
FORMAL SECURITY ANALYSIS: SECRECY,
AUTHENTICATION AND ATTESTATION

LI LI
(B.Sc., Huazhong University of Science and Technology, 2011)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48811960?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I hereby declare that this thesis is my original work and it has been written by me in its

entirety. I have duly acknowledged all the sources of information which have been used in

the thesis.

This thesis has also not been submitted for any degree in any university previously.

Li Li

30 November 2015

ii

 Li Li

Acknowledgements

First and foremost, I am deeply indebted to my supervisor, Dr. Dong Jin Song, who guide

me with many precious advice and encourage me with lots of humor throughout the course

of my PhD study. He has given me immense support in various ways from academic

research to personal life. I could not have wished for a better supervisor. I am deeply

grateful to Dr. Sun Jun, Dr. Liu Yang and Dr. Pang Jun, who act like both friends and

co-supervisors in my graduate years. Their supervision and contribution is the backbone

of my graduate research. I really enjoyed our research and I am looking for more in the

future.

Furthermore, I would like to thank my thesis advisory committees, Professor Chang

Ee Chien, Professor Liang Zhenkai and Professor Steve Schneider, for their invaluable

comments and suggestions on my research works. I would like to thank the chair of

my thesis defense, Professor Hugh Anderson, for his active participation and constructive

feedback.

I would like to thank all the current and former members of the PAT group. Especially,

I would like to thank Dr. Song Songzheng, Dr. Shi Ling, Dr. Liu Yan, Dr. Tan Tian-huat,

Dr. Truong Khanh Nguyen, Dr. Gui Lin, Dr. Liu Shuang, Dr. Bai Guangdong, Dr. Chen

Manman for their help on my research works. I have special thanks to Dr. Sun Meng, Dr.

Li Xiaohong, Dr. Dong Naipeng, Mr. Hu Hong, Mr. Xie Xiaofei, etc. for our research

collaborations. Thank you for your support and friendships through my PhD study.

I thank sincerely and deeply my parents, Li Shu Qiang and Song Li Ping, who have

iii

taken great care of me with unconditional love. I would like to thank all my friends. They

keep me balanced and well-earthed despite the rather abstract and sometimes demanding

nature of my PhD.

iv

Abstract

In cyber security systems, various security protocols have been developed to provide trust-

worthy communications. However, designing security protocol is challenging and error-

prone, which is well illustrated by many security protocols attacks. Hence, it is necessary

to provide a verification framework where the security protocols can be formally checked.

In this thesis, we first analyze a vehicle charging protocol to show the strengths and weak-

nesses of existing methods. Then, we propose a verification framework, where the security

protocols can be intuitively specified and efficiently verified. Comparing with the exist-

ing methods, our verification method requires no abstraction during the verification and

works for an unbounded number of protocol sessions. Security protocols in real-world use

not only cryptography but also physical properties. Hence, we develop a generic analysis

method to the protocols that consider physical properties. We analyze a family of software-

based attestation protocols using this method and find several security weaknesses.

v

Contents

Declaration ii

Acknowledgements iii

Abstract v

Summary ix

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Literature Review . 2

1.2 The Objectives and Contributions . 6

1.3 Publications . 8

2 Evaluation of Existing Tools: Symbolic Analysis of an Electric Vehicle Charg-
ing Protocol 10

2.1 Introduction . 10

2.2 The Protocol . 13

2.2.1 Cryptographic Primitives . 14

2.2.2 Protocol Overview . 16

2.2.3 Assumptions . 18

2.2.4 Primitives Modeling . 19

2.3 Tools . 20

vi

2.4 Analysis in Tamarin . 22

2.4.1 Abstractions . 22

2.4.2 Modeling . 23

2.4.3 Checking Secrecy and Authentication 24

2.5 Analysis in ProVerif . 26

2.5.1 Abstractions . 26

2.5.2 Modeling . 27

2.5.3 Checking Privacy . 27

2.6 Discussions . 30

3 Timed Security Protocol Verification 33

3.1 Introduction . 33

3.2 Protocol Specification Framework . 37

3.2.1 Service Syntax . 37

3.2.2 Service Modeling . 38

3.2.3 Security Properties . 42

3.3 Verification Algorithm . 43

3.3.1 Service Basis Construction . 44

3.3.2 Query Searching . 50

3.4 Evaluations . 54

3.5 Discussions . 57

4 Parameterized Timed Security Protocol Verification 58

4.1 Introduction . 59

4.2 Running Example: Wide Mouthed Frog 61

4.3 Specifying Protocols using Timed Logic Rules 65

4.4 Specifying Protocols using Timed Applied π-calculus 69

vii

4.5 Timed Applied π-calculus Semantics . 81

4.6 Verification Algorithm . 86

4.7 Evaluations . 94

4.8 Related Works . 100

4.9 Discussions . 101

5 Analyzing Software-based Attestation in Practice 102

5.1 Introduction . 103

5.2 Generic Specification for Software-based Attestation 104

5.2.1 System Overview . 105

5.2.2 Generic Attestation Scheme . 107

5.3 Security Criteria Formalization . 111

5.3.1 Full Utilization of Memory and Registers 111

5.3.2 Pc Compute Checksum at Runtime: Memory Recovering Attack . 114

5.3.3 Pc Pre-compute Checksum: Challenge Buffering Attack 116

5.3.4 Pc Forward Checksum Computation to A: Proxy Attack 116

5.4 Case Studies . 117

5.4.1 SWATT . 118

5.4.2 SCUBA . 119

5.4.3 VIPER . 121

5.5 Related Works . 122

5.6 Discussions . 124

6 Conclusions 126

Bibliography 129

viii

Summary

Trustworthy communications are needed in the cyber systems. In order to provide the

security, various security protocols are developed. However, designing security protocol

is challenging and error-prone, which is well illustrated by many attacks found in the

security protocols. Hence, it is necessary to provide a verification framework where the

security protocols can be formally checked.

In our first work, we analyze a complex vehicle charging protocol to show the strengths

and weaknesses of existing verification methods. Many interesting properties are analyzed

such as secrecy, authentication and privacy. The analysis shows that manual modeling

abstractions are generally needed to ensure the termination of the verification, making the

protocol specification less intuitive and more laborious. Additionally, false alarms can be

introduced when verification considers specific domain knowledge.

Then, in our second work, we propose a security protocol verification framework,

where the security protocols can be intuitively specified and efficiently verified. Compar-

ing with the existing methods, our verification method requires no abstraction during the

verification and works for an unbounded number of protocol sessions. Our research shows

that this framework can be applied to specific domains, e.g., the timed domain, easily.

The correctness of our verification algorithm has been formally proved. We implement

our method into a tool and use it to verify many timed and untimed security protocols

successfully.

Security protocols in real-world use not only cryptography primitives but also physical

ix

properties. Hence, we investigate a family of software-based attestation protocols that are

in this category so as to provide an analysis approach for them. These attestation protocols,

comparing with traditional hardware-based (e.g., TPM-based) attestation protocols, do not

require any hardware support in the attestation. Instead, their security are provided by the

computation limitation of the target devices. We analyze these protocols in three stages.

First, we propose a generic specification for them that captures most existing software-

based attestation protocols. Then, we formalize various security criteria that should be

satisfied by the generic scheme. Finally, we apply the security criteria back to the existing

software-based attestation protocols. Using this approach, we find several security flaws

successfully.

x

List of Tables

2.1 Tool Comparison. (UB : Unbounded; B : Bounded; N.A. : Not Available.) 22

2.2 Verification results for Tamarin : SAT - Satisfied, N.T. - Non-terminating . 26

2.3 Verification results for ProVerif : SAT - Satisfied 30

3.1 Service Syntax Hierarchy . 37

3.2 Verification results for timed authentication protocols 55

3.3 Comparison with other untimed protocol verifiers. 56

4.1 Syntax Hierarchy Structure . 62

4.2 Syntax of Timed Applied π-calculus . 70

4.3 Cryptographic Function Definitions . 72

4.4 Experiment Results . 95

5.1 Notation Summary . 112

5.2 Settings of Software-based Attestation Protocols Studied in Section 5.4 . 118

xi

List of Figures

2.1 Protocol Overview . 13

2.2 Modeling in Tamarin . 23

3.1 Roadmap for Related Works . 35

3.2 Two Nodes in Derivation Tree . 48

4.1 Attack Found in Kerberos V . 98

5.1 Checksum Computation . 107

5.2 Generic Software-based Attestation Scheme 108

xii

Chapter 1

Introduction

Security protocols usually are short programs that use cryptographic primitives to provide

secure communications in insecure networks, such as the Internet and the networks used

in the cyber-physical systems. They are widely used in our daily lives in, e.g., bank trans-

actions, mobile phones, wifi networks, e-votings. However, these security protocols (and

their manual proofs) are error-prone, which is well illustrated by the famous Needham-

Schroeder public-key protocol [93] where a security attack is found by Gavin Lowe 18

years after its publication [83]. Many new attacks are still being discovered continuously

to the manually proved protocols [4, 6, 35, 105, 100, 61]. As security protocols are de-

signed to provide security, their design flaws usually have serious consequences, which

can lead to the loss of money or even human lives. Even though correctness proofs for se-

curity protocols can be given manually [46], manual proving their correctness is extremely

hard when we consider (1) an active network attacker who controls the whole network, as

well as (2) infinitely many protocol sessions running in parallel at the same time. Hence,

an automatic verification framework for the security protocols that can generate machine

proofs automatically would be extremely useful.

However, developing a fully automatic approach to verify security protocols is chal-

1

lenging. First, we need to provide a consistent specification method for describing the

security protocols and their security properties. Second, we need to develop a verifica-

tion algorithm that can either prove the correctness of the protocols or generate attack

instances. In order to prove the correctness of security protocols, we need to consider

an unbounded number of protocol sessions that are running at the same time during the

verification. Since verifying the security protocols in this scenario is undecidable in gen-

eral [41] (the termination of the verification cannot be ensured), we need to develop an

algorithm that can terminate on most of the practically used security protocols. Third, our

framework should be able to be applied to specific domains. For instance, as many se-

curity protocols consider time and they might be vulnerable under the timing attacks, our

framework should be capable of verifying timed security protocols.

1.1 Literature Review

Many symbolic verification logics are proposed to check security protocols using, e.g.,

Horn logic, strand space logic and multiset rewriting logic.

Horn Logic. Using Horn logic to verify security protocol was first proposed by Weiden-

bach [119]. Later in [29], Blanchet extended Weidenbach’s method with abstraction of

nonces, so that Horn logic can be used to specify and verify security protocols practically.

Their approach generally works as follows. First, they represent adversary capabilities

with Horn logic rules. For instance, the decryption capability of the adversary can be

represented by the rule encs(m, k), k → m, where encs is a symmetric encryption func-

tion, m is a message and k is a key. It means that if the adversary knows the encryption

encs(m, k) and the key k then he can get the plaintext m using the decryption function.

