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Summary

Summary

Object recognition has been a central task to the computer vision commu-

nity since the early days of using computers to identify hand-written characters.

Through these fruitful decades of increasing machine intelligence, we have taken

huge strides in solving specific tasks, such as classification systems for automated

assembly line inspection, hand-written character recognition in mail sorting ma-

chines, bill counting and inspection in automated teller machines, to name a

few. Despite these successful applications, computers have made little progress

in generalizing object appearance, even under moderately controlled sensing en-

vironments. On the other hand, humans can effortlessly categorize hundreds of

objects present in highly complex scenarios. We believe this success in pattern

recognition is due to the variety of cues utilized by the human vision system.

Therefore, the central topic is this thesis is a cue-based approach to object cat-

egorization.

There are several cues that assist, both humans and computers alike, in iden-

tifying objects from two-dimensional images. Primary among these cues is the

shape of the object. The first contribution of this thesis is to propose a novel lo-

cal shape descriptor using log-polar transform, which is robust to arbitrary scale,

rotation and view-point changes. The proposed local feature based shape clas-

sification framework was tested on a widely used and challenging shape dataset

with excellent improvement compared to existing works.

Secondly, we extend our binary shape classification framework to the more

general case of classifying grayscale images. The second contribution of this the-
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Summary

sis is then to develop a novel log-polar encoding of grayscale appearance cues,

such as texture and structure, and binary shape information for classification of

grayscale object images. The proposed image classification system was tested

on the popular ETH-80 dataset with significant improvement in classification

performance compared to state-of-the-art methods. Thirdly, we also demon-

strate high classification performance on popular benchmark datasets, such as

the Caltech-101 and Flickr-101 object dataset, using a novel multi-cue object

representation of color images.

Finally, besides the above research works, we develop a real world application

based on log-polar transform for monitoring vehicles on expressways. The nov-

elty of this design is the usage of multiple depth-of-field information for tracking

expressway vehicles over a longer range, and thus provide accurate speed infor-

mation for overspeed vehicle detection. A novel speed calculation algorithm was

designed for the composite vision information acquired by the system. The cal-

culated speed of the vehicles was verified using RADAR speed detection systems

and smartphone applications.
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Chapter 1

Introduction

Object recognition has been a central task to the computer vision community

since the early days of using computers to identify hand-written characters [1].

Through these fruitful years of increasing machine intelligence, we have taken

huge strides in solving specific tasks, such as classification systems for automated

assembly line inspection [2], hand-written character recognition in mail sorting

machines [3], bill counting and inspection in automated teller machines [4], to

name a few. Despite these successful applications, computers have made little

progress in generalizing object appearance, even under moderately controlled

sensing environments.

Many mammals, especially humans, perceive the world using visual cues as

their dominant source of information [5]. Consequently, humans can effortlessly

categorize hundreds of objects present in highly complex scenarios, which is made

possible by the highly evolved visual cortex that accounts for a variety of visual

cues. Therefore, we believe a cue-based approach to object categorization is key

to achieving real progress toward intelligent systems, and this thesis aims to take

1



Chapter 1. Introduction

a step in this direction.

Several visual cues assist, both humans and computers alike, in identifying

objects from two-dimensional images. Some examples are shape, depth, motion,

texture, color, and 3D pose. Among these cues, shape is an elementary aspect of

visual processing as it provides important clues about the identity and functional

properties of the object. Hence, object recognition research in its budding years

was primarily concerned with 3D shape representation [6, 7]. In the late 80’s,

the theory of recognition-by-components [8] proposed a powerful set of regular-

izing constraints using shape primitives for object recognition. It proposed that

humans made use of easily detectable perceptual properties (curvature, collinear-

ity, symmetry, parallelism and cotermination) that are invariant to orientation

changes, distortion, and occlusion. Nevertheless, this theory has not been used

successfully in natural images due to the representational gap between low-level

features and abstract nature of model components. Subsequent two decades of

research in object recognition moved away from 3D geometry to appearance-

based recognition systems, which opened up new horizons in recognizing natural

images [9].

Appearance-based recognition methods can be divided into global feature

methods and local feature methods. The latter gained momentum in the first

half of the 2000s mainly due to its superior performance in scenarios like clutter

and partial occlusion [10]. The principal idea behind these methods is to extract

several local features from an image and then identify the likely object from

which those features were extracted. One of the pioneering local descriptors,

scale invariant feature transform (SIFT), was developed by Lowe [11]. He de-

2



Chapter 1. Introduction

scribes an object recognition system that uses heuristically derived local features

that are proposed to be invariant to image scaling, translation, rotation, and

partially invariant to illumination changes [11]. Similarly, simple rigid template

approaches with clever crafting of local features have also shown excellent per-

formance [12]. However, heuristically designed feature descriptors fail to achieve

invariant properties theoretically. Therefore, one of the focuses of this thesis

is to develop a local descriptor with a sound mathematical basis for scale and

rotation invariance.

To summarize this thesis, we begin with the investigation of binary shape

image classification using local features invariant to scaling and rotation, and

then investigate the classification of grayscale and color images by incorporating

more local object cues. Finally, we present a video processing application based

on the image sampling technique extensively used in this thesis.

A brief review of the recent results and related works are presented in this

chapter.

1.1 Binary Shape Classification

Classification of shapes irrespective of scale, rotation, position and other

appearance variations is a challenging and important problem in pattern recog-

nition. While some progress has been made in resolving these challenges, shape

classification has already found its application in numerous ad hoc machine vi-

sion settings [2] like assembly line inspection, surface corrosion detection, rail-

roads parts inspection, laser butt-joint welding, wrist watch quality detection,

to name a few. Over the past few decades, dozens of feature descriptors have

3



Chapter 1. Introduction

been engineered for shape analysis and classification [13–25].

One of the classical approaches for shape representation is to obtain ‘shape

invariants’. The idea is that one could compute functions of geometric primitives

of the image that do not change under different image formation conditions and

viewing geometry. Common shape invariants include (a) simple geometric invari-

ants such as the cross-ratio, distance ratio, angle, etc.; (b) algebraic invariants

such as determinant, eigenvalues [26]; (c) differential invariants such as curva-

ture, torsion and Gaussian curvature [27]. However, shape representation using

invariants has some major problems. First, shape invariants are usually derived

from the pure geometric transformation of shapes, which are less applicable to

non-rigid objects considered in this work. Moreover, invariants are very sensitive

to boundary noise and occlusions [27]. Finally, the most challenging aspect of

invariant methods is the matching using some form of subgraph method, which

is known to be an NP-complete problem [26].

In order to overcome the above limitations of differential invariants, invari-

ants based on integral computations have been proposed. One major drawback

of integral invariants is that they are mostly global descriptors, and are thus

sensitive to occlusion. On the other hand, recent works like the multiscale inte-

gral invariants [28] have developed local descriptors, which have been shown to

have competitive performance for shape matching. However, multiscale integral

invariants are invariant only to translation, rotation, and uniform scaling. Our

work aims to achieve invariance even under non-uniform scaling by representing

shapes structurally without assuming any geometric information.

In general, there are two ways of representing shapes to obtain a global or

4



Chapter 1. Introduction

structural descriptor: contour-based and region-based representation. Contour-

based representations [19,20] extract information only from the shape boundary,

whereas region-based descriptors such as image moment invariants [24], Zernike

moments [25], shape matrix [23] analyze the shape as a whole. These two ap-

proaches can also be classified as spatial domain and transform domain, de-

pending on whether the features are obtained in the spatial domain or in the

transformed space. In practice, the spatial domain approach has been found to

be very sensitive to noise, distortions and occlusions [27]. Out of the transform

domain methods, Fourier transform based spectral analysis has been identified

as a superior tool to represent shape for both contour-based and region-based

descriptors [27]. Based on this line of reasoning, we choose to represent the

binary shapes in the spectral domain using Fourier transform.

Global approaches create a holistic representation of the shape, and therefore,

they are susceptible to corruption when there is a considerable viewpoint change

or occlusion. On the other hand, local shape descriptors employed structurally,

such as shape context [29], have been shown to be robust to deformations. It

is to be noted that shape context creates log-polar histograms1 instead of us-

ing the classic LPT, which is sampling the image at the intersection of rings

and wedges of the transform. Moreover, the shape context requires a point-by-

point matching scheme for two shapes, which makes it unsuitable for fast online

shape matching [27]. This motivates us to employ the classic log-polar transform

(LPT) [32] as a local descriptor, which converts scale and rotation changes in

the image domain to horizontal and vertical translations in the log-polar domain,

respectively. Therefore, by obtaining the Fourier transform modulus (the magni-

1Similar trend for grayscale images; popular examples of log-polar histograms are [12,30,31]
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tude of the 2-D Fourier transform) of the log-polar sampling, scale and rotation

invariance can be enforced. Although LPT has been used to obtain scale and ro-

tation invariance in many computer vision applications (image registration [33],

shape classification [32], grayscale object recognition/detection [31,34–36], image

tracking [37], pose estimation [38]), it has been rarely applied to shape classifica-

tion since the advent of powerful classification schemes such as the bag-of-words

model.

The bag-of-words model has recently emerged as the dominant framework in

image classification tasks, such as object and scene classification [39–42]. First,

keypoint detection [39,43] or dense sampling [44,45] is done on the image to select

patches of interest, followed by a description of each patch using SIFT [39, 46],

raw patch [43, 47] or filter-based representations [44, 48]. Subsequently, the de-

scriptors are quantized using a visual vocabulary or codebook that is commonly

built using K-means [39, 44]. Finally, the histograms of the training images are

used to train a linear/non-linear classifier. The bag-of-words framework was ap-

plied to shape classification with some success [49], which motivates us to employ

it in this work.

The major disadvantage of the bag-of-words framework is the lack of spatial

information in the histogram representation. This problem was alleviated by the

introduction of spatial pyramid matching (SPM), which divides the image into

increasingly finer regions and constructs a histogram for each region [50]. This

results in a histogram representation with a dimension equal to the number of

regions times the codebook size. Spatial pyramid matching has been widely ap-

plied to scene classification tasks and it is also responsible for inspiring an array
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of works for the feature pooling step [51–54]. In general, higher classification

accuracy has been linked to a larger vocabulary [50, 55], but saturation can be

expected at some point [55]. In light of this fact, the histogram obtained from

the SPM approach using a large codebook is very high-dimensional (21 times

the codebook size for the standard 1× 1, 2× 2 and 4× 4 representation), which

compromises on training time and classification accuracy due to the ‘curse of

dimensionality’ problem [51]. Therefore, the importance of contextual informa-

tion, i.e., the spatial relationship between the local features has been explored

by many researchers.

In the face of occlusion, noise, and variations in pose, several object cate-

gorization models use appearance and contextual information to improve clas-

sification accuracy [56]. The Markov stationary features (MSF), first proposed

in [57], provides an interesting alternative for encoding spatial information by

using the spatial co-occurrence matrix [58]. Although the stationary distribution

is a unique method to extract features, it requires calculation of higher powers

of matrices (typically 50) which can be extremely prohibitive for large code-

books. Moreover, the stationary distribution is an indirect method to capture

information from the spatial co-occurrence matrix. In order to find an intuitive,

yet a computationally less intensive way to encode contextual information, we

consider the image as an article written using many “visual” words in the bag-

of-words framework. Therefore, the problem of image processing is similar to

language processing. In the domain of natural language processing (NLP) [59],

which gave birth to the bag-of-words representation, contextual information is

commonly incorporated using the N-gram model for text classification. Inspired
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by this idea, we interpret each entry in the spatial co-occurrence matrix as a

bi-gram count. Although interpreting the spatial co-occurrence matrix as a bi-

gram count is not a new idea [60], we propose a novel method to extract bi-grams

using the corresponding transition matrix. Besides improving the histogram rep-

resentation in the bag-of-words model, choosing the codebook size and selection

of local feature parameters also play a vital role in obtaining high classification

rates. The following paragraph discusses these issues.

There are two very important considerations while using the bag-of-words

model: the extracted local features and the codebook size. Most methods in the

literature use a codebook size deemed to be large enough, simply chosen by trial-

and-error, without using a solid criteria. However, there are a handful of recent

works in the literature [61–64] addressing the problem of codebook size selection.

In [63], an iterative method was designed for obtaining a codebook by merging

two clusters that have minimum loss of mutual information. The input to the

iterative method is a codebook generated by K-means, and thus inconveniently

requires selecting a ‘good’ size in the first place. Recently, [62] reformulated

codebook generation in a supervised setting as a neural network model. Note

that the focus of this thesis is limited to unsupervised codebook generation in

the traditional bag-of-words framework. In reference [61], conditional entropy

and purity were proposed to evaluate the quality of the generated codebook.

However, both these measures suffer from over-fitting, and therefore prefer ar-

bitrarily large codebook sizes. As the number of clusters increases, purity and

entropy reach their ideal values at the cost of having each sample as a cluster.

A similar problem was encountered in the training of decision trees and gain
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ratio [65] was subsequently introduced for selecting an optimal attribute. We

take inspiration from gain ratio and propose a metric for choosing an appropriate

codebook size in the bag-of-words model. Additionally, we propose an iterative

method to jointly tune the codebook size and the local feature parameters using

the training data.

To summarize, our focus in this thesis is to investigate and develop a robust

classification framework for binary shapes that have scale, rotation and strong

viewpoint variations.

1.2 Grayscale Image Classification

A cue-based approach to object classification is important for generalization

to unseen objects. However, this aspect has been rarely studied due to the nature

of training and testing protocol used for several grayscale image datasets. While

the practice of using a random training and testing split avoids the bias of having

a fixed training set, it leads to difficulties in objectively evaluating whether

the training images yield a visual world model that can generalize to unseen

objects of a known object category. Moreover, a significant obstacle for rigorously

evaluating both appearance and shape based methods is the widespread use of

databases without segmentation ground truth for the object categorization task.

We address both these problems by adopting the rigorous leave-one-object-out

cross validation protocol on the ETH-80 dataset, which provides segmentation

ground truth for each object.

Several works extract different local descriptors, and treat them as different

cues in their object recognition framework. For instance, [66] combined shape
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cues obtained from SIFT descriptors and color cues obtained from the histogram

of RGB values for object classification. Similarly, [67] ambitiously combined

multiple interest point detectors and multiple descriptors for detecting objects

in an image. Likewise, [68] combined dense SIFT, self-similarity descriptors, and

geometric blur features with multiple kernel learning to obtain the final image

representation. A similar attempt was made in [69] and [70] to combine multiple

feature channels for image classification.

Differing from the above works, a handful of attempts have been made in the

past with the aim of encoding multiple cues by designing a novel image processing

method for object recognition. Reference [71] combined texture cues obtained

from texture-layout filters [72] and contour fragments [73] obtained using sets of

edges matched to the image using the oriented chamfer distance. In the same

vein, [74] combined outline contour and the enclosed texture in pictorial struc-

tures for object detection. While popular descriptors like SIFT capture texture

and gradient information, they do not explicitly encode shape information. How-

ever, there are a few handcrafted local shape descriptors, such as the pyramidal

gradient descriptor [75], which is a histogram of oriented gradients computed

on the output of a Canny edge detector. Similarly, some works [73, 75] do ob-

tain local contour fragments to encode shape information from grayscale images.

Although appearance based approaches have taken the forefront of object cat-

egorization research [10], shape based object categorization in natural images

has been of increasing interest lately [76], with the help of advances in contour

detection [77]. This thesis aims to take a further step by encoding grayscale

texture, structure, and object shape extracted using saliency detection [78] in a
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unified bag-of-features framework using log-polar transform.

Our work aims to achieve scale and rotation invariance, and in this regard,

is most similar to [36], which has used the classic log-polar transform to achieve

scale invariance without scale selection for grayscale images. Reference [36]

presents scale invariant descriptors (SIDs) that use a logarithmic sampling on

band-pass filtered images. As a result of the non-uniform scale of spatial sam-

pling, centered at each pixel of the image, the authors showed that it is possible

to obtain feature vectors that are scale and rotation invariant, by transforming

the corresponding log-polar sampled amplitude, orientation and phase maps into

the Fourier domain. In comparison to [36], we sample the shape boundaries of

the extracted binary shape image by using the log-polar transform followed by

obtaining its Fourier transform modulus. In addition, we also sample the struc-

ture and texture images on keypoints selected using an image denoising method,

as discussed below.

Existing works have adopted two main strategies for selecting keypoints: (1)

the simple but counter-intuitive strategy of densely sampling the entire image

regardless of object boundaries, and (2) the more principled approach of design-

ing sophisticated scale-and-affine invariant keypoint detectors. Our work takes

a different approach for selecting keypoints, based on the assumption that a

keypoint only needs to be visually salient with respect to its neighbors, and it

need not possess invariant properties. Therefore, dealing with noise is a cru-

cial aspect of such a strategy. In this regard, the most related work is in the

image denoising literature, which has a multitude of algorithms reviewed ex-

tensively in [79]. Gaussian smoothing, anisotropic smoothing (mean curvature
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motion), total variation minimization, and the neighborhood filters are examples

of image denoising methods. Inspired by the success of variational methods on

state-of-the-art optical flow benchmark datasets [80, 81], we choose the Rudin-

Osher-Fatemi (ROF) model [82] to perform image denoising. In fact, the optical

flow literature has a different interpretation of the ROF model, that is, the de-

noised image is termed as structure and the residue is treated as texture. Thus,

in our work, the output of the ROF algorithm is efficiently used for keypoint

detection, and also for obtaining grayscale structure and texture cues.

For combining features from different cues, a natural choice for the classi-

fication framework is the bag-of-words model, which has become the standard

image classification pipeline due to its simplicity and high performance on vari-

ous datasets [39, 43, 44]. Each set of local descriptors extracted for a particular

cue are quantized using a visual vocabulary that is built using K-means. Then,

the histogram representation for all the cues are concatenated to form the final

representation. Apart from the proposed feature extraction method, we also ad-

dress the issue of choosing the optimal codewords in the visual codebook, which

aims to reduce the codebook size and simultaneously improve classification per-

formance.

The dictionary used for vector quantization usually consists of several code-

words that are both unnecessary and detrimental to the classification perfor-

mance. Hence, many works have aimed to optimize the visual dictionary by

merging codewords [48,83] or choosing the best codebook based on global code-

book measures [84, 85]. Some works also consider pruning a very large code-

book using criteria like likelihood ratio [86], entropy-based minimum description
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length [87], etc. Similar to [87], we select the codewords from a clustering evalu-

ation perspective by discarding clusters with a very high entropy. In particular,

high entropy clusters have members from almost all object categories, and there-

fore, they are potentially confusing when creating the histogram representation.

However, moderately high entropy clusters may still be useful for classification,

in case of shared features between different categories. To balance these two

ideals, we use cross-validation to determine the usefulness of a cluster, and thus

achieve reduction in codebook size and also performance boost.

To summarize, our focus in this dissertation is to investigate how to develop

a robust object categorization framework that efficiently combines appearance

and shape cues using the bag-of-words model.

1.3 Color Image Classification

Physiological and clinical studies in humans suggest that visual information

processing is highly parallelized, and different cues such as color, depth, form,

are perceived by separate channels [88]. In computer vision, this model of vi-

sual information processing has been widely adopted in the saliency detection

literature (refer to [89,90]). Drawing inspiration from the success of the saliency

models, we propose parallelized local encoding for multiple object cues like color,

structure, texture, and shape, using the log-polar transform in the bag-of-words

framework.

In the bag-of-words framework, the first big improvement came in the form

of spatial pyramid pooling [50], which aims to capture mid-level information by

dividing the image into several smaller regions and encoding regional histograms
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apart from the global bag-of-words histogram representation. Inspired by the

spatial pyramid approach, some works have tried to modify the rigid rectangu-

lar grid pooling to obtain compact and adaptive representations [51,54]. Besides

pooling techniques, much of the effort by the computer vision community has

been in the direction of advanced encoding methods, which assign each local de-

scriptor to multiple codewords instead of assigning it to the closest one (vector

quantization) or extract covariance measures. Some successful techniques are

sparse coding [52], locality constrained linear coding [91], Fisher vector encod-

ing [92], vector of locally aggregated descriptors [93], radial basis coding [94], etc.

