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SUMMARY 

Code clones play a major role in software maintenance and reuse. Existing 

code clone detection techniques mainly focus on detecting similar code 

fragments, methods, functions, or files. But, many design-level similarity 

patterns appear as recurring configurations of collaborating components such 

as methods, functions, classes, or any physical or logical groups of program 

entities. We call such types of recurring configurations as collaborative 

patterns. Collaborative patterns often represent program structures exhibiting 

specific behavior meaningful to developers who need to understand programs, 

reengineer legacy code for reuse, or to refactor or simply maintain programs. 

Among others, detection of collaborative patterns can help in change impact 

analysis, code compaction, and creating generics. Unfortunately, unless 

manually documented, collaborative patterns remain implicit in code. In this 

thesis, in addition to properly define the concept of collaborative patterns, we 

present novel methods for detecting and managing them. The main novelty of 

the research lies in the formulation of the concept of collaborative patterns, in 

the development of the technique for detecting collaborative patterns, and in 

the development of the technique for managing such patterns in software 

systems. 



x 

In the thesis, we first formalize the concept of collaborative patterns. We show 

possible classification of collaborative patterns. Next, we present an approach 

for detecting these collaborative patterns. The proposed approach for detecting 

collaborative patterns enhances the value of similarity analysis in the activities 

such as software maintenance and in the process of re-engineering for reuse 

that involves finding candidate modules for reuse in legacy code. 

Collaborative patterns are higher-level clones of large granularity that can be 

detected by systematically combining small-granular cloned program entities 

at various levels. They signify use of standardized solutions and/or repetitions 

that arise naturally in software analysis or design space. As such, collaborative 

patterns often embody important design information. Since, many existing 

low-level clones of small granularity are grouped around these high-level 

repetitions. Therefore, collaborative patterns form a convenient conceptual 

window for developers to understand overall cloning in software systems. We 

implemented the proposed approach for collaborative pattern detection into a 

tool called COPAD (Collaborative Patterns Detector). We performed 

experimentation to evaluate the proposed approach. Finally, we propose a 

methodology to manage such types of high-level clones of large granularity 

(collaborative patterns as well as other large-granular code clones) by 

presenting a meta-programming technique and tool, the ART (Adaptive Reuse 

Technique). It manages families of redundant software systems by providing a 

common base of non-redundant, adaptable, and reusable meta-components 

called ART templates. We also evaluated the benefits of managing clones 

using the ART. 
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Chapter 1.  
INTRODUCTION 

 

Software reuse is possible through various systematic means such as design 

patterns, generative programming, component frameworks, program libraries, 

object composition, and aspect-oriented software developments. It accelerates 

development process, increases dependability, and reduces development cost 

[1]. However, because of programmers’ limitations and time constraints, 

sometimes it is needed to reuse software components which have not been 

designed for reuse [2]. It leads to the use of cut-and-paste programming style 

instead of system-redesign approach, causing increased maintenance cost [3]. 

Further, many programming languages lack with inherent support of reuse, 

resulting in code clones in software systems [3]. Code clones are repeated 

program structures of considerable size and significant similarities occurring 

in various forms at different locations in the software system [2]. 

Detecting code clones (i.e., similar program structures) helps the programmers 

in reducing maintenance cost, in improving program understanding, and in 

controlling code changes [2, 3]. Hence, many types of code clones and their 

corresponding detection techniques are available in the literature (discussed in 
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Appendix A). In this thesis, we proposed another useful type of code clones, 

we call them collaborative patterns. The knowledge of collaborative patterns 

in a software system can lead to better understanding of the design of the 

system, which helps in day-to-day software maintenance, long-term evolution, 

and re-engineering [4, 5]. Further, management of these clones with generic 

program structures can offer interesting opportunities for program 

simplification and reuse. In this thesis, we first formalize the concept of 

collaborative patterns along with its possible classification, and then discuss 

the design methodologies for their detection and management. 

This chapter is organized as follows: we begin with background (Section 1.1), 

problem description, and motivation behind the problem (Section 1.2). Section 

1.3 outlines the current status of clone detection research and highlights 

possible research gaps we address in the proposed research. Open challenges 

we face in dealing with the proposed work are discussed in Section 1.4. The 

scope and contributions of the work are presented in Sections 1.5 and 1.6 

respectively. Finally, outline of the thesis is given in Section 1.7. 

1.1. Background 

Cloning exists in almost all kinds of software [6, 7]. Sometimes it is due to 

programmers’ implicit activities like reusing a similar design solution to solve 

similar types of problems, or sometimes programmers explicitly use same 

code to save their time. Lack of knowledge in the problem domain, 

programming language constraints, change in the requirements, and 

inefficiently using software-reuse mechanisms are some of the other 

contributing factors that lead to code clones within software systems [8]. With 
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the advancement of technologies such as product line engineering [9], cloning 

has spread across multiple systems. It is because many systems developed 

using product line engineering tend to be similar, resulting in code clones not 

just within a system, but also across the systems. 

Although cloning may not always affect the code functionality, it may have 

severe impacts on the maintainability, reusability, and quality of the software 

[3, 10]. There is no consensus on whether benefits of cloning outweigh its 

detriments [11]. Some literature considered cloning to be harmful because it 

may make code complex [3], error-prone [12-14], and difficult to change [15]. 

On the other hand, some works have not found any empirical evidences of 

harmful effects of cloning [16], and instead claimed cloning as one of the 

valuable software engineering practices [17, 18]. Nevertheless, whether clones 

are good or bad is still an open research question, and it is agreed on that 

clones must be made explicit in the code so that they can be consistently 

managed and maintained [19]. The knowledge of clones in the code assists 

programmers in program understanding, detecting library candidates, 

refactoring, and program analysis [2, 3]. Various forms of code clones are 

mentioned in the literature depending upon sizes and similarities among 

cloned code fragments. Following the classification from [2], broadly there are 

two kinds of similarities between code fragments: textual similarity and 

functional similarity. If the two code fragments are similar based on the 

similarity of their program text, they are considered textually similar. On the 

other hand, if code fragments are similar in their functionalities without being 

textually similar, it refers to the functional similarity between code fragments. 

In case of collaborative patterns proposed in the thesis, the corresponding 
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structures are similar to each other based on the similarity of their program 

text. Hence, the collaborative-pattern similarity that we address in this thesis 

falls within the category of textual similarity. Next section describes the 

problem addressed in this thesis with a motivating example. 

1.2. Problem Description and Motivating Example 

In this thesis, we aim at detecting an important type of clones in software 

systems we called collaborative patterns that have not been addressed in the 

software clone research so far. 

Collaborative pattern is defined as a recurring configuration of program 

entities (e.g., classes or methods) inter-related by means of calling 

relationships (method calls or message passing). In these configurations, the 

corresponding entities should be similar to each other based on some selected 

similarity metrics. 

The selected similarity metrics may be based on the textual similarity or the 

functional similarity among the program entities. While we may consider any 

types of similarity metrics, in our current work we focus on the textual 

similarity among the program entities. 

Motivating Example: The motivation for the proposed work comes from the 

review of an existing web-based application, Project Collaboration 

Environment (PCE) [20, 21], that supports project planning and execution. 

PCE supports modular design to manage information about staff, project, 

product, or task independently. Each PCE module implements operations such 

as create, edit, delete, display, or save to manage their respective records. In 

PCE, we encountered examples where cloned modules are collaborating with 
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each other. For example, Figure 1.1 shows design of features CreateStaff, 

CreateProject, and CreateProduct. Boxes are PHP files implementing user 

interface (Level 1), business logic (Level 2), and database aspects (Level 3) of 

respective features. Boxes of the same shade are similar one to another (i.e., 

code clones), and arrows indicate calling relationships among PHP functions 

in the corresponding boxes. Similar to other cloned program structures, 

knowing this relation between the cloned modules may prove to be useful in 

better understanding of the system design or may help in finding clone 

candidates that can be unified at meta-level [4, 22]. In addition, it helps in 

tracing important calling-relationship information among the cloned modules, 

which can be useful in finding information flow in the system [5]. It motivated 

us to work for techniques for detecting such type of clones in software 

systems, we called collaborative patterns. 

CreateStaff.BL
validateStaff()

Staff.DB
addStaff()
Staff Table

Project.DB
addProject()
Project Table

CreateProject.BL
validateProject()

CreateStaff CreateProject

CreateStaff.UI
createStaff()

CreateProject.UI
createProject()

Product.DB
addProduct()
Product Table

CreateProduct.BL
validateProduct()

CreateProduct

CreateProduct.UI
createProduct()

Level 1

Level 2

Level 3

 

Figure 1.1. Motivating example: collaborative pattern in the PCE 

1.3. Current Status of Research on Clone Detection 

Much work has been done on software clone detection ranging from the 

detection of low-level small fragments of duplicated code [12, 23-80] to 
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higher-level duplicated program structures [5, 81-99]. A detailed discussion on 

the available literature is presented in Appendix A. 

Most of the existing clone detection techniques are limited to detection of low-

level small fragments of duplicated code. These techniques detect exact [23, 

24], parameterized [25-39], gapped [12, 40-68], or semantically similar code 

fragments [69-80] by using various techniques such as by analyzing the 

program text [23-25, 27, 40, 44, 49, 52, 55, 56, 72, 75], by considering the 

program as a stream of tokens [12, 29-31, 34, 37, 38, 42, 43, 48, 62, 63, 65, 

67], using program metrics [60], using abstract syntax trees [28, 41, 45, 47, 50, 

53, 76, 77], using program dependency graphs [58, 59, 68-71, 78], using parse 

tree [46], or using hybrid combination of various program representations [36, 

39, 54]. Other techniques address higher-level clones such as structural clones 

[5, 81], logical clones [82], design patterns [83-94], API usage patterns [95, 

96], and others [97-99]. 

Small-granular code clone detectors generally detect clones larger than a 

certain threshold value (e.g., 30–50 tokens, 4–6 lines of code, or threshold set 

by users [2, 3, 42, 100, 101]). Motivated from the concept of structural clones 

(recurring patterns of duplicated contiguous code fragments), we found that 

more interesting and useful types of clones can be found by increasing the 

level of similarity analysis and clone granularity. We called these types of 

high-level clones as collaborative patterns. 

What makes collaborative patterns interesting and useful is that many design-

level similarity patterns are implemented as groups of collaborative 

components such as methods, functions, classes, files, or any physical or 

logical groups of program entities (Section 1.2, see motivating example). In 
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addition, standard solutions used across project groups in a company can often 

be expressed as collaborative patterns [20, 21]. 

1.3.1. Research Gaps 

The research gaps we address in this thesis with their expected solutions are: 

• Type of the code clones detected: This thesis aims at detecting patterns 

of collaborative components, so-we-called collaborative patterns. The 

proposed work initiates a new direction of research in the area of 

software clone detection by allowing us to detect collaborative 

patterns. Collaborative patterns are high-level clones. No work 

addresses such types of code clones. 

• Granularity (size) of the detected code clones—bigger units of clone: 

Collaborative patterns are large-granular clones. Hence, they represent 

program structures exhibiting specific behavior meaningful to 

developers who need to understand programs, reengineer legacy code 

for reuse, or to refactor or simply maintain programs [4]. 

1.4. Open Challenges 

Some of the challenges we face while dealing with collaborative patterns are: 

Definition of collaborative patterns: A precise definition of collaborative 

patterns is required with its related terminology. It helps in better 

understanding of the proposed phenomenon and communicating it effectively 

with the current research. 

Classification of collaborative patterns: There is a need to properly classify 

the collaborative patterns into different types at different levels of abstraction. 
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Having knowledge of varying types of collaborative patterns serves many 

purposes such as studying the more frequently occurring patterns or 

prioritizing different types of patterns. 

Detection of collaborative patterns: Since there is no background work related 

to the detection of such types of code clone, another big challenge is the 

proposal of a detection technique which is scalable as well as efficient. We 

face many challenges related to the detection process: 

• The technique to detect collaborative patterns itself is a big challenge. 

Moreover, different types of collaborative patterns may require 

different detection techniques. 

• Correctness and completeness of the technique. 

• Meaningfulness of the detected patterns for the analyst, designer, or 

implementer. 

• Scalability of the technique. 

Management of collaborative patterns: Once we found collaborative 

patterns—the questions arise how we are going to manage them, how can we 

benefit from their knowledge in terms of easier maintenance or better reuse. 

Which kinds of project activities can benefit by detecting and managing them? 

Overall, management aims at organizing existing clones, minimizing their 

negative effects, controlling their growth and dispersal, and avoiding them 

altogether [102]. 

1.5. Research Scope 

The scope of the thesis lies in the following directions: 
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Concept Formalization: We formalized the notion of collaborative patterns in 

general and described various types of collaborative patterns possible in 

software systems. 

In the area of Clone Detection: We proposed an approach that uses structural 

clones and method calling-relationship information from the source code of 

the subject program for detecting collaborative patterns [103, 104]. We 

implemented the above approach as a prototype tool, called COPAD 

(Collaborative Patterns Detector). We performed experimentation to evaluate 

the usefulness of the proposed approach. 

In the area of Clone Management: We proposed a methodology to manage 

code clones of large granularity (such as collaborative patterns, structural 

clones, or other large-granular cloned program structures) by presenting a 

meta-programming technique and tool, the ART (Adaptive Reuse Technique) 

that can manage families of redundant software systems by providing a 

common base of non-redundant, adaptable, and reusable meta-components 

[105-108]. We evaluated the benefits of managing code clones using the ART. 

1.6. Research Contributions 

Clones convey important information to the developers regarding the structure 

and the functionality of a system. It makes clones very useful in software 

maintenance and re-engineering. This thesis extends the clone research from 

lower-level cloned code fragments to higher-level collaborative pattern. Since 

collaborative patterns are high-level clones of large granularity, they may 

indicate a cloned concept, e.g., a cloned design solution [4]. Hence, they 

signify use of standardized solutions and/or repetitions that arise naturally in 
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software analysis or design space. Many existing lower-level code clones are 

grouped around such high-level repetitions [4]. Therefore collaborative 

patterns form a convenient conceptual window for developers to understand 

the overall cloning in software systems. Hence, the proposed techniques for 

detecting and managing collaborative patterns enhance the value of similarity 

analysis in software maintenance and in the process of re-engineering the 

software for reuse that involves finding candidate modules for reuse in legacy 

code. 

The novelty of the research lies in the type of clones detected, and the 

techniques developed for detecting and managing them. The proposed work 

initiates a new direction of research in the area of software clone detection. To 

our best knowledge, no work addresses collaborative patterns. We used 

program execution traces for detecting collaborative patterns in the software 

systems. Generation and analysis of program execution traces have been used 

in other areas of research (such as monitoring of software for reliability 

reasons or in specification mining [109]), but the proposed work harnesses the 

use of program execution traces for clone detection. 

1.7. Thesis Outline 

The thesis is divided into seven chapters and two appendices. 

Chapter 2 provides details on the formalization of the notion of collaborative 

patterns. The term collaborative pattern is defined precisely in terms of a 

directed graph. In the directed graph, nodes are program entities and edges are 

calling relationships among the program entities. This chapter briefly outlines 

the methodology for detecting and managing collaborative patterns. 
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Chapter 3 describes collaborative pattern detection approach in detail. 

Experimentation results related to the proposed approach are presented in 

Chapter 4. 

To evaluate the benefits of knowing collaborative patterns (and other code 

clones of large granularity) in programs, we focus on representing clone 

classes using templates that can be built using the ART. The ART and the 

methodology of managing code clones using the ART are explained in detail 

in Chapter 5. 

Chapter 6 quantitatively and qualitatively evaluates the strengths, weaknesses, 

and trade-offs involved in the application of the ART. Finally, Chapter 7 

concludes the thesis. 

Appendix A provides a comprehensive literature survey on relevant prior 

work. This survey gives us rudimentary details of state-of-the-art works 

available in the area of software clone detection. Appendix B at the end gives 

detail of general terms used in the thesis. 
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Chapter 2.  
THE CONCEPT OF COLLABORATIVE 

PATTERNS 

 

Clone detection is an active area of research in Software Engineering since 

about last two decades. As suggested by the literature, various tools and 

techniques have been proposed for detecting cloned code fragments. Also, 

some works addressed clones of larger granularity such as cloned methods or 

cloned files [5, 97, 98, 110, 111]. However through similarity analysis, we 

observed that cloning in software systems is not limited only to cloned code 

fragments, methods, or files—as is the focus of most of the current clone 

detection research—but can also occur at higher levels. One of such cases is 

the recurring configuration of collaborating program entities (such as methods, 

classes) where the corresponding entities in the instances of the configuration 

are code clones of each other. This chapter describes the concept of these 

higher-level clones, which we call collaborative patterns. 

This chapter is organized as follows: Section 2.1 discusses the motivation. In 

Section 2.2, we formally define the term collaborative pattern in terms of a 
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graph and its relation with structural clones. Related work is presented in 

Section 2.3. Section 2.4 presents the classification of collaborative patterns. 

Section 2.5 highlights importance and benefits of collaborative patterns. 

Section 2.6 outlines the proposed approach for detecting and managing 

collaborative patterns that is explained in detail in the forthcoming chapters. 

Finally, Section 2.7 concludes the chapter. 

2.1. Motivation 

In the Second International Workshop on Detection of Software Clones 

(IWDSC’03), 57 open questions related to clone detection research were 

raised during the brainstorming session [112]. A few of them were related to 

detection of higher-level clones, for example, “Can we detect higher-level 

clones well?” or “Do we understand "other" level clones?”. There have been a 

few attempts in this direction of research [5, 82, 97, 98, 110, 111]. 

We found that certain types of configurations of cloned code fragments or 

program entities signify some higher-level patterns of similarities. One such 

case is the recurring configuration of collaborating program entities such as 

methods, classes, or files, where the corresponding entities in the instances of 

the configuration are clones of each other. We call such configurations of 

collaborating program entities as collaborative patterns. 

Detection of collaborative patterns can enhance the values of similarity 

analysis. The knowledge of the locations of collaborative patterns in the 

software system may lead to a better understanding of the design of the 

system, which can help in day-to-day software maintenance, long-term 

evolution, reuse, and re-engineering. Further, management of these patterns 
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with generic program structures can offer interesting opportunities for program 

simplification and reuse.  

2.2. Introduction to Collaborative Patterns 

In Section 1.2, we defined the term collaborative pattern as: 

Collaborative pattern is defined as a recurring configuration of program 

entities (e.g., classes or methods) inter-related by means of calling 

relationships (method calls or message passing). In these configurations, the 

corresponding entities should be similar to each other based on some selected 

similarity metrics. 

In this section, we precisely define and formalize the term collaborative 

pattern in detail. 

2.2.1. Preliminary Definitions 

This subsection details definitions of some of existing important terms which 

are used in formalizing the term collaborative pattern. 

Definition 2.1 (program entity): In general, a program entity represents any 

program element that can be clearly identified in a program such as a 

statement, code fragment, function, class method, class, source file, directory, 

module, subsystem (last two are designated groups of files and/or directories). 

Definition 2.2 (clone relation): A clone relation exists between two program 

entities e1 and e2, if and only if they have significant similarities between 

them. The threshold of the similarity depends on the context and the nature of 

the program entities. Beside this, human judgment is also an important factor 

in deciding whether two program entities are clones of each other or not. 
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Similar to [42], the clone relation defined is an equivalence relation (i.e., 

reflexive, transitive, and symmetric relation). 

Definition 2.3 (clone pair): For a given clone relation, a pair of program 

entities is called clone pair if a clone relation holds between the two program 

entities. 

Definition 2.4 (clone class): An equivalence class of the clone relation is 

called clone class. It means that a clone class is a maximal set of program 

entities in which a clone relation holds between any pair of the program 

entities. 

Definition 2.5 (simple clone): Segments of contiguous code are the simplest 

type of program entities that can participate in a clone relation, in such a case 

called as simple clones [5]. 

Definition 2.6 (program structure): Following definitions from Basit and 

Jarzabek [113], a program structure is a connected mixed multigraph where 

nodes are program entities, and (directed or undirected) edges are relationships 

between the program entities. A relationship represents any meaningful 

physical or logical connection between two program entities in a structure. 

Multiple edges between same pair of nodes can be useful in characterizing 

certain types of structures. 

To define program structure hierarchies, Basit and Jarzabek [113] introduced 

the terms atomic entity and abstract entity. An atomic entity (Definition 2.7) is 

one whose internal structure has no relevance. On the other hand, an abstract 

entity (Definition 2.8) is one whose internal structure is abstracted away to 

form a building block for higher level structures. In this way, abstract entities 
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allow us to define higher-level program structures in the hierarchy in terms of 

lower-level program structures at as many levels as is useful.  

Definition 2.9 (structural clone relation): A structural clone relation holds 

between two program structures S1 and S2 if (and only if): 

(a) S1 and S2 have the same graph structure,  

(b) A clone relation has already been established between corresponding 

program entities in S1 and S2, and  

(c) Corresponding relationships in S1 and S2 are of the same type. 

Depending upon the nature of program entities, a static relationship or 

dynamic relationship can exist among program entities. A static relationship 

can be program entities belonging to same location (e.g., functions defined in 

the same source file, methods belonging to the same class, or files in the same 

directory). A dynamic relationship can be calling relationship among program 

entities (e.g., a method calling another method, any method from a class calls 

some other method(s) of another class). The work on structural clones by 

Basit and Jarzabek [5] is a special case where relationship is the “same 

location” of interrelated program entities. Collaborative patterns described in 

this thesis are another special case where relationship is the “calling 

relationship” among the interrelated program entities. 

Further, whether a relation is symmetric or not, it depends of the nature of the 

relation. For example, “same location” is a symmetric relation (if entity e1 is 

in same location as entity e2, e2 is also in same location as e1), but “calling 

relationship” is not (entity e1 is calling e2 does not implies that e2 is surely 
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calling e1). The rest of the section elaborates the collaborative pattern concept 

in terms of a directed graph. 

2.2.2. Collaborative Structure 

Definition 2.10 (collaborative structure): A collaborative structure is a 

connected and directed graph where nodes are program entities, and edges are 

calling relationships among the program entities. 

Figure 2.1 gives an example of collaborative structure S1 that consists of five 

program entities e1, e2, e3, e4, and e5. The five program entities are inter-

related to each other by a calling relationship denoted by arrows. 

e1 e4e2

e3 e5

 

Figure 2.1. An example of a collaborative structure S1 

2.2.3. Collaborative Clone Class 

Definition 2.11 (collaborative clone relation): Collaborative clone relation is 

a clone relation between collaborative structures. A collaborative clone 

relation exists between two collaborative structures S1 and S2 if and only if: 

(a) S1 and S2 have the same graph structure, and 

(b) A clone relation has already been established between the 

corresponding program entities in S1 and S2. 

Definition 2.12 (collaborative clone class/ collaborative pattern): 

Collaborative clone class is a maximal set of collaborative structures that are 
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in collaborative clone relation of each other. In the rest of the thesis, we will 

call collaborative clone class a collaborative pattern for short. 

Figure 2.2 shows some illustrative examples of collaborative structures S2 to 

S13. Each program entity is labeled with an entity name and represented by a 

rectangular box. Also, program entities represented by same color boxes are in 

clone relation with each other. For example, program entities e12, e13, e14, e15, 

e18, and e19 are in clone relation with each other, but e613 is not in clone 

relation with the rest. 

e12 e32e22 e13 e33e23

e14 e34e24
e15 e35e25

e16 e36e26 e16 e17 e37e27 e47

e18 e38e28

e58

e19 e39e29

e59

e110 e310e210

e510

e111

e311e211

e511 e611

e112

e312e212

e512 e612

e113

e313e213

e513 e613

(S2)

(S4)

(S3)

(S5)

(S6) (S7)

(S8) (S9)

(S10) (S11)

(S12) (S13)

 

Figure 2.2. Examples of collaborative structures S2–S13 
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As shown in the Figure 2.2, collaborative structures: 

a. S2, S3, and S4 have same graph structure.  

b. S6 and S7 have same graph structure.  

c. S8 and S10 have same graph structure.  

d. S11, S12, and S13 have same graph structure.  

Similarly, corresponding program entities in collaborative structures: 

i. S2, S3, and S5 have a clone relation. 

ii. S6 and S7 have clone relation. 

iii. S8, S9, and S10 have clone relation. 

iv. S11 and S12 have clone relation. 

Based on that, collaborative structures S2 and S3 have collaborative clone 

relation and form a collaborative pattern. But, S4 has no collaborative clone 

relation with S2 and S3 (condition ‘b’ in definition 2.11 fails). Similarly, S5 is 

not in collaborative clone relation with S2 and S3 (condition ‘a’ fails). 

For collaborative clone relation, it is not necessary for the program entities to 

be unique. For example, in the collaborative structures S6 and S7, program 

entity e16 corresponds to both entities e17 and e47. But, by satisfying 

conditions ‘a’ and ‘b’, these collaborative structures form a collaborative 

pattern. 

Given that corresponding program entities in S8, S9, and S10 have clone 

relation. But, S9 is not in collaborative clone relation with S8 and S10 (i.e., 

condition ‘a’ fails). Thus, only program structures S8 and S10 form 

collaborative patterns. Similarly, beside collaborative structures S11, S12, and 

S13 have same graph structure, but only S11 and S12 form collaborative 
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patterns. It is because, S13 has a program entity e613 which is not in clone 

relation with the corresponding program entities in S11 and S12 (i.e., condition 

‘b’ in definition 2.11 fails). 

2.3. Related Work 

The proposed collaborative pattern concept is built upon the concept of 

structural clones described in [5, 81]. Following works in [5, 81], similar 

program parts are termed as software clones. Software clones may include 

simple clones and structural clones. Simple clones are formed by fragments of 

textually similar contiguous code whereas structural clones are formed by 

configurations of these simple clones. 

Structural clones are cloned program structures whose respective elements 

(i.e., program entities) are similar and relationship is the “same location” of 

interrelated program entities. Based on the nature of the program entity, 

structural clones may exist at different levels of granularity [114]. Structural 

clones at higher-level of granularity can be constructed from structural clones 

of lower granularity. For example, structural clones at file level can consist of 

method-level structural clones, where methods are the abstract entities whose 

internal structure is abstracted away to form a building block for higher-level 

structures. Code fragments are atomic entities in case of structural clones. 

Based on the idea of structure hierarchy in terms of atomic and abstract entity, 

structural clones can be defined at many levels as it is useful. 

Collaborative patterns discussed in this thesis enhance the clone phenomenon 

further by exploring the calling relationships among these cloned structures. In 

case of collaborative patterns, instead of contiguous code fragments, we 
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considered methods as the atomic entities. For example, suppose that we have 

three structures (A1, B1, C1), (A2, B2, C2), and (A3, B3, C3) as shown in 

Figure 2.3. Each of these structures consists of methods as shown by the 

rectangular boxes. Suppose a substantial part of each of the corresponding 

methods in the three structures is covered by contiguous cloned code 

fragments. Then, A1, A2 and A3 are considered to be method-level structural 

clones as shown be same shade in the corresponding rectangular boxes. 

Similarly, further suppose we have other method-level structural clone <B1, 

B2, B3> and <C1, C2, C3>. We consider a group of such collaborative 

structures as a collaborative clone class (or collaborative pattern for short). 

Thus, collaborative pattern is formed by a group of collaborative structures 

whose respective elements are similar and inter-related by means of calling 

relationships. Hence, collaborative patterns are higher-level clones that can be 

found by further increasing the level of similarity analysis and clone 

granularity. 

A1

C1

B1

A2

C2

B2

A3

C3

B3

 

Figure 2.3. Collaborative pattern as high-level pattern of collaborative structures 

A recent work, Clonepedia [19] targets on mining commonalities of syntactic 

contexts in which code clones occur. Similar to the work on structural clones, 

they also considered spatial relationships such as “contain”, “reside_in”, 

“diff_use”, “extend” in the program structures. These relationships describe 

location and usage characteristics of cloned code fragments. However, 
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depending on the relationship types, atomic entities may be classes, methods, 

or code fragments. Compared to the Clonepedia work, collaborative patterns 

described in the thesis are cloned program structures with calling relationship 

between the corresponding program entities. 

There are many works that deal with detection of design patterns [115]. 

Among few initial works, an attempt to find structural design patterns 

(adapter, proxy, composite, bridge, and decorator) in object-oriented software 

was by Antoniol et al. [116]. Tsantalis et al. [87] presented a solution to design 

pattern detection problem that uses similarity score between design patterns 

and graph representation of the program to detect occurrences of the design 

patterns. They used a large set of well-known design patterns which includes 

adapter, command, composite, decorator, factory method, observer, prototype, 

singleton, state, strategy, template method, and visitor. Yu et al. [94] in 2013 

presented an approach for detecting decorators design patterns using graph 

isomorphism. Recently in 2014, a semantic web based technique for detecting 

11 types of design patterns is proposed by Alnusair et al. [117]. Compared to 

collaborative patterns presented in the thesis, these works assume pre-defined 

descriptions about the behavior and structure of the particular design pattern to 

be detected. Further, compared to collaborative patterns where program 

structures are clone of each other, design patterns need not necessarily be 

similar at the code level. 

2.4. Classification of Collaborative Patterns 

Based on the type of the program entity, we can further classify collaborative 

patterns. Such classification of collaborative patterns is useful in further 
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analysis of this phenomenon. As discussed earlier, possible types of program 

entities can be methods, classes, files, modules, components, directories, sub-

systems, or any physical or logical groups of program entities. Based on these, 

we can classify collaborative patterns into different levels of abstraction. For 

example, suppose we have six classes A, A1, B, B1, C, and C1 with methods 

f(), f1(), g(), g1(), h(), and h1(), respectively as shown in Figure 2.4. We say 

that method configurations <f(), g(), h()> and <f1(), g1(), h1()> form a 

collaborative pattern at the method-level if the following conditions hold: 

• methods f() and f1(), g() and g1(), and h() and h1() have been 

identified as method clones of each other. 

• methods call each other as indicated by arrows in Figure 2.4 

representing control flow in the program, i.e., A.f()B.g()C.h() and 

A1.f1()B1.g1()C1.h1(). 

Class A

Class C

Class B

Class C1

Class B1

Class A1

h()

g()

f1()f()

g1()

h1()

Two Instances of a Collaborative Pattern at the method-level

 

Figure 2.4. Collaborative pattern at the method-level 

Further, assume that classes A and A1, B and B1, and C and C1 are class 

clones of each other. Arrows indicate calling relationship such that any of the 

methods from a class calls any of the other methods of another class (for 
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example, arrow from class A to class B indicates that any of the method, say 

f(), calls any other method, say g(), in class B). Then, the class configurations 

<A, B, C> and <A1, B1, C1> form a collaborative pattern at the class-level 

(Figure 2.5). 

Class A

Class C

Class B

Class C1

Class B1

Class A1

y()
y1()

h1()z()
z1()

x() x1()

g() g1()

Two Instances of a Collaborative Pattern at the class-level

h()

f() f1()

 

Figure 2.5. Collaborative pattern at the class-level 

Similarity, we can define collaborative patterns at the levels of files, 

directories, or components, where component is any physical or logical 

grouping of program elements (Figure 2.6). 

Component1

A,B,C

Component3`

U1,V1,W1

Component3 

U,V,W

Component1`

A1,B1,C1

Component2`

P1,Q1,R1

Component2

P,Q,R

Instances of a Higher-Level Collaborative Pattern

 

Figure 2.6. Higher-level collaborative pattern 
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2.5. Importance and Benefits of Collaborative Patterns 

Detection of various types of code clones, in general, helps in program 

understanding, program refactoring, error detection, quality assessment, reuse, 

plagiarism detection, software evolution, maintenance, and others [3, 8]. 

Similar to structural clones, collaborative patterns being large-granular 

program structures, facilitate better context-analysis and represent important 

design information [5]. Thus, collaborative patterns can prove to be even more 

useful in all these scenarios. The detected clone units are large enough to 

exhibit conceptual similarities that help in better understanding of the cloning 

in the software system. One can expect better code compaction due to bigger 

units of detected clones. In addition, detection of collaborative patterns can 

help in creating generic representation of the entire system using technique 

such as the ART (explained in Chapter 5). This generic representation can 

extend the scope of reuse beyond the conventional architecture-centric, 

component based methods. Sections 4.4 and 6.1 explore the benefits of 

detecting and managing collaborative patterns in detail. 

