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Summary

Manipulation of sound properties has attracted the interest of acoustical

engineers for a long time. Using the mathematical method called trans-

formation acoustics, researchers have demonstrated a host of striking un-

precedented devices with unusual sound properties and phenomena, such as

negative density, negative bulk modulus, extraordinary sound transmission,

super resolution, etc. These devices that are engineered to have acoustic

properties not yet found in nature are called acoustic metamaterials. Here,

we extend the concept of metamaterial to metasurface and metastructure,

which are made from assemblies of various elements fashioned from tradi-

tional materials such as copper or membrane.

Different from acoustic metamaterial which enables abnormal sound prop-

erties inside itself, the proposed acoustic metasurface is a thin-layer struc-

ture which allows the change of sound properties right at its surface. Thus,

instead of gradual change inside metamaterial, acoustic waves seem to have

an abrupt change after touching metasurface.

Besides, inasmuch as acoustic metamaterial is based on transformation

acoustics, the conformal mapping of coordinates inevitably leads to com-

plex parameters. Realizing these parameters in metamaterial is usually

challenging. Here, we also propose the concept of acoustic metastructure,

which does not rely on transformation acoustics. By a unique design, the
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acoustic metastructure has a much accessible layout and does not have

components of microscopic or smaller scales.

The work done related to the thesis during my doctoral program includes:

theoretically and simulationally constructing the acoustic metasurface of

inhomogeneous acoustic impedance for various applications such as acous-

tic disguise, acoustic planar lenses, acoustic ipsilateral imaging, and the

conversion from propagating to surface acoustic waves; extending the prior

proposed structure to be three dimensional, resulting in the out-of-incident-

plane fluid-particle vibration; optimizing acoustic focusing for medical and

industrial applications such as focused ultrasound surgery, lithotripsy, and

nondestructive testing; proposing a density-near-zero metastructure to pro-

vide an accessible way for acoustic cloaking.

In this thesis, we elaborate the design of acoustic metasurface and metas-

tructure, and their functionality in manipulation of sound properties. In

Chapter 1, the background of the research is given; In Chapter 2, a metasur-

face with inhomogeneous acoustic impedance is proposed to achieve acous-

tic wavefront manipulation; In Chapter 3, a metasurface is designed to

tweak the vibrational orientation of sound; In Chapter 4, an active metasur-

face piezoelectric transducer is used to control acoustic focusing; In Chapter

5, the near-zero density is obtained by a metastructure; In Chapter 6, we

envision some possible future works.
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Chapter 1

Introduction

Engineering the wavefronts of both electromagnetic and acoustic waves has

long captivated the increasing interest and popularity, such as cloaking,

illusion, focusing, etc. Among various schemes proposed to manipulate the

light, the generalized Snells law has recently been reformulated [1]. This

mechanism opens up new initiatives in realizing negative reflection and

negative refraction, as well as other possibilities in optical wave engineering.

However, there are a few critical problems in this optical scheme: the abrupt

phase change relies on the metallic subwavelength structures, which is not

scalable into other wave forms; the interesting new result derived from

this generalized Snells law is only associated to the anomalous reflected/re-

fracted components, which is very low in intensity.

In principle, all those phenomena can be explained in terms of using a

phased antenna array to steer its beam directions in classical electromag-

netism. Hence, the only unexplored wonderland is in the acoustic domain,

which cannot be simply included in the antenna engineering perspective.

1



Chapter 1. Introduction 2

This chapter addresses the background of my thesis work in acoustics. Sec-

tions 1.1 to 1.4 correspond to the introductions to Chapter 2 - 5, respec-

tively. Section 1.5 addresses the outlines of Chapters 2 - 5.

1.1 Reshaping wavefronts in optics and acous-

tics

Refraction in classic optics was recently revisited from the viewpoints of

complex refractive index of a bulky medium [2], abrupt phase change of

an interface [1], and diffraction theory for gratings [3, 4]. Furthermore,

these works shed light on the relation between the reflection and incidence,

interpreted as the generalized Snell’s law of reflection (GSL) [1], a novel way

to optical wavefront engineering, resulting in promising accomplishments

[5–9]. In optics, the phase-inhomogeneous metasurfaces realized by thin

metallic nano-antennas conserve the wave number along an interface while

impose the extra phase accumulation [1]. Fundamental physics is explained

by a phased antenna array [10].

In principle, GSL is based on Fermat’s principle, which holds for all monochro-

matic waves. However, the luxury of using metallic metasurfaces [1, 5] to

fulfill the optical phase control is no more available in acoustics due to the

limited choice of acoustic materials. Thus, the variable in GSL: the phase

change on a flat surface becomes an abstract concept in acoustics without

any design principle and practical clue. Therefore, it is indispensable and

valuable to establish a different principle to manipulate acoustic waves.
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1.2 Vibrational direction in fluids and solids

When an acoustic wave with a certain frequency is excited in fluids, the fluid

particles will experience a restoring force, hence oscillating back and forth

in a monochromatic way. The orientation of such longitudinal oscillation is

the vibrational direction of a fluid particle. The vibration is undoubtedly

an important characteristic of acoustic waves (like the polarization for elec-

tromagnetic waves). In electromagnetism, we can manipulate polarization

by conventional methods such as dichroic crystals, optical gratings, or bire-

fringence effects, etc [11, 12]. In elastic waves, we can also reach the mode

conversion because the molecules in solids can support vibrations in var-

ious directions [13, 14]. However, when sounds propagate freely in fluids,

few attempts were made so far toward tweaking the vibrational orientation,

since the compression mode along the incident plane is considered to be the

only possibility in acoustics. On the other hand, being enabled by the flex-

ible dispersion of metamaterials, acoustic metamaterials can have solid-like

transverse modes at density-near-zero [15] while conversely elastic meta-

materials can have a fluid-like longitudinal mode when the elastic modulus

goes negative [16] to allow polarization conversion. However, these meta-

materials require resonating units, which have to be specially designed to

balance possible loss.

Nevertheless, if one can tweak the reflected sound out of the incident plane,

the vibrational direction, though still longitudinal with respect to the re-

flected beam itself, can therefore be manipulated accordingly. In other

words, we can yield perpendicular vibration components in reflection with

respect to the incident vibration, and control the spatial angle of such out-

of-incident-plane vibration. In this connection, we propose a scheme by
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designing an acoustic flat metasurface reflector to manipulate the vibra-

tional orientations generated by sound in fluids. Metasurfaces have drawn

much attention recently in electromagnetism, such as frequency selective

polarizers [17], the wave-form conversion [18], wavefront-engineering flat

lens [19], and polarization converter [20]. The concept of acoustic meta-

surfaces was not well investigated before, owing to the intrinsic nature of

compression modes and limited choices of natural materials.

1.3 Acoustic focusing and piezoelectric trans-

ducer

Research on acoustic focusing has led to various applications such as non-

destructive testing techniques that inspect materials for hidden flaws [21–

23]. Usually piezoelectric transducers (PTs) are the most commonplace

devices serving as the actuators of acoustic focusing. As the mechanism,

when an electric field is applied across piezoelectric materials, the polar-

ized molecules will align with the electric field, causing the materials to

change dimensions [24, 25]. Apart from the industrial applications, acous-

tic focusing utilized in medical science contributes significantly to thera-

peutic techniques as well. Ultrasound waves excited by PTs are capable of

transmitting energy inside a body for medical purposes such as diagnostic

sonography [26]. Other examples include focused ultrasound surgery that

generates localized heating to treat tumors [27, 28], and lithotripsy that

breaks up kidney stones [29].

To avoid the bulky size of a curved PT, the flat annular Fresnel PT has

been invented over decades, reducing the volume of piezoelectric portions
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into a flat layer [30]. However as the trade-off, Fresnel PT intrinsically

cannot concentrate the excited acoustic energy completely, as it is always

accompanied with higher-order diffraction. In detail, a planar PT using

a Fresnel equal-spaced array will inevitably generate the parasitic multi-

ple divergent beams and higher-order convergent beams, making the focal

spots less applicable. Actually, there has been to date no such acoustic

design technique that allows us to achieve arbitrarily designed focal pat-

tern along the axis. For example, one expected focal pattern for ultrasonic

surgery is a specific segment of high acoustic energy along the axis (both

its distance away from the PT and its focal depth can be designed), i.e., an

acoustic far-field focal needle, which was never obtained by PTs. A finite-

length focal-needle pattern is also quite promising for particle operation

and acceleration, which was developed in optics [31, 32].

Additionally, the focal resolution created with traditional PTs is usually

low, whose focal size is much larger than one wavelength λ. Since the focal

resolution can be improved with the wave frequency increased, previous

researches usually ignore the consideration of improving the resultant fo-

cal resolution. However, it is noteworthy that an excitation of a higher

frequency demands more energy consumption and suffers from stronger at-

tenuation. Besides, acoustic aberration could also severely blur the focal

resolution. Thus, the rational improvement is to increase the relative focal

resolution with the same excited frequency remaining.
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1.4 Invisibility cloaking in optics and acous-

tics

Various metamaterial-based invisibility cloaking has been demonstrated in

optics, acoustics [33, 34] and heat conduction by the theory of transforming

coordinates. As a trade-off, in optics, the spatially-tailored properties of

metamaterials, usually inhomogeneous and anisotropic, impose challenging

complexities in structural configuration and cloaking realization [33, 35].

As the acoustic analog of transformation optics [36], the experimental

realization of acoustic cloaking was reported [37, 38], but its inhomoge-

neous acoustic inertia and modulus caused by coordinate transformation

inevitably result in the same challenges as in optics. More recently, a

topological-optimization method was invented to cancel acoustic scatter-

ing by wave interference [39, 40], which only requires a specific optimized

distribution of rigid boundaries around the object to be hidden. Although

this scheme does not require considering a complex structure of artificial

metamaterials, topological acoustic cloaking highly relies on the shape and

the locus of the object to be hidden. Therefore, the object actually is a part

of the cloaking device itself. It implies that the cloaking structure designed

for one object has to be redesigned for another which has different shapes,

locus, or material composition.

To construct an isotropic acoustic cloak, independent of the cloaked objects

in two-dimensional space or in curved waveguides, could be meaningful in

both theory and application. For example, the isotropic acoustic cloak in

free space could inspire the way of designing stealth planes or submarines

for military purpose.
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1.5 Outlines of Chapters 2 - 5

In Chapter 2, we unveil the connection between the acoustic impedance

along a flat surface and the reflected acoustic wavefront, in order to em-

power a wide variety of novel applications in acoustic community. Our

designed flat metasurface can generate double reflections: the ordinary re-

flection and the extraordinary one whose wavefront is manipulated by the

proposed impedance-governed generalized Snell’s law of reflection. The pro-

posed law of reflection is based on Green’s function and integral equation,

instead of Fermat’s principle for optical wavefront manipulation. Remark-

ably, via the adjustment of the designed specific acoustic impedance, ex-

traordinary reflection can be steered for unprecedented acoustic wavefront

while that ordinary reflection can be surprisingly switched on or off. The

realization of the complex discontinuity of the impedance surface has been

proposed using Helmholtz resonators.

In Chapter 3, we demonstrate a flat acoustic metasurface that generates an

extraordinary reflection, and such metasurface can steer the vibration of

the reflection out of the incident plane. When acoustic waves are impinged

on an impedance surface in fluids, it is challenging to alter the vibration

of fluid particles since the vibrational direction of reflected waves shares

the same plane of the incidence and the normal direction of the surface.

Our proposed flat acoustic metasurface can steer the vibration of the re-

flection out of the incident plane. Remarkably, the arbitrary direction of

the extraordinary reflection can be predicted by a Greens-function formu-

lation, and our approach can completely convert the incident waves into

the extraordinary reflection without parasitic ordinary reflection.
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In Chapter 4, we demonstrate the manipulation of focal patterns in acous-

tic far fields. It has a pivotal role in medical science and in industry to

concentrate the acoustic energy created with piezoelectric transducers into

a specific area. However, previous researches seldom consider the focal res-

olution, whose focal size is much larger than one wavelength. Furthermore,

there is to date no such design method of piezoelectric transducer that al-

lows a large degree of freedom to achieve designed focal patterns. Here,

an active and configurable planar metasurface PT prototype is proposed to

manipulate the acoustic focal pattern and the focal resolution freely. By

suitably optimized ring configurations of the active metasurface PT, we

demonstrate the manipulation of focal patterns in acoustic far fields, such

as the designed focal needle and multiple focuses. Our method is also able

to manipulate and improve the cross-sectional focal resolution from sub-

wavelength to the extreme case: the deep sub-diffraction-limit resolution.

Via the acoustic Rayleigh-Sommerfeld diffraction integral cum the binary

particle swarm optimization, the free manipulation of focusing properties

is achieved in acoustics for the first time. Our approach may offer more

initiatives where the strict control of acoustic high-energy areas is demand-

ing.

In Chapter 5, isotropic acoustic cloaking is proposed using a density-near-

zero metastructure for extraordinary sound transmission. The metastruc-

ture for acoustic cloaking is made by single-piece homogeneous elastic cop-

per, which can be detached and assembled arbitrarily. We theoretically and

numerically demonstrate the cloaking performance by deploying density-

near-zero metastructures in various ways in two-dimensional space as well

as in acoustic waveguides. The density-near-zero material can make any in-

side objects imperceptible along sound paths. Individually and collectively,
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the metastructure maintains both the planar wavefront and the nearly per-

fect one-dimensional transmission, in presence of any inserted object. The

overall cloaked space can be designed by adding metastructures without

the limit of the total cloaked volume.

1.6 My published journal articles related to

thesis
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Reports (2014), DOI: 10.1038/srep06257

3. J. Zhao, B. Li, Z. Chen & C. W. Qiu, Scientific Reports (2013), DOI:
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Chapter 2

Manipulating acoustic

wavefront with metasurface of

inhomogeneous impedance

This chapter establishes the framework of acoustic wavefront manipula-

tion by resorting to the acoustic metasurface which has specific acoustic

impedance (SAI) inhomogeneity and discontinuity, rather than the phase

inhomogeneity in terms of wave propagation [1, 2]. SAI is one of the acous-

tic properties of materials, which is comparably more possible to be control-

lable in reality than propagation phase. More specifically, we find out that

the inhomogeneous SAI will generally give rise to one ordinary reflection

pro and one extraordinary reflection pre, i.e., double reflections. Further-

more, the flat inhomogeneous SAI surface is able to switch on or off pro

without the influence on its direction, but to tweak pre in the manner of

our proposed design principle: impedance-governed generalized Snell’s law

of reflection (IGSL) in acoustics.

