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ABSTRACT 

Extracellular mechanical signals (EMS) can regulate nuclear morphology and 

chromatin dynamics via the physical link from focal adhesions to chromatin 

via the cytoskeleton, linker proteins on the nuclear envelope and the nuclear 

lamina. However, how such force transmission from cytoskeleton to the 

nucleus is regulated by different EMS and their effect on nuclear and 

chromatin dynamics is not well understood. In the first project, using 

micropillar substrates and correlation analysis techniques, we measured the 

time scale at which nuclear and chromatin dynamics respond to traction forces 

at cell periphery in unperturbed cells. In the second project, using nuclear 

envelope fluctuations and heterochromatin dynamics as readout, we 

characterized how cytoskeletal forces alter depending on the EMS provided by 

micropatterned substrates. In the third project, we developed a technique to 

quantify chromatin dynamics and used it to study the effect of cytoskeletal 

perturbations on chromatin dynamics and binding of transcription regulators. 

Taken together, this work provides a quantitative understanding of the 

coupling between cellular mechanotransduction and nuclear and chromatin 

plasticity. 
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1.1 Why Study the Effect of Cell Geometry on Nucleus and Chromatin? 

The interaction between cells and their environment plays an important role in 

regulating cell behavior and various cellular functions such as division, 

differentiation and migration. Extracellular chemical signals such as cytokines, 

growth factors and hormones typically engage receptor molecules on cell 

surface, which have a ligand binding domain and an effector domain that 

brings about the cellular response by initiating various intracellular signaling 

pathways [1]. The cellular response to such chemical signals has been well 

studied and established. However, studies on extracellular mechanical signals 

(EMS) such as rigidity or geometry of the substrate and shear or normal forces 

from the surrounding medium and their effect on cell behavior, collectively 

termed as mechanobiology, have only begun in the last two decades [2-9].  

Exposure to such EMS for several weeks results in changes in gene expression 

profile and differentiation patterns. Mesenchymal stem cells (MSCs) cultured 

for few weeks on soft substrates become neurogenic, on rigid substrates 

become osteogenic and on substrate of intermediate rigidity become myogenic 

[8]. MSCs cultured for a week on geometries such as rectangles or stars, 

which exhibit enhanced actomyosin contractility, become osteogenic, while 

those cultured on squares or flowers become adipogenic [10]. MSCs exposed 

to fluid shear stress for a week also exhibit osteoblastic phenotype [11]. 

However, changes in gene expression can be detected as early as a few hours 

of exposure to mechanical signals. Within three hours of culturing on 

fibronectin micropatterns of large polarized (LP) geometry (1800µm2 1:5 

rectangle), fibroblasts exhibit an upregulation of genes related to actin 

cytoskeleton, cell migration, cell-substrate and cell adhesion, while those 
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cultured on constrained isotropic (CI) geometry (500µm2 circle) exhibit 

upregulation of genes related to cell division, cell death and negative 

regulation of cell-matrix adhesion [12].  

Several studies aimed at understanding such mechanotransduction have shown 

that physical properties of cells such as its shape, strength of focal adhesions, 

cytoskeletal organization and nuclear morphology are altered upon exposure 

to EMS (Figure 1.1). For example, endothelial cell shape changes from 

polygonal to ellipsoidal upon exposure to fluid shear stress and orient 

themselves in the direction of fluid flow [13]. The integrin-cytoskeletal links 

become stronger when cells are cultured on rigid matrix [5]. Actin stress fibers 

are induced in human vascular endothelial cells in response to shear stress 

[14]. Cell morphology and stress fiber organization becomes more polarized 

with increase in substrate rigidity [15, 16]. The nuclear morphology follows 

cell morphology, becoming more rounded on soft substrates and more 

flattened on rigid substrates [17, 18]. Nuclei are more elongated and flattened 

in cells cultured on polarized geometries such as rectangles compared to more 

isotropic geometries such as squares or circles [19].  

In addition to these physical changes in the cell, various signaling pathways 

related to transcription factors have also been observed to be sensitive to EMS. 

Armadillo, which is a transcription coactivator for the transcription factor 

twist, translocates to the nucleus in drosophila embryos upon application of 

unilateral compression [20]. Activity of serum response factor and nuclear 

accumulation of its cofactor Megakaryoblastic Leukemia Factor (MKL) is 

enhanced in cells with stretched and polarized geometries [12] and upon 

application of force [21]. The p65 subunit of the transcription factor Nuclear 
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Factor Kappa-light-chain-enhancer of activated B cells (NF-κB) shuttles to the 

nucleus upon application of fluid shear force in endothelial and bone cells 

[22]. The transcriptional coactivator Yes-Associated Protein (YAP) has higher 

nuclear localization in cells cultured on rigid substrates [23].  

 

Figure 1.1: Effect of EMS on Physical Properties of Cells. 

 
However, the physical and chemical cellular responses to EMS may not be 

mutually exclusive as nuclear shuttling of various transcription factors has 

been shown to depend on their interaction with focal adhesions and the 

cytoskeleton. MKL shuttling to the nucleus is dependent on the state of actin 

polymerization [24]. It binds to G-actin in the cytoplasm, which conceals its 

nuclear localization signal. When extracellular signals trigger actin 

polymerization, MKL shuttles to the nucleus with the help of importins [25]. 

Mechanical activation of the NF-κB pathway gets perturbed in cells which 

lack the focal adhesion kinase [26]. Similarly, the YAP/TAZ activity and its 
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nuclear shuttling require cytoskeletal tension; latrunculin-A perturbation 

lowers its nuclear localization [23]. Additionally, the spatial localization of the 

enzyme histone deacetylase is regulated by actomyosin contractility; myosin 

inhibition by blebbistatin results in its nuclear shuttling. 

With this overview of the physico-chemical changes that occur in response to 

EMS, we aimed at understanding the process of mechanotransduction at three 

levels - the nucleus, the chromatin and the transcriptional regulator, by posing 

the following questions: 

1. How do mechanical signals transduce to the nucleus and how do they 

affect nuclear morphology and dynamics? 

2. Can chromatin “feel” the mechanical signals – are chromatin 

compaction and dynamics affected by mechanical signals? 

3. What is the effect of mechanical signals on the binding of a 

transcriptional regulator like MKL? 

1.2 Physical Signal Transduction from Cell Periphery to Nucleus 

The nucleus and chromatin are physically coupled to the cell periphery via 

cytoskeleton, which primarily comprises of actin, microtubules and 

intermediate filaments. Actin, along with myosin and some cross-linking 

proteins, forms tensile filaments that originate at the focal adhesions and has 

been implicated in force transduction to the nucleus [27]. Microtubules 

originate as filaments from the microtubule-organizing centre and form a 

network around the nucleus [28]. Vimentin, which is a type III intermediate 

filament, forms a scaffold in the cytoplasm, which is highly dense around the 

nucleus [29]. These cytoskeletal structures are physically linked to the nucleus 
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via transmembrane proteins on the outer nuclear membrane (ONM) – nesprin-

1 and nesprin-2 bind to actin, nesprin-3 binds to plectin, which binds to 

intermediate filaments and nesprin-4 binds to microtubule motors [30]. These 

proteins on the ONM have a Klarsicht ANC-1 Syne Homology (KASH) 

domain, which interacts with the Sad1p, UNC-84 (SUN) domain of 

transmembrane proteins on the inner nuclear membrane (INM) (Figure 1.2).  

 

Figure 1.2: Physical Link from Cell Periphery to Nucleus and Chromatin. 

 
Mechanical signals from the extracellular matrix can travel as stress waves 

through this physical link between focal adhesions and the nucleus. Such 

transmission occurs at time scale of a few milliseconds [31-33]. Additionally, 

active forces from the physical cytoskeletal link maintain the nucleus under 

prestress which governs its morphology. Any perturbation of the components 

of this physical cytoskeletal link from focal adhesions to nucleus inhibits 

propagation of mechanical signals and affects nuclear morphology as well as 
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subsequent functional responses such as transcription and differentiation. 

Actin perturbation by cytochalasin-D or myosin inhibition by blebbistatin 

results in decreased nuclear projected area. On the other hand, microtubule 

perturbation results in increased nuclear projected area, suggesting that while 

actomyosin fibers apply tensile load, microtubules apply a compressive load 

on the nucleus [34, 35]. Myosin inhibition or expression of dominant negative 

Klarsicht ANC-1 Syne Homology (DN-KASH) domains eliminates the 

modulation of nuclear shape by substrate rigidity [18]. Myosin inhibition also 

blocks elasticity-mediated lineage specification [8]. Knockdown of nesprin-3, 

which is a linker between intermediate filaments and the nucleus, alters shear-

flow mediated mechanotransduction in human aortic endothelial cells [36].  

1.3 Mechanical Force Sensing by Chromatin  

In addition to the cytoskeletal physical link from focal adhesions to the 

nucleus, there also exists a physical link from INM to the chromatin. Various 

transmembrane proteins on the INM bind to lamins and emerin [37]. Lamin B 

receptors (LBR) and LaminA/C further tether heterochromatin to nuclear 

periphery via interaction with Heterochromatin Protein 1 (HP1) [38-40]. These 

links, along with cytoskeletal links from focal adhesions to the ONM, 

facilitate the transduction of physical signals from cell periphery to chromatin, 

thereby providing permissivity to alter chromatin structure and function in 

response to EMS. Upon application of fluid shear stress, subnuclear structures 

labelled with fibrillarin-GFP in HeLa, human umbilical vein endothelial, and 

osteosarcoma cells exhibit dynamics that scales with the amplitude of shear 

stress [41]. Local extracellular force application using RGD-coated magnetic 

bead resulted in direct dissociation of a major multi-protein complex in the 
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cajal body, a prominent subnuclear structure [42]. Such protein dissociation in 

the subnuclear structure upon extracellular force was not observed when the 

physical cytoskeletal to chromatin link was perturbed by disruption of actin, 

myosin or laminA/C. Mechanical stimulation of cells via magnetic particles 

adhered to plasma membrane resulted in chromatin remodeling as measured 

using fluorescence anisotropy of H2B-EGFP [21]. Such force dependent 

chromatin remodeling was abolished upon actin or myosin perturbation by 

cytochalasin-D and blebbistatin respectively.  

Perturbations of the physical link from focal adhesions to the chromatin also 

results in altered dynamics of various chromatin binding proteins. 

Fluorescence recovery after photobleaching (FRAP) experiments reveal 

enhanced dynamics of core histones and HP1α in embryonic stem cells 

compared to primary fibroblasts, which can be explained by the absence of 

physical links between cell periphery to nucleus and chromatin in stem cells 

[43, 44]. Perturbation of focal adhesion protein vinculin or actin or KASH 

domain protein also results in enhanced dynamics of core histone proteins 

[34]. Altering actomyosin contractility via cytochalasin-D or blebbistatin 

treatments enhances cytoplasmic to nuclear shuttling of the chromatin 

remodeling enzyme histone deacetlylase 3 (HDAC3) resulting in lower 

acetylation levels [12]. Such alteration in the dynamics of histones and 

chromatin remodeling enzymes would assist in structural changes required for 

regulating gene expression in response to mechanical signaling. 
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1.4 Overview of this Thesis 

Mechanical Correlation Between Cell Traction Forces and Nuclear and 

Heterochromatin Dynamics 

This project probes the inherent time scale at which the nucleus and 

subnuclear structures respond to the traction forces generated at the focal 

adhesions. To measure these time scales, correlation was calculated between 

displacement of tips of micropillar arrays on which the cells were adhered and 

the displacement of nucleus centroid and heterochromatin foci.  

Micropillar arrays coated with fibronectin when used as a substrate for 

culturing cells, allow the measurement of forces generated by cells [45]. The 

displacement of the micropillar tips is directly proportional to the magnitude 

of the force. In this project, fibroblasts expressing H2B-EGFP and lifeact-RFP 

were cultured on micropillar arrays and simultaneous imaging was performed 

in bright field for micropillars and in fluorescence for actin and nucleus. 

Pillars under cells typically showed higher mean displacements (~0.1µm) than 

control pillars (~0.04µm). A measurement of mean micropillar displacement 

for each pillar showed that the pillars at the cell periphery exhibited maximum 

displacement. Inhibition of myosin significantly reduced the amplitude of 

these displacements, validating that the experimental set-up could indeed 

capture the effect of traction forces on micropillar displacements. 

Autocorrelation curves for pillar, nucleus and heterochromatin displacement 

showed similar decorrelation time scales of ~40s, which is close to the time 

scale of fibroblast cell contraction [46]. Cross-correlation analysis of front and 

rear end pillar displacement with the nuclear displacement showed 
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instantaneous (less than 1s) negative and positive correlation, respectively. A 

measurement of the angle between pillar trajectory and nuclear trajectory also 

showed that while the nucleus moves forward, most pillars on the front edge 

move rearward and most pillars on the rear edge move towards the front. 

Myosin inhibition removed such spatial correlation between pillar and nucleus 

displacements. These results suggest a highly coordinated contractile process 

mediated by elastic cytoskeletal links to test local microenvironment during 

cell migration. 