The premise of all these methods is that information is lost when a local descrip-

tor is simply assigned to the nearest codeword. While improvements have been

reported for these advanced encoding methods over vector quantization, high

performance improvements have been elusive under controlled conditions [95].

Moreover, the computational cost is rather high for these methods, as noted

in [95]. In stark contrast to the above works, we believe that if the features are

powerful enough, vector quantization’s performance can be significantly higher

than the reported results using various local descriptors such as SIFT, PHOW,

self-similarity image descriptor, etc. To this end, we propose a multi-cue ob-

ject representation using vector quantization that has significant performance

improvement over several encoding methods.

Apart from advanced encoding techniques to improve the standard histogram

representation, a few works have tried to capture the local statistics of the im-

age by including contextual information, such as bi-grams [84], or Markov sta-

tionary features [57], or higher order spatial co-occurrence statistics [96]. In
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general, large codebooks are associated with better performance in the bag-of-

words framework, but obtaining co-occurrence statistics from large codebooks

would be very noisy. For instance, a nominal codebook size of 2000 used in many

works would lead to a spatial co-occurrence matrix of dimension 2000 by 2000,

which is already prohibitive to store and process. Inspired by the performance

of small visual codebooks in techniques like Fisher vector encoding and vector

of locally aggregated descriptors, we propose to encode co-occurrence statistics

using codebooks with just over hundred codewords. Thus, we can obtain an im-

provement in the classification accuracy while retaining computational efficiency.

Recent works using the bag-of-features model for image classification opt

for a simple dense sampling strategy instead of a keypoint detector to choose

the sampling locations in the image [55, 95]. Usually, the number of sampling

points chosen by keypoint detectors is drastically outnumbered by the dense key-

points strategy. Consequently, keypoint detectors are often at a disadvantage,

as the classification accuracy relies heavily on the number of local descriptors

extracted from the image [55]. Although the simplicity of the dense grid key-

points is appealing, the computational cost of obtaining the local descriptors

is very high. Therefore, we investigate the possibility of a keypoint detection

scheme that produces on par performance with the dense keypoint strategy, at

a much lower computational cost in terms of both memory and computational

time requirements.

Similar to the strategy adopted for the grayscale images, we define keypoints

as visually salient locations in the image. A salient region refers to an area that

“stands-out” from its neighborhood and therefore pre-attentively captures atten-

15



Chapter 1. Introduction

tion. In the saliency literature, entropy has been used as a quantifying measure

by many works [97–101]. However, entropy based salient detectors like AIM [99]

have much lower precision and recall compared to other algorithms developed

for salient region detection [90, 102] on various benchmark datasets. This im-

plies that both the quality and quantity of pixels chosen as salient locations are

sub-optimal for entropy based saliency detectors. Therefore, motivated by the

lack of success for the mathematically sound information theoretic measure, we

propose the continuous domain version of entropy - differential entropy - to have

better discriminative power over discrete entropy for the problem of choosing

keypoints for feature extraction.

In a nutshell, our focus in this thesis is to investigate and provide solutions

to efficiently combine color, appearance and shape cues using the bag-of-words

model, with very high performance without using any advanced encoding meth-

ods.

1.4 Application to Video Processing

Object tracking is one of the central tasks in video processing with vari-

ous practical applications such as human-computer interaction [103, 104], video

surveillance [105–107], vehicle navigation [108], traffic monitoring [109–111], and

motion analysis [112]. In this dissertation, the focus is on traffic monitoring in

expressways for automatic overspeed vehicle detection.

Over the past few years, many computer vision based traffic monitoring sys-

tems have been developed [113–119]. These methods either use a single camera

or a stereo camera for monitoring the vehicles. As a result, the performance of
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the above-mentioned systems is limited by the fixed depth-of-field of the cameras

(small tracking range) [120,121], and they are better suited for traffic monitoring

situations such as congestion control and intersection monitoring. In practice, a

long tracking range is crucial when high-speed vehicle monitoring is required.

On the other hand, traditional traffic monitoring approaches using sensors

such as LIDAR/RADAR have a different set of drawbacks. These approaches

generally work as follows. The sensors detect the presence of a possible over-

speeding vehicle and trigger a camera to capture its image. However, when many

vehicles are present in the vicinity of the overspeeding vehicle, the detector will

not be able to single it out, as seen in some of the wrong speed tickets issued

worldwide [122, 123]. Furthermore, interference caused by big vehicles can lead

to unreliable results for speed detection. Essentially, the communication gap

between the sensor and the visual data limits law enforcement. Therefore, a

vision-based traffic monitoring system that can address the above issues without

succumbing to the problem of a small tracking range is desirable.

Reference [124] proposed a multiple depth-of-field image sensor, inspired by

the vision of raptors, for deep-field object tracking. Compared to traditional

cameras, [124] used the composite image information to detect the presence of

vehicles over a longer range. However, only a limited portion of the tracking

result was used as a switch to activate another camera for license plate detec-

tion. In fact, this can be achieved by a single camera or other sensors. In other

words, [124] only showed that tracking could be done in the deep field without

utilizing the full tracking range for a suitable application. Moreover, the system

developed in [124] is capable of tracking only one object at a given instant. In
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contrast, we consider tracking multiple objects simultaneously by making use of

USB 3.0 cameras instead of the surveillance cameras used by the authors of [124].

It is to be noted that the usage of USB 3.0 cameras is crucially important for

the quality of speed detection, because they offer high frame rates with minimal

frame dropping and also support synchronous video acquisition with easy plug-

and-play ability with laptops. On the contrary, surveillance camera standards

such as Gigabit Ethernet/Fire Wire/Camera Link require a special communica-

tion device for data acquisition and a separate power supply. Additionally, the

high bandwidth and the portability of USB 3.0 cameras offer a great alternative

to the cumbersome and unreliable (high frame dropping) cameras used in [124].

In this thesis, we propose a speed detection application that utilizes the full

tracking range (up to 1 km) acquired from cameras of different visual field depths.

To this end, we utilize the log-polar transform to stitch the visual information

obtained by each camera into a single video stream, and track the vehicles in the

LPT space instead of the Cartesian space. Then, the tracking information is used

to trigger a third camera for capturing the license plate information whenever a

vehicle is detected to be exceeding the allowed speed threshold.

In summary, we aim to develop a composite vision system with multiple

depth-of-field viewing ability that extends the tracking range of traditional traffic

monitoring systems.

1.5 Objectives and Contributions

As discussed in the previous sections, despite the extensive work in the field

of object classification and video processing, there are still challenges that have
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not been addressed thoroughly. The principal aim of this thesis is to develop a

novel object classification framework that incorporates object cues using invari-

ant local features and contextual information, and extend the tracking abilities

of current vision-based traffic monitoring systems by including multiple depth-

of-field information. The main contributions of our work are as follows.

1. Binary Shape Classification: We propose a classification framework for

binary shapes that have scale, rotation and strong viewpoint variations.

To this end, we develop several novel techniques. First, we employ the

spectral magnitude of log-polar transform as a local feature in the bag-of-

words model. Second, we incorporate contextual information in the bag-

of-words model using a novel method to extract bi-grams from the spatial

co-occurrence matrix. Third, a novel metric termed ‘weighted gain ratio’

is proposed to select a suitable codebook size in the bag-of-words model.

The proposed metric is generic, and hence it can be used for any clustering

quality evaluation task. Fourth, a joint learning framework is proposed

to learn features in a data-driven manner, and thus avoid manual fine-

tuning of the model parameters. We test our shape classification system

on the animal shapes dataset and significantly outperform state-of-the-art

methods in the literature.

2. Grayscale Image Classification: We propose a cue-based object cate-

gorization framework to extract different types of image information, and

fuse it to obtain better discriminative power. Specifically, we used the

Rudin-Osher-Fatemi method to decompose the grayscale image into the

structure and texture parts, and extracted local features using the log-
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polar transform. Furthermore, local shape descriptors are extracted using a

state-of-the-art salient object detection model to account for contour cues.

The extracted local descriptors are quantized using the bag-of-words rep-

resentation with some key contributions: (1) a keypoint detection scheme

based on image denoising is proposed to select sampling locations, and

(2) a codebook optimization scheme based on discrete entropy is proposed

to reduce the number of codewords and at the same time increase the

overall performance. We tested our framework on the ETH-80 dataset us-

ing the leave-one-object-out cross validation method and obtained a very

high improvement in classification performance compared to state-of-the-

art methods.

3. Color Image Classification: We propose a multi-cue object representa-

tion for color image classification using the standard bag-of-words model.

Ever since the success of the bag-of-words model for image classification,

several modifications of it have been proposed in the literature. These

variants target to improve key aspects, such as efficient and compact dic-

tionary learning, advanced image encoding techniques, pooling methods,

and efficient kernels for the final classification step. In particular, “soft-

encoding” methods such as sparse coding, locality constrained linear cod-

ing, Fisher vector encoding, have received great attention in the literature,

to improve upon the “hard-assignment” by vector quantization. However,

these methods come at a higher computational cost while little attention

has been paid to the extracted local features. In contrast, we propose

a novel multi-cue object representation for image classification using the
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simple vector quantization, and show highly competitive classification per-

formance compared to state-of-the-art methods on popular datasets like

Caltech-101 and MICC Flickr-101. Apart from the object representation,

we also propose a novel keypoint detection scheme that helps to achieve

a classification rate comparable to the popular dense keypoint sampling

strategy, at a much lower computational cost.

4. Application to Video Processing: We present a novel vision-based

traffic monitoring system, which is inspired by the visual structure found in

raptors, for tracking expressway vehicles and estimation of their real-world

speed. This vision system also features a license plate detection camera

which is triggered whenever there is an instance of overspeeding. One of the

main novelties of the proposed system is the usage of multiple depth-of-field

information in log-polar space for tracking expressway vehicles over a longer

range compared to the typical Doppler effect-based RADAR or LIDAR

traffic monitoring systems. Thus, the proposed system provides accurate

speed information for overspeed vehicle detection using computer vision

techniques. To this end, a novel speed calculation algorithm is proposed

for the composite vision information acquired by the system, and with the

aid of a license plate detection camera, identity information of the over-

speeding vehicles can be recorded for law enforcement. The calculated

speed was verified using RADAR speed detection systems and smartphone

applications, and the deviation was found to be within ±3 km/hr compared

to the real-world driving speed. In summary, the proposed system provides

a novel solution to improve the capabilities of traffic monitoring using vision
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based methods.

1.6 Thesis Organization

The remainder of the thesis is organized as follows.

Chapter 2 introduces the log-polar sampling technique used in the subsequent

chapters of the thesis. Preliminary evaluations are given to test the ability of

log-polar transform to classify binary shapes with scale and rotation variations

using a simple global classification framework.

Chapter 3 presents a local feature based binary shape classification framework

for dealing with scale, rotation, and strong view-point variations. Extensive

evaluations of the framework on a challenging benchmark database is given.

Chapter 4 further introduces a grayscale image classification framework that

efficiently combines appearance and shape cues. Apart from the comparison

to state-of-the-art solutions, comparative evaluations of the performance of the

appearance cues and the shape cue are made on a popular benchmark dataset.

Chapter 5 presents a generic image classification framework for color images

that efficiently combines color, appearance and shape cues. Extensive evalua-

tions on two standard object datasets are reported.

Chapter 6 introduces a video processing application that is based on the log-

polar sampling technique extensively used in this thesis. The verification of the

speed output of the proposed traffic monitoring system is done using RADAR

speed detection systems and smartphone applications.

Chapter 7 presents our conclusions and indicates future research directions.
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Chapter 2

Scale and Rotation Invariance

using Log-Polar Transform

2.1 Introduction

As mentioned in Chapter 1, heuristically derived local descriptors like SIFT

do not guarantee scale and rotation invariance from a theoretical point of view.

Recently, an attempt [125] was made to theoretically explain the phenomenal

success of the SIFT descriptor. This study has proven that SIFT is scale and

rotation invariant under certain conditions. However, scale and rotation invari-

ance is achieved only for the selected keypoints using the scale-space and does

not apply to other useful structures, like edges in the image [36]. Moreover,

the common method of using SIFT descriptor without keypoint selection in ob-

ject classification systems, though widely reported to give good performance, is

obviously without the guarantee of the invariant properties.

Scale and rotation changes in the Cartesian image correspond to horizontal
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Original image

Log polar transform Fourier Transform Modulus

Original image

Log polar transform Fourier Transform Modulus

                  (a)

(b)

Figure 2.1: Log-polar transform applied to the image by centering on the shape,
followed by computing the Fourier transform modulus. Scale change in the
Cartesian space corresponds to a horizontal shift in the log-polar space, which
can be eliminated by computing the Fourier transform modulus to obtain a scale
invariant descriptor for each binary shape.

and vertical shifts in the log-polar domain, respectively [32]. Note that the

Fourier transform modulus (magnitude of the Fourier transform) of two images

related by pure translation is the same. Consequently, two log-polar images of

similar shapes, which have scale and rotation variations, are expected to have

“similar” Fourier transform magnitude. This concept is illustrated in Figure

2.1 for the simple case of a circle to facilitate easy visual comparison in the

frequency domain. After eliminating the translation differences in the log-polar

space, it is easy to see that circles of different radii have nearly identical features

in the frequency domain. Therefore, our choice of LPT is motivated by this

sound mathematical foundation for ensuring scale and rotation invariance, which
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(a) Primates’ retina photoreceptor distribution.

(b) Mapping from Cartesian (x, y) to log-polar space (ρ, θ).

Figure 2.2: Biologically inspired log-polar mapping.

heuristically designed feature descriptors fail to achieve.

The remainder of this chapter provides details about the log-polar sampling

technique along with preliminary evaluation results on several shape databases.

2.2 Log-Polar Transform

By observing the non-uniform distribution of cones in the primate fovea,

as shown in Figure 2.2(a), a logarithmic relationship for information around the

fovea structure can be established [126]. Therefore, by considering an exponential

sampling of the Cartesian image, the log-polar transform simulates the foveal

mechanism of the human vision system. In other words, there is dense sampling
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near the center of the log-polar grid and coarse sampling towards the periphery

(see Figure 2.2(b)).

Let us define the mapping from Cartesian coordinates of the image - (x, y)

to LPT coordinates - (ρ, θ) as follows,

x′ = r cos θ, y′ = r sin θ, (2.1)

where (r, θ) are polar coordinates defined with (xc, yc) as the center of the trans-

form and (x′, y′) = (x− xc, y − yc), that is,

r =
√

(x′)2 + (y′)2. (2.2)

The angle θ is required to be in the range [0, 2π), but arctan is defined only

for (−π
2 , π2 ). Therefore, the angles are computed depending on the quadrant as

shown below.

θ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan
(
y′
x′

)
if x′ > 0

arctan
(
y′
x′

)
+ π if x′ < 0

+π
2 if y′ > 0, x′ = 0

+3π
2 if y′ < 0, x′ = 0

undefined if y′ = 0, x′ = 0

(2.3)

The above operation produces output in the range (−π
2 , 3π2 ], which can be mapped

to [0, 2π) by adding 2π to negative values. The convention of the log-polar param-

eters in [35] has been adopted here: (1) The radii of the smallest is represented as

rmin. (2) The maximum radius is represented as rmax. (3) The logarithmic scal-
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ing is defined as ρ = log r. (4) The number of rings and wedges are represented

as nr and nw, respectively.

The samples of LPT lie at the intersection between rings and wedges, and

thus the size of the log-polar image is nr by nw. In general, the intersection

happens at arbitrary locations in the image, and therefore bilinear interpolation

is used to find the image intensity at these locations. Bilinear interpolation

considers the closest 2× 2 neighborhood of known pixel values surrounding the

unknown value. For instance, if (x, y) is the location of the unknown value in

an image I, and (x1, y1),(x1, y2), (x2, y1) and (x2, y2) are the surrounding pixel

locations, then the image intensity I(x, y) is given by a weighted summation,

I(x, y) =
(x2 − x)(y2 − y)

(x2 − x1)(y2 − y1)
I(x1, y1) +

(x− x1)(y2 − y)

(x2 − x1)(y2 − y1)
I(x2, y1)

+
(x2 − x)(y − y1)

(x2 − x1)(y2 − y1)
I(x1, y2) +

(x− x1)(y − y1)

(x2 − x1)(y2 − y1)
I(x2, y2). (2.4)

Due to this non-equidistant polar sampling, scale and rotation changes in the

Cartesian image correspond to horizontal and vertical shifts in the log-polar

domain, respectively. Nevertheless, log-polar transform when used as a global

descriptor, as shown in Fig. 2.1, is sensitive to changes in the location of its

centroid on the image, i.e., greater the center mismatch between two shapes,

greater the image distortion [32]. In other words, noise and occlusion would

severely affect the invariant properties of LPT, which is the principal drawback

of using it as a shape descriptor.

In the computer vision literature, the most successful application of log-

polar mapping has been the shape context [29]. However, it is to be noted

that shape context creates log-polar histograms instead of using the original

27



Chapter 2. Scale and Rotation Invariance using Log-Polar Transform

LPT, which is sampling the image at the intersection of rings and wedges of the

transform. Therefore, when using the original LPT as a centroid-based global

shape descriptor, additional feature extraction would be required to decrease

the effects of noise and misalignment due to occlusions and shape distortions. In

the next section, we present a global shape classification framework using LPT

to test its effectiveness in dealing with scale and rotation changes under noisy

scenarios.

2.3 Global Shape Classification using LPT

For each training image, log-polar sampling is done by centering on the

shape’s centroid, followed by the discrete Fourier transform to obtain a scale

and rotation invariant descriptor. Using all the training descriptors, the feature

extraction module finds a discriminant low-dimensional subspace. After project-

ing the training descriptors to the subspace, the new shape descriptors are simply

stored to be used in the testing stage. For a test image, the Fourier transform

modulus of LPT is projected to the low-dimensional subspace and compared with

the training descriptors for classification using the nearest-neighbor method. In

the following subsection, the feature extraction module is described in detail.

2.3.1 Feature Extraction

Feature extraction is meant to improve the performance of the classifier, by

discarding irrelevant information such as noise and redundancy from the set of

input features [127]. While noise can be readily regarded as a hindrance to

optimal classification, it has also been observed that if the number of training
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Train/test set

Log-polar 
sampling

Fourier 
transform

Feature 
extrac�on

Classifier

Figure 2.3: Flowchart of the global shape classification system based on LPT.

samples is far less than the feature dimension (small sample size), then the

‘curse of dimensionality’ degrades the performance of the classifier [128]. As

a global descriptor, the log-polar sampling produces an order of 104 features,

which would increase the computational complexity of the classifier and affect its

performance on the test data. Although extra computational effort is required for

discriminant feature analysis in the training stage, the classifier performance can

be speeded-up after projecting to the low-dimensional subspace. With this simple

projection step, the classifier can be made robust to noise while maintaining real-

time performance. Moreover, discriminant analysis is essential for differentiating

similar shape categories studied in this thesis.

Among the many feature extraction methods in the literature, three stan-

dard techniques, namely principal component analysis (PCA) [129], Fisher’s lin-

ear discriminant (FLD) [130] and recursive FLD (RFLD) [131] are explored to

improve the shape classification accuracy and reduce computational load during
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the testing phase. A brief overview of the feature extraction techniques is given

below.

Principal Component Analysis

PCA is an unsupervised linear feature extraction method that is largely

exploited for dimensionality reduction. For a set of N d-dimensional sam-

ples (x1, x2, · · · , xN ) with Ni samples in the subset Di belonging to class ωi,

(i = 1, · · · , C), PCA seeks a projection W that minimizes the error function:

JPCA(W ) =
N∑
k=1

||xk − yk||2 (2.5)

where yk is obtained after projection of xk by W as yk = WW Txk. The min-

imization is equivalent to finding the eigenvectors of the total scatter matrix,

defined as:

ST =

N∑
k=1

(xk − μ)(xk − μ)T (2.6)

where μ is the mean of all training samples:

μ =
1

N

N∑
k=1

xk. (2.7)

The columns of W associated with non-trivial eigenvalues are called the principal

components (PCs), and those with negligible eigenvalues are regarded as arising

from noise.
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Fisher’s Linear Discriminant

FLD is a supervised feature extraction method to minimize the within-class

and between-class scatter, i.e., it maximizes the following objective function,

JFLD(w) =
wTSBw

wTSWw
. (2.8)

The between-class scatter matrix SB is defined as follows:

SB =

C∑
i=1

Ni(μi − μ)(μi − μ)T (2.9)

where Ni is the number of samples in each class and μi is the sample mean of

class i. The within-class scatter matrix SW is given by,

SW =

C∑
i=1

Si where Si =
∑
x∈Di

(x− μi)(x− μi)
T . (2.10)

The vector w that maximizes equation (2.8) must satisfy:

SBw = λSWw. (2.11)

If SW is full-rank, we can obtain a conventional eigenvalue problem by ob-

taining the inverse of SW as S−1
W SBw = λw. However, often due to the limited

number of training samples compared to the dimension of the samples, SW is

singular. Typically, PCA is employed to reduce the feature dimension and make

SW non-singular. It can be seen that FLD returns utmost C−1 features because

the rank of SB is utmost C − 1. To overcome this limitation, recursive Fisher’s

linear discriminant can be used to extract more than C − 1 features [131]. The
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main idea behind RFLD is to recursively perform FLD while ensuring that the

extracted features are orthogonal to each other. Due to space constraints, the

reader is directed to [131] for the technical details of RFLD.