In this method, the security protocols can be formalized by the adversary’s capabilities so

as to facilitate efficient verification against various attacks. Then, a verification algorithm,

similar to the forward searching, is proposed to check the secrecy property of messages.

2

Comparing with the traditional forward searching where a rule’s conclusion is reachable

when its premises are satisfied, this new searching algorithm treats the rule’s conclusion

as reachable when all of the premises in the rule are variables. For example, suppose we

have two rules such that m, k → encs(m, k) and encs(A, k)→ S, where m is a message,

k is a key, A and S are two constants. The verification algorithm takes encs(m, k) in the

first rule as reachable because its premises are variables. Then, the algorithm uses the con-

clusion from the first rule to fulfill the premise of the second one, generating a new rule

A, k → S. This new rule means that the constant S is reachable whenever the constant A

is reachable. The variable k can be ignored because the adversary can use any message

as k (it is an unrelated variable). In addition, in order to help the verification to terminate,

the algorithm proposed in [29] over-approximates the protocol execution by merging the

nonces when the protocol sessions have the same input sequence. Even though finding

attacks and proving correctness for security protocols are undecidable in general, the veri-

fication method proposed in [29] can be used to analyze real-world security protocols and

terminate quickly.

In [30], Blanchet proposed to extend the secrecy checking to verify two types of au-

thentication properties, i.e., non-injective agreement and injective agreement. In order to

clearly specify the authentication properties, Blanchet uses an init event to represent the

initialization of a protocol session and an accept event to stand for the acceptance of a

protocol session. Then, the non-injective agreement means that for every accept event

emitted, there exists a corresponding init event engaged before. The injective agreement

additionally requires that every init event can correspond to at most one accept event. By

following the secrecy checking algorithm, they can verify the non-injective agreement us-

ing a reachability checking with two phases. In the first phase, they need to ensure that

the accept event is reachable. Then, in the second phase, they need to ensure that that ac-

cept event can only be reached after the corresponding init event is engaged. Furthermore,

the injective agreement is satisfied if the following two conditions are satisfied. First, for

3

every accept event engaged in the protocol, the corresponding init event must be engaged

before. Second, for every init event engaged in the protocol, at most one corresponding

accept event can be engaged later.

Strong secrecy [31] is an observational equivalence property, that can be verified using

Horn logic as well. It ensures that the adversary cannot observe any difference between

two protocol instantiations which differ in some secret values. In [31], they introduced a

predicate testunif to the Horn logic. testunif (p, p′) is true if and only if p 6= p′ and there

exists a substitution σ that σp = σp′ by substituting the secret value and the adversary can

get the terms for the substitution. Obviously, when testunif (p, p′) is true, the adversary

can send the terms to the protocol to distinguish the values used in the protocol sessions.

In addition to the strong secrecy, Blanchet et al. proposed a way to check selected equiv-

alence [32], which ensures observational equivalence when the changed secret value is

selected from a finite set. Selected equivalence should be preserved by protocols such as

the e-voting, where a voter’s vote should be unobservable by the adversary and the possible

vote (candidate) are selected from a finite set of values. In [31] and [32], the observational

equivalence can only be checked against two protocol instantiations of the same structure.

Cheval et al. [43] proposed to check observational equivalence for protocols with differ-

ent structures by imposing a fail case in verification. So given two structurally different

protocols, they are observational equivalent if they both fail or they satisfy the selected

equivalence.

Strand Space. In [118], Thayer et al. proposed strand space to check security protocol.

A strand represents a protocol interaction trace, consisting of a sequence of events such

as sending, receiving, encrypting and decrypting messages. Given a limited number of

strands, there exist a limited number of ways for them to interact with each other. The

state space of combining the strands is thus called strand space. Hence, by exhausting

the states in the strand space, either the protocol is proved as secure or an attack is found.

4

Notice that the proving process is not automated in [118]. Later, Song [112] proposed a

method to automate the verification process using strand processes. They implement their

method into a tool named Athena. Model checking technique is adopted to formalize the

protocol execution and pruning theorems are employed to prunes the search space which

increase its verification efficiency. The weakness of this work is that they could only give

verification to security protocol with a bounded number of sessions.

Cremers followed Song’s work and developed a tool named Scyther [48]. Scyther can

verify security protocols with an unbounded number of sessions if a finite number of pat-

terns, the ways that the strands can compose together, can be found during the verification.

Even though Scyther does not give unbounded verification to all security protocols, it has

the advantage in formalizing various adversary models that could be stronger than Delov-

Yao model [56]. In the Delov-Yao model, the adversary has full control over the network,

but he cannot compromise the keys and messages used in the protocol. When forward

secrecy, weak forward secrecy, etc. are required, we need to verify the protocols against

the adversaries who can compromise keys and messages. By using the strand space, these

adversaries can be modeled in a straight forward manner. In [49, 24, 118, 50, 25, 26, 51],

Cremers et al. propose several extensions to Scyther that consider different attack models

in the verification.

Multiset Rewriting. Multiset rewriting was first proposed by Cervesato et al. [41] to

specify and verify security protocols using multiset rewriting rules. Multiset rewriting

considers the protocol execution as rewriting terms in the knowledge base. However, mul-

tiple rewriting rules can be applied at the same time. Schmidt et al. [104] uses multiset

rewriting to specify protocols and adversary capabilities. In addition, a guarded fragment

of first-order logic is adopted to specify security properties. Furthermore, equational the-

ories are employed to model the algebraic properties of cryptographic operators. Schmidt

et al. developed a tool named Tamarin [89] based on this method.

5

Tamarin has the specification flexibility of Scyther where the sessions can be explicitly

specified in the model. Comparing with Scyther where different adversary model is built-

in and fixed, the adversary model in Tamarin can be specified by the users directly using

multiset writing rules. Even though Tamarin is strong in protocol specification capability,

modeling protocols with multiset rewriting rules directly is hard and error-prone for the

end-users. In general, multiset rewriting approach is a combination of the Horn logic

approach and the strand space approach. It divides the trace of the protocol execution

into small fragments so that protocols can be verified more efficiently than using strand

space. Additionally, it preserved the trace information so that interesting properties, e.g,

forward secrecy, can still be easily specified and verified. In [73], Kremer et al. proposed

to translate stateful applied π-calculus to multiset rewriting rules and use Tamarin [89] as

its backend to verify stateful protocols.

1.2 The Objectives and Contributions

The research gaps for symbolic verification of security protocols are listed as follows.

• Several symbolic verification tools [29, 48, 89] based on different theoretical foun-

dations, e.g., Horn logic, strand space logic and multiset rewriting logic, are devel-

oped. They have been used to analyze many security protocols successfully. How-

ever, given a certain security protocol and a specific security property, it is unclear

which tool is better to use for the verification. It is also interesting to investigate

whether they have weaknesses in verifying certain types of protocols.

• Since the verification of security protocols is undecidable, many tools either need ab-

straction in the verification which gives false alarms, or can only handle a bounded

number of protocol sessions. In addition, when verifying security protocols in spe-

cific domains, some abstraction can lead to meaningless verification results. For

instance, in ProVerif [29], the nonces with the same name are merged even if they

6

are generated in different sessions, when they have the same session interaction his-

tory. So, given an expired session key (a nonce) generated in the previous session,

it may can be used in a new session because the session key used in the new session

remains the same. Hence, when an expired session key (a nonce) is merged with an

unexpired session key generated in a new session, the expired session key can still

be used in the new session since they share the same value. When a verification tool

adopted this abstraction, a false alarm will be triggered saying that an expired ses-

sion key is accepted in the protocol. However, this attack cannot be conducted in the

real protocol because the nonces generated in different sessions should be different.

So we need to find a new verification method without the abstraction when time is

involved in the protocol verification.

• Given a symbolic verification framework, verifying security protocols used in prac-

tice is still challenging, as their designs consider the execution environment where

physical properties and hardware features play important roles.

In this thesis, we thus wants to study above research gaps and develop techniques to

bridge the gaps. The contributions of this thesis are listed as follows.

• In order to show the strengths and weaknesses of different verification approaches,

we analyze a motivating security protocol that considers many security properties

such as the secrecy, authentication and privacy. The analysis reveals many prob-

lems in existing tools. First, manual modeling abstractions are generally needed to

ensure the termination of the verification, making the protocol specification effort

less intuitive and more laborious. Second, false positives can be introduced when

verification considers specific domain knowledge. Third, the verification for an un-

bounded number of sessions cannot always terminate for medium or even small

sized protocols with existing tools.

7

• Based on the case study, we propose a security verification framework that can be

flexibly extended to specific domains, for instance, the timed domain. The security

protocols can be specified by either timed logic rules or timed applied π-calculus in

our framework. In order to verify the timed security protocols, we ensure that no

abstraction is made during the verification. The correctness of security protocols are

formally proved. We implement our method into a tool and use it to verify many

timed and untimed security protocols successfully.

• Security protocols in real-world tend to be more complex, which use their execu-

tion environment (i.e., hardware performance) to provide security. In order to de-

velop an analysis approach that works for protocols in this case, we investigate a

family of software-based attestation protocols that fall into this category. These at-

testation protocols, comparing with traditional hardware-based (e.g., TPM-based)

attestation protocols, do not require any hardware support in the attestation. Instead,

their attestation are based on the computation limitation of the target devices. We

analyze these protocols in three stages. First, we propose a generic specification

for software-based attestation protocols that captures most existing software-based

attestation protocols. Then, we formalize various security criteria that should be

satisfied by the generic scheme. Finally, we apply the security criteria back to the

existing software-based attestation protocols. Using this approach, we find several

security flaws successfully.

1.3 Publications

The work in Chapter 2 was published in the proceeding of the 19th international con-

ference on engineering of complex computer systems [76]. The work in Chapter 3 was

published in the proceeding of the 16th international conference on formal engineering

methods [77]. The work in Chapter 4 was originally published in the proceeding of the

8

20th international symposium on formal methods [78], and its journal version is about

to be submitted to IEEE transactions on software engineering. Additionally, the work in

Chapter 5 was published in the proceeding of the 16th international conference on formal

engineering methods [75].

Overview. The goal of this thesis is to verify security protocols where both of cryp-

tography primitives and physical properties are used. I first present a case study on an

electric vehicle charging protocol (EVCP) to evaluate the existing tools. EVCP involves

many complex security properties, including secrecy, authentication and location privacy.

Hence, I used it as an example for verifying cryptography and physical properties together.

Then, I propose a symbolic verification method for timed protocols that are more related

to cryptography in Chapter 3 and Chapter 4. In Chapter 5, I propose a generic analysis

method for software-based attestation protocols that are more related to physical proper-

ties. Then, future works are discussed in Chapter 6.

