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Summary

Deploying small cells within the existing macro cellular networks brings

tremendous improvement in network capacity and also ensures large scale network

coverage. However, the increased number of base stations triggers escalation of

network energy consumption. The energy-e�cient design of heterogeneous cellular

networks (HCNs) consisting of di↵erent types of base stations therefore has drawn

significant attention recently. Due to its accuracy and tractability, stochastic

geometry analysis has been widely used as a powerful tool to study HCNs. This

thesis aims to provide various stochastic geometry based frameworks to investigate

the energy-e�cient design of HCNs by reducing power consumption in the downlink.

Firstly, the thesis starts with addressing joint resource partitioning and cell

load adaptation design that reduces HCN power consumption. We consider a

two-tier HCN with multiple macro and small-cell base stations that can be put

into sleep mode to reduce energy cost. With resource partitioning, an entire tier of

base stations is muted on a fraction of the transmission resources. Furthermore,

cell load adaptation strategy is used to determine the set of users served on

the partitioned resources. To jointly analyse resource partitioning and cell load

adaptation, a tractable framework is proposed. We use stochastic geometry

analysis to characterize network performance by modelling the two tiers of base

stations as independent Poisson point processes (PPPs). Based on the tractable

throughput characterization, we further solve a non-convex problem to get the

optimal resource partitioning and cell load adaptation rule that minimizes network

power consumption with throughput constraints. The solution provides valuable

guidelines on energy-e�cient HCN design.
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Then, we investigate the power saving problem in HCNs with adaptive macro

base station transmit power. We consider a basic setup of a single macrocell with

multiple deployed femtocells. Circular exclusion zones are assumed around each

femtocell base station to mitigate inter-tier interference to the macro users. In

this case, the macro base station can adjust the transmit power according to its

cell load, which depends on the sizes of exclusion zones. To build the relationship

between cell load, or equivalently the exclusion zone size, and macro base station

transmit power, we adopt appropriate approximations of the stochastic geometry

based characterization of cell edge user outage probability constraints. By applying

bisection search algorithm, we determine the optimal exclusion zone radius that

minimizes the average transmit power of the macro base station.

Lastly, we study how macro base station deployment helps in power reduction

in two-tier HCNs with multi-antenna base stations. Although increasing the base

station density helps improve quality of service, the increased number of active base

stations raises network power consumption and hence reduces energy e�ciency.

Thus, we propose a strategy to reduce the number of active base stations by

deploying macro base stations and at the same time muting some of the small-cell

base stations. The base station muting takes inter-tier dependence into consideration

where only the small cells located within the macro base station coverage areas

are turned o↵. This inter-tier dependence is realistic but analytically complicated.

Moreover, it remains a challenging task to characterize HCN performance by taking

multi-antenna beamforming at base stations into consideration. To address these

problems, we use stochastic geometry to give a framework that provides tractable

spectral e�ciency approximations. Solving power minimization problem based on

the proposed framework o↵ers guidelines on determining the density and coverage

area of macro base stations for the proposed base station deployment scheme.
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Chapter 1

Introduction

The data tra�c usage in cellular networks has been experiencing an explosion

in recent years. To meet the skyrocketing demands for larger network capacity, a

simple yet powerful solution is to increase the density of base stations and hence

shrink the cell size in cellular systems [3]. By deploying low-power base stations

within the existing macro cellular networks, coverage and capacity can be enhanced

in the areas covered by the overlaid small-cells and the overall network coverage can

be guaranteed by the macro base stations (MBSs). Therefore, such a heterogeneous

cellular network (HCN) architecture has drawn significant research attention and

been recognized as a key technology for future 5G wireless networks. More detailed

surveys of the recent development and applications of HCNs can be found in [4–9].

In practice, the small-cells are typically deployed over a large area in an ad-hoc

manner, and therefore each sub-region within the network will have a di↵erent

deployment pattern. Due to the random nature of base station deployment, it is too

complicated to design a transmission strategy for users in the network by taking

the exact interactions among all base station configurations into consideration.

Additionally, the average network performance is of interest if we want to have

a simple characterization of the entire network. Without a tractable analytical

framework, the study of HCNs can only be done through massive Monte Carlo

simulations, which are computationally expensive. This is where stochastic geometry

comes to the rescue. As a statistical tool, stochastic geometry is powerful in

modelling networks with random topologies [10]. Using stochastic geometry for the

modelling, analysis and design of HCNs gives accurate and analytically tractable

1



Chapter 1. Introduction

results [11, 12]. A systematic introduction to stochastic geometry can be found

in [13–15].

Stochastic geometry o↵ers a powerful tool in the design and analysis of HCNs,

and therefore of future generations of wireless networks. However, it is still necessary

to choose a network performance metric to focus on when optimizing HCNs. The

increase in base station density proposed for HCNs can easily result in a higher

energy usage than that of single-tier systems in use today. Some studies, such as the

SMART 2020 report [16], have shown that if energy-e�cient technologies were not

adopted there would be a dramatic escalation of energy consumption due to rapidly

increasing data tra�c demands in communication networks. The growing energy

cost of information and communication technology (ICT) not only exacerbates global

environmental degradation, but also presents a major obstacle to the growth of

the telecommunication industry. As a result, green design has been spurred and is

emphasized in current and future 5G network designs [17,18]. According to [19], base

stations account for a large fraction of energy consumption in cellular networks. For

this reason, there has been great momentum to investigate power saving strategies

on the base station side. However, there exist intricate trade-o↵s between base

station power consumption and quality of service (QoS) [20]. Consequently, it is

practically meaningful but theoretically challenging to investigate the base station

power saving problem in HCNs. This thesis is devoted to proposing stochastic

geometry based frameworks for analytically investigating the base station power

minimization problem in HCNs with QoS constraints.

1.1 Stochastic Geometry Modelling of

Heterogeneous Cellular Networks

In HCNs, as depicted in Fig. 1.1, low power small-cell base stations (e.g.

micro base station, pico base station, femto base station) are overlaid onto macro

networks. Unlike the MBSs deployed by the operators in a well-planned manner

2



Chapter 1. Introduction

Macro base station Micro base station Pico base station

Femto base station User equipment

Macro cell Micro cellPico cell
Femto cell (open access)

Femto cell (close access)

Figure 1.1: The heterogeneous cellular network.

for large area coverage, small-cell base stations (small-cell BSs) are typically

placed in a flexible and targeted manner to satisfy local data tra�c requirements.

Consequently, the use of small-cells brings about additional topological randomness

and complicated interactions between di↵erent types of nodes. In fact, even for

the well-planned macro cellular networks, the real base station placement, as can

be seen in Fig. 1.2, is between a deterministic regular grid deployment and an

individually independent random deployment. The spatial randomness in HCNs

typically makes accurate network simulations computationally challenging, because

these will require complete and exact location information for all nodes, as well

as three-dimensional topological maps with accurate channel models. Due to

these complicated interactions between di↵erent nodes in HCNs, studies based

on Monte Carlo simulations consume huge amount of time and computation

resources. Even if simulations are performed, the results have problems regarding

repeatability, which means they cannot be generalized to provide guidance for the

large scale network optimal design. As a result, it is useful to conduct analytical

3
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Figure 1.2: A snapshot of base station locations from a part of Manchester, United
Kingdom [1]. The base station information can be obtained from [2].

investigations on HCNs. For network-wide performance evaluation and optimal

design, a tractable system-level modelling technique is required. Unfortunately, most

of the existing analytical network models are oversimplified and highly inaccurate

[21–24]. Therefore, a modelling tool for HCNs that achieves a good balance between

accuracy and tractability is called for.

As a statistical mathematical tool, stochastic geometry captures the spatial

randomness in network node locations. Based on the random network deployment

model, stochastic geometry analysis investigates the quantities of interest (e.g.

SINR, interference, outage probability) seen from a generic node by averaging over

all random network topologies [11]. Combined with its advantages described below,

stochastic geometry appears to be a handy tool for HCN characterization.

1.1.1 Poisson Point Processes

To capture the spatial randomness, point processes are used to abstract the

positions of network entities in stochastic geometry analysis. Choosing a convenient

4



Chapter 1. Introduction

point process will lead to an analytically tractable network model and simple precise

expressions for the quantities of interest. The Poisson point process (PPP) is the

simplest one that meets the above needs, and is defined as follows.

Definition 1.1.1. (Poisson point process (PPP) [13]): A random set of points

X ⇢ R2 is said to be a PPP of intensity � > 0 on the plane if it satisfies the

conditions:

1. For mutually disjoint domains of R2 D
1

, . . . , Dk, the random variables

X(D
1

), . . . , X(Dk) are mutually independent, where X(D) denotes the number

of points of X inside domain D.

2. For any bounded domain D ⇢ R2 we have that for every k � 0

Pr (X(D) = k) = e��|D| (� |D|)k

k!
, (1.1)

where |D| denotes the area of domain D.

Specifically, if the node intensity � is a constant independent of spatial location,

the PPP is a homogeneous Poisson point process (HPPP); otherwise, it is called

an inhomogeneous PPP. Starting from a PPP, various kinds of more complicated

point processes such as Poisson cluster process (PCP) and Matérn hardcore process

(Matérn HCP) can be obtained [25].

Due to its independence property, PPP provides a good balance for the trade-o↵

between simplicity and accuracy in network modelling and hence is the most popular

point process used in stochastic geometry analysis. In the pioneering work [26], PPP

modelling was applied to a single-tier cellular network, and showed good accuracy

and tractability for coverage and rate analysis. From the baseline model in [26],

stochastic geometry analyses for HCNs were performed, with the multiple tiers of

base stations modelled as independent PPPs in [27–29]. A PPP based two-tier HCN

model is depicted in Fig. 1.3.

5
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Figure 1.3: The two-tier HCN modelled by independent PPPs in a 3000m⇥3000m
region. The macro base station intensity is 1 point/km2, and the small-cell base
station intensity is 3 points/km2

1.1.2 Interference Related Performance Analysis

For simplicity, a network may be designed with limited coordination among base

stations, in which case interference in large scale cellular networks is non-negligible

or even dominates the noise term. Interference determines many key network

performance metrics such as outage probability and throughput. Based on the point

process abstraction of network node locations, the aggregated interference I
agg

at

a generic node is a spatio-temporal stochastic process, which can be characterized

using stochastic geometry analysis.

A key tool that enables interference characterization is the Laplace transform

(LT) of the probability density function (PDF) of I
agg

. The LT of I
agg

is defined as

LI
agg

(s) = E
⇥

e�sI
agg

⇤

, (1.2)

which is conceptually equivalent to the moment generating function (MGF) or

the characteristic function (CF) of I
agg

. With a well-chosen point process

network approximation (e.g. PPP), exact LT, MGF, or CF expressions can
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be found. Consequently, the moments of I
agg

can be calculated as E
⇥

In
agg

⇤

=

(�1)n
d

nL
I

agg

(s)

dsn

�

�

�

s=0

. In the literature, interference related network performance

metrics, especially outage probability and throughput, can be evaluated by several

techniques that utilize the LT, MGF or CF. These techniques are summarized as

follows.

1. Utilizing Rayleigh fading assumption

By assuming Rayleigh fading on the desired link, the distribution of the

generic user’s signal-to-interference-plus-noise-ratio (SINR) can be determined

exactly. Specifically, being conditioned on path loss and assuming flat Rayleigh

fading between the transmitter and the receiver, the received desired signal

power, denoted as S
des

, is an exponential random variable with mean 1

µ
taking

transmit power and path loss into account. With the additive noise power

denoted by N
add

, the cumulative distribution function (CDF) of the receiver

SINR is [26]

Pr (SINR  ✓) = Pr

✓

S
des

I
agg

+N
add

 ✓

◆

= 1� e�✓µN
addLI

agg

(✓µ). (1.3)

For certain point processes, e.g. the HPPP, the LT of I
agg

is known, and

hence the above SINR CDF can be found. With the exact SINR distribution

determined, outage probability and rate related network metrics (based on

the Shannon formula) can be obtained. Because of its tractability, this

performance evaluating technique has been widely used in the literatures

[27,28,30]. However, there exists a trade-o↵ between tractability and accuracy

when we apply this technique to analyzing networks with general channel

fadings.

2. Approximating interference by known distributions

Although the moments of I
agg

can be obtained by calculating the derivatives

of its LT (1.2), there is still no known expression for the PDF of I
agg

when channel fading is not Rayleigh. To address this issue, in this
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technique, the distribution of I
agg

is approximated by a known distribution,

where the parameters of the approximate PDF can be determined using

the LT of I
agg

. In [29], the interference distribution in PPP based HCN

model was approximated by a gamma distribution. In [31], log-normal

and shifted log-normal distributions were used to approximate interference

in HCNs. One limitation of this technique is that uncertainty exists in

selecting the approximate distribution. Simulation tests are required to

select the distribution with su�cient approximation accuracy. Additionally,

the approximated interference distribution typically has a complicated PDF

expression that prevents its application in network optimization analysis.

3. Considering dominant interferers

If the signal power drops quickly with increasing distance, i.e. the path loss

exponent is large, I
agg

can be tightly lower bounded by only considering the

dominant interferers. This technique gives lower bound approximations for

the outage probability [32]. And then, with the knowledge of LT, MGF, or CF

of I
agg

, outage probability upper bound approximations can be obtained by

applying the Markov inequality, Chebyshev inequality, or the Cherno↵ bound

[33]. However, the approximation approach is only applicable to the high path

loss exponent case and its accuracy depends on how the dominant interferers

are determined.

1.2 Related Works and Challenges

This thesis focuses on using stochastic geometry to investigate power saving

problems in downlink HCNs. We therefore first provide an overview of stochastic

geometry formulations for interference control analysis in the literature followed by

a discussion of the potential challenges. The related works and open problems in

power saving strategies and the fundamental tradeo↵s in HCN energy reduction

analysis are then introduced.
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Macro base station Macro userSmall-cell base station Small-cell user

Desired signal Intra-tier interference Inter-tier interference

Figure 1.4: Interference in a two-tier HCN with co-channel assignment of base
stations.

1.2.1 Interference Control

Related works

As depicted in Fig. 1.4, there are intra-tier interference (or co-tier interference)

and inter-tier interference (or cross-tier interference) in the HCN downlink with

co-channel base station assignment. Various kinds of stochastic geometry based

frameworks have been proposed to investigate the intra- and inter-tier interference

control problems. Basically, the interference control schemes in prior published

works were realized through resource allocation and/or inter-cell interference

coordination (ICIC), which are respectively discussed as follows.

By allocating orthogonal transmission resources to users, interference in cellular

networks can be eliminated. For homogeneous macro cellular networks, a stochastic

geometry framework for analyzing fractional frequency reuse (FFR) was proposed

in [34], where the neighbouring macrocells used orthogonal channels to serve

their corresponding edge users and hence reduce inter-cell interference. Based

on the proposed FFR scheme, the outage probability was derived in closed-form

expression in [34]. For HCNs, various kinds of resource allocation schemes have been

investigated using stochastic geometry analysis. In [35], a partial spectrum reuse
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scheme was proposed, where each small-cell BS randomly chose a fraction of the

spectrum of the MBSs’ to transmit on. The random spectrum reuse scheme lowered

the probability of multiple small-cells accessing the same spectrum and hence

reduced the inter-tier interference level for MBSs. Additionally, stochastic geometry

analysis was conducted in [35] to determine the optimal spectrum reuse fraction that

minimized network power consumption. In [36], two spectrum allocation schemes in

HCNs were investigated where the di↵erent tiers of base stations transmitted either

on the same spectrum or on orthogonal channels. For the two spectrum allocation

schemes, stochastic geometry frameworks were proposed to find the corresponding

user association probability and outage probability. The optimal user association

and spectrum allocation schemes were then determined by solving a rate coverage

based fair utility optimization problem.

Besides resource allocation, interference in cellular networks can be eliminated

by ICIC, which includes base station clustering and coordinated transmission. One

simple ICIC approach is to let several base stations form a transmission cluster and

allow only one base station in that cluster to transmit at a time. An application of

this ICIC scheme in homogeneous cellular networks (or single tier cellular networks)

was described in [37], which is equivalent to using the ICIC for intra-tier interference

management in HCNs. In [37], theK nearest base stations to the generic user formed

a cluster within which only the nearest base station transmitted to the user. In the

high spectral e�ciency regime, it was shown that this ICIC scheme resulted in a

better outage performance than the selective combining based intra-cell diversity

transmission with larger bandwidth [37]. Interference avoidance in a two-tier HCN

using ICIC was investigated in [38], where the outage probability expressions for the

intra- and inter-tier interference mitigation methods were determined, respectively.

In [38], with circular shaped exclusion zones deployed around each transmitting

MBS, the interfering MBSs and micro base stations within the exclusion zones were

correspondingly muted to remove the intra- and inter-tier interference. Instead

of muting the co-clustered interfering base stations, ICIC can also be achieved
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through multi-antenna beamforming. In [39], base stations were clustered according

to a lattice grid. Inter-cell interference within a cluster was mitigated through

beamforming. A stochastic geometry framework was proposed to show how outage

probability scaled with the number of cooperating base stations in each cluster.

In [40], the spectral e�ciency expression was derived using stochastic geometry

analysis on a network with interference reduced through dynamic K base stations

clustering and coordinated beamforming.

By jointly applying resource allocation and ICIC, enhanced inter-cell

interference coordination (eICIC) is proposed to boost the performance of HCNs [41].

Using eICIC, base stations adjust their coverage areas so that users close to inter-tier

boundaries are reallocated to di↵erent tiers of base stations. Additionally, only

specific tier of base stations are allowed to use some fraction of the transmission

resources to serve those reallocated users. In [42], a joint resource partitioning and

o✏oading scheme in HCNs was proposed where partitioned resources were allocated

to the users that were o✏oaded from the macrocells to the small-cells to eliminate

inter-tier interference. Using stochastic geometry analysis, tractable SINR and rate

coverage probabilities for the proposed scheme were derived. Numerical results

in [42] verified that the joint use of o✏oading and resource partitioning improved

cell edge coverage performance in HCNs.

Challenges

Most of the existing stochastic geometry analyses aim to derive expressions

for the interference related QoS metrics such as outage probability or capacity

expressions. The derived expressions are typically too complicated to be applied in

optimization problems. Thus, non-trivial manipulations are needed to approximate

the performance metrics to make them amenable to optimal network design.

Furthermore, in stochastic geometry analysis, interference control schemes are

mainly used to improve coverage and capacity performance. It still remains unclear

how to jointly use interference control and cell load adaptation strategies to improve
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HCN energy e�ciency. Moreover, most of the existing optimal eICIC design

strategies [43–47] are based on semi-analytical approaches. It still remains an open

problem to design eICIC scheme in HCNs using analytically tractable methods like

stochastic geometry.

In the following chapters, we will tackle the above mentioned problems by

tractably designing cell load adaptation coupled with various interference control

schemes to reduce the power consumption in downlink HCNs with QoS constraints.

1.2.2 Power Saving in HCNs

Related works

As shown in [48], a base station’s power consumption depends on not only

the transmit power, but also the transmission-independent power consumption due

to signal processing, battery backup, site cooling, etc. According to the base

station power consumption model [48], power minimization in the downlink of

cellular networks can be achieved by reducing base station transmit power and/or

muting base stations with QoS constraints on SINR [49], spectral e�ciency [50],

throughput [51], delay [52], etc.

A centralized transmit power minimization and user admission control problem

in a wireless network with multiple interfering single input single output (SISO)

links was investigated in [49]. In this work, based on linear programming relaxation

of the NP-hard problem, a link removal approach was proposed to minimize the

total transmit power with the maximum number of users supported at the specified

SINR targets. In [53], resource allocation scheme in an HCN was designed in

a centralized manner to minimize the base station transmit power with given

data rate requirements. Convex relaxation techniques were used to solve the

mixed integer nonlinear resource allocation problem. In [54], transmit power

minimization in a femtocell network was realized through distributed resource

allocation with user throughput constraints. An e�cient algorithm was derived

to approximately solve the integer programming based resource allocation problem.
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In [55], outage probability constrained transmit power minimization problems were

solved for two-tier HCNs with perfect and imperfect channel state information

(CSI), respectively. Applying convex relaxation strategies on the outage probability

constraints, suboptimal base station beamforming vectors that solved the power

minimization problems were determined in [55].

In addition to reducing base station transmit power, base station sleeping is

another option for lowering network power consumption. As an energy-e�cient load

adaptation strategy, cell zooming [56] allows lightly loaded base stations to be put

into sleep mode, and have their users o✏oaded to neighbouring cells. For networks

with deterministic deployment, power minimization through base station sleeping

and/or cell zooming is a combinatorial problem and therefore can only be solved

through heuristic algorithms. With tra�c load and node location information, the

sleeping mechanism of femtocells in a two tier HCN was studied in [57] using Markov

decision processes (MDPs). In [58], a distributed base station on/o↵ algorithm was

proposed, where each base station took its impact on the neighbouring cells into

account. For HCNs with random network topology, stochastic geometry frameworks

were proposed in [59] and [60] to correspondingly investigate the minimum densities

of active base stations that met SINR and rate coverage probability requirements.

In [59] and [60], independent PPPs were used to model HCNs, and all base stations

in the investigated HCNs were assumed to transmit on the same channel.

Challenges

The derived algorithms in most of the above mentioned literatures are based on

deterministic network deployment and require perfect or partial information of node

locations and channel coe�cients [48, 53–55, 57, 58]. However, assuming that every

base station in an HCN know other nodes’ locations and global CSI is not realistic

because of the tremendous cost to get the information. Even if the node positions

and CSI are perfectly known, determining the resource allocation and base station

selection schemes that minimize power consumption in HCNs with various QoS
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constraints is typically a challenging task where only sub-optimal solutions can be

found. Indeed, some of the works [59,60] proposed stochastic geometry frameworks

for HCN analysis, which were based on point process network abstractions and

did not require global CSI. However, in the above mentioned stochastic geometry

analyses, the base station power saving was achieved by homogeneously reducing

the active node density without jointly taking interference control and cell load

adaptation into consideration. Moreover, geometric dependence was ignored in [59,

60] where base stations were allowed to be located arbitrarily close to each other.

In the subsequent chapters of this thesis, with interference control and cell

load adaptation considered, we will use stochastic geometry analysis to investigate

power saving strategies in HCNs, which involve base station muting, transmit power

adaptation, and the geometrically dependent base station deployment.

1.3 Contributions and Organization of the

Thesis

1.3.1 Major Contributions of the Thesis

The main contributions of this thesis are given in the following three

sub-sections.

Three New HCN Frameworks for Joint Load and Interference Control

Analysis

The first contribution of this thesis is to propose three stochastic geometry

frameworks that jointly analyse load adaptation and interference control in HCNs.

In Chapter 2, we consider applying biased user association rule and time domain

resource partitioning scheme in a two-tier HCN with multiple macro and small-cell

base stations. Specifically, users located close to inter-tier cell boundaries are served

on time slots in which only one tier of base stations is allowed to transmit. Using
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stochastic geometry analysis, we investigate the e↵ects of changing user association

bias factor and resource partitioning fraction on controlling cell load and inter-tier

interference. It is shown that under given throughput requirements, the joint load

adaptation and resource partitioning achieves better coverage performance and lower

network power consumption over solutions which rely only on load control.

In Chapter 3, a model with single macrocell and multiple femtocells is used.

Circular shaped macrocell exclusion zones are deployed centered on femto base

stations (fBSs) within which macro users are served on inter-tier interference

free channels. The relationship between MBS transmit power and the size of

exclusion zones is investigated through stochastic geometry outage probability

characterization. It is shown that MBS transmit power is reduced by using circular

shaped exclusion zones to avoid interference.

We propose a framework to investigate HCN with multi-antenna base stations

in Chapter 4. Each small-cell BS uses a beamforming strategy to transmit to its

designated user and mitigate its interference to the neighbouring cells. MBSs with

non-overlapping circular shaped coverage areas are deployed within the small-cell

network. Each MBS adopts zero forcing beamforming to simultaneously serve

the small-cell users within its coverage, and the corresponding small-cell BSs are

therefore muted to save energy. We study the proposed inhomogeneous base station

muting scheme by characterizing QoS performance through stochastic geometry

analysis. Because the density and coverage radius of the deployed MBSs determine

cell load and interference level, we investigate the e↵ects of the density and coverage

radius of macrocells on the characterized QoS.

New QoS Metric Approximations

Another contribution of this thesis is that we derive closed-form approximations

for QoS metrics that are not only accurate in capturing their dependency on certain

key parameters, but also useful for optimal network design.

