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Summary 

To reduce the cost of existing membrane technology for seawater desalination, forward osmosis 

(FO) as an osmotic-driven membrane process has attracted increasing attention in recent years. 

The performance and the energy requirement of FO largely depend on the draw solution which is 

responsible for providing the driving force of FO.  The primary objective of this study is to 

develop novel FO draw solutions with facile regeneration method for seawater desalination.  

Firstly, a dendrimer-based FO draw solute, poly(amidoamine) terminated with sodium 

carboxylate groups (PAMAM-COONa), was investigated for seawater desalination. Compared 

with existing FO draw solutes, PAMAM-COONa offers unique advantages including: 1) its 

aqueous solution can generate high osmotic pressure due to the large number of -COONa groups; 

2) the low viscosity of PAMAM-COONa solution can reduce concentration polarization, which 

adversely affects water flux of FO processes; and 3) PAMAM-COONa has a relatively large 

molecular size, favoring reduced reverse solute flux. Using 2.5-generation (2.5G) PAMAM-

COONa draw solution (33.3 wt%) and seawater (from Singapore coast) feed solution, a 

relatively high FO water flux of 9 L m
-2

 h
-1

 was achieved. After FO testing, the diluted 

PAMAM-COONa solution was re-concentrated to its original osmotic pressure with membrane 

distillation (MD) with an average MD water flux of 3.2 L m
-2

 h
-1

. In addition to seawater 

desalination, the dendrimer-based FO draw solute may find applications in wastewater treatment 

and protein enrichment.  

Next, we studied Na
+
–functionalized carbon quantum dots (Na_CQDs) as FO draw solute. The 

unique characteristics of Na_CQDs, including an ultra–small size of 3.5 nm, abundant carboxyl 

groups, and rich ionic species, favor high osmotic pressure and thus high FO water flux. At 
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concentrations of 0.4 and 0.5 g mL
-1

, the Na_CQDs provided respective osmotic pressures of 

30.9 and 53.6 atm, much higher than that of seawater (~26 atm). In FO tests with DI water as the 

model feed solution, the Na_CQDs (0.4 g mL
-1

) solution showed a water flux of 29.8 LMH, 

exceeding that of 2.0 M NaCl draw solution by 55%. This FO water flux is among the highest 

reported. When seawater was used as the feed solution, the Na_CQDs provided an FO water flux 

of 10.4 LMH with only a slight drop after 5
 
cycles. In addition, the Na_CQDs showed negligible 

reverse solute permeation. The good biocompatibility of this new class of draw solute also makes 

it promising for producing clean drinking water via FO. 

Because of unique response to temperature, thermoresponsive compounds have exhibited distinct 

advantages in the regeneration process of draw solute. A thermoresponsive copolymer, 

poly(sodium styrene-4-sulfonate-co-n-isopropylacrylamide) (PSSS-PNIPAM), was employed as 

a draw solute in FO for seawater desalination. When PSSS-PNIPAM was dissolved in water to 

form a draw solution, PSSS as a strong polyelectrolyte generated a high enough osmotic pressure 

to extract water from seawater in an FO process. The draw solute was then regenerated with 

membrane distillation (MD) at a temperature above the lower critical solution temperature 

(LCST) of PNIPAM, which agglomerated and led to decreased osmotic pressure of the solution 

and thus higher water vapor pressure. The combined FO-MD process with PSSS-PNIPAM as the 

draw solute should be promising for many membrane-involved separation processes. 

However, the high viscosity of concentrated thermoresponsive copolymer solution makes it 

difficult to increase FO water flux by increasing the draw solution concentration. Therefore, we 

investigated a thermoresponsive ionic liquid (IL), tetrabutylphosphonium trifluoroacetate 

(abbreviated as P4444[CF3COO]), as an FO draw solute for seawater and brackish water 

desalination. Its inherent ionic nature, low viscosity even at high concentration, and ease of 
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separation from water make thermoresponsive ILs promising FO draw solutes. However, our 

experimental results revealed that, the water flux provided by P4444[CF3COO] solution was 

considerably low despite its high osmolality. With simulated brackish water as the feed solution 

and IL-rich sediments of P4444[CF3COO] solution at 60 °C (73 wt%) as the draw solution, FO 

water fluxes of 4.2 LMH and 4.9 LMH were obtained under 25 °C and 50 °C, respectively. Film-

theory was then employed to analyze the results and it was found that external concentration 

polarization is the dominant role in determining the water flux. At higher temperatures, both 

increased mass transfer of the draw solute molecules and improved permeability of FO 

membrane contributed to the increased FO water flux.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Clean water supply plays a crucial role in multiple aspects of our life, such as public health, 

human consumption, agricultural and industrial production. However, clean water scarcity has 

long been a serious concern for many communities. 1.2 billion people lack access to clean 

drinking water and millions of people died from disease via unsafe water every year.
1
 To make 

things worse, clean water shortage will be aggravated due to the rapid growth of population, 

industrialization and environmental pollution unless new ways to produce clean water can be 

found.
2 To solve this worldwide problem, people have been looking for effective and low-cost 

methods to decontaminate and disinfect water. However, improving the use of existing water 

sources is not enough. Only searching for other water supply can alleviate the stress of water 

shortage.
2
 

Seawater desalination has been proposed as a solution to the worldwide scarcity of clean water. 

Since seawater constitutes more than 97% of the total water on earth, capturing even a tiny 

fraction could have a huge impact on the water supply.
3, 4

 Seawater desalination means 

producing drinking water by removing dissolved solids from seawater. Nowadays, widely 

employed desalination technologies include thermal distillation, namely multi-effect distillation 

(MED), multi-stage flash (MSF), and membrane separation via reverse osmosis (RO). However, 

conventional thermal methods require high temperature and meanwhile they are inefficient in the 

use of energy. Another problem is that they suffer from corrosion. Therefore, the market share of 
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these thermal desalination plants is declining. Compared to MED and MSF, RO is currently the 

state-of-the-art desalination technology as it requires a relatively low rate of energy input.
2, 5

 But 

RO could only utilize electricity which is high grade energy to produce the high hydraulic 

pressure. Other major challenges of RO include membrane fouling, low recovery for seawater 

desalination, and relatively low efficiency in removal of low-molecular-weight impurities.
6
 

Therefore, seawater desalination remains a challenge so far.  

The growing awareness of water and energy scarcity has given rise to great efforts to the search 

for seawater desalination technologies. In recent years, forward osmosis (FO) has attracted 

increasing attention because of its low energy requirement.
7-10

 In a typical FO process, water 

molecules in solution of low osmotic pressure (feed solution) can spontaneously pass across a 

semi-permeable membrane to solution of high osmotic pressure (draw solution).
 
After the draw 

solution draws clean water from the feed solution, it will go through a regeneration process to 

extract water from the draw solution and be reused in the next FO process. Contrary to RO, FO is 

a spontaneous process only depending on the osmotic pressure difference between the feed 

solution and draw solution. Consequently, FO demands much less energy as long as the 

regeneration of FO draw solution is facile and economical.  

 

1.2 Osmotic Processes 

Osmosis is the transport of water across a selectively permeable membrane from the side of 

higher water chemical potential to the side of lower water chemical potential. There are three 

osmotic processes, namely forward osmosis (FO), reverse osmosis (RO) and pressure retarded 

osmosis (PRO) as shown in Figure 1.1.
11

 FO utilizes the osmotic pressure difference (Δπ) across 
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the membrane as the driving force, while RO uses the hydraulic pressure difference (ΔP) which 

is greater than the osmotic pressure difference (Δπ). PRO takes place when the applied pressure 

difference is between zero and the flux reversal point.  

 

 

Figure 1.1 Schematic illustration of forward osmosis, reverse osmosis and pressure retarded 

osmosis.
11

 

 

The general equation describing water flux in osmosis is  

          Jw = A (σΔπ - ΔP)                             (1) 

where Jw is the water flux, A the water permeability constant of the membrane, and σ the 

reflection coefficient. For FO, ΔP is zero; for RO, ΔP > Δπ; and for PRO, Δπ > ΔP. 
6, 9
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1.3 Forward Osmotic (FO) Process  

In a typical FO process, water molecules in solution of low osmotic pressure (feed solution) can 

spontaneously pass across a semi-permeable membrane to solution of high osmotic pressure 

(draw solution).
 
Contrary to RO, FO is a spontaneous process only depending on the osmotic 

pressure difference between the feed solution and draw solution. After the draw solution draws 

clean water from the feed solution, it will go through a regeneration process to extract water 

from the draw solution and be reused in the next FO process. For cases of direct applications, 

regeneration of draw solution may not be necessary. A close-loop FO process with a 

regeneration unit is shown in Figure 1.2.  

 

 

Figure 1.2 Schematic illustration of a forward osmotic process.
12
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FO membrane is a semi-permeable membrane with a dense selective layer and also a supporting 

layer. Based on the membrane orientation, there are two operational modes in a FO process, 

namely pressure retarded osmosis (PRO) mode and forward osmosis (FO) mode. When the draw 

solution faces the dense selective layer, it is pressure retarded osmosis (PRO) mode. On the 

contrary, when the feed solution faces the selective layer, it is forward osmosis (FO) mode 

(Figure 1.3).  

 

 

Figure 1.3 Schematic illustration of two operational modes of forward osmosis. 

 

1.4 Concentration Polarization 

The water flux of an osmotic-driven membrane process is described by Equation 1. In the 

equation, Δπ represents the osmotic pressure difference across the active layer of the membrane. 

In real cases, the effective osmotic pressure difference across the active layer is much lower than 

the bulk osmotic pressure difference, which leads to a much lower water flux. This is mainly 

attributed to membrane-associated transport phenomena. Two types of concentration polarization 
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phenomena may take place in FO processes, namely external concentration polarization (ECP) 

and internal concentration polarization (ICP) (Figure 1.4).  

 

 

Figure 1.4 Illustration of external and internal concentration polarization in a) PRO mode and b) 

FO mode.
13

 

 

1.4.1 External Concentration Polarization (ECP) 

When the feed solution flows on the active layer of the FO membrane, solutes build up at the 

active layer which is called as concentrative ECP. Meanwhile, the draw solution in contact with 

the active layer of membrane is diluted by the permeating water. This is dilutive ECP.  Both 

concentrative and dilutive ECP will reduce the effective osmotic pressure difference. As a result, 

the water flux will be lower than expectation. ECP can be alleviated by increasing the flow rate 

and inducing turbulence near the membrane surface. In most cases, ECP may have a minor effect 
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on the water flux and is not the main reason for the lower FO water flux than the theoretical 

value.
8
  

 

1.4.2 Internal Concentration Polarization (ICP) 

As FO membrane is asymmetric, more complexity is added to CP phenomena. If the porous 

supporting layer faces the feed solution, namely PRO mode, the solutes in the feed solution may 

accumulate inside the porous layer and the concentration in the supporting layer is higher than 

the bulk solution. This is concentrative ICP. In FO mode, the concentration of the draw solution 

in the supporting layer is lower than the bulk as the water from the feed solution permeates the 

membrane and dilutes the draw solution in the supporting layer. This is referred to as dilutive 

ICP. Compared to ECP, ICP is more critical in reducing the water flux when the FO membrane 

is used with salts on both sides. And it is more difficult to eliminate ICP as it happens inside the 

membrane. The water flux under FO mode is usually lower than the PRO mode due to the ICP. 

Research has shown that the severity of ICP is mainly influenced by the structure of the 

membrane (thickness, tortuosity and porosity) and the diffusion coefficient of the draw solution 

and feed solution. Once the draw solution and the feed solution are decided, the minimization of 

ICP may mainly depend on the design of FO membrane.
13 

 

1.5 Membrane Development 

An ideal FO membrane must possess properties like high water flux, high salt rejection, low 

concentration polarization and high mechanism strength.
14

 Before 1960s, most of FO tests 

employed RO membranes until Loeb-Sourirajan membrane was developed.
11, 15

 Only since 
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2000s, there have been increasing studies on FO membranes. Based on the fabrication methods, 

FO membranes can be generally classified into inversion-formed membranes, thin film 

composite (TFC) membranes and chemically modified membranes.
14

 

Polybenzimidazole (PBI) and cellulose acetate (CA) are two materials that have been widely 

used to fabricate FO membrane using phase inversion technique. In 2007, Wang first fabricated 

PBI nanofiltration (NF) hollow fiber membrane for use in FO.
16

 They further modified the 

membrane by cross-linking using p-xylylene dichloride to achieve a higher permeate flux and 

salt rejection.
17

 However, the water flux and salt rejection were still not satisfying. CA shows 

favorable properties, such as high hydrophilicity, good mechanical strength, and good resistance 

to chlorine. The high hydrophilicity allows low fouling tendency and high water flux.
18

 Recently, 

various cellulose ester-based membranes, in both format of flat sheet and hollow fiber, have been 

developed.
18-21

 Among them, double skinned CA membranes with the aim to reduce ICP effects 

have achieved growing attention.
18, 20

 However, hydrolysis will easily happen on CA membranes 

when the pH is below 3 and above 7, or the temperature is above 30~35 °C.
8, 15

  

TFC FO membranes have been fabricated by phase inversion (for preparation of porous substrate) 

followed by interfacial polymerization (for formation of polyamide active layer).
22-27

 It is 

important to note that the ICP effects of TFC FO membranes are governed by the porous 

substrate while the active layer determines the salt rejection and reverse solute permeation.
14

 

Favorable porous substrates should be highly porous and hydrophilic with low tortuosity and 

high mechanical strength to allow high water flux through reduced ICP.
22

 Both the material and 

structure of the substrate layer can determine its performance.
26, 27

 For example, it was observed 

that the substrate with straight finger-like pore structure functioned better than spongy pore 

structure to minimize ICP.
27

 Compared to inversion-formed membranes, TFC membranes are 
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more promising in FO processes due to their high water flux and salt rejection, and better 

stability towards pH, hydrolysis and biodegradation.
14 

Besides inversion-formed membranes and TFC membranes, chemical modification methods 

have been employed recently for fabrication of novel FO membranes.
 
For example, to improve 

the performance of support layer, effects of incorporation of titanium dioxide nanoparticles,
28

 

carbon nanotubes
29

 or zeolites
30

 into the support layer have been studied. Layer-by-layer 

assembly method has also been used to prepare NF-like FO.
31-34

 Also, to confirm the stability of 

membrane performance for commercialization, study on minimizing membrane fouling has 

attracted increasing attention recently.
35, 36

  

 

1.6 Forward Osmosis (FO) vs. Reverse Osmosis (RO) 

Currently, reverse osmosis (RO) is a widely employed desalination technology and has about 60% 

share in the total number of world desalination plants.
4
 As a new desalination technology, 

forward osmosis (FO) is frequently compared with RO. Though both are membrane separation 

processes, many other aspects of these two processes are different, such as solute and water flow 

direction, the driving force, etc. As mentioned in the previous section, FO is driven by osmotic 

pressure while RO relies on the external hydraulic pressure. Accordingly, there are different 

requirements for suitable membranes to each process. Comparison between FO and RO is 

provided in Table 1.1. In this Chapter, we mainly compare two major aspects of FO and RO, 

namely membrane fouling and energy consumption. 
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Table 1.1 Comparison between FO and RO.
6
 

 FO RO 

Driving force Osmotic pressure External hydraulic pressure 

Main application  Water purification  

 Desalination 

 Protein concentration 

 Water purification 

 Desalination 

Operation condition atmosphere 10~70 bar 

Desirable membrane property 

1) Physical morphology 

 

 

2) Chemical property 

 

 

3) Other requirement 

 

Thin membrane with dense 

selective layer on porous 

supporting layer 

 Very hydrophilic 

 Good chemical stability to 

feed and draw solution 

 High water permeability 

 High solute rejection 

 

 

 Dense top layer and porous 

supporting layer 

 Good mechanical stability 

 Good chemical stability to 

chloride solution 

 

 High water permeation 

 High solute rejection 

 Robust for high pressure 

operation 

Challenges  Concentration polarization 

 Suitable draw solution 

 Draw solution regeneration 

 Membrane fouling 

 Energy consumption 

 

1.6.1 Membrane Fouling 

Membrane fouling is defined as the process that leads to a decrease in performance of a 

membrane, caused by the deposition of suspended or dissolved substances on the membrane 

surface, on the membrane pores, or within the membrane pores. As a result, it causes significant 

flux decline and affects the quality of the water product. Severe membrane fouling may require 

frequent membrane cleaning and replacement which results in an increased operating cost. 

Basing on the cause, membrane fouling can be classified into colloidal fouling, inorganic fouling 

due to crystallization/scaling, organic fouling and biofouling. It is a complex problem affected by 

several factors, such as solution chemistry, level of pre-treatment, membrane property and 
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operational condition. It is a major problem for the application of membrane technology, 

especially for RO as the applied hydrodynamic force will drag the foulants towards the 

membrane surface and thus promoting the membrane fouling.
9
 Compared to RO, FO works at 

low or without hydraulic pressure. Consequently, the fouling layer is much less compact. Usually 

it can be removed easily by backwashing or mild periodic chemical washing. Therefore, many 

applications of FO can be operated with low quality feed solutions.
6
 

 

1.6.2 Energy Consumption 

The energy consumption of an RO process has been extensively studied. However, confusion 

exists regarding the energy consumption of an FO process. The minimum energy needed for 

seawater of 3.5 wt% total dissolved solids and a recovery of 50% is approximately 1.5 kWh/m
3
.
2
 

The real energy input for state-of-art RO plants is about 4-7 kWh/m
3
 considering the differences 

in operational condition.
2
 The electrical power needed of an FO process alone (without 

regeneration of the draw solution) for seawater desalination is about 0.25 kWh/m
3
.
37

 The energy 

consumption of a close-loop FO process (with regeneration condition) mainly depends on the 

regeneration method used. Theoretically, the energy requirement of an FO process reaches 2.5 

kWh/m
3 

(mean osmotic pressure differential of 50 bar, feed solution is 3.5% NaCl solution).
38

  

For real cases, the energy requirement will be higher due to the energy loss along the process. 

Therefore, the energy consumption of FO processes should be larger than that of RO processes.  

One implication of this analysis is that the research on FO draw solution may increasingly focus 

on regeneration-free application, such as fertilizers, nutrient containing bags, etc.
39

 For other 

applications, FO can still show advantages over RO regarding the energy consumption. To 



12 
 

provide high external hydraulic pressure, RO can only consume electricity which is high-grade 

energy and the price of electricity may fluctuate substantially. In contrast, FO can utilize low 

grade or renewable energy, such as waste industry heat, geothermal or solar thermal energy, etc. 

NH4HCO3 promoted FO seawater desalination process was claimed to save up to 85% energy 

compared with other desalination technologies.
37

 Therefore, searching for draw solutions with 

regeneration methods that can induce cheap or even free energy is critical for the development of 

FO.  