2.4 Experimental Results and Discussion

The global shape classification framework described in the earlier section was

tested on five publicly available shape datasets. The selection of the databases

were done keeping in mind to test our framework for similar & noisy binary

shapes. We selected three datasets following the work of [132]. The authors

of [132] tested their algorithm on shapes created from automatic segmentation

methods that result in noisy artifacts at the shape boundaries. Furthermore, they

selected shape categories that exhibit high inter-class similarities. We also se-

lected two widely used benchmark datasets, Kimia-216 [133] and Chicken pieces

silhouettes database [134], to test our shape classification framework. Figure 2.4

shows sample shapes from the five databases.

Table 2.1 & 2.2 shows the classification accuracy of the proposed framework

in comparison to previous works in the literature. We outperform the state-

of-the-art methods on three datasets and perform on par with state-of-the-art

algorithms on the Kimia-216 and the MPEG-7 dataset. From the results of

MPEG-7, Kimia-216 and the Chicken pieces datasets, it is clear that feature

extraction plays a crucial role in obtaining high performance when dealing with

similar and noisy shape categories. Although PCA helps to reduce the computa-

tional load during the classification stage, its accuracy is the same as that of the

direct nearest-neighbor method without feature extraction, because we consider
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(a) Airplane shapes – 7 categories.

(b) Vehicle shapes – 4 categories column-wise.

(c) Subset of MPEG-7 – 7 categories row-wise.

(d) Kimia216 – 18 categories.

(e) Chicken shapes – 5 categories row-wise.

Figure 2.4: Shape databases used in this work.
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Table 2.1: Comparison of shape classification accuracies on three publicly avail-
able shape databases (%).

Airplanes Vehicles MPEG-7
(7 classes) (4 classes) (7 classes)

Ref. [132] 99.05 84.17 96.43
Ref. [135] 99.00 87.00 –
Ref. [136] 99.42 – –
Ref. [137] – – 98.80
Ref. [138] – 85.42 –
1-NN 100 98.33 92.86
PCA 100 98.33 92.86
FLD 100 98.33 97.14
RFLD 100 99.17 98.57

all the principal components and do not alter the distribution of the samples.

In contrast, Fisher’s linear discriminant and its variant, recursive FLD, show

high capability in rejecting noisy features and overcoming the small sample size

problem. In general, RFLD slightly outperforms FLD due to the flexibility of

the number of features that can be extracted from the input data. Note that we

used a simple nearest-neighbor classifier to demonstrate the effectiveness of the

features. In other words, it is possible that even if the extracted features are not

discriminatory, high performance can be achieved using powerful classifiers like

neural nets or SVM [127].

2.4.1 Discussion

The airplane shapes database (Fig. 2.4(a)) has seven classes with each class

having 30 samples, making a total of 210 shapes. Tenfold cross validation was

carried out following the protocol of [132] and [135]. First, the dataset was

split into 10 non-overlapping sets of (almost) equal size while maintaining the

class balance in each split. Then, we combined 9 of these for training and the

remaining one was used for testing. This process was repeated for the other
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Table 2.2: Comparison of shape classification accuracies on the Kimia-216 and
the Chicken shape database (%).

Kimia-216 Chicken
(18 classes) (5 classes)

Ref. [139] 94.1 –
Ref. [140] 97.2 –
Ref. [141] 97.7 –
Ref. [142] 95.4 86.48
Ref. [143] – 87.16
Ref. [144] – 84.45
Ref. [145] – 81.10
1-NN 94.44 71.14
PCA 94.44 71.14
FLD 97.7 85.91
RFLD 97.7 87.91

combinations of training and testing sets. Unlike [132], we neither filtered the

shapes to reduce the effect of noise nor normalized the shape perimeter to deal

with scale changes. On this well-segmented dataset, we could achieve perfect

classification without requiring any feature extraction methods, just by exploit-

ing the invariant properties of log-polar transform.

In the second set of shape classification experiments, vehicle shapes extracted

from traffic videos are to be classified into one of four classes: sedan, pickup,

minivan and SUV. The shapes are distorted in the bottom half due to shadows,

and no pre-processing was done to remove them (Fig. 2.4(b)). Each class has 30

samples, making a total of 120 shapes. Tenfold cross validation was carried out

following the protocol of [132], wherein we obtained a huge improvement in the

classification results compared to previous works (from 85% to 99%). Note that

simply using the nearest-neighbor classifier without feature extraction already

yields 98% classification accuracy, which suggests that uniform boundary noise

can be handled well by the invariant properties of log-polar transform. Fur-
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thermore, improvements in classification accuracy can be achieved using feature

extraction.

The MPEG-7 database has 1400 shapes with 20 samples for each class. A

subset of this dataset, containing 7 shape classes with 140 samples in total, was

used in [132, 137]. Table 2.1 shows the classification accuracy of the proposed

method, compared to the best results obtained in [132]. Clearly, without feature

extraction, the LPT features perform poorly compared to the benchmark accu-

racy. This is due to the strong distortions, occlusion and inter-class similarities

of the samples, especially among key, bone, and hammer categories. With fea-

ture extraction, the classification accuracy can be improved to 98.6%, which is

comparable to the accuracy reported in [137].

Kimia-216 [133] (Fig. 2.4(d)) is a larger subset of MPEG-7, containing 18

shape categories with 12 shapes per category. Following previous works, we

carried out leave-one-out cross validation to obtain the overall classification ac-

curacy. In comparison to more complex algorithms in the literature, the pro-

posed method outperforms all except one (Table 2.2). Again, the classification

accuracy is lower without discriminant feature extraction while PCA does not

improve upon the direct 1-NN. Both RFLD and FLD analysis produce the same

classification accuracy, which is also equal to the best accuracy of reference [141].

The chicken pieces dataset consists of 446 shapes of five different chicken

parts, namely: wing, breast, leg, thigh and quarter (Fig. 2.4(e)). In compar-

ison to the other four datasets considered so far, the shapes in this database

have strong view-point variations. Following the protocol in the literature, we

randomly divided this dataset into three subsets: 149 shapes for training, 149
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shapes for validation and the remaining 148 shapes for testing [142]. Although

we outperform all the methods in the literature using RFLD analysis, the perfor-

mance is not significantly different from that of [143]. In the next subsection, we

study the effects of varying the LPT parameters on the classification accuracy.

2.4.2 Effect of Varying LPT Parameters

The blind spot for the log-polar sampling is decided by the minimum radius

rmin, inside which sampling is not performed. We simply set the minimum radius

to be 1 pixel to extract as much information as possible. The maximum radius

rmax is set as the maximum radius of the shape image. To study the effect of

varying the LPT grid resolution, we randomly chose several settings for which

nr > 50 and nw > 360
6 , and compared them in terms of classification accuracy.

The results of the comparison study are tabulated in Table 2.3 for the Kimia-

216 and Chicken pieces datasets, with FLD as the feature extraction method.

It is evident that simply increasing the number of rings and wedges does not

guarantee higher classification accuracy, which is especially true for the Chicken

pieces database. The highest resolution considered was 200 rings and 360 wedges,

which failed to give the best classification rate on both the databases. However,

the results are quite stable for many choices of the parameters.

Besides the LPT grid resolution, the minimum radius rmin was chosen to

be 1 pixel without any estimation. Fig. 2.5 shows the effect of varying the

minimum radius on the classification accuracy. For the Vehicles and MPEG-7

datasets, rmin = 3 gives slightly better accuracy compared to rmin = 1. However,

the comparison studies in Fig. 2.5 are not entirely conclusive, since rmin =

1 gives the highest accuracy for the Chicken pieces dataset. In general, we
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Table 2.3: Comparison of classification accuracy using various LPT grid resolu-
tions (%).

Grid resolution (nr by nw) Kimia-216 Chicken

120× 90 97.70 85.91
120× 360 97.70 84.56
120× 180 97.70 83.22
130× 90 95.83 83.22
150× 90 97.22 82.55
180× 90 97.70 81.21
90× 360 98.15 85.91
200× 360 97.22 85.23
190× 180 98.15 85.91
200× 90 97.70 85.23

Figure 2.5: LPT minimum radius vs. classification accuracy.

conclude that a minimum radius of 1 pixel is one of the best choices in terms of

classification accuracy. Besides pure accuracy value evaluations, we demonstrate

the robustness of the LPT shape descriptor using a self-organizing map [146]

(SOM).

2.4.3 Robustness Analysis using Self-Organizing Map

By adopting a strategy originally proposed by Kohonen [146], the SOM estab-

lishes complex relationships that exist among high-dimensional input patterns

into a two-dimensional pattern. Figure 2.6 shows the structure of a SOM. Each
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Figure 2.6: Structure of the self-organizing map.

neuron is represented by a d-dimensional weight-vector Wi, where d is the di-

mension of the LPT feature vector. Neurons are connected to adjacent neurons

by a neighborhood relation that characterizes the topology of the network. The

network is trained iteratively as follows:

1. Randomly select one sample vector from the input data set, and calculate

the Euclidean distances between it and all the weight-vectors Wi of the

network.

2. Find the best matching unit, whose weight-vector is closest to the input

vector. Call this neuron, c.

3. Update the weight-vectors of the network, such that the best matching

unit is moved closer to the input vector.

4. Go to steps 2 and 3, repeat until there are no significant changes while

updating weight-vectors.
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Figure 2.7: Nearest neighbors of the SOM neurons. The weight vector of each
neuron is matched to the closest shape descriptor and the corresponding shape
image is displayed.

In our analysis, we represent all the shapes in the MPEG-7 subset using log-

polar transform followed by its Fourier transform modulus, and feed the FFT

features to a self-organizing neural network of size 10 by 10. After training, the

SOM exhibits distinct clusters for various shapes (Fig. 2.7), thereby demonstrat-

ing that the LPT features have the property of scale and rotation invariance, and

also, are meaningful features for shape classification under noisy conditions.

2.4.4 Computation Time

In this age of information explosion, one of the most important applications

of shape classification is content-based image retrieval (CBIR) [147]. Most CBIR

systems store image content as visual features belonging to one of four categories,

40



Chapter 2. Scale and Rotation Invariance using Log-Polar Transform

namely color, texture, shape and structure [148, 149]. Therefore, modern-day

shape classification systems are required to possess an accurate as well as efficient

methodology. Besides high accuracy achieved by the proposed method on several

benchmark datasets, the computational time is also very low compared to many

recently proposed shape classification algorithms. It is hard to compare the

various methods in the literature in terms of computation time, mainly due to

the lack of publicly available code. While most papers choose not to report the

computation time of the classification step, we rely on a handful of papers for

comparison.

The main bottleneck for the LPT shape descriptor comes from the compu-

tation of the 2-D FFT. If the number of pixels in the log-polar image is N,

the computational complexity is O(N ∗ log(N)), which is orders of magnitude

less than that of ref. [144], whose shape context based computation complexity

is O(N2). Next, we directly compare the processing time of our classification

algorithm with those reported in the literature.

The classification time reported by ref. [139] for the Kimia-216 dataset was

25 min and ref. [140] reported to take 45 min. In comparison to these methods,

the proposed shape classification framework took only 3 min (includes training

time) to classify all 216 shapes of the Kimia-216 dataset. This is substantially

lower than the methods in the literature while not compromising on classification

accuracy. For the Chicken pieces dataset, ref. [144] reported that computing

the pair-wise similarity between two shapes took 76.5 ms on an average. On

the other hand, it takes less than 150 ms for the whole testing stage using

the proposed shape classification framework, i.e, reading the image, log-polar
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Table 2.4: Computation time of the proposed shape classification system for
classifying a test image (in ms).

Testing time

Airplanes 138
Vehicles 132
MPEG-7 133
Kimia-216 143
Chicken 137

sampling, Fourier transform, feature extraction and classification (Fig. 2.3).

The proposed algorithms were implemented in MATLAB on an Intel Core i7-

2600 CPU @ 3.4 GHz with 8 GB memory. Since we did not optimize the code

for speed using a C/C++ implementation, there is still room for improvement

in terms of computation time. The computation time for the testing stage for

all the databases is tabulated in Table 2.4.

2.5 Summary

We proposed a global shape classification system using a biologically inspired

sampling technique called log-polar transform, which achieves scale and rotation

invariance by simulating the distribution of cones in the retina. The perfor-

mance of the proposed shape classifier was tested on five datasets, viz.: Fighter

airplanes, Vehicles, Subset of MPEG-7, Kimia-216 and Chicken pieces. The clas-

sification accuracy of the proposed method was demonstrated to be superior or

on par with more complex algorithms proposed in the literature. For the air-

planes and the vehicles dataset, we achieved superior performance even without

feature extraction. However, for the other three datasets that has distortions,

occlusion or view-point variations, feature extraction was required to close in on

the performance of the previous works in the literature. This implies that the
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global features extracted in the spectral domain of the log-polar transform are

discriminatory as long as there is no occlusion or strong view-point variations.

In other words, the centroid problem of the log-polar transform becomes more

difficult to handle using global analysis, because of the non-uniformity of interior

information across images of the same class. Therefore, log-polar transform as a

local feature would be more suitable in such scenarios, which will be studied in

the next chapter.
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Chapter 3

Shape Classification using

Invariant Local Features and

Contextual Information

3.1 Introduction

As deduced in the earlier chapter, shapes with occlusion and strong view-

point variations pose difficulty to global analysis. Therefore, this chapter aims to

employ log-polar transform as a local feature for classifying binary shapes with

scale, rotation, occlusion and strong view-point variations. The key idea is to

sample each boundary point of the shape using log-polar transform, which is fol-

lowed by computing its Fourier transform modulus. Subsequently, the scale and

rotation invariant local descriptor is obtained by converting the two-dimensional

Fourier transform output into a vector and performing normalization using the

Euclidean norm. The extracted local descriptors are quantized using the bag-of-
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words model while incorporating contextual information for improving the image

representation.

The rest of this chapter is organized as follows. Section 3.2 presents the

shape classification system with implementation details; Section 3.3 presents the

experimental results and discussion, followed by conclusions in section 3.4.

3.2 Contextual Bag-of-Words Model

Binary shapes are classified using the bag-of-words framework consisting of

four main stages: keypoint detection, feature extraction, vector quantization,

and classification. In this work, keypoint detection is simply the selection of

boundary points of the binary shape. Feature extraction involves sampling the

binary shape at the keypoints, using log-polar transform, followed by computing

its Fourier transform modulus. For the training set, the extracted descriptors

are collectively used for K-means to obtain a codebook. The quantization step is

the histogram representation of each training/testing image, using the codebook

generated in the previous step. Then, the histograms of the training images

are used to train an SVM classifier. During testing, the codebook construction

step is bypassed, and a test image is simply represented using the codebook and

classified using SVM. The block diagram of the proposed shape classification

system is shown in Figure 3.1.

3.2.1 Feature Extraction

As seen in Chapter 2, log-polar transform is sensitive to changes in the loca-

tion of its centroid on the image, i.e., greater the center mismatch between two
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Keypoint
Detec�on

Feature 
Extrac�on

Codebook 
genera�on

Vector 
quan�za�on
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Figure 3.1: Block diagram of the shape classification system.

Figure 3.2: Feature extraction using log-polar transform at the shape boundaries.

shapes, greater the image distortion [32]. In other words, occlusion and viewpoint

change severely affects the invariant properties of LPT. To address this issue, we

choose to place the centroid of LPT at the shape boundaries and extract local

features instead of a global representation, as shown in Figure 3.2. This line of

reasoning is backed up by the dominance of local feature-based approaches (over

global approaches) for various recognition tasks in computer vision [10]. Even

so, we verify our choice of the local approach by comparing it with the global

application of LPT.
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Table 3.1: Comparison of local and global approach using LPT in terms of
classification accuracy (%).

Local LPT approach Global LPT approach

Accuracy 78.30 53.70

For each training/testing image, log-polar sampling is done by centering on

the shape’s centroid, followed by computing the Fourier transform modulus to

obtain a global shape descriptor (Figure 2.1 shows this step). Then the descrip-

tors from the training set are analyzed to find a discriminant low-dimensional

subspace, using principal component analysis [150] and recursive Fisher’s linear

discriminant [131]. After projecting the training descriptors to the subspace, the

resultant descriptors are used to train an SVM classifier. For a test image, the

Fourier transform modulus of LPT is projected to the low-dimensional subspace

and classified using SVM.

Table 3.1 compares the classification accuracies on the animal shapes database

[151] using the global and local LPT approach. In the animal shapes dataset

(Fig. 3.7), occlusion (caused by self) is a major problem, due to viewpoint

variation and unavailability of interior information. Therefore, it is natural

that the local approach easily outperforms the global approach, which reaf-

firms our choice of local LPT descriptors and the bag-of-words model. Due

to space constraints, we only report the result using the best parameter settings

of LPT for the global approach - minimum radius rmin = 1, maximum radius

rmax = max. radius of shape image, number of rings nr = 120, and number of

wedges nw = 180. The parameter settings of the proposed LPT local approach

are discussed in detail below.

Intuitively, the minimum radius would not play a significant role as feature
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Figure 3.3: (a) LPT minimum radius vs. classification accuracy. (b) LPT grid
size vs. classification accuracy.

extraction is done for every boundary point. Reference [12] recommends 3 to 5

pixels as the minimum radius for object detection in grayscale images. However,

shape context [29] obtained good results with 2 pixels for shape classification

in binary images. Similarly, we found that using a minimum radius of 2 pixels

is one of the best in terms of classification accuracy (Figure 3.3(a)). In the

literature, shape context [29] quantized the angle into 12 divisions (nw) and

log-distance into 5 divisions (nr). It could afford such a coarse sampling (5 x

12) due to the histogram-style treatment of log-polar transform. Nevertheless,

when using the original log-polar transform, it was found that a denser sampling

is required to obtain higher classification accuracies (Figure 3.3(b)). Spatial

pyramid matching [50] was used to obtain the classification accuracy for the

local LPT approaches shown in Fig. 3.3.
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It is not straightforward to determine the maximum radius of LPT as a local

feature; too small a radius will make the feature non-discriminatory and too large

a radius would not result in a local feature. Reference [35] makes a reasonable

suggestion to keep every pixel’s orthogonal neighbors about equal distances from

it, by applying the following constraint,

rmax = rmin × e2π
(nr−1)

nw . (3.1)

Using rmin = 2, nr = 14, and nw = 30 in equation (3.1) results in a maximum

radius of about 30 pixels, which was used for illustration in Fig. 3.2. This may

still be sub-optimal in terms of classification accuracy. Hence, a procedure to set

the maximum radius in a data-driven manner is presented later in this section.

3.2.2 Codebook Selection

The descriptors obtained from the training images are collectively used to

obtain a codebook, using VLFeat’s [152] implementation of K-means with an

accelerated Elkan algorithm for optimization. The codebook is simply the cluster

centroids obtained using K-means. In order to evaluate the clustering quality

(the discriminative power of the codebook), many measures have been proposed

in the literature. Those include combinatorial techniques [153], and external

cluster evaluation measures like F-measure [154], misclassification index (MI)

[155], among others. Among the external evaluation measures, those based on

information theory, like purity and conditional entropy, are independent of the

size of the data set, the number of clusters and the clustering algorithms used.