The exact characterization of a typical user’s average throughput involves
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a weighted sum of the cell load PDF, which gives no closed-form expression.

To address this problem, in Chapter 2 we approximate the user throughput as

the coverage spectral e�ciency divided by the average cell load. Based on the

approximate QoS metric, the relationship between association bias factor and

resource partitioning fraction can be found.

In Chapter 3, the cell edge user outage probability is considered as the QoS

metric. The outage probability constraints provide implicit expressions for the MBS

transmit power. With a low SINR target, we derive explicit approximate transmit

power expressions. The approximate expressions provide insights into the impact of

exclusion zone radius and correspondingly allocated bandwidth on the MBS transmit

power.

In Chapter 4, due to the inhomogeneous small-cell muting scheme and the

multi-antenna beamforming at base stations, exact characterization of user spectral

e�ciency is a challenging task. To solve this problem, we first approximate

multiple tiers of base stations as independent PPPs. Next, the spectral e�ciency

is approximated by calculating the expected values of the desired and interference

signals. With its accuracy verified through simulation, the approximate spectral

e�ciency expression reveals the e↵ects of MBS density and coverage radius.

Optimal Power Saving HCN Design

Last but not least, based on the proposed HCN frameworks and QoS

approximations, we provide optimal network parameter design methods that

minimize network power consumption.

To reduce power consumption by muting base stations on the partitioned

resources, in Chapter 2 we determine the optimal user association bias and the

resource partitioning fraction by finding the feasible sets of these parameters for

average throughput constraints. It is shown that there may exist more than one

association bias that achieve the minimum base station power consumption. Among

all feasible bias values, the one that maximizes network coverage probability is then
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determined.

In Chapter 3, with outage probability threshold for cell edge users, the optimal

exclusion zone radius that minimizes MBS transmit power in the single macrocell

model is obtained. We consider two cases where users in exclusion zones are either

served by the MBS or o✏oaded to the nearest femtocells. We show that for both

cases, the optimal exclusion zone radius should be set to the maximum achievable

values that satisfy the outage probability constraints.

In Chapter 4, due to the MBS deployment and small-cell muting scheme, the

network power consumption is related with the density and coverage radius of

the deployed MBSs. By equating the approximate spectral e�ciency to a given

certain target value, the mapping from MBS density to the coverage radius can

be determined. Therefore, an algorithm is proposed to determine the optimal

MBS coverage radius and hence the MBS density that minimize the network power

consumption.

1.3.2 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we investigate

joint design of cell load adaptation and resource partitioning in two-tier HCNs with

sleep mode base stations. Chapter 3 studies optimal exclusion zone design that

minimizes MBS transmit power within a macrocell overlaid with multiple fBSs.

In Chapter 4, multi-antenna MBSs are deployed to replace parts of the coverage

area of small-cells, where the optimal density and coverage radius of the MBSs are

determined to minimize network power consumption. Finally, Chapter 5 concludes

the thesis and discusses potential areas of future work.
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Chapter 2

Joint Resource Partitioning and
User Association with Sleep-Mode
Base Stations

2.1 Introduction

As shown in [61], allocating well-combined orthogonal and identical

transmission time/frequency resources to di↵erent tiers of base stations in HCNs

provides high network throughput. In addition, it has been verified that intelligent

cell load adaptation within and between base station tiers results in performance

gains in terms of reduced base station power consumption [62], improved user

coverage [63], throughput [64] and various utilities [65]. Driven by the desire for

cellular networks that deliver vastly improved quality of experience and quality of

service to users at a much higher energy e�ciency (in Joules per bit) [19,66], the joint

use of resource allocation and cell load adaptation becomes an appealing approach

for HCN design.

Due to their limited coverage areas and high deployment density, small-cells

in HCNs are typically lightly loaded [67, 68]. As a result, each small-cell BS only

needs to deliver data on a fraction of the total available transmission resources to

meet its designated users’ needs. The remaining transmission resources are called

almost blank subframes (ABSs) because they are not used by the small-cells for

data transmission. By using ABSs together with cell load adaptation techniques,

enhanced inter-cell interference coordination (eICIC) frameworks [69] have been

proposed to improve network performance. Specifically, using appropriate user

association schemes, a subset of users in the congested macrocells that are located
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close to inter-tier cell boundaries can be determined and served on ABSs. Through

resource partitioning, the selected users allocated ABSs are either served by the

MBSs or o✏oaded to the small-cells, where inter-tier interference can be eliminated.

The performance gains of HCNs adopting eICIC were verified in [70–73] through

numerical tests. Tractable stochastic geometry frameworks were then proposed

in [42, 74] for resource partitioning coupled with load adaptation in HCNs using

eICIC. Based on single macrocell multiple small-cells [74] and multiple macrocells

multiple small-cells [42] setups, the user outage probabilities and average spectral

e�ciencies were characterized. However, the optimal design of cell load control and

resource allocation for eICIC were not investigated in [42, 74]. The optimal cell

load adaptation strategy was studied in [75] based on a deterministic HCN setup.

In [75], a cell cooperative scheduling scheme for eICIC was proposed, where the

small-cells expanded their coverage areas to help o✏oad macro users. The design of

resource allocation for eICIC was proposed in [76]. In [76], users su↵ering from severe

inter-tier interference were served on ABSs at reduced interference. Using stochastic

geometry characterization of dominant interferers, the set of victim users was

determined and the number of required ABSs was obtained by solving a throughput

maximization problem. Although cell load adaptation and resource allocation design

were correspondingly discussed in [75] and [76], they were not investigated in a

combined manner. By proposing algorithms that jointly allocated ABSs and adapted

cell load through user association, throughput and fairness optimization problems

were solved in [46, 64]. However, only semi-analytical approaches were derived. As

a result, an analytically tractable design of the optimal strategy for joint resource

partitioning and load adaptation still remains unknown. Additionally, to the best

of our knowledge, none of the above mentioned works conduct energy e�ciency or

power saving analysis in HCNs with eICIC.

To address the problems mentioned above, in this chapter, we consider a

resource partitioning and user association scheme in two-tier HCNs, where the

locations of all base stations and users are modeled as independent PPPs. With
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resource partitioning, we propose a user association scheme that adjusts cell load

on di↵erent resources to improve network performance. Users that experience high

inter-tier interference are served on resources on which only one tier of base stations

are active. The inactive base stations are put into sleep mode to reduce energy

consumption. Based on this framework, we formulate energy minimization and

coverage probability maximization problems with throughput constraints. Solving

the problems leads to the jointly optimal resource partitioning and user association

strategy. The discoveries provide guidelines on energy e�cient eICIC design in

HCNs.

The remainder of this chapter is structured as follows. The system model is

described in Section 2.2. The resource allocation and user association scheme is

proposed and base station power consumption models are characterised. Based on

the proposed model, we give expressions for association probability and coverage

probability in Section 2.3 and then derive the average throughput constraints for

each user set. In Section 2.4, we formulate the optimization problems to minimize the

BS power consumption and maximize coverage probability over the entire network

and provide a method to find the optimum solutions. Section 2.5 gives numerical

results that verify our analytical discoveries. Finally, Section 2.6 concludes the

chapter.

2.2 System Model

In this chapter, we consider the downlink of a two-tier network, where each

tier consists of base stations of the same type. Without loss of generality, let MBSs

constitute tier 1 and the small-cell BSs be tier 2 base stations. Base stations in the

k-th tier are assumed to form a HPPP �k with intensity �k. The spatial distribution

of user equipments (UEs) is another HPPP �
u

with constant intensity �
u

. Moreover,

�
1

, �
2

and �
u

are independent.

The total spectrum resource has a bandwidth W . All tier k base stations

are assumed to have constant transmit power spectral density (PSD) Sk over W .
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We assume the base station density is large enough that the interference power

dominates the additive noise. In the rest of this chapter we will therefore ignore the

additive noise. A typical UE i at distance di,j away from a base station j in the

k-th tier has the received signal power Prx

k (di,j) = Hi,jgk(di,j)Sk�i, where Hi,j is an

exponential random variable with unit mean modelling the power attenuation due

to Rayleigh fading, gk(di,j) is the path loss (PL) from the k-th tier base station j to

UE i, and �i is the bandwidth allocated to UE i. As in [61,63,77], we characterize

the PL model as

gk(di,j) = Kd�↵
k

i,j ,

where K is a constant propagation loss and ↵k is the k-th tier PL exponent factor.

By assuming identical PL environments in both tiers, i.e. ↵
1

= ↵
2

= ↵, we can

benefit from more compact and useful expressions of user association and coverage

probabilities, which will be given in the next section. Furthermore, the value of PL

exponent for urban area cellular radio environment typically lies within a small range

between 2.7 and 3.5 [78, Table 4.2]. Therefore, the approximation of ↵
1

= ↵
2

= ↵

does not cause much loss in accuracy and it has already been adopted in many

previous papers [27,35,77]. For simplicity, in the rest of the chapter, we use the PL

model notation g(di,j) = Kd�↵
i,j without the subscript k.

2.2.1 Resource Partitioning and User Association

Our model applies a user association and resource partitioning scheme similar

to the one proposed in [42].

Resource partitioning

For clarity, the term “resources” used in this chapter refers to a set of

time/frequency 3GPP resource elements. Throughout this chapter, a resource

element is said to be “shared” by the two tiers of base stations if both the MBSs
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and small-cell BSs are active on it to transmit to the target users. Similarly, we

denote the resource elements that are deliberately allocated to one of the two base

station tiers as “unshared” resources in the rest of the chapter.

Let ⌘ be the fraction of resources shared by the MBSs and small-cell BSs.

The remaining 1 � ⌘ fraction of the resources are unshared resources, which may

be allocated to MBSs or small-cell BSs, unlike in [42]. ⌘ is called the resource

partitioning factor.

User association

We assume that user association discussed in this chapter is based on the

pilot/reference signal power. The average pilot signal power received by user i from

the k-th tier base station j is EH
i,j

[Prx

k (di,j)] = g(di,j)Sk�i. For the convenience

of load adaptation, the average received pilot signal power is multiplied by a bias

factor, which is called the biased received power [63]. Furthermore, without loss of

generality, the bias factor for macro (tier 1) base stations is 1 and a bias factor B
2

is used for small-cell (tier 2) base stations.

In the literature, for example [67], one intention of deploying small-cells in the

existing macro cellular networks is to let the macrocells ensure basic coverage and

use small-cells to provide high data transmission. To reflect this, in this chapter,

two kinds of rate requirements for users are determined based on the biased received

power from base stations. If the biased received power at a user from the macro tier

is higher than that from the small-cell tier, we denote the user’s target rate as C
1

.

Otherwise, the target rate is C
2

. We assume that users with larger biased received

power from small-cells than from macrocells have a higher rate requirement, which

means C
1

 C
2

. Specifically, the target rate Cj for a typical user can be determined

using the biased received power association:

Cj =

8

<

:

C
1

, if S
1

g(d
1

) � B
2

S
2

g(d
2

)

C
2

, if B
2

S
2

g(d
2

) > S
1

g(d
1

)
(2.1)
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where dk denotes the distance between the typical user and its nearest base station

in tier k, and B
2

is the association bias factor for tier 2 (Here, we set the bias

factor for tier 1 to be 0 dB). B
2

determines how many UEs can be served with rate

requirements C
1

and C
2

. As B
2

increases, more UEs will be served by small-cell BSs

with target rate C
2

. Note that a user measures the received pilot signal power from

the small-cell BSs and MBSs over the same bandwidth, and therefore the comparison

of signal powers is equivalent to the above comparison of PSDs.

We let U
2

denote the set of users with target rate C
2

. The set of users with

target rate C
1

is splitted into two disjoint sets U
1

and U
D

, where U
1

consists of users

closer to the macro-cell centres and U
D

represents the set of users located closer to

the cell boundaries between the two tiers. A user in U
D

su↵ers from severe inter-tier

interference if both tiers of base stations transmit on its allocated resources. To

determine whether a user belongs to U
1

or U
D

, another association bias factor B
1

is

introduced, where B
1

� B
2

. The mapping of user i with rate requirement Cj to sets

U
1

, U
2

and U
D

is summarized as follows:

i 2

8

>

>

>

<

>

>

>

:

U
1

, if Cj = C
1

and g(d
1

)S
1

� B
1

g(d
2

)S
2

U
D

, if Cj = C
1

and B
1

g(d
2

)S
2

> g(d
1

)S
1

� B
2

g(d
2

)S
2

U
2

, if Cj = C
2

and B
2

g(d
2

)S
2

> g(d
1

)S
1

,

(2.2)

By changing the value of B
1

, we can control the number of users in U
1

and U
D

. Set

U
D

will be empty only if B
1

= B
2

.

To resolve the inter-tier interference problem, we combine the user association

rule in (2.2) with resource partitioning, where U
1

and U
2

users are served by MBSs

and small-cell BSs on the shared resources, respectively. The unshared resources are

allocated to users in U
D

.1 Since either small-cell BSs or MBSs can be muted on the

unshared resources, we will consider the two cases separately. For simplicity, in the

1
By increasing B1/decreasing B2, the inter-tier interference level at users in U1/U2 can be

reduced. Due to the di↵erence in coverage areas, the number of U1 users in each macrocell is

typically larger than the number of U2 users in each small-cell. Therefore, reducing inter-tier

interference for U1 users is more favourable. Thus, it is typically desirable to let B1 � 1 (0 dB),

but B2 is not restricted to be smaller than 1.
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subsequent analysis we use Case 1 to denote the scenario where UEs in U
D

associate

with MBSs and use U
D1

to represent the set U
D

. If small-cell BSs are assigned to

serve users in U
D

on the unshared resources, it is similar to the o✏oading scheme

in [42]. This scenario is denoted as Case 2 and U
D2

is used to represent U
D

. For

clarity, the considered system is illustrated in Fig. 2.1.

Some additional remarks are listed as follows:

1. In this chapter, we consider the scenario where only users with target rate C
1

are o✏oaded to the unshared resources. We would also like to point out that

the method proposed in this chapter can be easily generalised to analyse the

case where both users with required rate C
1

and C
2

can be allocated to the

unshared resources. The details are not provided here in order not to detract

from the main contributions of this chapter.

2. The traditional fully shared resource allocation scheme is a special case of

our proposed model with B
1

= B
2

, which means U
D

= ; in (2.2). Thus, all

resources are shared among users in U
1

and users in U
2

.

3. By setting B
1

= 1, U
1

= ;. If MBSs are selected to serve users in U
D

(U
D

= U
D1

), we have the MBSs and small-cell BSs occupy orthogonal resource

elements. This is in fact the traditional unshared resource allocation scheme.

On the other hand, if small-cell BSs are used to transmit to U
D

(U
D

= U
D2

)

users and B
1

= 1, MBSs can be completely muted on all resources and all

users are served by only small-cell BSs. In that case, the two tier heterogeneous

network becomes a homogeneous network consisting of only small-cell BSs.

4. For simplicity, we treat B
2

as a given constant. For any association bias B
2

,

we present the method of finding B
1

to optimize network performance in terms

of power consumption and UE coverage. Joint optimization of B
1

and B
2

will

be discussed in the future.

5. We assume that all base stations are active – if in fact a k-th tier base station is
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on with probability pk, then, without loss of generality, we replace the Poisson

density �k with pk�k.

Used only by usersShared by and users

: UE served by MBSs
: UE served by small-cell BSs

: UE served by MBSs
: UE served by small-cell BSs

: UE required rate is 
: UE required rate is 

Figure 2.1: Resource allocation scheme.

2.2.2 Base Station Power Consumption Model

A simple power consumption model based on measurements done on real

hardware was given in [79]. Using that model, the power consumption of MBSs

and small-cell BSs during downlink transmission are given respectively by

P
MBS

= a
M

P
M

+ b
M

, P
scBS

= a
sc

P
sc

+ b
sc

. (2.3)

In the above models, P
M

and P
sc

are the transmit powers of MBSs and small-cell

BSs, respectively. The coe�cients a
M

and a
sc

account for the power consumption

that scales with the transmit power. The terms b
M

and b
sc

represent the

transmission-independent power consumption due to signal processing, battery

backup, site cooling, etc. The model in (2.3) reflects the fact that the average power

consumption of a base station comprises both transmit power and non-transmit

power. In [79], the authors gave the numerical values for the parameters (a
M

, b
M

)

and (a
sc

, b
sc

) as a
M

= 22.6, b
M

= 412.4W and a
sc

= 5.5, b
sc

= 32.0W.
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The average base station power consumption per unit area is therefore given by

P
net

= �
1

P
MBS

+ �
2

P
scBS

. (2.4)

Whether time or frequency resource partitioning is used impacts the formulation

of energy saving problem, as explained next.

Frequency domain resource partitioning

For frequency domain resource partitioning, muting base stations on unshared

bands will reduce transmit power but the non-transmit power consumption remains

unchanged. If U
D

= U
D1

(i.e. Case 1), the MBSs will transmit over the entire

band of W Hz while the small-cell BSs will transmit over a band of ⌘W Hz, thus

P
M

= S
1

W and P
sc

= S
2

W⌘. We use Pf1

net

to denote the power consumption P
net

in this case. On the other hand, when U
D

= U
D2

(Case 2), we have P
M

= S
1

W⌘,

P
sc

= S
2

W and P
net

= Pf2

net

. The average base station power consumption per unit

area is therefore, from (2.4), given respectively by

Pf1

net

= �
1

[a
M

S
1

W + b
M

] + �
2

[a
sc

S
2

W⌘ + b
sc

] , if U
D

= U
D1

(2.5)

Pf2

net

= �
1

[a
M

S
1

W⌘ + b
M

] + �
2

[a
sc

S
2

W + b
sc

] , if U
D

= U
D2

(2.6)

Time domain resource partitioning

For time domain resource partitioning, base stations can be put into sleep

mode on the unshared time slots to reduce both transmit and non-transmit power

consumption, which in fact is a generalization of eICIC in LTE discussed in [80].

The transmit power for tier 1 and 2 base stations are respectively P
M

= S
1

W and

P
sc

= S
2

W . For clarity, we use P
net

= Pt1

net

for Case 1 and P
net

= Pt2

net

for Case 2.
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Therefore,

Pt1

net

= �
1

[a
M

S
1

W + b
M

] + ⌘�
2

[a
sc

S
2

W + b
sc

] , if U
D

= U
D1

(2.7)

Pt2

net

= ⌘�
1

[a
M

S
1

W + b
M

] + �
2

[a
sc

S
2

W + b
sc

] , if U
D

= U
D2

(2.8)

Although the P
net

expressions for resource partitioning in frequency and time

domains are di↵erent, minimizing P
net

in both cases can be done similarly. To

be more concrete and concise, we will only elaborate on time domain resource

partitioning in the rest of this chapter. Using Pt1

net

and Pt2

net

expressions (2.7) and

(2.8), we will give the optimal scheme that minimizes network-wide average power

consumption under certain rate constraints.

2.3 Throughput Characterization

In this section, user throughput constraints are characterized and then used in

the next section to find the optimal resource allocation scheme. To derive throughput

constraints, user association probability and coverage probability in sets U
1

, U
2

, U
D1

and U
D2

are required.

Let Aj (j 2 {1, 2,D1,D2}) denote the user association probability for set Uj.

The expressions of Aj are determined in the following lemma.

Lemma 2.3.1. The probability that a randomly selected UE belongs to set Uj, j 2

{1, 2,D1,D2} can be obtained as

A
1

=
�
1

�
1

+
⇣

B

1

S

2

S

1

⌘

2

↵

�
2

,

A
2

=
�
2

�
2

+
⇣

S

1

B

2

S

2

⌘

2

↵

�
1

,

A
D1

= A
D2

=
�
1

�
1

+
⇣

B

2

S

2

S

1

⌘

2

↵

�
2

� �
1

�
1

+
⇣

B

1

S

2

S

1

⌘

2

↵

�
2

. (2.9)
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(Note that it does not matter whether the unshared resources are used by the macro

or small-cell BSs.)

Proof. The derivation of Aj expressions in (2.9) follows that of Lemma 1 of [28].

The coverage probability of a typical user i in set Uj is defined as Pj =

Pr (SIR � ⌥| i 2 Uj), where ⌥ is the target signal-to-interference-ratio (SIR). Recall

that we ignored additive noise in the system model. This assumption will simplify

the analysis and closed-form expressions can then be obtained.

Lemma 2.3.2. For a typical user i 2 Uj, the coverage probabilities Pj are given in

(2.10) – (2.13) for j 2 {1, 2,D1,D2}.

P
1

=
�
1

+
⇣

B

1

S

2

S

1

⌘

2

↵

�
2

�
1

[1 + ⇢ (⌥,↵)] + �
2

⇣

B

1

S

2

S

1

⌘

2

↵

h

1 + ⇢
⇣

⌥

B

1

,↵
⌘i

, (2.10)

P
2

=
�
2

+
⇣

S

1

B

2

S

2

⌘

2

↵

�
1

�
2

[1 + ⇢ (⌥,↵)] + �
1

⇣

S

1

B

2

S

2

⌘

2

↵

[1 + ⇢ (⌥B
2

,↵)]

, (2.11)

P
D1

=

✓

�
1

+
⇣

B

1

S

2

S

1

⌘

2

↵

�
2

◆✓

�
1

+
⇣

B

2

S

2

S

1

⌘

2

↵

�
2

◆

✓

�
1

[1 + ⇢ (⌥,↵)] + �
2

⇣

B

1

S

2

S

1

⌘

2

↵

◆✓

�
1

[1 + ⇢ (⌥,↵)] + �
2

⇣

B

2

S

2

S

1

⌘

2

↵

◆ , (2.12)

P
D2

=

✓

�
1

+
⇣

B

1

S

2

S

1

⌘

2

↵

�
2

◆✓

�
1

+
⇣

B

2

S

2

S

1

⌘

2

↵

�
2

◆

✓

�
1

+ [1 + ⇢ (⌥,↵)]�
2

⇣

B

1

S

2

S

1

⌘

2

↵

◆✓

�
1

+ [1 + ⇢ (⌥,↵)]�
2

⇣

B

2

S

2

S

1

⌘

2

↵

◆ , (2.13)

where ⇢ (⌥,↵) = ⌥
2

↵

R1
⌥

� 2

↵

1

1+u
↵

2

du.

Proof. The results follow from Lemma 2 of [42] and closed-form expressions were

obtained by letting ↵
1

= ↵
2

= ↵ and setting the noise power to zero and then

completing the integrals in that lemma.

The overall coverage probability is used as the metric to characterize the

network coverage performance. Based on Lemmas 2.3.1 and 2.3.2, the overall
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coverage probability can be calculated as

P
c

=

8

>

>

<

>

>

:

P

j2{1,2,D1}
PjAj for Case 1

P

j2{1,2,D2}
PjAj for Case 2

(2.14)

We define the coverage spectrum e�ciency for users in set Uj as

rj = log
2

(1 +⌥)Pj. (2.15)

rj is the average achieved throughput if users in outage are assumed to not transmit

at all, while users that are not in outage transmit at log
2

(1 +⌥) bps/Hz.

The cell load for a base station is defined as follows. On the shared resources,

we use N
1

to denote the number of U
1

users within a tagged macrocell, and let N
2

be

the number of U
2

users in a small-cell. In Case 1, MBSs are allowed to transmit on

the unshared resources. The load of an MBS on the unshared resources, consisting

of U
D1

users, is denoted as N
D1

. In Case 2, the number of U
D2

users served by a

small-cell BS on the unshared resources is N
D2

. The mean cell load averaged over

the entire network is denoted by N̄j (j 2 {1, 2,D1,D2}). According to [42] and [63],

N̄j =

8

<

:

0 if Aj = 0

1 + 1.28�
u

�
m(j)

Aj otherwise,
(2.16)

where we used the mapping: m(j) =

8

<

:

1 if j 2 {1,D1}

2 if j 2 {2,D2}
.

In this chapter, we assume that all Uj users associated with a particular

base station are allocated equal resources, which can be achieved by round-robin

scheduling in the time-sharing resource allocation scheme. Then, we characterize

the average user rate in a similar manner to what was done in [28, 81, 82]. For a

typical user in set Uj (j 2 {1, 2,D1,D2}) and given SIR target ⌥, the user’s average
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throughput is defined as

T̄j =
Wjrj
N̄j

=
Wj log

2

(1 +⌥)Pj

N̄j

, (2.17)

where W
1

= W
2

= ⌘W and W
D1

= W
D2

= (1 � ⌘)W . Using this average user

throughput expression, we do not need to integrate the Laplace functional of a

PPP, which leads to the tractability of the optimization problem in this chapter.

