relatively stable performance is selected. 

Before conducting the optimization analysis, the study first validates the 

simulation model by examining the total number of vehicles at each time step. 

The vehicles on the road, driven either by customers or rebalancing staff, and 

those stocked at the stations and temporary parking spots are summed, and, at 

each time step, the total number of vehicles is equal to the number assumed 

before the simulation.  

Table 4.3 and Table 4.4 display the optimal solutions obtained under the two 

conditions, i.e., with and without hourly rebalancing operations. For example, in 

Table 4.3 where optimal solutions under hourly rebalancing are displayed, the 
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solution of the first run indicates 5 parking spots should be rented at subarea 1 and 

subarea 3, and 6 at subarea 2, where in total 5 vehicles should be purchased for 

the whole system. Although the solutions obtained from each run of the algorithm 

are not identical, the results within each group show that the overall performances 

are nearly the same. This demonstrates that the computation procedure is 

relatively stable.  

On the other hand, between the two groups, rebalancing not only identifies 

solutions that cost less, but they also have a relatively higher LoS in terms of 

satisfying customers. This kind of win-win result suggests that rebalancing is an 

essential consideration when determining the optimal configuration of the system. 

The reallocation of vehicles not only reduces the number of parking spots rented, 

but also increases the utilization of vehicles by serving more customers and, 

hence, reducing the number of vehicles required. On the other hand, within each 

group, the trade-off between cost and LoS on meeting customers’ requests can 

still be observed. For example, as shown in Table 4.4, Run 3 has a relatively 

larger cost but a higher LoS, while Run 5 shows the opposite situation. 

This study also decomposes the total cost into individual cost items, including 

set-up cost (sum of rent of parking spots and depreciated cost of vehicles), 

temporary parking cost, and rebalancing cost (if considered). Figure 4.6 and 

Figure 4.7 illustrate the cost decomposition of the optimal solutions under the two 

conditions. It is interesting to note that, by conducting the rebalancing operations, 

the temporary parking cost is reduced almost to zero, which indicates it is rare 

that customers will need to park the vehicles outside the system. In both cases, 
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with or without rebalancing, a trade-off between initial investment (set-up cost) 

and operating costs (sum of temporary parking and rebalancing cost) is observed.  

Table 4.3 Optimal solutions assuming hourly rebalancing is conducted 

Run 
No. 

Solution Estimated 
cost /standard 

error (SE) 

Estimated 
customer loss rate 

/SE Capacity 
(S1) 

Capacity 
(S2) 

Capacity 
(S3) 

No. of 
vehicles 

1 5 6 5 5 250/1.4 0.209/0.004 

2 4 5 5 6 245/1.3 0.217/0.004 

3 3 3 5 5 251/1.6 0.203/0.004 

4 4 5 6 5 250/1.4 0.208/0.004 

5 3 3 5 5 251/1.6 0.203/0.004 

 

Table 4.4 Optimal solutions assuming no hourly rebalancing 

No. 
of run 

Solution 
Estimated 
cost /SE 

Estimated 
customer loss rate 

/SE Capacity 
(S1) 

Capacity 
(S2) 

Capacity 
(S3) 

No. of 
vehicles 

1 4 4 10 14 333/0.9 0.224/0.006 

2 4 4 11 14 333/1.0 0.224/0.006 

3 4 4 13 14 338/1.0 0.205/0.006 

4 4 5 8 14 332/1.0 0.217/0.006 

5 4 5 11 13 310/0.9 0.236/0.006 
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Figure 4.6 Cost structure of optimal solutions under rebalancing 
 

 

Figure 4.7 Cost structure of optimal solutions with no rebalancing 
 

4.2.1.3 Further analysis 
 

a) Test on the initial vehicle distribution rule 

0 50 100 150 200 250

Run 1

Run 2

Run 3

Run 4

Run 5

Average
Set-up cost

Temporary parking
cost
Rebalancing cost

0 100 200 300

Run 1

Run 2

Run 3

Run 4

Run 5

Average

Set-up cost

Temporary parking cost



 

86 
 

As mentioned earlier, a heuristic rule is applied to decide the distribution of 

vehicles at the beginning of the day after the total number of vehicles is 

determined. To investigate the efficiency of this rule, another round of 

optimization analysis is carried out where the number of vehicles at each subarea 

is optimized individually. Table 4.5 displays the solution and its estimated 

performance. Comparing these results with the ones in Table 4.3, there is no 

statistically significant difference between the solutions obtained using the more 

complex model here and the ones obtained using the heuristic rule. As such, the 

heuristic rule is applied in later analyses to reduce the dimensions of the problem. 

Table 4.5 Optimization results by using a more complex model 
Solution 

Estimated 
cost /SE 

Estimated 
customer loss 

rate /SE 
Capacity 

(S1) 
Capacity 

(S2) 
Capacity  

(S3) 
No. of vehicles 

5 3 5 6 249/1.3 0.21/0.004 

 

b) Sensitivity analysis 

In the sensitivity analysis, three parameters - namely the hourly arrival rates, 

required LoS, and frequency of rebalancing - are varied to see how the optimal 

solutions change in accordance with different assumptions. Under each varied set 

of assumptions, five rounds of optimization are conducted. The averaged results 

of each set of five solutions are presented here. 

1) Increase in hourly arrival rates 



 

87 
 

The hourly arrival rates, namely the numbers in Table 4.1, are increased by 25% 

and 50%. For each increase, five runs of optimization analysis are conducted. 

Then, for all three sets of the optimal solutions, the study calculates the averaged 

performance, namely their averaged cost and LoS. The results are presented in 

Figure 4.8. An interesting observation can be made by looking at the relative 

change in set-up and rebalancing costs: When the demand grows by 25%, 

increasing the rebalancing operations, as opposed to immediately deploying a 

larger system, initially seems to be able to accommodate the additional demand, 

as the rebalancing cost seems to grow relatively faster than the set-up cost. 

However, when the demand increases by 50%, increasing the rebalancing 

operations is not as efficient as increasing the scale of the system. That explains 

why, in the later stage, the set-up cost increases relatively faster. On the other 

hand, in both cases, the customer loss rate and temporary parking cost remain 

quite similar. 

 

Figure 4.8 Sensitivity analysis on hourly arrival rates 
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2) Increase in LoS 

There are three places in our model that need specified requirements for level of 

service (LoS). Strategically, the expected customer loss rate indicates the overall 

level of satisfied demand in a whole day. At the operational level, there exist two 

additional rates: the expected customer loss rate and the rate of temporary parking 

spots needed in the next hour. The two rates at operational level determine the 

upper and lower bounds of vehicle stocks at each subarea every hour. These three 

requirements are set at the same level and are presently at 0.2. In this part of 

sensitivity analysis, the levels are changed to 0.15 and 0.1. Using the same logic 

as in the previous section, the results are obtained and summarized in Figure 4.9. 

Unlike the previous case, variation in LoS seems to have little influence on the 

rebalancing cost, as satisfying the increased LoS is mainly achieved by scaling up 

the system. This may be due to the fact that small variation in LoS has little effect 

on the upper and lower bounds of vehicle stocks each hour, especially when LoS 

changes from 0.2 to 0.15, which consequently leads to similar rebalancing 

schemes. Hence, as rebalancing operations remain the same, a larger system is 

needed to cope with the higher requirement for LoS. On the other hand, since the 

requirement for LoS is raised, the realized customer loss rate decreases 

accordingly. 
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Figure 4.9 Sensitivity analysis on LoS 
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rebalancing is conducted throughout the day, as shown in the previous analysis, 

even more parking spots and more vehicles are needed. Although the temporary 

parking cost remains the same for the 1h and 2h rebalancing intervals, there is a 

slight increase in the customer loss rate under the lower rebalancing frequency. As 

less rebalancing operations are conducted, satisfying the required customer loss 

rate requires greater initial investment to configure a larger system. It may be that 

the required level of investment exceeds the penalty cost of slightly violating the 

LoS requirement. This is also consistent with the result in the case without 

rebalancing, as a larger deviation of constraint occurs. 

 

Figure 4.10 Sensitivity analysis on rebalancing frequency 
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the approach by Shu et al. (2010) is taken to calculate the optimal number of 

vehicles for the condition without rebalancing operations. By comparing results 

obtained by their approach with the algorithm in this study (namely results in 

Table 4.4), it is believed that the quality of the results can be assessed to some 

degree.  

Similar to our study, Shu et al. (2010) assumes demand to be a non-stationary 

Poisson process. Besides, their analysis is also based on no waiting time for the 

customers. Because of such similarities in problem setting, their approach is taken 

as a benchmark. However, differences do exist between their approach and this 

study. First, they do not consider rebalancing operations. Second, in their 

optimization model, the objective is to maximize total satisfied demand, which is 

approximated under the assumption that the system reaches equilibrium state. 

Finally, there is no constrains on the capacity of stations.  

Despite the different formulation of the optimization model the solution approach, 

a final solution with 16 vehicles to purchase is obtained, which is very close to the 

ones obtained in Table 4.4. This observation, therefore, somehow validates the 

solution approach proposed in this study. 

2) Comparison between PSO+OCBA and PSO+EA 

This study adopts OCBA technique to reduce the computation effort, while at the 

same guarantee a certain level P(CS) in each iteration. To further illustrate how 

this computation budget allocation rule helps accelerate the computation process, 

this study performs another five runs of the optimization analysis under the 
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condition where an equal simulation budget is allocated to each candidate solution 

instead of using the OCBA rule, which is referred to as PSO+EA. The solutions 

obtained under this case were not identical to those obtained under PSO+OCBA, 

but no statistically significant difference could be observed. More importantly, the 

average computation time of these five runs is 2495 seconds with a standard 

deviation of 556 seconds, which is obviously not as efficient as PSO+OCBA 

whose average computation time is 1632 seconds with a standard deviation of 397 

seconds. Figure 4.11 and Figure 4.12 illustrate the convergence speed of 

PSO+OCBA and PSO+EA, respectively. One thing that needs attention here is 

that the objective value mentioned in these two figures includes not only set-up 

cost and rebalancing cost but also the penalty cost when required LoS is violated. 