2.6. Methodology for Detecting and Managing 

Collaborative Patterns 

In the previous sections, we discussed the concept of collaborative patterns in 

detail. This section briefly outlines the proposed approach for detecting and 

managing these collaborative patterns. The detailed approach is presented in 

the forthcoming chapters. 

Figure 2.7 gives an overview of the collaborative pattern detection and 

management approach that includes four phases: pre-detection analysis, 
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collaborative pattern detection, post-detection analysis with user involvement, 

and collaborative pattern management. The proposed approach performs 

collaborative pattern detection by finding small-granular code clones first, and 

then gradually raising the level of detection to higher-level collaborative 

patterns. Each phase is explained briefly in the forthcoming subsections. 

3. Post-detection 
Analysis with 

User Involvement

2. Collaborative  
Pattern Detection

Subject 
Program

Collaborative 
Patterns

Code Clones

4. Collaborative  
Pattern 

Management

1. Pre-detection 
Analysis

Calling-
Relationship 
Information

 

Figure 2.7. Methodology for detecting and managing collaborative patterns 

2.6.1. Phase 1: Pre-detection Analysis 

This phase deals with finding all the relevant information from the subject 

program needed for detecting collaborative patterns. Based on the definition of 

collaborative patterns, we identified two pieces of information that we must 

have for detecting collaborative patterns: small-granular code clones and 

calling-relationship information among program entities. Sections 3.2.1 and 

3.2.2, in the next chapter explain pre-detection analysis phase in detail. 

2.6.2. Phase 2: Collaborative Pattern Detection 

We are using token-based string pattern matching algorithm for detecting 

collaborative patterns. We represent each method-calling sequence (extracted 

from the calling-relationship information) as a string of tokens. During this 
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step, a unique token is assigned to all the methods that have been detected as 

code clones in the previous phase. These token strings are then concatenated 

into a single token-sequence. Then, repeated substrings of tokens in the 

concatenated token-sequence are found. Multiple occurrences of a repeated 

substring in the concatenated token-sequence indicate the occurrences of 

different instances of the same collaborative pattern. Section 3.2.3 in the next 

chapter explains the detection phase in detail. 

2.6.3. Phase 3: Post-detection Analysis with User Involvement 

Automated detection may result in many collaborative patterns in large 

software systems. Even larger numbers of clones are reported when clone 

detectors are used to find clones in a family of software systems, a usual 

prelude to re-engineering such families into Software Product Lines (SPLs) [9] 

for systematic reuse. However, among these large numbers of clones, users 

should have to pay most attention to those recurring structures whose 

knowledge in the software is likely to benefit the user. Post-detection analysis 

phase deals with filtering the patterns in order to isolate the beneficial ones. It 

helps users zoom into the areas that are of their interest. During this phase, 

user’s task is to analyze patterns manually and identify ones that can be 

removed, prevented, unified to generic templates, or re-engineered for reuse. 

We discuss this phase in detail in Section 4.3. 

2.6.4. Phase 4: Management of Collaborative Patterns 

After detecting and analyzing detected collaborative patterns, the next 

important issue is of managing them. This phase deals with using detected 

collaborative patterns for easier program maintenance and better reuse. We 
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proposed a methodology for managing code clones of large granularity (such 

as collaborative patterns, or other large-granular cloned program structures) by 

presenting a meta-programming technique and tool, the ART. The ART is an 

enhanced, lightweight and XML-free version of the XVCL (XML-based 

Variant Configuration Language) [118]. The proposed methodology of 

managing code clones using the ART is based on the concept of representing 

the clones in the form of generic, adaptable, and reusable templates; we called 

them ART templates. The software systems represented using ART templates 

are easier to maintain due to smaller size of the code and have reduced 

conceptual complexity as perceived by the developers. The ART and 

mechanism of managing clones using the ART are explained in Sections 5.2 

and 5.3 respectively. 

2.7. Conclusions 

This chapter formalized the concept of collaborative patterns in detail. 

Collaborative patterns are higher-level clones of large granularity that can be 

identified by systematically combining small-granular cloned program entities 

at various levels. We also presented a brief overview of the collaborative 

pattern detection and management approach. A detailed description of the 

collaborative pattern detection approach is presented in the next chapter. 

Experimentation results pertaining to detection approach are presented in 

Chapter 4. The approach for managing code clones is described in Chapter 5. 

Chapter 6 presents evaluation results related to the management approach 

discussed in Chapter 5. 
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Chapter 3.  
DETECTING COLLABORATIVE PATTERNS 

 

In the previous chapter, we formalized the concept of collaborative patterns 

and outlined the methodology for detecting and managing them. In this 

chapter, we present the collaborative pattern detection approach in detail. This 

chapter is organized as follows: Section 3.1 gives the scope of the approach. 

The proposed collaborative pattern detection approach is elaborated in Section 

3.2. Section 3.3 presents the implementation details, and finally Section 3.4 

concludes the chapter. 

3.1. Scope of the Approach 

In Section 2.2 in Chapter 2, we presented a detailed well formalized concept 

of collaborative patterns in terms of a directed graph. As illustrated in Section 

2.4, collaborative patterns may have many variations depending upon the 

types of program entities considered. We restricted our current approach for 

collaborative pattern detection to cloned methods as interrelated program 

entities. Further, as shown in Figure 2.2 in Chapter 2, a collaborative pattern 

may have linear method-calls or it may have branched method-calls. But, it is 
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possible that collaborative patterns containing branched method-calls can be 

represented in the form of collaborative patterns having linear method-calls. 

For example, the collaborative pattern shown in left side of Figure 3.1 can be 

represented as two linear collaborative patterns as shown in the right side of 

Figure 3.1. So, we restricted the scope of the proposed approach to the 

detection of linear configurations of methods. 

A

C

B

A'

C'

B'

D

D'

A CB

A' C'B'

A B

A' B'

D

D'

 

Figure 3.1. Branched collaborative pattern to linear collaborative patterns 

As discussed in Chapter 2, collaborative patterns may have many variations 

depending upon the types of similarity metrics selected. In our current 

research, we focus on textual similarity among the program entities. 

3.2. Detailed Approach 

This section describes the collaborative pattern detection approach in detail. 

As highlighted in the previous chapter, two pieces of information needed for 

detecting collaborative patterns are code clones and calling-relationship 

information. So, we divided the detection process into three steps: code-clone 



33 

finder, calling-relation retriever, and collaborative-pattern detector (Figure 

3.2). 

Subject 
Program

1. Code-Clone 
Finder

2. Calling-
Relation 
Retriever

Method 
Clones

Calling-
Relationship 
Information

3. Collaborative-
Pattern Detector

Collaborative 
Patterns

 

Figure 3.2. An overview of collaborative pattern detection approach 

As shown in the figure, code-clone finder (component 1) finds method clones 

from the subject program. Calling-relation retriever (component 2) finds 

calling-relationship information from the subject program by analyzing its 

source code. The output of these two components is then used by the 

collaborative-pattern detector (component 3) to find collaborative patterns 

from the subject program. Next subsections discuss each of these components 

in detail. 

3.2.1. Step 1: Code-Clone Finder 

This component deals with finding method clones from the subject program. A 

group of methods are method clones of each other if and only if each member 

of the group has significant similarity with each of the other members of the 

group. 

For finding method clones, we used an existing token-based clone detection 

algorithm proposed by Basit and Jarzabek [5]. The algorithm is implemented 

as a tool, Clone Miner. Clone Miner first detects cloned contiguous code 

fragments by using an efficient suffix-array based Non-Extendible Repeats 

Finding (NERF) algorithm [29], and then applies Frequent Closed Itemset 
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Mining technique for finding method clones from the detected cloned 

continuous code fragments. Some of the reasons for selecting the above 

technique and tool for finding method clones are: 

• The proposed technique is very fast and scalable. This is because it 

uses suffix-array based code-tokenization technique followed by data 

mining approach for finding method clones. This makes it very fast 

and scalable. 

• Clone Miner outputs method clones directly from the subject program 

very efficiently. 

Although we used Clone Miner for finding method clones. Yet, this step is 

independent of it. Any technique or tool that can detect method clones can be 

used for this step. 

3.2.2. Step 2: Calling-Relation Retriever 

This component deals with finding calling-relationship information from the 

subject program by analyzing its source code. Literature suggests that finding 

all calling-relations from the source code using just static code analysis is 

hardly exhaustive [119, 120]. It is due to the reason that different 

programming features such as reflection or bytecode modification tooling, 

some information relevant to calling-relation retrieval is known only at the 

runtime. On the other hand, runtime analysis provides us calling-relations 

from specific program executions only. Hence, to overcome the disadvantages 

of static analysis over dynamic analysis and vice-versa, the proposed approach 

uses both static code analysis and dynamic code analysis for finding calling-

relationship information. Based on these requirements, the calling-relation 
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retriever component is divided into different sub-components as shown in 

Figure 3.3. 

Subject 
Program

2.1.1 Trace 
Generator

Program 
Execution 

Trace

2.1.2 Trace to 
Method-call 

Chain Finder

2.2.1 Call-
Graph 

Generator

Call 
Graph

Calling-
Relationship 
Information

2.2.2 Call-
Graph to 

Method-call 
Chain Finder

Static Code Analysis 

Dynamic Code Analysis 

Method-
call Chains

Method-
call Chains

 

Figure 3.3. Detailed overview of calling-relation retriever component 

During dynamic code analysis, the subject program is instrumented with trace-

generator code to get program execution trace (Section 3.2.2.1), which in-turn 

is used to find calling-relationship information in the form of method-call 

chains (Section 3.2.2.2). Static code analysis allows getting calling-

relationship information from the subject program by first generating call 

graph (Section 3.2.2.3), and then using the generated call graph to find 

method-call chains (Section 3.2.2.4). 

3.2.2.1. Trace Generator 

This component generates program execution trace from the subject program 

by analyzing its source code at the runtime. 

Besides other information, a program execution trace contains ordered list of 

methods which are called, then executed, and finally returned during a 

particular run of the program. Figure 3.4 shows possible example of a program 

execution trace for a given program P. 
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main() {
method_A();
if(cond1)

method_C();
else

method_G();
}

method_A() {
method_B();

}

method_B() {
if(cond2)

method_A();
}

method_C() {
method_D();
method_E();

}

method_D() {}

method_E() {
if(cond3)

method_C();
else

method_F();
}

method_F() {}

method_G() {}

Subject Program (P)

main()
method_A()
method_B()
method_B()

method_A()
method_C()
method_D()
method_D()
method_E()
method_C()
method_D()
method_D()
method_E()
method_F()
method_F()

method_E()
method_C()

method_E()
method_C()

main() 
A possible Program Execution 
Trace T of Subject Program P

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
19
20
21

Legends: a  b : method a calls method b            
a  b : method b returns back to method a  

Figure 3.4. Example of a program execution trace 

As shown in the figure, program P consists of a main() method and seven 

auxiliary methods: method_A(), method_B(), method_C(), method_D(), 

method_E, method_F(), and method_G(). The main() method calls some of the 

auxiliary methods, i.e., method_A(), and method_C() or method_G(). The 

auxiliary methods call other methods as shown in the left side of the figure. A 

possible program execution trace T during a particular run of the program P 

would be like as shown in the right side of the figure. In the given program 

execution trace, main() calls method_A() first (line 2). method_A() during its 

current execution calls method_B() (line 3). Assuming cond2 evaluates to 

false, on finishing its current execution, method_B() returns program-
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execution control back to method_A() (line 4). Similarly, method_A() returns 

program-execution control back to main() method (line 5). Given cond1 

evaluates to true, main() method calls method_C() (line 6) which in-turn first 

calls method_D() (lines 7 and 8), and then calls method_E() (line 9). 

Assuming cond3 to be true, method_E during its current execution calls 

method_C() (line 10). During this execution, method_C() again first calls 

method_D() (lines 11 and 12), and then calls method_E() (line 13). Assuming 

this time, cond3 evaluates to false, current instance of method_E() calls 

method_F() (lines 14 and 15). On finishing its current execution, current 

instance of method_E() returns program-execution control back to method_C() 

(line 16). The rest continues until the execution control reaches the end of the 

program (lines 17–21). 

Trace generator uses the concept of aspect-oriented programming (AOP) [121] 

to get the program execution trace. Three features of AOP that are used for the 

proposed approach are: Joinpoints, Pointcuts, and Advices. Joinpoints are 

well-defined points (e.g., method call, method execution, exception handlers, 

or class/object initializations) in the flow of program-execution control. 

Certain set of Joinpoints makes a Pointcut. Advices define the code that is 

applied when a particular Pointcut is reached. For our approach, we are 

interested in keeping the track of methods’ executions only. So, the Joinpoints 

of our interest are limited to those that point to the executions of methods in 

the subject programs. Hence, we define Pointcuts to keep track of the methods 

executed during runtime. We define Advices that allow storing the information 

about entering and exiting of these executed methods. Thus, the generated 

program execution trace contains an ordered list of methods that are called and 
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returned during the run of the program (as shown in the right side of Figure 

3.4). 

3.2.2.2. Trace to Method-call Chains Finder 

For detecting collaborative patterns, we need only method calling-relationship 

information from the generated program execution trace. Other information 

such as returning-method information is of no use during detection process. 

Hence, this component processes the trace to get method calling-relationship 

information from it. For this, we split the program execution trace in the form 

of method-call chains. A method-call chain in a program execution trace is 

defined as: 

Definition 3.1 (method-call chain in a program execution trace): In a given 

program execution trace, a method-call chain is a sequence of methods 

f1(),f2(),…,fi,…, fn-1(),fn(); n ≥ 2 executed in such a way that for all 1≤ i≤ n-1: 

• Method f1() is the first executing method in the program execution 

trace.  

• Method fi() during its current execution calls method fi+1(), and 

• Method fn() during its current execution does not calls any other 

method and returns the program-execution control back to the method 

fn-1(). 

The first condition allows starting each method-call chain with the first 

executing method of the programs (main() method, for example). It is helpful 

in finding longest method invocation sequences from the subject program and 

thus reduces the number of total unique method-call chains. Figure 3.5 gives 

an example of method-call chains constructed from the program execution 
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trace T of the subject program P. As shown in the figure, we have four 

method-call chains corresponding to the given program execution trace. Each 

method-call chain starts with the main() method of the program P, and extends 

until there is not a method which does not call any other method during its 

current execution. 

Legends: a  b : method a calls method b            
a  b : method b returns back to method a

: methods-calls of interest for detecting collaborative patterns  

Method-Call Chains (Mc
T)

main()
method_A()
method_B()

main()
method_C()
method_D()

main()
method_C()
method_E()
method_C()
method_D()

main()
method_C()
method_E()
method_C()
method_E()
method_F()

main()
method_A()
method_B()
method_B()

method_A()
method_C()
method_D()
method_D()
method_E()
method_C()
method_D()
method_D()
method_E()
method_F()
method_F()

method_E()
method_C()

method_E()
method_C()

main() 

A possible Program Execution 
Trace T of Subject Program P

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
19
20
21

 

Figure 3.5. Splitting of a program execution trace into method-call chains 

To find the method-call chains, the program execution trace is parsed 

sequentially from the start, i.e., the first method (the main method) of the 

program. This first method is added to an empty list. Since the program 

execution trace keeps track of only entering and exiting of the methods, we 

have two cases: either there is a method-call or a method is returning back to 

the caller during its execution. In the first case, i.e., when there is a method-

call during the execution, the called method is appended to the list. In the 
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second case, i.e., when the method is returning back to the caller after 

finishing its execution, we check whether during its current execution, this 

method called any other method before returning. If yes, just remove the last 

method from the list. If no, output the current list as an instance of the method-

call chain and remove the last method from the list. 

Figure 3.6 shows the algorithm for finding method-call chains from the 

program execution trace. Following steps describe the algorithm in detail: 

1. Create an empty list Record that keeps track of the methods whose 

instances are currently active during the program execution. 

2. Create an empty list of lists, ChainList that stores method-call chains 

constructed from the program execution trace. 

3. Create an integer counter Counter initially set to 0. 

4. Parse the program execution trace from the start (i.e., from the first 

executed method of the program) till the end. Perform Steps 5 and 6 

during the parsing. 

5. On entry to a method, append the method to the Record and update the 

Counter to the size of the Record. 

6. On exit from a method, check whether the size of the Record is equal 

to the Counter. 

6.1. If yes, add the current content of Record to the ChainList. After 

that remove the last element from the Record. 

6.2. Otherwise, remove the last element from the Record. 

7. Repeat Steps 5 and 6 until the end of the program execution trace. 

8. Remove duplicate records from the ChainList. 
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Algorithm 1: Trace to Method-call Chains Finder 
Input: Program Execution Trace (T). T is a 2-tuple list with first element being 

the method-signature and second element is a flag (set to either entry or 
exit) specifying whether method is entering or exiting during the program 
execution. 

 
   TRACE-TO-MCCHAINS(T) 
1.    ᐅ Initialize the variables 
2.    Record ← φ                  ᐅ A list 
3.    ChainList ← φ              ᐅ A list of list 
4.    Counter ← 0 
5.    ᐅ Parse the elements of the list T from the start. 
6.    for each pair (method_signature, flag) ∈ T do 
7.        if flag == entry then 
8.            ᐅ Add the method_signature to the end of the Record 
9.            APPEND(Record, method_signature) 
10.          Counter = SIZE(Record) 
11.      endif 
12.      if flag == exit then 
13.          if SIZE(Record) == Counter then 
14.              ᐅ Add the current content of Record to the ChainList 
15.              APPEND(ChainList, Record) 
16.              ᐅ Remove last element form the Record 
17.              REMOVE-LAST-ELEMENT(Record) 
18.          endif 
19.          else 
20.              ᐅ Remove last element form the Record 
21.              REMOVE-LAST-ELEMENT(Record) 
22.          endelse 
23.      endif 
24.  endfor 
25.  REMOVE-DUPLICATES(ChainList) 
26.  return ChainList 
27.end 

Output: A list of method-call chains (𝑀𝑀𝑐𝑐
𝑇𝑇)  

  

Figure 3.6. Trace to method-call chains finder algorithm 

3.2.2.3. Call-Graph Generator 

Call-graph generator takes the subject program as input and generates a call 

graph from it by statically analyzing its source code. 

A call graph is a directed cyclic graph that represents calling-relations among 

methods. Vertices in the graph correspond to methods and edges between the 

vertices indicate calling-relations among methods. For example, an edge from 
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method f to method g indicates that some call-site in method f calls method g. 

Similarly, a cycle in the graph indicates recursive method-calls. Considering 

the same sample program P as in Figure 3.4, Figure 3.7 shows the call graph 

corresponding to program P that can be constructed by using existing 

techniques and tools such as CGC [120] or WALA [122]. 

main()

method_A() method_C() method_G()

method_B() method_D() method_E()

method_F()

Root

Call Graph (CG) corresponding 
to Subject Program (P)

Legends: a b : an edge from node a to node b indicates that some call-site in method a calls method b           

main() {
method_A();
if(cond1)

method_C();
else

method_G();
}

method_A() {
method_B();

}

method_B() {
if(cond2)

method_A();
}

method_C() {
method_D();
method_E();

}

method_D() {}

method_E() {
if(cond3)

method_C();
else

method_F();
}

method_F() {}

method_G() {}

Subject Program (P)

entryPoint

 

Figure 3.7. Example of a call graph 

3.2.2.4. Call-Graph to Method-call Chains Finder 

This component splits the generated call graph into method-call chains, which 

have required calling-relationship information for detecting collaborative 

patterns. A method-call chain in a call graph is defined as: 
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Definition 3.2 (Method-call chain in a call graph): In a call graph CG(V, E), 

a method-call chain is defined as a sequence of vertices V1,V2,…,Vn ; n≥2 such 

that: 

• The sequence begins with a vertex V1 representing the entry-point of 

the program (e.g., its main() method), 

• For all 1≤ i≤ n-1, there is a directed edge e∈E from vertex Vi to vertex 

Vi+1, and 

• The sequence ends with a vertex Vn that is either a sink vertex (i.e., a 

vertex with out-degree zero) or is the first repeating vertex along the 

sequence. 

Figure 3.8 shows an example of method-call chains constructed from the call 

graph of program P. 

Call Graph (CG) for Subject Program (P)

main(), method_A(), method_B(), method_A()
main(), method_C(), method_D()
main(), method_C(), method_E(), method_F()
main(), method_C(), method_E(), method_C()
main(), method_G()

Method-Call Chains (Mc
CG)

1.
2.
3.
4.
5.

main()

method_A() method_C() method_G()

method_B() method_D() method_E()

method_F()

Root

entryPoint

 

Figure 3.8. Splitting of a call graph into method-call chains 
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As shown in Figure 3.8, we have five method-call chains corresponding to the 

given call graph. Each method-call chain starts with the entry-point of the 

program (i.e., main() method). Out of the five method-call chains, three chains 

(numbered 2, 3, and 5) end with a sink vertex (method_D(), method_F(), and 

method_G(), respectively) of the call graph. While the remaining two chains 

(numbered 1 and 4) end at the first repeating vertex of respective sequences 

(method_A() and method_C(), respectively). 

The proposed algorithm for finding method-call chains traverses the call graph 

starting from the vertex indicating the entry-point of the program. For the most 

recently traversed vertex (say u), all the edges that have u as the tail are 

explored and appended to a list. During this traversal, following set of data-

structures is maintained to keep track of the information needed for finding 

method-call chains: 

• A pair-list NodeSuccessorsPairList, with element of the format 

(nodeX, nodeXSuccessor) to keep track of the edges explored from the 

call graph during traversal. For a given explored vertex u, if there is a 

directed edge from vertex u to v, a pair (u, v) is appended to the list. 

• A list Chain, with element of the format nodeX keeps sequence of 

vertices explored during traversal that can be a part of possible 

method-call chain. 

• A list of lists ChainList, with element of the format Chain, to store all 

the method-call chains constructed during call-graph traversal. 

• An integer array counter[] of size |V[CG]|. Each element of the array 

counter[Vi] keeps the integer value indicating the number of times the 

corresponding vertex Vi is included in the Chain list. 



45 

Figure 3.9 shows the algorithm for finding method-call chains from a call 

graph. Following steps describe the algorithm in detail: 

1. Append vertex r indicating the entry-point of the program to the Chain 

and increment the corresponding counter. 

2. For each adjacent directed edge from r to u, append the pair (r, u) to 

the NodeSuccessorsPairList. 

3. Repeat Steps 4 to 7 until the NodeSuccessorsPairList is not empty. 

4. Remove the last element from the NodeSuccessorsPairList and store it 

in a pair (π, u). 

5. Remove the last element from the Chain until the last element is not 

equal to π (i.e., predecessor of u) and decrement the corresponding 

counter. 

6. If the counter corresponding to vertex u is 0 (it means the vertex is not 

yet added to the Chain): append the vertex u to the Chain and 

increment the corresponding counter. Then, check whether u is a sink 

vertex. 

6.1. If no (i.e., vertex u is not sink vertex): for each adjacent edge 

from u to v, append (u, v) pair to the NodeSuccessorsPairList. Go 

to Step 3. 

6.2. If yes (i.e., vertex u is sink vertex): add the current content of 

Chain to the ChainList as an element. Then, remove the last 

element from the Chain and decrement the corresponding 

counter. Go to Step 3. 

7. If the counter corresponding to vertex u is not 0 (it means the vertex is 

already added to the Chain): first, append the vertex u to the Chain. 
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Then, add the current content of Chain to the ChainList as an element. 

After that, remove the last element from the Chain. Go to Step 3. 

Algorithm 2: Call Graph to Method-call Chains Finder 
Input: Call graph CG(V, E) with vertex r as the entry-point of the program 
 
   CALLGRAPH-TO-MCCHAINS(CG, r) 
1. Chain ← φ                       ᐅ A list 
2. ChainList ← φ                 ᐅ A list of lists 
3. NodeSuccessorsPairList ← φ ᐅ A pair-list of format (nodeX, nodeXSuccessor)  
4. for each vertex u ∈V[CG] do 
5.       counter[u] ← 0 
6. APPEND(Chain, r) 
7. counter[r]++ 
8. for each u ∈adj[r] do 
9.       APPEND(NodeSuccessorsPairList, (r, u)) 
10. while NodeSuccessorsPairList ≠ φ do 
11.       (π, u) ← GET-AND-REMOVE-LAST-PAIR(NodeSuccessorsPairList) 
12.       while (π ≠ GET-LAST-ELEMENT(Chain)) do 
13.             v ← GET-AND-REMOVE-LAST-ELEMENT(Chain) 
14.             counter[v]-- 
15.       endwhile 
16.       if (counter[u]  == 0) then 
17.             APPEND(Chain, u) 
18.             counter[u]++ 
19.             if adj[u] ≠ φ then 
20.                   for each v ∈adj[u] do 
21.                         APPEND(NodeSuccessorsPairList, (u, v)) 
22.             endif 
23.             else 
24.                   APPEND(ChainList, Chain) 
25.                   REMOVE-LAST-ELEMENT(Chain) 
26.                   counter[u]-- 
27.             endelse 
28.       endif 
29.       else 
30.             APPEND(Chain, u) 
31.             APPEND(ChainList, Chain) 
32.             REMOVE-LAST-ELEMENT(Chain) 
33.       endelse  
34. endwhile 
35. return ChainList 
36. end 

Output: A list of method-call chains (𝑀𝑀𝑐𝑐
𝐶𝐶𝐶𝐶)  

  

Figure 3.9. Call graph to method-call chains finder algorithm 
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The current approach for finding method-call chains from the call graph 

restricts the graph traversal to stop as soon as a vertex is visited for the second 

time. It is done intentionally to avoid explosion during the generation of 

method-call chains. This is true that it avoids some of interested method-call 

chains from the analysis. But, such recursive calls/cycles can be easily handled 

during tracing. With reference to Figure 3.8, consider a case where 

method_C() calls method_E(), which then calls method_C() (i.e., loops back 

in call graph), then method_C() calls method_D(); resulting in a method-call 

chain with substring “…, method_C(), method_E(), method_C(), method_D(), 

…”. Such cases are possible to be extracted during program tracing, resulting 

in a method-call chain: “main(), method_C(), method_E(), method_C(), 

method_D()”. 

3.2.3. Step 3: Collaborative Pattern Detector 

This component detects collaborative patterns from the subject program using 

the method clones and the method-call chains found so far. 

The proposed algorithm for detecting collaborative patterns is based on the 

underlying concept that a set of method-call chains form a collaborative 

pattern if the corresponding methods in the method-call chains are either same 

or belong to a clone class. We are using token-based string pattern matching 

for detecting such sets of method-call chains. In the first step, we represent 

each of the method-call chains as a string of tokens. We use same token-ID for 

all the methods that form a clone class. These token strings are then 

concatenated into a single token-sequence. This arrangement allows us to use 

a straight forward variation of existing Non-Extendible Repeat Finder (NERF) 
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algorithm [29] to find repeated substrings of tokens in the concatenated token-

sequence. NERF computes all non-extendible repeats in the concatenated 

token-sequence. These non-extendible repeats are then used to find out 

collaborative patterns. Multiple occurrences of a given repeat in the 

concatenated token-sequence point to different instances of the same 

collaborative pattern. Figure 3.10 shows algorithm for detecting collaborative 

patterns which is demonstrated using an example in Figure 3.11.  

Algorithm 3: Collaborative Pattern Detection Algorithm 
Input: Method-Clone Classes, MCLONE 

Method-call Chains, Mc = 𝑀𝑀𝑐𝑐
𝑇𝑇 ∪ 𝑀𝑀𝑐𝑐

𝐶𝐶𝐶𝐶  
 
   DETECT-CP(MCLONE, Mc) 
1.    ᐅ Initialize data structures needed for detecting collaborative patterns  
2.    methodID ← φ 
3.    tokenString ← φ 
4.    concatenatedString ← φ 
5.    suffixArray ← φ 
6.    lcpArray ← φ 
7.    repeats ← φ 
8.    ccclasses ← φ 
9.    ᐅ Assign Unique Method-IDs to all methods  
10.  methodID ← ASSIGN-METHOD-ID(Mc, MCLONE ) 
11.  ᐅ Tokenize and Assign unique Chain-ID to each method-call chain 
12.  tokenString ← TOKENIZE-AND-ASSIGN-CHAIN-ID(Mc, methodID) 
13.  ᐅ Concatenate tokenString to form a single token-sequence 
14.  concatenatedString ← CONCATENATE(tokenString)  
15.  ᐅ Create Suffix Array from the concatenatedString using KS Algorithm 
16.  suffixArray ← CREATE-SUFFIX-ARRAY(concatenatedString) 
17.  ᐅ Create LCP Array from the concatenatedString and suffixArray using 

GetHeight algorithm 
18.  lcpArray ← CREATE-LCP-ARRAY(concatenatedString, suffixArray) 
19.  ᐅ Compute Repeats in the concatenatedString using NERF algorithm 
20.  repeats ← COMPUTE-REPEATS(concatenatedString, suffixArray, lcpArray) 
21.  ᐅ Reverse map the token Strings and method IDs on repeats using method-

call chains to compute collaborative clone classes. 
22.  ccclasses ← GET-COLLABORATIVE-CLONE-CLASSES(repeats, tokenString, 

methodID, Mc) 
23.  end 

Output: A set of collaborative clone classes (ccclasses).     
  

Figure 3.10. Collaborative pattern detection algorithm 
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method_A(), method_B(), method_A()
Method_C(), method_D()
method_C(), method_E(), method_F()

Method-call Chains
// MCC ID: method clone instances
0: method_A(),  method_C()
1: method_B(),  method_E()

Method Clone Class

1.1 Assign Unique Method-IDs 
to all methods

0: method_A(),  method_C()
1: method_B(),  method_E()
2: method_D()
3: method_F()

Method -ID Table

1.2. Tokenize and Assign unique 
chain-IDs to method-call chains 

4: 0, 1, 0
5: 0, 2
6: 0, 1, 3

Tokenized chains with unique ID

2. Concatenate the tokenized method-
call chains to form a token-sequence 

// Chain1,Chain-ID1,Chain2,Chain-ID2,…, ChainN,Chain-ID_N 
0,1,0,4,0,2,5,0,1,3,6

Concatenated Token-sequence

13,7,3,1,15,9,17,5,11,19,0,14,8,4,2,16,10,18,6,12,20
Suffix Array

0,3,3,1,3,1,1,1,1,1,0,4,2,2,0,2,0,0,0,0,0
LCP Array

3.1.  Create Suffix Array

3.2.  Create LCP Array

3.3.  Compute Repeated Substrings

0 //Repeat ID
4: 0,1 //Chain-ID1: Repeated substring1
6: 0,1 //Chain-ID2: Repeated substring2

Repeats

3.4.  Compute Collaborative Pattern Classes

0 //Pattern Class  ID
method_A(), method_B()  //Pattern Instance1
method_C(), method_E()  //Pattern Instance2

Collaborative Pattern Classes

 

Figure 3.11. Collaborative pattern detection algorithm: illustrative example 
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Following steps describe the detection algorithm in detail: 

1. Tokenize and assign a unique chain-ID to each of the method-call 

chain: This step consists of two tasks: 

1.1. Assign a unique ID to each method in such as way that all the 

members of a clone class have the same method-ID. Store 

method-ID and method-name information in a symbol table 

methodID. 

1.2. Represent each of the method-call chains as a string of tokens 

and assign a unique chain-ID to each of the tokenized method-

call chain. To easily distinguish chain-IDs from method-IDs, 

keep the respective set of IDs to be disjoint of each other. Store 

the tokenized method-call chains in tokenSting. 

