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SUMMARY 

The high electro-optic and nonlinear coefficients of lithium niobate make it a 

highly promising material for optical modulator design, cavity quantum 

electrodynamics experiments, and microwave photonics. The two most 

common techniques for photonic device fabrication on lithium niobate are 

titanium diffusion and proton exchange.  However, due to a very low refractive 

index contrast between the waveguiding region and the surrounding material, 

the waveguides formed through these processes have low mode confinement, 

high bending losses, and are often polarization dependent, making it difficult to 

fabricate compact photonic structures on the material. 

This thesis describes the fabrication techniques developed and optimized to 

produce low-loss waveguides and resonators in lithium-niobate-on-insulator 

(LNOI) chips. LNOI chips comprise a thin film of lithium niobate adhering on 

an insulating substrate like silicon dioxide. Devices fabricated on LNOI through 

etch-based techniques provide good mode confinement because of the high 

index contrast between the waveguiding and cladding regions. Also, because of 

the smaller waveguide widths attainable, a greater control of the critical 

dimensions of devices is possible.  

Optical waveguides, power splitters, and microring resonators were fabricated 

on lithium-niobate-on-insulator chips, with robust fabrication techniques, 

namely electron beam lithography (EBL) and ion-beam etching. The structures 

have been characterized in terms of propagation loss, extinction ratio, and 

quality factor. The fabricated structures showed good performance, and the 

fabrication techniques have the potential to be used in the mass manufacture of 

compact lithium niobate based optical devices.   
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1. INTRODUCTION 

 

1.1 Lithium Niobate in Literature: Lithium Niobate 

and its Applications in Nonlinear Optics 

 

The drive for research in nonlinear optics arose from its enormous potential for 

application in several fields, including, but not limited to communications, 

lasers, and quantum optics [1]. 

Nonlinear optical materials were first used for the generation of lasers at new 

frequencies not available with existing laser sources, through parametric up and 

down conversion [2]. But the application of nonlinear optics soon pervaded 

other areas of science and technology. The next paragraph highlights some of 

the most common applications of nonlinear optical phenomena.  

The most common nonlinear processes are harmonic generation, frequency 

mixing, optical parametric oscillation, and Raman shifting. Harmonic 

generation is commonly used in lasers. Nonlinear optical effects have been used 

in optical transmission systems to cancel the dispersion and diffraction of light 

to produce temporal and spatial optical solitons. Nonlinear optical devices are 

also an essential component in research in optical computing. The advantages 

of photonic devices using nonlinear optical processes over electronic devices 

are faster speed, owing to the use of photons instead of electrons, and higher 

bandwidth capacity. Nonlinear optical devices such as Mach-Zehnder 

Interferometers (MZIs) are used in ultrafast data processing. 

There are certain requirements for a nonlinear optical material that have to be 

met in order for it to be suitable for device applications. These criteria are: 
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adequate nonlinearity and optical transparency, proper birefringence for phase-

matching, and sufficient resistance to optical damage by intense optical 

irradiation. 

Lithium niobate (LN) is a transparent electro-optic crystal, with the chemical 

formula LiNbO3. Due to its high Pockels and Kerr effects, lithium niobate is a 

suitable candidate for a number of experiments in nonlinear optics ranging from 

sum and difference frequency generation to microwave photonics. In fact, it was 

one of the first materials on which parametric oscillations had been 

demonstrated. These attributes propelled LN to the forefront of materials used 

in various electro-optical and nonlinear optical applications. It is also 

commercially used in the fabrication of high-speed modulators such as Mach 

Zehnder interferometers (MZIs) for ultrafast data transfer. 

Lithium niobate is birefringent, with an ordinary index of 2.28 (in the x and y 

orientations) and an extraordinary index of 2.18 (in the z orientation) at a 

wavelength of 633nm [3]. At a wavelength of 1600nm, the ordinary refractive 

index is 2.21, and the extraordinary index is 2.13. 

 

Figure 1. Pockels effect impermeability tensor 

Under an applied electric field, the polarization of the optical fields inside the 

crystal can change according to the equation, 
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(Equation 1) 

This provides the opportunity to employ lithium niobate in a wide array of 

nonlinear optical experiments. 

The following section provides an overview of the various types of nonlinear 

optical experiments that have been carried out so far in lithium niobate.  

1.1.1 Mach Zehnder interferometers 

The electro optic modulation of lithium niobate is well suited for modulation 

and switching of fast optical communication systems. 

A Mach Zehnder Interferometer, or MZI, comprises a power splitter splitting 

light into two equal sections in its two branches, leading to two output ports. 

Without a voltage applied (the bar state), light interferes constructively at a 

particular output port. When a voltage is applied across the arms, due to Pockels 

Effect, the refractive index of the waveguides changes in a way that causes the 

light passing through the arms to undergo a relative phase shift of π, causing 

destructive interference at the initial output port, and constructive interference 

at the other. This phenomenon can be used in ultrafast optical modulation and 

switching [4].  

MZIs fabricated on lithium niobate by titanium diffusion process are 

commercially available. However, due to the small index contrast produced by 

titanium diffusion, they tend to have large bending losses associated with them. 

In order to circumvent this, the devices have large bends at the input and output 

ports, causing the typical device to be several centimeters long. 

  

𝐏 = 𝜀0(𝜒
(1) ⋅ 𝐄(t) + 𝜒(2) ⋅ 𝐄𝟐(t) + 𝜒(3) ⋅ 𝐄𝟑(t) + ⋯) . 
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1.1.2 Second harmonic generation 

Second harmonic generation is a nonlinear optical phenomenon that occurs due 

to the 𝜒(2) nonlinearity in electro-optic crystals. This technique is commonly 

used as an indicator of the crystal integrity once waveguides have been 

fabricated on it via diffusion based techniques.  

Waveguides formed by proton exchange were seen in previous experiments to 

have a reduction in their nonlinear coefficients [5]. The coefficients could be 

recovered by annealing the fabricated structures [6,7]. 

1.1.3 Experiments with entangled photons 

Spontaneous parametric down-conversion can produce entangled photon pairs. 

In a nonlinear crystal such as lithium niobate, the photons can split into twin 

photons that are phased-matched and have correlated polarizations. This 

typically happens at a low conversion efficiency, estimated to be around 1 in 

1010. SPDC has been observed in lithium niobate waveguide arrays [8]. 

If we are able to produce ultra-high Q factor microcavities, we can attempt 

experiments with entangled photons.  

1.1.4 Microwave photonics experiments 

In 2001, Cohen and Hossein-Zadeh et al. theorized and experimentally 

demonstrated a device that could use microwave signals to modulate optical 

signals [9]. It comprised a lithium niobate disk that was mechanically polished 

to form a high-Q (4E6) resonator. Light was coupled into it using prism 

couplers. A microwave resonator was deposited on top of it. Modulation was 

seen only when the microwave frequency used matched the free spectral range 

(FSR) of the cavity. Optical modulation was achieved at frequencies reaching 
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40 GHz, and the experimental results matched closely with theoretical data [10]. 

In 2002, Ilchenko et. al. carried out a similar experiment on a high-Q whispering 

gallery mode resonator on lithium niobate, and performed a rigorous theoretical 

analysis of the results, showing frequency up and down conversions. 

1.2 Research Motivation 

 

The high electro-optic coefficients and nonlinear coefficients of lithium niobate 

make it a highly promising material for optical modulator design, cavity 

quantum electrodynamics experiments, and microwave photonics. The two 

most common techniques for photonic device fabrication on lithium niobate are 

titanium diffusion and proton exchange.  

However, due to very low refractive index contrast (usually less than 0.1), the 

waveguides formed through these processes have low mode confinement, high 

bending losses, and, are often not polarization independent, making it difficult 

to fabricate compact photonic structures on the material. 

Also, for the fabrication of large, high quality factor (high-Q) cavities for 

microwave photonics experiments, the conventional way is to mechanically 

polish a block of lithium niobate. This is suitable for performing experiments in 

a laboratory set up, but is not a technique that can be used to fabricate 

optoelectronic devices on a chip. 

Lithium-niobate-on-insulator (LNOI) provides a viable solution to the 

problems. Because of the high index-contrast of the waveguiding regions of rib 

waveguides in LNOI, they allow for lower bending losses and sharper bends. 