9

Chapter 2

Evaluation of Existing Tools: Symbolic Analysis of
an Electric Vehicle Charging Protocol

In this chapter, we describe our analysis of a recently proposed electric vehicle charing

protocol [80]. The protocol builds on complex cryptographic primitives such as commit-

ment [96], zero-knowledge proofs, BBS+ signature [16] and etc. Moreover, interesting

properties such as secrecy, authentication, anonymity, and location privacy are claimed in

this protocol. It thus presents a challenge for formal verification, as no single existing tool

for security protocol analysis can verify all the required properties. In our analysis, we

employ and combine the strength of two state-of-the-art symbolic verifiers, Tamarin and

ProVerif, to check all important properties of the protocol.

2.1 Introduction

Electric vehicles are promising and futuristic automobiles which use electric batteries for

clean energy. They dominate conventional vehicles from several aspects such as air pol-

lution reductions, less power emissions and lower oil dependencies. In order to support

the wide adoption of electric vehicles, Vehicle- to-Grid (V2G) is proposed. In V2G, it

10

is possible and highly recommended to do charging when the demand is low, especially

after midnight, and to send the electricity back (recharging) to the system during the peak

time. Despite these advantages, one of the concerns is the potential privacy leakage along

with the charging route. Since energy storage devices cannot meet the requirement for

long-term driving, electric vehicles need to visit charging stations frequently for energy

supplying. As a consequence, the location privacy disclosed along with the charging and

recharging behaviors has drawn particular attentions.

Due to this specific application requirement, a privacy-preserving electric vehicle charg-

ing protocol (ECP) has been recently designed by Liu et al. [80]. In this protocol, vari-

ous complex cryptographic primitives are used and many security properties are claimed.

Firstly, the user could make commitment to some data and expose the key later to open

the commitment. It requires that the secrecy properties of the keys are related to the or-

der of events happened in the protocol. Specifically, the commitment scheme requires

that the private opening keys for the commitments should be unknown to the supplier

until the user exposes them explicitly in the protocol. Secondly, this protocol supports

the two-way transmission, which means the users are allowed to charge their vehicle at

the stations, as well as recharge the electricity back to the stations with their balance re-

funded. This is achieved using multiple generators in the commitment scheme which is

homomorphic, such that operations could be made on commitment to change the balance

without knowing the explicit value. In addition, the supplier is potentially dishonest in

this protocol. Injective agreement between the user and the supplier should always be

guaranteed, which ensures that the supplier could only charge the users just as he should.

Fourthly, the protocol is stateful in which manipulations over global mutable state are re-

quired. In this protocol, each user gets an account state after the registration. He needs to

use the information stored in the state to communicate with the supplier in the later ses-

sions and update them after each successful transaction.1 Lastly, privacy properties such as

1 As a result, some security protocol checkers could not terminate or even specify this protocol because of

11

anonymity and location privacy should be preserved by the protocol against the supplier.

Anonymity makes sure that the supplier could not get any partial information about the

users when they charge and recharge at the stations. Meanwhile, location privacy ensures

that the supplier could not identify the station where users perform charing or recharging.

In this protocol, privacy properties are achieved by using the zero-knowledge proofs and

BBS+ signature [16] with commitment scheme.

Even though most of security protocol are designed carefully and manual proofs are

given along with their publication, the protocols as well as their proofs are still proven to

be error-prone [21, 64]. This can be well illustrated by the famous Needham-Schroeder

public-key protocol [94], in which a security flaw was found by Gavin Lowe 17 years af-

ter its publication [83]. Therefore, automatic verification is very helpful for ensuring the

correctness or finding attack on security protocols. In this chapter, we thoroughly perform

a formal analysis for the electric vehicle charging protocol [80]. As many symbolic tools,

such as Scyther [48], Tamarin [89], ProVerif [29], StateVerif [13], and Athena [113] have

been developed for automatic analysis of security protocols using different approaches,

selecting the right techniques and tools to verify a complex protocol such as [80] is non-

trivial. Due to the number of security and privacy properties claimed by the protocol, no

single protocol verifier could give a complete verification of the protocol at present. Thus,

we combine the verification capacities from Tamarin and ProVerif, to give a thorough ver-

ification of the protocol: Tamarin [89] can handle stateful protocols naturally and allows

us to check event order related secrecy and authentication properties, while ProVerif [29]

can check observational equivalence [32] so that we use it for checking privacy properties.

Our contributions. First, we present a study of a few state-of-the-art symbolic tools for

security protocol analysis and discuss their strength and weakness. We then propose to

combine the verification capacities of Tamarin and ProVerif to analyze the electric vehicle

the infinite execution trace involved.

12

Registration

Charging Recharging

Statement

Information Center

Station Station

Information Center

FIGURE 2.1: Protocol Overview

charging protocol, in which secrecy, authentication and privacy properties all play impor-

tant roles. To the best of our knowledge, this is the first work to use Tamarin and ProVerif

for analyzing a single protocol in a compositional approach. Tamarin is used to check

event order related secrecy and authentication properties and ProVerif is used to check

privacy related properties. We formally define the properties claimed by the protocol and

give their verification results in Tamarin and ProVerif.

Structure of the chapter. In Section 2.2, we present the structural overview for this

protocol, the cryptographic primitives used in the protocol and the properties required

by this protocol. We then describe and compare four state-of-the-art security protocol

verifiers in details and address the reasons why we choose ProVerif and Tamarin as the

verification tools for this protocol in Section 2.3. In Section 2.4, we will illustrate the

modeling in Tamarin along with the verification for secrecy and authentication properties.

In Section 2.5, we will show how we specify protocol in ProVerif as well as the anonymity

and privacy properties checked. Finally, we draw conclusions in Section 2.6

2.2 The Protocol

In this chapter, we perform formal verification for the properties claimed by an electronic

vehicle charging protocol [80]. This protocol is designed to protect the users’ privacy,

13

e.g., anonymity and unlinkability, against the supplier even when they frequently charge

and recharge at the stations. It consists of four sub-routines such as registration, charging,

recharging and statement, whose overall structure2 is shown in Figure 2.1.

Registration. Firstly, the users need to register at the information center. They show their

identities to the supplier and pay a default deposit to open their accounts. The supplier

then give each user a token in return with his balance embedded inside.

Charging and Recharging. During the charging and recharging phases, the users provide

their token to the station in an anonymous way. After checking the token, the station will

update the token and send it back to the user. Since the station can record the information

he receives from the users, the charging and recharging transactions should be taken in a

partially blind way.

Statement. When the balance in the user’s account is running low, the users could go to the

information center again to disclose their identities and top-up money directly into their

accounts.

2.2.1 Cryptographic Primitives

To achieve the desired properties, various cryptographic primitives have been used in the

protocol, including commitment, zero knowledge proof, and BBS+ signature combined

with bilinear pairing.

Commitment. This protocol used the well known commitment scheme developed by Ped-

ersen [96], in which a secret opening value t is chosen randomly by the committer to com-

pute the commitment c over a tuple of public values (x0, x1, . . . , xn) asC(x0, x1, . . . , xn, t) =

gx00 g
x1
1 . . . gxnn g

t
n+1. t is unknown to the public at first. When the committer wants to prove

that c is the commitment for (x0, x1, . . . , xn) he made, he could reveal the opening value t

2 The dash rectangles represent the anonymous charging and recharging operations taking place at the
stations.

14

so that everyone can test if the following equation holds

C (x0, x1, . . . , xn, t)
?
= c.

It has been proven based on certain assumptions [92] that given a commitment c, no poly-

nomial algorithm exists to find the opening value t effectively with respect to 〈x0, x1, . . . , xn〉,

if 〈x0, x1, . . . , xn〉 and t are large random numbers. It has been proven that given a com-

mitment c, no polynomial algorithm exists to find the opening value t with respect to

(x0, x1, . . . , xn), which means only the committer could open the commitment c. Since

the commitment scheme is homomorphic, the multiplication of two commitments will

give a new commitment with its opening value that equals to the sum of the openings

from the formers. In this protocol, the commitment is constructed on the basis of four

independent generators in a cyclic group G denoted as g1, g2, g3, g4 ∈ G such that:

C (x0, x1, x2, t) = g0
x0g1

x1g2
x2g3

t

Zero-Knowledge Proof. As the protocol needs to preserve the privacy properties, the user

could not send the signatures, balances and etc. to the supplier directly. As a result, several

zero-knowledge proofs are used in this protocol. Zero knowledge proof schemes generally

could be represented by PK{(s0, . . . , sn) : f0 ∧ . . . ∧ fm} where PK is the proof given,

(s0, . . . , sn) are the private informations and f0 . . . fm are the targets the prover wants

to prove. As we treat the zero knowledge proofs as black boxes in the verification, we

modeled them as functions with two parts of information. One is the public information

pub and another is the private information pvt . The prover generates the proof based on

both of the public and private information denoted as prf (pub, pvt). To check the proof,

the verifier feeds the public information and the proof into the verification function in the

form of

verif (pub, prf (pub, pvt)) = true,

15

which will return true only when they are correctly matched. Because the prover could

give the proof only if he knows the private information, the verifier could then be sure that

the prover has the private information he claimed.

BBS+ Signature with Bilinear Pairing. In this protocol, the BBS+ signature proposed

by Au et al. [16] is employed. It uses an additional generator g ∈ G. The BBS+ signature

allows the signer to produce signature in a partially blind way. Specifically, the signer

could compute a signature denoted as A(c, e, r) over a commitment c without knowing the

values encoded in c by

A(c, e, r) = (g ∗ c) 1
e+r , (2.1)

where e is a fresh random number, r is the long-term private signing key of the signer,

and w = gr is the respective long-term public verification key. To verify the signature, a

bilinear pairing function ê is employed, satisfying that ê(ga, hb) = ê(g, h)ab. As a result,

everyone could verify the signature by testing

ê(A(c, e, r), w ∗ ge) ?
= ê(g ∗ c, g). (2.2)

2.2.2 Protocol Overview

We give detailed descriptions for the four sub-routines of the protocol as follows.

Registration. The users need to create their accounts at the information center, before

they can charge their cars in the V2G system. At the information center, each user dis-

closes his identity I and pays a fixed deposit D to the supplier. Additionally, he freshly

chooses random numbers y′, s and sends c0 = gy
′

0 g
s
3 along with a zero knowledge proof

p = PK1{(y′, s) : c0 = gy
′

0 g
s
3} to the supplier. After receiving I , c0 and p, the supplier

checks the identity and verifies the proof p and computes A = (c0gg
y′′

0 g
I
1g

D
2)

1
e+r according

to (2.1) where y′′ and e are fresh random numbers. Since the opening of gy
′′

0 g
I
1g

D
2 is 0, the

opening of the commitment encoded in A is the same as of c0. When the user gets A, y′′

and e from the supplier, he could verify the signature using (2.2) with c = c0g
y′′

0 g
I
1g

D
2 . If

16

the signature is verified successfully, the user stores the tuple (A, e, y′ + y′′, I,D, s) for

later operations.

