

FORMALIZATION AND DETECTION OF
COLLABORATIVE PATTERNS IN SOFTWARE

KULDEEP KUMAR

NATIONAL UNIVERSITY OF SINGAPORE

2015

FORMALIZATION AND DETECTION OF
COLLABORATIVE PATTERNS IN SOFTWARE

KULDEEP KUMAR
M. Tech. (Distinction), Computer Engineering,

National Institute of Technology, Kurukshetra, India

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2015

DECLARATION

I hereby declare that this thesis is my original work and it has been written by

me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Kuldeep Kumar

08 June 2015

i

ACKNOWLEDGEMENTS

I would like to express my respect, deep sense of gratitude, and indebtedness

to my supervisors, Dr. Stanislaw Jarzabek and Dr. Siau-Cheng Khoo for their

guidance, encouragement, and support in every stage of my research work. I

sincerely appreciate the best of opportunities they provided me, and credit

their belief in my capability as an inspiration for achievement of my academic

career. Their knowledge, kindness, patience, open-mindedness, and vision

have provided me with lifetime benefits.

My deep sense of gratitude is due to the thesis advisory committee members,

Dr. Bimlesh Wadhwa and Dr. Wei-Ngan Chin for their continuous blessings,

guidance, encouragement, and feedback during the course of this work.

I also owe special thanks to Dan Daniel, Dr. Hamid Basit, and Sim Weiqiang

for their wonderful help and feedbacks.

Thanks to my labmates and colleagues for their support, friendship, and all the

fun we have had together.

I must mention my family members without whose love, nurturing, and

support, I could never accomplish all these. I am thankful to my parents,

brother, sister-in-law, niece, and sisters for their loving support and

encouragement. I have no words to mention the support, patience, and

sacrifice of my parents. With gratitude, I dedicate this thesis to my parents.

iii

TABLE OF CONTENTS

Acknowledgements ..i

Table of Contents .. iii

Summary ..ix

List of Tables ..xi

List of Figures ... xiii

List of Abbreviations ... xvii

Chapter 1. Introduction .. 1

1.1. Background ... 2

1.2. Problem Description and Motivating Example 4

1.3. Current Status of Research on Clone Detection 5

1.3.1. Research Gaps .. 7

1.4. Open Challenges .. 7

1.5. Research Scope .. 8

1.6. Research Contributions ... 9

1.7. Thesis Outline .. 10

Chapter 2. The Concept of Collaborative Patterns 13

iv

2.1. Motivation ... 14

2.2. Introduction to Collaborative Patterns .. 15

2.2.1. Preliminary Definitions ... 15

2.2.2. Collaborative Structure .. 18

2.2.3. Collaborative Clone Class ... 18

2.3. Related Work ... 21

2.4. Classification of Collaborative Patterns .. 23

2.5. Importance and Benefits of Collaborative Patterns 26

2.6. Methodology for Detecting and Managing Collaborative Patterns .. 26

2.6.1. Phase 1: Pre-detection Analysis ... 27

2.6.2. Phase 2: Collaborative Pattern Detection 27

2.6.3. Phase 3: Post-detection Analysis with User Involvement 28

2.6.4. Phase 4: Management of Collaborative Patterns 28

2.7. Conclusions ... 29

Chapter 3. Detecting Collaborative Patterns ... 31

3.1. Scope of the Approach .. 31

3.2. Detailed Approach... 32

3.2.1. Step 1: Code-Clone Finder .. 33

3.2.2. Step 2: Calling-Relation Retriever ... 34

3.2.2.1. Trace Generator .. 35

3.2.2.2. Trace to Method-call Chains Finder 38

3.2.2.3. Call-Graph Generator ... 41

v

3.2.2.4. Call-Graph to Method-call Chains Finder 42

3.2.3. Step 3: Collaborative Pattern Detector 47

3.3. Tool Implementation ... 51

3.4. Conclusions ... 52

Chapter 4. Experimentation ... 53

4.1. Goals of Experimentation .. 53

4.2. Detection Overview ... 54

4.2.1. Detection Results ... 55

4.3. Analysis Overview .. 56

4.3.1. Analysis Results ... 62

4.4. Benefits and Applications .. 65

4.4.1. Better Program Understanding ... 65

4.4.2. Enhanced Reuse Opportunity ... 67

4.4.3. Efficient Refactoring .. 67

4.4.4. Other Benefits .. 68

4.5. Conclusions ... 69

Chapter 5. Managing Code Clones using the ART 71

5.1. Introduction and Motivation .. 72

5.2. An Overview of the ART ... 75

5.2.1. How Does the ART work? ... 76

5.2.1.1. An Overview of the ART-Template Solution 76

vi

5.2.2. ART Command Set .. 79

5.2.2.1. Comments in the ART .. 79

5.2.2.2. #adapt Command .. 79

5.2.2.3. ART Variables and Expressions ... 81

5.2.2.4. #output Command .. 84

5.2.2.5. Loops and Selections .. 86

5.2.2.6. Breakpoints (Insert-Break Mechanism) 87

5.2.2.7. Setloop Mechanism .. 89

5.2.3. ART Syntax.. 93

5.2.4. Architecture and Implementation Details 97

5.3. Detailed Methodology... 98

5.3.1. Step 1: Clone Detection ... 98

5.3.2. Step 2: Clone Analysis with Developer Involvement 99

5.3.2.1. Types of Clones that can be handled using the ART 99

5.3.3. Step 3: Tailoring ART Command Set (optional step) 104

5.3.4. Step 4: Constructing ART Templates 104

5.3.4.1. ART Template Construction Mechanism 105

5.3.4.2. Constructing ART Templates for Similar Directories 108

5.3.4.3. Constructing ART Templates for Similar Files 114

5.3.4.4. Constructing ART Templates for Collaborative Patterns . 115

5.3.4.5. Constructing ART Templates for Duplicated Code

Fragments and Methods ... 116

vii

5.3.5. ART Templates to Original Clone-Instances............................ 117

5.4. Conclusions ... 117

Chapter 6. Evaluation and Benefits of Managing Clones Using the ART

 119

6.1. Evaluation .. 119

6.1.1. Java Buffer Library Example ... 120

6.1.2. Notepad Example ... 125

6.1.3. Linux Kernel Example ... 128

6.1.4. Quantitative Evaluation .. 130

6.1.5. Qualitative Evaluation .. 132

6.1.5.1. Aid in Program Understanding and Maintenance............. 132

6.1.5.2. Reusing Templates within a Version of the Software 133

6.1.5.3. Reusing Templates across Versions of the Software 135

6.1.5.4. Handling Evolutionary Changes 136

6.1.6. Trade-offs and Threats to Validity of Results........................... 137

6.2. Related Works .. 138

6.2.1. Managing Redundancies in Software Systems 138

6.2.2. ART versus XVCL ... 139

6.2.3. ART versus Preprocessors .. 142

6.2.4. Variability Management in SPL ... 144

6.3. Conclusions ... 148

viii

Chapter 7. Conclusions and Future work ... 151

7.1. Summary ... 151

7.2. Future Research Directions ... 153

Bibliography ... 155

Appendix A. Literature Review... 175

A.1. Low-level Clone Detection ... 176

A.1.1. Type I (exact clones) Clone Detection 176

A.1.2. Type II (parameterized/named) Clone Detection 177

A.1.3. Type III (gapped/near-miss) Clone Detection 181

A.1.4. Type IV (semantic and re-ordered) Clone Detection 190

A.2. High-level Clone Detection .. 194

A.2.1. Structural Clone Detection .. 194

A.2.2. Logical Clone Detection .. 195

A.2.3. Other High-level Clone Detection ... 195

A.3. Cloning Beyond Code ... 196

A.3.1. Model Clone Detection .. 196

A.3.2. Data Clone Detection ... 198

A.3.3. Detection of Clones in Requirements Specification 199

A.4. Other Possible Directions.. 200

A.5. Chronology of Clone Detection Techniques 200

Appendix B. Glossary... 205

ix

SUMMARY

Code clones play a major role in software maintenance and reuse. Existing

code clone detection techniques mainly focus on detecting similar code

fragments, methods, functions, or files. But, many design-level similarity

patterns appear as recurring configurations of collaborating components such

as methods, functions, classes, or any physical or logical groups of program

entities. We call such types of recurring configurations as collaborative

patterns. Collaborative patterns often represent program structures exhibiting

specific behavior meaningful to developers who need to understand programs,

reengineer legacy code for reuse, or to refactor or simply maintain programs.

Among others, detection of collaborative patterns can help in change impact

analysis, code compaction, and creating generics. Unfortunately, unless

manually documented, collaborative patterns remain implicit in code. In this

thesis, in addition to properly define the concept of collaborative patterns, we

present novel methods for detecting and managing them. The main novelty of

the research lies in the formulation of the concept of collaborative patterns, in

the development of the technique for detecting collaborative patterns, and in

the development of the technique for managing such patterns in software

systems.

x

In the thesis, we first formalize the concept of collaborative patterns. We show

possible classification of collaborative patterns. Next, we present an approach

for detecting these collaborative patterns. The proposed approach for detecting

collaborative patterns enhances the value of similarity analysis in the activities

such as software maintenance and in the process of re-engineering for reuse

that involves finding candidate modules for reuse in legacy code.

Collaborative patterns are higher-level clones of large granularity that can be

detected by systematically combining small-granular cloned program entities

at various levels. They signify use of standardized solutions and/or repetitions

that arise naturally in software analysis or design space. As such, collaborative

patterns often embody important design information. Since, many existing

low-level clones of small granularity are grouped around these high-level

repetitions. Therefore, collaborative patterns form a convenient conceptual

window for developers to understand overall cloning in software systems. We

implemented the proposed approach for collaborative pattern detection into a

tool called COPAD (Collaborative Patterns Detector). We performed

experimentation to evaluate the proposed approach. Finally, we propose a

methodology to manage such types of high-level clones of large granularity

(collaborative patterns as well as other large-granular code clones) by

presenting a meta-programming technique and tool, the ART (Adaptive Reuse

Technique). It manages families of redundant software systems by providing a

common base of non-redundant, adaptable, and reusable meta-components

called ART templates. We also evaluated the benefits of managing clones

using the ART.

xi

LIST OF TABLES

Table 1. Features of subject programs considered for evaluating collaborative

pattern detection approach ... 54

Table 2. Summary of collaborative pattern detection results 55

Table 3. Summary of collaborative pattern analysis results 63

Table 4. Analysis of the length of patterns detected in clone analyzer v.2.0 65

Table 5. Summary of selected ART commands ... 92

Table 6. Comparison of /jbd2 with respect to /jbd ... 100

Table 7. Quantitative analysis .. 131

Table 8. Summary of selected Type II clone detection techniques 180

Table 9. Summary of selected Type III clone detection techniques 187

Table 10. Summary of selected Type IV clone detection techniques 192

Table 11. Summary of clone (software artifacts other than code) detection

techniques ... 199

Table 12. Chronology of clone detection techniques 201

xiii

LIST OF FIGURES

Figure 1.1. Motivating example: collaborative pattern in the PCE 5

Figure 2.1. An example of a collaborative structure S1 18

Figure 2.2. Examples of collaborative structures S2–S13 19

Figure 2.3. Collaborative pattern as high-level pattern of collaborative

structures .. 22

Figure 2.4. Collaborative pattern at the method-level 24

Figure 2.5. Collaborative pattern at the class-level .. 25

Figure 2.6. Higher-level collaborative pattern ... 25

Figure 2.7. Methodology for detecting and managing collaborative patterns . 27

Figure 3.1. Branched collaborative pattern to linear collaborative patterns 32

Figure 3.2. An overview of collaborative pattern detection approach 33

Figure 3.3. Detailed overview of calling-relation retriever component 35

Figure 3.4. Example of a program execution trace .. 36

Figure 3.5. Splitting of a program execution trace into method-call chains 39

Figure 3.6. Trace to method-call chains finder algorithm 41

Figure 3.7. Example of a call graph ... 42

Figure 3.8. Splitting of a call graph into method-call chains 43

Figure 3.9. Call graph to method-call chains finder algorithm 46

Figure 3.10. Collaborative pattern detection algorithm 48

xiv

Figure 3.11. Collaborative pattern detection algorithm: illustrative example . 49

Figure 4.1. An example of a collaborative pattern with three instances 57

Figure 4.2. Different cases of collaborative patterns emerged from the analysis

of case studies .. 62

Figure 4.3. Better program understanding: example of a collaborative pattern

from JHotDraw7 .. 67

Figure 5.1. An overview of the ART-template solution 77

Figure 5.2. Traversal mechanism of the ART Processor 78

Figure 5.3. Example illustrating the ART Processor traversal mechanism 78

Figure 5.4. Example: #set command and variables in the ART 82

Figure 5.5. Example: #output command in the ART 85

Figure 5.6. Example: #while command in the ART .. 86

Figure 5.7. Example: #select command in the ART .. 87

Figure 5.8. Example: breakpoints in the ART ... 89

Figure 5.9. Example: setloop mechanism in the ART 92

Figure 5.10. Architectural overview of the ART Processor 98

Figure 5.11. Detailed research methodology for managing code clones 98

Figure 5.12. Cloned directories /jbd and /jbd2 .. 100

Figure 5.13. Code snippets of cloned file /jbd/checkpoint.c (left) and

/jbd2/checkpoint.c (right) .. 101

Figure 5.14. Sample code fragments from rt73usb.c and rc2800usb.c from the

Linux kernel-3.10 (differences highlighted) .. 104

Figure 5.15. Illustrative example to show similarities and differences among

clone instances of a clone class ... 106

Figure 5.16. Constructing ART-template hierarchy 110

Figure 5.17. Constructing ART templates: JBD example 111

Figure 5.18. Code snippet of ART templates for the JBD example 112

xv

Figure 5.19. Code snippet of an ART template for a collaborative pattern 116

Figure 6.1. Features in the Java Buffer library ... 121

Figure 6.2. ART-template solution for the Java buffer library 122

Figure 6.3. ART-template solution for seven [T]Buffer classes (partial) 123

Figure 6.4. ART-template solution for the Notepad example 126

Figure 6.5. Code snippet for ART-template solution for the Notepad example

 .. 127

Figure 6.6. Working of the ART in integration with cpp for Linux kernel 128

Figure 6.7. Template reuse: reusing ART templates 134

Figure 6.8. Umbrella templates for an overall ART-template solution 135

Figure 6.9. A code fragment in XVCL (left) vs ART (right) syntax 140

Figure 6.10. Using commands other than #insert under #adapt 141

Figure A.1. Taxonomy for software clones .. 176

xvii

LIST OF ABBREVIATIONS

AOP Aspect-Oriented Programming

ART Adaptive Reuse Technique

AST Abstract Syntax Tree

COPAD Collaborative Patterns Detector

cpp C preprocessor

FOP Feature-Oriented Programming

GST Generalized Suffix Tree

GUI Graphical User Interface

JBD Journaling Block Device

LCP Longest Common Prefix

LOC Lines of Code

MDSOC Multi-Dimensional Separation of Concerns

MPC Method Percentage Coverage

MTC Method Token Coverage

NERF Non-Extendible Repeat Finder

PCE Project Collaboration Environment

PDG Program Dependency Graph

SPC ART Specification File

SPL Software Product Line

STL Standard Template Library

XVCL XML-based Variant Configuration Language

1

Chapter 1.
INTRODUCTION

Software reuse is possible through various systematic means such as design

patterns, generative programming, component frameworks, program libraries,

object composition, and aspect-oriented software developments. It accelerates

development process, increases dependability, and reduces development cost

[1]. However, because of programmers’ limitations and time constraints,

sometimes it is needed to reuse software components which have not been

designed for reuse [2]. It leads to the use of cut-and-paste programming style

instead of system-redesign approach, causing increased maintenance cost [3].

Further, many programming languages lack with inherent support of reuse,

resulting in code clones in software systems [3]. Code clones are repeated

program structures of considerable size and significant similarities occurring

in various forms at different locations in the software system [2].

Detecting code clones (i.e., similar program structures) helps the programmers

in reducing maintenance cost, in improving program understanding, and in

controlling code changes [2, 3]. Hence, many types of code clones and their

corresponding detection techniques are available in the literature (discussed in

2

Appendix A). In this thesis, we proposed another useful type of code clones,

we call them collaborative patterns. The knowledge of collaborative patterns

in a software system can lead to better understanding of the design of the

system, which helps in day-to-day software maintenance, long-term evolution,

and re-engineering [4, 5]. Further, management of these clones with generic

program structures can offer interesting opportunities for program

simplification and reuse. In this thesis, we first formalize the concept of

collaborative patterns along with its possible classification, and then discuss

the design methodologies for their detection and management.

This chapter is organized as follows: we begin with background (Section 1.1),

problem description, and motivation behind the problem (Section 1.2). Section

1.3 outlines the current status of clone detection research and highlights

possible research gaps we address in the proposed research. Open challenges

we face in dealing with the proposed work are discussed in Section 1.4. The

scope and contributions of the work are presented in Sections 1.5 and 1.6

respectively. Finally, outline of the thesis is given in Section 1.7.

1.1. Background

Cloning exists in almost all kinds of software [6, 7]. Sometimes it is due to

programmers’ implicit activities like reusing a similar design solution to solve

similar types of problems, or sometimes programmers explicitly use same

code to save their time. Lack of knowledge in the problem domain,

programming language constraints, change in the requirements, and

inefficiently using software-reuse mechanisms are some of the other

contributing factors that lead to code clones within software systems [8]. With

3

the advancement of technologies such as product line engineering [9], cloning

has spread across multiple systems. It is because many systems developed

using product line engineering tend to be similar, resulting in code clones not

just within a system, but also across the systems.

Although cloning may not always affect the code functionality, it may have

severe impacts on the maintainability, reusability, and quality of the software

[3, 10]. There is no consensus on whether benefits of cloning outweigh its

detriments [11]. Some literature considered cloning to be harmful because it

may make code complex [3], error-prone [12-14], and difficult to change [15].

On the other hand, some works have not found any empirical evidences of

harmful effects of cloning [16], and instead claimed cloning as one of the

valuable software engineering practices [17, 18]. Nevertheless, whether clones

are good or bad is still an open research question, and it is agreed on that

clones must be made explicit in the code so that they can be consistently

managed and maintained [19]. The knowledge of clones in the code assists

programmers in program understanding, detecting library candidates,

refactoring, and program analysis [2, 3]. Various forms of code clones are

mentioned in the literature depending upon sizes and similarities among

cloned code fragments. Following the classification from [2], broadly there are

two kinds of similarities between code fragments: textual similarity and

functional similarity. If the two code fragments are similar based on the

similarity of their program text, they are considered textually similar. On the

other hand, if code fragments are similar in their functionalities without being

textually similar, it refers to the functional similarity between code fragments.

In case of collaborative patterns proposed in the thesis, the corresponding

4

structures are similar to each other based on the similarity of their program

text. Hence, the collaborative-pattern similarity that we address in this thesis

falls within the category of textual similarity. Next section describes the

problem addressed in this thesis with a motivating example.

1.2. Problem Description and Motivating Example

In this thesis, we aim at detecting an important type of clones in software

systems we called collaborative patterns that have not been addressed in the

software clone research so far.

Collaborative pattern is defined as a recurring configuration of program

entities (e.g., classes or methods) inter-related by means of calling

relationships (method calls or message passing). In these configurations, the

corresponding entities should be similar to each other based on some selected

similarity metrics.

The selected similarity metrics may be based on the textual similarity or the

functional similarity among the program entities. While we may consider any

types of similarity metrics, in our current work we focus on the textual

similarity among the program entities.

Motivating Example: The motivation for the proposed work comes from the

review of an existing web-based application, Project Collaboration

Environment (PCE) [20, 21], that supports project planning and execution.

PCE supports modular design to manage information about staff, project,

product, or task independently. Each PCE module implements operations such

as create, edit, delete, display, or save to manage their respective records. In

PCE, we encountered examples where cloned modules are collaborating with

5

each other. For example, Figure 1.1 shows design of features CreateStaff,

CreateProject, and CreateProduct. Boxes are PHP files implementing user

interface (Level 1), business logic (Level 2), and database aspects (Level 3) of

respective features. Boxes of the same shade are similar one to another (i.e.,

code clones), and arrows indicate calling relationships among PHP functions

in the corresponding boxes. Similar to other cloned program structures,

knowing this relation between the cloned modules may prove to be useful in

better understanding of the system design or may help in finding clone

candidates that can be unified at meta-level [4, 22]. In addition, it helps in

tracing important calling-relationship information among the cloned modules,

which can be useful in finding information flow in the system [5]. It motivated

us to work for techniques for detecting such type of clones in software

systems, we called collaborative patterns.

CreateStaff.BL
validateStaff()

Staff.DB
addStaff()
Staff Table

Project.DB
addProject()
Project Table

CreateProject.BL
validateProject()

CreateStaff CreateProject

CreateStaff.UI
createStaff()

CreateProject.UI
createProject()

Product.DB
addProduct()
Product Table

CreateProduct.BL
validateProduct()

CreateProduct

CreateProduct.UI
createProduct()

Level 1

Level 2

Level 3

Figure 1.1. Motivating example: collaborative pattern in the PCE

1.3. Current Status of Research on Clone Detection

Much work has been done on software clone detection ranging from the

detection of low-level small fragments of duplicated code [12, 23-80] to

6

higher-level duplicated program structures [5, 81-99]. A detailed discussion on

the available literature is presented in Appendix A.

Most of the existing clone detection techniques are limited to detection of low-

level small fragments of duplicated code. These techniques detect exact [23,

24], parameterized [25-39], gapped [12, 40-68], or semantically similar code

fragments [69-80] by using various techniques such as by analyzing the

program text [23-25, 27, 40, 44, 49, 52, 55, 56, 72, 75], by considering the

program as a stream of tokens [12, 29-31, 34, 37, 38, 42, 43, 48, 62, 63, 65,

67], using program metrics [60], using abstract syntax trees [28, 41, 45, 47, 50,

53, 76, 77], using program dependency graphs [58, 59, 68-71, 78], using parse

tree [46], or using hybrid combination of various program representations [36,

39, 54]. Other techniques address higher-level clones such as structural clones

[5, 81], logical clones [82], design patterns [83-94], API usage patterns [95,

96], and others [97-99].

Small-granular code clone detectors generally detect clones larger than a

certain threshold value (e.g., 30–50 tokens, 4–6 lines of code, or threshold set

by users [2, 3, 42, 100, 101]). Motivated from the concept of structural clones

(recurring patterns of duplicated contiguous code fragments), we found that

more interesting and useful types of clones can be found by increasing the

level of similarity analysis and clone granularity. We called these types of

high-level clones as collaborative patterns.

What makes collaborative patterns interesting and useful is that many design-

level similarity patterns are implemented as groups of collaborative

components such as methods, functions, classes, files, or any physical or

logical groups of program entities (Section 1.2, see motivating example). In

7

addition, standard solutions used across project groups in a company can often

be expressed as collaborative patterns [20, 21].

1.3.1. Research Gaps

The research gaps we address in this thesis with their expected solutions are:

• Type of the code clones detected: This thesis aims at detecting patterns

of collaborative components, so-we-called collaborative patterns. The

proposed work initiates a new direction of research in the area of

software clone detection by allowing us to detect collaborative

patterns. Collaborative patterns are high-level clones. No work

addresses such types of code clones.

• Granularity (size) of the detected code clones—bigger units of clone:

Collaborative patterns are large-granular clones. Hence, they represent

program structures exhibiting specific behavior meaningful to

developers who need to understand programs, reengineer legacy code

for reuse, or to refactor or simply maintain programs [4].

1.4. Open Challenges

Some of the challenges we face while dealing with collaborative patterns are:

Definition of collaborative patterns: A precise definition of collaborative

patterns is required with its related terminology. It helps in better

understanding of the proposed phenomenon and communicating it effectively

with the current research.

Classification of collaborative patterns: There is a need to properly classify

the collaborative patterns into different types at different levels of abstraction.

8

Having knowledge of varying types of collaborative patterns serves many

purposes such as studying the more frequently occurring patterns or

prioritizing different types of patterns.

Detection of collaborative patterns: Since there is no background work related

to the detection of such types of code clone, another big challenge is the

proposal of a detection technique which is scalable as well as efficient. We

face many challenges related to the detection process:

• The technique to detect collaborative patterns itself is a big challenge.

Moreover, different types of collaborative patterns may require

different detection techniques.

• Correctness and completeness of the technique.

• Meaningfulness of the detected patterns for the analyst, designer, or

implementer.

• Scalability of the technique.

Management of collaborative patterns: Once we found collaborative

patterns—the questions arise how we are going to manage them, how can we

benefit from their knowledge in terms of easier maintenance or better reuse.

Which kinds of project activities can benefit by detecting and managing them?

Overall, management aims at organizing existing clones, minimizing their

negative effects, controlling their growth and dispersal, and avoiding them

altogether [102].

1.5. Research Scope

The scope of the thesis lies in the following directions:

9

Concept Formalization: We formalized the notion of collaborative patterns in

general and described various types of collaborative patterns possible in

software systems.

In the area of Clone Detection: We proposed an approach that uses structural

clones and method calling-relationship information from the source code of

the subject program for detecting collaborative patterns [103, 104]. We

implemented the above approach as a prototype tool, called COPAD

(Collaborative Patterns Detector). We performed experimentation to evaluate

the usefulness of the proposed approach.

In the area of Clone Management: We proposed a methodology to manage

code clones of large granularity (such as collaborative patterns, structural

clones, or other large-granular cloned program structures) by presenting a

meta-programming technique and tool, the ART (Adaptive Reuse Technique)

that can manage families of redundant software systems by providing a

common base of non-redundant, adaptable, and reusable meta-components

[105-108]. We evaluated the benefits of managing code clones using the ART.

1.6. Research Contributions

Clones convey important information to the developers regarding the structure

and the functionality of a system. It makes clones very useful in software

maintenance and re-engineering. This thesis extends the clone research from

lower-level cloned code fragments to higher-level collaborative pattern. Since

collaborative patterns are high-level clones of large granularity, they may

indicate a cloned concept, e.g., a cloned design solution [4]. Hence, they

signify use of standardized solutions and/or repetitions that arise naturally in

10

software analysis or design space. Many existing lower-level code clones are

grouped around such high-level repetitions [4]. Therefore collaborative

patterns form a convenient conceptual window for developers to understand

the overall cloning in software systems. Hence, the proposed techniques for

detecting and managing collaborative patterns enhance the value of similarity

analysis in software maintenance and in the process of re-engineering the

software for reuse that involves finding candidate modules for reuse in legacy

code.

The novelty of the research lies in the type of clones detected, and the

techniques developed for detecting and managing them. The proposed work

initiates a new direction of research in the area of software clone detection. To

our best knowledge, no work addresses collaborative patterns. We used

program execution traces for detecting collaborative patterns in the software

systems. Generation and analysis of program execution traces have been used

in other areas of research (such as monitoring of software for reliability

reasons or in specification mining [109]), but the proposed work harnesses the

use of program execution traces for clone detection.

1.7. Thesis Outline

The thesis is divided into seven chapters and two appendices.

Chapter 2 provides details on the formalization of the notion of collaborative

patterns. The term collaborative pattern is defined precisely in terms of a

directed graph. In the directed graph, nodes are program entities and edges are

calling relationships among the program entities. This chapter briefly outlines

the methodology for detecting and managing collaborative patterns.

11

Chapter 3 describes collaborative pattern detection approach in detail.

Experimentation results related to the proposed approach are presented in

Chapter 4.

To evaluate the benefits of knowing collaborative patterns (and other code

clones of large granularity) in programs, we focus on representing clone

classes using templates that can be built using the ART. The ART and the

methodology of managing code clones using the ART are explained in detail

in Chapter 5.

Chapter 6 quantitatively and qualitatively evaluates the strengths, weaknesses,

and trade-offs involved in the application of the ART. Finally, Chapter 7

concludes the thesis.

Appendix A provides a comprehensive literature survey on relevant prior

work. This survey gives us rudimentary details of state-of-the-art works

available in the area of software clone detection. Appendix B at the end gives

detail of general terms used in the thesis.

13

Chapter 2.
THE CONCEPT OF COLLABORATIVE

PATTERNS

Clone detection is an active area of research in Software Engineering since

about last two decades. As suggested by the literature, various tools and

techniques have been proposed for detecting cloned code fragments. Also,

some works addressed clones of larger granularity such as cloned methods or

cloned files [5, 97, 98, 110, 111]. However through similarity analysis, we

observed that cloning in software systems is not limited only to cloned code

fragments, methods, or files—as is the focus of most of the current clone

detection research—but can also occur at higher levels. One of such cases is

the recurring configuration of collaborating program entities (such as methods,

classes) where the corresponding entities in the instances of the configuration

are code clones of each other. This chapter describes the concept of these

higher-level clones, which we call collaborative patterns.

This chapter is organized as follows: Section 2.1 discusses the motivation. In

Section 2.2, we formally define the term collaborative pattern in terms of a

14

graph and its relation with structural clones. Related work is presented in

Section 2.3. Section 2.4 presents the classification of collaborative patterns.

Section 2.5 highlights importance and benefits of collaborative patterns.

Section 2.6 outlines the proposed approach for detecting and managing

collaborative patterns that is explained in detail in the forthcoming chapters.

Finally, Section 2.7 concludes the chapter.

2.1. Motivation

In the Second International Workshop on Detection of Software Clones

(IWDSC’03), 57 open questions related to clone detection research were

raised during the brainstorming session [112]. A few of them were related to

detection of higher-level clones, for example, “Can we detect higher-level

clones well?” or “Do we understand "other" level clones?”. There have been a

few attempts in this direction of research [5, 82, 97, 98, 110, 111].

We found that certain types of configurations of cloned code fragments or

program entities signify some higher-level patterns of similarities. One such

case is the recurring configuration of collaborating program entities such as

methods, classes, or files, where the corresponding entities in the instances of

the configuration are clones of each other. We call such configurations of

collaborating program entities as collaborative patterns.

Detection of collaborative patterns can enhance the values of similarity

analysis. The knowledge of the locations of collaborative patterns in the

software system may lead to a better understanding of the design of the

system, which can help in day-to-day software maintenance, long-term

evolution, reuse, and re-engineering. Further, management of these patterns

15

with generic program structures can offer interesting opportunities for program

simplification and reuse.

2.2. Introduction to Collaborative Patterns

In Section 1.2, we defined the term collaborative pattern as:

Collaborative pattern is defined as a recurring configuration of program

entities (e.g., classes or methods) inter-related by means of calling

relationships (method calls or message passing). In these configurations, the

corresponding entities should be similar to each other based on some selected

similarity metrics.

In this section, we precisely define and formalize the term collaborative

pattern in detail.

2.2.1. Preliminary Definitions

This subsection details definitions of some of existing important terms which

are used in formalizing the term collaborative pattern.

Definition 2.1 (program entity): In general, a program entity represents any

program element that can be clearly identified in a program such as a

statement, code fragment, function, class method, class, source file, directory,

module, subsystem (last two are designated groups of files and/or directories).

Definition 2.2 (clone relation): A clone relation exists between two program

entities e1 and e2, if and only if they have significant similarities between

them. The threshold of the similarity depends on the context and the nature of

the program entities. Beside this, human judgment is also an important factor

in deciding whether two program entities are clones of each other or not.

16

Similar to [42], the clone relation defined is an equivalence relation (i.e.,

reflexive, transitive, and symmetric relation).

Definition 2.3 (clone pair): For a given clone relation, a pair of program

entities is called clone pair if a clone relation holds between the two program

entities.

Definition 2.4 (clone class): An equivalence class of the clone relation is

called clone class. It means that a clone class is a maximal set of program

entities in which a clone relation holds between any pair of the program

entities.

Definition 2.5 (simple clone): Segments of contiguous code are the simplest

type of program entities that can participate in a clone relation, in such a case

called as simple clones [5].

Definition 2.6 (program structure): Following definitions from Basit and

Jarzabek [113], a program structure is a connected mixed multigraph where

nodes are program entities, and (directed or undirected) edges are relationships

between the program entities. A relationship represents any meaningful

physical or logical connection between two program entities in a structure.

Multiple edges between same pair of nodes can be useful in characterizing

certain types of structures.

To define program structure hierarchies, Basit and Jarzabek [113] introduced

the terms atomic entity and abstract entity. An atomic entity (Definition 2.7) is

one whose internal structure has no relevance. On the other hand, an abstract

entity (Definition 2.8) is one whose internal structure is abstracted away to

form a building block for higher level structures. In this way, abstract entities

17

allow us to define higher-level program structures in the hierarchy in terms of

lower-level program structures at as many levels as is useful.

Definition 2.9 (structural clone relation): A structural clone relation holds

between two program structures S1 and S2 if (and only if):

(a) S1 and S2 have the same graph structure,

(b) A clone relation has already been established between corresponding

program entities in S1 and S2, and

(c) Corresponding relationships in S1 and S2 are of the same type.

Depending upon the nature of program entities, a static relationship or

dynamic relationship can exist among program entities. A static relationship

can be program entities belonging to same location (e.g., functions defined in

the same source file, methods belonging to the same class, or files in the same

directory). A dynamic relationship can be calling relationship among program

entities (e.g., a method calling another method, any method from a class calls

some other method(s) of another class). The work on structural clones by

Basit and Jarzabek [5] is a special case where relationship is the “same

location” of interrelated program entities. Collaborative patterns described in

this thesis are another special case where relationship is the “calling

relationship” among the interrelated program entities.

Further, whether a relation is symmetric or not, it depends of the nature of the

relation. For example, “same location” is a symmetric relation (if entity e1 is

in same location as entity e2, e2 is also in same location as e1), but “calling

relationship” is not (entity e1 is calling e2 does not implies that e2 is surely

18

calling e1). The rest of the section elaborates the collaborative pattern concept

in terms of a directed graph.

2.2.2. Collaborative Structure

Definition 2.10 (collaborative structure): A collaborative structure is a

connected and directed graph where nodes are program entities, and edges are

calling relationships among the program entities.

Figure 2.1 gives an example of collaborative structure S1 that consists of five

program entities e1, e2, e3, e4, and e5. The five program entities are inter-

related to each other by a calling relationship denoted by arrows.

e1 e4e2

e3 e5

Figure 2.1. An example of a collaborative structure S1

2.2.3. Collaborative Clone Class

Definition 2.11 (collaborative clone relation): Collaborative clone relation is

a clone relation between collaborative structures. A collaborative clone

relation exists between two collaborative structures S1 and S2 if and only if:

(a) S1 and S2 have the same graph structure, and

(b) A clone relation has already been established between the

corresponding program entities in S1 and S2.

Definition 2.12 (collaborative clone class/ collaborative pattern):

Collaborative clone class is a maximal set of collaborative structures that are

19

in collaborative clone relation of each other. In the rest of the thesis, we will

call collaborative clone class a collaborative pattern for short.

Figure 2.2 shows some illustrative examples of collaborative structures S2 to

S13. Each program entity is labeled with an entity name and represented by a

rectangular box. Also, program entities represented by same color boxes are in

clone relation with each other. For example, program entities e12, e13, e14, e15,

e18, and e19 are in clone relation with each other, but e613 is not in clone

relation with the rest.

e12 e32e22 e13 e33e23

e14 e34e24
e15 e35e25

e16 e36e26 e16 e17 e37e27 e47

e18 e38e28

e58

e19 e39e29

e59

e110 e310e210

e510

e111

e311e211

e511 e611

e112

e312e212

e512 e612

e113

e313e213

e513 e613

(S2)

(S4)

(S3)

(S5)

(S6) (S7)

(S8) (S9)

(S10) (S11)

(S12) (S13)

Figure 2.2. Examples of collaborative structures S2–S13

20

As shown in the Figure 2.2, collaborative structures:

a. S2, S3, and S4 have same graph structure.

b. S6 and S7 have same graph structure.

c. S8 and S10 have same graph structure.

d. S11, S12, and S13 have same graph structure.

Similarly, corresponding program entities in collaborative structures:

i. S2, S3, and S5 have a clone relation.

ii. S6 and S7 have clone relation.

iii. S8, S9, and S10 have clone relation.

iv. S11 and S12 have clone relation.

Based on that, collaborative structures S2 and S3 have collaborative clone

relation and form a collaborative pattern. But, S4 has no collaborative clone

relation with S2 and S3 (condition ‘b’ in definition 2.11 fails). Similarly, S5 is

not in collaborative clone relation with S2 and S3 (condition ‘a’ fails).

For collaborative clone relation, it is not necessary for the program entities to

be unique. For example, in the collaborative structures S6 and S7, program

entity e16 corresponds to both entities e17 and e47. But, by satisfying

conditions ‘a’ and ‘b’, these collaborative structures form a collaborative

pattern.

Given that corresponding program entities in S8, S9, and S10 have clone

relation. But, S9 is not in collaborative clone relation with S8 and S10 (i.e.,

condition ‘a’ fails). Thus, only program structures S8 and S10 form

collaborative patterns. Similarly, beside collaborative structures S11, S12, and

S13 have same graph structure, but only S11 and S12 form collaborative

21

patterns. It is because, S13 has a program entity e613 which is not in clone

relation with the corresponding program entities in S11 and S12 (i.e., condition

‘b’ in definition 2.11 fails).

2.3. Related Work

The proposed collaborative pattern concept is built upon the concept of

structural clones described in [5, 81]. Following works in [5, 81], similar

program parts are termed as software clones. Software clones may include

simple clones and structural clones. Simple clones are formed by fragments of

textually similar contiguous code whereas structural clones are formed by

configurations of these simple clones.

Structural clones are cloned program structures whose respective elements

(i.e., program entities) are similar and relationship is the “same location” of

interrelated program entities. Based on the nature of the program entity,

structural clones may exist at different levels of granularity [114]. Structural

clones at higher-level of granularity can be constructed from structural clones

of lower granularity. For example, structural clones at file level can consist of

method-level structural clones, where methods are the abstract entities whose

internal structure is abstracted away to form a building block for higher-level

structures. Code fragments are atomic entities in case of structural clones.

Based on the idea of structure hierarchy in terms of atomic and abstract entity,

structural clones can be defined at many levels as it is useful.