As a next step, the spatiotemporal coupling between these elastic actomyosin 

links and the nucleus and heterochromatin was studied. In cells constrained on 

polarized geometry, perinuclear actin was observed to form parallel apical 

stress fibers, which connect focal adhesions on opposite ends and exert active 

compressive force on the apical surface of the nucleus. As a result of this 

compressive load, the nucleus formed indents at sites where it is pressed by 

the stress fibers. The stress fibers were observed to move transversely over the 

nucleus at ~0.3µm/min, simultaneously moving the indents which form on the 

nucleus. Interestingly, the heterochromatin nodes within the nucleus, which 

are regions of dense chromatin, were also observed to move along with the 

apical actin stress fibers. Taken together, this work provides direct evidence 

for instantaneous force transmission from focal adhesion to nucleus and 

chromatin via apical actin stress fibers.  

Actomyosin Contractility Regulates Nuclear and Chromatin Plasticity 

This project explores the role of actomyosin contractility in regulating nuclear 

and chromatin plasticity. We altered actomyosin contractility via 

micropatterned substrates and pharmacological reagents and measured 
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resulting fluctuations of nuclear area and dynamics of functional chromatin 

structures. 

Firstly, cells were cultured on microfabricated fibronectin patterns of two 

extreme geometries –LP and CI. Previous work in the lab has shown that 

cytoskeletal organization [19] and gene expression profiles [12] are highly 

distinct in these two geometries. Consistent with these studies, it was observed 

that the LP cells were flat and had long apical actin stress fibers while CI cells 

were dome shaped and had short filaments and punctated structures of actin. 

In LP cells, the projected nuclear area did not vary with time, while in CI cells 

it showed periodic fluctuations. Treatment with various pharmacological 

inhibitors showed that the amplitude of projected nuclear area fluctuations 

(PNAF) was dependent on the state of actin polymerization. Experiments with 

small molecule inhibitors revealed that myosin and formin were also necessary 

for these fluctuations. However, direct physical links between actin and 

nucleus, either via nesprin or via microtubules were not necessary for the 

PNAF. Hence, the active force for generating nuclear fluctuations comes from 

the dynamic actin-myosin-formin asters that exist in intermediate 

polymerization state of actin. Next, laminA/C expression levels were 

measured in LP and CI cells, since laminA/C levels have been linked to 

nuclear rigidity [47].Quantitative RT-PCR experiments revealed 80% 

reduction in laminA/C levels in CI cells compared to LP cells. Consistently, 

laminA/C overexpression in CI cells reduced the PNAF while laminA/C 

knockout cells on LP patterns displayed enhanced fluctuations. In summary, 

both active forces from the cytoskeleton and nuclear rigidity from the 

laminA/C together regulate the PNAF. 



12 
 

To understand if the PNAF have an effect on chromatin dynamics, 

heterochromatin foci were tracked in time series of confocal H2B-EGFP 

images and their trajectories in LP and CI cells were compared. The foci were 

much more dynamic in CI cells as visualized and quantified using line 

kymographs, XY trajectories and mean squared displacement (MSD) vs time 

plots. Blebbistatin treatment in CI cells decreased the dynamics, while 

cytochalasin-D treatment in LP cells enhanced the dynamics. To assess if the 

heterochromatin foci trajectories of a nucleus were correlated in either cell 

geometry, vectorial Pearson correlation coefficient between 3D trajectories of 

all heterochromatin foci pairs was calculated, generating a correlation matrix 

for individual nuclei. The heterochromatin foci trajectories were much more 

correlated in LP cells (mean correlation = 0.57) than CI cells (mean 

correlation = 0.15). The correlations showed apical-basal grouping, i.e. foci in 

either group were more correlated with other foci in the same group than with 

the other group. Overall, the correlations decreased upon cytochalasin-D 

treatment in LP cells and enhanced upon blebbistatin treatment in CI cells. 

This dependence of heterochromatin trajectory correlations on actomyosin 

suggests that active cytoskeletal forces may be able to regulate the rheological 

properties of chromatin. Interestingly, the actomyosin mediated PNAF as well 

as heterochromatin foci dynamics and correlations were reversible, implying 

the existence of structural memory in chromatin organization. 

Cell Geometric Constraints Modulate Chromatin Compaction States 

This project aims at a direct visualization of chromatin compaction and 

transcription factor binding in the nucleus, which would provide a better 

understanding of how EMS regulate gene expression. We measured 
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spatiotemporal dynamics of chromatin compaction and transcription cofactor 

binding in live cells cultured on fibronectin micropatterned substrates using 

fluorescence anisotropy imaging (FAI) of fluorescently tagged core histone 

proteins and transcription cofactor MKL. 

Fluorescence anisotropy measures the rotational mobility of fluorophore-

bound proteins by quantifying the depolarization in the emitted light [48]. 

Rotational mobility of H2B-EGFP represents local chromatin compaction state 

- a compact local packaging would decrease the rotational mobility of core 

histones in the nucleosome and vice versa [49]. As a first step, to develop a 

quantitative technique for analyzing the dynamics of chromatin compaction, 

Pearson correlation coefficient (PCC) between anisotropy images was 

computed as a function of time lag between images. Fitting the PCC vs time 

lag curve with an exponential decay function gave three quantities – the noise 

(η), the time scale of chromatin compaction dynamics (τ) and a measure of the 

total dynamic fraction of the chromatin (α). Comparing anisotropy and 

intensity PCC vs time lag curves for fixed and live cells confirmed that 

anisotropy is more sensitive than intensity in capturing the difference in 

chromatin dynamics. Anisotropy PCC could capture local chromatin dynamics 

in 3.5x3.5 µm2 regions at heterochromatin and euchromatin sites. Euchromatin 

regions had significantly higher noise (η=0.5) and drop rate (α/τ=0.035 min-1) 

than heterochromatin (η=0.2, α/τ=0.025 min-1), implying a rapid loss of 

structural information and faster polymer relaxation time scales. Anisotropy 

PCC could also capture differential chromatin dynamics in distinct 

differentiation states. Embryonic stem (ES) cells exhibited significantly higher 

drop rates (α/τ=0.12 min-1) than primary mouse embryonic fibroblasts 
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(PMEFs) (α/τ=0.06 min-1), suggesting that chromatin is more dynamic in stem 

cells. Although the global chromatin dynamics is faster in ES cells, local 

anisotropy PCC analysis by dividing the nucleus into 1.6x1.6 µm2 regions 

revealed that the spatial heterogeneity is higher in PMEFs. 

Next, to study the effect of cell geometry on chromatin dynamics, the 

anisotropy PCC vs time lag curves were compared for cells cultured on either 

LP or CI fibronectin micropatterned substrates. CI cells exhibited significantly 

faster chromatin dynamics (α/τ=0.03 min-1) and larger dynamic fraction of 

chromatin (α=0.4) than LP cells (α/τ=0.02 min-1, α=0.2). Actin 

depolymerization in LP cells increased chromatin dynamics (by 21%) and 

dynamic fraction (by 21%) while actin stabilization in CI cells decreased the 

dynamics (by 11%) and dynamic fraction (by 59%), suggesting that actin 

polymerization regulates chromatin dynamics.  

Next, fluorescence anisotropy was used to visualize spatiotemporal binding of 

MKL. MKL, which is a transcription cofactor for serum response factor, binds 

to G-actin in the cytoplasm and shuttles to the nucleus when G-actin 

polymerizes to F-actin [24]. Consistent with previous reports [50], both serum 

stimulation and cytochalasin-D treatment induced nuclear shuttling of MKL 

within 15 minutes. To investigate the coupling between MKL binding and 

chromatin compaction, the fluorescence anisotropy of MKL mCherry was 

measured in the nucleus and compared with H2B-EGFP anisotropy. Regions 

of high MKL anisotropy showed inverse correlation with H2B anisotropy, 

suggesting that MKL binds in regions of decompact chromatin. 2D spatial 

tracking of high anisotropy foci of MKL-mCherry and H2B-EGFP revealed 

higher dynamics of MKL foci in LP cells while dynamics of H2B foci were 
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higher in CI cells. In summary, using FAI and correlation analysis, the 

chromatin compaction pattern was observed to be more dynamic in CI cells 

while the activity of transcription cofactor MKL was higher in LP cells.  

 

 

  



16 
 

 

 

 

 

 

 

 

 

 

CHAPTER 2: MECHANICAL CORRELATION BETWEEN CELL 

TRACTION FORCES AND NUCLEAR AND HETEROCHROMATIN 

DYNAMICS   
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INTRODUCTION 

Cells sense EMS such as matrix rigidity [8], substrate geometry [10, 12], and 

mechanical forces [51] to modulate their gene expression profiles. The signal 

transduction from cell matrix interface to nucleus and chromatin occurs via 

both physical and chemical links [52, 53]. The physical link originates at the 

focal adhesions, which are connected to the cytoskeleton, which in turn is 

connected to linker proteins on the nuclear envelope, which are further 

connected to the lamin meshwork and the chromatin [54-58]. The chemical 

links comprise of the signaling intermediates and transcription regulatory 

molecules which get activated or shuttle to the nucleus upon receiving signals 

from extracellular matrix [21]. While the chemical signaling occurs mostly via 

diffusion, at millisecond to second time scales, the physical signals travel 

much faster, at microsecond timescales as elastic waves through the 

cytoskeleton [33, 59]. In response to EMS, the cytoskeletal links reorganize, 

thereby altering forces on the nucleus, which in turn modulate its morphology 

and chromatin remodeling [41, 60]. However, the inherent time scale of this 

coupling between forces at the cell periphery and the dynamics of the nucleus 

and chromatin has not been explored.  

In this project, we measure the coupling between forces at cell periphery and 

nuclear and chromatin movement. To measure the forces at cell periphery, we 

culture cells on micropillar substrates and measure deflection of pillar tips, 

which is an indicator of magnitude and direction of traction forces. 

Simultaneously, nuclear and hetereochromatin centroid displacements are 

captured using similar particle tracking algorithms. To get an estimate of the 
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time scales of coupling between cell periphery and nucleus, auto and cross-

correlation analysis is done for pillar deflections and nuclear and 

heterochromatin movements. Our results are suggestive of a strong 

viscoelastic coupling that mediates differential force transmission to the 

nucleus. Additionally, to see the direct effect of the physical cytoskeletal links 

on chromatin remodeling, we carried out simultaneous time-lapse imaging of 

actin stress fibers and chromatin in cells cultured on fibronectin micropatterns. 

We constrained cells on rectangular fibronectin micropatterns to form long 

parallel apical stress fibers which link to focal adhesions. We observed that 

these fibers can transduce forces to heterochromatin foci inside the nucleus. 

MATERIALS AND METHODS 

Cell Culture, Transfection and Drug Treatment: H2B-EGFP NIH3T3 

fibroblasts and PMEFs were cultured in low glucose Dulbecco’s Modified 

Eagle Medium supplemented with 10% Fetal Bovine Serum and 1% 

Penicillin-Streptomycin at 37°C and 5% CO2 in humid conditions. All cell 

culture reagents were from Gibco, Life Technologies. 

Transfections were carried out with lifeact mRFP using jetPRIME (Polyplus 

transfection).  

For myosin inhibition, cells were treated with 25µM Blebbistatin (Sigma) for 

2h. 

Micropillar Preparation, Fibronectin Stamping and Cell Seeding: Poly 

Dimethyl Siloxane (PDMS) micropillars were prepared from PDMS 

Elastomer Kit (SYLGARD 184, DOW Corning). The curing agent and 
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precursor were mixed homogenously in the ratio 1:10, degassed in dessicator 

for 30 minutes to remove air bubbles and then poured onto the micropillar 

array mould in a silicon wafer followed by curing at 80°C for 2 h (Figure 2.1). 

The micropillars so formed were 2 μm in diameter, 5 μm in height with pillar 

centre to centre distance of 3 μm as confirmed by electron microscopy 

imaging. 

30 μl of 100 μg/ml fibronectin solution was deposited on a flat PDMS block 

substrate for 10 min. The solution was then removed and the block dried for 5 

min. The stamp was then inverted over the UV treated micropillars for 5 min. 

The stamp was then removed and the PDMS micropillars washed with PBS 

and further treated with 1 ml of 2 mg/ml Pluronic F-127 (Sigma) for 2 h to 

passivate non-fibronectin coated regions. 

Cells were trypsinized (Gibco, Life Technologies) and seeded on fibronectin 

(Sigma) coated PDMS micropillar arrays and allowed to spread for 12 h. The 

PDMS micropillars were then placed upside down on glass bottom petridish 

(Ibidi) with a 60 μm thick PDMS membrane placed at the edges of PDMS 

pillar block as spacer. This inverted setup has dual advantages. First, it 

provides direct access to the high numerical aperture (NA) objective with 

short working distance. Second, it prevents the imaging artifacts caused by 

interference of fluorescence beam passing through the micropillars. 
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Figure 2.1: Method of Micropillar Preparation and Cell Seeding. (A) PDMS 
mixed with cross linking agent (10:1) is poured over the silicon wafer. (B) PDMS 
pillars after drying at 80C for 2 hours. (C) Pillars are inverted over fibronectin on a 
block of PDMS. (D) Pillars are kept facing up on a plastic bottom petridish, medium 
containing cells is poured over it and the cells are allowed to adhere on the pillars for 
24 hours. (E) The pillars with cells are stuck on a glass slide and inverted over two 
thin PDMS spacers on a glass bottom dish for imaging. 2 ml of cell culture medium is 
added. 

 

Live Imaging: All images were captured using inverted confocal microscope 

(Perkin Elmer Spinning Disk, 60X, 1.2 NA objective) at 1 frame every 3–7 s 

for at least 3 min.  

