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Abstract— This paper presents a low complexity lossless ECG 
compression algorithm for data reduction in wireless ambulatory 
ECG sensors. The proposed algorithm uses a novel linear predic-
tion technique for redundancy removal and a joint coding-
packaging scheme for compaction of the residual prediction er-
ror. Multiple linear predictors are engaged simultaneously to 
track the incoming data and the best prediction estimate is adap-
tively chosen based on the temporal signal characteristics to min-
imize error. An improved dynamic coding-packaging scheme 
frames the resulting estimation error into fixed-length 16-bit 
format.  The proposed technique achieves an average compres-
sion ratio of 2.38x on MIT/BIH ECG database.  Low complexity 
and good compression performance makes the proposed tech-
nique suitable for wearable ambulatory ECG monitoring appli-
cations. 

I. INTRODUCTION1 

Cardiovascular disease (CVD) is the leading cause of death 
worldwide and causes roughly 31% of all global deaths[1]. 
The management of CVDs requires significant healthcare re-
sources and this issue is aggravated by a fast aging population 
and increasing life expectancies in many countries. An effec-
tive way to address this problem is to use low cost wearable 
ECG sensors to monitor the patients and take proactive 
measures.  A wearable sensor, as shown in Fig. 1, can be used 
to acquire, process and wirelessly transmit ECG signal to a 
gateway device for monitoring. The main challenge involved 
in the development of the sensor is to make the device low 
profile, unobtrusive, easy to use with long battery life for con-
tinuous usage. A high level of integration with inbuilt signal 
acquisition and data conversion can minimize the size, cost 
and power consumption of such a sensor [2], [3]. The main 
source of power consumption in a wearable sensor is the wire-
less transceiver or local flash memory in case of using burst-
mode transmission[4]. The wireless transmission of data in-
curs high power and the use of a flash memory increases the 
device cost as well as power [5]. 
ECG data compression before transmission/storage can help to 
address the above issues to some extent. Although lossy com-
pression techniques provide better compression performance, 
lossless compression schemes are preferred in dealing with 
biomedical signals, which prevent the possibility of losing any 
information of potential diagnostic value.  Also, it is worth 
noting that lossy compression techniques have not been ap-
proved by medical regulatory bodies in most countries and 
hence cannot be used in commercial medical-grade devices. 
The traditional focus for lossless ECG compression was to 
achieve higher compression ratios.  However in the context of 
wireless sensors and ambulatory devices, the algorithms 
should be low in complexity and easy in implementation. The 
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Fig.1 Wireless ECG Monitoring System 

 
energy and memory savings obtained from the compression 
should be higher than what is consumed by the compressor 
itself.   

Previously we have presented several low complexity 
lossless ECG compression techniques to be used in wearable 
sensors [6], [7]. In [6], a simple second order differential pre-
dictor is used for compression and a joint coding packaging 
scheme is introduced to generate a fixed length package for 
wireless transmission. An adaptive LMS predictor is proposed 
in [7] to improve the compression performance and facilitate 
QRS detection. Sometimes, preliminary signal processing 
functions like QRS detection are also implemented at the sen-
sor to reduce overall system power[8]–[11]. In this paper, a 
low complexity lossless compressor to be used in wearable 
sensors is proposed. The main novelties are 1) a discrete-
adaptive predictor which tracks the incoming signal character-
istics and selects the optimal predictor from a group of 4 dif-
ferential predictors is developed. The complexity of simple 
differential predictors are low compared to a fully adaptive 
predictor [7] and this results in lower overall hardware com-
plexity while achieving good performance 2) a fixed length 
joint coding-packaging scheme which always frames the pre-
diction errors  into a fixed 16-bit format is used. This removes 
the need for further data packaging to interface in standard 
interfaces. This scheme was first introduced in [6] and in this 
work we improved it by adding frame types that consider sig-
nal characteristics. The paper is organized as follows. In Sec-
tion II, III, the proposed technique is presented and its perfor-
mance is evaluated. Conclusions are drawn in Section IV.  

II. LOSSLESS ECG COMPRESSION  
The block diagram of a typical lossless ECG compression 

scheme is shown in Fig. 2.  A linear predictor is used to esti-
mate the current sample of the ECG signal,	 , from its past 
m samples, i.e. 

,                          (1) 

where is the estimate of  and hk is the predictor coef-
ficient.  
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Fig.2 Typical Lossless ECG Compression Scheme 
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Fig.3 Lossless compression-decompression scheme. 

Further, the estimated value is subtracted from the actual 
value of the sample to reduce the redundancy between these 
samples and obtain the prediction error, e(n), before further 
coding and storage/transmission. 

	                                                (2) 

In [6], it was identified that simple differential predictors with 
integer coefficients have lower implementation complexity 
and are good choices for estimating ECG. Several low-order 
(1st to 4th) differential predictors were proposed in (3) to (6). 

	 1 																																																																	 3   

	2 ∗ 1 2 																																				 4   

	3 ∗ 1 3 ∗ 2 3 							 5   

	4 ∗ 1 6 ∗ 2 4 ∗ 3 		 

4 				 6   

The error from each predictor can be calculated by simply 
computing the differential of the previous order prediction 
error as given in (7-10), where e1(n), e2(n), e3(n), e4(n) are the 
prediction from the 1st to 4th-order predictors, respectively. 