This provides information theory based measures a unique advantage over other
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classes of measures [156, 157]. Following this reasoning, [61] proposed the use

of purity and conditional entropy as evaluation measures for visual codebooks.

However, both these measures improve with an increase in the number of clusters,

up to a degenerate maximum where there are as many clusters as data points.

Therefore, clustering evaluations based on these metrics are biased and score high

on suboptimal solutions [156]. The rest of this subsection presents the details

about entropy-based measures, their drawbacks, and the proposed metric.

Let P = {p1, p2, ..., pC} represent the probability distribution of the training

descriptors belonging to C shape categories. Then the information conveyed by

this distribution, entropy of P, is given by,

Info(P) = −
C∑
j=1

pj log2 pj , (3.2)

pj = Nj/N (3.3)

where Nj is the number of data points belonging to class j and N = N1 +N2 +

... +NC , is the total number of data points. After partitioning the data into K

clusters, the entropy of each cluster Ei is given by,

Ei = −
C∑

j=1

pij log2 pij, i = 1, 2, · · · ,K (3.4)

where pij is the ratio of number of samples of class j in cluster i (nij) to the total

number of samples in cluster i (ni),

pij = nij/ni . (3.5)
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The entropy of the codebook is the weighted average of the entropies of the K

clusters,

Info(P, K) =
K∑
i=1

pciEi (3.6)

where pci is the ratio of the number of samples in cluster i (ni) to the total

number of samples (N),

pci = ni/N . (3.7)

Thus the information gain, denoted as Gain(P, K), is defined as,

Gain(P, K) = Info(P)− Info(P, K) . (3.8)

In order to maximize information gain, the entropy of the codebook Info(P,

K) is to be minimized. This quantity goes to zero in an undesirable fashion

when every sample or data point is treated as a cluster. In the machine learning

domain, the induction of ID3 decision trees suffered from a similar problem and

was rectified by normalizing the information gain using the split information

[65]. The split information takes into account the number of data points in the

clusters, and thus prevents over-fitting. By normalizing information gain using

the split information of the codebook, defined in equation (3.10), the resultant

term,

GainRatio(P, K) =
Info(P)− Info(P, K)

SplitInfo(P, K)
(3.9)

can be maximized. In the context of clustering, split information is given by,

SplitInfo(P, K) = −
N∑
i=1

pci log2 pci . (3.10)
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Figure 3.4: Gain ratio for codebook sizes up to 20,000.

Ideally, split information should increase significantly with increase in code-

book size, and in turn, lead to a decrease in gain ratio before reaching a very

high codebook size. However, gain ratio keeps increasing without attaining a

maxima, up to a very high codebook size of 20000 (Fig. 3.4). This observation

is supported by reference [158], which demonstrated that gain ratio is still biased

in favor of attributes with large number of values. To address this problem, we

propose the following metric which considers the ‘physical size’ of the clusters in

the codebook.

WeightedGainRatio(P, K) =
Info(P)− Info(P, K)

SplitInfo(P, K)×VarianceRatio(P, K)
(3.11)

where the proposed ‘weight term’ is defined as,

VarianceRatio(P, K) =
VK

Vavg
. (3.12)

52



Chapter 3. Shape Classification using Invariant Local Features and Contextual
Information

0 0.5 1 1.5 2

x 10
4

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Codebook Size

P
ro

p
o

se
d

 W
e

ig
h

t 
Te

rm

(a) Codebook Size vs. proposed weight term

0 0.5 1 1.5 2

x 10
4

0.058

0.059

0.06

0.061

0.062

0.063

0.064

0.065

Codebook Size

W
e

ig
h

te
d

 G
a

in
 R

a
tio

(b) Codebook Size vs. weighted gain ratio

Figure 3.5: Sample trends of the proposed weight term and metric for codebooks
corresponding to Figure 3.4.

The variance of the codebook VK is defined as,

VK =
dc1

2 + dc2
2 + ...+ dcK

2

K
(3.13)

where dci represents the Euclidean distance between the centroid of ith cluster to

the mean of all centroids. When the number of clusters is small, we can expect

equation (3.13) to have a small value and increase as the number of clusters

increases. The variance of a single cluster in the codebook is similarly defined

as,

Vi =
d1i

2 + d2i
2 + ...+ dnii

2

ni
(3.14)

where dki is the Euclidean distance between the kth member of cluster i to the

cluster centroid. The average variance of the clusters is obtained by taking the

mean value of all cluster variances:

Vavg =
1

K

K∑
i=1

Vi . (3.15)
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As the codebook size increases, the average cluster size is expected to de-

crease. Therefore, the weight term (equation 3.12) increases in magnitude as the

codebook size increases, as shown in Figure 3.5(a). Notice that ‘weighted gain

ratio’ leverages on both the number of data points in a cluster (split informa-

tion) and the size of each cluster (variance term) to account for the change in

codebook size. Since it is possible to have many points in a cluster and still have

a small cluster size, and vice versa, it is important to use both split information

and the variance term together. In other words, the proposed weight term is

expected to increase the rate of change of split information, and thus avoid very

high codebook sizes. Thus, if we have a set of codebooks, it is possible to select

one that maximizes ‘weighted gain ratio’, as illustrated in Figure 3.5(b).

3.2.3 Joint Learning Framework

If the extracted local features of the image are not discriminatory, then opti-

mizing the codebook size is of no purpose. So, we formulate an iterative approach

to feature learning and codebook size selection (refer to Algorithm 1). Using the

initial LPT parameter settings, the first iterative step of the joint learning frame-

work selects the codebook with maximum weighted gain ratio (equation (3.11)).

For the obtained codebook size, the second step selects a codebook which maxi-

mizes gain ratio (equation (3.9)) among codebooks with different values of LPT

rmax. These two steps are iterated until there is convergence of codebook size and

LPT maximum radius. Note that ‘weighted gain ratio’ is not used for the second

iterative step, because of fixing the codebook size from the output of the first

step. The output of the joint learning framework is a codebook of a particular

size and LPT rmax, which is then used to represent the training/testing images.
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Algorithm 1 Joint learning algorithm

1: Set the feature parameters nr = 14, nw = 30, rmin = 2 and initialize rmax

using equation (3.1).
2: repeat
3: Choose a codebook with size K ∈ {1000, 2000, ....20000} using weighted

gain ratio.
4: Fix codebook size K from previous step.
5: Choose a codebook with LPT rmax ∈ {5, 10, · · · , 125} using gain ratio.
6: Fix LPT rmax from previous step.
7: until no change in K, rmax

8: Output: Codebook of size K using LPT features with rmax.

In the next subsection, details about the proposed histogram representation are

presented.

3.2.4 Contextual Information

The bag-of-words histogram representation discards the spatial relationship

between the local features. As mentioned earlier in Chapter 1, spatial pyra-

mid matching [50] was proposed to encode coarse, mid-level spatial relationships

between the local features. However, due to its high-dimensional histogram rep-

resentation, some previous works have opted for compact representations [51],

or Markov stationary features [57], or higher order spatial co-occurrence statis-

tics [96]. Higher-order statistics can yield richer information, but in applications

involving sparse sampling of the image (approx. 3% of the total image pixels

in this work), it may not be readily derivable. On the other hand, the Markov

stationary features (MSF) proposed in [57] provides an attractive alternative for

encoding spatial information using the spatial co-occurrence matrix [58]. Nev-

ertheless, the stationary distribution of MSF is a computationally intensive and

an indirect way to capture information from the spatial co-occurrence matrix.

Notice that the problem of image processing is similar to language processing,
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because the image can be considered as an article written using many “visual”

words of the codebook. Inspired by this idea, we interpret each entry in the

spatial co-occurrence matrix as the pairwise occurrence count of the codewords,

or in other words, bi-gram count. The following paragraphs present the details

about the proposed bi-gram extraction procedure.

For each training/testing image, feature extraction followed by vector quan-

tization enables each local descriptor to be assigned to one of the K visual words.

So, let us define an image Iind, having the word indices - {1, 2, · · · ,K} - as pixel

values. The word indices simply represent the K visual words, S = {c1, c2, ...cK},

assigned to the LPT descriptors during vector quantization (section 3.2.5). In

this work, the boundaries of the binary shape are assigned to a particular index

of the visual word and other locations, where local features are not extracted,

are set to zero. Therefore, each pixel Iind(x, y) of an m × n index image takes

one of the values in the set {0, 1, 2, · · · ,K}. The spatial co-occurrence matrix is

created by calculating how often a pixel value i (i �= 0) occurs adjacent to a pixel

with the value j (j �= 0). We denote the co-occurrence matrix as C ∈ RKxK, in

which each entry is computed as follows.

C(i, j) =

n∑
x=1

m∑
y=1

#(Iind(x, y) = i, Iind(xn, yn) = j) (3.16)

where every pixel location (x, y) and its immediate neighbors (xn, yn) satisfying

0 <
√

(xn − x)2 + (yn − y)2 ≤ √
2, are inspected to count the number of i-j

pairs. Simply put, each entry C(i, j) in the spatial co-occurrence matrix records

the number of times a pair of neighboring local descriptors get assigned to ci

and cj , which are any two of the K visual words.
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The corresponding transition matrix T ∈ RKxK is defined as,

T (i, j) =
C(i, j)∑K
k=1C(i, k)

. (3.17)

Since the spatial co-occurrence matrix is row normalized to obtain the transi-

tion matrix (equation 3.17), each element of the transition matrix represents

the pairwise occurrence probability of the codewords, or in other words, bi-gram

occurrence probability. So to extract discriminatory features, we select bi-grams

with high probability from all the transition matrices of the training data, and

subsequently discard those that occur across different shape categories. As a re-

sult, it is possible to retain a unique signature for each category in the histogram

representation, and at the same time, reduce computational load. The selected

bi-grams are termed as ‘class-unique bi-grams’, because they appear with high

probability within training images of a single shape category. After selecting

the class-unique bi-grams, the spatial co-occurrence matrix characterizes their

frequency for each training/testing image. This procedure is described below

using an example.

The algorithm for extracting class-unique bi-grams is illustrated in Fig. 3.6,

in which three sample codewords denoted as A, B, and C are used to represent

the training images from two classes as 3 by 3 transition matrices (refer to [57] for

a visual description of obtaining the transition matrix from the image). Notice

that the spatial co-occurrence matrix can be easily derived from the transition

matrices in Fig. 3.6, by simply considering the numerator term in each entry.

For instance, the AA bi-gram in the first matrix of the monkey class has occurred

twice, the AB bi-gram thrice, and so on. Thus, in total, the codeword A has
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been assigned five times to a local descriptor, whose neighboring descriptors have

been assigned to either A itself or the codeword B. By setting a threshold of 0.4

for each transition matrix, the circled entries represent those bi-grams which are

above this probability threshold. The potentially confusing bi-grams (BA and

BC), which appear in both the classes with a high probability, are discarded

and the remaining seven entries - AA, AB, AC, BB, CA, CB, CC - are further

investigated. Since the spatial co-occurrence matrix is symmetrical, duplicate

entries like AC and CA are singled out and either of them are kept. In addition,

entries AB and CB are removed because their symmetrical counterparts BA and

BC were discarded. Finally, a 4-dimensional histogram of bi-grams using AA,

AC, BB and CC is created using the corresponding spatial co-occurrence matrix.

Note that it is easy to implement this algorithm using the MATLAB commands -

fliplr1 (check symmetry of the matrix indices) and unique2 (extract class unique

bi-grams and remove duplicate entries).

3.2.5 Vector Quantization and Classification

A training/testing image is quantized into K histogram bins, i.e., the local

features extracted from an image are individually matched to the nearest visual

word using Euclidean distance and the frequency of each word creates the K-

dimensional histogram representation. Let the number of class-unique bi-grams

be Nbi. The normalized bag-of-words representation is concatenated with the

normalized histogram of bi-grams, to produce a vector of dimension - (K+Nbi).

Besides the bi-gram features, a 2 × 2 image grid is used to capture mid-level

spatial information. Each of the four histograms from the 2×2 grid is normalized

1http://www.mathworks.com/help/matlab/ref/fliplr.html
2http://www.mathworks.com/help/matlab/ref/unique.html
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Figure 3.6: An example of the bi-grams extraction procedure from transition
matrices of the training data.

separately and concatenated together. In turn, the 4K-dimensional vector using

the 2×2 grid is concatenated with the (K+Nbi)-dimensional vector to form the

final (5K +Nbi)-dimensional representation of each image. The classifier used is

the SVM implementation of VLFeat in their bag-of-words application [152].

3.3 Experiments and Results

We tested our shape classification system on the animal shapes database in-

troduced by Xiang et al. [151], which consists of 2000 binary shapes of 20 animal

categories with 100 shapes for each category. The dataset poses several chal-

lenges, such as large intra-class variations, strong inter-class similarities among
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some categories, viewpoint changes and occlusion (Fig. 3.7). Following the pro-

tocol in [49,151,159,160], the database was randomly split into half for training

and half for testing. Our experiments were run on HP Xeon Two Sockets Quad-

Core 64-bit Linux clusters with 200 GB memory limit.

3.3.1 Joint Learning Results

The steps taken by the joint learning framework are shown in Fig. 3.8. After

LPT rmax was initialized using equation (3.1), weighted gain ratio peaked at

a codebook size of 7000 in the first iteration (Fig. 3.8(a)). During the next

phase to select rmax, gain ratio showed an increasing trend as expected, and

eventually saturated for codebooks with a very high LPT rmax (Figure 3.8(b)).

Therefore, a relative change threshold of 1% was used for selecting a codebook

with a moderate LPT rmax = 75, which corresponds to the codebook with the

maximum gain ratio before reaching the threshold. After setting rmax = 75,

weighted gain ratio peaked at a lower codebook size of 5000 in the next iteration

(Fig. 3.8(c)). This is possibly due to the selection of a better LPT parameter

from the first iteration. In the next phase, the same maximum radius was selected

based on a relative change threshold of 1% for (Fig. 3.8(d)). Therefore, a couple

of iterations were sufficient to converge on the final codebook size to be 5000

with LPT rmax = 75. Next, we investigate whether the parameters selected by

the joint learning algorithm give high classification accuracy compared to a wide

range of settings.

Figure 3.9 shows the classification accuracy obtained with different code-

book sizes and LPT rmax. For the bag-of-words model, codebooks with LPT

rmax > 40 give higher classification accuracy compared to the codebook with
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Figure 3.7: Samples from the animal shapes dataset.
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(a) LPT rmax initialized using equation (3.1)
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(b) Codebook size set to 7000
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(c) LPT rmax set to 75
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(d) Codebook size set to 5000

Figure 3.8: Results from the joint learning framework over two iterations.
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rmax = 30 initialized using equation (3.1) (refer to Fig. 3.9(a)). Although the

codebook with rmax = 75 did not give the highest accuracy, the effectiveness of

the joint learning strategy is clearly evident. A similar trend can be observed for

the spatial pyramid approach using codebooks with different maximum radius

of the log-polar transform. For the proposed method, the selected codebook

with LPT rmax = 75 provides a 2% boost in classification accuracy compared

to the codebook initialized with LPT rmax = 30 (Fig. 3.9(a)). By inspecting

Fig. 3.9(b), it is clear that the codebook size selected using the joint learning

algorithm (5000) gives a high classification accuracy, which is close to the high-

est obtained for the bag-of-words model. Larger codebooks may provide higher

classification accuracy for the bag-of-words representation, but it can drop con-

siderably as seen from the trend towards a codebook size of 20,000. In contrast,

SPM provides good classification accuracy for codebook sizes only up to 6000 and

suffers from the high-dimensionality of the histogram (21K) for higher codebook

sizes (refer to Fig. 3.9(b)). In comparison to SPM, the incorporation of bi-gram

features in the bag-of-words model provides higher classification accuracy and a

relatively stable trend for codebook sizes up to 10,000 (Fig. 3.9(b)). In summary,

we have shown that there is a positive correlation between the model parameters

selected using the joint learning algorithm and the classification accuracy.

3.3.2 Classification Results

To demonstrate the effectiveness of the proposed histogram representation,

the performance of our method is compared with four baseline methods in Ta-

ble 3.2, where “Bi-gram” is the representation with the global BoW histogram

coupled with the class-unique bi-grams, and “Proposed” is the 2 × 2 grid rep-
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Table 3.2: Performance comparison of the proposed methods with four baseline
methods (%).

Alg. BoW MSF [57] Triv.MSF [161] SPM [50] Bi-gram Proposed

Acc. 81.1 81.1 81.5 84.8 83.5 86.0

Figure 3.10: Effect of changing the probability threshold for the transition matrix
on classification accuracy of the proposed method.

resentation added to the “Bi-gram” model. Note that the Markov stationary

feature (MSF) [57] performs on par with the bag-of-words model. In contrast,

we show that the spatial co-occurrence matrix can be exploited in a much sim-

pler way to boost the classification accuracy (“bi-gram”). The results reported

for the proposed method uses a probability threshold of 0.7 for the transition

matrix, which resulted in 11,275 class unique bi-grams. Fig. 3.10 shows the

effect of varying the probability threshold on the classification accuracy. It can

be noted that the classification accuracy does not change significantly for dif-

ferent threshold values. This phenomenon can be attributed to the selection of

frequently occurring bi-grams that appear within a single shape category of the

training set.

Table 3.3 compares the proposed method with previous works using the an-
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imal shapes dataset. It is clear that the proposed method significantly out-

performs the state-of-the-art algorithms while still using a low-dimensional his-

togram representation. In comparison to SPM, which uses a 21K-dimensional

histogram representation, the proposed method uses only a 7K-dimensional his-

togram representation. Note that the training and testing set were generated

using a random database split – half for training and half for testing – as

in [49, 151, 159, 160]. So, one may argue that the high classification result is

possibly due to the “random” nature of training and testing. In order to fur-

ther demonstrate the virtue of the proposed histogram representation and the

local descriptor, ten-fold cross validation was done with a codebook size of 5000

and LPT rmax = 75, which resulted in classification accuracy of 87.8%. Thus,

conclude that the reported classification accuracy (86.0%) is due to a genuine

improvement of the bag-of-words model.

Besides cross validation, we can manually verify whether the system makes

reasonable mistakes by inspecting the confusion matrix (Fig. 3.11). We observe

that animals with distinct visual attributes like spider, butterfly, hen, elephant,

duck, deer, and horse contribute to a total error of just 2%. The potentially

confusable ones, which share similar physical attributes, like dog, leopard, cat,

and mouse pose a greater problem to the classification system. The lack of depth

information for the shapes creates ambiguity between different shape categories,

even for humans, especially among four-legged animals and aquatic species (see

Fig. 3.7). Therefore, we conclude that the proposed shape classification frame-

work is capable of high performance under challenging conditions like scale,

rotation and strong viewpoint variations.
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Figure 3.11: Confusion matrix for the best result of our system on the animal
shapes dataset.

Table 3.3: Performance comparison of the proposed method with previous works
(%).

Method Accuracy

IDSC [162] 73.6
CS [140] 71.7
CS&SP [151] 78.4
CS&SP&IDSC-F [151] 78.7
CS&SP-DP [159] 80.7
Shape Tree [160] 80.0
HOG-SIFT BoW [49] 80.4
Proposed Method 86.0

Comparing Table 3.2 and Table 3.3, LPT based bag-of-words (“BoW” in Ta-

ble 3.2) slightly outperforms the bag-of-words representation using the popular

feature descriptor SIFT [49]. However, the comparison may not be fair because

of differences in implementation and other parameters. Hence, in the next sub-

section, we describe our implementation of a SIFT based bag-of-words model

and compare it with the proposed framework.
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3.3.3 Comparison with SIFT

Ignoring scale selection, many works have found that SIFT sampling at mul-

tiple scales performs well in object classification systems using a bag-of-words

framework, as noted in [55]. For establishing a fair comparison with the pro-

posed method, we replace log-polar transform feature extraction step with SIFT

descriptor at multiple scales, while all other components remain unchanged. The

chosen scales are four, six, eight and ten, following the publicly available imple-

mentation of VLFeat’s object classification system [152]. The codebook size was

chosen to be 3000 using ‘weighted gain ratio’ from a range of codebook sizes –

1000, 2000,..., 20000. Using the above settings, we obtained an accuracy of 80.2%

for the SIFT-based bag-of-words implementation, which is markedly similar to

the accuracy of 80.4% obtained in [49]. Therefore, we conclude that the accu-

racy obtained using the proposed LPT-based method is significantly higher than

SIFT-based bag-of-words for binary shape classification. In the following sub-

section, we compare the proposed LPT local feature with other well-established

shape descriptors.