Tracking of Pillars, Nucleus, Heterochromatin foci and Actin Stress 

Fibers: The deflections of the pillar tips and the nucleus were calculated using 

custom code written in MATLAB. The tips of the pillars show up as bright 

spots in the bright field images. To calculate the position of the pillar tips, 
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bright field pillar images were thresholded and centroid was calculated for 

each time point. The images were corrected for XY drift using the mean 

displacement of pillars in the control region. A representative image of 

micropillars, H2B-EGFP labelled cell nucleus and lifeact-mRFP labelled F-

actin is shown in Figure 2.2A. The tracking of heterochromatin foci and actin 

stress fibers was done manually in ImageJ. 

Fitting of Ideal Lattice to the Micropillar Array: An ideal square lattice for 

original pillar position was generated by calculating the distance between 

adjacent pillars in the control region. The lattice was then best fit to the cell 

region by translation and rotation so as to minimize the deflection of pillars in 

the control region (Figure 2.2B, C).  

Correlation Analysis: The time series were analyzed for autocorrelation and 

cross correlation using custom written code in MATLAB. The autocorrelations 

of the displacement (magnitude) of the pillar, the nucleus, and 

heterochromatin foci were calculated and plotted to arrive at their typical 

timescales. Further, the cross correlations between displacements (component 

along direction of nucleus movement) of individual micropillars at different 

regions under the cell were plotted with respect to the displacements 

(component along direction of nucleus movement) of nucleus and 

heterochromatin foci. 
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Figure 2.2: Imaging and Tracking of Micropillars. (A) Typical image of a lifeact-
mRFP and H2B-EGFP labelled cell spread over pillars. (B,C) Pillar centroids 
(yellow) and original pillar positions (red) calculated using MATLAB for pillars in 
cell region (B) and control region (C).  

 

RESULTS 

2.1 Micropillar Deflections Relate to Actomyosin Forces. NIH3T3 

fibroblast cells stably expressing H2B-EGFP were allowed to spread for 12 h 



23 
 

on force sensitive micropillar arrays. Simultaneous time-lapse imaging under 

bright field for pillars and EGFP fluorescence for chromatin was carried out. 

The imaging setup consisted of the cells plated on micropillars placed upside 

down on glass bottom dishes, with 60 μm thick PDMS spacers at the edges 

(Figure 2.1). This inverted setup has dual advantages. First, it provides direct 

access to the high NA objective with short working distance. Second, it 

prevents the imaging artifacts caused by interference of the fluorescence beam 

passing through the micropillars. A representative image of micropillars, H2B-

EGFP labeled cell nucleus and lifeact-RFP labeled F-actin is shown in Figure 

2.2A. The centroids of all micropillars under the cell (cell region) and those 

away from it (control region) were tracked over time using custom written 

code in MATLAB (Figure 2.2B,C). Typical XY trajectories for the pillar 

centroids (Figure 2.3A), distance (from mean position) vs time curves (Figure 

2.3B), fluctuations in the radial position (Figure 2.3C) and histogram of pillar 

displacements (Figure 2.3D) showed up to three times larger displacements in 

the cell region compared to the control region.  

The original position of pillars under the cell was calculated by fitting a square 

lattice (distance between pillars calculated using control region) to minimize 

the deflections of pillars outside the cell (Figure 2.2B,C). The distance 

between the original position and the mean observed position of each pillar 

was measured as the pillar deflection and was used to calculate the magnitude 

of force on each pillar (Figure 2.4). The maximum pillar deflections were of 

the order of few hundred nm, corresponding to forces of order of few nN 

(consistent with previous reports). Myosin inhibition using blebbistatin 

reduced the magnitude of pillar deflections in the cell region, suggesting that 
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the pillar deflections are caused by cell traction forces generated by 

actomyosin (Figure 2.3A,B, Figure 2.4). 

 

Figure 2.3: Measurement of Micropillar Displacements. (A) XY trajectory of 
typical pillars in cell region, control region and cell region after blebbistatin 
treatment. (B) Distance (r) from mean pillar position as a function of time for typical 
pillars in cell region, control region and cell region after blebbistatin treatment. (C) 
Fluctuations in pillar radial position (r(t) – rmean) as a function of time for typical 
pillars in control and cell regions. (D) Normalized histogram for pillar deflections in 
control and cell regions. 
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Figure 2.4: Pillar Displacement and Traction Force. Color coded pillar 
displacement from mean pillar position in a control and blebbistatin treated 
cell. Second color map on the right is for force (F), calculated from 
displacement using the formula = (3/4 )∆ . 

 

2.2 Dynamic Correlations between Micropillar and Nuclear 

Displacements. To understand the response time scales of the nucleus upon 

mechanical stimulation from the extracellular matrix, we probed the dynamic 

correlation between micropillars and nuclear displacements. Autocorrelation 

analysis for micropillars and nucleus provides a direct measure of the 

underlying active cellular processes driving their displacements. 

Autocorrelation function was plotted for the magnitude of displacement of 

individual pillars in the control and cell regions (Figure 2.5A). The pillar 

displacements in the cell region exhibited a decorrelation time scale of ∼40 s. 

As expected, the autocorrelation curves for the pillars in control region 

dropped sharply. We then evaluated the autocorrelation function for the 

nucleus and heterochromatin foci displacement magnitudes and noticed 

similar time scales (Figure 2.5B). The similar decorrelation time scales of ~ a 

minute suggest that actomyosin contraction drives both pillar and nucleus 

movement. 
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Cross-correlation analysis provides a measure of the lag time scale between 

pillar and nucleus displacements. We carried out cross-correlation analysis 

between front and rear edge pillar displacements and the movement of the 

nucleus and heterochromatin foci (component along direction of nucleus 

movement) to investigate the spatiotemporal nature of the coupling. We 

observed that the correlation for micropillar in different regions of the cell 

were distinct. Pillars at the leading edge showed a negative correlation with 

the movement of the nucleus while those at the rear edge showed a positive 

correlation (Figure 2.5C). These results showed a minimal time lag (less than 

1s) in the cross correlation between pillar and nuclear movements. Further, 

calculation of the angle between pillar deflection and nucleus movement 

(Figure 2.6) showed that pillars in the front edge deflect back towards the 

nucleus (angle ∼ 180°) while those at the rear edge deflect forward towards 

the nucleus (angle ∼ 0°). Upon myosin inhibition with blebbistatin treatment, 

this distinct correlation is partially lost (Figure 2.6 inset). This result confirms 

the ‘nucleo-centric’ traction force profile of fibroblasts and suggests 

viscoelastic coupling with less than a second lag time between focal adhesions 

and nucleus. 
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Figure 2.5: Autocorrelation and Cross-Correlation of Micropillars and Nucleus. 
(A) Typical autocorrelation curve for pillars in control and cell regions calculated 
from pillar displacement time series. (B) Typical autocorrelation curve for nucleus 
centroid and heterochromatin centroid calculated from nucleus and heterochromatin 
displacement time series. (C) Cross-correlation between nucleus and pillars on the 
front edge vs rear edge of the cell. (D) A map of trajectories for all pillars under the 
cell shows that pillars on the front edge move rearward while those at the rear move 
forward. The front and rear directions are defined by the nucleus movement. 
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Figure 2.6: Angle between Nucleus Trajectory and Pillar Deflection. The 
direction of nucleus trajectory is defined from its initial to final observed position. 
The direction of pillar deflection is defined from its original position (fitting ideal 
lattice using MATLAB) to mean observed position. The color-coded image on the 
right represents the angle between nucleus trajectory and pillar deflection for all 
pillars under the cell in control and blebbistatin treated condition. 

 

2.3 Force Transduction from Apical Stress Fibers to Heterochromatin 

Foci. Next, we probed whether the actomyosin coupling between focal 

adhesions and nucleus could transmit forces to chromatin. For this, fibroblasts 

expressing lifeact-mRFP and H2B-EGFP were cultured on LP patterns. These 

cells exhibit apical actin stress fibers, which are connected to focal adhesion 

complex at cell boundary, and apply active compressive load on the nucleus 

forming indents on its apical surface (Figure 2.7A). Actin stabilization using 

jasplakinolide enhanced these apical nuclear indents (Figure 2.7B). We 

investigated the role of these apical stress fibers (ASFs) in chromatin 

remodeling by performing simultaneous time lapse imaging of lifeact RFP and 

H2B-EGFP in these cells. H2B labelled fibroblasts show prominent 

heterochromatin foci providing an appropriate system to visualize the coupling 

between ASFs and chromatin assembly (Figure 2.7A). Time lapse imaging 

experiments revealed that ASFs show transverse movement over the nucleus 

with a speed of ∼0.3 μm/min, which is similar to that observed previously. 
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More importantly, ASFs were found to press and slide over the nucleus 

resulting in the displacement (Figure 2.7C) or deformation (Figure 2.7D) of 

the heterochromatin foci. To quantify ASFs and heterochromatin foci 

movements, regions showing their co-translation were cropped and their 

centroid positions were tracked manually in ImageJ. Distance vs time plot 

(Figure 2.7F), line kymograph across the nucleus passing through the 

heterochromatin foci (Figure 2.7G) showed similar trajectories of ASFs and 

heterochromatin foci centroids for the duration of contact between the two. 

Interestingly, as the ASFs moved further, the heterochromatin foci showed 

recoil suggesting a direct transduction of force to these foci by ASFs. A 

comparison of speeds of ASF and heterochromatin foci showed similar speeds 

(~0.3 μm/min), confirming their co-translation. 
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Figure 2.7: Direct Transduction of Forces to Heterochromatin by ASF. (A) 
Representative images of PMEFs labeled with Lifeact-mRFP and H2B-EGFP 
showing indentation by ASFs on the nucleus. (B) Typical H2B-EGFP nucleus before 
and after treatment with Jasplakinolide showing indents after drug treatment. (C) 
Time lapse images of actin (red) and nucleus (green) showing co-translation of ASFs 
and heterochromatin foci. Insets show zoomed in view of the heterochromatin foci 
centroid. (D,E) Time lapse images of heterochromatin foci showing their 
displacement (D) and deformation (E) as an ASF passes over the nucleus. (F) 
Distance vs time curve for actin, heterochromatin foci and nucleus centroid for the 
cell shown in (C) above. All distances were calculated from the origin, which was 
fixed at the initial centroid position of the 1st ASF. (G) Line kymograph across the 
nucleus showing heterochromatin foci (green) moving along with the ASFs (red). (H) 
Average speed of ASFs and heterochromatin foci centroids. N = 9, 15 measured over 
9 cells. 
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DISCUSSION 

This project studies the time scales of intrinsic coupling between focal 

adhesions and nucleus in cells cultured on micropillar arrays. We carried out 

simultaneous imaging of pillar deflections and nucleus and heterochromatin 

foci dynamics and then performed autocorrelation and cross-correlation 

analysis for these displacements. The autocorrelation time scales were similar 

(∼40 s) for both pillar and nuclear displacements. This time scale is close to 

the time scale of fibroblast cell contraction, i.e. 1 min, suggesting that the 

coupling between pillar and nucleus is mediated by cytoskeletal contraction. 

Secondly, the maximum cross-correlation between pillar and nuclear 

displacements was observed at lag time less than 1 s. The response time for a 

purely elastic system, calculated by dividing the distance from cell edge to 

nucleus (∼10 µm) with the speed of mechanical stress wave propagation along 

tensed cytoskeletal filaments (∼30 m/s) is less than a microsecond. For a 

viscoelastic system, the response time as calculated by the ratio of cytoplasmic 

viscosity (∼15 Poise) to cytoplasmic elastic modulus (∼150 dyn/cm2) is one-

tenth of a second. However, for a purely viscous system, the response time 

calculated by dividing the distance from cell edge to nucleus (∼10 µm) with 

the speed of wave propagation (∼speed of pillar displacement, i.e. 0.1 µm/25s 

= 4 nm/s, neglecting the cytoplasmic viscous drag) is much longer and of the 

order of ∼40 min. In the presence of a retrograde flow (10 nm/s), this response 

time decreases to ∼10 min. Comparing these numbers with the lag time of 

pillar-nucleus cross-correlation, we conclude that the mechanical links 

between focal adhesions and nucleus in living cells must have a strong elastic 

component. A recent report also revealed that the cytoplasm behaves as an 
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elastic gel by analyzing motion of injected particles inside the cell. Further, the 

spatial maps of pillar displacements and their correlations showed distribution 

of active forces exerted by cells on the substrate. The spatial heterogeneity in 

pillar displacements with respect to nuclear movements possibly suggests a 

highly coordinated contractile process to test local microenvironment during 

cell migration. As a result, myosin inhibition using blebbistatin inhibited such 

spatial correlation. Our observed force transduction time scales suggest that 

chromatin structure could respond rapidly to local microenvironment signals 

thus facilitating better integration of biochemical pathways to the nucleus. Our 

observation that apical actin fibers can physically displace the heterochromatin 

foci, provide a strong evidence for the direct transduction of forces to internal 

chromatin structure. The dynamic links between the extracellular matrix to 

internal nuclear architecture via the active stresses generated by ASFs could 

be one of the major components in nuclear mechanotransduction. These links 

may be vital for maintaining the 3D organization of functional nuclear 

architecture and impinge on mechano-regulation of gene expression. 