As discussed in Section 2.2.1, we assumed that the target rate is C
1

for U
1

S

U
D1

in

Case 1 and U
1

S

U
D2

in Case 2, and C
2

for U
2

. A user’s average throughput in set

Uj should be no smaller than the corresponding target rate. Therefore, the following

throughput constraints can be applied for set Uj.

8

<

:

⌘WPj log
2

(1 +⌥) � CjN̄j if j 2 {1, 2}

(1� ⌘)WPj log
2

(1 +⌥) � C
1

N̄j, if j 2 {D1,D2}
(2.18)

where the expressions of Pj and N̄j are given in Lemma 2.3.2 and (2.16).

Additionally, we can observe from (2.9) and (2.10)-(2.13) that Aj and Pj all depend

on B
1

. Also, (2.16) shows that N̄j is related with Aj. Thus, both the left and right

hand sides of (2.18) depend on B
1

.

We acknowledge that there are other metrics to measure throughput. For

example, the fifth and the median percentile throughput were used in [42]. However,

these performance metrics result in tremendous mathematical complexity. Hence,

the resource partitioning and user association strategy that achieves the fifth or

the median percentile throughput requirements can only be found numerically. In

that case, it is hard to model and analyse the problem. On the contrary, based

on the user average rate characterization (2.17), which has been adopted in [28, 81]

and [82], the average throughput constraints (2.18) used in this chapter have the

merit of mathematical tractability.

30



Chapter 2. Joint Resource Partitioning and User Association with
Sleep-Mode Base Stations

2.4 Power Minimization and Coverage

Improvement

In this section, we derive resource allocation and user association schemes that

are used to minimize power consumption and maximize coverage probability. It

is possible to shut down (put to sleep) MBSs or small-cell BSs on the unshared

resources. In this section, we will first formulate and solve the optimization problems

for the two cases separately. Then we give a discussion of how to determine which

of the two cases should be used.

2.4.1 Case 1: Unshared Resources Allocated to MBSs

By optimizing over the resource sharing fraction ⌘ and user association

threshold B
1

, we can reduce the network power consumption Pt1

net

and improve

user coverage P
c

. The values of ⌘ and B
1

should satisfy the minimum throughput

constraints expressed in (2.18). Hence, a feasible (⌘,B
1

) set F
1

can be described by

F
1

= {(⌘,B
1

) s.t. ⌘WP
1

log
2

(1 +⌥) � C
1

N̄
1

,

⌘WP
2

log
2

(1 +⌥) � C
2

N̄
2

,

(1� ⌘)WP
D1

log
2

(1 +⌥) � C
1

N̄
D1

,

B
1

> B
2

} . (2.19)

We can rewrite F
1

as {(⌘,B
1

)|max {⌘
1

(B
1

), ⌘
2

}  ⌘  ⌘
D1

(B
1

),B
1

> B
2

},

where ⌘
1

(B
1

) = C
1

¯

N

1

WP
1

log

2

(1+⌥)

is the minimum resource percentage required to serve U
1

users in each cell. Similarly, ⌘
2

= C
2

¯

N

2

WP
2

log

2

(1+⌥)

is the minimum fraction of resources

that should be allocated to U
2

users to achieve the target rate. Finally, ⌘
D1

(B
1

) =

1� C
1

¯

N

D1

WP
D1

log

2

(1+⌥)

is derived from U
D1

user rate requirements.

The feasible region F
1

is non-empty if and only if the upper bound ⌘
D1

(B
1

) is

bigger than the lower bounds ⌘
1

(B
1

) and ⌘
2

. Since ⌘
1

(B
1

) and ⌘
D1

(B
1

) are functions

of B
1

, a feasible set for B
1

can be derived. The feasible values of B
1

must satisfy
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both

⌘
D1

(B
1

) � ⌘
1

(B
1

) (2.20)

and ⌘
D1

(B
1

) � ⌘
2

. (2.21)

Let M
1

denote the set of B
1

values that satisfies ⌘
D1

(B
1

) � ⌘
1

(B
1

). By finding

the first order derivative of ⌘
1

(B
1

), we can get d⌘
1

(B

1

)

dB

1

 0 and hence, ⌘
1

(B
1

) is a

non-increasing function of B
1

. However, ⌘
D1

(B
1

) is not necessarily monotonic, since

the sign of
d⌘

D1(B

1

)

dB

1

depends on the value of other parameters (node density, transmit

power, SIR threshold, etc.). Thus, a method is proposed as follows to determine the

set M
1

.

Corollary 2.4.1. The range of B
1

values that satisfies ⌘
D1

(B
1

) � ⌘
1

(B
1

) is the set

M
1

= {B
1

|B
1

� b
1

}, where b
1

is given by

1. b
1

= 1, if lim
x!1

⌘
D1

(x) < lim
x!1

⌘
1

(x).

2. b
1

= B
2

, if lim
x!B

2

⌘
D1

(x) � lim
x!B

2

⌘
1

(x).

3. b
1

is the single root of ⌘
D1

(x) � ⌘
1

(x) = 0, if lim
x!B

2

⌘
D1

(x) < lim
x!B

2

⌘
1

(x) and

lim
x!1

⌘
D1

(x) � lim
x!1

⌘
1

(x).

Proof. Please see Appendix A.

Constraint ⌘
D1

(B
1

) � ⌘
2

defines another range of B
1

, which is denoted by M
2

.

To find M
2

, we first let x = B
2

↵

1

. Then, ⌘
D1

(B
1

) � ⌘
2

can be rewritten in terms of x

using Lemma 2.3.1, Lemma 2.3.2 and (2.16). As the derivation is tedious, we only

give the final result as follows:

ux2 + vx+ w  0, (2.22)
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where the coe�cients u, v and w are

u = q
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�
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+ �

2
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◆
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✓
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1
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2

qB

2

↵

2

◆

w = (1 + ⇢ (⌥,↵))

2

4

0

@

1 +

1.28�

u

�

1

+ �

2

qB

2

↵

2

1
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�

2

1

� 1.28�
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�

1

3

5�
�

2

1

(1� ⌘

2

)

✓

�

1

+ �

2

qB

2

↵

2

◆

Z

0

✓

�

1

(1 + ⇢ (⌥,↵)) + �

2

qB

2

↵

2

◆

,

where Z
0

= C
1

W log

2

(1+⌥)

and q =
⇣

S

2

S

1

⌘

2

↵

.

Let the solution set of x for (2.22) be X . The following results can be used to

determine X .

Corollary 2.4.2. The set X is determined according to the sign of u as follows.

1. u > 0: If v2 � 4uw < 0, X = ;. Otherwise, X =
n

x : �v�
p
v2�4uw
2u

 x  �v+
p
v2�4uw
2u

o

.

2. u < 0: If v2 � 4uw < 0, X = R. Otherwise, X =
n

x : x  �v�
p
v2�4uw
2u

, x � �v+
p
v2�4uw
2u

o

.

3. u = 0: If v > 0, X =
�

x : x  �w
v

 

. If v < 0, X =
�

x : x � �w
v

 

.

Since the expressions of u, v and w are known, X for specific parameter settings

can be derived using Corollary 2.4.2. Then using the relation x = B
2

↵

1

, we obtain

the feasible set M
2

for constraint (2.21) from X . The feasible set of B
1

satisfying

both (2.20) and (2.21) is finally M
1

T

M
2

.

With the feasible sets of ⌘ and B
1

determined, the energy reduction problem

can be stated as

(P1a) : minimize
(⌘,B

1

)2F
1

Pt1

net
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Since Pt1

net

= �
1

[a
M

S
1

W + b
M

] + ⌘�
2

[a
sc

S
2

W + b
sc

] increases with ⌘, problem

(P1a) is solved at the minimum ⌘ in F
1

, i.e. ⌘⇤ = max {⌘
1

(B⇤
1

), ⌘
2

}, where (⌘⇤,B⇤
1

)

is the globally optimal solution of (P1a). Using the expressions of Aj and Pj (j 2

{1, 2,D1}), the following results are derived:

Theorem 2.4.1. When UEs in U
D

are served by the MBSs, ⌘⇤ and B⇤
1

are given by

the following expressions. For simplicity, we denote max
x2M

1

T
M

2

(x) by b
2

.

1. If M
1

T

M
2

6= ; and b
2

< 1, ⌘⇤ = ⌘
2

= C
2

¯

N

2

WP
2

log

2

(1+⌥)

and B⇤
1

can take any

value in the set M
1

T

M
2

that satisfies ⌘
1

(B⇤
1

)  ⌘
2

. In other words, Pt1

net

is

a constant for all values of B
1

in this range. The optimal power consumption

per unit area is Pt1⇤
net

= �
1

[a
M

S
1

W + b
M

] + ⌘
2

�
2

[a
sc

S
2

W + b
sc

].

2. If M
1

T

M
2

6= ; and b
2

= 1, MBSs and small-cell BSs occupy orthogonal

resources, i.e. a fully unshared scheme is used. The optimal B⇤
1

= 1

and ⌘⇤ = C
2

¯N
2

WP log

2

(1+⌥)

with P =
�
1

+

⇣
B

2

S

2

S

1

⌘ 2

↵

�
2

�
1

+[1+⇢(⌥,↵)]�
2

⇣
B

2

S

2

S

1

⌘ 2

↵

. The minimum power

consumption per unit area in this case is Pt1⇤
net

= (1 � ⌘⇤)�
1

[a
M

S
1

W + b
M

] +

⌘⇤�
2

[a
sc

S
2

W + b
sc

].

3. If M
1

T

M
2

= ;, resource partitioning is infeasible. In this case, if throughput

constraints in sets U
1

and U
2

can be satisfied with ⌘ = 1 and B
1

= B
2

, then the

fully shared scheme is feasible and Pt1⇤
net

= �
1

[a
M

S
1

W + b
M

]+�
2

[a
sc

S
2

W + b
sc

].

Otherwise, the network cannot support the given rate requirement.

Proof. Firstly, we consider the case M
1

T

M
2

6= ;. According to the discussion

above Corollary 2.4.1, ⌘
1

(B
1

) decreases as B
1

increases. Thus, ⌘⇤ is the larger

of ⌘
1

(b
2

) and ⌘
2

, where b
2

= max
B

1

2M
1

T
M

2

(B
1

). From Corollary 2.4.1, M
1

=

{B
1

|B
1

� b
1

}. Hence, the value of b
2

is determined by constraint (2.21). We can

conclude that ⌘
D1

(b
2

) = ⌘
2

, when b
2

< 1. In addition, quantity b
2

also satisfies

constraint (2.20) where ⌘
D1

(b
2

) � ⌘
1

(b
2

). Thus, it can be shown that ⌘
1

(b
2

)  ⌘
2

for all b
2

< 1 and the minimum ⌘ therefore equals ⌘
2

. Secondly, if b
2

= 1 is

feasible, all the UEs with required rate C
1

can be served by MBSs on the unshared
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resources (i.e. B
1

= 1). The two tiers of base stations will not cause inter-tier

interference to each other. For small-cell BSs, the coverage probability P is derived

in [81] and hence the minimum required resource fraction ⌘⇤ equals C
2

¯

N

2

WP log

2

(1+⌥)

. In

that case, a fully unshared allocation scheme is used to achieve a minimum power

consumption Pt1⇤
net

= (1� ⌘⇤)�
1

[a
ma

S
1

W + b
ma

] + ⌘⇤�
2

[a
sm

S
2

W + b
sm

]. Thirdly, it is

possible that no feasible region exists for B
1

, i.e. M
1

T

M
2

= ;. In that scenario,

resource partitioning cannot be applied on the network with the given parameter

settings. Instead, MBSs and small-cell BSs should adopt the fully shared scheme to

allocate the resources.

As shown in Theorem 2.4.1, when resource partitioning is feasible (results 1

and 2 in Theorem 2.4.1), the optimal ⌘ that minimizes network power consumption

is determined by the small-cell user’s throughput constraint. Furthermore, if all the

macro users can be served on the unshared resources, which is the second result in

Theorem 2.4.1, we can let MBSs and small-cell BSs operate on orthogonal resources

to completely eliminate inter-tier interference.

According to our user rate definition, the average user throughput T̄j is

approximated by P
j

¯

N

j

Wj log
2

(1 + ⌥), where Pj is the average probability of set Uj

users’ SIR exceeding the target value ⌥, i.e. the event that these users are served.

Additionally, as can be seen from Theorem 2.4.1, when the optimal ⌘⇤ = ⌘
2

, B⇤
1

takes any value in the set M
1

T

M
2

that satisfies ⌘
1

(B⇤
1

)  ⌘
2

. Thus, there exist

more than one B⇤
1

values that solve Problem (P1a). By further taking coverage

maximization into account we can now determine a unique optimal value of B
1

.

The coverage maximization problem is

(P1b) : maximize
(⌘,B

1

)2F
1

P
c

.

From (2.14), the overall coverage probability P
c

only depends on B
1

and is a

non-decreasing function of B
1

. As a result, to solve (P1b), we simply select the

maximum value of B
1

from its feasible range. Based on the discussion in the proof
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of Theorem 2.4.1, the optimum ⌘ for (P1a) can also be achieved when B
1

takes the

biggest value in its feasible set M
1

T

M
2

. Thus, we can simultaneously minimize

the network power consumption and maximize UE coverage probability for Case

1 (using MBSs to serve UEs in U
D

). When resource partitioning is feasible, the

optimal B⇤
1

is B⇤
1

= max
x2M

1

T
M

2

(x) and ⌘⇤ is obtained using Theorem 2.4.1.

2.4.2 Case 2: Unshared Resources Allocated to Small-Cell

BSs

Similar to the analysis for Case 1, a feasible (⌘,B
1

) set F
2

can be

determined using the minimum throughput constraints for UEs in U
1

, U
2

and

U
D2

. Since small-cell BSs are activated on the unshared resources, we have the

throughput constraint (1 � ⌘)WP
D1

log
2

(1 +⌥) � C
1

N̄
D1

in (2.19) replaced by

(1� ⌘)WP
D2

log
2

(1 +⌥) � C
1

N̄
D2

. The throughput constraints for UEs in U
1

and

U
2

remain the same as those in (2.19). Thus, the feasible set F
2

is derived as

F
2

= {(⌘,B
1

) s.t. ⌘WP
1

log
2

(1 +⌥) � C
1

N̄
1

,

⌘WP
2

log
2

(1 +⌥) � C
2

N̄
2

,

(1� ⌘)WP
D2

log
2

(1 +⌥) � C
1

N̄
D2

,

B
1

> B
2

} , (2.23)

The set F
2

is re-expressed as {(⌘,B
1

)|max {⌘
1

(B
1

), ⌘
2

}  ⌘  ⌘
D2

(B
1

),B
1

>

B
2

} with ⌘
1

(B
1

) = C
1

¯

N

1

WP
1

log

2

(1+⌥)

, ⌘
2

= C
2

¯

N

2

WP
2

log

2

(1+⌥)

and ⌘
D2

(B
1

) = 1� C
1

¯

N

D2

WP
D2

log

2

(1+⌥)

.

The feasible set of B
1

is determined by

⌘
D2

(B
1

) � ⌘
1

(B
1

), ⌘
D2

(B
1

) � ⌘
2

. (2.24)

The procedure for finding the feasible set is similar to that in Case 1. From

constraints in (2.24), two sets M0
1

and M0
2

can be respectively found. The ⌘ upper

bound ⌘
D2

is a monotonically decreasing function of B
1

, unlike in Case 1 where the
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monotonicity of ⌘
D1

depends on specific parameter settings. Hence, finding M0
1

and

M0
2

is much easier for Case 2. Specifically, M0
1

= {b0
1

 B
1

} and M0
2

= {B
1

 b0
2

},

where b0
1

can be obtained by applying Corollary 2.4.1 with minor modifications and

b0
2

is given as

1. b0
2

= 0, if lim
x!B

2

⌘
D2

(x) < ⌘
2

.

2. b0
2

= 1, if lim
x!1

⌘
D2

(x) > ⌘
2

.

3. Otherwise, the value of b0
2

is obtained by solving ⌘
D2

(x)� ⌘
2

= 0.

The feasible range of B
1

is then M0
1

\M0
2

= {b0
1

 B
1

 b0
2

}. Similarly, the energy

reduction and coverage improvement problems for Case 2 can be stated as

(P2a) : minimize
(⌘,B

1

)2F
2

Pt2

net

, (P2b) : maximize
(⌘,B

1

)2F
2

P
c

.

The optimal (⌘⇤,B⇤
1

) for (P2a) and (P2b) are denoted as (⌘⇤a,B
⇤
1a) and (⌘⇤b ,B

⇤
1b),

respectively.

As discussed for (P1a), solving (P2a) is equivalent to minimizing the term

max
B

1

2M0
1

T
M0

2

(⌘
1

(B
1

), ⌘
2

). The optimal solution for (P2a) is given in the following

theorem. Due to its similarity to Theorem 2.4.1, we omit the proof of it.

Theorem 2.4.2. When UEs in U
D

are served by the small-cell BSs, the optimal ⌘⇤a

and B⇤
1a for (P2a) are found from the intersection of feasible sets M0

1

and M0
2

.

1. If M0
1

T

M0
2

6= ; and b0
2

< 1, the optimal ⌘⇤a for (P2a) equals ⌘
2

, and B⇤
1a can

take any value in the set M0
1

T

M0
2

that satisfies ⌘
1

(B⇤
1a)  ⌘

2

. The optimal

power consumption per unit area is calculated as Pt2⇤
net

= ⌘
2

�
1

[a
M

S
1

W + b
M

] +

�
2

[a
sc

S
2

W + b
sc

].

2. If M0
1

T

M0
2

6= ; and b0
2

= 1, all the UEs can be served by small-cell BSs, i.e.

turning down MBSs on all resources, and Pt2⇤
net

= �
2

[a
sc

S
2

W + b
sc

].

3. If M0
1

T

M0
2

= ;, resource partitioning is infeasible. In that case, if the

fully shared scheme is feasible, ⌘ = 1 and Pt2⇤
net

= �
1

[a
M

S
1

W + b
M

] +
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�
2

[a
sc

S
2

W + b
sc

]. Otherwise, the network cannot support the given rate

requirement.

Similar as Theorem 2.4.1, Theorem 2.4.2 shows that the optimal ⌘ that

minimizes network power consumption for Case 2 is also determined by the small-cell

user throughput constraint. However, result 2 in Theorem 2.4.2 is di↵erent from that

in Theorem 2.4.1. With macro users o✏oaded to the nearest small-cells in this case,

if B
1

= 1 is feasible, we can use only small-cells to serve all users and mute all the

MBSs to minimize the network power.

Optimizing coverage probability is not as straightforward in Case 2 as in Case 1.

Two results are given below to solve (P2b). Firstly, when all the users are served by

small-cell BSs, the macro tier can be completely muted on all the resources. Then

the overall coverage probability is denoted as P1. Referring to the derivation of

coverage probability for homogeneous networks in [26], we can obtain P1 = 1

1+⇢(⌥,↵)
.

The second result is summarized in the following lemma.

Lemma 2.4.1. With resource partitioning adopted, the overall coverage probability

is calculated using (2.14) as P
c

=
P

j2{1,2,D2}
PjAj. If there exists a B

c

that satisfies

1

�
1

+ (1 + ⇢(⌥,↵))�
2

⇣

S

2

B

c

S

1

⌘

2

↵

=
(B

c

/(⌥+ B
c

))
1

2

�
1

(1 + ⇢(⌥,↵)) + �
2

⇣

S

2

B

c

S

1

⌘

2

↵

⇣

1 + ⇢( ⌥

B

c

,↵)
⌘

,

(2.25)

the coverage probability P
c

is a unimodal function with its maximum value achieved

at B
1

= B
c

. Otherwise, P
c

is monotonic in B
1

.

Proof. Please refer to Appendix B.

Based on Lemma 2.4.1, the optimal B
1

= b
0

that maximizes P
c

=
P

j2{1,2,D2}
PjAj

can be found within the feasible range b0
1

 B
1

 b0
2

. The value of b
0

is determined

as

1. If B
c

 b0
1

, b
0

= b0
1

.
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2. If b0
1

< B
c

 b0
2

, b
0

= B
c

.

3. If B
c

> b0
2

, b
0

= b0
2

.

4. If B
c

does not exist, b
0

= arg
{b0

1

,b0
2

}
maxP

c

.

Note that when b0
2

= 1, the network becomes homogeneous and there is a

sudden change from P
c

to P1. Therefore, when b0
2

= 1 the optimal B⇤
1b for (P2b)

is selected from b
0

and 1 that maximizes P
c

. Finding the optimal B
1b

⇤ and ⌘⇤b for

(P2b) is summarized in the following theorem.

Theorem 2.4.3. When UEs in U
D

are served by the small-cell BSs and M0
1

T

M0
2

6=

;, the optimal ⌘⇤b and B⇤
1b for (P2b) are

1. B⇤
1b = b

0

and ⌘⇤b = max{⌘
1

(b
0

), ⌘
2

}, when b0
2

< 1.

2. B⇤
1b = b

0

and ⌘⇤b = max{⌘
1

(b
0

), ⌘
2

}, when b0
2

= 1 and P
c

|
B

1

=b
0

� P1.

3. B⇤
1b = 1 and the network is homogeneous consisting of only small-cell BSs,

when b0
2

= 1 and P
c

|
B

1

=b
0

< P1.

With the user association bias B
1

set to its optimal value that maximizes overall

coverage probability, the corresponding resource partitioning fraction factor ⌘ that

achieves the minimum network power consumption is determined in Theorem 2.4.3.

The optimal values (⌘⇤b ,B
⇤
1b

) determined by Theorem 2.4.3 may not equal to the

optimal values (⌘⇤a,B
⇤
1a

) obtained using Theorem 2.4.1. Therefore, solving the power

minimization problem (P2a) and the coverage maximization problem(P2b) for Case

2 may not always give the same solutions.

2.4.3 Additional Comments

In the above two subsections, we showed how to find the optimal user association

for load adaptation and resource allocation schemes in Case 1 and Case 2. According

to the discussion for Case 1, the minimum power consumption per unit area and

maximum overall network coverage probability can be achieved simultaneously,
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where B⇤
1

= max
x2M

1

T
M

2

(x) and ⌘⇤ is obtained using Theorem 2.4.1. In Case 2,

however, the optimum power consumption and coverage probability may be achieved

at di↵erent (⌘,B
1

) pairs. In other words, problems (P2a) and (P2b) do not always

have a common solution. The optimal (⌘⇤a,B
⇤
1a) for (P2a) and (⌘⇤b ,B

⇤
1b) for (P1b) are

given in Theorems 2.4.2 and 2.4.3, respectively.

Whether to assign the unshared resources to the MBSs (Case 1) or to

the small-cell BSs (Case 2) thus depends on the relative importance of power

consumption and network coverage. To find the optimal (⌘,B
1

) that minimizes

network power consumption, we can first solve (P1a) and (P2a) separately and then

choose the smaller optimal power. Similarly, for maximizing network coverage, we

can find the optimal coverage probabilities derived from (P1b) and (P2b) and then

choose the better one.

We can extend the analysis to a more general case, where the unshared resources

allocated to user set U
D

are further divided into two parts. The MBSs could have

exclusive access to one part of the unshared resources, while the small-cell BSs have

exclusive access to the other. MBSs and small-cell BSs can jointly access the shared

resources as before. The problems discussed in the above sections are special cases of

this general model. According to Theorems 2.4.1 and 2.4.2, it can be concluded that

when resource partitioning is feasible the optimal resource sharing factor ⌘ equals

⌘
2

. Note that the value of ⌘
2

is the percentage of resources allocated to UEs in U
2

to achieve their target rate. As the expression ⌘
2

= C
2

¯

N

2

WP
2

log

2

(1+⌥)

below (2.19) shows,

⌘
2

only depends on B
2

. Similarly, for the general case, the optimal ⌘ for feasible

resource partitioning only depends on B
2

. Therefore, with fixed B
2

, we only need to

consider the problem of resource allocation and user association within the user set

U
D

. Since there is no inter-tier interference in U
D

, this problem can be solved using

the method proposed in [81] with minor changes.
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2.5 Numerical Results

In this section, numerical results are provided to verify the analytical results

derived in the above section. The bandwidth and base station transmit power

spectral density are set as follows: W = 10 MHz, S
1

= 2 ⇥ 10�3 mW/Hz and

S
2

= 1 ⇥ 10�4 mW/Hz. According to this parameter setting, the transmit power

of MBS is upper bounded by 20 W and the transmit power of small-cell BS is no

larger than 100 mW, which are valid assumptions according to [79]. In simulation,

the assumed PL model has parameters ↵ = 3.8 and K = �30 dB. These parameters

have been shown to model the practical PL environment well [83].