3.3.4 Comparison with Fourier Descriptors

Fourier descriptors have long had a good reputation for shape representa-

tion and retrieval. Thus, we consider two popular global Fourier descriptors

- centroid distance signature (also known as 1-D Fourier descriptor) [163] and

generic Fourier descriptor (GFD) [164] - for comparison with the global LPT

approach. Note that the centroid distance signature can be readily implemented

using DIPUM toolbox [165] and GFD’s polar transform using the command -
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Table 3.4: Comparison of the global LPT shape descriptor with Fourier shape
descriptors in terms of the classification accuracy on the animal shapes dataset
(%).

CentroidDistance GFD GlobalLPT

Accuracy 35.10 52.80 53.70

cart2pol - in MATLAB. Table 3.4 shows the comparison between these methods

and the global LPT approach, described earlier in section 3.2.1. Notice that we

have not compared the Fourier descriptors with the proposed local LPT frame-

work, because they were proposed as global shape descriptors much before the

bag-of-words model became the dominant classification framework. Therefore,

we extend GFD as a local descriptor and compare it with the proposed LPT

local shape descriptor. It should be noted that generic Fourier descriptor is a

closely related work, because it uses LPT’s counterpart - polar transform - for

obtaining the shape descriptor. In other words, using GFD as a local descriptor

is equivalent to replacing log-polar transform with polar transform in the pro-

posed framework, which makes for a very interesting comparison. The selection

of the parameters for the GFD local descriptor is explained below.

The size of the polar grid was chosen to be the same as LPT’s grid size, i.e.,

14 rings and 30 wedges. The minimum and maximum radius were chosen to

be 2 and 40, respectively. Note that the maximum radius of the polar grid was

chosen exhaustively to give the best classification accuracy while the codebook

size was chosen to be 3000 using ‘weighted gain ratio’. Other codebook sizes

were also investigated to see if better classification accuracy could be achieved.

Finally, the best settings for the GFD local approach scored an accuracy of

83.7%, whereas the proposed LPT approach achieved 86% classification accuracy
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on the animal shapes dataset. Thus, we conclude that log-polar transform, as a

local descriptor for representing binary shapes, has a clear edge over GFD. Since

GFD uses equidistant polar sampling, only rotations in the Cartesian domain are

converted to translations in the angular axis (scaling becomes multiplicative).

Whereas in the log-polar case, both scale and rotation changes in the Cartesian

domain are transformed into translations along the new axes. This invariance to

scale and rotation changes gives a clear edge to LPT over GFD, as demonstrated

in the experiments above.

3.4 Summary

In this chapter, we proposed a robust shape classification system, which can

handle scale, rotation and strong viewpoint variations, using log-polar transform

as a local feature in the bag-of-words framework. In the proposed framework,

contextual information was incorporated using a novel method to extract bi-

grams from the spatial co-occurrence matrix. We showed that the histogram

of bi-gram representation greatly improves on the standard bag-of-words model

and its offshoot, spatial pyramid matching. Besides the above contributions, a

novel metric was proposed to select an appropriate codebook size in the bag-of-

words model. The selected codebook size was shown to give a high accuracy,

compared to a wide range of codebook sizes. Furthermore, the proposed metric

for codebook selection is generic, and thus can be used for any clustering quality

evaluation. Lastly, we proposed a joint learning framework for learning features

in a data-driven manner from the training set. The procedure iterates between

setting the codebook size and the maximum radius of the log-polar transform,
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which was demonstrated to be effective in improving the classification accuracy

without the requirement of manual parameter tuning. We tested our algorithm

on a challenging shape database and achieved a 6% increase in accuracy com-

pared to state-of-the-art algorithms in the literature.

Our next work would be to extend this framework for object classification

in grayscale images. Direct application of log-polar transform as a local feature

on every pixel of the image, as in dense SIFT, may not be ideal in terms of

computational load or accuracy. An efficient way to perform keypoint detection

and feature extraction is required, at the least, to be on par with well-established

local descriptors like SIFT, LBP, etc.
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Chapter 4

Cue-based Unseen Object

Categorization using

Optimized Visual Dictionaries

4.1 Introduction

After designing the shape classifier in the previous chapter, we now consider

the more general case of classifying objects from grayscale images. The main

idea is to use both appearance and shape cues to complement the information

available from different object cues, such as structure, texture and shape. The

integration of these object cues is done using the bag-of-words model by con-

structing an optimized visual vocabulary for each cue. Then, the histogram

representation of the log-polar encoded local features from each cue are com-

bined to obtain the final image representation. We evaluate the proposed object

classification system by adopting the leave-one-object-out protocol on a dataset
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with the segmentation ground truth for each object, which provides an ideal way

to quantify the quality of the extracted shape.

The rest of this chapter is organized as follows. We introduce the details

of our proposed methods in section 4.2, which includes the feature extraction

module, the codebook optimization algorithm, and the multi-cue representation.

Next, we evaluate the proposed method on the ETH-80 dataset and present the

experimental results and discussion in section 4.3. Finally, we conclude this

chapter in section 4.4.

4.2 Cue-based Bag-of-Words Model

We adopt the bag-of-words framework consisting of four main stages: key-

point detection, feature extraction, vector quantization, and classification. For

classifying the grayscale images, we extract three cue images representing the

structure, texture and shape of the object. For the grayscale appearance cues

(structure and texture), keypoint detection is done using the Rudin-Osher-Fatemi

image denoising method [82]; for the extracted binary image, the keypoints are

simply the boundary points of the shape. Feature extraction involves sampling

the cue images at the keypoints, using log-polar transform. The set of descriptors

from each cue of the training images are collectively used to obtain a codebook.

In this case, three codebooks will be generated using the training set. Then, the

quantization step is the histogram representation of each cue image, using the re-

spective codebooks generated in the previous step. Subsequently, the histograms

of the training images are formed by a late fusion step, i.e., the histograms ob-

tained for all the cues are concatenated to form the final representation of each
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Figure 4.1: Feature extraction for cue-based object categorization. On one hand,
the input image is decomposed into structure and texture using the Rudin-
Osher-Fatemi method; on the other hand, saliency detection is performed on the
input image to obtain a saliency map, which is further binarized using the Otsu
method. Using log-polar transform, the keypoints obtained from the structure
image are used to sample the grayscale appearance cues (structure and texture)
while the binary shape is sampled at its boundaries.
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image. Finally, the histograms of the training images are used to train an SVM

classifier. During testing, the codebook construction step is bypassed, and a

test image is simply represented using the codebooks and classified using SVM.

Figure 4.1 illustrates the details of the proposed cue-based feature extraction

step.

4.2.1 Keypoint Detection

We define the keypoints as locations on the image with a distinctive appear-

ance with respect to its neighboring pixels. Therefore, to deal with noise, we

first use the Rudin-Osher-Fatemi model to obtain the denoised image, and then

use the Canny edge detector to obtain the keypoints. The ROF denoising model

is based on the principle that images with excessive and possibly spurious details

have high total variation. In other words, the integral of the absolute gradient

of the signal will be high. Accordingly, by reducing the total variation of the

image, subject to being a close match to the original image, unwanted details

can be removed whilst preserving important ones, such as edges. For the input

grayscale image v(x) : Ω ⊂ R2 → R, the denoised image u(x) is given as the

solution of

min
u

∫
Ω

{
1

2θ
(u− v)2 + |∇u|

}
dx. (4.1)

where θ is a small constant, such that u is a close approximation of v. To

solve equation 4.1, an efficient iterative scheme that is globally convergent was

proposed in [166]. The solution is based on gradient descent and subsequent re-

projection using the dual-ROF model. Since this algorithm is a core component

of our framework, we reproduce the relevant results below.
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Proposition 4.1. The solution of equation 4.1 is given by

u = v + θ div p, (4.2)

where the dual variable p = [p1, p2] is iteratively defined as,

p̃n+1 = pn +
τ

θ
(∇(v + θ div pn)) and (4.3)

pn+1 =
p̃n+1

max{1, |p̃n+1|} , (4.4)

where p0 = 0 and the time step τ ≤ 1
4 .

The denoising method described above has advantages over simple techniques

such as Gaussian smoothing or median filtering, due to the fact that simple filter-

ing techniques reduce noise, but at the same time smooth away edges to a greater

or lesser extent. In contrast, total variation denoising is remarkably effective,

even at low signal-to-noise ratios, at preserving edges while removing noise in

flat regions (see the structure image in Fig. 4.1). To extract the textural part,

the difference between the original image and the denoised image is computed

as, v(x) − αu(x), where the blending factor α is set to be 0.95 as in [81]. The

Canny edges extracted from the structural part are used as keypoints for the

grayscale texture image as well.

4.2.2 Feature Extraction

For each boundary point in the extracted binary shape, log-polar sampling

is accompanied by computing its Fourier transform modulus. Subsequently, the

local descriptor is obtained by converting the two-dimensional Fourier transform
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output into a vector and performing normalization using the Euclidean norm.

For sampling the grayscale cues using log-polar transform, directly obtaining

its Fourier transform modulus is not suitable, because noise, small appearance

changes and non-uniform lighting conditions can severely affect the invariant

properties. An alternative is to use bandpass filters at multiple scales and extract

only the high energy Fourier transform components, as done by [36]. In contrast,

we use the ROF denoising method and encode the resulting grayscale cue values

using log-polar transform. Next, we present the LPT parameter settings for

encoding the grayscale cues and the binary shape cue.

For the grayscale appearance cues, we set rmin = 1 and rmax = 7 , which

would roughly encode a 14 by 14 patch around each keypoint. For the binary

shape, we set rmin = 1 and rmax = 40, following the recommendations in [84].

Furthermore, the number of rings (nr) is set to 7 and number of wedges (nw) is

set to be 12 for sampling both the binary shape and the grayscale cues.

4.2.3 Codebook Optimization

Similar to the earlier chapter, the descriptors obtained from the training

images are collectively used to obtain a codebook, but using VLFeat’s [152] Ap-

proximate Nearest Neighbor (ANN) K-means algorithm for faster optimization.

The codebook is simply the collection of the cluster centroids obtained using

K-means.

Let P = {p1, p2, ..., pC} represent the probability distribution of the training

descriptors belonging to C shape categories. Then the information conveyed by
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this distribution, entropy of P, is given by,

Info(P) = −
C∑
j=1

pj log2 pj , (4.5)

pj = Nj/N (4.6)

where Nj is the number of data points belonging to class j and N = N1 +N2 +

... +NC , is the total number of data points. After partitioning the data into K

clusters, the entropy of each cluster Ei is given by,

Ei = −
C∑

j=1

pij log2 pij, i = 1, 2, · · · ,K (4.7)

where pij is the ratio of number of samples of class j in cluster i (nij) to the total

number of samples in cluster i (ni),

pij = nij/ni . (4.8)

Those clusters with a low entropy will have members from a few object categories,

and would play a crucial role in obtaining a discriminative image representation

after vector quantization. On the other hand, clusters with high entropy have

members from many object categories, and this makes it a suspicious candidate

for providing a useful image representation. However, some clusters, with mod-

erately high entropy, would provide to be useful if the categories share similar

features. To account for this case, we use cross-validation to select the clusters

within a range of entropy values while removing potentially disadvantageous and
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redundant clusters. The rescaling of entropy values is given as,

Enew
i = (b− a)× (Ei −m)

(M −m)
(4.9)

where the values of a = 0 and b = 1 are used to rescale the entropy values

between [0, 1], and m and M represent the minimum and maximum entropy

values out of all the clusters in the codebook, respectively. Thus, a threshold is

varied between 0 and 1 to obtain the set of clusters that give the best performance

during cross-validation.

4.2.4 Vector Quantization and Classification

For each object cue, a training/testing image is quantized into Ki histogram

bins (i = 1, 2, and 3 for structure, texture and shape respectively), i.e., the local

features extracted from a cue image are individually matched to the nearest vi-

sual word of the respective codebook using Euclidean distance and the frequency

of each word creates the Ki-dimensional histogram representation. Besides the

global bag-of-words features, a 2×2 image grid is used to capture mid-level spa-

tial information. Each of the four histograms from the 2 × 2 grid is normalized

separately and concatenated together. In turn, the 4Ki-dimensional vector using

the 2× 2 grid is concatenated with the Ki-dimensional vector to form the 5Ki-

dimensional histogram representation for each cue. Finally, the individual cue

representations are concatenated to form the image representation of dimension

(5K1 + 5K2 + 5K3). The classifier used is the SVM implementation of VLFeat

in their bag-of-words application [152].
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Figure 4.2: Sample images from the ETH-80 dataset

4.3 Experiments and Discussion

We tested our object classification system on the ETH-80 dataset, which

was introduced by Leibe and Schiele [167] to specifically test for unseen object

classification. The ETH-80 image dataset consists of 80 objects categorized into

8 classes, namely apple, pear, tomato, cow, dog, horse, cup and car (see Fig.

4.2). Each object is captured under 41 different viewpoints, and the testing

protocol is to classify each object under all viewing angles while the rest of the

objects are considered for training. Thus, classification is done for a total of 80

times for all the images in the dataset. Our experiments were carried out on HP

Xeon Two Sockets Quad-Core 64-bit Linux clusters with 72 GB memory limit.
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Table 4.1: Classification accuracy comparison of the proposed method with pre-
vious works (%).

Method Accuracy

Color histogram [167] 64.86
PCA gray [167] 82.99
PCA masks [167] 83.41
SC&DP [167] 86.40
IDSC&DP [162] 88.11
IDSC&Morphology [168] 88.04
Height function [169] 88.72
Robust symbolic [144] 90.28
Kernel-edit [143] 91.33
BCF [76] 91.49
Proposed Method 97.13

4.3.1 Classification Results on the ETH-80 Dataset

We compare the performance of the proposed method to many earlier works

on ETH-80 in Table 4.1. Our cue-based bag-of-words approach outperforms the

previous state-of-the-art method in [76] by a large margin. In our experiments,

we did not make use of the segmentation ground truth available in the dataset,

whereas [76] is a shape classification framework which makes use of all ground

truth shapes to report the result. On the other hand, some earlier works like [167]

only use the color or gray level information to report the results on the ETH-80

dataset. Note that irrespective of the information used by the previous methods,

all of them follow the leave-one-object-out protocol, and hence, comparison of

the final accuracy is valid. Next, we show the individual performance of the

structure, texture and shape cues, and also demonstrate the necessity of multiple

cues for high classification performance.

Table 4.2 shows the performance of the individual object cues in comparison

the performance of the proposed multiple cue representation. Clearly, using the

original grayscale pixel values results in inferior performance when compared
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Table 4.2: Classification accuracy of individual object cues in comparison with
the accuracy of the proposed method (%).

Alg. Grayscale Structure Texture Str-Tex Shape Proposed

Acc. 84.97 86.80 88.87 92.53 92.25 97.13

to the usage of any individual object cue. Moreover, only when the structure

and texture cues are combined together, the performance is as good as using

the shape cue, which reaffirms the observations in the literature regarding the

importance of shape cues for object recognition. Overall, the proposed method

of combining all three cues leads to a very significant improvement in classifying

unseen objects from a known category.

Table 4.3 and 4.4 shows the confusion matrix of the classification system

that utilizes the shape and the structure-texture cue, respectively. It is clearly

evident that without the grayscale appearance cues, distinguishing the round

shapes of tomato and apple is difficult (see the first two shapes in the last row

of Fig. 4.3), whereas classifying the animal shapes is difficult without the shape

information. Naturally, a classification system that can leverage the benefits of

both grayscale structure-texture and binary shape cues will perform much better

than those using them separately, as shown in Table 4.5.

Figure 4.3 shows sample shapes extracted using the salient object detection

algorithm. Although the extracted shapes are imperfect, we have achieved high

classification performance since the proposed framework uses local features. The

quality of the extracted shapes depends upon the saliency algorithm and the

thresholding method. Since the saliency algorithm employed is one of the state-

of-the-art solutions, we only focused on improving the shapes using different

thresholding methods.
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The quality of the extracted shape can be quantified using precision and re-

call. The two quantities are defined as, (a) Precision: The percentage area of the

extracted shape that overlaps with the ground truth. (b) Recall : The percentage

area of the ground truth that is contained within the shape. Mathematically,

P =
|Rs ∩Rg|

|Rs| , (4.10)

R =
|Rs ∩Rg|

|Rg| , (4.11)

where Rs is the extracted shape and Rg is the ground truth shape. Subsequently,

average precision and average recall are calculated by obtaining the arithmetic

average of the precisions and recalls obtained for all the shapes.

Table 4.6 lists the average precision, average recall and F-score (equation

4.12) of the shapes extracted using different thresholding algorithms. Out of all

the thresholding algorithms developed from the early 60’s to the 90’s, the popular

Otsu’s method performs the best in terms of F-score. Other notable ones that

have a high F-score are the entropy based method developed by Kittler and

Illingworth [170], Prewitt and Mendelsohn [171]’s analysis of cell images, and

the popular Tsai’s moment preserving thresholding method [172]. In the next

subsection, we present the results of the codebook optimization procedure.

Fscore =
2PR

P +R
(4.12)
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Table 4.3: Confusion Matrix (%) for the shape cue on the ETH-80 dataset.

Apple Car Cow Cup Dog Horse Pear Tomato

Apple 84.39 0 0 0 .24 0 0 0 15.37
Car 0 97.80 0.49 0 0.49 1.22 0 0
Cow 0 4.39 86.34 0.49 3.17 5.61 0 0
Cup 0.24 0 0 99.52 0 0 0 0.24
Dog 0 0.49 3.41 0 93.17 2.93 0 0
Horse 0 0.49 3.17 0 3.66 92.68 0 0
Pear 0 0 0 0 0 0 100 0
Tomato 15.85 0 0 0 0 0 0 84.15

Table 4.4: Confusion Matrix (%) for the structure-texture cue on the ETH-80
database.

Apple Car Cow Cup Dog Horse Pear Tomato

Apple 100 0 0 0 0 0 0 0
Car 0 100 0 0 0 0 0 0
Cow 0 0.49 85.61 0 1.71 11.95 0 0.24
Cup 0 3.17 0.49 94.63 1.22 0.49 0 0
Dog 0 0.24 3.90 0 89.02 6.84 0 0
Horse 0 0 19.27 0 7.80 72.44 0.49 0
Pear 0.74 0 0 .24 0 0 0 99.02 0
Tomato 0.49 0 0 0 0 0 0 99.51

4.3.2 Results of Codebook Optimization

The algorithm described in section 4.2.3 is used to optimize the codebooks

by removing those clusters with a very high entropy, and at the same time,

retaining clusters with a moderately high entropy that are useful for classifica-

tion. Note that clustering algorithms like K-means produce a different set of

clusters during each run, because of the random initialization of the cluster cen-

ters. Moreover, even for slightly different set of data points, the clustering by

K-means can produce very different results. This phenomenon is illustrated in

Fig. 4.4 for different cases in the leave-one-object-out cross validation on the

ETH-80 dataset. Figure 4.4(a) and (b) show instances where a threshold below

0.50 is ideal, however, Fig. 4.4(d) and (e) show cases where a threshold above
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Table 4.5: Confusion Matrix (%) for the best result of our system on the ETH-80
database.

Apple Car Cow Cup Dog Horse Pear Tomato

Apple 100 0 0 0 0 0 0 0
Car 0 100 0 0 0 0 0 0
Cow 0 1.46 94.15 0 1.22 3.17 0 0
Cup 0 0 0 97.80 0 0 0 2.20
Dog 0 0 1.46 0 94.63 3.91 0 0
Horse 0 0 4.88 0 4.14 90.98 0 0
Pear 0 0 0 0 0 0 100 0
Tomato 0.49 0 0 0 0 0 0 99.51

Figure 4.3: Sample shapes extracted using the salient object detection algorithm.

0.50 is optimal. Additionally, in some cases like Fig. 4.4(c) and (f), best classi-

fication can be obtained for both low and high thresholds. Therefore, in order

to choose a robust threshold, cross-validation should be adopted to obtain the

general trend.