According to the results, compared with PSO+EA, PSO+OCBA requires fewer 

function evaluations to converge to the optimal solution. This is achieved by 

reducing the simulation budget that is spent on the obviously inferior solutions 

generated by the searching algorithm. 
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Figure 4.11 Convergence speed of PSO+OCBA 
 

 

Figure 4.12 Convergence speed of PSO+EA 
 

4.2.2 Case study of a more complex problem 

4.2.2.1 Problem setting 
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In the second case study, a larger-scale problem with eight subareas - Clementi 

MRT (S1), Boon Lay MRT (S2), One-North MRT (S3), Vivo City MRT (S4), 

Raffles Place MRT (S5), Orchard MRT (S6), Bishan MRT (S7), and Ang Mo Kio 

MRT (S8) stations - and two demand patterns (weekdays and weekends) is 

studied. The purpose of this study is to test the efficiency of the proposed 

methodology when handling a more complex problem. The geographic 

information is presented in Figure 4.13. Since more subareas are under 

consideration, additional assumptions are made regarding the rent cost of parking 

spots as well as the temporary parking cost, as shown in Table 4.6. The other 

assumptions remain the same.  

 

Figure 4.13 Area of study in the second case study 
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Table 4.6 Additional cost parameters 
Daily cost of unit capacity at each 
subarea  

Temporary parking cost per 
one space per 10mins 

2 (S1, S2, S7 and S8), 3 (S3), 4 
(S4, S5, and S6) 

0.17 (S1, S2, S7, and S8), 0.25 
(S3), 0.33 (S4, S5, and S6) 

 

The demand profiles on weekdays and weekends are illustrated in the following 

figures. Assuming all trip requests are satisfied, the figures are obtained by 

averaging the sample points from 250 runs of the simulation. Figure 4.14 and 

Figure 4.15 illustrate the vehicle return and pickup demand during weekdays, 

while Figure 4.16 and Figure 4.17 show the situation on weekends. The 

probability transition matrix for both weekend and weekdays are also presented in 

the Appendix. 

 

Figure 4.14 Averaged vehicle arrivals at each subarea during a day in weekdays 
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Figure 4.15 Averaged customer arrivals at each subarea during a day in weekdays 
 

 

Figure 4.16 Averaged vehicle arrivals at each subarea during a day in weekends 
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Figure 4.17 Averaged customer arrivals at each subarea during a day in weekends 
 

 

4.2.2.2 Optimization results 

Since the more complicated problem assumes two demand patterns, the 

optimization model is slightly modified to cater to this change. Equation 4.27 

shows the altered objective function. The weighted operating cost is such that the 

one-day operating cost on weekdays accounts for 5/7 of the total cost, while that 

on weekends accounts for 2/7. The requirement for the customer loss rate is the 

same for both weekdays and weekends. With the exception that the size of the 

swarm changes to 15 to cope with the higher dimensions of the problem, the other 

parameters in the computation procedure remain the same. This part of the 

analysis only assesses the situation where hourly rebalancing is adopted. 
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min𝑓(𝐸, 𝑣) = 𝐷𝑓 ∑ 𝐸𝑓𝑓𝑖𝑅 + 𝑤 ∗ 𝑣 + 5
7
∗ �𝑅𝑏𝑑(𝐸, 𝑣) + 𝐸𝑏𝑑(𝐸, 𝑣)� + 2

7
∗

�𝑅𝑏𝑑(𝐸, 𝑣) + 𝐸𝑏𝑑(𝐸, 𝑣)� + 𝜇 ∗ (𝑔𝑏𝑑(𝐸, 𝑣) − 𝛼)2 + 𝜇 ∗ (𝑔𝑏𝑑(𝐸, 𝑣) − 𝛼)2  4.27 
     

Similar to the previous analysis, the complex case is solved by five rounds of the 

computation procedure. The results are summarized in Table 4.7. By examining 

the results, no statistically significant difference is found between the 

performances of the solutions. The average computation time is about three and 

half hours.  

The results are consistent with the previous case where the total number of 

vehicles does not fluctuate so much across solutions compared with decisions on 

the number of parking spots at each subarea. One explanation may be that the unit 

daily cost of one vehicle is assumed to be much higher than that of a parking spot, 

which makes the results less sensitive to changes in the number of parking spots. 

On the other hand, the results indicate that a larger capacity must be installed at 

S1, S2, S3, S7, and S8. Although the hourly customer arrival rates are generally 

higher at S4, S5, and S6 than at S1, S2, S7, and S8, the vehicle arrival rates seem 

to play a more important role here in deciding the essential capacity. According to 

Figure 4.14 and Figure 4.16, the latter group expects more vehicles to be returned 

every hour. Since S3 has an obvious customer arrival peak, it requires a relatively 

larger capacity to accommodate sufficient vehicles. The results also show that the 

customer loss rate is lower on weekends than weekdays under the optimal 

solutions. This is because lower hourly arrival rates of demand are assumed for 
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weekends. Consequently, the design with a scale adequate for weekdays is 

capable of achieving a higher LoS on weekends. 

Table 4.7 Optimization results 
No. of 

runs 

Solution Estimated 

Cost / SE 

Estimated 

customer loss 

rate (Weekdays) 

/SE 

Estimated 

customer loss 

rate (Weekends) 

/SE 

𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 𝐸6 𝐸7 𝐸8 𝑣 

1 7 8 6 3 5 3 6 6 18 727/1.5 0.206/0.002 0.177/0.003 

2 6 6 6 4 3 3 5 8 18 725/1.5 0.216/0.003 0.179/0.002 

3 8 7 6 3 3 4 5 5 18 726/1.7 0.210/0.003 0.179/0.002 

4 5 7 6 5 3 3 7 7 18 727/1.6 0.215/0.003 0.184/0.002 

5 5 6 7 5 3 3 6 6 18 729/1.7 0.207/0.003 0.174/0.003 

 

4.3 Summary 
This part of the study has developed a decision-support tool to assist with 

determining the optimal configuration of a MoD system accounting for stochastic 

demand and the effect of conducting vehicle redistribution as part of daily 

operations. An optimization model is formulated that aims to identify the solution 

with the minimal cost but an adequate LoS. A simulation-based approach is 

devised to solve the model. The computation approach consists of a DES that 

assesses the performance of different system configurations, as well as a hybrid 

algorithm combining PSO and OCBA to efficiently search the decision space. The 
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chapter presents two case studies to illustrate the application of the methodology, 

leading to several interesting observations. 

First, rebalancing is demonstrated as an essential consideration when determining 

the configuration of a MoD system. Without considering such operations, decision 

makers may design a system with an excessive number of parking spots and 

vehicles. As reported in the simplified case study, the optimal solutions obtained 

under the condition of no rebalancing end up with significantly more parking 

spots to be rented and more vehicles to be purchased. In addition, an inefficient 

system design may make it difficult for operators to conduct rebalancing 

operations later on. As shown in this study, the hourly rebalancing optimization 

model may be infeasible due to the overall lack of vehicles or parking spaces. 

When rebalancing is incorporated, not only can a system design with a lower 

overall cost be identified, but a higher LoS in terms of satisfying more customers 

can also be realized.  

Second, this study identifies a heuristic rule to allocate vehicles among subareas 

at the beginning of the day. This rule distributes vehicles proportionally to the 

customer arrival rates during the first time segment of an operating day. 

Numerical experiments show that statistically no difference exists between the 

results obtained using such a heuristic rule and those obtained by optimizing the 

number of vehicles at each subarea individually. This finding suggests an 

opportunity to simplify the decision-making process and reduce computation 

effort with respect to solving the problem. 
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Third, by conducting optimization under varied assumptions in the simple case 

study, the trade-offs between set-up cost, rebalancing cost, and LoS are explicitly 

illustrated. In particular, the results show that by increasing rebalancing activities, 

less additional investment is required to satisfy higher demands or stricter 

requirements of LoS, while reducing rebalancing activities has the opposite effect. 

Finally, as demonstrated by the two case studies and several runs of the numerical 

experiments, the computation procedure is shown to have a stable performance. In 

particular, as the optimal number of vehicles obtained for the case without 

rebalancing is very close to the solution calculated by the approach from another 

paper, it somehow validates the solution approach proposed in this study. On the 

other hand, the numerical results also indicate that incorporating OCBA into the 

procedure accelerates the computation process and leads to a higher convergence 

speed.  

In sum, the study in this chapter makes a contribution by integrating the 

operational-level decisions, namely rebalancing operations, into the planning of 

MoD systems considering daily demand fluctuations. The mathematical model 

and solution approach address the first and third research questions proposed in 

Section 2.3, respectively. The rebalancing operations, which redistribute vehicles 

among subareas frequently according to the realization of demand, can be 

perceived as an operational-level flexibility as to address fluctuations in a short 

time period. The overall usage pattern, which is captured by the hourly arrival 

rates of the Poisson processes, is assumed known and unchanged. However, as 
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indicated in the sensitivity analysis for the prototype case, changes on such usage 

pattern have a clear effect on the final solutions. 

The alternative solutions found in this study can be deemed as rigid from a 

strategic standpoint, as they follow a structured and well established plan over 

time. Further work is needed to account for the ability to adapt to changing 

demographic conditions, as the system is operated and deployed over a longer 

time scale (e.g. months). Such situation calls for the implementation of 

strategic-level flexibility in the system, which is analyzed in the next chapter. 

There are some insights regarding designing and operating MoD systems 

generalized from the analysis in this chapter. These insights provide general 

guidelines as decision-making reference, but given that they are based on the 

particular assumptions made in this study, it may need further consideration to 

determine how they can be applied to other systems. 

1) There is a trade-off between rebalancing cost, set-up cost, and LoS. 

Increasing LoS leads to increase in overall cost, but not necessarily both 

rebalancing cost and set-up cost. 

2) Rebalancing is an essential consideration when making planning 

decisions. It creates a distinct difference on both the final planning 

decisions and their final performance. 

3) Reducing rebalancing operations may not lead to significant reduction in 

rebalancing cost but is very likely to require a system with a larger 

capacity.  
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Chapter 5 Incorporating Strategic Flexibilities into MoD systems 

to Address Long-term Demand Uncertainty 

The previous analysis assumes that demand patterns remain the same throughout 

the planning horizon. However, such assumption may not hold in reality, 

especially when a longer planning horizon is under consideration, e.g. a quarter or 

half a year. Demographics change, level of satisfaction with the system, 

construction of new buildings, and other relevant factors may lead to usage 

pattern changes in MoD systems. As explained earlier, existing studies do not 

provide an effective approach to cope with this higher level of uncertainty. This 

part of the analysis adds another layer of flexibility for the analysis of MoD 

systems, namely strategic flexibility, to address such long-term demand 

uncertainty. 

As this part of the analysis focuses on long-term shift in usage trends, instead of 

prioritizing LoS that is more critical to the initial survival issue, the operating 

objective switches to profit maximization that weighs more in continuous 

development of the system. Therefore, the analysis in this chapter places more 

emphasis on profit instead of only cost. 