2. Concatenate the tokenized method-call chains to form a token-

sequence: Concatenate all the tokenized method-call chains into a 

single token-sequence (concatenatedString). Use a unique sentinel 

token, which is same as the unique chain-ID assigned to each of the 

tokenized method-call chain, to distinguish two tokenized method-call 

chains in the concatenated token-sequence. 

3. Compute repeated substrings of tokens in the concatenated token-

sequence: This step consists of four tasks: 

3.1. Initially, generate a suffix array (suffixArray) from the 

concatenated token-sequence using KS Algorithm [123]. 

3.2. Compute longest common prefix (LCP) information (lcpArray) 

from the concatenated token-sequence and suffix array using a 
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linear-time algorithm, GetHeight (proposed by Kasai et al. 

[124]). 

3.3. Use the concatenated token-sequence, suffix array, and LCP 

information to compute repeated substrings of tokens (repeats) in 

the concatenated token-sequence using existing Non-Extendible 

Repeat Finder (NERF) [29] algorithm. NERF gives different sets 

of repeated substrings as output.  

3.4. Each set of repeated substrings corresponds to a collaborative 

clone class. Multiple occurrences of a repeated substring in the 

concatenated token-sequence indicate various instances of the 

same collaborative pattern. Reverse map the token Strings 

(tokenString) and method-IDs information (methodID) on the 

repeated substrings using Method-call chains (Mc) to get 

corresponding method names. Store this information in ccclasses. 

3.3. Tool Implementation 

The proposed collaborative pattern detection approach is implemented as a 

prototype tool called COPAD (Collaborative Patterns Detector). COPAD is 

implemented in Java with the extensive use of Apache Commons APIs [125]. 

We implemented AOP functionalities using AspectJ [126]. The whole system 

has three components: 

1. First component, CMTOOL, detects method clones. We ran Clone 

Miner as a black box to get the method clones. 
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2. Second Component, TRACER, finds method-call chains from the 

program execution trace of the subject program generated at runtime. 

We implemented this component in Java using AspectJ. 

3. Third component, CPDTOOL, is implemented in Java. It uses the 

outputs of above components to detect collaborative patterns. 

In current form, COPAD does not come with a graphical user interface but lists 

all the detected collaborative patterns in text file for easy navigation. In our list 

of future works, in line with Clone Analyzer [127], we plan to develop a 

rudimentary graphical user interface for visualization and analysis of 

collaborative patterns. 

3.4. Conclusions 

In this chapter, we presented the detailed approach for detecting collaborative 

patterns. The proposed approach first finds method clones and calling-

relationship information from the subject program, and then uses this 

information for detecting collaborative patterns. We implemented the proposed 

approach as a prototype tool, called COPAD. In the next chapter, we present 

experimentation related to the proposed approach. 
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Chapter 4.  
EXPERIMENTATION 

 

In the previous chapter, we presented the detailed approach for detecting 

collaborative patterns. In this chapter, we present experimentation results 

pertaining to the proposed approach. The chapter is organized as follows: We 

present brief overview of experimentation goals in Section 4.1. Detection 

results are highlighted in Section 4.2. Section 4.3 presents experimentation 

pertaining to the analysis of detected collaborative patterns. The benefits and 

applications of detected collaborative patterns are outlined in Section 4.4. 

Finally, the chapter is concluded in Section 4.5. 

4.1. Goals of Experimentation 

We performed experimentation keeping the following goals: 

• Detection—to detect collaborative patterns in software systems: We 

performed experimentation to quantitatively assess the presence of 

collaborative patterns in software systems. 

• Analysis—to analyze the detected collaborative patterns: This part 

deals with qualitatively and quantitatively analyzing the detected 
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collaborative patterns to evaluate their usefulness and benefits. Besides 

high-level clones of large granularity, collaborative patterns help in 

tracing important calling-relationship information from the source code 

of the subject program. Hence, we further analyze the detected 

collaborative patterns to find the method-calls that lead to or emerge 

from these collaborative patterns (further details to follow in Section 

4.3). Such information proves to be very useful in finding similar 

process flows in the software. 

The rest of the chapter discusses the experimentation in detail. 

4.2. Detection Overview 

We performed collaborative pattern detection and analysis on the source code 

of the JHotDraw 7 v.7.6.0 [128] and Clone Analyzer v.2.0 [127] using the 

proposed approach and the tool implemented using it, i.e., COPAD. JHotDraw 

7 is a two-dimensional graphical user interface framework for structured 

drawing editors written in Java. Clone Analyzer is a clone visualization and 

analysis tool. It allows the user to filter clones that are of interest to him/her. 

Table 1 shows features of these programs. 

Table 1. Features of subject programs considered for evaluating collaborative 
pattern detection approach 

Subject Program JHotDraw 7 Clone Analyzer 
Version Number 7.6.0 2.0 
Language Java Java 
Input size in terms of token count 3,49,399 Tokens 86,064 Tokens 
Numbers of Source Files 514 40 
Lines of Code 99,990 15,142 
Average Statements per Methods 5.35 8.276 
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4.2.1. Detection Results 

In JHotDraw 7, by using minimum clone size of 30 tokens, we found total of 

1,001 small-granular code-clone classes (i.e., groups of fragments of 

duplicated contiguous code). By using method percentage coverage (MPC—

percentage of a method covered by code clones) = 30% and method token 

coverage (MTC—number of tokens in a method covered by code clones) = 30, 

total of 413 method-clone classes are detected in the JHotDraw 7. We ran 

JHotDraw 7 with sample inputs such as Draw, PERT, and Teddy provided with 

the JHotDraw 7 package. We found total of 2,924 unique method-call chains 

in this subject program. It is to mention that the numbers of unique method-

call chains reported is 2,924, which may seem to be low. A method-call chain 

consists of a list of methods that are called one after another. We found the 

length of method-call chains reported in an execution to be upto 24. However, 

it is true that same method is included in more than one method-call chain. 

Yet, 2,924 method call-chains with length upto 24 cover significant part of the 

source code during execution. In overall, we detected 248 collaborative 

patterns in the JHotDraw 7 source code. The number of instances in the 

collaborative patterns range from two to six. Table 2 shows summary of the 

collaborative pattern detection results. 

Table 2. Summary of collaborative pattern detection results 

Subject Program JHotDraw 7 Clone Analyzer 
Total Small-granular Code-Clone Classes 
(with minimum clone size = 30) 

1,001 407 

Total Method-Clone Classes 
(with MTC = 30, MPC = 30%) 

413 63 

Total Methods in Method-Clone Classes 1,078 337 
Total Unique Method-call Chains 2,924 185 
Total Collaborative Patterns 248 27 
Minimum and Maximum number of Instances (I) for a 
Collaborative Pattern 

2 to 6 2 to 17 
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By using the same pattern detection settings, we ran Clone Analyzer with its 

own source code as input. We found total of 185 unique method-call chains in 

the Clone Analyzer v2.0 source code. In total, 27 collaborative patterns are 

found in the source code. The number of instances in the collaborative patterns 

range from 2 to 17. 

4.3. Analysis Overview 

We observed different variations in the structure of the collaborative patterns, 

the detection of which may be useful for the analyst, designer, or implementer. 

Since collaborative patterns help in tracing important calling-relationship 

information from the source code, we analyzed the detected collaborative 

patterns manually based on the method-calls that lead to or emerge from these 

collaborative patterns. This manual analysis is based on the following three 

factors: 

1. The methods participating in the instances of the collaborative pattern. 

The first source of information we analyzed is the methods 

participating in the pattern-instances. For example, methods 

participating in the instances of a collaborative pattern shown in the 

Figure 4.1 are A1, A2, An, A1', A2', An', A1", A2", and An". Boxes with 

shade show such methods. The number of methods participating in an 

instance of the collaborative pattern can be termed as the length of the 

collaborative pattern. For the example shown in Figure 4.1, the length 

of the collaborative pattern is three. 

2. The method-calls which lead to the collaborative pattern. We analyzed 

the method-calls and the corresponding method(s) that call(s) the first-
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methods of the respective instances of the collaborative pattern. In 

Figure 4.1, A1, A1', and A1" are first-methods in the respective 

instances of the given collaborative pattern. P and P' are the methods 

which call these methods. 

3. The method-calls which emerge from the collaborative pattern. We 

also analyzed the method-calls and the corresponding method(s) which 

is/are called by the end-methods of the respective instances of the 

collaborative pattern. As shown in Figure 4.1, An, An', and An" are end-

methods in the respective instances of the given collaborative pattern. 

Q is the common method which is called by all these end-methods. 

A1

A2

An

A1'

A2'

An'

A1''

A2''

An''

P

Q

P' • The given collaborative pattern has 3 instances: <A1,A2,An>, 
<A1',A2',An'>, and <A1",A2",An">.

• The length of the given collaborative pattern is n = 3.

• The methods participating in the instances of the collaborative 
pattern are A1, A2, An, A1', A2', An', A1", A2", and An"

• A1, A1', and A1" are first-methods in the respective instances of 
the collaborative pattern. P and P' are the methods which call 
these first-methods.

• An, An', and An" are end-methods in the respective instances of 
the collaborative pattern. Q is the method which is called by 
these end-methods. 

 

Figure 4.1. An example of a collaborative pattern with three instances 

Figure 4.2 shows different cases of collaborative patterns emerged from the 

analysis of case studies discussed in the previous section. Assume that for 1 ≤ i 

≤ n, <Ai, Ai', Ai",…> represents a method-clone class as shown by the same 

shade in the figure. P, Q, R, and S represent methods which call the methods 

or are called by the methods forming the collaborative pattern. 

Figure 4.2(a)–(d) show the cases when each of the corresponding methods 

(e.g., A1, A1', A1"; similarly others) in the instances of the pattern is unique 
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(i.e., A1 ≠ A1' ≠ A 1"). Such cases are divided into four classes based on 

whether there is a common method which calls or is called by the first-

methods or the end-methods of the collaborative pattern, respectively. 

As shown in Figure 4.2(a), there is a common method (P) which calls each of 

the first-methods (i.e., A1, A1', and A1") of the collaborative pattern. Similarly, 

there is a unique method (Q) which is called by all the end-methods (i.e., An, 

An', and An") of the collaborative pattern. The right side of Figure 4.2(a) shows 

an example of such collaborative pattern from the JHotDraw 7 project. The 

given collaborative pattern has two instances. The length of the collaborative 

pattern is also two. There is a method ‘draw()’ in the 

‘AbstractAttributedFigure’ class of ‘org.jhotdraw.draw’ package which calls 

two cloned methods—‘drwaFill()’ and ‘drawStroke()’—both of which are the 

first-methods of the given collaborative pattern. The end-methods of the 

collaborative pattern, ‘getPerpendicularFillGrowth()’ and 

‘getPerpendicularDrawGrowth()’ further call a common method ‘get()’ from 

the ‘AbstractAttributedFigure’ class. 

Figure 4.2(b)–(d) show other three cases based on factors 2 and 3. For 

example, Figure 4.2(d) shows a collaborative pattern of length three detected 

from the Clone Analyzer v2.0. The detected collaborative pattern has three 

instances. For this collaborative pattern, there is neither a common method 

which calls each of the first-methods (i.e., 

SecondaryNavigator.getJInternalFrame(), PrimaryNavigator.getJInternalFrame(), 

and UserMinerSettings.getJInternalFrame()) nor a common method which is 

called by all the end-methods (i.e., SecondaryNavigator.getJScrollPane(), 
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PrimaryNavigator.getJScrollPane(), and UserMinerSettings.getScrollPane()) 

of the collaborative pattern. 

Similarly, when each of the corresponding methods in the instances of the 

pattern is not unique (but the corresponding methods are from the same 

method-clone class), we have four cases as shown in Figure 4.2(e)–(h). Figure 

4.2(i) shows a special case of collaborative pattern in which the methods 

forming the instances of a collaborative pattern (<A1, A2,…, An>, for example) 

need not to be called successively one after the other. 

A1

A2

An

A1'

A2'

An'

A1''

A2''

An''

P

Q

(a) Example of Case-1 Collaborative Pattern 

org.jhotdraw.draw.
EllipseFigure.drawFill()

org.jhotdraw.draw.AttributeKeys.
getPerpendicularFillGrowth()

org.jhotdraw.draw.
EllipseFigure.drawStroke()

org.jhotdraw.draw.AttributeKeys.
getPerpendicularDrawGrowth()

Example of case-1 collaborative pattern from JHotDraw 7 v.7.6.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 2

org.jhotdraw.draw.
AbstractAttributedFigure.draw()

org.jhotdraw.draw.
AbstractAttributedFigure.get()

 

A1

A2

An

A1'

A2'

An'

A1''

A2''

An''

P

Q

(b) Example of Case-2 Collaborative Pattern 

org.jhotdraw.app.action.edit.
UndoAction.updateEnabledState()

org.jhotdraw.app.action.edit. 
UndoAction.getRealUndoAction()

org.jhotdraw.app.action.edit. 
RedoAction.updateEnabledState()

org.jhotdraw.app.action.edit. 
RedoAction.getRealRedoAction()

org.jhotdraw.app.action.
AbstractViewAction.getActiveView()

Example of case-2 collaborative pattern from JHotDraw 7 v.7.6.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 2
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A1

A2

An

A1'

A2'

An'

A1''

A2''

An''

P

Q

(c) Example of Case-3 Collaborative Pattern 

Workbench.getFileMenu()

Workbench.getFilterSubMenu()

Workbench.getRunMenu()

Workbench.
getDetectionMenuItem()

Example of case-3 collaborative pattern from Clone Analyzer v2.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 2

Workbench.getJMenuBar()

 

A1

A2

An

A1'

A2'

An'

A1''

A2''

An''

P

Q

(d) Example of Case-4 Collaborative Pattern 

SecondaryNavigator.
getJInternalFrame()

SecondaryNavigator.
getJContentPane()

SecondaryNavigator.
getJScrollPane()

PrimaryNavigator. 
getJInternalFrame()

PrimaryNavigator. 
getJContentPane() 

PrimaryNavigator. 
getJScrollPane()

UserMinerSettings. 
getJInternalFrame()

UserMinerSettings. 
getJContentPane()

UserMinerSettings. 
getJScrollPane()

Example of case-4 collaborative pattern from Clone Analyzer v2.0

Length of the collaborative pattern, n = 3
Number of Instances, I = 3

 

A1

A2

An

A1

A2'

An'

A1’

A2''

An

P

Q

(e) Example of Case-5 Collaborative Pattern 

Workbench.getFile
QuerySubMenu()

Workbench.
getCrossGrpStructu

reMenuItem()

Workbench.
getStructural
MenuItem() 

Example of case-5 collaborative pattern from Clone Analyzer v.2.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 4

Workbench.
getCrossMethodGrp
StructureMenuItem()

Workbench.
getQueryMenu()

Workbench.getFile
QuerySubMenu()

Workbench.getMethod
QuerySubMenu()

Workbench.getMethod
QuerySubMenu()

Workbench.
Workbench()

Workbench.
getMethodStructural

MenuItem()

 



61 

A1

A2

An

A1

A2'

An'

A1’

A2''

An

P

Q

(f) Example of Case-6 Collaborative Pattern 

Workbench.
getFilterSubMenu()

Workbench.getFilter
ClassMenuItem() 

Workbench.getFilter
MemberMenuItem() 

Example of case-6 collaborative pattern from Clone Analyzer v.2.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 4

Workbench.getLeft
CloneMenuItem()

Workbench.
getFilterSubMenu()

Workbench.
getFilterSubMenu()

Workbench.
getFileQuerySubMenu()

Workbench.getClones
InFileMenuItem()

Workbench.
Workbench()
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(g) Example of Case-7 Collaborative Pattern 
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Example of case-7 collaborative pattern from Clone Analyzer v.2.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 16
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(h) Example of Case-8 Collaborative Pattern 

org.jhotdraw.draw.
DiamondFigure.

drawFill()

org.jhotdraw.draw.
AttributeKeys.

getPerpendicular
FillGrowth()

org.jhotdraw.draw.
DiamondFigure.

drawStroke()

org.jhotdraw.draw.
AttributeKeys.

getPerpendicular
DrawGrowth()

Example of case-8 collaborative pattern from JHotDraw 7 v.7.6.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 3

org.jhotdraw.draw.
DiamondFigure.

contains()

org.jhotdraw.draw.
AttributeKeys.

getPerpendicular
FillGrowth()
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A1

Am

An

A1’

Am'

An'

A1’’

Am''

An’’

P

Q

(i) Example of Case-9 Collaborative Pattern 

org.jhotdraw.draw.
Action.BringToFront

Action()

Example of case-9 collaborative pattern from JHotDraw 7 v.7.6.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 4

org.jhotdraw.draw.
Action.ButtonFactory. 

createSelectionActions()

org.jhotdraw.draw.
action.BringToFront

Action() 

org.jhotdraw.draw.
action.SendToBack

Action()

org.jhotdraw.draw.
action.SendToBack

Action()

org.jhotdraw.util.ResourceBundleUtil.
configureAction(javax.swing.Action, 

java.lang.String)

R

S

Am+1 Am+1' Am+1’’

org.jhotdraw.util.
ResourceBundleUtil.

getTextProperty() 

org.jhotdraw.util.
ResourceBundleUtil.
getToolTipTextProper

ty()

org.jhotdraw.util.
ResourceBundleUtil.

getTextProperty() 

org.jhotdraw.util.
ResourceBundleUtil.
getToolTipTextProper

ty()

org.jhotdraw.util.ResourceBundleUtil.
configureAction(javax.swing.Action, 

java.lang.String, java.lang.Class)

org.jhotdraw.util.
ResourceBundleUtil.
getStringRecursive()

 

Figure 4.2. Different cases of collaborative patterns emerged from the analysis of 
case studies 

4.3.1. Analysis Results 

We analyzed the collaborative patterns detected during the case studies 

performed on JHotDraw 7 and Clone Analyzer (discussed in previous 

sections) based on the two criteria: pattern quantity and pattern quality. 

Table 3 shows the number of patterns found in JHotDraw 7 and Clone 

Analyzer for various cases of collaborative patterns illustrated in Figure 4.2. 

Due to the absence of any previous work that finds similar types of patterns 

and unavailability of ground truth data with which we can compare our work, 

recall cannot be calculated. Hence, due to the unavailability of any suitable 

reference set where all the collaborative patterns in the software are known, it 

is speculative to analyze the recall (completeness) of our approach. 
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Table 3. Summary of collaborative pattern analysis results 

The precision (correctness) of the proposed approach depends on the two 

factors. First is the precision of the technique used for detecting method 

clones, i.e., Clone Miner. Second is how accurately the method-call chains are 

generated from the software. In case of the proposed approach, each generated 

method-call chain always corresponds to a possible calling sequence in the 

program. Hence, the only factor that affects the precision of the proposed 

approach is the accuracy of the used Clone Miner. Assuming 100% precision 

for the Clone Miner, it is not possible for the proposed approach to report 

collaborative patterns that are actually no collaborative patterns. Hence, the 

proposed approach shows the same precision as the Clone Miner has. We 

further analyzed the detected collaborative patterns manually for the false 

positives and we found no false positives. To analyze the quality of detected 

collaborative patterns, we considered two factors: 

1. Are the instances of a collaborative pattern significantly overlap with 

the instances of another collaborative pattern? 

2. Are the collaborative patterns large enough? 

Case # JHotDraw 7 Clone Analyzer 
Case-1 Collaborative Patterns 181 7 
Case-2 Collaborative Patterns 45 3 
Case-3 Collaborative Patterns 15 7 
Case-4 Collaborative Patterns 0 1 
Case-5 Collaborative Patterns 0 6 
Case-6 Collaborative Patterns 3 2 
Case-7 Collaborative Patterns 0 1 
Case-8 Collaborative Patterns 1 0 
Case-9 Collaborative Patterns 3 0 
Total Collaborative Patterns 248 27 
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Are the instances of a collaborative pattern significantly overlap with the 

instances of another collaborative pattern? 

Since overlapped clones almost point to the same locations in the source code. 

Therefore, it is generally considered that overlapped clones are redundant and 

thus not so useful for developers as compared to non-overlapped clones [62]. 

Thus, it is useful to explicitly know the locations of overlapped clones. Hence, 

we analyzed the collaborative patterns found in the Clone Analyzer v2.0 for 

overlapping collaborative patterns. A collaborative pattern C1 is overlapping 

with another collaborative pattern C2 if all of the following conditions hold: 

1. All the first-methods from both collaborative patterns C1 and C2 belong 

to same method-clone class. 

2. All the end-methods from both collaborative patterns C1 and C2 belong 

to same method-clone class. 

3. If there exists a method, say P, which calls all the first-methods of 

collaborative pattern C1, then P must also call all the first-methods 

collaborative pattern C2. 

4. If there exists a method, say Q, which is called by all the end-methods 

of collaborative pattern C1, then Q must also be called by all the end-

methods of collaborative pattern C2. 

Out of 27 collaborative patterns detected in the Clone Analyzer v2.0, we found 

total of three such overlapping collaborative pattern classes, each having two 

collaborative patterns as members. The remaining 21 collaborative patterns are 

unique. 
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Are the collaborative patterns large enough? 

Another metric we used for analyzing detected collaborative patterns is the 

length of the collaborative pattern. Table 4 shows the analysis results. 

Table 4. Analysis of the length of patterns detected in clone analyzer v.2.0 

4.4. Benefits and Applications 

Detection of code clones, in general, helps in program understanding, error 

detection, refactoring, improving software quality, code compaction, etc. [2, 3, 

8]. Collaborative patterns, being large-granular code clones facilitating a better 

context analysis, can prove to be more beneficial in the above scenarios. This 

section explores some of the benefits and applications of detecting 

collaborative patterns. 

4.4.1. Better Program Understanding 

Code clones reveal important design and implementation information about a 

software system. Hence, their detection is considered to be a good software 

engineering practice [3, 4, 129, 130]. Collaborative patterns can be even more 

beneficial in this regard. 

Case # Number of Patterns 
Length of Collaborative Pattern (n) 

n = 1 n = 2 n = 3 
Case-1 Collaborative Patterns 7 6 1 0 
Case-2 Collaborative Patterns 3 2 1 0 
Case-3 Collaborative Patterns 7 6 1 0 
Case-4 Collaborative Patterns 1 0 0 1 
Case-5 Collaborative Patterns 6 0 6 0 
Case-6 Collaborative Patterns 2 0 2 0 
Case-7 Collaborative Patterns 1 0 1 0 
Case-8 Collaborative Patterns 0 0 0 0 
Case-9 Collaborative Patterns 0 0 0 0 
Total Patterns 27 14 12 1 
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According to [2, 131], if the functionality of a cloned fragment is 

comprehended, it is possible to have an overall idea on the other files 

containing similar copies of this fragment. Collaborative patterns are clones of 

larger granularity. Hence, it is easy to comprehend the functionality of an 

instance of the detected collaborative pattern. So, we can easily get an 

approximate idea of the functionality of other files containing the instances of 

this particular collaborative pattern. 

Further, compared to other types of clones, collaborative patterns expose 

important calling-relationships information between the cloned program 

structures. For a given collaborative pattern, all the call-sequences start 

(similarly end) at the same method or at methods that belong to a method-

clone class. For example, as shown in Figure 4.3, drawFill() and drawstroke() 

methods belong to same method-clone class which call other methods 

(getPerpendicularFillGrowth() and getPerpendicularDrawGrowth() 

respectively) that belong to another method-clone class. Such type of similar 

process flows is barely visible with other types of clones. The proposed 

collaborative pattern detection approach further improves program 

understanding by automatically tracing the method-calls that lead to or emerge 

from these collaborative patterns. For example, as shown in Figure 4.3, two 

instances of the given collaborative pattern are called by same method draw(). 

They also call the same method get(). By analyzing such process flows, much 

useful information can be discovered about the system design. Program 

understanding can be improved further by representing the detected 

collaborative patterns in the form of non-redundant templates using the ART. 



67 

org.jhotdraw.draw.
RoundRectangleFigure.drawFill()

org.jhotdraw.draw.AttributeKeys.
getPerpendicularFillGrowth()

org.jhotdraw.draw.
RoundRectangleFigure.drawStroke()

org.jhotdraw.draw.AttributeKeys.
getPerpendicularDrawGrowth()

Example of a collaborative pattern from JHotDraw 7 v.7.6.0
Length of the collaborative pattern, n = 2
Number of Instances, I = 2

org.jhotdraw.draw.
AbstractAttributedFigure.draw()

org.jhotdraw.draw.
AbstractAttributedFigure.get()

 

Figure 4.3. Better program understanding: example of a collaborative pattern 
from JHotDraw7 

4.4.2. Enhanced Reuse Opportunity 

Collaborative patterns are large-granular program structures. They are large 

enough to form attractive candidate for reusable components. Also, 

collaborative patterns often manifest some of important concept or design 

decisions that were used during the development of the software system. Such 

design or concept level similarities exhibit opportunities for building reusable 

components [115]. In product line systems, clones spread across multiple 

systems. Cross-project clones can be used for reuse optimization [132]. Due to 

their large-granularity, in such cases, collaborative patterns further give useful 

indication of reuse opportunities. We can represent clone classes as non-

redundant components and reuse them within or across software system. Later, 

Sections 6.1.5.2–6.1.5.4 illustrate this mechanism of reusing components 

within a software system or across a product line. 

4.4.3. Efficient Refactoring  

Among others, the simplest use of detected code clones is to remove them 

from the software by using refactoring. Refactoring allows improving the 



68 

design of the software without changing its functionality [133]. Refactoring 

clones helps in decreasing the complexity of the software, and reducing 

sources of errors emerging from these cloned program structures [2]. 

It is suggested that not every single occurrence of clones can be refactored. In 

fact, many of them are too complex or simply not refactorable [134]. It is 

found that there are types of clones where refactoring would not help [18]. 

However, research supports that there is still great potential for advancements 

in the area of software clone refactoring [135-137]. It is especially true when 

code clones are of large granularity representing high-level system concepts 

(for example, structural clones [5]). 

Being high-level clones of large granularity, detection and analysis of 

collaborative patterns is useful in finding locations in software where large-

granular duplications are present, and those can be refactored. After choosing 

these large-granular code duplications for refactoring, code clones (such as 

method clones) constituting the collaborative patterns can be relatively easily 

refactored because of the knowledge of the context. More specifically, one of 

the possible refactoring strategies is to move together several cloned methods 

linked by the calling-relations to the parent class or simply change the 

inheritance structure to remove the cloned methods. 

4.4.4. Other Benefits 

Improved Clone Detection: Small-granular code clone detectors generally 

detect code clones larger than a certain threshold value (e.g., 30–50 tokens or 

4–6 lines of code [42, 100]). Large-granular code clone detectors group small-

granular duplicated contiguous code fragments into larger cloned program 
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entities. For example, structural clones are cloned program entities that 

represent recurring patterns of duplicated contiguous code fragments occurring 

in a method, across methods, in a file, or across files [5]. The proposed 

approach improves the clone detection further by exploring the calling-

relations among these cloned entities. 

Good Candidates for Library: Davey et al. [40] claimed that if a program 

structure is cloned on several occasions in the software, the program structure 

has proved its usability. Hence, it can be incorporated in a library providing an 

effective set of reusable components. In the same fashion, we argue that 

collaborative patterns being large-granular program structures can prove to be 

even more effective and useful as a library candidate provided they also occur 

at several occasions. However, we have not found any example of 

collaborative pattern through our analysis that can be considered as a 

candidate for incorporating as a library. 

4.5. Conclusions 

In this chapter, we presented the experimentation pertaining to detection and 

analysis of collaborative patterns. We explored different possibilities and 

applications where detection of collaborative patterns can prove to be useful. 

In the next chapter, we discuss the mechanism of managing code clones of 

large granularity such as collaborative patterns, structural clones, and other 

types of software clones in detail. 
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Chapter 5.  
MANAGING CODE CLONES USING THE 

ART 

 

In the previous chapters, we presented the proposed approach for detecting 

collaborative patterns in detail. Once we found code clones (for example, 

collaborative patterns, simple clones, structural clones, or any other types of 

code clones) in the software—the questions arise how are we going to manage 

them, how can we benefit from their knowledge in terms of easier 

maintenance or better reuse. This chapter and the next chapter deal with all 

such aspects pertaining to clone management. 

Code clones obstruct program understanding and increase maintenance costs 

[2, 3]. While we may not be able to eliminate all these clones in a software 

system, these can be dealt with significantly at the meta-level [138]. With this 

understanding, we propose a solution to manage big clones (i.e., code clones 

of large granularity such as collaborative patterns, structural clones, or other 

large-granular cloned program structures) by presenting a meta-programming 

technique and tool, the ART (Adaptive Reuse Technique), that can manage 
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families of redundant software systems by providing a common base of non-

redundant, adaptable, and reusable meta-components. These meta-components 

are easier to reuse, maintain, and comprehend, and can track the program 

changes during evolution. 

The chapter is organized as follows: after providing introduction and 

motivation in Section 5.1, Section 5.2 provides a detailed description of the 

ART. The detailed research methodology for managing code clones using the 

ART is presented in Section 5.3. Finally, Section 5.4 concludes the chapter. 

5.1. Introduction and Motivation 

There is a large body of research on various reasons why code clones arise—

both across and within system versions—and whether code clones are good or 

bad [17, 137-140]. These studies show that designers may intentionally create 

certain clones to fulfill some design goals (e.g., for performance or readability) 

[17]. Other clones may result from careless design and can be refactored [137, 

139], and yet others may not play any useful role but cannot be eliminated 

using conventional design techniques [140]. Nevertheless, cloning is a reality 

and there is need to deal with it [102]. It is beneficial to know the locations of 

code clones in the programs—how they are similar, and how the clone 

instances differ from one another. This is particularly true for big clones, 

which arise even if software evolution is systematically managed in a reuse-

based manner with variability management techniques [141]. A study of 

industrial systems has shown that around 50% of small cloned code fragments 

tend to be contained in big clones [4]. While big clones are certainly 

intentional, they contribute to increased program size and complexity [4]. 
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Clone management aims at organizing existing clones, minimizing their 

negative effects, controlling their growth and dispersal, and avoiding them 

altogether [102]. Giesecke [142] divided clone management into three 

categories: preventive, corrective, and compensatory. Preventive clone 

management aims at preventing the introduction of new clones into a software 

system. Corrective clone management deals with removing the existing clones 

from the software system. Compensatory clone management aims at 

minimizing negative effects of existing clones that cannot be removed from 

the software system [143]. 

As mentioned above, corrective clone management techniques aim at 

removing the existing clones from the software system. Most of the clone 

management techniques proposed in the literature fall under this category. It 

includes refactoring, macros, generics, higher order functions, etc. [41, 133-

135, 137, 144-146]. However, sometimes this objective is not always feasible. 

Especially, as mentioned above, if clones are created intentionally for better 

performance or readability, it is not wise to remove them altogether [17]. Also, 

removing clones with techniques such as refactoring may result in the system 

design conflicting with other important design goals [22]. Therefore, there is a 

lot of literature on whether to refactor, what to refactor, or what not to refactor 

[18, 134-137]. Clones can be automatically transformed by replacing clones 

with macros (pre-processor commands) [41]. But, program instrumented with 

macros might significantly decrease the comprehensibility of the source code 

[147]. 

Although it may not always be possible to eliminate all the clones from a 

software system [138], these can be dealt with using a generic representation 
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of the software. With this understanding as motivation, we propose a meta-

programming technique and tool, the ART (Adaptive Reuse Technique), that 

can be effectively used to manage big clones within or across versions of a 

software system at the meta-level. The ART is an enhanced, lightweight, and 

XML-free version of the XVCL (XML-based Variant Configuration 

Language) [118]. It manages big clones by representing them in the form of 

non-redundant, adaptable, and reusable templates, called ART templates. ART 

templates can be built for groups of similar program structures of different 

kind (e.g., methods, files, or directories) that differ in terms of the variety of 

ways typically found in the real systems. 