Figure 4.5 shows the cross-validation accuracy as the threshold is varied from

0 to 1. As expected, the accuracy is lowest when only the “pure” clusters (low

entropy) are retained. The accuracy increases as more clusters with members

from different object categories (higher entropy) are introduced. Eventually,
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Figure 4.4: Individual cases of codebook optimization. The title of each graph
shows the object that was left out for testing.
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Table 4.6: Evaluation of the quality of the extracted shapes using different
thresholding methods.

Thresholding algorithm Precision Recall F-score

Otsu [173] 99.67 93.22 96.34
Kittler and Illingworth [170] 95.40 95.39 95.83
Rosenfeld and La Torre [174] 52.78 97.68 68.51
Kapur, Sahoo and Wong [175] 86.36 95.23 90.58
Prewitt and Mendelsohn [171] 99.63 92.88 96.14
Prewitt and Mendelsohn2 [171] 99.61 92.77 96.07
Glasbey [176] 96.16 95.18 95.67
Doyle [177] 46.43 97.99 63.92
Tsai [172] 99.33 92.77 95.15

the accuracy saturates for threshold values close to 1, which is the instance of

using all the clusters for classification. However, when using all the clusters,

the cross-validation accuracy is lower when compared to retaining clusters with

90% to 95% of the entropy energy. We note that this observation is similar to a

popular way of choosing the number of principal components for dimensionality

reduction: taking the first k eigenvectors that capture at least 95% of the total

variance.

The best accuracy reported (97.1314%) in this thesis was obtained with a

threshold of 0.90, which corresponds to selecting [2419, 2158, 2686] words for

the structure, texture and shape codebooks, respectively. The original codebook

size of 3000 for each cue yielded a sub-optimal accuracy of 96.2543% at a higher

computational cost. After the codebook optimization procedure, a total of 1737

codewords were discarded. Therefore, there are two important advantages of

optimizing the codebook.

1. Increase in classification accuracy because of removing clusters with very

high entropy that potentially consist of noisy local features.

2. Since there is a significant reduction in the codebook size, computational
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Figure 4.5: Cross-validation accuracy for various entropy thresholds.

cost for vector quantization is significantly lowered.

In the next subsection, we demonstrate the effectiveness of the proposed

keypoint detection scheme.

4.3.3 Dense Sampling vs. Keypoint Detection

As far as selecting keypoints for the bag-of-words representation is con-

cerned, the most successful method has been the dense sampling strategy. In this

method, keypoints are placed all over the image without considering any explicit

way to detect keypoints. It has been found that dense sampling gives equal or

better classification rates than sophisticated multi-scale interest point operators.

This behavior is explained by observing that the number of keypoints is the

most important factor governing the performance of the bag-of-words model. It

has been widely reported in the literature that more number of keypoints lead

to a better performance. Naturally, keypoint detectors provide lesser sampling

locations compared to a dense/random sampling strategy. However, there are a

few scenarios in which dense sampling may not be suitable, namely when there
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(a) Step size 2

(b) Step size 4

Figure 4.6: Two common settings for dense local sampling.

is no background context information available (plain background), or when the

object size is small in comparison to the size of the picture. In both these cases,

dense sampling is better avoided. This proposition is confirmed in our exper-

iments on the ETH-80 dataset, wherein the background is uniform for all the

objects and some objects like car occupy less than 20% of the total number of

pixels in the image.

We implement two commonly used step sizes (two and four) for the dense
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sampling method. The step size indicates the space between two keypoints in

the x and y directions (Fig. 4.6). The ROF keypoint detection scheme proposed

in this thesis is replaced by the dense sampling strategy for the grayscale cues

while the binary shapes are still sampled at the boundaries. In comparison to

the result of the proposed approach (97.13%), the classification results of the

dense sampling approach are 92.9573% and 87.4695% the step size of two and

four, respectively. Clearly, we can see that dense sampling produces sub-optimal

results compared to a keypoint detection scheme when there is no background

context information. Therefore, we conclude that it is better to use edge maps

or more sophisticated methods to obtain the keypoints as demonstrated above.

4.4 Summary

In this chapter, we proposed a general framework for grayscale image classifi-

cation with several key contributions. Firstly, we proposed novel local descriptors

using log-polar transform for encoding structure, texture, and shape cues. Sec-

ondly, we proposed a new keypoint detection scheme using image denoising and

demonstrated that it outperforms dense grid sampling by a large margin. Ad-

ditionally, we proposed a codebook optimization scheme that can improve the

classification accuracy while significantly reducing the codebook size. Lastly,

we proposed a novel scheme to extract multiple object cues from grayscale im-

ages, and demonstrated very high classification performance on the images from

the widely used ETH-80 dataset. This framework can be extended to classify

color images by incorporating a separate color cue channel, which remains to be

investigated.
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Chapter 5

Multiple Object Cues for High

Performance Vector

Quantization

5.1 Introduction

After developing the grayscale image classification system in the previous

chapter, we now consider the more general case of classifying objects from color

images. The main idea is to integrate multiple object cues, such as structure,

texture, color, and shape, using the bag-of-words model with a novel keypoint de-

tection scheme that achieves a comparable classification accuracy to the widely-

used dense keypoint strategy, at a much lower computational cost. In contrast

to many works that use advanced encoding techniques or machine learning sys-

tems, we use the simple vector quantization on the proposed multi-cue represen-

tation and demonstrate highly competitive classification performance compared
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to state-of-the-art algorithms on the popular Caltech-101 dataset. Addition-

ally, we significantly outperform several state-of-the-art methods on the MICC

Flickr-101 dataset, which is an updated version of Caltech-101.

The remainder of this chapter is organized as follows. We introduce the de-

tails of our proposed methods in section 5.2. Next, we evaluate the proposed

framework on two popular datasets and present the experimental results in sec-

tion 5.3. Finally, we conclude the chapter in section 5.4.

5.2 Multi-Cue Object Representation

We employ the bag-of-words framework consisting of four main stages: key-

point detection, feature extraction, vector quantization, and classification. For

classifying the color images, we extract four object cues, namely the color, struc-

ture, texture and shape. For the appearance cues (structure and texture), key-

point detection is performed using differential entropy; for the extracted binary

image, the keypoints are simply the boundary points of the shape; and for the

color cue, each pixel represents a keypoint. Feature extraction involves sam-

pling the cue images at the keypoints, using log-polar transform. The set of

descriptors from each cue of the training images are collectively used to obtain

a codebook. In this case, four codebooks will be generated using the training

set, that is, one each for the structure, texture, shape, and color cue. Then, the

quantization step is the histogram representation of the features obtained for

each cue, using the respective codebooks generated in the previous step. Subse-

quently, the histograms of the training images are formed by a late fusion step,

i.e., the histograms obtained for all the cues are concatenated to form the final
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representation of each image. Finally, the histograms of the training images are

used to train an SVM classifier. During testing, the codebook construction step

is bypassed, and a test image is simply represented using the codebooks and

classified using SVM. Figure 5.1 illustrates the details of the proposed cue-based

feature extraction step.

5.2.1 Keypoint Detection

Similar to the previous chapter, we define the keypoints as locations on the

image with a distinctive appearance with respect to its neighboring pixels. How-

ever, in contrast to the denoised edge map used in the previous chapter, we

now consider a more general approach for obtaining keypoints. Therefore, to

deal with noise, entropy is a useful measure to quantify the randomness of pixel

values within a neighborhood. However, entropy does not take into account the

degree of variance, when considering the most straightforward definition of it as

an expectation:

H(X) = −EX [log2(P (X))] = −
∑

xi∈ΩX

log2(P (X = xi))P (X = xi) (5.1)

where 0 log(0) is defined to be 0. In the above equation, the random variable

X takes discrete values in the range [0, 255], corresponding to the domain of

the grayscale pixel intensity values. The quantity P (X) can be easily obtained

by normalizing the histogram of the intensity values. For instance, a 3 by 3

neighborhood containing three 20s, three 30s, and three 33s, has a probability

of 1
3 each for 20, 30 and 33, and zero for the rest of the intensity values. Thus,

the entropy of this distribution is 3 × 1
3 log2(3) = log2(3) bits. Discouragingly,
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(a) Differential entropy = 0.1802
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(b) Differential entropy = 1.7485
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(c) Differential entropy = 2.1008
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(d) Differential entropy = 2.1354
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(e) Differential entropy = 4.6776
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Figure 5.2: Differential entropy for various pixel intensity values in a neighbor-
hood. For all the above cases except (a), the discrete entropy is the same, which
is log2(3) bits. For case (a), discrete entropy is zero, whereas differential entropy
is non-zero.
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the entropy of a very dissimilar neighborhood is also the same as long as the

probability distribution remains the same. For instance, a 3 by 3 neighborhood

containing three 80s, three 255s, and three 0s, also has an entropy of log2(3) bits.

This point is illustrated in Fig. 5.2 with a few examples and it is shown why the

continuous version of entropy is more useful for quantifying the variance of data

while having a relative measure of its randomness.

The continuous version of entropy is known as differential entropy, and it is

defined as follows:

h(X) = −EX [log2(p(X))] = −
∫ ∞

−∞
p(x)log2(p(x))dx (5.2)

Now the problem is to estimate the probability density function (pdf), p(x) :

x ∈ ΩX . To this end, we use kernel density estimation [178, 179] to obtain the

pdf of the pixel values in a pre-defined 5 by 5 neighborhood at each keypoint.

Kernel density estimation is the most popular nonparametric approach to den-

sity estimation because of its flexibility in modeling a given dataset while being

unaffected by the bias of specifying a particular model [180].

Let (x1, x2, · · · , xn) be an independent and identically distributed sample

drawn from a distribution with an unknown density f. The kernel density esti-

mator computes the shape of this function by using a non-negative kernel K(·)

that integrates to one and has zero mean, and a non-negative smoothing param-

eter h (bandwidth), as given below.

f̂(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K(
x− xi

h
) (5.3)
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The above equation can be used to interpret the histogram by considering a

rectangular kernel of area one (the width and height determine the bin size) and

obtaining the estimate of the pdf at a given point as 1/n times the sum of the

heights of all the rectangles that cover the point. Instead of using rectangles, a

range of weighting functions are commonly used for the kernel density estimate:

triangular, Gaussian, Epanechnikov [181], and others. For the listed kernels, the

loss of efficiency is comparable [182], and the Gaussian kernel is often used due

to its convenient mathematical properties.

K(
x− xi

h
) =

1√
2π

exp

(
−(x− xi)

2

2h2

)
(5.4)

In this work, we adopt the Gaussian kernel with appropriate selection of

bandwidth using the method proposed in [183], which is also known as the Sil-

verman’s rule of thumb for Gaussian basis functions. The choice of h is given

by

h =

(
4σ̂5

3n

)1
5

(5.5)

where σ̂ is the standard deviation of the samples. Once the pdf is estimated,

differential entropy can be found using equation 5.2. As seen from Fig. 5.2,

samples with numerically close intensity values have a lower differential entropy

compared to those with spread-out intensity values. Thus, when the differen-

tial entropy map used to select the keypoints, those pixels with a dissimilar

neighborhood will be selected as keypoints. This method to select keypoints

is consistent with the idea of “surprise” in saliency and related psychophysical

literature [89, 98, 99, 184, 185], i.e., those regions that are very different from its
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surroundings bring about the attention of the human vision system. To further

increase the contrast of the differential entropy map, histogram equalization [186]

is carried out before thresholding it using the Otsu method to obtain the key-

points.

5.2.2 Feature Extraction

Except for the keypoints selection step described above, the procedure to

obtain the local features for the grayscale structure, texture and shape cue remain

the same as presented in the previous chapter. For the color cue, the descriptors

are obtained using the pixel values in different color spaces without considering

keypoint selection. Additionally, color GIST descriptors [187] are extracted to

obtain a low-dimensional representation of the image.

5.2.3 Contextual Information using Cooccurrence Signature

It has been observed that very high codebook sizes (> 10000) are crucial for

the better performance of vector quantization, which has been used throughout

this thesis. However, advanced image encoding techniques, such as Fisher vector

encoding, utilize less than 500 codewords while still managing to outperform the

vector quantization approach. The reason being that advanced image encod-

ing techniques extract more detailed statistics between the codewords and the

local features (contextual information), and thus fare better than their simpler

counterpart. Taking inspiration from these encoding approaches, we aim to im-

prove the bag-of-words model by using small codebooks to encode contextual

information.

As pointed out in Chapter 3, there are many ways to encode contextual in-
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formation in the bag-of-words model. One method of choice is to derive features

from the spatial co-occurrence matrix [58]. In general, co-occurrence features

are obtained by thresholding the co-occurrence matrix [60], or extracting class-

unique bigrams as proposed in Chapter 3, or extracting Markov stationary fea-

tures, etc. All these approaches aim to extract a subset of the information from

the co-occurrence matrix due to its large size. For instance, a commonly used

codebook size of 1024, yields a spatial co-occurrence matrix with 1024 × 1024

elements, which cannot be used directly even on modern PCs for training the

SVM. In this chapter, we propose to use a small codebook size of N (of the order

of 100) and obtain the contextual representation with N(N + 1)/2 features.

The spatial co-occurrence matrix is created by recording the total number of

times a pair of neighboring local descriptors gets assigned to ci and cj , which are

any two of the N visual words denoted as S = {c1, c2, ...cN}. Therefore, the size

of the co-occurrence matrix is C ∈ RNxN, in which each entry C(i, j) is computed

by inspecting every keypoint and its immediate neighboring keypoints (3 by 3

neighbourhood) to count the number of times the neighboring descriptors form

an i − j pair. Since the co-occurrence matrix is symmetrical, we use the upper

triangular part to form the histogram of bi-grams without any mining operation

to extract discriminative bi-grams. The reason for this strategy lies in the low

codebook size, i.e., since the codewords are not very specific to the image content,

they are expected to form strong associations with a few object categories, but at

the same time, not create broad associations with all the categories. Therefore,

each C(i, j) entry becomes potentially discriminative if used along with all the

non-redundant ones to form a unique “signature” for each object category. We
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term this simple yet powerful method to obtain the histogram of bi-grams as

“co-occurrence signature”.

5.2.4 Vector Quantization and Classification

For the grayscale appearance and binary shape cues, a training/testing im-

age is quantized into Ki histogram bins (i = 1, 2, and 3 for structure, texture

and shape respectively), i.e., the local features extracted from a cue image are

individually matched to the nearest visual word of the respective codebook using

Euclidean distance and the frequency of each word creates the Ki-dimensional

histogram representation. Besides the global bag-of-words features, 2 × 2 and

3 × 3 image grids are used to capture mid-level spatial information. Each of

the histograms from the grid regions is normalized separately and concatenated

together. In turn, the 13Ki-dimensional vector using the image grids is con-

catenated with the Ki-dimensional vector to form the 14Ki-dimensional cue

representation. For the binary shape cue, the normalized histogram of bi-grams

is further concatenated to produce a vector of dimension - (14K3 +Nbi), where

Nbi = N(N + 1)/2. Typically, the binary shape has a few thousand keypoints,

whereas the other cues have in the order of a few ten thousand keypoints. There-

fore, we only encode bi-grams for the shape cue as encoding it for the other cues

give slightly less performance, because of the use of small codebooks to encode

a large number of descriptors.

For the global representation of the color cue, we used the color GIST de-

scriptor instead of the global bag-of-words representation, which did not increase

or decrease the performance significantly, possibly because the pixel based color

features are not useful without spatial information. The GIST descriptor is ob-
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tained for each of the color channels in RGB, YCrCb and La*b* spaces and they

are concatenated to form the color GIST descriptor (512 x 9 = 4608 dimensions).

Apart from the global bag-of-words representation, encoding the mid-level in-

formation for the color cue remains the same as explained earlier (denoted as

13K4). Therefore, the color cue representation is of dimension 13K4+4608. The

final image representation is formed by concatenating the four cue representa-

tions to produce a (14K1+14K2+14K3+Nbi+13K4+4608)-dimensional vector.

The classifier used is the SVM implementation of VLFeat in their bag-of-words

application [152].

5.3 Experiments and Discussion

We tested our object classification system on two standard datasets, the

widely tested Caltech-101 [188] and its updated version Flickr-101 object dataset

[189]. The Caltech-101 object dataset consists of 101 object categories with var-

ied number of images in each category (minimum of 31 and a maximum of 800).

The experimental protocol of this dataset is to train on 30 images and test with a

maximum of 50 images per category. Most images in Caltech-101 have the object

centered in the image with little or no clutter in a stereotypical pose. There-

fore, MICC-Flickr101 was conceived with the idea of cloning Caltech 101, but

with realistic representations collected from the internet photo sharing website,

Flickr. The experimental protocol of Flickr-101 is the same as its predecessor,

however, the images are significantly more complex and challenging than Cal-

tech101 (see Fig. 5.3). Our experiments were carried out on HP Xeon Two

Sockets Quad-Core 64-bit Linux clusters with 72 GB memory limit.
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Figure 5.3: Sample images from Caltech-101 (even rows) and Flickr-101 (odd
rows) datasets. Anchor, cougar body, electric guitar, motorcycle, watch, soccer
ball, accordion, laptop, and faces, are the objects named from left to right in
each set of row.
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Table 5.1: Classification accuracy comparison of the proposed method with pre-
vious works on Caltech-101 dataset (%).

Method Accuracy

Gemert [190] 64.16
SVM-KNN [191] 66.20
SPM [50] 64.60
Griffin [192] 67.60
Boiman [193] 70.40
Jain [194] 69.10
Yang [52] 73.20
LLC [91] 73.44
Jia [53] 75.30
SLRR [195] 73.60
LSGC [196] 75.10
RBC [94] 75.60
Chatfield [95] 77.78
MKL [197] 77.20
BCF [76] 77.80
Gehler [69] 77.80
Kanan [198] 78.50
SSC [199] 79.84
HLM [200] 79.63
P-SIFT [201] 80.13
Proposed Method 80.15

5.3.1 Classification Results on Caltech-101

We compare the performance of the proposed method to many seminal works

on the Caltech-101 dataset in Table 5.1. It is worth mentioning that with the use

of vector quantization alone, our cue-based bag-of-words framework outperforms

the previous works by a comfortable margin. In other words, we did not make use

of successful encoding methods like LLC [91], RBC [94], sparse coding [52, 53],

etc., or multiple kernels [197] to boost the classification accuracy. On the other

hand, some earlier works like [69, 193] do use multiple feature descriptors like

the proposed features in this chapter. For instance, a combination of SIFT,

luminance descriptor, color descriptor, shape descriptor, and the self-similarity

descriptor was used in [193]. Note that irrespective of the features used by
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Table 5.2: Performance of individual object cues in comparison with the pro-
posed method on Caltech-101 (%).

Alg. Str Tex StrTex Shape Bigr Color ColGIST Proposed

Acc. 59.25 59.42 66.13 52.72 55.72 47.13 66.43 80.15

the previous methods, all of them follow the same experimental protocol, and

hence, the comparison of the classification accuracies is valid. To the best of our

knowledge, the results presented in this work are unprecedented considering the

use of the bag-of-words model with vector quantization.

We are aware that deep learning methods [202] can obtain a classification

accuracy around 86%, but they usually require a large amount of training data.

Reference [202] used convolutional neural nets trained on the ImageNet 2012

training set (1.3 million images, spread over 1000 different classes) and tested

on Caltech-101 to obtain very high performance, whereas their convnet model

trained and tested using the images of Caltech-101 achieved a dismal 46.5% clas-

sification rate. Next, we show the individual performance of the object cues, and

further show the necessity of multiple cues for high classification performance.

Table 5.2 shows the performance of the individual object cues in comparison

with the performance of the proposed multiple cue representation. Clearly, using

any individual cue leads to a poorer performance in comparison to the use of

multiple cues. Moreover, only when the structure and texture cues are combined

together, the performance is as good as using the colorGIST cue, which captures

the overall detail of the object image using Gabor filters. Since the images of

Caltech-101 are more complex than the images from a no-background dataset

like ETH-80, the salient object detection algorithm do not efficiently locate the

object, which leads to a poor segmentation as seen from some of the sample
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(a) Kangaroo (b) Gramophone (c) Chandelier

(d) Dollar bill (e) Euphonium (f) Electric Guitar (g) Garfield

(h) Helicopter (i) Gerenuk

(j) Ceiling Fan (k) Chair (l) Buddha

(m) Dolphin (n) Dragonfly (o) Cougar body (p) Faces

Figure 5.4: Sample shapes extracted from the images of Caltech-101.
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shapes extracted by thresholding the saliency maps using the Otsu method (Fig.