Charging. Charging operations are conducted at the stations with users’ privacy pre-

served. Initially, the user has the tuple (Ã, ẽ, ỹ, I, B̃, s̃) stored in his device. Firstly, the

user randomly picks y′ and s to compute the commitment c0 = gy
′

0 g
I
1g

B̃
2 g

s
3 and sends it as

well as s̃ to the supplier together with a zero knowledge proof p = PK2{(Ã, ẽ, ỹ, I, B̃, y′, s) :

c0 = gy
′

0 g
I
1g

B̃
2 g

s
3 ∧ ŝ(Ã, wgẽ) = ê(ggỹ0g

I
1g

B̃
2 g

s̃
3, g) ∧D ≥ B̃ − v ≥ 0}. After receiving c0,

s̃ and p, the supplier checks that s̃ has never been used and the proof is correct. If the

checking is passed, the supplier picks random numbers y′′ and e and computes the signa-

ture A = (c0gg
y′′

0 g
−v
2)

1
e+r where v is the amount of electricity charged. As can be seen,

the new commitment encoded in A equals to gy
′+y′′

0 gI1g
B̃−v
2 gs3, so the balance is updated to

B̃ − v and the opening is unchanged. The supplier then sends A to the user with y′′ and e.

When the user receives the A, y′′ and e from the supplier, he verifies the correctness of A

by (2.2) with c = c0g
y′′

0 g
−v
2 and updates his internal state to (A, e, y′ + y′′, I, B̃ − v, s).

Recharging. Recharging operation is the same as charging operation except that the up-

dated balance is increased rather than decreased. This could be achieved by multiplying a

commitment with a positive balance, which means that the supplier will compute the com-

mitment as c = c0 ∗ gy
′′

0 g
+v
2 to increase the balance by v. In addition, the zero knowledge

proof PK3 in Recharging phase is also the same as PK2 except that the balance checking

is rewritten into D ≥ B̃ + v ≥ 0.

Statement. When the user wants to increase the balance in his account, the user could

go to the information center and top-up money into his account so that the balance in this

account could be reset to the default deposit D. If the state stored in the user’s device

is (Ã, ẽ, ỹ, I, B̃, s̃), he needs to disclose his identity I and pay D − B̃ to the supplier.

Besides, he randomly picks two numbers y′ and s, computes and sends c0 = gy
′

0 g
s
3 to

the supplier with s̃, I , B̃ and a zero knowledge proof p = PK4{(Ã, ẽ, ỹ, y′, s) : c0 =

17

gy
′

0 g
s
3 ∧ ŝ(Ã, wgẽ) = ê(ggỹ0g

I
1g

B̃
2 g

s̃
3, g)}. If s̃ has not been used before, the supplier checks

the correctness of the proof p and computes the signature A = (c0gg
y′′

0 g
I
1g

D
2)

1
e+r where y′′

and e are freshly generated random numbers. Then, the supplier will send it with y′′ and e

to the user. After checking the signature with (2.2) where c = c0g
y′′

0 g
I
1g

D
2 , the user updates

the tuple in his device as (A, e, y′ + y′′, I,D, s) and completes the statement.

2.2.3 Assumptions

Complex cryptographic primitives are used in the protocol. Additionally, the protocol

requires redundancy checking, infinite set maintenance and algebra calculation. Modeling

these complex operations could easily lead to non-termination of the verification process.

Thus we make some assumptions below.

The cryptographic primitives are prefect. The adversary cannot guess the correct opening

value or forge another opening value to open the commitment. For zero-knowledge proofs,

we assume that they will not cause any information leakage for the secret values and they

can prove what they intended to prove. For BBS+ signature, signature could not be forged

without the signing key.

The supplier will not accept a same opening value twice. This assumption ensures that no

user could use the opening value and the signature issued from the supplier twice. The

reasons are as follows. The zero-knowledge proofs make sure that the opening value is

embedded in the commitment. Besides, the commitment scheme requires that no other

opening value could be forged. When the supplier receives a non-duplicated opening

value, if the verification is passed, the opening value and the signature should never be

used before.

Algebraic addition operation on random numbers never introduce duplicated values. In

the protocol, add function is used to compute the sum of two numbers, which is used in

cryptos such as BBS+ signature and commitment. In symbolic verification, we say two

18

terms are equal when they are structurally equivalent. Since we only apply add function

to random numbers in the protocol, if algebraic operations on random numbers never in-

troduce duplicated values, two add results should be equal whenever they are structurally

equivalent, which ensures the correctness of the symbolic verification.

Balance bound checking in zero knowledge proofs are not considered. During the charging

and recharging, balance checking is implicitly checked in the zero knowledge proofs PK2

and PK3 . However, we omit the balance bound checking in PK2 and PK3 during the

verification, since < and ≤ conditions are not supported in ProVerif and Tamarin.

2.2.4 Primitives Modeling

According to the applications of the primitives and the structure of the protocol, we mod-

eled the primitives as follows:

Commitment. Two forms of commitments are generated in the protocol such as gy0g
s
3 and

gy0g
I
1g

B
2 g

s
3. We modeled them as resC(y, s) and chtC(y, I, B, s) in the tools. When the

supplier receives them, he computes the signature A accordingly in a consistent represen-

tation.

Zero Knowledge Proof. In this protocol, four zero knowledge proofs are used such as

PK1 , PK2 , PK3 and PK4 . Since the balance bound checking is omitted in PK2 and

PK3 , they become identical so we merged them into one zero knowledge proof of PK23 .

For PK1, the prover provides a proof knowledge regZK (c0, y
′, s) with a verification func-

tion to check the correctness of c0

PK1 (resC (y′, s), regZK (resC (y′, s), y′, s)) = true.

In PK23 , the prover’s secrets are (Ã, ẽ, ỹ, I, B̃, y′, s) and the known information to the

supplier are (c0, s̃, r), so he provide a proof of chtZK (c0, Ã, ẽ, ỹ, I, B̃, y
′, s) along with a

19

verification function

PK23 (chtC (y′, I, B̃, s), s̃, r, chtZK (chtC (y′, I, B̃, s),

sysA(ỹ, I, B̃, s̃, ẽ, r), ẽ, ỹ, I, B̃, y′, s)) = true,

which checks if the c0 and Ã are correctly formed with respect to (ẽ, ỹ, I, B̃, y′, s). For

statement sub-routine, the proof knowledge zk = stmZK (c0, Ã, ẽ, ỹ, y
′, s). The verifier

check the zk with PK4 to ensure the c0 and Ã are correct.

PK4 (resC (y′, s), s̃, I, B̃, r, stmZK (resC (y′, s),

sysA(ỹ, I, B̃, s̃, ẽ, r), ẽ, ỹ, y′, s)) = true.

BBS+ signature with bilinear pairing. We model the BBS+ signatures in a systematic

form as sysA(y, I, B, s, e, r) in which y is the addition of two nonces, I is the identity

of the user, B is the current balance in his account, s is the opening of the commitment

encoded in the signature, e is the random number chosen by the supplier and r is the private

signing key of the supplier. wge is modeled by compose(sysgr(r), e) = sysger(e, r)

and w = sysgr(r) is a public information. We defined an extract function to model the

behavior of (2.2) as

extract(sysA(y, I,D, s, e, r), sysger(e, r))

= syse(sysall(y, I,D, s))

in which the e and r is eliminated because of the bilinear function is used. Thus the user

could compute the value of syse(sysall(y, I,D, s)) directly.

2.3 Tools

Many symbolic tools, such as Scyther [48], Tamarin [89], ProVerif [29], StatVerif [13]

have been developed for automatic analysis of security protocols using several approaches.

They have different capabilities for analyzing different protocols with respect to different

properties.

20

Scyther [48] is a tool based on the strand space [60] and the Athena [113] but extends them

with trace patterns to reduce the search space. Although unbounded verification could be

achieved by Scyther for some protocols, Scyther sometimes bounds the session number

to ensure termination of the verification. Additionally, stateful protocol verification and

privacy properties are not supported in Scyther.

Tamarin [89, 104] uses multiset rewriting [42] to specify the adversary’s capabilities to-

gether with a guarded fragment [11] of first-order logic for security properties and equa-

tional theories for algebraic properties. Due to the fact that multiset rewriting rules can

be directly specified in a model to represent the execution state of the protocol, Tamarin

becomes a powerful tool for verifying stateful protocols. Additionally, session indexes

can be specified in the query so that authentication properties and secrecy properties with

event ordering could be checked in Tamarin.

ProVerif [29] is developed actively since 2001, which uses Horn clauses to represent the

adversary’s capability and backward deduction to check for secrecy. Over approximation

on generated session nonces is deployed to limit the searching space but also leads to

false attacks. By combining the secrecy checking with inserting special events which

indicates the begin and end of the protocol execution [30], authentication checking is then

allowed in ProVerif. Blanchet et al. later extended ProVerif with observational equivalence

checking [32] and strong secrecy checking [31] so that privacy leakage can be found in

protocols.

StatVerif [13] later extends ProVerif with the global mutable state. It could handle proto-

col with explicit global state by converting the processes into a set of clauses upon which

ProVerif could verify. In the meanwhile, further abstractions are needed for verifying

protocol with infinite state spaces.

Comparison. The differences of these tools are summarized in Table 2.1. As the electric

charging protocol [80] analyzed in this chapter is a stateful protocol and it uses the commit-

21

Property Scyther Tamarin ProVerif StatVerif
Secrecy UB/B UB UB UB

Authentication UB/B UB UB N.A.
Stateful Verification N.A. Infinite Weak Explicit
Explicit Event Index N.A. Supported N.A. N.A.

Strong Secrecy N.A. N.A. Supported N.A.
Observational Equivalence N.A. N.A. Supported N.A.

Table 2.1: Tool Comparison. (UB : Unbounded; B : Bounded; N.A. : Not Available.)

ment scheme which requires explicit event index ordering, Tamarin is the best candidate

for analyzing secrecy and authentication properties. On the other hand, strong secrecy and

observational equivalence are required for checking privacy properties in this protocol.

ProVerif is the only tool that supports these features. Thus, we integrate the verification

capacities from Tamarin and ProVerif to give a thorough verification of the protocol.

2.4 Analysis in Tamarin

2.4.1 Abstractions

We abstract the original protocol to ensure the termination of the verification process in

Tamarin. Since protocol abstraction can only introduce false alarms, if the protocol is

proven as secure after abstraction, its original version should be secure as well.