10
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2.1 Extraordinary reflection and ordinary re-

flection

The inhomogeneous SAI Zn of the flat surface can be expressed as a com-

plex, whose real and imaginary parts may change spatially. In order to

reduce the complexity of modeling as the beginning attempt, we set the

real part as a spatial constant. Later we prove that the spatial varying

of the real part cannot support our results, which is derived in detail in

Appendix A. We consider

Zn(y, ω) = A

[
1− i tan

ψ(y)

2

]
, (2.1)

where A is an arbitrary constant irrelevant to any spatial change and ψ(y)

is the variable for the imaginary part.

Note that ω-dependency on the right hand side of Equation (2.1) has al-

ready been included in ψ(y). The total acoustic pressure p in the upper

space satisfies the integral equation:

p(y, z, ω) ≈ pi + pro −
√

k0

2π
√
y2 + z2

ei(k0
√

y2+z2−π
4
)

× ρwc0 cos θ
∗

2A cos θ∗ + ρwc0
×

∫ ∞

−∞
eiψ(y0)p(y0, 0, ω)e

−ik0y0 sin θredy0,

(2.2)

where pi denotes the incidence; ρw and c0 are the density and the speed of

sound in the upper space in Figure 2.1(a); k0 = ω/c0 is the wave number;

θ∗ is constant; θre is the angle of pre. Both pro and pre exist for a general
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Figure 2.1: (a) For a flat interface with an inhomogeneous SAI, the
angle of pro, i.e., θro, is not influenced, while pre occurs simultaneously
and θre is controlled by IGSL. (b) If SAI is properly controlled, pro is
null. (c) Ultrasound with unit amplitude and ω = 300Krad/s impinges
upon SAI surfaces in water. The SAI along the flat surface generates
both pro and pre when an arbitrary A is chosen in Equation (2.1). (d) A
particular SAI is chosen according to Equation (2.7). ψ(y) = −100

√
3y

is selected throughout. (e,f) Simulation results based on impedance
discontinuity with relations between l and y enclosed, corresponding to
the cases (c) and (d) respectively. Figure adopted and reproduced with

permission from ref. [41].
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A, implying the unusual double reflections :

pro ∝ 2A cos θi − ρwc0
2A cos θi + ρwc0

exp[ik0(y sin θi + z cos θi)]; (2.3)

pre ∝
∫ ∞

−∞
eiψ(y)eik0y(sin θi−sin θre)dy. (2.4)

Double reflection consists of one ordinary reflection pro and one extraor-

dinary reflection pre. Intuitively, the direct-current component of the sur-

face impedance contributes to pro while the alternating-current component

contributes to pro. After applying the first-order approximation and the

stationary phase approximation to Equation (2.4), the relation between θre

and the incident angle θi is unveiled:

⎧⎨
⎩ k0(sin θre − sin θi) = dψ(y)/dy

Zn(y, ω) = A{1− i tan[ψ(y)/2]}
. (2.5)

Note that the extraordinary reflection can exist only when the inhomoge-

neous SAI along the flat surface is expressed in form of Equation (2.1),

on the basis of our derivation. Although IGSL’s appearance is similar to

GSL [1, 2, 5], its physical meaning of ψ(y) is dramatically different. Fun-

damentally, the variable of our IGSL Equation (2.5) is about the value of

surface acoustic impedance instead of the abrupt propagating phase change.

Moreover, IGSL only serves to steer pre at will, with no influence on the

direction of pro, as illustrated in Figure 2.1(a). In Appendix B we highlight

the irrelevance between GSL and our proposed IGSL. In addition, GSL

mentions the extra accumulated phases along wave-propagation paths, but

it is still relying on graphical methods to find out the relation between the
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configuration of the passive antenna array and the needed phase in op-

tics [1]. However, we do not have the passive antenna in acoustics. Here,

IGSL Equation (2.5) and Equation (2.1), serving as an explicit design rule,

provide us the feasible way based on a different mechanism in acoustics.

Equation (2.5) also sheds the light on an extreme angle (similar to critical

angle):

θe =

⎧⎨
⎩ arcsin(−1− 1

k0

dψ(y)
dy

), if dψ(y)
dy

< 0

arcsin(+1− 1
k0

dψ(y)
dy

), if dψ(y)
dy

> 0
, (2.6)

above which pre becomes evanescent in the upper space. Equation (2.6)

holds only when −1 ≤ 1 − 1
k0

∣∣∣dψ(y)dy

∣∣∣ ≤ 1. Otherwise, pre becomes evanes-

cent.

Usually, both pro and pre will coexist as shown in Figure 2.1(a), suggesting

double reflections, while IGSL only controls θre. Hence, it is interesting

to eliminate pro as shown in Figure 2.1(b), by means of a particularly

selected value of A. Equation (2.3) suggests that A = (ρ0c0)/(2 cos θi) can

make pro vanish, i.e., pro is switched off, as shown in Figure 2.1(b). The

corresponding SAI of the flat surface then becomes

Zn(y, ω) =
ρwc0
2 cos θi

[
1− i tan

ψ(y)

2

]
. (2.7)

2.2 Continuous and discontinuous impedance

Supposing the gradient of ψ(y) along the flat interface is constant, we

notice that Equation (2.4) turns out to be a Dirac Delta without any ap-

proximation. From Equation (2.5) we predict that the wavefront of pre will

propagate in the form of a plane acoustic wave, independent of y. We select
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water (ρw = 1000kg/m3; c0 = 1500m/s [42]) as the background medium,

ω = 300Krad/s as the circular frequency, e−ik0z as the normal incident

plane ultrasound, and a linear form ψ(y) = −100
√
3y in Equation (2.7).

θre is theoretically found to be −60◦ by IGSL, validated by our simulation

in Figure 2.1(d). pro is thoroughly suppressed thanks to the specific A

chosen according to Equation (2.1). In contrast, in Figure 2.1(c), the same

parameters are kept except for another A, whose value is arbitrarily taken

to be ρwc0. It clearly shows that pro occurs and interferes with pre, but

pre still keeps the same, verifying our theoretical formulation. In terms

of phenomena, the designed inhomogeneous SAI Equation (2.1) essentially

implies the changes of both the propagating phases and amplitudes, only

by which the effect of double reflections may occur. In terms of physics, the

extra momentum supplied by the metasurface is employed to compensate

the momentum mismatch between the incident acoustic beams and the

diffracted beams. Therefore, for the double backward propagating beams,

pro is the commonplace reflection, while pre is attributed to the diffraction

of higher order.

Figure 2.1(d) suggests the possibility of negative reflection for pre, which

is further verified for oblique incidence in Figure 2.2. In Figure 2.2(a),

because of the inhomogeneous SAI and the arbitrary A in Equation (2.1),

both pro and pre occur. Figure 2.2(b) depicts the same situation except for

pro being switched off as a result of the specifically chosen A according to

Equation (2.7), while the red line pre stays the same as that in Figure 2.2(a).

The blue braces represent the region of negative pre. It is noteworthy

that pre does not exist if θi is beyond the extreme angle θe = −30◦ in

Equation (2.6), corresponding to the purple dots.



Chapter 2. Manipulating acoustic wavefront 16

-1 -0.5 1

-1

-0.5

0.5

1

Sin

Sin

i

e

Sin e

Si
n

r

ro

i

re

0.5

ord
inary re

flectio
n

extra
ord

inary re
flectio

n

extra
ord

inary re
flectio

n

negativ
e

extra
ord

inary

reflectio
n

negativ
e

extra
ord

inary

reflectio
n

Sin
=Sin

Sin

a

-1 -0.5 1

-1

-0.5

0.5

1

Sin i

Si
n

r

re

0.5

Sin
b

0

1 ( )d y
k dy

Figure 2.2: sin θro,re versus sin θi when k0 = 10rad/m and ψ(y) = −5y.
pro and pre emerge simultaneously in (a). In (b), only pre occurs for
the same parameters of (a) except A. The purple dot denotes sin θe in
Equation (2.6). Figure adopted and reproduced with permission from

ref. [41].



Chapter 2. Manipulating acoustic wavefront 17

-60 Degree
incidence

30 Degree
prb

Reflected Pressure Field (Pa)

y (m)
2-2-4 40

z(
m

)

8

6

4

2

0

0

0.495

-0.503
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amplitude and ω = 30Krad/s is −60◦ obliquely incident. Only reflected
acoustic pressure is plotted. The propagating path of pre is noted as
an arrow with purple crossbars. Figure adopted and reproduced with

permission from ref. [41].
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The field simulation for oblique incidence is shown in Figure 2.3. For this

simulation we assume water (ρw = 1kg/m3; c0 = 1500m/s [42]) as the

background medium in the upper space. The SAI with the linear parameter

ψ(y) = (10 + 10
√
3)y is set along the flat metasurface, and an audible

(ω = 30Krad/s) plane wave with a unit amplitude is obliquely incident

with the incident angle −60◦. These parameters theoretically lead to the

angle of pre 30
◦ according to our proposed IGSL. Furthermore, pro vanishes

thanks to the specific A chosen in Equation. (2.1). In Figure 2.3, we find

out the simulation confirms the prediction via IGSL accurately, and pro

disappears as expected.

Moreover, the incident audible plane wave and pre are at the same side of

the normal line, confirming the possibility of the negative extraordinary

reflection. The singularity due to tan[ψ(y)/2] in the imaginary part of

Equation (2.1) does not play a significant role because the mathematical

singularity ±i∞ just occurs at singular positions, physically meaning the

total reflection (reflection coefficient equals +1).
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Figure 2.4: Realization schematics by hard-sidewall tubes of designed
lengths. Figure adopted and reproduced with permission from ref. [41].
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As depicted in Figure 2.4, we propose one plausible realization schematic

for the general SAI of Equation (2.1), where all hard-sidewall tubes with

one pressure-release termination are gathered and juxtaposed perpendicular

to the flat interface. Observed at the top view, each tube has a square

cross section whose width is d, with four enclosed hard sidewalls (black).

Then observed at the side view, the upside open termination of each tube

constitutes an effective SAI pixel of the interface, while the other end sealed

by a thin film (orange) serves as the pressure-release termination. [42] The

upper space and the interior of each tube are filled with water, without

separation. The light blue indicates air downside, which is isolated from

water by the thin film.

The SAI of each tube at the opening facing the upper space is [42]:

Zt(y, ω) =
ρwc0k0

2d2

2π
− iρwc0 tan [k0l(y) + k0Δl] , (2.8)

where l(y) is the length of each tube and Δl ≈ 0.6133d/
√
π is the effective

end correction. By comparison of Equation (2.1) and Equation (2.8), it is

required thatA = ρwc0k0
2d2/(2π) andA tan[ψ(y)/2] = ρwc0 tan [k0l(y) + k0Δl],

leading to the value of the spacing d for impedance discretized spacing and

the dependence between l(y) and ψ(y):

⎧⎨
⎩ d =

√
(2πA)/(ρwc0k0

2)

l(y) = 1
k0
arctan[k0

2d2

2π
tan ψ(y)

2
] + nπ

k0
−Δl

, (2.9)

where the arbitrary integer n is required to be set suitably to make l a

positive value. Thus, the change of ψ along y, representing the control of

pre, is interpreted as the change of l, implying one straightforward realiza-

tion based on discontinuous impedance. Thus, the inhomogeneity of the
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acoustic impedance is strictly paraphrased into the inhomogeneity of the

tube-array structure, resulting in our acoustic metasurface. At the side

view in Figure 2.4, the solid red contour indicates one arbitrary function

of l(y) calculated from Equation (2.9). Based on the discretized spacing

d calculated from Equation (2.9) as well, we are able to find d and the

corresponding height l(y), marked with the yellow dots. The width of

tubes, d, is required to be in subwavelength, which means that the criterion

A < 2πρwc0 needs to be satisfied. The parameters d used in our simulations

satisfy this criterion after compared with wavelengths. Also, note that the

top of the tube array is aligned into a flat surface (red dashed line), above

which acoustic waves impinge. Thus, the change of tube lengths will not

affect the flatness of the surface. In addition, thanks to the property of the

arc-tangent in Equation (2.9), the tube-array metasurface is within a thin

layer without the space-coiling-up technique [43].

It is also noteworthy that because of the intrinsic differences between optics

and acoustics, so far we cannot obtain the mechanism-analog of the optical

metasurface, which is based on resonances and independent with the thick-

ness or effective propagating lengths, but we can achieve the phenomenon-

analog in acoustics using the tube array. In principle, because tubes can be

regarded as Helmholtz resonators, complex SAI at each pixel can be real-

ized by a suitable arrangement of resonators, as the analog of the complex

electric impedance realized by the combination of resistance, capacitance

and inductance. In addition, we know that only the real part, the electric

resistance, consumes energy while the imaginary part does not. In the same

manner in acoustics, the energy loss is theoretically only attributed to the

real part of the surface complex SAI in Equation (2.8), i.e., the loss in our

case is caused by the energy consumption from the tube array.
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Using this method, we reproduce Figure 2.1(c,d) by realistic impedance dis-

continuity, so as to verify our proposed realization. In Figure 2.1(e,f), d =

0.0125 and 0.00886 are selected respectively according to Equation (2.9),

and the corresponding contours of the tube length l in terms of the lo-

cation y are illustrated as the red lines, respectively. Figure 2.1(e) shows

strong interference between pre and pro while Figure 2.1(f) shows the nearly

undisturbed pre, coinciding with Figure 2.1(c,d), respectively.

2.3 Acoustic illusion and ipsilateral focusing

To demonstrate IGSL’s capability of designing novel acoustic devices, we

metamorphose acoustic pressure fields everywhere through SAI manipu-

lation as simulated in Figure 2.5. This deceptive effect is obtained by

manipulating plane wavefronts into the wavefronts generated by a virtual

reflector or focusing illumination, governed by the control of pre, i.e., IGSL.

Under these scenarios, we need to consider nonlinear forms of ψ(y). New

phenomena are thus expected when θre becomes spatially varying.

It is found that the acoustic deception can be created via IGSL, e.g.,

ψ(y) = 0.7y2 in Equation (2.7), resulting in pro = 0. Correspondingly, θre

in Figure 2.5(a) is a position-dependent function sin θre = 0.14y, in which

case pre fans out as demonstrated in Figure 2.5(a), verifying our theory.