Collaborative patterns discussed in this thesis enhance the clone phenomenon

further by exploring the calling relationships among these cloned structures. In

case of collaborative patterns, instead of contiguous code fragments, we

22

considered methods as the atomic entities. For example, suppose that we have

three structures (A1, B1, C1), (A2, B2, C2), and (A3, B3, C3) as shown in

Figure 2.3. Each of these structures consists of methods as shown by the

rectangular boxes. Suppose a substantial part of each of the corresponding

methods in the three structures is covered by contiguous cloned code

fragments. Then, A1, A2 and A3 are considered to be method-level structural

clones as shown be same shade in the corresponding rectangular boxes.

Similarly, further suppose we have other method-level structural clone <B1,

B2, B3> and <C1, C2, C3>. We consider a group of such collaborative

structures as a collaborative clone class (or collaborative pattern for short).

Thus, collaborative pattern is formed by a group of collaborative structures

whose respective elements are similar and inter-related by means of calling

relationships. Hence, collaborative patterns are higher-level clones that can be

found by further increasing the level of similarity analysis and clone

granularity.

A1

C1

B1

A2

C2

B2

A3

C3

B3

Figure 2.3. Collaborative pattern as high-level pattern of collaborative structures

A recent work, Clonepedia [19] targets on mining commonalities of syntactic

contexts in which code clones occur. Similar to the work on structural clones,

they also considered spatial relationships such as “contain”, “reside_in”,

“diff_use”, “extend” in the program structures. These relationships describe

location and usage characteristics of cloned code fragments. However,

23

depending on the relationship types, atomic entities may be classes, methods,

or code fragments. Compared to the Clonepedia work, collaborative patterns

described in the thesis are cloned program structures with calling relationship

between the corresponding program entities.

There are many works that deal with detection of design patterns [115].

Among few initial works, an attempt to find structural design patterns

(adapter, proxy, composite, bridge, and decorator) in object-oriented software

was by Antoniol et al. [116]. Tsantalis et al. [87] presented a solution to design

pattern detection problem that uses similarity score between design patterns

and graph representation of the program to detect occurrences of the design

patterns. They used a large set of well-known design patterns which includes

adapter, command, composite, decorator, factory method, observer, prototype,

singleton, state, strategy, template method, and visitor. Yu et al. [94] in 2013

presented an approach for detecting decorators design patterns using graph

isomorphism. Recently in 2014, a semantic web based technique for detecting

11 types of design patterns is proposed by Alnusair et al. [117]. Compared to

collaborative patterns presented in the thesis, these works assume pre-defined

descriptions about the behavior and structure of the particular design pattern to

be detected. Further, compared to collaborative patterns where program

structures are clone of each other, design patterns need not necessarily be

similar at the code level.

2.4. Classification of Collaborative Patterns

Based on the type of the program entity, we can further classify collaborative

patterns. Such classification of collaborative patterns is useful in further

24

analysis of this phenomenon. As discussed earlier, possible types of program

entities can be methods, classes, files, modules, components, directories, sub-

systems, or any physical or logical groups of program entities. Based on these,

we can classify collaborative patterns into different levels of abstraction. For

example, suppose we have six classes A, A1, B, B1, C, and C1 with methods

f(), f1(), g(), g1(), h(), and h1(), respectively as shown in Figure 2.4. We say

that method configurations <f(), g(), h()> and <f1(), g1(), h1()> form a

collaborative pattern at the method-level if the following conditions hold:

• methods f() and f1(), g() and g1(), and h() and h1() have been

identified as method clones of each other.

• methods call each other as indicated by arrows in Figure 2.4

representing control flow in the program, i.e., A.f()B.g()C.h() and

A1.f1()B1.g1()C1.h1().

Class A

Class C

Class B

Class C1

Class B1

Class A1

h()

g()

f1()f()

g1()

h1()

Two Instances of a Collaborative Pattern at the method-level

Figure 2.4. Collaborative pattern at the method-level

Further, assume that classes A and A1, B and B1, and C and C1 are class

clones of each other. Arrows indicate calling relationship such that any of the

methods from a class calls any of the other methods of another class (for

25

example, arrow from class A to class B indicates that any of the method, say

f(), calls any other method, say g(), in class B). Then, the class configurations

<A, B, C> and <A1, B1, C1> form a collaborative pattern at the class-level

(Figure 2.5).

Class A

Class C

Class B

Class C1

Class B1

Class A1

y()
y1()

h1()z()
z1()

x() x1()

g() g1()

Two Instances of a Collaborative Pattern at the class-level

h()

f() f1()

Figure 2.5. Collaborative pattern at the class-level

Similarity, we can define collaborative patterns at the levels of files,

directories, or components, where component is any physical or logical

grouping of program elements (Figure 2.6).

Component1

A,B,C

Component3`

U1,V1,W1

Component3

U,V,W

Component1`

A1,B1,C1

Component2`

P1,Q1,R1

Component2

P,Q,R

Instances of a Higher-Level Collaborative Pattern

Figure 2.6. Higher-level collaborative pattern

26

2.5. Importance and Benefits of Collaborative Patterns

Detection of various types of code clones, in general, helps in program

understanding, program refactoring, error detection, quality assessment, reuse,

plagiarism detection, software evolution, maintenance, and others [3, 8].

Similar to structural clones, collaborative patterns being large-granular

program structures, facilitate better context-analysis and represent important

design information [5]. Thus, collaborative patterns can prove to be even more

useful in all these scenarios. The detected clone units are large enough to

exhibit conceptual similarities that help in better understanding of the cloning

in the software system. One can expect better code compaction due to bigger

units of detected clones. In addition, detection of collaborative patterns can

help in creating generic representation of the entire system using technique

such as the ART (explained in Chapter 5). This generic representation can

extend the scope of reuse beyond the conventional architecture-centric,

component based methods. Sections 4.4 and 6.1 explore the benefits of

detecting and managing collaborative patterns in detail.

2.6. Methodology for Detecting and Managing

Collaborative Patterns

In the previous sections, we discussed the concept of collaborative patterns in

detail. This section briefly outlines the proposed approach for detecting and

managing these collaborative patterns. The detailed approach is presented in

the forthcoming chapters.

Figure 2.7 gives an overview of the collaborative pattern detection and

management approach that includes four phases: pre-detection analysis,

27

collaborative pattern detection, post-detection analysis with user involvement,

and collaborative pattern management. The proposed approach performs

collaborative pattern detection by finding small-granular code clones first, and

then gradually raising the level of detection to higher-level collaborative

patterns. Each phase is explained briefly in the forthcoming subsections.

3. Post-detection
Analysis with

User Involvement

2. Collaborative
Pattern Detection

Subject
Program

Collaborative
Patterns

Code Clones

4. Collaborative
Pattern

Management

1. Pre-detection
Analysis

Calling-
Relationship
Information

Figure 2.7. Methodology for detecting and managing collaborative patterns

2.6.1. Phase 1: Pre-detection Analysis

This phase deals with finding all the relevant information from the subject

program needed for detecting collaborative patterns. Based on the definition of

collaborative patterns, we identified two pieces of information that we must

have for detecting collaborative patterns: small-granular code clones and

calling-relationship information among program entities. Sections 3.2.1 and

3.2.2, in the next chapter explain pre-detection analysis phase in detail.

2.6.2. Phase 2: Collaborative Pattern Detection

We are using token-based string pattern matching algorithm for detecting

collaborative patterns. We represent each method-calling sequence (extracted

from the calling-relationship information) as a string of tokens. During this

28

step, a unique token is assigned to all the methods that have been detected as

code clones in the previous phase. These token strings are then concatenated

into a single token-sequence. Then, repeated substrings of tokens in the

concatenated token-sequence are found. Multiple occurrences of a repeated

substring in the concatenated token-sequence indicate the occurrences of

different instances of the same collaborative pattern. Section 3.2.3 in the next

chapter explains the detection phase in detail.

2.6.3. Phase 3: Post-detection Analysis with User Involvement

Automated detection may result in many collaborative patterns in large

software systems. Even larger numbers of clones are reported when clone

detectors are used to find clones in a family of software systems, a usual

prelude to re-engineering such families into Software Product Lines (SPLs) [9]

for systematic reuse. However, among these large numbers of clones, users

should have to pay most attention to those recurring structures whose

knowledge in the software is likely to benefit the user. Post-detection analysis

phase deals with filtering the patterns in order to isolate the beneficial ones. It

helps users zoom into the areas that are of their interest. During this phase,

user’s task is to analyze patterns manually and identify ones that can be

removed, prevented, unified to generic templates, or re-engineered for reuse.

We discuss this phase in detail in Section 4.3.

2.6.4. Phase 4: Management of Collaborative Patterns

After detecting and analyzing detected collaborative patterns, the next

important issue is of managing them. This phase deals with using detected

collaborative patterns for easier program maintenance and better reuse. We

29

proposed a methodology for managing code clones of large granularity (such

as collaborative patterns, or other large-granular cloned program structures) by

presenting a meta-programming technique and tool, the ART. The ART is an

enhanced, lightweight and XML-free version of the XVCL (XML-based

Variant Configuration Language) [118]. The proposed methodology of

managing code clones using the ART is based on the concept of representing

the clones in the form of generic, adaptable, and reusable templates; we called

them ART templates. The software systems represented using ART templates

are easier to maintain due to smaller size of the code and have reduced

conceptual complexity as perceived by the developers. The ART and

mechanism of managing clones using the ART are explained in Sections 5.2

and 5.3 respectively.

2.7. Conclusions

This chapter formalized the concept of collaborative patterns in detail.

Collaborative patterns are higher-level clones of large granularity that can be

identified by systematically combining small-granular cloned program entities

at various levels. We also presented a brief overview of the collaborative

pattern detection and management approach. A detailed description of the

collaborative pattern detection approach is presented in the next chapter.

Experimentation results pertaining to detection approach are presented in

Chapter 4. The approach for managing code clones is described in Chapter 5.

Chapter 6 presents evaluation results related to the management approach

discussed in Chapter 5.

31

Chapter 3.
DETECTING COLLABORATIVE PATTERNS

In the previous chapter, we formalized the concept of collaborative patterns

and outlined the methodology for detecting and managing them. In this

chapter, we present the collaborative pattern detection approach in detail. This

chapter is organized as follows: Section 3.1 gives the scope of the approach.

The proposed collaborative pattern detection approach is elaborated in Section

3.2. Section 3.3 presents the implementation details, and finally Section 3.4

concludes the chapter.

3.1. Scope of the Approach

In Section 2.2 in Chapter 2, we presented a detailed well formalized concept

of collaborative patterns in terms of a directed graph. As illustrated in Section

2.4, collaborative patterns may have many variations depending upon the

types of program entities considered. We restricted our current approach for

collaborative pattern detection to cloned methods as interrelated program

entities. Further, as shown in Figure 2.2 in Chapter 2, a collaborative pattern

may have linear method-calls or it may have branched method-calls. But, it is

32

possible that collaborative patterns containing branched method-calls can be

represented in the form of collaborative patterns having linear method-calls.

For example, the collaborative pattern shown in left side of Figure 3.1 can be

represented as two linear collaborative patterns as shown in the right side of

Figure 3.1. So, we restricted the scope of the proposed approach to the

detection of linear configurations of methods.

A

C

B

A'

C'

B'

D

D'

A CB

A' C'B'

A B

A' B'

D

D'

Figure 3.1. Branched collaborative pattern to linear collaborative patterns

As discussed in Chapter 2, collaborative patterns may have many variations

depending upon the types of similarity metrics selected. In our current

research, we focus on textual similarity among the program entities.

3.2. Detailed Approach

This section describes the collaborative pattern detection approach in detail.

As highlighted in the previous chapter, two pieces of information needed for

detecting collaborative patterns are code clones and calling-relationship

information. So, we divided the detection process into three steps: code-clone

33

finder, calling-relation retriever, and collaborative-pattern detector (Figure

3.2).

Subject
Program

1. Code-Clone
Finder

2. Calling-
Relation
Retriever

Method
Clones

Calling-
Relationship
Information

3. Collaborative-
Pattern Detector

Collaborative
Patterns

Figure 3.2. An overview of collaborative pattern detection approach

As shown in the figure, code-clone finder (component 1) finds method clones

from the subject program. Calling-relation retriever (component 2) finds

calling-relationship information from the subject program by analyzing its

source code. The output of these two components is then used by the

collaborative-pattern detector (component 3) to find collaborative patterns

from the subject program. Next subsections discuss each of these components

in detail.

3.2.1. Step 1: Code-Clone Finder

This component deals with finding method clones from the subject program. A

group of methods are method clones of each other if and only if each member

of the group has significant similarity with each of the other members of the

group.

For finding method clones, we used an existing token-based clone detection

algorithm proposed by Basit and Jarzabek [5]. The algorithm is implemented

as a tool, Clone Miner. Clone Miner first detects cloned contiguous code

fragments by using an efficient suffix-array based Non-Extendible Repeats

Finding (NERF) algorithm [29], and then applies Frequent Closed Itemset

34

Mining technique for finding method clones from the detected cloned

continuous code fragments. Some of the reasons for selecting the above

technique and tool for finding method clones are:

• The proposed technique is very fast and scalable. This is because it

uses suffix-array based code-tokenization technique followed by data

mining approach for finding method clones. This makes it very fast

and scalable.

• Clone Miner outputs method clones directly from the subject program

very efficiently.

Although we used Clone Miner for finding method clones. Yet, this step is

independent of it. Any technique or tool that can detect method clones can be

used for this step.

3.2.2. Step 2: Calling-Relation Retriever

This component deals with finding calling-relationship information from the

subject program by analyzing its source code. Literature suggests that finding

all calling-relations from the source code using just static code analysis is

hardly exhaustive [119, 120]. It is due to the reason that different

programming features such as reflection or bytecode modification tooling,

some information relevant to calling-relation retrieval is known only at the

runtime. On the other hand, runtime analysis provides us calling-relations

from specific program executions only. Hence, to overcome the disadvantages

of static analysis over dynamic analysis and vice-versa, the proposed approach

uses both static code analysis and dynamic code analysis for finding calling-

relationship information. Based on these requirements, the calling-relation

35

retriever component is divided into different sub-components as shown in

Figure 3.3.

Subject
Program

2.1.1 Trace
Generator

Program
Execution

Trace

2.1.2 Trace to
Method-call

Chain Finder

2.2.1 Call-
Graph

Generator

Call
Graph

Calling-
Relationship
Information

2.2.2 Call-
Graph to

Method-call
Chain Finder

Static Code Analysis

Dynamic Code Analysis

Method-
call Chains

Method-
call Chains

Figure 3.3. Detailed overview of calling-relation retriever component

During dynamic code analysis, the subject program is instrumented with trace-

generator code to get program execution trace (Section 3.2.2.1), which in-turn

is used to find calling-relationship information in the form of method-call

chains (Section 3.2.2.2). Static code analysis allows getting calling-

relationship information from the subject program by first generating call

graph (Section 3.2.2.3), and then using the generated call graph to find

method-call chains (Section 3.2.2.4).

3.2.2.1. Trace Generator

This component generates program execution trace from the subject program

by analyzing its source code at the runtime.

Besides other information, a program execution trace contains ordered list of

methods which are called, then executed, and finally returned during a

particular run of the program. Figure 3.4 shows possible example of a program

execution trace for a given program P.

36

main() {
method_A();
if(cond1)

method_C();
else

method_G();
}

method_A() {
method_B();

}

method_B() {
if(cond2)

method_A();
}

method_C() {
method_D();
method_E();

}

method_D() {}

method_E() {
if(cond3)

method_C();
else

method_F();
}

method_F() {}

method_G() {}

Subject Program (P)

main()
method_A()
method_B()
method_B()

method_A()
method_C()
method_D()
method_D()
method_E()
method_C()
method_D()
method_D()
method_E()
method_F()
method_F()

method_E()
method_C()

method_E()
method_C()

main()
A possible Program Execution
Trace T of Subject Program P

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
19
20
21

Legends: a  b : method a calls method b
a  b : method b returns back to method a

Figure 3.4. Example of a program execution trace

As shown in the figure, program P consists of a main() method and seven

auxiliary methods: method_A(), method_B(), method_C(), method_D(),

method_E, method_F(), and method_G(). The main() method calls some of the

auxiliary methods, i.e., method_A(), and method_C() or method_G(). The

auxiliary methods call other methods as shown in the left side of the figure. A

possible program execution trace T during a particular run of the program P

would be like as shown in the right side of the figure. In the given program

execution trace, main() calls method_A() first (line 2). method_A() during its

current execution calls method_B() (line 3). Assuming cond2 evaluates to

false, on finishing its current execution, method_B() returns program-

37

execution control back to method_A() (line 4). Similarly, method_A() returns

program-execution control back to main() method (line 5). Given cond1

evaluates to true, main() method calls method_C() (line 6) which in-turn first

calls method_D() (lines 7 and 8), and then calls method_E() (line 9).

Assuming cond3 to be true, method_E during its current execution calls

method_C() (line 10). During this execution, method_C() again first calls

method_D() (lines 11 and 12), and then calls method_E() (line 13). Assuming

this time, cond3 evaluates to false, current instance of method_E() calls

method_F() (lines 14 and 15). On finishing its current execution, current

instance of method_E() returns program-execution control back to method_C()

(line 16). The rest continues until the execution control reaches the end of the

program (lines 17–21).

Trace generator uses the concept of aspect-oriented programming (AOP) [121]

to get the program execution trace. Three features of AOP that are used for the

proposed approach are: Joinpoints, Pointcuts, and Advices. Joinpoints are

well-defined points (e.g., method call, method execution, exception handlers,

or class/object initializations) in the flow of program-execution control.

Certain set of Joinpoints makes a Pointcut. Advices define the code that is

applied when a particular Pointcut is reached. For our approach, we are

interested in keeping the track of methods’ executions only. So, the Joinpoints

of our interest are limited to those that point to the executions of methods in

the subject programs. Hence, we define Pointcuts to keep track of the methods

executed during runtime. We define Advices that allow storing the information

about entering and exiting of these executed methods. Thus, the generated

program execution trace contains an ordered list of methods that are called and

38

returned during the run of the program (as shown in the right side of Figure

3.4).

3.2.2.2. Trace to Method-call Chains Finder

For detecting collaborative patterns, we need only method calling-relationship

information from the generated program execution trace. Other information

such as returning-method information is of no use during detection process.

Hence, this component processes the trace to get method calling-relationship

information from it. For this, we split the program execution trace in the form

of method-call chains. A method-call chain in a program execution trace is

defined as:

Definition 3.1 (method-call chain in a program execution trace): In a given

program execution trace, a method-call chain is a sequence of methods

f1(),f2(),…,fi,…, fn-1(),fn(); n ≥ 2 executed in such a way that for all 1≤ i≤ n-1:

• Method f1() is the first executing method in the program execution

trace.

• Method fi() during its current execution calls method fi+1(), and

• Method fn() during its current execution does not calls any other

method and returns the program-execution control back to the method

fn-1().

The first condition allows starting each method-call chain with the first

executing method of the programs (main() method, for example). It is helpful

in finding longest method invocation sequences from the subject program and

thus reduces the number of total unique method-call chains. Figure 3.5 gives

an example of method-call chains constructed from the program execution

39

trace T of the subject program P. As shown in the figure, we have four

method-call chains corresponding to the given program execution trace. Each

method-call chain starts with the main() method of the program P, and extends

until there is not a method which does not call any other method during its

current execution.

Legends: a  b : method a calls method b
a  b : method b returns back to method a

: methods-calls of interest for detecting collaborative patterns

Method-Call Chains (Mc
T)

main()
method_A()
method_B()

main()
method_C()
method_D()

main()
method_C()
method_E()
method_C()
method_D()

main()
method_C()
method_E()
method_C()
method_E()
method_F()

main()
method_A()
method_B()
method_B()

method_A()
method_C()
method_D()
method_D()
method_E()
method_C()
method_D()
method_D()
method_E()
method_F()
method_F()

method_E()
method_C()

method_E()
method_C()

main()

A possible Program Execution
Trace T of Subject Program P

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
19
20
21

Figure 3.5. Splitting of a program execution trace into method-call chains

To find the method-call chains, the program execution trace is parsed

sequentially from the start, i.e., the first method (the main method) of the

program. This first method is added to an empty list. Since the program

execution trace keeps track of only entering and exiting of the methods, we

have two cases: either there is a method-call or a method is returning back to

the caller during its execution. In the first case, i.e., when there is a method-

call during the execution, the called method is appended to the list. In the

40

second case, i.e., when the method is returning back to the caller after

finishing its execution, we check whether during its current execution, this

method called any other method before returning. If yes, just remove the last

method from the list. If no, output the current list as an instance of the method-

call chain and remove the last method from the list.

Figure 3.6 shows the algorithm for finding method-call chains from the

program execution trace. Following steps describe the algorithm in detail:

1. Create an empty list Record that keeps track of the methods whose

instances are currently active during the program execution.

2. Create an empty list of lists, ChainList that stores method-call chains

constructed from the program execution trace.

3. Create an integer counter Counter initially set to 0.

4. Parse the program execution trace from the start (i.e., from the first

executed method of the program) till the end. Perform Steps 5 and 6

during the parsing.

5. On entry to a method, append the method to the Record and update the

Counter to the size of the Record.

6. On exit from a method, check whether the size of the Record is equal

to the Counter.

6.1. If yes, add the current content of Record to the ChainList. After

that remove the last element from the Record.

6.2. Otherwise, remove the last element from the Record.

7. Repeat Steps 5 and 6 until the end of the program execution trace.

8. Remove duplicate records from the ChainList.

41

Algorithm 1: Trace to Method-call Chains Finder
Input: Program Execution Trace (T). T is a 2-tuple list with first element being

the method-signature and second element is a flag (set to either entry or
exit) specifying whether method is entering or exiting during the program
execution.

 TRACE-TO-MCCHAINS(T)
1. ᐅ Initialize the variables
2. Record ← φ ᐅ A list
3. ChainList ← φ ᐅ A list of list
4. Counter ← 0
5. ᐅ Parse the elements of the list T from the start.
6. for each pair (method_signature, flag) ∈ T do
7. if flag == entry then
8. ᐅ Add the method_signature to the end of the Record
9. APPEND(Record, method_signature)
10. Counter = SIZE(Record)
11. endif
12. if flag == exit then
13. if SIZE(Record) == Counter then
14. ᐅ Add the current content of Record to the ChainList
15. APPEND(ChainList, Record)
16. ᐅ Remove last element form the Record
17. REMOVE-LAST-ELEMENT(Record)
18. endif
19. else
20. ᐅ Remove last element form the Record
21. REMOVE-LAST-ELEMENT(Record)
22. endelse
23. endif
24. endfor
25. REMOVE-DUPLICATES(ChainList)
26. return ChainList
27.end

Output: A list of method-call chains (𝑀𝑀𝑐𝑐
𝑇𝑇)

Figure 3.6. Trace to method-call chains finder algorithm

3.2.2.3. Call-Graph Generator

Call-graph generator takes the subject program as input and generates a call

graph from it by statically analyzing its source code.

A call graph is a directed cyclic graph that represents calling-relations among

methods. Vertices in the graph correspond to methods and edges between the

vertices indicate calling-relations among methods. For example, an edge from

42

method f to method g indicates that some call-site in method f calls method g.

Similarly, a cycle in the graph indicates recursive method-calls. Considering

the same sample program P as in Figure 3.4, Figure 3.7 shows the call graph

corresponding to program P that can be constructed by using existing

techniques and tools such as CGC [120] or WALA [122].

main()

method_A() method_C() method_G()

method_B() method_D() method_E()

method_F()

Root

Call Graph (CG) corresponding
to Subject Program (P)

Legends: a b : an edge from node a to node b indicates that some call-site in method a calls method b

main() {
method_A();
if(cond1)

method_C();
else

method_G();
}

method_A() {
method_B();

}

method_B() {
if(cond2)

method_A();
}

method_C() {
method_D();
method_E();

}

method_D() {}

method_E() {
if(cond3)

method_C();
else

method_F();
}

method_F() {}

method_G() {}

Subject Program (P)

entryPoint

Figure 3.7. Example of a call graph

3.2.2.4. Call-Graph to Method-call Chains Finder

This component splits the generated call graph into method-call chains, which

have required calling-relationship information for detecting collaborative

patterns. A method-call chain in a call graph is defined as:

43

Definition 3.2 (Method-call chain in a call graph): In a call graph CG(V, E),

a method-call chain is defined as a sequence of vertices V1,V2,…,Vn ; n≥2 such

that:

• The sequence begins with a vertex V1 representing the entry-point of

the program (e.g., its main() method),

• For all 1≤ i≤ n-1, there is a directed edge e∈E from vertex Vi to vertex

Vi+1, and

• The sequence ends with a vertex Vn that is either a sink vertex (i.e., a

vertex with out-degree zero) or is the first repeating vertex along the

sequence.

Figure 3.8 shows an example of method-call chains constructed from the call

graph of program P.

Call Graph (CG) for Subject Program (P)

main(), method_A(), method_B(), method_A()
main(), method_C(), method_D()
main(), method_C(), method_E(), method_F()
main(), method_C(), method_E(), method_C()
main(), method_G()

Method-Call Chains (Mc
CG)

1.
2.
3.
4.
5.

main()

method_A() method_C() method_G()

method_B() method_D() method_E()

method_F()

Root

entryPoint

Figure 3.8. Splitting of a call graph into method-call chains

44

As shown in Figure 3.8, we have five method-call chains corresponding to the

given call graph. Each method-call chain starts with the entry-point of the

program (i.e., main() method). Out of the five method-call chains, three chains

(numbered 2, 3, and 5) end with a sink vertex (method_D(), method_F(), and

method_G(), respectively) of the call graph. While the remaining two chains

(numbered 1 and 4) end at the first repeating vertex of respective sequences

(method_A() and method_C(), respectively).

The proposed algorithm for finding method-call chains traverses the call graph

starting from the vertex indicating the entry-point of the program. For the most

recently traversed vertex (say u), all the edges that have u as the tail are

explored and appended to a list. During this traversal, following set of data-

structures is maintained to keep track of the information needed for finding

method-call chains:

• A pair-list NodeSuccessorsPairList, with element of the format

(nodeX, nodeXSuccessor) to keep track of the edges explored from the

call graph during traversal. For a given explored vertex u, if there is a

directed edge from vertex u to v, a pair (u, v) is appended to the list.

• A list Chain, with element of the format nodeX keeps sequence of

vertices explored during traversal that can be a part of possible

method-call chain.

• A list of lists ChainList, with element of the format Chain, to store all

the method-call chains constructed during call-graph traversal.

• An integer array counter[] of size |V[CG]|. Each element of the array

counter[Vi] keeps the integer value indicating the number of times the

corresponding vertex Vi is included in the Chain list.

45

Figure 3.9 shows the algorithm for finding method-call chains from a call

graph. Following steps describe the algorithm in detail:

1. Append vertex r indicating the entry-point of the program to the Chain

and increment the corresponding counter.

2. For each adjacent directed edge from r to u, append the pair (r, u) to

the NodeSuccessorsPairList.

3. Repeat Steps 4 to 7 until the NodeSuccessorsPairList is not empty.

4. Remove the last element from the NodeSuccessorsPairList and store it

in a pair (π, u).

5. Remove the last element from the Chain until the last element is not

equal to π (i.e., predecessor of u) and decrement the corresponding

counter.

6. If the counter corresponding to vertex u is 0 (it means the vertex is not

yet added to the Chain): append the vertex u to the Chain and

increment the corresponding counter. Then, check whether u is a sink

vertex.

6.1. If no (i.e., vertex u is not sink vertex): for each adjacent edge

from u to v, append (u, v) pair to the NodeSuccessorsPairList. Go

to Step 3.

6.2. If yes (i.e., vertex u is sink vertex): add the current content of

Chain to the ChainList as an element. Then, remove the last

element from the Chain and decrement the corresponding

counter. Go to Step 3.

7. If the counter corresponding to vertex u is not 0 (it means the vertex is

already added to the Chain): first, append the vertex u to the Chain.

46

Then, add the current content of Chain to the ChainList as an element.

After that, remove the last element from the Chain. Go to Step 3.

Algorithm 2: Call Graph to Method-call Chains Finder
Input: Call graph CG(V, E) with vertex r as the entry-point of the program

 CALLGRAPH-TO-MCCHAINS(CG, r)
1. Chain ← φ ᐅ A list
2. ChainList ← φ ᐅ A list of lists
3. NodeSuccessorsPairList ← φ ᐅ A pair-list of format (nodeX, nodeXSuccessor)
4. for each vertex u ∈V[CG] do
5. counter[u] ← 0
6. APPEND(Chain, r)
7. counter[r]++
8. for each u ∈adj[r] do
9. APPEND(NodeSuccessorsPairList, (r, u))
10. while NodeSuccessorsPairList ≠ φ do
11. (π, u) ← GET-AND-REMOVE-LAST-PAIR(NodeSuccessorsPairList)
12. while (π ≠ GET-LAST-ELEMENT(Chain)) do
13. v ← GET-AND-REMOVE-LAST-ELEMENT(Chain)
14. counter[v]--
15. endwhile
16. if (counter[u] == 0) then
17. APPEND(Chain, u)
18. counter[u]++
19. if adj[u] ≠ φ then
20. for each v ∈adj[u] do
21. APPEND(NodeSuccessorsPairList, (u, v))
22. endif
23. else
24. APPEND(ChainList, Chain)
25. REMOVE-LAST-ELEMENT(Chain)
26. counter[u]--
27. endelse
28. endif
29. else
30. APPEND(Chain, u)
31. APPEND(ChainList, Chain)
32. REMOVE-LAST-ELEMENT(Chain)
33. endelse
34. endwhile
35. return ChainList
36. end

Output: A list of method-call chains (𝑀𝑀𝑐𝑐
𝐶𝐶𝐶𝐶)

Figure 3.9. Call graph to method-call chains finder algorithm

47

The current approach for finding method-call chains from the call graph

restricts the graph traversal to stop as soon as a vertex is visited for the second

time. It is done intentionally to avoid explosion during the generation of

method-call chains. This is true that it avoids some of interested method-call

chains from the analysis. But, such recursive calls/cycles can be easily handled

during tracing. With reference to Figure 3.8, consider a case where

method_C() calls method_E(), which then calls method_C() (i.e., loops back

in call graph), then method_C() calls method_D(); resulting in a method-call

chain with substring “…, method_C(), method_E(), method_C(), method_D(),

…”. Such cases are possible to be extracted during program tracing, resulting

in a method-call chain: “main(), method_C(), method_E(), method_C(),

method_D()”.

3.2.3. Step 3: Collaborative Pattern Detector

This component detects collaborative patterns from the subject program using

the method clones and the method-call chains found so far.

The proposed algorithm for detecting collaborative patterns is based on the

underlying concept that a set of method-call chains form a collaborative

pattern if the corresponding methods in the method-call chains are either same

or belong to a clone class. We are using token-based string pattern matching

for detecting such sets of method-call chains. In the first step, we represent

each of the method-call chains as a string of tokens. We use same token-ID for

all the methods that form a clone class. These token strings are then

concatenated into a single token-sequence. This arrangement allows us to use

a straight forward variation of existing Non-Extendible Repeat Finder (NERF)

48

algorithm [29] to find repeated substrings of tokens in the concatenated token-

sequence. NERF computes all non-extendible repeats in the concatenated

token-sequence. These non-extendible repeats are then used to find out

collaborative patterns. Multiple occurrences of a given repeat in the

concatenated token-sequence point to different instances of the same

collaborative pattern. Figure 3.10 shows algorithm for detecting collaborative

patterns which is demonstrated using an example in Figure 3.11.

Algorithm 3: Collaborative Pattern Detection Algorithm
Input: Method-Clone Classes, MCLONE

Method-call Chains, Mc = 𝑀𝑀𝑐𝑐
𝑇𝑇 ∪ 𝑀𝑀𝑐𝑐

𝐶𝐶𝐶𝐶

 DETECT-CP(MCLONE, Mc)
1. ᐅ Initialize data structures needed for detecting collaborative patterns
2. methodID ← φ
3. tokenString ← φ
4. concatenatedString ← φ
5. suffixArray ← φ
6. lcpArray ← φ
7. repeats ← φ
8. ccclasses ← φ
9. ᐅ Assign Unique Method-IDs to all methods
10. methodID ← ASSIGN-METHOD-ID(Mc, MCLONE)
11. ᐅ Tokenize and Assign unique Chain-ID to each method-call chain
12. tokenString ← TOKENIZE-AND-ASSIGN-CHAIN-ID(Mc, methodID)
13. ᐅ Concatenate tokenString to form a single token-sequence
14. concatenatedString ← CONCATENATE(tokenString)
15. ᐅ Create Suffix Array from the concatenatedString using KS Algorithm
16. suffixArray ← CREATE-SUFFIX-ARRAY(concatenatedString)
17. ᐅ Create LCP Array from the concatenatedString and suffixArray using

GetHeight algorithm
18. lcpArray ← CREATE-LCP-ARRAY(concatenatedString, suffixArray)
19. ᐅ Compute Repeats in the concatenatedString using NERF algorithm
20. repeats ← COMPUTE-REPEATS(concatenatedString, suffixArray, lcpArray)
21. ᐅ Reverse map the token Strings and method IDs on repeats using method-

call chains to compute collaborative clone classes.
22. ccclasses ← GET-COLLABORATIVE-CLONE-CLASSES(repeats, tokenString,

methodID, Mc)
23. end

Output: A set of collaborative clone classes (ccclasses).

Figure 3.10. Collaborative pattern detection algorithm

49

method_A(), method_B(), method_A()
Method_C(), method_D()
method_C(), method_E(), method_F()

Method-call Chains
// MCC ID: method clone instances
0: method_A(), method_C()
1: method_B(), method_E()

Method Clone Class

1.1 Assign Unique Method-IDs
to all methods

0: method_A(), method_C()
1: method_B(), method_E()
2: method_D()
3: method_F()

Method -ID Table

1.2. Tokenize and Assign unique
chain-IDs to method-call chains

4: 0, 1, 0
5: 0, 2
6: 0, 1, 3

Tokenized chains with unique ID

2. Concatenate the tokenized method-
call chains to form a token-sequence

// Chain1,Chain-ID1,Chain2,Chain-ID2,…, ChainN,Chain-ID_N
0,1,0,4,0,2,5,0,1,3,6

Concatenated Token-sequence

13,7,3,1,15,9,17,5,11,19,0,14,8,4,2,16,10,18,6,12,20
Suffix Array

0,3,3,1,3,1,1,1,1,1,0,4,2,2,0,2,0,0,0,0,0
LCP Array

3.1. Create Suffix Array

3.2. Create LCP Array

3.3. Compute Repeated Substrings

0 //Repeat ID
4: 0,1 //Chain-ID1: Repeated substring1
6: 0,1 //Chain-ID2: Repeated substring2

Repeats

3.4. Compute Collaborative Pattern Classes

0 //Pattern Class ID
method_A(), method_B() //Pattern Instance1
method_C(), method_E() //Pattern Instance2

Collaborative Pattern Classes

Figure 3.11. Collaborative pattern detection algorithm: illustrative example

50

Following steps describe the detection algorithm in detail:

1. Tokenize and assign a unique chain-ID to each of the method-call

chain: This step consists of two tasks:

1.1. Assign a unique ID to each method in such as way that all the

members of a clone class have the same method-ID. Store

method-ID and method-name information in a symbol table

methodID.

1.2. Represent each of the method-call chains as a string of tokens

and assign a unique chain-ID to each of the tokenized method-

call chain. To easily distinguish chain-IDs from method-IDs,

keep the respective set of IDs to be disjoint of each other. Store

the tokenized method-call chains in tokenSting.

2. Concatenate the tokenized method-call chains to form a token-

sequence: Concatenate all the tokenized method-call chains into a

single token-sequence (concatenatedString). Use a unique sentinel

token, which is same as the unique chain-ID assigned to each of the

tokenized method-call chain, to distinguish two tokenized method-call

chains in the concatenated token-sequence.

3. Compute repeated substrings of tokens in the concatenated token-

sequence: This step consists of four tasks:

3.1. Initially, generate a suffix array (suffixArray) from the

concatenated token-sequence using KS Algorithm [123].

3.2. Compute longest common prefix (LCP) information (lcpArray)

from the concatenated token-sequence and suffix array using a

51

linear-time algorithm, GetHeight (proposed by Kasai et al.

[124]).

3.3. Use the concatenated token-sequence, suffix array, and LCP

information to compute repeated substrings of tokens (repeats) in

the concatenated token-sequence using existing Non-Extendible

Repeat Finder (NERF) [29] algorithm. NERF gives different sets

of repeated substrings as output.

3.4. Each set of repeated substrings corresponds to a collaborative

clone class. Multiple occurrences of a repeated substring in the

concatenated token-sequence indicate various instances of the

same collaborative pattern. Reverse map the token Strings

(tokenString) and method-IDs information (methodID) on the

repeated substrings using Method-call chains (Mc) to get

corresponding method names. Store this information in ccclasses.

3.3. Tool Implementation

The proposed collaborative pattern detection approach is implemented as a

prototype tool called COPAD (Collaborative Patterns Detector). COPAD is

implemented in Java with the extensive use of Apache Commons APIs [125].

We implemented AOP functionalities using AspectJ [126]. The whole system

has three components:

1. First component, CMTOOL, detects method clones. We ran Clone

Miner as a black box to get the method clones.

52

2. Second Component, TRACER, finds method-call chains from the

program execution trace of the subject program generated at runtime.

We implemented this component in Java using AspectJ.

3. Third component, CPDTOOL, is implemented in Java. It uses the

outputs of above components to detect collaborative patterns.

In current form, COPAD does not come with a graphical user interface but lists

all the detected collaborative patterns in text file for easy navigation. In our list

of future works, in line with Clone Analyzer [127], we plan to develop a

rudimentary graphical user interface for visualization and analysis of

collaborative patterns.

3.4. Conclusions

In this chapter, we presented the detailed approach for detecting collaborative

patterns. The proposed approach first finds method clones and calling-

relationship information from the subject program, and then uses this

information for detecting collaborative patterns. We implemented the proposed

approach as a prototype tool, called COPAD. In the next chapter, we present

experimentation related to the proposed approach.

53

Chapter 4.
EXPERIMENTATION

In the previous chapter, we presented the detailed approach for detecting

collaborative patterns. In this chapter, we present experimentation results

pertaining to the proposed approach. The chapter is organized as follows: We

present brief overview of experimentation goals in Section 4.1. Detection

results are highlighted in Section 4.2. Section 4.3 presents experimentation

pertaining to the analysis of detected collaborative patterns. The benefits and

applications of detected collaborative patterns are outlined in Section 4.4.