Collectively, our studies reveal that cells are constantly testing the local 

microenvironment using actomyosin contractility and instantaneously transmit 

such mechanical signals to the nucleus to possibly maintain cellular 

homeostasis. 
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CHAPTER 3: ACTOMYOSIN CONTRACTILITY REGULATES 

NUCLEAR AND CHROMATIN PLASTICITY 
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INTRODUCTION 

Physical properties of the nucleus, such as its morphology and plasticity have 

been associated with important cellular functions like gene expression, 

genome integrity and cell behavior [61-65]. The major cellular components 

that regulate these physical properties are the cytoskeleton to nuclear links and 

the nuclear lamina [34, 35, 66-69]. Lineage specific physical properties of the 

nucleus emerge during cellular differentiation; while stem cell nuclei are 

highly deformable [47, 70] and have a plastic chromatin [71] with 

hyperdynamic chromatin proteins [44], with differentiation, nuclei lose their 

plasticity and become less deformable [43, 72]. The nucleus in a differentiated 

cell is physically coupled to the cytoskeleton via lamins and the linker of 

nucleoskeleton and cytoskeleton (LINC) complex, which comprises of 

transmembrane SUN and KASH domain proteins [30, 33, 56, 58, 73-78]. Any 

perturbation to these components is linked to changes in nuclear morphology 

and plasticity [79]. Therefore, the meshwork of actin stress fibers and lamin 

A/C serves as a critical physical intermediate in the maintenance of nuclear 

functional homeostasis. The physical properties of the nucleus govern the 

spatio-temporal packaging of chromatin, which regulates lineage specific gene 

expression programs [53, 80-83]. In addition, modulations in cytoskeletal to 

nuclear links have been implicated in DNA damage and genome integrity [84, 

85]. The maintenance of nuclear physical properties is also essential in cell 

migration during developmental programs [86, 87] as well as in wound 

healing [88, 89]. Defects in nuclear morphology and its plasticity have also 

been shown to be important in metastatic potential and cancer cell invasion 

[90, 91]. Further, a number of diseases have been associated with loss of the 
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mechanical integrity of the nuclear lamina [92-97]. However, the regulation of 

the mechanical integrity of the cell nucleus by the active cytoskeletal network 

is not well understood.  

Recent studies have revealed that cytoskeletal organization and nuclear 

morphology are regulated by EMS, such as substrate stiffness and geometry 

[8, 10, 16, 19, 54, 98-102]. With the cytoskeleton physically linked to the 

nucleoskeleton, these EMS can therefore be used to mediate changes in 

chromatin structure. Active cytoskeletal forces can mediate the 

mechanotransduction to the nucleus, to remodel 3D chromosome organization 

as well as permissivity to chromatin structure by regulatory molecules [21, 

42]. Cytoskeletal to nuclear links are also essential to the maintenance of 

poised euchromatin and more repressive condensed chromatin, i.e. 

heterochromatin assembly [103]. Heterochromatin is anchored to the lamin 

envelope, and stabilized by links between the actin cytoskeleton and the 

nuclear membrane [39, 40, 104]. In this context, the dynamic control of 

nuclear plasticity by actomyosin contractility and its impact on 

heterochromatin plasticity are still unclear. 

To understand the mechanism underlying the cytoskeleton mediated 

alterations in nuclear and chromatin plasticity, we modulated cytoskeletal 

organization using cell geometric constraints and measured nuclear 

deformability and heterochromatin dynamics. We found that in cells with CI 

geometry, the nucleus is more deformable than cells with elongated and 

polarized geometry. We further showed that this can be attributed to 

differential force generating actomyosin structures and differential lamin A/C 
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expression levels in the two geometries. Interestingly, these active cytoskeletal 

forces were also found to regulate the dynamics of sub-nuclear 

heterochromatin structures. Our observations suggest that active forces from 

the cytoskeleton regulate nuclear and chromatin plasticity, which could in turn 

affect the spatio-temporal regulation of genomic processes and thus cell 

behavior. 

MATERIALS AND METHODS 

Cell Culture, Pharmacological Perturbations and Plasmid Transfections: 

Wild type NIH3T3 fibroblasts and NIH3T3 fibroblasts stably expressing H2B-

EGFP were cultured in low glucose Dulbecco’s Modified Eagle Medium 

(Gibco, Life Technologies) supplemented with 10% Fetal Bovine Serum 

(Gibco, Life Technologies) and 1% penicillin-streptomycin (Gibco, Life 

Technologies) at 37°C and 5% CO2 in humid conditions. Cells were 

trypsinized (Gibco, Life Technologies) and seeded on fibronectin (Sigma) 

micropatterned dishes for 3 hours before imaging. 

Cytochalasin-D (Sigma) was used at 500 nM working concentration and cells 

were imaged either immediately or 30 minutes after treatment. Jasplakinolide 

(Gene Ethics) was used at concentration of 200 nM and cells were imaged 20 

minutes after treatment. Blebbistatin (Merck) was used at concentration of 25 

µM and cells were imaged 30 minutes after treatment. Small molecule 

inhibitor of formin homology 2 domains (SMIFH2, ChemBridge Corporation) 

was used at a concentration of 20 µM and cells were imaged an hour after 

treatment. Nocodazole (Sigma) was used at a concentration of 10 µg/ml and 

cells were imaged an hour after treatment. 
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All transfections were carried out using jetPRIME (Polyplus transfection).  

Preparation of PDMS stamps, Microcontact printing and Cell seeding on 

patterns: To make stamps, PDMS (Sylgard 184, Dow Corning) precursor and 

curing agent were mixed homogeneously in 10:1 ratio and poured over the 

silicon wafer which had LP or CI micropatterned wells. After degassing in the 

desiccator for 30 minutes to remove air bubbles from the PDMS mixture, the 

silicon wafer with the PDMS mixture was cured in the oven at 80°C for 2 

hours. Solidified PDMS was then peeled from the wafer and cut into ~ 1cm by 

1cm stamps. These stamps were oxidized using plasma for 4 minutes and then 

15ul of 100 ug/ml fibronectin solution (mixed with Alexa Fluor 647 dye, 

Sigma) was poured over each stamp. Extra solution was wiped with a tissue 

and the stamp was allowed to dry for 10 minutes. The stamp was then checked 

under the microscope for complete drying between the micropatterned 

structures, after which it was inverted carefully onto the surface of an 

uncoated hydrophobic 35 mm dish (Ibidi). The stamp was gently removed 

after 2 minutes and the stamping on the dish was checked by visualizing Alexa 

647 fluorescence in the far-red channel in the epifluorescence microscope. To 

passivate the non-patterned surface of the dish, it was then treated with 2 

mg/ml pluronic F-127 for 5 minutes, and washed twice with PBS and cell 

culture medium before seeding 40,000 single cells. 

Imaging, Image Processing and 3D Rendering: All imaging was carried out 

using a 100X objective on a NikonA1R Confocal microscope. Time lapse 

imaging was done in either widefield or confocal mode with 30 s, 60 s or 90 s 
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time intervals for up to 60 minutes in each condition. The z-depth for confocal 

imaging was 0.5 µm.   

H2B-EGFP images were thresholded, projected nuclear area was calculated 

and time lapse images of the nuclear periphery were generated using custom 

written code in MATLAB. Merged images of the nuclear periphery at 

different time points were generated in ImageJ. Area fluctuation time series 

were plotted and fitted with third order polynomial or exponential curves in 

ORIGIN. The residual values were divided by the value of the polynomial at 

each time point to obtain the normalized residual area fluctuations. Such 

normalized residual area fluctuations for multiple cells were plotted as a 

histogram, which were then fitted with Gaussian curves. Full width at half 

maximum of the gaussian fitting indicates the amplitude (in percentage) of 

area fluctuations. Edge kymographs were generated from the nuclear 

periphery images using IMARIS. 3D rendering of actin, microtubules and the 

nucleus was also done using IMARIS. Line kymographs across the nucleus for 

visualizing heterochromatin foci dynamics were generated in ImageJ.  

Heterochromatin Foci Trajectory Correlation Analysis: Time lapse 

confocal stacks of H2B-EGFP nuclei were opened in IMARIS. Nucleus 

trajectory was corrected for translation and rotation shift. Bright spots 

corresponding to heterochromatin foci were picked using surface thresholding 

and their centroid xyz trajectories were obtained. Vector correlation 

coefficient between heterochromatin foci with trajectories ⃗( )  and ⃗( ) was 

calculated as ∑( ⃗( )	 ⃗ )	.		( ⃗( )	 ⃗ )( ⃗( )	 ⃗ ) ( ⃗( )	 ⃗ )   and the correlation matrices were 

generated using a custom written code in MATLAB.  
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RESULTS 

3.1 Reduced Matrix Constraints Enhance Nuclear Plasticity. Various 

studies have shown that the geometry of the cell regulates cytoskeletal 

organization. Hence, to probe the effect of cytoskeletal organization on 

nuclear dynamics, NIH3T3 fibroblast cells were cultured on fibronectin 

micropatterns of two extreme geometries; namely – LP  or CI. Cells cultured 

on these geometries exhibited distinct cytoskeletal organization and nuclear 

morphologies. Consistent with previous studies [19], LP cells were flat, their 

actin was organized as long apical stress fibers and the nucleus was also flat 

and elongated. On the other hand, CI cells were taller, their actin was 

organized as short filaments or patches and the nucleus was rounded (Figure 

3.1A-D). Despite the nuclear height being greater in CI cells, the projected 

nuclear area, surface area and volume were less compared to LP cells (Figure 

3.1E). 
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Figure 3.1: Effect of Cell Geometry on Nuclear Morphology. (A,B) Orthogonal 
views of actin labelling (Phalloidin) for typical LP (A) and CI (B) cells. (C) 
Orthogonal views of nucleus labelling (Hoechst) for typical LP and CI. (D) 3D 
rendering of nucleus in LP and CI cells. (E) Comparison of nuclear height, projected 
area, surface area and volume for BR (n = 10) and SC cells (n = 10). 

 

Next, to study the dynamics of nuclear morphology as a function of the two 

extreme cytoskeletal organizations, time lapse imaging was performed using 

fibroblasts stably expressing H2B-EGFP and cultured on LP or CI fibronectin 

micropatterns. The time lapse images were thresholded to obtain the nuclear 

periphery before the time series was converted to a z stack and reconstructed 

in Imaris to form a surface (Figure 3.2B). These kymographs revealed 

increased nuclear periphery fluctuations in CI cells. Also, superimposition of 

nuclear peripheries at different time points (Figure 3.2A) revealed that in LP 

cells, the nuclear periphery does not undergo a significant alteration with time 
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as opposed to CI cells, which show significant fluctuations of the nuclear 

periphery within 10 minutes. To further quantify these fluctuations, the 

projected nuclear area vs time was fitted with a third order polynomial and the 

residuals were normalized by the value of the polynomial fit at each time 

point. These normalized residual fluctuations were then plotted as a function 

of time. Typical time traces (Figure 3.2C) revealed a relatively constant 

projected nuclear area in LP cells over a period of 20 minutes and up to 10% 

fluctuations in CI cells. This increased nuclear plasticity of CI cells was 

consistently different than LP cells, as observed over multiple cells (Figure 

3.2F). However, the nuclear surface area and volume in CI cells did not show 

such large fluctuations (Figure 3.2F). To quantify the mean amplitude of 

fluctuations, a histogram of projected nuclear area was plotted that 

incorporated data from all time points and all cells (Figure 3.2D). Such 

histograms were then fitted with a Gaussian distribution and the full width at 

half maximum (FWHM) was used to compare the amplitude of area 

fluctuations. The FWHM of PNAF was 10% in CI cells, compared to only 4% 

in LP cells (Figure 3.2D inset). Typical time period of these PNAFs was ~5 to 

10 minutes (Figure 3.2E).To understand this cell geometry-mediated change in 

nuclear plasticity, we next probed the role of cytoskeletal forces and nuclear 

stiffness. 
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Figure 3.2: Effect of Cell Geometry on Nuclear Plasticity. (A) A merge of 0 min 
and 30 min images of H2B-EGFP labelled nuclei in LP and CI cells. (B) Nuclear 
periphery kymograph of typical LP and CI cells. (C) Normalized nuclear area 
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fluctuations for NIH3T3 cells on LP and CI patterns and ES cells (on unpatterned 
substrate). (D) Normalized histogram for nuclear area fluctuations in multiple LP and 
CI cells. (E) Long time series of area fluctuations in a typical CI cell nucleus to 
measure its periodicity. (F) Nuclear surface area and volume fluctuations as a 
function of time for BR (n = 8) and SC (n = 6) cells. 

 

3.2 Actin, Myosin and Formin Regulate Matrix Assisted Nuclear 

Plasticity. To study the role of cytoskeletal forces in PNAF, actin organization 

was perturbed in both LP and CI cells by treating them with actin 

depolymerizing and actin stabilizing agents cytochalasin-D and jasplakinolide, 

respectively. In each case, time lapse imaging was first performed on control 

cells (n>15). These same cells were then treated with pharmacological agents 

and reimaged. Periphery kymographs for all treatments are shown in Figure 

3.3D. Here, the PNAF showed a non-monotonic dependence on the state of 

actin polymerization. Depolymerization of F-actin in LP cells using 

cytochalasin-D decreased the projected nuclear area exponentially with time. 

In this case, the PNAF was calculated by normalizing the residuals of an 

exponential fit with the value of the fit at each time point. Cytochalasin-D 

treatment in LP cells enhanced PNAF from 4% to 8% (Figure 3.3A) and actin 

stabilization (using jasplakinolide) in CI cells reduced PNAF from 10% to 2% 

(Figure 3.3B). Surprisingly, further actin depolymerization in CI cells using 

cytochalasin-D also reduced the PNAF from 10% to 5% (Figure 3.3C). 