According to our resource partitioning and user allocation policy, MBSs and

small-cell BSs use the shared ⌘ fraction of resources to serve users in U
1

and U
2

,

respectively. When Case 1 is considered, small-cell BSs are switched to sleep mode

on the unshared resources and only MBSs transmit to the U
D1

users. On the other

hand, in Case 2, users who have been allocated the unshared resources are served

by small-cell BSs. In this scenario, MBSs are muted on the unshared resources. The

e↵ects of association bias B
1

on the size of user set Uj (j 2 {1, 2,D1,D2}) can be

found in Section 2.2.1.

In Fig. 2.2, user density �
u

and base station density �
1

, �
2

are set as �
u

=

15�
1

= 3�
2

= 15

500

2⇡
units/m2. These settings mean that MBSs have on average

500 m coverage radius, and an average of 4 small-cells and 20 UEs are within the

coverage of each MBS. The value of B
2

is fixed at 1 (0 dB). The SIR threshold

⌥ = 0.5 and small-cells need at least 30% of the resources to support the required

rate for UEs in U
2

(i.e., ⌘
2

= 0.3, where ⌘
2

= C
2

¯

N

2

WP
2

log

2

(1+⌥)

has been defined below

(2.19)). In Fig. 2.2 (a), we show how the boundaries of ⌘ (⌘
1

(B
1

), ⌘
D1

(B
1

) and ⌘
2

)

change with B
1

in Case 1. The upper bound ⌘
D1

(B
1

) and the two lower bounds

⌘
1

(B
1

) and ⌘
2

are derived from the feasible (⌘,B
1

) set F
1

in (2.19). According to

(2.20) and (2.21), the feasible range of B
1

is the one that makes F
1

non-empty. By

comparing the ⌘ bounds in Fig. 2.2 (a) we can get the feasible B
1

range, which

is [3.97, 16.93] dB, and we highlight this interval in bold on the x-axis for clarity.
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With the feasible B
1

set determined, we are able to apply Theorem 2.4.1 to find the

minimum power consumption for Case 1. From Theorem 2.4.1, the minimum ⌘ is

selected to minimize Pt1

net

. According to Fig. 2.2 (a), ⌘
1

(B
1

) > ⌘
2

for B
1

< 12.96

dB (indicated by pentagram) and ⌘
1

(B
1

)  ⌘
2

otherwise. Since ⌘
2

is independent of

B
1

, the minimum power consumption is achieved at ⌘ = ⌘
2

with B
1

2 [12.96, 16.93]

dB. From the discussion under Theorem 2.4.1, we know that the overall coverage

probability P
c

for Case 1 is a non-decreasing function of B
1

, as shown in Fig. 2.2 (b).

It can be observed from Fig. 2.2 (b) that the optimum overall coverage probability

is achieved at the maximum value of B
1

within its feasible range determined in Fig.

2.2 (a).

Under the same parameter settings, a similar analysis is adopted for Case 2 to

determine the feasible range of B
1

and the maximum achievable coverage probability

as shown in Fig. 2.3 (a) and Fig. 2.3 (b). From Fig. 2.3 (a), we can know that

the feasible interval for B
1

is [1.38,1) dB. By setting B
1

to infinity, we can have all

MBSs muted and all UEs served by small-cells so that the network is homogeneous

and consumes the least amount of energy. However, as shown in Fig. 2.3 (b),

the overall coverage probability P
c

for Case 2 is not an increasing function of B
1

.

When B
1

= 1, the coverage probability is denoted as P1, which is smaller than

the maximum P
c

achieved at B
c

(5.86 dB). Therefore, a tradeo↵ between reducing

energy consumption and improving coverage probability exists in Case 2.

Fig. 2.4 and Fig. 2.5 are obtained by changing ⌥ from 0.5 to 10. Similarly,

the feasible range of B
1

is [7.73, 10.31]
S

[17,1] dB for Case 1 and [2.57, 16.16] dB

for Case 2. From Fig. 2.4 (a), we note that B
1

can be set to 1 for Case 1, which

means fully unshared resource allocation is adopted and the minimum amount of

power is consumed. With B
1

= 1, Fig. 2.4 (b) shows that the overall coverage

probability achieves the maximum value at B
1

= 1. Specifically, in Fig. 2.4 (b)

we denote the value of Pc at B
1

= 1 as P1. Using the analysis in [81], we have

P1 = �
1

�
1

[1+⇢(⌥,↵)]+�
2

⇣
B

2

S

2

S

1

⌘ 2

↵

+

⇣
B

2

S

2

S

1

⌘ 2

↵

�
2

�
1

+[1+⇢(⌥,↵)]�
2

⇣
B

2

S

2

S

1

⌘ 2

↵

. In Fig. 2.5 (a), the feasible

B
1

is upper bounded by 16.6 dB for Case 2. In that scenario, we cannot mute
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Figure 2.2: E↵ects of B
1

on ⌘ and overall coverage probability Pc with SIR threshold
⌥ = 0.5 for Case 1. The thick horizontal lines in the figures indicate the feasible
ranges of B

1

.
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all the MBSs. According to Theorem 2.4.2, we can draw the conclusion that the

minimum power consumption for Case 2 is achieved when B
1

2 F
2

and ⌘
1

(B
1

)  ⌘
2

,

which is reflected in Fig. 2.5 (a) as the highlighted range B
1

2 [8.69, 16.16] dB.

Furthermore, the value of B
c

(8.9 dB) that maximizes P
c

in Fig. 2.5 (b) also lies

within this interval. Thus, for the parameter settings in Fig. 2.4 and Fig. 2.5, the

minimum power consumption and maximum coverage probability will be achieved

simultaneously for both Case 1 and Case 2. From the discussions of Fig. 2.2 –

Fig. 2.5, we can conclude that the feasible ranges of B
1

depend on the values of

other parameters (in this case the parameter is ⌥). It also supports our claim in

Section 2.4.3 that simultaneously achieving the minimum power consumption and

maximum coverage probability is always valid for Case 1 but cannot be guaranteed

for Case 2.

According to Lemma 2.3.1 and Lemma 2.3.2, the population of user set Uj has

a great e↵ect on our decision of selecting the optimal resource allocation and user

association schemes. Since B
2

and base station density ratio �
2

�
1

are the two key

factors, we show how the optimal scheme varies with B
2

and �
2

�
1

in Fig. 2.6 and

Fig. 2.7, respectively. In those figures, we set ⌥ = 0.5, �
1

= 1

500⇡2

units/m2 and

the required rates are C
1

= 300 kbps and C
2

= 900 kbps. The value of B
2

varies

from -2 dB to 4 dB and �
2

�
1

= 5 in Fig. 2.6. On the other hand, B
2

is fixed at 1 and

�
2

�
1

2 [3.5, 10] in Fig. 2.7. Recalling the four optimization problems (P1a), (P1b),

(P2a) and (P2b) in Section 2.4, di↵erent optimal (⌘,B
1

) pairs are found accordingly.

Each optimal (⌘,B
1

) pair individually results in its power consumption and coverage

probability. From Theorems 2.4.1 and 2.4.2, there may exist more than one value

of B
1

that minimizes network power for (P1a) and (P2a). Thus, for each of these

two problems we select the B
1

from the optimal values, which achieves the highest

coverage probability.

The power consumptions and coverage probabilities of problem (P1a), (P1b),

(P2a) and (P2b) are compared with respect to B
2

in Fig. 2.6. According to Section

2.2.1, B
2

controls the population in user classes with required rates C
1

and C
2

. As
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Figure 2.4: E↵ects of B
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on ⌘ and overall coverage probability Pc with SIR threshold
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.
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B
2

increases, more users will be served at rate C
2

by small-cell BSs. Hence, the size

of set U
2

grows, which is reflected by a larger value of A
2

. On the other hand, due to

the limited transmit power of small-cell BSs and path loss e↵ect, the average distance

of UEs in U
2

increases with B
2

, resulting in a decrease in P
2

. In order to achieve the

throughput requirements, the value of ⌘ is raised to allocate more resources to UEs in

U
2

. Since the network power consumption grows with ⌘, the curves in Fig. 2.6 (a) all

increase with B
2

. From the previous discussion we know that power minimization

and coverage maximization can be achieved at the same (⌘,B
1

) pair in Case 1.

Therefore, the power consumption in Fig. 2.6 (a) and coverage probability in Fig.

2.6 (b) are the same for the crossed- and x-labeled lines. In these two curves, the

fraction ⌘ of the resources shared with small-cell BSs increases with B
2

. For Case 2,

however, the power minimization and coverage maximization are not guaranteed to

be achieved simultaneously. In Fig. 2.6 (a), when B
2

< 1.19 dB the optimal energy

saving scheme is obtained by setting B
1

= 1, which means using only small-cell

BSs to serve all the UEs. However, the coverage optimal strategy is to allow MBSs

stay awake on some shared fraction of resources (the coverage performance can be

seen in Fig. 2.6 (b)). For B
2

exceeds 1.19 dB, to serve UEs at required rate C
2

consumes too many resources that makes muting all MBSs impossible. Thus, MBSs

are awakened on the shared resources and a sudden change is observed at B
2

= 1.19

dB for the Case 2 minimum power curve and maximum coverage probability curve

in Fig. 2.6 (a) and Fig. 2.6 (b) respectively.

In Fig. 2.7, we show how power consumption and coverage probability change

with the number of small-cell BSs. The analyses for Fig. 2.7 (a) and 2.7 (b) are

similar to those for Fig. 2.6 (a) and 2.6 (b). Due to the limited coverage area of

small-cell BSs, when the ratio of �
2

�
1

is low, only a small group of UEs associate

with small-cell BSs and therefore resource sharing is required. However, when the

number of small-cells is su�ciently high, we can either adopt fully unshared resource

allocation in Case 1 (�2

�
1

> 7.99) or mute all MBSs in Case 2 (�2

�
1

> 4.75). As observed

from Fig. 2.6 and Fig. 2.7, choosing Case 1 will generally consume higher energy
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2

on (a) network power consumption and (b) coverage
performance.
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than choosing Case 2 due to the lower energy consumption of small cells. However,

in terms of coverage maximization, Case 1 may outperform Case 2 at most of the

points in Fig. 2.6 and 2.7. This is because the signal received by small-cell edge

users is low in strength and thus reduces the coverage probability.

Although a stochastic geometry model that assumes purely random network

deployment is adopted in this chapter, the derived results still give practical

guidelines for real network designs. In practical network designs, MBSs could gather

the load information of the small-cells within their coverage areas and then determine

the optimal association bias B
1

⇤ and the resource partitioning factor ⌘⇤ using the

theorems proposed in Section 2.4 for both Case 1 and Case 2. If Case 1 gives a

better performance in terms of power consumption or user coverage than Case 2

does, a 1� ⌘⇤ fraction of the resources is used by only MBSs, and the small-cell BSs

are notified to go to sleep mode on these resources. Otherwise, the MBSs are muted

on the unshared resources. The association biases are then transmitted to the users

through the control channel so that each user can determine which tier to associate

with and which set of resource elements will be used.

2.6 Conclusion

In this chapter, we provided a theoretical framework to study resource

partitioning and load adaptation strategies in two-tier HCNs. Using stochastic

geometry, closed-form expressions of coverage probability and average user

throughput were obtained for each user set. The minimization of average base

station power consumption and maximization of overall coverage probability with

given throughput constraints were formulated separately. Optimal solutions were

found by finding feasible sets of association bias factor B
1

and resource partition

fraction ⌘. Numerical results verified that the proposed optimal resource allocation

strategy helps in reducing network power consumption and improving user coverage.
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Figure 2.7: E↵ects of base station densities on (a) network power consumption and
(b) coverage performance.
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Chapter 3

Power Saving Design of Femtocell
Exclusion Zones

3.1 Introduction

In Chapter 2, we investigated resource partitioning coupled with cell load

adaptation to reduce HCN power consumption by muting base stations on the

partitioned resources. In this chapter, we elaborate on a femtocell network and

study a more challenging HCN power minimization problem based on designing

exclusion zones which are circular shaped areas deployed around the femtocells.

During solving this problem, resource partitioning and user association are jointly

investigated and MBS transmit power varied with cell load is considered.

The main purpose of using exclusion zones is to eliminate simultaneous

transmissions by base stations that cause severe interference to each other. Based

on stochastic geometry modelling, several kinds of exclusion zones were proposed

for HCN uplinks [84] and downlinks [29, 31, 77, 85]. The user outage probability

and spectral e�ciency were characterized with closed-form expressions in these

works. However, the works in [29, 31, 84, 85] did not investigate the optimal

design of exclusion zones to improve network energy e�ciency. In [77], an

energy-e�cient design method was proposed for exclusion zones in a two-tier HCN,

where any two small-cells located within a separation distance were not allowed

to transmit simultaneously. Based on stochastic geometry analysis, the optimal

separation distance, i.e. the radius of the exclusion zone, that minimized network

power consumption was determined in [77]. Nevertheless, inter-tier interference
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mitigation was not discussed and the base station transmit power was assumed to

be independent of the cell load in [77]. It is shown that adaptively changing the

transmit power of base stations according to cell load and user QoS may bring about

additional performance gain [86–89], and therefore must be an important aspect

of the energy-e�cient HCN design. In [86], an uplink power control scheme was

proposed to mitigate aggregated interference in femtocell networks. The design of

HCN downlink power control schemes were investigated in [87,88] to correspondingly

reduce network power consumption and improve throughput. In [89], a downlink

transmit power control scheme was proposed in femtocell networks with exclusion

zones to help users achieve outage probability requirements. However, transmit

power adaptation algorithms in [86–89] were heuristic and analytically intractable.

Therefore, a tractable framework that considers energy-e�cient exclusion zone

design together with adaptive transmit power control for HCNs is desired.

To address the above mentioned problems, we propose an exclusion zone design

strategy in a two-tier system consisting of single MBS and multiple femtocells.

According to [90,91], there are two kinds of access control mechanisms for femtocells,

namely closed access and open access. For femtocells operating in closed access,

only femto users can access the fBSs and macro users can only be served by the

MBSs. For open access femtocells, a fBS can communicate with the macro users

as long as the users are within the femtocell coverage. Therefore, for femtocells

working under closed and open access modes, we correspondingly let macro users

in the exclusion zones be served by the MBS and fBSs on inter-tier interference-free

sub-bands. In this chapter, we propose a circular shaped exclusion zone model,

which results in a user association rule di↵erent from the one based on the biased

downlink average received power used in Chapter 2 and many other works [63,81,92].

Using the proposed exclusion zone model, stochastic geometry analysis is adopted

to characterize cell loads and coverage probabilities in closed-form expressions.

Additionally, we allow the MBS to adapt the transmit power according to its cell

load and optimally design the exclusion zone size and allocated bandwidth, which
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minimize the MBS power consumption.

The remainder of this chapter is structured as follows. The system model is

described in Section 3.2, where the exclusion zone deployment and corresponding

user association schemes are discussed. Based on the proposed exclusion zone

model, we characterize cell load as well as success probability in Section 3.3. In

Section 3.4, we formulate and solve the optimization problem that minimizes the

MBS’s transmit power by designing the size of exclusion zones and the partitioned

bandwidth. Numerical results are given and discussed in Section 3.5. Finally, Section

3.6 concludes this chapter.

3.2 System Model

3.2.1 Base Station Deployment and Channel Model

In this chapter, we consider a system with one circular macrocell of radius R
M

and multiple femtocells within it, which has also been used in [85, 93, 94]. This

is a reasonable approximation if we assume orthogonal channel allocations among

neighbouring macrocells, which limits macro-macro interference levels and hence

allows each macrocell to be treated in isolation. We assume the MBS is at the

origin and label it as the transmitter (Tx) node 0. Femtocells are assumed to be

installed and powered on randomly by end-users, and therefore fBSs operating on

the MBS’s channels are modelled as an HPPP �
f

with intensity �
f

. The femtocells

are labeled as {1, 2, 3, . . . }. Each femtocell coverage area is a circle with radius R
f

centered on the fBS. Without loss of generality, fBS 1 is assumed to be the nearest

fBS to the typical user i and the distance between fBS 1 and user i is denoted as

di,1. We define

8

<

:

if di,1 < R
f

, user i is a femto user;

if di,1 � R
f

, user i is a macro user.
(3.1)
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Within the coverage of fBSs, femto users are uniformly deployed with intensity

�f

u

. The macro users with intensity �M

u

are randomly located outside the coverage of

femtocells following an uniform distribution. Note that the deployment of femtocells

aims to improve QoS for indoor users [95]. Therefore, for simplicity, we assume all

femto users are located indoors and all macro users are located outdoors in this

chapter.

Let P
M

and P
f

be the transmit power of MBS and fBS, respectively. In the

following analysis, we assume that the MBS adjusts its transmit power P
M

according

to the cell load while the fBSs transmit at constant power P
f

. The justifications of

this assumption are as follows. Firstly, from the base station power consumption

model in [79], the transmit power accounts for a large amount of the total power

consumption of an MBS. Moreover, it is shown in [79] that the major power

consumption of each fBS is transmission-independent. Therefore, letting each fBS

adapt its transmit power P
f

results in limited power reduction for the fBS. Secondly,

the MBS typically serves more users than each fBS does, and the variance of user

number in the macrocell is larger than that in a femtocell. The former implies that

P
M

� P
f

, while the latter means that the optimal P
f

for di↵erent fBSs will not

change much from one deployment to another. Due to these two facts, we adapt P
M

according to the cell load, but not P
f

, to reduce the MBS power consumption.

Similar to the channel model discussion in Chapter 2, flat Rayleigh fading and

distance based PL are considered to account for signal attenuation. The e↵ects of

shadow fading can be taken into account by using the method proposed in [96].

However, for simplicity, the discussion in this chapter does not consider the random

shadow fading. The power attenuation due to Rayleigh fading between receiver

(Rx) i and Tx j is denoted as an exponential random variable Hi,j with unit mean.

According to [97], the PL models can be obtained as follows with wall penetration

loss considered for outdoor-indoor and indoor-indoor wireless propagation.

MBS to macro users. Let the distance between macro user i and the MBS

be di,0. The PL model is denoted as g
M

(di,0) = Kd�↵
o

i,0 , where K is the fixed
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propagation loss and ↵
o

is the outdoor PL exponent.

MBS to femto users. For a typical femto user j, the PL model should take

wall penetration loss into account. The PL model is given as gM
f

(dj,0) = !Kd�↵
oi

j,0 ,

where ! is the wall penetration loss arising from outdoor to indoor propagation; ↵
oi

is the outdoor to indoor propagation PL exponent. Usually, outdoor propagation

distance is larger than the one during indoor transmission. Therefore, for simplicity,

we use the outdoor part to approximate the outdoor-indoor propagation and let

↵
oi

= ↵
o

.

fBS to macro users. We denote the distance between macro user i and fBS

k as di,k. Correspondingly, the PL is gf
M

(di,k) = !Kd�↵
o

i,k .

fBS to designated femto users. Without loss of generality, the distance

between femto user j and its designated fBS 1 is denoted as dj,1. The PL model is

g
f

(dj,1) = Kd�↵
in

j,1 . In this model, indoor PL exponent is ↵
in

.

fBS to neighbouring femto users. The PL between femto user j and an

interfering fBS k is gf
f

(dj,k) = !2Kd�↵
o

j,k . The wall penetration loss !2 is due to

assuming that two femto users in di↵erent femtocells are separated by two walls on

average [85, 94]. This is admittedly a rather crude approximation.

3.2.2 Exclusion Zone Setup

For closed access femtocells, the fBSs only serve the covered indoor users.

For open access femtocells, on the other hand, the fBSs are able to o✏oad and

then provide service to the macro users that are within range. Therefore, in the

subsequent analysis, we will respectively elaborate on the two femtocell access modes

to investigate the exclusion zone design problem.

Resource Partitioning

Let the total bandwidth be W . We divide the total spectrum into two disjoint

parts each with bandwidth ⌘W and (1 � ⌘)W , where ⌘ is defined as the resource

partitioning factor with its value within the range [0, 1]. For simplicity, we name
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sub-bands occupying the bandwidth ⌘W as shared sub-bands. Correspondingly, the

remaining sub-bands with bandwidth (1�⌘)W are called unshared sub-bands. Both

the macro and femto base stations are allowed to simultaneously transmit on the

shared sub-bands. On the other hand, the unshared sub-bands are allocated to

only one tier of base stations to serve macro users or femto users so that inter-tier

interference is non-existent on these sub-bands. Due to the fact that femtocells are

typically lightly loaded, we only consider the case where the unshared sub-bands are

used to serve macro users in the remainder of this chapter. In order not to detract

from the main contributions of this chapter, the generalized analyses for the cases

where both macro and femto users are allowed to access the unshared sub-bands are

not discussed.

Exclusion Zone and User Association Rule

For each femtocell, we propose an exclusion zone around the fBS’s coverage as

a circular ring with inner radius R
f

and outer radius R
o

centered on the fBS. Based

on the circular exclusion zone setup, a user association rule will then be determined,

which is di↵erent from the previously proposed user association scheme in Chapter

2 where the biased signal powers received from the MBS and the nearest fBS are

compared. The user association rule is described as follows.

Recall that in (3.1), if the distance di,1 between typical user i and its nearest

fBS (fBS 1) is smaller than R
f

, user i is a femto user; otherwise, user i is a macro

user. For simplicity, we use U
f

to denote the set of all femto users. The set of

macro users will be further divided based on the distances between macro users and

fBSs. Due to the power-law PL model, a user experiences less interference from

an interfering base station if it is further away from that base station. Therefore,

for macro users located within the femtocell exclusion zones, they may su↵er from

severe inter-tier interference if the MBS and fBSs simultaneously transmit on the

same channel. For macro users located out of the exclusion zones, they see only

a limited level of inter-tier interference. As a result, we use U
D

and U
M

to denote
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the set of macro users within and out of the exclusion zones, respectively. For

open access femtocells, macro users in U
D

will be o✏oaded to and served by the

corresponding nearest fBSs. We use U
D1

to denote U
D

. For closed access femtocells,

macro users in U
D

are served by the MBS. We use U
D2

to represent U
D

. Specifically,

based on di,1, the user association rule can be summarised as:

8

>

>

>

<

>

>

>

:

If di,1  R
f

, then i 2 U
f

;

If R
o

� di,1 > R
f

, then i 2 U
D

(U
D1

or U
D2

);

If di,1 > R
o

, then i 2 U
M

.

(3.2)

Since macro users in U
D

are more sensitive to the inter-tier interference,

according to the resource partitioning discussion in previous section, we let U
D

users

access to the unshared sub-bands. The shared sub-bands are allocated to the MBS

and fBSs to let them communicate to U
M

and U
f

users, respectively. The exclusion

zone model is illustrated in Fig. 3.1.

Note that the association rule in (3.2) only requires the information of the

distances between users and their nearest fBSs. In practical implementation, to

determine whether a macro user is served on the shared or unshared sub-bands, we

can first allow the fBSs to send pilot signals with power P
f

to the nearby macro users.

Then, if the average received power at a macro user from the nearest femtocell is

below P
f

gf
M

(R
o

), the macro user will be served by the MBS on the shared sub-bands.

Otherwise, the macro user will be served on the unshared sub-bands.

3.3 Cell Load and Success Probability

Characterization

This section derives the average cell load and user success probability

expressions, which are used in subsequent analysis to determine the optimal

exclusion zone parameters.
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W Hz

W Hz

Macro base station

Femto base station

Outdoor user

Indoor user

Desired signal

Interference signal

macrocell

femtocell

RM

Rf
Ro

W Hz

W Hz

macrocell

femtocell

Open access femtocell:

Closed access femtocell:

Figure 3.1: Resource partitioning and exclusion zone model.
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3.3.1 User Association Probability and Cell Load

By assuming fBSs as PPP �
f

, we can approximate the probability of users

belonging to sets U
M

, U
f

and U
D

(i.e. U
D1

or U
D2

) based on the proposed cell

association rule (3.2). The user association probabilities and expected cell loads for

networks with open and closed access femtocells are given in the following lemma.