 

1.7 Research Objectives and Project Organization 

1.7.1 Research Objectives 

Despite the rapid progress in the development of FO draw solution recently, existing draw 

solutions still have disadvantages such as low osmotic pressure, high reverse solute flux, or 

requirement of complex and energy-intensive regeneration method. Moreover, the application of 

FO in seawater desalination has yet to be fully investigated with eligible draw solutions. The 

studies on the fundamental science and engineering of novel FO draw solutions in seawater 

desalination need to be conducted. Our ultimate goal of this project is to investigate novel FO 

draw solutions with feasible regeneration method for seawater desalination. The highest FO 

water flux reported so far is about 5 LMH for seawater desalination.
13

 We aimed to achieve 

higher water flux by improving the hydrophilicity of draw solutes. To reduce energy 

consumption in the regeneration process, the draw solutes should be re-concentrated via mild 

heating which can take the advantage of low-grade heat that is abundant from industry or solar 

thermal energy.  The specific objectives of this project are: 
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1. to design and synthesize multifunctional FO draw solutes with high osmolality and 

proper stimuli-responsiveness;  

2. to apply these draw solutes in FO processes to investigate their effectiveness in seawater 

desalination; 

3. to investigate the effects of different parameters of draw solutions on the performance of 

FO; 

4. to investigate draw solute regeneration methods. 

 

1.7.2 Project Organization 

This dissertation is to explore novel FO draw solutions for seawater desalination. It is composed 

of seven chapters. Chapter 1 provides the general background of forward osmosis (FO). Chapter 

2 provides a literature review of current FO draw solutions. In Chapter 3, we introduce a 

dendrimer-based FO draw solute for seawater desalination. In Chapter 4, we demonstrate that 

Na
+
-functionalized carbon quantum dots are promising FO draw solutes for seawater 

desalination. Chapter 5 reports thermoresponsive copolymers as FO draw solutes for seawater 

desalination. In Chapter 6, a thermoresponsive ionic liquid is studied as an FO draw solute for 

brackish water and seawater desalination. Chapter 7 summaries the major findings of this project 

and recommendations for future work.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Draw Solution 

Two major components of FO, the semi-permeable membrane and the draw solution, would 

determine the outcome of an FO process. Many researchers have put extensive effort in the 

fabrication of FO membrane with high water flux and low salt leakage.
1-5

 Recently, the focus has 

been averted to looking for ideal draw solutions. In FO, draw solution is responsible for 

providing the driving force for the transport of water molecule from the feed solution. The 

criteria for selecting a suitable draw solution include:  

(1) the draw solution should be able to provide high osmotic pressure, especially for the 

application of seawater desalination; 

(2) the reverse solute flux should be low, otherwise the replenishment cost will be higher; 

(3) the draw solution can be easily and economically regenerated; 

(4) the draw solution should not cause damage, scaling or fouling to the FO membrane; 

(5) the draw solution should be nontoxic and cheap.
 6

 

Some parameters of the draw solution will significantly affect the performance of FO processes, 

especially in the terms of water flux. Table 2.1 summarizes such characteristics of draw solution 

and their possible impact on FO performance. Nowadays, FO process is not only employed in 

seawater desalination,
7-10

 but also many other areas, such as wastewater treatment,
11, 12

 protein 

concentration,
13-15

 fertigation,
16-19

 power generation.
20, 21  

Draw solutes coupled with different 

regeneration methods have been proposed according to different applications. Basically, these 
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draw solutes can be classified into inorganic and organic-based draw solutes which are naturally 

or commercially available and other synthetic draw solutes. 

 

Table 2.1 Characteristics of draw solutes that affect FO performance and their impact on FO 

performance.
7
 

Characteristics Impact on FO performance 

Osmotic pressure 

difference 

A high osmotic pressure difference between draw solution and feed 

solution induces a high FO water flux. 

Molecular weight 

(Mw) 

Draw solutes with small MW usually produce higher osmotic pressure 

but a larger reverse flux than draw solutes with larger MW. In addition, 

draw solutes with larger MW usually have a higher viscosity when 

dissolve in water, which has an adverse impact on FO water flux.  

Viscosity A low viscosity leads to a high water flux as internal concentration 

polarization (ICP) is less serious. 

Particle size The size of nanostructured draw solutes will usually affect their FO 

performance. It not only determines the hydrophilicity/osmotic pressure 

of the draw solutes, but also the severity of agglomeration when MNPs 

are the draw solutes.  

Temperature Higher operational temperature can decrease the solution viscosity, thus 

enhancing the water flux. But the reverse flux will be more significant 

due to higher diffusivity rate and membrane scaling and fouling can be 

adversely affected as well. 

 

2.1.1 Inorganic Draw Solutes 

Conventional draw solutes are mainly water soluble inorganic salts, such as NaCl, MgCl2, 

MgSO4 and KCl.
22

 These draw solutes usually have high water flux due to their high water 
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solubility, high dissociation rate and low viscosity. However, the significant reverse flux resulted 

from their small molecular size increases the replenishment cost. More importantly, there are no 

suitable regeneration methods for such draw solutions.  

In 1970s, a series of salts with water solubility controlled were developed as FO draw solutes for 

seawater desalination. Aluminum sulfate (Al2(SO4)3) solution has adequate osmotic pressure and 

can generate high water flux in FO process. Afterwards, the product water was produced by a 

precipitation reaction between Al2(SO4)3 and calcium hydroxide (Ca(OH)2). As the resultant salts, 

namely calcium sulfate (CaSO4) and aluminum hydroxide (Al(OH)3) are both water insoluble, no 

ion was left in water. 
23

 Subsequently, the excess Ca(OH)2 left in water was neutralized by 

H2SO4 and CO2. Similarly, copper sulfate (CuSO4) and magnesium sulfate (MgSO4) were 

investigated as draw solutes and regenerated by precipitation reactions with barium hydroxide 

(Ba(OH)2).
24, 25

 This regeneration method requires accurate addition of counter ions and involves 

addition of chemicals which may contaminate the product water. Therefore, this approach might 

not be practical. Another type of inorganic-based draw solute is thermal reversible salts such as 

ammonia-carbon dioxide (NH4HCO3).
26-29

 Since early 2000s, MsCutcheon, Elimelech and co-

workers studied NH4HCO3 in FO seawater desalination process coupled with its thermal 

regeneration method.  NH4HCO3 solution was used as draw solution in FO, after which it was 

decomposed to NH3 and CO2 gases around 60 °C and separated from water. By dissolving CO2 

and NH3 back into water, the draw solution could be regenerated for use. However, its serious 

reverse flux remains a problem. Meanwhile, it is difficult to remove ammonia in product water 

and reduce its concentration to less than 2.0 mg/L which is a standard for drinking water set by 

World Health Organization (WHO). Moreover, the system needs to induce waste heat from other 
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industry to enhance its energy-efficiency advantages.
28

 It is worth noting that in 2011, Oasys 

Water commercialized this draw solution in FO process to treat wastewater in pilot tests.  

In 2009, Tan 
30

 and Zhao 
31

 investigated the feasibility of nanofiltration (NF) to regenerate 

inorganic salts (MgCl2, MgSO4, and Na2SO4). A hydraulic driving force of ~3 MPa was needed 

in the NF cell and a relatively high salt rejection (> 90 %) could be achieved. However, the FO-

NF hybrid process was also energy-intensive and only limited to multivalent ions-based salts. 

Shon and co-workers investigated inorganic salts which are also fertilizers as draw solutes.
16, 17, 

19
 Figure 2.1 briefly illustrates their approach. The diluted draw solution would be directly used 

in fertigation system rather than going through the regeneration process. As the regeneration 

process usually consumes most of the energy in the whole system, their work apparently reduces 

much of the energy cost. However, drawbacks and limitation of this kind of draw solute still 

exist. First, this kind of draw solute can only be used in agriculture, but is not suitable for other 

applications. Secondly, the minimum nutrient concentration in the in the product might exceed 

the required concentration limit for direct fertigation caused by the osmotic equilibrium between 

the feed solution and draw solution. Thus, it remains a challenge to achieve desired fertilizer 

concentration before direct fertigation.
32 
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Figure 2.1 Schematic illustration of the fertilizer drawn FO process for irrigation.
32 

 

Recently, Mondal et al. employed sea bittern, which is the mother liquor that remains after 

recovery of common salt from seawater, as the draw solution to efficiently dewater clarified 

sugarcane juice.
33

 Up to 4-fold concentration of sucrose was achieved while much less energy 

was needed compared to multiple effect evaporation. 

 

2.1.2 Organic Molecules Based Draw Solutes 

Another type of conventional draw solutes is organic nutrient compounds. Although they are not 

electrolytes, these compounds still have the potential to generate FO water flux due to their high 

water solubility.
34, 35 

 It was originally proposed for water supply in emergency lifeboats and the 

final product was intended for drinking and supply of energy (Figure 2.2).
36

 Thus, there is no 

need for regeneration process for this purpose. Kravath et al. first explored the feasibility of 

using glucose as a draw solute for seawater desalination in 1975.
35

 Later, Stache replaced 

glucose with fructose to avoid the thirst induced after drinking glucose solution.
34

 Furthermore, 

fructose shows an advantage of higher osmosis efficiency than glucose. 
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Figure 2.2 Schematic drawing of a hydration bag.
36

 

 

2.1.3 Larger-Molecular-Sized Electrolytes  

To minimize the high reverse flux, a variety of electrolytes with larger molecular sizes than 

inorganic salts were developed. Ge and co-workers synthesized a poly-electrolyte of polyacrylic 

acid sodium (PAA-Na) salt and applied it as a FO draw solute.
11,

 
37

 FO tests showed its 

capability to generate high water flux with an insignificant reverse flux for several cycles. The 

large molecular size also allowed the regeneration of PAA-Na by an ultrafiltration (UF) at a low 

solution concentration.
37

 However, the high viscosity of concentrated solution prevents this 

polyelectrolyte from being practically used as FO draw solute. Therefore, the authors conducted 

FO process at a higher temperature to reduce the viscosity and integrated membrane distillation 

(MD) as the regeneration method.
11

 MD is a mass transfer process driven by a partial vapor 

pressure difference because of a temperature gradient across a hydrophobic porous membrane. 

During MD, volatile compounds in the hot feed solution evaporate at the hot side, diffuse 

through the membrane pore and then condense into a liquid flow at the cold side. In the FO-MD 
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hybrid system, PAA-Na solution (50-70 °C) would circulate in the FO part first to attract water 

from seawater or wastewater, after which the diluted draw solution with the same temperature 

circulated towards the shell side of the MD membrane, while cold water (20 °C) flowed in the 

lumen side. The regenerated draw solution flows back to the FO part. This FO-MD hybrid 

system was employed to recycle water from acid dye contaminated wastewater.  Yen et al. also 

employed this system to recycle a series of 2-methylimidazole-based draw solutes for seawater 

desalination.
38

 The FO-MD process was demonstrated to be a highly stable and continuous 

process for long time. However, it is necessary to find low quality waste heat to reduce the 

energy cost.
11 

 

Recently, Ge and coworkers explored hydroacid and oxalic acid complexes as a new class of 

draw solutes.
12, 39-41

 Their abundant hydrophilic groups and expanded configurations make them 

appropriate candidates to be FO draw solutes. Superior FO performance was achieved in terms 

of high water flux and negligible reverse flux. When at the same molar concentration, these 

complexes showed even higher water fluxes than NaCl solution while a much lower reverse flux 

was also obtained. A pressure driven nanofiltration (NF) was used to regenerate the draw 

solution at a low concentration. The salt rejection in NF was relatively low which would cause 

loss of draw solute. Thus, it is necessary to explore more efficient regeneration methods for this 

kind of draw solutes.  

In 2014, Duan demonstrated that sodium lignin sulfonate (NaLS) is a potential draw solute 

candidate and can be utilized in desert restoration.
42

 NaLS is an abundant waste product in paper 

manufacturing industry and is nontoxic to plants and animals. After the NaLS solution is sprayed 

on desert, the water of the solution permeates into sand while NaLS is left on the surface and 

forms a relatively firm ‘sand crust’ with a thickness of 0.5~1 cm. This crust is able to stabilize 
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the sand against wind and retain water for plant growth. Therefore, similarly as the concept of 

fertilizers, the authors used concentrated NaLS solution to attract water from wastewater or 

brackish water for dilution and then directly used the diluted draw solution on desert. However, 

people need to induce wastewater or brackish water from near cities first and the feasibility of 

this concept requires further investigation. 

 

2.1.4 Magnetic Nanoparticle (MNPs) 

Functional MNPs are considered as promising draw solutes and have attracted considerable 

interest in last few years.
13, 15, 43-49

 Warne et al. first demonstrated this concept that hydrophilic 

MNPs could be employed as FO draw solutes and removed from water with an external 

magnetic field.
49

 MNPs coated with 2-pyrrolidone (2-Pyrol-MNPs), triethylene glycol (TREG-

MNPs) and polyacrylic acid (PAA-MNPs) were synthesized by one-pot reaction and evaluated 

as FO draw solutes by Ling and co-workers.
47

 Among these MNPs, PAA-MNPs exhibited the 

highest driving force and subsequently the highest FO water flux. The driving force could be 

enhanced by increasing the hydrophilicity of capping ligand and/or reducing nanoparticle size. 

Bai and co-workers synthesized MNPs coated with dextran and utilized them in FO for brackish 

water desalination.
43

 These MNPs can generate osmotic pressure as high as those inorganic salts. 

Additionally, they can be easily recovered from draw solution by an external magnet and 

recycled back into draw solution stream. It should be noted that the reverse flux of MNPs was 

negligible due to their relatively large size.
47

 

However, during recyclability test, researchers found that agglomeration happened under a high-

strength magnetic field.
44

 This leads to a drop in FO water flux after every cycle. In response to 
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this problem, Ling et al. redispersed agglomerated MNPs with ultrasonication after every 

cycle.
44

 While the size of MNPs was maintained to their original value, the magnetic core of the 

MNPs was gradually oxidized and lost their magnetic force to some extent. Other regeneration 

method was also employed to overcome the problem of MNPs agglomeration.  Ling et al. 

recycled MNPs with ultrafiltration (UF) instead of high-strength magnetic field.
44

 The 

agglomeration of MNPs was avoided, while MNPs smaller than the pore size of UF membrane 

might leak through the membrane.  

To avoid using high-strength magnetic field, thermoresponsive MNPs were proposed.
45, 46

 MNPs 

coated with thermoresponsive polymer/copolymer would agglomerate spontaneously to lager 

particles when heated above the low critical solution temperature (LCST). 
45

 These much larger 

particles could be easily trapped by either a low-strength magnetic field or UF membrane. 

PNIPAM-modified MNPs developed by Ling et al. successfully showed thermal responsiveness 

and good recyclability.
45

  However, the FO water flux obtained with water as the feed solution 

was too low for any practical FO process. Thus, Zhao et al. modified the MNPs with copolymer 

poly(sodium styrene-4-sulfonate)-co-poly(N-isopropylacrylamide) (PSSS-PNIPAM).
46

 This 

draw solute shows high osmotic pressure for seawater desalination. The proposed FO process 

together with regeneration process was illustrated in Figure 2.3. Magnetic separation of the 

MNPs was assisted by mild heating and followed by an ultrafiltration step.  
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Figure 2.3 Scheme of FO process (using PSSS-PNIPAM capped MNP as the draw solute) 

together with the regeneration process.
46

 

 

2.1.5 Stimuli Responsive Hydrogels 

In recent years, various hydrogels with intelligent response to temperature, solar energy, electric 

field or pressure stimuli were proposed for use in FO.
50-54

 These hydrogels can change their 

structures reversibly in response to external stimuli, thus facilitating the regeneration of the 

diluted draw solutions.  For example, poly(N-isopropylacrylamine) (PNIPAM) hydrogel is 

thermoresponsive. It absorbs water at the volume phase transition temperature (VPTT, ~32 °C) 

and expels water in its network when the temperature is above the VPTT.
55

 However, the driving 

force of this hydrogel is poor. Researchers induced additional ionic groups to thermoresponsive 

hydrogels. Therefore, poly(N-isopropylacrylamide-co-acrylic acid sodium) (P(NIPAM-co-SA)) 
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was developed and showed better FO performance in terms of higher water flux.
51

 However, 

addition of ionic groups resulted in decreased thermoresponsive property. Dewatering 

experiments were carried out at 50 °C and a constant pressure of 3 MPa was applied for 2 min. 

This significantly increases the energy cost and conflicts with the merit of FO process. It should 

be noted that the hydrogel size would affect the water flux and also the water recovery.
50, 52

 

In recent years, Wang and co-workers utilized solar energy in the regeneration process by 

incorporating light-absorbing carbon particles or graphene in hydrogels (PNIPAM-C).
53, 54

 The 

carbon particles or graphene can enhance the sunlight absorption and thus increase the 

temperature of the composite hydrogels when being exposed to sunlight. A water recovery 

fraction of > 85% from the PNIPAM-C was achieved, which was higher than that obtained with 

pure PNIPAM hydrogel (water recovery rate of >50%) under sunlight at an irradiation intensity 

of 1.0 kW/m for 20 min.
54

 The use of natural solar energy can greatly reduce the energy cost of 

the dewatering step. However, reliance on solar energy may raise problems in implementation. 

Generally, the development of these intelligent hydrogels inspires more and more novel 

regeneration methods of draw solutes. However, the FO performance of these hydrogels is 

usually poor, and most likely, the whole process is still energy intensive. Hence, their 

practicability is still in doubt and requires further investigation.  

 

2.1.6 Stimuli Responsive Liquids 

In 2012, thermoresponsive draw solutes of N,N’,N”-triacylated tris(2-aminoethyl)amine (acyl-

TAEA) derivatives were designed by Noh and co-workers.
56

 Such thermoresponsive solutions 

can draw water from seawater at temperature lower than the LCST, and the water flows reversely 
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at temperature higher than the LCST. Similar to hydrogels aforementioned, the water flux of 

these draw solutions are too low for any FO application. 

Recently, switchable polarity solvents (SPS) which are mixtures of carbon dioxide, water and 

tertiary, were proposed as a novel draws solute by Stone and co-workers.
57

 This draw solute 

exhibits competitive FO water fluxes as inorganic salts at high concentrations. Afterwards, by 

polar to nonpolar phase shift induced by 1 atm of nitrogen or air with mild heating (60 °C), the 

SPS could be spontaneously separated from water (Figure 2.4). To obtain drinking water, RO is 

still necessary as the final step. In addition, the high pH of the concentrated SPS requires more 

robust FO membranes with a wider pH tolerance range.  The proposed SPS FO system was 

illustrated in Figure 2.5. 

 

 

Figure 2.4 Nonpolar to polar shift of a switchable polarity solvent.
57

 

 

  

Figure 2.5 Proposed FO together with regeneration process using switchable polarity solvents as 

the draw solution.
57
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Very recently, Cai et al. employed thermoresponsive ionic liquids (ILs), tetrabutylphosphonium 

2,4-dimethylbenzenesulfonate (P4444DMBS) and tetrabutylphosphonium mesitylenesulfonate 

(P4444TMBS), as draw solutes for FO seawater desalination (Figure 2.6).
58

 However, similarly to 

the case of DEH solution, 60 wt% P4444DMBS solution with an osmolality of 4000 mOsm kg
-1

 gave only 

2.7 LMH for seawater desalination (Cai and Shen, 2015). These water fluxes are much lower than the 

ones obtained by other draw solutions that have similar osmolality. 