Finally, the chapter is concluded in Section 4.5.

4.1. Goals of Experimentation

We performed experimentation keeping the following goals:

• Detection—to detect collaborative patterns in software systems: We

performed experimentation to quantitatively assess the presence of

collaborative patterns in software systems.

• Analysis—to analyze the detected collaborative patterns: This part

deals with qualitatively and quantitatively analyzing the detected

54

collaborative patterns to evaluate their usefulness and benefits. Besides

high-level clones of large granularity, collaborative patterns help in

tracing important calling-relationship information from the source code

of the subject program. Hence, we further analyze the detected

collaborative patterns to find the method-calls that lead to or emerge

from these collaborative patterns (further details to follow in Section

4.3). Such information proves to be very useful in finding similar

process flows in the software.

The rest of the chapter discusses the experimentation in detail.

4.2. Detection Overview

We performed collaborative pattern detection and analysis on the source code

of the JHotDraw 7 v.7.6.0 [128] and Clone Analyzer v.2.0 [127] using the

proposed approach and the tool implemented using it, i.e., COPAD. JHotDraw

7 is a two-dimensional graphical user interface framework for structured

drawing editors written in Java. Clone Analyzer is a clone visualization and

analysis tool. It allows the user to filter clones that are of interest to him/her.

Table 1 shows features of these programs.

Table 1. Features of subject programs considered for evaluating collaborative
pattern detection approach

Subject Program JHotDraw 7 Clone Analyzer
Version Number 7.6.0 2.0
Language Java Java
Input size in terms of token count 3,49,399 Tokens 86,064 Tokens
Numbers of Source Files 514 40
Lines of Code 99,990 15,142
Average Statements per Methods 5.35 8.276

55

4.2.1. Detection Results

In JHotDraw 7, by using minimum clone size of 30 tokens, we found total of

1,001 small-granular code-clone classes (i.e., groups of fragments of

duplicated contiguous code). By using method percentage coverage (MPC—

percentage of a method covered by code clones) = 30% and method token

coverage (MTC—number of tokens in a method covered by code clones) = 30,

total of 413 method-clone classes are detected in the JHotDraw 7. We ran

JHotDraw 7 with sample inputs such as Draw, PERT, and Teddy provided with

the JHotDraw 7 package. We found total of 2,924 unique method-call chains

in this subject program. It is to mention that the numbers of unique method-

call chains reported is 2,924, which may seem to be low. A method-call chain

consists of a list of methods that are called one after another. We found the

length of method-call chains reported in an execution to be upto 24. However,

it is true that same method is included in more than one method-call chain.

Yet, 2,924 method call-chains with length upto 24 cover significant part of the

source code during execution. In overall, we detected 248 collaborative

patterns in the JHotDraw 7 source code. The number of instances in the

collaborative patterns range from two to six. Table 2 shows summary of the

collaborative pattern detection results.

Table 2. Summary of collaborative pattern detection results

Subject Program JHotDraw 7 Clone Analyzer
Total Small-granular Code-Clone Classes
(with minimum clone size = 30)

1,001 407

Total Method-Clone Classes
(with MTC = 30, MPC = 30%)

413 63

Total Methods in Method-Clone Classes 1,078 337
Total Unique Method-call Chains 2,924 185
Total Collaborative Patterns 248 27
Minimum and Maximum number of Instances (I) for a
Collaborative Pattern

2 to 6 2 to 17

56

By using the same pattern detection settings, we ran Clone Analyzer with its

own source code as input. We found total of 185 unique method-call chains in

the Clone Analyzer v2.0 source code. In total, 27 collaborative patterns are

found in the source code. The number of instances in the collaborative patterns

range from 2 to 17.

4.3. Analysis Overview

We observed different variations in the structure of the collaborative patterns,

the detection of which may be useful for the analyst, designer, or implementer.

Since collaborative patterns help in tracing important calling-relationship

information from the source code, we analyzed the detected collaborative

patterns manually based on the method-calls that lead to or emerge from these

collaborative patterns. This manual analysis is based on the following three

factors:

1. The methods participating in the instances of the collaborative pattern.

The first source of information we analyzed is the methods

participating in the pattern-instances. For example, methods

participating in the instances of a collaborative pattern shown in the

Figure 4.1 are A1, A2, An, A1', A2', An', A1", A2", and An". Boxes with

shade show such methods. The number of methods participating in an

instance of the collaborative pattern can be termed as the length of the

collaborative pattern. For the example shown in Figure 4.1, the length

of the collaborative pattern is three.

2. The method-calls which lead to the collaborative pattern. We analyzed

the method-calls and the corresponding method(s) that call(s) the first-

57

methods of the respective instances of the collaborative pattern. In

Figure 4.1, A1, A1', and A1" are first-methods in the respective

instances of the given collaborative pattern. P and P' are the methods

which call these methods.

3. The method-calls which emerge from the collaborative pattern. We

also analyzed the method-calls and the corresponding method(s) which

is/are called by the end-methods of the respective instances of the

collaborative pattern. As shown in Figure 4.1, An, An', and An" are end-

methods in the respective instances of the given collaborative pattern.

Q is the common method which is called by all these end-methods.

A1

A2

An

A1'

A2'

An'

A1''

A2''

An''

P

Q

P' • The given collaborative pattern has 3 instances: <A1,A2,An>,
<A1',A2',An'>, and <A1",A2",An">.

• The length of the given collaborative pattern is n = 3.

• The methods participating in the instances of the collaborative
pattern are A1, A2, An, A1', A2', An', A1", A2", and An"

• A1, A1', and A1" are first-methods in the respective instances of
the collaborative pattern. P and P' are the methods which call
these first-methods.

• An, An', and An" are end-methods in the respective instances of
the collaborative pattern. Q is the method which is called by
these end-methods.

Figure 4.1. An example of a collaborative pattern with three instances

Figure 4.2 shows different cases of collaborative patterns emerged from the

analysis of case studies discussed in the previous section. Assume that for 1 ≤ i

≤ n, <Ai, Ai', Ai",…> represents a method-clone class as shown by the same

shade in the figure. P, Q, R, and S represent methods which call the methods

or are called by the methods forming the collaborative pattern.

Figure 4.2(a)–(d) show the cases when each of the corresponding methods

(e.g., A1, A1', A1"; similarly others) in the instances of the pattern is unique

58

(i.e., A1 ≠ A1' ≠ A 1"). Such cases are divided into four classes based on

whether there is a common method which calls or is called by the first-

methods or the end-methods of the collaborative pattern, respectively.

As shown in Figure 4.2(a), there is a common method (P) which calls each of

the first-methods (i.e., A1, A1', and A1") of the collaborative pattern. Similarly,

there is a unique method (Q) which is called by all the end-methods (i.e., An,

An', and An") of the collaborative pattern. The right side of Figure 4.2(a) shows

an example of such collaborative pattern from the JHotDraw 7 project. The

given collaborative pattern has two instances. The length of the collaborative

pattern is also two. There is a method ‘draw()’ in the

‘AbstractAttributedFigure’ class of ‘org.jhotdraw.draw’ package which calls

two cloned methods—‘drwaFill()’ and ‘drawStroke()’—both of which are the

first-methods of the given collaborative pattern. The end-methods of the

collaborative pattern, ‘getPerpendicularFillGrowth()’ and

‘getPerpendicularDrawGrowth()’ further call a common method ‘get()’ from

the ‘AbstractAttributedFigure’ class.

Figure 4.2(b)–(d) show other three cases based on factors 2 and 3. For

example, Figure 4.2(d) shows a collaborative pattern of length three detected

from the Clone Analyzer v2.0. The detected collaborative pattern has three

instances. For this collaborative pattern, there is neither a common method

which calls each of the first-methods (i.e.,

SecondaryNavigator.getJInternalFrame(), PrimaryNavigator.getJInternalFrame(),

and UserMinerSettings.getJInternalFrame()) nor a common method which is

called by all the end-methods (i.e., SecondaryNavigator.getJScrollPane(),

59

PrimaryNavigator.getJScrollPane(), and UserMinerSettings.getScrollPane())

of the collaborative pattern.

Similarly, when each of the corresponding methods in the instances of the

pattern is not unique (but the corresponding methods are from the same

method-clone class), we have four cases as shown in Figure 4.2(e)–(h). Figure

4.2(i) shows a special case of collaborative pattern in which the methods

forming the instances of a collaborative pattern (<A1, A2,…, An>, for example)

need not to be called successively one after the other.

A1

A2

An

A1'

A2'

An'

A1''

A2''

An''

P

Q

(a) Example of Case-1 Collaborative Pattern

org.jhotdraw.draw.
EllipseFigure.drawFill()

org.jhotdraw.draw.AttributeKeys.
getPerpendicularFillGrowth()

org.jhotdraw.draw.
EllipseFigure.drawStroke()

org.jhotdraw.draw.AttributeKeys.
getPerpendicularDrawGrowth()

Example of case-1 collaborative pattern from JHotDraw 7 v.7.6.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 2

org.jhotdraw.draw.
AbstractAttributedFigure.draw()

org.jhotdraw.draw.
AbstractAttributedFigure.get()

A1

A2

An

A1'

A2'

An'

A1''

A2''

An''

P

Q

(b) Example of Case-2 Collaborative Pattern

org.jhotdraw.app.action.edit.
UndoAction.updateEnabledState()

org.jhotdraw.app.action.edit.
UndoAction.getRealUndoAction()

org.jhotdraw.app.action.edit.
RedoAction.updateEnabledState()

org.jhotdraw.app.action.edit.
RedoAction.getRealRedoAction()

org.jhotdraw.app.action.
AbstractViewAction.getActiveView()

Example of case-2 collaborative pattern from JHotDraw 7 v.7.6.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 2

60

A1

A2

An

A1'

A2'

An'

A1''

A2''

An''

P

Q

(c) Example of Case-3 Collaborative Pattern

Workbench.getFileMenu()

Workbench.getFilterSubMenu()

Workbench.getRunMenu()

Workbench.
getDetectionMenuItem()

Example of case-3 collaborative pattern from Clone Analyzer v2.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 2

Workbench.getJMenuBar()

A1

A2

An

A1'

A2'

An'

A1''

A2''

An''

P

Q

(d) Example of Case-4 Collaborative Pattern

SecondaryNavigator.
getJInternalFrame()

SecondaryNavigator.
getJContentPane()

SecondaryNavigator.
getJScrollPane()

PrimaryNavigator.
getJInternalFrame()

PrimaryNavigator.
getJContentPane()

PrimaryNavigator.
getJScrollPane()

UserMinerSettings.
getJInternalFrame()

UserMinerSettings.
getJContentPane()

UserMinerSettings.
getJScrollPane()

Example of case-4 collaborative pattern from Clone Analyzer v2.0

Length of the collaborative pattern, n = 3
Number of Instances, I = 3

A1

A2

An

A1

A2'

An'

A1’

A2''

An

P

Q

(e) Example of Case-5 Collaborative Pattern

Workbench.getFile
QuerySubMenu()

Workbench.
getCrossGrpStructu

reMenuItem()

Workbench.
getStructural
MenuItem()

Example of case-5 collaborative pattern from Clone Analyzer v.2.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 4

Workbench.
getCrossMethodGrp
StructureMenuItem()

Workbench.
getQueryMenu()

Workbench.getFile
QuerySubMenu()

Workbench.getMethod
QuerySubMenu()

Workbench.getMethod
QuerySubMenu()

Workbench.
Workbench()

Workbench.
getMethodStructural

MenuItem()

61

A1

A2

An

A1

A2'

An'

A1’

A2''

An

P

Q

(f) Example of Case-6 Collaborative Pattern

Workbench.
getFilterSubMenu()

Workbench.getFilter
ClassMenuItem()

Workbench.getFilter
MemberMenuItem()

Example of case-6 collaborative pattern from Clone Analyzer v.2.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 4

Workbench.getLeft
CloneMenuItem()

Workbench.
getFilterSubMenu()

Workbench.
getFilterSubMenu()

Workbench.
getFileQuerySubMenu()

Workbench.getClones
InFileMenuItem()

Workbench.
Workbench()

A1

A2

An

A1

A2'

An'

A1’

A2''

An

P

Q

(g) Example of Case-7 Collaborative Pattern

W
or

kb
en

ch
.

ge
tV

ie
wM

en
u(

)
W

or
kb

en
ch

.
ge

tF
ile

A
na

ly
sis

M
en

u(
)

Example of case-7 collaborative pattern from Clone Analyzer v.2.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 16

Workbench.
getJMenuBar()

W
or

kb
en

ch
.

ge
tV

ie
wM

en
u (

)

W
or

kb
en

ch
.

ge
tV

ie
wM

en
u(

)

W
or

kb
en

ch
.

ge
tS

ta
tsM

en
u(

)
W

or
kb

en
ch

.
ge

tS
ta

tsM
en

u(
)

W
or

kb
en

ch
.

ge
tS

ta
tsM

en
u(

)

W
or

kb
en

ch
.

ge
tF

ilt
er

M
en

u(
)

W
or

kb
en

ch
.

ge
tH

el
pM

en
u(

)

W
or

kb
en

ch
.

ge
tM

et
ho

dA
na

ly
sis

M
en

u(
)

W
or

kb
en

ch
.

ge
tM

ar
ke

dC
od

eM
en

uI
te

m
()

W
or

kb
en

ch
.

ge
tF

C
SS

ta
ts

M
en

uI
te

m
()

W
or

kb
en

ch
.

ge
tM

C
C

St
at

sM
en

uI
te

m
()

W
or

kb
en

ch
.

ge
tM

C
SS

ta
ts

M
en

uI
te

m
()

W
or

kb
en

ch
.

ge
tC

od
eH

ig
hl

ig
ht

M
en

uI
te

m
()

W
or

kb
en

ch
.

ge
tA

bb
re

vi
at

io
nM

en
uI

te
m

()
W

or
kb

en
ch

.
ge

tC
ha

rtM
en

u(
)

W
or

kb
en

ch
.

ge
tC

ha
rtM

en
u(

)

W
or

kb
en

ch
.

ge
tV

ie
wM

en
u(

)

W
or

kb
en

ch
.

ge
tV

ie
wM

en
u(

)

W
or

kb
en

ch
.

ge
tS

ta
tsM

en
u(

)

W
or

kb
en

ch
.

ge
tV

ie
wM

en
u(

)

W
or

kb
en

ch
.

ge
tS

ta
tsM

en
u(

)

W
or

kb
en

ch
.

ge
tW

in
do

w
M

en
u(

)

W
or

kb
en

ch
.

ge
tP

at
te

rn
C

ha
rt

M
en

uI
te

m
()

W
or

kb
en

ch
.

ge
tD

ir
A

na
ly

sis
M

en
u(

)
W

or
kb

en
ch

.
ge

tS
im

pl
eC

lo
ne

M
en

uI
te

m
()

W
or

kb
en

ch
.

ge
tS

C
C

St
at

sM
en

uI
te

m
()

W
or

kb
en

ch
.

ge
tO

pt
io

ns
M

en
uI

te
m

()

W
or

kb
en

ch
.

ge
tF

C
C

St
at

sM
en

uI
te

m
()

W
or

kb
en

ch
.

ge
tC

as
ca

de
M

en
uI

te
m

()

W
or

kb
en

ch
.g

et
Fi

le
C

om
pa

re
M

en
uI

te
m

()

A1

A2

An

A1

A2'

An'

A1’

A2''

An

P

Q

(h) Example of Case-8 Collaborative Pattern

org.jhotdraw.draw.
DiamondFigure.

drawFill()

org.jhotdraw.draw.
AttributeKeys.

getPerpendicular
FillGrowth()

org.jhotdraw.draw.
DiamondFigure.

drawStroke()

org.jhotdraw.draw.
AttributeKeys.

getPerpendicular
DrawGrowth()

Example of case-8 collaborative pattern from JHotDraw 7 v.7.6.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 3

org.jhotdraw.draw.
DiamondFigure.

contains()

org.jhotdraw.draw.
AttributeKeys.

getPerpendicular
FillGrowth()

62

A1

Am

An

A1’

Am'

An'

A1’’

Am''

An’’

P

Q

(i) Example of Case-9 Collaborative Pattern

org.jhotdraw.draw.
Action.BringToFront

Action()

Example of case-9 collaborative pattern from JHotDraw 7 v.7.6.0

Length of the collaborative pattern, n = 2
Number of Instances, I = 4

org.jhotdraw.draw.
Action.ButtonFactory.

createSelectionActions()

org.jhotdraw.draw.
action.BringToFront

Action()

org.jhotdraw.draw.
action.SendToBack

Action()

org.jhotdraw.draw.
action.SendToBack

Action()

org.jhotdraw.util.ResourceBundleUtil.
configureAction(javax.swing.Action,

java.lang.String)

R

S

Am+1 Am+1' Am+1’’

org.jhotdraw.util.
ResourceBundleUtil.

getTextProperty()

org.jhotdraw.util.
ResourceBundleUtil.
getToolTipTextProper

ty()

org.jhotdraw.util.
ResourceBundleUtil.

getTextProperty()

org.jhotdraw.util.
ResourceBundleUtil.
getToolTipTextProper

ty()

org.jhotdraw.util.ResourceBundleUtil.
configureAction(javax.swing.Action,

java.lang.String, java.lang.Class)

org.jhotdraw.util.
ResourceBundleUtil.
getStringRecursive()

Figure 4.2. Different cases of collaborative patterns emerged from the analysis of
case studies

4.3.1. Analysis Results

We analyzed the collaborative patterns detected during the case studies

performed on JHotDraw 7 and Clone Analyzer (discussed in previous

sections) based on the two criteria: pattern quantity and pattern quality.

Table 3 shows the number of patterns found in JHotDraw 7 and Clone

Analyzer for various cases of collaborative patterns illustrated in Figure 4.2.

Due to the absence of any previous work that finds similar types of patterns

and unavailability of ground truth data with which we can compare our work,

recall cannot be calculated. Hence, due to the unavailability of any suitable

reference set where all the collaborative patterns in the software are known, it

is speculative to analyze the recall (completeness) of our approach.

63

Table 3. Summary of collaborative pattern analysis results

The precision (correctness) of the proposed approach depends on the two

factors. First is the precision of the technique used for detecting method

clones, i.e., Clone Miner. Second is how accurately the method-call chains are

generated from the software. In case of the proposed approach, each generated

method-call chain always corresponds to a possible calling sequence in the

program. Hence, the only factor that affects the precision of the proposed

approach is the accuracy of the used Clone Miner. Assuming 100% precision

for the Clone Miner, it is not possible for the proposed approach to report

collaborative patterns that are actually no collaborative patterns. Hence, the

proposed approach shows the same precision as the Clone Miner has. We

further analyzed the detected collaborative patterns manually for the false

positives and we found no false positives. To analyze the quality of detected

collaborative patterns, we considered two factors:

1. Are the instances of a collaborative pattern significantly overlap with

the instances of another collaborative pattern?

2. Are the collaborative patterns large enough?

Case # JHotDraw 7 Clone Analyzer
Case-1 Collaborative Patterns 181 7
Case-2 Collaborative Patterns 45 3
Case-3 Collaborative Patterns 15 7
Case-4 Collaborative Patterns 0 1
Case-5 Collaborative Patterns 0 6
Case-6 Collaborative Patterns 3 2
Case-7 Collaborative Patterns 0 1
Case-8 Collaborative Patterns 1 0
Case-9 Collaborative Patterns 3 0
Total Collaborative Patterns 248 27

64

Are the instances of a collaborative pattern significantly overlap with the

instances of another collaborative pattern?

Since overlapped clones almost point to the same locations in the source code.

Therefore, it is generally considered that overlapped clones are redundant and

thus not so useful for developers as compared to non-overlapped clones [62].

Thus, it is useful to explicitly know the locations of overlapped clones. Hence,

we analyzed the collaborative patterns found in the Clone Analyzer v2.0 for

overlapping collaborative patterns. A collaborative pattern C1 is overlapping

with another collaborative pattern C2 if all of the following conditions hold:

1. All the first-methods from both collaborative patterns C1 and C2 belong

to same method-clone class.

2. All the end-methods from both collaborative patterns C1 and C2 belong

to same method-clone class.

3. If there exists a method, say P, which calls all the first-methods of

collaborative pattern C1, then P must also call all the first-methods

collaborative pattern C2.

4. If there exists a method, say Q, which is called by all the end-methods

of collaborative pattern C1, then Q must also be called by all the end-

methods of collaborative pattern C2.

Out of 27 collaborative patterns detected in the Clone Analyzer v2.0, we found

total of three such overlapping collaborative pattern classes, each having two

collaborative patterns as members. The remaining 21 collaborative patterns are

unique.

65

Are the collaborative patterns large enough?

Another metric we used for analyzing detected collaborative patterns is the

length of the collaborative pattern. Table 4 shows the analysis results.

Table 4. Analysis of the length of patterns detected in clone analyzer v.2.0

4.4. Benefits and Applications

Detection of code clones, in general, helps in program understanding, error

detection, refactoring, improving software quality, code compaction, etc. [2, 3,

8]. Collaborative patterns, being large-granular code clones facilitating a better

context analysis, can prove to be more beneficial in the above scenarios. This

section explores some of the benefits and applications of detecting

collaborative patterns.

4.4.1. Better Program Understanding

Code clones reveal important design and implementation information about a

software system. Hence, their detection is considered to be a good software

engineering practice [3, 4, 129, 130]. Collaborative patterns can be even more

beneficial in this regard.

Case # Number of Patterns
Length of Collaborative Pattern (n)

n = 1 n = 2 n = 3
Case-1 Collaborative Patterns 7 6 1 0
Case-2 Collaborative Patterns 3 2 1 0
Case-3 Collaborative Patterns 7 6 1 0
Case-4 Collaborative Patterns 1 0 0 1
Case-5 Collaborative Patterns 6 0 6 0
Case-6 Collaborative Patterns 2 0 2 0
Case-7 Collaborative Patterns 1 0 1 0
Case-8 Collaborative Patterns 0 0 0 0
Case-9 Collaborative Patterns 0 0 0 0
Total Patterns 27 14 12 1

66

According to [2, 131], if the functionality of a cloned fragment is

comprehended, it is possible to have an overall idea on the other files

containing similar copies of this fragment. Collaborative patterns are clones of

larger granularity. Hence, it is easy to comprehend the functionality of an

instance of the detected collaborative pattern. So, we can easily get an

approximate idea of the functionality of other files containing the instances of

this particular collaborative pattern.

Further, compared to other types of clones, collaborative patterns expose

important calling-relationships information between the cloned program

structures. For a given collaborative pattern, all the call-sequences start

(similarly end) at the same method or at methods that belong to a method-

clone class. For example, as shown in Figure 4.3, drawFill() and drawstroke()

methods belong to same method-clone class which call other methods

(getPerpendicularFillGrowth() and getPerpendicularDrawGrowth()

respectively) that belong to another method-clone class. Such type of similar

process flows is barely visible with other types of clones. The proposed

collaborative pattern detection approach further improves program

understanding by automatically tracing the method-calls that lead to or emerge

from these collaborative patterns. For example, as shown in Figure 4.3, two

instances of the given collaborative pattern are called by same method draw().

They also call the same method get(). By analyzing such process flows, much

useful information can be discovered about the system design. Program

understanding can be improved further by representing the detected

collaborative patterns in the form of non-redundant templates using the ART.

67

org.jhotdraw.draw.
RoundRectangleFigure.drawFill()

org.jhotdraw.draw.AttributeKeys.
getPerpendicularFillGrowth()

org.jhotdraw.draw.
RoundRectangleFigure.drawStroke()

org.jhotdraw.draw.AttributeKeys.
getPerpendicularDrawGrowth()

Example of a collaborative pattern from JHotDraw 7 v.7.6.0
Length of the collaborative pattern, n = 2
Number of Instances, I = 2

org.jhotdraw.draw.
AbstractAttributedFigure.draw()

org.jhotdraw.draw.
AbstractAttributedFigure.get()

Figure 4.3. Better program understanding: example of a collaborative pattern
from JHotDraw7

4.4.2. Enhanced Reuse Opportunity

Collaborative patterns are large-granular program structures. They are large

enough to form attractive candidate for reusable components. Also,

collaborative patterns often manifest some of important concept or design

decisions that were used during the development of the software system. Such

design or concept level similarities exhibit opportunities for building reusable

components [115]. In product line systems, clones spread across multiple

systems. Cross-project clones can be used for reuse optimization [132]. Due to

their large-granularity, in such cases, collaborative patterns further give useful

indication of reuse opportunities. We can represent clone classes as non-

redundant components and reuse them within or across software system. Later,

Sections 6.1.5.2–6.1.5.4 illustrate this mechanism of reusing components

within a software system or across a product line.

4.4.3. Efficient Refactoring

Among others, the simplest use of detected code clones is to remove them

from the software by using refactoring. Refactoring allows improving the

68

design of the software without changing its functionality [133]. Refactoring

clones helps in decreasing the complexity of the software, and reducing

sources of errors emerging from these cloned program structures [2].

It is suggested that not every single occurrence of clones can be refactored. In

fact, many of them are too complex or simply not refactorable [134]. It is

found that there are types of clones where refactoring would not help [18].

However, research supports that there is still great potential for advancements

in the area of software clone refactoring [135-137]. It is especially true when

code clones are of large granularity representing high-level system concepts

(for example, structural clones [5]).

Being high-level clones of large granularity, detection and analysis of

collaborative patterns is useful in finding locations in software where large-

granular duplications are present, and those can be refactored. After choosing

these large-granular code duplications for refactoring, code clones (such as

method clones) constituting the collaborative patterns can be relatively easily

refactored because of the knowledge of the context. More specifically, one of

the possible refactoring strategies is to move together several cloned methods

linked by the calling-relations to the parent class or simply change the

inheritance structure to remove the cloned methods.

4.4.4. Other Benefits

Improved Clone Detection: Small-granular code clone detectors generally

detect code clones larger than a certain threshold value (e.g., 30–50 tokens or

4–6 lines of code [42, 100]). Large-granular code clone detectors group small-

granular duplicated contiguous code fragments into larger cloned program

69

entities. For example, structural clones are cloned program entities that

represent recurring patterns of duplicated contiguous code fragments occurring

in a method, across methods, in a file, or across files [5]. The proposed

approach improves the clone detection further by exploring the calling-

relations among these cloned entities.

Good Candidates for Library: Davey et al. [40] claimed that if a program

structure is cloned on several occasions in the software, the program structure

has proved its usability. Hence, it can be incorporated in a library providing an

effective set of reusable components. In the same fashion, we argue that

collaborative patterns being large-granular program structures can prove to be

even more effective and useful as a library candidate provided they also occur

at several occasions. However, we have not found any example of

collaborative pattern through our analysis that can be considered as a

candidate for incorporating as a library.

4.5. Conclusions

In this chapter, we presented the experimentation pertaining to detection and

analysis of collaborative patterns. We explored different possibilities and

applications where detection of collaborative patterns can prove to be useful.

In the next chapter, we discuss the mechanism of managing code clones of

large granularity such as collaborative patterns, structural clones, and other

types of software clones in detail.

71

Chapter 5.
MANAGING CODE CLONES USING THE

ART

In the previous chapters, we presented the proposed approach for detecting

collaborative patterns in detail. Once we found code clones (for example,

collaborative patterns, simple clones, structural clones, or any other types of

code clones) in the software—the questions arise how are we going to manage

them, how can we benefit from their knowledge in terms of easier

maintenance or better reuse. This chapter and the next chapter deal with all

such aspects pertaining to clone management.

Code clones obstruct program understanding and increase maintenance costs

[2, 3]. While we may not be able to eliminate all these clones in a software

system, these can be dealt with significantly at the meta-level [138]. With this

understanding, we propose a solution to manage big clones (i.e., code clones

of large granularity such as collaborative patterns, structural clones, or other

large-granular cloned program structures) by presenting a meta-programming

technique and tool, the ART (Adaptive Reuse Technique), that can manage

72

families of redundant software systems by providing a common base of non-

redundant, adaptable, and reusable meta-components. These meta-components

are easier to reuse, maintain, and comprehend, and can track the program

changes during evolution.

The chapter is organized as follows: after providing introduction and

motivation in Section 5.1, Section 5.2 provides a detailed description of the

ART. The detailed research methodology for managing code clones using the

ART is presented in Section 5.3. Finally, Section 5.4 concludes the chapter.

5.1. Introduction and Motivation

There is a large body of research on various reasons why code clones arise—

both across and within system versions—and whether code clones are good or

bad [17, 137-140]. These studies show that designers may intentionally create

certain clones to fulfill some design goals (e.g., for performance or readability)

[17]. Other clones may result from careless design and can be refactored [137,

139], and yet others may not play any useful role but cannot be eliminated

using conventional design techniques [140]. Nevertheless, cloning is a reality

and there is need to deal with it [102]. It is beneficial to know the locations of

code clones in the programs—how they are similar, and how the clone

instances differ from one another. This is particularly true for big clones,

which arise even if software evolution is systematically managed in a reuse-

based manner with variability management techniques [141]. A study of

industrial systems has shown that around 50% of small cloned code fragments

tend to be contained in big clones [4]. While big clones are certainly

intentional, they contribute to increased program size and complexity [4].

73

Clone management aims at organizing existing clones, minimizing their

negative effects, controlling their growth and dispersal, and avoiding them

altogether [102]. Giesecke [142] divided clone management into three

categories: preventive, corrective, and compensatory. Preventive clone

management aims at preventing the introduction of new clones into a software

system. Corrective clone management deals with removing the existing clones

from the software system. Compensatory clone management aims at

minimizing negative effects of existing clones that cannot be removed from

the software system [143].

As mentioned above, corrective clone management techniques aim at

removing the existing clones from the software system. Most of the clone

management techniques proposed in the literature fall under this category. It

includes refactoring, macros, generics, higher order functions, etc. [41, 133-

135, 137, 144-146]. However, sometimes this objective is not always feasible.

Especially, as mentioned above, if clones are created intentionally for better

performance or readability, it is not wise to remove them altogether [17]. Also,

removing clones with techniques such as refactoring may result in the system

design conflicting with other important design goals [22]. Therefore, there is a

lot of literature on whether to refactor, what to refactor, or what not to refactor

[18, 134-137]. Clones can be automatically transformed by replacing clones

with macros (pre-processor commands) [41]. But, program instrumented with

macros might significantly decrease the comprehensibility of the source code

[147].

Although it may not always be possible to eliminate all the clones from a

software system [138], these can be dealt with using a generic representation

74

of the software. With this understanding as motivation, we propose a meta-

programming technique and tool, the ART (Adaptive Reuse Technique), that

can be effectively used to manage big clones within or across versions of a

software system at the meta-level. The ART is an enhanced, lightweight, and

XML-free version of the XVCL (XML-based Variant Configuration

Language) [118]. It manages big clones by representing them in the form of

non-redundant, adaptable, and reusable templates, called ART templates. ART

templates can be built for groups of similar program structures of different

kind (e.g., methods, files, or directories) that differ in terms of the variety of

ways typically found in the real systems.

Compared to corrective clone management techniques such as refactoring and

macros, which aim at removing clones to handle them, the ART provides a

compensatory clone management solution. It means that the ART aims at

minimizing the negative impacts of clones (especially big clones) without

actually removing them. The ART actually does not eliminate clones from

runtime code, but effectively deals by unifying them at meta-program level. It

offers enhanced software maintenance by providing two-fold view of the

software system: one is a clone-free source code in the form of ART templates

for easier maintenance, and another is an executable code with those useful

clones that should be kept in the software system during runtime for

performance reasons.

The benefits of the ART include simplification of SPL core assets due to non-

redundancy, productivity gain due to concise template representation of

programs, and easier comprehension and traceability of change impact during

SPL evolution. In various similarity groups, depending on the cloning, the

75

proposed technique eliminates 25–75% of the code by unifying clones into

non-redundant templates. Unification of clones further improves program

understanding. Program relations that have to do with the impact of changes

are important in program understanding, maintenance, and evolution, but

remain mostly implicit in conventional programs. ART templates expose and

explicate some of these program relations. For example, when maintaining

duplicated code, we often must know where such duplicates are and how they

are different, in order to decide if and how each of them should be modified.

The ART makes such information more visible and tractable, reducing the risk

of unexpected errors when changing programs.

This chapter provides details of the ART and the methodology of managing

clones using it. Quantitative and qualitative evaluation of the strengths,

weaknesses, and trade-offs involved in the application of the ART is explored

in the next chapter.

5.2. An Overview of the ART

The ART is a meta-programming technique and tool that can be effectively

used to manage clones within or across versions of a software system at the

meta-level. It is an enhanced and lightweight version of the XVCL [118].

XVCL is a dialect of XML. So, it is necessary to know XML syntax and rules

before understanding and working with the XVCL. The ART parts with XML

syntax and processing. It uses a C Preprocessor (cpp) [148] based flexible and

more readable syntax. The ART syntax is flexible in the sense that it offers the

capability to redefine the syntax as and when needed by the users. This is

particularly useful when reserved words from the ART syntax conflict with the

76

reserved words of the native language. In such cases, ART syntax can be easily

changed and users can define their own syntax. Hence, the ART offers user-

defined syntax. Comparison of the ART with the XVCL, preprocessors, and

other related techniques is presented in the related works section in Chapter 6.

5.2.1. How Does the ART work?

The ART works on the principle of representing each clone class found in the

software system in the form of non-redundant, adaptable, and reusable meta-

components called ART templates. An ART template is a file with original

program code (i.e., native language of the software) instrumented with ART

commands (explained in detail in Section 5.2.2) for ease of customization.

These ART templates can be converted back to the clone classes using the

ART Processor. The ART Processor takes the ART templates as input and

generates the instances of the clone classes as output. In this way, as

mentioned in Section 5.1, the ART offers enhanced software maintenance by

providing two-fold view of the software system: one is a clone-free source

code in the form of ART templates, and another is an executable code with

those useful clones that should be kept in the software system during runtime

for performance reasons. Next subsection discusses the ART-template solution

in detail.

5.2.1.1. An Overview of the ART-Template Solution

For each of the detected clone class, we distill common code into ART

templates and mark the locations of variation points using ART commands.

Figure 5.1 outlines the overall solution, which consists of an ART-template

hierarchy in which templates at the lower-level serve as building blocks for the

77

higher-level templates. The ART templates are linked together by #adapt

commands. The top-most template, called the specification file (SPC),

specifies how to adapt other templates lower in the hierarchy to accommodate

required variations. The ART Processor checks the templates for their

conformance to the grammar definitions. It then traverses the template

hierarchy in the depth-first order, starting from the SPC, and performs

adaptations by executing the ART commands embedded in the SPC and other

ART templates. During traversal, each ART template adapts other templates

from its sub-hierarchy. At the end, the ART Processor produces the required

cloned instances.

ART
Processor

SPC

ART-template hierarchy Clone instances

input output

#adapt
Keys:

----+----
--------+

+----+---
-----+---

-----++--
ART template

Figure 5.1. An overview of the ART-template solution

The flow diagram depicting the various steps of ART-template processing is

shown in Figure 5.2. The Processor starts by reading the SPC (step-1). It

fetches the ART commands step-by-step in the order in which they appear in

the SPC (step-2). Whenever it hits #adapt command (step-3), the processing

will switch immediately to the adapted template (step-4) and switch back

when the adapted template finishes its processing. Within a template, each

ART command is processed one after another, in the same way as in the SPC.

For the other commands, the Processor executes the ART command and builds

the output (step-4') incrementally. Once the Processor reaches the end of the

78

SPC (step-5), it generates the required source code files (step-6); if not, the

ART Processor fetches the next ART command from the SPC (step-6').

ART
Processor

Input : Template views of the
Program

Other
ART

Templates

Process the
Commandis not adapt

Builds output
incrementally

Complete
Processing

end of SPC file

Output: Clone Instances

SPC

else 2

1

3

5

4

4'

6

6'

reads

Fetch the
Command

is adapt

----+----
--------+

Figure 5.2. Traversal mechanism of the ART Processor

Figure 5.3 shows an example to illustrate the ART-Processor traversal

mechanism.

1 SS
2 #adapt "X"
3 SSS
4 #adapt "Y"
5 SSSS

SPC

8 YY
9 #adapt "Z"
10 YYY
11 YYYY Y

12 ZZ
13 ZZZ

Z

6 XX
7 XXX

X

<adapts>

<adapts>
<adapts>

SS
XX
XXX
SSS
YY
ZZ
ZZZ
YYY
YYYY
SSSS

ART
Processor

Key
SS, SSS, XX, XXX, YY,…. : Original Program code instrumented with ART

Commands to handle variations in code clones

Output

Processing Order :
line(1,2,6,7,3,4,8,9,

12,13,10,11)

Figure 5.3. Example illustrating the ART Processor traversal mechanism

The ART Processor starts processing at line 1 (in the SPC). It emits the code to

the output file, and then executes the command #adapt "X" (line 2). It

suspends the processing of the SPC, and transfers processing to template X.

The ART Processor emits code from lines 6 and 7 to the output file, and

returns to the SPC (line 3). It then emits code (line 3) to the output file. Next,

79

due to the execution of the command #adapt "Y" (line 4), the execution of the

SPC is suspended and processing transfers to template Y. While executing the

template Y, it emits code (line 8) to the output file, and suspends execution of

the template Y and jumps to template Z due to the execution of the command

#adapt "Z" (line 9). The ART Processor continues processing this way until the

end of the SPC (line 5).

A prominent feature of the ART is that it blends in a non-conflicting way with

the underlying programming language. It is because the ART syntax is user-

defined. It makes it easy to use without affecting already existing software

solutions and the people who work with them.

5.2.2. ART Command Set

This section presents each of the ART commands in detail.

5.2.2.1. Comments in the ART

A single-line ART comment can be written by preceding the symbol %, for

example:

% This is a single-line ART comment

Multi-line ART comments are written between %> and <%, for example:

%> This is a multi-line

 ART comment <%

5.2.2.2. #adapt Command

#adapt command inside an ART template (say template B) instructs the ART

processor to:

80

• Suspend the processing of the current ART template (i.e., template B).

• Process the ART template specified by its attribute name, say

template_name

• Process all the descendent ART templates in the hierarchy to the

adapted ART template (i.e., specified by template_name)

• If applicable, perform all the customizations specified under the body

of #adapt command to the visited ART templates.