A phasing strategy is formulated into the deployment plan so that the system can 

be expanded when certain conditions are met. Different from the analysis in the 

previous chapter, the optimization model here is constructed to find the optimal 

parameters for the phasing strategy that maximize the overall profit in the 

planning horizon. Similar to the previous chapter, a simulation-based approach is 
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applied to solve the optimization problem. The DES is extended and modified to 

account for the formulation of the phasing strategy and a longer planning horizon. 

The PSO+OCBA algorithm developed in the last chapter is further applied in this 

analysis. In addition, a computational framework inspired by the successful 

implementation of this algorithm is generalized and proposed to address the 

optimization problem of other flexible systems. 

5.1 A simulation-based methodology 

5.1.1 Notations 

Before introducing the methodology, the notations used throughout this chapter 

are first summarized as follow. 

𝑖, 𝑗  Subareas in the geographic region 

𝑘   Scenarios 

𝑚   Months in a planning horizon; 

𝑤   Weeks in a month; 

𝑑   Days in a week; 

𝑑    Time steps in a day; 

𝐸   Set of the subareas; 

𝑇   No. of time steps in a day; 

K   No. of scenarios; 

w  Depreciated daily cost of one vehicle; 
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Ci  Rent cost of one parking spot at subarea i;  

γij  Rebalancing cost between subarea i and subarea j;  

tij  Travel time between subarea i and subarea j;  

𝑞𝑓  Temporary parking cost per hour in subareas i 

𝐸𝑓𝑖  Profit obtained of serving one customer from subareas i to subarea j; 

𝑑𝑓𝑖𝑡𝑑𝑏𝑡 Satisfied demand at time step t of day d in week w of month m; 

𝑔𝑓𝑡𝑑𝑏𝑡 Temporary parking spots needed at time step t of day d in week w of 

month m;  

𝑃𝑓𝑖𝑡𝑑𝑏𝑡 No. of vehicles rebalanced from subarea i to subarea j at time step t of day 

d in week w of month m; 

𝑠𝑓𝑡𝑑𝑏𝑡 No. of vehicles at subarea i at time step t of day d in week w of month m; 

𝜇𝑓𝑡𝑑𝑏𝑡 Expected No. of vehicle pickup demand at subarea i at time step t of day d 

in week w of month m; 

𝑣𝑠𝑓𝑡𝑑𝑏𝑡 Vehicle surplus at subarea i at time step t of day d in week w of month m; 

ℎ𝑓𝑡𝑑𝑏𝑡  Utilization rate of parking spots in subarea i at time step t in day d of 

week w of month m; 

𝑙𝑡    No. of customer loss in month m; 

𝐸𝑡    No. of realized demand in month m; 
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ℎ𝚤𝑡����   Average hourly utilization rate of parking spots of subarea i in month m; 

𝑣𝑓𝑑𝑡  No. of vehicles placed at subarea i at the beginning of day d of every week 

in month m; 

𝑣𝑡   No. of vehicle in the system in month m; 

𝐸𝑓𝑡   No. of parking spots at subarea i in month m; 

𝑓1   No. of vehicles added into the system; 

𝑓2  No. of parking spots added into the system; 

𝛼1  Minimum monthly customer loss rate that triggers adding vehicles; 

𝛼2  Minimum vehicle-to-capacity ratio that triggers adding parking spots; 

𝐿𝑘  Profit gained in scenario k 

5.1.2 Phasing deployment strategy 

As mentioned earlier, this chapter assumes that the overall usage pattern is 

subjected to uncertain change. In other word, the customer arrival rates, which are 

assumed deterministic in the previous analysis, now change randomly over time, 

reflecting possible (longer term) changes in factors like demographics, customer 

behaviors, etc. that may influence how the system is utilized. To deal with this 

situation, a phasing strategy is adopted. Defined by this strategy, the system starts 

with a relatively smaller capacity scale, and more parking spots and vehicles are 

added into the system if certain conditions are fulfilled. More specifically, it is 
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assumed that the status of the system, namely the number of parking spots in each 

subarea and the total number of vehicles in the system, is updated monthly.  

The initial system configuration is optimized for the first month using the 

methodology from the previous chapter but the objective function is changed to 

maximizing profit and the rebalancing schemes is calculated using the hubristic 

rule that will be introduced later. Meanwhile, at the end of every month, a set of 

decisions rules will be applied to reconfigure the system. Basically, there are 

decisions on two aspects in the decision rules. If loss of customers is too high, 

extra vehicles are added into the system. The vehicle distribution is then decided 

by the heuristic rule introduced in the previous chapter (Equation 4.4 and 4.5). On 

the other hand, if the overall vehicle-to-capacity ratio (defined as the total number 

of vehicles divided by total number of parking spots) exceeds a certain threshold, 

more parking spots are rented at the subarea having the highest average hourly 

rate of parking spots utilization. The mathematical expression of the decision 

rules are presented in the next section along with the optimization model. 

5.1.3 Optimization model 

Equation 5.1-5.6 present the optimization model. As defined in Equation 5.1 below, 

the objective of the optimization model in this chapter is to maximize the 

expected profit in the planning horizon by finding the proper set of parameters 

(𝛼1,𝛼2,𝑓1,𝑓2) for the decision rule. The objective function consists of a revenue 

function  𝐸(𝛼1,𝛼2, 𝑓1,𝑓2) , a vehicle cost function 𝑉(𝛼1,𝛼2, 𝑓1, 𝑓2) , a fixed 

parking cost function 𝐸(𝛼1,𝛼2, 𝑓1,𝑓2) , a temporary parking cost function 

𝑅(𝛼1,𝛼2, 𝑓1, 𝑓2) , and a rebalancing cost function 𝑅(𝛼1,𝛼2, 𝑓1,𝑓2). The 
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mathematical formulation of the decision rule is displayed in Equation 5.2-5.3. 

Equation 5.4-5.6 characterize the decision space. 

max  𝐿(𝛼1,𝛼2, 𝑓1,𝑓2) = 𝐸[𝐸(𝛼1,𝛼2, 𝑓1, 𝑓2)− 𝐸(𝛼1,𝛼2, 𝑓1, 𝑓2) −

𝑅(𝛼1,𝛼2, 𝑓1, 𝑓2) − 𝑅(𝛼1,𝛼2, 𝑓1, 𝑓2)] 5.1 

If  𝑓
𝑚

𝑧𝑚
> 𝛼1,𝑣𝑡+1 = 𝑣𝑡 + 𝑓1, ∀ 𝑚 ≥ 2   5.2 

If 𝑣𝑚+1

∑ 𝑓𝑖
𝑚𝑛

𝑖=1
> 𝛼2, 𝐸𝑑𝑡+1 = 𝐸𝑑𝑡 + 𝑓2, *𝑠 = 𝑚𝑃𝑔𝑚𝑚𝐸𝑓∈𝑅(ℎ𝚤𝑡���� ), ∀ 𝑚 ≥ 2 

5.3 

0 ≤ 𝛼1 ≤ 1 5.4 

0 ≤ 𝛼2 ≤ 1 5.5 

𝑓1, 𝑓2 ≥ 0,∈ 𝐼𝑚𝑑𝐸𝑔𝐸𝑃 5.6 
 

The following equations provide more details about the random functions 

aforementioned. Since the system configuration in the first month is obtained by 

maximizing the profit in that month, which is independent of the optimization of 

the phasing strategy, 𝒅𝒊𝒊𝒕𝒅𝒕𝒕, 𝒈𝒊𝒕𝒅𝒕𝒕, and 𝒓𝒊𝒊𝒕𝒅𝒕𝒕 are random variables that depend 

on the realization of demand. On the other hand, for the other months, as the 

decision rule is applied to update the system configuration, the value of these 

random functions depends on the parameters of the decision rule(𝛼1,𝛼2, 𝑓1, 𝑓2). 

Here bold characters are used to highlight that the symbols are either random 

variables or random functions. 
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𝐸(𝛼1,𝛼2, 𝑓1, 𝑓2) = ∑ 𝐸𝑓𝑖𝒅𝒊𝒊𝒕𝒅𝒕𝒕𝑓,𝑖,𝑡,𝑑,𝑏 + ∑ 𝐸𝑓𝑖𝒅𝒊𝒊𝒕𝒅𝒕𝒕(𝛼1,𝛼2, 𝑓1,𝑓2)𝑓,𝑖,𝑡,𝑑,𝑏,𝑡≥2          
5.7 

  

𝐸(𝛼1,𝛼2,𝑓1,𝑓2) = ∑ 𝐷𝑓 ∗ 𝐸𝑓1𝑓, + 𝑤 ∗ 𝑣𝑡 + ∑ 𝐷𝑓 ∗ 𝒙𝒊𝒕(𝛼1,𝛼2, 𝑓1,𝑓2)𝑓,𝑡≥2 +

∑ 𝑤 ∗ 𝒗𝒕(𝛼1,𝛼2,𝑓1, 𝑓2)𝑡≥2                                                5.8 
  

𝑅(𝛼1,𝛼2, 𝑓1, 𝑓2) = ∑ 𝑞𝑓𝒈𝒊𝒕𝒅𝒕𝒕𝑓,𝑡,𝑑,𝑏 + ∑ 𝑞𝑓𝒈𝒊𝒕𝒅𝒕𝒕(𝛼1,𝛼2, 𝑓1, 𝑓2)𝑓,𝑡,𝑑,𝑏,𝑡≥2                
5.9 

 

𝑅(𝛼1,𝛼2, 𝑓1,𝑓2) = ∑ 𝛾𝑓𝑖𝒓𝒊𝒊𝒕𝒅𝒕𝒕𝑓,𝑖,𝑡,𝑑,𝑏 + ∑ 𝛾𝑓𝑖𝒓𝒊𝒊𝒕𝒅𝒕𝒕(𝛼1,𝛼2, 𝑓1,𝑓2)𝑓,𝑖,𝑡,𝑑,𝑏,𝑡≥2            
5.10 

           
Since there is no analytical expression for 𝐿(𝛼1,𝛼2,𝑓1,𝑓2), this study builds a 

discrete event simulator (DES) to estimate its value given 𝛼1,𝛼2,𝑓1 and 𝑓2. 

Provided with the decision variables, parameters, and the number of simulations 

(for example, K), the simulator can generate the required number of sample points 

of 𝐿𝑘. Then, the value of the objective function is estimated using Equation 5.11.  

The following section provides more details about the DES. 