Also, because of the smaller waveguide widths attainable through etch based 
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techniques, a greater control of the critical dimensions of devices is possible, 

enabling the formation of compact interferometers and modulators.  

We fabricated and characterized optical waveguides, power splitters, and 

microring resonators on lithium-niobate-on-insulator chips, employing robust 

fabrication techniques, namely electron beam lithography (EBL) and ion-beam 

etching. 

As the techniques are further optimized and high – Q resonators are fabricated, 

experiments in cavity quantum electro-optics and nonlinear optics can be 

performed on chip [11, 12].  

 

Figure 2. Schematic of a rib waveguide based MZI 
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Figure 3. Optical lab on a chip 

 

Figure 3. Schematic of a microwave-optical converter 
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1.3 Thesis Structure 

 

This thesis focuses on the optimization of fabrication parameters for device 

fabrication on lithium niobate, focusing particularly on lithium-niobate-on-

insulator chips. 

The thesis is structured in three parts. The first part comprises two major 

techniques conventionally used to fabricate waveguides and optical devices in 

lithium niobate: proton exchange, and titanium diffusion. Both these techniques 

have been rigorously studied in our group for their suitability in quantum optical 

experiments. The limitations of these techniques is what led to our shift to 

lithium-niobate-on-insulator devices. 

The second section deals with device fabrication on lithium-niobate-on-

insulator (LNOI).  The section begins with a brief overview of the structure of 

LNOI chips and their fabrication. Next, the techniques used for processing the 

chips are described in detail.  

The third section follows up with experimental characterization of the devices 

fabricated using our methods. 

Finally, the conclusion summarizes the milestones achieved during the course 

of the Master’s program, and the further work that can be done to demonstrate 

nonlinear optical phenomena on-chip. 
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2. DIFFUSION BASED TECHNIQUES USED 

TO FABRICATE DEVICES ON LITHIUM 

NIOBATE 

 

There are three common methods of fabricating waveguides on lithium niobate 

[1]: 

1. Outdiffusion: Outdiffusion of LiNbO3 by high temperature thermal 

treatments decreases the extraordinary index of the waveguiding region 

without causing a change in the ordinary index. 

2. Indiffusion of metal: Depending on the metal diffused into the substrate, the 

ordinary and extraordinary indices can both increase or decrease. Titanium 

diffusion increases the indices by approximately 0.05, making it a suitable 

technique for waveguide fabrication. 

3. Proton exchange: The substrate is dipped in an acid (benzoic acid) where 

hydrogen ions exchange with Li ions in the substrate. This technique 

increases the extraordinary index (by approximately 0.1) and decreases the 

ordinary index. 

2.1 Proton Exchange 

2.1.1 Mechanism 

The proton exchange technique is fairly simple. Benzoic acid, a solid at room 

temperature, is melted in a glass flask. The crystal is placed in the melt for the 

desired time, then removed and allowed to cool. Excess benzoic acid can be 

removed with alcohol. Thermal shock does not appear to be a problem with x-

cut crystals, but z-cut crystals occasionally crack during exchange or when they 

are removed from the melt. The part of the substrate exposed to the molten acid 
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undergoes a change in the refractive index through the in diffusion of hydrogen 

ions [2].  Since the ordinary index of the PE region decreases, devices like ring 

resonators can be only be fabricated in Z-cut LN, and be excited with TM light. 

 

Figure 4. Proton exchange mechanism 

 

Although proton exchanged waveguides have relatively low loss (~1dB/cm), 

the non-linear coefficients of the material are seen to decrease after the process.  

A number of approaches report partly contradictory results. The measured SHG 

efficiencies in both waveguided quasi-phase-matched (QPM) and Cherenkov 

generation show the nonlinear coefficients in the guiding region to be 

substantially smaller than that of the untreated LiNbO3 [3]–[8]. The coefficient 

of PE LiNbO3 waveguides prepared by PE in pure benzoic acid has been 

measured to vary between 0 and 70% of the bulk value [3-7]. The nonlinear 

coefficients can be recovered by annealing, as shown in previous investigation 

[7, 9], and supported by our experiments. 

Other techniques of maintaining the non-linear coefficients of the waveguides 

include PE using diluted benzoic acid (with 3% lithium benzoate) [10] and using 

vapor phase epitaxy [11]. However, for our experiments, annealed proton 

exchange (APE) waveguides gave the best results.  
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An extensive literature study was done to identify the optimal conditions for the 

fabrication of waveguides with the best parameters. The following table 

summarizes the findings. 

 

Table 1: Proton exchange and annealing parameters found in literature 

 

Reference Proton 

Exchange 

Annealing Phase on 

the surface 

(expected) 

Nonlinear 

optic 

coefficient 

d33 

Wavelength 

of light 

used/μm 

Loss (dB) 

Suhara et 

al[8] 

BA,230°C,2h - β2 0.5± 8 1.06 n.a. 

Keys et al. 

[2] 

BA,235°C,1h 0 

350°C, 

0.5h 

β2 

κ2
LT-HT 

0.45±0.05 

0.65±0.02 

- n.a. 

Cao et al. 

[7] 

BA,180°C,1h 0 

350°C, 

10h 

β2 0.62 

0.88 

- n.a. 

Laurell et 

al. [3] 

BA,180°C,1h 0 

350°C, 

10h 

β2 

κ2
LT-HT 

<0.03 

<0.03 

1.064 n.a. 

Bortz and 

Fejer [4] 

BA,220°C,2h 

(x-cut) 

- β1 

κ2
LT

 – κ1
LT 

≤0.01 - n.a. 

Bortz et. 

al. [4] 

BA, 

173°C,1h 

0 

333°C,3-

63h 

β2 

 

Varies with 

depth 

0.532 n.a. 

Hsu et 

al[5] 

BA, 

180°C,0.5h 

0 

300°C,1-

17h 

β2 

 

0 

0.5 

0.532 0.5dB/cm 

Raghuram 

Narayan 

[11] 

BA, 240°C, 

0.5h 

375°C,2h - 0dB - - 

Raghuram 

Narayan 

[11] 

Suchoski 

et al. [10] 

BA, 

180°C,5h 

375°C,4h - 

- 

3dB - 

- 

- 

0.15 dB/cm 

BA,180°C, 

5h 

375°C,8h 0dB 

BA,240°C,5h 375°C,4h 3dB(cracks  

propagate) 

BA,240°C,5h 375°C,8h 0dB(no 

recovery in 

certain 

regions) 

BA, 200C, 10 

min (0.8μm 

light) 

30min 

(1.55μm) 

350°C, 2h 

 

 

350°C, 4h 

 -  

J Rams et 

al [9] 

250-375C 

(vapor phase 

epitaxy) 

- - 0.9 0.457-1.047 <0.35dB/cm 
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2.1.2 Process 

 

Figure 6 shows the steps in the fabrication of waveguides using proton 

exchange.  

Step 1: Dicing 

Using a commercial dicer, the wafer is first diced into 2cm by 2cm blocks. More 

details about the dicing are provided in section 3.4, which describes the 

waveguide fabrication procedure on lithium niobate. 

Step 2: Chromium deposition 

Benzoic acid does not attack most metals. A layer of chromium is used as a hard 

mask for the proton exchange layer. 

The substrate is covered with a 40-50nm layer of chromium, which acts as a 

conducting layer for EBL. The chromium is deposited using an electron beam 

evaporator. The layer has to be uniform so that the waveguides have the same 

height throughout the wafer after the etching. 

Figure 5. PE channel waveguide fabrication steps  
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The deposition is done in a vacuum of 6.0 E -6 Torr, at a rate of 0.1nm/sec, to 

ensure uniform deposition. 

A surface profiler is used to check the final height of the layer after deposition.  

Step 3: Electron Beam Lithography with positive resist 

PMMA 950K A11 mixed with anisole thinner in a 1:1 ratio is spin coated on 

the wafers at a speed of 6000rpm for 45 seconds. The sample is baked at 180°C 

for 90 seconds. In our machine (eLine Plus, Raith), we use a dosage of 200 

μC/cm2. The solution is then developed in MIBK:IPA in a 1:3 ratio for 50 

seconds. 

Since our waveguides are about 1 cm in length, in order to minimize the 

patterning time, a technique called FBMS (Fixed Beam Moving Stage) is used. 

In this, the beam rotates about its mean position, while the stage is moved under 

it, exposing the patterned region. Alternatively, photolithography may be used 

to pattern the waveguides. 