Compared to corrective clone management techniques such as refactoring and 

macros, which aim at removing clones to handle them, the ART provides a 

compensatory clone management solution. It means that the ART aims at 

minimizing the negative impacts of clones (especially big clones) without 

actually removing them. The ART actually does not eliminate clones from 

runtime code, but effectively deals by unifying them at meta-program level. It 

offers enhanced software maintenance by providing two-fold view of the 

software system: one is a clone-free source code in the form of ART templates 

for easier maintenance, and another is an executable code with those useful 

clones that should be kept in the software system during runtime for 

performance reasons. 

The benefits of the ART include simplification of SPL core assets due to non-

redundancy, productivity gain due to concise template representation of 

programs, and easier comprehension and traceability of change impact during 

SPL evolution. In various similarity groups, depending on the cloning, the 
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proposed technique eliminates 25–75% of the code by unifying clones into 

non-redundant templates. Unification of clones further improves program 

understanding. Program relations that have to do with the impact of changes 

are important in program understanding, maintenance, and evolution, but 

remain mostly implicit in conventional programs. ART templates expose and 

explicate some of these program relations. For example, when maintaining 

duplicated code, we often must know where such duplicates are and how they 

are different, in order to decide if and how each of them should be modified. 

The ART makes such information more visible and tractable, reducing the risk 

of unexpected errors when changing programs. 

This chapter provides details of the ART and the methodology of managing 

clones using it. Quantitative and qualitative evaluation of the strengths, 

weaknesses, and trade-offs involved in the application of the ART is explored 

in the next chapter. 

5.2. An Overview of the ART 

The ART is a meta-programming technique and tool that can be effectively 

used to manage clones within or across versions of a software system at the 

meta-level. It is an enhanced and lightweight version of the XVCL [118]. 

XVCL is a dialect of XML. So, it is necessary to know XML syntax and rules 

before understanding and working with the XVCL. The ART parts with XML 

syntax and processing. It uses a C Preprocessor (cpp) [148] based flexible and 

more readable syntax. The ART syntax is flexible in the sense that it offers the 

capability to redefine the syntax as and when needed by the users. This is 

particularly useful when reserved words from the ART syntax conflict with the 
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reserved words of the native language. In such cases, ART syntax can be easily 

changed and users can define their own syntax. Hence, the ART offers user-

defined syntax. Comparison of the ART with the XVCL, preprocessors, and 

other related techniques is presented in the related works section in Chapter 6. 

5.2.1. How Does the ART work? 

The ART works on the principle of representing each clone class found in the 

software system in the form of non-redundant, adaptable, and reusable meta-

components called ART templates. An ART template is a file with original 

program code (i.e., native language of the software) instrumented with ART 

commands (explained in detail in Section 5.2.2) for ease of customization. 

These ART templates can be converted back to the clone classes using the 

ART Processor. The ART Processor takes the ART templates as input and 

generates the instances of the clone classes as output. In this way, as 

mentioned in Section 5.1, the ART offers enhanced software maintenance by 

providing two-fold view of the software system: one is a clone-free source 

code in the form of ART templates, and another is an executable code with 

those useful clones that should be kept in the software system during runtime 

for performance reasons. Next subsection discusses the ART-template solution 

in detail. 

5.2.1.1. An Overview of the ART-Template Solution 

For each of the detected clone class, we distill common code into ART 

templates and mark the locations of variation points using ART commands. 

Figure 5.1 outlines the overall solution, which consists of an ART-template 

hierarchy in which templates at the lower-level serve as building blocks for the 
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higher-level templates. The ART templates are linked together by #adapt 

commands. The top-most template, called the specification file (SPC), 

specifies how to adapt other templates lower in the hierarchy to accommodate 

required variations. The ART Processor checks the templates for their 

conformance to the grammar definitions. It then traverses the template 

hierarchy in the depth-first order, starting from the SPC, and performs 

adaptations by executing the ART commands embedded in the SPC and other 

ART templates. During traversal, each ART template adapts other templates 

from its sub-hierarchy. At the end, the ART Processor produces the required 

cloned instances. 

ART 
Processor

SPC

ART-template hierarchy Clone instances

input output

#adapt
Keys:

----+----
--------+

+----+---
-----+---

-----++--
ART template

 

Figure 5.1. An overview of the ART-template solution 

The flow diagram depicting the various steps of ART-template processing is 

shown in Figure 5.2. The Processor starts by reading the SPC (step-1). It 

fetches the ART commands step-by-step in the order in which they appear in 

the SPC (step-2). Whenever it hits #adapt command (step-3), the processing 

will switch immediately to the adapted template (step-4) and switch back 

when the adapted template finishes its processing. Within a template, each 

ART command is processed one after another, in the same way as in the SPC. 

For the other commands, the Processor executes the ART command and builds 

the output (step-4') incrementally. Once the Processor reaches the end of the 



78 

SPC (step-5), it generates the required source code files (step-6); if not, the 

ART Processor fetches the next ART command from the SPC (step-6'). 

ART 
Processor

Input : Template views of the 
Program

Other 
ART  

Templates

Process the 
Commandis not adapt

Builds output 
incrementally

Complete 
Processing

end of SPC file

Output: Clone Instances

SPC

else 2

1

3

5

4

4'

6

6'

reads

Fetch the 
Command

is adapt

----+----
--------+

---------

 

Figure 5.2. Traversal mechanism of the ART Processor 

Figure 5.3 shows an example to illustrate the ART-Processor traversal 

mechanism. 

1 SS
2 #adapt "X"
3 SSS
4 #adapt "Y"
5 SSSS

SPC

8 YY
9 #adapt "Z"
10 YYY
11 YYYY Y

12 ZZ
13 ZZZ

Z

6 XX
7 XXX

X

<adapts>

<adapts>
<adapts>

SS
XX
XXX
SSS
YY
ZZ
ZZZ
YYY
YYYY
SSSS

ART 
Processor

Key
SS, SSS, XX, XXX, YY,….   :        Original Program code instrumented with ART 

Commands to handle variations in code clones

Output

Processing Order : 
line(1,2,6,7,3,4,8,9,

12,13,10,11)   

 

Figure 5.3. Example illustrating the ART Processor traversal mechanism 

The ART Processor starts processing at line 1 (in the SPC). It emits the code to 

the output file, and then executes the command #adapt "X" (line 2). It 

suspends the processing of the SPC, and transfers processing to template X. 

The ART Processor emits code from lines 6 and 7 to the output file, and 

returns to the SPC (line 3). It then emits code (line 3) to the output file. Next, 
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due to the execution of the command #adapt "Y" (line 4), the execution of the 

SPC is suspended and processing transfers to template Y. While executing the 

template Y, it emits code (line 8) to the output file, and suspends execution of 

the template Y and jumps to template Z due to the execution of the command 

#adapt "Z" (line 9). The ART Processor continues processing this way until the 

end of the SPC (line 5). 

A prominent feature of the ART is that it blends in a non-conflicting way with 

the underlying programming language. It is because the ART syntax is user-

defined. It makes it easy to use without affecting already existing software 

solutions and the people who work with them. 

5.2.2. ART Command Set 

This section presents each of the ART commands in detail. 

5.2.2.1. Comments in the ART 

A single-line ART comment can be written by preceding the symbol %, for 

example: 

% This is a single-line ART comment 

Multi-line ART comments are written between %> and <%, for example: 

%> This is a multi-line 

 ART comment <% 

5.2.2.2. #adapt Command 

#adapt command inside an ART template (say template B) instructs the ART 

processor to: 
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• Suspend the processing of the current ART template (i.e., template B). 

• Process the ART template specified by its attribute name, say 

template_name 

• Process all the descendent ART templates in the hierarchy to the 

adapted ART template (i.e., specified by template_name) 

• If applicable, perform all the customizations specified under the body 

of #adapt command to the visited ART templates. 

• Once processing of adapted ART template and its descendent ART 

template finish, return control back to the current ART template (i.e., 

template B). 

The ART does not support recursive adaptation. It means that an ART template 

is not allowed to adapt itself or any of its ancestors’ ART templates. 

Based on whether customizations have to be applied or not to the adapted 

templates, the ART has two variations for #adapt command. Without any 

specified customizations, #adapt has following format: 

% simple adapt 

#adapt template_name 

We can specify customizations that should be applied to the adapted templates 

under extended #adapt command as follows: 

% extended adapt 

# adapt: template_name 

<customizations> 

#endadapt 
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It is to note that colon character “:” is compulsory after the “#adapt” keyword. 

Also, any of the ART commands can be included under the “customizations” 

field. ART Processor applies the specified customizations to the designated 

templates and proceeds to process them. 

ART command #adapt corresponds to #include directive in cpp that supports 

macro invocation. However, unlike #include directive, #adapt command 

allows the same source file to be customized differently (using extended 

adapt) in different scenarios in which it is reused. 

5.2.2.3. ART Variables and Expressions 

ART variables can be declared using #set command. Using #set command, we 

can declare both single-valued as well as multi-valued variables. 

A single-valued variable can be an integer, expression, or string as below: 

#set var1 = 2                         % assigns integer value 2 to var1 

#set var2 = var1 + 1              % assigns value 3 to var2 

#set var3 = "Text"                % assigns string “Text” to var3 

Note that string values must be in double quotes (").  

A multi-valued variable can be declared using the same #set command, but the 

values are separated by commas as below: 

#set var4 = 2, 3, 4 

#set var5 = "Text1", "Text 2", "Text3" 

ART expressions can appear anywhere in ART templates. An ART expression 

is enclosed between question mark “?” symbols. Value of an ART variable can 

be referred by placing “@” symbol in front of the variable. For example, 
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expression “?@var1?” refers to the value of variable var1. Each extra “@” in 

front of an ART variable indicates another level of indirection, for example: 

#set y = "x" 

#set x = "z" 

#set z = "w" 

?@y?  % @y = value of y = x 

?@@y?  % @@y = value of (value of y) = value of x = z  

?@@@y?              % @@@y = @@x = @z = w 

#set command in the ART corresponds to #define directive in cpp. However, 

the ART has different scoping rules as compared to cpp. ART variables allow 

the variable values to be propagated along the adapted templates. The first 

declaration of an ART variable in a template overrides any subsequent 

declarations of the same variable in all the adapted templates, unless the same 

variable is redefined in the template again. For example, as shown in Figure 

5.4, ART template SPC declares a variable “var” with value 4 (line 2). So, line 

3 outputs “var” value to be 4 (line 10). The #set command in adapted template 

A.art (line 8) is ignored and line 9 outputs value to be 4 (line 11). Line 5 

redefines the value of “var” in the same template, i.e., the SPC. So, line 6 

outputs new value which is 5 (line 12). The adapted template A.art now 

outputs this new value (i.e., 5 in line 13) while processing line 9. 

1 #output  "FileA"
2 #set var = 4
3 The value of variable is: ?@var?
4 #adapt "A.art"
5 #set var = 5  % var is redefined
6 The value of variable is: ?@var?
7 #adapt "A.art" SPC

10 The value of variable is: 4
11 The value of variable1 is: 4
12 The value of variable is: 5
13 The value of variable1 is: 5

ART 
Processor

FileA
8 #set var = 3  % ignored because var is  

overridden by predecessor template
9 The value of variable1 is: ?@var?

A.art  

Figure 5.4. Example: #set command and variables in the ART  
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There are three types of expressions in the ART. These are name expression, 

string expressions, and arithmetic expression. 

A simple name expression may contain just a variable reference, such as: 

?@C? or ?@@C? 

More complex (but more useful) name expressions can be written as: 

?@A@B@C?. In this case, the value of the name expression is computed 

from right to left as follows:  

value of (A <> value of (B <> value of (C) ))     %  symbol ‘<>’ means string 

concatenation.  

Referenced variable names created at each intermediate evaluation step must 

represent variables that exist in processing flow. Otherwise, the ART processor 

reports an error. For example: 

#set A = "B" 

#set B = "C" 

#set C = "D" 

#set D = "F" 

#set BD = "G" 

#set AG = "H"  

?@C?  % @C = value of C = D 

?@A@B@C? % @A@B@C = @A@BD =@AG = H 

?@@@C? % ERROR: @@@C = @@D = @F = ? (variable does not 

exist in process flow) 

A string expression is concatenations of name expressions and strings. In order 

to evaluate a string expression, ART Processor first evaluates the name 
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expressions from left to the right. It then replaces the name expressions with 

their respective values in the string expression. 

For example, with reference to the above example, string expression 

?@A@B@C?"Text"?@D? is evaluated as: 

• Evaluate name expression ?@A@B@C?. It results in H. Concatenate 

this with string “Text”. It results in HText. 

• Evaluate name expression ?@D?. It results in F. Concatenate this with 

HText. Final Output is HTextF. 

Arithmetic expressions are well-formed expressions that can contain ‘+’, ‘-’, 

‘*’, ‘/’ operators and nested parenthesis. It is not allowed to use arithmetic 

expressions intermixed with name expressions or string expressions. 

In arithmetic expressions, ART variables can be referenced simply by referring 

to their names (instead of using “@” symbol). For example, ?a + (b + 2)? is 

valid arithmetic expression where a and b are ART variables as shown below:  

#set a = 2 

#set b = 4 

Value of c is = ?a + (b + 2)?      

In this case, output is: Value of c is = 8  

5.2.2.4. #output Command 

For an ART-template solution, ART Processor interprets the ART commands 

and emits any source code found in the processed ART templates to output 

file(s). Path of such output file(s) can be specified using #output command 

(Figure 5.5(a)). The path can be absolute or relative path. However, this 
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command is optional. In case this command is not used, the ART Processor 

emits the code to an automatically generated default file named 

defaultOutput.txt (Figure 5.5(b)). ART Processor creates defaultOutput.txt file 

in the main folder of its installation. 

#output  "FileA"
#set var = 4
The value of variable is: ?@var?

ART Template

The value of variable is: 4
ART 

Processor FileA

% #output "FileA"
#set var = 4
The value of variable is: ?@var?

ART Template

The value of variable is: 4
ART 

Processor defaultOutput.txt

#output "FileA"
#set var = 4
The value of variable is: ?@var?
#output "FileB"
#set var1 = 2
The value of variable1 is: ?@var1?

ART Template

The value of variable is: 4
ART 

Processor
FileA

The value of variable1 is: 3
FileB

#set class = "A", "B", "C“
#while class

#output ?@class?".java"
public class ?@class? {
//definition of class ?@class?

}
#endwhile

ART Template

ART 
Processor

public class A {
//definition of class A

} A.java

public class B {
//definition of class B

} B.java

public class C {
//definition of class C

} C.java

(a)

(b)

(c)

(d)

 

Figure 5.5. Example: #output command in the ART  

The ART allows using multiple #output commands in a template or across 

template. Once ART Processor executes the “#output file_f”, it emits 

subsequent output in the file file_f, until the next #output command overrides 

the file_f with another file name (Figure 5.5(c)). When ART Processor 

encounters the line “#output file_f” for the first time, it checks whether file 

file_f exists or not. If file file_f does not exist, ART Processor creates the file 

and emits the output to it. Otherwise, the content of the file is overridden by 

the new emitted content. In subsequent processing, if any other #output 
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command refers again to the same output file (i.e., file_f), the new emitted 

content is concatenated to the file. 

Using ART variables, it is possible to emit source code to multiple output files 

using single #output command. For example, as shown in Figure 5.5(d), an 

ART variable “class” is declared with three values. In each iteration of the 

while loop, ART Processor creates a new file and emits the source code to the 

created file. 

5.2.2.5. Loops and Selections 

The ART implements loops and selections using #while and #select 

commands, respectively. #while command is a generation loop that iterates 

over its body and generates custom text in each iteration. #select command 

allows choosing one of many customization options. 

A #while loop can be controlled by using one or more multi-value ART 

variables. It is to mention that all the multi-value variables listed as control 

variables must have the same number of values. Then, in ith iteration of the 

loop, ith value from each of the control variable is used. The ART Processor 

starts the loop with index-value of 1, increments the value of index by 1 in 

each iteration, and terminates by processing the last value of each of the multi-

value variables. Further, it is also possible to specify the name of control 

variable in the #while loop using expressions (as shown in Figure 5.6, line 5). 

1 #set char1 = "A","B"
2 #set char2 = "C","D"
3 #set index = 1,2
4 #while index
5 #while "char"?@index?
6               ?@char@index?
7 #endwhile
8 #endwhile

A
B
C
D

ART 
Processor

Input

Output

 

Figure 5.6. Example: #while command in the ART 
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Using #select command, depending on the value of a control variable, we can 

select one of many options. Options are selected based on the value of the 

control variable specified as attribute in #option clause. Figure 5.7 shows an 

illustrative example for #select command. As shown in the figure, besides 

#option clauses, #select command can include optional #option-undefined and 

#otherwise clauses. #option-undefined clause is processed if control variable is 

undefined. If none of the #options are selected, then #otherwise clause is 

processed by the ART Processor. We can use “|” symbol to specify more 

values to a control variable. For example, “#option Second | Third” is 

processed if value of the control variable index is Second or Third. 

1   #set index = "First", "Second", "Third", "Fourth"
2 #while index
3 #output ?@index?".java"
4 #select index
5 #option-undefined
6 (A) This code is emitted if index IS NOT DEFINED
7 #endoption
8 #option First
9 (B) This code this emitted if index is First
10 #endoption
11 #option Second | Third 
12 (C) This code is emitted if index is Second OR 

Third
13 #endoption
14 #otherwise
15 (D) This code is emitted if index IS DEFINED BUT 

none of the options corresponds to the value of 
index 

16 #endotherwise
17 #endselect
18  #endwhile

(B) This code this emitted if index 
is First

ART 
Processor

Input ART Template

First.java

(C) This code is emitted if index is 
Second OR Third Second.java

(C) This code is emitted if index is 
Second OR Third Third.java

(D) This code is emitted if index IS 
DEFINED BUT none of the options 
corresponds to the value of index 

Fourth.java

 

Figure 5.7. Example: #select command in the ART  

5.2.2.6. Breakpoints (Insert-Break Mechanism) 

The ART supports breakpoint mechanism. Breakpoints serve as anchors where 

additional code can be injected. It makes the ART capable of handling 

unexpected variations during evolution. Breakpoints can be marked using 

#break command. These breakpoints can be easily customized, i.e., additional 

code can be easily injected by using #insert, #insert-before, and #insert-after 

commands. 
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#break command has two variations as shown below. The content under 

#break is the default content. If there is no matching insert command, then the 

break’s default content is processed. Matching is done based on the specified 

name (breakX in the example). 

(1) % simple break command 

#break breakX 

(2) % extended break command 

#break: breakX          %  note that colon (i.e, :) is compulsory 

default-content 

#endbreak 

There are three types of insert commands to modify the templates at the 

breakpoints identified by matching #break command. #insert command 

replaces the default-content of all the matching #break commands with its 

content. #insert-before command inserts its content before the matching 

#break command. Similarly, #insert-after command adds its content after the 

matching #break command. It is to mention that #insert-before and #insert-

after commands do not replace the default-content inside its matching #break. 

Also, a single #break can be simultaneously extended by all three types of 

insert commands (i.e., #insert, #insert-before, and #insert-after commands). 

Figure 5.8 shows illustrative example of insert-break mechanism. As shown in 

the figure, all the insert commands in lines 3–11 are processed with matching 

breakpoint breakABC. The ART Processor emits the output as shown by lines 

1–3 of the output file FileA. In case, there is no #insert that matches a #break 

(e.g., breakDEF), then the break’s default-content is processed. In this case, 

the ART Processor emits the output as shown by lines 4–6 of the output file. 
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1 #output "FileA"
2 #adapt: ABC
3 #insert-before breakABC
4 Insert-Before breakpoint breakABC
5 #endinsert
6 #insert breakABC
7 Replace default-content of 

breakpoint breakABC
8 #endinsert
9 #insert-after breakABC
10 Insert-After breakpoint breakABC
11 #endinsert
12 #endadapt
13 #adapt: DEF
14 #insert-before breakDEF
15 Insert-Before breakpoint breakDEF
16 #endinsert
17 #insert-after breakDEF
18 Insert-After breakpoint breakDEF
19 #endinsert
20 #endadapt

1 Insert-Before breakpoint breakABC
2   Replace default-content of 

breakpoint breakABC
3   Insert-After breakpoint breakABC
4 Insert-Before breakpoint breakDEF
5 default-content from breakDEF
6 Insert-After breakpoint breakDEF

ART 
Processor

SPC
FileA

1 #break: breakABC
2 default textABC
3 #endbreak

ABC

1 #break: breakDEF
2 default-content from breakDEF
3 #endbreak DEF  

Figure 5.8. Example: breakpoints in the ART  

5.2.2.7. Setloop Mechanism 

Many multi-value ART variables can be used to control #while loops. Each 

iteration of the loop uses the ith value of each of the control variables. But 

keeping track of the corresponding values becomes troublesome, especially 

when variables have many values that are often changed. Any mismatch of 

values may cause an annoying error. #setloop command alleviates this 

problem by allowing us to organize the values of the control variables to be 

used in a while loop in a more intuitive and less error prone way than multi-

value variables do. 

The basic usage scenarios for this command can be directly translated into #set 

commands that control #while in a usual way. Suppose we have: 

#set x = "x1", "x2", "x3" 

#set y = "y1", "y2", "y3" 

#set z = "z1", "z2", "z3" 
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#while x, y, z 

Then, instead of specifying a list of all the values one control variable will 

have over all iterations , #setloop provides a list of iterations and specifies the 

value of each variable per iteration as shown below:  

#setloop loopA 

#iter  x = "x1", y = "y1", z = "z1" 

#iter  x = "x2", y = "y2", z = "z2" 

#iter  x = "x3", y = "y3", z = "z3" 

#endsetloop 

#while loopA 

#setloop command contains one or more #iter elements. Each #iter element 

specifies values of control variables to be used in an iteration of a while loop. 

Values specified in ith #iter element are used in ith iteration of the loop.  

“loopA” in the above example serves as an id of the #setlloop. Loop control 

variables declared inside a #setloop (using #iter) can be referred to (read-only) 

from outside as if they were multi-value variables declared at the location of 

the #setloop command, e.g.: 

loopA.x -- where loopA is a loop-name and x is one of its control variables. 

It follows that we can also have a loop that uses any selected control variables 

defined in some #setloop, e.g.: 

#while loopA.x 

In basic usage scenario, each #iter element contains one or more 

“variable=value” pairs. But, it is also possible to set default values for control 

variables in case a value of a given variable is not explicitly stated in the #iter 
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element. It is feasible by using an optional #vars clause in the #setloop that 

allows us to specify control variables with their optional default values. Only 

one default value per control variable can be specified. However, in the 

absence of #vars clause, each #iter must specify values for all control 

variables. In case we have #vars, then all the control variables defined in #iter 

elements must be also listed in #vars, whether or not they have default values. 

In case the same value of a given control variable need to be used in a number 

of iterations, an optional #vars clause can simplify loop specifications by 

providing default values. Whenever the value of a given variable is not 

specified in a #iter, the default value is used. For example, 

#setloop loopA 

#vars 

#var x = "x-dafault" 

#var y = "y-default" 

#endvars 

#iter x = "x1", y = "y1" 

#iter x = "x2"                      % this iteration uses default value of y 

#iter y = "y3"                      % this iteration uses default value of x 

#endsetloop 

In this case, iterations 2 and 3 use default values of y and x, respectively. 

It is true that only one default value per control variable can be specified. But, 

a #setloop can be modified using the insert-break mechanism. This approach 

allows us to modify loop iterations as shown by the example of Figure 5.9. In 

this example, the #setloop defines following values: 

Iteration 1 (line 7 in setloop template): x = x1, y = y1, z = z-default 
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Iteration 2 (line 8 in setloop template): x = x2, y = y-default, z = z-default 

Iteration 3 (line 9 in setloop template): x = x-insert, y = y-insert, z = z-default  

Iteration 4 (line 10 in setloop template): x = x-insert, y = y-default, z = z-insert  

Such cases are very difficult to handle with #set commands that control #while 

in a usual way. 

1 #adapt: setloopFile
2 #insert varsBreak
3 #var z = "z-default“
4 #endinsert
5 #insert iterBreak
6 #iter x = "x-insert", y = "y-insert"
7 #endinsert
8 #insert iterBreak1
9 #iter x = "x-insert” z = “z-insert"
10 #endinsert
11 #endadapt

1 #setloop loopA
2 #vars
3 #var x
4 #var y = "y-default”
5 #break varsBreak
6 #endvars
7 #iter x = "x1", y = "y1”
8 #iter x = "x2”
9 #break itersBreak
10 #break iterBreak1
11 #endsetloopSPC setloopFile  

Figure 5.9. Example: setloop mechanism in the ART  

Table 5 gives summary of selected ART commands. 

Table 5. Summary of selected ART commands 

Syntax Command Definition 
#adapt template_name 
 

or: 
 

#adapt: template_name 
     <customizations> 
#endadapt 

#adapt command instructs the ART processor to adapt the 
named template and its descendants. 
 
#adapt may also allows to specify customizations that 
should be applied to the adapted template. Customizations 
may include any ART commands. 

#output pathname #output command specifies the path of the output file 
where the source code should be placed. The pathname can 
be absolute or relative path. 

If the output file is not specified, then the ART Processor 
emits the code to an automatically generated default file 
named defaultOutput.txt in the main folder of the installed 
ART processor. 

#set var_name = val1[,val2,val3, 
…] 

#set command declares an ART variable “var_name” and 
sets its value to a single or multi-values. 

?@var_name? A direct reference to the value of variable “var_name”. 
Each extra ‘@’ symbol in the front of a variable name 
indicates an extra level of indirection. 

#break breakX 
 

or: 
 
 

#break: breakX 
     default content 

#break marks a breakpoint at which changes can be made 
by ancestor template via #insert, #insert_before, 
#insert_after commands. 

The content under #break is the default content. If no 
#insert matches a #break, then the break's default content 
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Syntax Command Definition 
#endbreak is processed. 

#insert breakX 
     content_body 
#endinsert 
 
#insert-before breakX 
     content_body 
#endinsert 
 

#insert-after breakX 
    content_body 
#endinsert 

#insert command replaces all matching #breaks with its 
content. Matching is done by a name (breakX in the 
example). 
 
#insert-before and #insert-after add their content before or 
after the matching #breaks, without deleting their content. 
 
 

A single #break may be simultaneously extended by 
#insert, #insert-before and #insert-after commands. 

#while var1[,…,varN] 
    content_body 
#endwhile 

#while is a generation loop that iterates over its body and 
generates custom text at each iteration. 

#select control_var 
     #option option 
          option_body 
#endselect 

#select allows us to choose one of the many customization 
options. 

% comment 
%> comments <% 

Single line comment 
Multiple lines comments 

 

5.2.3. ART Syntax 

In this section, we describe syntactical structure for each of the ART 

commands. We use following notations to specify the syntax of ART 

commands: 

• Definition symbol is  ::=, e.g., A ::= B 

• Alternate symbol is |, e.g., A ::= B | C 

• 0 or more times repetition symbol is *, e.g., A ::= B* 

• 1 or more times repetition symbol is +, e.g., A ::= B+ 

• Optional part symbol is square bracket […], e.g., A ::= [B] C  

• Grouping is symbolized by round brackets (…), e.g., A ::= (BC)* 

• Non-terminal symbols are written with a mixture of uppercase letter, 

lowercase letter, digits and a special symbol -. 

• Terminal symbols are keywords, special symbols etc. 
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• Special sequence is symbolized using ?...?, e.g., STRING ::= ? Mixture 

of any characters ? 

Comments in the ART 

comment ::=  ‘%’ SINGLELINE-TEXT | 

 ‘%>’ (SINGLELINE-TEXT | MULTILINE-TEXT) ‘<%’ 

SINGLELINE-TEXT ::= ? Mixture of any characters in a single line ? 

MULTILINE-TEXT ::= ?Mixture of any characters that may spread over many lines? 

#adapt Command 

adapt ::=  as-is-adapt | extended-adapt 

as-is-adapt ::=  ‘#adapt’ path 

extended-adapt ::= ‘#adapt:’ path  

      adapt-body  

‘#endadapt’  

path ::=   Expression | VAR-NAME | STRING 

adapt-body ::=  (command)* 

#set Command 

set ::=   ‘#set’ VAR-NAME = value (, value)* 

value ::=   Expression | VAR-NAME | STRING | INTEGER 

#output Command 

output ::=   ‘#output’ path 

path ::=   Expression | VAR-NAME | STRING 

#while Command  

while ::=  ‘#while’ control-var (, control-var)*  
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      while-body  

#endwhile  

control-var ::=   Expression | VAR-NAME  

while-body ::=   (textual-content | command)* 

#select Command  

select ::=   ‘#select’ control-var  

       [‘#option-undefined’  

option-body  

      ‘#endoption-undefined’]  

      (‘#option’ value ( | value)*  

option-body  

      ‘#endoption’)*  

      [‘#otherwise’  

option-body  

      ‘#endotherwise’]  

#endselect  

control-var ::=   Expression | VAR-NAME  

value ::=   Expression  

option-body ::=   (textual-content | command )* 

#insert and #break Commands 

insert ::=   ‘#insert’[‘-before’ | ‘-after’] break-name 

      insert-content 

#endinsert  

break-name ::=  Expression 

insert-content ::=  (textual-content | command)* 
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break ::=   ‘#break’ break-name  

      break-content  

#endbreak  

break-content ::=  ( textual-content | commad)* 

#setloop Command 

setloop ::=  ‘#setloop’ setloop-name 

      [setloop-vars]  

      (‘#iter’ iter-desc)+  

[break]  

‘#endsetloop’  

setloop-name ::=  VAR-NAME  

setloop-vars ::=   ‘#vars’  

      (‘#var’ VAR-NAME [ = value])+  

      [break]  

‘#endvars’  

iter-desc ::=   VAR-NAME = value (, VAR-NAME = value)* 

value ::=   Expression | VAR-NAME | STRING | INTEGER 

Expression 

Expression ::=   Arithmetic-Expression | Name-Expression | 

String-Expression 

Name-Expression ::=  ‘?’ ‘@’ (VAR-NAME | ‘@’)* VAR-NAME ‘?’  

String-Expression ::=  (STRING* Name-Expression+ STRING*)+ 

Arithmetic-Expression ::= <syntax for arithmetic expressions is same as in C 

preprocessor (‘+’, ‘-‘, ‘*’, ‘/’, nested parenthesis) 
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Command 

command ::=  Any one of the ART commands 

VAR-NAME 

VAR-NAME ::=  (any letter | ‘_’) (any letter | number | ‘_’)*  

ART Processor is case-sensitive. 

STRING 

STRING ::=   ? Mixture of any characters ? 

5.2.4. Architecture and Implementation Details 

Figure 5.10 shows architecture of the ART Processor. It takes the specification 

file (SPC) as input from the user through the ART User-Interface module. In 

the next step, the ART Lexer module, which is a lexical analysis tool in the 

ART, converts the SPC and the other adapted ART templates into sequences of 

tokens. These token sequences are then parsed by the ART Parser in 

accordance with the ART grammar rules, and an abstract syntax tree is 

generated as output. The ART Parser recognizes the ART commands only and 

skips any other code or text. It helps in integrating the ART code with other 

programming languages in an unrestricted form. At the end, the generated 

abstract syntax tree is evaluated using the ART Evaluator module to get the 

required clone instances. 

The ART Processor is implemented in Java and is available in a ready-to-use 

form (available at: http://art.comp.nus.edu.sg/). The lexical analyzer for the 

ART Processor is built by adapting ANTLR [149]. The ART Processor can be 

run from command-line mode as well as using graphical user interface mode. 
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It is also supported by editor plug-ins for Notepad++ and Microsoft Visual 

Studio. 

ART Lexer

ART Parser

ART Evaluator

Token 
Sequence

Cache

EBNF 
Grammar 
for ART 

Input: Meta-level Program Output: Clone Instances

Other 
ART  

Templates

ART User 
Interface

ART 
Options

ART 
Specification 

file

Abstract 
Syntax Tree

--------+
+----+---

-----++--

 

Figure 5.10. Architectural overview of the ART Processor 

5.3. Detailed Methodology 

The research methodology for managing code clones using the ART consists 

of four major steps as shown in Figure 5.11. 