Lemma 3.3.1. The probability that a typical user i belongs to Uk (k 2

{M, f,D1,D2}), also known as its Uk-association probability, is defined as A
k

=

Pr (i 2 Uk). It is approximated as

A
M

= e�⇡�
f

R

2

o , A
f

= 1� e�⇡�
f

R

2

f , A
D1

= A
D2

= e�⇡�
f

R

2

f � e�⇡�
f

R

2

o . (3.3)

For a tagged base station, the number of users in set Uk (k 2 {M, f,D1,D2})

within the base station’s coverage is a random variable Nk. The expected values of

cell load N
M

and N
f

are given as

N̄
M

= �M

u

⇡R2

M

e�⇡�
f

R

2

o , N̄
f

=
�f

u

�
f

⇣

1� e�⇡�
f

R

2

f

⌘

. (3.4)

If all femtocells are under open access mode, N
D1

is the number of U
D1

users served

by each fBS. The expected value of N
D1

is

N̄
D1

=
�M

u

�
f

⇣

e�⇡�
f

R

2

f � e�⇡�
f

R

2

o

⌘

. (3.5)

If all femtocells are under closed access mode, N
D2

is the number of U
D2

users served

by the MBS. The expected value of N
D2

is

N̄
D2

= �M

u

⇡R2

M

⇣

e�⇡�
f

R

2

f � e�⇡�
f

R

2

o

⌘

. (3.6)

Proof. For the association probability A
M

, the event “user i 2 U
M

” is equivalent

to “the distance between user i and its nearest fBS is bigger than R
o

”. The latter

event is in turn equivalent to there being no fBSs within a distance of R
o

of user
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i, i.e. in an area of ⇡R2

o

. Therefore, given that the fBSs form a 2-D PPP, we have

Pr(i 2 U
M

) = e�⇡�
f

R

2

o . The probabilities A
f

, A
D1

and A
D2

can be derived similarly.

Given a macro user, the probability that the user associates with the MBS

on the shared sub-bands is A
M

A
M

+A
D1

(or equivalently, A
M

A
M

+A
D2

), and the number of

macro users within the macrocell is a Poisson random variable with expected value

⇡R2

M

�M

u

(A
M

+ A
D1

). Thus, the average number of users in U
M

is N̄
M

= ⇡R2

M

�M

u

A
M

.

To calculate the cell load of each fBS on the shared sub-bands, we first determine the

expected value of the size of set U
f

, which equals to �f

u

⇡R2

M

A
f

. Next, the expected

number of fBSs within the macrocell is ⇡R2

M

�
f

. Noting that each fBS has almost the

same load, we therefore have the expected femtocell load on the shared sub-bands

approximated as N̄
f

=
⇡R2

M

�M

u

A
f

⇡R2

M

�
f

. The derivations of N̄
D1

in (3.5) and N̄
D2

in (3.6)

follow the derivations of N̄
f

and N̄
M

, respectively.

3.3.2 SINR and Success Probability

Given the prescribed target rates C
M

for macro users and C
f

for femto users,

an outage event occurs for a certain user when the used channel cannot support

the user’s target rate. In the following analysis, we use the same C
M

for all macro

users, which means they all have the same rate requirement. Similarly, all femto

users have the same target rate C
f

. Without loss of generality, we assume C
M

 C
f

,

because femtocells are typically devoted to providing high QoS for the subscribed

users.

Open Access Femtocell

For the open access femtocell downlink analysis, users within the same cell

occupy orthogonal sub-bands to eliminate intra-cell interference. For simplicity, we

use �M

i , �f

i , and �D1

i to denote the SINRs for the typical user i in set U
M

, U
f

, and

U
D1

, respectively. Assuming that user i’s nearest fBS is labeled as 1, the expressions
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of �M

i , �f

i and �D1

i are given as follows.

�M

i =
P
M

Hi,0gM(di,0)
P

j2�
f

P
f

Hi,jgf
M

(di,j) + �2

, (3.7)

�f

i =
P
f

Hi,1gf(di,1)

P
M

Hi,0gM
f

(di,0) +
P

j2�
f

\{1}
P
f

Hi,jgf
f

(di,j) + �2

(3.8)

�D1

i =
P
f

Hi,1g
f

M

(di,1)
P

j2�
f

\{1}
P
f

Hi,jgf
M

(di,j) + �2

, (3.9)

where �2 is the variance of additive noise.

An outage event occurs if a user cannot achieve the predetermined target rate.

Conditioned on the given cell load of user i’s serving base station and the distances

between the typical user i and its designated base station, the success probabilities

for user i in U
M

, U
f

and U
D1

are defined as

P
M

(N
M

, di,0) , Pr

✓

⌘W

N
M

log
�

1 + �M

i

�

� C
M

�

�

�

�

N
M

, di,0

◆

(3.10)

P
f

(N
f

, di,1) , Pr

✓

⌘W

N
f

log
�

1 + �f

i

�

� C
f

�

�

�

�

N
f

, di,1

◆

(3.11)

P
D1

(N
D1

, di,1) , Pr

✓

(1� ⌘)W

N
D1

log
�

1 + �D1

i

�

� C
M

�

�N
D1

, di,1

◆

. (3.12)

Using the SINR expressions in (3.7)–(3.9), the above conditional success

probabilities are expressed in the following lemma.

Lemma 3.3.2. For network with open access fBSs, the expressions of conditional
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success probabilities P
M

(N
M

, di,0), Pf

(N
f

, di,1) and P
D1

(N
D1

, di,1) are

P
M

(N
M

, di,0) = exp

 

�⇡�
f

R2

o

1

Z
1

Z 1

Z

1

1

1 + u
↵

o

2

du� ⌥
M

�2

P
M

Kd�↵
o

i,0

!

(3.13)

P
f

(N
f

, di,1) = Ed
i,0

2

4

 

1 +
⌥

f

!P
M

d�↵
o

i,0

P
f

d�↵
in

i,1

!�1

⇥ exp

 

� ⌥
f

�2

P
f

Kd�↵
in

i,1

!

⇥ exp

0

@�⇡�
f

�

!2⌥
f

�

2

↵

o d
2↵

in

↵

o

i,1

Z 1
 
(!2

⌥

f

)

1

↵

o d

↵

in

↵

o

�1

i,1

!�2

1

1 + u
↵

o

2

du

1

A

3

5 (3.14)

P
D1

(N
D1

, di,1) = exp

 

�⇡�
f

⌥
2

↵

o

D1

d2i,1

Z 1

⌥

� 2

↵

o

D1

1

1 + u
↵

o

2

du� ⌥
D1

�2

!P
f

Kd�↵
o

i,1

!

(3.15)

where ⌥
M

= 2
C

M

N

M

⌘W �1, ⌥
f

= 2
C

f

N

f

⌘W �1 and ⌥
D1

= 2
C

M

N

D1

(1�⌘)W �1. Z
1

=

"

R

o

P

1

↵

o

M

d
i,0

(⌥

M

!P
f

)

1

↵

o

#

2

.

When the ⌥
M

, ⌥
f

and ⌥
D1

are small, which are typically true for users near

the cell edge, and the values of P
M

(N
M

, di,0), P
f

(N
f

, di,1) and P
D1

(N
D1

, di,1) are

su�ciently large, (3.13)–(3.15) can be further approximated as

P
M

(N
M

, di,0) ⇡ ePM

(N
M

, di,0) = exp

 

�2⇡�
f

R2�↵
o

o

!P
f

⌥
M

(↵
o

� 2)d�↵
o

i,0 P
M

� ⌥
M

�2

P
M

Kd�↵
o

i,0

!

(3.16)

P
f

(N
f

, di,1) ⇡ ePf

(N
f

, di,1) =
2

↵
o

 

⌥
f

!P
M

R�↵
o

M

P
f

d�↵
in

i,1

!

2

↵

o

�

 

� 2

↵
o

,
⌥

f

!P
M

R�↵
o

M

P
f

d�↵
in

i,1

!

⇥ exp

 

� 2

↵
o

� 2
⇡�

f

!2⌥
f

d↵in

�↵
o

+2

i,1 � ⌥
f

�2

P
f

Kd�↵
in

i,1

!

(3.17)

P
D1

(N
D1

, di,1) ⇡ ePD1

(N
D1

, di,1) = exp

 

� 2

↵
o

� 2
⇡�

f

⌥
D1

d2i,1 �
⌥

D1

�2

!P
f

Kd�↵
o

i,1

!

, (3.18)

where �(·, ·) is the incomplete gamma function [98].

Proof. Please refer to Appendix C.
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Closed Access Femtocell

For closed access femtocells, the users in set U
D2

are served by the MBS on the

unshared sub-bands. Because of the di↵erent interference levels on the shared and

unshared sub-bands, the users in set U
M

and U
D2

are correspondingly served by the

MBS with transmit power P
M1

and P
M2

. Similar as the analysis in Section 3.3.2,

the SINR expressions of �M

i , �f

i and �D2

i are given as

�M

i =
P
M1

Hi,0gM(di,0)
P

j2�
f

P
f

Hi,jgf
M

(di,j) + �2

, (3.19)

�f

i =
P
f

Hi,1gf(di,1)

P
M1

Hi,0gM
f

(di,0) +
P

j2�
f

\{1}
P
f

Hi,jgf
f

(di,j) + �2

(3.20)

�D2

i =
P
M2

Hi,0gM(di,0)

�2

. (3.21)

Conditioned on the given cell load of user i’s serving base station and the

distances between the typical user i and its designated base station, the success

probabilities for user i in U
M

, U
f

and U
D2

are

P
M

(N
M

, di,0) , Pr

✓

⌘W

N
M

log
�

1 + �M

i

�

� C
M

�

�

�

�

N
M

, di,0

◆

(3.22)

P
f

(N
f

, di,1) , Pr

✓

⌘W

N
f

log
�

1 + �f

i

�

� C
f

�

�

�

�

N
f

, di,1

◆

(3.23)

P
D2

(N
D2

, di,0) , Pr

✓

(1� ⌘)W

N
D2

log
�

1 + �D2

i

�

� C
M

�

�N
D2

, di,0

◆

. (3.24)

The expressions of P
M

(N
M

, di,0), Pf

(N
f

, di,1), and P
D2

(N
D2

, di,0) in (3.22)–(3.24)

are derived in the following lemma.

Lemma 3.3.3. For network with closed access fBSs, the expressions of conditional
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success probabilities P
M

(N
M

, di,0), Pf

(N
f

, di,1) and P
D2

(N
D2

, di,0) are

P
M

(N
M

, di,0) = exp
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, di,0) = exp
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where ⌥
M

= 2
C

M

N

M
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f
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f

N
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= 2
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When the ⌥
M

and ⌥
f

are small, and the values of P
M

(N
M

, di,0) and P
f

(N
f

, di,1)

are su�ciently large, (3.25) and (3.26) can be further approximated as

P
M

(N
M

, di,0) ⇡ ePM

(N
M

, di,0) = exp
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Kd�↵
in

i,1

!

(3.29)

where �(·, ·) is the incomplete gamma function [98].

Due to its similarity to Lemma 3.3.2, the proof of Lemma 3.3.3 is omitted.

3.4 Exclusion Zone Design: MBS Transmit

Power Minimization

As discussed in Section 3.2, the MBS transmit power accounts for a large

portion of the HCN downlink power consumption, and considering MBS transmit
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power adaptation according to the cell load could benefit network energy e�ciency

improvement. In this section, we will investigate the optimal exclusion zone design

problem that controls cell load and hence minimizes the MBS transmit power for any

given fBS transmit power P
f

. Specifically, we will elaborate on jointly determining

the size of the exclusion zone and the allocated bandwidth. The analyses for open

and closed access femtocells will be conducted separately.

3.4.1 Open Access Femtocells

When femtocells operate in open access, the MBS only transmits on the shared

sub-bands. As a result, the MBS transmit power is ⌘P
M

. Note that the MBS has

the ability to adjust its transmit power according to its random cell load N
M

, which

means the value of ⌘P
M

varies with N
M

. Thus, the averaged MBS transmit power

by taking all possible cell load instances into account is of interest, which can be

expressed as E
N

M

[⌘P
M

]. To minimize E
N

M

[⌘P
M

], we resort to finding the optimal

exclusion zone radius R
o

and the resource partitioning factor ⌘ while letting users

meet certain QoS requirements. User success probability (or equivalently the outage

probability) is used as the QoS metric when minimizing the MBS’s transmit power.

Given the target rates C
M

and C
f

, the success probabilities of all users should be

no smaller than a predetermined value ✓. Using the closed-form approximations in

Lemma 3.3.2, the success probability constraints can be characterized. Specifically,

the above described MBS transmit power minimization problem is formulated as

follows.

minimize
R

o

,⌘
E

N

M

[⌘P
M

] (3.30a)

subject to min
8i2U

M

n

eP
M

(N
M

, di,0)
o

� ✓, 0  N
M

 Nmax

M

(3.30b)

min
8i2U

f

n

eP
f

(N
f

, di,1)
o

� ✓, 0  N
f

 Nmax

f

(3.30c)

min
8i2U

D1

n

eP
D1

(N
D1

, di,1)
o

� ✓, 0  N
D1

 Nmax

D1

(3.30d)

0  ⌘  1, R
o

� R
f

(3.30e)
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where Nmax

k is the maximum number of users in set Uk that can be simultaneously

served by a base station. We assume that the value of Nmax

k is much larger than the

corresponding average cell load N̄k so that there is only negligible probability that

all users within the cell cannot be simultaneously served.

Constraints (3.30b)–(3.30d) show that all served users have their success

probabilities exceed the threshold ✓. For this worst case analysis, we introduce

the concept of cell edge user for user set Uk, which is defined as a suppositional

user node located where success probability would be the lowest for users within

Uk. Then, the constraints in (3.30b)–(3.30d) can be re-expressed by cell edge user

success probabilities. Using (3.16)–(3.18), the cell edge user success probabilities

can be determined as:

min
8i2U

M

n

eP
M

(N
M

, di,0)
o

� ✓ , eP
M

(N
M

,R
M

) � ✓ (3.31)

min
8i2U

f

n

eP
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(N
f

, di,1)
o

� ✓ , eP
f

(N
f

,R
f

) � ✓ (3.32)

min
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n

eP
D1

(N
D1

, di,1)
o

� ✓ , eP
D1

(N
D1

,R
o

) � ✓ (3.33)

From (3.16), we can show that eP
M

(N
M

,R
M

) is an increasing function of P
M

.

Therefore, for given N
M

, R
o

and ⌘, a lower bound of P
M

, denoted as L(N
M

,R
o

, ⌘), is

derived from the right hand side (RHS) of (3.31) using the eP
M

(N
M

,R
M

) expression

in (3.16):

P
M

� L(N
M

,R
o

, ⌘) =
⇣

2
C

M

N

M

⌘W � 1
⌘

✓

2⇡�
f

R2�↵
o

o

!P
f

(↵
o

� 2)R�↵
o

M

ln 1

✓

+
�2

KR�↵
o

M

ln 1

✓

◆

. (3.34)

From (3.17), we can obtain that eP
f

(N
f

,R
f

) is a decreasing function of P
M

. As a

result, the RHS of (3.32) gives an upper bound of P
M

, which is denoted as U(N
f

, ⌘).

However, the exact expression of U(N
f

, ⌘) is hard to get. Additionally, constraint

(3.30d) is independent of P
M

.

When Problem (3.30) is feasible, we have L(N
M

,R
o

, ⌘)  U(N
f

, ⌘) for all N
M

2

[0,Nmax

M

] and N
f

2 [0,Nmax

f

]. The minimum MBS transmit power ⌘P
M

for given
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R
o

and ⌘ therefore equals to its lower bound ⌘L(N
M

,R
o

, ⌘). Thus, we can replace

E
N

M

[⌘P
M

] in (3.30a) by a function f(R
o

, ⌘) defined as

f(R
o

, ⌘) = E
N

M

[⌘L(N
M

,R
o

, ⌘)] . (3.35)

The expression of f(R
o

, ⌘) can be approximately characterized using the following

lemma.

Lemma 3.4.1. The function f(R
o

, ⌘) in (3.35) is approximated as f̂(R
o

, ⌘), which

is given as

f̂(R
o

, ⌘) =⌘
⇣

exp
⇣

⇡�M

u

R2

M

e�⇡�
f

R

2

o

⇣

2
C

M

⌘W � 1
⌘⌘

� 1
⌘

⇥
✓

2⇡�
f

R2�↵
o

o

!P
f

(↵
o

� 2)R�↵
o

M

ln 1

✓

+
�2

KR�↵
o

M

ln 1

✓

◆

(3.36)

Proof. Please see Appendix D.

With the objective function (3.30a) replaced by f(R
o

, ⌘) using its approximated

expression f̂(R
o

, ⌘), we will then reformulate constraints (3.30b)–(3.30d) to

determine the feasible region of (R
o

, ⌘). Recall that P
M

= L(N
M

,R
o

, ⌘)

and L(N
M

,R
o

, ⌘)  U(N
f

, ⌘) are feasible, where L(N
M

,R
o

, ⌘) and U(N
M

,R
o

, ⌘)

are derived from constraints (3.30b) and (3.30c), respectively. Therefore,

constraint (3.30b) is always achieved with equality when P
M

= L(N
M

,R
o

, ⌘).

Furthermore, it can be verified using (3.16) and (3.17) that L(N
M

,R
o

, ⌘)

increases with N
M

and U(N
f

, ⌘) decreases with N
f

. As a result, we can set

L(Nmax

M

,R
o

, ⌘)  U(Nmax

f

, ⌘) to make constraint (3.30c) feasible, which is equivalent

to eP
f

(Nmax

f

,R
f

)
�

�

�

P

M

=L(Nmax

M

,R
o

,⌘)
� ✓. For constraint (3.30d), the cell edge probability

eP
D1

(N
D1

,R
o

) decreases with increasing N
D1

. Thus, constraint (3.30d) can be
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rewritten as eP
D1

(Nmax

D1

,R
o

) � ✓. We therefore reformulate Problem (3.30) as

minimize
R

o

,⌘
f̂(R

o

, ⌘) (3.37a)

subject to eP
f

(Nmax

f

,R
f

)
�

�

�

P

M

=L(Nmax

M

,R
o

,⌘)
� ✓ (3.37b)

eP
D1

(Nmax

D1

,R
o

) � ✓ (3.37c)

0  ⌘  1, R
o

� R
f

(3.37d)

With the reformulated Problem (3.37), we are then able to find the optimal

values of ⌘⇤ and R⇤
o

. For given R
o

, the optimal ⌘ is determined using the following

corollary.

Corollary 3.4.1. The value of f̂(R
o

, ⌘) in (3.36) decreases with increasing ⌘.

Proof. Taking derivative of f̂(R
o

, ⌘) with respect to ⌘, we have

@f̂(R
o

, ⌘)

@⌘
=
h⇣

exp
⇣

⇡�M

u

R2

M

e�⇡�
f

R

2

o

⇣

2
C

M

⌘W � 1
⌘⌘

� 1
⌘

�⇡�M

u

R2

M

e�⇡�
f

R

2

o

C
M

ln 2

⌘W
2

C

M

⌘W exp
⇣

⇡�M

u

R2

M

e�⇡�
f

R

2

o

⇣

2
C

M

⌘W � 1
⌘⌘

�

⇥
✓

2⇡�
f

R2�↵
o

o

!P
f

(↵
o

� 2)R�↵
o

M

ln 1

✓

+
�2

KR�↵
o

M

ln 1

✓

◆

Additionally, it can be verified that @2

ˆf(R
o

,⌘)
@⌘2

� 0. Note that @ ˆf(R
o

,⌘)
@⌘

�

�

�

⌘=1
= 0,

we therefore have @ ˆf(R
o

,⌘)
@⌘

 0 for all ⌘, which means that f̂(R
o

, ⌘) is a decreasing

function of ⌘.

By calculating the first order derivative with respect to ⌘, it can be verified

that the left hand side (LHS) of (3.37b) is an increasing function of ⌘ and the

LHS of (3.37c) is a decreasing function of ⌘. Therefore, an implicit lower bound

of ⌘, denoted as �
1

(R
o

), is obtained from (3.37b), and a ⌘ upper bound �
2

(R
o

) is

determined using (3.37c). Using the expressions of eP
D1

(Nmax

D1

,R
o

) in (3.18), we have
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the expression of �
2

(R
o

) as

�
2

(R
o

) = 1� Nmax

D1

C
M

W log
2

✓

1 +
ln

1

✓

2

↵

o

�2

⇡�
f

R

2

o

+

�

2

!P

f

K

R

↵

o

o

◆ (3.38)

According to Corollary 3.4.1, we can replace ⌘ in Problem (3.37) by �
2

(R
o

)

and then solve for the optimal R⇤
o

with the constraint �
1

(R
o

)  �
2

(R
o

). Problem

(3.37) then becomes a single variable optimization problem.

minimize
R

o

f̂(R
o

,�
2

(R
o

)) (3.39a)

subject to �
1

(R
o

)  �
2

(R
o

) (3.39b)

0  �
2

(R
o

)  1, R
o

� R
f

(3.39c)

Unfortunately, determining R⇤
o

still remains a challenging task that involves

calculating complicated derivatives of f̂(R
o

,�
2

(R
o

)), �
1

(R
o

) and �
2

(R
o

). To

propose a simplified method to determine R⇤
o

, we can exploit the fact that cell edge

users’ spectrum e�ciencies are much smaller than 1 in practical network settings [83].

When a low average spectral e�ciency target is assumed for the cell edge users in

set U
M

, i.e. C
M

¯

N

M

⌘W
, that satisfies C

M

¯

N

M

⌘W
= C

M

¯

N

M

�

2

(R

o

)W
⌧ 1, we have the following

approximation.

Corollary 3.4.2. When C
M

¯

N

M

�

2

(R

o

)W
⌧ 1, the function f̂(R

o

,�
2

(R
o

)) in (3.39a) can be

further approximated as

ef(R
o

) = ⇡�M

u

R2

M

e�⇡�
f

R

2

o

C
M

W
ln 2

✓

2⇡�
f

R2�↵
o

o

!P
f

(↵
o

� 2)R�↵
o

M

ln 1

✓

+
�2

KR�↵
o

M

ln 1

✓

◆

, (3.40)

which is a decreasing function of R
o

.

Proof. From the assumption C
M

¯

N

M

�

2

(R

o

)W
⌧ 1, we can then get that C

M

�

2

(R

o

)W
⌧ 1. By
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applying the approximation 2x � 1
x!0⇡ x ln 2, we have

f̂(R
o

,�
2

(R
o

))
(a)
⇡⌘

✓

2
⇣
⇡�M

u

R

2

M

e�⇡�

f

R

2

o

C

M

⌘W

⌘

� 1

◆✓

2⇡�
f

R2�↵
o

o

!P
f

(↵
o

� 2)R�↵
o

M

ln 1

✓

+
�2

KR�↵
o

M

ln 1

✓

◆

(b)
⇡⇡�M

u

R2

M

e�⇡�
f

R

2

o

C
M

W
ln 2

✓

2⇡�
f

R2�↵
o

o

!P
f

(↵
o

� 2)R�↵
o

M

ln 1

✓

+
�2

KR�↵
o

M

ln 1

✓

◆

,

where (a) uses 2
C

M

�

2

(R

o

)W �1 ⇡ C
M

�

2

(R

o

)W
ln 2, and (b) applies 2

C

M

¯

N

M

�

2

(R

o

)W �1 ⇡ C
M

¯

N

M

�

2

(R

o

)W
ln 2.

It can be observed from Corollary 3.4.2 that f̂(R
o

,�
2

(R
o

)) decreases with

increasing R
o

when user spectral e�ciency target is small. Thus, solving Problem

(3.39) is equivalent to finding the maximum R
o

that satisfies (3.39b) and (3.39c).

Because �
2

(R
o

) is a decreasing function of R
o

, we can then obtain R⇤
o

by solving

the equation �
1

(R⇤
o

) = �
2

(R⇤
o

), which can be done through a bisection search. The

optimal ⌘⇤ then equals to �
2

(R⇤
o

).

3.4.2 Closed Access Femtocells

With closed access femtocells, users in U
M

are served by the MBS on the shared

sub-bands with transmit power ⌘P
M1

. Additionally, users in U
D2

are served by the

MBS on the unshared sub-bands with transmit power (1�⌘)P
M2

. The values of ⌘P
M1

and (1�⌘)P
M2

change according to cell loads N
M

and N
D2

, respectively. As a result,

the total MBS transmit power averaged over cell loads in U
M

and U
D2

is represented

as E
N

M

,N
D2

[⌘P
M1

+ (1� ⌘)P
M2

]. In addition, the user success probability constraints

are characterized using the approximations derived in Lemma 3.3.3. Similar as the

open access femtocell analysis, the MBS transmit power minimization problem for
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closed access femtocells is formulated as

minimize
R

o

,⌘
E

N

M

,N
D2

[⌘P
M1

+ (1� ⌘)P
M2

] (3.41a)

subject to min
8i2U

M

n

eP
M

(N
M

, di,0)
o

� ✓, 0  N
M

 Nmax

M

(3.41b)

min
8i2U

f

n

eP
f

(N
f

, di,1)
o

� ✓, 0  N
f

 Nmax

f

(3.41c)

min
8i2U

D2

{P
D2

(N
D2

, di,0)} � ✓, 0  N
D2

 Nmax

D2

(3.41d)

0  ⌘  1, R
o

� R
f

(3.41e)

where eP
M

(N
M

, di,0) is given in (3.28), eP
f

(N
f

, di,1) is defined in (3.29), and

P
D2

(N
D2

, di,1) is expressed using (3.27).