Step 4: Ion milling to remove Chromium 

Ion milling with Argon ions is used to etch off the exposed chromium layer. 

Step 5: Proton exchange 

 

Figure 6. The proton exchange setup 
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Written below are the exact steps in the fabrication of waveguides through 

proton exchange. The setup is shown in Figure 7.  

The acid area of a fume hood is used for the proton exchange process. The 

required mass of benzoic acid (solid crystals) is poured into a clean, dry beaker. 

The beaker is covered with aluminium foil at all times to prevent vapour from 

escaping. A small hole in punctured in the aluminium to prevent pressure build 

up, and to take temperature readings using a thermocouple. 

The wafer is cleaned using Acetone, IPA and deionized (DI) water, using an 

ultrasonic cleaner. The cleaning time for each solvent is approximately 5 

minutes. The wafer is checked using optical microscope to make sure that the 

desired patterns are correct and complete.  

Benzoic acid is heated to around 230oC using a flash-proof hotplate. The 

temperature is monitored with a digital thermometer by pricking a hole in the 

aluminium cover.  

Once the temperature has stabilized at the correct settings, the sample is placed 

in the acid for the required period of time. 

After the process, the sample is removed from the acid using acid gloves and 

teflon tweezers.  

The sample is cooled to room temperature and placed in a beaker of acetone for 

fifteen minutes, to clean residual benzoic acid from the surface. Finally, the 

sample is cleaned using Acetone, IPA, and DI water.  

Step 6: Stripping off the remaining resist and chromium 

The remaining photoresist is washed off by acetone. The chromium is washed 

off by wet etching, using standard chrome-etchant solution. The samples are 
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subsequently diced to get optically smooth end facets to facilitate the injection 

of light into the waveguides. 

Step 7: Annealing 

Annealing is done at 300°C for 2 hours to repair the crystalline defects that build 

up in the waveguide during proton exchange. 

2.1.3 Results 

 

 

Large ring resonators were fabricated on proton exchanged lithium niobate 

samples. When illuminated with a supercontinuum source laser (SuperK Versa, 

NKT Photonics) centered at 1064nm with a wavelength range of 500nm to 

1600nm, the waveguides were seen to couple light. When illuminated with a 

(a) 

(d) (c) 

(b) 

Figure 7. (a) The ring seen under a microscope at 5X magnification; (b) The 

waveguides at the coupling region; (c) A waveguide illuminated by a 

broadband laser; (d) Part of the illuminated ring 
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1550nm tunable laser source, the waveguides showed a low loss of about 

1dB/cm [The measurement technique is discussed in detail in section 3.6.2]. 

However, possibly because of the low index contrast of the waveguides (~0.02-

0.05), the waveguides were seen to have high bending losses [Fig. 8 (d)], and 

the light did not make it past the large radius bends.  

2.1.4 Conclusion for Proton exchange  

Several batches of proton exchanged waveguides were fabricated for the 

project, with propagation losses as low as 1dB/cm, for an input wavelength of 

1550nm. At this stage, the bending loss of the PE waveguides could not be 

measured because even when very large radius bends were designed, the light 

did not make it past the bends. Due to the high bending losses, we decided not 

to pursue the technique further. 

Although we did not get our desired results from the proton exchanged ring 

resonators, the experiments gave us a chance to optimize our several of our 

fabrication steps, such as metal deposition, photolithography, EBL, and ion 

milling. 

During our experiments with proton exchange, we also had a chance to set up 

our measurement apparatus, which was used for subsequent experiments with 

titanium diffusion and ion beam etching. 
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2.2 Titanium Diffusion 

2.2.1 Mechanism 

Titanium diffusion is commonly used to fabricate waveguides and Mach 

Zehnder interferometers on lithium niobate.  

Titanium diffusion involves depositing titanium on top of the substrate, and 

heating the substrate (in various different atmospheres) to around 1000°C for 8-

12 hours [1], where titanium replaces the lithium sites in the crystal, causing an 

increase in the index change. Wet oxygen is usually recommended at some stage 

(usually the last hour) to allow re-oxidation and also prevents lithium ion 

outdiffusion. 

The index contrast introduced by titanium diffusion is smaller than that typically 

caused by proton exchange, but it increases both the ordinary and the 

extraordinary indices. Also, Ti diffusion decreases the nonlinear parameters of 

lithium niobate by a lesser amount. 

We investigated the effectiveness of titanium diffusion in the fabrication of 

waveguides and ring resonators. 

   

 Figure 8. Titanium diffusion work flow 
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2.2.2 Process 

Titanium diffusion follows steps similar to proton exchange. 

Step 1: Dicing 

Using a commercial dicer, the wafer is first diced into 1cm by 1cm blocks. More 

details about the dicing are provided in the LNOI waveguide fabrication section. 

Step 2: Titanium deposition 

A layer of titanium is deposited on the substrate using an electron beam 

evaporator. The substrate is covered with an 80nm layer of titanium using an 

electron beam evaporator.  

The deposition is done in a vacuum of 6.0 E -6 Torr, at a rate of 0.1nm/sec, to 

ensure uniform deposition. A surface profiler is used to check the final height 

of the layer after deposition.  

Step 3: Electron Beam Lithography with negative resist 

Ma-N 2405 is spin coated on the wafers at a speed of 6000rpm for 45 seconds 

and subsequently baked at 90°C for 2 minutes. This gave a resist thickness of 

approximately 350nm. The dosage in our machine is 100 𝜇C/cm2.  

Since our waveguides are about 1 cm in length, in order to eliminate stitching 

error in EBL, a technique called FBMS (Fixed Beam Moving Stage) is used. In 

this, the beam rotates about its mean position, while the stage is moved under 

it, exposing the patterned region. 

The wafers are then developed in the developer maD-525 for 2 minutes. 

Step 4: Ion milling to remove titanium from the non waveguiding region 

Ion milling with argon ions is used to etch off the titanium from the remaining 

area. 
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Step 5: Diffusion 

Finally, the substrate is placed in an oven, and heated at 1000οC for 10 hours, 

to completely diffuse the titanium into the substrate, forming the waveguiding 

region. 

 

 

 

Figure 10. Experimental setup: Oven 

  

Figure 9. Image of Ti layer after ion milling and washing 
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2.2.3 Results 

 

The index change in the waveguiding region made by titanium diffusion was 

measured using prism coupling.  Details of the measurement are presented in 

Appendix C. The index change varied between 0.0025 to 0.005. After this, FSR 

measurements were performed on the large ring resonators fabricated. 

Fig.12 (a) shows the schematic of the measurement set up. The transmission 

spectrum was measured using a broadband laser (SuperK Versa, NKT 

Photonics) with a wavelength range of 500nm to 1600nm. 

The free space laser was focused using a 20x microscope objective onto the 

waveguide. The output was coupled into a lensed fiber and measured via an 

optical spectrum analyzer (Agilent 86142B OSA). The setup is shown in Fig.12 

(b). The second set of measurements was performed to measure the FSR, which 

required significantly higher resolution as the FSR is expected to be 0.049nm, 

measured with an optical spectrum analyzer.  

Large ring resonators were fabricated using the above described process. The 

rings, upon illumination with an Agilent 81980A tunable laser, showed an FSR 

of 0.049 nm. 

The findings were presented in the OMN conference in 2014.  
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2.2.4 Conclusion for Ti diffusion 

The low index contrast of the Ti diffused waveguides were not suitable for the 

production of compact microphotonic structures, or high Q factor large ring 

resonators usable in microwave photonics experiments. 

However, our trials with the titanium diffusion process, as it was the case with 

the proton exchange process, enabled us to optimize our fabrication parameters 

for e-beam metal deposition, photolithography, E-beam lithography, and ion 

milling; thus paving our pathway to the formation of devices on LNOI chips. 

We also used the opportunity to organize our measurement setup, which was 

later used in the characterization of our rib and ridge devices on LNOI, as 

elaborated in the next section.  