Original Software 
System in Native 

Language

Step 1: Clone 
Detection

Detected 
Clones

Step 2: Clone 
Analysis with 

developer 
involvement

Clone Classes 
to be tailored 

with ART
Step 4: 

Constructing 
ART Templates

Software System 
wrapped in ART 

templates

ART Processor

Step 3 
(Optional): 

Tailoring ART 
Command Set  

Figure 5.11. Detailed research methodology for managing code clones  

5.3.1. Step 1: Clone Detection 

The first step deals with the detection of code clones (small cloned code 

fragments as well as big clones) from the software system. Developers can use 
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any clone detection techniques and tools of their choice for detecting code 

clones. However, the usefulness of the ART directly depends on the accuracy 

of the used clone detector. The better the recall and precision of the clone 

detector, the higher the likelihood of finding the best clone classes whose 

template views can benefit developers. 

In addition to the selection of a proper clone detector, another factor that 

affects the usefulness of the ART is the choice of setting the minimum size of 

a clone that should be detected by the clone detector. For token-based clone 

detectors, Kamiya et al. [42] suggests using the minimum value of 30 tokens 

to obtain meaningful results. We also consider it to be a suitable value for our 

experimentation, as it corresponds to approximately 4–6 lines of codes (LOC). 

5.3.2. Step 2: Clone Analysis with Developer Involvement 

With the large number of clones reported by the clone detector, developers 

should pay most attention to recurring structures of substantial size that form 

meaningful clone classes. ART templates of such structures are likely to be 

beneficial to developers. This section shows such types of clone classes with 

examples. 

5.3.2.1. Types of Clones that can be handled using the ART 

Based on the clone granularity, candidate clone-classes can be grouped into 

different categories as discussed below: 

Similar Directories 

Figure 5.12 gives an example of cloned directories—/jbd and /jbd2 found in 

the Linux kernel-3.10. In the Linux kernel, the Journaling Block Device (JBD) 
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provides a file-system independent interface for file system journaling. There 

are two directories, namely /jbd and /jbd2, implementing this functionality, 

with /jbd2 being an evolutionary branch of /jbd. /jbd2 compatibly extends /jbd 

with new features such as support for 64-bit computers, check-summing of 

journal transactions, and asynchronous transaction commit block write. 

checkpoint.c

jbd jbd2
fs

Linux kernel-3.10

recovery.c journal.c
commit.c transaction.c

revoke.c checkpoint.c recovery.c journal.c commit.c transaction.crevoke.c  

Figure 5.12. Cloned directories /jbd and /jbd2  

Table 6 shows similarities and differences (in terms of LOC) among files in 

/jbd2 with respect to their counterparts in /jbd. The considerable similarity in 

functionality and code between the files corresponding by name in the two 

directories suggests that /jbd2 files were created by copying and modifying 

/jbd files. 

Table 6. Comparison of /jbd2 with respect to /jbd 

Figure 5.13 sketches code snippets highlighting the code similarity and 

differences between the two checkpoint.c files. The directories /jbd and /jbd2 

exemplify the situations that can benefit from ART-template views of the 

program. 

File Name 
Total LOC in 

Corresponding 
jbd/jbd2 files 

Identical 
LOC 

LOC with 
Parametric 
Differences 

Modified 
LOC 

Inserted 
LOC 

Deleted 
LOC 

checkpoint.c 782/705 554 47 12 29 95 
commit.c 1002/1192 523 93 35 364 218 
journal.c 2122/2146 1266 287 29 690 229 
recovery.c 594/862 420 52 12 234 0 
revoke.c 740/769 544 94 3 25 0 
transaction.c 2229/2348 1346 130 56 516 399 
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51:    static inline void __buffer_unlink(struct journal_head *jh)
52:    {
53:    transaction_t *transaction = jh->b_cp_transaction;
54:    
55:    __buffer_unlink_first(jh);
56:    if (transaction->t_checkpoint_io_list == jh) {
57: transaction->t_checkpoint_io_list = jh->b_cpnext;
58: if (transaction->t_checkpoint_io_list == jh)
59: transaction->t_checkpoint_io_list = NULL;
60: }
61:    }

51:    static inline void __buffer_unlink(struct journal_head *jh)
52:    {
53:    transaction_t *transaction = jh->b_cp_transaction;
54:    
55:    __buffer_unlink_first(jh);
56:    if (transaction->t_checkpoint_io_list == jh) {
57: transaction->t_checkpoint_io_list = jh->b_cpnext;
58: if (transaction->t_checkpoint_io_list == jh)
59: transaction->t_checkpoint_io_list = NULL;
60: }
61:    }

Identical Code Fragments : ~554 LOC

128:    while (__log_space_left(journal) < nblocks) {
129: if (journal->j_flags & JFS_ABORT)
130: return;
131: spin_unlock(&journal->j_state_lock);
132: mutex_lock(&journal->j_checkpoint_mutex);

124:    while (__jbd2_log_space_left(journal) < nblocks) {
125: if (journal->j_flags & JBD2_ABORT)
126: return;
127: write_unlock(&journal->j_state_lock);
128: mutex_lock(&journal->j_checkpoint_mutex);

Code Fragments with Parametric Changes: ~47 LOC

333:    set_buffer_jwrite(bh);
334:    bhs[*batch_count] = bh;
335:    __buffer_relink_io(jh);
336:    jbd_unlock_bh_state(bh);
337:    (*batch_count)++;
338:    if (*batch_count == NR_BATCH) {
339:    spin_unlock(&journal->j_list_lock);
340: __flush_batch(journal, bhs, batch_count);

311:    journal->j_chkpt_bhs[*batch_count] = bh;

312:    __buffer_relink_io(jh);
313:    transaction->t_chp_stats.cs_written++;
314:    (*batch_count)++;
315:    if (*batch_count == JBD2_NR_BATCH) {
316: spin_unlock(&journal->j_list_lock);
317: __flush_batch(journal, batch_count);

Code Modification: ~12 LOC

306:  spin_unlock(&journal->j_list_lock);
276:    transaction->t_chp_stats.cs_forced_to_close++;
277:    spin_unlock(&journal->j_list_lock);
278:    if (unlikely(journal->j_flags & JBD2_UNMOUNT))
279:    /* The journal thread is dead; so starting and
281: * waiting for a commit to finish will cause
282: * us to wait for a _very_ long time.*/
284: printk(KERN_ERR "JBD2: %s: “
285:    "Waiting for Godot: block %llu\n“,
286: journal->j_devname,
287: (unsigned long long) bh->b_blocknr);

520:    journal_update_sb_log_tail(journal, first_tid, blocknr,
521:    WRITE_FLUSH_FUA);
522:    spin_lock(&journal->j_state_lock);
523:    /* OK, update the superblock to recover the freed space.
524:      * Physical blocks come first: have we wrapped beyond the end of
525:      * the log?  */
526:    freed = blocknr - journal->j_tail;

460:    __jbd2_update_log_tail(journal, first_tid, blocknr);
Code Deletion: ~95 LOC

Code Insertion: ~29 LOC

 

Figure 5.13. Code snippets of cloned file /jbd/checkpoint.c (left) and 
/jbd2/checkpoint.c (right) 

In the Linux kernel and other software systems that we considered for case 

studies (Java Buffer Library, for example), we found many other cases 

following the pattern of /jbd and /jbd2. However, in some cases, a directory 

contains one or more files that do not have similar counterparts in the cloned 

directory. The reason we find such types of big clones in the Linux kernel—

and, we believe, in many other evolving systems—is the limitation of 

underlying variability management techniques to tackle such duplicated 

program structures in a non-redundant way, due to functional similarities 

among different subsystems, extensions to the existing functionalities, 

adaptation of the existing subsystem code for the new one (incremental 
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development), and decentralized and voluntary basis development efforts 

[150-152]. 

Similar Files 

From the large number of code clones reported by a clone detector, despite 

similar directories, developers should also pay most attention to other 

recurring structures of substantial size that form meaningful clone classes. One 

of such cases is similar files. Due to large size, similar files (i.e., file clones) 

are one of the clone-candidates whose ART templates are likely to be 

beneficial to the developers.  

Many cases of similar files within the same directory, as well as across 

directories, occur in software systems. 

A common reason for replicating a file in the same directory is to make a 

certain existing functionality available for another computer architecture, 

device, or tool. An example from the Linux kernel-3.10 is the drivers for 

different brands of touchscreen devices—in directory 

/drivers/input/touchscreen, 10 files share the same structure and much code. 

Similarly, in the Java Buffer Library, a group of seven source files—

ByteBuffer.java, CharBuffer.java, IntBuffer.java, DoubleBuffer.java, 

FloatBuffer.java, LongBuffer.java, and ShortBuffer.java—have almost 90% of 

the cloned code (either exact or with parametric differences). It makes these 

files a good candidate for the ART-template representation. 

Two directories having almost similar purposes (vide Figure 5.12) may contain 

similar files. Sometimes, the same or similar file may be required in two or 

more directories, even if the corresponding directories do not have enough 
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code similarity. For example, in the Linux kernel-3.10, functionality for 

handling extended user attributes is needed in directories /fs/ext2, /fs/ext3, and 

/fs/ext4, and therefore file “xattr_user.c” that defines this functionality appears 

in all three directories. 

Collaborative Patterns 

Collaborative patterns are useful candidates to consider, especially when ART 

template representation of them proves to be beneficial to developers. For 

example, in the Clone Analyzer-2.0, there are three collaborating methods: 

getJInternalFrame(), getJContentPane(), and getJScrollPane(). These three 

methods occur in each of following three files: “SecondaryNavigator.java”, 

“PrimaryNavigator.java”, and “UserMinerSettings.java”. These three files do 

not have enough code similarity, and hence cannot be considered as file clones 

of each others. But, these three collaborating methods can be represented as an 

ART template that can be shared across these three files. 

Duplicated Code Fragments and Methods 

At times, template views of duplicated code fragments can also be useful, 

particularly so if these code fragments are large enough (at least six LOC, for 

example), play some specific role (e.g., represent some meaningful function), 

and/or recur in many places in programs. For example, in the Linux kernel-

3.10, the code fragments in Figure 5.14 implement a device-specific queue 

handling procedure for different wireless network adapters. An instance of this 

code fragment occurs once in each of the files “rt2400pci.c”, “rt2500pci.c”, 

“rc2800pci.c”, and “rt61pci.c”, and twice in each of the files “rt2500usb.c”, 

“rc2800usb.c”, and “rt73usb.c”. 
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static void rt73usb_start_queue(struct data_queue *queue)  {
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:

rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
break;

case QID_BEACON:
rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
break;

default:
break;

}
}

static void rt2800usb_start_queue(struct data_queue *queue) {
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:

rt2x00usb_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
rt2x00usb_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
break;

case QID_BEACON:
rt2x00usb_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
rt2x00usb_register_write(rt2x00dev, BCN_TIME_CFG, reg);
break;

default:
break;

}
}

rt73usb.c rc2800usb.c

 

Figure 5.14. Sample code fragments from rt73usb.c and rc2800usb.c from the 
Linux kernel-3.10 (differences highlighted) 

5.3.3. Step 3: Tailoring ART Command Set (optional step) 

The ART syntax is cpp based. However, users can easily change the ART 

syntax to suit their requirements. This would be helpful if any of the ART 

commands conflicts with the reserved words of the native language of the 

software system under consideration, or if the ART user feels uncomfortable 

with any of the ART command syntax. We have used the default ART 

implementation, which is a cpp compatible version, i.e., does not conflict 

syntactically with cpp directives. A brief description of the default ART 

command set is given in Table 5 and is explained in detail in Section 5.2.2. 

5.3.4. Step 4: Constructing ART Templates 

This step deals with representing each clone class, found after clone analysis, 

in the form of non-redundant ART-template views of the program. This 

subsection explains how to systematically use the ART to represent clones in 

the form of generic, adaptable, and reusable ART templates. 
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5.3.4.1. ART Template Construction Mechanism 

In ART-template based view of the program, each clone class (i.e., similar 

directories, similar files, etc.) is represented using ART templates. These ART 

templates record the locations of variation points where different instances of 

the clone class differ. 

Despite a large fraction of code common to all the clone instances (i.e., 

identical code fragments in the corresponding clone instances) of a clone class, 

as shown in Figure 5.13, there are mainly following three types of differences 

among corresponding clone instances: 

1. Parametric differences (code with parametric changes)  

2. Alternatives (code modifications), and 

3. Extras (code insertions and deletions). 

The first task during ART-template construction is to identify these similarities 

and differences among corresponding clone instances of the clone class. For 

example, with reference to Figure 5.15: 

• Code fragments A, D, and F correspond to identical code fragments in 

all the three instances of the given clone class. 

• Code fragments B1, B2, and B3 have parametric differences among 

them. Similarly, code fragments H1, H2, and H3 also have parametric 

differences among them. 

• Code fragments E1, E2, and E3 correspond to alternative code in the 

three clone instances. 

• Remaining code fragments are extras, i.e., code insertion or deletions. 
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Parametric Differences Alternative Code

Code Insertion Code Insertion  

Figure 5.15. Illustrative example to show similarities and differences among 
clone instances of a clone class 

Once the corresponding similarities and differences are identified, ART 

templates record exact locations of these variation points at which the clone 

instances differ. ART commands can be used systematically to mark these 

variation points as discussed below: 

• Handling Identical Code Fragments: Identical code fragments can be 

used directly as-it-is in the corresponding ART templates. For example, 

with reference to Figure 5.15, identical code fragments A, D, and F can 

be used directly in the ART-template solution without any 

modification. 

• Handling Parametric Differences: Parametric differences such as 

variations in user-defined identifiers, literals, layout, types, etc. can be 

systematically dealt with the ART. Such differences can be easily 

handled using ART multi-value variables. Such multi-value variables 

can be declared using #set command. Each value of a multi-value 

variable corresponds to the parametric variations in the corresponding 
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clone instances. For example, suppose B1 uses a parameter “b1”, while 

the same parameter is named as “b2” and “b3” in B2 and B3, 

respectively. These parametric differences can be unified by defining 

an ART variable say “var1”, and assigning these values to that variable 

as follows: 

#set var1 = "b1", "b2", "b3" 

The three parametric differences, i.e., “b1”, “b2”, and “b3”, can be 

referenced using “@” operator (as discussed in detail in Section 5.2.2). 

• Handling Alternatives: ART command #select allows choosing one 

among alternatives. Each of the alternatives is represented by a #option 

clause under #select. For example, with reference to Figure 5.15, we 

can unify alternative code fragments E1, E2, and E3 using #select as: 

#select <clone-instance-id> 

#option <clone-instance-1> 

E1         % alternative code from Clone Instance 1 

#endoption 

#option <clone-instance-2> 

E2         % alternative code from Clone Instance 2 

#endoption 

#option <clone-instance-3> 

E3         % alternative code from Clone Instance 3 

#endoption 

#endselect 

• Handing Extras: #insert and #break commands together handle 

additions and deletions of extra code. #break command marks the 

location in the template where the additional code needs to be inserted. 
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Such additional code fragments can be then injected at the marked 

point using #insert, #insert-before, and #insert-after commands. The 

insert-break mechanism is discussed in detail in Section 5.2.2. 

It is to mention that the actual construction of ART templates is a manual 

process that can be performed systematically using the ART commands. Just 

like program design, ART template design requires expert judgment that 

cannot be easily replaced by automated decision making process. There is a 

choice of ART mechanisms such as parameterization, selection, or insertions 

of program structures at designated points in templates that can be used to 

tackle various redundancy situations. These ART template design choices have 

various desirable and undesirable outcomes just like a decision to use a certain 

design pattern during conventional program design may have positive and 

negative implications. However, the process of generation of code from the 

ART templates has been automated using the ART Processor. It is a challenge 

for future research to identify design heuristics that could allow us to automate 

some of the ART template design decisions. 

In the rest of this subsection, we discuss how these ART commands can be 

used systematically during the ART-template construction for different types 

of clones using examples. 

5.3.4.2. Constructing ART Templates for Similar Directories 

We can represent each set of similar directories using an ART-template 

hierarchy. In the template-hierarchy, ART templates are linked via #adapt 

commands. The topmost template, called specification file (SPC), implements 
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the overall process of generating clone instances from the ART-template 

hierarchy. 

With reference to the left side of Figure 5.16, assume that there are three 

directories “DirX”, “DirY”, and “DirZ”. It is mentioned in the Section 5.3.2.1 

that similar directories may follow a regular similarity pattern as in Figure 

5.12. Based on this, assume that “DirX” and “DirY” follow a regular 

similarity pattern. On the other hand, in some cases, a directory may contain 

one or more files that do not have similar counterparts in the cloned directory. 

Assume that “FileZ” in “DirZ” represents such cases. For a given clone class, 

ART template-solution follows a hierarchical structure as shown in the bottom 

part of Figure 5.16:  

1. The topmost ART template at level 1, called SPC, handles parametric 

differences. Also, it is the topmost template that implements the overall 

process of generating clone instances from the ART-template solution. 

2. ART templates at level 2 handle code differences such as alternative 

and extras among the similar files. 

3. Lower-level templates at level 3 handle code similarities in the clone 

instances and serve as building blocks for the corresponding similar 

files. These ART templates are customized using ART commands to 

eliminate redundancies. Further, if required, as shown in Figure 5.16, 

these templates may be interlinked by #adapt commands to form a 

hierarchy (further details to follow when different examples are 

provided in the thesis). 

4. Remaining files that do not have counterparts in the cloned directories 

can be used as-it-is in the template solution. It is to mention that it is 
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one of the enhancements that the ART offers as compared to the 

XVCL. The XVCL does not allow adapting non-XVCL files. 
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Figure 5.16. Constructing ART-template hierarchy 

We use JBD file system of the Linux kernel-3.10 as an example to illustrate 

the template construction process. Figure 5.17 shows a sketch of the ART 

templates for the JBD file system of the Linux kernel-3.10. Each pair of clones 

in the two source files (e.g., checkpoint.c in /jbd and /jbd2) is represented by a 

template (e.g., checkpoint.art). The associated template checkpoint.spc 
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specifies the differences between the two source files as deltas from 

checkpoint.art. The top-most template jbdX.spc navigates the process of 

instantiating the templates to form the Linux source files in their original form.  

Commands to 
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versions of 
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checkpoint.spc
Commands to 

handle differences 
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recovery.spc
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Commands to 
handle differences 

between two 
versions of 

revoke.c

revoke.spc

Commands to 
handle similarities 

between two 
versions of 

revoke.c

revoke.art

Commands to 
handle differences 

between two 
versions of 

transaction.c

transaction.spc

Commands to 
handle similarities 

between two 
versions of 

transaction.c

transaction.art

 

Figure 5.17. Constructing ART templates: JBD example 

Figure 5.18 shows the expansion of some of the ART templates to highlight 

the solution. As shown in jbdX.spc, ART variables are declared using #set 

commands (lines 1–6). Variable “dirName” is assigned two values, “jbd” and 

“jbd2” (line 2) that control the #while loop (line 7). The loop executes twice, 

with the value of “dirName = jbd” in the first iteration, and the value of 

“dirName = jbd2” in the second iteration. The variable “fileName” is set to six 

values, each representing a file name (line 3). 

The ART variable “action” helps represent lines: 

spin_unlock(&journal->j_state_lock);        //in jbd/checkpoint.c 

write_unlock(&journal->j_state_lock);      //in jbd2/checkpoint.c 

in a single line in checkpoint.art (line 4): 

?@action?_unlock(&journal->j_state_lock); 
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1 #break copyright    % insert code from line 
12 in jbdX.spc

2 …
3 …
4 ?@action?_unlock(&journal->j_state_lock);
5 …
6 …
7 #break: wait_cp_io % insert code from  

checkpoint.spc
8 % default source code
9 #endbreak
10 …
11 …
12 #break: process_buffer % insert code from  

checkpoint.spc
13 % default source code
14 #endbreak
15 …

checkpoint.art

1 #adapt "checkpoint.art" % call to the 
template checkpoint.art

2 …
3 …
4 #select dirName
5 #option jbd
6 #insert-before wait_cp_io
7 % code before wait_cp_io beakpoint
8 #insert-after wait_cp_io
9 % code after wait_cp_io beakpoint
10 #option jbd2
11 #insert process_buffer
12 …
13 …
14 …
15 #endadapt

checkpoint.spc

1 % ART variable declarations
2 #set dirName = "jbd", "jbd2"
3 #set fileName = "checkpoint", "commit", "journal", "recovery", "revoke", "transaction"
4 #set action = "spin", "write"
5 …
6 #set tagByte="sizeof(journal_block_tag_t)","tag_bytes"
7 #while dirName, action,…, tagByte
8 #while fileName
9 #output ?@dirName?"/"?@fileName?".c"
10 #adapt ?@fileName?".spc"
11 #insert copyright
12 % content to be inserted on call to "copyright" breakpoint

jbdX.spc

<adapts>

% ART template for versions of transaction.c

Rules highlighting differences between two 
different versions of transaction.c

transaction.spc

<adapts>

% ART template for versions of transaction.c

Rules highlighting similarities between two 
versions of transaction.c

transaction.art

<adapts>

<adapts>

 

Figure 5.18. Code snippet of ART templates for the JBD example 

The two values of “action” are defined by: 

#set action = "spin", "write"     // line 4 in jbdX.spc 

The generation loop defined in line 7: 

#while dirName, action,…, tagByte 

is controlled by a list of variables. In this way, any parametric differences 

between the two checkpoint.c files are catered to. The command #output (line 
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9) instructs the ART Processor to create a directory and to place any further 

output into this directory. Expression “?@fileName?” is used to fetch the 

value of an ART variable fileName (line 9). The #adapt command in line 10 

instructs the ART Processor to include the designated template to the output.  

Variation points at which the two corresponding files (e.g., checkpoint.c) in 

/jbd and in /jbd2 directories differ are marked using ART commands—

references to ART variables, #select, #break, and other commands. ART 

variables control selection of the code in case of alternative differences. This is 

illustrated as “#select dirName” in the template checkpoint.spc (line 4). 

#option (lines 5 and 10 in checkpoint.spc) controls the variable values. 

File checkpoint.c in one directory contains some extra lines compared with the 

checkpoint.c in another directory. These extra lines are specified using #insert 

commands in various “#select dirName” options. “#insert process_buffer” 

(line 11 in checkpoint.spc) propagates the code to “#break: process_buffer” in 

the checkpoint.art (line 12). #insert-before and #insert-after (lines 6–9 in 

checkpoint.spc) add their code before or after the code contained in the 

matching #break (line 7 in checkpoint.art). While #select instruments a 

template with known variations, #break allows for extensions to a template in 

unexpected ways in the specific context of adaptation, without affecting 

others. These provisions for unexpected evolutionary changes give ART 

templates flexibility and stability. 

Other Cases of Clones at the Directory Level 

Other cases of cloned directories may not follow such a regular similarity 

pattern as in /jbd and /jbd2. For example, in the Linux kernel-3.10, in the 
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directories /drivers/infiniband/hw/qib and /drivers/infiniband/hw/ipath, in 

addition to similar files, /drivers/infiniband/hw/qib contains some extra files 

that do not have a counterpart in /drivers/infiniband/hw/ipath. Still, there is 

enough similarity in the concept and the code between 

/drivers/infiniband/hw/ipath and /drivers/infiniband/hw/qib to build ART 

templates for these two directories. The scheme used for building ART 

templates for /jbd and /jbd2 is also applicable in these situations, as ART 

templates manage pairs of similar files only and the remaining other files 

remain intact in the directories. 

5.3.4.3. Constructing ART Templates for Similar Files 

In this case, we deal with similar files found in the same directory and similar 

files in different directories, bearing in mind that directories as a whole are not 

considered good candidates for representing them as templates. For each such 

situation, we can create ART templates for similar files if we think that 

exposition of similarities and differences among these files can aid developers 

in reuse, program understanding, maintenance, and evolution of the software 

system. 

The ART-template solution for similar files follows a similar scheme to that 

shown in Figure 5.17 and Figure 5.18. The topmost template, called SPC, 

specifies the parametric differences between similar files. Similar to previous 

cases, SPC also contains the code to initialize the ART-template solution to 

generate the similar files into their original form. Lower level templates handle 

differences and similarities between the corresponding similar files.  
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5.3.4.4. Constructing ART Templates for Collaborative Patterns 

This case deals with constructing ART-template solution for recurring 

configuration of collaborating methods, where corresponding methods in the 

instances of the configuration are clones of each other and the files containing 

the configuration as a whole are not good candidates for template 

representation. Each of such situations can be handled by creating an ART 

template (as compared to the template hierarchy for similar files and similar 

directories) for the configuration and adapting it in the required files. 

However, similar to other cases, parametric differences are handled using 

multi-valued ART variables. Other differences are handled using loops, 

selection, and insert-break mechanisms. 

Figure 5.19 shows an example of ART-template solution for one of the 

collaborative patterns described in the Section 5.3.2.1. Variable “className” 

is assigned three values each representing the filename containing the instance 

of three collaborating methods (line 1). The #while loop in line 2 controls the 

generation of three instances of the given collaborative pattern. Since the 

corresponding methods in the instances of the pattern are clones of each other, 

the additions and deletions of extra code in the corresponding methods are 

limited to few lines of code only. Hence, they can be easily catered to using 

#select command. For example, method getJContentPane() in 

UserMinerSettings.java contains a few extra lines than its two other instances 

in SecondaryNavigator.java and PrimaryNavigator.java. This can be easily 

handled using #select command (line 5). It improves the readability of the 

constructed template too. As usual, alternative code among cloned methods are 

handled using #select commands (line 13). We further converted a few of 
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collaborative patterns found in JHotDraw 7 and Clone Analyzer into ART 

templates. In these cases, we eliminated 20–40% of the redundant code. 

1   #set className = "SecondaryNavigator", "PrimaryNavigator", "UserMinerSettings"

2 #while className
3      private JPanel getJContentPane() {
4          % common code to all the instances here
5 #select className
6              #option UserMinerSettings
7                  % extra lines of code specific to UserMinerSettings. getJContentPane() method here
8              #endoption
9 #endselect
10    }

11    private JInternalFrame getJInternalFrame() {
12        %common code to all the instances here 
13        #select className
14 #option SecondaryNavigator
15 % alternative code specific to SecondaryNavigator.getJInternalFrame() method here
16            #endoption
17            #option PrimaryNavigator
18                % alternative code specific to PrimaryNavigator.getJInternalFrame() method here
19            #endoption
20            #option UserMinerSettings
21                % alternative code specific to UserMinerSettings.getJInternalFrame() method here
22            #endoption
23 #endselect
24 }

25    private JScrollPane getJScrollPane() {
26         %> common code to all the instance is copied exactly.  
27                Alternatives and differences are handled using ART commands  <%
28    }
29 #endwhile  

Figure 5.19. Code snippet of an ART template for a collaborative pattern 

5.3.4.5. Constructing ART Templates for Duplicated Code 

Fragments and Methods 

Situations where the template views of duplicated code fragments and 

methods can also be useful are handled by creating an ART template and 

adapting it at the required variation points. The solution follows a similar 

scheme to that shown in Figure 5.19. 
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5.3.5. ART Templates to Original Clone-Instances 

ART templates can be converted back to the original native code automatically 

by using the ART Processor. The ART Processor traverses the template 

hierarchy and generates the required clone instances as output.  

As an example, for the templates as shown in Figure 5.18, the ART Processor 

generates the original native code traversing the template hierarchy and 

emitting the code for the six files in the /jbd and /jbd2 directories from their 

respective templates. Template views expose the fact that the two directories 

and corresponding files in them are similar to each other, and also explicate 

every detail of the similarities and differences among them. This information 

is implicit in the original native code. Explicating it using the ART can be 

useful in the future evolution of the software. 

5.4. Conclusions 

In this chapter, we presented a meta-programming technique and tool, the 

ART, that can be used for managing big clones. The ART represents clones in 

the form of non-redundant, adaptable, and reusable templates, called ART 

templates. A prominent feature of the ART is that due to user-defined syntax, it 

blends in a non-conflicting way with the underlying programming language. 

In this chapter, we first described each of the ART commands in detail. Then, a 

systematic mechanism for constructing ART templates has been elaborated. 

The ART has been properly implemented and is available in a ready-to-use 

form. In the next chapter, we discuss the experimental results evaluating the 

effectiveness, usefulness, and benefits of managing code clones using the 

ART. We also discuss related works in detail in the next chapter.  
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Chapter 6.  
EVALUATION AND BENEFITS OF 

MANAGING CLONES USING THE ART 

 

In the previous chapter, we presented a meta-programming technique and tool, 

the ART, that can manage families of redundant software systems by providing 

a common base of non-redundant, adaptable, and reusable meta-components—

called ART templates. This chapter quantitatively and qualitatively evaluates 

the strengths and weaknesses of the ART (Section 6.1). Having discussed the 

related works in Section 6.2, Section 6.3 concludes the chapter. 

6.1. Evaluation  

We have created ART-template solutions for the Java Buffer library, Notepad 

system, and a part of the Linux kernel to quantitatively and qualitatively 

access the strengths, weaknesses, and trade-offs involved in the application of 

the ART. It is to mention that the predecessor of the ART, i.e., the XVCL, has 

already been used in the case studies for Java Buffer library [138] and Notepad 

system [153]. So, performing case studies on Java Buffer Library and Notepad 

system help us to compare the results from two systems. 
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The section is organized as: Initially the case studies using the ART for Java 

Buffer library (Section 6.1.1), Notepad system (Section 6.1.2), and a part of 

the Linux kernel (Section 6.1.3) are presented. Next, the learnings from these 

case studies have been used to perform the quantitative evaluation (Section 

6.1.4) and qualitative evaluation (Section 6.1.5) of the ART. The section ends 

with a discussion on trade-offs of the technique (Section 6.1.6). 

6.1.1. Java Buffer Library Example 

The Java Buffer library has been a part of the java.nio.* package in JDK since 

version 1.4.1. It implements containers for reading and writing data in a linear 

sequence. It consists of buffer classes differing from each others with respect 

to buffer element type, memory allocation scheme, byte ordering, and access 

mode. Figure 6.1 shows a feature diagram [154] with five feature dimensions, 

with specific variant features listed below a corresponding feature dimension 

box. Class names in the Buffer library reflect combination of these specific 

features implemented into a given class. For example, DirectIntBufferR is a 

Read-Only buffer of integers, implemented using direct memory scheme. 

Classes whose names do not include ‘R’, are ‘W’—Writable by default. The 

Buffer library contains classes whose names are derived from a template: 

[MS][T]Buffer[AM][BO], where MS—Memory Allocation Scheme: Heap or 

Direct; T—Element Type: Int, Double, Float, Long, Short, Byte, or Char; 

AM—Access Mode: W (Writable, default) or R (Read-Only); BO—Byte 

Ordering: S (non-native) or U (native), B (Big-Endian) or L (Little-Endian). 

For simplicity, we can ignore VB—View Buffer, which is, in fact, yet another 

feature that allows us to interpret byte buffer as Char, Int, Double, Float, Long, 

or Short. Each legal combination of variant features yields a unique buffer 
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class and it ends up having 74 buffer classes with 68% similarity between 

them [138]. 