• Once processing of adapted ART template and its descendent ART

template finish, return control back to the current ART template (i.e.,

template B).

The ART does not support recursive adaptation. It means that an ART template

is not allowed to adapt itself or any of its ancestors’ ART templates.

Based on whether customizations have to be applied or not to the adapted

templates, the ART has two variations for #adapt command. Without any

specified customizations, #adapt has following format:

% simple adapt

#adapt template_name

We can specify customizations that should be applied to the adapted templates

under extended #adapt command as follows:

% extended adapt

adapt: template_name

<customizations>

#endadapt

81

It is to note that colon character “:” is compulsory after the “#adapt” keyword.

Also, any of the ART commands can be included under the “customizations”

field. ART Processor applies the specified customizations to the designated

templates and proceeds to process them.

ART command #adapt corresponds to #include directive in cpp that supports

macro invocation. However, unlike #include directive, #adapt command

allows the same source file to be customized differently (using extended

adapt) in different scenarios in which it is reused.

5.2.2.3. ART Variables and Expressions

ART variables can be declared using #set command. Using #set command, we

can declare both single-valued as well as multi-valued variables.

A single-valued variable can be an integer, expression, or string as below:

#set var1 = 2 % assigns integer value 2 to var1

#set var2 = var1 + 1 % assigns value 3 to var2

#set var3 = "Text" % assigns string “Text” to var3

Note that string values must be in double quotes (").

A multi-valued variable can be declared using the same #set command, but the

values are separated by commas as below:

#set var4 = 2, 3, 4

#set var5 = "Text1", "Text 2", "Text3"

ART expressions can appear anywhere in ART templates. An ART expression

is enclosed between question mark “?” symbols. Value of an ART variable can

be referred by placing “@” symbol in front of the variable. For example,

82

expression “?@var1?” refers to the value of variable var1. Each extra “@” in

front of an ART variable indicates another level of indirection, for example:

#set y = "x"

#set x = "z"

#set z = "w"

?@y? % @y = value of y = x

?@@y? % @@y = value of (value of y) = value of x = z

?@@@y? % @@@y = @@x = @z = w

#set command in the ART corresponds to #define directive in cpp. However,

the ART has different scoping rules as compared to cpp. ART variables allow

the variable values to be propagated along the adapted templates. The first

declaration of an ART variable in a template overrides any subsequent

declarations of the same variable in all the adapted templates, unless the same

variable is redefined in the template again. For example, as shown in Figure

5.4, ART template SPC declares a variable “var” with value 4 (line 2). So, line

3 outputs “var” value to be 4 (line 10). The #set command in adapted template

A.art (line 8) is ignored and line 9 outputs value to be 4 (line 11). Line 5

redefines the value of “var” in the same template, i.e., the SPC. So, line 6

outputs new value which is 5 (line 12). The adapted template A.art now

outputs this new value (i.e., 5 in line 13) while processing line 9.

1 #output "FileA"
2 #set var = 4
3 The value of variable is: ?@var?
4 #adapt "A.art"
5 #set var = 5 % var is redefined
6 The value of variable is: ?@var?
7 #adapt "A.art" SPC

10 The value of variable is: 4
11 The value of variable1 is: 4
12 The value of variable is: 5
13 The value of variable1 is: 5

ART
Processor

FileA
8 #set var = 3 % ignored because var is

overridden by predecessor template
9 The value of variable1 is: ?@var?

A.art

Figure 5.4. Example: #set command and variables in the ART

83

There are three types of expressions in the ART. These are name expression,

string expressions, and arithmetic expression.

A simple name expression may contain just a variable reference, such as:

?@C? or ?@@C?

More complex (but more useful) name expressions can be written as:

?@A@B@C?. In this case, the value of the name expression is computed

from right to left as follows:

value of (A <> value of (B <> value of (C))) % symbol ‘<>’ means string

concatenation.

Referenced variable names created at each intermediate evaluation step must

represent variables that exist in processing flow. Otherwise, the ART processor

reports an error. For example:

#set A = "B"

#set B = "C"

#set C = "D"

#set D = "F"

#set BD = "G"

#set AG = "H"

?@C? % @C = value of C = D

?@A@B@C? % @A@B@C = @A@BD =@AG = H

?@@@C? % ERROR: @@@C = @@D = @F = ? (variable does not

exist in process flow)

A string expression is concatenations of name expressions and strings. In order

to evaluate a string expression, ART Processor first evaluates the name

84

expressions from left to the right. It then replaces the name expressions with

their respective values in the string expression.

For example, with reference to the above example, string expression

?@A@B@C?"Text"?@D? is evaluated as:

• Evaluate name expression ?@A@B@C?. It results in H. Concatenate

this with string “Text”. It results in HText.

• Evaluate name expression ?@D?. It results in F. Concatenate this with

HText. Final Output is HTextF.

Arithmetic expressions are well-formed expressions that can contain ‘+’, ‘-’,

‘*’, ‘/’ operators and nested parenthesis. It is not allowed to use arithmetic

expressions intermixed with name expressions or string expressions.

In arithmetic expressions, ART variables can be referenced simply by referring

to their names (instead of using “@” symbol). For example, ?a + (b + 2)? is

valid arithmetic expression where a and b are ART variables as shown below:

#set a = 2

#set b = 4

Value of c is = ?a + (b + 2)?

In this case, output is: Value of c is = 8

5.2.2.4. #output Command

For an ART-template solution, ART Processor interprets the ART commands

and emits any source code found in the processed ART templates to output

file(s). Path of such output file(s) can be specified using #output command

(Figure 5.5(a)). The path can be absolute or relative path. However, this

85

command is optional. In case this command is not used, the ART Processor

emits the code to an automatically generated default file named

defaultOutput.txt (Figure 5.5(b)). ART Processor creates defaultOutput.txt file

in the main folder of its installation.

#output "FileA"
#set var = 4
The value of variable is: ?@var?

ART Template

The value of variable is: 4
ART

Processor FileA

% #output "FileA"
#set var = 4
The value of variable is: ?@var?

ART Template

The value of variable is: 4
ART

Processor defaultOutput.txt

#output "FileA"
#set var = 4
The value of variable is: ?@var?
#output "FileB"
#set var1 = 2
The value of variable1 is: ?@var1?

ART Template

The value of variable is: 4
ART

Processor
FileA

The value of variable1 is: 3
FileB

#set class = "A", "B", "C“
#while class

#output ?@class?".java"
public class ?@class? {
//definition of class ?@class?

}
#endwhile

ART Template

ART
Processor

public class A {
//definition of class A

} A.java

public class B {
//definition of class B

} B.java

public class C {
//definition of class C

} C.java

(a)

(b)

(c)

(d)

Figure 5.5. Example: #output command in the ART

The ART allows using multiple #output commands in a template or across

template. Once ART Processor executes the “#output file_f”, it emits

subsequent output in the file file_f, until the next #output command overrides

the file_f with another file name (Figure 5.5(c)). When ART Processor

encounters the line “#output file_f” for the first time, it checks whether file

file_f exists or not. If file file_f does not exist, ART Processor creates the file

and emits the output to it. Otherwise, the content of the file is overridden by

the new emitted content. In subsequent processing, if any other #output

86

command refers again to the same output file (i.e., file_f), the new emitted

content is concatenated to the file.

Using ART variables, it is possible to emit source code to multiple output files

using single #output command. For example, as shown in Figure 5.5(d), an

ART variable “class” is declared with three values. In each iteration of the

while loop, ART Processor creates a new file and emits the source code to the

created file.

5.2.2.5. Loops and Selections

The ART implements loops and selections using #while and #select

commands, respectively. #while command is a generation loop that iterates

over its body and generates custom text in each iteration. #select command

allows choosing one of many customization options.

A #while loop can be controlled by using one or more multi-value ART

variables. It is to mention that all the multi-value variables listed as control

variables must have the same number of values. Then, in ith iteration of the

loop, ith value from each of the control variable is used. The ART Processor

starts the loop with index-value of 1, increments the value of index by 1 in

each iteration, and terminates by processing the last value of each of the multi-

value variables. Further, it is also possible to specify the name of control

variable in the #while loop using expressions (as shown in Figure 5.6, line 5).

1 #set char1 = "A","B"
2 #set char2 = "C","D"
3 #set index = 1,2
4 #while index
5 #while "char"?@index?
6 ?@char@index?
7 #endwhile
8 #endwhile

A
B
C
D

ART
Processor

Input

Output

Figure 5.6. Example: #while command in the ART

87

Using #select command, depending on the value of a control variable, we can

select one of many options. Options are selected based on the value of the

control variable specified as attribute in #option clause. Figure 5.7 shows an

illustrative example for #select command. As shown in the figure, besides

#option clauses, #select command can include optional #option-undefined and

#otherwise clauses. #option-undefined clause is processed if control variable is

undefined. If none of the #options are selected, then #otherwise clause is

processed by the ART Processor. We can use “|” symbol to specify more

values to a control variable. For example, “#option Second | Third” is

processed if value of the control variable index is Second or Third.

1 #set index = "First", "Second", "Third", "Fourth"
2 #while index
3 #output ?@index?".java"
4 #select index
5 #option-undefined
6 (A) This code is emitted if index IS NOT DEFINED
7 #endoption
8 #option First
9 (B) This code this emitted if index is First
10 #endoption
11 #option Second | Third
12 (C) This code is emitted if index is Second OR

Third
13 #endoption
14 #otherwise
15 (D) This code is emitted if index IS DEFINED BUT

none of the options corresponds to the value of
index

16 #endotherwise
17 #endselect
18 #endwhile

(B) This code this emitted if index
is First

ART
Processor

Input ART Template

First.java

(C) This code is emitted if index is
Second OR Third Second.java

(C) This code is emitted if index is
Second OR Third Third.java

(D) This code is emitted if index IS
DEFINED BUT none of the options
corresponds to the value of index

Fourth.java

Figure 5.7. Example: #select command in the ART

5.2.2.6. Breakpoints (Insert-Break Mechanism)

The ART supports breakpoint mechanism. Breakpoints serve as anchors where

additional code can be injected. It makes the ART capable of handling

unexpected variations during evolution. Breakpoints can be marked using

#break command. These breakpoints can be easily customized, i.e., additional

code can be easily injected by using #insert, #insert-before, and #insert-after

commands.

88

#break command has two variations as shown below. The content under

#break is the default content. If there is no matching insert command, then the

break’s default content is processed. Matching is done based on the specified

name (breakX in the example).

(1) % simple break command

#break breakX

(2) % extended break command

#break: breakX % note that colon (i.e, :) is compulsory

default-content

#endbreak

There are three types of insert commands to modify the templates at the

breakpoints identified by matching #break command. #insert command

replaces the default-content of all the matching #break commands with its

content. #insert-before command inserts its content before the matching

#break command. Similarly, #insert-after command adds its content after the

matching #break command. It is to mention that #insert-before and #insert-

after commands do not replace the default-content inside its matching #break.

Also, a single #break can be simultaneously extended by all three types of

insert commands (i.e., #insert, #insert-before, and #insert-after commands).

Figure 5.8 shows illustrative example of insert-break mechanism. As shown in

the figure, all the insert commands in lines 3–11 are processed with matching

breakpoint breakABC. The ART Processor emits the output as shown by lines

1–3 of the output file FileA. In case, there is no #insert that matches a #break

(e.g., breakDEF), then the break’s default-content is processed. In this case,

the ART Processor emits the output as shown by lines 4–6 of the output file.

89

1 #output "FileA"
2 #adapt: ABC
3 #insert-before breakABC
4 Insert-Before breakpoint breakABC
5 #endinsert
6 #insert breakABC
7 Replace default-content of

breakpoint breakABC
8 #endinsert
9 #insert-after breakABC
10 Insert-After breakpoint breakABC
11 #endinsert
12 #endadapt
13 #adapt: DEF
14 #insert-before breakDEF
15 Insert-Before breakpoint breakDEF
16 #endinsert
17 #insert-after breakDEF
18 Insert-After breakpoint breakDEF
19 #endinsert
20 #endadapt

1 Insert-Before breakpoint breakABC
2 Replace default-content of

breakpoint breakABC
3 Insert-After breakpoint breakABC
4 Insert-Before breakpoint breakDEF
5 default-content from breakDEF
6 Insert-After breakpoint breakDEF

ART
Processor

SPC
FileA

1 #break: breakABC
2 default textABC
3 #endbreak

ABC

1 #break: breakDEF
2 default-content from breakDEF
3 #endbreak DEF

Figure 5.8. Example: breakpoints in the ART

5.2.2.7. Setloop Mechanism

Many multi-value ART variables can be used to control #while loops. Each

iteration of the loop uses the ith value of each of the control variables. But

keeping track of the corresponding values becomes troublesome, especially

when variables have many values that are often changed. Any mismatch of

values may cause an annoying error. #setloop command alleviates this

problem by allowing us to organize the values of the control variables to be

used in a while loop in a more intuitive and less error prone way than multi-

value variables do.

The basic usage scenarios for this command can be directly translated into #set

commands that control #while in a usual way. Suppose we have:

#set x = "x1", "x2", "x3"

#set y = "y1", "y2", "y3"

#set z = "z1", "z2", "z3"

90

#while x, y, z

Then, instead of specifying a list of all the values one control variable will

have over all iterations , #setloop provides a list of iterations and specifies the

value of each variable per iteration as shown below:

#setloop loopA

#iter x = "x1", y = "y1", z = "z1"

#iter x = "x2", y = "y2", z = "z2"

#iter x = "x3", y = "y3", z = "z3"

#endsetloop

#while loopA

#setloop command contains one or more #iter elements. Each #iter element

specifies values of control variables to be used in an iteration of a while loop.

Values specified in ith #iter element are used in ith iteration of the loop.

“loopA” in the above example serves as an id of the #setlloop. Loop control

variables declared inside a #setloop (using #iter) can be referred to (read-only)

from outside as if they were multi-value variables declared at the location of

the #setloop command, e.g.:

loopA.x -- where loopA is a loop-name and x is one of its control variables.

It follows that we can also have a loop that uses any selected control variables

defined in some #setloop, e.g.:

#while loopA.x

In basic usage scenario, each #iter element contains one or more

“variable=value” pairs. But, it is also possible to set default values for control

variables in case a value of a given variable is not explicitly stated in the #iter

91

element. It is feasible by using an optional #vars clause in the #setloop that

allows us to specify control variables with their optional default values. Only

one default value per control variable can be specified. However, in the

absence of #vars clause, each #iter must specify values for all control

variables. In case we have #vars, then all the control variables defined in #iter

elements must be also listed in #vars, whether or not they have default values.

In case the same value of a given control variable need to be used in a number

of iterations, an optional #vars clause can simplify loop specifications by

providing default values. Whenever the value of a given variable is not

specified in a #iter, the default value is used. For example,

#setloop loopA

#vars

#var x = "x-dafault"

#var y = "y-default"

#endvars

#iter x = "x1", y = "y1"

#iter x = "x2" % this iteration uses default value of y

#iter y = "y3" % this iteration uses default value of x

#endsetloop

In this case, iterations 2 and 3 use default values of y and x, respectively.

It is true that only one default value per control variable can be specified. But,

a #setloop can be modified using the insert-break mechanism. This approach

allows us to modify loop iterations as shown by the example of Figure 5.9. In

this example, the #setloop defines following values:

Iteration 1 (line 7 in setloop template): x = x1, y = y1, z = z-default

92

Iteration 2 (line 8 in setloop template): x = x2, y = y-default, z = z-default

Iteration 3 (line 9 in setloop template): x = x-insert, y = y-insert, z = z-default

Iteration 4 (line 10 in setloop template): x = x-insert, y = y-default, z = z-insert

Such cases are very difficult to handle with #set commands that control #while

in a usual way.

1 #adapt: setloopFile
2 #insert varsBreak
3 #var z = "z-default“
4 #endinsert
5 #insert iterBreak
6 #iter x = "x-insert", y = "y-insert"
7 #endinsert
8 #insert iterBreak1
9 #iter x = "x-insert” z = “z-insert"
10 #endinsert
11 #endadapt

1 #setloop loopA
2 #vars
3 #var x
4 #var y = "y-default”
5 #break varsBreak
6 #endvars
7 #iter x = "x1", y = "y1”
8 #iter x = "x2”
9 #break itersBreak
10 #break iterBreak1
11 #endsetloopSPC setloopFile

Figure 5.9. Example: setloop mechanism in the ART

Table 5 gives summary of selected ART commands.

Table 5. Summary of selected ART commands

Syntax Command Definition
#adapt template_name

or:

#adapt: template_name
 <customizations>
#endadapt

#adapt command instructs the ART processor to adapt the
named template and its descendants.

#adapt may also allows to specify customizations that
should be applied to the adapted template. Customizations
may include any ART commands.

#output pathname #output command specifies the path of the output file
where the source code should be placed. The pathname can
be absolute or relative path.

If the output file is not specified, then the ART Processor
emits the code to an automatically generated default file
named defaultOutput.txt in the main folder of the installed
ART processor.

#set var_name = val1[,val2,val3,
…]

#set command declares an ART variable “var_name” and
sets its value to a single or multi-values.

?@var_name? A direct reference to the value of variable “var_name”.
Each extra ‘@’ symbol in the front of a variable name
indicates an extra level of indirection.

#break breakX

or:

#break: breakX
 default content

#break marks a breakpoint at which changes can be made
by ancestor template via #insert, #insert_before,
#insert_after commands.

The content under #break is the default content. If no
#insert matches a #break, then the break's default content

93

Syntax Command Definition
#endbreak is processed.

#insert breakX
 content_body
#endinsert

#insert-before breakX
 content_body
#endinsert

#insert-after breakX
 content_body
#endinsert

#insert command replaces all matching #breaks with its
content. Matching is done by a name (breakX in the
example).

#insert-before and #insert-after add their content before or
after the matching #breaks, without deleting their content.

A single #break may be simultaneously extended by
#insert, #insert-before and #insert-after commands.

#while var1[,…,varN]
 content_body
#endwhile

#while is a generation loop that iterates over its body and
generates custom text at each iteration.

#select control_var
 #option option
 option_body
#endselect

#select allows us to choose one of the many customization
options.

% comment
%> comments <%

Single line comment
Multiple lines comments

5.2.3. ART Syntax

In this section, we describe syntactical structure for each of the ART

commands. We use following notations to specify the syntax of ART

commands:

• Definition symbol is ::=, e.g., A ::= B

• Alternate symbol is |, e.g., A ::= B | C

• 0 or more times repetition symbol is *, e.g., A ::= B*

• 1 or more times repetition symbol is +, e.g., A ::= B+

• Optional part symbol is square bracket […], e.g., A ::= [B] C

• Grouping is symbolized by round brackets (…), e.g., A ::= (BC)*

• Non-terminal symbols are written with a mixture of uppercase letter,

lowercase letter, digits and a special symbol -.

• Terminal symbols are keywords, special symbols etc.

94

• Special sequence is symbolized using ?...?, e.g., STRING ::= ? Mixture

of any characters ?

Comments in the ART

comment ::= ‘%’ SINGLELINE-TEXT |

 ‘%>’ (SINGLELINE-TEXT | MULTILINE-TEXT) ‘<%’

SINGLELINE-TEXT ::= ? Mixture of any characters in a single line ?

MULTILINE-TEXT ::= ?Mixture of any characters that may spread over many lines?

#adapt Command

adapt ::= as-is-adapt | extended-adapt

as-is-adapt ::= ‘#adapt’ path

extended-adapt ::= ‘#adapt:’ path

 adapt-body

‘#endadapt’

path ::= Expression | VAR-NAME | STRING

adapt-body ::= (command)*

#set Command

set ::= ‘#set’ VAR-NAME = value (, value)*

value ::= Expression | VAR-NAME | STRING | INTEGER

#output Command

output ::= ‘#output’ path

path ::= Expression | VAR-NAME | STRING

#while Command

while ::= ‘#while’ control-var (, control-var)*

95

 while-body

#endwhile

control-var ::= Expression | VAR-NAME

while-body ::= (textual-content | command)*

#select Command

select ::= ‘#select’ control-var

 [‘#option-undefined’

option-body

 ‘#endoption-undefined’]

 (‘#option’ value (| value)*

option-body

 ‘#endoption’)*

 [‘#otherwise’

option-body

 ‘#endotherwise’]

#endselect

control-var ::= Expression | VAR-NAME

value ::= Expression

option-body ::= (textual-content | command)*

#insert and #break Commands

insert ::= ‘#insert’[‘-before’ | ‘-after’] break-name

 insert-content

#endinsert

break-name ::= Expression

insert-content ::= (textual-content | command)*

96

break ::= ‘#break’ break-name

 break-content

#endbreak

break-content ::= (textual-content | commad)*

#setloop Command

setloop ::= ‘#setloop’ setloop-name

 [setloop-vars]

 (‘#iter’ iter-desc)+

[break]

‘#endsetloop’

setloop-name ::= VAR-NAME

setloop-vars ::= ‘#vars’

 (‘#var’ VAR-NAME [= value])+

 [break]

‘#endvars’

iter-desc ::= VAR-NAME = value (, VAR-NAME = value)*

value ::= Expression | VAR-NAME | STRING | INTEGER

Expression

Expression ::= Arithmetic-Expression | Name-Expression |

String-Expression

Name-Expression ::= ‘?’ ‘@’ (VAR-NAME | ‘@’)* VAR-NAME ‘?’

String-Expression ::= (STRING* Name-Expression+ STRING*)+

Arithmetic-Expression ::= <syntax for arithmetic expressions is same as in C

preprocessor (‘+’, ‘-‘, ‘*’, ‘/’, nested parenthesis)

97

Command

command ::= Any one of the ART commands

VAR-NAME

VAR-NAME ::= (any letter | ‘_’) (any letter | number | ‘_’)*

ART Processor is case-sensitive.

STRING

STRING ::= ? Mixture of any characters ?

5.2.4. Architecture and Implementation Details

Figure 5.10 shows architecture of the ART Processor. It takes the specification

file (SPC) as input from the user through the ART User-Interface module. In

the next step, the ART Lexer module, which is a lexical analysis tool in the

ART, converts the SPC and the other adapted ART templates into sequences of

tokens. These token sequences are then parsed by the ART Parser in

accordance with the ART grammar rules, and an abstract syntax tree is

generated as output. The ART Parser recognizes the ART commands only and

skips any other code or text. It helps in integrating the ART code with other

programming languages in an unrestricted form. At the end, the generated

abstract syntax tree is evaluated using the ART Evaluator module to get the

required clone instances.

The ART Processor is implemented in Java and is available in a ready-to-use

form (available at: http://art.comp.nus.edu.sg/). The lexical analyzer for the

ART Processor is built by adapting ANTLR [149]. The ART Processor can be

run from command-line mode as well as using graphical user interface mode.

98

It is also supported by editor plug-ins for Notepad++ and Microsoft Visual

Studio.

ART Lexer

ART Parser

ART Evaluator

Token
Sequence

Cache

EBNF
Grammar
for ART

Input: Meta-level Program Output: Clone Instances

Other
ART

Templates

ART User
Interface

ART
Options

ART
Specification

file

Abstract
Syntax Tree

--------+
+----+---

-----++--

Figure 5.10. Architectural overview of the ART Processor

5.3. Detailed Methodology

The research methodology for managing code clones using the ART consists

of four major steps as shown in Figure 5.11.

Original Software
System in Native

Language

Step 1: Clone
Detection

Detected
Clones

Step 2: Clone
Analysis with

developer
involvement

Clone Classes
to be tailored

with ART
Step 4:

Constructing
ART Templates

Software System
wrapped in ART

templates

ART Processor

Step 3
(Optional):

Tailoring ART
Command Set

Figure 5.11. Detailed research methodology for managing code clones

5.3.1. Step 1: Clone Detection

The first step deals with the detection of code clones (small cloned code

fragments as well as big clones) from the software system. Developers can use

99

any clone detection techniques and tools of their choice for detecting code

clones. However, the usefulness of the ART directly depends on the accuracy

of the used clone detector. The better the recall and precision of the clone

detector, the higher the likelihood of finding the best clone classes whose

template views can benefit developers.

In addition to the selection of a proper clone detector, another factor that

affects the usefulness of the ART is the choice of setting the minimum size of

a clone that should be detected by the clone detector. For token-based clone

detectors, Kamiya et al. [42] suggests using the minimum value of 30 tokens

to obtain meaningful results. We also consider it to be a suitable value for our

experimentation, as it corresponds to approximately 4–6 lines of codes (LOC).

5.3.2. Step 2: Clone Analysis with Developer Involvement

With the large number of clones reported by the clone detector, developers

should pay most attention to recurring structures of substantial size that form

meaningful clone classes. ART templates of such structures are likely to be

beneficial to developers. This section shows such types of clone classes with

examples.

5.3.2.1. Types of Clones that can be handled using the ART

Based on the clone granularity, candidate clone-classes can be grouped into

different categories as discussed below:

Similar Directories

Figure 5.12 gives an example of cloned directories—/jbd and /jbd2 found in

the Linux kernel-3.10. In the Linux kernel, the Journaling Block Device (JBD)

100

provides a file-system independent interface for file system journaling. There

are two directories, namely /jbd and /jbd2, implementing this functionality,

with /jbd2 being an evolutionary branch of /jbd. /jbd2 compatibly extends /jbd

with new features such as support for 64-bit computers, check-summing of

journal transactions, and asynchronous transaction commit block write.

checkpoint.c

jbd jbd2
fs

Linux kernel-3.10

recovery.c journal.c
commit.c transaction.c

revoke.c checkpoint.c recovery.c journal.c commit.c transaction.crevoke.c

Figure 5.12. Cloned directories /jbd and /jbd2

Table 6 shows similarities and differences (in terms of LOC) among files in

/jbd2 with respect to their counterparts in /jbd. The considerable similarity in

functionality and code between the files corresponding by name in the two

directories suggests that /jbd2 files were created by copying and modifying

/jbd files.

Table 6. Comparison of /jbd2 with respect to /jbd

Figure 5.13 sketches code snippets highlighting the code similarity and

differences between the two checkpoint.c files. The directories /jbd and /jbd2

exemplify the situations that can benefit from ART-template views of the

program.

File Name
Total LOC in

Corresponding
jbd/jbd2 files

Identical
LOC

LOC with
Parametric
Differences

Modified
LOC

Inserted
LOC

Deleted
LOC

checkpoint.c 782/705 554 47 12 29 95
commit.c 1002/1192 523 93 35 364 218
journal.c 2122/2146 1266 287 29 690 229
recovery.c 594/862 420 52 12 234 0
revoke.c 740/769 544 94 3 25 0
transaction.c 2229/2348 1346 130 56 516 399

101

51: static inline void __buffer_unlink(struct journal_head *jh)
52: {
53: transaction_t *transaction = jh->b_cp_transaction;
54:
55: __buffer_unlink_first(jh);
56: if (transaction->t_checkpoint_io_list == jh) {
57: transaction->t_checkpoint_io_list = jh->b_cpnext;
58: if (transaction->t_checkpoint_io_list == jh)
59: transaction->t_checkpoint_io_list = NULL;
60: }
61: }

51: static inline void __buffer_unlink(struct journal_head *jh)
52: {
53: transaction_t *transaction = jh->b_cp_transaction;
54:
55: __buffer_unlink_first(jh);
56: if (transaction->t_checkpoint_io_list == jh) {
57: transaction->t_checkpoint_io_list = jh->b_cpnext;
58: if (transaction->t_checkpoint_io_list == jh)
59: transaction->t_checkpoint_io_list = NULL;
60: }
61: }

Identical Code Fragments : ~554 LOC

128: while (__log_space_left(journal) < nblocks) {
129: if (journal->j_flags & JFS_ABORT)
130: return;
131: spin_unlock(&journal->j_state_lock);
132: mutex_lock(&journal->j_checkpoint_mutex);

124: while (__jbd2_log_space_left(journal) < nblocks) {
125: if (journal->j_flags & JBD2_ABORT)
126: return;
127: write_unlock(&journal->j_state_lock);
128: mutex_lock(&journal->j_checkpoint_mutex);

Code Fragments with Parametric Changes: ~47 LOC

333: set_buffer_jwrite(bh);
334: bhs[*batch_count] = bh;
335: __buffer_relink_io(jh);
336: jbd_unlock_bh_state(bh);
337: (*batch_count)++;
338: if (*batch_count == NR_BATCH) {
339: spin_unlock(&journal->j_list_lock);
340: __flush_batch(journal, bhs, batch_count);

311: journal->j_chkpt_bhs[*batch_count] = bh;

312: __buffer_relink_io(jh);
313: transaction->t_chp_stats.cs_written++;
314: (*batch_count)++;
315: if (*batch_count == JBD2_NR_BATCH) {
316: spin_unlock(&journal->j_list_lock);
317: __flush_batch(journal, batch_count);

Code Modification: ~12 LOC

306: spin_unlock(&journal->j_list_lock);
276: transaction->t_chp_stats.cs_forced_to_close++;
277: spin_unlock(&journal->j_list_lock);
278: if (unlikely(journal->j_flags & JBD2_UNMOUNT))
279: /* The journal thread is dead; so starting and
281: * waiting for a commit to finish will cause
282: * us to wait for a _very_ long time.*/
284: printk(KERN_ERR "JBD2: %s: “
285: "Waiting for Godot: block %llu\n“,
286: journal->j_devname,
287: (unsigned long long) bh->b_blocknr);

520: journal_update_sb_log_tail(journal, first_tid, blocknr,
521: WRITE_FLUSH_FUA);
522: spin_lock(&journal->j_state_lock);
523: /* OK, update the superblock to recover the freed space.
524: * Physical blocks come first: have we wrapped beyond the end of
525: * the log? */
526: freed = blocknr - journal->j_tail;

460: __jbd2_update_log_tail(journal, first_tid, blocknr);
Code Deletion: ~95 LOC

Code Insertion: ~29 LOC

Figure 5.13. Code snippets of cloned file /jbd/checkpoint.c (left) and
/jbd2/checkpoint.c (right)

In the Linux kernel and other software systems that we considered for case

studies (Java Buffer Library, for example), we found many other cases

following the pattern of /jbd and /jbd2. However, in some cases, a directory

contains one or more files that do not have similar counterparts in the cloned

directory. The reason we find such types of big clones in the Linux kernel—

and, we believe, in many other evolving systems—is the limitation of

underlying variability management techniques to tackle such duplicated

program structures in a non-redundant way, due to functional similarities

among different subsystems, extensions to the existing functionalities,

adaptation of the existing subsystem code for the new one (incremental

102

development), and decentralized and voluntary basis development efforts

[150-152].

Similar Files

From the large number of code clones reported by a clone detector, despite

similar directories, developers should also pay most attention to other

recurring structures of substantial size that form meaningful clone classes. One

of such cases is similar files. Due to large size, similar files (i.e., file clones)

are one of the clone-candidates whose ART templates are likely to be

beneficial to the developers.

Many cases of similar files within the same directory, as well as across

directories, occur in software systems.

A common reason for replicating a file in the same directory is to make a

certain existing functionality available for another computer architecture,

device, or tool. An example from the Linux kernel-3.10 is the drivers for

different brands of touchscreen devices—in directory

/drivers/input/touchscreen, 10 files share the same structure and much code.

Similarly, in the Java Buffer Library, a group of seven source files—

ByteBuffer.java, CharBuffer.java, IntBuffer.java, DoubleBuffer.java,

FloatBuffer.java, LongBuffer.java, and ShortBuffer.java—have almost 90% of

the cloned code (either exact or with parametric differences). It makes these

files a good candidate for the ART-template representation.

Two directories having almost similar purposes (vide Figure 5.12) may contain

similar files. Sometimes, the same or similar file may be required in two or

more directories, even if the corresponding directories do not have enough

103

code similarity. For example, in the Linux kernel-3.10, functionality for

handling extended user attributes is needed in directories /fs/ext2, /fs/ext3, and

/fs/ext4, and therefore file “xattr_user.c” that defines this functionality appears

in all three directories.

Collaborative Patterns

Collaborative patterns are useful candidates to consider, especially when ART

template representation of them proves to be beneficial to developers. For

example, in the Clone Analyzer-2.0, there are three collaborating methods:

getJInternalFrame(), getJContentPane(), and getJScrollPane(). These three

methods occur in each of following three files: “SecondaryNavigator.java”,

“PrimaryNavigator.java”, and “UserMinerSettings.java”. These three files do

not have enough code similarity, and hence cannot be considered as file clones

of each others. But, these three collaborating methods can be represented as an

ART template that can be shared across these three files.

Duplicated Code Fragments and Methods

At times, template views of duplicated code fragments can also be useful,

particularly so if these code fragments are large enough (at least six LOC, for

example), play some specific role (e.g., represent some meaningful function),

and/or recur in many places in programs. For example, in the Linux kernel-

3.10, the code fragments in Figure 5.14 implement a device-specific queue

handling procedure for different wireless network adapters. An instance of this

code fragment occurs once in each of the files “rt2400pci.c”, “rt2500pci.c”,

“rc2800pci.c”, and “rt61pci.c”, and twice in each of the files “rt2500usb.c”,

“rc2800usb.c”, and “rt73usb.c”.

104

static void rt73usb_start_queue(struct data_queue *queue) {
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:

rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®);
rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
break;

case QID_BEACON:
rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®);
rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1);
rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1);
rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1);
rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
break;

default:
break;

}
}

static void rt2800usb_start_queue(struct data_queue *queue) {
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:

rt2x00usb_register_read(rt2x00dev, MAC_SYS_CTRL, ®);
rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1);
rt2x00usb_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
break;

case QID_BEACON:
rt2x00usb_register_read(rt2x00dev, BCN_TIME_CFG, ®);
rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1);
rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1);
rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1);
rt2x00usb_register_write(rt2x00dev, BCN_TIME_CFG, reg);
break;

default:
break;

}
}

rt73usb.c rc2800usb.c

Figure 5.14. Sample code fragments from rt73usb.c and rc2800usb.c from the
Linux kernel-3.10 (differences highlighted)

5.3.3. Step 3: Tailoring ART Command Set (optional step)

The ART syntax is cpp based. However, users can easily change the ART

syntax to suit their requirements. This would be helpful if any of the ART

commands conflicts with the reserved words of the native language of the

software system under consideration, or if the ART user feels uncomfortable

with any of the ART command syntax. We have used the default ART

implementation, which is a cpp compatible version, i.e., does not conflict

syntactically with cpp directives. A brief description of the default ART

command set is given in Table 5 and is explained in detail in Section 5.2.2.

5.3.4. Step 4: Constructing ART Templates

This step deals with representing each clone class, found after clone analysis,

in the form of non-redundant ART-template views of the program. This

subsection explains how to systematically use the ART to represent clones in

the form of generic, adaptable, and reusable ART templates.

105

5.3.4.1. ART Template Construction Mechanism

In ART-template based view of the program, each clone class (i.e., similar

directories, similar files, etc.) is represented using ART templates. These ART

templates record the locations of variation points where different instances of

the clone class differ.

Despite a large fraction of code common to all the clone instances (i.e.,

identical code fragments in the corresponding clone instances) of a clone class,

as shown in Figure 5.13, there are mainly following three types of differences

among corresponding clone instances:

1. Parametric differences (code with parametric changes)

2. Alternatives (code modifications), and

3. Extras (code insertions and deletions).

The first task during ART-template construction is to identify these similarities

and differences among corresponding clone instances of the clone class. For

example, with reference to Figure 5.15:

• Code fragments A, D, and F correspond to identical code fragments in

all the three instances of the given clone class.

• Code fragments B1, B2, and B3 have parametric differences among

them. Similarly, code fragments H1, H2, and H3 also have parametric

differences among them.

• Code fragments E1, E2, and E3 correspond to alternative code in the

three clone instances.

• Remaining code fragments are extras, i.e., code insertion or deletions.

106

A

Clone Instance
CI1

Clone Instance
CI2

B1

C1

D

E1

F

H1

A

B2

D

E2

F

H2

A

B3

C3

D

E3

F

G1

H3

Clone Instance
CI3

Legends:
Identical Code Fragments

Parametric Differences Alternative Code

Code Insertion Code Insertion

Figure 5.15. Illustrative example to show similarities and differences among
clone instances of a clone class

Once the corresponding similarities and differences are identified, ART

templates record exact locations of these variation points at which the clone

instances differ. ART commands can be used systematically to mark these

variation points as discussed below:

• Handling Identical Code Fragments: Identical code fragments can be

used directly as-it-is in the corresponding ART templates. For example,

with reference to Figure 5.15, identical code fragments A, D, and F can

be used directly in the ART-template solution without any

modification.

• Handling Parametric Differences: Parametric differences such as

variations in user-defined identifiers, literals, layout, types, etc. can be

systematically dealt with the ART. Such differences can be easily

handled using ART multi-value variables. Such multi-value variables

can be declared using #set command. Each value of a multi-value

variable corresponds to the parametric variations in the corresponding

107

clone instances. For example, suppose B1 uses a parameter “b1”, while

the same parameter is named as “b2” and “b3” in B2 and B3,

respectively. These parametric differences can be unified by defining

an ART variable say “var1”, and assigning these values to that variable

as follows:

#set var1 = "b1", "b2", "b3"

The three parametric differences, i.e., “b1”, “b2”, and “b3”, can be

referenced using “@” operator (as discussed in detail in Section 5.2.2).

• Handling Alternatives: ART command #select allows choosing one

among alternatives. Each of the alternatives is represented by a #option

clause under #select. For example, with reference to Figure 5.15, we

can unify alternative code fragments E1, E2, and E3 using #select as:

#select <clone-instance-id>

#option <clone-instance-1>

E1 % alternative code from Clone Instance 1

#endoption

#option <clone-instance-2>

E2 % alternative code from Clone Instance 2

#endoption

#option <clone-instance-3>

E3 % alternative code from Clone Instance 3

#endoption

#endselect

• Handing Extras: #insert and #break commands together handle

additions and deletions of extra code. #break command marks the

location in the template where the additional code needs to be inserted.

108

Such additional code fragments can be then injected at the marked

point using #insert, #insert-before, and #insert-after commands. The

insert-break mechanism is discussed in detail in Section 5.2.2.

It is to mention that the actual construction of ART templates is a manual

process that can be performed systematically using the ART commands. Just

like program design, ART template design requires expert judgment that

cannot be easily replaced by automated decision making process. There is a

choice of ART mechanisms such as parameterization, selection, or insertions

of program structures at designated points in templates that can be used to

tackle various redundancy situations. These ART template design choices have

various desirable and undesirable outcomes just like a decision to use a certain

design pattern during conventional program design may have positive and

negative implications. However, the process of generation of code from the

ART templates has been automated using the ART Processor. It is a challenge

for future research to identify design heuristics that could allow us to automate

some of the ART template design decisions.