(c) (d) 

(a) (b) 

Figure 11. (a) Schematic of Setup; (b) Experimental setup for lensed 

coupling; (c) Ti diffused waveguides and racetrack resonator seen 

under an optical microscope; (d) The racetrack and the bus 

waveguide illuminated with a broadband laser centered at 1064nm. 
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3. LITHIUM-NIOBATE-ON-INSULATOR 

3.1 Introduction 

The two most common techniques for photonic device fabrication on lithium 

niobate are titanium diffusion and proton exchange. However, due to very low 

refractive index contrast (usually less than 0.1), the waveguides formed through 

these processes have low mode confinement, high bending losses, and often, are 

not polarization independent, making it difficult to fabricate compact photonic 

structures on the material, as our investigation on the techniques showed. 

Lithium-niobate-on-insulator (LNOI) provides a viable solution to the problem. 

This chapter describes the fabrication techniques we developed and optimized 

to produce low loss waveguides and resonators in LNOI. Lithium-niobate-on-

insulator chips comprise a thin film of lithium niobate (thickness: ~700nm) 

adhering on an insulator substrate like SiO2. Such devices provide good vertical 

and lateral index contrast and mode confinement. Also, because of the smaller 

waveguide widths attainable through etch based techniques, a greater control of 

the critical dimensions of devices is possible. We fabricated and characterized 

optical waveguides, power splitters, and microring resonators on LNOI chips, 

employing robust fabrication techniques, namely EBL and ion milling. The 

structures were characterized in terms of propagation loss and quality factor. 

The fabricated structures showed good performance, and the fabrication 

techniques have potential for use in the mass manufacture of lithium niobate 

based optical devices. 
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3.2 Structure of Lithium-niobate-on-insulator 

 

 

LNOI chips are fabricated using ion implantation on bulk lithium niobate, 

followed by wafer bonding the thin layer to a layer of silicon dioxide [1]. For 

our experiments, we purchased the chips from NanoLN, Jinan Jingzheng 

Electronics Co., Ltd. 

The schematic of the wafer is shown in Fig.13(a). The cross section comprises 

bulk lithium niobate on the bottom, an optional layer of platinum or gold, which 

can serve as an electrode, a layer of silicon dioxide on top of the metal, and 

finally a 700nm layer of lithium niobate thin film. The top layer is formed by 

ion implantation, and is subsequently wafer bonded to another lithium niobate 

wafer with a silicon dioxide layer on top. Crystal ion slicing is used to crack the 

top wafer at the implantation depth. Chemical mechanical polishing is used to 

thin the thin film layer to the desired thickness.  

If a ridge or a rib waveguide is formed on the thin film, the mode is confined in 

three sides by air, and at the bottom by the silicon dioxide layer, as shown in 

13(b). This enables the fabrication of ultra-compact devices on LNOI.  

(a) (b)  

y
/u

m
 

x/μm 

Figure 12. (a) Cross section of LNOI Chip; (b) TE mode profile in a rib 

waveguide on LNOI 
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The height and width of the waveguides can be precisely controlled during 

fabrication, allowing the design of single mode waveguides, which are 

favorable for high speed data transfer. Thinner waveguides also result in higher 

electric fields, decreasing the working voltage, and allowing the possibility of 

fabricating MZI’s that are one tenth the size of conventional, diffusion based 

MZIs. Furthermore, the waveguiding regions remain untouched, leaving their 

crystalline structure intact, resulting in higher Pockels coefficients and lower 

operating voltages than diffusion based MZIs. 

Furthermore, the ion slicing techniques that are used to form LNOI chips have 

the potential to be used to bond microlayers of lithium niobate onto silicon 

chips, enabling the production of on chip MZI devices integrated with silicon 

photonics.   

3.3 Etching Lithium Niobate 

In order to fabricate ridge or rib waveguides, lithium niobate has to be etched 

first. However, lithium niobate is known for its etch resistivity. Inductively 

coupled plasma etching has been shown to be effective in the etching process, 

but produces waveguides with very rough sidewalls [2]. Wet etching with a 

mixture of fluoric, perchloric and acetic acids have been used in literature to 

produce waveguides, but it is difficult to get a vertical sidewall profile using the 

method [3]. A mixture of HF and HNO3 can be used to etch ion implanted or 

proton exchanged lithium niobate, but generally, the etch rate is slow, difficult 

to control, and produces rough sidewalls [3]. Another technique is focused ion 

beam (FIB) milling, but the technique is not suitable for mass production or for 

the production of large, centimeter length structures [4]. Using metal masks, 
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reactive ion etching (RIE) has been used to fabricate waveguides with sidewall 

angles as high as 71 degrees [5].  

Recently, freestanding high-Q-factor (100,000) microdisk resonators were 

demonstrated on LNOI, fabricated using RIE with argon ions [6].  

We decided to employ the ion milling technique to fabricate our devices. We 

started by fabricating rib and ridge waveguides, which formed the building 

blocks of the subsequent structures. 

Once the fabrication parameters for waveguides were optimized, splitters, 

directional couplers, and integrated microring and racetrack resonators were 

fabricated. 

The following section describes all the fabrication steps in detail. 

3.4 Fabrication of Devices 

 

Fig. 14 shows the steps in the fabrication of optical devices on lithium-niobate-

on-insulator chips. The steps are described below in further detail. 

Step 1: Dicing 

Figure 13. Fabrication of optical devices on LNOI 
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Since lithium niobate has hardness similar to glass, it is difficult to snap it into 

squares using a diamond cutter.  

Using a commercial dicer, the wafer is first diced into 1cm by 1.2 cm blocks.  

Step 2: Chromium deposition 

Between each step, the sample is washed in an ultrasonic bath in acetone, 

isopropanol, and water respectively, for five minutes each. This is to ensure that 

the surface does not have any dust particles on it before the deposition. 

Next, the substrate is covered with a 40-50nm layer of chromium, which acts as 

a conducting layer for EBL. The chromium is deposited using an electron beam 

evaporator. The layer has to be uniform so that the waveguides have the same 

height throughout the wafer after the etching. 

The deposition is done in a vacuum of 6.0 E -6 Torr, at a rate of 0.1nm/sec, to 

ensure uniform deposition. 

A surface profiler is used to check the final height of the layer after deposition.  

Step 3: Electron Beam Lithography with negative resist 

Fig. 19 shows the steps in EBL. A thin layer (30nm) of chromium is deposited 

on lithium niobate as a conductive layer.  

We used ma-N 2403, a negative photoresist, to pattern our wafers. It is spin 

coated, with the speed ramped from 0 to 3000rpm at 1000rpm/s, then steady at 

3000rpm for 30s, and finally ramped down at 1000rpm/s to 0rpm.  

An EBL dosage of 120 𝜇C/cm2
 is used to pattern the desired structure. 

The resist is developed in ma-D 332 for 40 seconds.  
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Figure 14. Steps in Electron Beam Lithography 

 

Steps 4 and 5: Ion milling to remove chromium and lithium niobate 

Ion milling with argon ions is used to etch off the chromium and the lithium 

niobate, forming 300nm ribs. 

Chromium and lithium niobate have similar etch rates ~15nm/min, when ion 

beam current of 110mA, beam voltage of 300V, RF power of 170W and an 

angle of 90° to the substrate. A 23 minute etch is sufficient to etch off around 

50nm of chromium and form 300nm ribs. 
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Step 6: Stripping off the remaining resist and chromium 

The exposed photoresist is washed off by acetone. Ozone stripping is done for 

15 minutes at 100οC to strip of any remaining resist. The chromium is washed 

off by wet etching. The samples are subsequently diced to get optically smooth 

end facets to facilitate the coupling of light into the waveguides. 

  

Figure 15. (a) Microdisk resonator before ozone stripping; (b) Microdisk 

resonator after ozone stripping: (c) Tapers before ozone stripping; (d) 

Tapers after ozone stripping 

Figure 16. (a) Rib waveguide after ozone stripping; (b) Microring resonator 

and bus waveguide after ozone stripping 

(b) (a) 

10μm 100μm 
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3.5 Optimization of Process Parameters 

3.5.1 Dicing 

First, the wafer needs to be diced in ordered to divide it into 1cm by 1.2 cm 

segments. Our devices are typically 1cm in length. For LNOI, we get the wafers 

pre-diced into our required sizes.  

Because lithium niobate has hardness similar to glass, it is not feasible to crack 

it using a diamond cutter like a silicon wafer.  

After waveguide fabrication, we diced the wafer using a commercial Disco 

dicer. The wafers are 0.5 mm thick. The back end of the wafer was cut to form 

a groove of 0.4 mm. The remaining portion is cracked, to give the surface an 

optically smooth end facet. 