Here the discretized spacing d for impedance is 0.1772 and the relations

between l and y derived from Equation (2.9) are enclosed in Figure 2.5.

Therefore, IGSL can be employed to camouflage a flat surface as if there

were a curved lens at the origin instead of the physical planar interface.
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Figure 2.5: Wavefront metamorphosis via SAI interface, with
impedance discontinuity d = 0.1772. A plane acoustic wave of ω =
15Krad/s is normally incident in water. Only reflected acoustic pres-
sure is plotted. (a) The SAI of Equation (2.7) with ψ(y) = 0.7y2 is set
along the flat surface. pre diverges into a curved wavefront. (b) The SAI

of Equation (2.7) with ψ(y) = −10
(√

y2 + 42 − 4
)
is set. pre converges

to a focal point in the 2D case. Figure adopted and reproduced with
permission from ref. [41].
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The dual effect allowing a curved reflector to mimic a flat mirror, by ma-

nipulating the convex wavefronts into planar wavefronts, was reported in

plasmonic regime [44].

Furthermore, the SAI can be designed to make acoustic waves reflected

by a planar interface focused as well. In optics, a flat lens with metallic

nanoantennas of varying sizes and shapes can consequently converge the

transmitted light to a focal point [6, 7]. Note that the optical focusing

controlled by optical GSL is on the other side of incoming lights, i.e., on

two sides of the flat surface [6, 7] in the transmission mode. In acoustics,

we employ an inhomogeneous SAI flat surface to focus pre, in the reflection

mode by IGSL without pro.

This ipsilateral focusing in Figure 2.5(b), is thus obtained in the planar ge-

ometry in acoustics for the first time. In Equation (2.7), a hyperbolic form

is set: ψ(y) = −k0

(√
y2 + f 2 − f

)
(f being the given focal length for the

SAI of the flat interface. pre from different angles constructively interferes

at the ipsilateral focal point, as if the waves emerge from a parabolic sur-

face. The parameters in Figure 2.5(b) are the same as those in Figure 2.5(a)

except for the specific hyperbolic SAI form ψ(y) = −10
(√

y2 + 42 − 4
)
,

with the designed focal point at (y = 0, z = 4) and pro suppressed. In

addition, the simulated acoustic pressure by discretized impedance at the

focal point is well confined at (y = 0, z = 4).

Interestingly, the imaging at the same side was previously presented for

electromagnetic waves [45, 46]. In [45], it demands strong chiral materials

filled in the whole upper space. The same-side imaging is only a partial

imaging, i.e., only one circularly polarized wave being imaged and the other

being reflected ordinarily. In acoustics, our ipsilateral imaging is achieved
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by translating all the stringent requirements of the half-space chiral ma-

terials into an inhomogeneous impedance surface. In electromagnetism,

ipsilateral imaging can be achieved as well by surface gratings [46] or an-

tenna arrays. However, the polarization of incident electromagnetic waves

is always closely related to the effect of focusing. Therefore, the ipsilateral

imaging in acoustics by IGSL has no polarization constraints thanks to the

acoustic wave nature, i.e., longitudinal vibration.
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Figure 2.6: Conversion from PAWs to SAWs via SAI interface. The
PAW with unit amplitude and ω = 15Krad/s is normally incident in
water. Only reflected acoustic pressure is plotted. (a) The SAI of Equa-
tion (2.7) is set to be ψ(y) = −11y for y < 0 and ψ(y) = 11y for y > 0.
SAWs are bifurcated at the origin and confined near the surface. (b)
The reflected sound pressure level of (a). (c) The reflected sound pres-
sure level when a homogeneous SAI is adopted instead. Figure adopted

and reproduced with permission from ref. [41].
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2.4 Conversion from propagating to surface

waves

Beyond the acoustic-field metamorphosis, we further establish a kind of

acoustic cognitive deception about an SAI surface converting propagating

acoustic waves (PAW) to surface acoustic waves (SAW) in Figure 2.6, by

means of IGSL. The extreme angle 0◦ in Equation (2.6) demands ψ(y) =

±10y. Therefore, we set the SAI of Equation (2.7) slightly over that ex-

treme, e.g., ψ(y) = −11y for y < 0 and ψ(y) = 11y for y > 0 are set along

the flat interface symmetrically with respect to the z. In Figure 2.6(a),

the bidirectional surface acoustic waves are attributed to the coupling ef-

fect governed by the diffracted evanescent pre which propagates along the

metasurface [47]. Owing to the inhomogeneous SAI interface, the ideally

perfect conversion comes true in acoustics except for a little diffraction.

Physically, the SAI along the flat surface provides an extra momentum

to compensate the momentum mismatch between propagating waves and

surface waves in acoustics, resulting in the high efficiency conversion. In

contrast, if one uses a constant SAI Equation (2.7) with ψ(y) = 11 along

the flat surface (the homogeneous SAI does not generate pre; only pro oc-

curs), the reflected sound pressure level in Figure 2.6(c) is almost uniformly

spread over the space.

Figure 2.6(b) clearly demonstrates that the acoustic field is well confined in

the region close to the interface and attenuated quickly to around 0Pa away

from the interface, revealing the nearly perfect conversion. Interestingly,

it shows in [18] that the electromagnetic-varying metasurface is able to

prevent the propagating electromagnetic waves from being reflected back to
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the upper space. Hence, our PAW-SAW conversion in acoustics, originating

from a distinguished mechanism, is differentiated from [18].

In Figure 2.6, we notice that such technology is functional as an alternative

invisible acoustic cloak by trapping the acoustic field in the vicinity of the

coating, resulting in much lower signal levels of reflection. It may pave the

avenue to the large size acoustic invisibility since it is only dependent on the

surface technique instead of wave-interaction based metamaterial acoustic

cloaking [37]. It will also be promising to consider the time-varying surface

technique in acoustics with nonreciprocal diffraction [48] in the future.

2.5 Methods

For theoretical derivations, we used Green’s function, the integral equation

Equation (2.2) and Born approximation. The detailed theoretical develop-

ment is elaborated in Appendix A. For the numerical calculations, we used

the Finite Element Method by means of the commercial software COM-

SOL Multiphysics. The left, right and top sides of the meshed domain are

set as plane wave radiation conditions, while the bottom side is set as the

impedance boundary with a certain value.

2.6 Conclusion and discussion

We have proposed the acoustic metasurface of inhomogeneous acoustic

impedance. Impedance-governed generalized Snell’s law of reflection has

been established for manipulation of acoustic wavefronts. Due to the lack of
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abrupt-phase-changing surface structures in acoustics, we resort to acoustic

impedance as the variable to tweak sound reflection. Impedance-governed

generalized Snell’s law of reflection, which can simultaneously generate the

switchable pro and the steerable pre, provides us the explicit connection

between our designed specific acoustic impedance and the reflected field,

serving as the design rule in acoustics. We not only demonstrate intrigu-

ing acoustic manipulations but also provide insightful realization schemes

of the metasurface. As a few examples, we demonstrate acoustic disguise,

acoustic planar lens, acoustic ipsilateral imaging, and the conversion from

propagating to surface acoustic waves.

Ultra-thin acoustic metasurfaces can also be constructed by the method of

coiling up space, so that sound trajectories can be altered by changing wave

propagating paths [49, 50]. This method provides a more accessible way to

steer acoustic wavefronts than our proposed approach, but the trade-off is

the lack of capability to generate rich phenomena such as double reflections

demonstrated in this thesis.
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Redirecting acoustic waves out

of the incident plane

This chapter addresses a flat metasurface to manipulate the extraordi-

nary out-of-incident-plane reflection and vibration in acoustics, validated

by the theoretical modeling and the numerical experiment. We theoreti-

cally demonstrate that in fluids, extraordinarily reflected sound waves can

be achieved along a three-dimensional spatial angle out of the incident plane

by manipulating the impedance distribution of a flat metasurface reflector.

In particular, the arbitrary manipulation can be unanimously predicted and

concluded by our three-dimensional impedance-governed generalized Snells

law of reflection (3D IGSL), which is rigorously derived from Greens func-

tions and integral equations. Consequently, the vibrations of the extraordi-

nary reflection and the incidence will form a spatial angle in between, rather

than sitting in one plane. Such an inhomogeneous flat metasurface can be

effectuated by means of impedance discontinuity, and further implemented

30
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by tube arrays with properly designed lengths. Finite-element-simulation

results agree with the theoretical prediction by 3D IGSL.

3.1 Out-of-incident-plane vibration of fluid

particles

The coordinate is illustrated in Figure 3.1, where the flat metasurface re-

flector is placed at z = 0 plane, i.e., x-y plane. In water (speed of sound

c0 = 1500m/s; density ρw = 1000kg/m3), an acoustic plane wave pi from

the space z > 0 is impinged upon the flat surface z = 0 with unit amplitude

and the frequency ω = 3 × 105 rad/s. Figure 3.1(a-d) are the simulated

acoustic fields in the upper space z > 0, which are the projections upon the

plane perpendicular to z axis. For the incident field in Figure 3.1(a), one

can notice that the vibrational direction of fluid particles (orange double-

headed arrow) excited by the incidence forms the incident plane (yellow

dashed line) with z axis. As shown in Figure 3.1(b) for the reflected field,

if the impedance reflector is homogeneous, the particle vibration excited by

the ordinary reflection pro (orange double-headed arrow) will be co-planar

with the incident vibration, as expected intuitively.

In order to steer the acoustic vibrations freely, a metasurface reflector com-

posed of the inhomogeneous specific acoustic impedance SAI, which can

be realized by different layouts of tube resonators with designed lengths, is

implemented in Figure 3.1(c,d), while the same incidence in Figure 3.1(a)

is used. The incident plane (yellow dashed line) is identical through-

out all cases in Figs. 1(a-d). It can be seen from the reflected fields in

Figure 3.1(c,d) that the particle vibration excited by the reflection (blue
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Figure 3.1: (a) Observing along −z, an plane wave is propagating to-
ward the metasurface at z = 0. The vibration of fluid particles excited
by the incidence (orange double-headed arrow) is within the incidence
plane (yellow dashed line). (b) The ordinary reflection generated by
a homogeneous flat reflector excites the in-incident-plane particle vi-
bration. (c) Observing along −z, the flat metasurface reflector excites
the out-of-incident-plane cross vibration of fluid particles (blue double-
headed arrow). (d) Another metasurface reflector excites the extraor-
dinary vibration of fluid particles (green double-headed arrow). (e,f)
The realization schematics of the metasurface, and the tube lengths cor-
responding to (c) and (d) respectively are exhibited in (e,f). Figure

adopted and reproduced with permission from ref. [51].
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double-headed arrow) deviates away from the incident plane by employing

the inhomogeneous impedance surface. Observing along −z, we manipulate

the x-y plane projection of the vibration (excited by reflection) perpendicu-

lar to the incident plane as shown in Figure 3.1(c), as named cross vibration.

Another example is shown in Figure 3.1(d), where the out-of-incident-plane

vibrational orientation (green double-headed arrow) is steered robustly by

the flat metasurface at z = 0. The corresponding reflected acoustic field at

z > 0 projected in the x-y plane is shown in Figure 3.1(d), verifying the

robust and precise manipulation of the out-of-incident-plane vibrational

orientations of fluid particles.

In order to provide a theoretical and systematic framework for precisely

manipulating the vibrational orientation in fluids, we thereby establish 3D

IGSL. Here we consider the reflection by a flat acoustic metasurface at

z = 0, and formulate the modified Snells law in acoustics for inhomo-

geneous two-dimensional SAI [42]. More specifically, the inhomogeneous

SAI will give rise to the out-of-incident-plane vibration excited by the ex-

traordinary reflection pre (uniquely controlled by 3D IGSL) as well as the

in-incident-plane vibration excited by an ordinary reflection pro, as shown

in Figure 3.2(a).

Interestingly, it is found that the acoustic metasurface at z = 0 designed

according to 3D IGSL cannot alter the direction of pro excited by the meta-

surface reflector, but surprisingly can turn off pro as shown in Figure 3.2(b).

In other words, our design can create the steerable pre as well as the switch-

able pro. This is unique for our acoustic metasurface while it is generally

difficult to eliminate the parasitic ordinary refraction or reflection for elec-

tromagnetic metasurfaces [1]. pre can be in principle steered along arbitrary
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directions by the acoustic metasurface, simultaneously with pro eliminated,

resulting in the corresponding manipulation of cross vibration in the ab-

sence of the ordinary in-plane vibration. Therefore, 3D IGSL describes the

generalized reflection law regarding the acoustic metasurface of 2D inhomo-

geneous acoustic impedance, and provides a clear-cut way for manipulating

pre and its vibration along arbitrary spatial angles.

Physically, our realization of our-of-plane vibration in fluids is based on the

reference of the incident plane. Because the reflection plane is rotated by

our design method, the vibration of acoustic reflected waves is out of the

incident plane, but still within the reflection plane. This pseudo transverse

polarization in fluids is different from the authentic transverse vibration for

acoustic waves in solids or electromagnetic waves.
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(a) (b)

flat interface

l(x,y)

x
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y z

d

(c)

top view a cross-sectional slice perpendicular to x

water
air
hard wall
thin film

incidence

Figure 3.2: (a) For a flat metasurface reflector with an inhomoge-
neous 2D SAI, the directions of pro, i.e., θro and φro, are not influenced,
while pre occurs simultaneously with the direction θre and φre controlled
by 3D IGSL. (b) If a heterogeneous SAI is properly designed upon the
reflector, pro will become null. (c) Realization schematics by tube ar-
rays, comprising the reflector (yellow dashed line). Figure adopted and

reproduced with permission from ref. [51].
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3.2 Two-dimensional varying metasurface

Here, we will focus on the theoretical formulation. As depicted in Fig-

ure 3.2(a,b), pi, θi (the angle between the orange line and z) and φi (the

angle between x and the x-y-plane projection of the orange vector) stand

for the incident plane wave, the incident polar angle and the azimuth angle,

respectively. The similar notations are adopted for pro and pre.

The inhomogeneous 2D SAI Zn of the flat metasurface at z = 0 is the

extension of the one-dimensional SAI that only creates the in-incident-plane

vibration and redirection in acoustics, which was introduced in Chapter 2

[41]. For simplicity in modeling, we consider

Zn(x, y, ω) = A

[
1− i tan

ψ(x, y)

2

]
, (3.1)

where A is an arbitrary real constant and ψ(x, y) represents the spatially

varying component only existing at the imaginary part. Note that ψ(x, y)

in Equation (3.1) has already taken into account the circular frequency.