1 1 																																														 7   

	 2 1 1 1 																																										 8   

3 2 2 1 																																										 9   

4 3 3 1 																																							 10   

Due to time based variation of the ECG signal statistics, the 
above predictors perform differently for various segments of 
the ECG signal.  In [6], a 2nd-order differential predictor was 
chosen for redundancy reduction as it had the lower overall 
prediction error. In [7], an adaptive LMS based approach was 
used for prediction in a joint QRS detection and data compres-
sion scheme. This approach is capable of closely tracking the 
changes in signal characteristics. However the requirements 
for higher compression performance (i.e lower prediction er-
ror) was conflicting with the requirements of improved QRS 
detection [7]. Therefore, the algorithm was designed to 
achieve a balanced performance.  

III. PROPOSED LOSSLESS COMPRESSION SCHEME 

To improve the compression performance, prediction error 
should be as low as possible. To minimize the prediction error, 
we propose to use 4 simple differential predictors simultane-
ously and adaptively selecting the predictor that is optimal 

based on the temporal signal characteristics. It was noted in 
[6] that, for segments with large amplitude variation (for ex-
ample the QRS segment), higher order predictors performs 
better and for slow varying segments lower order predictors 
performs better. So selecting the predictors based on temporal 
signal characteristics can improve the overall prediction per-
formance similar to that of using an adaptive LMS predictor. 
In addition, simple differential predictors doesn’t need multi-
pliers for implementation, and therefore implementation com-
plexity will be low compared to the adaptive LMS approach 
[7].  The block diagram of the proposed schemes is given in 
Fig. 3.  

A) ADAPTIVE PREDICTOR SELECTION. 

 
Fig.4 Predictor Selection Encoder flowchart. 

In order to minimize the overall error, the predictor with best 
estimate has to be chosen. A simple way to do this is to com-
pare the prediction error from all the predictors and chose the 
one that has the lowest error. However, the disadvantage of 
this approach is that, we need to explicitly identify which pre-
dictor has been used for the current sample and this may cause 
additional overhead of 2 bits per sample. In order to minimize 
this overhead, we have developed a simple approach, which 
will select the predictor for the next sample, based on its pre-
diction performance for the past 2 samples. This way, no 
overhead bits are required to identify the predictor used during 
de-compression.  A moving average filter is used to obtain the 
average error for the past 2 samples. i e. e1m, e2m, e3m, e4m. 
If the magnitude of difference of average prediction errors of 
any predictor compared to the 1st order predictor is above a 
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threshold, THR, then the estimate from that predictor is used 
for the next sample, provided it has lowest error among all the 
other predictors. The detailed flow chart for the predictor se-
lection encoder is shown in Fig. 4. 

 
Fig.5 Prediction Error from diff predictors with MIT/BIH tape 100. 

 
The prediction performance of all the four predictors and 

the combined error is illustrated in Fig. 5. Fig. 5a is the origi-
nal ECG signal. Figs. 5b-5e are the prediction errors from 
differential predictors with varying order of 1 to 4. Fig. 5f is 
the adaptively combined error, which is the lowest for all 
segments of the ECG signal. To quantify the prediction per-
formance and find the best overall predictor, mean absolute 
prediction error (MAPE) and mean-square prediction error 
(MSPE) for 4 predictors are computed as given in (11-12).  

		
1

| |																																			 	11  

1
| | 																																	 	12  

The MAPE and MSPE for all the predictors were computed 
using MIT/BIH database. It can be found from Table I that the 
adaptively combined predictor yielded the lowest prediction 
error.  

 
TABLE I  

Mean & Mean Square Prediction Error for Selected MIT/BIH Tapes 
 MIT/BIH Tape 102 MIT/BIH Tape 201 

 MAPE  MSPE MAPE  MSPE 

1st order predictor 5.09 222.16 4.16 72.14 

2nd order Predictor 3.55 48.79 3.21 21.97 

3rd Order predictor 4.49 48.4 4.66 45.08 

4th Order Predictor 7.50 126.2 8.17 140.75 

 Proposed Predictor 3.15 39.22 2.91 21.26 

B) DATA CODING-PACKAGING 

The dynamic range of prediction error is much smaller 
than that of the ECG signal as shown in Fig. 5f. Further, a 
coding scheme is used to reduce the bit-width of prediction 
error without incurring any data loss. Instead of transmitting 

the whole sample, only the coded data has to be 
stored/transmitted, resulting in power/memory savings. For 
coding the error, variable length coding schemes like Huff-
man and Arithmetic coding[12] can be used. However due to 
the implementation complexity/performance of the these cod-
ing schemes when used in a low cost sensor, a joint coding 
packaging scheme was proposed in [6]. The joint coding 
packaging scheme dynamically frames the remaining predic-
tion error, coded in 2’s complement format, into a practical, 
fixed length 16-bit output and has low implementation com-
plexity. Each individual data packet is marked with a unique 
header so as to easily identify and decode the data while de-
compressing. The data packaging format is listed in Table II.  