In the rest of this subsection, we discuss how these ART commands can be

used systematically during the ART-template construction for different types

of clones using examples.

5.3.4.2. Constructing ART Templates for Similar Directories

We can represent each set of similar directories using an ART-template

hierarchy. In the template-hierarchy, ART templates are linked via #adapt

commands. The topmost template, called specification file (SPC), implements

109

the overall process of generating clone instances from the ART-template

hierarchy.

With reference to the left side of Figure 5.16, assume that there are three

directories “DirX”, “DirY”, and “DirZ”. It is mentioned in the Section 5.3.2.1

that similar directories may follow a regular similarity pattern as in Figure

5.12. Based on this, assume that “DirX” and “DirY” follow a regular

similarity pattern. On the other hand, in some cases, a directory may contain

one or more files that do not have similar counterparts in the cloned directory.

Assume that “FileZ” in “DirZ” represents such cases. For a given clone class,

ART template-solution follows a hierarchical structure as shown in the bottom

part of Figure 5.16:

1. The topmost ART template at level 1, called SPC, handles parametric

differences. Also, it is the topmost template that implements the overall

process of generating clone instances from the ART-template solution.

2. ART templates at level 2 handle code differences such as alternative

and extras among the similar files.

3. Lower-level templates at level 3 handle code similarities in the clone

instances and serve as building blocks for the corresponding similar

files. These ART templates are customized using ART commands to

eliminate redundancies. Further, if required, as shown in Figure 5.16,

these templates may be interlinked by #adapt commands to form a

hierarchy (further details to follow when different examples are

provided in the thesis).

4. Remaining files that do not have counterparts in the cloned directories

can be used as-it-is in the template solution. It is to mention that it is

110

one of the enhancements that the ART offers as compared to the

XVCL. The XVCL does not allow adapting non-XVCL files.

Commands to
handle differences
between File1X ,
File1Y, and File1Z

File1.spc
Commands to

handle differences
between File2X ,
File2Y, and File2Z

File2.spc

Commands to
handle similarities
between File1X,
File1Y, and File1Z

File1.art

Commands to
handle similarities
between File2X ,

File2Y , and File2Z

File2.art

ART commands to navigate the process of
instantiation of templates forming clone-instances in

their original form. It also handles the parametric
differences between clone-instances of a clone-class

SPC

Commands to
handle differences
between FileNX,

FileNY, and FileNZ

FileN.spc

Commands to
handle similarities
between FileNX,

FileNY, and FileNZ

FileN.art

DirX

File1X

File2X

FileNX

DirY

File1Y

File2Y

FileNY

DirZ

File1Z

File2Z

FileNZ

FileZ

Level 1:
Directory

Specifications

Level 2:
File

specifications
to handle code

differences

Level 3:
Building blocks
for similar files
normalized to

eliminate
redundancies.

Cloned Directories

Constructing
ART-template

Solution

ART-template Solution for Cloned Directories

FileZ

Remaining Extra
Files remain

intact in the ART-
template
solution

#adapt
Keys:

Common
FragmentsA

Common
MethodA Common

FragmentsM

Common
MethodM

Figure 5.16. Constructing ART-template hierarchy

We use JBD file system of the Linux kernel-3.10 as an example to illustrate

the template construction process. Figure 5.17 shows a sketch of the ART

templates for the JBD file system of the Linux kernel-3.10. Each pair of clones

in the two source files (e.g., checkpoint.c in /jbd and /jbd2) is represented by a

template (e.g., checkpoint.art). The associated template checkpoint.spc

111

specifies the differences between the two source files as deltas from

checkpoint.art. The top-most template jbdX.spc navigates the process of

instantiating the templates to form the Linux source files in their original form.

Commands to
handle differences

between two
versions of

checkpoint.c

checkpoint.spc
Commands to

handle differences
between two

versions of
recovery.c

recovery.spc

Commands to
handle similarities

between two
versions of

checkpoint.c

checkpoint.art
Commands to

handle similarities
between two

versions of
recovery.c

recovery.art

ART commands to navigate the process of
instantiation of templates forming Linux source files
in their original form. It also handles the parametric
differences between clone-instances of a clone-class

jbdX.spc

Commands to
handle differences

between two
versions of

revoke.c

revoke.spc

Commands to
handle similarities

between two
versions of

revoke.c

revoke.art

Commands to
handle differences

between two
versions of

transaction.c

transaction.spc

Commands to
handle similarities

between two
versions of

transaction.c

transaction.art

Figure 5.17. Constructing ART templates: JBD example

Figure 5.18 shows the expansion of some of the ART templates to highlight

the solution. As shown in jbdX.spc, ART variables are declared using #set

commands (lines 1–6). Variable “dirName” is assigned two values, “jbd” and

“jbd2” (line 2) that control the #while loop (line 7). The loop executes twice,

with the value of “dirName = jbd” in the first iteration, and the value of

“dirName = jbd2” in the second iteration. The variable “fileName” is set to six

values, each representing a file name (line 3).

The ART variable “action” helps represent lines:

spin_unlock(&journal->j_state_lock); //in jbd/checkpoint.c

write_unlock(&journal->j_state_lock); //in jbd2/checkpoint.c

in a single line in checkpoint.art (line 4):

?@action?_unlock(&journal->j_state_lock);

112

1 #break copyright % insert code from line
12 in jbdX.spc

2 …
3 …
4 ?@action?_unlock(&journal->j_state_lock);
5 …
6 …
7 #break: wait_cp_io % insert code from

checkpoint.spc
8 % default source code
9 #endbreak
10 …
11 …
12 #break: process_buffer % insert code from

checkpoint.spc
13 % default source code
14 #endbreak
15 …

checkpoint.art

1 #adapt "checkpoint.art" % call to the
template checkpoint.art

2 …
3 …
4 #select dirName
5 #option jbd
6 #insert-before wait_cp_io
7 % code before wait_cp_io beakpoint
8 #insert-after wait_cp_io
9 % code after wait_cp_io beakpoint
10 #option jbd2
11 #insert process_buffer
12 …
13 …
14 …
15 #endadapt

checkpoint.spc

1 % ART variable declarations
2 #set dirName = "jbd", "jbd2"
3 #set fileName = "checkpoint", "commit", "journal", "recovery", "revoke", "transaction"
4 #set action = "spin", "write"
5 …
6 #set tagByte="sizeof(journal_block_tag_t)","tag_bytes"
7 #while dirName, action,…, tagByte
8 #while fileName
9 #output ?@dirName?"/"?@fileName?".c"
10 #adapt ?@fileName?".spc"
11 #insert copyright
12 % content to be inserted on call to "copyright" breakpoint

jbdX.spc

<adapts>

% ART template for versions of transaction.c

Rules highlighting differences between two
different versions of transaction.c

transaction.spc

<adapts>

% ART template for versions of transaction.c

Rules highlighting similarities between two
versions of transaction.c

transaction.art

<adapts>

<adapts>

Figure 5.18. Code snippet of ART templates for the JBD example

The two values of “action” are defined by:

#set action = "spin", "write" // line 4 in jbdX.spc

The generation loop defined in line 7:

#while dirName, action,…, tagByte

is controlled by a list of variables. In this way, any parametric differences

between the two checkpoint.c files are catered to. The command #output (line

113

9) instructs the ART Processor to create a directory and to place any further

output into this directory. Expression “?@fileName?” is used to fetch the

value of an ART variable fileName (line 9). The #adapt command in line 10

instructs the ART Processor to include the designated template to the output.

Variation points at which the two corresponding files (e.g., checkpoint.c) in

/jbd and in /jbd2 directories differ are marked using ART commands—

references to ART variables, #select, #break, and other commands. ART

variables control selection of the code in case of alternative differences. This is

illustrated as “#select dirName” in the template checkpoint.spc (line 4).

#option (lines 5 and 10 in checkpoint.spc) controls the variable values.

File checkpoint.c in one directory contains some extra lines compared with the

checkpoint.c in another directory. These extra lines are specified using #insert

commands in various “#select dirName” options. “#insert process_buffer”

(line 11 in checkpoint.spc) propagates the code to “#break: process_buffer” in

the checkpoint.art (line 12). #insert-before and #insert-after (lines 6–9 in

checkpoint.spc) add their code before or after the code contained in the

matching #break (line 7 in checkpoint.art). While #select instruments a

template with known variations, #break allows for extensions to a template in

unexpected ways in the specific context of adaptation, without affecting

others. These provisions for unexpected evolutionary changes give ART

templates flexibility and stability.

Other Cases of Clones at the Directory Level

Other cases of cloned directories may not follow such a regular similarity

pattern as in /jbd and /jbd2. For example, in the Linux kernel-3.10, in the

114

directories /drivers/infiniband/hw/qib and /drivers/infiniband/hw/ipath, in

addition to similar files, /drivers/infiniband/hw/qib contains some extra files

that do not have a counterpart in /drivers/infiniband/hw/ipath. Still, there is

enough similarity in the concept and the code between

/drivers/infiniband/hw/ipath and /drivers/infiniband/hw/qib to build ART

templates for these two directories. The scheme used for building ART

templates for /jbd and /jbd2 is also applicable in these situations, as ART

templates manage pairs of similar files only and the remaining other files

remain intact in the directories.

5.3.4.3. Constructing ART Templates for Similar Files

In this case, we deal with similar files found in the same directory and similar

files in different directories, bearing in mind that directories as a whole are not

considered good candidates for representing them as templates. For each such

situation, we can create ART templates for similar files if we think that

exposition of similarities and differences among these files can aid developers

in reuse, program understanding, maintenance, and evolution of the software

system.

The ART-template solution for similar files follows a similar scheme to that

shown in Figure 5.17 and Figure 5.18. The topmost template, called SPC,

specifies the parametric differences between similar files. Similar to previous

cases, SPC also contains the code to initialize the ART-template solution to

generate the similar files into their original form. Lower level templates handle

differences and similarities between the corresponding similar files.

115

5.3.4.4. Constructing ART Templates for Collaborative Patterns

This case deals with constructing ART-template solution for recurring

configuration of collaborating methods, where corresponding methods in the

instances of the configuration are clones of each other and the files containing

the configuration as a whole are not good candidates for template

representation. Each of such situations can be handled by creating an ART

template (as compared to the template hierarchy for similar files and similar

directories) for the configuration and adapting it in the required files.

However, similar to other cases, parametric differences are handled using

multi-valued ART variables. Other differences are handled using loops,

selection, and insert-break mechanisms.

Figure 5.19 shows an example of ART-template solution for one of the

collaborative patterns described in the Section 5.3.2.1. Variable “className”

is assigned three values each representing the filename containing the instance

of three collaborating methods (line 1). The #while loop in line 2 controls the

generation of three instances of the given collaborative pattern. Since the

corresponding methods in the instances of the pattern are clones of each other,

the additions and deletions of extra code in the corresponding methods are

limited to few lines of code only. Hence, they can be easily catered to using

#select command. For example, method getJContentPane() in

UserMinerSettings.java contains a few extra lines than its two other instances

in SecondaryNavigator.java and PrimaryNavigator.java. This can be easily

handled using #select command (line 5). It improves the readability of the

constructed template too. As usual, alternative code among cloned methods are

handled using #select commands (line 13). We further converted a few of

116

collaborative patterns found in JHotDraw 7 and Clone Analyzer into ART

templates. In these cases, we eliminated 20–40% of the redundant code.

1 #set className = "SecondaryNavigator", "PrimaryNavigator", "UserMinerSettings"

2 #while className
3 private JPanel getJContentPane() {
4 % common code to all the instances here
5 #select className
6 #option UserMinerSettings
7 % extra lines of code specific to UserMinerSettings. getJContentPane() method here
8 #endoption
9 #endselect
10 }

11 private JInternalFrame getJInternalFrame() {
12 %common code to all the instances here
13 #select className
14 #option SecondaryNavigator
15 % alternative code specific to SecondaryNavigator.getJInternalFrame() method here
16 #endoption
17 #option PrimaryNavigator
18 % alternative code specific to PrimaryNavigator.getJInternalFrame() method here
19 #endoption
20 #option UserMinerSettings
21 % alternative code specific to UserMinerSettings.getJInternalFrame() method here
22 #endoption
23 #endselect
24 }

25 private JScrollPane getJScrollPane() {
26 %> common code to all the instance is copied exactly.
27 Alternatives and differences are handled using ART commands <%
28 }
29 #endwhile

Figure 5.19. Code snippet of an ART template for a collaborative pattern

5.3.4.5. Constructing ART Templates for Duplicated Code

Fragments and Methods

Situations where the template views of duplicated code fragments and

methods can also be useful are handled by creating an ART template and

adapting it at the required variation points. The solution follows a similar

scheme to that shown in Figure 5.19.

117

5.3.5. ART Templates to Original Clone-Instances

ART templates can be converted back to the original native code automatically

by using the ART Processor. The ART Processor traverses the template

hierarchy and generates the required clone instances as output.

As an example, for the templates as shown in Figure 5.18, the ART Processor

generates the original native code traversing the template hierarchy and

emitting the code for the six files in the /jbd and /jbd2 directories from their

respective templates. Template views expose the fact that the two directories

and corresponding files in them are similar to each other, and also explicate

every detail of the similarities and differences among them. This information

is implicit in the original native code. Explicating it using the ART can be

useful in the future evolution of the software.

5.4. Conclusions

In this chapter, we presented a meta-programming technique and tool, the

ART, that can be used for managing big clones. The ART represents clones in

the form of non-redundant, adaptable, and reusable templates, called ART

templates. A prominent feature of the ART is that due to user-defined syntax, it

blends in a non-conflicting way with the underlying programming language.

In this chapter, we first described each of the ART commands in detail. Then, a

systematic mechanism for constructing ART templates has been elaborated.

The ART has been properly implemented and is available in a ready-to-use

form. In the next chapter, we discuss the experimental results evaluating the

effectiveness, usefulness, and benefits of managing code clones using the

ART. We also discuss related works in detail in the next chapter.

119

Chapter 6.
EVALUATION AND BENEFITS OF

MANAGING CLONES USING THE ART

In the previous chapter, we presented a meta-programming technique and tool,

the ART, that can manage families of redundant software systems by providing

a common base of non-redundant, adaptable, and reusable meta-components—

called ART templates. This chapter quantitatively and qualitatively evaluates

the strengths and weaknesses of the ART (Section 6.1). Having discussed the

related works in Section 6.2, Section 6.3 concludes the chapter.

6.1. Evaluation

We have created ART-template solutions for the Java Buffer library, Notepad

system, and a part of the Linux kernel to quantitatively and qualitatively

access the strengths, weaknesses, and trade-offs involved in the application of

the ART. It is to mention that the predecessor of the ART, i.e., the XVCL, has

already been used in the case studies for Java Buffer library [138] and Notepad

system [153]. So, performing case studies on Java Buffer Library and Notepad

system help us to compare the results from two systems.

120

The section is organized as: Initially the case studies using the ART for Java

Buffer library (Section 6.1.1), Notepad system (Section 6.1.2), and a part of

the Linux kernel (Section 6.1.3) are presented. Next, the learnings from these

case studies have been used to perform the quantitative evaluation (Section

6.1.4) and qualitative evaluation (Section 6.1.5) of the ART. The section ends

with a discussion on trade-offs of the technique (Section 6.1.6).

6.1.1. Java Buffer Library Example

The Java Buffer library has been a part of the java.nio.* package in JDK since

version 1.4.1. It implements containers for reading and writing data in a linear

sequence. It consists of buffer classes differing from each others with respect

to buffer element type, memory allocation scheme, byte ordering, and access

mode. Figure 6.1 shows a feature diagram [154] with five feature dimensions,

with specific variant features listed below a corresponding feature dimension

box. Class names in the Buffer library reflect combination of these specific

features implemented into a given class. For example, DirectIntBufferR is a

Read-Only buffer of integers, implemented using direct memory scheme.

Classes whose names do not include ‘R’, are ‘W’—Writable by default. The

Buffer library contains classes whose names are derived from a template:

[MS][T]Buffer[AM][BO], where MS—Memory Allocation Scheme: Heap or

Direct; T—Element Type: Int, Double, Float, Long, Short, Byte, or Char;

AM—Access Mode: W (Writable, default) or R (Read-Only); BO—Byte

Ordering: S (non-native) or U (native), B (Big-Endian) or L (Little-Endian).

For simplicity, we can ignore VB—View Buffer, which is, in fact, yet another

feature that allows us to interpret byte buffer as Char, Int, Double, Float, Long,

or Short. Each legal combination of variant features yields a unique buffer

121

class and it ends up having 74 buffer classes with 68% similarity between

them [138].

Buffer

Element Type
(T)

View Buffer
(VB)

Byte Order
(BO)

Access Mode
(AM)

Memory Allocation
Scheme (MS)

double

char

float

byte

long

short

int

Non-direct Direct

Read-Only Writable Little-Endian Big-Endian Native Non-Native

Alternative features Mandatory features Optional features

Figure 6.1. Features in the Java Buffer library

Representing code clones using ART templates makes the code easier to

understand and debug. Based on the clone analysis of the library, 71 of the

buffer classes can be grouped into seven similarity groups, while the

remaining three buffer classes (Buffer.java, MappedByteBuffer.java, and

StringCharBuffer.java) remain intact [138]:

1. [T]Buffer: seven classes that differ in buffer element type, T: Byte,

Char, Int, Double, Float, Long, Short

2. Heap[T]Buffer: seven classes, with memory allocation scheme ‘Heap’,

that differ in buffer element type, T

3. Heap[T]BufferR: seven ‘Read-Only’ and ‘Heap’ classes that differ in

buffer element type, T

4. Direct[T]Buffer[S|U]: 13 ‘Direct’ classes for combinations of buffer

element type, T, with byte orderings: S—non-native or U—native byte

ordering (it is to mention that byte ordering is not relevant to buffer

element type ‘Byte’)

122

5. Direct[T]BufferR[S|U]: 13 ‘Read-Only’ and ‘Direct’ classes for

combinations of parameters T, S and U (byte ordering is not relevant to

buffer element type ‘Byte’)

6. ByteBufferAs[T]Buffer[B|L]: 12 ‘ByteBufferAs’ classes for

combinations of buffer element type, T, with byte orderings: B—Big-

Endian or L—Little-Endian. T here denotes all seven buffer element

types except ‘Byte’ (i.e., equivalent to VB)

7. ByteBufferAs[T]BufferR[B|L]: 12 ‘Read-Only’ ‘ByteBufferAs’ classes

for combinations of parameters T (except ‘Byte’), B and L.

The ART-template solution of the Java Buffer library consists of template

representations for each of these seven similarity groups (as shown by T1 to

T7 in Figure 6.2) bonded together with a specification file SPC. Each of the

similarity groups (e.g., T4) is represented by a template hierarchy, in which an

ART template is either unique to one class, or is common to some/all of the

buffer classes.

SPC

T2 T3 T5 T7

[T]Buffer.spc

ART
template for

the code
common to

all seven
classes

ART
templates

for the
code

unique to
each class

ART
templates

for the code
common to

some
classes

T4

ART
Processor

ByteBuffer.java
CharBuffer.java
IntBuffer.java

DoubleBuffer.java
FloatBuffer.java
LongBuffer.java

Java buffer ClassesART solution for Java buffer library

T1 T6

Legends SPC : The Specification file : adapt
T1, T2, …, T7 : ART template solution for each of seven similarity groups

ShortBuffer.java

Level 1

Level 2

Level 3

Figure 6.2. ART-template solution for the Java buffer library

Figure 6.3 shows the details of a fragment of the ART-template solution shown

on the left side of Figure 6.2. As explained in Section 5.3.4.1 in Chapter 5,

123

level 3 ART templates play role of the templates defining common parts for all

the classes in the respective similarity groups. For example, seven classes in

the group [T]Buffer are derived using [T]Buffer.art. ART template

[T]Buffer.spc contains specifications instructing the ART Processor on how to

adapt [T]Buffer.art and other ART templates at levels below it to derive buffer

classes in the [T]Buffer group. We have analogical solutions in parts of the

buffer ART-template solution for other six groups of similar classes.

1 % specifies how to generate all the buffer classes
2 #set elmtType = "Byte", "Char", "Double", "Float", "Int", "Long", "Short"
3 #set type = "byte", "char", "double", "float", "int", "long", "short"
4 #set elmtSize = "0", "1", "3", "2", "2", "3", "1"
5 #adapt "[T]Buffer.spc"
6 #adapt "Heap[T]Buffer.spc"
7 …
8 #adapt "ByteBufferAs[T]BufferR[B|L].spc"1 % specifies how to generate seven [T]Buffer classes

2 #while elmtType
3 #select elmtType
4 #option Byte
5 #adapt [T]Buffer.art
6 #insert moreMethods
7 #adapt methodsForByteBuffer.art
8 #endoption
9 #option Char
10 #adapt [T]Buffer.art
11 #insert toString
12 Public String toString()
13 { return toString(position(), limit()); }
14 #endoption
15 #otherwise
16 #adapt [T]Buffer.art
17 #endotherwise
18 #endselect
19 #endwhile

1 % a generic [T]Buffer class that output file @elmtTypeBuffer.java
2 #output ?@elmtType?"Buffer.java"
3 package ?@packageName?;
4 public abstract class ?@elmtType?Buffer

extends Buffer implements Comparable
5 #adapt commonAttributes.art
6 #break moreAttributes
7 #adapt commonMethods.art
8 #break moreMethods
9 #break: toString
10 % default content
11 public String toString() {
12 StringBuffer sb = new StringBuffer();
13 sb.append(getClass().getName());
14 …etc…
15 return sb.toString(); } }
16 #endbreak

1 % generic representation of methods common
2 % to [T]Buffer and may be yet other classes, e.g.,
3 public static ?@elmtType?Buffer wrap(?@type?[] array) {
4 return wrap(array, 0, array.length); }

1 % methods specific to ByteBuffer only
2 public static ByteBuffer allocateDirect(int capacity)
3 { return new DirectByteBuffer(capacity); }

SPC

[T]Buffer.spc

[T]Buffer.art

methodsForByteBuffer.art
commonMethods.art

Figure 6.3. ART-template solution for seven [T]Buffer classes (partial)

#set command in line 2 of the SPC assigns values listed on the right side to a

variable named elmtType. Expression ?@elmtType? refers to one of such

values (line 4 in [T]Buffer.art, for example), which is replaced by the

variable’s value during processing. Having set values for the ART variables,

the SPC initiates generation of classes in each of the seven groups of similar

classes via suitable #adapt commands (lines 5–8).

124

The #while loop in [T]Buffer.spc (lines 2–19) is controlled by a multi-value

variable, namely elmtType. In each iteration, the #select command uses the

current value of elmtType to choose a proper #option for processing.

#output command in [T]Buffer.art (line 2) defines the name of a file where

ART Processor will emit the code for a given class. ART template

[T]Buffer.art further defines common elements found in all seven classes in

the group. Five of those classes, namely DoubleBuffer, IntBuffer, FloatBuffer,

ShortBuffer, and LongBuffer, differ only in type parameters (as in the sample

method wrap() shown in ART template commonMethods.art). These

differences are unified by ART variables, and no further customizations are

required to generate these five classes from [T]Buffer.art. These five classes

are catered for in #otherwise clause under #select (lines 15–17 in

[T]Buffer.spc). However, classes ByteBuffer and CharBuffer have some extra

methods and/or attribute declarations. In addition, method toString() has

different implementation in CharBuffer than in the remaining six classes.

Customizations specific to classes ByteBuffer and CharBuffer are listed in the

#adapt commands, under #option Byte and #option Char, respectively.

The ART-template representation of the Buffer library explicates every detail

of the similarities and differences among buffer classes. This information is

implicit in the original Buffer library. Knowing the similarities and differences

among the buffer classes helps the programmer to easily comprehend and

understand the code. The original Buffer library consists of 16,299 LOC

(including java code and comments), which are reduced to just 3,771 LOC

(including java code, comments, and ART commands) in the non-redundant

ART-template solution.

125

6.1.2. Notepad Example

Besides achieving non-redundancy in the software systems, this case study

(taken from [153]) also exemplifies the capability of the ART in managing

multiple versions of a software system from a common code-base. The

Notepad example discussed is for illustration purposes, but the technique can

be applied to any large software system that is a member of the product line. A

Notepad is a typical text editor with drop-menus, a toolbar, and an editing

panel. Our objective is to use the ART to develop a generic solution so that:

• It can cater to any changes arising during software maintenance and

evolution, such as the addition of more menus, menu items, toolbar

buttons, or functionality.

• It can be used in developing other similar systems (i.e., members of the

Notepad product line).

Custom requirements of different customers/users may lead to multiple

versions of the Notepad which differ in features such as the title of the

Notepad, color, and appearance. In addition, variation in platforms or

hardware may lead to multiple versions of the Notepad. The ART provides a

general solution (as shown in Figure 6.4) that can be easily customized as per

the version requirements. It consists of a template hierarchy, in which upper-

level templates adapt the lower-level templates. The topmost template, SPC,

contains the specifications for various versions of the Notepad system. It

instructs the ART Processor on how to customize the remaining templates to

generate the code for a specific version of the Notepad system. Figure 6.5

shows expansion of some of the ART templates highlighted in the solution.

126

notePad

menuBar toolBar statusBar

ART Processor

ART solution for Notepad system

editor

Keys
SPC : The Specification file

: adapt

SPC

newFile saveFile cutopenFile exit pastecopy about

fileLoader

-+-----+--------

-------++-------

-----+--------+-

-+-------+------
Multiple versions of notepad

Figure 6.4. ART-template solution for the Notepad example

As shown in Figure 6.5, SPC defines the requirements for a custom notepad

using different #set commands (lines 1–15). Customized title and background

color for the notepad are defined in lines 4 and 5 respectively. Multi-value

variables in lines 8–15 define customized menubar and its corresponding items

for the required notepad. These customizations are then used by other lower-

level templates in the hierarchy. These lower-level templates can be adapted

using a #adapt command (line 16).

ART template notePad.art contains native code common to all the versions of

Notepad as well as ART commands that mark the variation points among these

versions. Each component of the Notepad (i.e., toolbar, editor, menubar, or

statusbar) is designed as a separate template that can be reused and maintained

as per requirements. These templates are adapted into notePad.art using #adapt

commands (lines 12–18 in notePad.art).

The given solution further expands the templates for menubar items. Each

item in the menubar has a name, an icon, and an associated action. The code

for creating one menu-item is very similar to the code for creating other menu-

items (except with a few parametric differences and possibly a little

127

addition/deletion of methods). Therefore, menuBar.art contains a generic

solution for creating all kinds of menu-items. A specific menu-item can be

generated using menuBar.art by adapting corresponding templates (line 30 in

menuBart.art). For example, ART template newFile.art can be adapted for

generating a menu-item for creating a new empty file.

1 #set TITLE = "Notepad"
2 #set BGCOLOR = "gray"
3 …
4 class ?@NOTEPAD? extends JPanel {
5 …
6 public static void main(String[] args) {
7 try {
8 JFrame frame = new JFrame();
9 frame.setTitle(\"?@TITLE?\");
10 frame.setBackground(Color.?@BGCOLOR?);
11 …
12 #adapt "editor.art"
13 #adapt "menuBar.art"
14 #adapt: "toolBar.art"
15 #insert TOOLBAR_ACTIONS
16 #endinsert
17 #endadapt
18 #adapt "statusBar.art"

notePad.art
1 % ART variable declarations
2 …
3 // Create a Java menubar
4 protected JMenuBar createMenubar() {
5 …
6 #while Menubar
7 m = new JMenu(\"?@Menubar?\");
8 #while "Items"?@Menubar?
9 #select "Items"?@Menubar?
10 #option "-“
11 m.addSeparator();
12 #endoption
13 #otherwise
14 mi = new JMenuItem(\"?@Items@Menubar?\");
15 mi.addActionListener(new java.awt.event.ActionListener() {
16 public void actionPerformed(ActionEvent e)

{?@Action@Items@Menubar?();
17 …
18 #endotherwise
19 #endselect
20 #endwhile
21 #endwhile
22 …
23 #break: MENUBAR_ACTIONS
24 #while Menubar
25 #while "Items"?@Menubar?
26 #select "Items"?@Menubar?
27 #option "-“
28 #endoption
29 #otherwise
30 #adapt ?@Action@Items@Menubar?".art"
31 #endotherwise
32 #endselect
33 #endwhile
34 #endwhile
35 #endbreak

menuBar.art

% code for ART
template newFile.art

newFile.art

% code for ART
template openFile.art

openFile.art

% code for ART
template saveFile.art

saveFile.art

% code for ART
template exit.art

exit.art

% code for ART
template about.art

about.art

1 % Set title, color etc for the customized notepad
2 #output "Notepad.java”
3 #set NOTEPAD = "Notepad"
4 #set TITLE = "A Notepad"
5 #set BGCOLOR = "lightGray
6 …
7 % set menubar and corresponding items
8 #set Menubar = "File","Edit","Help"
9 #set ItemsFile = "New","Open","Save","-","Exit"
10 #set ItemsEdit = "Cut","Copy","Paste"
11 #set ItemsHelp = "About“
12 #set ActionNew = "NewFile"
13 #set ActionOpen = "OpenFile"
14 …
15 #set ActionPaste = "Paste"
16 #adapt “notePad.art”

% code for ART
template toolBar.art

toolBar.art

SPC

Figure 6.5. Code snippet for ART-template solution for the Notepad example

128

6.1.3. Linux Kernel Example

Linux kernel example illustrates the ART’s ability to manage big clones, while

a range of other techniques (e.g., cpp and Kconfig in Linux project) deal with

other aspects of the overall variability management problem. Such seamless

integration is necessary to allow developers to painlessly inject ART templates

into projects in mature stages of evolution when big clones start emerging.

ART syntax is user-defined to make such injection easy, without affecting

already existing software solutions and people who work with them. In Linux

kernel example, the ART can be viewed as an extension of cpp—ART

commands syntactically resemble cpp directives and can be incrementally

learned as extensions that enhance reuse capabilities of cpp. Figure 6.6 shows

how the ART can be used in integration with cpp in the Linux kernel.

Configure
Linux

cpp

Linux Developer

Linux SysAdminLinux kernel
for a target
computer

Kconfig

Original Linux
kernel in cpp

Linux kernel in
cpp wrapped with

ART templates

Create ART
templates of

the kernel

ART
Processor

Find big clones
Clone

Detector

Evolve Linux

Figure 6.6. Working of the ART in integration with cpp for Linux kernel

As shown in Figure 6.6, there are two main user roles: the Linux Developer

and the Linux SysAdmin. A Linux Developer is a member of the open-source

community who contributes enhancements to the Linux kernel such as

including new devices. The Linux SysAdmin adapts the kernel for her

129

computer using tools such as Kconfig. The Linux Developer can build ART

templates on top of the Linux code managed by cpp. The ART templates do

not affect the work of the Linux SysAdmin. Big clones are identified in the

Linux kernel by a suitable clone detector. The Linux Developer then creates

ART templates, and from that point onwards, big clones are maintained via the

ART-template representation of the kernel.

ART templates can be converted back to the original Linux code using the

ART Processor. The ART Processor instantiates the ART templates in the same

way the C Preprocessor expands cpp directives. For example, for a template

representing a group of similar files, the ART Processor generates code for

these files based on specifications of deltas—differences between the template

and each of these files. The generated Linux code is in the original form, and

can be processed normally by Kconfig, cpp or the make tool. Figure 6.6 shows

how the template view of the Linux kernel and the original Linux kernel can

be used together in two independent cycles of maintaining and using the

kernel.

Cloning in the Linux kernel has been extensively studied in the literature [150-

152]. Our objective is not to have systematic clone analysis in the Linux

kernel. Instead, we focused our effort on finding representative examples of

various types of large-granular repetitions in the Linux kernel to illustrate the

usage of our technique. We analyzed some parts of the /fs and /driver

subsystems to find representative examples. The JBD file system, cloned files

having code for drivers for different brands of touchscreen devices, etc.

highlighted in Section 5.3 in Chapter 5 are few of such examples. We have

already illustrated the ART-template solution for JBD file system in Section

130

5.3.4.2. We created ART-template solutions for other examples also. However,

the construction follows the same mechanism as illustrated by various

examples explained in the thesis. The original Linux code consists of 19,627

LOC (including C code, cpp directives, and comments), which are reduced to

12,453 LOC (including C code, cpp directives, comments, and ART

commands) in the ART-template solution.

It is to mention that ART templates are not created for quick gains during

development, but for long-term gains during software evolution and reuse.

ART aims to benefit long-lived systems that undergo extensive evolutionary

changes, or need to be tailored to the needs of multiple customers.

6.1.4. Quantitative Evaluation

For quantitative assessment, we compared the number of conceptual elements

in the original source code, XVCL templates, and in the ART templates. We

consider the following conceptual elements:

• For the original source code: LOC (native code, comments, without

blanks), number of source files and directories, and McCabe’s

cyclomatic complexity.

• For XVCL and ART templates: LOC (native code, XVCL/ART

commands, comments, without blanks), number of XVCL/ART

templates, and any source files that are defined outside of templates,

and McCabe’s cyclomatic complexity.

Table 7 shows the quantitative analysis results.

131

Table 7. Quantitative analysis

The predecessor of the ART, i.e., the XVCL, has already been applied in many

case studies including industrial projects [21, 22, 118, 129, 138, 140, 153,

155]. In these industrial projects, productivity impact of applying the XVCL

was measured and evaluated. There are sufficient evidences from these

projects that the overhead incurred by the application of the XVCL is smaller

than benefits incurred by the XVCL. We have built the ART that further

improves the capability of the XVCL, thus to be more impactful (the ART’s

improvement to the XVCL are highlighted in ‘Related Works’ Section 6.2.2).

Further, apart from reducing the physical size and conceptual complexity,

template views of the program emphasize important relationships among

program elements that matter to programmers trying to understand and modify

the code. Instead of dealing with each directory or file separately,

programmers can comprehend them in groups, and see the commonalities and

differences among members of each group. This is helpful in debugging and

enhancing the code, as it reduces ripple effects and the risk of update

anomalies. In this way, if one wants to change a file, it is easy to check

whether the changes also affect the other files. For example, as illustrated in

Figure 6.2 and Figure 6.3, similarities and differences are explicitly visible

among the Java Buffer classes. Such relations are generally hidden in

 Java Buffer Library
Example

Notepad
Example

Linux Code
Sample

Conceptual
Element

Original
Code

XVCL
solution

ART
solution

XVCL
solution

ART
solution

Original
Code

 ART
solution

LOC 16299 4149 3771 674 450 19,627 12,453
No. of Source Files 74 N/A 3 N/A 0 28 0
No. of XVCL/ART
Templates

N/A 54 54 15 15 N/A 20

No. of Directories 1 8 8 1 1 7 6
McCabe V(G) 1114 329 289 12 12 1725 1156

132

conventional programs. Making them visible and easily tractable improves

program maintenance. It also makes the impact of changes easy to

comprehend.

6.1.5. Qualitative Evaluation

This subsection qualitatively accesses the strengths, weaknesses, and trade-

offs involved in the application of the ART.

6.1.5.1. Aid in Program Understanding and Maintenance

Non-redundancy: ART templates eliminate duplicated code from the software

systems. For example, in the detected clone classes, we eliminated 30–70% of

the duplicated code. As both code and comments are important components

for software maintenance and program understanding, the advantage of using

the ART is that it is possible to manage both the cloned code and the

comments with it. The ART allows a clean separation of various sources of

changes that affect the program during evolution. ART templates reduce the

number of points at which affected changes must be made. Changes made to

one template consistently propagate to all contexts in which that template is

adapted. Even if the changes are not uniform, adaptations can be made at

specific variation points using ART commands without directly modifying the

code fragments. The ART-template hierarchy explicitly reflects the impact of

changes on the program structure. We can easily trace how different features

affect the code.

Enhancing program understanding and conceptual integrity: According to

Brooks [156], program understanding and conceptual integrity are the most

important considerations in system design. Big clones often embody domain-

133

specific abstractions or design concepts. By formally capturing these

abstractions and concepts, ART templates aid in program understanding and

enhance the conceptual integrity of the design.

Creating templates can be considered as refactoring at the meta-level: In

some cases, developers seek to improve certain program qualities but due to

some unavoidable reasons cannot achieve this at the code level. In such cases,

we can achieve this at the level of ART templates instead. We benefit from

non-redundancy at the level of ART templates, while still keeping repetitions

in programs (as it is often desirable or unavoidable [18, 140]).

Formally representing multiple design views: Program modules often belong

to many logical groups that matter to developers at different times. Each

logical partitioning reflects a certain aspect of the program design that matters

at a given time in the development in a given context. For example, for a given

business function in business software, the modules for user interface,

business logic, and database are usually implemented in different system

partitions. Logically, these modules belong to each other, and sometimes we

must know which modules implement a given business function completely.

However, only one logical partitioning can be formally represented in a

program’s physical structure. The ART provides a means to overlay programs

with a web of meta-structures formally defining these logical partitions linked

to the code, and without conflicts with the code.

6.1.5.2. Reusing Templates within a Version of the Software

In a large system such as the Linux kernel, there are many subsystems and

modules in which similarities are found. Similar directories, files, or methods

134

may also be found across subsystems or modules. Each similarity group is

managed by ART templates, as shown in the previous chapter. Therefore, non-

redundant program views of similarities consist of many template hierarchies,

one for each similarity group that is found to be worth exposing using the

ART. As shown in Figure 6.7, the ART allows reusing of lower-level templates

among the templates representing different clone classes that further simplify

the overall non-redundant representation of the Linux kernel. Knowing the

repetitions, their locations, and the exact nature of similarities and differences

among replicated program structures is generally useful in understanding

program design.