𝐿(𝛼1,𝛼2, 𝑓1, 𝑓2)~
∑ 𝐿𝑘𝐾
𝑘=1

𝐾
                                                5.11                                      

5.1.4 Discrete event simulator (DES) 

Similar to the previous chapter, the fundamental component of the 

simulation-based methodology is the discrete event simulator (DES). The 

simulator intends to estimate the profit obtained by any given phasing strategy, 

namely a combination of 𝛼1,𝛼2,𝑓1, and 𝑓2, over a relatively longer planning 

horizon (assumed to be half a year in the analysis). Compared with the simulator 

developed in the previous chapter, there are some major changes in this DES. 
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First, this model considers a change in the overall usage pattern that was assumed 

to remain the same in previous studies. Second, the formulation of the phasing 

strategy is coded into the simulator that may constantly alter the configuration of 

the system. Finally, although hourly rebalancing is still considered in this part of 

the analysis, this simulator adopts a heuristic rule to guide the rebalancing 

operations, which aims at easy implementation and computational efficiency. The 

details of these modifications on the DES are as follows. Other assumptions are 

the same with the ones in Chapter 4. 

5.1.4.1 Model assumptions 

The simulation environment is also developed using MATLAB. Several 

assumptions are made on the simulation model to characterize the system and 

code its behavior. If users are interested in other settings, those assumptions can 

be easily modified.  

1) Planning horizon and time scale  

Half-year performance is evaluated. Each month contains four weeks. 17 hours 

are analyzed for each day, and each time step represents one hour in reality. 

2) Demand generation 

The hourly arrivals of passengers at each subarea throughout a day are modeled as 

non-stationary Poisson processes. Assumptions are also made about what 

proportion of the demands originating in one subarea will end up in other 

subareas. Just like the previous chapter, a dataset containing arrival rates of the 
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Poisson processes for all subareas throughout a day is defined as a demand 

pattern. 

For each week, realized demand is the same for each demand pattern. For 

example, if only one demand pattern exists for a week, then a one-day scenario is 

generated and repeatedly used for the seven days of that week; while if two 

demand patterns are considered, e.g. weekdays and weekends, two one-day 

scenarios are generated, with one representing a typical weekday and the other 

representing a typical day on weekends. 

The demand patterns, or the sets of arrival rates of hourly demand in a day, are 

assumed to change every month. As indicated in Equation 5.12, monthly growth 

rates of these arrival rates are formulated as a geometric browning motion (GBM) 

process. 

dδm = µδmdt + σδmdWm                                                5.12 
                                                 

* δm-vector of arrival rates of vehicle pickup demand at month m, µ-drift, 

σ-volatility, Wm-Wiener Process 

3) Rebalancing operation 

Rebalancing operations are to be carried out every hour in the simulator, i.e. at the 

end of each time step. Instead of using the integer-programming model to 

calculate the rebalancing decisions as in the previous chapter, the following 

heuristic rule is applied. In brief, the rule tries to send vehicles from subareas with 

extra vehicles to the nearby subareas that require more vehicles. 
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I. For each 𝑖 ∈ 𝐸 , calculate the vehicle surplus based on Equation                                         

5.13. The vehicle surplus indicates the extra vehicles for a particular 

subarea between the number of vehicles and the expected number of 

vehicle pickup demand at the next time step. Then, obtain the ranking of 

subareas (𝑂(𝑓)) based on the descend order of the vehicle surplus. Set i=1. 

𝑣𝑠𝑓𝑡𝑑𝑏𝑡   = 𝑠𝑓𝑡𝑑𝑏𝑡 + ∑ 𝑑𝑖𝑓
�𝑡+1−𝑡𝑖𝑖�𝑑𝑏𝑡 + 𝑃𝑖𝑓

�𝑡+1−𝑡𝑖𝑖�𝑑𝑏𝑡𝑑
𝑖=1,≠𝑓 − 𝜇𝑓

(𝑡+1)𝑑𝑏𝑡 

                                            5.13 
            

II. Obtain the ranking of other subareas (𝑂(𝑓)
𝑖 ) based on the ascend order of 

the distance between the selected subareas. Set j=1. 

III. Calculate the number of vehicles being transported from 𝑂(𝑓) to 𝑂(𝑓)
𝑖  

(𝑃
𝑂(𝑖)𝑂(𝑖)

𝑖
𝑡𝑑𝑏𝑡 ) using Equation 5.14, and update j to j+1  

𝑃𝑂(𝑖)𝑂(𝑖)
𝑖

𝑡𝑑𝑏𝑡 = min �𝑠𝑂(𝑖)
𝑡𝑑𝑏𝑡, 𝑣𝑠𝑂(𝑖)

𝑡𝑑𝑏𝑡 , −min �0, 𝑣𝑠
𝑂(𝑖)
𝑖

𝑡𝑑𝑏𝑡��  5.14 

              

IV. Check if j=n-1 or Equation 5.15 is satisfied or not. If not, go to step III. If 

so, update i to i+1. 

𝑠𝑂(𝑖)
𝑡𝑑𝑏𝑡 − ∑ 𝑃𝑂(𝑖)𝑂(𝑖)

𝑡
𝑡𝑑𝑏𝑡𝑖

𝑓=1,𝑂(𝑖)
𝑡 ≠𝑂(𝑖)

+

∑ 𝑑𝑖𝑂(𝑖)

(𝑡+1−𝑡𝑂(𝑖)𝑖)𝑑𝑏𝑡
+ 𝑃𝑖𝑂(𝑖)

(𝑡+1−𝑡𝑂(𝑖)𝑖)𝑑𝑏𝑡𝑑
𝑖=1,≠𝑂(𝑖)

≤ 𝜇𝑂(𝑖)

(𝑡+1)𝑑𝑏𝑡         5.15 

  

V. Check if i=n. If not, go to step II. If so, this round of rebalancing is 

finished. 

5.1.4.2 Activity mapping 
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Before running the simulation, there are a set of inputs to be specified, namely the 

number of parking spots at each subarea and the total number of vehicles at the 

first month. These two decisions are obtained by optimizing the profit in the first 

month beforehand. Besides, users need to determine the parameters of the flexible 

strategies (α1, α2, f1, and f2) when flexibility is under consideration.  

Figure 5.1 shows the steps in one run of the simulation. In each run of the 

simulation, for each month, the simulation begins with generating the demand 

growth rate for that month, which is further used to calculate the arrival rates of 

the Poisson processes. Then, starting with Week 1 and Day 1 of that week, at the 

beginning of every time step and for every subarea, the simulation first calculates 

utilization rate (ℎ𝑓𝑡𝑑𝑏𝑡), and generates travel demand (𝐸). For each realized 

demand, if vehicles are available, the destination is simulated, and the relevant 

parameters on system status, e.g. the number of vehicles at each site (𝑠𝑓𝑡𝑑𝑏𝑡), 

revenues obtained (𝑑𝑓𝑖𝑡𝑑𝑏𝑡), are updated accordingly. At the end of each time step, 

the heuristic rebalancing rule introduced earlier is applied to determine the vehicle 

redistribution decisions, and the relevant system parameters are recalculated based 

on the results. After 17 hours are simulated, the simulation process will proceed to 

another day, then another week, until the end of that month. Next, the trigger 

points of decision rules (α1 and α2) are checked, and the system is reconfigured 

if the rules are satisfied. This run of simulation is ended when all six months are 

simulated. For a particular run of simulation, the main output, profit obtained (𝐿𝑘), 

is calculated by . 
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𝐿𝑘 = ∑ 𝐸𝑓𝑖𝑑𝑓𝑖𝑡𝑑𝑏𝑡𝑓,𝑖,𝑡,𝑑,𝑏,𝑡 − ∑ 𝐷𝑖 ∗ 𝐸𝑖𝑚𝑖,𝑚 + ∑ 𝑤 ∗ 𝑣𝑚𝑚 − ∑ 𝑞𝑓𝑔𝑓𝑡𝑑𝑏𝑡𝑓,𝑡,𝑑,𝑏,𝑡 −

∑ 𝛾𝑓𝑖𝑃𝑓𝑖𝑡𝑑𝑏𝑡𝑓,𝑖,𝑡,𝑑,𝑏,𝑡                                                        5.16 
 

 

Figure 5.1 Activity map of the simulation model 
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5.2 Application 

5.2.1 Case study of a prototype problem  

5.2.1.1 Problem setting 

Similar to the analysis in Chapter 4, the proposed methodology is applied to a 

prototype case first where only three subareas are under consideration. The same 

geographic area as for section 4.2.1 is under study, and the cost parameters also 

remain the same. Additional parameters on modelling demand pattern changes 

and unit revenue that are not under consideration in the previous chapter are 

displayed in Table 5.1. The drift and volatility of the demand growth rate is chosen 

to give a relatively high expected growth rate and its variance, while the revenue 

parameter is derived from Jorge et al. (2012). Those assumptions will be further 

tested in the sensitivity analysis.  

Table 5.1 Additional parameters 
 Drift of the demand 

growth rate 
 Volatility of the demand 

growth rate 
 Revenues of servicing one 

customer per hour 

0.25 0.20 17.58 

 

5.2.1.2 Simulation results 

To illustrate how the simulator works, a combination of parameters, as displayed 

in Table 5.2, is tested in an example simulation run. As explained earlier, the initial 

system configuration (𝐸11, 𝐸21, 𝐸31, and 𝑣1) is obtained by optimizing the profit 

in the first month, while the parameters for the phasing strategy (ɑ1, ɑ2, f1, and f2) 

are randomly chosen. Here, ɑ1 stands for the threshold of the customer loss rate 

that triggers adding f1 more vehicles into the system; ɑ2 represents the threshold 
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of the ratio of vehicle-to-capacity that triggers renting f2 more parking spots in 

the system; 𝐸𝑓1 is the No. of parking spots rented at subarea i at the beginning of 

the first month; 𝑣1 is the total No. of vehicles in the system at the beginning of 

the first month. 

Table 5.2 The decision in the illustration example 
ɑ1 ɑ2 f1 f2 𝐸11 𝐸21 𝐸31 𝑣1 

0.2 0.8 5 5 5 6 5 9 

 

Figure 5.2 shows the total demand every month in the 500 runs of the simulation. 

As indicated in the figure, although variations exist between scenarios, an overall 

trend of gradual increase every month can be observed. To further illustrate how 

the system changes over time under the test decisions, results from one run of the 

simulation are examined in more details. Several indicators are summarized and 

presented in Table 5.3.  