We assume pi in the upper space satisfies

(3.2)pi(x, y, z, ω) = pi0(ω) exp [ik0(x sin θi cosφi+y sin θi sinφi−z cos θi)] ,

where k0 stands for the wave number in free space and pi0 for the amplitude

of the incidence. It is found that pro excited by the reflector at z = 0 with

Zn satisfies [41]
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pro(x, y, z, ω) = pi0(ω)× 2A cos θi − ρwc0
2A cos θi + ρwc0

× exp [ik0(x sin θro cosφro + y sin θro sinφro + z cos θro)] ,
(3.3)

where ρw, c0 are the density and the speed of sound in the upper space

z > 0 in Figure 3.2(a-b), θro = θi and φro = φi. pro is attributed to the

reflection by the properly-averaged value of the inhomogeneous 2D SAI

Equation (3.1), while the variance of the 2D SAI is the cause of pre [41].

Here, by virtue of Greens functions [41, 52], pre in the upper space, serving

as the result of the 2D SAI variation, can be expressed as an integral

equation:

pre(x, y, z, ω) = ik0
ρwc0
2A

×
∞∫

−∞

dy0

∞∫
−∞

dx0e
iψ(x0,y0)[pi(x0, y0, 0, ω)

+ pro(x0, y0, 0, ω) + pre(x0, y0, 0, ω)]G(x, y, z, ω; x0, y0, 0),
(3.4)

where G stands for the Greens function accommodating the boundary con-

dition. In the far field approximation [53], G can be derived explicitly:

G(r, ω; r0) =
exp(ik0 |r|)

4π |r| × exp[−ik0(x0 sin θre cosφre + y0 sin θre sinφre)]

× [exp(−ik0z0 cos θre) +
2A cos θ∗ − ρwc0
2A cos θ∗ + ρwc0

exp(ik0z0 cos θre)],

(3.5)

where r = (x, y, z), r0 = (x0, y0, z0), and θ∗, a constant, describes the effec-

tive incident angle with respect to the Greens function Equation (3.5) [54].

Inserting Equation (3.5) into Equation (3.4) and using Born approximation

[55], we are able to determine pre, which includes the following term:
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(3.6)pre ∝
∞∫

−∞

dy

∞∫
−∞

dx× eiψ(x,y) exp[ik0x(sin θi cosφi − sin θre cosφre)

+ ik0y(sin θi sinφi − sin θre sinφre)].

Note that for the trivial case when ψ(x, y) = 0, Equation (3.6) is non-zero

which implies that pre propagates along the same direction as pro. That

is to say, if the flat metasurface is of uniform SAI which only generates

the common reflection, the contribution of Equation (3.6) should also be

taken into account besides Equation (3.3). In addition, we find that Equa-

tion (3.6) is a two-dimensional Dirac Delta when ψ(x, y) is a linear function

with respect to x and y, which imposes the directivity of pre to be:

(3.7)
Ψ(θre, φre) ∝ δ[k0x(sin θi cosφi − sin θre cosφre)

+ k0y(sin θi sinφi − sin θre sinφre) + ψ(x, y)].

Therefore, the spatial directivity of pre only makes sense when

⎧⎨
⎩ sin θre cosφre − sin θi cosφi =

1
k0

∂ψ(x,y)
∂x

sin θre sinφre − sin θi sinφi =
1
k0

∂ψ(x,y)
∂y

, (3.8)

where ψ is a linear function with respect to x and y. Equation (3.8) unveils

the relation between the incident direction and the direction of pre, i.e., 3D

IGSL, which is regarded as the generalized law for acoustic metasurface

reflection. We note that if the metasurface is thin and allows transmission,

Equation (3.8) is the generalized law of refraction for the metasurface as

well, revealing the generality of our approach. It is noteworthy that if ψ
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is a constant for a uniform 2D SAI, Equation (3.8) will be reduced to the

usual Snells law. 3D IGSL serves the manipulation of the vibration of fluid

particles excited by pre, theoretically via tuning the parameter ψ of the

inhomogeneous SAI flat reflector, with no influence on the direction of pro,

as illustrated in Figure 3.2(a).

Other advantage of our Green’s function formulation also gives pro ampli-

tude as [41]

rro = pi0(ω)× (2A cos θi − ρwc0)/(2A cos θi + ρwc0). (3.9)

Usually, both pro and pre coexist, but 3D IGSL only tunes θre and φre.

In order to obtain purely cross vibration excited by pre with full control,

we need to eliminate pro. By particularly controlling the value of A in

Equation (3.1), we manage to switch off pro, as illustrated in Figure 3.2(b).

Based on Equation (3.9), if A = (ρwc0)/(2 cos θi), pro will be eliminated,

while the 2D SAI becomes

Zn(x, y, ω) =
ρwc0
2 cos θi

[
1− i tan

ψ(x, y)

2

]
. (3.10)

Thus, it is discovered that metasurface cannot affect the direction of pro

but just keep or eliminate pro.

Equally important is the plausible realization schematic of the inhomoge-

neous SAI in Equation (3.1), implemented by discretized impedance. As

depicted in Figure 3.2(c), all hard-sidewall tubes are assembled and juxta-

posed perpendicular to the flat interface, illustrated in the top view. Each

tube, serving as one discrete 2D SAI pixel of the flat metasurface reflector,
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has a square cross section whose width is d, with four surrounding hard

sidewalls (black). In the view of a cross-sectional slice in Figure 3.2(c),

one end of each tube constitutes the flat interface of the metasurface at

z = 0 (yellow dashed line), and the other end contacts with air (light blue).

The space z > 0 and the interior are filled with water (dark blue), without

separation. The water-air interface separated by a thin film (orange) is

regarded as the pressure-release termination of each tube.

In order to realize the 2D SAI inhomogeneity by discretized impedance,

d < 2π/k0 is required to eliminate higher diffraction orders. The SAI of

each tube at the opening facing z > 0 can be calculated [42]:

Zt(x, y, ω) ≈ ρwc0k0
2d2

2π
− iρwc0 tan [k0l(x, y) + k0Δl] , (3.11)

where l(x, y) is the spatial distribution of the length of each tube and

Δl ≈ 0.6133d/
√
π is the effective end correction. By comparison between

Equation (3.1) and Equation (3.11), it is required that A = ρwc0k0
2d2/(2π)

and A tan[ψ(x, y)/2] = ρwc0 tan [k0l(x, y) + k0Δl], leading to the value of

the discretized spacing d and the dependence between l(x, y) and ψ(x, y):

d =
√

(2πA)/(ρwc0k0
2)

l(x, y) = 1
k0
arctan[k0

2d2

2π
tan ψ(x,y)

2
] + nπ

k0
−Δl

(3.12)

where the arbitrary integer n is required to be set suitably to make l a

positive value. Thus, the change of ψ at the flat-metasurface reflector, rep-

resenting the manipulation of fluid-particle vibrations through the control

of pre, is now interpreted by the change of l [red dashed line in Figure 3.2(c)],

demonstrating one straightforward realization scheme based on impedance
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discontinuity. In principle, tubes can be regarded as Helmholtz resonators,

and the complex SAI at each pixel can thus be realized by a suitable ar-

rangement of resonators.

3.3 Three-dimensional control of extraordi-

nary reflection

The simulation results verify the robustness in the manipulation of fluid-

particle vibrations according to our 3D IGSL. We first consider the ideal

case without using the tube-array configuration, by selecting water as the

background media and ψ(x, y) = −100
√
3y at the SAI metasurface in Equa-

tion (3.10). The incident plane ultrasound with ω = 3×105 rad/s, θi = 18◦

and ϕi = 180◦ is impinged upon the metasurface at z = 0. The spatial

angles for pre, i.e., θre and ϕre, are theoretically found to be 66.9◦ and

250.4◦ by 3D IGSL in Equation (3.8), respectively. The simulation in Fig-

ure 3.3(b) validates our theory, where pro disappears thoroughly owing to

the specific design of the coefficient according to Equation (3.10). The cut

slice at ϕre = 250.4◦ in Figure 3.3(b) clearly shows that pre is propagating

towards the predicted direction without any disturbance. In other words,

we realize this out-of-incident-plane reflection, and simultaneously achieve

the full manipulation of its fluid-particle vibration.

In particular, in Figure 3.3(a), the same parameters are kept except for

another selection for A, whose value is arbitrarily taken to be ρwc0. It

clearly shows that pro coexists and interferes with pre, but pre still keeps

the same direction (θre = 66.9◦ and ϕre = 250.4◦), verifying our theoretical

prediction. Although such double reflections are predictable well by our
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Figure 3.3: (a) The acoustically flat-metasurface reflector with an
inhomogeneous SAI excites both pro and pre when an arbitrary A is
chosen in Equation (3.1). The fluctuation of the interference verifies our
theory. (b) A particular SAI is suggested according to Equation (3.10) so
that only the pure out-of-incident-plane vibration is excited by pre with
an expected direction. (c,d) Simulation results based on the realization
of tube arrays with relations l(x, y) enclosed below, corresponding to
the cases (a) and (b) respectively. Figure adopted and reproduced with

permission from ref. [51].
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theory, pro will disturb the manipulated out-of-incident-plane fluid-particle

vibration excited by pre in Figure 3.3(a). Therefore, we generally switch

off pro and make the out-of-incident-plane vibration excited by pre pure, as

demonstrated in Figure 3.3(b).

Next, we consider the realization when the metasurface reflector with realis-

tic discretized impedance is applied, in order to reproduce Figure 3.3(a,b).

In the reflected-field simulation of Figure 3.3(c,d), d = 0.01253 and d =

0.00909 are selected respectively according to Equation (3.12), and their

corresponding distributions of l(x, y) are enclosed. (In these two cases

there is no variation of l along x.) Figure 3.3(c) shows strong interference

between pre and pro, while Figure 3.3(d) shows the nearly undisturbed pre,

coinciding with Figures 3.3(a) and 3(b), respectively, verifying our proposed

realization using the layout of tube arrays.

Recalling the given example in Figure 3.1, we set the oblique incident

angles as θi = 60◦ and ϕi = 225◦. The flat acoustic metasurface with

ψ(x, y) = 100
√
6x in Equation (3.10) is placed as the reflector at z = 0,

whose tube-length distribution l(x, y) is illustrated in Figure 3.1(e) accord-

ing to Equation (3.12). Through 3D IGSL in Equation (3.8), we manage

to make pre arise with the direction θre = 60◦ and ϕre = −45◦, and si-

multaneously make pro eliminated, corresponding to the simulation of the

reflected field in Figure 3.1(c). The perpendicular intersection between the

incident plane and the x-y-plane projection of the particle vibrations in

Figure 3.1(c) exhibits the so-called cross vibration of fluid particles excited

by reflection, leading to this intriguing tweak of vibrational orientations in

fluids. Figure 3.1(d) is another example to verify the robustness of our the-

ory. The flat metasurface reflector with ψ(x, y) = 50
√
6x−100

√
3y+50

√
6y
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in Equation (3.10) is selected and the corresponding l(x, y) is illustrated in

Figure 3.1(f). Similarly, by the prediction from 3D IGSL, pre occurs to the

direction θre = 60◦ and ϕre = 270◦ with the suppression of pro, whose field

projection at the plane perpendicular to z is Figure 3.1(d).

3.4 Conclusion

In conclusion, we propose an acoustic flat metasurface reflector to manip-

ulate vibrational orientations of fluid particles in acoustics, and show that

a complete conversion between two perpendicular vibrations by deviating

the extraordinary reflection out of the incident plane. It is found that the

control of the metasurface parameter can keep the extraordinary reflection

only, while suppressing the ordinary reflection. We also theoretically unveil

the generalized rule of three-dimensional impedance-governed generalized

Snell’s law of reflection with respect to the specific acoustic impedance.

The out-of-incident-plane fluid-particle vibration and the arbitrary degree

of freedom in directional manipulation are numerically implemented using

the designed layout of tube arrays.
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Manipulating acoustic focus

with an active metasurface

piezoelectric transducer

This chapter establishes the prototype of acoustic metasurface piezoelectric

transducer (PT), whose piezoelectric elements are squeezed into a flat thin

layer compared to the scale of the entire device. The active planar inter-

face also extends the knowledge of acoustic metasurface engineering for the

deflection of sound beams using passive elements [49, 51]. Through the

optimized ring configurations of the active metasurface PT, we are able to

manipulate the focal pattern and the focal resolution in acoustic far fields.

Firstly, we design the far-field finite-length focal needle with the manipu-

lated distance and depth. Its focal resolution is subwavelength for the full

width at half maximum (FWHM), and it propagates without divergence

for a distance of 5.9λ as designed, longer than the depth 4λ of the re-

ported optical needle [56]. These two designed focusing properties created

45
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with PTs were never achieved in acoustics, to the best of our knowledge.

To further verify the robustness of our manipulation of the focal pattern,

via another optimized ring configuration, we obtain the designed far-field

multiple foci, whose FWHM ( 0.45λ) beats the Rayleigh diffraction limit

of conventional acoustic instruments (0.5λ). Besides, to demonstrate the

manipulation of the focal resolution, we design the extreme case of the

super-oscillatory super resolution, whose size is 0.3λ in acoustic far fields,

much smaller than the diffraction limit.

4.1 Design of planar metasurface piezoelec-

tric transducer

In the 3D view of the configurable planar metasurface PT prototype in Fig-

ure 4.1(a), piezoelectric rings (red) are unevenly spaced with hard-boundary

mask rings (blue) in between. A type of common artificial ceramic is em-

ployed as the piezoelectric material: lead zirconate titanate PZT-5H [57].

In the radial view, the thickness q is set identical for all PZT-5H rings, and

the ring configuration (r1, rr1, r2, rr2, · · ·) will be optimized according

to different focusing manipulation. The thin hard-boundary mask rings in

between, through which no sound can pass, are the complements of the

spaced gaps between PZT-5H rings, co-planar with z = 0. The entire PT

is axisymmetric with respect to +z, and the upper surface of the structure

at z = 0 can be regarded as a flat active metasurface according to the

radial cross-sectional view. In our following demonstrations in air (density:

ρa = 1.21kg/m3; speed of sound: c0 = 343m/s), we will show the designed

focal pattern and the focal resolution created with the PT prototype in
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acoustic far fields, the simulation of which is carried out by the finite el-

ement method (FEM). In detail, COMSOL Multiphysics is the platform

we use, and the simulation is facilitated by the coupling of the embedded

acoustic module and the acoustic-piezoelectric interaction module concur-

rently.