Fixing the balance for each sub-routines. During the verification in Tamarin, if the balance

is allowed to be increased and decreased in the protocol, verification procedure will try to

increase its value by infinite times without termination. Because the balance value is not

relevant to the secrecy and authentication properties considered in the verification, we

fixed the balance along the protocol execution. Since the balance is abstracted to a fixed

value, the charging and recharging behavior are then identical. So we merged them into

one operation denoted as cht in the model.

Setting the value y′′ to 0. In the protocol, y′′ is chosen randomly in every sub-routine by

22

rule user_reg_0:
 [Fr(~yp)
 , Fr(~s)
 , UserName($I)]
 --[UserInitEvent($I), UserGen($I, ~s)]->
 [Out(resC(~yp, ~s))
 , Out(regZK(resC(~yp, ~s), ~yp, ~s))
 , UserReg($I, ~yp, ~s)]

rule user_reg_1:
 [In(A)
 , !BalanceInit(D)
 , In(e)
 , !Pks(gr)
 , UserReg(I, yp, s)]
 --[Eq(extract(A, sysger(gr, e), syse(sysall(yp, I, D, s))), true)]->
 [User(A, e, yp, I, D, s)]

rule server_reg:
 [In(c)
 , In(zk)
 , !Sks(r)
 , UserName($I)
 , !BalanceInit(D)
 , Fr(~e)]
 --[Eq(pk1(c, zk), true)]->
 [RegA(c, $I, D, ~e, r)
 , Out(~e)]

rule user_cht_0:
 [User(oA, oe, oy, I, oB, os)
 , Fr(~yp)
 , Fr(~s)]
 --[UserGen(I, ~s), UserReveal(I, os)]->
 [Out(chtC(~yp, I, oB, ~s))
 , Out(chtZK(chtC(~yp, I, oB, ~s), oA, oe, oy, I, oB, ~yp, ~s))
 , Out(os)
 , UserCht(oA, oe, oy, I, oB, os, ~yp, ~s)]

rule user_cht_1:
 [UserCht(oA, oe, oy, I, B, os, yp, s)
 , In(A)
 , In(e)
 , !Pks(gr)]
 --[UserChtEvent(I, os), Eq(extract(A, sysger(gr, e), syse(sysall(yp, I, B, s))), true)]->
 [User(A, e, yp, I, B, s)]

rule server_cht:
 [In(c)
 , In(zk)
 , In(os)
 , !Sks(r)
 , Fr(~e)]
 --[ServerChtEvent(os), Eq(pk23(c, zk, r, os), true)]->
 [ChtA(c, ~e, r)
 , Out(~e)]

FIGURE 2.2: Modeling in Tamarin

the supplier. When the supplier computes the signature, he adds y′′ to y′ which is encoded

in the commitment generated by the user. Since the add function is communicative, we

need to reflect the algebra property for add in the model. In the meanwhile, the multiset

rewriting rules can only apply to a whole message, so we have to rewrite all the mes-

sages where the add function may appear. As a result, the verification process could not

terminate because of the complexity introduced by the duplicated rules specified in the

model. In order to make the model terminable, we set the y′′ generated by the supplier to

0. Thus add(y′, y′′) is equivalent to y′ and modeling the behavior of the algebra function

add becomes unnecessary. In fact, y′′ is a public value as the supplier will send it out

in every session, so fixing its value will not affect the verification results for secrecy and

authentication checking.

2.4.2 Modeling

Multiset rewriting rules are specified in Tamarin to model the protocol execution. For

each sub-routine described in Section 2.2.2, we divide the user’s part into two phases. One

for sending out the commitment and zero-knowledge proofs, and the other for verifying

the signature and updating the internal state of the user. After the registration, every user

23

maintains an internal state of User(A, e, y, I, B, s) in which A is the signature issued

from supplier, e and y are nonces, I is the identity of the user, B is the balance in the

user’s account and s is the opening for the user’s commitment encoded in A. Registration

and charging/recharging behaviors for both participants are shown in Figure 2.2. We use

user reg 0 and user reg 1 to represent the user actions during the registration, and use

server reg to specify the server’s registration behavior. User states are maintained for all

of the sub-routines. The two user actions in the registration phase are linked by the user

state UserReg. Charging/recharging and statement phases have similar structures. For

instance, in the charging phase, we use user crg 0 and user crg 1 to represent the user

actions during the charging, and use server crg to specify the server’s charging behavior.

As can be seen from the figure, a loop exists in the user charging/recharging phase, which

means that a user could do charging/recharging for infinite times. In Tamarin, pk1, pk23,

pk4 and signature checking are modeled according to Section 2.2.4. In order to check the

zero knowledge proofs and signatures, we defined an axiom on function Eq to test the

equivalence of two terms

Eq(x, y)⇒ x = y.

Thus Eq(pk1(c, zk), true) could be tested along the execution. The models are available

in [1].

2.4.3 Checking Secrecy and Authentication

Secrecy. One interesting secrecy property required by the electric charging protocol is

the conditional secrecy property for the opening value s of the commitment. As the user

explicitly sends the opening s out for verification, s will be known to the public. In the

meanwhile, s should be kept secret before the user intends to do so.

Definition 2.1. (Commitment secrecy). A nonce s satisfies commitment secrecy with re-

spect to the event open if and only if s is secret before event open is engaged.

24

This property can be specified in Tamarin as follows:

∀I, s, i, j.generate(I, s)@i ∧ know(s)@j

=⇒ (∃r.open(I, s)@r ∧ r < j)

in which i, j and r are session ids, I is the identity of the user, and s is the value that

should satisfy commitment secrecy regarding to open event. The formula means whenever

the opening value s generated by I is known to the adversary, there exists an event open

explicitly engaged by I before it is known.

Authentication. As this protocol is a charging protocol, we need to make sure that the

correspondences between the users and the supplier are established correctly. We adopt

the definition of non-injective agreement and agreement from [85] and formalize them for

the protocol in Tamarin. In the protocol, because we deem the supplier as the adversary,

the users need to make sure that the other participant of the protocol is taking the role of

supplier. Thus, we formalize the non-injective agreement between the supplier and the

user as

∀I, s, i.UserCht(I, s)@i =⇒ (∃r.SupplierCht(s)@r)

which means whenever a user is taking his role for charging or recharging, the supplier is

also taking his role in the protocol. Additionally, we formalize the injective agreement as

∀I, s, i.UserCht(I, s)@i =⇒ (∃r.SupplierCht(s)@r

∧ (∀j.UserCht(I, s)@j ⇒ i = j)).

The injective agreement makes sure that for any operation taken by the supplier, there is

only one corresponding user.

Verification results. We have checked the above properties against different scenarios of

the protocol, the verification results are summarized in Table 2.2. All the experiments are

conducted under Mac OS X 10.9.1 with 2.3 GHz Intel Core i5 and 16G 1333MHz DDR3.

25

Routine Property Result Time Step

Charging
and Recharging

Secrecy SAT 1.72s 54
Non-injective Auth SAT 7.14s 231

Injective Auth SAT 1092.87s 23895

Statement
Secrecy SAT 1.12s 20

Non-injective Auth SAT 1.56s 33
Injective Auth SAT 9.09s 251

Charging, Recharging
and Statement

Secrecy N.T. - -
Non-injective Auth N.T. - -

Injective Auth N.T. - -

Table 2.2: Verification results for Tamarin : SAT - Satisfied, N.T. - Non-terminating

After the registration is finished, any user could do charging/recharging for infinite times

with these three properties being preserved. In addition, these properties are also hold for

infinite times of statement operations after registration. However, if we check the prop-

erties with the charging/recharging and statement sub-routines combined, the verification

procedure does not terminate.

2.5 Analysis in ProVerif

2.5.1 Abstractions

During the protocol modeling in ProVerif, some abstractions are made to ensure the ter-

mination of the verification process.

Fixing the values of y′′ and e. In ProVerif, the value of a newly generated nonce depends

on two factors: the name of the nonce and the value of the messages received before

the generation point. In Section 2.2.2, we have shown that two nonces y′′ and e will be

generated by the supplier in every session after the supplier receives the commitment, the

zero-knowledge proof and an opening value s̃. Additionally, the nonces ỹ′′ and ẽ generated

in the last session are encoded in the zero-knowledge proof, which then leads to the infinite

dependency traces of y′′ and e. Thus, the verification process cannot terminate. To break

the infinite dependency chain, we model y′′ and e as two globally shared nonces instead

26

of generating them freshly in every session. Because fixing the value of y′′ and e will

not affect the users’ privacy, this abstraction will not introduce false positives into the

verification result.

Setting the value of y′′ to 0 for intractability and unlinkability checking. During intractabil-

ity and unlinkability analysis, the communicative law required by the function add will

lead to the non-termination of the verification. Since we could not remove the communica-

tive law which may lead to false negatives, we set y′′ = 0 so that add(y′, y′′) is equivalent

to y′. Then we could safely eliminate the usage of add with its functionality preserved. As

the users’ privacy will not be weaken by fixing y′′, this abstraction will not introduce any

false positives either.

2.5.2 Modeling

During the modeling in ProVerif, locations are modeled by public channels and the users’

state are passed by the process arguments to simulate the protocol execution. We have

modeled eight processes for four communication sub-routines between the users and the

supplier by following the protocol specification described in Section 2.2.2. Since the in-

finite iterations cannot be specified in ProVerif model, we explicitly call different phases

when the current routine is finished. For instance, when we check location privacy, we call

UserCrg by passing the user state as arguments to the process. (See the models in [1].)

2.5.3 Checking Privacy

Users’ privacy is the main purpose of designing this protocol, in which the supplier is

the potential adversary for breaking the users’ privacy. In this section, we give precise

definitions of anonymity and location privacy for the protocol, and we investigate other

properties for the protocol as well, including intractability, anonymity, strong anonymity

and unlinkability. We present the verification results for all of them. Privacy properties

are normally modeled by observational equivalence in the applied pi calculus, which is

27

a widely accepted approach [53, 12, 57]. In the following discussions, we use ECP to

represent the well-formed representation [12] for the electric vehicle charging protocol

and use Reg, Crg, Rcg and Stm for registration, charging, recharging and statement sub-

routines respectively. Rtn{n1/p1, . . . , nm/pm} means that the routine Rtn parameterized

with p1, . . . , pm is instantiated by the values n1, . . . , nm. Since the protocol is stateful,

Reg.Crg.Crg is different from Reg.(Crg|Crg). Additionally, infinite iterations of the

process cannot be specified in ProVerif, so we only give proofs to finite execution iterations

with infinite replications and define ECPReg and ECPCrg as follows

ECPReg =!v(i).Reg{i/id},

ECPCrg =!v(i).Reg{i/id}.Crg{i/id}.

Similarly, we could define the well-formed protocol for recharging as ECPRcg .