In this particular scenario (whose demand realization is highlighted in Figure 5.2), 

demand increases relatively fast especially for the last month. Customer loss rate 

first increases, then decreases, and increases again in the last two months. As in 

the first two months, demand increases, but the scale of the system remains the 

same because the customer loss rate is not high enough (namely less than the α1 = 

0.2 specified in Table 5.2) to trigger the expansion decision. However, in the third 

month, the customer loss rate exceeds the triggering point, so f1=5 vehicles are 

added into the system at the beginning of the fourth month. Meanwhile, since the 

ratio of vehicle-to-capacity is 0.88 that is higher than the ɑ2=0.8 specified in Table 
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5.2, f2=5 more parking spots are rented. As in the third month, the subarea 3 has 

the highest average utilization rate of parking spots (0.86), the extra parking spots 

are installed there. This expansion of the system at the beginning of the fourth 

month reduces the customer loss rate from 0.28 to 0.16, although demand 

increased. As the time approaches to the fifth month, the existing scale of the 

system is not sufficient to satisfy the required LoS again, as the customer loss rate 

exceeds α1 = 0.2. Such situation triggers the execution of the decision rule again, 

and f1=5 more vehicles are added into the system in the sixth month. However, 

since the ratio of vehicle-to-capacity is below f2=0.8, no more parking spots are 

rented. It is also interesting to notice that, although the system is expanded at the 

beginning of the last month, the customer loss rate does not go down, which may 

be due to the demand increasing so fast in this month that the number of vehicles 

added into the system is not sufficient. The final profit obtained under this 

particular scenario is €135,722. 
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Figure 5.2 500 scenarios of monthly demand 
 

Table 5.3 Illustration of changes in the system under the test decision over time 
 Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 

Total demand 1,855 2,863 3,661 4,795 7,147 15,162 

Customer loss rate 0.16 0.19 0.28 0.16 0.36 0.56 

No. of vehicles/Total 
capacity (Before 
adding capacity) 

0.56 0.56 0.56 0.88 0.67 0.90 

Utilization_s1 0.55 0.55 0.46 0.73 0.83 0.50 

Utilization_s2 0.35 0.43 0.39 0.61 0.51 0.75 

Utilization_s3 0.83 0.74 0.86 0.67 0.68 0.95 

Capacity_s1 5 5 5 5 5 10 

Capacity_s2 6 6 6 6 6 6 

Capacity_s3 5 5 5 10 10 10 

Total No. of vehicles 9 9 9 14 14 19 
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Based on the sample points obtained in these 500 scenarios, the convergence of 

the estimation on the objective function value, namely the half-year profit, is also 

examined. Figure 5.3 displays how this estimation varies with the number of 

scenarios considered. It indicates that the results start to become quite stable after 

400 runs of the simulation, which also suggests that 500 scenarios are sufficient to 

provide an accurate estimation of half-year profit for a given decision. 

 

Figure 5.3 Convergence on the estimation of half-year profit 
  

5.2.1.3 Optimization results 

This part of the study adopts the same solution approach as the previous chapter, 

namely PSO and OCBA. Furthermore, to assess the value of the flexible strategies, 

optimization is conducted on the fixed design, where the system is deployed once 

at the beginning and remains the same throughout the planning horizon (i.e. a 

stochastically robust solution). For both fixed and flexible design, five runs of 
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optimization are conducted. The average computation time of optimization on the 

flexible designs is 3857 seconds with a standard deviation of 657 seconds, while 

the average time for optimizing the fixed designs is 5635 seconds with a standard 

deviation of 1275 seconds. Table 5.4 and Table 5.5 display the optimal fixed and 

flexible solutions respectively. As indicted in Table 5.5, the initial configuration of 

the system is the same for the five runs of the simulation. 

Table 5.4 Optimal fixed solutions 
 𝐸1 𝐸2 𝐸3 𝑣 

fixed-1 10 12 11 19 

fixed-2 12 12 10 19 

fixed-3 8 10 12 20 

fixed-4 11 11 11 19 

fixed-5 9 10 13 17 

 

Table 5.5 Optimal flexible solutions 
 ɑ1 ɑ2 f1 f2 𝐸11 𝐸21 𝐸31 𝑣1 

flex-1 0.075 0.275 6 7 

5 6 5 9 

flex-2 0.050 0.475 6 10 

flex-3 0.050 0.450 5 7 

flex-4 0.100 0.200 6 8 

flex-5 0.050 0.200 5 9 

 

Figure 5.4 shows the CDF curves of all solutions (Dashed lines represent the 

optimal flexible solutions, while solid lines are the optimal fixed solutions), and 

Table 5.6 presents the performances of all solutions under different criteria. 
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Combined with the results in Table 5.7 that show a statistically significant 

difference between the mean values of the flexible designs and the fixed ones, 

these results indicate that the flexible designs are clearly better than the fixed 

solutions. Not only do the flexible designs have a better average performance, but 

they have a better ability to avoid downside losses when demand turns out to be 

lower than expected (indicated by the higher P5 value) as well as to capture 

upside gains when market turns out to be better (as flexible designs have higher 

P95 value). This is because flexible designs enable waiting and changing the 

system configuration at the right time. When lower demand happens, since 

flexible designs start with smaller capacity scale, decision-makers can choose to 

delay the expansion of system to avoid losses caused by an excessive (and often 

times unused) capacity, while in such case the fixed designs are not able to adapt 

to the situation, and may suffer from wasted initial investments in renting parking 

spots and purchasing vehicles. In fact, as illustrated in Figure 5.4, there are some 

situations where fixed designs end up with negative profits. On the other, when 

demand is higher than expected, the flexible designs are able to add more vehicles 

and parking spots into the system as to serve more customers, hence, leading to a 

higher profit. 

Meanwhile, results from Table 5.7 also show the robustness of the computational 

procedure. Under the two optimization conditions, namely flexible design 

optimization and fixed design optimization, although the final solutions are not 

exactly the same, there is no statistical difference between them. There is, as 
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expected, a statistically significant difference between the fixed and flexible 

solutions. 

Furthermore, Equation 5.17 is applied to calculate the value of flexibility (VoF). 

Here, 𝑓𝑙𝐸𝐸𝑓  is the estimated profit of flexible design i, and 𝑓𝑖𝐸𝐸𝑑𝑓  is the 

estimated profit of fixed design i. By taking the average of the five fixed and 

flexible solutions, respectively, and calculate the difference between the two 

averaged values, the VoF is estimated to be €11,777, which is roughly 11% of the 

averaged value of the fixed solutions. 

𝑉𝑉𝑉 =
∑ 𝑓𝑙𝐸𝐸𝑓5
𝑓=1

5
−
∑ 𝑓𝑖𝐸𝐸𝑑𝑓5
𝑓=1

5
                                         5.17 

                                                 

 

Figure 5.4 CDF curves of half-year profit for all solutions 
 

 

Optimal fixed solutions 
Optimal flexible solutions 
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Table 5.6 Performance metrics of all solutions 
 

fixed-1 fixed-2 fixed-3 fixed-4 fixed-5 flex-1 flex-2 flex-3 flex-4 flex-5 

Mean  105,772 104,662 107,702 106,084 105,876 116,522 116,528 118,439 118,334 119,160 

SE 1,425 1,368 1,450 1,426 1,295 1,674 1,748 1,654 1,708 1,733 

P5 32,575 32,332 33,874 33,056 36,519 45,475 42,550 48,046 43,592 42,413 

P95 178,715 177,167 185,886 178,853 170,112 217,192 223,804 215,387 220,726 220,543 

 

Table 5.7 P-value of pairwise t-test between solutions 
 fixed-1 fixed-2 fixed-3 fixed-4 fixed-5 flex-1 flex-2 flex-3 flex-4 flex-5 

fixed-1 N.A. 0.57 0.34 0.88 0.96 0.00 0.00 0.00 0.00 0.00 

fixed-2  N.A. 0.13 0.47 0.52 0.00 0.00 0.00 0.00 0.00 

fixed-3   N.A. 0.43 0.35 0.00 0.00 0.00 0.00 0.00 

fixed-4    N.A. 0.91 0.00 0.00 0.00 0.00 0.00 

fixed-5     N.A. 0.00 0.00 0.00 0.00 0.00 

flex-1      N.A. 1.00 0.42 0.45 0.27 

flex-2       N.A. 0.43 0.46 0.29 

flex-3        N.A. 0.96 0.76 

flex-4         N.A. 0.73 

flex-5          N.A. 

 

5.2.1.4 Sensitivity analysis 

To see the robustness of the results, OFTA analysis is applied to conduct a 

sensitivity analysis on the cost parameters and the volatility of demand growth 
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rate. The values of these parameters are varied by ± 50% and 25% at a time, and 

the VoF is recalculated each time using Equation 5.17.  

Figure 5.5 shows the result of the sensitivity analysis. Among all the factors, unit 

revenue seems to influence the VoF most. As the unit revenue goes higher, the 

profit brought by one additional customer increases accordingly. Due to the ability 

of capturing more demand by gradual expansion, the flexible design is able to 

make higher profit than the fixed one. Demand volatility also demonstrates a 

strong positive relation with the VoF. As the demand becomes more volatile, 

flexible designs are more capable of adapting to the changing environment, with 

higher realized demand leading to more frequent exercising of the expansion 

option, while in the opposite situation delaying such decision. However, the larger 

variation of demand only makes the fixed design worse, as the initial investment 

may become excessive if demand is lower than expected while unexpected higher 

demand, on the other hand, cannot be satisfied. Furthermore, car cost is also 

observed to increase along with VoF, although its influence is not as strong as the 

previous two factors. As the flexible design starts with a smaller scale and 

expands only if necessary, it saves more cost than the fixed one by having fewer 

vehicles, and a higher car cost enhances such advantage. On the other hand, it is 

interesting to see that another cost parameter linking to the initial investment, the 

parking cost, seems to have no effect on VoF. This may be explained by the fact 

that the daily cost of a parking spot is much smaller compared with the 

depreciated daily car cost. Temporary parking cost also has very limited influence 

on VoF, which occurs because under both fixed and flexible designs, there are 
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very few occasions when temporary parking is needed. The only factor that seems 

to negatively relate to VoF is the rebalancing cost. The result here indicates that 

rebalancing cost seems to have more impact on the flexible design than the fixed 

one. Contrary to the flexible design, initially, fixed design has more vehicles and 

parking spots, resulting in less rebalancing operations to be conducted, which is 

why a higher rebalancing cost affects less the fixed design. 