The design method and the related physics are elaborated in this part. The

electromechanical constitutive equations governing the piezoelectric effect

of PZT-5H are written in the stress-charge form [59]:

T = cES− eTE; D = eS+ εSE, (4.1)

where T and S are the vectors of stress and strain; E = −∇φ is the

electric field, which is rephrased with the electric potential φ exerted on

the PZT-5H rings; cE the elasticity matrix evaluated at a constant electric

field; e the coupling matrix; D the electric displacement; εS the electric

permittivity matrix evaluated at a constant mechanical strain. Usually, cE

is straightforwardly given as an anisotropic symmetric matrix; εS = ε0εSr

includes the relative permittivity matrix εSr. These parameters of PZT-5H

are listed in Appendix C. For each PZT-5H ring whose poling direction

is aligned toward +z, the boundary conditions (B.C.s) are indicated in

Figure 4.1(b). The structural B.C.s for the inner and the outer sides are

free of constraint, while the bottom is fixed with the structural displacement

u = 0. The top undergoes the interaction between sounds and structures

[59]:
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Figure 4.1: (a) Schematics of the configurable planar metasurface PT
prototype. Inside the dashed box is the radial cross-sectional view of
the ring configuration, showing the unevenly-distributed piezoelectric
elements and the hard boundaries. (b) The boundary condition of each
piezoelectric ring observed from the radial cross-sectional view. Figure

adopted and reproduced with permission from ref. [58].
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T · nS

∣∣∣
z=0

= −nSp|z=0

nS ·
(
− 1

ρ0
∇p

)∣∣∣
z=0

= nS · ∂2u
∂t2

∣∣∣
z=0

S = 1
2

[
(∇u)T +∇u

] (4.2)

where T and S are the tensors of stress and strain; nS is the outward-

pointing unit normal vector seen from inside PZT-5H. Briefly, the first

equality indicates the acoustic pressure load p; the second makes the normal

acceleration of p on the boundary z = 0 equal to that of the structural

displacement; the third is the intrinsic constitutive equation of S and u

inside solids. Meanwhile, the electrical B.C.s for the inner and the outer

sides are free of charge nS · D = 0, whilst the bottom touches ground

φ = 0. The top is assigned with monochromatic φ = V0 cos(2πft). One

common technique to impose the voltage bias is a sandwiched structure

with PTH-5H elements between two Au electrode layers.

Next, in order to manipulate the far-field focal pattern or the focal reso-

lution created with the planar metasurface PT prototype, we propose the

acoustic Rayleigh-Sommerfeld diffraction integral (RSI) in conjunction with

the method of binary particle swarm optimization (BPSO) [60–62]. The

derivation starts from the Kirchhoff-Helmholtz integral [42]:

(4.3)

∫∫
S

dS ′ [p(r′, ω)∇′g(|r− r′|)− g(|r− r′|)∇′p(r′, ω)] · n′ = p(r, ω),

where r ∈ Ω, g(x) = exp(ik0x)/(4πx) and k0 = 2πf/c0 . p(·) and

g(·) are monochromatic wave functions defined throughout the domain Ω

bounded by a closed surface S, while n′ · ∇′ denotes the differentiation

along the inward normal to S. Provided that Ω is the half space z ≥ 0,
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S thus consists of the plane z = 0 and a hemisphere of infinite radius,

centered at the origin. After adopting the Sommerfeld radiation condition

lim
r→∞

[∂p(r, ω)/∂r − ik0p(r, ω)] = 0 to Equation (4.3), we obtain:

1

4π

∫∫
z′ =0

dx′dy′[p(r′, ω)
∂

∂z′
exp(ik0R1)

R1

− exp(ik0R1)

R1

∂p(r′, ω)
∂z′

] = p(r, ω),

(4.4)

where R1 =
√

(x− x′)2 + (y − y′)2 + (z − z′)2, z > 0. On the other hand,

if r situates in the lower half space z < 0, we will obtain [11]:

(4.5)
1

4π

∫∫
z′ =0

dx′dy′[p(r′, ω)
∂

∂z′
exp(ik0R2)

R2

− exp(ik0R2)

R2

∂p(r′, ω)
∂z′

] = 0,

where R2 =
√

(x− x′)2 + (y − y′)2 + (z + z′)2, z < 0. Subsequently, mak-

ing use of the connection between R1 and R2 at z = 0, we incorporate

Equation (4.4) and Equation (4.5), bringing about the acoustic RSI:

(4.6)p(r, ω) =
1

2π

∫∫
z′=0

p(r′, ω)
∂

∂z′
exp(ik0R1)

R1

dx′dy′.

Applying the first-order Born approximation [55] to Equation (4.6), which

simplifies the vibration at the fluid-solid interfaces at z = 0 to be uniform

and binary, we finalize the equation as the acoustic RSI cum BPSO:

(4.7)|p(r, ω)|2 =
∣∣∣∣ 12π

∫∫
z′=0

puni(r
′, ω)

z exp(ik0R1)

R1
2

(
ik0 − 1

R1

)
dx′dy′

∣∣∣∣
2

,

where puni(·) is a binary function describing the ring configuration at z = 0,

optimized for the designed focal pattern or focal resolution |p(r, ω)|2. Other
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than the requirement of acoustic pressure as well as its normal derivative

in Equation (4.3), Equation (4.7) only requires the acoustic pressure on the

surface, suitably for BPSO.

In general, BPSO is a nature-inspired evolutionary algorithm for stochastic

optimization [62]. At first, the designed energy distribution |p(r, ω)|2 will

be preset to benchmark acoustic focal patterns or resolutions in respective

scenarios. Simultaneously, by means of Equation (4.7), BPSO will be im-

plemented to optimize the parameter r = [r1, r2, r3, ..., rN ] in order to fulfill

the benchmark |p(r, ω)|2. For simplicity, the ring width Δr of the planar

metasurface PT is fixed in our design. Once r is given, one can obtain

another parameter rr = [rr1, rr2, rr3, ..., rrN ] by rr = r + Δr. Then, the

parameters r and rr determine the ring configuration in Figure 4.1(a). Al-

though the fixed Δr sets a constraint in designing the active metasurface

PT, this low-cost approach always works well in many applications [63], as

we will show later.

4.2 Generation of an acoustic focal needle

To vindicate the proposed method, i.e. the acoustic RSI cum BPSO, in the

manipulation of acoustic focusing, we first demonstrate the manipulation

of the acoustic focal patterns such as the designed focal needle and the

designed multiple foci. The arbitrary design of a focal pattern is impossible

if we simply resort to acoustic wavefront construction by the method of

effective medium [43]. In our case for the pattern of a finite-length focal

needle on axis, we conveniently select V0 = 5V and f = 100kHz that

generates acoustic waves of λ = 3.43mm in the space z > 0. Note that
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Figure 4.2: (a) The normalized squared absolute pressure, display-
ing the pattern of the designed finite-length far-field focal needle. (b)
The field distribution of the squared absolute pressure around the focal
needle. (c,d) The radial distributions of the squared absolute pressure
at the cross sections z = 20λ and z = 24λ, with their respective field
distributions. Figure adopted and reproduced with permission from ref.

[58].
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for the purpose of a finite-length focal-needle pattern in the far field, we

require a depth of continuous acoustic focal energy along the axis with the

low energy level at the rest, whilst the location, i.e., both the depth of the

needle and the specific positions of the two ends away from the transducer,

could be subtly designed as well. In Figure 4.2(a), the on-axis focal-needle

pattern, whose position is preset to extend from 19.2λ to 25.1λ, is designed

as the orange dashed curve |p(r, ω)|2, while simultaneously the optimized

ring configuration is calculated by the acoustic RSI cum BPSO as described

above. The optimized ring configuration listed in Appendix C includes 30

PZT-5H rings with the maximum radius of ∼180 mm, while q is adjusted

optimally to be 4 mm.

In the same plot, the full-wave acoustic field generated by the planar and

active metasurface PT as the real case is simulated by the FEM as the blue

curve, using Equation (4.1) and Equation (4.2), and the result coincides

with the designed finite-length focal-needle pattern (orange dashed curve).

It is noteworthy that the standing-wave-like oscillation from 0λ to ∼10λ

along z direction agrees with the classic characteristic of acoustic near fields

[42]. Besides, we notice that most energy is focused into the designed far-

field focal region from 19.21λ to 25.1λ, implying the focal needle of the

depth 5.89λ as designed, longer than the depth ∼4λ of the reported optical

needle [56]. In Figure 4.2(b), the field pattern of |p(r, ω)|2 simulated by

FEM around the focal needle is displayed. The contrast between the intense

needle and the ambient quiet field is apparent, which meets the requirement

of the focal-needle shape.

It is necessary to mention the subwavelength focal resolution of the focal-

needle pattern in Figure 4.2(c,d). The radial distributions of the squared
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absolute pressure are plotted on the left while their field distributions are

on the right. The FWHM of the focal size in the far field is measured

to be ∼0.64λ at z = 20λ and z = 24λ, smaller than one wavelength but

larger than the diffraction limit. We may also conclude from Figure 4.2(c,d)

that the acoustic needle pattern is formed of a nearly constant subwave-

length width throughout. Moreover, the intensity of the side-lobes in Fig-

ure 4.2(c,d) is drastically smaller than the central intensity, crucially for

potential imaging applications. Note that such subwavelength acoustic fo-

cusing is generated in the true far field without resorting to evanescent

acoustic waves limited to the near field only.

4.3 Generation of acoustic far-field multiple

foci

To further show the robustness of the acoustic-focusing manipulation, we

take the example of the acoustic far-field multiple foci as another designed

focal pattern. Here, the multiple foci are designed as the four discrete

foci along the axis in the far field. The corresponding normalized energy

pattern |p(r, ω)|2 designed by the acoustic RSI cum BPSO is the orange

dashed curve in Figure 4.3(a), using the ring configuration which is simul-

taneously optimized in this case. Note that the ring configuration here is

designed and optimized in the same way except for a different focal pattern

(benchmark). It includes 28 PZT-5H rings, whose parameters are listed

in Appendix C. q = 3mm is optimized here while V0 and f remain the

same. The blue curve indicates the full-wave simulation by FEM using
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Equation (4.1) and Equation (4.2). Again, the satisfactory agreement be-

tween these two outcomes confirms our pattern design. The corresponding

field distribution in Figure 4.3(b) is simulated with respect to |p(r, ω)|2

around the multiple foci. Also, we notice that the focal resolution (FWHM

∼0.45λ) of the multiple foci in Figure 4.3(c,d) is subwavelength and even

beats the Rayleigh diffraction limit of 0.5λ, which was never realized in

terms of PT technology.

As mentioned in the above two cases, by means of the properly-optimized

ring configurations, we are able to achieve the designed acoustic focal pat-

terns with a subwavelength resolution as well as a sub-diffraction-limit reso-

lution. The underlying physics of achieving the focal resolution beyond the

restriction of diffraction limit by means of the multiple-ring active meta-

surface transducer is the interference and the diffraction of excited sound

beams.

In essence, Rayleigh diffraction has Airy pattern proportional to J1(krNA),

where kr is the radial wavenumber and NA is the numerical aperture. The

pattern can be decomposed into∝ [J0(krNA) + J2(krNA)]2 where the term

J2(krNA) makes the focal size larger. In our case, each ring only generates

J0(krNA) at the focal point. Therefore, by eliminating J2(krNA), the su-

perposition at the focal plane breaches the traditional Rayleigh diffraction

limit, while the algorithm BPSO simultaneously optimizes the ring config-

uration to further improve the acoustic focal resolution [63]. If we intend

to further enhance the focal resolution to the deep sub-diffraction-limit fo-

cal size substantially smaller than 0.38λ, the situation will turn into the

extreme case of the super-oscillatory super resolution [60, 61].
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Figure 4.4: The radial distribution of the normalized squared absolute
pressure at the cross section z = 20.06λ on the left, showing the focal size
of the far-field acoustic super-oscillatory super resolution. On the right
is the corresponding field distribution of the squared absolute pressure.

Figure adopted and reproduced with permission from ref. [58].
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4.4 Acoustic super-oscillatory super resolu-

tion

Our design method, the acoustic RSI cum BPSO in terms of PT technology,

is able to manipulate the acoustic focal resolution as well and to increase

it to acoustic super-oscillatory super resolution. Super oscillation is a sort

of phenomenon associated with the fact that the band-limited functions

can oscillate arbitrarily faster locally than the highest Fourier components,

which makes it possible to break the diffraction limit and to reduce the

focal size to be infinitesimal. In this case, we choose V0 = 100V and

f = 40kHz for the electric potential exerted on all PZT-5H rings, which

produce acoustic waves of λ = 8.575mm in air. After setting the acoustic

super-oscillatory super resolution (FWHM = 0.3λ at z = 20.06λ) as the

designed focal resolution, we simultaneously optimize the ring configuration

of the active metasurface PT in the same way, which includes 19 PZT-5H

rings as shown in Appendix C, while q = 2mm is adopted here optimally.

The optimized result is the orange dashed curve in Figure 4.4, showing

the designed radial distribution of the normalized |p(r, ω)|2 at z = 20.06λ.

The blue curve shows the corresponding full-wave simulation. The field

distribution of the squared absolute pressure at the same cross section is

plotted on the right in Figure 4.4 to exhibit the result of the focal-resolution

manipulation.

We manage to control the focal size of the super-oscillatory super resolution

to be 0.3λ in acoustic far fields, substantially smaller than 0.5λ. Neverthe-

less, if the FWHM of the focal spot is smaller than 0.38λ, there is an

inevitable trade-off uniquely in terms of the super-oscillatory case, which
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does not exist for a larger FWHM. Namely, the cost of the super-oscillatory

super resolution is that most on-axis focal energy would be unavoidably

squeezed away into the side-lobes as shown in Figure 4.4 [63]. In prin-

ciple, the deep sub-diffraction-limit super resolution can be manipulated

to be infinitesimal, but the sacrifice is the increasing side-lobes that make

the super-oscillatory super resolution less efficient. However in spite of the

naturally-inevitable trade-off in the super-oscillatory case, people also try

applying it in biological imaging [60].