A high rotational speed of the blade (20000rpm) and a low feed speed (1mm/s) 

produces the best cuts. 

 

 

  

Cracked Diced 

Figure 17. Cross section of a wafer after dicing and cracking. The cracked 

portion is optically smooth. 
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3.5.2 Electron beam lithography 

Our goal is to make waveguides with thicknesses ranging from 1 micron to 10 

microns, and resonators ranging from a few microns to a few centimeters in 

diameter. In order for the waveguides to couple light into the resonators, the gap 

between the resonators and the waveguides must be in the order of a hundred 

nanometers.   

The etch rate for ma-N 2403 and lithium niobate is about 1:1.  

Since our waveguides are about 1 cm in length, in order to minimize the 

stitching error, a technique called FBMS (Fixed Beam Moving Stage) is used.  

In direct writing, the beam traverses the pattern area from one end to other, 

filling the write-fields one by one. For long patterns, some of the write-fields 

can get misaligned, ruining the whole pattern.  

In FBMS, the beam rotates about its mean position, while the stage is moved 

under it, exposing the patterned region. As a result, there are no write-fields that 

require to be stitched, and stitching error is eliminated. The speed of the stage 

and the beam dosage had to be optimized before waveguides with acceptable 

performances were obtained. 

The top of some waveguides retained marks of the FBMS path, as shown in Fig. 

19 (a). Furthermore, in some of the waveguides, the sidewalls showed a wavy 

feature, that was caused by the non-overlapping electron beam exposures of the 

resist in the FBMS path.  
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The roughness, as measured by an AFM, has RMS values over 40 nm. The 

roughness scatters light, causing the propagation loss in our first waveguides to 

be as high as 30dB/cm at a wavelength of 1550nm. 

 

 

Figure 18. (a) SEM showing typical profile of resist after pattering at a high 

FBMS speed; (b) SEM showing resist patterned at a slow FBMS Speed 

(a) (c) 

W

Circ

Sta

(b) 

Figure 19.(a) Waveguide profile after ion milling a pattern with a higher FBMS 

speed, showing irregularities on top surface; (b) ‘Wavy’ sidewalls produced 

after etching; (c) SEM of waveguide patterned at a slower FBMS speed. 

Figure 20. (a) AFM image of waveguides with surface irregularities; (b) 

AFM of waveguides with better smoother surfaces. 

(a) (b) 
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Other than using a lower FBMS speed, other techniques can be used to counter 

this problem.  

The first method is double patterning. As seen Fig. 22, the portion of a Y-branch 

splitter that got a double dose of e-beam because of overlapping FBMS beam 

paths, has a smoother profile after etching.  

 

 

To pattern my waveguides and ring resonators, I used the double patterning 

scheme, where the electron beam swipes each area two times, thus evening out 

the dosage. This resulted in the smooth top surface for the waveguides. A post 

exposure bake to reflow the resist also helped take out the roughness from the 

top.  

The best results were obtained by doubly exposing the resist, followed by a post 

bake reflow. 

The waveguides are developed using maD-332 for 45 seconds. A post-exposure 

bake of 120ο C for five minutes is done, before they are ion milled. The post-

exposure bake hardens the resist to improve etching resistance. 

3.5.3 Techniques to reduce the sidewall roughness 

Figure 21. (a)Optical microscope, and (b) SEM image of a splitter, showing 

a smoother profile where double patterning took place. 
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In the initial recipe, the devices were ion milled for a total time of 18 minutes, 

broken down into six segments of 3 minutes, alternating the ion milling angle 

between 90ο, to give higher etch rate, and 70ο, to remove any redeposited layer.  

 

However, the resulting waveguide profile was as follows. 

As for the sidewall angle, it is possible to get more vertical sidewalls using a 

thicker (~1μm) layer of resist. However, a thicker layer makes it more difficult 

to pattern the ~100nm gaps for light to couple from our bus waveguides to the 

ring resonators.  At this point, we focused more on the sidewall roughness of 

the waveguide, because it was contributing to propagation loss. 

The grains on the sidewalls are a result of redeposited lithium niobate. Upon 

close inspection, it was seen that in addition to the grainy redeposition, there 

were six distinct layers visible in the sidewalls, attributed to the six etch steps. 

This showed that our initial etching strategy had failed to produce smooth 

sidewalls. Sidewall roughness has a significant contribution to the loss in 

waveguides. 

To get smooth sidewalls, several techniques were tried out. 

(a) (b) 

End facet 
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Figure 22. SEM showing (a) rough sidewalls of 4μm waveguides; (b) 

Sidewall angle after etching 
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3.5.4 Annealing 

Wang et al had demonstrated high Q-factor disk resonators formed by annealing 

suspended microdisks beyond their curie temperature [7]. In our previous 

experiments involving rib structures in bulk lithium niobate, it was seen that 

annealing devices past the Curie temperature resulted in smooth sidewall 

profiles in bulk lithium niobate, as shown in Fig. 24(c) and (d). 

However, annealing at such high temperatures caused the LNOI samples to 

crack and completely destroyed any pattered devices. A reason for this could be 

that silicon dioxide and lithium niobate expand at different rates at high 

temperatures. The resultant stress destroys the thin layer of lithium niobate on 

the silicon dioxide. 

Nevertheless, annealing for long hours (10-12 hours) at lower temperatures 

(450OC) was tried out to see if they had any effect on the sidewalls. The results 

were negative, and the sidewall profiles were the same as before. 

 

  

1060oC, 10hrs 

600OC, 10hrs 

990oC, 10hrs 

(a) (b) 

(c) (d) 

Figure 23. (a) Typical rough sidewalls in a waveguide, post ion milling; (b) 

Rough sidewalls of a waveguide after low temperature annealing; (c) and 

(d) Smooth sidewalls obtained by annealing at high temperatures. 

Not annealed 
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3.5.5 Wet etching 

The next technique tried out to get smooth sidewalls was wet etching. 45% 

concentrated hydrofluoric acid was used to etch off the irregular sidewalls. The 

etch rate for lithium niobate is 2-3 nm per minute. Ideally, a 20 minute etch was 

expected to attack the uneven sidewalls and dissolve away the granularities, 

which have a higher surface area than the smoother regions. 

However, the etching by concentrated HF was seen to be highly uneven, and 

formed bubble like aberrations on the sidewalls. The etched off lithium niobate 

redeposited all around the substrate, and was impossible to remove with a 

standard acetone wash.  

 

 

 

 

Furthermore, HF was seen to attack the –Z side more than the +Z side, as 

supported by literature. This makes it unsuitable for use in the etching of Y 

propagating waveguides on X cut surfaces, and also for ring structures.   

 

 

(a) (b) (c) 

Figure 24. (a) SEM of waveguide after etching with HF; (b) Bubble like 

aberrations formed on the sidewall due to uneven etching; (c) Redeposition 

after HF over the substrate 
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Possible solutions to the wet etching problem might be to sonicate the wafers in 

concentrate HF solution, to make the etching more uniform, and prevent the 

formation of bubbles. However, concentrated solution of hydrofluoric acid 

being very dangerous to work with, other solutions were implemented that did 

not require the usage of the acid.  

3.5.6 Etching through 

 

It was seen in literature [6] that free standing disks fabricated by ion milling on 

lithium niobate had smooth sidewalls. It was hypothesized that the roughness 

was called by self-sputtering of lithium niobate on the sidewalls during the etch 

process. Hence, etching down the lithium niobate to the silicon dioxide layer 

underneath seemed like a viable solution, to prevent the redeposition of lithium 

-Z side +Z side +Z side -Z side 

+Y direction 

+Y direction 

Figure 25. X cut, Y propagating waveguides showing uneven HF etch on 

+Z and -Z side 

(a) (b) 

Figure 26. (a) A 4μm rib waveguide with rough sidewalls; (b) A 4μm wide 

ridge waveguide formed by etching down LiNbO3 to the SiO2 layer.  
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niobate onto the sidewalls. For freestanding waveguides and rings, this 

technique did get rid of the redeposited particulates.  

However, for structures placed closely together, this technique did not work. 

Self-sputtering occurred from one branch of the Y-branch splitter to the other, 

causing closely placed sidewalls to be rough.  While this technique would work 

for devices made in isolation, this would not work for a Y-branch splitter, power 

couplers, or for a waveguide to ring coupler. 