 

 

Figure 2.6 FO processes with thermoresponsive ionic liquids as draw solutes.
58

 

 

2.2 Regeneration Methods of Draw Solution 

The energy input of a close-loop FO process mainly depends on the recovery method of draw 

solution. In recent years, a number of novel draw solutions have been reported together with a 

variety of regeneration methods have been reported, including thermal separation, precipitation, 

membrane separation, stimuli-response separation, and direct application without regeneration. 

Luo et al. conduct a review on the regeneration methods of draw solution.
59

 An overview of the 
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existing recovery methods of draw solution and their advantages and disadvantages are present 

in Table 2.2. However, existing regeneration methods still face many challenges, such as low 

energy-efficiency and environmental friendliness, low water recovery rate, low water quality, 

complicated procedures, etc. Among these challenges, reducing energy input in regeneration 

process is most essential. Therefore, future work on draw solution should focus on utilizing low-

cost energy sources, like industrial waste heat or renewable energy source such as solar energy. 

In this way, FO process can show its advantages over other desalination technologies and 

increase its sustainability as mature membrane-based technologies for clean water production. 
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Table 2.2 An overview of existing regeneration approaches of draw solution in FO.
59

 

Category Draw solution (DS) Method Advantages & 

disadvantages 

Ref. 

Thermal 

separation 

SO2 Heating or air 

stripping 

Easy, but energy intensive 

and toxic 

[60] 

NH3/CO2 Heating (~60 °C) Energy-efficient, but poor 

water quality 

[26-

29] 

SPS Heating (~60 °C) 

with bubbling N2 

Energy-efficient, but poor 

water quality  

[56] 

Thermoresponsive 

ionic liquid 

Heating (~60 °C)  Energy efficient and facile, 

poor water quality 

[58] 

Precipitation Al2(SO4)3 Precipitation by 

adding Ca(OH)2 

Energy–efficient, but costly 

consumables, toxic by-

products 

[23] 

MgSO4, CuSO4 Precipitation by 

adding Ba(OH)2 

Energy –efficient, but costly 

consumables, toxic by-

products 

[24, 

25] 

Membrane 

separation 

Seawater Reverse osmosis 

(RO) 

High water quality, but high 

operating cost 

[61] 

Inorganic salts, 

hydroacid complexes 

 

Nanofiltration (NF) Relatively high water 

quality, but relatively high 

operating cost 

[30, 

31, 

39] 

PAA-Na Ultrafiltration (UF) Relatively poor water 

quality and operating cost 

[37] 

PAA-Na Membrane 

distillation (MD) 

High water quality and 

recovery rate, low capital 

cost, high energy cost unless 

using low-grade heat 

[11] 

Stimuli-

response 

separation 

Functionalized MNPs Magnetic 

separation 

Easy, energy-efficient, but 

poor reusability due to 

agglomeration, poor water 

quality 

[13, 

15, 

43-

49] 

Thermoresponsive 

MNPs 

Magnetic heating Energy-efficient, poor water 

quality 

[45, 

46] 

Hydrogel Heating combined 

with hydraulic 

pressure 

Relative energy-efficient, 

but low recovery rate, 

unsuitability for continuous 

FO process 

[55] 

Composite hydrogel Response to 

sunlight 

Low recovery rate, 

unsuitability for continuous 

FO process 

[53, 

54] 

Direct use  Sugars None No energy input, but limited 

to special applications, 

possible requirement of post 

treatment 

[36] 

Fertilizers [16] 

NaLS [42] 
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2.3 Challenges 

The requirements of selecting a suitable draw solution highly depend on the purpose of the FO 

process. Given the advantages and limitations of draw solutions reported, none of them is perfect 

for FO seawater desalination processes. Developing ideal FO draw solutions for the application 

of seawater desalination to obtain clean water or even drinkable water still needs a great deal of 

effort.  

Firstly, unlike other FO applications, the draw solution employed in seawater desalination must 

have osmotic pressure higher that of seawater which is about 27 atm. This requires that the draw 

solute is highly hydrophilic which is contributed by high percentage of dissociable species. In 

addition, the reverse solute flux should be minimal in order to reduce replenishment cost and also 

to meet the standard of clean water or drinkable water. This means that the size of draw solute 

molecule should be optimized. Finally, easy separation of draw solute and product water is 

critical so that the cost on energy is affordable. Therefore, this study emphasizes on the 

development of eligible draw solutions that meet the above requirements. 
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CHAPTER 3 

A DENDRIMER-BASED FORWARD OSMOSIS DRAW 

SOLUTE FOR SEAWATER DESALINATION 

3.1 Introduction 

Clean water supply plays a crucial role in our life. Seawater, which constitutes about 97% of 

total water on earth, has been a potential fresh water source.
1-4

 However, seawater desalination 

has always been a challenge due to the high energy cost, though great efforts have been devoted 

by many researchers. Forward osmosis (FO), as one of emerging desalination technologies, can 

produce clean water based on the osmotic pressure gradient across a semi-permeable 

membrane.
5-12

 Unlike pressure-driven membrane separation processes such as reverse osmosis 

(RO), FO is a spontaneous process as long as: (1) there is a semi-permeable membrane between 

a solution with lower osmotic pressure (feed solution) and a solution with higher osmotic 

pressure (draw solution); and (2) there is an osmotic pressure gradient across the membrane. 

After drawing water from the feed solution, the diluted draw solution needs to be re-concentrated 

to regain its original osmotic pressure. Combining FO with a draw solution regeneration process, 

fresh water can be continuously produced. Therefore, if the regeneration of draw solution is easy 

and energy-saving, FO may require less energy than RO for seawater desalination.
11, 13

 

Semi-permeable membrane and draw solute are two key factors influencing FO performance. 

While many researchers have focused on the development of FO membranes,
14-16

 draw solutes 

have just attracted increasing attention in recent years.
17, 18

 An ideal draw solute not only should 

provide high osmotic pressure, but also needs to minimize reverse solute flux for lower 
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replenishment cost. Moreover, facile regeneration method is essential for low energy cost. A 

wide range of novel draw solutes have been proposed, mainly aiming to reduce reverse flux and 

lower regeneration cost. These draw solutes can usually be classified into inorganic-based draw 

solutes, organic-based draw solutes, and other novel draw solutes such as stimuli responsive 

compounds and hydrophilic magnetic nanoparticles. Draw solutes based on inorganic salts, such 

as ammonium bicarbonate
19

 and sulfur dioxide,
20

 have been investigated and show promise for 

energy-saving desalination, although issues such as reverse flux and damage to membranes 

remain to be solved. Organic molecule-based draw solutes, such as sodium polyacrylate (PAA-

Na) developed by Ge et al., may exhibit both high osmotic pressure and low reverse flux.
21

 For 

the regeneration of such draw solutions, both ultrafiltration and membrane distillation (MD) have 

been demonstrated.
21-23

 Draw solutes based on stimuli-responsive compounds and nanostructures 

have become a new research focus recently, mainly because of their promising new regeneration 

strategies, such as temperature or CO2-indcued phase separation or capturing via magnetic field. 

In recent years, Wang and co-workers utilized solar energy in the regeneration process by 

incorporating light-absorbing carbon particles or graphene in hydrogels (PNIPAM-C).
24, 25 

These 

hydrogels absorb water at the volume phase transition temperature (VPTT) and expels water in 

its network when the temperature is above the VPTT.
26

 The carbon particles or graphene can 

enhance the sunlight absorption and thus increase the temperature of the composite hydrogels 

when being exposed to sunlight. Recently, switchable polarity solvents (SPS) mixed with carbon 

dioxide, water and tertiary amines were proposed as novel draw solutes by Stone and co-

worker.
27

 Through polar to nonpolar phase shift induced by nitrogen or air with mild heating 

(60 °C), the SPS could be spontaneously separated from water. Functional MNPs are also 

considered as promising draw solutes and have attracted considerable interest in the past few 
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years because the regeneration can be achieved with magnetic field.
28-33

 To avoid using high-

strength magnetic field and reduce the agglomeration of MNPs, Zhao et al. modified the MNPs 

with thermoresponsive copolymer poly(sodium styrene-4-sulfonate)-co-poly(N-

isopropylacrylamide) (PSSS-PNIPAM).
31,34

 MNPs coated with this copolymer agglomerate 

spontaneously to larger sizes when heated above its low critical solution temperature (LCST), 

making possible effective separation with low-strength magnetic field or ultrafiltration.  

Despite the rapid progress, it is still a challenging task to develop an FO draw solute that offers 

high osmotic pressure, low viscosity, minimal reverse solute flux, and good compatibility with 

FO membranes. In this work, we investigated a dendrimer, poly(amidoamine) (PAMAM), as FO 

draw solute. PAMAM has a highly branched tree-like structure.
35

 With tailored core structure 

and surface groups, PAMAM has found applications in diverse areas such as drug delivery,
36, 37

 

nanoparticle synthesis,
38, 39

 and catalysis.
40

 If PAMAM is functionalized with hydrophilic 

terminal groups such as -COONa or -SO3Na, these groups can be highly dissociated in solution 

to provide high osmotic pressure. In addition, PAMAM has a relatively large molecular size, 

which allows minimal reverse solute flux. Compared to linear polyelectrolytes, the 

hyperbranched structure of PAMAM would allow lower solution viscosity,
41

 causing reduced 

adverse effect of internal concentration polarization (ICP) on water flux of FO processes. Finally, 

PAMAM also shows advantages of non-toxicity and biocompatibility. Adham et al.
42

 measured 

the osmotic pressures of dendrimer solutions. However, the use of dendrimers in FO progress to 

desalinate seawater has not been reported.  In this work, we systematically evaluated PAMAM 

terminated with –COONa as draw solute for seawater desalination in a process combined with 

forward osmosis and membrane distillation (FO-MD). PAMAM with different generation 

numbers were synthesized and their FO performances were evaluated in terms of water flux, 
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reverse solute flux, as well as regeneration with MD. When 2.5-generation (2.5G) PAMAM-

COONa was used as the draw solute in FO processes under PRO mode, relatively high water 

fluxes of 29.7 and 9 liter/(m
2
·hr) were achieved using DI water and seawater as the feed 

solutions, respectively. A low reverse solute flux of about 10 gMH was attained. The draw 

solution was successfully re-generated using MD. 

 

3.2 Materials and Methods 

3.2.1 Materials 

Ethylenediamine (EDA, >99%), methyl acrylate (MA, 99%), methanol (anhydrous, 99.8%), 

sodium hydroxide (>98.0%), sodium chloride (>99.5%) were purchased from Sigma-Aldrich and 

used as received. Deionized (DI) water with a resistivity of 18MΩ·cm used in all experiments 

was purified by a Milli-Q unit (Millipore, USA). Thin film composite embedded support 

membrane (batch number: 842121) in all FO tests was provided by Hydration Technologies Inc. 

(HTI, Albany, OR). Seawater (osmolality: 842 mOsm kg
-1

) as the feed solution in the FO tests 

was collected from Sentosa coast, Singapore. 

 

3.2.2 Synthesis of PAMAM of Different Generations 

PAMAM of different generations were prepared by an iterative process involving two reactions: 

(a) Michael addition of the amino-terminated surface onto methyl acrylate, resulting in an ester-

terminated outer layer; and (b) coupling with ethylene diamine to achieve a new amino-

terminated surface (Figure 1).
43, 44

 Typically, to synthesize 0.072 mol of 0.5G PAMAM, 50 mL 
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of anhydrous methanol and 4.8 ml of ethylenediamine (EDA) (0.072 mol) were added to a flask 

under an ice bath and N2 protection. The mixture was stirred for 15 mins followed by the 

addition of 51.8 mL of methyl acrylate (MA) (0.576 mol). After 30 mins, the ice bath and N2 

were removed and the mixture was then stirred continuously at room temperature for 24 hrs. 

Before the reaction for 1.0G PAMAM, methanol and excess MA were evaporated completely 

under vacuum at room temperature. Afterwards, 50 mL of anhydrous methanol was added to 

0.5G PAMAM in an ice bath with N2 protection. After stirring for 15 mins, 38.5 mL EDA (0.576 

mol) was added and the ice bath and N2 protection were removed 30 mins later. The mixture was 

left for 24 hrs at room temperature before the methanol and excess EDA were removed by 

vacuum evaporation. These two reactions were carried out alternatively for the synthesis of 

PAMAM of different generations. Each cycle of the two reactions forms a new generation, with 

subsequent reaction (a) giving rise to a “half” generation (Figure 3.2). In this work, 1.5G, 2.5G, 

3.5G and 4.5G PAMAM were prepared.  

 

 

Figure 3.1 Schematic illustration of the synthesis of PAMAM. 
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Figure 3.2 Synthesis of 2.5G PAMAM-COONa. 

 

3.2.3 Modification of Terminal Groups 

The as-synthesized PAMAM terminated with ester groups is hydrophobic. Hydrolysis of the 

ester group was employed to terminate PMAMA with hydrophilic -COONa groups. Using 2.5G 

PAMAM as an example (Figure 3.2),
45

 11.52 g NaOH (0.288 mol) was added to a stirred and 

cooled (ice/water bath) solution of 2.5G PAMAM (50.5 g, 0.018 mol) in a mixed solvent 

containing 200 ml methanol and 120 ml water. After 30 mins the ice/water bath was removed, 

then the reaction mixture was stirred overnight. The solvent was evaporated under vacuum to 

give PAMAM-COONa.  

Osmolalities of 1.5G, 2.5G, 3.5G and 4.5G PAMAM-COONa aqueous solutions (33.3 wt%) 

were measured with an osmometer (Wescor, Vapro vapor pressure osmometer). The relative 

viscosities (ηr, compared to DI water) of the solutions were calculated with the following 

equation: 

ηr = η/η0 = (t ρ)/(t0 ρ0) 

NaOH

CH3OH, H2O

0.5G PAMAM 1.5G PAMAM 2.5G PAMAM 2.5G PAMAM-COONa

:   - CH3 :   - COONa
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where t and t0 (s) are the respective elution times of PAMAM-COONa solution and DI water 

measured by an AVS 360 inherent viscosity meter; ρ and ρ0 (g mL
-1

) are the densities of 

PAMAM-COONa solution and DI water, respectively. 

 

3.2.4 FO Tests 

A lab-scale FO setup as shown in Figure 3.3 (left part) was employed for all FO tests with a 

membrane area of 1cm×2cm. HTI thin film composite (TFC) embedded support membrane was 

chosen for the FO tests. Water fluxes using pure DI water, seawater from Singapore coast 

(osmolality: 842 mOsm kg
-1

), and simulated seawater (3.5 wt% NaCl solution, osmolality: 1200 

mOsm kg
-1

) as feed solutions were measured respectively. Draw solutions were prepared from 

1.5G, 2.5G, 3.5G, 4.5G PAMAM-COONa and saturated salt water. During the FO process, the 

feed solutions and draw solutions flowed concurrently through the two sides of the cell channel 

at a velocity of 20 cm s
-1

 and each process was run for 30 mins to determine the average water 

flux. Both FO and pressure retarded osmosis (PRO) modes were applied in this process at room 

temperature (about 25 °C). PRO mode indicates that the water flux is measured with the selective 

layer of the FO membrane facing the draw solution, while FO mode means the selective layer 

facing the feed solution. Water fluxes (Jv, L m
-2 

h
-1

, abbreviated as LMH) were calculated from 

the weight increment of the draw solution during certain time using the following equation: 

Jv =  Δm/(AmΔt×1000) 

where Δm (g) is the mass of water permeated across the effective FO membrane area Am (m
2
) 

over a time period of Δt (h), assuming the density of water is 1000 g L
-1

. 
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Reverse fluxes were measured with a conductivity meter (Schott Instrument, Lab 960) by using 

DI water as the feed solution. Calibration lines of the conductivity vs. the concentration of 

PAMAM-COONa were first obtained. Once the conductivity of the feed solution were measured 

upon the completion of FO, the amount of draw solute leaked into the feed solution was 

calculated. Reverse solute fluxes (Js, g m
-2 

h
-1

, abbreviated as gMH) were obtained according to 

the following equation: 

Js = cV/(AmΔt) 

where c (g/L) is the concentration of the PMAMA-COONa leaked into the feed solution with a 

volume of V (L) over a time period of Δt (h). 

 

3.2.5 Regeneration of Draw Solution by Membrane Distillation 

MD was employed to regenerate the draw solution as shown in Figure 3.3 (right part). The 

spinning conditions and characterizations of the MD membrane are given in the Table 3.1 with 

an effective MD membrane area of 28 cm
2
. The diluted draw solutions after FO process were 

circulated through the shell side of the MD module after being heated up to 50 °C, while cold 

water (10 °C) was circulated through the lumen side. MD water fluxes were also calculated using 

eq. (2) with Δm (g) as the mass of water permeated across the effective MD membrane area Am 

(cm
2
). 
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Figure 3.3 Lab-scale FO-MD process. 

 

Table 3.1 Parameters for MD hollow fiber fabrication. 

Dope Composition (wt%) PVDF/NMP/EG 15/70/15 

POSS loading in total solid (wt%) 30 

Bore flow rate (ml/min) NMP/water: 85/15 

Dope flow rate (ml/min) 5 

Bore flow rate (ml/min) 3 

External coagulant (wt%) IPA/water: 60/40 

Air gap (cm) 5 

Post-treatment 3 days store in tap water, freeze drying 

 

3.3 Results and Discussion 

3.3.1 Characterizations of PAMAM-COONa of Different Generations 

PAMAM-COONa of various generations were evaluated as FO draw solutes. For FO draw 

solutes based on large molecules, the solution viscosity can affect FO performance significantly. 
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A high viscosity of the draw solution not only leads to high energy consumption for fluid 

pumping, but also results in severe internal polarization concentration. As mentioned earlier, 

dendrimers should exhibit lower viscosity than linear polymers of similar molecular weight.
41

 As 

shown in Figure 3.4a, the relative viscosity (ηr) of 1.5G PAMAM-COONa solution (33.3 wt.%) 

is about 7, and it increases with the generation number due to the increased molecular weight. 

For 4.5G PAMAM-COONa solution, the relative viscosity is 11. But this viscosity is still lower 

than other linear polymer draw solutions such as PAA-Na.
21 

 

The dendrimer generation number not only affects its solution viscosity, but the osmolality and 

water flux of FO processes as well. The osmolality of a dendrimer solution is mainly determined 

by the number of dissociated terminal groups. Although the number of terminal groups increases 

progressively with the generation number, the ratio between the number of terminal groups and 

the dendrimer molecular weight decreases (the ratios for 1.5G, 2.5G, 3.5G and 4.5G PAMAM-

COONa are 0.0063, 0.005, 0.0047 and 0.0046, respectively). In addition, because the charges of 

terminal groups are too close to each other due to compacter structure at higher generation, the 

dissociation rate of Na
+
 ions from the terminal groups decreases with the generation number.