4.5 Discussion

Physically, the proposed active and configurable planar metasurface PT

used for the manipulation of acoustic focusing is a sort of binary-amplitude

exciter for directly focusing the excited sounds into a certain pattern or

a designed resolution in the post-evanescent fields, by optimally modi-

fying the constructive interference of a large amount of acoustic beams.

The acoustic RSI cum BPSO is applied to optimize the ring configuration

on the active metasurface after certain focusing targets such as focal pat-

terns or focal resolutions are chosen. Additionally, the manipulation of

acoustic focusing is not the translation from optics, whose binary mask is

passive without energy feeding [64]. Here, we fundamentally change the

passive binary-amplitude baffle in optics into the active binary-amplitude

exciter in acoustics that transforms itself into the feeding. Furthermore, we

demonstrate the versatility of our design method, such as the realization

of the focal-needle pattern, the multiple-foci pattern and the manipulated
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super-oscillatory super resolution in acoustic far fields. Consequently, this

approach to manipulate focusing properties is unique in acoustics.

4.6 Conclusion

In conclusion, we propose the method to manipulate the acoustic far-field

focusing created with the active and configurable planar metasurface piezo-

electric transducer. The designed focal patterns and focal resolutions are

demonstrated respectively. By means of the acoustic Rayleigh-Sommerfeld

diffraction integral in conjunction with the method of binary particle swarm

optimization, a large degree of freedom is obtained to manipulate various

far-field focusing phenomena via optimized ring configurations. Here, the

pattern of a finite-length focal needle of a subwavelength resolution is de-

signed and realized; another example is the creation of the multiple-foci

pattern of a sub-diffraction-limit resolution; for the focal-resolution manip-

ulation, the extremely-high resolution, i.e., the acoustic super-oscillatory

super resolution, is demonstrated as well using the prototype of the active

and configurable planar metasurface piezoelectric transducer. Due to these

significant advantages and versatility, the manipulation of acoustic focus-

ing may offer a reformative framework in medical and industrial technology

where the strict control of acoustic high-energy areas is demanding (bio-

medical actuator, focused ultrasound surgery, lithotripsy, nondestructive

testing, etc.).



Chapter 5

Realizing acoustic cloaking and

near-zero density with acoustic

metastructure

This chapter proposes an acoustic metastructure which has the property of

near zero density and is developed for acoustic invisibility cloaking. This

acoustic metastructure sustains the characteristics of the reported acoustic

cloaks derived by transformation acoustics, and is also able to overcome

the defect of topologically-optimized acoustic cloaks. Different from the

traditional acoustic metamaterials which have complex (inhomogeneous or

anisotropic) components of micro or subwavelength scales, our acoustic

metastructure for invisibility cloaking is only made of single-piece homoge-

neous elastic copper in an accessible layout, including one pressure absorber

and one pressure projector connected by an isolated energy channel.

61
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The elastic material can be regarded at a certain resonant frequency as

an effective density-near-zero (DNZ) structure. Due to the mechanical res-

onance of the elastic structure, the phase velocity of sound waves in the

cloaking setup almost reaches infinite value, and consequently, extraordi-

nary sound transmission (EST) is expected [65, 66]. The cloaking perfor-

mance by our acoustic metastructure is explained by simplified theoretical

spring-mass model and verified by COMSOL numerical simulation in two-

dimensional unbounded space as well as in curved waveguides.

The theoretical explanation of the DNZ property of our proposed metas-

tructure is to be elaborated using the spring-mass models at Section 5.2.

In short, DNZ is the consequence of systematic resonances, which result in

simultaneous vibration of the entire structure. Therefore, it appears that

the vibrational status at one end of the structure can reach to the other end

without taking time. The seeming infinite speed of sound can be further

paraphrased as the DNZ property.

One limitation of our design is the 1D functionality, i.e., the capability to

work only for normal incident waves.
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5.1 Metastructure for acoustic cloaking made

by copper

To illustrate the concept of our design, we compare it with acoustic cloak-

ing based on coordinate transformation in Figure 5.1(a), which renders an

object invisible by distorting its ambient flow. The scheme of the proposed

DNZ acoustic-metastructure for cloaking in Figure 5.1(b) can produce EST,

to hide arbitrary inserted objects as well as to preserve wavefronts and

phases.

Conceptually, the flow at the front of an object is concentrated into the

energy channel by an absorber. Then, acoustic energy is coupled out by a

projector to the back side where the flow is restored. The entire process

resembles the engineering optical camouflage: positioning cameras upon an

object wrapped by a retro-reflecting coat; taking pictures and transmitting

the signal; projecting the front scene onto the back of the coat [68]. In

Figure 5.1(b), acoustic cloaking for 1D invisibility can be achieved without

wave distortion along sound paths, and the length of the cloaking device is

designed to maintain the phase continuity at both sound inlet and outlet.

The DNZ metastructure for acoustic cloaking shown in Figure 5.1(c) is only

implemented by copper (density: 8900kg/m3; Youngs modulus: 122GPa;

Poissons ratio: 0.35) [42] with two fixed planks (blue parts). p and w

are the length and width of the energy channel, respectively. The two

hollow enclosed chambers are designed to fill with air (density: 1.21kg/m3;

speed of sound: 343m/s), where any objects can be placed inside for the

purpose of invisibility. The T-shaped protrusion at each end is used as

the locally resonant element to enhance sound transmission [69, 70]. The



Chapter 5. Realizing acoustic cloaking and near-zero density 66

entire structure is immersed in water (density: 998kg/m3; speed of sound:

1481m/s), and a monochromatic acoustic plane wave propagates from left

to right. The COMSOL software has been used to do simulation.

The acoustic power transmission through the DNZ metastructure for acous-

tic cloaking immersed in water is numerically simulated. In Figure 5.2(a),

there are two frequencies that allow EST (13.45 kHz and 23.1 kHz) with a

small peak (16.3 kHz) in between. We also calculate the vibration states

at the three frequencies in Figure 5.2(b-d). Figure 5.2(b,c) shows by sim-

ulation two opposite resonances of the DNZ metastructure. Inside the

metastructure, the internal motion is simply the longitudinal movement

of the elastic energy channel, which can be seen at displacement fields.

We furthermore individually calculate the eigen-frequencies of the copper

parts, shown as the purple dots in Figure 5.2(a). The similarity between

the frequencies that correspond to the red squares and that correspond

to the purple dots shows that by the systematic resonance the structured

metastructure is capable of total power transmission, as the requirement of

acoustic cloaking. The slight disagreement between the dots of different col-

ors is because that for the red squares that correspond to Figure 5.2(b,c),

the acoustic load from the ambient water has been taken into account, while

for the purple dots, we only consider the eigen-frequencies of the copper

parts.
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5.2 Spring-mass model and density-near-zero

property

Our design focuses on achieving the DNZ property by using the structural

resonance, and meanwhile isolating the objects to be hidden from the en-

tire resonance system. A spring-mass model, the mechanical translation

of acoustic systems, is illustrated here to expound the resonance and the

consequent DNZ property.

The metastructure immersed in water in Figure 5.3(a) can be regarded as

the damping spring-mass model in Figure 5.3(b). In Figure 5.3(a), different

parts of the metastructure are tinted with different colors to illustrate the

counterpart elements in Figure 5.3(b). Specifically, we regard the fixed

copper planks (black) as the fixed wall (black), the input sound as the

driving force (pink), and the main body of the metastructure as the mass

chunk (blue). The joints (red) as well as the elasticity of the metastructure

are rationally modeled as the ideal spring (red). The acoustic impedance

exerted upon boundaries (yellow) is modeled as frictional damping, because

when the metastructure vibrates it will fight against the resistance from the

outside water and the inside air. Therefore, the equation for this spring-

mass model becomes:

Md2x/dt2 = −kx− γMdx/dt + F0 cosωt, (5.1)

where k denotes the stiffness of the ideal spring in Figure 5.3(b); γ is

the damping coefficient; M is the mass of the chunk; x is the displace-

ment; ω is the driving frequency and F0 cosωt is the driving force. The
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resonant frequency in the case of no damping is ω0 =
√

k/M . Then,

the solution of Equation (5.1) becomes x = A cos(ωt − δ), where A =

F0/[M
√

(ω0
2 − ω2)2 + (ωγ)2] and tan δ = ωγ/(ω0

2 − ω2) . The maximum

amplitude occurs at ω1 =
√
ω0

2 − γ2/2. If there is no friction γ = 0, the

driving frequency is ω0 and A goes up infinitely, and the mechanical energy

of the vibrating chunk is accumulated because of the driving force. How-

ever, if there is a damping effect, e.g. the friction between the ground and

the chunk, the accumulated energy at the resonance will be conveyed to dis-

sipation, making the system in its steady state. Under this circumstance,

A will remain a finite maximum when ω = ω1.

Due to energy conservation, all input power will be consumed by the fric-

tion, and the driving energy is transferred wherever the damping (yellow)

is. As the comparison in Figure 5.3(a), the force from the input wave not

only drives the vibration of the DNZ metastructure, but also needs to over-

come the resistances at the solid-liquid interfaces (yellow). Therefore, at

systematic resonances, the momentum gain of the acoustic loads, i.e. the

inside air and the outside water, consumes all the cumulative input acoustic

power. Consequently, at the moment of systematic resonances, the entire

system is in its steady state. Note that in order to avoid disturbing the

resonances of the metastructure, the objects to be hidden are required to

be kept from touching the walls of the chambers.

Moreover, since the acoustic impedance of the outside water is extremely

higher than that of the inside air (3561 times), the acoustic load is almost

completely attributed by water. Thus, all input power is expected to be

transferred to outside water, which leads to EST. The objects inside the
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cloaked space are isolated from the systematic resonance of the DNZ metas-

tructure, because the air chambers decouple the systematic resonance from

the existence of the inside objects. The decoupling effect is not considered

by the traditional design of membrane-induced DNZ metamaterials [66].

However, the proposed metastructure is not able to cloak objects from

airborne sound. Because the acoustic forces exerted upon the inside and

outside air are comparable, the vibration of the metastructure will result

in sound penetration to both inside and outside, which makes the cloaking

effect in airborne sound fail.

Instead of the major resonances, there are several other minor resonances

due to the rich oscillation modes of solids, which are not observable simply

based on simplified 1D spring-mass model. However, the spring-mass model

is the classic approach to explain the underlying mechanism of EST and

the cause of the acoustic cloaking effect in our design.

Additionally, the spring-mass model implies the DNZ property of the metas-

tructure at its resonance, which is the acoustic equivalent of an electromag-

netic epsilon-near-zero metamaterial [71]. We may define the effective mass

of the vibration system as Meff (ω) = M − k/ω2 , which intrinsically in-

cludes the acoustic inertance caused by its mass as well as the acoustic

compliance caused by its elasticity. The combination of the acoustic com-

pliance and the inertance is the exact analog of the combination of spring

compliance and substantial mass in a spring-mass model.

Since the restoring force from the elastic copper of our structure is able to

add a negative term to the effective mass, we can rearrange Equation (5.1)

considering the harmonic vibration [65]:
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F0 cosωt− γMdx/dt = Meff (ω)d
2x/dt2 , (5.2)

which turns into the form of Newton’s second law: driving force resistance

= mass×d2x/dt2 . At systematic resonance, Meff (ω) = M−k/ω2 becomes

zero, so that power transmission of input sound is expected to be extremely

enhanced [65]. The causality from the DNZ property of our structure to

the resultant EST was elaborated in Ref. [65] where a similar membrane-

mass model was proposed. (The detailed derivation of the transmission

coefficient was given in the Ref. [65] using the lumped element approach.)

Actually, the DNZ effect is an innate property of a dynamic structure with

a certain eigen-vibration excited. For our proposed structure, the DNZ

metastructure at resonance is explained by the aid of the damping spring-

mass model in Figure 5.2(a,b).

However, it is noteworthy that although the dynamic density of the in-

dividual metastructure is near zero, the acoustic impedance of the entire

acoustic cloaking setup is not near zero at all. When the system vibrates,

there will be additional radiation impedance exerted at both ends of the

metastructure. When the systematic resonances occur, EST surely implies

the impedance match between the proposed structure and the surround-

ing. The impedance match in such case is dominantly attributed by the

radiation impedance, apart from the minor contribution from the DNZ

structure itself. Thus, if taken into account the radiation impedance, the

overall acoustic impedance is no more near zero.
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5.3 Coupling model and geometrical depen-

dence

After discussing the mechanism of the DNZ metastructure for acoustic

cloaking, we further examine the geometrical dependence of the power

transmission spectrum, by employing the coupling model in Figure 5.3(c,d).

As discussed in Figure 5.3(a,b), the fixed copper planks in Figure 5.3(c)

(black) can be modeled as the two hard walls (black) in Figure 5.3(d).

To investigate the dependence between the structural geometry and the

resonance, the main bodies in Figure 5.3(c) are modeled separately. In this

way, the two copper bodies (blue) are modeled as the two chunks (blue)

with mass m. The four joints (red) indicating elasticity are interpreted

as the two ideal springs (red) with stiffness k2, connecting the chunks to

the walls. Additionally, owing to the narrowness of the energy channel

(orange), we model it as the spring with stiffness k1 and mass ms (orange),

which couples the two chunks. By the coupling model, we discover the

dependence between the structural geometry of the DNZ metastructure

and the working frequencies of EST.

The equations for the coupling model shown in Figure 5.3(c,d) are:

⎧⎨
⎩ md2x1

/
dt2 = −k2x1 + k1(x2 − x1)− γmdx1/dt

md2x2

/
dt2 = −k1(x2 − x1)− k2x2 − γmdx2/dt

, (5.3)

where x1 and x2 are the displacements of the left and the right chunks.

The lower and higher resonant frequencies of Equation (5.3) are ωL =
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√
k2/(m+ms) − γ2/4 and ωH =

√
(2k1 + k2)/(m+ms) − γ2/4 , respec-

tively. If the energy-channel length p = 93mm in Figure 5.1(c) becomes

longer, ms will become larger but k1 will get smaller, similarly to the serial

connection of springs. Therefore, both ωL and ωH will become smaller,

which implies that all resonant frequencies of the DNZ metastructure will

be shifted lower when p becomes longer. Vice versa, if the energy-channel

length is shortened the resonant frequencies will be shifted higher. The

shift observed from the curves in Figure 5.3(e) validates the theoretical

spring-model analysis.