 

  

3.5.7 Physical etching at a 45ο angle 

To etch away redeposited LiNbO3, ion milling of samples were done at different 

milling angles, as showed in Fig. 29. Ion beam angles (θ) were varied from 90 

to 45 degrees, at 15 degree steps. The redeposition on the sidewalls seemed to 

decrease as the angle got closer to 45 degrees.   

Before etch through After etch through 

Figure 27. After etch through, the sidewalls smoothen out at the outer walls, 

but near the fork, there is still significant redeposition 

       θ Substrate 

Figure 28. Optimization of ion milling angle 
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Ion milling at 45ο gave the required smooth sidewall profile for isolated 

waveguides as well as closely placed structures. As the ion milling angle 

decreased however, the resulting sidewalls we obtained were less vertical.  

Redeposition causing roughness 

Figure 29. Waveguides and Y branches milled at 60o angles, showing a 

significant amount of redeposition near the branching and the sidewalls. 

Very little 

redeposition on 

sidewalls 

Very little 

redeposition on 

branching region 

Figure 30. Waveguides, ring, and Y-branches milled at 45o angle, showing 

almost no redeposition even at the branching regions. 
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3.6 Characterization of Devices 

                                           

 

Fig.32 (a) shows the measurement set up we used to test out if our samples were 

coupling light. A lens (or a lensed fiber) is used to couple light into the 

waveguide. The wafer is mounted under an optical microscope, which can be 

used to align the laser to the waveguides, and also for the collection of light 

scattered from the sidewalls. Fig.33 shows some lossy samples illuminated with 

a supercontinuum laser centered at 1064 nm, with a wavelength range of 500 

nm to 1600 nm. From the output, a multimode fiber collects the light and leads 

it to an optical spectrum analyzer.  

 

  

(a) (b) 

Figure 31. (a) Measurement set up with an objective lens used to focus 

laser at input; (b) A lensed fiber can be used to collect the light from the 

output of the waveguide 

(a) (b) (c) 

Figure 32. Images of (a) a lossy waveguide; (b) A lossy Y-branch splitter; 

and (c) A lossy ring resonator and a bus waveguide 



43 

 

3.6.1 Waveguides 

Before we could move on to designing complex photonic structures, we started 

by optimizing fabrication parameters for waveguides. 

Waveguides fabricated at the beginning of our project that had a rough top 

surface had losses over 10 dB/cm. In fig. 34(a), these can be seen to light up 

throughout the waveguiding region. 

Fig. 34 illustrates a few illuminated waveguides at the initial stages of our 

project. The waveguides are 4 microns in width, and 300nm in rib height. Light 

at 1550nm is coupled into the waveguide using a tapered fiber. The waveguide 

is viewed from the top using an infrared camera. The images were taken with 

an integration time of 200 𝜇s, using a 20x magnification objective lens. Because 

of the scattering from the rough surfaces, the waveguides light up when light is 

coupled into them. 

 

 

 

The next figure shows a 4μm wide 300nm rib waveguide. Upon coupling, due 

to the smoothness of the sidewalls, there is little or no scattering of light as it 

travels through the waveguide. Hence, only the ends of the waveguides light up. 

(a) (b) 

Loss > 10dB/cm Loss ~ 5dB/cm 

Figure 33. (a) Waveguide with a rough top surface; (b) Waveguide with 

rough sidewalls 
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After the FBMS parameters were optimized, the loss reduced to 5 dB/cm, with 

most of the scattering occurring only at the sidewalls. This can be seen in Fig. 

34(b), where, in contrast with (a), only the sidewalls of the waveguides light up. 

Our most recent results, where the waveguides are fabricated with a slow FBMS 

speed, double patterning, and angled ion milling, show losses less than 5 dB/cm. 

The waveguides, even when guiding light, are invisible under the microscope. 

Fig. 35 shows such a waveguide. The waveguide is visible only when an 

illuminator is used to shine light on the wafer. With the illumination turned off, 

only the spot at the output is visible. 

  

   

With external 
illumination from 
top, showing 
waveguide positions 

Without external 
illumination, only the 
spot at the output 
can be seen 

Direction of light 

Figure 34. Waveguides after optimizing EBL and ion milling parameters 
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3.6.2 Loss measurement 

For very lossy waveguides, the devices can be seen to light up when illuminated 

by a laser at a wavelength of 1550nm. The predominant mode of loss here is 

scattering. The following technique is used to measure loss [8, 9]. 

A snapshot of the waveguide is taken using an infrared microscope.  

 

 

 

The image is then analyzed using an image processing software, and the pixels 

are given a numeric value (brighter pixels get a higher value, and so on). 

Over the region of the waveguide, the brightness values are averaged, and a 

graph of brightness against distance is plotted.  

From the best fit line, the loss can be calculated. 

Once smooth sidewalls were achieved, there was no scattered light from the 

sides of the waveguides; hence, the waveguides could not be seen to light up 

under an optical microscope. Hence, the aforementioned technique could not be 

used to calculate the losses.  

An alternative technique was developed to provide a rough estimate of the loss. 

Previously, we had designed Y-branch splitters showing a 50-50 power ratio in 

either arm. We fabricated Y-branch splitters with arms of different lengths.  The 

(a) (b) 

Figure 35. (a) Portion of image taken for processing; (b) Graph showing 

intensity vs distance 
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left arm has a length of 1mm from the branch, and the right one has a length of 

2.5 mm. The 1.5mm distance is just enough so that both of the spots can be 

imaged in a single snapshot.  

 

A Y-branch splitter was used to divide the incoming beam of light into two 

equal parts. The branches are of uneven length, with one branch being 1.5mm 

longer than the other.  

Diffraction gratings are placed at the end of the waveguides that scatter light 

upwards. The intensity of the light is measured by the optical microscope.  

It was seen that structures horizontal to the laser direction have the tendency to 

scatter light, thus lighting up even when no light actually enters the waveguide. 

To make sure that the diffraction gratings were actually diffracting  light that is 

coupled into the waveguide, and not uncoupled light escaping from the fiber, an 

additional freestanding diffraction grating was patterned beside the waveguide. 

1.5mm 

(a) 

(b) 

Figure 36. (a) Two snapshots showing two branches of the Y-branch 

splitter; (b) Lit up diffraction grating (lit) and freestanding diffraction 

grating (unlit); (c) The diffraction grating 

(c) 
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Only the grating that was directly aligned with the waveguide is lit up, showing 

that the diffracted light indeed came from the waveguide, and from stray, 

uncoupled light. 

Using an Image processing software, numeric values were assigned to the pixels 

enclosed by the green boxes in Fig. 37 (a).  

Now if the intensity of the grating at the smaller branch is I1, and that at the 

longer branch is I2, the estimated loss can be obtained from the power ratio. 

Loss = 10 log (I1/I2) = 0.15 dB/cm. (Equation 2) 

Readings were taken across several samples, and varied between 0.5 – 3 

DB/CM. However, it should be noted that because the spots are actually 

different distances from the objective lens used to collect the light, factors such 

as chromatic and spatial aberration of the lenses, etc. can affect the value of 

measured loss.  

However, it is clear from the images that the losses are far lower than that in our 

previously formed waveguides (<5dB).  

Further work in this section might involve the setting up of a better loss 

measurement setup. 

Two alternative methods for loss measurement are the cut-back method and the 

Fabry-Perot method.  

In the cut-back method [10], the intensity of light at the end of the waveguide 

is measured using a tapered fiber at a particular distance, followed by dicing the 

wafer a set distance away from the previous facet. The light at the output facet 

is measured again at the new distance. The ratio between the light intensities at 

the output facets divided by the distance is the propagation loss. The process is 

repeated several times to get an average value of the propagation loss.  
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A non-destructive method to measure the loss in low finesse waveguides is the 

Fabry-Perot method [11], where the waveguide is treated as a resonator, and the 

end facet reflectivity and the propagation loss are extracted from the 

transmission spectra of the waveguides.  

Either of the methods would provide an added avenue for measuring the loss of 

the rib waveguides more accurately. 

At this point of our experiments, however, since one of our long term projects 

involved the fabrication of an ultra-compact MZI, the losses were deemed 

acceptable, and we moved on to working on our splitter and ring resonator 

designs. 
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3.6.3 3dB couplers and Y-branch splitters 

This part of the project was done simultaneously with the optimization of 

waveguide losses. 