42
 

Consequently, the solution (fixed mass fraction) of a higher generation dendrimer gives a lower 

osmotic pressure. As shown in Figure 3.4b, the osmolalities of 33.3 wt.% 1.5G, 2.5G, 3.5G and 

4.5G PAMAM-COONa solutions are 3846, 3603, 3417, and 2990 mOsm/kg, respectively. We 

also measured the water fluxes of the dendrimer solutions using DI water as the feed solution 

under PRO mode. For 1.5G, 2.5G, 3.5G, and 4.5G PAMAM-COONa, the water fluxes were 31.8, 

29.7, 29.4, and 19.8 LMH, respectively.  
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Figure 3.4 (a) Relative viscosities and (b) osmolalities and water fluxes of 1.5G, 2.5G, 3.5G, and 

4.5G PAMAM-COONa aqueous solutions (33.3 wt%) in FO processes. The water fluxes of FO 

processes were obtained under PRO mode using DI water as the feed solution. 

 

The reverse fluxes of PAMAM-COONa of various generations were measured and compared 

with saturated and 1.8 M NaCl solutions under the same FO process. As shown in Figure 3.6, 

PAMAM-COONa solutions of all generations have significantly lower reverse fluxes than NaCl 

solutions. In addition, the reverse fluxes of PAMAM-COONa decreased with increasing 

generation number -- for 1.5G, 2.5G, 3.5G and 4.5G PAMAM-COONa, the reverse solute fluxes 

were 10.42, 8.86, 5.64, and 4.68 gMH, respectively. When 1.8 M NaCl solution (osmolality ~ 

3600 mOsmo/kg) was used as the draw solution, its reverse solute flux (42 gMH) was more than 

four times higher than that of the dendrimer solutions. The much lower reverse fluxes of 

PAMAM-COONa solutions can be attributed to the larger molecular sizes of PAMAM-COONa. 

Also, when the generation number of PAMAM-COONa increases, the molecular size increases, 

resulting in larger barrier for the diffusion of draw solute across the FO membrane.  
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Figure 3.5 Calibration line of conductivity vs. different concentrations of dendrimer-based draw 

solution. 
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Figure 3.6 Reverse solute fluxes of 1.5G, 2.5G, 3.5G, 4.5G PAMAM-COONa, and NaCl 

solutions. 

 

Based on the above results, we summarized the key properties of PAMAM-COONa solutions of 

different generations. As shown in Table 3.2, 1.5G PAMAM-COONa exhibits the lowest relative 

viscosity, highest osmolality, and water flux of FO processes. But it also shows highest reverse 

solute flux. Considering that the reverse solute flux of 2.5G PAMAM-COONa is below 10 gMH, 

and higher generation number causes high cost of synthesis and lower water flux of FO 

processes, we chose 2.5G PAMAM-COONa as the model FO draw solute for further tests.  

 

Table 3.2 Summary of molecular weighht, relative viscosity, osmolality, water flux of FO 

processes and reverse solute fluxes of 1.5G, 2.5G, 3.5G, and 4.5G PAMAM-COONa aqueous 

solutions (33.3 wt%). 

 Molecular 

weight 

Relative 

viscosity 

Osmolality 

(mOsmo/kg) 

 Water flux of FO 

processes (LMH) 

Reverse solute flux 

(gMH) 

1.5 G 1268 6.87 3846 31.8 11 

2.5 G 3200 9.16 3603 29.7 7.5 

3.5 G 6808 10.77 3417 29.4 5.5 

4.5 G 13913 11.09 2990 19.8 4.54 
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3.3.2 2.5G PAMAM-COONa as FO Draw Solute for Desalination 

Alternating FO and MD processes were conducted for multiple cycles to investigate 2.5G 

PAMAM-COONa as the draw solute for desalination. In the FO tests, three feed solutions, 

namely DI water, seawater from Singapore coast, and 3.5 wt% NaCl solution as simulated 

seawater, were employed. When DI water was used as the feed solution, the water flux of FO 

processes slightly dropped from 26 LMH (1
st
 cycle) to 21.3 LMH (4

th
 cycle). With seawater from 

Singapore coast and simulated seawater as the feed solutions, the water fluxes almost retained 

their original values after 4 cycles. The average water fluxes of FO processes over 4 cycles were 

24.0, 8.0, and 7.2 LMH with DI water, seawater from Singapore coast, and simulated seawater as 

the feed solutions, respectively.  

After each FO test, the draw solution was regenerated using MD process so its concentration was 

restored to 33.3 wt.% by producing fresh water. The average MD water flux for 4 cycles was 3.2 

LMH (Figure 3.7b). To evaluate the solute leakage in the MD process, the conductivities of the 

permeate water before and after MD test were obtained. With 2.5G PAMAM-COONa draw 

solution as the feed to the MD process, the conductivity of the circulating DI water barely 

increased (from 0.7 to 0.8 μS cm
-1

). This result indicates a low solute leakage of 2.5G PAMAM-

COONa in MD due to its large molecular size. Although MD may be applied for seawater 

desalination directly, NaCl and water can penetrate into the membrane pores and cause serious 

membrane fouling and pore wetting problems.
46

 The combination of FO and MD systems may 

allow high quality water product as well as prolonged lifetime of MD membranes.  
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Figure 3.7 (a) Water fluxes of FO processes under PRO mode with 2.5G PAMAM-COONa as 

the draw solution and DI water, seawater from Singapore coast (osmolality: 842 mOsm kg
-1

), 

and simulated water (0.6 M NaCl, osmolality: 1200 mOsm kg
-1

)  as the feed solutions, 

respectively; (b) MD water fluxes. 

 

We also compared the water fluxes of FO processes with different membrane orientations. As 

seen in Figure 3.8, the orientation of the FO membrane affects the water flux of FO processes 

considerably – this can be attributed to the different concentration polarizations. In FO mode 

(feed solution facing the selective layer of FO membrane), water permeates through the 

membrane and dilutes the draw solution in the porous supporting layer. This is known as internal 

concentration polarization (ICP), which leads to a small water flux in FO mode than that of in 

PRO mode (draw solution facing the selective layer). For example, when using 33.3 wt% 2.5G 

PAMAM-COONa as the draw solution, the water flux under PRO mode was 26 LMH; while 

under FO mode, the flux dropped to 12 LMH. The severity of the ICP is affected both by the 

membrane (porosity, tortuosity and thickness) and draw solution (viscosity and molecular size). 

In our work, the water flux ratio of FO to PRO mode is about 45%. This ratio can be used to 
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predict water flux of FO processes under PRO mode if water flux under FO mode is known or in 

the opposite situation. For the HTI FO membrane employed in this work, this ratio is 41% with 

1M NaCl solution as draw solute,
47

 a value close to our measurement using PAMAM-COONa as 

the draw solute. This result indicates that the ICP of PAMAM-COONa draw solution may be 

less severe than other draw solutions with higher viscosities or molecular sizes. It is worth noting 

that the concentration of the 2.5G PAMAM-COONa can be further increased to generate higher 

water flux of FO processes – for 40 wt% of 2.5G PAMAM-COONa draw solution, we obtained 

water fluxes of 30, 9, and 7.5 LMH using DI water, seawater from Singapore coast, and 

simulated seawater as the feed solutions under PRO mode, respectively (Figure 3.8). 

 

 

Figure 3.8 Water fluxes under PRO and FO modes using 2.5G PAMAM-COONa (40.0 wt% and 

33.3 wt%) as the draw solution and DI water, seawater from Singapore coast and simulated 

seawater as the feed solutions. 
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3.4 Conclusions 

In this work, 1.5G, 2.5G, 3.5G and 4.5G PAMAM-COONa were synthesized and evaluated as 

FO draw solutes. At the same solution concentration, PAMAM-COONa of higher generation 

exhibits lower osmotic pressure and water flux of FO processes, but smaller reverse solute flux. 

As the synthesis of higher generation of PAMAM-COONa takes longer time and requires higher 

cost, PAMAM-COONa with lower generation is more suitable for practical applicability. Taking 

into consideration of water flux, solute leakage and synthesis cost, 2.5G PAMAM-COONa was 

selected as the optimal FO draw solute among all four generations of dendrimers. With DI water, 

seawater from Singapore coast, and simulated seawater as the feed solutions, water flux of 26, 

8.3 and 7.1 LMH was achieved respectively using 33.3 wt% 2.5G PAMAM as the draw solution 

in FO processes. After FO testing, the diluted draw solution was re-concentrated via MD. At a 

mild temperature of 50 °C, an average MD water flux of 3.2 LMH was attained.  
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CHAPTER 4 

Na
+
-FUNCTIONALIZED CARBON QUANTUM DOTS: A 

NEW DRAW SOLUTE IN FORWARD OSMOSIS FOR 

SEAWATER DESALINATION 

4.1 Introduction 

Surface-passivated carbonaceous quantum dots (CQDs) with size less than 10 nm are a 

fascinating class of nanostructured carbons discovered recently.
1-3

 CQDs not only inherit the 

merits of traditional semiconductor-based quantum dots (QDs) such as size-dependent optical 

properties, but also show advantages of high chemical inertness, biocompatibility and 

hydrophilicity.
4-6

 They can be produced inexpensively on large scale based on synthetic 

approaches such as hydrothermal treatment of biomass, oxidation of graphite, and candle 

burning.
7-10

 To date, CQDs have been explored in a wide range of applications including 

bioimaging, drug delivery, diagnostics, sensing and energy conversion/storage.
11-15

 Considering 

their ultra-small size and rich surface chemistry, broader applications are expected for CQDs 

with further functionalization. 

Forward osmosis (FO) is an emerging technology for seawater desalination, wastewater 

treatment, and green energy.
16-19

 An FO process takes the advantage of the difference in osmotic 

pressure of two solutions separated by a semi-permeable membrane. Spontaneously, water 

molecules of the less concentrated solution (feed solution, low osmotic pressure) can be drawn to 

the solution with higher concentration (draw solution, high osmotic pressure).
20

 After drawing 
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water, the diluted draw solution can be regenerated for reuse via a separation step that 

concentrates the solution and produces clean water. Compared to pressure-driven membrane 

processes such as reverse osmosis (RO) and other water production techniques, FO shows 

advantages of high rejection to contaminants, low membrane fouling, and potentially less energy 

consumption.
21,22

 For a high-performance FO system, the selection of a suitable draw solute is 

critical.
23

 In general, an ideal FO draw solute should have high hydrophilicity to generate high 

osmotic pressure and hence high water flux, low solute leakage to reduce replenish cost, facile 

and low-cost regeneration mechanism, and capability for large scale production.
24

 Two main 

types of draw solutes, namely inorganic compounds including sodium chloride, magnesium 

chloride and ammonium bicarbonate, and organic molecules such as sugars, ethanol and 

polyelectrolytes, have been tested in FO.
23-25

 These draw solutes offer high FO water fluxes, 

although some challenges, such as high reverse draw solute permeation, energy-consuming 

regeneration, or damage of FO membrane, remain unsolved.
26

 In the past few years, novel draw 

solutes such as hydrogels, stimuli-responsive materials, and magnetic nanoparticles have also 

been developed with demonstrated promise.
16,24

 To achieve high water fluxes, the osmotic 

pressures produced by these draw solutes in aqueous solutions should be improved.   

Here we report a new type of FO draw solutes based on Na
+
–functionalized carbon quantum dots 

(Na_CQDs). The fabrication of Na_CQDs is simple and straightforward (Figure 4.1). Firstly, 

citric acid powder is heated in air at a moderate temperature to give CQDs passivated with 

carboxyl groups. The CQDs are then dispersed in water, followed by adjusting the pH to 7.0 with 

NaOH. As a result, the carboxylic acid groups in CQDs are neutralized to give Na
+
–

functionalized CQDs (referred to as Na_CQDs). Due to the rich ionic species present in 

Na_CQDs, their aqueous dispersion (0.5 g mL
-1

) shows osmotic pressure up to 97.4 atm, much 
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higher than that of seawater (~26 atm). When employed as draw solutes in FO for seawater 

desalination, Na_CQDs demonstrate high water flux with negligible reverse draw solute 

permeation.  

 

4.2 Materials and Methods 

4.2.1 Fabrication of Na
+
-Functionalized Carbon Quantum Dots (Na_CQDs) 

The Na_CQDs were prepared as follows.
27

 In a typical reaction, 100 g citric acid solid powder 

was put into a glass beaker covered with a glass slide and was heated at 180 
o
C for 150 min 

under air. After the reaction, yellow powder containing carbon quantum dots (CQDs) was 

produced. The CQDs were then dispersed in water by stirring for 10 min, followed by 

neutralization with 5.0 M NaOH solution to pH = 7. The resultant Na_CQDs solution was 

dialyzed using Slide-A-Lyzer G2 Dialysis Cassettes (2K MWCO) for 12 hours and the dialysis 

process was repeated until there was no significant change of conductivity of the surrounding 

distilled water. 

 

 

Figure 4.1 Schematic illustration for the fabrication of Na
+
–functionalized carbon quantum dots 

(Na_CQDs).   
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4.2.2 Material Characterizations 

Transmission electron microscopy (TEM) images were recorded on a JEM-2100F electron 

microscope operating at an accelerating voltage of 200 kV. Corresponding particle size 

distribution histograms were plotted by counting 200 nanoparticles. Energy Dispersive X-ray 

(EDX) Spectroscopy spectra were recorded using JEOL JSM 6700F scanning electron 

microscope with Oxford Instruments INCA detector. Fourier transform infrared spectroscopy 

(FT-IR) spectra were obtained using Bruker FT-IR Research Spectrometers. X-ray photoelectron 

spectroscopy (XPS) characterizations were performed on a PHI Quantera x-ray photoelectron 

spectrometer with a chamber pressure of 5×10
-9

 torr, a spatial resolution of 30 µm and an Al 

cathode as the X-ray source to determine composition of the nanoparticles. The osmolalities of 

Na_CQDs solutions were measured with an osmometer (Wescor, Vapro vapor pressure 

osmometer). The effect of MgCl2, NaCl and KCl on Na_CQDs was checked by measuring the 

osmolality of the Na_CQDs after mixing with 0.1 wt% solution of each salt for 48 h. Negligible 

osmolality changes (<1%) were observed, indicating minimum poisoning effect of these salts to 

Na_CQDs. 

 

4.2.3 FO and MD Tests  

FO test were conducted on a lab-scale setup using a thin film composite embedded support 

membrane (batch number 842121) provided by Hydration Technologies Inc. (Albany, OR). The 

dimensions of the membrane are 1 cm×2 cm. The feed solution was either distilled (DI) water or 

seawater. The seawater was taken from the sea near Singapore Sentosa beach. Before FO tests, 

the seawater was filtrated using 220 nm filter membrane to remove large particulate impurities. 

The draw solution was Na_CQDs solutions with different concentrations. The feed solution and 
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draw solution flowed concurrently through the two sides of the cell channel at a flow velocity of 

25 cm s
-1

. Water fluxes were measured with the selective layer of the membrane in contact with 

the draw solution at room temperature (25 °C). For the regeneration of draw solution via MD, a 

multi-bore PVDF hollow fiber (MBF) membrane with lotus root-like geometry was used as the 

MD membrane. The effective MD membrane surface area is 22.4 cm
2
. The diluted draw solution 

after FO process was circulated through the shell-side of the MD module after heated up to 45 °C. 

DI water as the permeate solution was concurrently circulated through the lumen side of the MD 

module after cooled to 10 °C.  

 

4.3 Results and Discussion 

4.3.1 Material Characterization 

TEM images in Figure 4.2a, b show that the Na_CQDs have an average size of 3.5 nm. Energy 

dispersive X-ray (EDX) spectrum of the Na_CQDs reveals peaks from C, O and Na, with atomic 

percentages of 40.7%, 45.3%, and 14.0%, respectively (Figure 4.3). On the other hand, CQDs 

only show signal of C and O (Figure 4.3). The TEM and EDX results indicate that the Na_CQDs 

were successful functionalized with Na
+
 with retained morphology. The presence of Na in 

Na_CQDs was further confirmed with X-ray photoelectron spectroscopy (XPS). As shown in 

Figure 4.2c, a peak at 1071 eV corresponding to Na 1s presents in the spectrum of Na_CQDs;
28

 

while for CQDs the signal of Na is absent. 

 



71 
 

 

Figure 4.2 (a, b) TEM images of Na_CQDs. The size distribution is given in the inset of (a). (c) 

XPS high-resolution Na 1s spectra of CQDs and Na_CQDs. (d) FT-IR spectra of Na_CQDs, 

CQDs, and citric acid.    

 

 

FT-IR spectra of CQDs and Na_CQDs show –C=O and –C–O groups
13,29

 that are inherited from 

citric acid molecules. In addition, the CQDs exhibit characteristic stretching vibration of C–H at 

2950 and below 1350 cm
-1

, indicating that the CQDs contain incompletely carbonized citric acid. 

EDX spectra in Figure 4.3 demonstrate that the atomic ratio of O/C of citric acid is 52.5/47.5, 

approximately 1.11. In contrast, CQDs show a lower O/C atomic ratio of 1.02, suggesting that a 

small portion of oxygen groups were lost during the heating process. It is known that citric acid 

molecule contains abundant –OH groups, which can cause polymerization (carbonization) during 

the heat treatment at 180 
o
C, similar to that of glucose to form carbonaceous spheres under 

hydrothermal treatment.
30

 Based on FT–IR and TGA analyses, the formation process of 
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Na_CQDs from citric acid can be summarized as follows. During the moderate heat treatment at 

180 
o
C, citric acid molecules undergo incomplete carbonization by losing some –OH groups, 

resulting in CQDs with carboxyl groups and an average size of 3.3 nm. Due to the existence of 

abundant carboxyl groups, CQDs have a relatively acidic nature (pH of around 2.6 at a 

concentration of 0.4 g mL
-1

). After adding NaOH, the acidic CQDs were neutralized by 

converting –COOH groups into –COONa, producing Na_CQDs.  

 

 

Figure 4.3 EDX spectra of citrate acid, CQDs, and Na_CQDs. 
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4.3.2 Biocompatibility of Na_CQDs Solution 

Biocompatibility of the Na_CQDs was investigated in vitro using MCF7 human breast 

adenocarcinoma cells. Cell viability was monitored by 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay, which is a colorimetric assay used to monitor cell 

viability by measuring the cleavage of MTT via the activity of cellular enzymes in living cells. 

The cell viability value was expressed as the percentage of absorbance observed relative to the 

control cells cultured with only culture media. Cell viability of 99.8% was observed for 

Na_CQDs at a concentration of 0.5 mg mL
-1 

(Figure 4.4). Even at a higher concentration of 1.0 

mg mL
-1

, cell viability still retains 92.5%. In contrast, for CQDs at the same concentration (1.0 

mg mL
-1

), a slightly lower viability of 85.6% was observed. This might be due to the acidic 

nature of CQDs. The cell viability result demonstrates that the Na_CQDs are biocompatible.  

The good biocompatibility of this new class of draw solute makes it promising for producing 

clean drinking water via FO. 

 

 

Figure 4.4 MTT cytotoxicity assay using MCF7 cells following 24 hour exposure to various 

concentrations of Na_CQDs. Cell viability value was expressed as percentage of absorbance 

observed relative to the control wells receiving only culture media. 