Buffer

Element Type 
(T)

View Buffer 
(VB)

Byte Order 
(BO)

Access Mode 
(AM)

Memory Allocation 
Scheme (MS)

double

char

float

byte

long

short

int

Non-direct Direct

Read-Only Writable Little-Endian Big-Endian Native Non-Native

Alternative features Mandatory features Optional features  

Figure 6.1. Features in the Java Buffer library 

Representing code clones using ART templates makes the code easier to 

understand and debug. Based on the clone analysis of the library, 71 of the 

buffer classes can be grouped into seven similarity groups, while the 

remaining three buffer classes (Buffer.java, MappedByteBuffer.java, and 

StringCharBuffer.java) remain intact [138]: 

1. [T]Buffer: seven classes that differ in buffer element type, T: Byte, 

Char, Int, Double, Float, Long, Short 

2. Heap[T]Buffer: seven classes, with memory allocation scheme ‘Heap’, 

that differ in buffer element type, T 

3. Heap[T]BufferR: seven ‘Read-Only’ and ‘Heap’ classes that differ in 

buffer element type, T 

4. Direct[T]Buffer[S|U]: 13 ‘Direct’ classes for combinations of buffer 

element type, T, with byte orderings: S—non-native or U—native byte 

ordering (it is to mention that byte ordering is not relevant to buffer 

element type ‘Byte’) 
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5. Direct[T]BufferR[S|U]: 13 ‘Read-Only’ and ‘Direct’ classes for 

combinations of parameters T, S and U (byte ordering is not relevant to 

buffer element type ‘Byte’) 

6. ByteBufferAs[T]Buffer[B|L]: 12 ‘ByteBufferAs’ classes for 

combinations of buffer element type, T, with byte orderings: B—Big-

Endian or L—Little-Endian. T here denotes all seven buffer element 

types except ‘Byte’ (i.e., equivalent to VB) 

7. ByteBufferAs[T]BufferR[B|L]: 12 ‘Read-Only’ ‘ByteBufferAs’ classes 

for combinations of parameters T (except ‘Byte’), B and L. 

The ART-template solution of the Java Buffer library consists of template 

representations for each of these seven similarity groups (as shown by T1 to 

T7 in Figure 6.2) bonded together with a specification file SPC. Each of the 

similarity groups (e.g., T4) is represented by a template hierarchy, in which an 

ART template is either unique to one class, or is common to some/all of the 

buffer classes. 

SPC

T2 T3 T5 T7

[T]Buffer.spc

ART 
template for 

the code 
common to 

all seven 
classes

ART 
templates 

for the 
code 

unique to 
each class

ART 
templates 

for the code 
common to 

some
classes

T4

ART 
Processor

ByteBuffer.java
CharBuffer.java
IntBuffer.java

DoubleBuffer.java
FloatBuffer.java
LongBuffer.java

Java buffer ClassesART solution for Java buffer library

T1 T6

Legends SPC  :    The Specification file        :    adapt        
T1, T2, …, T7  :    ART template solution for each of seven similarity groups        

ShortBuffer.java

Level 1

Level 2

Level 3

 

Figure 6.2. ART-template solution for the Java buffer library 

Figure 6.3 shows the details of a fragment of the ART-template solution shown 

on the left side of Figure 6.2. As explained in Section 5.3.4.1 in Chapter 5, 
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level 3 ART templates play role of the templates defining common parts for all 

the classes in the respective similarity groups. For example, seven classes in 

the group [T]Buffer are derived using [T]Buffer.art. ART template 

[T]Buffer.spc contains specifications instructing the ART Processor on how to 

adapt [T]Buffer.art and other ART templates at levels below it to derive buffer 

classes in the [T]Buffer group. We have analogical solutions in parts of the 

buffer ART-template solution for other six groups of similar classes. 

1   % specifies how to generate all the buffer classes
2 #set elmtType = "Byte", "Char", "Double", "Float", "Int", "Long", "Short"
3   #set type = "byte", "char", "double", "float", "int", "long", "short"
4   #set elmtSize = "0", "1", "3", "2", "2", "3", "1"
5   #adapt "[T]Buffer.spc"
6   #adapt "Heap[T]Buffer.spc"
7   …
8   #adapt "ByteBufferAs[T]BufferR[B|L].spc"1 % specifies how to generate seven [T]Buffer classes

2 #while elmtType
3 #select elmtType
4 #option Byte
5 #adapt [T]Buffer.art
6 #insert moreMethods
7 #adapt methodsForByteBuffer.art
8 #endoption
9 #option Char
10 #adapt [T]Buffer.art
11 #insert toString
12 Public String toString()
13 { return toString( position(), limit()); }
14 #endoption
15 #otherwise
16 #adapt [T]Buffer.art
17 #endotherwise
18 #endselect
19 #endwhile

1 % a generic [T]Buffer class that output file @elmtTypeBuffer.java
2    #output ?@elmtType?"Buffer.java"
3 package ?@packageName?;
4    public abstract class ?@elmtType?Buffer

extends Buffer implements Comparable 
5    #adapt commonAttributes.art
6    #break moreAttributes
7    #adapt commonMethods.art
8    #break moreMethods
9    #break: toString
10      % default content
11      public String toString() {
12      StringBuffer sb = new StringBuffer();
13      sb.append(getClass().getName()); 
14      …etc…
15      return sb.toString();   } }
16  #endbreak

1 % generic representation of methods common 
2 % to [T]Buffer and may be yet other classes, e.g.,
3   public static ?@elmtType?Buffer wrap(?@type?[] array) {
4        return wrap(array, 0, array.length);  }

1 % methods specific to ByteBuffer only
2   public static ByteBuffer allocateDirect(int capacity) 
3        { return new DirectByteBuffer(capacity);  }

SPC

[T]Buffer.spc

[T]Buffer.art

methodsForByteBuffer.art
commonMethods.art

 

Figure 6.3. ART-template solution for seven [T]Buffer classes (partial) 

#set command in line 2 of the SPC assigns values listed on the right side to a 

variable named elmtType. Expression ?@elmtType? refers to one of such 

values (line 4 in [T]Buffer.art, for example), which is replaced by the 

variable’s value during processing. Having set values for the ART variables, 

the SPC initiates generation of classes in each of the seven groups of similar 

classes via suitable #adapt commands (lines 5–8). 
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The #while loop in [T]Buffer.spc (lines 2–19) is controlled by a multi-value 

variable, namely elmtType. In each iteration, the #select command uses the 

current value of elmtType to choose a proper #option for processing. 

#output command in [T]Buffer.art (line 2) defines the name of a file where 

ART Processor will emit the code for a given class. ART template 

[T]Buffer.art further defines common elements found in all seven classes in 

the group. Five of those classes, namely DoubleBuffer, IntBuffer, FloatBuffer, 

ShortBuffer, and LongBuffer, differ only in type parameters (as in the sample 

method wrap() shown in ART template commonMethods.art). These 

differences are unified by ART variables, and no further customizations are 

required to generate these five classes from [T]Buffer.art. These five classes 

are catered for in #otherwise clause under #select (lines 15–17 in 

[T]Buffer.spc). However, classes ByteBuffer and CharBuffer have some extra 

methods and/or attribute declarations. In addition, method toString() has 

different implementation in CharBuffer than in the remaining six classes. 

Customizations specific to classes ByteBuffer and CharBuffer are listed in the 

#adapt commands, under #option Byte and #option Char, respectively. 

The ART-template representation of the Buffer library explicates every detail 

of the similarities and differences among buffer classes. This information is 

implicit in the original Buffer library. Knowing the similarities and differences 

among the buffer classes helps the programmer to easily comprehend and 

understand the code. The original Buffer library consists of 16,299 LOC 

(including java code and comments), which are reduced to just 3,771 LOC 

(including java code, comments, and ART commands) in the non-redundant 

ART-template solution. 
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6.1.2. Notepad Example 

Besides achieving non-redundancy in the software systems, this case study 

(taken from [153]) also exemplifies the capability of the ART in managing 

multiple versions of a software system from a common code-base. The 

Notepad example discussed is for illustration purposes, but the technique can 

be applied to any large software system that is a member of the product line. A 

Notepad is a typical text editor with drop-menus, a toolbar, and an editing 

panel. Our objective is to use the ART to develop a generic solution so that: 

• It can cater to any changes arising during software maintenance and 

evolution, such as the addition of more menus, menu items, toolbar 

buttons, or functionality. 

• It can be used in developing other similar systems (i.e., members of the 

Notepad product line). 

Custom requirements of different customers/users may lead to multiple 

versions of the Notepad which differ in features such as the title of the 

Notepad, color, and appearance. In addition, variation in platforms or 

hardware may lead to multiple versions of the Notepad. The ART provides a 

general solution (as shown in Figure 6.4) that can be easily customized as per 

the version requirements. It consists of a template hierarchy, in which upper-

level templates adapt the lower-level templates. The topmost template, SPC, 

contains the specifications for various versions of the Notepad system. It 

instructs the ART Processor on how to customize the remaining templates to 

generate the code for a specific version of the Notepad system. Figure 6.5 

shows expansion of some of the ART templates highlighted in the solution. 
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notePad

menuBar toolBar statusBar

ART Processor

ART solution for Notepad system

editor

Keys
SPC   :    The Specification file        

:    adapt        

SPC

newFile saveFile cutopenFile exit pastecopy about

fileLoader

-+-----+--------

-------++-------

-----+--------+-

-+-------+------
Multiple versions of  notepad  

Figure 6.4. ART-template solution for the Notepad example 

As shown in Figure 6.5, SPC defines the requirements for a custom notepad 

using different #set commands (lines 1–15). Customized title and background 

color for the notepad are defined in lines 4 and 5 respectively. Multi-value 

variables in lines 8–15 define customized menubar and its corresponding items 

for the required notepad. These customizations are then used by other lower-

level templates in the hierarchy. These lower-level templates can be adapted 

using a #adapt command (line 16). 

ART template notePad.art contains native code common to all the versions of 

Notepad as well as ART commands that mark the variation points among these 

versions. Each component of the Notepad (i.e., toolbar, editor, menubar, or 

statusbar) is designed as a separate template that can be reused and maintained 

as per requirements. These templates are adapted into notePad.art using #adapt 

commands (lines 12–18 in notePad.art).  

The given solution further expands the templates for menubar items. Each 

item in the menubar has a name, an icon, and an associated action. The code 

for creating one menu-item is very similar to the code for creating other menu-

items (except with a few parametric differences and possibly a little 
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addition/deletion of methods). Therefore, menuBar.art contains a generic 

solution for creating all kinds of menu-items. A specific menu-item can be 

generated using menuBar.art by adapting corresponding templates (line 30 in 

menuBart.art). For example, ART template newFile.art can be adapted for 

generating a menu-item for creating a new empty file. 

1 #set TITLE = "Notepad"
2 #set BGCOLOR = "gray"
3 …
4 class ?@NOTEPAD? extends JPanel {
5 …
6 public static void main(String[] args) {
7 try {
8 JFrame frame = new JFrame();
9 frame.setTitle(\"?@TITLE?\");
10 frame.setBackground(Color.?@BGCOLOR?);
11 …
12 #adapt "editor.art"
13 #adapt "menuBar.art"
14 #adapt: "toolBar.art"
15 #insert TOOLBAR_ACTIONS
16 #endinsert
17 #endadapt
18 #adapt "statusBar.art"

notePad.art
1 % ART variable declarations
2 …
3 // Create a Java menubar
4 protected JMenuBar createMenubar() {
5 …
6 #while Menubar
7 m = new JMenu(\"?@Menubar?\");
8 #while "Items"?@Menubar?
9 #select "Items"?@Menubar?
10 #option "-“
11 m.addSeparator();
12 #endoption
13 #otherwise
14 mi = new JMenuItem(\"?@Items@Menubar?\");
15 mi.addActionListener(new java.awt.event.ActionListener() {
16 public void actionPerformed(ActionEvent e)

{?@Action@Items@Menubar?();
17 …
18 #endotherwise
19 #endselect
20 #endwhile
21 #endwhile
22 …
23 #break: MENUBAR_ACTIONS
24 #while Menubar
25 #while "Items"?@Menubar?
26 #select "Items"?@Menubar?
27 #option "-“
28 #endoption
29 #otherwise
30 #adapt ?@Action@Items@Menubar?".art"
31 #endotherwise
32 #endselect
33 #endwhile
34 #endwhile
35 #endbreak

menuBar.art

% code for ART 
template newFile.art

newFile.art

% code for ART 
template openFile.art

openFile.art

% code for ART 
template saveFile.art

saveFile.art

% code for ART 
template exit.art

exit.art

% code for ART 
template about.art

about.art

1 % Set title, color etc for the customized notepad
2 #output "Notepad.java”
3 #set NOTEPAD = "Notepad"
4 #set TITLE = "A Notepad"
5 #set BGCOLOR = "lightGray
6 …
7 % set menubar and corresponding items
8 #set Menubar = "File","Edit","Help"
9 #set ItemsFile = "New","Open","Save","-","Exit"
10 #set ItemsEdit = "Cut","Copy","Paste"
11 #set ItemsHelp = "About“
12 #set ActionNew = "NewFile"
13 #set ActionOpen = "OpenFile"
14 …
15 #set ActionPaste = "Paste"
16 #adapt “notePad.art”

% code for ART 
template toolBar.art

toolBar.art

SPC

 

Figure 6.5. Code snippet for ART-template solution for the Notepad example 
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6.1.3. Linux Kernel Example 

Linux kernel example illustrates the ART’s ability to manage big clones, while 

a range of other techniques (e.g., cpp and Kconfig in Linux project) deal with 

other aspects of the overall variability management problem. Such seamless 

integration is necessary to allow developers to painlessly inject ART templates 

into projects in mature stages of evolution when big clones start emerging. 

ART syntax is user-defined to make such injection easy, without affecting 

already existing software solutions and people who work with them. In Linux 

kernel example, the ART can be viewed as an extension of cpp—ART 

commands syntactically resemble cpp directives and can be incrementally 

learned as extensions that enhance reuse capabilities of cpp. Figure 6.6 shows 

how the ART can be used in integration with cpp in the Linux kernel. 

Configure 
Linux

cpp

Linux Developer

Linux SysAdminLinux kernel
for a target 
computer

Kconfig

Original Linux 
kernel in cpp

Linux kernel in 
cpp wrapped with  

ART templates

Create ART 
templates of 

the kernel

ART 
Processor

Find big clones
Clone 

Detector

Evolve Linux

 

Figure 6.6. Working of the ART in integration with cpp for Linux kernel 

As shown in Figure 6.6, there are two main user roles: the Linux Developer 

and the Linux SysAdmin. A Linux Developer is a member of the open-source 

community who contributes enhancements to the Linux kernel such as 

including new devices. The Linux SysAdmin adapts the kernel for her 
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computer using tools such as Kconfig. The Linux Developer can build ART 

templates on top of the Linux code managed by cpp. The ART templates do 

not affect the work of the Linux SysAdmin. Big clones are identified in the 

Linux kernel by a suitable clone detector. The Linux Developer then creates 

ART templates, and from that point onwards, big clones are maintained via the 

ART-template representation of the kernel. 

ART templates can be converted back to the original Linux code using the 

ART Processor. The ART Processor instantiates the ART templates in the same 

way the C Preprocessor expands cpp directives. For example, for a template 

representing a group of similar files, the ART Processor generates code for 

these files based on specifications of deltas—differences between the template 

and each of these files. The generated Linux code is in the original form, and 

can be processed normally by Kconfig, cpp or the make tool. Figure 6.6 shows 

how the template view of the Linux kernel and the original Linux kernel can 

be used together in two independent cycles of maintaining and using the 

kernel.  

Cloning in the Linux kernel has been extensively studied in the literature [150-

152]. Our objective is not to have systematic clone analysis in the Linux 

kernel. Instead, we focused our effort on finding representative examples of 

various types of large-granular repetitions in the Linux kernel to illustrate the 

usage of our technique. We analyzed some parts of the /fs and /driver 

subsystems to find representative examples. The JBD file system, cloned files 

having code for drivers for different brands of touchscreen devices, etc. 

highlighted in Section 5.3 in Chapter 5 are few of such examples. We have 

already illustrated the ART-template solution for JBD file system in Section 
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5.3.4.2. We created ART-template solutions for other examples also. However, 

the construction follows the same mechanism as illustrated by various 

examples explained in the thesis. The original Linux code consists of 19,627 

LOC (including C code, cpp directives, and comments), which are reduced to 

12,453 LOC (including C code, cpp directives, comments, and ART 

commands) in the ART-template solution. 

It is to mention that ART templates are not created for quick gains during 

development, but for long-term gains during software evolution and reuse. 

ART aims to benefit long-lived systems that undergo extensive evolutionary 

changes, or need to be tailored to the needs of multiple customers. 

6.1.4. Quantitative Evaluation 

For quantitative assessment, we compared the number of conceptual elements 

in the original source code, XVCL templates, and in the ART templates. We 

consider the following conceptual elements: 

• For the original source code: LOC (native code, comments, without 

blanks), number of source files and directories, and McCabe’s 

cyclomatic complexity. 

• For XVCL and ART templates: LOC (native code, XVCL/ART 

commands, comments, without blanks), number of XVCL/ART 

templates, and any source files that are defined outside of templates, 

and McCabe’s cyclomatic complexity. 

Table 7 shows the quantitative analysis results. 
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Table 7. Quantitative analysis 

The predecessor of the ART, i.e., the XVCL, has already been applied in many 

case studies including industrial projects [21, 22, 118, 129, 138, 140, 153, 

155]. In these industrial projects, productivity impact of applying the XVCL 

was measured and evaluated. There are sufficient evidences from these 

projects that the overhead incurred by the application of the XVCL is smaller 

than benefits incurred by the XVCL. We have built the ART that further 

improves the capability of the XVCL, thus to be more impactful (the ART’s 

improvement to the XVCL are highlighted in ‘Related Works’ Section 6.2.2). 

Further, apart from reducing the physical size and conceptual complexity, 

template views of the program emphasize important relationships among 

program elements that matter to programmers trying to understand and modify 

the code. Instead of dealing with each directory or file separately, 

programmers can comprehend them in groups, and see the commonalities and 

differences among members of each group. This is helpful in debugging and 

enhancing the code, as it reduces ripple effects and the risk of update 

anomalies. In this way, if one wants to change a file, it is easy to check 

whether the changes also affect the other files. For example, as illustrated in 

Figure 6.2 and Figure 6.3, similarities and differences are explicitly visible 

among the Java Buffer classes. Such relations are generally hidden in 

 Java Buffer Library 
Example 

Notepad 
Example 

Linux Code 
Sample 

Conceptual  
Element 

Original 
Code 

XVCL 
solution 

ART 
solution 

XVCL 
solution  

ART 
solution 

Original 
Code 

 ART 
solution  

LOC 16299 4149 3771 674 450 19,627 12,453 
No. of Source Files  74 N/A 3 N/A 0 28 0 
No. of XVCL/ART 
Templates 

N/A 54 54 15 15 N/A 20 

No. of Directories 1 8 8 1 1 7 6 
McCabe V(G) 1114 329 289 12 12 1725 1156 
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conventional programs. Making them visible and easily tractable improves 

program maintenance. It also makes the impact of changes easy to 

comprehend. 

6.1.5. Qualitative Evaluation 

This subsection qualitatively accesses the strengths, weaknesses, and trade-

offs involved in the application of the ART. 

6.1.5.1. Aid in Program Understanding and Maintenance 

Non-redundancy: ART templates eliminate duplicated code from the software 

systems. For example, in the detected clone classes, we eliminated 30–70% of 

the duplicated code. As both code and comments are important components 

for software maintenance and program understanding, the advantage of using 

the ART is that it is possible to manage both the cloned code and the 

comments with it. The ART allows a clean separation of various sources of 

changes that affect the program during evolution. ART templates reduce the 

number of points at which affected changes must be made. Changes made to 

one template consistently propagate to all contexts in which that template is 

adapted. Even if the changes are not uniform, adaptations can be made at 

specific variation points using ART commands without directly modifying the 

code fragments. The ART-template hierarchy explicitly reflects the impact of 

changes on the program structure. We can easily trace how different features 

affect the code. 

Enhancing program understanding and conceptual integrity: According to 

Brooks [156], program understanding and conceptual integrity are the most 

important considerations in system design. Big clones often embody domain-
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specific abstractions or design concepts. By formally capturing these 

abstractions and concepts, ART templates aid in program understanding and 

enhance the conceptual integrity of the design. 

Creating templates can be considered as refactoring at the meta-level: In 

some cases, developers seek to improve certain program qualities but due to 

some unavoidable reasons cannot achieve this at the code level. In such cases, 

we can achieve this at the level of ART templates instead. We benefit from 

non-redundancy at the level of ART templates, while still keeping repetitions 

in programs (as it is often desirable or unavoidable [18, 140]). 

Formally representing multiple design views: Program modules often belong 

to many logical groups that matter to developers at different times. Each 

logical partitioning reflects a certain aspect of the program design that matters 

at a given time in the development in a given context. For example, for a given 

business function in business software, the modules for user interface, 

business logic, and database are usually implemented in different system 

partitions. Logically, these modules belong to each other, and sometimes we 

must know which modules implement a given business function completely. 

However, only one logical partitioning can be formally represented in a 

program’s physical structure. The ART provides a means to overlay programs 

with a web of meta-structures formally defining these logical partitions linked 

to the code, and without conflicts with the code. 

6.1.5.2. Reusing Templates within a Version of the Software 

In a large system such as the Linux kernel, there are many subsystems and 

modules in which similarities are found. Similar directories, files, or methods 
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may also be found across subsystems or modules. Each similarity group is 

managed by ART templates, as shown in the previous chapter. Therefore, non-

redundant program views of similarities consist of many template hierarchies, 

one for each similarity group that is found to be worth exposing using the 

ART. As shown in Figure 6.7, the ART allows reusing of lower-level templates 

among the templates representing different clone classes that further simplify 

the overall non-redundant representation of the Linux kernel. Knowing the 

repetitions, their locations, and the exact nature of similarities and differences 

among replicated program structures is generally useful in understanding 

program design. 

% SPC for touchscreen drivers
…
…
#adapt "touchscreen/common.art"

touchscreen/start.spc

ART template for disconnect and 
connect method common to both 
touchscreen AND joystick drivers

commonConnectDisconnect.art

ART template for serio driver 
structure common to both 

touchscreen AND joystick drivers

serioDriverStructure.art

Templates for touchscreen drivers only Templates for joystick drivers only

% Template common for all touchscreen drivers only
...
#adapt "commonConnectDisconnect.art"
…
#adapt "serioDriverStructure.art"
…

touchscreen/common.art
<adapts>

% SPC for joystick drivers
…
…
#adapt "joystick/common.art"

joystick/start.spc

% Template common for all joystick drivers only
...
#adapt "commonConnectDisconnect.art"
…
#adapt "serioDriverStructure.art"
…

joystick/common.art
<adapts>

Reused templates among joystick and touchscreen drivers

Code Snippet illustrating reuse of ART template (CommonConnectDisconnect.art and 
serioDriverStructure.art) by both touchscreen and joystick drivers

<adapts>

 

Figure 6.7. Template reuse: reusing ART templates 

The example in Figure 6.7 shows how ART templates reveal implicit 

couplings among bigger structures that contain repetitions. The same 

functionality defined in the templates commonConnectDisconnect.art and 

serioDriverStructure.art is needed in /touchscreen/common.art and 
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/joystick/common.art. Templates for these two directories explicitly show the 

fact that this functionality is needed in both /touchscreen and /joystick drivers. 

If such implicit dependency among program modules is not documented, it 

may be overlooked during program evolution that may lead to errors. 

6.1.5.3. Reusing Templates across Versions of the Software 

Template reuse interconnects ART-template solutions developed for different 

clone classes from the bottom, as shown in Figure 6.7. It is also useful to 

interconnect partial ART-template solutions from the top, by introducing 

higher-level umbrella templates that trigger ART processing of some or all 

templates in the solutions. Umbrella templates help developers manage 

multiple versions of the software from a common base. Using umbrella 

templates, as shown in Figure 6.8, we represented the commonalities between 

two versions, together with the version-specific code in different templates. 

% The file which adapts 
kernel  as per requirements
…
#adapt "kernel_3_9.spc"
#adapt "kernel_3_10.spc"
#adapt "kernel_3_11.spc"
…

%Template specific to kernel 3.10

#adapt "fs.spc"
#adapt …
#adapt "drivers.spc"

#adapt "jbdX.spc"
#adapt …
# adapt ...

#adapt "touchscreen.spc" 
#adapt … 
#adapt "joystick.spc"

start.spc

kernel_3_10.spc

drivers.spcfs.spc

%Template specific to kernel 3.11

#adapt "fs.spc"
#adapt …
#adapt "drivers.spc"

kernel_3_11.spc

ART templates specific to particular Linux 
versions

ART templates 
for the code 

common to all
versions of the 

Linux kernel

ART templates 
for the code 
specific to 

Linux kernel-
3.9 only

ART templates 
for the code 
specific to 

Linux kernel-
3.10 only

ART templates 
for the code 
specific to 

Linux kernel-
3.11 only

ART templates 
for the code 
common to 

some versions of 
the Linux kernel

ART templates shared among two or 
more  versions of the Linux kernel  

Figure 6.8. Umbrella templates for an overall ART-template solution 
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6.1.5.4. Handling Evolutionary Changes 

Evolution often brings forward changes to the requirements and related code. 

In this case, ART templates help in easy but disciplined evolution of the 

software. In an ART-template solution, certain types of changes (e.g., in case 

of Notepad system—addition of a new menu-item in the Notepad which has 

code similar to the other menu-items except some parametric variations) can 

be easily accommodated by modifying the values of a few particular ART 

variables (e.g., by assigning one or more additional values to the respective 

ART variables). For drastic changes such as the additions of new methods 

(e.g., a method to print the content of the Notepad), the proposed solution 

merely requires adapting a few ART templates at various variation points 

using ART commands. 

Similarly, for example, in the Linux kernel, there might be a need to add a new 

directory /jbd3, or add more files to the JBD directories. The ART has 

provisions to accommodate evolutionary changes to the templates (e.g., adding 

jbd3), without affecting existing code derived from the templates (e.g., jbd and 

jbd2). Assuming that the new directory /jbd3 also contains six files that are 

similar to their counterparts in the /jbd and /jbd2, we need to make the 

following changes to the templates shown in Figure 5.18: 

jbdX.spc: 
   #set dirName = "jbd", "jbd2", "jbd3"  
   #set fileName = "checkpoint",…, "recovery" 
   … 
   #while dirName , action,…, tagByte 
   #while filename 
   #output ?@dirName?"/"?@fileName?".c"  

 #adapt ?@fileName?".spc" 
… 
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checkpoint.spc:  
   #adapt: "checkpoint.art"  
   #select dirName  
   #option jbd3  
   … 
 

checkpoint.art:  
 // Customizations to checkpoint.art specific to jbd3 

 
// Customizations to the other ART templates considering jbd3 

In case of new variation points between the template and the file in /jbd3, we 

place new #break commands in the template. These new #break commands 

will cater to the differences specific to /jbd3, injected by #insert commands in 

“#option jbd3” without affecting the /jbd or /jbd2. 

6.1.6. Trade-offs and Threats to Validity of Results  

The main returns on investment of applying the ART are increased reuse 

opportunities, reduced program understanding and maintenance efforts, and 

non-redundant source code. However, applying a new technique is not free; it 

entails cost and involves trade-offs. The flexibility of manipulating the code in 

an unrestricted way comes at the price of not being able to quarantine the 

correctness of the generated code. Unrestrictive program manipulation 

decreases the type-safety of the program. In addition, there is a trade-off 

between the benefits and cost of learning the new technique. ART syntax is 

very simple and consists of only few constructs (such as #adapt, #while, or 

#insert-break mechanism). Yet building quality ART templates requires skilled 

experts, and as such the benefits of the ART are offset by the burden of 

learning and adopting it. 

The benefits of the ART depend on the degree of redundancy in a software 

system that cannot be fixed by simple refactoring. The bigger the size of 



138 

software systems, the higher the likelihood of redundancies and evolutionary 

changes, and hence the greater the benefits of using the ART. It follows that 

families of similar systems should be prime candidates for ART-template 

views, as there is much similarity among components of such systems. Thus, 

the proposed technique seems to have more direct relevance in the SPL 

context, where we have the role of domain engineer who is responsible for 

building reuse-based productivity solutions that serve many systems in long 

run. ART templates belong to that category of solutions. 

6.2. Related Works 

This section discusses various available works similar to the proposed work. 

The discussion has been grouped into various subsections. 

6.2.1. Managing Redundancies in Software Systems 

Simple-minded development often leads to cloning in various forms (the copy-

paste-modify practice). As mentioned earlier, cloning may also be done for 

good reasons [17]. Still, non-redundancy has always been considered an 

important quality of well-designed software. The Software Engineering 

principle of generality encourages the avoidance of repetitions and the 

building of parameterized software solutions that can be reused in many 

contexts. Macros were an early attempt to make programs adaptable to various 

contexts. Goguen popularized the ideas of parameterized programming [157]. 

Among programming language features, type parameterization [158] (called 

generics in Ada, Eiffel, Java and C#, and templates in C++), higher-order 

functions, and inheritance can help avoid repetitions in certain situations. 

Design techniques such as iterators, design patterns, table-driven design (e.g., 
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in compiler-compilers), and modularization with information hiding are 

supportive in building generic programs. The Standard Template Library 

(STL) is a prime example of engineering benefits gained by generality [144]. 

Techniques have also been proposed to lift sufficient code similarity from the 

code to the architectural level [159, 160]. 

Compared to other approaches that strive for generality, the ART uses 

templates and code generation to achieve non-redundancy. ART templates can 

represent any groups of clones (e.g., files, directories, or patterns of 

collaborating components) with arbitrary differences among them (as opposed 

to only type-parametric differences in C++ templates or Java generics). From 

the ART-template solution of a clone class, the ART Processor generates code 

for all the clone instances based on the specifications of deltas, i.e., the 

differences between the template and each of the clone instances in a clone 

class. 

6.2.2. ART versus XVCL 

The XVCL has been effectively used to achieve non-redundancy in the 

program areas where it matters. It includes many case studies including 

industrial projects [21, 22, 118, 129, 138, 140, 153, 155]. The ART improves 

and enhances the concepts of the XVCL, implementing them in a way that lets 

developers easily blend ART’s management capabilities with other 

programming technologies of their choice. The user can define her own syntax 

to avoid conflicts with native languages, and to make it easy to use the ART 

with other management techniques. Despite user-defined syntax, the ART 
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further improves the user experience by providing the following 

improvements to the XVCL: 

• Easy to learn: The XVCL is a dialect of XML and uses XML trees and 

a parser for processing. It is a prerequisite to know the XML syntax 

and rules for understanding and writing XVCL source. The ART parts 

with XML syntax and processing. It offers a cpp-based flexible and 

more readable user-defined syntax. This makes learning the ART easy. 

Figure 6.9 shows a code fragment in XVCL syntax and ART syntax. 

 

Figure 6.9. A code fragment in XVCL (left) vs ART (right) syntax 

• More generalized: Unlike the XVCL, developers can easily blend the 

ART with the programming technologies of their choice. This is 

because the developers can define their own syntax (i.e., can redefine 

default ART syntax as per her requirements), and hence avoid conflicts 

with the base languages. 

• Expanding the customization options under #adapt command: In the 

XVCL, the only command that you can place under the <adapt> is 

<insert>. The ART allows the use of any command under #adapt. 

Using #set, #while, and #select commands under #adapt is particularly 

very useful. For example, Figure 6.10 shows ART template 
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ByteBufferAs[T]BufferR[BL].spc for one of the similarity groups of 

the Java Buffer library. As shown in the figure, lines 9–16 define 

#select under #adapt command (line 8). 

1 #set java_nio_packageName = "java.nio"
2 #set elmtType = "Char","Double","Float","Int","Long","Short"
3 #set elmttype = "char","double","float","int","long","short"
4 #set elmtSize = 1,3,2,2,3,1
5 #set ByteOrder = "B","L“
6 #while elmtType, elmttype, elmtSize
7 #while ByteOrder
8 #adapt: "BufferExample/ByteBufferAs[T]BufferR[BL]/ByteBufferAs[T]BufferR[BL].art"
9 #select elmtType
10 #option Char
11 #insert-after moreMethods
12 #adapt "BufferExample/ByteBufferAs[T]BufferR[BL]/ByteBufferAsCharBufferR_methods.art"
13 #endinsert
14 #endoption
15 …
16 #endselect
17 #endadapt
18 #endwhile
19 #endwhile

ByteBufferAs[T]BufferR[BL].spc

 

Figure 6.10. Using commands other than #insert under #adapt 

• Robust structure instead of unreadable loops: In the XVCL, while 

loops using many multi-value variables can be quite confusing. The 

ART introduces a structure called set-loop (#setloop command) which 

gives the possibility to store and use more multi-value variables 

together as one loop descriptor data structure. Section 5.2.2 provides 

complete detail of the #setloop command with illustrative examples.  