% SPC for touchscreen drivers
…
…
#adapt "touchscreen/common.art"

touchscreen/start.spc

ART template for disconnect and
connect method common to both
touchscreen AND joystick drivers

commonConnectDisconnect.art

ART template for serio driver
structure common to both

touchscreen AND joystick drivers

serioDriverStructure.art

Templates for touchscreen drivers only Templates for joystick drivers only

% Template common for all touchscreen drivers only
...
#adapt "commonConnectDisconnect.art"
…
#adapt "serioDriverStructure.art"
…

touchscreen/common.art
<adapts>

% SPC for joystick drivers
…
…
#adapt "joystick/common.art"

joystick/start.spc

% Template common for all joystick drivers only
...
#adapt "commonConnectDisconnect.art"
…
#adapt "serioDriverStructure.art"
…

joystick/common.art
<adapts>

Reused templates among joystick and touchscreen drivers

Code Snippet illustrating reuse of ART template (CommonConnectDisconnect.art and
serioDriverStructure.art) by both touchscreen and joystick drivers

<adapts>

Figure 6.7. Template reuse: reusing ART templates

The example in Figure 6.7 shows how ART templates reveal implicit

couplings among bigger structures that contain repetitions. The same

functionality defined in the templates commonConnectDisconnect.art and

serioDriverStructure.art is needed in /touchscreen/common.art and

135

/joystick/common.art. Templates for these two directories explicitly show the

fact that this functionality is needed in both /touchscreen and /joystick drivers.

If such implicit dependency among program modules is not documented, it

may be overlooked during program evolution that may lead to errors.

6.1.5.3. Reusing Templates across Versions of the Software

Template reuse interconnects ART-template solutions developed for different

clone classes from the bottom, as shown in Figure 6.7. It is also useful to

interconnect partial ART-template solutions from the top, by introducing

higher-level umbrella templates that trigger ART processing of some or all

templates in the solutions. Umbrella templates help developers manage

multiple versions of the software from a common base. Using umbrella

templates, as shown in Figure 6.8, we represented the commonalities between

two versions, together with the version-specific code in different templates.

% The file which adapts
kernel as per requirements
…
#adapt "kernel_3_9.spc"
#adapt "kernel_3_10.spc"
#adapt "kernel_3_11.spc"
…

%Template specific to kernel 3.10

#adapt "fs.spc"
#adapt …
#adapt "drivers.spc"

#adapt "jbdX.spc"
#adapt …
adapt ...

#adapt "touchscreen.spc"
#adapt …
#adapt "joystick.spc"

start.spc

kernel_3_10.spc

drivers.spcfs.spc

%Template specific to kernel 3.11

#adapt "fs.spc"
#adapt …
#adapt "drivers.spc"

kernel_3_11.spc

ART templates specific to particular Linux
versions

ART templates
for the code

common to all
versions of the

Linux kernel

ART templates
for the code
specific to

Linux kernel-
3.9 only

ART templates
for the code
specific to

Linux kernel-
3.10 only

ART templates
for the code
specific to

Linux kernel-
3.11 only

ART templates
for the code
common to

some versions of
the Linux kernel

ART templates shared among two or
more versions of the Linux kernel

Figure 6.8. Umbrella templates for an overall ART-template solution

136

6.1.5.4. Handling Evolutionary Changes

Evolution often brings forward changes to the requirements and related code.

In this case, ART templates help in easy but disciplined evolution of the

software. In an ART-template solution, certain types of changes (e.g., in case

of Notepad system—addition of a new menu-item in the Notepad which has

code similar to the other menu-items except some parametric variations) can

be easily accommodated by modifying the values of a few particular ART

variables (e.g., by assigning one or more additional values to the respective

ART variables). For drastic changes such as the additions of new methods

(e.g., a method to print the content of the Notepad), the proposed solution

merely requires adapting a few ART templates at various variation points

using ART commands.

Similarly, for example, in the Linux kernel, there might be a need to add a new

directory /jbd3, or add more files to the JBD directories. The ART has

provisions to accommodate evolutionary changes to the templates (e.g., adding

jbd3), without affecting existing code derived from the templates (e.g., jbd and

jbd2). Assuming that the new directory /jbd3 also contains six files that are

similar to their counterparts in the /jbd and /jbd2, we need to make the

following changes to the templates shown in Figure 5.18:

jbdX.spc:
 #set dirName = "jbd", "jbd2", "jbd3"
 #set fileName = "checkpoint",…, "recovery"
 …
 #while dirName , action,…, tagByte
 #while filename
 #output ?@dirName?"/"?@fileName?".c"

 #adapt ?@fileName?".spc"
…

137

checkpoint.spc:
 #adapt: "checkpoint.art"
 #select dirName
 #option jbd3
 …

checkpoint.art:
 // Customizations to checkpoint.art specific to jbd3

// Customizations to the other ART templates considering jbd3

In case of new variation points between the template and the file in /jbd3, we

place new #break commands in the template. These new #break commands

will cater to the differences specific to /jbd3, injected by #insert commands in

“#option jbd3” without affecting the /jbd or /jbd2.

6.1.6. Trade-offs and Threats to Validity of Results

The main returns on investment of applying the ART are increased reuse

opportunities, reduced program understanding and maintenance efforts, and

non-redundant source code. However, applying a new technique is not free; it

entails cost and involves trade-offs. The flexibility of manipulating the code in

an unrestricted way comes at the price of not being able to quarantine the

correctness of the generated code. Unrestrictive program manipulation

decreases the type-safety of the program. In addition, there is a trade-off

between the benefits and cost of learning the new technique. ART syntax is

very simple and consists of only few constructs (such as #adapt, #while, or

#insert-break mechanism). Yet building quality ART templates requires skilled

experts, and as such the benefits of the ART are offset by the burden of

learning and adopting it.

The benefits of the ART depend on the degree of redundancy in a software

system that cannot be fixed by simple refactoring. The bigger the size of

138

software systems, the higher the likelihood of redundancies and evolutionary

changes, and hence the greater the benefits of using the ART. It follows that

families of similar systems should be prime candidates for ART-template

views, as there is much similarity among components of such systems. Thus,

the proposed technique seems to have more direct relevance in the SPL

context, where we have the role of domain engineer who is responsible for

building reuse-based productivity solutions that serve many systems in long

run. ART templates belong to that category of solutions.

6.2. Related Works

This section discusses various available works similar to the proposed work.

The discussion has been grouped into various subsections.

6.2.1. Managing Redundancies in Software Systems

Simple-minded development often leads to cloning in various forms (the copy-

paste-modify practice). As mentioned earlier, cloning may also be done for

good reasons [17]. Still, non-redundancy has always been considered an

important quality of well-designed software. The Software Engineering

principle of generality encourages the avoidance of repetitions and the

building of parameterized software solutions that can be reused in many

contexts. Macros were an early attempt to make programs adaptable to various

contexts. Goguen popularized the ideas of parameterized programming [157].

Among programming language features, type parameterization [158] (called

generics in Ada, Eiffel, Java and C#, and templates in C++), higher-order

functions, and inheritance can help avoid repetitions in certain situations.

Design techniques such as iterators, design patterns, table-driven design (e.g.,

139

in compiler-compilers), and modularization with information hiding are

supportive in building generic programs. The Standard Template Library

(STL) is a prime example of engineering benefits gained by generality [144].

Techniques have also been proposed to lift sufficient code similarity from the

code to the architectural level [159, 160].

Compared to other approaches that strive for generality, the ART uses

templates and code generation to achieve non-redundancy. ART templates can

represent any groups of clones (e.g., files, directories, or patterns of

collaborating components) with arbitrary differences among them (as opposed

to only type-parametric differences in C++ templates or Java generics). From

the ART-template solution of a clone class, the ART Processor generates code

for all the clone instances based on the specifications of deltas, i.e., the

differences between the template and each of the clone instances in a clone

class.

6.2.2. ART versus XVCL

The XVCL has been effectively used to achieve non-redundancy in the

program areas where it matters. It includes many case studies including

industrial projects [21, 22, 118, 129, 138, 140, 153, 155]. The ART improves

and enhances the concepts of the XVCL, implementing them in a way that lets

developers easily blend ART’s management capabilities with other

programming technologies of their choice. The user can define her own syntax

to avoid conflicts with native languages, and to make it easy to use the ART

with other management techniques. Despite user-defined syntax, the ART

140

further improves the user experience by providing the following

improvements to the XVCL:

• Easy to learn: The XVCL is a dialect of XML and uses XML trees and

a parser for processing. It is a prerequisite to know the XML syntax

and rules for understanding and writing XVCL source. The ART parts

with XML syntax and processing. It offers a cpp-based flexible and

more readable user-defined syntax. This makes learning the ART easy.

Figure 6.9 shows a code fragment in XVCL syntax and ART syntax.

Figure 6.9. A code fragment in XVCL (left) vs ART (right) syntax

• More generalized: Unlike the XVCL, developers can easily blend the

ART with the programming technologies of their choice. This is

because the developers can define their own syntax (i.e., can redefine

default ART syntax as per her requirements), and hence avoid conflicts

with the base languages.

• Expanding the customization options under #adapt command: In the

XVCL, the only command that you can place under the <adapt> is

<insert>. The ART allows the use of any command under #adapt.

Using #set, #while, and #select commands under #adapt is particularly

very useful. For example, Figure 6.10 shows ART template

141

ByteBufferAs[T]BufferR[BL].spc for one of the similarity groups of

the Java Buffer library. As shown in the figure, lines 9–16 define

#select under #adapt command (line 8).

1 #set java_nio_packageName = "java.nio"
2 #set elmtType = "Char","Double","Float","Int","Long","Short"
3 #set elmttype = "char","double","float","int","long","short"
4 #set elmtSize = 1,3,2,2,3,1
5 #set ByteOrder = "B","L“
6 #while elmtType, elmttype, elmtSize
7 #while ByteOrder
8 #adapt: "BufferExample/ByteBufferAs[T]BufferR[BL]/ByteBufferAs[T]BufferR[BL].art"
9 #select elmtType
10 #option Char
11 #insert-after moreMethods
12 #adapt "BufferExample/ByteBufferAs[T]BufferR[BL]/ByteBufferAsCharBufferR_methods.art"
13 #endinsert
14 #endoption
15 …
16 #endselect
17 #endadapt
18 #endwhile
19 #endwhile

ByteBufferAs[T]BufferR[BL].spc

Figure 6.10. Using commands other than #insert under #adapt

• Robust structure instead of unreadable loops: In the XVCL, while

loops using many multi-value variables can be quite confusing. The

ART introduces a structure called set-loop (#setloop command) which

gives the possibility to store and use more multi-value variables

together as one loop descriptor data structure. Section 5.2.2 provides

complete detail of the #setloop command with illustrative examples.

• More flexible: The ART is more flexible than the XVCL, as it allows

the adaptation of a file even though the file might not contain any ART

commands. Such adaptation would simply copy the adapted file to the

output stream. For example, three buffer classes (i.e., Buffer.java,

MappedByteBuffer.java, and StringCharBuffer.java) can be easily

adapted without any modification in the complete ART-template

solution of the Java Buffer library. This is not possible with the XVCL.

One needs to convert them into XVCL files before adapting in the

142

XVCL solution. It incurs additional overhead to the XVCL when

compared with the ART.

6.2.3. ART versus Preprocessors

One can also achieve non-redundancy by parameterizing and wrapping the

code with preprocessors, shell scripts, and make files. An example of this can

be found in the JDK Buffer library described in [140]. SUN developers used

cpp, scripts, and make files to build a non-redundant representation from

which actual Buffer classes are derived. A quick inspection of the code reveals

that such representation may serve only its authors and cannot be considered a

viable method to engineer programs.

Preprocessors (such as M4 [161], cpp [148]) are also one of the oldest

mechanisms to achieve variability in software [162, 163]. They work on the

principle of code expansion. A preprocessor allows macros in the code to be

replaced by the text defined by the corresponding macros. This text may

contain program code or may contain invocations to other macros. Further,

preprocessor directives (such as #ifdef, #else, #endif in cpp; ifdef, ifelse in

M4) allow marking variation points in the software. It enables preprocessors to

include or exclude specific code segments in software [162, 163]. But, it is

found that programs instrumented with preprocessor directives become

difficult to understand, test, maintain, and reuse [164]. It may be error-prone

and may not scale well [165]. Since preprocessors handle variant features at

the implementation level only, it may cause problems when trying to tackle

more complex change situations with preprocessors [164]. This observation is

drawn from Nokia projects in which preprocessing and file-level configuration

143

management were used to manage variability. Similar problems with

preprocessing were also reported in a research project FAME-DBMS [166,

167]. Still, preprocessors stay popular and seem indispensable for many tasks

where programming languages features do not suffice [168].

Like preprocessors, the ART also works on the principle of code expansion.

Some of the ART commands have close counterparts too. For example, closest

alternatives to ART command #adapt are #include directive in cpp and include

(or sinclude) in M4. However, unlike #include and include/sinclude directives,

#adapt command allows the same template to be customized differently in

different scenarios in which it is reused (by specifying customizations under

extended #adapt command as shown in Section 5.2.2). Similarly, #set

command in the ART corresponds to setting variables during preprocessing

(using #define directive in cpp; define in M4). However, ART variables allow

the variable’s values to be propagated along the adapted templates. Similar to

#select command in the ART, #ifdef directive allows conditional compilation.

But compared to the ART, conditional compilation does not allow variable

references and expressions. It makes preprocessors less flexible. Further, as

compared to preprocessors, as explained in Section 5.2.2, the ART supports

breakpoints (insert-break mechanism). Breakpoints serve as anchors where

additional code can be injected. It makes the ART capable to handle

unexpected variations. Constructing ART templates at the first glance may

look complex. However, the fact is that the ART is governed by only five

important constructs (i.e., #adapt, #output, insert-break mechanism, loops, and

selection) that are neatly integrated to form a method that can be learned

easily. Experience with the ART predecessor, the XVCL, demonstrates that

144

large code can be effectively managed, achieving non-redundancy in the

program areas where it matters. For example, the XVCL was used to represent

a family of web portals [21] achieving improvement of all major

maintainability metrics such as the physical size, the number managed files,

and the effort to perform enhancements. Therefore, large code can be

effectively managed using the ART.

6.2.4. Variability Management in SPL

Companies today often develop and maintain custom versions of the same

software system for different customers using SPL [9]. The core idea is to

manage the system family as a whole from a base of core assets designed for

ease of adaptation in various reuse contexts.

Motivated by the problems of managing variability purely at the code level,

SPL approach emphasizes architectural design and design level configuring of

software. Despite benefits of architecture- and component-based approaches

for reuse, problems of configuring code cannot be avoided. Mappings between

SPL features and specific variation points in code affected by SPL features

remain complex. Problems magnify in the presence of feature dependencies,

when the presence or absence of one feature affects the way other features are

implemented [21, 164, 166, 169-171]. The impact of feature variability and

dependencies that cannot be contained at the level of architecture must be

handled in code, often manifesting as overly complex conditions under #if, or

many nesting levels under #ifdef cpp directives. Such code becomes difficult

to understand, test, maintain, and reuse. It is difficult to see which code

belongs to which option, and to understand or change program in general.

145

It is common to use a range of variability techniques to aid in configuring

architectures and code, such as preprocessing, software configuration

management tools, parameter configuration files or wizards, parameterization,

build tools, and sometimes design patterns. These common variability

techniques are easily available and each one is easy to use, however they were

not designed to work together or handle problems of the scale. Therefore, an

overall solution to variability management cannot be smoothly integrated and

automated, and may require extensive manual, error-prone interventions

during reuse-based development [169, 171]. In view of those problems,

effective strategies for automated and reliable variability management in SPL

remains one of the main challenges for SPL practice and a central theme of

SPL research [9, 172].

In the SPL context, the ART attempts to capture and streamline the end-to-end

process of adapting software from the specifications of variant features to the

architectural structures and the code. ART templates can manipulate any

textual file independent of their contents. Therefore, the ART can also manage

variability in documentation and test cases, keeping all textual SPL core assets

in sync with evolving code.

Techniques proposed in research to manage variability in SPL are mostly

based on the principle of separation of concerns, introduced by Dijkstra in the

early 1980s [173]. The goal of separation of concerns is to deal with concerns

one by one, independently from other concerns. When applied at the level of

design and implementation, separation of concerns attempts to compose

software from components implementing different concerns. Concerns that fit

nicely into conventional modules are easy to deal with. The challenge is to

146

tackle cross-cutting concerns that are tightly coupled with the rest of a

program, and cannot be easily modularized in a conventional way. There have

been attempts to bring separation of concerns down to the design and

implementation levels. Aspect-oriented programming (AOP) [121], multi-

dimensional separation of concerns (MDSOC) from IBM [174], feature-

oriented programming (FOP) [175], and colored IDE (CIDE) [166] are among

the most widely published such techniques.

In AOP [121], various computational aspects are programmed separately and

weaved at specified join points into the base program. AOP can separate a

range of programming aspects, such as persistence, synchronization, or

authentication/authorization. Separated aspects can be easily modified, added,

or deleted to/from the program modules. Because of this, a number of authors

have proposed AOP as a variability technique in SPL. A study to test this

hypothesis revealed difficulties in using AspectJ to deal with features that have

a chaotic impact on the base code [170]. While AOP deals with big chunks of

functionalities (i.e., aspects) reasonably, it lacks a mechanism to handle

variations at the lower-levels of granularity. The ART, on the other hand, can

handle variations at any level of the granularity. Also, there is a fixed set of

joinpoints defined in AOP. Compared to this, breakpoints in the ART can be

defined anywhere in the program whenever needed. Using breakpoints, we can

explicitly mark the variation points where specific code to a variant can be

easily inserted. However, there is also a disadvantage of the ART as compared

to AOP. The ART requires additional cost in creating templates for the code

before adaptation. Whereas in case of AOP, there is no need to modify the

existing program before weaving begins.

147

MDSOC [174] permits separations of overlapping concerns along multiple

dimensions of compositions and decompositions. MDSOC introduces

hyperslices that encapsulate specific concerns, and can be composed in

various configurations to form custom programs. Unlike the ART, hyperslices

are written in the underlying programming language, and can be composed by

merging or overriding program units by name, and in many other ways. Unlike

MDSOC, the ART is independent of the underlying programming language. It

does not rely on any type of the abstract specifications that are associated with

the programming language of the native code. Actually, the ART offers

uniform mechanism to handle variability. It means that it can be used to handle

variability in a variety of interrelated SPL assets such as architecture, code

components, domain models, documentations, test cases, etc.

FOP [175] is based on the principle of feature modularization and composition

into a base program. Feature modularization helps in understanding and

maintaining the feature code. Feature composition extends the base program

with the required features. FOP provides a powerful solution for feature

management in many situations, but may not be geared for features that have

complex mappings to the code [166]. Therefore, Kästner et al. [166] relaxed

the requirement for feature modularization, and revisited the idea of keeping

feature-related code together with the base code. They proposed a tool CIDE,

that provides a visual means for understanding and manipulating the features.

CIDE represents a base program as an abstract syntax tree, which makes it

language-dependent. Compared with these techniques, the ART is strictly

language-independent. The ART’s adaptations are defined in an operational

148

way, and take place at designated variation points marked with the ART

commands only.

Further, compared to all these techniques, the ART may facilitate generation of

multiple custom program structures from their template representation (using

#while command). However, there is no counterpart to this in these techniques

that are based on the principle of separation of concerns only. Further, ART

expressions and #select command allow concerns to be parameterized. It helps

in enhancing the users’ abilities to define variations in the code at any level of

granularity, from a code fragments to class, to file, to subsystems, or to any

component of higher granularity.

As mentioned in Section 6.2.3, preprocessors can also be used to separate code

for variant features [162]. The ART adds a non-redundancy layer on top of

separation of concerns achieved by preprocessors, without changing the way

preprocessors are configured in native code. Non-redundant ART-template

views of programs lessen variability management, as one variation point in an

ART template represents ‘n’ variations points in instances of that template,

where ‘n’ is the number of instances of the template in a program. The

capability to deal with redundancies is what distinguishes the ART from the

techniques proposed by others.

6.3. Conclusions

In this chapter, we quantitatively and qualitatively evaluated the effectiveness,

usefulness, and benefits of managing code clones using the ART. We

highlighted the applications of the ART on three case studies: the Java buffer

library, Notepad system, and a part of the Linux kernel. We also presented

149

discussions of and comparisons of the proposed work with existing related

works.

The benefits of managing clones using the ART include increased reuse

opportunities, reduced program understanding and maintenance efforts,

simplification of product line core assets due to non-redundancy, and easier

comprehension and traceability of change impact during evolution. ART

templates help the developers in implementing maintenance changes in a more

reliable way. It is to mention that ART templates are not created for quick

gains during development, but for long-term gains during software evolution

and reuse. ART aims to benefit long-lived systems that undergo extensive

evolutionary changes, or need to be tailored to the needs of multiple

customers.

151

Chapter 7.
CONCLUSIONS AND FUTURE WORK

In the thesis, we formalized the concept of collaborative patterns and work out

for efficient and scalable algorithms for detecting collaborative patterns in

software systems. We demonstrated usefulness of collaborative clone detection

in software reuse, re-engineering, and maintenance. This chapter concludes the

thesis. While thesis is summarized in Section 7.1, Section 7.2 outlines future

research directions.

7.1. Summary

We surveyed state-of-the-art works done in the area of clone detection. We

reviewed existing clone taxonomies, detection approaches, and evaluation

techniques. Appendix A provides a comprehensive literature survey on

relevant prior work. This survey gave us rudimentary details of state-of-the-art

works available in the area of software clone detection.

Based on the literature reviewed, we found that existing clone detection

techniques mainly focus on detecting similar code fragments, files, or

directories. But many design-level similarity patterns appear as the recurring

152

configurations of collaborating components such as methods, functions,

classes, or any physical or logical groups of program entities. We call such

types of recurring configurations as the collaborative patterns. Collaborative

patterns often represent program structures exhibiting specific behavior

meaningful to developers who need to understand programs, reengineer legacy

code for reuse, or to refactor or simply maintain programs. Unfortunately,

unless manually documented, collaborative patterns remain implicit in code.

We formalized the notion of collaborative patterns in Chapter 2. The term

collaborative pattern is defined precisely in terms of a directed graph. In the

directed graph, nodes are program entities and edges are calling relationships

among the program entities. We further showed possible classification of

collaborative patterns. Collaborative patterns are higher-level clones of large

granularity that can be identified by systematically combining small-granular

cloned program entities at various levels. Based on this, we presented our

approach for detecting collaborative patterns in Chapter 3. The proposed

approach first finds method clones and calling-relationship information from

the subject program, and then uses this information for detecting collaborative

patterns. We implemented the proposed approach into a tool called COPAD

(Collaborative Patterns Detector). We also evaluated the proposed approach

via experimentation in Chapter 4.

Finally, we proposed a methodology to manage high-level clones of large

granularity (collaborative patterns as well as other large-granular code clones)

by presenting a meta-programming technique and tool, the ART (Adaptive

Reuse Technique). The ART is an enhanced, lightweight and XML-free

version of the XVCL. It manages families of redundant software systems by

153

providing a common base of non-redundant, adaptable, and reusable meta-

components called ART templates. We presented the ART and detailed

methodology of using the ART in Chapter 5. We evaluated quantitatively and

qualitatively the strengths, weakness, and trade-offs involved in the

application of the ART in Chapter 6.

The main novelty of the research lies in the formulation of the concept of

collaborative patterns, in the development of the technique for detecting

collaborative patterns, and in the development of the technique for managing

such patterns in software systems.

7.2. Future Research Directions

The current approach for detecting collaborative pattern uses only calling

relationship information among the corresponding program entities.

Approaches for collaborative pattern detection based on temporal relations

among program entities can be devised as the part of future work as extensions

to the current approach.

Visualization is one of the important techniques for similarity analysis. In our

list of future works, we plan to develop a rudimentary graphical user interface

for visualization and analysis of collaborative patterns.

The proposed approach for detecting collaborative patterns is based on the

similarity of program text among the program entities involved in the pattern.

In the future research, we will perform investigations for the detection of

collaborative patterns in which the program entities are functionally similar.

155

BIBLIOGRAPHY

[1] I. Sommerville, Software Engineering, 7th ed.: Pearson Addison

Wesley, 2004.

[2] C. K. Roy, and J. R. Cordy, A survey on software clone detection

research, Technical Report 541, Queen’s University at Kingston, 2007.

[3] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: a

systematic review,” Information and Software Technology, vol. 55, no.

7, pp. 1165-1199, 2013.

[4] H. A. Basit, U. Ali, S. Haque, and S. Jarzabek, “Things structural

clones tell that simple clones don't,” in 28th IEEE International

Conference on Software Maintenance (ICSM), 2012, pp. 275-284.

[5] H. A. Basit, and S. Jarzabek, “A data mining approach for detecting

higher-level clones in software,” IEEE Trans. Softw. Eng., vol. 35, no.

4, pp. 497-514, 2009.

[6] C. Domann, E. Juergens, and J. Streit, “The curse of copy&paste -

Cloning in requirements specifications,” in 3rd International

Symposium on Empirical Software Engineering and Measurement

(ESEM), 2009, pp. 443-446.

[7] Y. Jia, and M. Harman, “Clone detection using dependence analysis

and lexical analysis,” Department of Computer Science, King's College

London, pp. 5-8, 2007.

[8] R. Koschke, “Survey of research on software clones,” in Dagstuhl

Seminar 06301: Duplication, Redundancy, and Similarity in Software,

2007.

[9] P. Clements, and L. Northrop, Software product lines: practices and

patterns: Addition-Wesley, 2002.

156

[10] M. Bharavi, and K. K. Shukla, "Data mining techniques for software

quality prediction," Software Design and Development: Concepts,

Methodologies, Tools, and Applications, A. Information Resources

Management, ed., pp. 401-428, Hershey, PA, USA: IGI Global, 2014.

[11] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams, Y. Zou, and A. E.

Hassan, “An empirical study on inconsistent changes to code clones at

the release level,” Science of Computer Programming, vol. 77, no. 6,

pp. 760-776, 2012.

[12] L. Zhenmin, S. Lu, S. Myagmar, and Z. Yuanyuan, “CP-Miner: finding

copy-paste and related bugs in large-scale software code,” IEEE Trans.

Softw. Eng., vol. 32, no. 3, pp. 176-192, 2006.

[13] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical

study of operating systems errors,” in 18th ACM symposium on

Operating Systems Principles, Alberta, Canada, 2001, pp. 73-88.

[14] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code

clones matter?,” in 31st International Conference on Software

Engineering (ICSE), 2009, pp. 485-495.

[15] A. Lozano, and M. Wermelinger, “Assessing the effect of clones on

changeability,” in IEEE International Conference on Software

Maintenance (ICSM), 2008, pp. 227-236.

[16] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that smell?,” in

7th IEEE Working Conference on Mining Software Repositories

(MSR), 2010, pp. 72-81.

[17] C. Kapser, and M. W. Godfrey, “"Cloning considered harmful"

considered harmful,” in 13th Working Conference on Reverse

Engineering (WCRE), 2006, pp. 19-28.

[18] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study

of code clone genealogies,” in 10th European Software Engineering

Conference held jointly with 13th International Symposium on

Foundations of Software Engineering (ESEC-FSE), 2005, pp. 187-196.

[19] L. Yun, X. Zhenchang, P. Xin, L. Yang, S. Jun, Z. Wenyun, and D.

Jinsong, “Clonepedia: summarizing code clones by common syntactic

context for software maintenance,” in IEEE International Conference

on Software Maintenance and Evolution (ICSME), 2014, pp. 341-350.

157

[20] D. C. Rajapakse, and S. Jarzabek, “Using server pages to unify clones

in web applications: A trade-off analysis,” in 29th International

Conference on Software Engineering (ICSE), 2007, pp. 116-126.

[21] U. Pettersson, and S. Jarzabek, “Industrial experience with building a

web portal product line using a lightweight, reactive approach,” in 10th

European Software Engineering Conference held jointly with 13th

International Symposium on Foundations of Software Engineering

(ESEC/FSE), Lisbon, Portugal, 2005, pp. 326-335.

[22] H. A. Basit, D. C. Rajapakse, and S. Jarzabek, “Beyond templates: a

study of clones in the STL and some general implications,” in 27th

International Conference on Software Engineering (ICSE), 2005, pp.

451-459.

[23] J. H. Johnson, “Identifying redundancy in source code using

fingerprints,” in Conference of the Centre for Advanced Studies on

Collaborative Research: Software Engineering, 1993, pp. 171-183.

[24] J. H. Johnson, “Substring matching for clone detection and change

tracking,” in International Conference on Software Maintenance

(ICSM), 1994, pp. 120-126.

[25] B. S. Baker, “A program for identifying duplicated code,” Computing

Science and Statistics, vol. 24, pp. 49-57, 1992.

[26] E. Buss, R. D. Mori, W. M. Gentleman, J. Henshaw, H. Johnson, K.

Kontogiannis, E. Merlo, H. Muller, J. Mylopoulos, S. Paul, A. Prakash,

M. Stanley, S. R. Tilley, J. Troster, and K. Wong, “Investigating reverse

engineering technologies for the CAS program understanding project,”

IBM Syst. J., vol. 33, no. 3, pp. 477-500, 1994.

[27] B. S. Baker, “On finding duplication and near-duplication in large

software systems,” in Working Conference on Reverse Engineering

(WCRE), 1995, pp. 86-95.

[28] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract

syntax suffix trees,” in 13th Working Conference on Reverse

Engineering (WCRE), 2006, pp. 253-262.

[29] H. A. Basit, S. J. Puglisi, W. F. Smyth, A. Turpin, and S. Jarzabek,

“Efficient token based clone detection with flexible tokenization,” in

6th European Software Engineering Sonference and ACM SIGSOFT

158

symposium on the Foundations of Software Engineering (ESEC/FSE),

2007, pp. 513-516.

[30] N. Göde, and R. Koschke, “Incremental clone detection,” in 13th

European Conference on Software Maintenance and Reengineering

(CSMR), 2009, pp. 219-228.

[31] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based

code clone detection: incremental, distributed, scalable,” in

International Conference on Software Maintenance (ICSM), 2010, pp.

1-9.

[32] A. Santone, “Clone detection through process algebras and Java

bytecode,” in 5th International Workshop on Software Clones (IWSC),

2011, pp. 73-74.

[33] A. Cuomo, A. Santone, and U. Villano, “A novel approach based on

formal methods for clone detection,” in 6th International Workshop on

Software Clones (IWSC), 2012, pp. 8-14.

[34] R. Koschke, “Large-scale inter-system clone detection using suffix

trees,” in 16th European Conference on Software Maintenance and

Reengineering (CSMR), 2012, pp. 309-318.

[35] T. Lavoie, and E. Merlo, “An accurate estimation of the Levenshtein

distance using metric trees and Manhattan distance,” in 6th

International Workshop on Software Clones (IWSC), 2012, pp. 1-7.

[36] H. Sajnani, J. Ossher, and C. Lopes, “Parallel code clone detection

using MapReduce,” in 20th International Conference on Program

Comprehension (ICPC), 2012, pp. 261-262.

[37] W. Toomey, “Ctcompare: code clone detection using hashed token

sequences,” in 6th International Workshop on Software Clones

(IWSC), 2012, pp. 92-93.

[38] R. Koschke, “Large-scale inter-system clone detection using suffix

trees and hashing,” Journal of Software: Evolution and Process, vol.

26, no. 8, pp. 747-769, 2013.

[39] H. Sajnani, and C. Lopes, “A parallel and efficient approach to large

scale clone detection,” in 7th International Workshop on Software

Clones (IWSC), 2013, pp. 46-52.

159

[40] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley, “The

development of a software clone detector,” International Journal of

Applied Software Technology, vol. 1, no. 3/4, pp. 219-236, 1995.

[41] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier, “Clone

detection using abstract syntax trees,” in International Conference on

Software Maintenance (ICSM), 1998, pp. 368-377.

[42] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic

token-based code clone detection system for large scale source code,”

IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654-670, 2002.

[43] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: a tool for finding

copy-paste and related bugs in operating system code,” in 6th

Conference on Symposium on Opearting Systems Design &

Implementation (OSDI), 2004, pp. 289-302.

[44] S. Lee, and I. Jeong, “SDD: high performance code clone detection

system for large scale source code,” in 20th ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages,

and Applications (OOPSLA), 2005, pp. 140-141.

[45] W. S. Evans, C. W. Fraser, and M. Fei, “Clone detection via structural

abstraction,” in 14th Working Conference on Reverse Engineering

(WCRE), 2007, pp. 150-159.

[46] J. Lingxiao, G. Misherghi, S. Zhendong, and S. Glondu, “DECKARD:

scalable and accurate tree-based detection of code clones,” in 29th

International Conference on Software Engineering (ICSE), 2007, pp.

96-105.

[47] P. Bulychev, and M. Minea, “Duplicate code detection using anti-

unification,” in Spring/Summer Young Researchers’ Colloquium on

Software Engineering, Russia, 2008, pp. 51-54.

[48] S. Livieri, and K. Inoue, “YACCA: code clone detection on multi-core

processors,” in Workshop on Accountability and Traceability in Global

Software Engineering, 2008, pp. 19.

[49] C. K. Roy, and J. R. Cordy, “NICAD: accurate detection of near-miss

intentional clones using flexible pretty-printing and code

normalization,” in 16th International Conference on Program

Comprehension (ICPC), 2008, pp. 172-181.

160

[50] W. Evans, C. Fraser, and F. Ma, “Clone detection via structural

abstraction,” Software Quality Journal, vol. 17, no. 4, pp. 309-330,

2009.

[51] Y. Jia, D. Binkley, M. Harman, J. Krinke, and M. Matsushita, “KClone:

a proposed approach to fast precise code clone detection,” in 3rd

International Workshop on Detection of Software Clones (IWSC),

2009.

[52] C. K. Roy, “Detection and analysis of near-miss software clones,” in

International Conference on Software Maintenance (ICSM), 2009, pp.

447-450.

[53] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello, “A tree

kernel based approach for clone detection,” in International

Conference on Software Maintenance (ICSM), 2010, pp. 1-5.

[54] M. Funaro, D. Braga, A. Campi, and C. Ghezzi, “A hybrid approach

(syntactic and textual) to clone detection,” in 4th International

Workshop on Software Clones (IWSC), 2010, pp. 79-80.

[55] C. K. Roy, and J. R. Cordy, “Near-miss function clones in open source

software: an empirical study,” J. Softw. Maint. Evol., vol. 22, no. 3, pp.

165-189, 2010.

[56] J. R. Cordy, and C. K. Roy, “The NiCad clone detector,” in 19th

International Conference on Program Comprehension (ICPC), 2011,

pp. 219-220.

[57] Y. Dang, S. Ge, R. Huang, and D. Zhang, “Code clone detection

experience at microsoft,” in 5th International Workshop on Software

Clones (IWSC), 2011, pp. 63-64.

[58] Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto, “Incremental code

clone detection: a PDG-based approach,” in 18th Working Conference

on Reverse Engineering (WCRE), 2011, pp. 3-12.

[59] Y. Higo, and S. Kusumoto, “Code clone detection on specialized PDGs

with heuristics,” in 15th European Conference on Software

Maintenance and Reengineering (CSMR), 2011, pp. 75-84.

[60] Y. Yang, and G. Yao, “CMCD: count matrix based code clone

detection,” in 18th Asia Pacific Software Engineering Conference

(APSEC), 2011, pp. 250-257.

161

[61] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie, “XIAO: tuning

code clones at hands of engineers in practice,” in 28th Annual

Computer Security Applications Conference, Orlando, Florida, 2012,

pp. 369-378.

[62] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Folding

repeated instructions for improving token-based code clone detection,”

in 12th IEEE International Working Conference on Source Code

Analysis and Manipulation (SCAM), 2012, pp. 64-73.

[63] Y. Yang, and G. Yao, “Boreas: an accurate and scalable token-based

approach to code clone detection,” in 27th International Conference on

Automated Software Engineering (ASE), 2012, pp. 286-289.

[64] M. F. Zibran, and C. K. Roy, “IDE-based real-time focused search for

near-miss clones,” in 27th Annual ACM Symposium on Applied

Computing, Trento, Italy, 2012, pp. 1235-1242.

[65] B. Muddu, A. Asadullah, and V. Bhat, “CPDP: a robust technique for

plagiarism detection in source code,” in 7th International Workshop on

Software Clones (IWSC), 2013, pp. 39-45.

[66] M. S. Uddin, C. K. Roy, and K. A. Schneider, “SimCad: an extensible

and faster clone detection tool for large scale software systems,” in

21st International Conference on Program Comprehension (ICPC),

2013, pp. 236-238.

[67] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Gapped

code clone detection with lightweight source code analysis,” in 21st

International Conference on Program Comprehension (ICPC), 2013,

pp. 93-102.

[68] W. Qu, Y. Jia, and M. Jiang, “Pattern mining of cloned codes in

software systems,” Information Sciences, vol. 259, pp. 544-554, 2014.

[69] R. Komondoor, and S. Horwitz, "Using slicing to identify duplication

in source code," Static Analysis, pp. 40-56: Springer Berlin Heidelberg,

2001.

[70] J. Krinke, “Identifying similar code with program dependence graphs,”

in 8th Working Conference on Reverse Engineering (WCRE), 2001,

pp. 301-309.

162

[71] M. Gabel, J. Lingxiao, and S. Zhendong, “Scalable detection of

semantic clones,” in 30th International Conference on Software

Engineering (ICSE), 2008, pp. 321-330.

[72] L. Jiang, and Z. Su, “Automatic mining of functionally equivalent code

fragments via random testing,” in 18th International Symposium on

Software Testing and Analysis (ISSTA), 2009, pp. 81-92.

[73] H. Kim, Y. Jung, S. Kim, and K. Yi, “MeCC: memory comparison-

based clone detector,” in 33rd International Conference on Software

Engineering (ICSE), Waikiki, HI, USA, 2011, pp. 301-310.

[74] P. Schugerl, “Scalable clone detection using description logic,” in 5th

International Workshop on Software Clones (IWSC), 2011, pp. 47-53.

[75] S. Yoshioka, N. Yoshida, K. Fushida, and H. Iida, “Scalable detection

of semantic clones based on two-stage clustering,” in IEEE

International Symposium on Software Reliability Engineering

(ISSRE), 2011, pp. 3-4.

[76] R. Elva, and G. Leavens, “Jsctracker: a semantic clone detection tool

for Java code,” University of Central Florida, Department of EECS,

University of Central Florida, vol. 4000, 2012.

[77] R. Elva, and G. T. Leavens, “Semantic clone detection using method

IOE-behavior,” in 6th International Workshop on Software Clones

(IWSC), 2012, pp. 80-81.