Consistent PNAF were obtained upon actin perturbation in multiple cells. 

Such non-monotonic dependence of PNAF on actin polymerization suggests 

that only cells with intermediate state of actin polymerization exhibit 

fluctuations in the projected nuclear area. 
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Figure 3.3: Role of Actin in Cell Geometry Mediated Nuclear Plasticity. (A-C) 
Nuclear area fluctuation time series for multiple control and cytochalasin-D treated 
LP cells (A), control and jasplakinolide treated CI cells (B) and control and 
cytochalasin-D treated CI cells (C). (D) Nuclear periphery kymographs for control 
and cytochalasin-D treated LP cells and control, jasplakinolide and cytochalasin-D 
treated CI cells. (E) FWHM of Gaussian fitting of histograms of PNAF of multiple 
control and treated LP and CI cells. Left to right represents increasing actin 
polymerization. CI + cytochalasin-D (n = 16), CI (n = 27), LP + cytochalasin-D (n = 
43), LP + cytochalasin-D + washoff (n = 22), LP (n = 83), CI + jasplakinolide (n = 
13). 

 

To further explore the origin of such nuclear fluctuations mediated by 

intermediate state of actin polymerization, the myosin activity was perturbed 

using blebbistatin in cells with enhanced PNAF, i.e. LP cells treated with 

cytochalasin-D and CI cells. In each case the PNAF decreased to less than 5% 

(Figure 3.4), suggesting that along with small polymerized units of actin, 
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myosin is also necessary to induce the observed nuclear fluctuations. The 

blebbistatin mediated decrease in PNAF was highly reproducible.  

 

Figure 3.4: Role of Myosin in Cell Geometry Mediated Nuclear Plasticity. (A) 
Area vs time plot for a typical control BR cell and upon sequential treatment with 
cytochalasin-D and blebbistatin. Gray and blue curves represent third order 
polynomial fit. Light red curve represents exponential decay fit (τ ~ 4.2 minutes). 
Inset shows merge of nuclear periphery outlines at 15 min interval for a typical LP 
cell in untreated, cytochalasin-D and blebbistatin conditions. (B) Typical PNAF trace 
for a LP cell sequentially treated with cytochalasin-D and blebbistatin. Inset 
represents the FWHM of Gaussian fitting of histograms of combined PNAFs of 
multiple cells (n = 5). (C) Typical PNAF trace for a control and blebbistatin treated 
CI cell. Inset shows merge of nuclear periphery outlines at 15 min interval for a 
typical CI cell in control and blebbistatin conditions. (D) PNAF vs time plot for 
multiple control and blebbistatin treated CI cells (n = 25). Inset represents the FWHM 
of Gaussian fitting of histograms of combined PNAFs for all cells. (E) Nuclear 
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periphery kymograph of control and blebbistatin treated CI cells, cytochalasin-D and 
blebbistatin treated cells. (F) FWHM of Gaussian fitting of histograms of PNAF of 
multiple control and treated LP and CI cells. 

To assess if nucleators of actin polymerization, such as formin, could be 

generating these active forces, we inhibited formin activity using SMIFH2 in 

cells with enhanced PNAF, i.e. CI cells and cytochalasin-D treated LP cells. 

The PNAF in both cases were reduced by half in all cells (Figure 3.5), 

confirming that formin indeed plays a role in nuclear fluctuations. Next, we 

assessed if the physical links between force generating actin-myosin-formin 

nodes and the cell nucleus are required to generate the observed projected area 

fluctuations (Figure 3.6). 

 

Figure 3.5: Role of Formin in Cell Geometry Mediated Nuclear Plasticity. (A-D) 
Nuclear area fluctuation time series for multiple control and SMIFH2 treated CI cells 
(A,B) and cytochalasin-D and SMIFH2 treated LP cells (C,D). Insets represent the 
FWHM of Gaussian fitting of histograms of combined PNAFs for all cells (n=26,4) 
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Figure 3.6: Actin-Myosin-Formin Asters Apply Force on the Nucleus. (A) A 
cartoon summarizing the experimental observations: myosin and formin along with 
intermediate polymerization states of actin are necessary for causing nuclear 
fluctuations. Forces from actin-myosin-formin may be applied directly or via linkers 
to the nucleus. (B) Phalloidin staining in CI and cytochalasin-D treated LP cells 
shows actin asters. 

 

3.3 Nesprin and Microtubules Affect Amplitude of Nuclear Area 

Fluctuations. Actin is physically linked to the nucleus via Nesprin2, which is 

a component of the LINC Complex [105]. To understand whether this physical 

link is necessary for actin-myosin-formin regulated nuclear plasticity, cells 

were transfected with DN-KASH fused with mRFP, which displaces the 

endogenous nesprin from the nuclear envelope to the endoplasmic reticulum 

[60]. These cells were then cultured on CI fibronectin micropatterns and time 

lapse imaging of H2B-EGFP labelled nuclei was performed in cells expressing 

DN-KASH mRFP (Figure 3.7A). Periphery kymographs of these nuclei 

(Figure 3.7C) showed similar fluctuations as control CI cells. Typical time 

traces of the normalized PNAF (Figure 3.7B) and the FWHM of their 

Gaussian distribution (Figure 3.7B inset) revealed that although nesprin 

perturbed cells still exhibit nuclear fluctuations, the fluctuation amplitude is 
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reduced from 10% to 7.5% compared to control CI cells. Since this amplitude 

is still higher than control LP cells (which show 4%  area fluctuations), it is 

likely that other components linking actin-myosin-formin network to the 

nucleus are also involved in these fluctuations. The PNAFs were also seen to 

be present in DN-KASH cells on LP patterns upon cytochalasin-D treatment 

(Figure 3.7D). 

 

Figure 3.7: Role of Nesprin in Cell Geometry Mediated Nuclear Plasticity. (A) 
Widefield epifluorescence image of a typical CI cell co-expressing H2B-mRFP 
(green) and Nesprin2G DN-KASH EGFP (red). (B) PNAF vs time plot for multiple 
DN-KASH CI cells (n = 5). Inset represents the FWHM of Gaussian fitting of 
histograms of combined PNAFs for all cells. (C,D) Surface rendering of nuclear 
periphery kymographs for typical DN-KASH CI cell (C) and cytochalasin-D treated 
WT and DN-KASH cells (D). 

 

We next explored whether microtubules serve as additional force transducers 

between the actin-myosin-formin network and the nuclear periphery. 

Microtubules are physically coupled to the nucleus via Nesprin4 [106] and to 

actin via microtubule-actin crosslinking factors (MACFs) [107]. In CI cells, 

the microtubules surround the nucleus closely and the microtubule organizing 
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centre (MTOC) indents on the nucleus (Figure 3.8A). A similar indent on the 

nucleus is also visible in LP cells treated with cytochalasin-D (Figure 3.8B). 

To probe whether the microtubule network that surround the nucleus could 

transmit force for nuclear fluctuations, microtubules were depolymerized 

using nocodazole in CI cells and cytochalasin-D treated LP cells. Typical time 

traces of the normalized PNAF (Figure 3.8D) and the FWHM of their 

Gaussian distribution (Figure 3.8D inset) revealed 25% increase compared to 

control CI cells. This suggests acto-myosin contractile forces are increased 

following depolymerization of microtubules [108].  Surprisingly, nocodazole 

treatment in cytochalasin-D treated LP cells caused nuclear buckling (Figure 

3.8C), because of which the exact area fluctuations could not be measured. 

Microtubule stabilization using taxol also did not significantly alter the PNAF 

(Figure 3.8E). However, dynein inhibition using ciliobrevin-D decreased the 

PNAF by 50% (Figure 3.8F). Taken together, these results show that 

perturbations of the physical links only partially affect the amplitude of PNAF, 

suggesting that there are additional mechanisms that drive nuclear 

fluctuations.  
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Figure 3.8: Role of Microtubules in Cell Geometry Mediated Nuclear Plasticity. 
(A) Top view of a 3D rendering of Phalloidin intensity (green), filament rendering of 
tubulin immunofluorescence (red) and a surface rendering of Hoechst intensity (gray) 
in a typical CI cell. (B) Side view (YZ) and top view (XY) of surface rendering of a 
H2B-EGFP nucleus in cytochalasin-D treated LP cell shows the indent in the nucleus. 
(C) Side view of surface rendering of H2B-EGFP nucleus before and after 
cytochalasin-D and cytochalasin-D + nocodazole treatments. (D) Typical PNAF trace 
for a CI cell treated with nocodazole. Inset represents the FWHM of Gaussian fitting 
of histograms of combined PNAFs of multiple cells (n = 26). (E) Normalized 
histogram for control and taxol treated CI cells. (F) Typical PNAF trace for a CI cell 
treated with Ciliobrevin-D. (G) FWHM of Gaussian fitting of histograms of PNAF of 
multiple control and treated CI cells. Nocodazole (n=26), Taxol (n=3), Ciliobrevin-D 
(n=5) 
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3.4 LaminA/C Levels Inversely Regulate Nuclear Plasticity. Structural 

lamin proteins in the nuclear envelope regulate nuclear stiffness - while 

laminA/C confers rigidity to the nucleus, its absence increases nuclear 

plasticity [109-111]. To understand the relation between lamin mediated 

nuclear stiffness and cytoskeletal mediated nuclear fluctuations we 

overexpressed laminA/C using transient transfection in fibroblasts before 

culturing them on CI patterns. Time lapse imaging was then performed for 

cells expressing both laminA/C-RFP and H2B-EGFP (Figure 3.9A). Typical 

time traces of normalized PNAF in these cells (Figure 3.9B) showed 

significantly lower amplitude than in control CI cells. The FWHM of Gaussian 

distribution of the area fluctuations was reduced by half compared to control 

CI cells (Figure 3.9B inset). The nuclear periphery kymograph (Figure 3.9D) 

also showed a significant decrease in periphery fluctuations compared to 

control CI cells.  

This result suggested that geometric constraints placed on a cell might regulate 

laminA/C expression and thus alter PNAF. We therefore checked whether the 

endogenous laminA/C levels were altered in wild type cells on CI compared to 

LP patterns. To achieve this laminA/C mRNA levels were measured using 

RT-qPCR in both geometries. Interestingly, CI cells showed 80% reduction in 

laminA/C mRNA levels compared to LP cells (Figure 3.9C).  

To further investigate the role of laminA/C in the inhibition of PNAF, 

laminA/C knock-out and control (stably transfected with empty vector) mouse 

embryonic fibroblasts (MEFs) [112] transfected with H2B-EGFP were 

cultured on LP micropatterns (Figure 3.9E, G). Time lapse imaging of the 
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nuclei in these cells revealed increased PNAF in the knock-out cells (Figure 

3.9F, H). The FWHM of Gaussian distribution of area fluctuations showed 3 

fold increase in the knockout cells compared to control MEFs (Figure 3.9H 

inset). The nuclear periphery kymograph (Figure 3.9D) also showed increased 

fluctuations in knock-out MEFs. Taken together, these results suggest that 

laminA/C mediated nuclear stiffness inversely regulates the cytoskeletal 

mediated nuclear plasticity. To summarize, nuclear fluctuations in CI cells are 

caused by (1) forces arising from actin-myosin-formin units and (2) decreased 

nuclear plasticity because of laminA/C downregulation. The forces from actin-

myosin-formin units are applied directly on the nucleus or via microtubule-

dynein links (Figure 3.10). 
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Figure 3.9: Role of LaminA/C in Cell Geometry Mediated Nuclear Plasticity. (A) 
Widefield epifluorescence image of a typical CI cell co-expressing H2B-EGFP 
(green) and LaminA/C-mRFP (red). (B) PNAF vs time plot for multiple laminA/C 
overexpressing CI cells (n = 4). Inset represents the FWHM of Gaussian fitting of 
histograms of combined PNAFs for all cells. (C) mRNA levels obtained by qRT-PCR  
for CI cells normalized with respect to LP cells (n=3 samples). (D) Surface rendering 
of a nuclear periphery kymograph for typical LaminA/C overexpressing CI cell, 
control MEF cell and Lamin-/- MEF cell. (E) Widefield epifluorescence image of a 
typical MEF cell expressing H2B-EGFP. (F) PNAF vs time plot for multiple MEF 
cells cultured on LP patterns (n = 10). (G) Widefield epifluorescence image of a 
typical lamin-/- MEF cell expressing H2B-EGFP. (H) PNAF vs time plot for multiple 
lamin-/- MEF cells cultured on LP patterns (n = 15). Inset represents the FWHM of 
Gaussian fitting of histograms of combined PNAFs for all MEFs and lamin-/- MEFS. 
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Figure 3.10: Model for Cytoskeletal and Nucleoskeletal Regulation of Nuclear 
Plasticity. A cartoon showing the nucleus in a CI cell (or cytochalasin-D treated LP 
cell). The MTOC presses and forms indent on the nucleus. LaminA/C expression 
levels are lower. Actin-myosin-formin units apply force on the nucleus either directly 
or via microtubule and dynein links. 