The worst case success probability constraints in (3.41b)–(3.41d) can be

reformulated by the cell edge user success probabilities.

min
8i2U

M

n

eP
M

(N
M

, di,0)
o

� ✓ , eP
M

(N
M

,R
M

) � ✓ (3.42)

min
8i2U

f

n

eP
f

(N
f

, di,1)
o

� ✓ , eP
f

(N
f

,R
f

) � ✓ (3.43)

min
8i2U

D2

{P
D2

(N
D2

, di,0)} � ✓ , P
D2

(N
D2

,R
M

) � ✓. (3.44)

Similar to the analysis for open access femtocells, we can derive a P
M1

lower bound

L
1

(N
M

,R
o

, ⌘) from the RHS of (3.42), a P
M1

upper bound U
1

(N
f

,R
o

, ⌘) from the

RHS of (3.43), and a P
M2

lower bound L
2

(N
D2

, ⌘) from the RHS of (3.44). The

expressions of L
1

(N
M

,R
o

, ⌘) and L
2

(N
D2

, ⌘) are given as

L
1

(N
M

,R
o

, ⌘) =
⇣

2
C

M

N

M

⌘W � 1
⌘

✓

2⇡�
f

R2�↵
o

o

!P
f

(↵
o

� 2)R�↵
o

M

ln 1

✓

+
�2

KR�↵
o

M

ln 1

✓

◆

, (3.45)

L
2

(N
D2

, ⌘) =
⇣

2
C

M

N

D2

(1�⌘)W � 1
⌘ �2

KR�↵
o

M

ln 1

✓

. (3.46)

The P
M1

upper bound U
1

(N
f

,R
o

, ⌘) has implicit expression.

When Problem (3.41) is feasible, we have L
1

(N
M

,R
o

, ⌘)  U
1

(N
f

,R
o

, ⌘) for

N
M

2 [0,Nmax

M

] and N
f

2 [0,Nmax

f

]. The MBS transmit power is lower bounded by

72



Chapter 3. Power Saving Design of Femtocell Exclusion Zones

⌘L
1

(N
M

,R
o

, ⌘)+(1�⌘)L
2

(N
D2

, ⌘). We can then replace E
N

M

,N
D2

[⌘P
M1

+ (1� ⌘)P
M2

]

in (3.41a) by

g(R
o

, ⌘) = E
N

M

,N
D2

[⌘L
1

(N
M

,R
o

, ⌘) + (1� ⌘)L
2

(N
D2

, ⌘)] , (3.47)

with g(R
o

, ⌘) approximately expressed using the following lemma.

Lemma 3.4.2. The function g(R
o

, ⌘) in (3.47) is approximated as ĝ(R
o

, ⌘), which

is given as

ĝ(R
o

, ⌘) =
(1� ⌘)�2

KR�↵
o

M

ln 1

✓

h

exp
⇣

⇡�M

u

R2

M

⇣

e�⇡�
f

R

2

f � e�⇡�
f

R

2

o

⌘⇣

2
C

M

(1�⌘)W � 1
⌘⌘

� 1
i

+

⌘
h

exp
⇣

⇡�M

u

R2

M

e�⇡�
f

R

2

o

⇣

2
C

M

⌘W � 1
⌘⌘

� 1
i

✓

2⇡�
f

R2�↵
o

o

!P
f

(↵
o

� 2)R�↵
o

M

ln 1

✓

+
�2

KR�↵
o

M

ln 1

✓

◆

(3.48)

We omit the proof of Lemma 3.4.2 due to its similarity to Lemma 3.4.1.

Using the similar method for deriving Problem (3.37) in open access case, we

can reformulate Problem (3.41) as

minimize
R

o

,⌘
ĝ(R

o

, ⌘) (3.49a)

subject to eP
f

(Nmax

f

,R
f

)
�

�

�

P

M1

=L
1

(N

max

M

,R
o

,⌘)
� ✓ (3.49b)

0  ⌘  1, R
o

� R
f

(3.49c)

When the cell edge users in U
M

and U
D2

have small average spectrum e�ciency

targets that satisfy C
M

¯

N

M

⌘W
⌧ 1 and C

M

¯

N

D2

(1�⌘)W
⌧ 1, we can further simplify ĝ(R

o

, ⌘) and

then solve for the optimal ⌘⇤ and R⇤
o

.

Corollary 3.4.3. When C
M

¯

N

M

⌘W
⌧ 1 and C

M

¯

N

D2

(1�⌘)W
⌧ 1, the function ĝ(R

o

, ⌘) in (3.48)
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can be further approximated as follows

ĝ(R
o

, ⌘)

(a)
⇡ ǧ(R

o

, ⌘) =
(1� ⌘)�2

KR�↵
o

M

ln 1

✓

 

2
⇡�M

u
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2

M

✓
e�⇡�

f

R

2

f �e�⇡�

f

R

2

o

◆
C

M

(1�⌘)W � 1

!

+ ⌘

✓

2
⇣
⇡�M

u

R

2

M

e�⇡�

f

R

2

o

C

M

⌘W

⌘

� 1

◆✓

2⇡�
f

R2�↵
o

o

!P
f

(↵
o

� 2)R�↵
o

M

ln 1

✓

+
�2

KR�↵
o

M

ln 1

✓

◆

(3.50)

(b)
⇡ eg(R

o

) =⇡�M

u

R2

M

⇣

e�⇡�
f

R

2

f � e�⇡�
f

R

2

o

⌘ C
M

W
ln 2

�2

KR�↵
o

M

ln 1

✓

+ ⇡�M

u

R2

M

e�⇡�
f

R

2

o

C
M

W
ln 2

✓

2⇡�
f

R2�↵
o

o

!P
f

(↵
o

� 2)R�↵
o

M

ln 1

✓

+
�2

KR�↵
o

M

ln 1

✓

◆

. (3.51)

Proof. The step (a) uses 2
C

M

(1�⌘)W � 1 ⇡ C
M

(1�⌘)W
ln 2 and 2

C

M

⌘W � 1 ⇡ C
M

⌘W
ln 2, and step

(b) applies 2
C

M

¯

N

D2

(1�⌘)W � 1 ⇡ C
M

¯

N

D2

(1�⌘)W
ln 2 and 2

C

M

¯

N

M

⌘W � 1 ⇡ C
M

¯

N

M

⌘W
ln 2.

By calculating the second order derivative with respect to ⌘, we can show that

ǧ(R
o

, ⌘) in (3.50) is a convex function of ⌘. Additionally, as discussed in the open

access femtocell case, constraint (3.49b) gives an implicit lower bound of ⌘. Thus,

for given R
o

, we can replace the objective function ĝ(R
o

, ⌘) in Problem (3.49) by

ǧ(R
o

, ⌘) in (3.50) and found the optimal ⌘ denoted as �⇤(R
o

).

With all ⌘ in Problem (3.49) replaced by �⇤(R
o

), we then use the ĝ(R
o

, ⌘)

approximation eg(R
o

) in (3.51) to determine the optimal R⇤
o

. It can be obtained

from (3.51) that the optimal R⇤
o

equals to the maximum feasible value Rmax

o

, which

makes constraint (3.49b) achieve equality. Similar to the open access case, one

dimensional search algorithms can be used to determine the maximum achievable

Rmax

o

. With R⇤
o

= Rmax

o

found, ⌘⇤ equals to �⇤(R⇤
o

).

3.5 Numerical Results

In this section, simulation and numerical results are used to validate the

proposed exclusion zone model. The parameters for PL models defined in Section
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3.2.1 are set as: K = 10�3, ↵
o

= 4, ↵
in

= 3 and ! = �5 dB. The radii of the MBS

and fBSs are R
M

= 500 m and R
f

= 20 m, respectively. The fBS intensity is 100

BS/km2. Additionally, the intensities of macro and femto users used in this section

are �M

u

= 200 users/km2 and �f

u

= 2 users/400m2. The macro users target rate C
M

is 200 kbps, and the femto user target rate C
f

= 500 kbps.

In Fig. 3.2, the success probabilities for cell edge users in Uk (k 2

{M, f,D1,D2}) are simulated and then compared with the analytical results derived

in Lemma 3.3.2 and Lemma 3.3.3. We set the resource partitioning factor ⌘ = 0.7.

Moreover, the total transmit power of the MBS is fixed at P
M

= 43 dBm and all

fBSs transmit with P
f

= 13 dBm. The simulated results in Fig. 3.2 are obtained

using Monte Carlo methods. The simulation experiments are built on the MATLAB

platform. In the simulation, we randomly deploy the network for 1000 times. For

each network realization, users and fBSs are randomly deployed following Poisson

point processes with corresponding intensities. Within each network deployment,

we randomly select cell edge users for all base stations and generate random channel

fading coe�cients 100 times for each cell edge user. If a cell edge user belonging

to set Uk (k 2 {M, f,D1,D2}) has its rate exceeding the rate target, we mark it

as a successful transmission event for user set Uk. By averaging the number of

successful transmissions in set Uk over all network and channel realizations, we get

the corresponding simulated success probabilities1. The analytical curves in Fig. 3.2

are obtained by calculating cell edge user success probabilities using (3.16), (3.17),

(3.18) and (3.27). As shown in Fig. 3.2, the analytical probability expressions

derived in Lemma 3.3.2 and Lemma 3.3.3 match well with the simulated results.

The optimal design of resource partitioning factor ⌘ for open access femtocells

is investigated in Fig. 3.3. We let the success probability threshold ✓ = 0.8 and the

maximum number of served users in set Uk be Nmax

k = 2N̄k. With R
o

= 50, 70, 90

m, we correspondingly determine the feasible ranges of ⌘ using (3.39b). Within the

1
For each point in Fig. 3.2, one complete simulation experiment is obtained by averaging

over 1000 random network deployments⇥100 channel realizations. For all the points on the curve

indicating UM user success probability in Fig. 3.2, we repeat simulation experiments 100 times and

obtained that the 95% confidence interval is smaller than 0.0025.
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Figure 3.2: The cell edge user success probabilities for di↵erent R
o

with P
M

= 43
dBm, P

f

= 13 dBm, and ⌘ = 0.7.

⌘ feasible range for each R
o

, we plot the E
N

M

[⌘P
M

] lower bound f(R
o

, ⌘) in (3.35).

The values of f(R
o

, ⌘) are numerically obtained by averaging over 1000 network

realizations. Additionally, we also give the approximations of f(R
o

, ⌘) using the

expression f̂(R
o

, ⌘) in (3.36). From Fig. 3.3, we can observe that the gaps between

f(R
o

, ⌘) and f̂(R
o

, ⌘) are small for all three R
o

settings. In addition, both the curves

of f(R
o

, ⌘) and f̂(R
o

, ⌘) decrease with increasing ⌘, which validates Corollary 3.4.1

and shows that the optimal ⌘ that minimizes MBS transmit power is achieved at

the maximum feasible point for the open access femtocell case.

To find the optimal exclusion zone radius R
o

for open access femtocells, we

plot the values of f (R
o

, ⌘⇤) according to di↵erent R
o

in Fig. 3.4. According to the

discussion in Section 3.4.1 and the numerical results in Fig. 3.3, the optimal ⌘⇤ for

the open access femtocell case is achieved at its maximum achievable value �
2

(R
o

)

(3.38). In Fig. 3.4, the numerically obtained f (R
o

,�
2

(R
o

)) curve is compared with

the analytical results f̂ (R
o

,�
2

(R
o

)) and ef (R
o

) in Corollary 3.4.2. Fig. 3.4 shows

that f̂ (R
o

,�
2

(R
o

)) provides accurate approximation of f (R
o

,�
2

(R
o

)), and the gap
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Figure 3.3: E↵ects of resource partitioning factor ⌘ on f(R
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, ⌘) and f̂(R
o

, ⌘).

between f (R
o

,�
2

(R
o

)) and ef (R
o

) decreases as R
o

increases. Fig. 3.4 also validates

our discussion that the optimal R
o

for the open access femtocell case is obtained at

its maximum achievable value.

Similar as the open access femtocell case, we investigate the optimal design

of resource partitioning factor ⌘ and exclusion zone radius R
o

for closed access

femtocells in Fig. 3.5 and Fig. 3.6. The parameter settings are the same as those

for the open access case. Fig. 3.5 shows that ĝ(R
o

, ⌘) in (3.48) and ǧ(R
o

, ⌘) in (3.50)

provide good approximations for determining the optimal ⌘ that minimizes g(R
o

, ⌘)

in (3.49a). Furthermore, it can be observed from Fig. 3.5 that g(R
o

, ⌘), ĝ(R
o

, ⌘),

and ǧ(R
o

, ⌘) are convex functions of ⌘ with fixed R
o

.

In Fig. 3.6, we plot the curves of g(R
o

, ⌘⇤), ĝ(R
o

, ⌘⇤), ǧ(R
o

, ⌘⇤) and eg(R
o

). With

given R
o

, the optimal ⌘⇤ that minimizes g(R
o

, ⌘) is found through exhaustive search.

The optimal values of ⌘⇤ for ĝ(R
o

, ⌘) and ǧ(R
o

, ⌘) are obtained by numerically

calculating the corresponding first order derivatives. Although there exist gaps

between g(R
o

, ⌘⇤) and its approximations using ĝ(R
o

, ⌘⇤), ǧ(R
o

, ⌘⇤) and eg(R
o

), all

the curves in Fig. 3.6 drop with increasing R
o

, which verified our discussion that
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).

the optimal R
o

for closed access femtocells equals to its maximum feasible value.

Based on the discussion in Section 3.4, we can determine the optimal R⇤
o

using

a bisection search algorithm and then obtain the optimal ⌘⇤. In Fig. 3.7, we plot the

variations of the minimum average MBS transmit power with R⇤
o

and ⌘⇤ according to

fBS intensity for open and closed access femtocells, respectively. For comparison, we

also give the average MBS transmit power for the no exclusion zone scenarios where

the MBS and fBSs transmit on orthogonal sub-bands (denoted as “orthogonal” in

the figure) or both transmit on the entire band (denoted as “fully shared” in the

figure). The femtocell intensity �
f

varies from 50 fBSs/km2 to 150 fBSs/km2. The

other parameters used to generate Fig. 3.7 are the same as before. From Fig. 3.7, the

MBS transmit power for the fully shared case increases with the femtocell intensity.

This is due to the growing inter-tier interference caused by the increasing number of

fBSs transmitting on the MBS’s band. On the other hand, with orthogonal resource

allocation or exclusion zone deployment, the e↵ects of inter-tier interference can

be mitigated. Additionally, as shown in Fig. 3.7, using the optimally designed

exclusion zones in open access femtocell networks give the minimum MBS transmit
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o

, ⌘).

40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Ro (m)

g
(R

o
,
η
∗
)
(W

)

 

 
g(Ro, η

∗)
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Figure 3.7: The e↵ects of femtocell intensity �
f

on the minimum MBS average
transmit power for di↵erent fBS access modes and resource allocation schemes.

power, which is due to the reduced macrocell load by o✏oading macro users to

femtocells. For the closed access femtocell with exclusion zones, as the number of

fBSs grows, more macro users are covered by the exclusion zones and served by the

MBS on the unshared sub-bands. Therefore, the MBS transmit power for the closed

access case converges to the one for orthogonal case as �
f

grows.

In Fig. 3.8, the e↵ects of fBS transmit power P
f

on the MBS transmit power

are depicted. The femtocell intensity �
f

is fixed at 100 fBSs/km2 and P
f

changes

from 5 dBm to 15 dBm. Similar to Fig. 3.7, the optimal designed exclusion zones

for open and closed access femtocells are considered and compared with the fully

shared and orthogonal resource allocation scenarios. From Fig. 3.8, for the fully

shared case, the MBS transmit power grows as the fBS transmit power P
f

increases.

However, the other three curves in Fig. 3.8 show that the MBS transmit power is

insensitive to the variation of P
f

with e�cient interference control using exclusion

zones or orthogonal sub-band allocation for the MBS and fBSs.

From Fig. 3.7 and Fig. 3.8, it can be in turn concluded that with the same
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on the minimum MBS average
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MBS transmit power the proposed open access femtocell exclusion zone model

results in the highest cell edge user success probability. This conclusion aligns with

existing discoveries in [42,70] that the joint use of cell load adaptation and resource

partitioning improves cell edge user coverage.

3.6 Conclusion

In this chapter, we investigated exclusion zone design coupled with resource

partitioning in femtocell networks. Based on the proposed exclusion zone model,

tractable expressions of average cell load and success probability were derived.

Subsequently, we provided the methods to determine the exclusion zone sizes and

allocated bandwidths that minimize MBS transmit power for open and closed access

femtocells, respectively. Simulation and numerical results verified that the proposed

exclusion zone design strategies reduce MBS power consumption while guaranteeing

a certain cell edge user success probability.
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Chapter 4

Energy-E�cient Multi-Antenna
Two-Tier Base Station
Deployment

4.1 Introduction

In previous chapters, we have studied two network power consumption

minimization problems with QoS (throughput and outage probability, respectively)

constraints, which are correspondingly solved through muting base stations on the

partitioned resources and adjusting base station transmit power according to the

cell load. Additionally, interference control in previous discussions is achieved by

allocating orthogonal transmission resources to interfering transmitters. In this

chapter, we investigate HCN energy e�ciency improvement from a new perspective

by smartly deploying multi-antenna base stations. Specifically, we propose an energy

e�cient MBS deployment strategy in a network consisting of small-cell BSs to reduce

the number of active base stations and hence lower the network power consumption.

Moreover, due to the e�cient QoS gains by equipping base stations with multiple

antennas [99], we will incorporate multi-antenna beamforming into the analysis to

eliminate interference in the network.

The e↵ects of base station deployment on heterogeneous network energy

e�ciency were investigated in [79], where the MBSs and small-cell BSs were

regularly deployed on a grid. However, besides the unrealistic regular grid network

abstraction, the discoveries in [79] were all based on simulation and were unlikely to

be usable for optimizing the key parameters that maximized network performance

gain. Using stochastic geometry analysis, tractable approaches were proposed
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in [59, 60] to determine the node densities of di↵erent kinds of base stations that

minimized network power consumption with outage probability constraints. In

[59, 60], multiple tiers of base stations were modelled as independent PPPs that

ignored geometric dependence where two base stations could be located arbitrarily

close to each other. Furthermore, the energy e�cient base station deployment

strategies investigated in [59, 60, 79] did not take multi-antenna beamforming into

consideration.

The e↵ects of multi-antenna transmission and geometric dependence on network

performance have been investigated through stochastic geometry analysis in the

literature. For homogeneous networks with multi-antenna base stations, the energy

e�ciency analysis was conducted in [100]. By modelling base station locations

as an HPPP, tractable outage probability expressions were derived in [100]. The

benefits of coordinated beamforming in improving homogeneous network coverage

and throughput were investigated in [40, 101]. Stochastic geometry frameworks for

analysing HCNs consisting of multi-antenna base stations have also been proposed.

In [94], the expressions of user outage probability were derived in a two-tier

femtocell network with zero forcing beamforming at each base station. With a single

macrocell overlaid with multiple femtocells, the e↵ects of inter-tier dependence on

user outage performance were investigated in [94], which showed that the MBS and

fBSs should not be deployed too close to each other otherwise they might cause

unacceptable inter-tier interference. In [102], with multiple multi-antenna MBSs

and small-cell BSs, tractable outage probabilities considering inter-tier and intra-tier

dependence were correspondingly derived. Nevertheless, the optimal design of the

key parameters that improve network energy e�ciency was not discussed in [94,102].

Furthermore, the use of coordinated beamforming in HCNs was not considered. As

a result, it still remains an open problem to jointly study the e↵ects of geometrically

dependent base station deployment and coordinated beamforming on HCN energy

e�ciency.

To tackle the above mentioned problems, in this chapter, energy e�cient
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MBS deployment in a two-tier HCN with multi-antenna base stations is analysed.

We propose a tractable stochastic geometry framework to model and analyse the

network by jointly taking geometric dependence and coordinated beamforming

into consideration. For geometric dependence, the deployed macrocells have

non-overlapping coverage areas and small-cells within the coverage of macro base

stations are muted to reduce power consumption. In addition, small-cell BSs adopt

coordinated beamforming to reduce interference within the network. Based on the

proposed framework, we derive closed-form expressions of user average spectral

e�ciencies. Downlink power minimization problem with user rate constraints is

formulated and solved to determine the optimal cell size and density of the deployed

MBSs. The solution provides guidelines for energy e�cient base station deployment

in multi-antenna HCNs.

The organization of this chapter is as follows. The system model is described

in Section 4.2. Section 4.3 gives the method to approximate user spectral e�ciency.

Based on the derived spectral e�ciency approximations, Section 4.4 explains how

to determine the density and coverage radius for the MBSs to minimize network

power consumption. Numerical results are given in Section 4.5. At last, Section 4.6

concludes the chapter.

4.2 System Model

We first consider a small-cell network consisting of only micro base stations

(mBSs). The positions of mBSs follow an HPPP �
m

of intensity �
m

. Each mBS is

equipped with N
m

transmit antennas and has total transmit power P
m

. We assume

users are each equipped with a single receive antenna, and each mBS serves one

user in each time slot using time division multiple access (TDMA)1. Furthermore,

to ensure high received SNR at user nodes, we assume that every mBS serves all

users within distance R
m

. As a result, the probability p
c̄

of a generic user not covered

1
The derivations in this chapter can be extended to other orthogonal multiple acess methods.
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by any mBSs can be calculated according to the HPPP assumption:

p
c̄

= exp
�

�⇡�
m

R2

m

�

. (4.1)

To ensure that users are covered by mBSs with high probability, we can set p
c̄

 ✏

with ✏ being the maximum allowable probability of a user being located in a coverage

hole. Therefore, with only mBS deployment, the required mBS intensity to achieve

high coverage probability is

�
m

�
ln 1

✏

⇡R2

m

. (4.2)

4.2.1 Macro Base Station Deployment

To reduce the number of active base stations, we deploy MBSs within the

small-cell network to replace some of the mBSs. Specifically, all the mBSs within

the coverage areas of the MBSs are muted and have their users served by the

corresponding nearest MBSs. To ensure that the maximum number of mBSs can

be muted within each MBS’s coverage, we propose that the MBSs are deployed in a

“sparse” manner, where each deployed MBS has a circular coverage area with radius

R
M

that does not overlap with the coverage of other MBSs. Typically, we assume

that R
M

� R
m

. The “sparse” deployment of MBSs can be modelled by a Matérn

hardcore process (Matérn HCP), where the minimum distance between two MBSs

is 2R
M

to model the sparsity condition that their coverage areas do not overlap.

The transmit power of an MBS is P
M

, and the number of transmit antennas at

each MBS is denoted as N
M

. We assume that N
M

equals to the average number

of mBS antennas covered by each MBS, i.e. N
M

= b�
m

⇡R2

M

N
m

c with bxc denoting

the maximum integer smaller than or equal to x. This assumption ensures that the

average number of active antennas within the network is invariant to the deployment

of MBSs. The network structure is shown in Fig. 4.1.
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Figure 4.1: The two tier network deployment with geometric dependence. The solid
squares are MBSs. The solid triangles are active mBSs. The hollow triangles are
muted mBSs.

4.2.2 Transmission Beamforming

We assume that mBSs adopt coordinated beamforming to help mitigate

inter-cell interference. On the other hand, each MBS replaces multiple mBSs

within its coverage, and therefore each MBS serves multiple users at a time through

beamforming that avoids intra-cell interference. In this work, we assume interference

nulling beamforming (IN-BF) for mBSs and zero forcing beamforming (ZF-BF) for

MBSs. The beamforming strategies for each mBS and MBS are discussed in details

as follows.

mBS Beamforming: IN-BF

The channel vector between a user i at position x and an mBS j at position

y is f i,j = hi,j

p

�i,j, where hi,j 2 CN

m

⇥1 is the channel fading coe�cient, and the

elements of hi,j are i.i.d. CN (0, 1). �i,j = K(kx � yk)�↵ is the large-scale PL with

constant propagation loss K and exponent factor ↵ > 2 [78].
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Through exploiting the available spatial degrees of freedom (DoF) at a

transmitter, we can drive the sum of undesired signals received at a user node to

zero. Note that each mBS serves only one user at a time. As a result, by applying

IN-BF, we can make use of the spatial DoF at the mBSs that not only let each

mBS serve its designated user, but also let the mBS null its interference to a subset

of users in the neighbouring cells [101, 103]. In this chapter, IN-BF is realized as

follows. Firstly, all the active users will broadcast a request signal to the nearby

mBSs for interference mitigation. Each user’s request will be detected by the mBSs

in neighbouring cells located within a distance R
det

from the user. Typically, we

have R
det

� R
m

. Next, each mBS will do beamforming using the channel state

information (CSI) of the designated user combined with the CSI obtained from the

request-detected users.