• More flexible: The ART is more flexible than the XVCL, as it allows 

the adaptation of a file even though the file might not contain any ART 

commands. Such adaptation would simply copy the adapted file to the 

output stream. For example, three buffer classes (i.e., Buffer.java, 

MappedByteBuffer.java, and StringCharBuffer.java) can be easily 

adapted without any modification in the complete ART-template 

solution of the Java Buffer library. This is not possible with the XVCL. 

One needs to convert them into XVCL files before adapting in the 



142 

XVCL solution. It incurs additional overhead to the XVCL when 

compared with the ART. 

6.2.3. ART versus Preprocessors  

One can also achieve non-redundancy by parameterizing and wrapping the 

code with preprocessors, shell scripts, and make files. An example of this can 

be found in the JDK Buffer library described in [140]. SUN developers used 

cpp, scripts, and make files to build a non-redundant representation from 

which actual Buffer classes are derived. A quick inspection of the code reveals 

that such representation may serve only its authors and cannot be considered a 

viable method to engineer programs. 

Preprocessors (such as M4 [161], cpp [148]) are also one of the oldest 

mechanisms to achieve variability in software [162, 163]. They work on the 

principle of code expansion. A preprocessor allows macros in the code to be 

replaced by the text defined by the corresponding macros. This text may 

contain program code or may contain invocations to other macros. Further, 

preprocessor directives (such as #ifdef, #else, #endif in cpp; ifdef, ifelse in 

M4) allow marking variation points in the software. It enables preprocessors to 

include or exclude specific code segments in software [162, 163]. But, it is 

found that programs instrumented with preprocessor directives become 

difficult to understand, test, maintain, and reuse [164]. It may be error-prone 

and may not scale well [165]. Since preprocessors handle variant features at 

the implementation level only, it may cause problems when trying to tackle 

more complex change situations with preprocessors [164]. This observation is 

drawn from Nokia projects in which preprocessing and file-level configuration 
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management were used to manage variability. Similar problems with 

preprocessing were also reported in a research project FAME-DBMS [166, 

167]. Still, preprocessors stay popular and seem indispensable for many tasks 

where programming languages features do not suffice [168]. 

Like preprocessors, the ART also works on the principle of code expansion. 

Some of the ART commands have close counterparts too. For example, closest 

alternatives to ART command #adapt are #include directive in cpp and include 

(or sinclude) in M4. However, unlike #include and include/sinclude directives, 

#adapt command allows the same template to be customized differently in 

different scenarios in which it is reused (by specifying customizations under 

extended #adapt command as shown in Section 5.2.2). Similarly, #set 

command in the ART corresponds to setting variables during preprocessing 

(using #define directive in cpp; define in M4). However, ART variables allow 

the variable’s values to be propagated along the adapted templates. Similar to 

#select command in the ART, #ifdef directive allows conditional compilation. 

But compared to the ART, conditional compilation does not allow variable 

references and expressions. It makes preprocessors less flexible. Further, as 

compared to preprocessors, as explained in Section 5.2.2, the ART supports 

breakpoints (insert-break mechanism). Breakpoints serve as anchors where 

additional code can be injected. It makes the ART capable to handle 

unexpected variations. Constructing ART templates at the first glance may 

look complex. However, the fact is that the ART is governed by only five 

important constructs (i.e., #adapt, #output, insert-break mechanism, loops, and 

selection) that are neatly integrated to form a method that can be learned 

easily. Experience with the ART predecessor, the XVCL, demonstrates that 
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large code can be effectively managed, achieving non-redundancy in the 

program areas where it matters. For example, the XVCL was used to represent 

a family of web portals [21] achieving improvement of all major 

maintainability metrics such as the physical size, the number managed files, 

and the effort to perform enhancements. Therefore, large code can be 

effectively managed using the ART. 

6.2.4. Variability Management in SPL 

Companies today often develop and maintain custom versions of the same 

software system for different customers using SPL [9]. The core idea is to 

manage the system family as a whole from a base of core assets designed for 

ease of adaptation in various reuse contexts. 

Motivated by the problems of managing variability purely at the code level, 

SPL approach emphasizes architectural design and design level configuring of 

software. Despite benefits of architecture- and component-based approaches 

for reuse, problems of configuring code cannot be avoided. Mappings between 

SPL features and specific variation points in code affected by SPL features 

remain complex. Problems magnify in the presence of feature dependencies, 

when the presence or absence of one feature affects the way other features are 

implemented [21, 164, 166, 169-171]. The impact of feature variability and 

dependencies that cannot be contained at the level of architecture must be 

handled in code, often manifesting as overly complex conditions under #if, or 

many nesting levels under #ifdef cpp directives. Such code becomes difficult 

to understand, test, maintain, and reuse. It is difficult to see which code 

belongs to which option, and to understand or change program in general. 
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It is common to use a range of variability techniques to aid in configuring 

architectures and code, such as preprocessing, software configuration 

management tools, parameter configuration files or wizards, parameterization, 

build tools, and sometimes design patterns. These common variability 

techniques are easily available and each one is easy to use, however they were 

not designed to work together or handle problems of the scale. Therefore, an 

overall solution to variability management cannot be smoothly integrated and 

automated, and may require extensive manual, error-prone interventions 

during reuse-based development [169, 171]. In view of those problems, 

effective strategies for automated and reliable variability management in SPL 

remains one of the main challenges for SPL practice and a central theme of 

SPL research [9, 172]. 

In the SPL context, the ART attempts to capture and streamline the end-to-end 

process of adapting software from the specifications of variant features to the 

architectural structures and the code. ART templates can manipulate any 

textual file independent of their contents. Therefore, the ART can also manage 

variability in documentation and test cases, keeping all textual SPL core assets 

in sync with evolving code. 

Techniques proposed in research to manage variability in SPL are mostly 

based on the principle of separation of concerns, introduced by Dijkstra in the 

early 1980s [173]. The goal of separation of concerns is to deal with concerns 

one by one, independently from other concerns. When applied at the level of 

design and implementation, separation of concerns attempts to compose 

software from components implementing different concerns. Concerns that fit 

nicely into conventional modules are easy to deal with. The challenge is to 
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tackle cross-cutting concerns that are tightly coupled with the rest of a 

program, and cannot be easily modularized in a conventional way. There have 

been attempts to bring separation of concerns down to the design and 

implementation levels. Aspect-oriented programming (AOP) [121], multi-

dimensional separation of concerns (MDSOC) from IBM [174], feature-

oriented programming (FOP) [175], and colored IDE (CIDE) [166] are among 

the most widely published such techniques. 

In AOP [121], various computational aspects are programmed separately and 

weaved at specified join points into the base program. AOP can separate a 

range of programming aspects, such as persistence, synchronization, or 

authentication/authorization. Separated aspects can be easily modified, added, 

or deleted to/from the program modules. Because of this, a number of authors 

have proposed AOP as a variability technique in SPL. A study to test this 

hypothesis revealed difficulties in using AspectJ to deal with features that have 

a chaotic impact on the base code [170]. While AOP deals with big chunks of 

functionalities (i.e., aspects) reasonably, it lacks a mechanism to handle 

variations at the lower-levels of granularity. The ART, on the other hand, can 

handle variations at any level of the granularity. Also, there is a fixed set of 

joinpoints defined in AOP. Compared to this, breakpoints in the ART can be 

defined anywhere in the program whenever needed. Using breakpoints, we can 

explicitly mark the variation points where specific code to a variant can be 

easily inserted. However, there is also a disadvantage of the ART as compared 

to AOP. The ART requires additional cost in creating templates for the code 

before adaptation. Whereas in case of AOP, there is no need to modify the 

existing program before weaving begins. 
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MDSOC [174] permits separations of overlapping concerns along multiple 

dimensions of compositions and decompositions. MDSOC introduces 

hyperslices that encapsulate specific concerns, and can be composed in 

various configurations to form custom programs. Unlike the ART, hyperslices 

are written in the underlying programming language, and can be composed by 

merging or overriding program units by name, and in many other ways. Unlike 

MDSOC, the ART is independent of the underlying programming language. It 

does not rely on any type of the abstract specifications that are associated with 

the programming language of the native code. Actually, the ART offers 

uniform mechanism to handle variability. It means that it can be used to handle 

variability in a variety of interrelated SPL assets such as architecture, code 

components, domain models, documentations, test cases, etc. 

FOP [175] is based on the principle of feature modularization and composition 

into a base program. Feature modularization helps in understanding and 

maintaining the feature code. Feature composition extends the base program 

with the required features. FOP provides a powerful solution for feature 

management in many situations, but may not be geared for features that have 

complex mappings to the code [166]. Therefore, Kästner et al. [166] relaxed 

the requirement for feature modularization, and revisited the idea of keeping 

feature-related code together with the base code. They proposed a tool CIDE, 

that provides a visual means for understanding and manipulating the features. 

CIDE represents a base program as an abstract syntax tree, which makes it 

language-dependent. Compared with these techniques, the ART is strictly 

language-independent. The ART’s adaptations are defined in an operational 
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way, and take place at designated variation points marked with the ART 

commands only. 

Further, compared to all these techniques, the ART may facilitate generation of 

multiple custom program structures from their template representation (using 

#while command). However, there is no counterpart to this in these techniques 

that are based on the principle of separation of concerns only. Further, ART 

expressions and #select command allow concerns to be parameterized. It helps 

in enhancing the users’ abilities to define variations in the code at any level of 

granularity, from a code fragments to class, to file, to subsystems, or to any 

component of higher granularity. 

As mentioned in Section 6.2.3, preprocessors can also be used to separate code 

for variant features [162]. The ART adds a non-redundancy layer on top of 

separation of concerns achieved by preprocessors, without changing the way 

preprocessors are configured in native code. Non-redundant ART-template 

views of programs lessen variability management, as one variation point in an 

ART template represents ‘n’ variations points in instances of that template, 

where ‘n’ is the number of instances of the template in a program. The 

capability to deal with redundancies is what distinguishes the ART from the 

techniques proposed by others. 

6.3. Conclusions 

In this chapter, we quantitatively and qualitatively evaluated the effectiveness, 

usefulness, and benefits of managing code clones using the ART. We 

highlighted the applications of the ART on three case studies: the Java buffer 

library, Notepad system, and a part of the Linux kernel. We also presented 



149 

discussions of and comparisons of the proposed work with existing related 

works. 

The benefits of managing clones using the ART include increased reuse 

opportunities, reduced program understanding and maintenance efforts, 

simplification of product line core assets due to non-redundancy, and easier 

comprehension and traceability of change impact during evolution. ART 

templates help the developers in implementing maintenance changes in a more 

reliable way. It is to mention that ART templates are not created for quick 

gains during development, but for long-term gains during software evolution 

and reuse. ART aims to benefit long-lived systems that undergo extensive 

evolutionary changes, or need to be tailored to the needs of multiple 

customers. 
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Chapter 7.  
CONCLUSIONS AND FUTURE WORK 

 

In the thesis, we formalized the concept of collaborative patterns and work out 

for efficient and scalable algorithms for detecting collaborative patterns in 

software systems. We demonstrated usefulness of collaborative clone detection 

in software reuse, re-engineering, and maintenance. This chapter concludes the 

thesis. While thesis is summarized in Section 7.1, Section 7.2 outlines future 

research directions. 

7.1. Summary 

We surveyed state-of-the-art works done in the area of clone detection. We 

reviewed existing clone taxonomies, detection approaches, and evaluation 

techniques. Appendix A provides a comprehensive literature survey on 

relevant prior work. This survey gave us rudimentary details of state-of-the-art 

works available in the area of software clone detection. 

Based on the literature reviewed, we found that existing clone detection 

techniques mainly focus on detecting similar code fragments, files, or 

directories. But many design-level similarity patterns appear as the recurring 



152 

configurations of collaborating components such as methods, functions, 

classes, or any physical or logical groups of program entities. We call such 

types of recurring configurations as the collaborative patterns. Collaborative 

patterns often represent program structures exhibiting specific behavior 

meaningful to developers who need to understand programs, reengineer legacy 

code for reuse, or to refactor or simply maintain programs. Unfortunately, 

unless manually documented, collaborative patterns remain implicit in code. 

We formalized the notion of collaborative patterns in Chapter 2. The term 

collaborative pattern is defined precisely in terms of a directed graph. In the 

directed graph, nodes are program entities and edges are calling relationships 

among the program entities. We further showed possible classification of 

collaborative patterns. Collaborative patterns are higher-level clones of large 

granularity that can be identified by systematically combining small-granular 

cloned program entities at various levels. Based on this, we presented our 

approach for detecting collaborative patterns in Chapter 3. The proposed 

approach first finds method clones and calling-relationship information from 

the subject program, and then uses this information for detecting collaborative 

patterns. We implemented the proposed approach into a tool called COPAD 

(Collaborative Patterns Detector). We also evaluated the proposed approach 

via experimentation in Chapter 4. 

Finally, we proposed a methodology to manage high-level clones of large 

granularity (collaborative patterns as well as other large-granular code clones) 

by presenting a meta-programming technique and tool, the ART (Adaptive 

Reuse Technique). The ART is an enhanced, lightweight and XML-free 

version of the XVCL. It manages families of redundant software systems by 
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providing a common base of non-redundant, adaptable, and reusable meta-

components called ART templates. We presented the ART and detailed 

methodology of using the ART in Chapter 5. We evaluated quantitatively and 

qualitatively the strengths, weakness, and trade-offs involved in the 

application of the ART in Chapter 6. 

The main novelty of the research lies in the formulation of the concept of 

collaborative patterns, in the development of the technique for detecting 

collaborative patterns, and in the development of the technique for managing 

such patterns in software systems. 

7.2. Future Research Directions 

The current approach for detecting collaborative pattern uses only calling 

relationship information among the corresponding program entities. 

Approaches for collaborative pattern detection based on temporal relations 

among program entities can be devised as the part of future work as extensions 

to the current approach. 

Visualization is one of the important techniques for similarity analysis. In our 

list of future works, we plan to develop a rudimentary graphical user interface 

for visualization and analysis of collaborative patterns. 

The proposed approach for detecting collaborative patterns is based on the 

similarity of program text among the program entities involved in the pattern. 

In the future research, we will perform investigations for the detection of 

collaborative patterns in which the program entities are functionally similar. 
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Appendix A.  

LITERATURE REVIEW 

Clone detection in software systems is an active area of research. Various tools 

and techniques have been proposed in the literature for detecting cloned 

program entities. Literature suggests that cloning may occur in source code or 

even in other software artifacts such as test cases, use cases, or UML models 

[176]. Based on the type of clones typically possible in software systems, 

Figure A.1 shows taxonomy for software clones. In this appendix, we discuss 

some of the reported works on software code clone detection in line with this 

taxonomy. We begin with brief description of the clone types and existing 

literatures. Thereafter, we compare the salient features of reviewed clone 

detection approaches in tabular form. 

This appendix is organized as follows: Sections A.1 and A.2 discuss existing 

literature on software clone detection. Tables (Table 8–Table 11) at the end of 

subsections provide tabular comparison of similar types of code clone 

detection techniques. Through the literature, we found that cloning occur in 

software artifacts other than code too; some cases are presented in Sections 

A.3 and A.4. Section A.5 provides chronology of the clone detection 

techniques. 
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 Figure A.1. Taxonomy for software clones 

A.1. Low-level Clone Detection 

There are basically two kinds of similarity between code fragments: one is 

syntactic similarity (having similar text) and another is semantic similarity 

(similar functionality) [2]. In early 1995, Davey et al. [40] provided the first 

ever clone topology based on the levels of these similarities. They divided the 

cloned code fragment into four types with an increasing level of subtlety from 

one type to other. The definitions and types of low-level clones described in 

this section are based upon the intuitions derived directly from this topology. 

Based upon the syntactic similarity, cloned fragment can be divided into three 

types (Type I, Type II, and Type III). Semantic similarities are referred as type 

IV clones. In the following subsections, we present the review of available 

literature on clone detection based on these four types. 

A.1.1. Type I (exact clones) Clone Detection 

Type I clones refer to identical code fragments except with possible variations 

at the levels of comments, layout, and whitespaces. Almost all the clone 

detection techniques address type I clone. However, state-of-the-art work 
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dealing with detecting exact match is by Johnson [23, 24]. It detects exact 

repetition of the text using Karp-Rabin Fingerprinting algorithm. He applied 

different transformations (such as removal of white space characters, removal 

of comments, or replacement of each identifier by an identifier marker) on the 

source code to remove uninterested text from it. Resulted code is then divided 

into substring such that each character of the code appears in at least one of 

the substring. Thereafter, matching substrings are identified. The author also 

addressed the concept of near-miss clones, but the problem is with the 

transformations he used. The transformations used produce too much false 

positives. 

A.1.2. Type II (parameterized/named) Clone Detection 

Type II clones refer to exactly similar code fragments except with possible 

variations in user-defined identifiers, literals, layout, types, and comments. 

Many state-of-the-art works deal with detection of type II clones. A tabular 

comparison of selected type II clone detection techniques is presented at the 

end of this subsection (Table 8). In some cases, ‘?’ symbol is used to represent 

unsurety about the entry. 

One of the leading works for type II clone detection in early 1990s was by 

Baker [25]. He reported a tool named Dup that represents source code as a 

sequence of lines and detects code clones on line-by-line basis. However, it 

cannot detect code clones written in different coding styles, having different 

variable names. During the same period, another metric-based approach for 

detecting type II clones was proposed by Buss et al. [26]. They transformed 

source code into tuples representing their complexity values. After that, they 
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used Euclidean distance to measure similarity between code fragments. In the 

same year, Mayrand et al. [111] also worked for detecting duplicate or near 

duplicate functions in a large software systems. They also used metric-based 

technique to identify duplicated functions. They used 21 function metrics and 

grouped them into four points of comparisons—name, layout, expressions, and 

control flow. Then, they identified the cloning between functions by 

comparing these metrics. 

A clone detection technique using abstract syntax suffix trees was proposed by 

Koschke et al. [28]. The proposed approach finds clones in linear time and 

space. Initially, the program is parsed and an abstract syntax tree (AST) is 

generated. The generated AST is then used to generate serialized AST. 

Thereafter, suffix-tree based detection is used for detecting identical clone 

fragments. The authors also addressed that their tool can detect type-III clones 

using Baker’s technique [177]. 

A token-based efficient clone detection algorithm that significantly reduces the 

memory usage was proposed by Basit et al. [29]. In the first step, the code is 

transformed into a token-sequence. Then, suffix-array based data structure and 

a straight forward variation of existing algorithm [178], which they called 

NERF (Non Extendible Repeat Finder), is used to locate repeated substrings in 

the token-sequence. 

An incremental clone detector was proposed by Göde and Koschke [30] in 

2009. It detects clones based on the results of the previous revision's analysis. 

They transformed each of source files into token-sequences and stored them in 

a token table. After that, a generalized suffix tree (GST) is created from the 

token-sequences. Bakers’s algorithm pdup [25] is then used to find clones 
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from the generated GST. Unfortunately, GSTs require substantially more 

memory than read-only suffix-trees. It is because GSTs need extra links for 

traversing during the update operations. It makes the approach difficult to 

scale for larger systems. An attempt to make scalable and incremental clone 

detection tool was made by Hummel el al. [31]. They used token-based 

representation of the source code which is further normalized and grouped into 

statements. The authors adapted their own tool ConQAT [179], and ran it in a 

pipeline fashion to make the proposed approach highly scalable and 

incremental. 

A formal-method based clone detection approach for Java was proposed by 

Cuomo et al. [33]. Authors claimed it to be the first formal-method based 

approach for detecting source code clones. They first compiled the source 

code, and then analyzed the resulting Java bytecode for detecting code clones. 

In the first step, authors transformed the complied Java code into Calculus of 

Communicating Systems (CCS) specifications. Then, they used equivalence 

relations to determine cloned code fragments. According to the authors, based 

on the types of clones to be detected, different types of equivalence relations 

can be considered. Here, the authors used weak equivalence in their 

implementation. They used Concurrency Workbench of New Century (CWB-

NC), one of the most popular formal verification tools, to check the weak 

equivalence. 

Toomy [37] designed a tool named ctcompare which is able to detect code 

clones in large software systems using hashed token-sequences. In the first 

step, they lexically analyzed the source code to produce sequences of tokens. 

Then, sequences of tokens are broken into overlapping tuples. These tuples are 
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further hashed. Hashed values are then used to identify type I and type II clone 

pairs. 

A parallel and efficient approach for clone detection was recently proposed by 

Sajnani and Lopes [36, 39]. They proposed a technique that horizontally scales 

clone detection across multiple machines using MapReduce framework. 

Koschke [34, 38] worked for an inter-system clone detection technique. In the 

proposed technique, once the code is tokenized, suffix tree is generated for 

either the subject program or the corpus, whichever is smaller. Then, every file 

of the corpus is compared with the suffix tree. The author used hashing to 

reduce the number of file comparisons. 

Table 8. Summary of selected Type II clone detection techniques 

Tech-
nique 

(Authors; 
Tool; 
Year) 

Internal 
Source 
Code 

Representa-
tion 

Clone 
Granu-
larity 

Comparison 
Granularity 

Compari-
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Technique 

Evaluation/ 
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Language 
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Scala-
bility 

Baker [25, 
27]; Dup; 

1993, 
1995 
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symbols 
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Free Line 
Suffix-tree 

based 
algorithm 

X Window 
System (0.7M 
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production 
system (1.1M 

lines) 

C, C++, 
Java Yes 

Buss et al. 
[26]; 1994 Set of tuples Free 

Fragments of 
code 

represented 
by tuples 

Metric-
based 

technique 

Information not 
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Informatio
n not 

provided 

Informatio
n not 
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Mayrand 
et al. 
[111]; 
1996 

AST further 
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to their own 
intermediate 
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Fixed 
(functio
n clone) 

Functions 
represented 
by set of 21 
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Metric-
based 

technique 

Two 
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C, C++ Yes 

Koschke 
et al. [28]; 

2006 

Serialized 
abstract 
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Fixed 
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Suffix-tree 
based 
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n 

technique 

Wget 1.5.3 
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PostgreSQL 7.2 
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C Yes 

Basit et 
al.[29]; 
2007 

Tokens Free Sequence of 
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Suffix-
array 

based LCP 
match 

On Linux Part 
(3025K LOC) 

C (later 
extended 
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(Authors; 
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software (460K); 
Linux Kernel 
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Cuomo et 
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from Java 
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g CCS 
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Java Low 

Toomy 
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scalable 

Sajnani 
and Lopes 
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2012, 
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based 
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Java projects 
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A.1.3. Type III (gapped/near-miss) Clone Detection 

Type III clones are fragments of duplicated code modified further by addition, 

deletion, and/or modification of statement(s). The literature available on Type 

III clones is discussed below. Table 9 at the end of this subsection gives 

summary of selected type III clone detection techniques. 

An early attempt to detect type III clones was by Davey et al. [40]. They used 

neural networks to find similar blocks of source code. In their first attempt, 

they used self-organizing neural networks (a Self Organizing Map (SOM)) to 

cluster feature vectors associated with the procedures. But, the limitations with 
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the approach were long training time and fixed number of clone classes that 

were created. They updated their system with dynamic competitive learning 

(DCL) networks to overcome the above limitations. 

In 1998, Baxter et al. [41] proposed an AST-based clone detection technique. 

In the first step, they parsed the source code to generate an AST. Then, they 

used tree-based matching to detect exact and near miss clones from the 

generated AST. They further extended their tool as CloneDR [125] which 

supports many languages such as Ada, C#, PHP, Python, VB, Fortran, PLSQL, 

and XML. 

One of the pioneer tool for detecting type III clones is CCFinder [42] 

developed by Kamiya et al. in 2002. CCFinder uses a token-based technique 

that first converts the source code into a token-sequence. The authors further 

defined their own set of language specific transformation rules. Based on these 

transformation rules, the token-sequence is updated, i.e., some tokens are 

added, removed, or changed. Then, suffix-tree based sub-string matching 

algorithm is used to find clone pairs/clone classes on the transformed token-

sequence. 

Another efficient clone detection tool, SDD (Similar Data Detection) was 

devised by Lee and Jeong [44] in 2005. This tool uses indexes and inverted-

indexes of code fragments and their positions to detect code clones. An index 

has information about position and the corresponding chunk. On the other 

hand, an inverted-index includes chunks and the corresponding positions. 

SDD uses an n-neighbor distance algorithm to detect similar fragments in the 

source code. 
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CP-Miner [12, 43] is another state-of-the-art token-based tool for detecting 

type III clones. It uses a frequent subsequence mining algorithm, CloSpan 

(Closed Sequential Pattern Mining) [180] to identify similar sequences of 

tokenized tokens. 

Jiang et al. [46] devised an algorithm for detecting similar trees and applied it 

on the tree representation of the source code to detect similar code fragments. 

They generated characteristics vectors to approximate the structural 

information within ASTs in the Euclidean space, and then used locality 

sensitive hashing to efficiently cluster similar vectors and thus code. In the 

first step, a parser translates the source files into parse trees which are then 

used to produce fixed-dimension vectors. These vectors are then clustered with 

respect to their Euclidean distances. 

Anti-unification was used by Bulychev and Minea [47] to detect code clones. 

In the first step, source files of the program are converted into an XML 

representation of their ASTs. Then, anti-unification is applied to group similar 

ASTs into equivalence classes called clusters. Each cluster corresponds to a 

clone class. 

The first tool for code clone detection that took full advantages of multi-core 

processors was YACCA, proposed by Livieri and Inoue [48] in 2008. It 

leverages multi-code processors by evenly distributing the total workload 

between the cores. It uses a parameterized detection algorithm to detect similar 

code fragments. Also, it is language independent and to some extent can be 

used to detect cross-language code clones. 
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Jia et al. [51] proposed an efficient and precise clone detection tool called 

KClone. It uses combination of lexical and local dependence analysis to 

achieve precision, while retaining speed. It uses two-step approach for 

detecting code clones. In the first step, fast lexical analyzer is used to detect 

basic clone-pairs, i.e., type I and type II clones. Using the detected basic 

clone-pairs information, second step detects type III clone-pairs from the 

source code. 

Roy and Cordy [49, 52] proposed a multi-pass hybrid clone detection 

technique for detecting type III clones. They implemented the technique in the 

form of a tool called NiCad [56]. NiCad can be either used in command-line 

mode or it can be easily embedded in IDEs and other environments. 

A hybrid (syntactic and textual) approach for clone detection was proposed by 

Funaro et al. [54]. They combined AST representation of the source code with 

the string (text-based) representation of the source code. AST representation of 

the code helped the authors to retrieve structural similarities, while the string 

representation helped in refining the results through direct comparison. In the 

first step, the authors transformed the source code into ASTs which are further 

converted to a forest of ASTs. The forest is then serialized by encoding into a 

string representation using an invertible mapping function. This string 

representation is then searched for repeated substrings. The mapping function 

is used again to decode these substrings into sub-trees. To generate the 

corresponding code fragments, the reconstructed sub-trees are then matched 

back to their original ASTs. 

In 2011, Higo et al. [58] came up with new idea of clone detection. They 

combined incremental clone detection with PDG (program dependency graph) 
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based representation of the source code. They defined some metrics/functions 

to compare the similarity between two nodes of PDGs. The advantage of their 

approach is that it can detect non-continuous code clones more effectively than 

other incremental clone detection techniques. In the same year, Higo proposed 

another tool Scorpio [59] with his colleague Kusumoto, where they applied 

two-way slicing to detect clones. Since using only forward or backward slicing 

does not detect all similar sub-graphs. Using two-way slicing overcomes this 

problem. Scorpio is also a PDG-based tool that uses hashing at the node-level. 

Nodes with same hashed values correspond to cloned segments. 

Another state-of-the-art tool for clone detection is CMCD (Count Matrix 

Clone Detection) [60] proposed by Yang and Yao. It uses a count matrix to 

represent characteristics of a particular code segment. A count matrix consists 

of n count vectors where each vector corresponds to a variable in the code 

segment. A count vector records various features such as number of time the 

variable is defined, used, or called. These count matrices are used to find 

similarity between code segments using bipartite graph matching algorithm. 

Microsoft Research Asia team designed an efficient, scalable, and 

parallelizable clone detector, XIAO [61]. Microsoft has already integrated the 

XIAO with Microsoft Visual Studio 2012. Among other, one of the main 

features of XIAO is its compatibility. By default, it provides supports for C, 

C#, and C++; but it also allows the users to plug-in their own parsers into the 

system to support other languages. 

A metric-based data mining approach for detecting function clones was 

presented by Salwa and Hafiz [98]. In the first step, fragments and 

corresponding metrics are extracted from the source code at the function level. 
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Then, the software is partitioned into three types of clusters—primary, 

intermediate, and single—using data mining clustering algorithm. All type I 

and type II clones are included in primary cluster, whereas intermediate cluster 

corresponds to type III clones. 

Murakami et al. [62] devised a new clone detection algorithm which is free 

from the influence of presence of repeated instructions in the software. They 

transformed every repeated instruction present in the source code into a 

special form, and then applied a suffix-array based algorithm to find repeated 

code segments. In the first step, token-sequences are created from the source 

files of the code. Then, hash values are computed from these token-sequences. 

In the next step, repeated instructions are removed from the hash-sequence. 

Thereafter, identical subsequences are identified using a suffix-array based 

algorithm. 

An accurate and scalable token-based clone detection tool was by Yuan and 

Guo [63]. However, it differs from the other token-based clone detection 

techniques in the sense that it does not use token-sequences while comparing 

the code segments. Instead, it represents the code segments using count 

matrices. Then, cosine similarity and proportional similarity functions are used 

for similarity measures. 

Some of the recent advancements in clone detection research are SimCad [66], 

CDSW [67]. SimCad is highly scalable and fast clone detection algorithm. It 

uses multi-level index based searching to speed up the clone detection process. 

It detects clones as code fragments (e.g., function or code block), the boundary 

of which are predefined during the source code pre-processing step. CDSW 

detects gapped code clones using Smith-Waterman algorithm [181]. Smith-
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Waterman algorithm is an algorithm for identifying similar alignments 

between two base sequences. In the first step, CDSW transform the source 

files into token-sequences. Next step calculates the hash value for each 

statement. At the end of this step, each source file is transformed into one 

hash-sequence. Similar hash sub-sequences are then identified from hash-

sequence using modified version of the Smith-Waterman algorithm. 

Qu et al. [68] combined spatial space analysis with graph-based mining to find 

code clones from software systems. They used PDGs for source code 

representation. First, they applied spatial pattern search on the PDGs, and then 

used graph-based pattern mining algorithm to find out candidate code clones. 

They further used false positive pruning and pattern composition techniques to 

improve the detection results. 