74 
 

4.3.3 Osmolality of Na_CQDs Solution 

For FO seawater desalination, high osmolality is critical for the draw solution to offer high 

osmotic pressure and thus high water flux. The osmolalities of Na_CQDs were measured at 

various concentrations ranging from 0.2 to 0.5 g mL
-1

. As shown in Figure 4.5a, at 0.2 g mL
-1

, 

the osmolality of Na_CQDs is 1410 mOsm kg
-1

. However, for CDQs at the same concentration, 

the osmolality is only 360 mOsm kg
-1

, much lower than that of Na_CQDs. The osmolality of 

Na_CQDs increases with concentration. At concentrations of 0.4 and 0.5 g mL
-1

, the osmolalities 

reach as high as 3140 and 4350 mOsm kg
-1

, corresponding to osmotic pressures of 70.3 and 97.4 

atm, respectively. These osmotic pressures are much higher than seawater (~26 atm).
24

 The high 

osmotic pressure is clearly attributed to the favorable characteristics of Na_CQDs, namely ultra-

small size and rich ions. Compared with CQDs, Na_CQDs are Na
+
–functionalized and should be 

able to dissociate in solution to produce abundant ions. The slope of the osmolality vs. 

concentration curve in Figure 4.5a slightly decreases at higher concentrations. This is possibly 

caused by reduced degree of dissociation of the Na_CQDs at higher concentrations. It is worth 

noting that the Na_CQDs exhibited excellent dispersibility in water.  
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Figure 4.5 (a) Osmolalities of Na_CQDs at various concentrations. (b) FO water fluxes with 0.4 

g mL
-1

 Na_CQDs as the draw solution and DI water as the feed solution and MD water fluxes 

with the diluted Na_CQDs solution as the feed solution. LMH refers to liter/(m
2
 membrane·hr). 

(c) Comparison of FO water fluxes between 2.0 M NaCl and 0.4 g mL
-1

 Na_CQDs draw 

solutions. (d) Reverse draw solute permeation of 2.0 M NaCl and Na_CQDs at different 

concentrations. gMH refers to gram solute/(m
2
 membrane·hr). 

 

4.3.4 FO and MD Tests 

Na_CQDs solution at 0.4 g mL
-1

 was evaluated as FO draw solution using DI water as model 

feed solution. After each FO test, the diluted Na_CQDs solution was re-concentrated using 

membrane distillation (MD). For the FO and MD processes, the membranes are commercial HTI 

thin film composite (TFC) embedded support membrane (2 cm
2
) and multi-bore PVDF hollow 

fiber membrane (28 cm
2
), respectively. The FO and MD were repeated for five times and the 

water fluxes are summarized in Figure 4.5b. A high FO water flux of 29.8 LMH was achieved 
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for the first cycle with little change in the following cycles. At the 5
th

 cycle, the FO water flux 

still maintained at 28.8 LMH. This FO water flux exceeds that of existing draw solutes with 

typical concentrations such as sugars,
31

 ethanol,
32

 dendrimers,
33

 hydroacid complexes,
26

 polymer 

hydrogels,
34

 polyelectrolytes,
35

 polyelectrolyte-functionalized magnetic nanoparticles,
25,36,37

 and 

it is among the highest water fluxes reported using the same commercial FO membrane.
23

 When 

simulated seawater (0.6 M NaCl) was employed as the feed solution, the FO water flux still 

reached as high as 7.3 LMH. The reconcentration of Na_CQDs via MD was performed at 45 
o
C. 

For the 1
st
 cycle, the MD water flux was 4.0 LMH. It slightly drops in the next few cycles, but 

still retained at 3.4 LMH in the 5
th

 cycle.  

 

The FO water flux of the Na_CQDs solution (0.4 g mL
-1

) was compared with that of 2.0 M 

NaCl, which is widely used as model draw solution in FO. As displayed in Figure 4.5c, for the 1
st
 

cycle, the FO water flux of 2.0 M NaCl is 19.2 LMH, much lower than that of of Na_CQDs. 

After 5 cycles, the water flux dropped 29% for 2.0 M NaCl, but only 3% for Na_CQDs. We also 

compared the reverse draw solute permeation of 2.0 M NaCl and Na_CQDs at various 

concentrations (Figure 4.5d). For 2.0 M NaCl solution, a reverse draw solute flux of 2.5 gram per 

(m
2
 membrane·hr) (gMH) was observed. In comparison, negligible reverse solute fluxes (<0.05 

gMH) were found for Na_CQDs. The commercial HTI TFC membrane used in this work has an 

average pore size of 0.5 nm in the active layer. The Na_CQDs have a size range of 2.5 to 5 nm, 

much larger than the pore size of the membrane. Therefore, the diffusion of Na_CQDs across the 

membrane is effectively suppressed, resulting in negligible reverse solute flux.  

 

Combined with MD process, the Na_CQDs solution (0.4 g mL
-1

) was further used in FO for 

seawater desalination. The seawater was taken from the sea near Singapore coast with a 
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measured osmolality of 880 mOsm kg
-1

. With a total salt concentration of 27.5 g L
-1

, the 

seawater mainly contains Na
+
, Mg

2+
, K

+
, Cl

-
 and SO4

2- 
ions (Figure 4.6). Minimum poisoning 

effect of MgCl2, NaCl and KCl on the Na_CQDs was observed based on osmolality 

measurements. Before FO tests, the seawater was filtrated using 220 nm filter membrane to 

remove impurities. As shown in Figure 4.7, relatively high FO water fluxes of 10.4 and 9.6 LMH 

were achieved for the 1
st
 and 5

th
 cycles, respectively.  

 

 

Figure 4.6 Composition of the seawater sample taken from the sea near Singapore coast upon 

evaporation of water measured by Energy-dispersive X-ray spectroscopy (EDS).  
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Figure 4.7 FO water fluxes with 0.4 g mL
-1

 Na_CQDs aqueous solution as the draw solution and 

seawater taken from the sea near Singapore coast as the feed solution. The seawater has an 

osmolality of 880 mOsm kg
-1

.    

 

4.4 Conclusions 

In conclusion, we report a new draw solute, Na
+
–functionalized carbon quantum dots, in forward 

osmosis for seawater desalination. The unique characteristics of Na_CQDs, including an ultra–

small size of 3.5 nm, abundant carboxyl groups, and rich ionic species, favor high osmotic 

pressure and thus FO water flux. At concentrations of 0.4 and 0.5 g mL
-1

, the Na_CQDs provide 

respective osmotic pressures of 70.3 and 97.4 atm, much higher than that of seawater (~26 atm). 

In FO tests with DI water as the model feed solution, the Na_CQDs (0.4 g mL
-1

) showed a water 

flux of 29.8 LMH, exceeding that of 2.0 M NaCl draw solution by 55%. This FO water flux is 

among the highest reported. When seawater was used as feed solution, the Na_CQDs provide an 

FO water flux of 10.4 LMH with only a slight drop after 5
 
cycles. In addition, the Na_CQDs 

showed negligible reverse draw solute permeation. It is worth noting that for practical 
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applications, further investigation is necessary to understand the energy consumption in the FO 

desalination process using Na_CQDs as draw solutes. 
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CHAPTER 5 

THERMORESPONSIVE COPOLYMER-BASED DRAW 

SOLUTION FOR SEAWATER DESALINATION IN A 

COMBINED PROCESS OF FORWARD OSMOSIS AND 

MEMBRANE DISTILLATION 

5.1 Introduction 

Clean water scarcity has long been a serious concern for many communities, and it will be 

aggravated due to the rapid growth of population. Desalination of seawater has been proposed as 

a solution to this worldwide problem since seawater accounts more than 97% of the total water 

resource on earth. For decades, researchers have been looking for low-energy and highly 

efficient desalination techniques.
1-8

 Among existing desalination methods, forward osmosis (FO, 

also known as direct osmosis) is an attractive and promising one.
1-7, 9, 10

 In an FO process, water 

in the feed solution at a lower osmotic pressure can pass spontaneously through a semipermeable 

membrane to the draw solution at a higher osmotic pressure. A subsequent regeneration process 

extracts water from the draw solution and re-concentrates the draw solution for reuse. Unlike 

reverse osmosis (RO) which requires a high hydraulic pressure to desalinate seawater, FO is 

driven by the difference in osmotic pressure between the feed and draw solutions and eliminates 

the need for high hydraulic pressure. As an emerging membrane technology with low energy 

consumption, FO is promising for wastewater treatment,
11,12

 desalination,
13-18

 protein 

concentration,
19-21

 power regeneration,
22-24

 and many other applications.
25-29
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Research in FO has been mainly focused on both the fabrication of high-performance FO 

membranes
23, 30-39

 and the development of efficient draw solutions.
40, 41

 An ideal FO draw 

solution should meet three general requirements, namely high osmotic pressure for high water 

flux, facile regeneration method for low energy consumption, and minimum reverse solute flux 

for low replenishment cost.
40, 41

 Conventional draw solutions based on inorganic salts such as 

NaCl, MgCl2 and NH4HCO3 can generate high water flux, but the corresponding reserve flux of 

solute is also high, thus affecting the product quality and increasing the replenishment cost.
17, 42

 

In addition, there is a lack of an efficient method to produce clean water from these draw 

solutions. Most recently, a number of novel draw solutions have been proposed.
12-15, 43-51

 

Polyelectrolytes such as sodium polyacrylate (PAA-Na) have been investigated as FO draw 

solutes by Ge and coworkers.
43

 This type of draw solute with relatively high molecular weight 

can reduce reverse flux. Ultrafiltration (UF) and membrane distillation (MD) are promising for 

the regeneration of polyelectrolyte-based draw solutions.
11, 43

 Draw solutes based on 

thermoresponsive compounds have also attracted increasing attention because of their unique 

response to temperature.
45, 46, 52

 For instance, n-acylated polyethylenimine derivatives are soluble 

in water below their lower critical solution temperature (LCST), but phase separation occurs 

when the temperature is increased above the LCST.
46

 Using this type of thermoresponsive draw 

solute, Lee et al. demonstrated temperature-induced reversible water flux between the draw and 

feed solutions. Ling et al. employed thermoresponsive poly(n-isopropylacrylamide) (PNIPAM) 

to functionalize magnetic nanoparticles (MNPs).
45

 The resultant PNIPAM-capped MNPs may 

agglomerate to larger sizes when heated up to the LCST of PNIPAM. Therefore, when the 

thermoresponsive MNPs are used as draw solute, the regeneration of draw solution can be 

achieved efficiently by applying a magnetic field. As another example, Wang et al. also 
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evaluated stimuli-responsive polymer hydrogels as FO draw solutes and investigated the effects 

of hydrogel size on the performance of FO and dewatering process.
15, 53

  

Despite the recent progress, it remains a challenging task to employ thermoresponsive materials 

as draw solutes to desalinate seawater. This is because the osmotic pressure of a 

thermoresponsive polymer solution is generally not high enough to counteract that of seawater. 

Here, we present a study on a thermoresponsive copolymer, poly(sodium styrene-4-sulfonate-co-

n-isopropylacrylamide) (PSSS-PNIPAM), as FO draw solute for seawater desalination in a 

process combined with forward osmosis and membrane distillation (FO-MD). The purpose of 

using PSSS-PNIPAM as the draw solute is two-fold: i) PSSS is a strong polyelectrolyte which 

can provide a large number of ions in aqueous solution and thus a high osmotic pressure; and ii) 

PNIPAM may facilitate the regeneration of the draw solution based on its thermoresponsive 

property. In our study, FO desalination is performed at room temperature, which is below the 

LCST of the polymer. Therefore, the polymer chains are fully expanded in the FO draw solution 

to provide maximum osmotic pressure. After drawing water from seawater, the polymer solution 

is re-concentrated by MD to produce clean water and to regenerate the draw solution. Because 

MD is performed at a temperature (50 
o
C) above the LCST of the copolymer, the osmotic 

pressure of the draw solution drops due to the agglomeration of the polymer chains. Lower 

osmotic pressure leads to a higher effective water vapor pressure, which facilitates the separation 

of water from the solution.
54

 Although MD may be applied for desalination of seawater directly, 

NaCl crystals and liquid water can penetrate into the membrane pores and cause serious 

membrane fouling and pore wetting problems. Therefore, the FO-MD hybrid seawater 

desalination process with thermoresponsive PSSS-PNIPAM as the draw solute has the potential 

to achieve high product quality, long operational time and low cost.  
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5.2 Materials and Methods 

5.2.1 Materials 

N-isopropylacrylamide (NIPAM, >97%), sodium-4-styrenesulfonate (SSS, >90%), 4,4-azobis(4-

cyanovaleric acid) (ACVA, >98%), dimethyl sulfonate (DMSO) and sodium chloride (>99.5%) 

were purchased from Sigma-Aldrich and used as received. Deionized (DI) water with a 

resistivity of 18MΩcm was obtained with a Milli-Q unit (Millipore, USA). Thin film composite 

(TFC) forward osmosis membrane was provided by Hydration Technologies Inc. (HTI Albany, 

OR). 

 

 

Figure 5.1 Synthesis of thermoresponsive PSSS-PNIPAAM. 

 

5.2.2 Preparation and Characterization of PSSS-PNIPAM 

The copolymer PSSS-PNIPAM was synthesized based on an adaptation of the approach reported 

by Grebosz et al.
55

 Briefly, SSS and NIPAM with designated feeding ratio (Table 5.1) were 

charged into a three-neck flask loaded with 120 mL of DMSO. The mixture was degassed for 20 

min by bubbling N2 to remove O2. After degassing, it was heated up to 80°C, followed by the 
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injection of ACVA. The reaction was allowed to proceed at 80°C for 24 hr under the protection 

of N2. After cooling down to room temperature, the copolymer was precipitated by adding 

acetone and washed with acetone for three times. The resulting product was dissolved in water 

and purified by dialysis membranes with a molecular weight cut-off of 3500 (slide-A-lyzer 

dialysis cassette G2, Thermo Fisher).  Finally the copolymer was dried under vacuum. PSSS-

PNIPAM copolymers with 5, 10, 15 and 20 wt% of SSS were prepared and denoted as 5SN, 

10SN, 15SN, and 20SN, respectively. The relative viscosities (ηr, compared to DI water) of the 

copolymer solutions at different concentrations were calculated with the following equation: 

ηr = η/η0 = (t ρ)/(t0 ρ0) 

where t and t0 (s) are the respective elution times of 15SN solution and DI water measured by an 

AVS 360 inherent viscosity meter; ρ and ρ0 (g mL
-1

) are the densities of 15SN solution and DI 

water, respectively. 

Fourier transform infrared (FTIR) spectra were recorded on a BIO-RAD spectrometer (Excalibur 

series, FTS3500). The molecular weight of the copolymer was measured by gel permeation 

chromatography (Waters GPC system) equipped with a Waters 1515 isocratic HPLC pump, a 

Waters 717 plus Autosampler injector, a Waters 2414 refractive index detector, and an Agilent 

PLgel 5 μm mixed-D column (Cat. No. 79911GP-MXD), using DMF as the eluent at 30 °C and 

at a flow rate of 1.0 mL min
-1

. 
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Table 5.1 Amounts of chemicals used for the preparation of PSSS-PNIPAAM of different 

weight percentages of SSS. 

 5 wt% (5SN) 10 wt% (10SN) 15 wt% (15SN) 20 wt% (20SN) 

SSS (g) 1 2 3 4 

NIPAM (g) 19 18 17 16 

DMSO (mL) 120 120 120 120 

ACVA (g) 0.96 0.94 0.92 0.90 

 

 

5.2.3 Characterization of Thermoresponsive Property 

The low critical solution temperatures (LCSTs) of the solutions containing 33.3 wt% of 5SN, 

10SN, 15SN and 20SN, respectively, were measured by a UV-Vis spectrophotometer 

(SHIMADZU, UV-3600). Transmittance at a wavelength of 500 nm was measured as the 

temperature was increased and stabilized for 5 min for each data point. The LCST is defined as 

the temperature at which the transmittance is below 5%. Osmolality of the copolymer solution 

was measured with an osmometer (Wescor, VAPRO vapor pressure osmometer). Typically, 10 

µl of the solution was dropped on a small piece of filter paper (6.5 mm in diameter). By 

measuring the vapor pressure at room temperature in natural equilibrium, the osmolality of the 

solution was determined.   

The osmotic pressures of the copolymer solutions with respect to DI water and 0.6 M NaCl 

solution were determined by a lab-built direct membrane osmometer (DMO) adapted from the 

design reported by Chahin et al. (Figure 5.2).
56

 During the measurement, 1 mL of the polymer 

solution was injected slowly into the fluid chamber using a syringe to avoid the formation of 

bubbles. The solution was sealed inside the chamber with an O-ring, a dialysis membrane (50 

KDa, Shanghai Yuanye Biology Technology), and an FO membrane (Hydration Technologies 



91 
 

Inc.) in tandem. A stainless steel wire mesh was then put on top of the membranes to prevent 

deformation. The assembled osmometer connected with a pressure transducer (Omega, model 

number: MMA1.0KUSBP6A0T8A9CE, pressure range: 0-1000 psia) was placed in DI water or 

0.6 M NaCl solution right before the measurement. The pressure readings were taken with a 

computer connected to the transducer via USB connection. The osmotic pressures below and 

above the LCST were tested at 23°C and 45°C, respectively. 

 

 

Figure 5.2 (a) Direct membrane osmometer (DMO) and (b) Assembled DMO connected with a 

pressure transducer for osmotic pressure measurement. 

 

5.2.4 FO Desalination Process 

FO tests were carried out through a lab-scale setup as shown in Figure 5.3 (the part on the left). 

FO membrane was a thin film composite (TFC) embedded support membrane (batch number: 

842121) provided by Hydration Technologies Inc. (Albany, OR). The dimensions of the 

membrane were 1cm×2cm. The feed solutions were simulated seawater (0.60 M NaCl aqueous 

solution) and DI water, respectively. The draw solution was 33.3 wt% 15SN solution (100 ml) 

with a measured osmolality of 2137 mOsm kg
-1

. The feed solution and draw solution flowed 

concurrently through the two sides of the cell channel at a flow velocity of 25 cm s
-1

. Water 

fluxes were measured with the selective layer of the membrane in contact with the draw solution 

a b

Fluid chambermetal mesh
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at room temperature (25 °C). The following formula was used to calculate the water fluxes (Jv, L 

m
-2 

h
-1

, abbreviated as LMH) from the weight decrement (Δm, g) of the feed solution: 

Jv =  Δm/(AmΔt×1000) 

where Δm (g) is the mass of water permeated across the effective FO membrane surface area Am 

(m
2
) over a time period of Δt (h), assuming the density of water is 1000 g L

-1
. The reverse flux of 

the draw solute was tested using DI water as the feed solution based on the change in 

conductivity. 

 

 

Figure 5.3 Laboratory-scale FO-MD process.  
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5.2.5 Regeneration of Draw Solution via Membrane Distillation 

MD processes were carried out through a lab-scale setup as depicted in Figure 5.3 (the part on 

the right) to recover the draw solution. A multi-bore PVDF hollow fiber (MBF) membrane with 

lotus root-like geometry was used. The spinning conditions (Table 5.2) and the characterizations 

of the MBF were reported by Wang et al.
57

 The effective MD membrane surface area was 22.4 

cm
2
. The diluted draw solution after the FO process with an osmolality of about 2000 mOsm kg

-

1
was circulated through the shell-side of the MD module after being heated up to 50 °C. DI water 

as the permeate solution was concurrently circulated through the lumen side of the MD module 

after being cooled to 10 °C. The flow velocity of the two solutions was 20 cm s
-1

. The water 

fluxes in MD processes were calculated by the same method as that of FO process.  