 

3.5 Plastic Nuclei have Increased Chromatin Dynamics. To understand 

whether PNAF have an effect on chromatin dynamics, we measured chromatin 

dynamics in LP and CI cells using anisotropy PCC (Figure 3.11A. See Chapter 

4 for details on the FAI technique for quantifying chromatin dynamics). We 

observed higher drop and drop rate in CI cells (Figure 3.11B), which implies a 

faster chromatin dynamics. The chromatin dynamics in LP cells were 

observed to increase upon actin depolymerization using latrunculin-A (Figure 

3.12A-C) while the dynamics of CI cells was observed to decrease upon actin 

stabilization with jasplakinolide (Figure 3.12D-F).  
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Figure 3.11: Effect of Cell Geometry on Chromatin Dynamics. (A) Comparison of 
anisotropy PCC curves for LP and CI cells. (B) Drop and drop rates for the two 
curves. Error bars show standard error. 
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Figure 3.12: Role of Actin Polymerization in Chromatin Dynamics. (A) 
Comparison of anisotropy PCC vs time curves for control and latrunculin-A treated 
LP cells. (B,C) Drop and drop rates for the two curves. (D) Comparison of anisotropy 
PCC vs time curves for control and jasplakinolide treated CI cells. (E,F) Drop and 
drop rates for the two curves. 

 

To study the local changes in chromatin dynamics, we followed the 

trajectories of heterochromatin foci, visible as bright spots in H2B-EGFP 

labelled nuclei (Figure 3.13A). To achieve this, line kymographs spanning the 

nucleus were plotted for z-projected time series of cells on CI and LP 

micropatterns. These kymographs showed an increase in heterochromatin 

dynamics in CI compared to LP cells (Figure 3.13A). Such dynamics in CI 

cells were abolished by blebbistatin treatment. In contrast, heterochromatin 

foci became more dynamic in LP cells following cytochalasin-D treatment. 

Typical XY trajectories of heterochromatin foci in CI (control and blebbistatin 

treated) and LP (control and cytochalasin-D treated) cells also followed a 



58 
 

similar dynamic behavior (Figure 3.13B). Mean squared displacement vs time 

curves suggest that while the foci are usually confined in LP cells, they 

become more diffusive in CI cells (Figure 3.13C). 

 

Figure 3.13: Effect of Cell Geometry Mediated Actomyosin Forces on 
Chromatin Dynamics. (A) Line kymographs across H2B-EGFP labelled nucleus in 
typical CI, CI+blebbistatin, LP and LP+cytochalasin-D cells. Bright spots represent 
heterochromatin foci. (B) XY trajectories of heterochromatin foci in typical CI, 
CI+blebbistatin, LP and LP+cytochalasin-D cells. (C) MSD vs time plots for CI, LP, 
LP+cytochalasin-D and washout LP cells. 

 

We then sought to answer whether the correlation between heterochromatin 

foci trajectories changes as a function of PNAF. For this, 3D trajectories of 

individual foci were obtained using Imaris and their pairwise vector Pearson 

correlation coefficient was calculated (see Experimental Procedure, Figure 

3.14A,B). In a typical CI cell, most pairs of foci trajectories were uncorrelated 

(Figure 3.14C,D). On the other hand, in a typical LP cell, the foci trajectories 

were highly correlated (Figure 3.14E-H). Additionally, the foci pairs in LP 

cells could be distinguished into two groups, based on their z-position. The 

foci in the apical region were correlated with other foci in apical region, while 
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those in the basal region were correlated with other foci in basal region, but 

apical and basal foci were uncorrelated with each other. Interestingly, the foci 

trajectory correlations increased drastically in CI cells following blebbistatin 

treatment (Figure 3.14D) while they were reduced for most foci pairs in LP 

cells upon cytochalasin-D treatment (Figure 3.14F,H). These results suggest 

that active cytoskeletal forces modulate correlated dynamics of chromatin 

domains.  

 

Figure 3.14: Effect of Cell Geometry Mediated Actomyosin Forces on 
Correlation Between Heterochromatin Foci. (A) Simulated XY tracks at angles 
varying from 0 to 180 degrees in 10 degree intervals. (B) Vector Pearson correlation 
coefficient calculated as a function of difference in angle between the simulated 
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tracks. (C,E,G) Maximum intensity z-projected images of H2B-EGFP nucleus in 
typical CI (C) and LP cells (E,G). Heterochromatin foci have been numbered and 
color-coded based on their z-position (in C,E). Blue color represents basal plane and 
yellow color represents apical plane. (D,F,H) Pearson correlation coefficient 
calculated between 3D trajectories of all heterochromatin foci pairs labelled in 
(C,E,G) in control and blebbistatin / cytochalasin-D perturbed conditions. 

 

To understand whether such cytoskeletal mediated chromatin perturbation was 

reversible, LP cells treated with cytochalasin-D for 30 minutes were washed 

and time lapse imaging was performed using the same cells. Surprisingly, the 

spatial map of the chromatin images, which was altered upon cytochalasin-D 

treatment, was fully restored after the agent was washed off (Figure 3.15A). 

Photobleached regions in the nucleus were also restored after the drug was 

washed off in LP cells while in CI cells the bleach patterns were lost even 

before the drug treatment (Figure 3.15A). The correlation between H2B-EGFP 

intensity histograms (Figure 3.15B) and fluorescence anisotropy histograms 

(Figure 3.15C) of drug-perturbed and washed nuclei with control nuclei, 

revealed that an hour after the drug was washed off, the nuclei had almost 

returned to their initial configuration. Typical PNAF time traces (Figure 

3.15D) and nuclear periphery kymographs (Figure 3.15E) also revealed loss of 

fluctuations after cytochalasin-D was washed off. Additionally, the pairwise 

foci trajectory correlations were completely restored an hour after the drug 

was washed off and apical and basal groupings similar to control nuclei was 

established (Figure 3.15F). The XYZ trajectories of some heterochromatin 

foci during the nuclear deformation phase immediately upon cytochalasin-D 

treatment also overlapped with their trajectory during the restoration phase 

immediately following the washout (Figure 3.15G). These results indicate the 

reversible nature of cytoskeletal mediated chromatin plasticity.  
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Figure 3.15: Reversible Nature of Actomyosin Mediated Nuclear and Chromatin 
Plasticity. (A) Widefield epifluorescence images of H2B-EGFP nucleus in typical LP 
cell in untreated, cytochalasin-D and washoff conditions. Dark lines in the lower 
panel represent photobleached regions. (B) Pearson correlation coefficient for H2B-
EGFP intensity histograms in control, cytochalasin-D treated and washoff conditions. 
(C) Pearson correlation coefficient for H2B-EGFP fluorescence anisotropy 
histograms in control, cytochalasin-D treated and washoff conditions. (D) Typical 
PNAF trace for a LP cell treated with cytochalasin-D and after washout. (E) Surface 
rendering of nuclear periphery kymographs for typical cytochalasin-D treated and 
washed off LP cells. Scale Bar 10 µm. (F) Pearson correlation coefficient calculated 
between 3D trajectories of same heterochromatin foci pairs (as in Figure 11C) upon 
washoff of cytochalaisn-D. (G) XY trajectories of heterochromatin foci in a typical 
LP cell in control (black), cytochalasin-D (red) and wash off (blue) conditions.  
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DISCUSSION 

A critical step in the alteration of genome function is the regulation of nuclear 

and chromatin plasticity, which can result from matrix remodeling. Cells 

possess an elaborate network of filamentous proteins that bridge the 

extracellular matrix with the nucleus. These include actin filaments, 

microtubules and intermediate filaments. In this paper, we have described an 

unusual non-monotonic dependence of actomyosin contractility in the 

regulation of nuclear dynamics. By altering cell geometric constraints and 

introducing pharmacological reagents, both actomyosin contractility and 

microtubule organization could be modulated to investigate this phenomenon. 

The non-monotonic dependence of nuclear fluctuations on actomyosin 

contractility supports recent findings that indicated the presence of small actin 

networks sequestering myosin and formin [113] and directly shows that these 

dynamic clusters, which were also visualized in our experiments (Figure 3.6), 

are the key intermediates in the mechanotransduction pathway driving nuclear 

dynamics. In order to assess whether forces generated by actomyosin 

contractility were applied directly on the nucleus, we overexpressed a 

dominant negative KASH plasmid of nesprin2, since nesprin2 is known to link 

actin to the nuclear envelope via its KASH domain. However, nesprin 

perturbed cells on CI pattern did not show significant change in PNAF 

compared to control CI cells. Since major changes in microtubule organization 

were observed when cell geometry was constrained, we induced microtubule 

depolymerization to assess whether these filaments were involved in the 

mechanotransduction of force to the nucleus. However, depolymerization of 

microtubules did not abolish nuclear plasticity, suggesting that the small actin 
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networks were exerting forces on the nucleus directly. Since the actin 

cytoskeleton is physically linked to the lamin meshwork via the LINC 

complex, we tested whether nuclear stiffness was modulated by altered cell 

geometry and whether this enhanced the nuclear dynamics. Surprisingly, we 

found that laminA/C was down-regulated as matrix constraints were reduced. 

This finding prompted us to transiently transfect cells with laminA/C. Indeed, 

overexpression of laminA/C abolished the nuclear fluctuations and this was in 

contrast to laminA/C knockdown, which increased nuclear fluctuations. Taken 

together, these experiments highlighted an important transcription dependent 

mechanoregulatory pathway involving actomyosin contractility that couples 

matrix properties to nuclear dynamics. 

Next, we wanted to test whether the dynamics of chromatin remodeling were 

affected by the enhanced nuclear plasticity. Heterochromatin structures have 

been shown to be stabilized in cells that are strongly adhered to the 

extracellular matrix [114]. We hypothesized that a reduction in the number of 

physical links to the extracellular matrix may disrupt heterochromatin 

integrity, thus making chromatin more permissive. Consistent with this, 

heterochromatin dynamics increased and correlation between heterochromatin 

foci trajectories decreased in cells on CI geometry, suggesting that an 

elaborate structural network may be modulated by changes in actomyosin 

contractility. The dynamic correlations of heterochromatin in cells of 

elongated polarized geometry were position dependent. Here, the apical and 

basal foci were highly correlated with other apical and basal foci respectively. 

Interestingly, the pharmacological inhibitor washout experiments revealed that 

dynamic correlation in heterochromatin organization and its apical-basal 
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grouping, which was reduced upon actin depolymerization, was restored after 

the actin depolymerizing agent was washed out. This suggests that a 

‘structural memory’ in the spatial organization of heterochromatin exists, and 

highlights the importance of mechanical homeostatic balance for higher order 

chromatin organization in living cells. In conclusion, our data systematically 

reveals an important link between cytoskeletal components and nuclear and 

chromatin dynamics. We suggest that mechanical changes within the 

extracellular matrix tune the epigenetic states of chromatin plasticity via 

actomyosin contractility to regulate cellular functions including transcription, 

genome integrity, migration and cellular homeostasis. 
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CHAPTER 4: CELL GEOMETRIC CONSTRAINTS MODULATE 

CHROMATIN COMPACTION STATES  
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INTRODUCTION 

Chromatin of eukaryotic cells is packaged in the nucleus with the help of 

various histone and non-histone proteins to create heterogeneously compacted 

regions, which provides spatial regulation of gene expression[80, 115]. The 

relative chromatin packaging provides an insight into the state of the nucleus 

i.e. its transcriptional activity[116], the phase of cell cycle[117, 118] and 

lineage commitment[72]. The chromatin organization in interphase cells has 

been shown to be dynamic, thus facilitating temporal regulation of gene 

expression[119-121]. This dynamics is regulated by various processes; 

binding/unbinding of core and linker histones, turnover of histone tail 

modifications, interaction with chromatin remodelling complexes and 

Brownian motion of chromosomes[122]. These different processes contribute 

to  chromatin remodelling at different length and time scales; from few 

milliseconds for nucleosomal arrays[123], seconds for heterochromatin 

binding proteins[124, 125], minutes for linker histones[126] and RNA 

Polymerase II[127], to hours for core histones[128] and lamin proteins[129].  

 

Various imaging techniques have been used to study chromatin structure and 

dynamics[130]. The most commonly used techniques are electron 

microscopy[131], immunostaining of various chromatin binding proteins and 

fluorescent labelling of the DNA in fixed cells. While these methods account 

for the chromatin compaction state, they lack information about its dynamics. 

In such fixed samples, biochemical methods like chromosome conformation 

capture and its variants have also been used to generate 3D maps of 

intergenomic distances[129]. Confocal microscopy combined with FRAP to 
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measure translational diffusion[43, 132] of fluorescently tagged proteins is 

commonly used to study chromatin dynamics. Further, the higher order 

packaging of chromatin has also been studied using Forster resonance energy 

transfer (FRET) [133, 134]. However, techniques to measure the local DNA 

compaction as well as spatial heterogeneities and dynamics associated with 

packaging chromatin in living cells are limited. 

 

In this work, we first developed a technique to measure chromatin dynamics 

using FAI and applied it to study the effect of cell geometry on dynamics of 

chromatin compaction. FAI is based on the principle that when a fluorescent 

sample is excited with a linearly polarized light, the depolarization of the 

emission is proportional to the rotational mobility of the fluorophor molecules 

(Figure 4.1A). The effect of rotational diffusion of fluorophores on anisotropy 

r, is given by Perrin equation,         = 1 + , 

where  is the fundamental anisotropy of randomly oriented fluorophores in 

fixed configuration,  is the fluorescence life time and  is the rotational 

correlation time [135]. Fluorescence anisotropy (r) is calculated as  

=	 	−		+ 	2 , 
which is a measure of the emission depolarization owing to the rotational 

diffusion of the fluorophore (Figure 4.1A).Previous work from our lab has 

shown that FAI of core histones tagged to EGFP (H2B-EGFP) represents local 

chromatin compaction [43, 136-142].  Local chromatin compaction would 

arise from strong DNA-nucleosome interactions and tight packaging of 
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nucleosomes, both of which would decrease the rotational mobility of core 

histones. Thus, a higher anisotropy value (lower depolarization) would 

represent tightly packed chromatin and vice versa. Further in this chapter, we 

describe a quantitative analysis of FAI to explore the dynamics of chromatin 

compaction upon application of geometric constraints. We also extended the 

FAI technique for visualizing the binding of the transcription cofacmetry.tor 

MKLas a function of cell geometry. 