If the channel width w = 1.0mm becomes thicker, ms as well as k1 will

become larger, similarly to the shunt connection of springs. Therefore, ωL

will become even lower. As for ωH , the double increments of k1 at the

numerator (2k1 + k2) is empirically larger than the increment of ms at the

denominator, leading to the rise of ωH . Thus, we can predict that if w

gets thicker, the low resonant frequencies of the DNZ metastructure will

be shifted even lower, whereas the high resonant frequencies will be even

higher. The broadening of the power transmission spectrum in Figure 5.3(f)

verifies our analysis.

We investigate the geometrical dependence in terms of the sound-tunneling

channel inside the metastructure, which is the key component of our struc-

ture. However, the two terminal chunks of the metastructure cannot be

straightforwardly characterized by spring-mass model. The solid eigen-

vibration of the chunks are 2D, which is hard to be interpreted by 1D

model. The precise analysis of the solid chunks needs direct numerical

simulation.
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metastructure. There is no sound inside air chambers, and the field
outside the metastructure is almost unperturbed. (b) The density-near-
zero array is immersed in water, and the wavefront and the phase are
restored at its back. Figure adopted and reproduced with permission

from ref. [67].
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5.4 Deploying cloaked area in free space and

in waveguides

We numerically examine the acoustic pressure field distribution in the do-

main where the proposed DNZ metastructure is immersed in water, while

the monochromatic acoustic waves are normally incident from left with unit

magnitude and frequency 23.1 kHz. As expected, inside the air chambers

in Figure 5.4(a), there is no sound penetration, which means the inserted

objects are isolated and decoupled to the systematic resonance and the

outside field. It is remarkable that the power transmission nearly reaches

100%, which implies EST through the DNZ metastructure with no back-

scattering.

Also, we notice in Figure 5.4(a) that the phase at the inner side of the

T-shaped ends is not continuous because of the perturbation from the local

resonances inside the concave of the T-shaped ends. However, the phase

at the outer side of the T-shaped ends is almost the same as the adjacent

ambient phase. The length of the metastructure is also designed to maintain

the phase continuity at the sound outlet, which makes the plane wavefront

instead of other curved wavefront propagate out.
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metastructures. There is no sound inside air chambers, and the outside
traveling sound is largely transmitted. (b) The number of metastruc-
tures does not affect the resonant frequencies. (c) The high power trans-
mission shows that the metastructures are able to hide inside objects as
well as to bend sound in waveguides. Figure adopted and reproduced

with permission from ref. [67].
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Furthermore, thanks to the rigid boundaries at the two fixed planks in

Figure 5.1(c), we can connect as many metastructures sharing the planks

as possible, to form an arbitrarily-designed cloaked space. In Figure 5.4(b),

the metastructures are aligned side by side to increase the acoustic-cloaking

volume. The cloaking effect is demonstrated that the bulky copper array

itself and the multiple objects inside the metastructure are imperceptible

from outside. Contrarily, if the energy channels are removed, strong back-

scattering will occur as shown in Figure 5.4(c). We can also design the

overall cloaked space with an arbitrary distribution of the metastructures

[see Figure 5.5 where an NUS-shaped cloaked space is formed]. Based

on the proposed detachable DNZ metastructures, we accomplish arbitrary

acoustic cloaking in 2D space only by a single kind of uniform isotropic

material.

Besides the scenario in a 2D space, sound manipulation in waveguides

showed significant applications as well, such as the acoustic circulator based

on non-reciprocity [72]. Here, the proposed DNZ metastructure is also func-

tional in cloaking objects in waveguides. As shown in Figure 5.6(a) where

acoustic waves propagate through the hard-wall waveguide filled with wa-

ter, the objects inside the air chambers are imperceptible. Note that one

characteristic of DNZ property is that energy tunneling occurs indepen-

dently of the number of DNZ segments, because each DNZ segment is able

to resonate at the same frequency without influencing each other [66]. Even

if we add more metastructures inside the waveguide, the resonant frequency

will not be shifted, as shown in Figure 5.6(b). The energy transmission is

almost 100% in both Figure 5.6(a,b), which indicates EST happens through

DNZ metastructures. In Figure 5.6(c), we further demonstrate the acoustic
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cloaking effect along a curved waveguide, which is used to bend sound path

and to maintain the cloaking effect simultaneously as designed.

5.5 Conclusion and discussion

We design an acoustic metastructure for invisibility cloaking that has the

density-near-zero property, and is able to eliminate the perceptibility of

inside objects from underwater sound. Note that the density-near-zero

metastructure for acoustic cloaking is built only by a uniform material,

while its cloaking effect is independent of the objects inside it. It much

simplifies the traditional realization of acoustic cloaking by complex acous-

tic metamaterials.

The design is inspired by the combination of acoustic inertance and acoustic

compliance of the structure at systematic resonances. A plane wavefront is

maintained without distortion, and the reflection is dramatically suppressed

due to extraordinary sound transmission. Moreover, such density-near-zero

metastructures are detachable, and therefore robust in being assembled to

change or expand the overall cloaked space with no limit in volume and

distribution. The flexibility can be universally applied in unbounded space

as well as in waveguides. We believe that the proposed density-near-zero

metastructure may open a distinct and concise way to acoustic cloaking by

using natural bulky materials.

There is an alternative way of constructing acoustic cloaking devices with-

out using coordinate transformation, which is called the topological-optimization

method [40]. A topology-optimized cloak [73] can hide objects inside it from

impinging sounds, which is similar to the function of our device. However,
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the shortcoming of a topology-optimized cloak is that the shape and dis-

tribution of the cloak components are highly sensitive to the positions,

quantities, and the shapes of the inside objects to be hidden. For our pro-

posed approach, the metastructure of a DNZ cloak is irrelevant to the inside

objects, though it requires two media of large impedance mismatch.
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Future work

Up to now, we have proposed different designs of acoustic metasurface (one-

dimensional varying and two-dimensional varying metasurfaces, and active

metasurface) and acoustic metastructure, in order to manipulate sound

properties as much as we want (sound wavefront, vibrational orientation,

acoustic focusing, and density-near-zero property). We also have demon-

strated many novel acoustic applications on the basis of our designs, such

as acoustic illusion and ipsilateral focusing, conversion from propagating to

surface waves, generation of an acoustic focal needle and acoustic far-field

multiple foci, super-oscillatory super resolution, and acoustic invisibility

cloaking.

In the thesis we demonstrated the theoretical work as well as the simula-

tion results. We are also in the process of experimentally realizing these

proposed devices and measuring their performances. One difficulty of en-

gineering implementation is the required high precision. Starting from the

metasurface structure that generates the focused acoustic beams, we are us-

ing 3D printers to fabricate the device, and the experiment is ongoing with

81
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the collaboration of the Institute of Acoustics in Nanjing, China. The ex-

periment setup includes the signal function generator Agilent 33250A, the

amplifier Electronics Innovation, and a movable hydrophone ONDA HNC-

1000 controlled by a LABVIEW program for scanning acoustic pressure

and phase.

This chapter addresses two possible future plans based on the current

research about acoustic metasurface and metastructure. Section 6.1 in-

troduces the possible manipulation of acoustic band gap (Bragg gap and

non-Bragg gap) by acoustic periodic metastructure; Section 6.2 extends

the manipulation of sound properties to the manipulation of general wave

properties in incompressible fluids.

6.1 Manipulation of band gap for sound trans-

mission

Our proposed metastructures and metasurfaces have the property of period-

icity. The working frequency, i.e., band gap, is also an important parameter

to adjust for improving the performances of our devices. The generation

of pass-bands and stop-bands in periodic structures is commonly attribute

to the Bragg resonances, which can be interpreted as the cumulative re-

flection from each unit of the structure. For a periodic acoustic waveguide,

the evanescence of the waves is caused by the typical Bragg resonances.

When the periodicity is comparable to the radial scale of a waveguide, the
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non-Bragg nature resonances, involving high-order transverse mode inter-

actions, can also play a role in forbidding the wave propagation. Non-

Bragg resonances, caused by the interference between the guided modes

of different transverse standing-wave profiles in the periodic waveguide,

are theoretically predicted in 2003 in a planar electromagnetic waveguide

with corrugated walls [74]. For the future work, we may design and im-

plement acoustic periodic metastructures in realizing non-Bragg acoustic

band gaps, and investigate the efficient design of the band gap. In detail,

the non-Bragg band gap, as a result of the interference between two trans-

verse guided wave modes, could be investigated in an axis-symmetrical and

periodic metastructure. The manipulation of acoustic band gap by metas-

tructures may benefit the design of spectrum structures (the location, the

width and the depth of band gaps) in the “band gap engineering”.

6.2 Manipulation of acoustic properties in

stratified fluids

All the previous work are done in the environment of a uniform fluid. One

step forward is to carry out the manipulation of acoustic properties in

stratified fluids. The typical wave that is able to exist in stratified incom-

pressible fluids is called internal waves. In a global scale, internal waves are

commonly generated by tidal flow over seafloor topography, which plays an

important role in dissipation and mixing in the interior of oceans [75, 76].

Also, these waves contribute significantly to the global oceanic energy bud-

get [77, 78]. The main contributor to the internal waves is the M2 tide,

a lunar semi-diurnal tide of frequency ω = 1.4052 × 10−4 rad/s [79]. One
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direct numerical simulation of internal wave radiation for tidal flow over

synthetic random topography is shown in Figure 6.1. The details of the

simulation are elaborated in Appendix D.

If acoustic metasurfaces are placed in deep water, internal waves will distort

acoustic signals, resulting in the inefficiency of device’s functions. The first

step from manipulation of acoustic properties in uniform fluids to manip-

ulation in stratified fluids needs the thorough study of internal waves. We

are considering to conduct the laboratory study of steering acoustic prop-

agation in the presence of internal waves. The experiment setup could be:

a tank filled with a stratified fluid containing a wave-maker that generates

internal waves, and an acoustic track crossing the internal wave beams.

The measurements can be designed to provide a benchmark for a better

understanding of the influence of internal waves on 3D sound propagation.

The future work lies in implementing metasurfaces and metastructures in

manipulating acoustic properties in stratified fluids.
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Appendix A

Detailed derivation of

impedance-governed

generalized Snell’s law of

reflection (IGSL) in acoustics

We mathematically derive the connection between the interface specific

acoustic impedance (SAI) and the manipulation of wavefronts, which gives

birth to the proposed impedance-governed generalized Snell’s law of re-

flection (IGSL) as the design rule of SAI. In addition, we mathematically

predict the double reflections and the situation when the ordinary reflection

can be switched off.

We assume the time-harmonic factor in this appendix is e−iωt, where ω is

the circular frequency, and the coordinate system is that in Figure. A.1(a).

The incident acoustic pressure can be expressed as:

86
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Figure A.1: (a) Illustration for some notations. The orange line indi-
cates the contour of the Green’s integral. S is the semicircular contour;
D is the flat one along the surface. pi, pro and pre denote the incidence,
the ordinary reflection, and the extraordinary reflection, respectively. n
is the unit vector opposite to z direction. Zn is set for the flat interface
(z = 0). (b) Schematic diagram for the effective paths of acoustic ra-
diation. The introduced θ∗ can be interpreted as the effective incident
angle. r, r0, and r†0 are the location vectors for the point source, the

image source and the observer, respectively.
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pi(y, z, ω) = pi0(ω) exp[ik0(y sin θi − z cos θi)], (A.1)

where k0 = ω/c0 is the wave number in free space, θi the incident angle and

pi0(ω) the amplitude. Zn(y, ω) = p(y, 0, ω)/[n · v(y, 0, ω)] as the specific

acoustic impedance (SAI) [42] of a locally reacting boundary is laid at

the interface, where n is the unit vector opposite to z direction and v

is the acoustic velocity. The boundary condition of this problem can be

paraphrased as [80]:

∂

∂z
p(y, 0, ω) + ik0β(y, ω)p(y, 0, ω) = 0, (A.2)

where β(y, ω) = ρ0c0/Zn(y, ω) (ρ0 and c0 being the given density and sound

speed respectively in the upper space) is the normalized acoustical admit-

tance of the locally reacting surface.

We expand β to be β(y, ω) = β̃(y, ω) + β0(ω), where β0 is a real constant.

The ordinary reflection is expressed as:

pro(y, z, ω) = pi0(ω)R(θi, β0) exp[ik0(y sin θro + z cos θro)], (A.3)

where R is the reflection coefficient and θro the angle of pro. Because pro

observes the usual Snell’s law, θro = θi. In order to find the expression of

R, we introduce the constant SAI:

Z0(ω) =
ρ0c0
β0(ω)

=
pi(y, 0, ω) + pro(y, 0, ω)

n · vi(y, 0, ω) + n · vro(y, 0, ω)
, (A.4)
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where n is the normal vector indicated in Figure. A.1(a), vi and vro the

acoustic velocities of pi and pro. Substituting Equation. (A.1) and Equa-

tion. (A.3) into Equation. (A.4) and applying Euler equation ρ0
∂
∂t
v = −∇p,

we obtain:

R(θi, β0) =
cos θi − β0(ω)

cos θi + β0(ω)
. (A.5)

In Figure. A.1(a), the total acoustic field can be written in the integral

form:

(A.6)p(y, z, ω) =

∮
S+D

dl[G(y, z, ω; y0, z0)
∂

∂n0

p(y0, z0, ω)

− p(y0, z0, ω)
∂

∂n0

G(y, z, ω; y0, z0)],

where dl(y0, z0) is the infinitesimal segment along the integral contour, n0 =

n(y0, z0) and G(y, z, ω; y0, z0) is the Green’s function corresponding to the

following partial differential problem:

∇2G+ k0
2G = −δ(y − y0)δ(z − z0), z > 0

[ ∂
∂z0

G+ ik0β0(ω)G]
∣∣∣
z0=0

= 0
. (A.7)

When the radius of the semicircular contour S approaches∞, we can regard

the contour integral along S is mainly contributed by pi and pro. Therefore

Equation. (A.6) changes to be:

(A.8)p(y, z, ω) = pi(y, z, ω) + pro(y, z, ω)

−
∫ ∞

−∞
dy0[G

∂

∂z0
p(y0, z0, ω)− p(y0, z0, ω)

∂

∂z0
G].
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We can simplify Equation. (A.8) by substituting Equation. (A.7) and Equa-

tion. (A.2) into it. By defining the last part in Equation. (A.9) as the

extraordinary reflection pre(y, z, ω), which is the unique extra component

beyond pro, we obtain

pre(y, z, ω) = ik0

∫ ∞

−∞
β̃(y0, ω)p(y0, 0, ω)G(y, z, ω; y0, 0)dy0. (A.9)

The explicit solution of G(y, z, ω; y0, z0) in Equation. (A.7) is

(A.10)G =
i

4
H

(1)
0 (k0 |r− r0|)

+
i

4π

∫ ∞

−∞

1

kz

kz − ωβ0/c0
kz + ωβ0/c0

exp[ikz(z + z0) + iky(y − y0)]dky,

where r = (y, z), r0 = (y, z), and k0
2 = ky

2+ kz
2. When r is away from the

surface D, kz ≈ k0 cos θ
∗ holds, where θ∗ is introduced as a constant. Via

this approximation and another definition r†0 = (y0,−z0), it turns out that

[54]

cos θ∗ ≈ z − (−z0)∣∣∣r− r†0
∣∣∣ ≈ constant. (A.11)

Through Equation. (A.11), it can be obtained that

kz − ωβ0/c0
kz + ωβ0/c0

≈ cos θ∗ − β0(ω)

cos θ∗ + β0(ω)
≈ constant ≈ R(θ∗, β0). (A.12)

Applying Equation. (A.12) into Equation. (A.10) and using the formula of

the cylindrical wave expansion in terms of plane waves, we approach a neat

form of the Green’s function:
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G(y, z, ω; y0, z0) ≈ i

4
H

(1)
0 (k0 |r− r0|)+R(θ∗, β0)

i

4
H

(1)
0 (k0

∣∣∣r− r†0
∣∣∣), (A.13)

where H
(1)
0 (·) the Hankel function of the first kind. [81]

From the physical insight into Equation. (A.13), the first part of G is the

direct contribution of the point source to the observer through path 2 in

Figure. A.1(b). The second part is the product of the Green’s function

excited by the image source and the reflection coefficient R, denoting pro.