Location privacy. Location privacy should be guaranteed for the users’ behaviors in the

stations, which could be specified as

Definition 2.2. (Location privacy). A user A’s charging behavior conducted at station X

satisfies location privacy if there exists a user B at station Y s.t.

C[(Reg{A/id}.Crg{A/id , X/l}

|Reg{B/id}.Crg{B/id , Y/l})]

∼ C[(Reg{A/id}.Crg{A/id , Y/l}

|Reg{B/id}.Crg{B/id , X/l})].

The stations could be modeled in ProVerif by different channels. Location privacy

could also be defined for recharging behaviors similarly. In addition, we also specify

intractability for users’ behaviors as

Definition 2.3. (Intractability). Two subsequent charging behaviors conducted by a user

28

A at station X satisfies intractability if there exists a user B and a station Y s.t.

C[(Reg{A/id}.Crg{A/id , X/l}.Crg{A/id , X/l}

|Reg{B/id}.Crg{B/id , Y/l}.Crg{B/id , Y/l})]

∼ C[(Reg{A/id}.Crg{A/id , X/l}.Crg{A/id , Y/l}

|Reg{B/id}.Crg{B/id , Y/l}.Crg{B/id , X/l})]

which means the adversary cannot distinguish if a user performs charging at a same

station or different stations. Similarly, we can define intractability for recharging behav-

iors.

Anonymity and strong anonymity. Anonymity should be preserved when the user is

doing the charging operation and the recharging operation at stations. Anonymity for

charging is defined as follows.

Definition 2.4. (Anonymity). A well formed protocol ECPCrg satisfies anonymity property

for a user A’s charging behavior if there exists a user B s.t.

C[ECPCrg |(Reg{A/id}|Reg{B/id}).Crg{A/id}]

∼ C[ECPCrg |(Reg{A/id}|Reg{B/id}).Crg{B/id}]

A stronger notion for anonymity is proposed in [12] which ensures that the adversary

cannot tell whether a user A has participated a protocol run or not.

Definition 2.5. (Strong anonymity). A well formed protocol ECPCrg satisfies strong

anonymity property for a user A’s charging behavior if

C[ECPCrg |Reg{A/id}]

∼ C[ECPCrg |Reg{A/id}.Crg{A/id}]

Similarly, we could define (strong) anonymity for recharging behaviors.

Unlinkability. In protocol ECP , unlinkability is claimed for charging and recharging

operations at stations so that the no adversary, including the supplier, could tell that two

operations are initiated by the same user.

29

Routine Property Result Time

Charging

Location Privacy SAT 131.64s
Intractability SAT 13.87s
Anonymity SAT 1391.20s

Strong Anonymity SAT 1717.25s
Unlinkability SAT 5.94s

Recharging

Location Privacy SAT 132.43s
Intractability SAT 14.96s
Anonymity SAT 1372.65s

Strong Anonymity SAT 1804.23s
Unlinkability SAT 6.63s

Table 2.3: Verification results for ProVerif : SAT - Satisfied

Definition 2.6. (Unlinkability). A well formed protocol ECPCrg satisfies unlinkability for

a user A’s charging behavior if there exists a user B s.t.

C[(Reg{A/id}.Crg{A/id}.Crg{A/id})|(Reg{B/id})]

∼ C[(Reg{A/id}.Crg{A/id})|(Reg{B/id}.Crg{B/id})]

Verification results. We have successfully verified location privacy, intractability, anonymity,

strong anonymity and unlinkability for users’ charging and recharging behaviors in ProVerif.

We do the experiments under Mac OS X 10.9.1 with 2.3 GHz Intel Core i5 and 16G

1333MHz DDR3. The verification results are summarized in Table 2.3.

2.6 Discussions

In this chapter, we presented the verification of an electric vehicle charging protocol pro-

posed by Liu et al. [80] using two most efficient tools. We have checked various security

and privacy properties for the protocol, such as secrecy and authentication in Tamarin, and

location privacy, intractability, anonymity and unlinkability in ProVerif. Moreover, we

have addressed the capabilities of Tamarin and ProVerif. We are the first to combine their

symbolic verification results for a single protocol.

30

During the verification, we find that Horn logic used by ProVerif is generally more

efficient than the multiset rewriting logic adopted in Tamarin. Furthermore, because the

multiset rewriting is very powerful as a specification language, where the protocol commu-

nications and states can be explicitly specified, a single protocol could be modeled in many

different ways. Thus, it is hard for its users to choose the right modeling method, as some

of the modeling methods might result in non-termination of the verification. Even though

the applied π-calculus with protocol states [73] has been developed to model the (stateful)

protocols in Tamarin, it still needs its users to manually write theorems based on the ma-

chine generated multiset rewriting rules, which makes the modeling even more laborious.

On the other hand, security protocols can be modeled by the Horn logic in ProVerif using

the applied π-calculus. Moreover, Horn logic can be translated from the applied π-calculus

automatically. Hence, we conclude that Horn logic is more user-friendly as a specification

language comparing with multiset rewriting logic.

However, in order to help the termination of the verification in ProVerif [29] using

Horn logic, Blanchet [29] introduces an abstraction that merges the nonces in different

sessions when the nonces have the same name and the sessions have the same trace. This

abstraction can generally lead to false alarms to the protocol verification [77, 78] when the

commitment schemes [96] or the timing constraints [35, 84, 54] are involved. For instance,

consider the following process, where s is a secret constant.

P = !νn.c(x).c(n).if x = n then c(s).0

P generates a nonce n, receives a value x from network and then outputs the nonce n to

the network. If x is equal to n, P then sends out the secret s. Since the nonce n is a random

number that is unknown to the public until it is revealed, the value x can never equal to

n. So the secrecy property of s should be preserved. However, according to [45], ProVerif

reports false alarms because of its abstraction of nonces. We thus propose a verification

framework, in Chapter 3, based on Horn logic, which requires no abstraction during the

31

verification. Hence, our framework facilitates the verification of security protocols, in-

volving time and commitment scheme. By using the framework provided in Chapter 3, we

can successfully verify the commitment secrecy of the electric vehicle charing protocol in

42 milliseconds.

32

Chapter 3

Timed Security Protocol Verification

Quantitative timing is often relevant to the security of systems, like web applications,

cyber-physical systems, etc. Verifying timed security protocols is however challenging as

both arbitrary attacking behaviors and quantitative timing may lead to undecidability. In

this chapter, we propose a service framework to support intuitive modeling of the timed

protocol, as well as automatic verification of an unbounded number of protocol sessions.

The partial soundness and completeness of our verification algorithms are formally proved.

The evaluation results show that our approach is efficient and effective in both finding

security flaws and giving proofs.

3.1 Introduction

Timed security protocols are used extensively. Many security applications [103, 38, 23]

use time to guarantee the freshness of messages received over the network. In these appli-

cations, messages are associated with timing constraints so that they can only be accepted

in a predefined time window. As a result, relaying and replaying messages are allowed

only in a timely fashion. It is known that security protocols and their manual proofs are

33

error-prone, which has been evidenced by multiple flaws found in existing proved proto-

cols [105, 100, 61, 20, 19, 18]. It is therefore important to have automatic tools to formally

verify these protocols.

However, existing methods and tools for security protocol verification often abstract

timestamps away by replacing them with nonces. The main reason is that most of the de-

cidability results are given for untimed protocols [87, 101]. Thus, the state-of-the-art se-

curity protocol verifiers, e.g., ProVerif [29], Athena [113], Scyther [48] and Tamarin [89],

are not designed to specify and verify time sensitive cryptographic protocols. Abstracting

time away may lead to several problems. First, since the timestamps are abstracted as

nonces, the message freshness checking in the protocol cannot be correctly specified. As a

consequence, attacks found in the verification may be false alarms because they could be

impractical when the timestamps are checked. Second, omitting the timestamp checking

could also result in missing attacks. For instance, the timed authentication property en-

sures the satisfaction of the timing constraints in addition to the establishment of the event

correspondence. Without considering the timing constraints, even though the agreement

is verified under the untimed configuration correctly, the protocol may still be vulnera-

ble to timing attacks. Third, with light-weight encryption, which are often employed in

cyber-physical systems, it might be possible to decrypt secret messages in a brute-force

manner given sufficient time. In applications where long network latency is expected, it

is therefore essential to consider timing constraints explicitly and check the feasibility of

attacks.

Contributions. In this work, we provide a fully automatic approach to verify timed secu-

rity protocols with an unbounded number of sessions. Our contributions are fourfold. (1)

In order to precisely specify the capabilities of the adversary, we propose a service frame-

work in which the adversary’s capabilities are modeled as various services according to

the protocol specification and cryptographic primitives. Thus, when the protocol is vul-

34

semi-automated Evans et al. [57]

automated bounded

Lowe [83]

Jakubowska et al. [63]

Corin et al. [45]

unbounded

Delzanno and Ganty [52]

Chapter 3 [75]

Chapter 4 [76]

FIGURE 3.1: Roadmap for Related Works

nerable, there should exist an attack trace consisting of the services in a certain sequence.

(2) An automatic algorithm is developed in this work to verify the timed authentication

properties with an unbounded number of sessions. Since security protocol verification is

undecidable in general [41], we cannot guarantee the termination of our algorithm. We

thus prove our algorithm as partially sound and complete in Section 3.3. (3) Having time

in security protocol verification adds another dimension of complexity. Thus we pro-

pose the finite symbolic representation for the timing constraints with approximation. We

prove that the protocol is guaranteed to be secure when it is full verified by our algorithm.

Additionally, when the protocol specification is in a specific form, we also prove that

our algorithm does not introduce false alarms. (4) A verifier named TAuth is developed

based on our method. We evaluate TAuth using several timed and untimed security proto-

cols [35, 40, 94, 72, 33, 103]. The experiment results show that our approach is efficient

and effective in both finding security flaws and giving proofs.

Related works. The roadmap of related works are shown in Figure 3.1. Evans et al. [59]

introduced a semi-automated way to analyze timed security protocols. They modeled

the protocols with CSP and checked them with PVS. In [86], Lowe proposed finite state

model checking to verify bounded timed authentication. In order to avoid the state space

explosion problem, protocol instances and time window are bounded in the verification.

Jakubowska et al. [65] and Corin et al. [47] used Timed Automata to specify the protocols

35

and used Uppaal to give bounded verifications. Our method is different from theirs as

our verification algorithm is fully automatic and the verification result is given for an

unbounded number of sessions.

The work closest to ours was proposed by Delzanno and Ganty [54] which applies

MSR(L) to specify unbounded crypto protocols by combining first order multiset rewrit-

ing rules and linear constraints. According to [54], the protocol specification is modified

by explicitly encoding an additional timestamp, which represents the protocol initialization

time, into some messages. Thus the attack could be found by comparing that timestamp

with the original timestamps in the messages. However, it is not clearly illustrated in [54]

how their approach can be applied to timed security protocol verification in general. On

the other hand, our approach could be directly applied to crypto protocols without any

manual modification to the protocol specification.