[78] J. Li, and M. D. Ernst, “CBCD: cloned buggy code detector,” in

International Conference on Software Engineering (ICSE), Zurich,

Switzerland, 2012, pp. 310-320.

[79] C. Dandois, and W. Vanhoof, "Semantic code clones in logic

programs," Logic-Based Program Synthesis and Transformation,

Lecture Notes in Computer Science, E. Albert, ed., pp. 35-50: Springer

Berlin Heidelberg, 2013.

[80] T. Kamiya, “Agec: an execution-semantic clone detection tool,” in 21st

International Conference on Program Comprehension (ICPC), 2013,

pp. 227-229.

[81] H. A. Basit, and S. Jarzabek, “Detecting higher-level similarity patterns

in programs,” in 10th European Software Engineering Conference held

163

jointly with 13th International Symposium on Foundations of Software

Engineering (ESEC-FSE), Lisbon, Portugal, 2005, pp. 156-165.

[82] Q. Wenyi, P. Xin, X. Zhenchang, S. Jarzabek, and Z. Wenyun, “Mining

logical clones in software: Revealing high-level business and

programming rules,” in 29th IEEE International Conference on

Software Maintenance (ICSM), 2013, pp. 40-49.

[83] R. K. Keller, R. Schauer, S. Robitaille, and P. Page, “Pattern-based

reverse-engineering of design components,” in International

Conference on Software Engineering (ICSE), 1999, pp. 226-235.

[84] J. M. Smith, and D. Stotts, “SPQR: flexible automated design pattern

extraction from source code,” in 18th International Conference on

Automated Software Engineering (ASE), 2003, pp. 215-224.

[85] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe, “Automatic design

pattern detection,” in 11th International Workshop on Program

Comprehension (ICPC), 2003, pp. 94-103.

[86] N. Tsantalis, A. Chatzigeorgiou, S. T. Halkidis, and G. Stephanides, “A

novel approach to automated design pattern detection,” in 10th

Panhellenic Conference on Informatics, 2005, pp. 238-248.

[87] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis,

“Design pattern detection using similarity scoring,” IEEE Trans. Softw.

Eng., vol. 32, no. 11, pp. 896-909, 2006.

[88] S. Romano, G. Scanniello, M. Risi, and C. Gravino, “Clustering and

lexical information support for the recovery of design pattern in source

code,” in 27th IEEE International Conference on Software

Maintenance (ICSM), 2011, pp. 500-503.

[89] A. D. Lucia, V. Deufemia, C. Gravino, and M. Risi, “Design pattern

recovery through visual language parsing and source code analysis,”

Journal of Systems and Software, vol. 82, no. 7, pp. 1177-1193, 2009.

[90] A. Binun, and G. Kniesel, “DPJF - design pattern detection with high

accuracy,” in 16th European Conference on Software Maintenance and

Reengineering (CSMR), 2012, pp. 245-254.

[91] S. Paydar, and M. Kahani, “A semantic web based approach for design

pattern detection from source code,” in 2nd International eConference

on Computer and Knowledge Engineering, 2012, pp. 289-294.

164

[92] U. Tekin, U. Erdemir, and F. Buzluca, “Mining object-oriented design

models for detecting identical design structures,” in 6th International

Workshop on Software Clones (IWSC), 2012, pp. 43-49.

[93] Y. Dongjin, Z. Yanyan, G. Jianlin, and W. Wei, “From sub-patterns to

patterns: an approach to the detection of structural design pattern

instances by subgraph mining and merging,” in 37th Annual Computer

Software and Applications Conference (COMPSAC), 2013, pp. 579-

588.

[94] D. Yu, G. Jianlin, and W. Wei, “Detection of design pattern instances

based on graph isomorphism,” in IEEE International Conference on

Software Engineering and Service Science, 2013, pp. 874-877.

[95] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: mining and

recommending API usage patterns,” in 23rd European Conference on

Object-Oriented Programming, Italy, 2009, pp. 318-343.

[96] G. Uddin, B. Dagenais, and M. P. Robillard, “Analyzing temporal API

usage patterns,” in 26th International Conference on Automated

Software Engineering (ASE), 2011, pp. 456-459.

[97] E. Kodhai, and S. Kanmani, “Method-level code clone detection

through LWH (Light Weight Hybrid) approach,” Journal of Software

Engineering Research and Development, vol. 2, no. 1, pp. 1-29, 2014.

[98] K. Salwa, and Abd-El-Hafiz, “A metrics-based data mining approach

for software clone detection,” in 36th Annual Computer Software and

Applications Conference (COMPSAC), 2012, pp. 35-41.

[99] A. Marcus, and J. I. Maletic, “Identification of high-level concept

clones in source code,” in 16th International Conference on Automated

Software Engineering (ASE), 2001, pp. 107-114.

[100] C. J. Kapser, and M. W. Godfrey, “Supporting the analysis of clones in

software systems: Research Articles,” J. Softw. Maint. Evol., vol. 18,

no. 2, pp. 61-82, 2006.

[101] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,

“Comparison and evaluation of clone detection tools,” IEEE Trans.

Softw. Eng., vol. 33, no. 9, pp. 577-591, 2007.

[102] R. Koschke, “Frontiers of software clone management,” in Frontiers of

Software Maintenance (FoSM), 2008, pp. 119-128.

165

[103] K. Kumar, and S. Jarzabek, “Detecting design similarity patterns using

program execution traces,” in 2014 ACM SIGPLAN conference on

Systems, Programming, and Applications: Software for Humanity

(SPLASH), Portland, Oregon, USA, 2014, pp. 55-56.

[104] K. Kumar, “Detecting collaborative patterns in programs,” in 30th

IEEE International Conference on Software Maintenance and

Evolution (ICSME), Victoria, BC, Canada, 2014, pp. 664-664.

[105] K. Kumar, S. Jarzabek, and D. Daniel, “ART: a meta-programming

language for configuring variants in software,” in 12th Asian

Symposium on Programming Languages and Systems (APLAS),

Singapore, 2014.

[106] K. Kumar, S. Jarzabek, and D. Daniel, “ART for enhancing software

maintainability and reusability by managing big clones,” Submitted for

journal publication, 30pp., 2015.

[107] S. Jarzabek, and K. Kumar, “Weak separation of tightly coupled

concerns with generic program representations,” in PTI 17th KKIO

Software Engineering Conference, Miedzyzdroje, Poland, 2015, pp.

119-136.

[108] S. Jarzabek, and K. Kumar, “On Engineering Benefits of Integrating

Separation of Concerns and Genericity Principles within a Unified

Program Representation Framework,” Submitted for publication,

21pp., 2015.

[109] D. Lo, and S. C. Khoo, “SMArTIC: towards building an accurate,

robust and scalable specification miner,” in 14th International

Symposium on Foundations of Software Engineering (FSE), Portland,

Oregon, USA, 2006, pp. 265-275.

[110] C. K. Roy, and J. R. Cordy, “An empirical study of function clones in

open source software,” in 15th Working Conference on Reverse

Engineering (WCRE), 2008, pp. 81-90.

[111] J. Mayrand, C. Leblanc, and E. M. Merlo, “Experiment on the

automatic detection of function clones in a software system using

metrics,” in International Conference on Software Maintenance

(ICSM), 1996, pp. 244-253.

166

[112] A. Walenstein, A. Lakhotia, and R. Koschke, “The second international

workshop on detection of software clones: Workshop report,”

SIGSOFT Softw. Eng. Notes, vol. 29, no. 2, pp. 1-5, 2004.

[113] H. A. Basit, and S. Jarzabek, “A case for structural clones,” in

International Workshop on Software Clones (IWSC), 2009.

[114] H. A. Basit, U. Ali, and S. Jarzabek, “Viewing simple clones from

structural clones' perspective,” in 5th International Workshop on

Software Clones (IWSC), Waikiki, Honolulu, HI, USA, 2011, pp. 1-6.

[115] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:

elements of reusable object-oriented software: Addison-Wesley

Longman Publishing Co., Inc., 1995.

[116] G. Antoniol, R. Fiutem, and L. Cristoforetti, “Design pattern recovery

in object-oriented software,” in 6th International Workshop on

Program Comprehension, 1998, pp. 153-160.

[117] A. Alnusair, T. Zhao, and G. Yan, “Rule-based detection of design

patterns in program code,” International Journal on Software Tools for

Technology Transfer, vol. 16, no. 3, pp. 315-334, 2014/06/01, 2014.

[118] "XVCL," 25-Jan-2014; http://xvcl.comp.nus.edu.sg/cms/.

[119] K. Reinloo. "Who is calling this method?," 11-June-2014;

https://plumbr.eu/blog/who-is-calling-this-method.

[120] K. Ali, and O. Lhoták, “Application-only call graph construction,” in

26th European Conference on Object-Oriented Programming, Beijing,

China, 2012, pp. 688-712.

[121] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.

Loingtier, and J. Irwin, “Aspect-oriented programming,” in European

Conference on Object-Oriented Programming, 1997, pp. 220-242.

[122] "WALA: IBM T.J. Watson libraries for analysis," 04-Feb-

2015; http://wala.sourceforge.net/.

[123] J. Kärkkäinen, and P. Sanders, “Simple linear work suffix array

construction,” in 30th International Conference on Automata,

Languages and Programming, 2003, pp. 943-955.

[124] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, "Linear-time

longest-common-prefix computation in suffix arrays and its

http://xvcl.comp.nus.edu.sg/cms/�
http://wala.sourceforge.net/�

167

applications," Combinatorial Pattern Matching, pp. 181-192: Springer

Berlin Heidelberg, 2001.

[125] "CloneDR," 10-Jan-

2014; http://www.semdesigns.com/Products/CloneDR/.

[126] "AspectJ," 06-Jan-2014; http://eclipse.org/aspectj/.

[127] Z. Yali, H. A. Basit, S. Jarzabek, A. Dang, and M. Low, “Query-based

filtering and graphical view generation for clone analysis,” in

International Conference on Software Maintenance (ICSM), 2008, pp.

376-385.

[128] "JHotDraw," 19-Feb-2015; http://www.jhotdraw.org/.

[129] S. Jarzabek, Effective software maintenance and evolution: A reuse-

based approach: Auerbach Publications, 2007.

[130] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M.

Nagura, and H. Iida, “SHINOBI: A tool for automatic code clone

detection in the IDE,” in 16th Working Conference on Reverse

Engineering (WCRE), 2009, pp. 313-314.

[131] M. Rieger, “Effective clone detection without language barriers,” PhD

Thesis at the University of Bern, 2005.

[132] V. Bauer, and B. Hauptmann, “Assessing cross-project clones for reuse

optimization,” in 7th International Workshop on Software Clones

(IWSC), 2013, pp. 60-61.

[133] M. Fowler, Refactoring: improving the design of existing code:

Addison-Wesley Professional, 1999.

[134] F. Arcelli Fontana, M. Zanoni, A. Ranchetti, and D. Ranchetti,

“Software clone detection and refactoring,” ISRN Software

Engineering, vol. 2013, pp. 1-8, 2013.

[135] N. Tsantalis, and G. P. Krishnan, “Refactoring clones: A new

perspective,” in 7th International Workshop on Software Clones

(IWSC), 2013, pp. 12-13.

[136] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano, “Extracting code

clones for refactoring using combinations of clone metrics,” in 5th

International Workshop on Software Clones (IWSC), USA, 2011, pp.

7-13.

http://www.semdesigns.com/Products/CloneDR/�
http://eclipse.org/aspectj/�
http://www.jhotdraw.org/�

168

[137] G. P. Krishnan, and N. Tsantalis, “Unification and refactoring of

clones,” in IEEE Conference on Software Maintenance, Reengineering

and Reverse Engineering (CSMR-WCRE), 2014, pp. 104-113.

[138] S. Jarzabek, and S. Li, “Unifying clones with a generative

programming technique: a case study,” J. of Software Maintenance and

Evolution: Research and Practice, vol. 18, no. 4, pp. 267-292, 2006.

[139] S. Schulze, S. Apel, and C. Kästner, “Code clones in feature-oriented

software product lines,” in 9th International Conference on Generative

Programming and Component Engineering, 2010, pp. 103-112.

[140] S. Jarzabek, and L. Shubiao, “Eliminating redundancies with a

"composition with adaptation" meta-programming technique,” in 9th

European Software Engineering Conference held jointly with 11th

ACM SIGSOFT International Symposium on Foundations of Software

Engineering (ESEC-FSE), 2003, pp. 237-246.

[141] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K.

Czarnecki, “An exploratory study of cloning in industrial software

product lines,” in 17th European Conference on Software Maintenance

and Reengineering (CSMR), 2013, pp. 25-34.

[142] S. Giesecke, "Generic modelling of code clones," Duplication,

Redundancy, and Similarity in Software, Dagstuhl Seminar

Proceedings R. Koschke, E. Merlo and A. Walenstein, eds., pp. 1-23,

Germany, 2007.

[143] C. K. Roy, M. F. Zibran, and R. Koschke, “The vision of software

clone management: Past, present, and future (Keynote paper),” in IEEE

Conference on Software Maintenance, Reengineering and Reverse

Engineering (CSMR-WCRE), 2014, pp. 18-33.

[144] D. R. Musser, G. J. Derge, and A. Saini, STL tutorial and reference

guide: C++ programming with the standard template library:

Addison-Wesley Professional, 2009.

[145] H. A. Basit, D. C. Rajapakse, and S. Jarzabek, “An empirical study on

limits of clone unification using generics,” in 17th International

Conference on Software Engineering and Knowledge Engineering

(SEKE), 2005, pp. 109-114.

169

[146] K. Kontogiannis, "Managing known clones: issues and open

questions," Duplication, Redundancy, and Similarity in Software,

Dagstuhl Seminar Proceedings, 2007.

[147] N. Göde, Clone evolution: Logos Verlag Berlin GmbH, 2011.

[148] R. M. Stallman, and Z. Weinberg, “The C preprocessor,” Free Software

Foundation, 1987.

[149] "ANTLR," 22-Jan-2014; http://www.antlr.org/.

[150] A. Kadav, and M. M. Swift, “Understanding modern device drivers,”

in International Conference on Architectural Support for Programming

Languages and Operating Systems, UK, 2012, pp. 87-98.

[151] C. Kapser, and M. W. Godfrey, “Toward a taxonomy of clones in

source code: A case study,” in Conference on Evolution of Large Scale

Industrial Software Architectures (ELISA’03), 2003, pp. 67-78.

[152] G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. Di Penta,

“Identifying clones in the Linux kernel,” in International Workshop on

Source Code Analysis and Manipulation (SCAM), 2001, pp. 90-97.

[153] S. M. Swe, H. Zhang, and S. Jarzabek, “XVCL: a tutorial,” in 14th

International Conference on Software Engineering and Knowledge

Engineering (SEKE), 2002, pp. 341-349.

[154] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,

Feature-oriented domain analysis (FODA) feasibility study, DTIC

Document, 1990.

[155] S. Jarzabek, U. Pettersson, and H. Zhang, “University-industry

collaboration journey towards product lines,” in 12th International

Conference on Software Reuse (ICSR), Pohang, South Korea, 2011,

pp. 223-237.

[156] F. P. Brooks, Jr., “No silver bullet essence and accidents of software

engineering,” Computer, vol. 20, no. 4, pp. 10-19, 1987.

[157] J. A. Goguen, “Parameterized programming,” IEEE Trans. Softw. Eng.,

vol. SE-10, no. 5, pp. 528-543, 1984.

[158] R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek, and J. Willcock, “A

comparative study of language support for generic programming,” in

18th Annual Conference on Object-oriented Programing, Systems,

Languages, and Applications (OOPSLA), USA, 2003, pp. 115-134.

http://www.antlr.org/�

170

[159] T. Mende, R. Koschke, and F. Beckwermert, “An evaluation of code

similarity identification for the grow-and-prune model,” J. Softw.

Maint. Evol., vol. 21, no. 2, pp. 143-169, 2009.

[160] P. Frenzel, R. Koschke, A. P. J. Breu, and K. Angstmann, “Extending

the reflexion method for consolidating software variants into product

lines,” in 14th Working Conference on Reverse Engineering (WCRE),

2007, pp. 160-169.

[161] "M4 " 15-May-2015; http://www.gnu.org/software/m4/m4.html.

[162] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An

analysis of the variability in forty preprocessor-based software product

lines,” in 32nd ACM/IEEE International Conference on Software

Engineering (ICSE), Cape Town, South Africa, 2010, pp. 105-114.

[163] C. Kästner, P. G. Giarrusso, and K. Ostermann, “Partial preprocessing

C code for variability analysis,” in 5th Workshop on Variability

Modeling of Software-Intensive Systems, Belgium, 2011, pp. 127-136.

[164] A. Karhinen, A. Ran, and T. Tallgren, “Configuring designs for reuse,”

in 19th International Conference on Software Engineering (ICSE),

1997, pp. 701-710.

[165] H. Spencer, “ifdef Considered Harmful, or Portability Experience with

C News,” in Summer'92 USENIX Conference, 1992.

[166] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software

product lines,” in 30th International Conference on Software

Engineering (ICSE), Leipzig, Germany, 2008, pp. 311-320.

[167] M. Rosenmüller, N. Siegmund, H. Schirmeier, J. Sincero, S. Apel, T.

Leich, O. Spinczyk, and G. Saake, “FAME-DBMS: tailor-made data

management solutions for embedded systems,” in EDBT workshop on

Software Engineering for Tailor-made Data Management, Nantes,

France, 2008, pp. 1-6.

[168] M. D. Ernst, G. J. Badros, and D. Notkin, “An empirical analysis of C

preprocessor use,” IEEE Trans. Softw. Eng., vol. 28, no. 12, pp. 1146-

1170, 2002.

[169] P. Ye, X. Peng, Y. Xue, and S. Jarzabek, “A case study of variation

mechanism in an industrial product line,” in 11th International

Conference on Software Reuse (ICSR), 2009, pp. 126-136.

http://www.gnu.org/software/m4/m4.html�

171

[170] C. Kästner, S. Apel, and D. Batory, “A case study implementing

features using AspectJ,” in 11th International Software Product Line

Conference (SPLC), 2007, pp. 223-232.

[171] S. Deelstra, M. Sinnema, and J. Bosch, "Experiences in software

product families: Problems and issues during product derivation,"

Software Product Lines, Lecture Notes in Computer Science R. Nord,

ed., pp. 165-182: Springer Berlin Heidelberg, 2004.

[172] M. Svahnberg, J. v. Gurp, and J. Bosch, “A taxonomy of variability

realization techniques: Research Articles,” Softw. Pract. Exper., vol.

35, no. 8, pp. 705-754, 2005.

[173] E. W. Dijkstra, "On the role of scientific thought," Selected Writings on

Computing: A Personal Perspective, pp. 60-66: Springer, 1982.

[174] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton, “N degrees

of separation: multi-dimensional separation of concerns,” in

International Conference on Software Engineering (ICSE), 1999, pp.

107-119.

[175] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise

refinement,” in 25th International Conference on Software Engineering

(ICSE), Portland, Oregon, 2003, pp. 187-197.

[176] E. Juergens, “Research in cloning beyond code: a first roadmap,” in

International Workshop on Software Clones (IWSC), 2011, pp. 67-68.

[177] B. S. Baker, and R. Giancarlo, “Sparse dynamic programming for

longest common subsequence from fragments,” Journal of Algorithms,

vol. 42, no. 2, pp. 231-254, 2002.

[178] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees

with enhanced suffix arrays,” J. of Discrete Algorithms, vol. 2, no. 1,

pp. 53-86, 2004.

[179] E. Juergens, F. Deissenboeck, and B. Hummel, “CloneDetective - a

workbench for clone detection research,” in 31st International

Conference on Software Engineering (ICSE), 2009, pp. 603-606.

[180] X. Yan, J. Han, and R. Afshar, “CloSpan: mining closed sequential

patterns in large datasets,” in International Conference Data Mining

(SDM), 2003, pp. 166-177.

172

[181] T. F. Smith, and M. S. Waterman, “Identification of common molecular

subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195-

197, 1981.

[182] S. Horwitz, “Identifying the semantic and textual differences between

two versions of a program,” in ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), USA,

1990, pp. 234-245.

[183] "Simian," 12-Jan-2014; http://www.harukizaemon.com/simian/.

[184] H. Liu, Z. Ma, L. Zhang, and W. Shao, “Detecting duplications in

sequence diagrams based on suffix trees,” in Asia Pacific Software

Engineering Conference (APSEC), 2006, pp. 269-276.

[185] H. Störrle, “Towards clone detection in UML domain models,” in 4th

European Conference on Software Architecture, Copenhagen,

Denmark, 2010, pp. 285-293.

[186] E. P. Antony, M. H. Alalfi, and J. R. Cordy, “An approach to clone

detection in behavioural models,” in 20th Working Conference on

Reverse Engineering (WCRE), 2013, pp. 472-476.

[187] H. Störrle, “Towards clone detection in UML domain models,”

Software & Systems Modeling, vol. 12, no. 2, pp. 307-329, 2013.

[188] F. Deissenboeck, B. Hummel, E. Jurgens, B. Schatz, S. Wagner, J. F.

Girard, and S. Teuchert, “Clone detection in automotive model-based

development,” in 30th International Conference on Software

Engineering (ICSE), 2008, pp. 603-612.

[189] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N.

Nguyen, “Complete and accurate clone detection in graph-based

models,” in 31st International Conference on Software Engineering

(ICSE), 2009, pp. 276-286.

[190] B. Hummel, E. Juergens, and D. Steidl, “Index-based model clone

detection,” in 5th International Workshop on Software Clones (IWSC),

Waikiki, Honolulu, HI, USA, 2011, pp. 21-27.

[191] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson,

“Models are code too: near-miss clone detection for Simulink models,”

in 28th IEEE International Conference on Software Maintenance

(ICSM), 2012, pp. 295-304.

http://www.harukizaemon.com/simian/�

173

[192] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson,

“Near-miss model clone detection for Simulink models,” in 6th

International Workshop on Software Clones (IWSC), 2012, pp. 78-79.

[193] J. R. Cordy, “The TXL source transformation language,” Science of

Computer Programming, vol. 61, no. 3, pp. 190-210, 2006.

[194] F. Hermans, B. Sedee, M. Pinzger, and A. v. Deursen, “Data clone

detection and visualization in spreadsheets,” in International

Conference on Software Engineering (ICSE), USA, 2013, pp. 292-301.

[195] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz, S.

Wagner, C. Domann, and J. Streit, “Can clone detection support quality

assessments of requirements specifications?,” in 32nd International

Conference on Software Engineering (ICSE), 2010, pp. 79-88.

[196] M. Fisher, and G. Rothermel, “The EUSES spreadsheet corpus: a

shared resource for supporting experimentation with spreadsheet

dependability mechanisms,” SIGSOFT Softw. Eng. Notes, vol. 30, no.

4, pp. 1-5, 2005.

[197] S. Asaithambi, and S. Jarzabek, “Towards test case reuse: a study of

redundancies in android platform test libraries,” in International

Conference on Software Reuse (ICSR), 2013, pp. 49-64.

[198] I. Keivanloo, C. K. Roy, and J. Rilling, “SeByte: a semantic clone

detection tool for intermediate languages,” in 20th IEEE International

Conference on Program Comprehension (ICPC), 2012, pp. 247-249.

[199] I. Keivanloo, C. K. Roy, and J. Rilling, “Java bytecode clone detection

via relaxation on code fingerprint and Semantic Web reasoning,” in 6th

International Workshop on Software Clones (IWSC), 2012, pp. 36-42.

[200] A. De Lucia, G. Scanniello, and G. Tortora, “Identifying clones in

dynamic web sites using similarity thresholds,” in International

Conference on Enterprise Information Systems, 2004, pp. 391-396.

[201] M. Lebon, and V. Tzerpos, “Fine-grained design pattern detection,” in

36th IEEE Annual Computer Software and Applications Conference

(COMPSAC), 2012, pp. 267-272.

175

Appendix A.

LITERATURE REVIEW

Clone detection in software systems is an active area of research. Various tools

and techniques have been proposed in the literature for detecting cloned

program entities. Literature suggests that cloning may occur in source code or

even in other software artifacts such as test cases, use cases, or UML models

[176]. Based on the type of clones typically possible in software systems,

Figure A.1 shows taxonomy for software clones. In this appendix, we discuss

some of the reported works on software code clone detection in line with this

taxonomy. We begin with brief description of the clone types and existing

literatures. Thereafter, we compare the salient features of reviewed clone

detection approaches in tabular form.

This appendix is organized as follows: Sections A.1 and A.2 discuss existing

literature on software clone detection. Tables (Table 8–Table 11) at the end of

subsections provide tabular comparison of similar types of code clone

detection techniques. Through the literature, we found that cloning occur in

software artifacts other than code too; some cases are presented in Sections

A.3 and A.4. Section A.5 provides chronology of the clone detection

techniques.

176

Software Clones

Low-level Clones

Structural
Clones

Logical
Clones

Type IV
Semantic/

Re-ordered
Clones

Collaborative
Patterns

Type-III
Gapped/

Near-miss
Clones

Other patterns
like Design

Patterns, API
usage Patterns

Type-I
Exact
Clones

Type-II
Parameterized

/Renamed
Clones

High-level Clones

Code ClonesData Clones Model Clones
Cloned

Requirement
specifications

Cloned Test
Cases

Other Types
of Software

Clones

 Figure A.1. Taxonomy for software clones

A.1. Low-level Clone Detection

There are basically two kinds of similarity between code fragments: one is

syntactic similarity (having similar text) and another is semantic similarity

(similar functionality) [2]. In early 1995, Davey et al. [40] provided the first

ever clone topology based on the levels of these similarities. They divided the

cloned code fragment into four types with an increasing level of subtlety from

one type to other. The definitions and types of low-level clones described in

this section are based upon the intuitions derived directly from this topology.

Based upon the syntactic similarity, cloned fragment can be divided into three

types (Type I, Type II, and Type III). Semantic similarities are referred as type

IV clones. In the following subsections, we present the review of available

literature on clone detection based on these four types.

A.1.1. Type I (exact clones) Clone Detection

Type I clones refer to identical code fragments except with possible variations

at the levels of comments, layout, and whitespaces. Almost all the clone

detection techniques address type I clone. However, state-of-the-art work

177

dealing with detecting exact match is by Johnson [23, 24]. It detects exact

repetition of the text using Karp-Rabin Fingerprinting algorithm. He applied

different transformations (such as removal of white space characters, removal

of comments, or replacement of each identifier by an identifier marker) on the

source code to remove uninterested text from it. Resulted code is then divided

into substring such that each character of the code appears in at least one of

the substring. Thereafter, matching substrings are identified. The author also

addressed the concept of near-miss clones, but the problem is with the

transformations he used. The transformations used produce too much false

positives.

A.1.2. Type II (parameterized/named) Clone Detection

Type II clones refer to exactly similar code fragments except with possible

variations in user-defined identifiers, literals, layout, types, and comments.

Many state-of-the-art works deal with detection of type II clones. A tabular

comparison of selected type II clone detection techniques is presented at the

end of this subsection (Table 8). In some cases, ‘?’ symbol is used to represent

unsurety about the entry.

One of the leading works for type II clone detection in early 1990s was by

Baker [25]. He reported a tool named Dup that represents source code as a

sequence of lines and detects code clones on line-by-line basis. However, it

cannot detect code clones written in different coding styles, having different

variable names. During the same period, another metric-based approach for

detecting type II clones was proposed by Buss et al. [26]. They transformed

source code into tuples representing their complexity values. After that, they

178

used Euclidean distance to measure similarity between code fragments. In the

same year, Mayrand et al. [111] also worked for detecting duplicate or near

duplicate functions in a large software systems. They also used metric-based

technique to identify duplicated functions. They used 21 function metrics and

grouped them into four points of comparisons—name, layout, expressions, and

control flow. Then, they identified the cloning between functions by

comparing these metrics.

A clone detection technique using abstract syntax suffix trees was proposed by

Koschke et al. [28]. The proposed approach finds clones in linear time and

space. Initially, the program is parsed and an abstract syntax tree (AST) is

generated. The generated AST is then used to generate serialized AST.

Thereafter, suffix-tree based detection is used for detecting identical clone

fragments. The authors also addressed that their tool can detect type-III clones

using Baker’s technique [177].

A token-based efficient clone detection algorithm that significantly reduces the

memory usage was proposed by Basit et al. [29]. In the first step, the code is

transformed into a token-sequence. Then, suffix-array based data structure and

a straight forward variation of existing algorithm [178], which they called

NERF (Non Extendible Repeat Finder), is used to locate repeated substrings in

the token-sequence.

An incremental clone detector was proposed by Göde and Koschke [30] in

2009. It detects clones based on the results of the previous revision's analysis.

They transformed each of source files into token-sequences and stored them in

a token table. After that, a generalized suffix tree (GST) is created from the

token-sequences. Bakers’s algorithm pdup [25] is then used to find clones

179

from the generated GST. Unfortunately, GSTs require substantially more

memory than read-only suffix-trees. It is because GSTs need extra links for

traversing during the update operations. It makes the approach difficult to

scale for larger systems. An attempt to make scalable and incremental clone

detection tool was made by Hummel el al. [31]. They used token-based

representation of the source code which is further normalized and grouped into

statements. The authors adapted their own tool ConQAT [179], and ran it in a

pipeline fashion to make the proposed approach highly scalable and

incremental.

A formal-method based clone detection approach for Java was proposed by

Cuomo et al. [33]. Authors claimed it to be the first formal-method based

approach for detecting source code clones. They first compiled the source

code, and then analyzed the resulting Java bytecode for detecting code clones.

In the first step, authors transformed the complied Java code into Calculus of

Communicating Systems (CCS) specifications. Then, they used equivalence

relations to determine cloned code fragments. According to the authors, based

on the types of clones to be detected, different types of equivalence relations

can be considered. Here, the authors used weak equivalence in their

implementation. They used Concurrency Workbench of New Century (CWB-

NC), one of the most popular formal verification tools, to check the weak

equivalence.

Toomy [37] designed a tool named ctcompare which is able to detect code

clones in large software systems using hashed token-sequences. In the first

step, they lexically analyzed the source code to produce sequences of tokens.

Then, sequences of tokens are broken into overlapping tuples. These tuples are

180

further hashed. Hashed values are then used to identify type I and type II clone

pairs.

A parallel and efficient approach for clone detection was recently proposed by

Sajnani and Lopes [36, 39]. They proposed a technique that horizontally scales

clone detection across multiple machines using MapReduce framework.

Koschke [34, 38] worked for an inter-system clone detection technique. In the

proposed technique, once the code is tokenized, suffix tree is generated for

either the subject program or the corpus, whichever is smaller. Then, every file

of the corpus is compared with the suffix tree. The author used hashing to

reduce the number of file comparisons.

Table 8. Summary of selected Type II clone detection techniques

Tech-
nique

(Authors;
Tool;
Year)

Internal
Source
Code

Representa-
tion

Clone
Granu-
larity

Comparison
Granularity

Compari-
son

Technique

Evaluation/
Validation

Language
Paradigm

Scala-
bility

Baker [25,
27]; Dup;

1993,
1995

Strings of
symbols
over an

alphabet of
integers
(tokens)

Free Line
Suffix-tree

based
algorithm

X Window
System (0.7M
lines); SS from

production
system (1.1M

lines)

C, C++,
Java Yes

Buss et al.
[26]; 1994 Set of tuples Free

Fragments of
code

represented
by tuples

Metric-
based

technique

Information not
provided

Informatio
n not

provided

Informatio
n not

provided

Mayrand
et al.
[111];
1996

AST further
transformed
to their own
intermediate
representatio
n language

Fixed
(functio
n clone)

Functions
represented
by set of 21

metrics

Metric-
based

technique

Two
telecommunicati
on monitoring
systems (total

1M lines)

C, C++ Yes

Koschke
et al. [28];

2006

Serialized
abstract

syntax trees

Fixed
(?) Subtree

Suffix-tree
based

compariso
n

technique

Wget 1.5.3
(16K); Bison
1.32 (19K);
SNNS 4.2
(105K);

PostgreSQL 7.2
(235K)

C Yes

Basit et
al.[29];
2007

Tokens Free Sequence of
tokens

Suffix-
array

based LCP
match

On Linux Part
(3025K LOC)

C (later
extended
to C++,
Java)

Yes

181

Tech-
nique

(Authors;
Tool;
Year)

Internal
Source
Code

Representa-
tion

Clone
Granu-
larity

Comparison
Granularity

Compari-
son

Technique

Evaluation/
Validation

Language
Paradigm

Scala-
bility

Göde and
Koschke

[30]; 2009
Tokens Free (?) Subtree of

GST

Modified
version of
Baker’s

pdup [25]

Ant (125K);
Apache (145K);

ArgoUML
(130K);

gcc(1.2M); gimp
(.6M)

C, Java

Increment
al but not
scalable to

large
systems

Hummel
el al. [31];

2010
Tokens Free (?) Substring

Adapted
version of
ConQAT

[179]

Jabref 2.6
(115K); One
commercial

software (460K);
Linux Kernel

2.6.33.1 (11M)

Java,
ABAP, C

Very
highly

scalable

Cuomo et
al.[33];
2011,
2012

CCS
specification
s generated
from Java
bytecode

Fixed

Correspondin
g CCS

specification
of source

code

Weak
equivalenc
y verified

using
CWB-NC

Two small Java
projects (3K and

8K)
Java Low

Toomy
[37];

Ctcompar
e; 2012

Tokens Free Substring Hashing Unix data set
(13.2M) C Highly

scalable

Sajnani
and Lopes
[36, 39];

2012,
2013

Token key -
value pair

? Code block Hash-

based

700 open source
Java projects

(23M)
Java Yes

Koschke
[34, 38];

2012,
2013

Tokens ? Subtree

Hashed
suffix-tree

based
compariso

n

Ubuntu 10.04
source corpus;

Gnome;
IJaDataset

C, Java Highly
scalable

A.1.3. Type III (gapped/near-miss) Clone Detection

Type III clones are fragments of duplicated code modified further by addition,

deletion, and/or modification of statement(s). The literature available on Type

III clones is discussed below. Table 9 at the end of this subsection gives

summary of selected type III clone detection techniques.

An early attempt to detect type III clones was by Davey et al. [40]. They used

neural networks to find similar blocks of source code. In their first attempt,

they used self-organizing neural networks (a Self Organizing Map (SOM)) to

cluster feature vectors associated with the procedures. But, the limitations with

182

the approach were long training time and fixed number of clone classes that

were created. They updated their system with dynamic competitive learning

(DCL) networks to overcome the above limitations.

In 1998, Baxter et al. [41] proposed an AST-based clone detection technique.

In the first step, they parsed the source code to generate an AST. Then, they

used tree-based matching to detect exact and near miss clones from the

generated AST. They further extended their tool as CloneDR [125] which

supports many languages such as Ada, C#, PHP, Python, VB, Fortran, PLSQL,

and XML.

One of the pioneer tool for detecting type III clones is CCFinder [42]

developed by Kamiya et al. in 2002. CCFinder uses a token-based technique

that first converts the source code into a token-sequence. The authors further

defined their own set of language specific transformation rules. Based on these

transformation rules, the token-sequence is updated, i.e., some tokens are

added, removed, or changed. Then, suffix-tree based sub-string matching

algorithm is used to find clone pairs/clone classes on the transformed token-

sequence.

Another efficient clone detection tool, SDD (Similar Data Detection) was

devised by Lee and Jeong [44] in 2005. This tool uses indexes and inverted-

indexes of code fragments and their positions to detect code clones. An index

has information about position and the corresponding chunk. On the other

hand, an inverted-index includes chunks and the corresponding positions.

SDD uses an n-neighbor distance algorithm to detect similar fragments in the

source code.

183

CP-Miner [12, 43] is another state-of-the-art token-based tool for detecting

type III clones. It uses a frequent subsequence mining algorithm, CloSpan

(Closed Sequential Pattern Mining) [180] to identify similar sequences of

tokenized tokens.

Jiang et al. [46] devised an algorithm for detecting similar trees and applied it

on the tree representation of the source code to detect similar code fragments.

They generated characteristics vectors to approximate the structural

information within ASTs in the Euclidean space, and then used locality

sensitive hashing to efficiently cluster similar vectors and thus code. In the

first step, a parser translates the source files into parse trees which are then

used to produce fixed-dimension vectors. These vectors are then clustered with

respect to their Euclidean distances.

Anti-unification was used by Bulychev and Minea [47] to detect code clones.

In the first step, source files of the program are converted into an XML

representation of their ASTs. Then, anti-unification is applied to group similar

ASTs into equivalence classes called clusters. Each cluster corresponds to a

clone class.

The first tool for code clone detection that took full advantages of multi-core

processors was YACCA, proposed by Livieri and Inoue [48] in 2008. It

leverages multi-code processors by evenly distributing the total workload

between the cores. It uses a parameterized detection algorithm to detect similar

code fragments. Also, it is language independent and to some extent can be

used to detect cross-language code clones.

184

Jia et al. [51] proposed an efficient and precise clone detection tool called

KClone. It uses combination of lexical and local dependence analysis to

achieve precision, while retaining speed. It uses two-step approach for

detecting code clones. In the first step, fast lexical analyzer is used to detect

basic clone-pairs, i.e., type I and type II clones. Using the detected basic

clone-pairs information, second step detects type III clone-pairs from the

source code.

Roy and Cordy [49, 52] proposed a multi-pass hybrid clone detection

technique for detecting type III clones. They implemented the technique in the

form of a tool called NiCad [56]. NiCad can be either used in command-line

mode or it can be easily embedded in IDEs and other environments.

A hybrid (syntactic and textual) approach for clone detection was proposed by

Funaro et al. [54]. They combined AST representation of the source code with

the string (text-based) representation of the source code. AST representation of

the code helped the authors to retrieve structural similarities, while the string

representation helped in refining the results through direct comparison. In the

first step, the authors transformed the source code into ASTs which are further

converted to a forest of ASTs. The forest is then serialized by encoding into a

string representation using an invertible mapping function. This string

representation is then searched for repeated substrings. The mapping function

is used again to decode these substrings into sub-trees. To generate the

corresponding code fragments, the reconstructed sub-trees are then matched

back to their original ASTs.