Y branch splitters [12] 3dB couplers [13] are essential in the design of a wide 

array of integrated optical devices, like modulators, resonators, and switches. 

For our project involving the fabrication of MZIs, we simulated and designed 

some 3dB couplers and fabricated them on the LNOI samples.  

The simulated couplers were made of 2μm wide, 300nm high rib waveguides, 

and had a coupling length of 330μm at a wavelength of 630nm.  

The fabricated devices show close matches to the simulations.  

 

 

However, simulations showed that directional couplers small (10%) changes in 

the gap between the waveguides would cause large changes in the power 

splitting ratio. Hence, for MZI fabrication, it would be a better idea to use Y-

branch splitters, whose performance is more tolerant to fabrication errors.  

(a) (b) 
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Figure 37. (a) BeamPROP simulation of 4μm wide 300nm rib 3dB coupler; 

(b) Optical image of an illuminated 3dB directional coupler. 
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Y-branch splitters were also designed using 2μm wide, 300nm deep rib 

waveguides. They show even power splitting, with less than 2% power 

difference between the left and the right arm. These were later used in the 

estimation of waveguide losses. 
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(a) (b) (c) 

Figure 38. (a) BeamPROP simulation of Y-branch splitter; (b) A Y-branch 

splitter illuminated with light at 630nm; (c) Power in left and right arm. 
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3.6.4 Ring resonators 

Ring resonators are particularly useful devices due to their small size and 

wavelength selectivity. They are able to provide many photonic functions such 

as optical delay lines, add-drop filters [12] and photonic sensors [16]. While 

fairly common in other materials such as silicon [16], polymer [17], and GaAs 

[18], microring resonators in LN are more difficult to fabricate due to the 

difficulty of working with LN.  

Because of the fabrication difficulties associated with lithium niobate, however, 

few ring resonators have been realized in lithium niobate (LiNbO3). Microring 

resonators in lithium niobate allow direct electrical control, leading to an 

ultrafast modulation response. Additionally, large, millimeter scale LiNbO3 

resonators can be used in mm-wave modulation with simultaneous RF and 

optical resonances [17, 18].  

After achieving smooth sidewalls, we designed microring resonators on lithium-

niobate-on-insulator chips.  

We started by designing microring resonators with an external diameter of 

108μm, and a waveguide width of 4μm.  

The Free Spectral Range (FSR) of such a device is given by the following 

equation: 

FSR = λ2/nl (Equation 3), 

Where λ is the wavelength of the injected light, n is the refractive index of 

lithium niobate, and L is the length of the resonator. 

The FSR for the microrings is calculated to be 3.25nm, at a wavelength of 

1530nm. The experimental FSR was 2.92nm, which is slightly lower that the 

calculated FSR. An explanation could be a slight increase of the lithium niobate 
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crystal after ion implantation [19]. This is a matter that requires further 

investigation.   

In order for our monolithic, microwave-optical modulators to work, large ring 

resonators with very small FSRs, comparable to microwave frequencies to be 

made. Modulation can only be observed if the microwave frequencies match the 

FSRs and resonance peaks. 

1.55-millimeter-long racetrack resonators were designed, with coupling lengths 

of 187μm, and half circle radius of 187μm.  The following diagram shows the 

image of a typical coupling setup. A single mode tapered fiber is used to shine 

infra-red light at the input end.  The calculated FSR is 0.70nm. The measured 

FSR is 0.66nm, which is slightly lower than the  

measured FSR. This can be caused by a lowering of the refractive index of the 

lithium niobate substrate subsequent to ion implantation. 

 

100μm 

diameter 

(a) (b) 

187μm 

diameter 

1
8
7
μ

m
  

Fiber input 

Figure 39. (a) The microring resonator seen under 20x magnification; (b) 

The 1.55 mm long racetrack resonator with an output port seen under 5x 

magnification 
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Figure 40. FSR on a 100 μm diameter ring resonator 

Figure 41. FSR of a 1.55 mm long racetrack resonator 
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Quality factors: 

High Q-factor resonators are an essential component of microwave-optical 

modulators.  

The resonance dip at the 1546nm wavelength is chosen for the quality factor 

measurement for the 104μm diameter microring resonator. The input power is 

10mW, coupled into the waveguide using a lensed fiber (Fig. 40 (a)). A 

Lorentzian fit is done on the data, using the following formula. 

 (Equation 4), 

where Γ is the linewidth, and x0 is the center wavelength. A and C are constants 

used in the Lorentzian fitting. From the linewidth, the Q-factor can be found as 

QF = x0/Γ    (Equation 5) 

The microring resonator has a linewidth of 1.124nm, and a corresponding Q 

factor of 1376.  
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Figure 42. Q factor calculation at a resonant frequency of 1546 nm 
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The large racetrack resonators fabricated had a both a bus port and a drop port 

(Fig. 40(b)). 

  

 

 

The drop port was put there to double check the resonant peaks against the dips 

in the bus port. However, the intensity at the drop port was too low to be 

measured using our optical fiber. The presence of the drop port acted as another 

source for loss in the ring, and brought down the quality factor. 

The linewidth was 0.326nm, which corresponded to a loaded Q factor of 4796, 

even with the drop port added.  

This means that freestanding, weakly coupled racetrack resonators can 

potentially have quality factors higher than 5000. Although the QF has not yet 

reached the stage at which the racetracks can be used for microwave photonics 

experiments, they are a significant step towards that goal, and are good enough 

to be used in optical switches.  
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3.7 Summary 

This chapter delineates the design and fabrication of photonic devices on 

lithium-niobate-on-insulator chips.  

The chapter started with a detailed description of ridge and rib waveguide 

fabrication on the LNOI chips, the problems encountered in each step, and the 

steps taken to solve them. The rib waveguides were patterned using EBL, and 

etched physically through milling with argon ions. The waveguides at the 

beginning had rough sidewalls formed by the redeposition of lithium niobate, a 

problem which was solved through angled ion milling. The waveguides also 

had a sidewall angle varying from 50 to 70 degrees. The sidewall angle did not 

have a significant effect on the optical properties (3dB coupling length, splitting 

ratio, etc.) of the devices, which closely matched simulation results.  

The waveguides were characterized in terms of their propagation losses. Two 

different techniques were employed for loss measurement. For waveguides with 

high scattering losses, the decrease in scattering intensity with distance was used 

to calculate the loss. For waveguides with low scattering loss, gratings were 

fabricated at the end of the waveguides at different lengths, and the relative 

intensities of the outcoupled light were used to calculate the propagation losses. 

The fabricated waveguides formed the foundation for the subsequent devices 

that were designed and fabricated. 

Y-branch splitters and 3dB couplers were fabricated, whose performances 

closely matched simulations carried out in Rsoft’s BeamPROP, a software that 

employs the beam propagation method. The results for this section of the thesis 

can be subsequently used in any project involving the design of a rib waveguide 

based MZI on LNOI chips. 
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Ring resonators and racetrack resonators were fabricated, and characterized in 

terms of their free spectral range and quality factors. Microring resonators, with 

100 micron diameter were shown to have a quality factor in the order of 1000. 

Large, millimeter scale, racetrack resonators were fabricated, and were shown 

to have a loaded quality factor of over 4000. 

The ring resonators and racetrack resonators fabricated using this process did 

not meet our expectations in terms of their quality factors. Q-factors in the order 

of 106 are needed in experiments involving microwave modulation. Focused ion 

beam milling based techniques have been used in recent years to get ring 

resonators with high quality factors in lithium niobate, but the techniques are 

not suitable for pattering large scale structures that are required by experiments 

in microwave photonics. The technique employed here to fabricate the 

millimeter-scale racetrack resonator can be further optimized to decrease the 

propagation and bending losses of the waveguides and improve the quality 

factors, and seems like a promising method to pursue for the fabrication of large 

scale resonators for microwave photonic experiments.  
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4. CONCLUSION AND FURTHER WORK 

 

This thesis describes the fabrication of compact photonic structures on lithium-

niobate-on-insulator chips. The project began with a long term goal: to fabricate 

devices with the potential to demonstrate nonlinear optical phenomena on chip.  

Two different techniques for the fabrication of waveguides on bulk lithium 

niobate were explored in detail, and it was concluded that the low index contrast 

of the devices fabricated rendered the techniques unsuitable for the fabrication 

of compact optical devices on lithium niobate. 