 

Figure 5.5 Sensitivity analysis on VoF against changes (percentage) on main parameters 
 

5.2.2 Case study of a more complex problem  

Similar to the analysis in the previous chapter, the methodology is applied to a 

more complex problem to study the scalability of the proposed approach. The 

problem setting is the same as section 4.2.2. Parameters regarding demand 

modeling and unit revenue remain the same with the prototype case (shown in 

Table 5.1). 
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5.2.2.1 Optimization results 

The same solution approach is applied to the second case study. For both fixed 

and flexible design, this study runs five times the computational procedure. The 

average computation time of optimization for the flexible designs is 21,321 

seconds with a standard deviation of 4,706 seconds, while the average time for 

optimizing the fixed designs is 38,204 seconds with a standard deviation of 6,391. 

Optimizing the fixed designs takes longer because there are more decision 

variables to determine than for the flexible systems (9 for the fixed designs, 4 for 

the flexible systems). 

Table 5.8 and Table 5.9 display the optimal solutions obtained. For example, in 

Table 5.8, the fixed-1 solution indicates 6 parking spots should be rented at 

subarea 1 and 5, 7 at subarea 2 and 4, 8 at subarea 6,10 at subarea 8, 12 at subarea 

7, while no parking spots are needed for subarea 3. The solution also recommends 

purchasing 28. On the other hand, in Table 5.9, the first four columns specify the 

flexible strategy. For example, in the solution of flex-1, when customer loss rates 

exceeds α1 = 0.2, f1=9 vehicles are added into the system, while when the ratio of 

vehicle-to-capacity is higher than α2 = 0.625, f2=8 more parking spots are rented. 

The system configuration at the beginning, namely the beginning of the first 

month, is presented in the last nine columns, where x𝑓1-x𝑓8 indicate the parking 

spots at each subarea, while 𝑣1 indicates the total number of vehicles. Similar to 

the prototype case, the same initial system configuration is adopted for the five 

runs of the optimization for the flexible systems. The performances of the 
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solutions obtained are summarized into Table 5.10 and Figure 5.6. For each solution, 

the performance is estimated by averaging over 500 scenarios.  

Table 5.8 Optimal fixed design for the complex problem 
 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 𝐸6 𝐸7 𝐸8 𝑣 

fixed-1 6 7 0 7 6 8 12 10 28 

fixed-2 7 10 0 8 6 8 8 8 28 

fixed-3 5 7 0 6 6 6 5 8 28 

fixed-4 5 6 0 10 6 9 7 8 27 

fixed-5 8 8 0 7 7 7 7 8 29 

 

Table 5.9 Optimal flexible designs for the complex problem 
 ɑ1 ɑ2 f1 f2 𝐸11 𝐸21 𝐸31 𝐸41 𝐸51 𝐸61 𝐸71 𝐸81 𝑣1 

flex-1 0.200 0.625 9 8 

2 4 0 3 3 6 3 6 15 

flex-2 0.150 0.650 7 8 

flex-3 0.200 0.450 10 9 

flex-4 0.200 0.575 15 9 

flex-5 0.175 0.700 14 10 
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Table 5.10 Performance metrics for all the solutions 
 fixed-1 fixed-2 fixed-3 fixed-4 fixed-5 flex-1 flex-2 flex-3 flex-4 flex-5 

Mean  116,883 117,508 120,255 120,276 118,656 140,968 141,788 138,585 136,715 136,063 

SE 1,821 2,029 1,811 1,756 2,090 2,331 2,337 2,403 2,363 2,558 

P5 43,767 37,374 44,632 46,389 40,093 54,415 54,004 55,974 59,351 48,304 

P95 181,047 186,734 181,499 180,483 190,083 224,584 225,798 234,650 236,140 235,707 

 

 
Figure 5.6 CDF of half-year profit for all solutions 

 

Although according to Table 5.8 and Table 5.9, a slightly different solution is 

obtained in each run of optimization, within each group, either the fixed design or 

the flexible design, there is no statistically difference as indicated in Table 5.10. 

However, between the optimal fixed and flexible solutions, clear difference can be 

Optimal fixed solutions 

Optimal flexible solutions 
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observed. No matter on mean value, P5 value, or P95 value, all of the flexible 

designs are better than fixed ones. In fact, as shown in Figure 5.6, fixed designs 

are almost all dominated by flexible ones. By applying Equation 5.11 again, this 

study obtains a VoF of €20,108 for the complex problem, which accounts for 

nearly 17% improvement on the fixed designs. This percentage of improvement is 

higher than that achieved for the prototype case. 

5.2.2.2 Further analysis 

To further investigate how the flexible and fixed designs perform along the 

planning horizon, for each month and each solution, the study calculates the 

average revenue, set-up cost (sum of depreciated cost of vehicles and rent cost of 

parking spots), rebalancing cost, cost for temporary parking, and profit. Then, the 

average performances of the two groups of designs are summarized into Figure 

5.7.  

As shown in Figure 5.7, with an assumed increase in demand every month, both 

fixed designs and flexible designs reap more and more revenues. Fixed designs 

start with higher revenue, as initially they are built with larger capacity and more 

vehicles, which makes them able to capture more demand at the beginning. 

However, since there is a phasing option incorporated into the flexible designs, 

they are expanded gradually, which is indicated by their increasing set-up costs. 

Consequently, more and more demand is satisfied due to the gradual expansion on 

the flexible designs. Finally, beginning in Month 3, flexible designs start to 

harvest more revenues than the fixed ones.  
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Regarding set-up cost, as the scale of fixed designs remain the same throughout 

the planning horizon, this cost item does not change accordingly. On the other 

hand, the flexible designs keep scaling up along with increasing demand, leading 

to an increase in set-up cost. Another interesting observation can be found in 

Month 3. In this month, the set-up cost of flexible designs is slightly lower than 

the fixed ones, which indicates that they still remain in a smaller scale than fixed 

ones, whereas they manage to satisfy more demand than the fixed ones. This may 

be achieved by conducting more rebalancing operations, and allowing more 

customers to use temporary parking. As shown in Figure 5.7, both rebalancing 

cost and extra parking cost is higher for flexible designs.  

With respect to operating cost, on the one hand, extra parking cost remains very 

small for both flexible and fixed designs during the whole planning horizon, 

although slight fluctuations can be observed. Initially, this cost item is higher in 

fixed designs than flexible designs. However, because the flexible design keeps 

expanding, and according to Table 5.9, it seems to purchase additional vehicles 

faster than rent more parking spots, since in Month 2, more temporary parking is 

needed for flexible designs. On the other hand, rebalancing cost, which is the 

other operating cost item, of flexible designs gradually increases during the 

planning horizon, as increase in demand leads to more rebalancing operations. 

However, for the fixed designs, this cost first increases from Month 1 to Month 2 

and then decreases until the end of the planning horizon. This observation seems 

somehow counter-intuitive. For the first two months, increase in demand indeed 

requests more rebalancing operations, leading to the increase in rebalancing cost. 
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At this early stage, although demand is increasing but it is still relatively low 

compared to the whole planning horizon, there is a higher chance that there are 

surplus vehicles in some subareas during the day. As such, rebalancing operations 

are triggered to place the idle vehicles to the subareas where they are in need. 

However, as demand goes up gradually in the later stage, the system may be faced 

with an overall lack of vehicles, which consequently leads to less and less idle 

vehicles to be rebalanced, and hence, a decrease in rebalancing cost. This finding 

demonstrates the close link between the planning decisions (where and how to 

install stations and allocate vehicles) and rebalancing operations. On the one hand, 

rebalancing operations increase the utilization of vehicles and parking spots, and 

on the other hand, the higher-level decisions also influence the efficiency of 

rebalancing operations in terms of satisfying more demand. 

Finally, the monthly profits for both flexible and fixed designs grow gradually 

with increasing demand. Initially, due to the redundant parking spots and vehicles, 

profit for the fixed designs is much lower than that for the flexible designs. As the 

demand increases, a system with a larger scale becomes more essential, which 

explains why the profit gap between flexible designs and fixed ones shrinks 

month after month. Until Month 3, the profits of these two groups are basically 

the same. However, along with the continuous growth of the demand, starting 

from Month 5, the number of parking spots and vehicles in the fixed designs is no 

longer sufficient. Meanwhile, as the flexible designs are allowed for further 

expansion, more vehicles and parking spots are added into the system, which 
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makes the flexible designs able to reap more profit. The advantage of such 

phasing strategy becomes even clearer in Month 6 with even higher demand. 

Figure 5.7 Average monthly performance of fixed and flexible designs 
 

5.3 Further discussion 
As explained earlier in Chapter 2, the computational complexity involved in 

optimizing flexible systems via simulation may need to be addressed from another 

perspective rather than just simplify the original simulator. In this chapter, the 

computational procedure developed in Chapter 4, namely PSO+OCBA, is applied 

again to determine the optimal parameters for the strategic-level flexibility. The 

analysis indicates that this solution approach is able to identify the optimal 

solution within an acceptable amount of time and a stable performance. It is 

believed that the acceleration of the computation process is achieved by the way 

how the search algorithm collaborates with the OCBA technique. Therefore, this 
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study proposes a generalized computational framework combining 

population-based search algorithms and OCBA techniques. 

For discrete event models, such as used in this study, a heuristic search method 

may be more applicable than a gradient-based approach. This is because a 

heuristics-based approach does not require gradient information that is usually not 

available for discrete event models. Furthermore, there are two categories of 

heuristic search methods depending on sampling strategies: population-based 

approaches (such as genetic algorithm, nested partition, and particle swarm 

optimization) and single-point-based approaches (such as simulated annealing and 

Tabu search). Although in a particular iteration, single-point-based search 

methods require less computation time (as only one solution needs to be 

evaluated), population-based approaches are able to search the design space more 

thoroughly. More importantly, a population-based approach integrates well with 

an OCBA approach, so that in each iteration, the simulation budget is optimized 

to maximize the probability of correct selection of the best individual in that 

population. Using OCBA enhances the efficiency of the algorithm in terms of 

updating the population in the subsequent iterations, as well as saving the 

computational effort in a current iteration. 

The figure below shows the structure of the optimization framework. The 

computation framework relies on collaboration between the OCBA rule, the 

simulator, and the population-based search algorithm. The initial set of solutions 

is randomly generated in the decision space or based on certain rules that depend 

on the specific algorithm being used, and then a small amount of simulation 
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budget is allocated to each solution whose performance is further estimated by the 

simulator. After that, the OCBA rule plays its role to allocate extra simulation 

budget to solutions until a specified accuracy is achieved or the total budget for a 

single iteration consumes up. Next, the estimated performances of solutions are 

imported into the search algorithm where such information is processed to 

generate a new set of population. The computation ends if certain stopping criteria 

are satisfied, e.g. limited improvement on the best individual in two consecutive 

iterations.  