 In comparison with [6], we improved the packaging 
scheme by adding a new packaging frame, Type F (Table II) 
which packs 5 prediction error samples at once. Type F frame 
can consist of up to two 3 bit samples at the edges and three 2 
bit samples towards the middle. This specific bit arrangement 
can cater for a rising edge or a falling edge in the prediction 
error stream and thus exploits the characteristics of error sig-
nal to improve the compression performance.  

The dynamic data packaging scheme uses a simple priority 
encoding technique to frame data from samples of multiple bit 
widths similar to [6]. The algorithm attempts to frame the 
most data into one frame (from Table II) by checking its am-
plitudes and opts for the next best framing option if unsuccess-
ful as shown Fig.6.  
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Fig 6. Coding-packaging Scheme Flowchart. 

 
TABLE II 

DATA PACKAGING SCHEME FOR 2’S CODED PREDICTION ERROR SYMBOLS. 
A 1 5/4 bits 5/4 bits 5/4 bits 

B 0 1 7/6 bits 7/6 bits 

C 0 0 0 1 3 bits 3 bits 3 bits 3 bits 

D 0 0 0 0 2 bits 2 bits 2 bits 2 bits 2 bits 2 bits 

E 0 0 1 1 12 bits 

F 0 0 1 0 3 bits 2 bits 2 bits 2 bits 3 bits 
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Fig. 7. Comparison of prediction error for 48 MIT/BIH records. 

C) DATA COMPRESSION PERFORMANCE. 

The proposed data compression algorithm is tested using 
the MIT/BIH Arrhythmia Database for analyzing the com-
pression performance. The bit compression ratio (CR) is com-
puted as in [7]. The compression performance is compared 
with Statistical, Selective Huffman coding using the same 
predictor and is given in Table III. Comparison of individual 
data records is shown in Fig 7.  

 
TABLE III 

COMPRESSION PERFORMANCE OF THE PROPOSED ALGORITHM USING THE MIT/BIH DATABASE  

 
Proposed Predictor 

+Ideal Huffman  
Proposed Predictor 
+Selective Huffman 

Proposed Predictor + 
Joint packaging Scheme

Average CR 2.67 2.17 2.38 

Maximum CR 3.13 2.44 2.78 

 
TABLE IV 

COMPRESSION PERFORMANCE COMPARISON WITH OTHER ALGORITHMS 
Method CR Ref 

Delta Predictor/Rice Golomb Coding 2.38  [12] 

Simple Predictor/ Huffman Coding 1.92 [13] 

Slope Predictor/ Fix. length Packaging 2.25 [6] 

Adaptive LMS/Fix. Length Packaging  2.28 [7] 

Proposed Scheme 2.38 - 

 
Table IV compares the compression performance of the pro-
posed approach with other techniques implemented for weara-
ble applications. In [12], a delta predictor and a context-based 
Rice-Golomb Coding scheme are utilized to achieve a CR of 
2.38. However, the context-based Rice-Golomb coding has 
higher complexity since it requires on chip memory block for 
storage and retrieval of the context statistics as described in 
[12]. In [14], a 2-stage predictor and Huffman coding achieves 
a CR of 2.43. But as noted in [6] it uses 9 bit to represent un-
coded prediction error and therefore is not completely lossless. 
Also [14] generates variable length coded data and would 
need further packaging to interface with a standard IO. In [13], 
a simple predictor and Huffman coding are employed to 
achieve a CR of 1.92. In [6], a slope predictor and fixed length 
packaging scheme are combined to produce a CR of 2.25.  In 
[7], an adaptive LMS predictor and fixed length packaging 
scheme are used to obtain a CR of 2.28. In addition, there ex-
ist other approaches for achieving higher CR while using 
complex signal processing techniques. These approaches re-
quire usage of more complex hardware, which is not suitable 

for low power wearable applications [15], [16].  Therefore not 
included in the comparison. The proposed technique achieves 
a CR of 2.38 using adaptive predictor selection and improved 
fixed length packaging. As shown in Fig 3, 4, the hardware 
complexity of adaptive linear predictor of the compressor is ~ 
11 simple adders, 5 comparators, 1 multiplexer and a few log-
ic gates & data registers. The implementation complexity of 
fixed length packaging block is also low as demonstrated be-
fore in [6]. Also unlike [12], no on chip memory is required 
for the implementation of proposed technique which results in 
lower overall complexity. The proposed technique achieves 
~4% improvement over [7] and ~6% improvement over [6].  

  

IV. CONCLUSION 
A low complexity lossless ECG compression technique 

suitable for wearable sensors has been presented. A novel pre-
diction scheme which adaptively selects the best prediction 
estimate based on temporal signal characteristics from multi-
ple linear predictors have been proposed to improve the per-
formance. Also an improved dynamic coding-packaging 
scheme frames the resulting estimation error into fixed-length 
format. The proposed technique achieves an average compres-
sion ratio of 2.38x on MIT/BIH ECG database.  In comparison 
with other published methods, the proposed algorithm has 
lower implementation complexity and reasonable performance 
and is therefore suitable for wearable wireless devices.  
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