 

Table 5.2 Spinning conditions for the MD MBF membrane. 

Dope composition (wt%) PVDF HSV#900/NMP/EG:15/77/8 

Dope flow rate (ml min
-1

) 14 

Bore fluid composition (wt%)  NMP/water: 70/30 

Bore flow rate (ml min
-1

) 11 

Take up speed (mmin
-1

) Free fall 

External coagulant (wt%)  IPA/water: 50/50 

Air gap (cm) 3 

Temperature (ºC) 25-29 

Humidity 65%-75% 

Post treatment Soak in water & Freeze Dry 
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5.3 Results and Discussion 

5.3.1 Characterization of the Copolymer 

The success in synthesizing the PSSS-PNIPAM copolymer was confirmed by FTIR spectroscopy 

(Figure 5.4).
51

 Commercial PSSS displays characteristic peaks at 1176 and 1003 cm
-1

, 

corresponding to S=O asymmetric stretching and S-O stretching, respectively. In PNIPAM, 

characteristic peaks at 1654 and 1542 cm
-1

 are due to C=O stretching and N-H bending, 

respectively. The existence of the above four characteristic peaks in the synthesized 5SN, 10SN, 

and 15SN indicates the presence of both PSSS and PNIPAM in the copolymers. GPC results 

show that the average molecular weights of 5SN, 10SN, 15SN and 20SN were 34560, 44820, 

16270, and 11073, respectively. The SSS contents of 5SN, 10SN, 15SN and 20SN were 6.0, 13.9, 

14.6, 18.9 wt%, determined by UV-Vis.   

 

  

Figure 5.4 FTIR spectra of commercial PSSS, commercial PNIPAM, and synthesized 5SN, 

10SN and 15SN. 
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Figure 5.5a shows the change in transmittance of 5SN, 10SN, 15SN and 20SN at 500 nm with 

the increase of temperature. At LCST, the transmittance of the thermoresponsive copolymer 

dropped abruptly. For 5SN, 10SN and 15SN, the measured LCSTs were 32.0, 33.5 and 34.0 °C, 

respectively. The LCST increases with the SSS content in the copolymer. However, when the 

SSS content reaches 20 wt%, the LCST does not exist within the selected temperature range. 

Clearly, PSSS-PNIPAM copolymer with SSS content higher than 20 wt% cannot be used as 

thermoresponsive draw solute.  

 

 

Figure 5.5 (a) Transmittance at 500 nm of the copolymers with different weight percentages of 

SSS; (b) Osmolalities of PSSS-PNIPAM copolymers with different weight percentages of SSS 

(5%, 10%, and 15% for 5SN, 10SN, and 15SN, respectively) in solutions with a concentration of 

33.3 wt%. 

 

Figure 5.5b presents the measured osmolalities of 5SN, 10SN and 15SN solutions with a 

concentration of 33.3 wt%. The osmolalities of 5SN, 10SN and 15SN were 715, 1250, 2137 

mOsm kg
-1

, respectively. As expected, copolymers with higher SSS content yield higher 
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osmolality because the dissociation of SSS provides most of the ions in solution. To desalinate 

seawater, the draw solution must have an osmolality higher than that of seawater (~1200 mOsm 

kg
-1

). Although the osmolality of 10SN is higher than that of seawater, the difference is too small 

to allow any substantial water flux. Therefore, 15SN was chosen as the draw solute for FO tests. 

The osmotic pressures of 33.3 wt% 15SN solution at temperatures below and above its LCST 

were measured using our direct membrane osmometer. The osmotic pressures of the copolymer 

at room temperatures and 45 °C, respectively, were monitored once the osmometer loaded with 

15SN solution was put into DI water. The pressure in the fluid chamber increased gradually as 

water flowed into the chamber due to the osmotic pressure difference. Finally, the pressure 

stabilized when the system reached equilibrium. The maximum pressures attained were 28.3 atm 

at room temperature and 7.7 atm at 45 °C, respectively (Figure 5.6a, b). As expected, a notable 

drop in osmotic pressure of the 15SN solution was observed when it was heated above the LCST 

due to the shrunk polymer chains. This drop in osmotic pressure would facilitate the regeneration 

of the draw solution in MD process. It should be noted that due to the higher diffusivity at higher 

temperature, the time to reach equilibrium at 45 °C was much shorter than that at room 

temperature. In addition, the measured osmotic pressure at room temperature is much lower than 

that calculated based on the osmolality of the solution using van’t Hoff’s equation  = cRT (at c 

= 2137 mOsm kg
-1

,  =52 atm) by assuming ideal solution. This difference can be attributed to 

the concentration polarization at the interface between the membrane and the polymer solution 

and the non-ideality of the polymer solution due to its high concentration. To further confirm the 

high osmotic pressure of the polymer solution, the differential osmotic pressure between the 

15SN solution and seawater was also measured. When 33.3 wt% 15SN solution was loaded in 

the fluid chamber and 0.6 M NaCl was used as the buffer solution, an osmotic pressure of 9.0 
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atm was observed (Figure 5.6c), indicating that the polymer solution has an osmotic pressure that 

is much higher than seawater. This is critical for the draw solution to extract water from seawater. 

 

 

Figure 5.6 (a, b) The osmotic pressures of 15SN solution (33.3 wt%) using DI water as the 

buffer solution at room temperature and 45 °C, respectively. (c) The osmotic pressure of 15SN 

solution (33.3 wt%) using 0.6M NaCl solution as the buffer solution at room temperature. 

 

It should be noted although the high concentration of the copolymer solution might lead to 

relatively high viscosity, we found that the solution can be continuously pumped to the FO 

module without interruption or substantial temperature increase. The relative viscosity (ηr) of 

15SN solutions (10, 20 and 33.3 wt%) is shown in Figure 5.7a. As expected, the relative 

viscosity increases with concentration. For 33.3 wt% 15SN solution, the relative viscosity ηr is 

68. This viscosity is lower than sodium polyacrylate solution (0.72 g mL
-1

) which has been 

successfully employed as FO draw solution by Ge et al.
43

 To confirm that the heat generated 

from pumping the solution would not cause much temperature increase, the temperature of the 

draw solution was monitored during circulation. As shown in Figure 5.7b, the temperature 

increased only from 23.5 °C to 24.5 °C and stabilized after continuous circulation for 8 hours.  
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Figure 5.7 (a) Relative viscosities of 15SN solutions (10, 20 and 33.3 wt%); (b) Temperature 

change of the draw solution (15SN, 33.3 wt%) during pumping. 

 

5.3.2 FO Performance and Regeneration of Draw Solution 

In this work, alternating FO and MD processes were performed for three cycles to evaluate the 

15SN copolymer as draw solute for seawater desalination. After the FO test, the osmolality of 

the draw solution dropped from 2137 to 2000 mOsm kg
-1

 due to dilution. MD was then applied 

to re-concentrate the draw solution to the original concentration. A commercial HTI thin film 

composite (TFC) embedded support membrane was chosen for FO due to its high permeability 

(~20 LMH in FO mode with 1 M NaCl as draw solution and DI water as feed solution), high salt 

rejection (> 99.3%) and wide pH tolerance (about 2.0 to 12.0). A multi-bore PVDF hollow fiber 

(MBF) membrane was used for MD in view of its high mechanical strength, suitable pore size, 

good stability in vapor permeation flux, and high salt rejection. Figure 5.8 summarizes the FO 

and MD water fluxes for three cycles. For the first cycle, FO and MD water fluxed of 4.0 and 2.7 

LMH were attained, respectively. Afterwards, the water fluxes for both FO and MD processes 

dropped slightly. After three cycles, the average FO water flux was 3.5 LMH; and the average 
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MD flux was 2.5 LMH. It should be noted that when the desalination and regeneration are 

coupled as shown in Figure 5.3, the following equation should be satisfied for continuous and 

stable performance of the whole system: 

Jv,FO ×AFO  Jv,MD ×AMD 

where Jv,FO and Jv,MD are FO and MD water fluxes, and AFO and AMD are FO and MO membrane 

areas, respectively. The required balance can be achieved by adjusting the area of the FO (AFO) 

or MD membrane (AMD), or changing the temperature for MD. 

 

 

Figure 5.8 FO water fluxes with 15SN solution (33.3 wt%) as the draw solution and simulated 

seawater (0.6 M NaCl solution) as the feed solution; and MD water fluxes at 50 
o
C with the 

diluted 15SN solution as the feed solution. 

 

The use of thermoresponsive polymers as FO draw solute that can be regenerated via MD offers 

a few advantages. First, the molecular structure of 15SN minimizes the reverse flux in both FO 

and MD processes. According to previous reports,
43
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leakage than conventional draw solutions like NaCl, MgCl2 and MgSO4 in membrane processes 

since the former have much larger sizes and an expanded structure. In this work, the measured 

reverse flux of 15SN in FO tests was 2 gMH, much lower than 90 gMH obtained with the same 

membrane when salt water was used as the draw solution. In the MD process, the measured 

conductivities of the DI water before and after the test were both 0.7 µS cm
-1

, indicating that 

there was negligible leakage of 15SN. This is because although the structure of the copolymer 

shrinks at temperatures above its LCST, the polymer chains would agglomerate to form particles 

with size larger than the membrane pore size. Such low leakage in FO and MD makes the 

copolymer 15SN a promising candidate as draw solute with low replenishment cost and high 

quality of product water. Furthermore, the use of 15SN may also prolong the operation time of 

MD membranes. MD membranes usually exhibit pore wetting after a certain time of operation 

when using seawater as the feed solution. Although MD membrane materials are hydrophobic, 

water and salt may still go through the membrane pores after a long operation time. As a result, 

the water quality on the permeate side will decrease dramatically due to salt leakage. However, 

agglomerated 15SN could hardly pass through the pore channels even when pore wetting 

happens. In addition, for MD process, as the osmolality of the 15SN solution decreases when 

heated above its LCST, the water activity and the effective vapor pressure increase, therefore an 

enhanced water flux can be expected compared to conventional draw solutions without 

thermoresponsive property. It is worth noting that although generally the solution salinity in MD 

does not have significant effect on the separation efficiency, at high concentrations and 

temperatures, the change in concentration of the feed solution may cause significant difference in 

MD water flux.
54 
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5.3.3 Energy Consumption of the FO-MD Process 

RO is an energy intensive process because a high hydraulic pressure is necessary to overcome 

the osmotic pressure generated by seawater. Based on thermodynamic analysis, assuming 3.5% 

salinity and 50% recovery of water, the practical minimum energy of RO process is 

approximately 1.5 kWh/m
3
;
2
 while in general it can be in the range of 3–7 kWh/m

3
. The overall 

energy requirement of an FO process including the recovery system should be less than 4 

kWh/m
3
 to be competitive with existing RO technology.

58
 It has been reported that the electrical 

power requirement of FO process alone in seawater desalination would be about 0.25 

kWh/m
3
,mainly for fluid pumping.

59
 As the MD setup is similar to FO, the energy consumption 

for fluid pumping is approximately the same as FO process, namely, 0.25 kWh/m
3
. Therefore, in 

the FO-MD hybrid system, the main energy consumption would be caused by heating the feed 

solution in MD. For 1m
3
 water to increase 1 °C, the required energy is 1.16 kWh. The energy for 

heating water from room temperature to the MD operating temperature of 50 °C would be 29 

kWh/m
3
. Apparently, the total energy needed for the FO-MD hybrid process will be larger than 

that of RO process. However, one should note that due to the low temperature required for MD, 

the heating can be provided by low-grade waste heat to significantly reduce the energy cost. 

Similar process utilizing waste heat has been reported by Elimelech et al.
59

 in their NH4HCO3- 

promoted FO seawater desalination process, which saves up to 85% of energy compared with 

other desalination technologies. Therefore, by using low-grade waste heat to minimalize cost, we 

could expect the FO-MD hybrid system might offer similarly improved energy efficiency. 
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5.4 Conclusions 

PSSS-PNIPAM copolymers with different SSS contents were synthesized. Considering the 

osmotic pressure and LCST, PSSS-PNIPAM with 15 wt% of SSS was chosen as the draw solute 

in FO to desalinate seawater. With simulated seawater (0.6 M NaCl solution) as the feed 

solution, FO water fluxes larger than 3.5 LMH were attained. It was also found that the osmotic 

pressure of PSSS-PNIPAM solution drops at temperatures above its LCST. This 

thermoresponsive property improves the regeneration of the draw solution via MD because the 

decreased osmotic pressure allows higher water vapor pressure and favors the separation of 

water from the solution. In addition, the use of PSSS-PNIPAM may reduce salt leakage in MD 

and produce high-quality water. It is believed that with further improvement to increase the 

osmotic pressure and reduce the viscosity of thermoresponsive copolymers, they can be 

promising draw solutes for FO desalination.  

 

5.5 References 

1. Cath, T. Y.; Childress, A. E.; Elimelech, M. Forward osmosis: principles, applications, and 

recent developments. J. Membr. Sci. 2006, 281, 70–87. 

2. Elimelech, M.; Phillip, W. A. The future of seawater desalination: energy, technology, and the 

environment. Science 2011, 333, 712–717. 

3. Ghaffour, N.; Missimer, T. M.; Amy, G. L. Technical review and evaluation of the economics 

of water desalination: current and future challenges for better water supply sustainability. 

Desalination 2013, 309, 197–207. 



103 
 

4. Greenlee, L. F.; Lawler, D. F.; Freeman, B. D.; Marrot, B.; Moulin, P. Reverse osmosis 

desalination: water sources, technology, and today's challenges. Water Res. 2009, 43, 2317–

2348. 

5. Likhachev, D. S.; Li, F. C. Large-scale water desalination methods: a review and new 

perspectives. Desali. Water Treat. 2013, 51, 2836–2849. 

6. Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. 

Science and technology for water purification in the coming decades. Nature 2008, 452, 301–

310. 

7. Wilf, M. Future of the osmotic processes. Desali. Water Treat. 2010, 15, 292–298. 

8. Choi, Y. J.; Choi, J. S.; Oh, H.J.; Lee, S.; Yang, D. R.; Kim, J. H. Toward a combined system 

of forward osmosis and reverse osmosis for seawater desalination, Desalination 2009, 247, 

239–246. 

9. Chung, T.-S.; Zhang, S.; Wang, K. Y.; Su, J.; Ling, M. M. Forward osmosis processes: 

yesterday, today and tomorrow. Desalination 2012, 287, 78–81. 

10. Zhao, S.; Zou, L.; Tang, C. Y.; Mulcahy, D. Recent developments in forward osmosis: 

opportunities and challenges. J. Membr. Sci. 2012, 396, 1–21. 

11. Ge, Q.; Wang, P.; Wan, C.; Chung, T.-S. Polyelectrolyte-promoted forward osmosis–

membrane distillation (FO–MD) hybrid process for dye wastewater treatment. Environ. Sci. 

Technol. 2012, 46, 6236–6243. 

12. Ling, M. M.; Wang, K. Y.; Chung, T.-S. Highly water-soluble magnetic nanoparticles as 



104 
 

novel draw solutes in forward osmosis for water reuse, Ind. Eng. Chem. Res. 2010, 49,  

5869–5876. 

13. Bai, H.; Liu, Z.; Sun, D. D. Highly water soluble and recovered dextran coated Fe3O4 

magnetic nanoparticles for brackish water desalination. Sep. Purif. Technol. 2011, 81, 392–

399. 

14. Li, D.; Zhang, X.; Simon, G. P.; Wang, H. Forward osmosis desalination using polymer 

hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process 

performance. Water Res. 2013, 47, 209–215. 

15. Li, D.; Zhang, X.; Yao, J.; Simon, G. P.; Wang, H. Stimuli-responsive polymer hydrogels as 

a new class of draw agent for forward osmosis desalination. Chem. Commun. 2011, 47, 

1710-1712. 

16. Ling, M. M.; Chung, T.-S. Desalination process using super hydrophilic nanoparticles via 

forward osmosis integrated with ultrafiltration regeneration. Desalination 2011, 278, 194–

202. 

17. McCutcheon, J. R.; McGinnis, R. L.; Elimelech, M. A novel ammonia—carbon dioxide 

forward (direct) osmosis desalination process, Desalination 2005, 174, 1–11. 

18. Phuntsho, S.; Hong, S.; Elimelech, M.; Shon, H. K. Forward osmosis desalination of 

brackish groundwater: meeting water quality requirements for fertigation by integrating 

nanofiltration. J. Membr. Sci. 2013, 436, 1–15. 

19. Ling, M. M.; Chung, T.-S. Novel dual-stage FO system for sustainable protein enrichment 



105 
 

using nanoparticles as intermediate draw solutes. J. Membr. Sci. 2011, 372, 201–209. 

20. Wang, K. Y.; Teoh, M. M.; Nugroho, A.; Chung, T.-S. Integrated forward osmosis–

membrane distillation (FO–MD) hybrid system for the concentration of protein solutions. 

Chem. Eng. Sci. 2011, 66, 2421–2430. 

21. Yang, Q.; Wang, K. Y.; Chung, T.-S. A novel dual-layer forward osmosis membrane for 

protein enrichment and concentration. Sep. Purif. Technol. 2009, 69, 269–274. 

22. Achilli, A.; Cath, T. Y.; Childress, A. E. Power generation with pressure retarded osmosis: 

an experimental and theoretical investigation. J. Membr. Sci. 2009, 343, 42–52. 

23. Lee, K. L.; Baker, R. W.; Lonsdale, H. K. Membranes for power generation by pressure-

retarded osmosis, J. Membr. Sci. 1981, 8, 141–171. 

24. Yip, N. Y.; Tiraferri, A.; Phillip, W. A.; Schiffman, J. D.; Hoover, L. A.; Kim, Y. C.; 

Elimelech, M. Thin-film composite pressure retarded osmosis membranes for sustainable 

power generation from salinity gradients. Environ. Sci. Technol. 2011, 45, 4360–4369. 

25. Nguyen, N. C.; Chen, S. S.; Yang, H. Y.; Hau, N. T. Application of forward osmosis on 

dewatering of high nutrient sludge. Bioresour. Technol. 2013, 132, 224–229. 

26. Phuntsho, S.; Shon, H. K.; Hong, S.; Lee, S.; Vigneswaran, S. A novel low energy fertilizer 

driven forward osmosis desalination for direct fertigation: evaluating the performance of 

fertilizer draw solutions. J. Membr. Sci. 2011, 375, 172–181. 

27. Phuntsho, S.; Shon, H. K.; Hong, S.; Lee, S.; Vigneswaran, S.; Kandasamy, J. Fertiliser 

drawn forward osmosis desalination: the concept, performance and limitations for fertigation. 



106 
 

Rev. Environ. Sci. Biotechnol. 2011, 11, 147-168. 

28. Zhu, H.; Zhang, L.; Wen, X.; Huang, X. Feasibility of applying forward osmosis to the 

simultaneous thickening, digestion, and direct dewatering of waste activated sludge. 