As commonly there is no strict confinement that the OCBA rule or 

population-based search algorithms can only be applied to a particular kind of 

problem or simulator, it is believed that this computational framework is arguably 

very generalizable. It is expected that this computational framework provides 

another angle to cope with the large computational cost when optimizing flexible 

systems via simulation. 

 

Figure 5.8 Computational framework 
 

5.4 Summary 
This chapter incorporates strategic flexibilities into design and management of 

MoD systems to address long-term demand uncertainty. It addresses the third 
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research question proposed in Section 2.3. A phasing strategy is formulated into 

the deployment plan that enables the system to expand every month if necessary, 

which aims to deal with uncertain demand growth. Similar to the previous chapter, 

a simulation-based methodology is adopted to determine the optimal parameters 

in this phasing strategy. An optimization problem is first defined. Different from 

the previous chapter, the optimization model here tries to find the optimal solution 

that maximizes profit instead of minimizing cost. Besides, a longer planning 

horizon is considered as this chapter focuses on changes in the overall demand 

pattern. The DES, which is used to estimate the objective function value of a 

given solution, is also modified from the one developed in the previous chapter, 

namely to account for the formulation of the phasing strategy, a longer planning 

horizon, and a heuristic rule to guide the rebalancing operations. The 

computational procedure, namely PSO+OCBA, which is shown to be effective in 

the previous chapter, is further applied to calculate the optimal solution.  

The two case studies in this chapter both demonstrate that designing a flexible 

MoD system is an effective method to increase the profit of the system. A VoF 

that accounts for 11% of the fixed design is obtained in the first case study. In the 

second case study with a more realistic setting, this improvement increases further 

to 17%. As the overall demand pattern is subjected to uncertain change in a longer 

planning horizon, when demand is lower than expectations, the flexible system is 

able to avoid excessive loss by staying in a relatively smaller scale compared with 

the fixed one. Meanwhile, if demand turns out higher than expected, the flexible 

system can be expanded to a larger scale to service more customers, thus a higher 
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profit. Such advantage of the flexible system is further illustrated by the 

decomposition of monthly performance in the second case study.  

For the prototype study, sensitivity analysis is also conducted. The results are 

tested under variations of major assumptions, namely cost and revenue parameters, 

as well as the volatility of demand growth rate. It is shown that demand volatility 

and unit revenue play the most important role. Besides, it is interesting to notice 

that, in any case, a positive VoF can be obtained in the context of this case study, 

which demonstrates the value of the proposed flexibility concept.   

Meanwhile, as explained in Chapter 3, the design procedure proposed in this 

thesis does not account for cost of flexibility, as in general, it needs many efforts 

to obtain such value and requires additional assumptions that may restrain the 

applicability of the methodology proposed in this thesis. Decision-makers, 

however, should be aware the existence of such cost, such as signing a contract 

with local government to access more parking spaces or making agreements with 

vehicle rental company or manufacturers. Although formulating such cost is 

beyond the scope of the thesis, the VoF obtained using the methodology proposed 

in this thesis provides a valuable reference for decision-makers to compare with 

their specific cost of implementing flexibility.  

Finally, a generalized computational framework is proposed as the combination of 

PSO and OCBA is demonstrated to be an effective computational procedure in 

this chapter and Chapter 4. This computational framework provides guidelines 
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from a different perspective other than metamodels on how to efficiently find 

optimal flexible designs. 

In sum, this chapter provides guidelines and a methodology on how to design a 

flexible MoD system considering strategic level flexibility to address the 

long-term demand uncertainty. Also, it shows how different factors may influence 

the additional value that can be brought by adopting such flexible deployment 

strategy. 

Similar to Chapter 4, generalizable knowledge informative to the design and 

management of MoD systems is also derived from the analysis in this chapter, but 

as the analysis is also based on some explicit assumptions, applicability to other 

systems require a further examination on similarities and differences between the 

target systems and the one assumed in this study. 

1) With the demand growing in an uncertain trend, a phasing deployment 

strategy is effective to improve the profit of a MoD system compared with 

a rigid deployment strategy. 

2) The more volatile the demand is, the more additional value results from 

taking a phasing strategy. 

3) The higher the charge of ride is, the more additional value is resulted from 

taking a phasing strategy. 

4) Decision-maker should be aware of the trade-off between revenue, 

expansion cost, and operating cost (the sum of rebalancing cost and 

temporary parking cost) in a flexible MoD system. 
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Chapter 6 Conclusion  

6.1 Summary 
This thesis explores the design and management issue of MoD systems under both 

short-term and long-term demand uncertainty. On the one hand, rebalancing 

operations are incorporated as an operational-level flexibility to address daily 

demand fluctuations. On the other hand, a phasing deployment strategy is 

formulated as a strategic-level flexibility to deal with the overall demand pattern 

changes. A simulation-based approach is adopted throughout the thesis as an 

effective approach in terms of systems modeling and solution calculation. In 

retrospect, three research objectives were proposed in Chapter 1. Each was 

addressed by a distinct chapter of the thesis, respectively. 

Objective 1: Develop a design procedure based on simulation that provides high 

level of instructions on how to design and evaluate flexible engineering systems. 

In Chapter 3, a four-step procedure for designing and evaluating flexibilities via 

simulation is introduced. The analytical logic that derives from the four-step 

procedure runs through the whole thesis and is repeatedly applied to guide the 

analysis in this thesis, although the part concerned with deterministic analysis is 

omitted mostly, since it is typical for illustrative purposes and model development. 

To illustrate how this procedure works and why the thesis takes a 

simulation-based approach, as well as to demonstrate that incorporating flexibility 

is effective to improve system performance, a case study on a water management 

system is introduced, based on the work recently published by Deng et al. (2013). 

The case study provides a demonstration on how to apply the four-step procedure 
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step by step in an urban infrastructure system, an example of a complex 

engineering system, and it also shows the convenience of applying simulation to 

model and evaluate flexible systems. The case study also serves as another 

example that incorporating flexibility leads to improvement in system lifecycle 

performance. 

Objective 2: Develop and solve a mathematical model that aims at finding out the 

optimal planning decisions for a MoD system where vehicle redistribution 

activities are considered as an operational level flexibility to address short-term 

demand fluctuations. 

Chapter 4 applies the simulation-based approach described in Chapter 3 to 

optimize the planning decisions of the MoD systems considering stochastic 

demand and operational-level decisions. Although demand is modeled by 

stochastic processes in this chapter, the overall usage pattern represented by the 

parameters in the stochastic model remain unchanged throughout the planning 

horizon. The rebalancing operations, which can be regarded as a type of 

operational-level flexibility, are integrated into the planning decisions in order to 

cope with the day-to-day variations in realized demand and the imbalanced traffic 

flows in the system. In this part of the study, the optimization problem is defined 

so as to find the configuration of a MoD system that incurs minimal cost to satisfy 

a predefined LoS. A DES that includes a sub-optimization model to calculate 

hourly rebalancing schemes, is built to estimate the performance of a given 

configuration. Furthermore, the thesis devises an algorithm that combines PSO 

and OCBA techniques to efficiently search the design and decision space. 
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Numerical results on two case studies demonstrate the necessity of considering 

the effect of the rebalancing operations when making planning decisions. By 

taking this approach, the system configuration identified not only results in a 

lower cost but also a smaller chance of violating the requirement on LoS. Besides, 

the results also suggest that the proposed solution approach has a stable 

performance. In particular, the results indicate that the OCBA technique plays a 

critical role in accelerating the computation process. The analysis and results from 

Chapter 4 are available in another journal paper recently submitted for review (see 

Deng and Cardin (2015)). 

Objective 3: Develop and solve a mathematical model that aims to determine the 

optimal flexible strategy for deploying a MoD system that copes with long-term 

demand uncertainty. 

Chapter 5 investigates strategic decision-making for MoD systems operating 

under uncertainty, assuming that overall demand patterns evolve over time. A 

vehicle capacity phasing strategy – an example of strategic-level flexibility – is 

formulated into the deployment plan to address longer-term uncertain demand 

growth. Different from Chapter 4, this chapter aims to identify the optimal 

solution that maximizes the profit rather than minimizes the cost. The DES 

developed previously is extended and modified to account for a longer planning 

horizon, changing demand patterns over time, and the formulation of the phasing 

flexibility strategy. The PSO+OCBA algorithm is applied again to find the 

optimal solution. The proposed methodology is implemented on the same two 

case studies as in the previous chapter. In both cases, compared with the fixed 
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designs that deploys the system once at the beginning and remain the same 

throughout the planning horizon (i.e. a robust design solution), the phasing 

strategy provides better performance, namely higher expected profit. Such 

improvement is achieved by staying at a relatively smaller scale when the demand 

is low, but adding more parking spots and vehicles when the demand reaches an 

adequate level. In fact, the results show that the fixed design solutions are only 

able to reap slightly more profit than the flexible ones during the middle of the 

planning horizon. This is because until this time point, demand is relatively 

moderate compared with the beginning or the end of the planning horizon. On the 

other hand, the numerical results in this chapter further confirm that the proposed 

solution approach is helpful in terms of determining the optimal flexible strategy. 

Inspired by the successful implementation of the PSO+OCBA approach, this part 

of the study proposes the computational framework based on a population-search 

algorithm and the OCBA technique as a general approach to resolve the 

computational complexity involved in optimizing flexible systems. A third journal 

paper focusing on the longer-term flexibility analysis is currently under 

preparation. 

6.2 Results validity and study limitations 
This thesis investigates both operational and strategic planning of MoD 

transportation systems by incorporating flexibility into the system to address both 

short-term and long-term demand uncertainty. There are two major discoveries 

from this study. First, results indicate that considering explicitly uncertainty and 

flexibility into a MoD system contributes to better performance, either through 
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dynamic rebalancing operations, or by strategically phasing system capacity over 

time. Second, the simulation-based approach is effective to help determine the 

deployment strategy of a MoD system.  

This section examines the quality of the results from three perspectives, internal 

validity, external validity, and reliability. Internal validity considers any bias or 

errors that may compromise the causal relationships established in this study; 

external validity is the extent to which the results of this study can be generalized 

to other situations and contexts; reliability concerns with the consistency and 

replicability of the results. 

6.2.1 Internal validity 

In order to demonstrate that designing flexibility is effective in terms of 

improving the performance of MoD systems, this thesis makes a comparison 

between the optimal solutions obtained under three conditions: without flexibility 

(benchmark), with operational-level flexibility (i.e. incorporating rebalancing 

operations), and with both operational-level and strategic-level flexibility (i.e. the 

phasing strategy). By comparing the optimal solutions that are calculated using 

the same solution approach, the biases that can be caused by wrongly choosing 

the design variables for a particular condition are avoided. Results, which are 

demonstrated to be statistically significant, show that each time when one more 

layer of flexibility is added, systems designs with better performance are 

generated.  
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Meanwhile, the solution approach mentioned earlier, namely the simulation-based 

methodology proposed in this thesis that consists of the DES and the PSO+OCBA 

algorithm, is also carefully devised to minimize any bias or error. 