Assuming a typical user 0 and its designated mBS b, the channel vector between

user 0 and b is f

0,b = h

0,b

p

�
0,b. The mBS also receives interference nulling

requests from N
req

users in neighbouring cells, and the detected users are labeled as

{1, 2, . . . ,N
req

}. Note that the mBS can null its interference to at most N
m

�1 users.

If N
req

> N
m

� 1, the mBS will randomly suppress interference to N
m

� 1 detected

users. Without loss of generality, when N
req

> N
m

� 1, we assume that the mBS

will suppress interference to the first N
m

� 1 detected users. Let the channel matrix

between mBS b and the detected users be F = [f
1,b,f 2,b, . . . ,fmin{N

req

,N
m

�1},b]. The

beamforming vector for mBS b is [103]

wb =

⇣

I

N

m

� F

�

F

H
F

��1

F

H
⌘

f

0,b
�

�

�

⇣

I

N

m

� F

�

F

H
F

��1

F

H
⌘

f

0,b

�

�

�

where I

N

m

is the N
m

⇥ N
m

identity matrix.

We would like to point out that the maximum ratio combining beamforming

(MRC-BF) can be seen as a special case of IN-BF by setting R
det

= 0.
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MBS Beamforming: ZF-BF

If an MBS p covers M mBSs, the MBS serves in total M users of the

covered mBSs at one time slot. Unlike the IN-BF where the spatial DoF a↵orded

by multi-antenna transmission is used to mitigate inter-cell interference, we let

each MBS adopt traditional single cell ZF-BF to serve all covered users on the

same band at the same time. The M users served by MBS p are labeled as

{0, 1, . . . ,M � 1}. Note that the number of transmit antennas at each MBS is

N
M

= b�
m

⇡R2

M

N
m

c. The number of users that MBS p can serve is min {N
M

,M}.

Without loss of generality, if M > N
M

, the MBS only serves users with labels

{0, 1, . . . ,N
M

� 1}. Let the channel matrix between MBS p and its served users be

denoted as G =
⇥

g

0,p, g1,p, . . . , gmin{M�1,N
M

�1},p
⇤T
, where gi,p = hi,p

p

�i,p 2 CN

M

⇥1

is the channel vector between user i and MBS p. The MBS p’s beamforming matrix

is

V = G

H
�

GG

H
��1

. (4.3)

The beamforming vector vi,p for user i 2 {0, 1, . . . ,min {M � 1,N
M

� 1}} is the

normalized (i+ 1)th column of the matrix V .

4.3 Spectral E�ciency Analysis

4.3.1 User Served by mBS

Let user i be served by mBS b. The received signal yi,b at user i is a sum of the

intended signal transmitted by mBS b, the intra-tier interference from other active

mBSs that do not null interference to user i, the inter-tier interference from MBSs,
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and the additive noise.

yi,b =
p

P
m

f

H
i,bwbsb

| {z }

intended signal

+

X

j2�(a)

m

\{b}

p

P
m

f

H
i,jwjsj

| {z }

intra-tier interference

+
X

k2�(a)

M

X

m2M
k

s

P
M

|Mk|
g

H
i,kvm,ksm,k

| {z }

inter-tier interference

+ n
0

|{z}

additive noise

(4.4)

where wb and vm,k are the IN-BF vector of mBS b and the ZF-BF vector of MBS k

for its served user m, respectively. �(a)

m

and �(a)

M

denote the sets of active mBSs and

MBSs, respectively. The signal transmitted by mBS b to its intended user is denoted

by a complex scalar sb with E
⇥

|sb|2
⇤

= 1. The set of users served by the kth MBS

is denoted as Mk with cardinality |Mk|, and the signal for user m transmitted by

MBS k is sm,k with unit average power, i.e. E
⇥

|sm,k|2
⇤

= 1. The additive noise n
0

is a circularly symmetric complex Gaussian (CSCG) random variable with variance

�2.

With the received signal determined in (4.4), the SINR of user i associated with

mBS b is given by

⌥mBS,IN

i,b =
P
m

�i,b

�

�

f

H
i,bwb

�

�

2

P

j2�(a)

m

\{b} Pm

�

�

f

H
i,jwj

�

�

2

+
P

k2�(a)

M

P

m2M
k

P

M

|M
k

|

�

�

g

H
i,kvm,k

�

�

2

+ �2

.

(4.5)

For simplicity, we use the following more descriptive notations:

SmBS,IN

i,b = P
m

�i,b

�

�

f

H
i,bwb

�

�

2

, (4.6)

ImBS,IN

i,intra =
X

j2�(a)

m

\{b}

P
m

�

�

f

H
i,jwj

�

�

2

, (4.7)

IMBS,ZF

i,inter =
X

k2�(a)

M

X

m2M
k

P
M

|Mk|
�

�

g

H
i,kvm,k

�

�

2

, (4.8)

where SmBS,IN

i,b , ImBS,IN

i,intra and IMBS,ZF

i,inter correspondingly represent the intended signal,
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intra-tier interference and inter-tier interference powers received by user i.

Let the distance between user i and mBS b be di,b, and then the PL on the

desired link is �i,b = Kd�↵
i,b . The ergodic spectral e�ciency of the investigated user

i conditioned on di,b is therefore defined as

r̄mBS,IN

i,b (di,b) = E
h

log
2

⇣

1 +⌥mBS,IN

i,b

⌘

�

�

�

�i,b = Kd�↵
i,b

i

. (4.9)

Note that obtaining closed-form expression for r̄mBS,IN

i,b is a challenging task. As a

result, we resort to analytically tractable approximations for user ergodic spectral

e�ciency. In this work, we propose a new performance metric named virtual spectral

e�ciency, which is defined as

r̂mBS,IN

i,b (di,b) = log
2

⇣

1 + ⌥̂mBS,IN

i,b (di,b)
⌘

, (4.10)

where ⌥̂mBS,IN

i,b (di,b) is the virtual SINR of user i with given di,b. The virtual SINR

⌥̂mBS,IN

i,b (di,b) is calculated as

⌥̂mBS,IN

i,b (di,b) =
E
h

SmBS,IN

i,b

�

�

�

�i,b = Kd�↵
i,b

i

E
h

ImBS,IN

i,intra + IMBS,ZF

i,inter + �2

�

�

�

�i,b = Kd�↵
i,b

i (4.11)

According to the base station deployment scheme proposed in Section 4.2, the

positions of base stations no longer follow HPPPs. Additionally, the coordinated

IN-BF at mBSs further complicates the user SINR analysis. Thus, to derive closed

form expressions for the virtual SINR ⌥̂mBS,IN

i,b (di,b), we first make the following

assumptions.

Assumption 1. The locations of the MBSs follow a Matérn HCP obtained from

a stationary parent PPP of intensity �
p

with the nodes retained only if they are

at distance at least 2R
M

from all other points. This Matérn HCP can be then

approximated by a PPP of intensity e�
M

= p�
p

with p =
1�exp(��

p

⇡(2R
M

)

2)
�
p

⇡(2R
M

)

2

and

e�
M

 1

⇡(2R
M

)

2

.
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This assumption follows the approximation in [104]. Note that a Matérn HCP

is obtained from a parent PPP by enforcing a minimum distance between any two

nodes (2R
M

for our analysis). Denoting the parent PPP node intensity as �
p

, a

dependent thinning strategy is proposed in [104] to approximate the intensity of

the generated Matérn HCP with separation distance 2R
M

as p�
p

. The thinning

probability p is

p =

Z

1

0

exp
�

��
p

⇡ (2R
M

)2 t
�

dt =
1� exp

�

��
p

⇡ (2R
M

)2
�

�
p

⇡ (2R
M

)2
. (4.12)

Therefore, in this work we approximate the deployed MBSs as a PPP with intensity

e�
M

= p�
p

=
1�exp(��

p

⇡(2R
M

)

2)
⇡(2R

M

)

2

. Note that for any �
p

> 0, e�
M

is always smaller than

1

⇡(2R
M

)

2

.

Assumption 2. Each mBS is able to process all the received interference nulling

requests, i.e. there exists negligible probability that the number of detected users at

a mBS exceeds the mBS’s number of antennas N
m

.

Furthermore, the average number of detected users at a mBS is approximated

in the following lemma.

Lemma 4.3.1. Assume each user sends an interference nulling request and can

be detected by the mBSs located within distance R
det

. The average number of user

requests detected by a mBS is denoted as N̄
det

, where

N̄
det

⇡ �
m

⇡

✓

R2

det

� 1

2
R2

m

◆

. (4.13)

Proof. With no MBS deployed, denote the number of mBSs that receive the request

sent from a typical user i as Ni. Ni is a random variable with expected value N̄i.

According to the assumption in Section 4.2, each mBS serves only one user. Without

MBS deployment, the total number of requests sent from all users equals to the

total number of requests detected by all mBSs. Thus, we adopt the approximation

N̄
det

⇡ N̄i.
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To calculate N̄i, we first denote the distance between user i and its associated

mBS b as di,b. Since mBS b is the nearest mBS to user i and di,b  R
m

, we have the

PDF of di,b as

fd
i,b

(d
0

) =
2d

0

R2

m

1d
i,b

R

m

, (4.14)

where 1x is the indicator function with value 1 if condition x is true, and value 0

otherwise.

Conditioned on di,b = d
0

, the expected value of Ni is

E [Ni| di,b = d
0

] = �
m

⇡
�

R2

det

� d2
0

�

. (4.15)

The expected value N̄i is then calculated by averaging E [Ni| di,b = d
0

] over di,b,

which can be obtained as

N̄i =

Z

R

m

0

E [Ni| di,b = d
0

] fd
i,b

(d
0

)dd
0

= �
m

⇡

✓

R2

det

� 1

2
R2

m

◆

(4.16)

Based on Assumption 1, Assumption 2, and Lemma 4.3.1, the approximated

expression of ⌥̂mBS,IN

i,b (di,b) defined in (4.11) is given in the following lemma.

Lemma 4.3.2. The virtual SINR ⌥̂mBS,IN
i,b (di,b) is approximated as e⌥mBS,IN

i,b (di,b),

which can be expressed as

e⌥mBS,IN
i,b (di,b) =

eSmBS,IN
i,b (di,b)

eImBS,IN
i,intra + eIMBS,ZF

i,inter + �2

(4.17)

eSmBS,IN
i,b (di,b) =

✓

N
m

� �
m

⇡

✓

R2

det

� 1

2
R2

m

◆◆

KP
m

d�↵
i,b (4.18)

eImBS,IN
i,intra =

2⇡�
m

KP
m

↵� 2
(R

det

)2�↵ (4.19)

eIMBS,ZF
i,inter =

2⇡e�
M

KP
M

↵� 2
(R

M

)2�↵ , (4.20)
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Proof. Please refer to Appendix E.

Replacing ⌥̂mBS,IN

i,b (di,b) in (4.10) by e⌥mBS,IN

i,b (di,b), we have a closed-form

approximation ermBS,IN

i,b (di,b) for the virtual spectral e�ciency r̂mBS,IN

i,b (di,b).

r̂mBS,IN

i,b (di,b) ⇡ ermBS,IN

i,b (di,b) = log
2

⇣

1 + e⌥mBS,IN

i,b (di,b)
⌘

(4.21)

4.3.2 User Served by MBS

Similar to the analysis of users associated with mBSs, we elaborate on analyzing

user j served by MBS p. The received signal at user j is

yj,p =

s

P
M

|Mp|
g

H
j,pvj,psj,p

| {z }

intended signal

+

X

k2�(a)

M

\{p}

X

m2M
k

s

P
M

|Mk|
g

H
j,kvm,ksm,k

| {z }

intra-tier interference

+
X

l2�(a)

m

p

P
m

f

H
j,lwlsl

| {z }

inter-tier interference

+ n
0

|{z}

additive noise

(4.22)

Correspondingly, the received SINR at user j is

⌥MBS,ZF

j,p =
SMBS,ZF

j,p

IMBS,ZF

j,intra + ImBS,IN

j,inter + �2

=

P

M

|M
p

|�j,p

�

�

g

H
j,pvj,p

�

�

2

P

k2�(a)

M

\{p}
P

m2M
k

P

M

|M
k

|

�

�

g

H
i,kvm,k

�

�

2

+
P

l2�(a)

m

P
m

�

�

f

H
j,lwl

�

�

2

+ �2

,

(4.23)

where SMBS,ZF

i,b , IMBS,ZF

i,intra and ImBS,IN

i,inter correspondingly represent the intended signal,

intra-tier interference and inter-tier interference powers received by user j.

Conditioned on the distance between user j and MBS p being dj,p, and then

�j,p = Kd�↵
j,p , the ergodic spectral e�ciency of user j associated with MBS p is

r̄MBS,ZF

j,p (dj,p) = E
h

log
2

⇣

1 +⌥MBS,ZF

j,p

⌘

�

�

�

�j,p = Kd�↵
j,p

i

. (4.24)
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Similar to the micro tier analysis, the virtual SINR and virtual spectral

e�ciency are used to approximate r̄MBS,ZF

j,p , which are defined as

⌥̂MBS,ZF

j,p (dj,p) =
E
h

SMBS,ZF

j,p

�

�

�

�j,p = Kd�↵
j,p

i

E
h

IMBS,ZF

j,intra + ImBS,IN

j,inter + �2

�

�

�

�j,p = Kd�↵
j,p

i (4.25)

r̂MBS,ZF

j,p (dj,p) = log
2

⇣

1 + ⌥̂MBS,ZF

j,p (dj,p)
⌘

(4.26)

According to Assumption 1, Assumption 2, and Lemma 4.3.1, the following

lemma is given to approximate virtual SINR ⌥̂MBS,ZF

j,p (dj,p).

Lemma 4.3.3. The virtual SINR ⌥̂MBS,ZF
j,p (dj,p) is approximated as e⌥MBS,ZF

j,p (dj,p),

which can be expressed as

e⌥MBS,ZF
j,p (dj,p) =

eSMBS,ZF
j,p (dj,p)

eIMBS,ZF
j,intra + eImBS,IN

j,inter + �2

(4.27)

eSMBS,ZF
j,p (dj,p) =

�

�
m

⇡R2

M

(N
m

� 1) + 1
� KP

M

�
m

⇡R2

M

d�↵
j,p (4.28)

eIMBS,ZF
j,intra (dj,p) =

Z

2⇡

0

KP
M

e�
M

↵� 2

✓

dj,p cos ✓ +
q

4R2

M

� d2j,p sin
2 ✓

◆

2�↵

d✓ (4.29)

eImBS,IN
j,inter (dj,p) =

Z

2⇡

0

KP
m

�
m

↵� 2

✓

max

⇢

R
det

, dj,p cos ✓ +
q

R2

M

� d2j,p sin
2 ✓

�◆

2�↵

d✓.

(4.30)

Proof. Please refer to Appendix F.

Using Lemma 4.3.3, the macro tier user virtual spectral e�ciency in (4.26) is

therefore approximated as

r̂MBS,ZF

j,p (dj,p) ⇡ erMBS,ZF

j,p (dj,p) = log
2

⇣

1 + e⌥MBS,ZF

j,p (dj,p)
⌘

. (4.31)

Due to the closed-form expressions derived in Lemma 4.3.2 and Lemma 4.3.3,

we will use the virtual spectral e�ciency approximations as the user rate metrics

in the following analysis. The accuracy verification of the virtual spectral e�ciency

approximations will be illustrated in Section 4.5.
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4.4 Power Saving MBS Deployment

Denote the total power consumption of MBS and mBS as P
MBS

and P
mBS

,

respectively. Based on the linear model proposed in [79], the base station power

consumption can be given as

P
MBS

= a
M

P
M

+ b
M

, (4.32)

P
mBS

= a
m

P
m

+ b
m

, (4.33)

where a
M

and a
m

account for the power consumption that scales with the transmit

power. The terms b
M

and b
m

represent the transmission-independent power

consumption due to signal processing, battery backup, site cooling, etc. Typically,

each MBS consumes more power than single mBS. Therefore, we have a
M

� a
m

and

b
M

� b
m

with the values of a
M

, a
m

, b
M

and b
m

given in [79].

Note that by turning on each MBS, multiple mBSs within the MBS’s coverage

are muted, and then the total number of active base stations is reduced. Therefore,

we are interested in determining the optimal density and coverage areas of the

deployed MBSs that minimize the overall network power consumption. To ensure

the users’ QoS, each user’s virtual spectral e�ciency has to exceed a threshold value

C
0

. The power minimization problem is formulated as

minimize
R

M

,e�
M

f
⇣

R
M

, e�
M

⌘

(4.34a)

subject to min
8i

n

log
2

⇣

1 + e⌥mBS,IN

i,b (di,b)
⌘o

� C
0

(4.34b)

min
8j

n

log
2

⇣

1 + e⌥MBS,ZF

j,p (dj,p)
⌘o

� C
0

(4.34c)

e�
M

<
1

⇡R2

M

(4.34d)

where the objective function f
⇣

R
M

, e�
M

⌘

= e�
M

P
MBS

+
⇣

1� ⇡e�
M

R2

M

⌘

�
m

P
mBS

stands

for the unit area base station power consumption. Constraint (4.34b) and (4.34c)

correspondingly guarantee that all users associated with mBSs and MBSs achieve
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the minimum spectral e�ciency requirement C
0

. Constraint (4.34d) comes from

Assumption 1 to ensure that the coverage of the deployed MBSs does not overlap.

The spectral e�ciency constraints (4.34b) and (4.34c) can be rewritten as

log
2

⇣

1 + min
8i

n

e⌥mBS,IN

i,b (di,b)
o⌘

� C
0

, min
8i

n

e⌥mBS,IN

i,b (di,b)
o

� 2C0 � 1 (4.35)

log
2

✓

1 + min
8j

n

e⌥MBS,ZF

j,p (dj,p)
o

◆

� C
0

, min
8j

n

e⌥MBS,ZF

j,p (dj,p)
o

� 2C0 � 1. (4.36)

From Lemma 4.3.2, e⌥mBS,IN

i,b (di,b) is a non-increasing function of di,b. The

maximum value of di,b equals to the mBS coverage radius R
m

. Thus,

min
8i

n

e⌥mBS,IN

i,b (di,b)
o

= e⌥mBS,IN

i,b (R
m

). For the macro user j, the inter-tier

interference term (4.30) in Lemma 4.3.3 can be rewritten as

eImBS,IN

j,inter (dj,p) =
2KP

m

�
m

↵� 2

 

Z ⇡

x(d
j,p

)

(R
det

)2�↵ d✓

+

Z x(d
j,p

)

0

✓

dj,p cos ✓ +
q

R2

M

� d2j,p sin
2 ✓

◆

2�↵

d✓

!

,

(4.37)

where x(dj,p) = arccos
⇣

R

2

det

+d2
j,p

�R

2

M

2R

det

d
j,p

⌘

. Substituting (4.37) into (4.27), we can show

that the first order derivative of e⌥MBS,ZF

j,p (dj,p) with respect to dj,p is smaller than

0. As a result, the value of e⌥MBS,ZF

j,p (dj,p) decreases as dj,p increases. Therefore,

min
8j

n

e⌥MBS,ZF

j,p (dj,p)
o

= e⌥MBS,ZF

j,p (R
M

).

Using the expressions of e⌥mBS,IN

i,b (R
m

) and e⌥MBS,ZF

j,p (R
M

), the following upper

bounds of e�
M

, denoted as U
m

(R
M

) and U
M

(R
M

), can be derived from (4.35) and
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(4.36):

e�
M

U
m

(R
M

)

=

 

�

N
m

� �
m

⇡
�

R2

det

� 1

2

R2

m

��

KP
m

⌥
0

(R
m

)↵
� 2⇡�

m

KP
m

(R
det

)2�↵

↵� 2
� �2

!

⇥ ↵� 2

2⇡KP
M

(R
M

)2�↵ ; (4.38)

e�
M

U
M

(R
M

)

=

✓

(�
m

⇡R2

M

(N
m

� 1) + 1)KP
M

⌥
0

�
m

⇡ (R
M

)2+↵ � 2KP
m

�
m

(↵� 2) (R
det

)↵�2

✓

⇡ � arccos

✓

R
det

2R
M

◆◆

�2KP
m

�
m

(R
M

)2�↵

↵� 2

Z

arccos

⇣
R

det

2R

M

⌘

0

(2 cos ✓)2�↵ d✓ � �2

!

⇥ (↵� 2) (R
M

)↵�2

KP
M

R

2⇡

0

⇣

cos ✓ +
p

4� sin2 ✓
⌘

2�↵

d✓
, (4.39)

where ⌥
0

= 2C0 � 1.

Furthermore, constraint (4.34d) gives another e�
M

upper bound: U
c

(R
M

) = 1

⇡R2

M

.

Thus, the feasible MBS intensity e�
M

that satisfies the constraints (4.34b)–(4.34d)

in Problem (4.34) is in the range

e�
M

 min {U
m

(R
M

) , U
M

(R
M

) , U
c

(R
M

)} . (4.40)

For simplicity, the objective function f(R
M

, e�
M

) in (4.34a) can be reformulated

as f(R
M

, e�
M

) = (P
MBS

� ⇡�
m

R2

M

P
mBS

) e�
M

+ �
m

P
mBS

. Additionally, constraints

(4.34b), (4.34c) and (4.34d) can be replaced by (4.40). Therefore, Problem (4.34)

can be reformulated as follows

min.
R

M

,e�
M

�

P
MBS

� ⇡�
m

R2

M

P
mBS

�

e�
M

+ �
m

P
mBS

(4.41a)

s.t. 0  e�
M

 min {U
c

(R
M

) , U
m

(R
M

) , U
M

(R
M

)} (4.41b)

To solve the reformulated Problem (4.41), we first evaluate the term
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P
MBS

� ⇡�
m

R2

M

P
mBS

in the objective function (4.41a). Note that when P
MBS

�

⇡�
m

R2

M

P
mBS

� 0, the minimum value of (4.41a) is achieved at the minimum e�
M

.

In this case, the power consumed by each MBS, i.e. P
MBS

, is larger than the total

power used by the mBSs under a MBS’s coverage, i.e. ⇡�
m

R2

M

P
mBS

. As a result,

deploying MBSs will not decrease the total network power consumption. On the

other hand, when P
MBS

�⇡�
m

R2

M

P
mBS

< 0, the deployment of MBSs can reduce the

total network power consumption. In the following analysis, we will elaborate on

this case by finding the optimal R
M

and �
M

for Problem (4.41) with the additional

constraint:

P
MBS

� ⇡�
m

R2

M

P
mBS

< 0, (4.42)

which is equivalent to R
M

�
q

a
M

P

M

+b
M

⇡�
m

(a
m

P

m

+b
m

)

.

With the new constraint (4.42), the objective function (4.41a) decreases with

increasing e�
M

. Thus, the minimum value of (4.41a) is obtained at the maximum

achievable e�
M

, which is min {U
c

(R
M

) , U
m

(R
M

) , U
M

(R
M

)}. We will discuss the cases

where the maximum e�
M

correspondingly equals to U
c

(R
M

), U
m

(R
M

), and U
M

(R
M

)

in the following analysis.

Case I: U
c

(R
M

) = min {U
c

(R
M

) , U
m

(R
M

) , U
M

(R
M

)}

In this case, the objective function in (4.41a) becomes

(P
MBS

� ⇡�
m

R2

M

P
mBS

) 1

⇡R2

M

, which is a decreasing function of R
M

. The optimal R
M

in this case equals to its maximum achievable value that satisfies

U
c

(R
M

)  U
m

(R
M

) (4.43)

U
c

(R
M

)  U
M

(R
M

) . (4.44)

Using the expression of U
m

(R
M

) in (4.38), we can verify that U
m

(R
M

) is an

increasing function of R
M

. Since U
c

is a decreasing function of R
M

, the curves

of U
c

(R
M

) and U
m

(R
M

) have at most one intersection point R
1

. The inequality
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in (4.43) therefore gives R
M

� R
1

. In addition, we use the following lemma to

determine the feasible range of R
M

that satisfies (4.44).