5.4). Overall, the proposed method of combining all four cues using four sepa-

rate codebooks in the bag-of-words model gives the best result. Similar to the

previous chapter, a codebook size of 2500 was initially set for all the cues, and

with an entropy threshold of 0.95, the codebooks were pruned to have [1324,

887, 1479, 2072] words for the structure, texture, shape and color cue respec-

tively. Compared to using the original codebooks, the pruned codebooks give

a better classification accuracy (around 1.5% more) and also result in a faster

vector quantization.

Since the confusion matrix of 101 categories is impractical to list, we note

some of the best and worst performing categories of our classification system.

There were 12 classes that were perfectly categorized, namely Faces (50), air-

planes (50), binocular (2), car side (50), metronome (1), minaret (44), octopus

(2), pagoda (17), scissors (4), snoopy (1), strawberry (5), and wild cat (3), where

the number in the bracket denotes the number of test images. Categories like

faces, airplanes and side view of cars have been noted as easy to classify in

previous works too. There were a few classes with more than 40% of the test im-

ages classified wrongly: ’beaver’ (10/15), ’cougar body’ (11/17), ’crab’ (19/40),

’crocodile’ (11/20), ’crocodile head’ (13/21), ’cup’ (13/24), ’ketch’ (31/50), ’scor-

pion’ (23/50), where the numbers in the brackets indicate the number of wrongly

classified images and the total number of test images. With the exception of

ketch and cup, it is interesting to note that non-rigid objects like animals are

difficult to classify, since the intra-class pose and appearance variations are very

high. Therefore, a classification system that can leverage the benefits of many
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object cues will perform much better than those using them separately, as seen

from the results in Table 5.2. Next, we present experimental results on the

shape classification system, which is an important component of the proposed

framework.

Comparison of Different Salient Object Detection Algorithms

Since there is no ground truth segmentation provided in the dataset, it is

difficult to quantify the quality of the extracted shapes. The quality of the

extracted shapes mainly depends upon the saliency algorithm, i.e., as long as the

pixels that belong to the object have a high saliency, the thresholding method

is likely to locate it, and many thresholding methods like the Otsu method have

been shown to perform well for bimodal histograms [176]. Therefore, we compare

different state-of-the-art salient methods [78, 203–206] using the Otsu method

in terms of the shape classification accuracy. Table 5.3 lists the classification

accuracy of the shape classification system when different salient object detection

models are used to obtain the shape image. Note that the maximum accuracy of

47.54% was obtained by Jiang [206], which is a saliency detection method based

on absorbing Markov chain. As these different saliency models take a different

approach to obtain the saliency map, we found that the shapes obtained can

be different for the same image and they can complement each other in many

scenarios.

Figure 5.5 shows some shape images obtained using the three best salient

object detection models, Center prior [78], Absorbing Markov Chain [206], and

Multi scale superpixels [203]. It can be clearly seen that sometimes shape extrac-

tion can be difficult for all the three saliency models (Fig. 5.5(d)), or a couple of
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(a) Kangaroo

(b) Helicopter

(c) Gramophone

(d) Gerenuk

(e) Electric Guitar

(f) Cougar Body

Figure 5.5: Sample shapes extracted from different salient object detection mod-
els.
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Table 5.3: Comparison of different salient object detection algorithms in terms
of shape classification accuracy (%).

Saliency model Accuracy

Multi scale superpixels [203] 39.95
Center prior [78] 38.74
Bayesian model [204] 37.10
Dense & Sparse Representation [205] 32.84
Absorbing Markov Chain [206] 47.54

Table 5.4: Classification accuracy comparison of the proposed method with pre-
vious works on Flickr-101 dataset (%).

Method Accuracy

GIST [189] 26.10
SIFTbow [189] 31.20
rgbSIFTbow [189] 34.40
MKL (GIST-SIFT-rgbSIFT) [189] 39.30
Proposed Method 49.59

them perform well (Fig. 5.5(c) and (e)), or one of them is better (Figure 5.5 (a)

and (b)), or all three perform similarly (Fig. 5.5 (f)). Since it is an extremely

difficult task to predict which one of the saliency models may perform well on a

given image, especially without the ground truth segmentation, we obtained all

the three shapes and extracted local features using log-polar transform. Using

all three shape images is implementation-wise equivalent to the common idea

of obtaining multiple descriptors at different scales for the same keypoint. The

classification results reported in Table 5.2 was the multiple shapes setting as

described above.

5.3.2 Classification Results on Flickr-101

In Table 5.4, we compare the performance of the proposed method to many

single feature settings and a multiple kernel fusion method on the Flickr-101

dataset. We outperform these methods by a big margin with the use of vector

108



Chapter 5. Multiple Object Cues for High Performance Vector Quantization

Table 5.5: Performance of individual object cues in comparison with the pro-
posed method on Flickr-101 (%).

Alg. Str Tex StrTex Shape Bigr Color ColGIST Proposed

Acc. 33.49 37.04 39.96 22.62 23.70 26.12 33.30 49.59

quantization on the powerful set of features proposed in this work. Table 5.5

shows the performance of individual cues and the multiple object cues setting on

the Flickr-101 dataset. Again, the shape cue performs better with the bigrams,

but still has lower performance compared to other cues, which leaves considerable

room for improvement in the future. Note that a codebook size of 2500 was

initially set for all the four codebooks, and with an entropy threshold of 0.95, the

codebooks were pruned to have [1243, 1080, 1446, 1899] words for the structure,

texture, shape and color cue respectively.

5.3.3 Differential Entropy Keypoints vs. Dense Sampling Strat-

egy

The number of keypoints obtained using the proposed differential entropy

approach (avg. 48% of the image pixels) is much lesser than the dense sam-

pling strategy (avg. 85% of the image pixels). With regards to the classification

accuracy, the maximum accuracy obtained by the dense sampling strategy was

79.89% while the differential entropy keypoints obtained a similar accuracy of

80.15% on the Caltech-101 dataset. On the Flickr-101 dataset, the dense sam-

pling strategy achieved an accuracy of 49.14% while the proposed differential en-

tropy keypoint detection method achieved a par accuracy of 49.59% at a much

lesser computational cost. Moreover, with a smaller step size (two and four)

for the dense sampling method, the classification accuracy dropped to 78.75%
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and 75.45% respectively on the Caltech-101 dataset, which confirmed the ef-

fectiveness of the proposed keypoint detection method in terms of classification

accuracy, memory requirements and computational load.

5.4 Summary

In this chapter, we proposed a general object classification framework that

encodes different object cues using local descriptors obtained using the log-polar

transform. Besides the framework, we introduced a novel keypoint detection

method that was found to be better than the dense sampling strategy from a

practical point of view, i.e., the number of local descriptors encoded is much

lesser without a significant drop in accuracy. Thus, the proposed keypoint de-

tection scheme using differential entropy offers a more principled approach to

image sampling for the popular bag-of-words framework. Additionally, we also

proposed a new way to encode contextual information in the bag-of-words that

improves the overall accuracy without affecting the dimensionality of the fea-

tures in a significant way. Using the proposed features in combination with

the simple vector quantization method, we outperformed many seminal works

on the widely tested Caltech-101 dataset and its recently upgraded version, the

Flickr-101 dataset. Note that we compared our work to several works that used

advanced encoding techniques, more powerful machine learning paradigms like

the multiple kernel fusion, and advanced feature pooling techniques. Therefore,

we conclude that the proposed features open up exciting possibilities for more

advanced image encoding techniques.
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Chapter 6

Biologically Inspired

Composite Vision System for

Traffic Monitoring

6.1 Introduction

After developing the object classification framework for the most general

case of color images, we now consider a practical application of the log-polar

transform, which was used to derive the features in the previous chapters, to

video processing. The key idea is to use log-polar transform to stitch video

information acquired from cameras of different visual field depths into a single

video stream, and thereby, track moving objects in the log-polar space with a

much longer tracking range compared to using a single camera. This composite

vision system is applied to the problem of real-world speed estimation and license

plate detection of vehicles in expressways.
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The rest of this chapter is organized as follows. Firstly, an overview of the

proposed traffic monitoring system is given in section 6.2. Next, section 6.3

presents the composite camera design with implementation details. Then, section

6.4 presents the vehicle tracking algorithm along with the proposed vehicle speed

calculation algorithm, followed by section 6.5 which provides details about the

license plate detection system. Experimental results with discussion are given in

section 6.6. Finally, conclusions and future works are presented in section 6.7.

6.2 Overview of the Traffic Monitoring System

Figure 6.1 shows the proposed traffic monitoring system with simultaneous

near and far field viewing capability for monitoring vehicle movements up to

1000 m away from the shooting point. The proposed system tracks the moving

vehicles while they are present in the composite camera’s field of view. Using

the tracking information, the speed of each vehicle is estimated and whenever

there is an instance of overspeeding, a third camera is triggered to output the

license plate information of the overspeeding vehicle, which can be easily used

for law enforcement. As mentioned in Chapter 1, the drawbacks of traditional

RADAR traffic monitoring systems are overcome by adopting a vision-based

approach to traffic monitoring. Additionally, the proposed system overcomes the

problems faced by existing vision-based traffic monitoring systems by providing

a longer tracking range (up to 3 times longer), and also offers new insights into

simultaneous far and near field imaging.
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Figure 6.1: Overview of the Composite Vision System.

6.3 Composite Camera Design

Some birds of prey have the ability to visually focus on objects in both

near and far field simultaneously [207,208], which explains why they are able to

perceive their surroundings to avoid hazards while being able to target a prey

at a long distance. The bottom portion of Figure 6.1 shows the structure of a

raptors eye with two sets of fovea. The shallow field fovea is used for navigation

purposes whereas the deep field fovea is used for locating the far away prey.

These two sets of fovea are simulated using two cameras with different depth-of-

fields. Since the study about the raptor’s foveae to brain mapping is limited, we

adopt the primate retina model (log-polar mapping [32]) to simulate the raptor’s

internal mapping.

Using log-polar mapping, the vision information from each camera can be

transformed into the log-polar space regardless of the depth-of-field. Subse-

quently, the problem of combining information from multiple depth-of-fields is
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Figure 6.2: Composite image stitching example. Best viewed in color.

neatly solved by simply concatenating the log-polar encoded images, as shown in

Figure 6.2. Furthermore, log-polar transformation (LPT) with ideal center point

provides scale and rotation invariance. As a result, the scale change of vehicles

caused by forward vehicle movement will be converted to horizontal shifts in the

log-polar space with a fixed shape. Hence, the transformed LPT image could

possibly provide relatively unchanged vehicle shape during the tracking process.

In order to form a single video stream for tracking purposes, the following

steps are carried out on each video frame from the two cameras that view the

scene synchronously. The vanishing point of the images from each camera is

selected to be the corresponding center of the log polar transformation. Note

that the vanishing point selection needs to be done only once using the first

frame of each video. Subsequently, log polar mapping is carried out on each

114



Chapter 6. Biologically Inspired Composite Vision System for Traffic Monitoring

Camera optical axis

Near field camera lens:
Closer focus length
Wider view angle

Far field camera lens:
Further focus length
Narrower view angle

Composite Camera

Figure 6.3: Relationship between the individual cameras in the composite camera
setup.

frame, and redundant image information is cropped out to retain only the area

of interest. A simple concatenation of the LPT frames is then carried out to

form a single video containing near and far field information.

In order to have seamless stitching, the composite camera requires two cam-

eras with different view angles and foci. In addition, the two cameras should

be placed as close as possible to reduce errors. As shown in Figure 6.3, these

nested cameras should have a special relation to achieve seamless stitching of

different depth-of-field information. For ideal log-polar mapping and stitching,

the camera relation factor Kb (equation 6.1) is set to be 10. In other words, the

two camera lenses should have roughly about 10 times difference in their view

angle.

Kb =
tan(θfar/2)

tan(θnear/2)
(6.1)

Kb ≈ θfar
θnear

, ifθfar → 0, θnear → 0 (6.2)

where θfar is the viewing angle of the far-field camera, θnear is the viewing angle

of the near-field camera,
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Figure 6.4: Industrial Camera Standards.

(a) Basler cameras. (b) Composite camera system.

Figure 6.5: Composite Camera built using USB 3.0 industrial cameras.

6.3.1 Composite Camera Implementation

For the camera design introduced earlier, a survey in the market revealed

that there is no readily available device for synchronous viewing with different

depth-of-fields. Therefore, the composite camera was implemented by choosing

individual cameras and integrating them in a flexible hardware mount. After a

thorough consideration, USB 3.0 standard cameras were chosen for implemen-

tation due to their plug-and-play usability (no extra power supply needed) and

high bandwidth capability. These properties make USB 3.0 standards one of the

best, as highlighted in Figure 6.4 [209]. Further review about industrial USB 3.0

cameras led us to choose Basler cameras, shown in Figure 6.5(a).

Two lenses were carefully selected for the implementation of the composite
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camera to simulate the vision of raptors. One of them is a wide angle camera

which provides a 76.7 degree view angle, and the other has a narrow view angle

about 7.9 degrees. Therefore, the two of them have approximately 10 times dif-

ference in viewing angle. Figure 6.5(b) shows the composite camera setup, which

includes a flexible hardware mount designed to adjust the cameras’ positional

relationship arbitrarily. The next step is to synchronously capture videos from

both these cameras using a stable software that avoids frame rate drops.

Random frame rate drops of either or both cameras in the composite setup

will cause the two videos to be out of synchronization. Consequently, the LPT-

stitched video will have various tracking issues like cars suddenly vanishing or

double images of them at the stitch line. To prevent frame rate dropping issues,

all frames acquired by the cameras are first stored into a buffer before writing it

to a single video file. To make sure that the buffer operation is fast enough, it is

performed in the system RAM since read/write operation in RAM is generally

faster than that of in a hard-disk. However, the buffer can become saturated

with the image data and cause an abrupt crash of the program. Hence, a multi-

threading program was implemented to split the individual operations and carry

them out concurrently to save memory and processing time.

Our initial experiments to synchronously capture videos using MATLAB

was unsuccessful, because it could not differentiate the identical cameras with

different lenses. Hence, a program was written in C++ making use of the Ap-

plication Programming Interface (API) provided by the camera manufacturer.

Thus, camera settings, such as frame rate, shutter speed, and exposure time,

were configured to be used by the video acquisition program. This program can
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Figure 6.6: A typical stitching process of the multiple depth-of-field images.

accommodate multiple cameras for synchronous recording provided that they

are all connected to USB 3.0 ports.

6.3.2 Multiple Depth-of-Field Data Processing

The detailed stitching procedure of the video frames acquired from the com-

posite camera is shown in Figure 6.6. For any two Cartesian video frames ac-

quired synchronously from the composite camera, log-polar transformation is

applied individually. To achieve scale and rotation invariance, the road vanish-
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ing point has to be carefully determined, which serves as the center point for

the log-polar transformation. After the transformation, there appears an over-

sampled region around the inner part of the near view and an under-sampled

region around the outer part of the far view, shown in Figure 6.6 as the blue ar-

eas. To stitch the two views, the duplicated regions in both views are discarded.

The final stitched result has well-separated road lanes that assist tracking in

particular lane(s) of interest. Notice that the stitched result has a significant

reduction in image content, which helps to speed up the object tracking process

and increase the computational efficiency. As shown in Figure 6.6, the Cartesian

image size of both camera views is 600 x 900, whereas the stitched log-polar

space composite view result is 136 x 509 only. Moreover, the composite camera

video extends the object tracking range from about 300 m in the traditional

vision-based methods to up to 1000 m.

6.4 Vehicle Tracking and Speed Estimation

To detect objects in motion, the background subtraction approach works effi-

ciently when the camera is stationary, which is conveniently the case in our work.

Furthermore, to counter the complicated outdoor conditions, such as landscape

changes due to shadows of clouds/trees/vehicles, low lighting conditions and re-

flections off the vehicle chassis, Gaussian mixture model (GMM) [210] is adopted

to extract and separate the moving vehicles from the background. The system

compares the video frames to a background model [211] to determine whether

individual pixels are part of the background or the foreground. With sufficient

training frames (150) and a small enough learning rate (0.05), it can distinguish
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Vehicle extraction flow

Stitched composite camera input Foreground information extracted with Gaussian Mixture Model

Foreground information extracted 
after filtering and morphological processing

Vehicles extracted with blob analyser

Start

End

Figure 6.7: Vehicle extraction with Gaussian mixture model.

between moving objects and the background, even if the environment is con-

taminated with noise or illumination variations. For details about the real-time

tracker implementation, the reader is referred to [210, 211]. To further remove

noisy detections, morphological area opening1 is performed to remove blobs with

less than 80 pixels. Subsequently, blob analysis yields the bounding boxes of the

foreground vehicles with their centroid locations. Figure 6.7 shows the vehicle

extraction result using the GMM algorithm.

After extracting the vehicles using GMM, the next step is to track them in

the midst of complex motion, such as lane switching, sudden acceleration and

deceleration, etc. To achieve this goal, Kalman filter [212] was adopted for simul-

taneously tracking multiple vehicles in the scene. The main advantage of using

Kalman filter is its ability to model the vehicle’s acceleration in the video due to

the prospective projection. In addition, it provides tolerance to a certain degree

of occlusion by predicting the vehicle position based on previous vehicle states.

Furthermore, Kalman filter provides a distance parameter to tolerate distortion

and noise of object movements. In short, Kalman filter allows the system to

track multiple vehicles while maintaining some prediction and tolerance to the

1http://www.mathworks.com/help/images/ref/bwareaopen.html
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Figure 6.8: Vehicle tracking with Kalman filter.

complex vehicle motions, such as lane switching and variable acceleration. Fig-

ure 6.8 displays a sample screenshot from the vehicle tracking software which

assigns a unique ID to each moving vehicle based on past data (only the fast

moving lane is being tracked in this example). The next step is to estimate the

real-world distance and then calculate the speed of the vehicles based on the

tracking information.

6.4.1 Proposed Vehicle Speed Calculation

The most commonly adopted solution for vehicle speed detection is using

LIDAR or RADAR devices along with surveillance cameras. One significant

drawback of such systems is their lack of ability to determine the correct over-

speeding vehicle in some cases, because of the communication gap between the

sensor and the camera used for saving the vehicle image. For instance, the cam-

era could capture an image with more than one vehicle in the scene (including the

overspeeding vehicle) upon activation by the RADAR signal. Another problem is

that the LIDAR/RADAR device accuracy is highly affected by interference from

large vehicles. The proposed composite vision system avoids the above problems

by adopting a vision-based solution that is able to gather speed information of
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a vehicle along with its corresponding image.

Since the vehicles appear to move faster from far to near field due to the

perspective projection, direct speed calculation from pixel coordinates is im-

practical. Therefore, we propose an algorithm to transform the composite image

location to the real-world location and determine the vehicle speed in kilometer

per hour. The speed calculation involves four main steps:

1. Transform stitched log-polar space coordinates to single individual log-

polar space coordinates.

2. Transform individual log-polar space coordinates to camera Cartesian

space coordinates.

3. Transform camera Cartesian space coordinates to real world coordinates.

4. Use tracking time information and real world location to calculate vehicle

speed.

Step 1: An arbitrary position (u, v) in the stitched log-polar coordinates can be

transformed to the individual log-polar space coordinate (U,V) by the following

relation, where uInnerRingCrop is the number of rings cropped out, vLowerWedgeCrop

is the number of wedges cropped out, and ustitchline is the position of the stitch

line.

1. When (u, v) falls in the far-field view range, that is, on the left of the

stitching line

U = u+ uInnerRingCrop (6.3)

V = v + vLowerWedgeCrop (6.4)
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2. When (u, v) falls in the near-field view range, that is, on the right of the

stitching line

U = u+ ustitchline + uInnerRingCrop (6.5)

V = v + vLowerWedgeCrop (6.6)

Step 2: The method to transform the individual log-polar space coordinates (U,

V) to their corresponding camera Cartesian space coordinate (x, y) is defined as

follows:

Distance = rmin × e
U×log(

rmax
rmin

)

nr−1 (6.7)

Angle = V × 2π

nw
(6.8)

x = Distance× cos(Angle) + xc (6.9)

y = Distance× sin(Angle) + yc (6.10)

Where nr represents the number of rings, nw is number of wedges, xc and yc are

chosen road vanishing point position, rmax and rmin are maximum and minimum

radii used in the stitching process. Figure 6.9 shows a few instances of this

transformation between the two coordinates.