The DES is established to evaluate the performance of one-way MoD systems 

adopting a first-come-first-to-service policy. Admittedly, it is most straightforward 

to validate a simulator by comparing the simulated results with the data collected 

in reality. As real-world data is not available in this study, however, other methods 

have been exploited to validate the simulator. On the one hand, conceptually, the 

assumptions made in the simulator regarding the system behavior can be 

supported by past studies, such as the one by Jorge et al. (2012), as well as other 

real-world examples, e.g. car2go (https://www.car2go.com/). On the other hand, 

the computerized model is validated by checking the consistency of the simulated 

results with the input information. For example, the analysis makes sure that the 

total number of vehicles at each time step equals the decision made before 

running the simulation, and that the sample mean of the simulated demand is 

close to the assumed parameters of the demand.  

Regarding validation of the PSO+OCBA algorithm, the main issue stems from the 

quality of the solutions obtained. Due to the large scale of the problem, exhaustive 

search is not a realistic approach to examine whether the solution identified by 

PSO+OCBA is the true optimal solution or not. In this case, in Chapter 5, the 

embedded solver from MATLAB is employed to compute the optimal solutions. 

Results show that there is no statistically difference between the solutions 

obtained by the proposed algorithm and the MATLAB solver, which demonstrates 

https://www.car2go.com/
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the optimality of the solutions identified by the PSO+OCBA approach to a certain 

degree. Besides, the PSO+OCBA algorithm takes much less time to identify the 

optimal solution than the MATLAB solver. Furthermore, the performance of 

PSO+EA and PSO+OCBA is examined in Chapter 4, which further illustrates the 

importance of incorporating the OCBA technique into the algorithm. These 

observations suggest that the proposed computational procedure is an effective 

decision-support tool to find optimal flexible MoD systems. 

6.2.2 External validity 

External validity of the results is concerned with the questions of how the results 

of this study are applicable to 1) the same type of MoD system under different 

settings, 2) other types of MoD systems, and 3) other engineering systems. 

For the recommendation regarding designing flexible MoD systems, the first 

question is partially addressed through the sensitivity analysis. In Chapter 5, 

major parameters are varied to see how the VoF responds to these changes. 

Although there is a clear variation in terms of VoF when some of the parameters 

are altered, the VoF remains positive, which supports the recommendation of 

applying a phasing strategy to deploy a MoD system that follows the decision 

rules assumed in this thesis. It is still possible, however, that the VoF may become 

negative when some parameters vary in an extreme way, namely out of the ranges 

assumed in the sensitivity analysis. In fact, the recommendations generated in the 

numerical studies, particularly the very specific ones, e.g. optimal decisions, are 

based on the assumptions and parameters made for the case that is based in 

Singapore. The recommendations may change if the study is done in other 
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contexts or cities, where these parameters may change. For example, if the system 

is built on another city other than Singapore, the temporary parking cost will vary 

and the travel distance will also be different. In this case, a different set of 

recommendations may be derived from the numerical analysis. Furthermore, it 

also remains a question whether other flexible strategies, e.g. the abandonment or 

the deferring, are effective to address uncertainties in the assumed MoD systems 

or not. Moreover, the questions whether incorporating flexibility is beneficial to 

other types of MoD systems or other engineering systems or not, are beyond the 

scope of thesis, and cannot be answered here. More work is needed to 

demonstrate that flexibility may generate value in other MoD systems (e.g. 

two-way MoD systems or reservation-based MoD systems). 

Regarding the general applicability of the methodology, for the same type of MoD 

systems, the DES will not be influenced by changes in the parameters or the 

formulation of the decision rule, as the simulator is devised to easily 

accommodate such changes. If different types of MoD systems, however, such as 

two-way MoD systems, or another category of engineering systems are the 

objects under study, the discrete event simulation methodology may still be 

applicable, but significant changes may be required to redevelop the simulator. On 

the other hand, the use of the PSO+OCBA algorithm is not restricted to a 

particular MoD system or even a particular category of engineering systems. Its 

computational efficiency, however, may be influenced by the dimension of the 

problem and the degree of fluctuations in the uncertainty factors and random 

variables. For example, for the MoD system studied here, if the problem goes 
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larger (i.e. more subareas under consideration) or higher demand volatility is 

considered, it may take longer to find the optimal solution.  

6.2.3 Reliability 

Examining the reliability of the results is to see whether the conclusion can be 

replicated under the similar conditions, or not. As shown in both Chapter 4 and 

Chapter 5, multiple runs of the numerical experiments are conducted to 

investigate the reliability of the results, and gain more statistical significance for 

the results. Although slightly different solutions are obtained for each replicated 

experiment due to stochasticity inherent to both the simulation and optimization 

processes, statistical tests indicate that there is no significant difference between 

the performances of the solutions. On the other hand, the consistency of the 

results is also implied by the fact that when experimental conditions are changed, 

e.g. flexibility is added, statistically significant differences exist between solutions 

obtained under different conditions.  

6.3 Future work 
Opportunities for future research can be pursued from the following suggestions. 

On the one hand, in terms of application, as discussed earlier, this thesis focuses 

on the type of MoD systems that adopts a first-come-first-to-service policy, as this 

is the most flexible form of the non-floating one-way MoD systems. There are 

other types of MoD systems being operated, however. As such, it remains an 

opportunity to see how flexibility and real options can be incorporated into those 

systems and how much benefit can be brought in. Even for the particular type of 

MoD systems addressed in this thesis, the analysis can be further extended to 



 

147 
 

consider other or multiple uncertainty sources, as well as other types of flexible 

strategies. For example, the analysis can be extended to account for the 

uncertainty that exists in rental time of customers. This study assumes that rental 

time is only influenced by the distance between two stations, while a more 

complex analysis can introduce random noise into this parameter. Regulations 

changes regarding CO2 emissions can also be a factor modelled in future studies. 

In fact, as one of the main advantages of adopting a simulation-based approach is 

the ease of modeling various uncertainties and flexible strategies, the solution 

package proposed in this study can be easily modified to cart to the 

aforementioned needs. Besides, it also remains an opportunity to investigate other 

rebalancing policies and their interactions with the planning decisions. For 

example, compared with relying on the system operator to redistribute vehicles, 

how will the system configuration change if using price incentives to motivate 

customers to do the rebalancing? Furthermore, future work can be carried out 

using historical demand data in a real-world system. In such case, not only can the 

simulator be further validated but also helpful suggestions can be obtained to 

better design and operate that system where the data is collected. Besides, as 

introduced earlier, the analysis in this study takes the perspective of a private 

company, who operates the one-way MoD system, although two mathematical 

models are developed for different objectives at different stage of a company, it 

still remains an interesting opportunity to see how changes on this analytical 

set-up will affect the final result. For example, what kind of designs of a MoD 

system will be preferred by a local government?Furthermore, it also remains an 
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opportunity to see how the flexible MoD systems are implemented in reality. Will 

the practitioners follow the optimal decision rule to make gradual adjustment to 

the system? Is there any difficulty in terms of the documentation and 

implementation of the flexible design? Such research questions may be addressed 

by having discussion with practitioners , using the simulation-gaming technique 

introduced in Section 2.2, or building active safeguards as proposed by (Gil, 

2007).. In addition, as illustrated in Figure 1.2, there are multiple stakeholder who 

may somehow have conflicts of interest existing in a MoD system, between which 

the interactions may hinder the implementation or exercising the flexible designs. 

For example, intensified scarcity of urban land may prevent local government to 

provide more subsidized parking spots to the operating company. It may worth 

further exploration on this social aspect of the system. Research by (Gil, 2015) 

provides a direction to address such issue who suggest building a polycentric 

commons to steer the development process of a flexible system.  

On the other hand, methodologically speaking, this thesis generalizes a 

computational framework that combines population-based search algorithms and 

OCBA techniques, and proposes this framework as a different perspective for 

reducing the computational burden when optimizing flexible systems via 

simulation. This computational framework takes advantage of the 

population-based search algorithms where the decision space is explored more 

thoroughly through a single iteration. At the same time, adopting the OCBA 

technique helps alleviate the computational burden in every iteration. This thesis 

only considers, however, a combination of PSO and OCBA rules from Chen et al. 
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(2000). Further studies can explore other possible combinations. In addition, it 

may also be worthwhile to apply the proposed computational framework to 

optimize other flexible systems, as to further demonstrate and validate its 

efficiency more generally for engineering systems design and management. 
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Appendix 

Table A.1 Probability transition matrix for weekends for case study II 

 
0900-1700 1700-1900 1900-2400 

 
S1 S2 S3 S4 S5 S6 S7 S8 S1 S2 S3 S4 S5 S6 S7 S8 S1 S2 S7 S8 

S1 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0 0 

S2 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0 0 

S3 0.2 0.2 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0.2 0.2 0.2 0.25 0.25 0.25 0.25 

S4 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 

S5 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 

S6 0.2 0.2 0.2 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0.2 0.2 0.25 0.25 0.25 0.25 

S7 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0 0 

S8 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0 0 
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Table A.2 Probability transition matrix for weekdays 

 
0700-0900 0900-1700 

 
S1 S2 S3 S4 S5 S6 S7 S8 S1 S2 S3 S4 S5 S6 S7 S8 

S1 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0 0 

S2 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0 0 

S3 0 0 0 0 0 0 0 0 0.2 0.2 0 0 0 0.2 0.20 0.20 

S4 0 0 0 0 0 0 0 0 0.25 0.25 0 0 0 0 0.25 0.25 

S5 0 0 0 0 0 0 0 0 0.25 0.25 0 0 0 0 0.25 0.25 

S6 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0 0 0 0.20 0.20 

S7 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0 0 

S8 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0 0 

 
1700-1900 1900-2400 

 
S1 S2 S3 S4 S5 S6 S7 S8 S1 S2 S3 S4 S5 S6 S7 S8 

S1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S3 0.2 0.2 0 0 0 0.2 0.2 0.2 0.25 0.25 0 0 0 0 0.25 0.25 

S4 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 

S5 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 

S6 0.2 0.2 0.2 0 0 0 0.2 0.2 0.25 0.25 0 0 0 0 0.25 0.25 

S7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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