 
Figure 4.1: Principle of Fluorescence Anisotropy. (A) A cartoon summarizing the 
principle of fluorescence anisotropy. When linearly polarized light is incident on a 
fluorescent sample, the depolarization of the emission is proportional to the rotational 
mobility of the fluorophores. (B) Schematic of the experimental setup for 
fluorescence anisotropy. (C) A cartoon suggesting how chromatin compaction can 
regulate rotational mobility of histones. 

 

MATERIALS AND METHODS 

Cell culture: Stable transfections were carried out in NIH3T3 cells with H2B-

EGFP plasmid. ES cells and PMEFs were obtained from H2B-EGFP 

transgenic mice. NIH3T3 and PMEF cells were cultured in DMEM 



69 
 

supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin. 

ES cells were cultured in K/O DMEM supplemented with 15% knockout fetal 

bovine serum, 1mM sodium pyruvate (Sigma), 0.1 mM nonessential amino 

acids, 2mM L-Glutamine, 0.1 mM β-mercaptoethanol (Sigma) and 500 U/ml 

leukemia inhibitory factor (LIF) (Chemicon) and penicillin-streptomycin. All 

cell culture reagents were from GIBCO Invitrogen unless mentioned 

otherwise.  

Fluorescence Anisotropy Imaging (FAI): Fluorescence anisotropy images 

were generated from intensity images acquired in parallel and perpendicular 

polarization on an inverted microscope (NikonA1R, 100X, 1.4NA objective). 

Linearly polarized light was generated by passing the arc lamp beam through a 

sheet polarizer. Excitation and emission filters corresponding to GFP were 

used. The emission was split into parallel and perpendicular polarizations and 

acquired on two halves of an Andor camera. Time lapse images were captured 

using NIS Elements software (Nikon). Schematic of the setup is shown in 

Figure 4.1B. A custom written program in MATLAB was used to compute 

anisotropy from the split image on a pixel by pixel basis after performing 

background subtraction and 3×3 smoothing of the original image. For each 

pixel, anisotropy was calculated as =	 	 	 ∗	 	 ∗ , where g (g-factor) is the 

ratio of the sensitivity of the experimental setup for parallel and perpendicular 

channels [26]. To calculate the g-factor, anisotropy of fluorescein 

isothiocyanate (FITC) solution in water (r=0.02) was used in the above 

formula.  

Image Analysis: The parallel and perpendicular images were aligned for 

translational and rotational shifts between the two channels using MATLAB. 
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The perpendicular emission intensity image was translated by Δx and Δy upto 

±5 pixels and rotated by Δθ upto ±5 degrees. Correlation was calculated in 

each case with the parallel image. The Δx, Δy and Δθ values which gave 

maximum correlation were used to translate the original perpendicular images 

to obtain best alignment. The complete temporal sequence was corrected for 

any translation and rotation with respect to the first time frame. PCC was 

calculated using the "corr" function in MATLAB and then averaged over all 

image frames with time lag ranging from 1 min to 30 min. Before calculating 

the PCC between anisotropy images a 5 pixel border was removed from the 

nucleus periphery to avoid the artifacts that may arise from edge effects. 

Preparation of PDMS stamps, Microcontact printing and Cell seeding on 

patterns: To make stamps, PDMS (Sylgard 184, Dow Corning) precursor and 

curing agent were mixed homogeneously in 10:1 ratio and poured over the 

silicon wafer which had 1800 µm2 triangle and circular micropatterned wells. 

After degassing in the desiccator for 30 minutes to remove air bubbles from 

the PDMS mixture, the silicon wafer with the PDMS mixture was cured in the 

oven at 80°C for 2 hours. Solidified PDMS was then peeled from the wafer 

and cut into ~ 1cm by 1cm stamps. These stamps were oxidized using plasma 

for 4 minutes and then 15ul of 100 ug/ml fibronectin solution (mixed with 

Alexa Fluor 647 dye, Sigma) was poured over each stamp. Extra solution was 

wiped with a tissue and the stamp was allowed to dry for 10 minutes. The 

stamp was then checked under the microscope for complete drying between 

the micropatterned structures, after which it was inverted carefully onto the 

surface of an uncoated hydrophobic 35 mm dish (Ibidi). The stamp was gently 

removed after 2 minutes and the stamping on the dish was checked by 
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visualizing Alexa 647 fluorescence in the far-red channel in the 

epifluorescence microscope. To passivate the non-patterned surface of the 

dish, it was then treated with 2 mg/ml pluronic F-127 for 5 minutes, and 

washed twice with PBS and cell culture medium before seeding 40,000 single 

cells. 

RESULTS 

4.1 Core Histone Anisotropy Measures Chromatin Compaction. 

Chromatin is known to be organized into highly compact heterochromatin 

forming distinct nodes and relatively decompact euchromatin regions in 

fibroblasts. FAI of core histone H2B in PMEFs was characterized as a 

measure of chromatin compaction by comparing H2B-EGFP intensity at 

heterochromatin and euchromatin regions (Figure 4.2A). The heterochromatin 

nodes, observed as the bright regions in the H2B-EGFP intensity image, were 

observed to correspond to high anisotropy, while euchromatin regions 

corresponded to lower anisotropy. However, anisotropy is not directly 

proportional to intensity, as seen in the scatter plot of anisotropy vs intensity 

(Figure 4.2B). In the next section we developed methods to visualize 

dynamics of chromatin in live cells. 
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Figure 4.2: Relation between intensity and anisotropy. (A) The grayscale image 
represents a typical widefield image of nucleus of NIH3T3 cell labelled with H2B-
EGFP. Bright spots represent hetereochromatin regions and dark spots represent 
nucleoli. The colorcoded image in the lower panel is the anisotropy image obtained 
from custom written code in MATLAB. (B) A scatter plot of normalized intensity vs 
anisotropy for all pixels in the nucleus. 

 

4.2 Time Lapse FAI to Study Chromatin Dynamics. To study the dynamics 

of chromatin compaction, time lapse FAI of cells expressing H2B-EGFP was 

carried out. To quantify the temporal change in anisotropy pattern, we first 

developed a numerical approach for probing image correlation using a 

simulated image (Figure 4.3A). A series of decorrelated images was generated 

from this image by exchanging a pair of randomly chosen pixels in each 

iteration (Figure 4.3A). To quantify the magnitude of decorrelation for this 

image sequence, PCC of each image with respect to the first image was 

calculated and plotted as a function of time. It was observed that the PCC 

curve is sensitive to the rate of change (no. of pixel pairs exchanged per 

iteration) and addition of random noise (Figure 4.3B). Typical PCC vs time 

lag plot for an anisotropy image sequence is shown in Figure 4.3C. Such a 

curve can be fitted with a single exponential decay equation with 3 parameters 

- noise(η), time constant(τ) and drop(α). The drop in correlation at time lag 
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t=1, which is a measure of decorrelation between consecutive anisotropy 

images, was termed as the noise(η). It was observed that the PCC does not 

drop to zero at long time scales, but stabilizes after some time. This stable 

PCC value (PCCt=∞) is a measure of the fraction of anisotropy image that 

remains unchanged. It was used to define the parameter drop(α) = 1 - PCCt=∞ - 

noise(η). The time constant(τ) is obtained by fitting a single exponential decay 

equation to the PCC curve after removing the noise(η). τ is a measure of time 

taken for the anisotropy image to decorrelate to PCCt=∞. Simulated exponential 

curves with varying η, τ and α are shown in Figure 4.3D-F respectively. In 

further experiments, the parameter drop rate = α/τ was used to quantify 

chromatin dynamics. 



74 
 

 

Figure 4.3: Image PCC to measure dynamics. (A) Simulation of dynamics in a 
11x11 increasing numbered matrix. Each iteration exchanges a pair of pixels. The 
pixels in the center three rows are not allowed to be exchanged. (B) Pearson 
correlation coefficient of each iteration image calculated with initial image for the 
following cases: 1 pair of pixel exchange (black), 2 pairs of pixel exchange (cyan), 
addition of random noise (magenta), no change (red), multiplication by a constant 
number (green), subtraction of a constant number (blue). (C) PCC vs time curve for a 
typical H2B-EGFP anisotropy image time series fitted with the equation y = (1 –α) + 
α exp (-t/τ) – η. (D-F) Exponential decay curves with varying noise η (D), time 
constant τ (E) and drop α (F) 

 

Next, the above parameters were used to understand the PCC curves obtained 

from anisotropy images of the nucleus at different time points, and compared 

with those obtained by simulation. Top panel in Figure 4.4A is a time series of 

a region of 11x11 pixels from nucleus anisotropy image. Using the 

experimental image at t=0, simulations were carried out either by varying the 
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number of randomly chosen pairs of pixels to be exchanged or fraction of 

image accessible for pixel exchange (bottom panel, Figure 4.4A). These 

simulation parameters affect the time constant (τ) and the drop (α) of the PCC 

curve, respectively. By comparing the original and simulated PCC curves 

(Figure 4.4B, black and green curves, respectively), it is estimated that 88% of 

total area is dynamic with 3% area changing per min. 

 

Figure 4.4: Interpretation of anisotropy PCC. (A) Simulation of dynamics in a 
ROI cropped from H2B-EGFP anisotropy image. (B) PCC curves for the actual 
dynamics of the ROI (black curve) compared with a few simulated dynamics 
generated by varying the percentage of pixels that remain constant and the rate of 
change. Comparison with various simulations shows that ~12.5 % pixels remain 
constant and the rate of change is ~2 pixels per minute. 
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As a next step in characterizing anisotropy PCC, the exposure time was varied 

from 100ms to 400ms for time lapse imaging (Figure 4.5A). Anisotropy PCC 

curves revealed higher noise for shorter exposure times (Figure 4.5B,C). The 

exposure time was kept constant at 300ms for all further experiments.  

 

Figure 4.5: Anisotropy PCC depends on imaging conditions. (A) Anisotropy 
images for a typical H2B-EGFP nucleus captured at different exposure times. (B,C) 
PCC vs time curves for live (B) and fix cell (C) anisotropy images series captured at 
different exposure times. 

 

To measure the sensitivity of FAI technique, anisotropy PCC curves of PFA 

fixed cells were compared with that of live cells (Figure 4.6A).  As expected, 

drop rate for fixed cells (0.01) was significantly lower than for live cells (0.04) 

indicating reduced dynamics in chromatin compaction (Figure 4.6B). It was 

observed that the intensity PCC curves are much less sensitive than the 

anisotropy PCC curves (Figure 4.6A) suggesting that FAI captures subtle 

changes in chromatin dynamics that cannot be observed by intensity profile. In 
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subsequent sections, we show the utility of anisotropy PCC to probe chromatin 

remodelling in different functional context. 

 

Figure 4.6: Anisotropy PCC measures chromatin dynamics. (A) Intensity and 
Anisotropy PCC vs time curves for multiple fix and live cells. (B) Drop rate (α/τ) 
obtained by fitting the fix and live anisotropy PCC curves to the equation y = (1 –α) + 
α exp (-t/τ) – η. 

 

4.3 Time Lapse FAI Reveals Distinct Dynamics between Heterochromatin 

and Euchromatin Assembly. The local variations in chromatin dynamics 

were probed in either heterochromatin or euchromatin (21 x 21 pixels) regions 

(Figure 4.7A) and anisotropy PCC curves were plotted. It was observed that 

euchromatin regions have significantly higher noise (η=0.5) than 

heterochromatin (η=0.2, Fig 7B inset1) which implies rapid loss of structural 

information in loosely packaged euchromatin region. Consistent with this, the 

drop rate (a measure of the time to reach steady state during polymer 

relaxation) is slightly higher in euchromatin region (0.035) when compared to 

heterochromatin (0.025, Figure 4.7B inset2).  
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Figure 4.7: Anisotropy PCC shows that euchromatin is more dynamic than 
heterochromatin. (A) Time lapse images of anisotropy in 3.5x3.5µm2 ROI in 
heterochromatin and euchromatin regions. (B) Anisotropy PCC vs time curves in 
heterochromatin and euchromatin regions. Insets show noise (η) and drop rate (α/τ) 
obtained by fitting these curves to the equation y = (1 –α) + α exp (-t/τ) – η. 