Bioresour. Technol. 2012, 113, 207–213. 

29. Butler, E.; Silva, A.; Horton, K.; Rom, Z.; Chwatko, M.; Havasov, A.; McCutcheon, J. R. 

Point of use water treatment with forward osmosis for emergency relief, Desalination 2013, 

312, 23–30. 

30. Yip, N. Y.; Tiraferri, A.; Phillip, W. A.; Schiffman, J. D.; Elimelech, M. High performance 

thin-film composite forward osmosis membrane. Environ. Sci. Technol. 2010, 44, 3812–

3818. 

31. Flanagan, M. F.; Escobar, I. C. Novel charged and hydrophilized polybenzimidazole (PBI) 

membranes for forward osmosis. J. Membr. Sci. 2013, 434, 85–92. 

32. Han, G.; Chung, T.-S.; Toriida, M.; Tamai, S. Thin-film composite forward osmosis 

membranes with novel hydrophilic supports for desalination. J. Membr. Sci. 2012, 423-424, 

543–555. 

33. Han, G.; Zhang, S.; Li, X.; Widjojo, N.; Chung, T.-S. Thin film composite forward osmosis 

membranes based on polydopamine modified polysulfone substrates with enhancements in 

both water flux and salt rejection. Chem. Eng. Sci. 2012, 80, 219–231. 

34. Su, J.; Yang, Q.; Teo, J. F.; Chung, T.-S. Cellulose acetate nanofiltration hollow fiber 

membranes for forward osmosis processes. J. Membr. Sci. 2010, 355, 36–44. 



107 
 

35. Wang, K. Y.; Ong, R. C.; Chung, T.-S. Double-skinned forward osmosis membranes for 

reducing internal concentration polarization within the porous sublayer. Ind. Eng. Chem. 

Res. 2010, 49, 4824–4831. 

36. Zhang, S.; Wang, K. Y.; Chung, T.-S.; Chen, H.; Jean, Y. C.; Amy, G. Well-constructed 

cellulose acetate membranes for forward osmosis: minimized internal concentration 

polarization with an ultra-thin selective layer. J. Membr. Sci. 2010, 360, 522–535. 

37. Zhang, S.; Wang, K. Y.; Chung, T.-S.; Jean, Y. C.; Chen, H. Molecular design of the 

cellulose ester-based forward osmosis membranes for desalination. Chem. Eng. Sci. 2011, 66, 

2008–2018. 

38. Hu, M.; Mi, B. Enabling graphene oxide nanosheets as water separation membranes. 

Environ. Sci. Technol. 2013, 47, 3715–3723. 

39. Huang, L;. Bui, N. N.; Meyering, M. T.; Hamlin, T. J.; McCutcheon, J. R. Novel hydrophilic 

nylon 6,6 microfiltration membrane supported thin film composite membranes for 

engineered osmosis. J. Membr. Sci. 2013, 437, 141–149. 

40. Chekli, L.; Phuntsho, S.; Shon, H. K.; Vigneswaran, S.; Kandasamy, J.; Chanan, A. A 

review of draw solutes in forward osmosis process and their use in modern applications. 

Desali. Water Treat. 2012, 43, 167–184. 

41. Ge, Q.; Ling, M. M.; Chung, T.-S. Draw solutions for forward osmosis processes: 

developments, challenges, and prospects for the future. J. Membr. Sci. 2013, 442, 225–237. 

42. Achilli, A.; Cath, T. Y.; Childress, A. E. Selection of inorganic-based draw solutions for 



108 
 

forward osmosis applications. J. Membr. Sci. 2010, 364, 233–241. 

43. Ge, Q.; Su, J.; Amy, G. L.; Chung, T.-S. Exploration of polyelectrolytes as draw solutes in 

forward osmosis processes. Water Res. 2012, 46, 1318–1326. 

44. Ge, Q.; Su, J.; Chung, T.-S.; Amy, G. Hydrophilic superparamagnetic nanoparticles: 

synthesis, characterization, and performance in forward osmosis processes. Ind. Eng. Chem. 

Res. 2011, 50, 382–388. 

45. Ling, M. M.; Chung, T.-S.; Lu, X. Facile synthesis of thermosensitive magnetic 

nanoparticles as “smart” draw solutes in forward osmosis. Chem. Commun. 2011, 47, 

10788–10790. 

46. Noh, M.; Mok, Y.; Lee, S.; Kim, H.; Lee, S. H.; Jin, G. W.; Seo, J. H.; Koo, H.; Park, T. H.; 

Lee, Y. Novel lower critical solution temperature phase transition materials effectively 

control osmosis by mild temperature changes. Chem. Commun. 2012, 48, 3845-3847. 

47. Ou, R.; Wang, Y.; Wang, H.; Xu, T. Thermo-sensitive polyelectrolytes as draw solutions in 

forward osmosis process. Desalination 2013, 318, 48–55. 

48. Stone, M. L.; Rae, C.; Stewart, F. F.; Wilson, A. D. Switchable polarity solvents as draw 

solutes for forward osmosis. Desalination 2013, 312, 124–129. 

49. Stone, M. L.; Wilson, A. D.; Harrup, M. K.; Stewart, F. F. An initial study of hexavalent 

phosphazene salts as draw solutes in forward osmosis. Desalination 2013, 312, 130–136. 

50. Yen, S. K.; Mehnas Haja N, F.; Su, M.; Wang, K. Y.; Chung, T.-S. Study of draw solutes 

using 2-methylimidazole-based compounds in forward osmosis. J. Membr. Sci. 2010, 364, 



109 
 

242–252. 

51. Zhao, Q.; Chen, N.; Zhao, D.; Lu, X. Thermoresponsive magnetic nanoparticles for seawater 

desalination. ACS Appl. Mater. Interfaces 2013, 5, 11453-11461. 

52. Han, H.; Lee, J. Y.; Lu, X. Thermoresponsive nanoparticles + plasmonic nanoparticles = 

photoresponsive heterodimers: facile synthesis and sunlight-induced reversible clustering. 

Chem. Commun. 2013, 49, 6122-6124. 

53. Razmjou, A.; Simon, G. P.; Wang, H. Effect of particle size on the performance of forward 

osmosis desalination by stimuli-responsive polymer hydrogels as a draw agent. Chem. Eng. 

J. 2013, 215-216, 913–920. 

54. Schofield, R. W.; Fane, A. G.; Fell, C. J. D.; Macoun, R. Factors affecting flux in  membrane 

distillation. Desalination 1990, 77, 279-294. 

55. Nowakowska, M.; Szczubiałka, K.; Grębosz, M. Modifying the thermosensitivity of 

copolymers of sodium styrene sulfonate and N-isopropylacrylamide with 

dodecyltrimethylammonium chloride. Colloid Polym Sci. 2004, 283, 291–298. 

56. Chahine, N. O.; Chen, F. H.; Hung, C. T.; Ateshian, G. A. Direct measurement of osmotic 

pressure of glycosaminoglycan solutions by membrane osmometry at room temperature, 

Biophys. J. 2005, 89, 1543–1550. 

57. Wang, P.; Chung, T.-S. Design and fabrication of lotus-root-like multi-bore hollow fiber 

membrane for direct contact membrane distillation. J. Membr. Sci. 2012, 421-422, 361-374. 

58.  Qin, J. J. Recent developments and future challenges of forward osmosis for desalination: a      



110 
 

      review. Desalination 2012, 39, 123-136. 

59. McGinnis, R. L.; Elimelech, M. Energy requirements of ammonia-carbon dioxide forward 

osmosis desalination. Desalination 2007, 207, 370-382. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 
 

CHAPTER 6 

THERMORESPONSIVE IONIC LIQUID AS FORWARD 

OSMOSIS DRAW SOLUTE FOR BRACKISH WATER 

AND SEAWATER DESALINATION 

 

6.1 Introduction 

Clean water scarcity has been a worldwide crisis of our time and the near future. Improving the 

use of existing water resources is not enough to address this issue. Only searching for other water 

supply can alleviate the stress of water shortage.
1, 2

 Seawater desalination has been proposed as a 

probable solution since seawater offers unlimited and constant water supply. Desalination of 

brackish groundwater is also a choice for inland districts. Widely employed desalination 

technologies include multi-effect distillation (MED), multi-stage flash (MSF), and reverse 

osmosis (RO). However, high temperature is needed for MED and MSF; while RO requires high 

hydraulic pressure with high electrical energy cost.
3-5

 Therefore, despite the recent advances, 

reducing the energy cost of desalination remains a great challenge.  

In recent years, forward osmosis (FO) has attracted extensive attention.
6-8

 In a typical FO process, 

water molecules in a solution of low osmotic pressure (feed solution) can spontaneously pass 

across a semi-permeable membrane to solution of high osmotic pressure (draw solution). 

Contrary to RO, FO is a spontaneous process driven by the osmotic pressure difference between 

the feed solution and draw solution. However, after the draw solution extracts clean water from 
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the feed solution, it needs to undergo a regeneration process to separate water from the draw 

solution and be reused in the next FO process. The regeneration method substantially determines 

the energy input of a closed-loop FO process (including FO and draw solution regeneration). In 

the last few years, a variety of novel draw solutions have been developed.
9-18

 Among them, draw 

solutes which are temperature sensitive and can be regenerated upon thermal stimuli have 

attracted increasing attention, because the regeneration of such draw solutions may take the 

advantage of low grade heat which is an abundant and less expensive energy resource. Recently, 

various novel thermoresponsive draw solutions have been investigated. MsCutcheon, Elimelech 

and co-workers employed NH4HCO3 in FO seawater desalination process.
19, 20

 NH4HCO3 

solution was used as draw solution in FO, after which it was decomposed to NH3 and CO2 gases 

around 60 °C and separated from water. By re-dissolving CO2 and NH3, the draw solution could 

be recycled. Zhao et al. presented a study on a thermoresponsive copolymer, poly(sodium 

styrene-4-sulfonate-co-n-isopropylacrylamide) (PSSS-PNIPAM) as FO draw solute for seawater 

desalination in a process combined with forward osmosis and membrane distillation (FO-MD).
21

 

Magnetic nanoparticles could be successfully modified with this thermoresponsive copolymer.
22

 

These modified magnetic nanoparticles would agglomerate spontaneously to lager particles when 

heated above the low critical solution temperature (LCST). This thermoresponsive behavior 

enables these large particles to be easily captured by either a low-strength magnetic field or UF 

membrane. Poly(N-isopropylacrylamine) (PNIPAM) hydrogel was also investigated as FO draw 

agent.
23

 It would absorb water at the volume phase transition temperature (VPTT, ~32 °C) and 

expel water in its network when the temperature is above the VPTT. However, the driving force 

provided by this hydrogel was poor. In 2014, Nakayama et al. demonstrated the temperature-

controlled osmotic change of di(ethylene glycol) n-hexyl ether (DEH) solution.
24

 However, while 

12 mol L
-1

 DEH solution has an osmolality higher than 3000 mOsm kg
-1

, it could only generate a water 
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flux of 1.4LMH with DI water as the feed solution, which might be only one-tenth of the 

expected water flux.
24

  

Ionic liquids (ILs) are organic salts which have melting points below 100 °C. Unlike 

conventional ILs which either dissolve in water or repel water, thermoresponsive ILs exhibit 

subtle balance between hydrophilicity and hydrophobicity. Most thermoresponsive ILs undergo 

lower critical solution temperature (LCST)-type phase change,
25

 in which the compatibility of 

ILs and water decreases upon heating. Therefore, when homogeneous thermoresponsive ILs are 

used as FO draw solution, they can draw water from saline water at a temperature below its 

LCST. After the FO process, the diluted draw solution is heated above its LCST and forms 

liquid-liquid separated phases (Figure 6.1). The water-rich phase with low IL content can be 

further purified by energy-efficient nanofiltration (NF) to produce high quality or drinkable 

water. Both the rententate in NF and the IL-rich phase with high IL content are reused in the next 

FO process. The inherent ionic nature, low viscosity even at high concentration, and ease of 

separation from water make thermoresponsive ILs promising FO draw solutes. Very recently, 

Cai et al. employed thermoresponsive ionic liquids (ILs), tetrabutylphosphonium 2,4-

dimethylbenzenesulfonate (P4444DMBS) and tetrabutylphosphonium mesitylenesulfonate 

(P4444TMBS), as draw solutes for FO seawater desalination.
26

 However, similarly to the case of 

DEH solution, 60 wt% P4444DMBS solution with an osmolality of 4000 mOsm kg
-1

 gave only 2.7 

LMH for seawater desalination.
26

 These water fluxes are much lower than other draw solutions 

that have similar osmolality. However, detailed study has not been carried out to explore the 

reasons for such low FO water flux.  
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Figure 6.1 Schematic illustration of the FO process with thermoresponsive ionic liquids as draw 

solutes. 

 

In this study we explored another thermoresponsive IL, tetrabutylphosphonium trifluoroacetate 

(abbreviated as P4444[CF3COO]), as the FO draw solute.  Similar to other thermoresponsive ILs, 

the water flux generated by P4444[CF3COO] solution was lower than many other conventional 

draw solutions with similar osmolalities. Even when the osmolality of the draw solution reached 

4500 mOsm kg
-1

, it could not generate water flux for seawater (1200 mOsm kg
-1

) desalination at 

room temperature. Thin-film theory analysis was conducted to understand the mechanism of the 

unusual low water flux of P4444[CF3COO] solution. Moreover, the FO performance of 

P4444[CF3COO] solution, at higher temperature but below the LCST, was also investigated. We 

found that at higher FO operational temperature, the FO water flux could be increased. 

 

6.2 Experimental Section 

6.2.1 Materials and Instruments 
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Tetrabutylphosphonium hydroxide solution (P4444OH, 40 wt% in H2O), trifluoroacetic acid 

(CF3COOH, 99%) and sodium chloride (NaCl, >99.5 %) were purchased from Sigma-Aldrich 

and used as received. Deionized (DI) water in all experiments was obtained from a Milli-Q unit 

(Millipore, USA). Seawater (840 mOsm kg
-1

), which was employed as one of the feed solutions 

in the FO tests, was collected from Sentosa coast, Singapore. FO membrane was provided by 

Hydration Technologies Inc. (HTI, Albany, OR). The osmolality of solutions was measured by 

an osmometer (Wescor, Vapro vapor pressure osmometer). The content of P4444[CF3COO] in 

aqueous solution was determined by thermogravimetric analysis (TGA, Shimazu DTG-60AH) 

under N2 from room temperature to 120 °C. Relative viscosity of draw solution was calculated 

by the following equation:  

ηr = η/η0 = (t ρ)/(t0 ρ0)              (1) 

where t and t0 (s) are the respective elution time of the draw solution and DI water measured by 

AVS 360 inherent viscosity meter; ρ and ρ0 (g mL
-1

) are the density of the draw solution and DI 

water, respectively.  

The shear viscosity of P4444[CF3COO] solution with different concentrations and at different 

temperatures was measured at shear rate from 100 to 600 s
-1

 by a rotational cone and plate 

rheometer (AR-G2 rheometer, TA instruments, USA). A steady-state mode with a 60 mm, 1º 

cone geometry was employed. The hydrodynamic size of the molecules was measured by a 

ZetaSizer Nano system (Nano ZS, Zen3600). The osmotic pressure of P4444[CF3COO] solution 

with different concentrations and at different temperatures was tested according to the method 

reported in a previous paper.
21
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6.2.2 Synthesis of P4444[CF3COO] 

To prepare P4444[CF3COO], aqueous solution of P4444OH was directly neutralized by a slightly 

excess of trifluoroacetic acid.
27

 The product was evaporated under reduced pressure at 40 °C. At 

room temperature, pure P4444[CF3COO] is in wax form.  

 

6.2.3 FO Tests 

FO water flux was measured with a lab-scale cross-flow cell. In all FO tests, the selective layer 

of the FO membrane was oriented to the draw solution (PRO mode). The effective membrane 

area was 1cm×2 cm. Draw solutions were 73 wt% and 82 wt% of P4444[CF3COO] aqueous 

solution (osmolality 1500 mOsm kg
-1

 and 4500 mOsm kg
-1

, respectively). The feed solutions 

were DI water (0 mOsm kg
-1

), simulated brackish water (2g L
-1

 MgSO4 solution, 30 mOsm kg
-1

), 

seawater from Singapore coast (840 mOsm kg
-1

), and simulated seawater (3.5 wt% NaCl 

solution, 1200 mOsm kg
-1

). During the FO process, the feed solution and the draw solution 

flowed concurrently through two sides of the cell which was separated by a piece of FO 

membrane. The flow rate was 12.5 cm s
-1

 and 6 cm s
-1

 for the draw solution the feed solution, 

respectively. Each process was run for 30 mins to determine the FO water flux by calculating the 

weight increment of the draw solution during certain time using Equation (2): 

                                          Jv =  Δm/(AmΔt×1000)    (2) 

where Δm (g) is the mass of water permeated across the effective FO membrane area Am (m
2
) 

over a time period of Δt (h), assuming the density of water is 1000 g L
-1

. 
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6.3 Results and Discussion 

6.3.1 Osmolality and Phase Separation 

Figure 6.2 presents the osmolalities of P4444[CF3COO] solution at different concentrations. The 

osmolalities of 10, 20, 30, 40, 50, 60, 70 and 80 wt% solutions were 403, 595, 621, 633, 682, 812, 

1294 and 4056 mOsm/kg, respectively. As shown in Figure 6.1, when the concentration 

increased, the osmolality did not increase linearly as conventional draw solutes such as simple 

salts and polyelectrolytes.
28, 29

 This is due to the hydrophobic association of the ionic liquid 

molecules.
30

 Above 70 wt%, the osmolality of P4444[CF3COO] solution was higher than that of 

simulated seawater (3.5 wt%, 1200 mOsm/kg). 

 

 

Figure 6.2 Osmolality of P4444[CF3COO] solution with different concentrations. 
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Figure 6.3 (a) LCST-type phase transition of 20 wt% P4444[CF3COO] solution; (b) concentration 

of P4444[CF3COO] in the water-rich supernatants and IL-rich sediments at different phase 

transition temperatures. 

 

Figure 6.3a shows an example of the LCST-type phase transition. An aqueous solution 

containing 20 wt% P4444[CF3COO] was homogeneous at room temperature. The solution was 

clearly phase-separated at 60 °C after 1 hour. The IL phase was colored with Coomassie Brilliant 

Blue, which is not soluble in the aqueous phase but the IL phase.  It has been found that after the 

solution is stabilized at a temperature above its LCST, the concentrations of the IL-rich phase 

and the water-rich phase are constant regardless of the initial concentration of the solution,
25, 27

 

but they change with the temperature. We studied the temperature dependence of the 

P4444[CF3COO] concentration in both phases after the phase separation. The initial concentration 
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of the P4444[CF3COO] solution was 50 wt%.  The homogeneous solution was then heated to 

induce phase separation and stored stably at certain temperature for 2 hours. Afterwards, the 

concentration of P4444[CF3COO] in the IL-rich phase and the water-rich phase was analyzed as 

shown in Figure 6.3b. It was found that when the temperature increased, the content of 

P4444[CF3COO] in the IL-rich phase would increase. At 30 °C, it was 59.5 wt%, and it increased 

to 73 wt% at 60 °C. On the contrary, the content of P4444[CF3COO] in the water-rich phase 

dropped from 30.2 wt% to 10.0 wt% as the temperature increased from 30 °C to 60 °C. This 

occurred due to the fact that the compatibility of P4444[CF3COO] molecules and water decreases 

upon heating. Consequently, the number of water molecules attached to each P4444
+ 

and
 

[CF3COO]
- 
pair in the IL-rich phase drops, thus the content of  P4444[CF3COO] in the IL-rich 

phase increases.
27

 The IL-rich phase separated at 60 °C, which contains 73 wt% of 

P4444[CF3COO], was employed as the FO draw solution in the following tests.  