Table 9. Summary of selected Type III clone detection techniques 
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Tool; 
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Informatio
n not 

available 

SOM 
based: No; 

DCL 
based: 

better than 
first 

Baxter et 
al. [41]; 

1998 
AST Free Sub-tree 

AST-based 
tree 

matching 

Process 
Control 
System 

(400K C 
code) 

C, C++, 
Java, 

COBOL, 
and others 

No 

Kamiya et 
al. [42]; 

CCFinder; 
2002 

Sequence 
of 

transforme
d tokens 

Free Token sub-
sequences 

Suffix-tree 
matching 
algorithm 

On several 
systems:- 
FreeBSD; 
NetBSD,; 
Linux and 

others 

C, C++, 
Java, 

COBOL, 
and others 

Highly 
scalable; 

among the 
renowned 

tools 

Li et al. 
[12, 43]; 

CP-Miner; 
2004, 2006 

Sequence 
of numbers 

(tokens) 
Free Token sub-

sequence 

Frequent 
Sub-

sequence 
Mining 

Linux; 
FreeBSD; 

Apache and 
others 

C, C++ 

Highly 
scalable; 
among 

renowned 
tools 
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Technique 
(Authors; 

Tool; 
Year) 

Internal 
Source 
Code 

Represen-
tation 

Clone 
Granular-

ity 

Comparison 
Granularity 

Comparison 
Technique 

Evaluation/ 
Validation 

Language 
Paradigm Scalability 

Lee and 
Jeong [44]; 
SDD; 2005 

Strings of 
code (text) Free Substring 

(multi-word) 

Based on n-
neighbor 
indexed 

algorithm 

JDK 1.5 
(1M); httpd 
(84K); tuby 
1.8.2 (.2M) 
and others 

Language 
independen

t 

Very 
scalable 

Jiang et al. 
[46]; 

DECKARD
; 2007 

Parse trees 
normalized 
to vectors 

Free 
Fixed length 
characteristic

s vectors 

Locality 
Sensitive 
Hashing 

Linux 
kernel; JDK 

Any 
language 

with a 
formally 
specified 
grammar 

Yes 

Evans et 
al. [45, 

50]; Asta; 
2007, 2009 

ASTs 
Fixed 

(function 
clone) 

AST nodes 

Graph 
theoretic 

approach on 
associative 

array 

Netbean-
javadoc; 

eclipse-ant; 
eclipse-
jdtcore; 

Java, C# 

Yes 
(scalability 
addressed 
in [50]; 
2009) 

Bulychev 
and Minea 
[47]; Clone 

Digger; 
2008 

ASTs ? Subtree Anti-
unification 

BioPython 
project and 

NLTK 
project 

Python, 
Java ? 

Livieri and 
Inoue [48]; 

YACCA; 
2008 

Token-
sequences Free Token sub-

sequence 

Repeating 
substrings 
detection 

Information 
not provided 

Language 
independen

t 

Highly 
scalable 
(multi-
core) 

Roy and 
Cordy 
[49]; 

NICAD; 
2008 

Program 
text 

Fixed 
(function 

and block) 
Line 

Longest 
Common 

Subsequence
s algorithm 

More than 
20 open 
source 

systems 

C, Java, 
C#, 

Python, 
WSDL 

[56] 

Yes 

Funaro et 
al. [54]; 
SynTex; 

2010 

ASTs 
further 

normalized 
to strings 

Free Substring 
Searching 
common 
substring 

Evaluated 
on Bellon’s 
benchmark 

[101] 

Java (?) ? 

Corazza et 
al. [53]; 

2010 
ASTs Fixed 

Subtree of 
fixed 

granularity 
(claas-tree, 

method-tree, 
statement 

tree) 

Based on 
Tree Kernel 

function 

Federico II 
(an 

academic 
Java 

system) 

Java Very low 

Higo et al. 
[58]; 2011 PDG ? PDGs’ edge 

tree 

Based on 
equivalency 
among edge 

trees 

Ant Java 

Highly 
scalable; an 
incremental 

clone 
detection 
technique 
addressing 

type III 
clones 
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Technique 
(Authors; 

Tool; 
Year) 

Internal 
Source 
Code 

Represen-
tation 

Clone 
Granular-

ity 

Comparison 
Granularity 

Comparison 
Technique 

Evaluation/ 
Validation 

Language 
Paradigm Scalability 

Higo and 
Kusumoto 

[59]; 
Scorpio; 

2011 

PDG Free PDGs’ nodes Program 
slicing 

Eclipse Ant; 
NetBeans 
Javadoc; 
Eclipse –
jdtcore; 

j2sdk1.4.0-
javax-swing 

Java 

Among 
most 

scalable 
tools 

Yuan and 
Guo [60]; 
CMCD; 

2011 

Count 
matrix for 

each 
method 

Fixed 
(method) Count matrix 

Bipartite 
graph 

matching 
algorithm 

JDK 1.6 and 
other small 

student 
projects 

Language 
independen

t 
Medium 

Dang et 
al.[57, 61]; 

XIAO; 
2011, 2012 

Tokens Fixed (?) Subsequence 
of tokens Metric based 

Industrial 
validation 

by 
Microsoft 
Engineers 

C, C++, 
C# 

Yes, 
incorporate

d in MS 
Visual 
Studio 

Salwa and 
Hafiz [98]; 

2012 
Text 

Fixed 
(function 
clones) 

Code 
fragments 

Fractal 
Clustering 

Weltab; 
SNNS C Low 

Yuan and 
Guo [63]; 
Boreas; 

2012 

Tokens Free  Count 
matrixes 

Using 
Cosine 

Similarity 
Function and 
Proportional 

Similarity 
Function 

Java SE 
Developme

nt Kit 7 
(2.2M); 
Linux 
kernel 

2.6.38.6 
(10M) 

Java, C, 
C++ 

Highly 
scalable 

with more 
precision 

Zibran and 
Roy [64]; 

2012 
AST Fixed  Preprocessed 

suffix tree 

Suffix-tree 
based k-

difference 
hybrid 

algorithm. 

Weltab 
(10K); 

PostGreSQL 
(154K) 

C, C#, and 
Java Medium 

Murakami 
et al. [62]; 

FRISC; 
2012 

Token 
sequence Free  Statements 

Suffix-array 
based 

algorithm 

Netbeans, 
ant, jdtcore, 

weltab, 
cook etc.; 

evaluated on 
Bellon’s 

benchmarks 

Java and C 

Yes, 
supports 
multi-

threading 

Muddu et 
al. [65]; 
CPDP; 
2013 

Tokens Free  Block of 
statements 

Karp-Rabin 
Greedy 

String Tiling 
algorithm 

25 open 
source Java 

projects 
from github 

Java high 

Murakami 
et al. [67]; 

CDSW; 
2013 

Tokens  Free  Statement 
level Hashing 

Netbeans, 
ant, jdtcore, 

weltab, 
cook etc.; 

evaluated on 
Bellon’s 

benchmarks 

Java and C 

Scalable 
than AST 
or PDG 
based 

approaches 
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Technique 
(Authors; 

Tool; 
Year) 

Internal 
Source 
Code 

Represen-
tation 

Clone 
Granular-

ity 

Comparison 
Granularity 

Comparison 
Technique 

Evaluation/ 
Validation 

Language 
Paradigm Scalability 

Qu et al. 
[68]; 2014 

PDG 
further 

transforme
d to 

graphic 
sequence 

in 
sequential 

space 

? 

Encoded 
graphic 

subsequence
s 

Uses spatial 
space 

analysis and 
then graph-

based pattern 
mining 

On a health 
care 

software 
system (near 

1.1M) 

? High 

 

A.1.4. Type IV (semantic and re-ordered) Clone Detection 

When two code fragments have functional similarities, they are termed as type 

IV clones. In these types of clones, it is not necessary for the cloned fragments 

to be copy of each others. Table 10 compares selected type IV clone detection 

techniques. 

In 1990, Horwitz [182] published a key article on the detection of semantic 

and textual differences between two versions of the program. However, a 

successful attempt to detect type IV clones was by Komondoor and Horwitz 

[69] in 2001. The approach was based on using program slicing to detect 

isomorphic sub-graphs of a PDG. They first created PDGs for each procedure, 

and then used backward and forward slicing to detect code clone from the 

subject program. In the same year, another attempt to detect type IV clones 

was by Krinke [70]. It is also a PDG-based clone detection approach that uses 

k-length patch matching to find out maximal induced sub-graphs. 

A text-based semantic clone detection approach was proposed by Marcus and 

Maletic [99] in 2001. They used latent semantic indexing to find semantic 

similarities between different program entities. But when comments do not 
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exist in the code and names of identifiers in the corresponding entities are 

completely different, the approach fails to detect clones. 

An early attempt to make efficient and scalable type IV clone detection 

technique was by Gebel et al. [71] in 2008. The authors adapted the approach 

used by Deckard clone detection tool [46], making it more efficient and 

scalable. They started with the PDG-based representation of the source code. 

Then, selected PDGs are mapped to an AST forest. After that, standard tree-

based detection algorithm, Deckard, is modified and adapted to locate cloned 

code in the software. 

Comparison-based clone detector, MeCC [73] detects semantic clones by 

comparing programs’ abstract memory states. These abstract memory states 

are estimated at each procedure exit-points using path-sensitive semantic-

based static analysis. 

Semantic web reasoners were used by Schugerl [74] for detecting semantic 

clones in 2011. The proposed approach uses Hadoop map-reduce framework 

to scale the detection process. He used description logics to model source 

code, and then applied semantic web reasoners to find similar code fragments. 

A two-stage clustering technique was used for detecting semantic clones by 

Yoshioka el al. [75]. In the first step, code fragments are extracted from the 

source code. Then, these extracted code fragments are classified into clusters 

based on their characteristics. This step is divided into two stages. In the first 

stage, code fragments are coarsely classified in order to obtain good enough 

result in a short time. In the second stage, the results of the first stage are 

finely classified to obtain more precise clusters. In the last step, these resultant 
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clusters are converted into a collection of clone sets (i.e., sets of semantically 

similar code fragments). 

Li and Ernst developed a tool CBCD (Cloned Buggy Code Detector) [78], 

which when given an example of buggy code, searches the subject program 

for code fragments which are semantically similar to this buggy code. The 

authors made a claim of presence of duplicated buggy codes in software 

systems by performing empirical studies. They proposed their own tool to 

detect the presence of these buggy cloned codes in software systems. For 

detecting cloned buggy codes, they first transformed the subject code and the 

buggy code both into PDGs using CodeSurfer. Then, they adapted the igraph’s 

implementation of sub-graph isomorphism matching to detect similar codes. 

JSCTracker [76, 77] detects semantic clones in Java methods using methods’ 

IOE (Input, Output, and Effects) behaviors. IOE behavior includes return 

values of methods as well as their effects on the pre-states and post-states of 

the heap. In the first step of the algorithm, they generated decorated AST from 

the source code of the subject program. Then, two-step filtering based on the 

syntactic and semantic information encoded in the AST is used to find out 

candidate clones. In the last step, these candidate clones are tested and 

collected into equivalence clone classes. 

Table 10. Summary of selected Type IV clone detection techniques 

Technique 
(Authors; 

Tool; Year) 

Internal 
Code 

Represen-
tation 

Clone 
Granular-

ity 

Comparison 
Granularity 

Comparison 
Technique 

Evaluation/ 
Validation 

Lan-
guage 
Para-
digm 

Scalabil-
ity 

Komondoo
r and 

Horwitz 
[69]; 2001 

PDG 
Fixed 

(procedure?
) 

PDG 
subgraphs 

Using 
Program 
slicing 

Three Unix 
utilities; 

some IBM 
project code 

C No 
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Technique 
(Authors; 

Tool; Year) 

Internal 
Code 

Represen-
tation 

Clone 
Granular-

ity 

Comparison 
Granularity 

Comparison 
Technique 

Evaluation/ 
Validation 

Lan-
guage 
Para-
digm 

Scalabil-
ity 

Krinke 
[70]; 

Duplix; 
2001 

PDG Free  PDG 
subgraphs 

k-length patch 
matching 

Author’s 
selected test 

programs 
C No 

Marcus and 
Maletic 

[99]; 2001 
Text  

Fixed 
(function, 

file, 
program) 

Sentences  

Latent 
Semantic 
Indexing 
approach 

Mosaic v2.7 
(95K) C ? 

Gabel et 
al.[71]; 
2008 

PDGs 
further 

transforme
d to ASTs 

Free  Characteristi
c vectors 

Adaptation 
from Deckard 

[46] 

GIMP; 
GTK+; 

MySQL; 
PostgreSQL

; Linux 
kernel 

C, C++ Highly 
scalable 

Jiang and 
Su [72]; 

EQMINER; 
2009 

Program 
text 

represented 
in some 

intermediat
e form 

Free  

Code 
fragments 

represented 
in 

intermediate 
forms 

Clustering 
based on 

Representativ
e Based 

Partitioning 
(devised by 

authors itself) 

Linux 
kernel 
2.6.24 

C 
Scalable 
but very 

slow 

Kim et al. 
[73]; 

MeCC; 
2011 

Abstract 
memory 

states 

Fixed 
(procedural 

level) 

Programs’ 
abstract 
memory 

states 

Abstract 
memory state 
comparison 

Python; 
Apache; 

PostgreSQL 
C Partial 

scalable 

Schugerl 
[74]; DL-

Clone; 
2011 

Description 
Logic (DL) 

model 
further 

transforme
d to 

concepts 
and 

relations 
(using 
OWL) 

Fixed (?) 
OWL 

representatio
ns of blocks 

Semantic web 
reasoners 

JDK 1.5 
(randomly 

selected 620 
files) 

Java 

High, 
can be 

paralleliz
ed 

Yoshioka et 
al. [75]; 
Takana; 

2011 

Text based 
(represente
d as feature 

vectors) 

Free  Set of feature 
vectors 

Feature 
clustering 

eclipse-ant; 
eclipse-
jdtcore; 

j2sdk.1.4.0-
swing; jdk 

1.4.2, 
jdk1.5.0 

Java Yes 

Li and 
Ernst [78]; 

CBCD; 
2012 

PDGs Free Subgraphs of 
PDGs 

Subgraph 
isomorphism 

matching 
using igraph 

Git; Linux 
kernel; 

PostgreSQL 
C, C++ Yes 

Elva and 
Leavens 
[76, 77]; 

JSCTracker
; 2012 

Decorated 
ASTs 

Fixed 
(method 

level) 

MethodType 
and 

MethodEffec
t information 
encoded in 

AST 

Equivalence 
class having 

same 
MethodType 

and 
MethodEffect 
information 

DSpace; 
JabRef Java No 
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A.2. High-level Clone Detection 

The researchers also proposed other types of software clones possible at code 

level. This section provides brief overview of such clone detection techniques.  

A.2.1. Structural Clone Detection 

Basit and Jarzabek [5, 81] proposed an algorithm for detecting design-level 

similarities such as similar methods, files, or directories calling them structural 

clones. They first classified the code clones into two types—simple clones and 

structural clones. Simple clones refer to fragments of duplicated contiguous 

code (so called type I and type II clones). Then, they used these cloned 

contiguous code fragments (i.e., simple clones) to find out structural clones. 

They defined structural clones as the “patterns of inter-related classes 

emerging from design and analysis spaces; patterns of components at the 

architecture level; design solutions repeatedly applied by programmers to 

solve similar problems”. 

The approach is as follows: In the first step, simple clones are detected from 

the subject program by applying token-based technique [29]. Then, recurring 

patterns of simple clones are detected using Frequent Closed Itemset Mining 

(FCIM) algorithm. The output of this step is a list of clone patterns occurring 

frequently in the subject program. For each such clone pattern, the subject 

program is searched for files having that clone pattern. In the last step, these 

searched files are clustered into similarity groups using two metrics: file 

percentage coverage and file token coverage. Each similarity group 

corresponds to a structural clone. They have implemented the approach as a 



195 

tool, Clone Miner and experimentally confirmed that the tool can find many 

useful higher-level design similarities, and is scalable to big programs. 

A.2.2. Logical Clone Detection 

Logical clones were proposed by Qian et al. [82] in 2013. They called them as 

code clones “revealing high-level business and programming rules”. Logical 

clones involve similar or relevant concerns and topics but are not necessarily 

similar at the code-level. 

The authors used semantic clustering and graph mining techniques for 

detecting logical clones. In the first step, they represented the source code as a 

meta-model consisting of methods, entity classes, and persistent data objects 

along with the invoke/access relations among them. Given this initial program 

meta-model, they clustered similar methods (i.e., methods sharing similar 

topics) into functional clusters using semantic clustering. They used Simian 

[183], a text-based clone detector, for detecting clones in the code. In the last 

step, based on the program-model produced by model extraction step, sub-

graph pattern mining algorithm is used for detecting logical clones. 

A.2.3. Other High-level Clone Detection 

There are some works that deal with detection of design patterns [83-94] and 

API usage patterns [95, 96]. Among few initial works, an attempt to detect 

design patterns (template methods, factory methods, and bridge) in C++ 

systems was by Keller et al. [83]. Smith and Stotts [84] presented a tool, they 

called System for Pattern Query and Recognition (SPQR), that detects a suite 

of elemental design patterns. 
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Tsantalis et al. [87] presented a solution to design pattern detection problem 

that uses similarity score between design patterns and graph representation of 

the program to detect occurrences of the design patterns. Romano et al. [88] 

applied text clustering on classes of a system, and then used existing 

techniques and tools, DPR [89] and Pattern4 [87], on the clusters to identify 

design-pattern instances. Semantic web was used for detecting design patterns 

in Java source code [91] in 2012. In the same year, Tekin et al. [92] proposed a 

sub-graph mining based design pattern detection algorithm for object-oriented 

software systems. 

Yu et al. [94] in 2013 presented an approach for detecting design patterns (in 

particular Decorators) using graph isomorphism. In their another work [93], 

they worked for detecting instances of structural design patterns from source 

codes. They first transformed the source code into Class-Relationship directed 

graphs. In the next step, they identified instances of sub-patterns that would be 

the possible constituents of pattern instances based on sub-graph isomorphism. 

A.3. Cloning Beyond Code 

Most of the software clone detection research mainly focuses on code clones. 

However, cloning also occurs in other software artifacts such as UML models, 

use cases, test cases, spreadsheets, and compiled code (e.g., Javabyte code). 

This section summarizes some of the existing works in this direction. Table 11 

provides summary of selected works. 

A.3.1. Model Clone Detection 

Cloning has been found in specification models such as UMLs [184-187] as 

well as in code generation models such as Matlab and Simulinks [188-192]. 
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Liu et al. [184] detected clones in UML sequence diagrams using a suffix-tree 

based algorithm. In the first step, two-dimensional sequence diagrams are 

converted into one-dimensional arrays. In the next step, suffix trees are 

constructed from the one-dimensional arrays. The constructed suffix trees are 

then used to find longest common prefixes, which correspond to clone 

candidates in the sequence diagrams. Another attempt for detecting clones in 

UML models was by Störrle [185, 187]. He proposed a tool MQlone as a 

prototype for his approach. The technique was based on model querying. 

An approach for detecting clones in data flow models was proposed by 

Deissenboeck et al. [188] in 2008. They used a graph-based detection 

approach consisting of three steps. The first step is preprocessing, which 

converts the model into labeled graph-model. Labels are assigned to nodes 

using some normalization function. Then, clone pairs are extracted from the 

normalized graph-model using some heuristics in a breath-first search manner. 

The similarity function uses maximum weighted bipartite matching to find 

similar nodes. In the last step, clones pairs are clustered to find out sub-

structures that are used more than twice in the model. 

Another efficient tool for detecting clones in Matlab and Simulink models is 

ModelCD [189], which detects both exact and approximate matches of model 

clones. It uses two novel graph-based clone detection algorithms–eScan and 

aScan, enabling systematic and incremental discovery of model clones. In the 

first step of the approach, a sparse labeled digraph is generated from the 

model. Then, eScan algorithm detects exact matches using canonical labeling. 

Finally, aScan algorithm is applied to find approximate matches. 
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An index-based incremental and distributable technique to detect model clones 

is by Hummel et al. [190]. In the first step, a directed labeled multi-graph is 

generated from the model. Isomorphic sub-graphs in the multi-graph 

correspond to clone classes in the model. 

Some of the recent attempts for detecting model clones are [186, 191, 192]. 

Antony et al. [186] proposed an algorithm for detecting clones in UML 

behavioral models in 2013. They adapted NiCad for detecting clones in 

behavioral models. In the first step, they transformed the XMI-file 

representation of the behavioral models into TXL [193] source transformation 

language. After normalizing TXL representation, NiCad is used to detect 

clones. Alalfi [191, 192] built a tool SIMONE to detect structurally 

meaningful type III (i.e., near-miss) clones in Simulink models. 

A.3.2. Data Clone Detection 

Clone detection has been applied to spreadsheets by Hermans et al. [194]. 

They adapted an existing text-based clone detection algorithm [23], and 

devised an algorithm for detecting clones in spreadsheets. They called the 

detected clones as data clones. They used cell values as fingerprints, and 

removed values that do not occur as formula and plain text. Subsequently, 

values that occur in multiple places are grouped into clone clusters to detect 

groups of cells that are possibly copied. In order to visualize data clones, 

authors generated dataflow diagrams showing the relationship between 

worksheets that contains clones, and added pop-ups to both parts of a clone 

indicating the source and the copied side of the clone. 
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A.3.3. Detection of Clones in Requirements Specification 

Juergens et al. [195] analyzed 28 requirements specification documents 

written in natural language (English and German) with total of more than 

8,500 pages. In the first step, they converted the source documents into plain 

text. Then, they applied ConQAT [179] on the plain text to find repeated 

substrings. 

Table 11. Summary of clone (software artifacts other than code) detection 
techniques 

Technique 
(Authors; 

Tool; Year) 

Types of 
Clones 

Detected 

Internal 
Code 

Repre-
sentation 

Compari-
son Gran-

ularity 

Compari-
son Tech-

nique 

Evaluation 
/Validation 

Language 
Paradigm/ 

Scope 
Remarks 

Liu et al. 
[184]; 

Duplication 
Detector; 

2006 

Model 
Clones 

one-
dimensional 
array further 
transformed 
to suffix tree 

Subtree of 
suffix tree 

Suffix-
tree based 
compariso

n 

Two 
industrial 
projects 

UML 
sequence 
diagrams 

High 
precision 
and recall 

Deissenboec
k et al. 

[188]; 2008  

Model 
Clones 

Labeled 
model graph 

Blocks/nod
e of graph 

Maximum 
weighted 
bipartite 
matching 

Two 
industrial 
models  

Matlab/ 
Simulink 

Scalable 
in nature  

Pham et al. 
[189]; 

ModelCD; 
2009 

Model 
Clones 

Sparse, 
labeled 
directed 
graph 

Subgraph  

Canonical 
labeling 
followed 
by vector 

based 
counting 
approach 

On four 
open source 

models 

Matlab/ 
Simulink 

Scalability 
Medium; 
precision 

low 

Störrle [185, 
187]; 

MQlone; 
2010, 2013  

Model 
Clones 

XMI files 
further 

transformed 
to prolog 

code 

? 

Model 
matching 

and 
similarity 

Library 
Managemen

t System 

UML 
Domain 
models 

Scalability 
(?)  

Juergens et 
al. [195]; 

2010 

Cloned 
Requirement 
Specificatio

ns 

Plain text Text string 
Common 
substring 
matching 

28 
requirement 
specificatio

ns 

Requirement 
Specificatio

ns 

Scalability 
(?) 

Hummel et 
al. [190]; 

2011 

Model 
Clones 

Directed, 
labeled 

multigraph 
Subgraph 

Clone 
index 
based 

hashing 

SIM; MUL; 
SEM; 

ECW; MPC  

Matlab/ 
Simulink 

Increment
al and 

scalable 

Alalfi et al. 
[191, 192]; 
SIMONE; 

2012 

Model 
Clones 

Normalized 
text form 

Normalize
d text 
groups 

Using 
NiCaD 

[49] 

Some 
publicly 
available 
Simulink 
models  

Simulink 
Models 

Author 
claim 

scalability 
but not 

evaluated 
on large 
systems 
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Technique 
(Authors; 

Tool; Year) 

Types of 
Clones 

Detected 

Internal 
Code 

Repre-
sentation 

Compari-
son Gran-

ularity 

Compari-
son Tech-

nique 

Evaluation 
/Validation 

Language 
Paradigm/ 

Scope 
Remarks 

Antony et 
al. [186]; 

2013 

Model 
Clones 

TXL 
representatio

n 
Text group 

Using 
NiCaD 

[49] 

On four 
reverse-

engineered 
models 

UML 
behavioral 

model 
Yes  

Hermans et 
al. [194]; 

2013 

Data Clones 
(exact and 
near miss) 

Text based 
cell 

represented 
as lookup 

table  

Cell in 
cluster 
forms 

Using 
cluster 
finding 

and 
matching; 
based on 

[23] 

Evaluated 
on EUSES 
spreadsheet 

corpus 
[196]; 

further case 
study with 

Delft 
university 

and 
Foodbank 

Spreadsheet
s 

High 
precision 

and 
scalable  

A.4. Other Possible Directions 

Much work has been done for code clone detection. We also found the cases 

claiming that cloning is possible beyond the code level (Section A.3). We 

already discussed some of these cases in the above subsections. We also found 

some other works citing cloning in test cases [197], Java byte code [198, 199], 

and websites [200]. Juergens [176] suggests cloning to be possible in other 

software artifacts too. Some of the possibilities are for cloning in the feature 

models, schemas, system architectures, process models, configuration files, 

etc. 

A.5. Chronology of Clone Detection Techniques 

Table 12 provides chronology of clone detection techniques. 
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Table 12. Chronology of clone detection techniques 

NOMENCLATURE: Low-level Clones: T1: Type I Clone; T2: Type II Clone; T3: Type III Clone; T4: 

Type IV Clone; High-level Clones: MFC: Method/Function Clone; CC: Class Clone; FC: File Clone; 

LC: Logical Clone; OHC: Other High-level Clones; CP: Collaborative Pattern; Beyond Code Clones:

Detection Technique 
(Authors; Tool; Year) 

 

MC: Model Clone; DC: Data Clone; OT: Other types of Clone. 

Code Clones Cloning Beyond 
Code 

Low-level Clones High-level Clones 

MC DC OT 

Textual 
Similarity 

T4 

Structural 
Clone 

LC 

O
H

C
 

CP 
T1 T2 T3 

M
FC

 

CC FC 

Johnson [23, 24]; 1993, 1994 Y             

Baker [25, 27]; Dup; 1993, 1995 Y Y            

Buss et al. [26]; 1994 Y Y            

Davey et al. [40]; 1995 Y Y Y           

Mayrand et al. [111]; 1996 Y Y   Y         

Baxter et al. [41]; 1998 Y Y Y           

Keller et al. [83]; 1999         Y     

Komondoor and Horwitz [69]; 
2001 Y Y Y Y          

Krinke [70]; Duplix; 2001 Y Y Y Y          

Marcus and Maletic [99]; 2001 ? ? ? Y     Y     

Kamiya et al. [42]; 2002 Y Y Y    Y       

Heuzeroth et al. [85]; 2003         Y     

Smith and Stotts; [84]; SPQR; 
2003         Y     

Li et al. [12, 43]; CP-Miner; 
2004, 2006 Y Y Y           

Lee and Jeong [44]; SDD; 2005 Y Y Y           

Basit and Jarzabek [5, 81]; 
Clone Miner; 2005, 2009 Y Y   Y  Y       

Koschke et al. [28]; 2006 Y Y            

Liu et al. [184]; 
DuplicationDetector; 2006           Y   

Tsantalis et al. [87]; Pattern4; 
2006         Y     

Basit et al. [29]; Repeated 
Tokens Finder (RTF); 2007 Y Y            

Jiang et al. [46]; DECKARD; 
2007 Y Y Y           
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Detection Technique 
(Authors; Tool; Year) 

Code Clones Cloning Beyond 
Code 

Low-level Clones High-level Clones 

MC DC OT 

Textual 
Similarity 

T4 

Structural 
Clone 

LC 

O
H

C
 

CP 
T1 T2 T3 

M
FC

 

CC FC 

Evans et al. [45, 50]; Asta; 2007, 
2009 Y Y Y  Y         

Bulychev and Minea [47]; Clone 
Digger; 2008 Y Y Y           

Livieri and Inoue [48]; YACCA; 
2008 Y Y Y           

Gabel et al. [71]; 2008    Y          

Deissenboeck et al. [188]; 2008           Y   

Roy and Cordy [49, 52, 55, 56, 
110]; NICAD; 2008-11 Y Y Y  Y         

Göde and Koschke [30]; 2009 Y Y            

Jia et al. [51]; KClone; 2009 Y Y Y           

Jiang and Su [72]; EQMINER; 
2009    Y          

Pham et al. [189]; ModelCD; 
2009           Y   

Hummel el al. [31]; 2010 Y Y            

Funaro et al. [54]; SynTex; 2010 Y Y Y           

Corazza et al. [53]; 2010 Y Y Y           

Juergens et al. [195]; 2010             Y 

Störrle [185, 187]; MQlone; 2010, 
2013           Y   

Schugerl [74]; DL-Clone; 2011 Y Y Y Y          

Higo et al. [58]; 2011 Y Y Y           

Yuan and Guo [60]; CMCD; 
2011 Y Y Y  Y         

Higo and Kusumoto [59]; 
Scorpio; 2011 Y Y Y           

Kim et al. [73]; MeCC; 2011 Y Y Y Y Y         

Yoshioka et al. [75]; Takana; 
2011 ? ? ? Y          

Hummel et al. [190]; 2011           Y   

Romano et al. [88]; 2011         Y     

Uddin et al. [96]; 2011         Y     

Cuomo et al. [32, 33]; 2011, 
2012 Y Y            

Dang et al.[57, 61]; XIAO; 2011, 
2012 Y Y Y           
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Detection Technique 
(Authors; Tool; Year) 

Code Clones Cloning Beyond 
Code 

Low-level Clones High-level Clones 

MC DC OT 

Textual 
Similarity 

T4 

Structural 
Clone 

LC 

O
H

C
 

CP 
T1 T2 T3 

M
FC

 

CC FC 

Toomy [37]; ctcompare; 2012 Y Y            

Lavoie and Merlo [35]; 2012 Y Y            

Salwa and Hafiz [98]; 2012 Y Y Y  Y         

Yuan and Guo [63]; Boreas; 
2012 Y Y Y           

Zibran and Roy [64]; 2012 Y Y Y           

Murakami et al. [62]; FRISC; 
2012 Y Y Y           

Li and Ernst [78]; CBCD; 2012 Y Y Y Y          

Elva and Leavens [76, 77]; 
JSCTracker; 2012    Y Y         

Alalfi et al. [191, 192] ; 
SIMONE; 2012           Y   

Keivanloo et al. [198, 199]; 
SeByte; 2012             Y 

Lebon and Tzerpos [201]; 2012         Y     

Tekin et al. [92]; 2012         Y     

Paydar and Kahani; [91]; 2012         Y     

Binun and Kniesel [90]; DPJF; 
2012         Y     

Sajnani and Lopes [36, 39]; 
2012, 2013 Y Y            

Koschke [34, 38]; 2012, 2013 Y Y            

Uddin et al. [66]; SimCad; 2013 Y Y Y           

Muddu et al. [65]; CPDP; 2013 Y Y Y ?          

Murakami et al. [67]; CDSW; 
2013 Y Y Y           

Qian et al. [82]; MiLoCo; 2013        Y      

Antony et al. [186]; 2013           Y   

Hermans et al. [194]; 2013            Y  

Yu et al. [93, 94]; 2013         Y     

Qu et al. [68]; 2014 Y Y Y           

Kodhai and Kanmani [97]; 2014     Y         

Proposed Work; COPAD; 2015          Y    
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Appendix B.  

GLOSSARY 

False Negative: a clone, but not detected as a clone by the clone detector. 

False Positive: not a clone, but detected as a clone by the clone detector. 

Precision: percentage of reported clones which are genuine. 

Program Entity: variable, statement, code fragment, function, class method, 

class, source file, directory, module, subsystem (last two are designated groups 

of files and/or directories). 

Recall: percentage of genuine clones that are reported. 

Simple Clone: small-granular (generally 4–6 lines of code) cloned contiguous 

code-fragments. 

Software Clone: a recurring configuration of program entities or software 

artifacts inter-related in some meaningful way, and where similarity among 

corresponding entities in the clone-instances has been already established by 

means of some similarity metrics. 

Structural Clone: recurring patterns of simple clones in a software system. 
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Subject Program: the source code under consideration from which we have 

to detect software clones. 

True Negative: not a clone, also not detected as a clone by the clone detector. 

True Positive: a clone, also detected as a clone by the clone detector. 

Type I Clones: identical code fragments except with possible variations at the 

levels of comments, layout, and whitespaces. 

Type II Clones: exactly similar code fragments except with possible 

variations in user-defined identifiers, literals, layout, types, and comments. All 

type I clones fit under this category. 

Type III Clones: type II clones modified further by addition, deletion, and/or 

modification of statement(s). 

Type IV Clones: functionally similar code fragments not necessarily to be 

syntactically similar. 
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