Lemma 4.4.1. The constraint U
c

(R
M

)  U
M

(R
M

) determines a feasible range of

R
M

as R
M

 R
2

, where R
2

is the single solution of U
c

(x) = U
M

(x).

Proof. Please see Appendix G.

Additionally, constraint (4.42) determines R
M

�
q

a
M

P

M

+b
M

⇡�
m

(a
m

P

m

+b
m

)

. As a result,

the optimal R
M

for Case I equals to R
2

only if R
2

� max
n

R
1

,
q

a
M

P

M

+b
M

⇡�
m

(a
m

P

m

+b
m

)

o

.

Case II: U
m

(R
M

) = min {U
c

(R
M

) , U
m

(R
M

) , U
M

(R
M

)}

We use R
3

to denote the intersection point of U
m

(R
M

) and U
M

(R
M

), i.e.

U
m

(R
3

) = U
M

(R
3

). Similar to the analysis in Case I, we have the optimal R
M

equals to min {R
1

,R
3

} under the constraint min {R
1

,R
3

} �
q

a
M

P

M

+b
M

⇡�
m

(a
m

P

m

+b
m

)

.

Case III: U
M

(R
M

) = min {U
c

(R
M

) , U
m

(R
M

) , U
M

(R
M

)}

In this case, the monotonicity of the function (P
MBS

� ⇡�
m

R2

M

P
mBS

)U
M

(R
M

)

is discussed in the following lemma.

Lemma 4.4.2. The function F (R
M

) = (P
MBS

� ⇡�
m

R2

M

P
mBS

)U
M

(R
M

) is an

unimodal function with the minimum value achieved at R
M

= R
0

.

Proof. Let set Y =
n

y
�

�

�

dF (y)
dy

= 0
o

. It can be shown that d

2F (y)
dy2

�

�

�

y2Y
> 0. Therefore,

set Y has at most one element and function F (y) achieves its minimum value at

y 2 Y .

According to Lemma 4.4.2, we can find R
0

though bisection search. Note that

the feasible range is R
M

� max
n

R
2

,R
3

,
q

a
M

P

M

+b
M

⇡�
m

(a
m

P

m

+b
m

)

o

for Case III. As a result,

the optimal R
M

for Case III equals to max
n

R
0

,R
2

,R
3

,
q

a
M

P

M

+b
M

⇡�
m

(a
m

P

m

+b
m

)

o

.

Based on the above discussions, the optimal solutions for Case I, II and III can

be determined. Note that the solutions for Case I, II and III include all the local

optimal points of Problem (4.34) with constraint (4.42). Therefore, by selecting
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the minimum one within the solutions for the three cases, we can obtain the global

optimal solution of Problem (4.34) with constraint (4.42).

4.5 Numerical Results

In this section, the analytical results are verified through numerical tests. The

transmit power of macro and micro base stations are P
M

= 10 W and P
m

= 1 W,

respectively. We assume each mBS equipped with N
m

= 4 transmit antennas. For

the small cell network deployment, base station intensity �
m

= 25 mBSs/km2 and

the coverage radius of each mBS is R
m

= 250 m. Thus, the probability of a user

being located within a coverage hole (i.e. p
c̄

in (4.1)) is below 0.01. Each mBS can

detect the interference nulling request from users within distance R
det

= 250 m. The

PL parameters are K = 10�3, ↵ = 4. Additive noise variance �2 = �134 dBm.

In Fig. 4.2, we simulate the cell edge user ergodic spectral e�ciency on

MATLAB platform using Monte Carlo methods and compare the simulated results

with the proposed virtual spectral e�ciency approximations for users served by

mBSs and MBSs, respectively. Two deployments of MBSs with e�
M

= 0.01�
m

and

e�
M

= 0.05�
m

are investigated. For each e�
M

setting, MBSs are deployed following the

discussion in Section 4.2, where the MBSs are firstly randomly located according to

a PPP of intensity
e�
M

�
p

⇡(2R
M

)

2

1�exp(��
p

⇡(2R
M

)

2)
, and then the MBSs with their coverage areas

overlapped with other MBSs are eliminated and the mBSs within the remaining

MBSs coverage areas are removed. The radius of each MBS’s coverage area satisfies

⇡R2

M

e�
M

 1. For each network deployment, the nodes are randomly placed on a

10km x 10km square area. We randomly select the target users on the coverage

edges of an MBS and an mBS and calculate the corresponding spectral e�ciency

based on generated channel matrices. The simulated expected spectral e�ciency

points in Fig. 4.2 are obtained by averaging over 1000 channel realizations of each

of the 1000 random network deployments2. Furthermore, the approximated spectral

2
Similar as in Chapter 3, we run the simulation experiments for 100 times and the 95%

confidence interval for the points on the simulated macro user spectral e�ciency curve with
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e�ciency curves are obtained using the virtual SINR expressions derived in Lemma

4.3.2 and Lemma 4.3.3. It is shown in Fig. 4.2 that the approximate micro and

macro user virtual spectral e�ciencies match well with the simulated results.
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Figure 4.2: The e↵ects of MBS coverage radius on the expected spectral e�ciency.
Typical user i is located on the cell edge: ri,b = R

m

for micro user, ri,p = R
M

for
macro user.

With the spectral e�ciency threshold C
0

= 0.3, the optimal MBS deployment

methodology in Section 4.4 is verified in the following two figures. In Fig. 4.3, we

plot the e�
M

upper bounds: U
m

(R
M

) in (4.38), U
M

(R
M

) in (4.39), and U
c

(R
M

) = 1

⇡R2

M

derived from Assumption 1. The intersection points between these three bounds can

be obtained. According to the discussion in Section 4.4, the intersection points are

denoted as R
1

, R
2

, and R
3

. In Fig. 4.3, R
1

= 394 m, R
2

= 626 m and R
3

= 599 m.

For R
M

 R
1

, U
m

(R
M

)  U
M

(R
M

) and U
m

(R
M

)  U
c

(R
M

) is satisfied. Consequently,

the maximum MBS intensity e�
M

is smaller than U
m

(R
M

) with R
M

 R
1

, which is

the Case II discussed in Section 4.4. For R
1

< R
M

 R
2

, Case I is valid where

U
c

(R
M

)  U
M

(R
M

) and U
c

(R
M

)  U
m

(R
M

). When R
2

< R
M

, we have U
M

(R
M

) 

deployed MBS intensity

e

�M = 0.01�m is less than 0.01.
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U
c

(R
M

) and U
M

(R
M

)  U
m

(R
M

), and then the analysis for Case III is adopted.

Under the same parameter settings, in Fig. 4.4, we correspondingly plot

f(R
M

, e�
M

) in (4.41a) with e�
M

= U
c

(R
M

) (Case I), U
m

(R
M

) (Case II) and U
M

(R
M

)

(Case III). It can be seen from Fig. 4.4 that the values of f(R
M

, U
c

(R
M

))

and f(R
M

, U
m

(R
M

)) decrease with increasing R
M

. In addition, the function

f(R
M

, U
M

(R
M

)) is an unimodal function with its minimum value achieved at

R
M

= R
0

= 547 m. Note that the discussion of the three cases in Section 4.4 are

all based on the constraint (4.42). Thus, Case I, II and III are feasible only if

P
MBS

� ⇡�
m

R2

M

P
mBS

< 0 is satisfied. According to Fig. 4.4, the range within which

R
M

achieves P
MBS

� ⇡�
m

R2

M

P
mBS

< 0 is [466,1). As a result, Case II, where

R
M

 R
1

, is infeasible. Additionally, Case I and Case III are valid within the R
M

intervals [466,R
2

) and [R
2

,1), respectively. As a result, the optimal MBS coverage

radius R⇤
M

= R
2

and the corresponding minimum area network power consumption

f(R⇤
M

, e�⇤
M

) equals to f(R
2

, U
M

(R
2

)) = f(R
2

, U
c

(R
2

)) = 0.52⇥ 10�3 W/m2.
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Figure 4.3: The upper bounds of e�
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: U
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(RM), U
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In Fig. 4.5, we plot the area network power consumption according to the

mBS intensity �
m

. With spectral e�ciency threshold C
0

= 0.3 bps/Hz, the optimal

102



Chapter 4. Energy E�cient Base Station Deployment with Dependence

350 400 450 500 550 600 650
−0.005

0

0.005

0.01

0.015

0.02

0.025

RM

f
(R

M
,λ̃

M
)

 

 

λ̃M = UM(RM)

λ̃M = Um(RM)

λ̃M = Uc(RM)

R0 R3 R2R1

PM − πλmR2
MPmBS < 0

PM − πλmR2
MPmBS ≥ 0
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(RM), U
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(RM).

deployment of MBSs are determined using the proposed method. We also give

the power consumption of the network with only mBSs , denoted as “mBS only”

deployment in Fig. 4.5. For the mBS only deployment in Fig. 4.5, the positions

of mBSs follow an HPPP with intensity �
m

. As Fig. 4.5 shows, all the curves

grow with the mBS intensity. This is due to the increased number of active base

stations. However, the power consumption increases slowly in the network using the

proposed MBS deployment scheme. This is because the proposed MBS deployment

helps reduce the number of active mBSs. Additionally, with the mBS intensity

increasing, the gap between the proposed MBS deployment curve and mBS only

curve grows, which means that the proposed scheme is e�cient to be applied in

densely deployed small-cell networks.

In Fig. 4.6, the e↵ects of MBS transmit power P
M

on the network power

consumption are investigated. Let P
M

increase from 15 W to 50 W, we can see from

Fig. 4.6 that the area power consumption of the network with optimally deployed

MBSs decreases. This is because the larger MBS transmit power results in a bigger
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Figure 4.5: The e↵ects of mBS intensity �
m

on the network power consumption.

coverage area within which more mBSs can be muted to reduce the total number

of active nodes. Additionally, Fig. 4.6 also verified that the proposed deployment

scheme outperforms the random deployment scheme with only mBSs in terms of

network power saving.

As indicated in [79] and [100], serving all users with small cells is desirable

for network throughput optimization but is not optimal for energy e�cient network

design. The results in Fig. 4.5 and Fig. 4.6 confirm this assertion by showing

that deploying MBSs within a small cell network helps in reducing network power

consumption.

4.6 Conclusions

In this chapter, we investigated an energy e�cient base station deployment

problem in a two-tier multi-antenna network by taking geometric dependence into

consideration. We proposed a stochastic geometry framework to approximately

model and analyse the network performance. Based on the proposed framework, we
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Figure 4.6: The e↵ects of MBS transmit power P
M

on the network power
consumption.

first derived tractable approximations of the expected spectral e�ciency and then

determined the optimal density and coverage radius of the deployed MBSs that

minimized network power consumption.
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Conclusion and Future Work

5.1 Conclusion

This thesis has comprehensively investigated the optimal power saving

strategies in the downlinks of HCNs by applying stochastic geometry analysis.

Three novel HCN frameworks that involve joint interference elimination and cell

load control were proposed. Then, using stochastic geometry and reasonable

approximations, tractable and accurate QoS metrics were derived. Finally, the

optimal parameter design strategies that minimize network power consumption were

determined based on the proposed HCN frameworks and QoS approximations. The

detailed descriptions of the main contributions of Chapter 2–4 are summarized as

follows.

• In Chapter 2, we proposed a stochastic geometry framework for a two-tier

HCN with sleep-mode base stations that jointly adopted resource partitioning

and biased user association to mitigate inter-tier interference of users at the

coverage boundaries of di↵erent types of base stations. Simple expressions were

derived to characterize user throughput. By solving power minimization and

coverage maximization problems with throughput constraints, we proposed

algorithms to determine the optimal resource partitioning fraction and user

association bias. The proposed network design approaches were analytically

tractable and provided guidelines for practical HCN design. The results

in Chapter 2 revealed that muting small-cells on the partitioned resources
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was more e�cient in improving network coverage and muting macrocells on

the partitioned resources brought about more reduction in network power

consumption.

• In Chapter 3, we proposed a novel exclusion zone deployment strategy in

femtocell networks to mitigate inter-tier interference and reduce base station

transmit power. We derived tractable approximations of success probabilities

for users at cell edge, based on which a cell-load dependent MBS transmit

power control scheme was determined. By minimizing the average MBS

transmit power, the optimal exclusion zone design strategies for open and

closed access femtocells were obtained. The results provided insights into

energy e�cient exclusion zone design for femtocell networks, and verified that

using exclusion zones improves cell edge user performance.

• In Chapter 4, we proposed a new base station deployment scheme and

applied di↵erent multi-antenna beamforming methods at macro and micro

base stations to respectively mitigate intra- and inter-cell interference. A

novel metric named virtual spectral e�ciency was proposed to approximate

the exact user ergodic spectral e�ciency with high accuracy and tractable

expression. The optimal design of the density and coverage of the deployed

MBSs was obtained by solving network power minimization problem. Our

studies provided promising principles for tractable user spectral e�ciency

characterization and power saving deployment of multi-antenna base stations

in HCNs. Also, the discoveries in this chapter showed the potential of using

di↵erent types of base stations in improving network energy e�ciency.

5.2 Future Work

The work in this thesis may be extended in several directions, as outlined below.

In this thesis, HCNs are designed to minimize the network power consumption

under user QoS constraints. It will be interesting to design HCNs to optimize metrics
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that reflect the trade-o↵s between spectral e�ciency and energy e�ciency [66,105],

which will result in reduced power consumption per transmitted bit. Furthermore,

recent works [106,107] have shown the advantages in terms of network performance

improvement of using di↵erent user association schemes for the uplink and downlink

in HCNs. Therefore, another possible extension of this thesis is to take uplink

performance analysis into consideration using the proposed downlink energy e�cient

design methods. Moreover, some future works are left to be explored in Chapter

2–4.

• In Chapter 2, joint resource partitioning and cell load adaptation is used only

to mitigate inter-tier interference for macro users. The user association bias

B
2

that determines macro and small-cell users is fixed as constant during the

network design. In the future work, it is interesting to determine the optimal

value of B
2

that further improves network performance.

• For the transmit power saving design of femtocell exclusion zones discussed

in Chapter 3, we only considered using exclusion zones to mitigate inter-tier

interference. Thus, it is interesting to study the optimal design of exclusion

zones around macro- and femtocells that eliminate both inter- and intra-cell

interference. Additionally, it is also promising to jointly reduce the transmit

power of macro and femto base stations for networks with multiple macrocells.

Moreover, considering power adaptation schemes depending on multiple

network parameters (e.g. cell load, SINR, throughput) is also a challenging

yet interesting extension of the results in Chapter 3.

• For the energy e�cient base station deployment problem studied in Chapter 4,

the implementation of other beamforming and power allocation schemes can

be considered in the future work. Furthermore, we can include the analysis

of resource allocation in the base station deployment discussion to extend our

results in Chapter 4.

The stochastic geometry based energy e�cient HCN design analysis in this
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thesis can be adopted to explore other types of novel networks. One possible

extension is to explore millimeter wave cellular networks. Despite its potential to

provide high data rates due to the large bandwidths available, millimeter wave

transmission su↵ers from large free-space path loss due to the high carrier frequency

[108,109]. In order to implement millimeter wave technique in the cellular networks,

cell size should be reduced or multi-hop relay techniques should be used to combat

the signal path loss. Thus, we can draw an analogy between millimeter wave cellular

system and HCNs with small-cells. Using stochastic geometry analysis, the coverage

probability of millimeter wave cellular systems can be characterized [110], which

reveals the possibility to implement the energy e�cient design schemes proposed in

this thesis to mitigate interference and reduce power consumption in millimeter wave

cellular systems. Another extension of this thesis is to investigate D2D networks.

Since the communications between devices are in an ad hoc manner, stochastic

geometry can be applied to characterize D2D network performance [111, 112].

Moreover, in cellular networks overlaid with device to device communications,

interference control is an important issue [113]. It is therefore possible to make

use of the exclusion zones [114] and beamforming strategies studied in this thesis to

help control interference in D2D cellular networks.

Last but not least, the power saving strategies investigated in this thesis can be

combined with other green communication strategies such as energy harvesting [115,

116] to further reduce network power consumption. Note that stochastic geometry

analysis only provides high level guidelines for network design, and that practical

implementation will require further refinements, including real-time adaptations to

fluctuations in channels, data throughput requirements, etc. The entire design chain,

from the macro view o↵ered by stochastic geometry down to the micro design to

match instantaneous user requirements and system state, is yet to be explored. This

system design viewpoint o↵ers rich possibilities for future research and development

in the Smart Cities/Internet of Things domain.
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Proof of Corollary 2.4.1
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From the above equations, it can be easily obtained that lim
x!1
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(x)). Hence, we can conclude that lim
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where q =
⇣

S

2

S
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It can be easily verified from (A.1) and (A.2) that d

dx

⇣

¯

N

1

P
1

⌘

< � d

dx

⇣

¯

N

D1

P
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⌘

for all

B
1

� B
2

.

Given two functions f(x) and g(x), if the first order derivative of f(x) is always

smaller than g(x), i.e., df(x)
dx

< dg(x)
dx

, then the two functions have at most one

intersection point. According to this result, the function ⌘
D1

(B
1

) = ⌘
1

(B
1

) has at

most one root.
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Based on the above analysis, when lim
x!1

⌘
D1

(x) < lim
x!1

⌘
1

(x), we have ⌘
D1

(B
1

) <

⌘
1

(B1) for all B
1

> B
2

. Therefore, the set M
1

is empty, which can be interpreted as

b
1

= 1. Similarly, when lim
x!B
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x!B

2

⌘
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(x), the constraint ⌘
D1
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1

) � ⌘
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1

)

is achieved for all B
1

> B
2

. Thus, b
1

= B
2

. The last case in Corollary 2.4.1 is
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x!B

2

⌘
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(x)  lim
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2

⌘
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(x) and lim
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⌘
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(x). In this scenario, there exists

an intersection point b
1
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D1

(B
1

) and ⌘
1
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1

). Once the value of B
1

exceeds

b
1

, the constraint ⌘
D1

(B
1

) � ⌘
1

(B
1

) can be satisfied. Hence, the feasible set M
1

for

this case is M
1

= {B
1

|B
1

� b
1

}. Because there exists only one intersection point

between ⌘
D1

(B
1

) and ⌘
1

(B
1

) with their expressions known, bisection method can be

applied to find the value of b
1

.
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Proof of Lemma 2.4.1

Firstly, we calculate the first order derivative of P
c

with respect to B
1

. For

simplicity of notification, a change of variable x = (B
1

)
2

↵ is applied. Then (A.3) is

derived.

Note that dx
dB

1

> 0. Thus, dP
c
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,
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Then we can verify that d

2P
c

dB

2

1

�

�

�

B

1

2M
c

< 0, which means set M
c

has at most one

element. If M
c

6= ;, its element is denoted as B
c

. From the above analysis, P
c

is

unimodal in this case and achieves maximum value at B
c

. If M
c

is empty, P
c

is a

monotonic function of B
1

.
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Proof of Lemma 3.3.2

We start the proof of Lemma 3.3.2 by deriving the expressions (3.13)–(3.15).

Due to the similarity, we only elaborate on the derivation of P
f

(N
f

, di,1). From (3.8),
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Note that Hi,1 is an exponential random variable with expected value 1.

Therefore, the term EH
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To find the expectation EI
f

h

exp
⇣

� ⌥

f

I
f

P

f

g
f

(d
i,1

)

⌘i

in (C.1), we use the method

in [26] by applying the Laplace transform of the interference. The derivation is

114



Appendix C. Proof of Corollary 2.4.1

briefly listed as follows,
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Substitute the derived results back into (C.1), P
f

(N
f

, di,1) in (3.14) follows. The

expressions of P
M

(N
M

, di,0) in (3.13) and P
D1

(N
D1

, di,1) in (3.15) can be obtained

similarly.

The key to simplify the expression of P
M
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, di,0) is to approximate the integral

in (3.13). The integral in (3.13) can be lower bounded as
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The approximation is tight when x � 1. According to the assumptions that P
M

�

P
f

and ⌥
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takes small value, we therefore use (C.2) to calculate the integral in

(3.13) and obtain the accurate approximation of P
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, di,0) in (3.16).
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. Furthermore, approximating the integral in (3.14) using the
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lower bound (C.2), we can then have eP
f

(N
f

, di,1) as
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To calculate the expectation in (C.3), the distribution of di,0 is required. Note

that user i is assumed to be in set U
f

when calculating P
f

(N
f

, di,1) and the distance

between user i and its serving fBS is small (less than R
f

). We therefore approximate

di,0 by the distance between user i’s serving fBS, i.e. fBS 1, and the MBS. Let the

distance between fBS 1 and MBS be D. Based on the assumption that fBSs follow

a PPP, the PDF of D is
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(C.4)

with D 2 [0,R
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]. Using (C.4), we have (C.3) approximated as
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Replacing the integral in (3.15) by the lower bound (C.2), the expression of

eP
D1

(N
D1

, di,1) in (3.18) follows.

116



Appendix D

Proof of Lemma 3.4.1

Note that the MBS serves at most Nmax

M

users in U
M

, and the MBS cell load

N
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follows a Poisson distribution with mean N̄
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. Additionally, the expression of
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The second summation in (D.1) is upper bounded as
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Under the assumption Nmax

M

� N̄
M

, the probability of cell load N
M

exceeding Nmax
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is small. Thus, the approximation (D.2) is tight.
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Substituting the expression of N̄
M

in Lemma 3.3.1 into (D.3), we can get (3.36).
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Proof of Lemma 4.3.2

According to the definition of ⌥̂mBS,IN

i,b (di,b) in (4.11), the key is to determine
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According to the proposed base station deployment scheme proposed in Section

4.2, mBSs within the coverage areas of MBSs are muted. Therefore, the positions

of mBSs follow a Poisson hole process (PHP). However, it is challenging to conduct

tractable interference analysis with nodes modeled by PHP. Thus, we relaxed the

PHP assumption by assuming all mBSs are active, i.e. mBSs follow PPP �
m

with

intensity �
m

. The expected value of intra-tier interference E
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From Assumption 2, mBSs within distance R
det

to user i will completely eliminate

their interference through IN-BF. Furthermore, for mBS l doesn’t detect user i, f i,l

and wl are mutually independent random variables. Thus, the right hand side of

(E.2) is calculated as
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In Assumption 1, we assume that MBSs follow a PPP with intensity e�
M

. The

inter-tier interference term E
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Proof of Lemma 4.3.3

Similar as the Proof of Lemma 4.3.2, the virtual SINR for user j associated

with MBS p can be obtained by calculating the expected values of signal

and interference terms: E
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Note that the MBSs are separated at least 2R
M

away from each other.

Therefore, as depicted in Fig. F.1, the interfering MBSs are all located out of

the big dashed circle with radius 2R
M

. Let x(✓) be the distance from user j to the

points on the big dashed circle at angle ✓. As shown in Fig. F.1, the value of x(✓)

is a function of dj,p, RM

and ✓. Specifically, using the law of cosine, we have [117]

x(✓) = dj,p cos ✓ +
q

4R2

M

� d2j,p sin
2 ✓. (F.2)

According to Assumption 1, the positions of MBSs out of the big dashed circle

are modelled as HPPP with intensity e�
M

. Thus, we can approximately calculate
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Figure F.1: The network layout. The boundary of the considered macrocell is
depicted as a circle with solid line.
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For the inter-tier interference analysis, we first approximate the locations of

mBSs out of the considered MBS’ coverage area as a PPP with intensity �
m

. Next,

we can characterize the distance, denoted as y(!), from user j to its associated
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MBS’s cell edge at angle !. As shown in Fig. F.1, we have

y(!) = dj,p cos! +
q

R2

M

� d2j,p sin
2 !. (F.3)

In Assumption 2, we have assumed that a mBS eliminates its interference to all

users located within a distance R
det

. For example, in Fig. F.1, mBS 1 will not

cause interference to user j. Correspondingly, we should only consider the mBSs at

y(!) � R
det

when calculating inter-tier interference term E
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Proof of Lemma 4.4.1

We define the set X = {x|U
c

(x) = U
M

(x)}. To prove Lemma 4.4.1, we resort

to calculating the derivative of g (x) = U
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(x) at all x 2 X .

Using the expressions in (4.39), we have g0 (x) = dg(x)
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From U
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Thus, for all x 2 X , we have g0(x) < 0, which means there is at most one

element in X . Denote the single element in X as R
2

. From g0(R
2

) < 0, we have
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) for R
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