We adopt the Horn logic which is similar to the one used in ProVerif [29], a very ef-

ficient security protocol verifier designed for untimed cryptographic protocol, and extend

it with timestamps and timing constraints. However, the extension for time is nontrivial.

In ProVerif, the fresh nonces are merged under the same execution trace, which is one of

major reasons for its efficiency. When time is involved in the protocol, the generation time

of the nonces in the protocol becomes important for the verification. Thus merging the

session nonces under the same execution trace often introduces false alarms into the ver-

ification results. In order to differentiate the nonces generated in the sessions, we encode

the session nonces into the events engaged in the protocol and use the events to distinguish

them. Additionally, our approach takes care of the infinite expansion of timing constraints,

which is discussed in Section 3.3.1.

36

Type Expression
Timestamp(t) t
Message(m) g(m1,m2, ...,mn) (function)

a[] (name)
[n] (nonce)
v (variable)
t (timestamp)

Event(e) 〈m, t〉 (knowledge)
e(m1,m2, ...,mn) (event)

Constraint(B) C(t1, t2, ..., tn)
Service(S) [G] e1, e2, ..., en −[B]→ e
Query(Q) accept(. . .)←[B]− init1 (. . .), . . . , initn(. . .)

Table 3.1: Service Syntax Hierarchy

3.2 Protocol Specification Framework

We introduce the proposed protocol specification framework in this section. In the frame-

work, the security protocols and the cryptographic primitives are modeled as various ser-

vices accessible to the Adversary for conducting attacks. Generally, these services receive

inputs from the adversary and send the results back to the adversary as output over the

network. Timestamps are tagged to the messages to denote when they are known to the ad-

versary. We assume the adversary model presented in this framework is an active attacker

who can intercept all communications, compute new messages and send the messages he

obtained. For instance, he can use all the publicly available functions including encryp-

tions, decryptions, concatenations, etc. He can also ask legal protocol participants to take

part in the protocol when he needs. Thanks to the introduction of time, key expiration and

message compromise can also be specified by adding additional services.

3.2.1 Service Syntax

In our framework, services are represented by a set of Horn logic rules guarded by timing

constraints. We adopt the syntax shown in Table 3.1 to define the services. Messages

37

could be defined as functions, names, nonces, variables or timestamps. Functions can

be applied to a sequence of messages; names are globally shared constants; nonces are

freshly generated values in sessions; variables are memory spaces for holding messages;

and timestamps are values extracted from the global clock during the protocol execution.

A event can be a message tagged by a timestamp denoted as 〈m, t〉, which means that the

messagem is known to the adversary at time t. Otherwise, it is an user-defined event in the

form of e(m1, . . . ,mn) where e is the event name andm1, . . . ,mn are the event arguments.

The events are used for specifying authentication properties and distinguishing different

sessions. B is a set of closed timing constraints assigned on the timestamp pairs. Each

constraint is in the form of t − t′ ∼ d where t and t′ are timestamps, d is an integer

constant (∞ is omitted), and ∼ denotes either < or ≤. We denote the maximum value

of d in a timing constraint set B as max (B). For simplicity, when a timing constraint

t−t′ ∼ d ∈ B, we write d(B, t, t′) to denote the integer constant d, and c(B, t, t′) to denote

the comparator ∼1. G is a set of untimed conditions such as message inequivalence. A

service [G] e1, e2, ..., en −[B]→ e means that if the events e1, e2, ..., en, the conditions

G and the constraints B are satisfied, the adversary can invoke this service and obtain e as

the result.

3.2.2 Service Modeling

In the following, we show how to model the timed authentication protocols in our frame-

work. We illustrate the service modeling using a simple example called the Wide Mouthed

Frog (WMF) protocol [35] as described below.

A→ S :A, {tA, B, k}kA

S → B :{tS, A, k}kB
1 If a timing constraint is not specified exactly in this form, it should be possible to change the constraint

into this form. For instance, t− t′ > 3 can be changed into t′ − t < −3.

38

In the protocol, A and B are two users Alice and Bob, and S is a trust server who shares

different secret keys with different users. The goal of this protocol is to share a fresh key

k from Alice to Bob. kA is the secret key shared between server and Alice, and kB is

the corresponding secret key for Bob. k is a fresh session key generated by Alice, which

should be different in different sessions. tA is a timestamp generated by Alice. Similarly,

tS is a timestamp generated by the server. In the protocol, we assume that the clock drift

for every participants is negligible, so that the message freshness checking is valid during

the execution.

When the server receives the request from Alice, it checks its freshness by comparing

the tA with the current clock reading tS . If tA and tS satisfy the pre-defined constraint

C1, the server then sends the second message to Bob. Upon receiving the message from

the server, Bob decrypts it and compares tS with his clock reading tB. If the timestamp

checking C2 is passed and the message is properly formed, Bob then believes that k is

a fresh key shared with Alice. In fact, there exists an attack [9] to the protocol which is

resulted from the symmetric structure of the exchanged messages.

A→ S : A, {tA, B, k}kA

S → I(B) : {tS, A, k}kB

I(B)→ S : B, {tS, A, k}kB

S → I(A) : {tS′ , B, k}kA

I(A)→ S : A, {tS′ , B, k}kA

S → B : {tS′′ , A, k}kB

In the attack trace, the adversary I personates Bob, hijacks the second message and sends

it back to the server within the timing constraint C1. Then, the server would treat it as

a valid request from Bob and update the tS to its current clock reading. By doing this

repeatedly, the timestamp in the request can be extended to an arbitrary large value. As a

result, when Bob receives a message that passes the timestamp checking, the request from

39

Alice may not be timely any more. Hereafter, we assume that the server and Bob check the

freshness of the received messages with following timing constraints: C1 = tS − tA ≤ 2

and C2 = tB − tS ≤ 2. Notice that in general, the constraints should be set according to

the protocol specification, network latency, etc.

Crypto Services. Cryptographic primitives are usually specified as services without net-

work latency. Generally, we have two types of crypto services, which are constructors and

destructors. Constructors are used to generate new messages such as concatenation and

encryption, whereas destructors are used to extract messages from the constructed mes-

sages. For instance, the constructor and the destructor for symmetric encryption can be

modeled as follows.

〈m, t1〉, 〈k, t2〉 −[t1 ≤ t ∧ t2 ≤ t]→ 〈encs(m, k), t〉 (3.1)

〈encs(m, k), t1〉, 〈k, t2〉 −[t1 ≤ t ∧ t2 ≤ t]→ 〈m, t〉 (3.2)

The service (3.1) means that if the adversary has a messagem and a key k, this service can

generate the symmetric encryption form by k, and the timing t of receiving the encryption

should be later than the timing t1 and t2 when m and k are known to the adversary. The

symmetric decryption service is similarly defined in service 3.2.

For some cryptographic primitives, additional constraints can be added for special pur-

poses. For instance, RSA encryption may consume non-negligible time to compute. If the

encryption time has a lower bound d, we could use the following constructor to model the

additional requirement on time.

〈m, t1〉, 〈pk, t2〉 −[t− t1 > d, t− t2 > d]→ 〈RSA(m, pk), t〉

Protocol Services. Protocol services are used to specify the execution of the protocol.

These services are directly derived from the protocol specification. Specifically, for the

WMF protocol, the server S answers queries from all its users. After receiving a request

from a user I , S extracts the message content and checks the timestamp. If the timestamp

is generated within 2 time units, S sends out the encryption of an updated timestamp tS ,

the initiator’s name and the session key k under the responder’s shared key. The service

40

provided by the server can be specified with

〈encs((tI , R, k), key(I)), t〉, 〈I, t′〉 −[0 ≤ tS − tI ≤ 2 ∧ t ≤ tS ∧ t′ ≤ tS]→

〈encs((tS, I, k), key(R)), tS〉 (3.3)

in which key(U) represents the secret key shared between the server and the user U . Since

the keys are only shared with the user and the server, We do not treat the key constructor

as a public service. Besides, the names of the two participants should be known to the

adversary, so we have services for publishing their names.

−[]→ 〈A[], t〉 (3.4)

−[]→ 〈B[], t〉 (3.5)

Event Services. In order to ensure the authenticity between participants, we introduce

two special events init and accept. The init event is explicitly engaged by the initiator

when a new protocol session starts, while the accept event is engaged by the protocol

when the timed authentication is established successfully. According to [85], the timed

authentication is correct if and only if every accept event is emitted with its corresponding

init event engaged before, and the timing constraints should always be satisfied. For the

WMF protocol, Alice engages an event init when she wants to start a session with R.

init(A[], R, [k], tA), 〈R, t〉 −[t ≤ tA]→ 〈encs((tA, R, [k]), key(A[])), tA〉 (3.6)

When the user Bob gets the message from the server, he decrypts it with his shared key

key(B[]) and checks its freshness. If the timestamp checking is passed and the initiator is

I , he then believes that he has established a timely authenticated connection under session

key k with I and engages an accept event as follows.

〈encs((tS, I, k), key(B[])), t〉 −[tB − tS ≤ 2]→ accept(I, B[], k, tB) (3.7)

Additional Services. Introducing time allows to model systems which are not possible

previously. For instance, some applications require that the passwords are used only if

they are unexpired. One possible scenario is that the token token(s , pw , tk) can only be

41

opened within the lifetime [tk, tk + d] of the password pw.

〈token(s , pw , tk), t1〉, 〈pw , t2〉 −[
{
t1
t2

}
≤
{
tk + d
t

}
∧ tk ≤ t]→ 〈s , t〉

If the adversary can obtain both of the token and the password within [tk, tk+d], the secret

s can be extracted from the token. Another possible service that could be accessible to the

adversary is the brute force attack on the encrypted messages, which allows the adversary

to extract the encrypted data without knowing the key. Suppose the least time of cracking

the crypto is d, the attacking behavior can be modeled with

〈Crypto(m, k), t〉 −[t′ − t > d]→ 〈m, t′〉.

For some ciphers like RC4 which is used by WEP, key compromise on a busy network

can be conducted after a short time. Given an application scenario where such attack is

possible and the attacking time has a lower bound d, we can model it as follows.

〈RC4 (m, k), t〉 −[t′ − t > d]→ 〈k, t′〉

Remarks. Even though the services specified in our framework can directly extract the

message from the encryption without the key and so on, a given protocol can still guarantee

correctness as long as proper timing checking is in place, e.g., authentication should be

established before the adversary has the time to finish the brute-force attack.