 

4.4 FAI Captures Changes in Chromatin Dynamics in Distinct Cellular 

Differentiation States. FRAP studies of chromatin binding proteins reveal a 

hyperdynamic nuclear structure in stem cells [43, 44, 142]. We therefore 

applied FAI to quantitatively measure the differences in chromatin compaction 

dynamics between ES and PMEF cells. Time lapse anisotropy images were 

recorded for 1 hour and anisotropy PCC was plotted (Figure 4.8A,B). Stem 
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cells exhibit a significantly dynamic chromatin structure (drop rate = 0.12) as 

compared to PMEFs (drop rate = 0.06) (Figure 4.8B inset). Further, to assess 

local variations in chromatin dynamics, anisotropy PCC curves were plotted 

by dividing the nucleus into 11x11 pixel regions and region-wise drop rates 

were measured (Figure 4.8C). The region with lower drop rate is less dynamic 

and vice versa as seen in the colour coded images (Figure 4.8C). The region-

wise drop rates in ES cells were on an average higher compared to PMEFs, 

suggesting that chromatin structure in stem cells undergoes rapid 

conformational changes.  
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Figure 4.8: Chromatin dynamics of stem cells vs differentiated cells. (A) Typical 
H2B-EGFP anisotropy images of ES and PMEF cells. (B) Comparison of anisotropy 
PCC curves for ES and PMEF cells. Inset shows the drop rates for the two curves. 
Error bars show standard error. (C) Comparison of local anisotropy drop rates in ES 
and PMEF cells. Box size is 10 x 10 pixels. *p=0.03 

 

4.5 Cell Geometric Constraints Affect Chromatin Dynamics. Previous 

reports indicate that the cellular geometry impinges on cytoskeletal and 

chromatin architecture resulting in altered genetic programs [10]. To 

quantitatively analyse the change in chromatin dynamics arising due to cell 
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geometric constraints, we mapped anisotropy PCC curves in cells plated on 

micropatterned triangle and circle shapes of 1800µm2 area. Figure 4.9A shows 

representative image of single cells labelled with actin (lifeact RFP) and H2B-

EGFP plated on triangular and circular micropatterns and Figure 4.9B shows 

time lapse anisotropy images. The anisotropy PCC curves were plotted (Figure 

4.9C) and it was observed that the circular cells have a significantly higher 

drop rate (0.04) than triangular ones (0.02), which implies faster chromatin 

remodelling (Figure 4.9C inset). Normalized difference images (5min-0min) 

of anisotropy for the two geometries shows a higher difference in case of 

circle cells (Figure 4.9D), also confirming the faster chromatin dynamics in 

cells on circular geometry. 

 
Figure 4.9: Effect of cell shape on chromatin dynamics. (A) Images of NIH3T3 
cells stably transfected with H2B-EGFP, transiently transfected with lifeact-RFP and 
cultured on 1800µm2 triangular and circular fibronectin micropatterns. (B) Typical 
H2B-EGFP anisotropy image series for triangular and circular cells (C) Difference 
image of anisotropy |5min-0min| for triangular and circular cells (D) Comparison of 
anisotropy PCC curves for triangular and circular cells. Inset shows the drop rates for 
the two curves. Error bars show standard error. *p=2.4E-4 
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4.6 Simultaneous Anisotropy of Transcription Cofactor and Core Histone. 

Next, we measured simultaneous anisotropy of transcription cofactor MKL 

and histone H2B to understand the correlation between TF binding and 

chromatin compaction. MKL is associated with transcription factor serum 

response factor (SRF) and helps in the co-regulation of serum responsive 

genes. MKL, which has a nuclear localization signal (NLS) sequence 

embedded in a G-actin binding site, is localized either in the cytoplasm or in 

the nucleus, depending on the state of actin polymerization (Figure 4.10A). In 

serum starved conditions, MKL is sequestered in the cytoplasm and upon 

stimulation with 15% FBS, it translocates to the nucleus at a time scale of 

about 10 minutes (Figure 4.10B, C). Similar MKL nuclear translocation 

occurs when serum starved cells are stimulated with cytochalasin-D (Figure 

4.10D, E). In serum starved conditions, cells are in a quiescent state, whereas 

upon serum stimulation, a large number of genes get transcribed via the SRF-

MKL pathway. We measured MKL and H2B anisotropy simultaneously inside 

the nucleus for cells expressing both MKL-mRFP and H2B-EGFP. Zoom in of 

the anisotropy maps revealed that regions with high MKL anisotropy 

correspond to low H2B anisotropy, i.e. MKL binds in regions of decondensed 

chromatin (Figure 4.11A). Additionally, zoom in at regions with high H2B 

anisotropy revealed low MKL anisotropy, suggesting lower MKL binding at 

heterochromatin regions. Scatter plot of normalized MKL anisotropy vs 

normalized H2B anisotropy for such regions showed a negative slope in the 

linear fit (Figure 4.11B). Further, we tracked the regions of high MKL 

anisotropy or high H2B anisotropy in cells of two extreme geometries: LP and 

CI. We observed that MKL binding foci are more dynamic in LP cells than CI 
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cells (Figure 4.12), possibly suggesting higher transcriptional activity at MKL 

bound regions in LP cells. This is in confirmation with previous work that 

shows higher MKL activity in polarized cells [12]. The dynamics of high H2B 

anisotropy foci, on the other hand, was lower in LP cells (Figure 4.12), which 

supports our observation that chromatin dynamics is lower in polarized cells, 

compared to CI cells. Further detailed studies on the effect of cell geometry on 

chromatin dynamics is done in the next project. 
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Figure 4.10: MKL translocation to the nucleus. (A) A cartoon summarizing the 
MKL-SRF pathway. MKL shuttles to the nucleus upon serum or cyto-D stimultion. 
(B,D) MKL-mRFP image time series upon serum (B) and cyto-D (D) stimulation. 
Serum/Cyto-D added at time 0 min. Image at 0 min corresponds to 24h serum 
starvation. (C,E) Normalized nuclear MKL intensity as a function of time. Bold curve 
represent the mean curve fitted with exponential function.  
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Figure 4.11: Relation between MKL binding and chromatin compaction. (A) 
MKL-mRFP and H2B-EGFP anisotropy images for the same nucleus. Upper zoomed 
region corresponds to compact chromatin while lower region corresponds to MKL 
binding. (B) Scatter plot for MKL vs H2B anisotropy in regions corresponding to 
high MKL anisotropy (MKL binding). 
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Figure 4.12: Effect of cell geometry on dynamics of MKL binding foci. XY 
trajectories of MKL binding foci (high MKL anisotropy punctae) and 
heterochromatin foci (high H2B anisotropy punctae) in LP and CI cells. 

 

DISCUSSION 

In this chapter we have established FAI as a method to measure differential 

chromatin compaction in living cells. The compaction maps obtained by FAI 

were correlated with heterochromatin and euchromatin regions visualized by 

intensity profile. Using PCC curves derived from time lapse FAI, we 

demonstrated the dependence of rate and extent of chromatin remodelling on 

the structural variation in packaging. Further, using FAI we quantify changes 

in chromatin dynamics in distinct cellular geometries or differentiation states. 

Using simultaneous anisotropy measurement of transcription cofactor MKL 

and of histone H2B, we observed that MKL binds in regions of decondensed 

chromatin. MKL binding foci are more dynamic in polarized cells, supporting 

previous data that suggests higher activity of serum responsive pathway in 

polarized cells. Taken together, time lapse FAI provides a sensitive measure to 
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capture subtle chromatin dynamics and transcription factor binding  in various 

cellular functional states. 
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CHAPTER 5: CONCLUSION AND DISCUSSION 
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EMS alter nuclear morphology and important nuclear functions like 

transcription and differentiation. The physical transmission of such signals 

from focal adhesions to chromatin happens via the mechanical link formed by 

cytoskeleton, LINC complex proteins and the nuclear lamina. Perturbations of 

any component in this mechanical link have been shown to affect the physical 

properties of the nucleus as well as the subsequent transcriptional response of 

the nucleus. In the first project, we measured the time lag between traction 

forces at the focal adhesions and nuclear and heterochromatin displacements. 

To achieve this, fibroblasts were cultured on fibronectin coated micropillar 

substrates and simultaneous imaging of pillars and nucleus was performed. 

Pillars at the leading cell periphery exhibited higher displacements than those 

in the cell interior. Myosin inhibition resulted in decreased pillar 

displacements, confirming that the pillar displacements at cell periphery in 

control cells arise from traction forces generated by actomyosin contractility. 

Autocorrelation analysis of pillar, nucleus and heterochromatin displacements 

revealed similar decorrelation time scale of ~40 s, which closely matches the 

time scale of fibroblast cell contraction [46]. Separate cross-correlation 

analysis of displacements of front and rear edge pillars with the nuclear 

displacement revealed instantaneous (less than a second) negative and positive 

correlations respectively, which were abolished upon myosin inhibition. Our 

results suggest that forces generated at focal adhesions by sensing the local 

microenvironment are mediated to the nucleus and chromatin by a coordinated 

contractile transmission via elastic cytoskeletal links.  

Previous work in the lab has demonstrated the apical organization of parallel 

actin stress fibers in cells cultured on LP geometric fibronectin micropatterns, 



90 
 

which press on the nucleus and generate indents on its apical surface. We 

observed that when these stress fibers move transversely over the nucleus, the 

heterochromatin nodes also move along with them. To further explore the 

force transmission from focal adhesions to nucleus and chromatin via the 

cytoskeletal links, in the second project we compared the nuclear and 

chromatin dynamics in cells cultured on fibronectin micropatterns of different 

geometries; LP and CI. While the LP cells display long actin stress fibers and 

a flat and elongated nucleus, the CI cells exhibit small filamentous or 

punctated form of actin and a rounded nucleus. The nucleus in CI cells 

displays envelope oscillations whose amplitude was measured to be 10% of 

the normalized projected nuclear area, compared to only 4% fluctuations of LP 

cell nucleus. Systematic perturbations of actin, myosin and formin in both LP 

and CI geometries revealed that the enhanced nuclear fluctuations arise from 

active forces by actin-myosin-formin structures that correspond to 

intermediate state of actin polymerization. Perturbations of KASH domain and 

microtubules revealed only slight effect on these fluctuations, while dynein 

inhibition with ciliobrevin-D significantly decreased PNAFs, suggesting that 

the active forces from actin-myosin-formin either act directly on the nucleus 

or via dynein links. Further, laminA/C overexpressing cells cultured on CI 

patterns did not display enhanced PNAF and laminA/C knockout cells on LP 

patterns exhibited enhanced PNAF. RT-PCR experiments revealed 80% lower 

levels of laminA/C expression in CI cells compared to LP cells. These results 

suggest that nuclear envelope oscillations are regulated by a balance between 

active cytoskeletal forces and laminA/C conferred nuclear rigidity.  
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To probe whether the PNAFs also correspond to enhanced chromatin 

dynamics, we tracked heterochromatin foci which are visible as bright spots in 

H2B-EGFP images. 3D trajectories of these foci revealed enhanced dynamics 

in CI cells compared to LP cells. The heterochromatin dynamics were also 

observed to be similarly regulated by a balance between active cytoskeletal 

forces and laminA/C expression. Additionally the correlation between 

trajectories of different heterochromatin nodes in the same nucleus were also 

associated with nuclear fluctuations, with nodes in LP cells highly correlated 

compared to CI cells. These results suggest that active cytoskeletal forces 

could possibly regulate the spatial organization and interaction of certain 

chromosome domains via nuclear envelope fluctuations.  

In the third project, we aimed to probe chromatin dynamics at a resolution 

higher than just 3D tracking of heterochromatin foci. For this, we generated 

time series of chromatin compaction maps of the whole nucleus using FAI of 

H2B-EGFP labelled cell nucleus. It is based on the principle that rotational 

mobility of fluorescently tagged core histones corresponds to the local 

chromatin compaction and regulates the magnitude of depolarization of 

emission, when excited with a polarized light. Quantitative image correlation 

analysis of time series of the chromatin compaction maps was used to extract 

quantities like noise in anisotropy image time series (η), total fraction of 

chromatin that is subject to change (α) and time scale of compaction dynamics 

(τ). The quantity α/τ, i.e. fractional change in compaction map per minute was 

significantly higher in live cells compared to fixed cells, at euchromatin 

regions compared to heterochromatin regions and in ES cells compared to 

PMEFs. As a next step, this technique was used to compare the difference in 
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chromatin dynamics in cells cultured on different geometric micropatterns. 

The chromatin compaction structure was observed to be more dynamic in CI 

cells compared to LP cells. Similar to the PNAFs and heterochromatin 

dynamics, the dynamics of chromatin compaction maps was enhanced in 

polarized cells upon actin perturbation and reduced in CI cells upon actin 

stabilization, supporting our conclusion that extracellular geometric signals 

alter active cytoskeletal forces to regulate nuclear and chromatin dynamics.  

As a next step, we examined the cytoplasmic to nuclear shuttling of MKL, 

which is an actin polymerization dependent mechanoresponsive transcription 

regulator. MKL, which is known to bind to G-actin in the cytoplasm, was 

observed to translocate to the nucleus upon serum induced actin 

polymerization or competitive binding of cytochalasin-D to G-actin. 

Simultaneous FAI of MKL mCherry and H2B-EGFP revealed that MKL 

preferentially binds in regions of open chromatin. Time tracking of MKL 

binding foci revealed higher dynamics in LP cells, possibly suggesting higher 

transcriptional activity of MKL dependent genes.  

Taken together, this thesis shows that EMS, in the form of cell geometric 

constraints, affect nuclear and chromatin dynamics by regulating cytoskeletal 

organization and laminA/C expression. Such mechanical regulation of 

chromatin dynamics could be the first step in tuning the epigenetic state of 

cells to achieve mechanical reprogramming of cells. Various ongoing 

experiments in the lab are aimed at understanding the relation of such nuclear 

and chromatin dynamics to genomic integrity and short and long term 

transcriptional changes.  
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