In 2011, Higo et al. [58] came up with new idea of clone detection. They

combined incremental clone detection with PDG (program dependency graph)

185

based representation of the source code. They defined some metrics/functions

to compare the similarity between two nodes of PDGs. The advantage of their

approach is that it can detect non-continuous code clones more effectively than

other incremental clone detection techniques. In the same year, Higo proposed

another tool Scorpio [59] with his colleague Kusumoto, where they applied

two-way slicing to detect clones. Since using only forward or backward slicing

does not detect all similar sub-graphs. Using two-way slicing overcomes this

problem. Scorpio is also a PDG-based tool that uses hashing at the node-level.

Nodes with same hashed values correspond to cloned segments.

Another state-of-the-art tool for clone detection is CMCD (Count Matrix

Clone Detection) [60] proposed by Yang and Yao. It uses a count matrix to

represent characteristics of a particular code segment. A count matrix consists

of n count vectors where each vector corresponds to a variable in the code

segment. A count vector records various features such as number of time the

variable is defined, used, or called. These count matrices are used to find

similarity between code segments using bipartite graph matching algorithm.

Microsoft Research Asia team designed an efficient, scalable, and

parallelizable clone detector, XIAO [61]. Microsoft has already integrated the

XIAO with Microsoft Visual Studio 2012. Among other, one of the main

features of XIAO is its compatibility. By default, it provides supports for C,

C#, and C++; but it also allows the users to plug-in their own parsers into the

system to support other languages.

A metric-based data mining approach for detecting function clones was

presented by Salwa and Hafiz [98]. In the first step, fragments and

corresponding metrics are extracted from the source code at the function level.

186

Then, the software is partitioned into three types of clusters—primary,

intermediate, and single—using data mining clustering algorithm. All type I

and type II clones are included in primary cluster, whereas intermediate cluster

corresponds to type III clones.

Murakami et al. [62] devised a new clone detection algorithm which is free

from the influence of presence of repeated instructions in the software. They

transformed every repeated instruction present in the source code into a

special form, and then applied a suffix-array based algorithm to find repeated

code segments. In the first step, token-sequences are created from the source

files of the code. Then, hash values are computed from these token-sequences.

In the next step, repeated instructions are removed from the hash-sequence.

Thereafter, identical subsequences are identified using a suffix-array based

algorithm.

An accurate and scalable token-based clone detection tool was by Yuan and

Guo [63]. However, it differs from the other token-based clone detection

techniques in the sense that it does not use token-sequences while comparing

the code segments. Instead, it represents the code segments using count

matrices. Then, cosine similarity and proportional similarity functions are used

for similarity measures.

Some of the recent advancements in clone detection research are SimCad [66],

CDSW [67]. SimCad is highly scalable and fast clone detection algorithm. It

uses multi-level index based searching to speed up the clone detection process.

It detects clones as code fragments (e.g., function or code block), the boundary

of which are predefined during the source code pre-processing step. CDSW

detects gapped code clones using Smith-Waterman algorithm [181]. Smith-

187

Waterman algorithm is an algorithm for identifying similar alignments

between two base sequences. In the first step, CDSW transform the source

files into token-sequences. Next step calculates the hash value for each

statement. At the end of this step, each source file is transformed into one

hash-sequence. Similar hash sub-sequences are then identified from hash-

sequence using modified version of the Smith-Waterman algorithm.

Qu et al. [68] combined spatial space analysis with graph-based mining to find

code clones from software systems. They used PDGs for source code

representation. First, they applied spatial pattern search on the PDGs, and then

used graph-based pattern mining algorithm to find out candidate code clones.

They further used false positive pruning and pattern composition techniques to

improve the detection results.

Table 9. Summary of selected Type III clone detection techniques

Technique
(Authors;

Tool;
Year)

Internal
Source
Code

Represen-
tation

Clone
Granular-

ity

Comparison
Granularity

Comparison
Technique

Evaluation/
Validation

Language
Paradigm Scalability

Davey et
al. [40];

1995

Set of
fixed
length
feature
vectors

Fixed
(procedure

)

Feature
vector of

module unit

Neural
networks

based

5MB of
arbitrary
selected

source code

Informatio
n not

available

SOM
based: No;

DCL
based:

better than
first

Baxter et
al. [41];

1998
AST Free Sub-tree

AST-based
tree

matching

Process
Control
System

(400K C
code)

C, C++,
Java,

COBOL,
and others

No

Kamiya et
al. [42];

CCFinder;
2002

Sequence
of

transforme
d tokens

Free Token sub-
sequences

Suffix-tree
matching
algorithm

On several
systems:-
FreeBSD;
NetBSD,;
Linux and

others

C, C++,
Java,

COBOL,
and others

Highly
scalable;

among the
renowned

tools

Li et al.
[12, 43];

CP-Miner;
2004, 2006

Sequence
of numbers

(tokens)
Free Token sub-

sequence

Frequent
Sub-

sequence
Mining

Linux;
FreeBSD;

Apache and
others

C, C++

Highly
scalable;
among

renowned
tools

188

Technique
(Authors;

Tool;
Year)

Internal
Source
Code

Represen-
tation

Clone
Granular-

ity

Comparison
Granularity

Comparison
Technique

Evaluation/
Validation

Language
Paradigm Scalability

Lee and
Jeong [44];
SDD; 2005

Strings of
code (text) Free Substring

(multi-word)

Based on n-
neighbor
indexed

algorithm

JDK 1.5
(1M); httpd
(84K); tuby
1.8.2 (.2M)
and others

Language
independen

t

Very
scalable

Jiang et al.
[46];

DECKARD
; 2007

Parse trees
normalized
to vectors

Free
Fixed length
characteristic

s vectors

Locality
Sensitive
Hashing

Linux
kernel; JDK

Any
language

with a
formally
specified
grammar

Yes

Evans et
al. [45,

50]; Asta;
2007, 2009

ASTs
Fixed

(function
clone)

AST nodes

Graph
theoretic

approach on
associative

array

Netbean-
javadoc;

eclipse-ant;
eclipse-
jdtcore;

Java, C#

Yes
(scalability
addressed
in [50];
2009)

Bulychev
and Minea
[47]; Clone

Digger;
2008

ASTs ? Subtree Anti-
unification

BioPython
project and

NLTK
project

Python,
Java ?

Livieri and
Inoue [48];

YACCA;
2008

Token-
sequences Free Token sub-

sequence

Repeating
substrings
detection

Information
not provided

Language
independen

t

Highly
scalable
(multi-
core)

Roy and
Cordy
[49];

NICAD;
2008

Program
text

Fixed
(function

and block)
Line

Longest
Common

Subsequence
s algorithm

More than
20 open
source

systems

C, Java,
C#,

Python,
WSDL

[56]

Yes

Funaro et
al. [54];
SynTex;

2010

ASTs
further

normalized
to strings

Free Substring
Searching
common
substring

Evaluated
on Bellon’s
benchmark

[101]

Java (?) ?

Corazza et
al. [53];

2010
ASTs Fixed

Subtree of
fixed

granularity
(claas-tree,

method-tree,
statement

tree)

Based on
Tree Kernel

function

Federico II
(an

academic
Java

system)

Java Very low

Higo et al.
[58]; 2011 PDG ? PDGs’ edge

tree

Based on
equivalency
among edge

trees

Ant Java

Highly
scalable; an
incremental

clone
detection
technique
addressing

type III
clones

189

Technique
(Authors;

Tool;
Year)

Internal
Source
Code

Represen-
tation

Clone
Granular-

ity

Comparison
Granularity

Comparison
Technique

Evaluation/
Validation

Language
Paradigm Scalability

Higo and
Kusumoto

[59];
Scorpio;

2011

PDG Free PDGs’ nodes Program
slicing

Eclipse Ant;
NetBeans
Javadoc;
Eclipse –
jdtcore;

j2sdk1.4.0-
javax-swing

Java

Among
most

scalable
tools

Yuan and
Guo [60];
CMCD;

2011

Count
matrix for

each
method

Fixed
(method) Count matrix

Bipartite
graph

matching
algorithm

JDK 1.6 and
other small

student
projects

Language
independen

t
Medium

Dang et
al.[57, 61];

XIAO;
2011, 2012

Tokens Fixed (?) Subsequence
of tokens Metric based

Industrial
validation

by
Microsoft
Engineers

C, C++,
C#

Yes,
incorporate

d in MS
Visual
Studio

Salwa and
Hafiz [98];

2012
Text

Fixed
(function
clones)

Code
fragments

Fractal
Clustering

Weltab;
SNNS C Low

Yuan and
Guo [63];
Boreas;

2012

Tokens Free Count
matrixes

Using
Cosine

Similarity
Function and
Proportional

Similarity
Function

Java SE
Developme

nt Kit 7
(2.2M);
Linux
kernel

2.6.38.6
(10M)

Java, C,
C++

Highly
scalable

with more
precision

Zibran and
Roy [64];

2012
AST Fixed Preprocessed

suffix tree

Suffix-tree
based k-

difference
hybrid

algorithm.

Weltab
(10K);

PostGreSQL
(154K)

C, C#, and
Java Medium

Murakami
et al. [62];

FRISC;
2012

Token
sequence Free Statements

Suffix-array
based

algorithm

Netbeans,
ant, jdtcore,

weltab,
cook etc.;

evaluated on
Bellon’s

benchmarks

Java and C

Yes,
supports
multi-

threading

Muddu et
al. [65];
CPDP;
2013

Tokens Free Block of
statements

Karp-Rabin
Greedy

String Tiling
algorithm

25 open
source Java

projects
from github

Java high

Murakami
et al. [67];

CDSW;
2013

Tokens Free Statement
level Hashing

Netbeans,
ant, jdtcore,

weltab,
cook etc.;

evaluated on
Bellon’s

benchmarks

Java and C

Scalable
than AST
or PDG
based

approaches

190

Technique
(Authors;

Tool;
Year)

Internal
Source
Code

Represen-
tation

Clone
Granular-

ity

Comparison
Granularity

Comparison
Technique

Evaluation/
Validation

Language
Paradigm Scalability

Qu et al.
[68]; 2014

PDG
further

transforme
d to

graphic
sequence

in
sequential

space

?

Encoded
graphic

subsequence
s

Uses spatial
space

analysis and
then graph-

based pattern
mining

On a health
care

software
system (near

1.1M)

? High

A.1.4. Type IV (semantic and re-ordered) Clone Detection

When two code fragments have functional similarities, they are termed as type

IV clones. In these types of clones, it is not necessary for the cloned fragments

to be copy of each others. Table 10 compares selected type IV clone detection

techniques.

In 1990, Horwitz [182] published a key article on the detection of semantic

and textual differences between two versions of the program. However, a

successful attempt to detect type IV clones was by Komondoor and Horwitz

[69] in 2001. The approach was based on using program slicing to detect

isomorphic sub-graphs of a PDG. They first created PDGs for each procedure,

and then used backward and forward slicing to detect code clone from the

subject program. In the same year, another attempt to detect type IV clones

was by Krinke [70]. It is also a PDG-based clone detection approach that uses

k-length patch matching to find out maximal induced sub-graphs.

A text-based semantic clone detection approach was proposed by Marcus and

Maletic [99] in 2001. They used latent semantic indexing to find semantic

similarities between different program entities. But when comments do not

191

exist in the code and names of identifiers in the corresponding entities are

completely different, the approach fails to detect clones.

An early attempt to make efficient and scalable type IV clone detection

technique was by Gebel et al. [71] in 2008. The authors adapted the approach

used by Deckard clone detection tool [46], making it more efficient and

scalable. They started with the PDG-based representation of the source code.

Then, selected PDGs are mapped to an AST forest. After that, standard tree-

based detection algorithm, Deckard, is modified and adapted to locate cloned

code in the software.

Comparison-based clone detector, MeCC [73] detects semantic clones by

comparing programs’ abstract memory states. These abstract memory states

are estimated at each procedure exit-points using path-sensitive semantic-

based static analysis.

Semantic web reasoners were used by Schugerl [74] for detecting semantic

clones in 2011. The proposed approach uses Hadoop map-reduce framework

to scale the detection process. He used description logics to model source

code, and then applied semantic web reasoners to find similar code fragments.

A two-stage clustering technique was used for detecting semantic clones by

Yoshioka el al. [75]. In the first step, code fragments are extracted from the

source code. Then, these extracted code fragments are classified into clusters

based on their characteristics. This step is divided into two stages. In the first

stage, code fragments are coarsely classified in order to obtain good enough

result in a short time. In the second stage, the results of the first stage are

finely classified to obtain more precise clusters. In the last step, these resultant

192

clusters are converted into a collection of clone sets (i.e., sets of semantically

similar code fragments).

Li and Ernst developed a tool CBCD (Cloned Buggy Code Detector) [78],

which when given an example of buggy code, searches the subject program

for code fragments which are semantically similar to this buggy code. The

authors made a claim of presence of duplicated buggy codes in software

systems by performing empirical studies. They proposed their own tool to

detect the presence of these buggy cloned codes in software systems. For

detecting cloned buggy codes, they first transformed the subject code and the

buggy code both into PDGs using CodeSurfer. Then, they adapted the igraph’s

implementation of sub-graph isomorphism matching to detect similar codes.

JSCTracker [76, 77] detects semantic clones in Java methods using methods’

IOE (Input, Output, and Effects) behaviors. IOE behavior includes return

values of methods as well as their effects on the pre-states and post-states of

the heap. In the first step of the algorithm, they generated decorated AST from

the source code of the subject program. Then, two-step filtering based on the

syntactic and semantic information encoded in the AST is used to find out

candidate clones. In the last step, these candidate clones are tested and

collected into equivalence clone classes.

Table 10. Summary of selected Type IV clone detection techniques

Technique
(Authors;

Tool; Year)

Internal
Code

Represen-
tation

Clone
Granular-

ity

Comparison
Granularity

Comparison
Technique

Evaluation/
Validation

Lan-
guage
Para-
digm

Scalabil-
ity

Komondoo
r and

Horwitz
[69]; 2001

PDG
Fixed

(procedure?
)

PDG
subgraphs

Using
Program
slicing

Three Unix
utilities;

some IBM
project code

C No

193

Technique
(Authors;

Tool; Year)

Internal
Code

Represen-
tation

Clone
Granular-

ity

Comparison
Granularity

Comparison
Technique

Evaluation/
Validation

Lan-
guage
Para-
digm

Scalabil-
ity

Krinke
[70];

Duplix;
2001

PDG Free PDG
subgraphs

k-length patch
matching

Author’s
selected test

programs
C No

Marcus and
Maletic

[99]; 2001
Text

Fixed
(function,

file,
program)

Sentences

Latent
Semantic
Indexing
approach

Mosaic v2.7
(95K) C ?

Gabel et
al.[71];
2008

PDGs
further

transforme
d to ASTs

Free Characteristi
c vectors

Adaptation
from Deckard

[46]

GIMP;
GTK+;

MySQL;
PostgreSQL

; Linux
kernel

C, C++ Highly
scalable

Jiang and
Su [72];

EQMINER;
2009

Program
text

represented
in some

intermediat
e form

Free

Code
fragments

represented
in

intermediate
forms

Clustering
based on

Representativ
e Based

Partitioning
(devised by

authors itself)

Linux
kernel
2.6.24

C
Scalable
but very

slow

Kim et al.
[73];

MeCC;
2011

Abstract
memory

states

Fixed
(procedural

level)

Programs’
abstract
memory

states

Abstract
memory state
comparison

Python;
Apache;

PostgreSQL
C Partial

scalable

Schugerl
[74]; DL-

Clone;
2011

Description
Logic (DL)

model
further

transforme
d to

concepts
and

relations
(using
OWL)

Fixed (?)
OWL

representatio
ns of blocks

Semantic web
reasoners

JDK 1.5
(randomly

selected 620
files)

Java

High,
can be

paralleliz
ed

Yoshioka et
al. [75];
Takana;

2011

Text based
(represente
d as feature

vectors)

Free Set of feature
vectors

Feature
clustering

eclipse-ant;
eclipse-
jdtcore;

j2sdk.1.4.0-
swing; jdk

1.4.2,
jdk1.5.0

Java Yes

Li and
Ernst [78];

CBCD;
2012

PDGs Free Subgraphs of
PDGs

Subgraph
isomorphism

matching
using igraph

Git; Linux
kernel;

PostgreSQL
C, C++ Yes

Elva and
Leavens
[76, 77];

JSCTracker
; 2012

Decorated
ASTs

Fixed
(method

level)

MethodType
and

MethodEffec
t information
encoded in

AST

Equivalence
class having

same
MethodType

and
MethodEffect
information

DSpace;
JabRef Java No

194

A.2. High-level Clone Detection

The researchers also proposed other types of software clones possible at code

level. This section provides brief overview of such clone detection techniques.

A.2.1. Structural Clone Detection

Basit and Jarzabek [5, 81] proposed an algorithm for detecting design-level

similarities such as similar methods, files, or directories calling them structural

clones. They first classified the code clones into two types—simple clones and

structural clones. Simple clones refer to fragments of duplicated contiguous

code (so called type I and type II clones). Then, they used these cloned

contiguous code fragments (i.e., simple clones) to find out structural clones.

They defined structural clones as the “patterns of inter-related classes

emerging from design and analysis spaces; patterns of components at the

architecture level; design solutions repeatedly applied by programmers to

solve similar problems”.

The approach is as follows: In the first step, simple clones are detected from

the subject program by applying token-based technique [29]. Then, recurring

patterns of simple clones are detected using Frequent Closed Itemset Mining

(FCIM) algorithm. The output of this step is a list of clone patterns occurring

frequently in the subject program. For each such clone pattern, the subject

program is searched for files having that clone pattern. In the last step, these

searched files are clustered into similarity groups using two metrics: file

percentage coverage and file token coverage. Each similarity group

corresponds to a structural clone. They have implemented the approach as a

195

tool, Clone Miner and experimentally confirmed that the tool can find many

useful higher-level design similarities, and is scalable to big programs.

A.2.2. Logical Clone Detection

Logical clones were proposed by Qian et al. [82] in 2013. They called them as

code clones “revealing high-level business and programming rules”. Logical

clones involve similar or relevant concerns and topics but are not necessarily

similar at the code-level.

The authors used semantic clustering and graph mining techniques for

detecting logical clones. In the first step, they represented the source code as a

meta-model consisting of methods, entity classes, and persistent data objects

along with the invoke/access relations among them. Given this initial program

meta-model, they clustered similar methods (i.e., methods sharing similar

topics) into functional clusters using semantic clustering. They used Simian

[183], a text-based clone detector, for detecting clones in the code. In the last

step, based on the program-model produced by model extraction step, sub-

graph pattern mining algorithm is used for detecting logical clones.

A.2.3. Other High-level Clone Detection

There are some works that deal with detection of design patterns [83-94] and

API usage patterns [95, 96]. Among few initial works, an attempt to detect

design patterns (template methods, factory methods, and bridge) in C++

systems was by Keller et al. [83]. Smith and Stotts [84] presented a tool, they

called System for Pattern Query and Recognition (SPQR), that detects a suite

of elemental design patterns.

196

Tsantalis et al. [87] presented a solution to design pattern detection problem

that uses similarity score between design patterns and graph representation of

the program to detect occurrences of the design patterns. Romano et al. [88]

applied text clustering on classes of a system, and then used existing

techniques and tools, DPR [89] and Pattern4 [87], on the clusters to identify

design-pattern instances. Semantic web was used for detecting design patterns

in Java source code [91] in 2012. In the same year, Tekin et al. [92] proposed a

sub-graph mining based design pattern detection algorithm for object-oriented

software systems.

Yu et al. [94] in 2013 presented an approach for detecting design patterns (in

particular Decorators) using graph isomorphism. In their another work [93],

they worked for detecting instances of structural design patterns from source

codes. They first transformed the source code into Class-Relationship directed

graphs. In the next step, they identified instances of sub-patterns that would be

the possible constituents of pattern instances based on sub-graph isomorphism.

A.3. Cloning Beyond Code

Most of the software clone detection research mainly focuses on code clones.

However, cloning also occurs in other software artifacts such as UML models,

use cases, test cases, spreadsheets, and compiled code (e.g., Javabyte code).

This section summarizes some of the existing works in this direction. Table 11

provides summary of selected works.

A.3.1. Model Clone Detection

Cloning has been found in specification models such as UMLs [184-187] as

well as in code generation models such as Matlab and Simulinks [188-192].

197

Liu et al. [184] detected clones in UML sequence diagrams using a suffix-tree

based algorithm. In the first step, two-dimensional sequence diagrams are

converted into one-dimensional arrays. In the next step, suffix trees are

constructed from the one-dimensional arrays. The constructed suffix trees are

then used to find longest common prefixes, which correspond to clone

candidates in the sequence diagrams. Another attempt for detecting clones in

UML models was by Störrle [185, 187]. He proposed a tool MQlone as a

prototype for his approach. The technique was based on model querying.

An approach for detecting clones in data flow models was proposed by

Deissenboeck et al. [188] in 2008. They used a graph-based detection

approach consisting of three steps. The first step is preprocessing, which

converts the model into labeled graph-model. Labels are assigned to nodes

using some normalization function. Then, clone pairs are extracted from the

normalized graph-model using some heuristics in a breath-first search manner.

The similarity function uses maximum weighted bipartite matching to find

similar nodes. In the last step, clones pairs are clustered to find out sub-

structures that are used more than twice in the model.

Another efficient tool for detecting clones in Matlab and Simulink models is

ModelCD [189], which detects both exact and approximate matches of model

clones. It uses two novel graph-based clone detection algorithms–eScan and

aScan, enabling systematic and incremental discovery of model clones. In the

first step of the approach, a sparse labeled digraph is generated from the

model. Then, eScan algorithm detects exact matches using canonical labeling.

Finally, aScan algorithm is applied to find approximate matches.

198

An index-based incremental and distributable technique to detect model clones

is by Hummel et al. [190]. In the first step, a directed labeled multi-graph is

generated from the model. Isomorphic sub-graphs in the multi-graph

correspond to clone classes in the model.

Some of the recent attempts for detecting model clones are [186, 191, 192].

Antony et al. [186] proposed an algorithm for detecting clones in UML

behavioral models in 2013. They adapted NiCad for detecting clones in

behavioral models. In the first step, they transformed the XMI-file

representation of the behavioral models into TXL [193] source transformation

language. After normalizing TXL representation, NiCad is used to detect

clones. Alalfi [191, 192] built a tool SIMONE to detect structurally

meaningful type III (i.e., near-miss) clones in Simulink models.

A.3.2. Data Clone Detection

Clone detection has been applied to spreadsheets by Hermans et al. [194].

They adapted an existing text-based clone detection algorithm [23], and

devised an algorithm for detecting clones in spreadsheets. They called the

detected clones as data clones. They used cell values as fingerprints, and

removed values that do not occur as formula and plain text. Subsequently,

values that occur in multiple places are grouped into clone clusters to detect

groups of cells that are possibly copied. In order to visualize data clones,

authors generated dataflow diagrams showing the relationship between

worksheets that contains clones, and added pop-ups to both parts of a clone

indicating the source and the copied side of the clone.

199

A.3.3. Detection of Clones in Requirements Specification

Juergens et al. [195] analyzed 28 requirements specification documents

written in natural language (English and German) with total of more than

8,500 pages. In the first step, they converted the source documents into plain

text. Then, they applied ConQAT [179] on the plain text to find repeated

substrings.

Table 11. Summary of clone (software artifacts other than code) detection
techniques

Technique
(Authors;

Tool; Year)

Types of
Clones

Detected

Internal
Code

Repre-
sentation

Compari-
son Gran-

ularity

Compari-
son Tech-

nique

Evaluation
/Validation

Language
Paradigm/

Scope
Remarks

Liu et al.
[184];

Duplication
Detector;

2006

Model
Clones

one-
dimensional
array further
transformed
to suffix tree

Subtree of
suffix tree

Suffix-
tree based
compariso

n

Two
industrial
projects

UML
sequence
diagrams

High
precision
and recall

Deissenboec
k et al.

[188]; 2008

Model
Clones

Labeled
model graph

Blocks/nod
e of graph

Maximum
weighted
bipartite
matching

Two
industrial
models

Matlab/
Simulink

Scalable
in nature

Pham et al.
[189];

ModelCD;
2009

Model
Clones

Sparse,
labeled
directed
graph

Subgraph

Canonical
labeling
followed
by vector

based
counting
approach

On four
open source

models

Matlab/
Simulink

Scalability
Medium;
precision

low

Störrle [185,
187];

MQlone;
2010, 2013

Model
Clones

XMI files
further

transformed
to prolog

code

?

Model
matching

and
similarity

Library
Managemen

t System

UML
Domain
models

Scalability
(?)

Juergens et
al. [195];

2010

Cloned
Requirement
Specificatio

ns

Plain text Text string
Common
substring
matching

28
requirement
specificatio

ns

Requirement
Specificatio

ns

Scalability
(?)

Hummel et
al. [190];

2011

Model
Clones

Directed,
labeled

multigraph
Subgraph

Clone
index
based

hashing

SIM; MUL;
SEM;

ECW; MPC

Matlab/
Simulink

Increment
al and

scalable

Alalfi et al.
[191, 192];
SIMONE;

2012

Model
Clones

Normalized
text form

Normalize
d text
groups

Using
NiCaD

[49]

Some
publicly
available
Simulink
models

Simulink
Models

Author
claim

scalability
but not

evaluated
on large
systems

200

Technique
(Authors;

Tool; Year)

Types of
Clones

Detected

Internal
Code

Repre-
sentation

Compari-
son Gran-

ularity

Compari-
son Tech-

nique

Evaluation
/Validation

Language
Paradigm/

Scope
Remarks

Antony et
al. [186];

2013

Model
Clones

TXL
representatio

n
Text group

Using
NiCaD

[49]

On four
reverse-

engineered
models

UML
behavioral

model
Yes

Hermans et
al. [194];

2013

Data Clones
(exact and
near miss)

Text based
cell

represented
as lookup

table

Cell in
cluster
forms

Using
cluster
finding

and
matching;
based on

[23]

Evaluated
on EUSES
spreadsheet

corpus
[196];

further case
study with

Delft
university

and
Foodbank

Spreadsheet
s

High
precision

and
scalable

A.4. Other Possible Directions

Much work has been done for code clone detection. We also found the cases

claiming that cloning is possible beyond the code level (Section A.3). We

already discussed some of these cases in the above subsections. We also found

some other works citing cloning in test cases [197], Java byte code [198, 199],

and websites [200]. Juergens [176] suggests cloning to be possible in other

software artifacts too. Some of the possibilities are for cloning in the feature

models, schemas, system architectures, process models, configuration files,

etc.

A.5. Chronology of Clone Detection Techniques

Table 12 provides chronology of clone detection techniques.

201

Table 12. Chronology of clone detection techniques

NOMENCLATURE: Low-level Clones: T1: Type I Clone; T2: Type II Clone; T3: Type III Clone; T4:

Type IV Clone; High-level Clones: MFC: Method/Function Clone; CC: Class Clone; FC: File Clone;

LC: Logical Clone; OHC: Other High-level Clones; CP: Collaborative Pattern; Beyond Code Clones:

Detection Technique
(Authors; Tool; Year)

MC: Model Clone; DC: Data Clone; OT: Other types of Clone.

Code Clones Cloning Beyond
Code

Low-level Clones High-level Clones

MC DC OT

Textual
Similarity

T4

Structural
Clone

LC

O
H

C

CP
T1 T2 T3

M
FC

CC FC

Johnson [23, 24]; 1993, 1994 Y

Baker [25, 27]; Dup; 1993, 1995 Y Y

Buss et al. [26]; 1994 Y Y

Davey et al. [40]; 1995 Y Y Y

Mayrand et al. [111]; 1996 Y Y Y

Baxter et al. [41]; 1998 Y Y Y

Keller et al. [83]; 1999 Y

Komondoor and Horwitz [69];
2001 Y Y Y Y

Krinke [70]; Duplix; 2001 Y Y Y Y

Marcus and Maletic [99]; 2001 ? ? ? Y Y

Kamiya et al. [42]; 2002 Y Y Y Y

Heuzeroth et al. [85]; 2003 Y

Smith and Stotts; [84]; SPQR;
2003 Y

Li et al. [12, 43]; CP-Miner;
2004, 2006 Y Y Y

Lee and Jeong [44]; SDD; 2005 Y Y Y

Basit and Jarzabek [5, 81];
Clone Miner; 2005, 2009 Y Y Y Y

Koschke et al. [28]; 2006 Y Y

Liu et al. [184];
DuplicationDetector; 2006 Y

Tsantalis et al. [87]; Pattern4;
2006 Y

Basit et al. [29]; Repeated
Tokens Finder (RTF); 2007 Y Y

Jiang et al. [46]; DECKARD;
2007 Y Y Y

202

Detection Technique
(Authors; Tool; Year)

Code Clones Cloning Beyond
Code

Low-level Clones High-level Clones

MC DC OT

Textual
Similarity

T4

Structural
Clone

LC

O
H

C

CP
T1 T2 T3

M
FC

CC FC

Evans et al. [45, 50]; Asta; 2007,
2009 Y Y Y Y

Bulychev and Minea [47]; Clone
Digger; 2008 Y Y Y

Livieri and Inoue [48]; YACCA;
2008 Y Y Y

Gabel et al. [71]; 2008 Y

Deissenboeck et al. [188]; 2008 Y

Roy and Cordy [49, 52, 55, 56,
110]; NICAD; 2008-11 Y Y Y Y

Göde and Koschke [30]; 2009 Y Y

Jia et al. [51]; KClone; 2009 Y Y Y

Jiang and Su [72]; EQMINER;
2009 Y

Pham et al. [189]; ModelCD;
2009 Y

Hummel el al. [31]; 2010 Y Y

Funaro et al. [54]; SynTex; 2010 Y Y Y

Corazza et al. [53]; 2010 Y Y Y

Juergens et al. [195]; 2010 Y

Störrle [185, 187]; MQlone; 2010,
2013 Y

Schugerl [74]; DL-Clone; 2011 Y Y Y Y

Higo et al. [58]; 2011 Y Y Y

Yuan and Guo [60]; CMCD;
2011 Y Y Y Y

Higo and Kusumoto [59];
Scorpio; 2011 Y Y Y

Kim et al. [73]; MeCC; 2011 Y Y Y Y Y

Yoshioka et al. [75]; Takana;
2011 ? ? ? Y

Hummel et al. [190]; 2011 Y

Romano et al. [88]; 2011 Y

Uddin et al. [96]; 2011 Y

Cuomo et al. [32, 33]; 2011,
2012 Y Y

Dang et al.[57, 61]; XIAO; 2011,
2012 Y Y Y

203

Detection Technique
(Authors; Tool; Year)

Code Clones Cloning Beyond
Code

Low-level Clones High-level Clones

MC DC OT

Textual
Similarity

T4

Structural
Clone

LC

O
H

C

CP
T1 T2 T3

M
FC

CC FC

Toomy [37]; ctcompare; 2012 Y Y

Lavoie and Merlo [35]; 2012 Y Y

Salwa and Hafiz [98]; 2012 Y Y Y Y

Yuan and Guo [63]; Boreas;
2012 Y Y Y

Zibran and Roy [64]; 2012 Y Y Y

Murakami et al. [62]; FRISC;
2012 Y Y Y

Li and Ernst [78]; CBCD; 2012 Y Y Y Y

Elva and Leavens [76, 77];
JSCTracker; 2012 Y Y

Alalfi et al. [191, 192] ;
SIMONE; 2012 Y

Keivanloo et al. [198, 199];
SeByte; 2012 Y

Lebon and Tzerpos [201]; 2012 Y

Tekin et al. [92]; 2012 Y

Paydar and Kahani; [91]; 2012 Y

Binun and Kniesel [90]; DPJF;
2012 Y

Sajnani and Lopes [36, 39];
2012, 2013 Y Y

Koschke [34, 38]; 2012, 2013 Y Y

Uddin et al. [66]; SimCad; 2013 Y Y Y

Muddu et al. [65]; CPDP; 2013 Y Y Y ?

Murakami et al. [67]; CDSW;
2013 Y Y Y

Qian et al. [82]; MiLoCo; 2013 Y

Antony et al. [186]; 2013 Y

Hermans et al. [194]; 2013 Y

Yu et al. [93, 94]; 2013 Y

Qu et al. [68]; 2014 Y Y Y

Kodhai and Kanmani [97]; 2014 Y

Proposed Work; COPAD; 2015 Y

205

Appendix B.

GLOSSARY

False Negative: a clone, but not detected as a clone by the clone detector.

False Positive: not a clone, but detected as a clone by the clone detector.

Precision: percentage of reported clones which are genuine.

Program Entity: variable, statement, code fragment, function, class method,

class, source file, directory, module, subsystem (last two are designated groups

of files and/or directories).

Recall: percentage of genuine clones that are reported.

Simple Clone: small-granular (generally 4–6 lines of code) cloned contiguous

code-fragments.

Software Clone: a recurring configuration of program entities or software

artifacts inter-related in some meaningful way, and where similarity among

corresponding entities in the clone-instances has been already established by

means of some similarity metrics.

Structural Clone: recurring patterns of simple clones in a software system.

206

Subject Program: the source code under consideration from which we have

to detect software clones.

True Negative: not a clone, also not detected as a clone by the clone detector.

True Positive: a clone, also detected as a clone by the clone detector.

Type I Clones: identical code fragments except with possible variations at the

levels of comments, layout, and whitespaces.

Type II Clones: exactly similar code fragments except with possible

variations in user-defined identifiers, literals, layout, types, and comments. All

type I clones fit under this category.

Type III Clones: type II clones modified further by addition, deletion, and/or

modification of statement(s).

Type IV Clones: functionally similar code fragments not necessarily to be

syntactically similar.

	Acknowledgements
	Table of Contents
	Summary
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1. Introduction
	1.1. Background
	1.2. Problem Description and Motivating Example
	1.3. Current Status of Research on Clone Detection
	1.3.1. Research Gaps

	1.4. Open Challenges
	1.5. Research Scope
	1.6. Research Contributions
	1.7. Thesis Outline

	Chapter 2. The Concept of Collaborative Patterns
	2.1. Motivation
	2.2. Introduction to Collaborative Patterns
	2.2.1. Preliminary Definitions
	2.2.2. Collaborative Structure
	2.2.3. Collaborative Clone Class

	2.3. Related Work
	2.4. Classification of Collaborative Patterns
	2.5. Importance and Benefits of Collaborative Patterns
	2.6. Methodology for Detecting and Managing Collaborative Patterns
	2.6.1. Phase 1: Pre-detection Analysis
	2.6.2. Phase 2: Collaborative Pattern Detection
	2.6.3. Phase 3: Post-detection Analysis with User Involvement
	2.6.4. Phase 4: Management of Collaborative Patterns

	2.7. Conclusions

	Chapter 3. Detecting Collaborative Patterns
	3.1. Scope of the Approach
	3.2. Detailed Approach
	3.2.1. Step 1: Code-Clone Finder
	3.2.2. Step 2: Calling-Relation Retriever
	3.2.2.1. Trace Generator
	3.2.2.2. Trace to Method-call Chains Finder
	3.2.2.3. Call-Graph Generator
	3.2.2.4. Call-Graph to Method-call Chains Finder

	3.2.3. Step 3: Collaborative Pattern Detector

	3.3. Tool Implementation
	3.4. Conclusions

	Chapter 4. Experimentation
	4.1. Goals of Experimentation
	4.2. Detection Overview
	4.2.1. Detection Results

	4.3. Analysis Overview
	4.3.1. Analysis Results
	Are the instances of a collaborative pattern significantly overlap with the instances of another collaborative pattern?
	Are the collaborative patterns large enough?

	4.4. Benefits and Applications
	4.4.1. Better Program Understanding
	4.4.2. Enhanced Reuse Opportunity
	4.4.3. Efficient Refactoring
	4.4.4. Other Benefits

	4.5. Conclusions

	Chapter 5. Managing Code Clones using the ART
	5.1. Introduction and Motivation
	5.2. An Overview of the ART
	5.2.1. How Does the ART work?
	5.2.1.1. An Overview of the ART-Template Solution

	5.2.2. ART Command Set
	5.2.2.1. Comments in the ART
	5.2.2.2. #adapt Command
	5.2.2.3. ART Variables and Expressions
	5.2.2.4. #output Command
	5.2.2.5. Loops and Selections
	5.2.2.6. Breakpoints (Insert-Break Mechanism)
	5.2.2.7. Setloop Mechanism

	5.2.3. ART Syntax
	Comments in the ART
	#adapt Command
	#set Command
	#output Command
	#while Command
	#select Command
	#insert and #break Commands
	#setloop Command
	Expression
	Command
	VAR-NAME
	STRING

	5.2.4. Architecture and Implementation Details

	5.3. Detailed Methodology
	5.3.1. Step 1: Clone Detection
	5.3.2. Step 2: Clone Analysis with Developer Involvement
	5.3.2.1. Types of Clones that can be handled using the ART
	Similar Directories
	Similar Files
	Collaborative Patterns
	Duplicated Code Fragments and Methods

	5.3.3. Step 3: Tailoring ART Command Set (optional step)
	5.3.4. Step 4: Constructing ART Templates
	5.3.4.1. ART Template Construction Mechanism
	5.3.4.2. Constructing ART Templates for Similar Directories
	Other Cases of Clones at the Directory Level

	5.3.4.3. Constructing ART Templates for Similar Files
	5.3.4.4. Constructing ART Templates for Collaborative Patterns
	5.3.4.5. Constructing ART Templates for Duplicated Code Fragments and Methods

	5.3.5. ART Templates to Original Clone-Instances

	5.4. Conclusions

	Chapter 6. Evaluation and Benefits of Managing Clones Using the ART
	6.1. Evaluation
	6.1.1. Java Buffer Library Example
	6.1.2. Notepad Example
	6.1.3. Linux Kernel Example
	6.1.4. Quantitative Evaluation
	6.1.5. Qualitative Evaluation
	6.1.5.1. Aid in Program Understanding and Maintenance
	6.1.5.2. Reusing Templates within a Version of the Software
	6.1.5.3. Reusing Templates across Versions of the Software
	6.1.5.4. Handling Evolutionary Changes

	6.1.6. Trade-offs and Threats to Validity of Results

	6.2. Related Works
	6.2.1. Managing Redundancies in Software Systems
	6.2.2. ART versus XVCL
	6.2.3. ART versus Preprocessors
	6.2.4. Variability Management in SPL

	6.3. Conclusions

	Chapter 7. Conclusions and Future work
	7.1. Summary
	7.2. Future Research Directions

	Bibliography