Then, the focus was shifted to lithium-niobate-on-insulators. Fabrication 

techniques were tested and optimized and waveguides with losses lower than 

5dB/cm were obtained. For nonlinear optical experiments to succeed, ring 

resonators with quality factors over 4,000,000 are required. Our techniques so 

far have been able to produce resonators with loaded quality factors of 5000.  

In that regard, a lot has to be done in order to get high Q-factor resonators. 

Directional couplers and 3dB splitters were designed and fabricated. The 

splitters and waveguides show promise, and can be utilized in the fabrication of 

ultra-compact MZIs. 

The structures fabricated have the potential to be integrated into experiments in 

nonlinear optics and microwave photonics, and can also be employed in the 

fabrication of compact MZIs which can be used in optical data transfer. 
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The work done throughout the duration of this thesis has laid the groundwork 

for the fabrication of ultra-compact photonic devices on LNOI. But in order to 

culminate in something truly impactful, the work can be further expanded in the 

following areas. 

Improving the sidewall angle of waveguides:  

The waveguides fabricated through ion milling had sidewall angles varying 

from 50 to 70 degrees. This is because physical etching transfers the sidewall 

profile of the resist directly on to the substrate. To get more vertical sidewalls, 

a thicker layer of resist with a better selectivity can be used. Although we used 

MaN for our experiments, other EBL resists such as HSQ can be tried out to see 

if they have better sidewall profiles. 

Employing photolithography to fabricate the devices: 

Throughout the duration of the project, EBL has been used to pattern the resist 

on the wafers, because direct writing gave us a greater degree of freedom when 

optimizing device parameters. However, once the parameters for the final 

structures (width, splitter angles, coupling lengths, etc.) have been optimized, 

photolithography can be utilized to design the final device.  

New method of propagation loss measurement in low loss waveguides: 

The technique involving the use of diffraction gratings to outcouple light, 

followed by measuring their relative intensities, while gives a good estimate of 

the propagation loss of the waveguides, is subject to several sources of 

inaccuracies. For example, slight movements of the microscope objective might 

change the intensity of light captured, affecting the accuracy of measurement. 

In our experiments, the readings were taken several times to get an average 

value of the losses.  
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In order to get a better reading of the propagation losses, methods like the cut-

back method or the Fabry Perot method can be employed. 

Fabrication of an ultra-compact Mach Zehnder Interferometer on LNOI: 

The fabrication techniques developed can be used to fabricate 2-micron wide 

rib waveguides on lithium niobate. These are about five times smaller in terms 

of width than waveguides formed by diffusion based techniques, and hence can 

have a higher field inside for the same applied voltage. An MZI fabricated with 

these waveguides would have a much smaller modulation length than MZIs 

formed by diffusion based techniques.  

Microwave photonics experiments on chip: 

Once the fabrication techniques have been optimized to yield high quality factor 

(~106) resonators, they can be used in experiments in microwave photonics. As 

a proof of concept, the experiment performed by Cohen and Hossein-Zadeh 

(described in Section 1) can be replicated, with all the photonic components 

monolithically fabricated on a single chip. 
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5.2 Appendix B: The LNOI Chip Fabrication 

Procedure 

 

The schematic above illustrates the steps in the fabrication of lithium niobate on 

insulator (LNOI) chips that had been used in the course of this program. For our 

experiments, we purchased the chips from a company, NanoLN. But for the 

sake of completeness, I am outlining the procedure through which LNOI 

substrates are commercially fabricated. 

Step 1: A lithium niobate substrate is cleaned to prepare it for ion implantation. 

Step 2: The substrate is bombarded with He+ ions with a dose of 4x1016 

ions/cm2. The ions create microdefects a few hundred nanometers below the 

surface of the LN. The depth at which the defects form can be controlled by 

controlling the implantation energy of the ions. 

Step 3: A silicon dioxide layer is grown with plasma-enhanced chemical vapor 

deposition (PECVD) on another block of lithium niobate. The substrate is then 

annealed at 450oC for eight hours to remove any residual gases, and the oxide 

layer is chemical-mechanically polished down to sub-nanometer roughness. 
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Step 4: The top surface of the ion implanted LN is attached to the SiO2 layer by 

direct wafer bonding, and then annealed at around 190oC to improve the 

bonding strength.  

Step 5: Then the temperature is ramped up to 228oC and kept at the temperature 

for two hours. The substrate splits along the ion-implanted layer. 

Step 6: Annealing is done at 450oC for 8 hours to remove any defects formed 

by ion implantation. 

Step 7: The top LN layer is chemically mechanically polished down to 0.5nm 

roughness. 

A more detailed account of the fabrication process can be found in reference 1 

of Chapter 3. 

Reference: 

1. G. Pobera, H. Hu, W. Sohler, and P. Gunter. "Lithium-niobate-on-insulator 

(LNOI) for micro-photonic devices." Laser and Photonics reviews, vol. 6, 

pp. 488-503, (2012) 
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5.3 Appendix C: Refractive Index Measurement with 

Prism Coupling 

 

To find out the refractive index change in X- and Z-cut wafers subsequent to 

proton exchange and titanium diffusion, prism coupling was required. 

As we do not have a prism coupling setup, we sent our titanium diffused samples 

to France. Prof. Aaron Danner, in collaboration with Prof Elhadj Dogheche, 

used the Metricon 2010 system to measure the refractive indices of the slab 

waveguides we provided him. 

 

The setup is shown in the figure above. A prism coupler is pressed onto a sample 

on a rotation stage. Laser light is focused onto the prism and coupled into the 

sample. A photodetector measures the output light. As the stage rotates, the 

incident laser angle changes, and the reflected light intensity changes. The 

intensity of the resulting light radiating and reflecting from the surface provides 

information about the thin film substrate.  

At certain discrete angles of incidence, the photons can couple into the film and 

enter into a guided optical propagation mode. This significantly reduces the 
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amount of light reflected into the photodetector. The angular location of the first 

mode (dip) determines the film index. 

The results are tabulated below.  

The following table shows the index measurement results for pure lithium 

niobate. For the most part, they confirm literature reported values. 

Sample Type Wavelength/nm no measurements ne measurements 

Z-cut,  

Pure Lithium 

Niobate 

450 2.4786  2.2461  

633 2.2872, 2.2871, 

2.2872, 2.2875  

2.2024, 2.2024  

975 2.265, 2.2656  

2.2352, 2.2679  

2.2113  

1539  2.2112, 2.2119  2.14  

X-cut,  

Pure Lithium 

Niobate 

450 2.4766  

 

633  2.2872, 2.2863, 

2.2866, 2.2863, 

2.2866  

2.2024, 2.2022  

 

 

The following table shows the refractive indices of proton exchange slab 

waveguides on lithium niobate. 

 

Sample Type Fabrication Wavelength/nm no 

measurements 

ne 

measureme

nts 

Z-cut APE 

slab 

 

PE: 240oC, 

90 mins 

Anneal: 

350oC, 4 

hours 

633 2.2886 

dno = 0.0014 

2.2562 

dne= 0.0536 

X-cut APE 

channel 

 

PE: 240oC, 

90 mins 

Anneal: 

350oC, 4 

hours 

633 2.2912 

dno = 0.004 

2.2128 

dne=0.0104 

1539 2.2126 

 

2.1431 
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The next table shows the refractive indices of titanium-diffused slab waveguides 

on lithium niobate. 

 

Sample 

type 

Fabrication Wavelength/nm no 

measurements 

ne 

measurements 

Z-cut 

Ti:LN  

Slab 

Waveguide  

1020°C 10 

hours  

40nm 

titanium  

633 2.29 

dno = 0.0028 

 

- 

X-cut 

Ti:LN  

Slab 

Waveguide 

  

  

1020°C 10 

hours  

60nm 

titanium  

633 2.2915 

dno = 0.0049 

 

2.2126 

dne=0.0102 

 

1539 2.2126 

dno = 0.0014 

2.1431 

dne = 0.0031 

X-cut 

Ti:LN  

Slab 

Waveguide  

1020°C 10 

hours  

80nm 

titanium 

633 2.29 

dno = 0.00375 

2.2141 

dne = 0.0117 

1539 2.2134 

dno = 0.0022 

2.1446 

dne = 0.0046 

 

 

 

 