Step 3: The transformation from camera Cartesian space coordinates to real-

world coordinates (x, z) follows the method proposed by Wu [113]. Taking into

consideration the composite cameras height above the road and tilt angle θ from

the road’s forward direction, the real-world locations x (transverse direction on

the road surface) and z (longitudinal or forward direction on the road surface) can

be obtained. To validate the transformation result, the lane markers separation
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Figure 6.9: An example of the second step of the speed calculation algorithm.

distance (12 m) defined by international traffic standards is used. As shown

in Figure 6.10(a), the estimated distances roughly matches with the real-world

distances. The accuracy of the distance calculation is further verified using

Google maps as shown in Figure 6.10(b). This is the location displayed in Fig.

6.2, which shows a calculated distance of 918.5m from the overhead bridge to the

furthest recognizable feature of the road in the far-field camera. Note that the

distance information of the LPT space can be calculated using the first stitched

frame alone. Hence, every pixel in the LPT space corresponds to a unique real

world coordinate. This information is available to the tracking system after the

first frame of the video is processed, and hence the calculation of speed can be

done more efficiently for the later frames.

Step 4: Using the above transformation, the distance traveled by a vehicle in

the real world can be calculated based on the Euclidean distance between any

two points of interest. Subsequently, the speed calculation is achieved using the

timing information from the vehicle tracking process and the calculated distance.

Twenty calculation windows were used to average out the calculated speed of a

vehicle. Figure 6.11 shows a sample screenshot of the speed calculation software,
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(a) Verification using separation of the lane markers.

(b) Verification using Google Maps.

Figure 6.10: Verification of the real-world distance calculation.

Figure 6.11: An example of the speed calculation step (km/hr).

which includes an instance of the speed calculation being stalled for the first few

frames of tracking to ensure reliable estimation. In the next section, we present

details about the implementation of the license plate detection system.

6.5 License Plate Detection

After implementing the composite camera, the next step is to employ another

camera for the purpose of license plate capturing. Similar to the composite
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camera design, the third camera also uses USB 3.0 standards. It uses a lens

with a narrow view angle that can focus up to a distance of 75 meters from the

shooting point for clear license plate capturing. Furthermore, the camera offers

high resolution grayscale images, which suits this application. Figure 6.5(b)

shows the complete hardware setup of the traffic monitoring system proposed in

this dissertation.

The tracking information is used to trigger the third camera that captures

the license plate information whenever a vehicle is detected to be exceeding the

allowed speed threshold. In particular, the over-speeding vehicle’s position is de-

tected within the visibility range of the license plate capturing camera, and then

it is triggered to capture a video. Using the captured video, the overspeeding ve-

hicle is localized using the algorithm proposed by Rosten and Drummond [213],

which makes use of point-based and edge-based tracking systems to robustly

track fast moving objects. Moreover, the vehicle detection algorithm of [213]

performs full-frame feature detection at 400Hz and uses on-line learning for im-

proved performance of feature tracking, which is very suitable for the application

proposed in this thesis. Figure 6.12 shows the output of the tracker with the

license plate capturing camera adjusted to focus on the inner lane for detecting

fast moving vehicles. Notice that the original Cartesian space video is directly

used by the license plate detection system, and therefore a more sophisticated

tracker has been used which, however, can handle only a single object at a time.

After localizing the overspeeding vehicle, we extract the number plate in-

formation by making use of common techniques [214, 215] in computer vision

for reading the number plate information. These techniques analyze horizon-
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Figure 6.12: An example of the vehicle detection system for extracting the license
plate from the Cartesian video. The corner points (marked in green in the
leftmost image) are used to spot the most probable area of the moving vehicle in
each frame of the video. The image enclosed by the bounding box is subsequently
used for extracting the license plate.

tal and vertical edges of an input image to locate the license plate. First, the

grayscale image is inverted to obtain an edge image using the Roberts cross op-

erator (see Fig. 6.13(a)). Since a license plate is usually a rectangular region

with alphanumeric characters in a plain background, the histogram value for the

horizontal and vertical edges of the license plate region will be high, as shown

in Fig. 6.13(b). The highlighted peak reveals the probable license plate location

and the segmented license plate image is shown in Fig. 6.13(c), which is the

final output of the traffic monitoring system proposed in this thesis. In the next

section, we present the experimental setup and discuss the results of our system.

6.6 Experimental Setup and Results

The proposed traffic monitoring system has a tracking range of up to one

kilometer in practice. Hence, a straight highway with less obstruction by other

overhead bridges is desirable. One such location is the overhead bridge after

Yuan Ching Road with a maximum visible distance of about 920 meters (verified

using Google Maps (Figure 6.10(b)) as well as the distance calculation method
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(a) Image inversion and edge detection.

(b) Horizontal and vertical histograms.

(c) Extracted license plate.

Figure 6.13: License plate detection using computer vision techniques.

proposed in section 6.4.1). Figure 6.14(b) shows the field test conducted on an

overhead bridge 4.5 m above the expressway lanes. Note that the third camera

for license plate detection is placed further to the left of the visible picture to

focus on the inner lane. The main challenge for a vision-based traffic monitoring

system is to match the short-range reliability of RADAR based systems, and

thus it is very important to verify the estimated speed using such systems.

Since the distance calculation has been verified conclusively, the bottleneck

is the performance of the Kalman filter. For instance, we observed that if there

are nearby trees, which cast shifting shadows on the road, they can be mis-

taken for a moving vehicle and can also affect the calculated speed when the

correctly tracked vehicle enters the shadow of the trees. The wrongly estimated

speed (usually higher than the actual speed) is due to the sudden change in the

tracked position of the vehicle. Moreover, tracking multiple objects poses sev-
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Figure 6.14: Composite Camera Field Test.

eral additional challenges: (1) Multiple detections should be associated with the

correct vehicle IDs, (2) New vehicles appearing in the scene should be assigned a

suitable ID without confusing with the data of current and past vehicle IDs, (3)

Object identity must be maintained when adjacent vehicles merge into a single

detection, and also when there is a partial detection of a vehicle due to change

in resolution between the near and far field camera. Therefore, extensive exper-

imentation was required in order to come up with a set of suitable configuration

parameters.

Furthermore, the motion model used for Kalman filter should ideally cor-

respond to the physical characteristics of the vehicle motion. In reality, most

vehicles can be observed to have a complex acceleration profile rather than a

constant velocity profile due to traffic conditions. Therefore, a constant accel-

eration model is a better choice. If the constant velocity model2 is adopted,

the vehicle’s location will be quite different from the predicted location, and the

tracking results would be sub-optimal no matter what values are selected for the

2refer to the demo at http://www.mathworks.com/help/vision/examples/using-kalman-
filter-for-object-tracking.html
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other parameters. However, even the constant acceleration model does not re-

flect the true behavior of the expressway vehicles, and therefore the motion noise

in terms of location, velocity, and acceleration need to be taken into account.

After extensive experiments, we set the maximum location variance, velocity

variance and the acceleration variance to be 25, 20, and 10 units respectively.

Once suitable configuration parameters are set for the Kalman filter, the next

step is to verify the speed using RADAR devices and smartphone applications.

6.6.1 On-site experimental results

Initially, to test the compatibility of the various components of the proposed

traffic monitoring system, we arranged a car to drive with a known speed around

75 km/h and then recorded the video using our composite camera setup. With

the recorded video, the composite vision system tracked the speed information

with 20 calculation windows and calculated the average vehicle speed to be 78

km/h. This is a reasonable speed detection result, because the car’s original

speed was slightly varied (±5 km/h) due to driving conditions on the expressway.

Next, we made use of a calibrated android application to quantitatively verify

the estimated speed.

Efforts were made to loan a speed gun or a similar device from the Land

Transport Authority of Singapore (LTA) and the Singapore Traffic Police, but

both authorities informed that the usage of such device by the public, even for

research purposes, is not allowed. Hence, we made use of publicly installed

RADAR speed notification boards (Fig. 6.15(a)) to calibrate a smartphone app,

and then used it for verifying the estimated speed of the proposed system. The

speed board provides reference speed data for comparing the output of mobile
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applications, several of which were tested for suitability and accuracy. Finally,

an app called as Speed Radar Cam was found to be the most accurate and

reliable mobile application to aid in verifying the speed calculation algorithm.

A screenshot of the Speed Radar Cam is shown in Fig. 6.15(b).

The mobile application was used during the on-site experiments to verify

the accuracy of the tracking software. The errors between the calculated speed

and the output from Speed Radar Cam usually deviate between 3km/h. Hence,

the accuracy of the proposed speed calculation algorithm falls within a reason-

able range and further accuracy verification would require devices such as a speed

gun or a portable RADAR/LIDAR system. A sample output of the Speed Radar

Cam is shown in Fig. 6.15(c).

After establishing the reliability of the speed estimation, we tested the pro-

posed traffic monitoring system on a variety of traffic conditions. Figure 6.16

shows the results from a video captured at Ayer Rajah Expressway in Singapore;

the upper half of the MATLAB GUI displays the tracking result while the lower

half shows the calculated speed. After each vehicle exits the scene, a snapshot

of it is stored along with the time stamp and average speed. Notice that NaN

appears as one of the vehicles’ speed in Fig.6.16. This is because the speed cal-

culation algorithm waits for tracking to stabilize, which typically takes a couple

of seconds.

We conducted a total of 9 video recordings, each of which contains about 15

to 30 vehicles in the fast lane. It was observed that the speed limit of 90km/hr

on the Ayer Rajah expressway was not violated by 95% of the vehicles tracked by

the composite vision system, and most of the cars that violated the speed limit
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(a) The RADAR speed de-
tection system used for cali-
brating the smartphone ap-
plication.

(b) Screenshot of the Speed Radar Cam applica-
tion.

(c) Sample output of the
Speed Radar Cam appli-
cation. Top left shows
the speed of the nearest
vehicle.

Figure 6.15: Verification of the speed calculation.

were estimated to be around 100 km/hr while in reality they were traveling at a

touch above or below the speed limit. The main cause for the higher estimation

of speed was due to the case of adjacent vehicles merging into a single detection

and when there is a partial detection, both of which change the centroid location

of the vehicle in LPT space by a considerable margin. Another concern was

the shadows cast on the road by big trees, which typically is not stationary

in windy conditions, and some unreasonable speed values were obtained (above

150 km/hr). Of course, these anomalous speed values can be filtered out and
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Figure 6.16: Results of the composite vision system.

the speed values calculated in that region were not taken into account while

calculating the average speed. Next, we report the results of the license plate

detection system. Figure 6.17 shows a sample output of the complete traffic

monitoring system. The success of the license plate detection depends on the

uniqueness of the edge profile of the number plate. In some cases, the edges

of the number plate do not stand out from their neighborhood and this results

in no segmentation. However, since there are many frames of the vehicle, there

is usually at least one output with a clear license plate segmentation. In the

extreme case where there is no segmentation, the system simply records the

speed along with the image obtained by the tracker (Fig. 6.12). It is possible to

opt for more sophisticated license plate detectors, like specifically trained object

detectors [216], but we kept the algorithm simple during the nascent stages of

this work.
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Figure 6.17: Results of the composite vision system integrated with the license
plate detection module.

6.6.2 Discussion

Since the vehicle motion is tracked from far field to near field, the composite

camera provides adequate information for the system to perform long distance

tracking and speed calculation. This benefits the accuracy and reliability of the

speed calculation. With the multiple depth-of-field viewing ability, the system

can track vehicles up to 1000 m away from the shooting point, which is a big

improvement compared to conventional practices up to 300 m using vision-based

methods. Various parameters need to be considered for the speed calculation

procedure, such as road lane vanishing point setting, log-polar transform param-

eters, and individual camera settings. However, the speed calculation is most

affected by the precision of object tracking. From experiments in other parts

of the island, we found that another challenging aspect was low lighting condi-
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tions. In these cases, the speed detection result was not reliable due to tracking

difficulties.

As pointed out earlier, the main drawback of the RADAR based traffic mon-

itoring systems is the lack of vehicle identity information while estimating the

speed. The composite vision system solves this problem by providing a snapshot

of the exact overspeeding vehicle, as shown in Figure 6.16.

6.7 Summary

We proposed a composite vision system with multiple depth-of-field viewing

ability that largely extended the tracking range of traditional traffic monitoring

systems. By defining the overspeeding vehicle using the tracking result, strong

coherence between identity and speed information was established. The addition

of a separate license plate detection camera to the composite vision system pro-

vides sufficient evidence for law enforcement. Having deep field object tracking

ability, the composite vision system can handle high-speed vehicle tracking and

can compensate the drawbacks of existing speed monitoring systems. Moreover,

the system has the potential to perform real-time tracking in complex road con-

ditions and multiple lanes. It’s simultaneous near and far sensing capabilities

can also be extended to other industries, such as faulty item inspection along a

conveyor belt in manufacturing industries as well as employment in Unmanned

Aerial Vehicles (UAV).
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Conclusions

Ever since our computers have achieved a crude understanding of images,

computer vision has profoundly changed our lives in many ways. Applications

such as image database search in the internet, computational photography, bi-

ological imaging, vision for graphics, geographical information system, biomet-

rics, vision for nanotechnology, etc., were unanticipated while other applications

keep arising as computer vision technology diversifies. Rapid developments in

supportive technologies, such as digital cameras and computers, ensure that

computer vision systems will become increasingly more capable and affordable.

Among the various topics in this exciting field of research, we mainly focused on

the important problem of classifying object images in this dissertation.

Firstly, the problem of classifying shapes of objects, even with proper seg-

mentation, is very challenging in the face of occlusion and strong view-point

changes. While many valuable results have been obtained considering the global

shape image, there has been little effort to consider local shape features with

successful classification schemes such as the bag-of-words model. In this the-
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sis, we proposed a novel local shape descriptor using log-polar transform to

deal with scale, rotation and view-point variations. Using the proposed features

along with contextual information, we demonstrated much better classification

performance compared to state-of-the-art shape classification algorithms on the

animal shapes dataset. Secondly, we considered the more general problem of

classifying grayscale images. While appearance based features have drawn most

of the attention in the past two decades, a few works have considered integrating

shape and appearance cues. In this dissertation, we proposed a novel fusion of

appearance and shape cues using log-polar transform, and demonstrated signif-

icantly higher performance compared to existing works on the ETH-80 dataset.

Thirdly, we showed that high performance can be achieved by integrating color,

appearance and shape cues on two popular object datasets. Finally, we proposed

a real-world application of log-polar transform for tracking high-speed moving

objects.

7.1 Main Contributions

In Chapter 3, we investigated the classification of binary shape images with

scale, rotation and strong view-point variations, based on features derived using

log-polar transform. Different from most of the existing works, we considered a

local feature based classification using the bag-of-words model, which has been

rarely applied to shape classification. It was found that, with contextual in-

formation encoded in the image representation, the performance of the shape

classification system was significantly better than the state-of-the-art algorithms

on the animal shapes dataset. Besides the above contributions, a novel metric
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termed ‘weighted gain ratio’ was proposed to select a suitable codebook size in

the bag-of-words model. The proposed metric is generic, and hence it can be

used for any clustering quality evaluation task. Additionally, a joint learning

framework was proposed to learn features in a data-driven manner, and thus

avoiding manual fine-tuning of the model parameters.

In Chapter 4, we investigated the classification of grayscale images based on

log-polar encoded local features extracted from different object cues. To extract

different object cues, we proposed a novel scheme to obtain structure, texture

and shape information from grayscale images. The extracted local descriptors

were quantized using the bag-of-words representation with two key contributions.

First, a keypoint detection scheme based on image denoising was proposed to

select sampling locations, which was shown to outperform the widely used dense

grid sampling by a large margin. Second, a codebook optimization scheme based

on discrete entropy was proposed to reduce the number of codewords and at the

same time increase the overall performance. The proposed cue-based object

categorization framework was demonstrated to have significantly higher classi-

fication performance compared to existing works on the widely used ETH-80

object dataset.

To extend the classification framework to color images, we proposed a novel

multi-cue object representation using the bag-of-words model in Chapter 5. Ma-

jority of the existing works focus on advanced encoding methods or sophisticated

feature pooling techniques or machine learning strategies to obtain better perfor-

mance over the simple bag-of-words model. In contrast, we proposed log-polar

encoded local features while still employing the original bag-of-words represen-
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tation (vector quantization). Besides the proposed features, we introduced a

novel keypoint detection method that was found to be better than the dense

sampling strategy from a practical point of view. In other words, we demon-

strated par performance compared to the dense sampling strategy at a much

lower computational cost. Thus, the proposed keypoint detection scheme using

differential entropy, offers a more principled approach to image sampling for the

popular bag-of-words framework. Finally, we proposed a novel way to encode

contextual information in the bag-of-words model, which improves the overall ac-

curacy without affecting the dimensionality of the features in a significant way.

The proposed multi-cue object representation was shown to outperform seminal

works on the popular Caltech-101 object dataset. In addition, we outperformed

several state-of-the-art methods on the Flickr-101 object dataset.

In Chapter 6, we designed a video processing application based on the log-

polar sampling technique extensively used in the earlier chapters. In particular,

log-polar transform was used to stitch video information acquired from cameras

of different visual field depths into a single video stream. Consequently, it was

possible to track moving objects with a much longer tracking range (3 times

longer) compared to using a single camera. This composite vision system was

applied to the problem of traffic monitoring in expressways. Having a deep field

object tracking ability, the composite vision system was able to handle high-

speed vehicle tracking, and thus compensate the drawbacks of current speed

monitoring systems. Moreover, the addition of a separate camera for license plate

detection provided sufficient evidence for law enforcement. The experimental

results demonstrated the effectiveness of the proposed traffic monitoring system.
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7.2 Suggestions for Future Work

Based on the research presented in this dissertation, the following issues

deserve further consideration and investigation.

1. The proposed cue-based object classification framework can be extended

to incorporate other visual cues. While we made some progress to in-

clude multiple object cues in Chapters 4 and 5, it is important to include

other appearance cues like depth, which can also assist in improving the

shape cue. As a starting point, it is a possible direction to use monocular

depth extraction techniques like the one proposed in [217]. Additionally,

extending our classification framework to large-scale and multi-label ob-

ject classification problems like the PASCAL VOC Challenge is a potential

direction.

2. The performance of the shape classification system was found to be sub-

optimal compared to the performance of other object cues, as seen in Chap-

ter 5. There are many ways to extract shape information from grayscale

and color images. For instance, the choice of the salient object detection

algorithm or the thresholding method profoundly affects the quality of the

extracted shape. Since this is the most important problem in computer

vision, i.e., object segmentation, it is desirable to combine mutually infor-

mative tasks, such as depth estimation and shape extraction, to be more

effective.

3. Even though incorporating contextual information improved the classifica-

tion accuracy, as shown in Chapters 3 and 5, it was only used for the shape
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cue. As discussed in Chapter 5, incorporation of contextual information

for the appearance cues is extremely prohibitive in terms of memory re-

quirements without compromising on classification accuracy. Therefore, for

dealing with large codebooks, data mining methods can be used to choose

particular codewords to build a smaller co-occurrence matrix. Moreover, it

is a potential direction to study the performance of contextual information

for appearance cues using methods other than co-occurrence statistics.

4. For the vision-based traffic monitoring application proposed in Chapter 6,

a possible future work is to attempt a hybridization with RADAR systems,

which will help complement their respective strengths in traffic monitoring.

Also, an optical character recognition (OCR) program can be included to

automatically read the license plate image and output the corresponding

characters to fully automate the law enforcement procedure. Moreover, a

fast machine code implementation that can handle real-time object track-

ing in multiple lanes would be a potential direction of research.

In conclusion, developing accurate and fast object classification systems is

very important since they are an integral aspect of many practical computer

vision systems. To achieve the objective of making machines perceive the world

as humans do, we believe it is important to take measured steps to integrate

visual cues in a unified classification framework. This dissertation represents a

step in this direction.
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