 

6.3.2 FO Performance 

The IL-rich sediment at 60 °C, namely 73 wt% P4444[CF3COO] solution, was employed as the 

draw solution in FO. After being diluted after the FO process, it was reconcentrated by phase 

separation at 60 °C again and reused directly in the next FO process without any further 

treatment. The feed solution was DI water and brackish water. It should be noted that 73 wt% 

solution could not be used for seawater desalination as the osmotic pressure difference between 

the draw solution and feed solution was insignificant. As shown in Figure 6.4a, using DI water as 

the feed solution, the water flux was 4.3, 4.7 and 5.6 LMH when the operational temperature was 

set as 25, 35 and 50 °C, respectively. When the feed solution was brackish water (2g L
-1

 MgSO4 
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solution, 30 mOsm kg
-1

), the water flux reduced a little bit to 4.2, 4.6 and 4.9 LMH as the driving 

force between the two sides of the FO membrane dropped.  

 

 

Figure 6.4 (a) FO water flux of 73 wt% P4444[CF3COO] solution using DI water and brackish 

water as the feed solution; (b) FO water flux of 82 wt% P4444[CF3COO] solution using DI water, 

seawater from Singapore coast and simulated seawater as the feed solution.  

 

For seawater desalination, P4444[CF3COO] solution with higher concentration (82 wt%, 4500 

mOsm kg
-1

) was employed as the draw solution in FO. Figure 6.4b summarizes the FO water 

flux with 82 wt% P4444[CF3COO] solution as the draw solution and DI water, seawater from 

Singapore coast (840 mOsm kg
-1

) and simulated seawater (3.5 wt% NaCl solution, 1200 mOsm 

kg
-1

) as the feed solutions. At the room temperature (25 °C) and with DI water as the feed 

solution, 82 wt% solution exhibited a higher water flux than 73 wt% solution (5.5 LMH and 4.3 

LMH, respectively). And similar to 73 wt% solution, the water flux increased when the 

operational temperature was increased. At 50 °C, the water flux could reach 8 LMH with DI 

water as the feed solution. At room temperature (25 °C), there was also no water flux across the 

membrane using the seawater from Singapore coast and simulated seawater as the feed solution. 
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However, when the solution was heated to a higher temperature, such as 35 °C and 50 °C, water 

fluxes between 3~5 LMH were attained and an increasing trend according to temperature was 

observed.  

 

 

Figure 6.5 Relative viscosity of P4444[CF3COO] solution (73 and 82 wt%) at different 

temperatures (25, 35 and 50°C). 

 

The relative viscosity of 73 and 82 wt% P4444[CF3COO] solution at different temperatures is 

shown in Figure 6.5.  As expected, the relative viscosity of 82 wt% solution is higher than that of 

73 wt% solution. In addition, the relative viscosity decreased as the temperature of the solution 

increased. The relative viscosity of 82 wt% solution dropped from 33.4 to 19.18 when the 

solution was heated from 25 °C to 50 °C. The shear viscosity listed in Table 6.1 also followed 

the same trend. The molecular weight of P4444[CF3COO] is much smaller than that of 

polyelectrolytes, which leads to a much lower viscosity of P4444[CF3COO] solution even with a 

much higher concentration. For instance, the relative viscosity of sodium polyacrylate (molecular 

weight: 1200, 0.72 g mL
-1

) reported by Ge et al. was about 70,
29

 similar as the thermoresponsive 
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copolymer PSSS-PNIPAM (33.3 wt%) reported by Zhao et al.
21

 The low viscosity of the draw 

solution can not only lead to a lower energy consumption for fluid pumping, but also less severe 

internal concentration polarization in FO mode (support layer of FO membrane towards the draw 

solution).  

 

6.3.3 Mechanism Study 

The FO results reveal that the water flux generated by P4444[CF3COO] solution was lower than 

many other conventional draw solutions with similar osmolalities. Even when the osmolality of 

the draw solution reached 4500 mOsm kg
-1

, it could not generate water flux for seawater (1200 

mOsm kg
-1

) desalination at room temperature. In addition, the FO water flux of P4444[CF3COO] 

solution, at higher temperature but below the LCST, was increased. In FO processes, water flux 

is mainly affected by the osmotic pressure difference across the membrane, the severity of 

external and internal concentration polarization (ECP and ICP), and the performance of FO 

membrane as well.
31

 We looked into these three factors for the reasons of 1) the relatively lower 

FO water flux than our expectation and 2) the temperature-sensitive FO water flux.   

The permeation driving force across the FO membrane is the gradient in chemical potential of 

water. When using DI water as the feed solution and under PRO mode, there is no internal 

concentration polarization. To predict the water flux in the presence of ECP, we need to 

determine the effective osmotic pressure difference by using film theory. The generalized water 

flux is defined as  

𝑱𝒘 = 𝑨(∆𝐏 − ∆𝛑)               (3) 
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where A is the solvent permeability through the membrane, ΔP is the transmembrane pressure, 

and Δπ  is the osmotic pressure difference between the draw solution and feed solution near the 

membrane surface.
32

 ΔP is zero when there is no hydraulic pressure difference across the 

membrane, and Δπ is the osmotic pressure of the draw solution side when using the DI water as 

the feed solution (Figure 6.6). 

  

 

Figure 6.6  Schematic illustration of external concentration polarization (ECP) under PRO mode. 

 

The effect of ECP is expressed as Equation 4.
33

 

𝝅𝟐

𝝅𝟏
= 𝐞𝐱𝐩 [−

𝑱𝒘

𝒌
]             (4)                      

where π2  is the osmotic pressure of draw solution near the membrane surface, π1 is the osmotic 

pressure of the bulk draw solution, and k is the mass transfer coefficient of the draw solution 

which is defined as  
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𝒌 =
𝐒𝐡𝑫𝒔

𝒅𝒉
               (5) 

where Sh is the Sherwood number defined as Equation 6, Ds is the solute diffusion coefficient 

defined as Equation 7, and dh is the hydraulic diameter (0.33 cm for the FO cell we used).
33

  

𝑺𝒉 = 𝟏. 𝟔𝟐[𝑹𝒆 𝑺𝒄 
𝒅𝒉

𝑳
]𝟎.𝟑𝟑        (6)      for laminar flow 

where Re is the Reynolds number (= Vdh/µ, with V being the bulk crossflow velocity and µ the 

solution shear viscosity as listed in Table 6.1), Sc is the Schmidt number (= µ/Ds), and L is the 

channel length (2cm for the FO cell we used).
34

  

𝑫𝒔 =
𝒌𝟎𝑻

𝟔𝝅𝝁𝒓
           (7) 

where k0 is the Boltzman constant (the molar gas constant divided by the Avogadro number, = 

1.38×10
-23

 m
2
 kg s

-2
 K

-1
), T is the absolute temperature, and r is the hydrodynamic radius of the 

particle/molecule (Table 6.1).
34  

 

By integrating the Equation 4-7, we can obtain Equation 8 for the calculation of k. 

𝒌 =
𝐒𝐡𝑫𝒔

𝒅𝒉
=

𝟏.𝟔𝟐[
𝑽𝒅𝒉𝝆

𝝁
×

𝝁

𝝆𝑫𝒔
×

𝒅𝒉
𝑳

]
𝟎.𝟑𝟑

𝑫𝒔

𝒅𝒉
=

𝟏.𝟔𝟐[
𝑽𝒅𝒉

𝟐

𝑫𝒔𝑳
]𝟎.𝟑𝟑𝑫𝑺

𝒅𝒉
             (8)  

The theoretical osmotic pressure of draw solution near the FO membrane, π2, could be calculated 

by integrating Equation 3 with 4 to obtain Equation 9. For the commercial HTI FO membrane 

we used in the experiments, A was 0.84, 1.69 and 2.57 LMH atm
-1

 for 25 °C, 35 °C and 50 °C, 

respectively. Then the calculated FO water flux Jw can be determined by Equation 4 (Table 6.1).  
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𝝅𝟐

𝝅𝟏
= 𝐞𝐱𝐩 [−

𝑨(𝝅𝟐−𝟎)

𝒌
]             (9) 

 

Table 6.1 Shear viscosity, µ, hydrodynamic radius of the particle/molecule, r, mass transfer 

coefficient, k, osmotic pressure of draw solution near the membrane surface, π2, and calculated 

FO water flux for 73 wt% and 82 wt% P4444[CF3COO] solution under different temperatures.  

 T 

 (°C) 

µ  

(mPa·s) 

r 

 (nm) 

k 

(m s
-1

) 

π2 

(atm) 

Jw 

(LMH) 

 

73 wt% 

25 15.2 4.12 4.34×10
-7

 4.0 3.37 

35 10.5 4.53 5.33×10
-7

 2.8 4.72 

50 7.0 4.63 7.10×10
-7

 2.6 6.55 

82 wt% 25 22.7 2.37 4.81×10
-7

 5.8 4.90 

 

As seen in Table 6.1, the mass transfer coefficient of this highly concentrated P4444[CF3COO] 

solution, k was much lower compared to other draw solution reported.
35

 This may arise from the 

large hydraulic diameter of the draw solute. Although the molecular size of a single 

P4444[CF3COO] molecule should be less than 1 nm according to its molecular weight, the 

hydraulic diameter measured by the zeta-sizer was higher than 4 nm. This indicates the 

hydrophobic association of several P4444[CF3COO] molecules in the aqueous solution,
30

 which 

could not only result in a low osmolality of the solution but also slower mass transfer of the 

solute. The slower mass transfer of the draw solute could further lead to more serious ECP on the 

side of selective layer. As a result, the effective osmotic pressure of the draw solution π2 was 

much lower than the bulk draw solution π1. This might be the reason for the relatively lower FO 

water flux of P4444[CF3COO] solution compared with other draw solutions reported that have 

similar osmolality.
31

 When the osmolality was increased to 4500 mOsm kg
-1

 (82 wt%), the water 

flux was higher than that of 1500 mOsm kg
-1

 (73 wt%), but less than expected, since the ECP 
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was still dominating. Although the osmotic pressure of bulk solution for 82 wt% P4444[CF3COO] 

was three times that of 73 wt%, the effective osmotic pressure π2 of 82 wt% solution was only a 

little higher than that of 73 wt% solution. 

 

 

Figure 6.7 Osmotic pressure of P4444[CF3COO] solution (73 and 82 wt%) under different 

temperature (25, 35 and 50 °C). 

 

When the solution was heated to a higher temperature, the osmotic pressure did not increase as 

we expected (Figure 6.7). However, it declined as a result of its thermoresponsive property. The 

hydrodynamic size of the solutes became larger, which means the P4444[CF3COO] molecules 

became more hydrophobic and aggregated together to form a larger cluster in response to the 

heat. k increased upon heating as summarized in Table 6.1. This indicates that at a higher 

temperature, the mass transfer of draw solute is faster, which would lead to less severity of ECP, 

and thus a higher π2. However, the higher FO water flux could dilute the draw solution, and thus 

resulting in a lower π2. By taking these two factors into the considerations, π2 in fact declined 
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according to the calculation. However, A, which is the water permeability through the FO 

membrane, was enhanced when the temperature was higher. For the FO membrane employed, A 

is 0.84, 1.69 and 2.57 LMH atm
-1

 at 25 °C, 35 °C and 50 °C, respectively. This much enhanced 

water permeability of FO membrane is beneficial for water molecules in the feed solution to pass 

through the membrane pores to the draw solution side. Ultimately, FO water flux increases at 

higher operational temperature.  

 

6.4 Conclusions 

In this work, a thermoresponsive ionic liquid, P4444[CF3COO] was evaluated as an draw solute 

for FO desalination. With simulated brackish water as the feed solution and IL-rich sediments of 

P4444[CF3COO] solution at 60 °C (73 wt%) as the draw solution, FO water flux 4.2 LMH and 4.9 

LMH was obtained under 25 °C and 50 °C, respectively. With higher concentrated 

P4444[CF3COO] solution (82 wt%), it was able to generate water flux in seawater desalination 

both with simulated seawater and seawater from Singapore coast at high operational temperature. 

At 50 °C, the FO water flux was about 5 LMH with seawater from Singapore coast as the feed 

solution. Regeneration was achieved by liquid-liquid phase separation at 60 °C. The IL-rich 

phase could be recycled directly as the draw solution or further concentrated by NF to obtain a 

draw solution with higher concentration. The heat, which is the major energy input of the whole 

process can be provided by less expensive and clean energy sources such as geothermal or solar 

thermal energy, and low grade industrial waste heat. The water-rich phase which has low 

osmotic pressure can be purified though a low-pressure NF. Through theoretical calculation, 

ECP was believed to be the main reason for the relatively low FO water flux of P4444[CF3COO] 
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solution. And the increased k and A both contributed to the increment of FO water flux when the 

operational temperature of FO process increased.  
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

In conclusion, we have successfully designed and synthesized four kinds of novel FO draw 

solutions and applied them in seawater desalination. Firstly, a dendrimer-based draw solution 

was employed due to its multiple and dissociable terminal groups. We further demonstrate that 

Na
+
-functionalized carbon quantum dots have high potential in the application of FO seawater 

desalination process. Next, we found that the thermoresponsive copolymer-based draw solution 

can facilitate the regeneration due to its thermoresponsive property. Finally, another 

thermoresponsive material, a thermoresponsive ionic liquid, was investigated. Its ionic nature, 

low molecular weight and viscosity, and phase separation at a mild temperature make it 

promising as a draw solution. The core findings of this project are summarized as follows: 

 1.5G, 2.5G, 3.5G and 4.5G PAMAM-COONa were synthesized and evaluated as FO 

draw solutes. For the same solution concentration, a higher generation of PAMAM-

COONa would lead to a lower osmolality and FO water flux with a smaller reverse flux. 

By taking the synthesis cost into further consideration, 2.5G PAMAM-COONa was 

found to be a better candidate as the FO draw solute since it could give a comparably 

high water fluxes as well as low reverse fluxes with DI water, seawater from Singapore 

and simulated seawater as the feed solutions. After FO tests, the diluted draw solution 

could be successfully re-concentrated via MD at a mild temperature. It is believed this 
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dendrimer-based draw solute is promising for seawater desalination by the FO-MD 

combined process.  

 Na
+
- functionalized carbon quantum dots (Na_CQDs) were reported as a new class of 

draw solute in forward osmosis for seawater desalination. The unique characteristics of 

Na_CQDs, including an ultra–small size of 3.5 nm, abundant carboxyl groups, and rich 

ionic species, favor high osmotic pressure and thus FO water flux. At concentrations of 

0.4 and 0.5 g mL
-1

, the Na_CQDs provide respective osmotic pressures of 30.9 and 53.6 

atm, much higher than that of seawater (~26 atm). In FO tests with DI water as the 

model feed solution, the Na_CQDs (0.4 g mL
-1

) showed a water flux of 29.8 LMH, 

exceeding that of 2.0 M NaCl draw solution by 55%. This FO water flux is among the 

highest reported. When seawater was used as feed solution, the Na_CQDs provide an 

FO water flux of 10.4 LMH with only a slight drop after 5
 
cycles. In addition, the 

Na_CQDs showed negligible reverse draw solute permeation. It is worth noting that for 

practical applications, further investigation is necessary to understand the energy 

consumption in the FO desalination process using Na_CQDs as draw solutes. 

 A thermoresponsive copolymer, poly(sodium styrene-4- sulfonate-co-n-

isopropylacrylamide) (PSSS-PNIPAM) with different SSS contents has been 

successfully synthesized and applied to draw water from simulated seawater. 

Considering the osmotic pressure and LCST, PSSS-PNIPAM with 15 wt% of SSS was 

chosen as the draw solute in FO to desalinate seawater. With simulated seawater (0.6 M 

NaCl solution) as the feed solution, FO water fluxes larger than 3.5 LMH were attained. 

It was also found that the osmotic pressure of PSSS-PNIPAM solution dropped at 

temperatures above its LCST. This thermoresponsive property improves the 
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regeneration of the draw solution via MD because the decreased osmotic pressure 

allows higher water vapor pressure and favors the separation of water from the solution. 

In addition, the use of PSSS-PNIPAM may reduce salt leakage in MD and produce 

high-quality water.  It is believed that with further improvement to increase the osmotic 

pressure and reduce the viscosity, thermoresponsive copolymers can be promising draw 

solutes for FO desalination.  

 A thermoresponsive ionic liquid, P4444[CF3COO] was evaluated as a draw solute for FO 

desalination. With simulated brackish water as the feed solution and IL-rich sediments 

of P4444[CF3COO] solution (73 wt%) as the draw solution, FO water flux 4.2 LMH and 

4.9 LMH was obtained under 25 °C and 50 °C, respectively. P4444[CF3COO] solution 

with higher concentration (82 wt%) was able to generate water flux with simulated 

seawater and seawater from Singapore coast as feed solutions at high operational 

temperature. At 50 °C, the FO water flux was about 5 LMH with seawater from 

Singapore coast as the feed solution. Regeneration was achieved by liquid-liquid phase 

separation at 60 °C. The IL-rich phase could be recycled directly as the draw solution or 

further concentrated by NF to obtain a draw solution with higher concentration. The 

heat, which is the major energy input of the whole process can be provided by less 

expensive and clean energy sources such as geothermal or solar thermal energy, and low 

grade industrial waste heat. The water-rich phase which has low osmotic pressure can be 

purified though a low-pressure NF. Through theoretical calculation, ECP was believed 

to be the main reason for the relatively low FO water flux of P4444[CF3COO] solution.  
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Among these four kinds of newly developed draw solutions, non-thermoresponsive dendrimer-

based and Na_CQDs draw solutions showed higher FO water flux than thermoresponsive 

copolymer and ionic liquid. However, the thermoresponsive property of the copolymer can 

enhance the performance of regeneration process, namely MD process. It also facilitates the 

regeneration of ionic liquid by simple phase separation. The results of this study may show 

significance in 1) improving the performance of FO draw solutes in seawater desalination; 2) 

contributing to a better understanding of how draw solutes behave in FO and regeneration 

processes; and 3) inspiring the exploration of new materials as FO draw solutes.  

 

7.2 Recommendations 

Based on the findings of this thesis work, the following future work is recommended: 

 investigating the draw solutions developed in this work for other FO applications, such as 

wastewater treatment, protein enrichment or power regeneration;    

 analyzing energy and economical cost and comparing with other desalination technologies, 

such as RO; 

 developing other novel multifunctional compounds that can be easily separated from water 

in response to cheap or renewable stimuli such as mild heating. 
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