According to our interpretation, Figure. A.1(b) illustrates path 1 and path

2, visualized as pro and pre respectively[54]. Due to the expression of R, we

figure out that θ∗ is the effective incident angle regarding to Figure. A.1(b).

Furthermore, it is reasonable to say that the major contribution of the

integral in Equation. (A.10) is attributed to the vicinity of θ∗, in which

way R can be regarded as a constant and put outside the integral.

By far-field approximation, we are able to get these expansions:

r · r0 = r(y0 sin θ + z0 cos θ)

r · r†0 = r(y0 sin θ − z0 cos θ)

H
(1)
0 (x)

∣∣∣
x→∞

≈
√

2
πx
ei(x−

π
4
)

, (A.14)

where r is the length of r; sin θ = y/r; cos θ = z/r. Substituting Equa-

tion. (A.14) and Equation. (A.5) into Equation. (A.13), we obtain:

G(y, z, ω; y0, 0) ≈ i

√
1

2πk0r
ei(k0r−

π
4
)e−ik0y0 sin θ cos θ∗

cos θ∗ + β0(ω)
. (A.15)
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After substituting Equation. (A.15) into Equation. (A.9), the extraordinary

reflection becomes:

pre ≈ −
√

k0
2πr

ei(k0r−
π
4
) cos θ∗

cos θ∗ + β0(ω)

∫ ∞

−∞
β̃(y0, ω)p(y0, 0, ω)e

−ik0y0 sin θredy0.

(A.16)

Further, after applying Born approximation to Equation. (A.16) and ex-

panding it by Equation. (A.1) and Equation. (A.3), pre becomes:

(A.17)pre ≈ −
√

2k0
πr

× pi0(ω) exp[i(k0r − π
4
)] cos θ∗ cos θi

[cos θ∗ + β0(ω)][cos θi + β0(ω)]

×
∫ ∞

−∞
β̃(y0, ω)e

ik0y0(sin θi−sin θre)dy0.

Now we consider our proposed SAI:

Zn(y, ω) = A

[
1− i tan

ψ(y)

2

]
; β0(ω) =

ρ0c0
2A

. (A.18)

After substituting Equation. (A.18) into Equation. (A.3) and Equation. (A.17),

we obtain the ordinary reflection and the extra reflection: extraordinary re-

flection:

pro ∝ 2A cos θi − ρ0c0
2A cos θi + ρ0c0

exp[ik0(y sin θro + z cos θro)], (A.19)

pre ∝
∫ ∞

−∞
eiψ(y)eik0y(sin θi−sin θre)dy. (A.20)

Here note that in our case we are able to create double reflections by means

of SAI inhomogeneity.
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Equation. (A.20) is a Dirac Delta if we consider ψ(y) to be a linear term

as the first order approximation. Or else, we know that the integral in

Equation. (A.20) will reach the maximum by imposing the stationary phase

approximation, i.e.,

sin θre − sin θi =
1

k0

dψ(y)

dy
. (A.21)

Although Equation. (A.21) corresponds to the form of the generalized

Snell’s law of reflection (GSL) [1], the variables in the two situations are dif-

ferent. Starting from Equation. (A.18) and ending up with Equation. (A.21),

we provide the insight between our designed SAI and the direction of pre,

without considering the phase in terms of wave propagation. We name

Equation. (A.21) as IGSL in acoustics, as the design principle of the SAI

Equation. (A.18).

According to Equation. (A.19), if A = (ρ0c0)/(2 cos θi), we can switch off

pro. Therefore Equation. (A.18) becomes

Zn(y, ω) =
ρ0c0

2 cos θi

[
1− i tan

ψ(y)

2

]
. (A.22)
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Distinction of IGSL in

acoustics

The same appearance of the impedance-governed generalized Snell’s law of

reflection (IGSL) and the generalized Snell’s law of reflection (GSL) may

cause the false impression that our IGSL is the same as GSL. Actually their

mechanisms are totally distinct.

In terms of phase inhomogeneity, the anomalous reflection pra actually cor-

responds to the situation when the ordinary reflection pro is steered toward

a “wrong” direction governed by GSL [1], illustrated in Figure. B.1(a).

There is only one single direction of reflection all the while. On the con-

trary in terms of SAI inhomogeneity, it is found that IGSL cannot alter

pro by an SAI interface, but can “turn off” pro so as to provide insight into

the engineering of special wavefronts by SAI interface, illustrated in Fig-

ure. B.1(b). Moreover, the extraordinary reflection pre governed by IGSL

is an additionally unique component in acoustics, which can be “geared”
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along arbitrary directions, simultaneously with vanishing pro. Therefore,

our proposed IGSL opens up rich effects and unprecedented applications in

the community of acoustics. Additionally, GSL can even be considered as

one subset of IGSL, when pro is turned off. In order to stress the irrelevance

between IGSL and GSL again, we list the differences:

1. GSL is initiated in electromagnetism with electric properties; IGSL

is initiated in acoustics with mechanical properties.

2. GSL is derived from Fermat Principle, i.e., the conservation of the

wave number along an interface; IGSL is derived from Green’s func-

tion. The fundamental physics is distinguished.

3. The variable of GSL is phase inhomogeneity; the variable of IGSL is

impedance inhomogeneity. The methods are independent.

4. GSL will only generate single reflection; IGSL not only can generate

single reflection, but also can generate double reflections.

5. GSL acts upon pro; IGSL acts upon pre.

6. In GSL, the anomalous reflection corresponds to the situation where

pro is tweaked toward a different direction governed by GSL; in acous-

tics, IGSL cannot alter pro by SAI interfaces, but is capable of “turn-

ing on” or “turning off” pro.
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i i
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acoustic impedance

IGSL

(b)

i ro

pi

0 0 pra

pro

c y

Z

inhomogeneous 
phase change

GSL(a)

pro
GSL

on or off

Figure B.1: (a) For a flat interface with an inhomogeneous phase
change, the angle of pro, i.e., θro, is tweaked in a fashion of GSL. The ma-
nipulated “ordinary reflection” is called to be the anomalous reflection
pra in terms of GSL. [1] (b) For a flat interface with an inhomogeneous
SAI, θro = θi without influence, while pre occurs simultaneously and θre
is controlled by IGSL, implying double reflections. If SAI is properly

controlled, pro can be switched off.



Appendix C

Parameters of metasurface

piezoelectric transducer

C.1 Parameters of Lead Zirconate Titanate

PZT-5H

The density of PZT-5H is 7500 kg/m3.

Table C.1: Symmetric elasticity matrix (Pa)

1.27×1011 8.02×1010 8.47×1010 0 0 0

0 1.27×1011 8.47×1010 0 0 0

0 0 1.17×1011 0 0 0

0 0 0 2.30×1010 0 0

0 0 0 0 2.30×1010 0

0 0 0 0 0 2.35×1010
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Table C.2: Relative permittivity εSr

1704.4 0 0

0 1704.4 0

0 0 1433.6

Table C.3: Coupling matrix e (C/m2)

0 0 0 0 17.0345 0

0 0 0 17.0345 0 0

-6.6228 -6.6228 23.2403 0 0 0

C.2 Optimized configuration of ring pattern

Table C.4: Configuration of 30 rings to generate a focal needle (mm)

r1 2.95 r7 36.68 r13 71.28 r19 102.62 r25 137.42

rr1 7.07 rr7 40.79 rr13 75.39 rr19 106.74 rr25 141.54

r2 8.19 r8 43.37 r14 76.35 r20 109.67 r26 143.69

rr2 12.31 rr8 47.49 rr14 80.47 rr20 113.78 rr26 147.81

r3 13.27 r9 49.20 r15 81.39 r21 114.91 r27 150.20

rr3 17.39 rr9 53.32 rr15 85.51 rr21 119.02 rr27 154.32

r4 19.32 r10 56.02 r16 86.77 r22 120.05 r28 156.36

rr4 23.44 rr10 60.13 rr16 90.89 rr22 124.17 rr28 160.48

r5 24.66 r11 60.79 r17 92.76 r23 126.30 r29 161.12

rr5 28.78 rr11 64.90 rr17 96.88 rr23 130.41 rr29 165.23

r6 30.33 r12 66.25 r18 97.84 r24 131.53 r30 167.04

rr6 34.45 rr12 70.36 rr18 101.95 rr24 135.65 rr30 171.16
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Table C.5: Configuration of 28 rings to generate multiple foci (mm)

r1 6.86 r8 49.05 r15 107.70 r22 171.84

rr1 10.98 rr8 53.17 rr15 111.82 rr22 175.96

r2 13.03 r9 55.22 r16 116.96 r23 183.50

rr2 17.15 rr9 59.34 rr16 121.08 rr23 187.62

r3 17.49 r10 63.80 r17 123.82 r24 194.14

rr3 25.73 rr10 67.92 rr17 127.94 rr24 198.26

r4 27.44 r11 72.37 r18 131.71 r25 201.34

rr4 31.56 rr11 76.49 rr18 135.83 rr25 205.46

r5 32.58 r12 79.92 r19 143.03 r26 216.09

rr5 36.70 rr12 84.04 rr19 147.15 rr26 220.21

r6 37.04 r13 86.78 r20 156.06 r27 230.49

rr6 41.16 rr13 90.90 rr20 160.18 rr27 238.73

r7 42.53 r14 95.69 r21 164.64 r28 244.90

rr7 46.65 rr14 99.81 rr21 168.76 rr28 249.02

Table C.6: Configuration of 19 rings to generate super-oscillatory su-
per resolution (mm)

r1 5.33 r6 46.56 r11 91.79 r16 136.87

rr1 9.61 rr6 50.84 rr11 96.08 rr16 141.15

r2 11.77 r7 55.50 r12 99.74 r17 145.58

rr2 16.05 rr7 59.79 rr12 104.03 rr17 149.87

r3 19.97 r8 64.13 r13 111.33 r18 151.41

rr3 24.26 rr8 68.42 rr13 115.61 rr18 155.69

r4 29.33 r9 72.18 r14 118.42 r19 159.96

rr4 33.62 rr9 76.47 rr14 122.71 rr19 167.56

r5 39.35 r10 81.53 r15 128.72

rr5 43.64 rr10 85.82 rr15 133.01



Appendix D

Details of the simulation for

internal waves

We conduct direct numerical simulations for tidal flow over synthetic ran-

dom topography. The computational domain of width 10 km has periodic

boundary conditions on the sides and a no-slip boundary condition on the

random bottom topography. Wave reflection from the top boundary of the

domain is avoided by adding a Rayleigh damping force that gradually in-

creases upward. The damping force starts from a height of 5 km and goes

up to the domain top of 15.5 km height; the approximately 3× 106 control

volumes have unstructured grids.

The simulations use the CDP 2.4 code, which implements a fractional-step

time-marching scheme [82]. This code with disabled sub-grid modeling and

an addition of buoyancy forces has been used and validated in previous

studies of IW generation by tidal flow in stratified fluids [83–85]. Tidal

flow is produced by adding a horizontal force, F (t) = ρ0U0ωcos(ωt), to the
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momentum equation. We use U0 = 0.14 cm/s, resulting in a tidal excursion

close to U0/ω = 10 m. The small excursion relative to the autocorrelation

widths of the topographies is chosen to avoid overturning and turbulence,

since the interest here is in the radiation. The viscosity, ν = 0.01m2/s, is

four orders larger than that of water to reduce the simulation cost (sparser

grids are needed for higher ν); however, the large viscosity has a negligible

effect on tidal conversion in the regime of laminar flow [84]. The salt

diffusivity κ is 2× 10−5m2/s, which gives negligible diffusion for the large

Schmidt number, ν/κ = 500. Each simulation has 2000 time steps per

period and extends for 20 tidal periods to ensure a steady state. The

convergence is tested by doubling the spatial and temporal resolution; this

changes the computed IW power by less than 3%.

The radiated IW power is calculated from the horizontal integral of the

vertical energy flux averaged over a tidal period, Φz(x, z) ≡ 〈p′v′〉t at z =

ztop, where ztop is the maximum topographic height, p′ is the wave pressure,

and v′ is the wave velocity, given by v′(x, z, t) = v(x, z, t)−vbaro(z, t), where

v(x, z, t) is the fluid velocity and vbaro(z, t) is the barotropic velocity, which

in our simulations is approximated by U0sin(ωt) because our domain height

is much taller than the topographic height (thus the flow acceleration over

the topography is negligible). An example of the time-averaged energy flux

field Φz(x, z) from our simulations is shown in Figure 6.1(a).
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