3.2.3 Security Properties

In this work, we focus on verifying that the authentication between the two participants

is timely, which means every accept event is preceded by a corresponding init event sat-

isfying the timing constraints. Thus we formalize the timed authentication property by

extending the definition in [85] as follows.

Definition 3.1. Timed Authentication. In a timed security protocol, timed authentication

holds for an accept event e with a set of init events H agreed on arguments encoded in

the events and the timing constraints B, if and only if for every occurrence of e, all of

the corresponding init events in H should be engaged before, and their timestamps should

42

always satisfy the timing constraints B. We denote the timed authentication query as

e ←[B]− H . In order to ensure general timed authentication, the arguments encoded in

events should only be different variables and timestamps.

We remark that the timed authentication defined above is non-injective. Because the

legitimate run of WMF protocols requires that the authentication should be established

within 4 time units, its query is modeled as follows.

accept(I, R, k, t)←[t− t′ ≤ 4]− init(I, R, k, t′) (3.8)

In Section 3.3, we present a verification algorithm to check the authentication. Since

the verification for security protocol is generally undecidable [41], our algorithm cannot

guarantee termination. Hence, we claim our attack searching algorithm as partial sound

and partial complete under the condition of termination (partial correctness).

3.3 Verification Algorithm

Given the specification formalized in Section 3.2, our verification algorithm is divided

into two phases. The attack searching service basis is constructed in the first phase so

that attacks can be found in a straight forward method in the second phase. Specifically,

every service consists of several inputs, one output and some timing constraints. When a

service’s input can be provided by another service’s output, we could compose these two

services together to form a composite service. In the first phase, our algorithm composes

the services repeatedly until a fixed-point is reached. When such a fixed-point exists, we

call it the guided service basis. However, the above process may not terminate because of

two reasons. The first reason is the infinite knowledge deduction. For example, given two

services m −[]→ h(m) and h(m) −[]→ h(h(m)), we can compose them to obtain a new

service m −[]→ h(h(m)), which could be composed to the second service again. In this

way, infinitely many composite services can be generated. The second reason is the infinite

expansion of timing constraints. For instance, assume we have S0 = 〈enc(t′, k), t1〉 −[
t′′ − t′ ≤ 2 ∧ t1 ≤ t′′]→ 〈enc(t′′, k), t′′〉 and S1 = init(t, [k]) −[t′ − t ≤ 2 ∧ t ≤ t′]→
〈enc(t′, [k]), t′〉 in the service basis. When we compose S1 to S0, their composition S2 =

43

init(t, [k]) −[t′′ − t ≤ 4 ∧ t ≤ t′′]→ 〈enc(t′′, [k]), t′′〉 has a larger range than S1. Besides,

we could compose S2 to S0 again to obtain an even larger range, so the service composition

never ends. Since verification for untimed security protocol is undecidable, we, same as

state-of-the-art tools like ProVerif, cannot handle the first scenario. We thus focus on

solving the second scenario by approximating the timing constraints into a finite set. The

fixed-point is then called the approximated service basis. When the over-approximation is

applied, false alarms may be introduced into the verification result so that, generally, only

partial completeness is preserved by our attack searching algorithm. Finally, we present

our attack searching algorithm in the end of this section.

3.3.1 Service Basis Construction

In the first phase, our goal is to construct a set of services that allows us to find security

attacks in the second phase. In order to construct such a service basis, new services are

generated by composing existing services. In this way, the new composite services can

also be treated as services directly accessible to the adversary and the algorithm continues

until the fixed-point is reached, i.e., no new service can be generated. We use the most

general unifier to unify the input and the output.

Definition 3.2. Most General Unifier. If σ is a substitution for both messages m1 and m2

so that σm1 = σm2, we say m1 and m2 are unifiable and σ is an unifier for m1 and m2. If

m1 and m2 are unifiable, the most general unifier for m1 and m2 is an unifier σ such that

for all unifiers σ′ of m1 and m2 there exists a substitution σ′′ such that σ′ = σ′′σ.

Since the adversary in our framework has the capability to generate new names and

new timestamps, when a service input is a variable or a timestamp that is unrelated to

other events in a service, the adversary should be able to generate a random event and use

it to fulfill that input. In this way, that input can be removed in the composite service.

Hence, we define service composition as follows. For simplicity, we define a singleton as

a event of the form 〈x, t〉 where x is a variable or a timestamp.

Definition 3.3. Service Composition. Let S = [G] H −[B]→ e and S ′ = [G′] H ′ −[
B′]→ e′ be two services. Assume there exists e0 ∈ H ′ such that e and e0 are unifiable,

44

their most general unifier is σ and σB∩σB′ 6= ∅∧σG∩σG′ 6= ∅. The service composition

of S with S ′ on a event e0 is defined as

S ◦e0 S′ = clear(σ([G ∩G′] H ∪ (H ′ − {e0}))) −[sim(σB ∩ σB′)]→ σe′

where the function clear merges duplicated events from the inputs and removes any sin-

gleton 〈x, t〉 where x does not appear in other events of the rule, and the function sim

removes timestamps that are no longer used in the composite service.

When new composite services are added into the service basis, redundancies should

be eliminated from the service basis. As the timing constraints can be viewed as a set of

clock valuations which satisfy the constraints, they thus can be naturally applied with set

operations, e.g., B ⊆ B′, B ∩B′, etc.

Definition 3.4. Service Implication. Let S = [G] H −[B]→ e and S ′ = [G′] H ′ −[
B′]→ e′ be two services. S implies S ′ denoted as S ⇒ S ′ if and only if ∃σ, σe = e′∧G′ ⇒
σG ∧ σH ⊆ H ′ ∧B′ ⊆ σB.

When services are composed in an unlimited way, infinitely many composite services

could be generated. For instance, composing the symmetric encryption service (3.1) to

itself on the event 〈m, k〉 leads to a new service encrypting the message twice, that is

〈m, t〉, 〈k1, t1〉, 〈k2, t2〉 −[. . .]→ 〈encs(encs(m, k1), k2), t′〉, which can be composed to

the encryption service again. In order to avoid these service compositions, we adopt a

similar strategy proposed in [29] such that the unified event in the service composition

should not be singletons. Moreover, the events in our system cannot be unified2, thus we

define V as a set of events that should not be unified, consisting of all events and singletons.

We denote β(α,Rinit) as the fixed-point, where Rinit is the initial service set and α

is a service approximation function adopted during the construction. In order to compute

β(α,Rinit), we first define Rv based on the following rules, where inputs(S) represents

the inputs of service S.

1. ∀S ∈ Rinit,∃S ′ ∈ Rv, S
′ ⇒ S;

2 init events only appear in the inputs and accept events only appear in the output.

45

2. ∀S, S ′ ∈ Rv, S 6⇒ S ′;

3. ∀S, S ′ ∈ Rv, if ∀ein ∈ inputs(S), ein ∈ V and ∃f 6∈ V, S ◦e S ′ is defined, ∃S ′′ ∈
Rv, S

′′ ⇒ α(S ◦e S ′).

The first rule means that every initial service is implied by a service in Rv. The second

rule means that no duplicated service exists in Rv. The third rule means that for any two

services in Rv, if the first service’s inputs are in V and their composition exists, their

approximated composition is also implied by a service in Rv. These three rules means Rv

is the minimal closure of the initial service set Rinit. Based on Rv, we have

β(α,Rinit) = {S | S ∈ Rv ∧ ∀ein ∈ inputs(S) : ein ∈ V}.

In the latter part of this section, α will be instantiated with no-approximation and over-

approximation.

For any service, it is derivable from a service basis R if and only if there is a derivation

tree that represents how the service is composed.

Definition 3.5. Derivation Tree. Let R be a set of closed services and S be a closed

service, where a closed service is a service with its output initiated by its inputs. Let S be

a service in the form of [G] e1, . . . , en −[B]→ e. S can be derived from R if and only if

there exists a finite derivation tree defined as

1. edges in the tree are labeled by events;

2. nodes are labeled by the services in R;

3. if a node labeled by S has incoming edges of es1, . . . , e
s
n, an outgoing edge of es, sat-

isfying the untimed conditionGs and the timed conditionBs, then S ⇒ [Gs] es1, . . . , e
s
n −[

Bs]→ es;

4. the outgoing edge of the root is the event e;

5. the incoming edges of the leaves are e1, . . . , en.

46

Additionally, (1) G is the intersection of all the untimed conditions in the derivation tree;

(2) if all the timing constraints in the derivation tree form B, then the timing constraints

for S is sim(B), where sim removes timestamps that are no longer used. We name this

tree as the derivation tree for S on R.

Guided Service Basis. When no approximation is used in the service basis construction,

the fixed-point is called guided service basis denoted as Rguided = β(αguided,Rinit) where,

for any service S, αguided(S) = S. In such a case, we prove that a service can be derived

from the guided service basis whenever it can also be derived from the initial service set,

and vice versa.

Theorem 3.6. For any service S in the form of [G] H −[B]→ e where ∀ein ∈ H : ein ∈
V, S is derivable from Rinit if and only if S is derivable from Rguided.

Before proving the above theorem, we prove a lemma first.

Lemma 3.7. If So ◦e S ′o is defined, St ⇒ So and S ′t ⇒ S ′o, then either there exists e′ such

that St ◦e′ S ′t is defined and St ◦e′ S ′t ⇒ So ◦e S ′o, or S ′t ⇒ So ◦e S ′o.

Proof. Let So = [Go] Ho −[Bo]→ eo, S ′o = [G′o] H ′o −[B′o]→ e′o, St = [Gt] Ht −[
Bt]→ et, S ′t = [G′t] H ′t −[B′t]→ e′t. There should exist a substitution σ such that

σet = eo, σHt ⊆ Ho, σe′t = e′o, σH
′
t ⊆ H ′o,Go ⇒ σGt,G′o ⇒ σG′t, σBt ⊇ Bo, σB′t ⊇ B′o.

Assume So ◦e S ′o = clear(σ′([Go ∧ G′o] Ho ∪ (H ′o − e))) −[sim(σ′Bo ∩ σ′B′o)]→ σ′e′o.

We discuss the two cases as follows.

First case. Suppose ∃e′ ∈ H ′t such that σe′ = e. Since So ◦e S ′o is defined. e and eo are

unifiable. Let σ′ be the most general unifier, σ′σe′ = σ′σet, then e′ and et are unifiable,

therefore St ◦e′ S ′t is defined. Let σt be the most general unifier, then ∃σ′t such that σ′σ =

σ′tσt. We have St ◦e′ S ′t = clear(σt(Ht ∪ (H ′t − e′))) −[sim(σtBt ∩ σtB′t)]→ σte
′
t. Since

σ′tσt(Ht∩(H ′t−e′)) = σ′σ(Ht∪(H ′t−e′)) ⊆ σ′(Ho∪(H ′o−e)), σ′tσte
′
t = σ′σe′t = σ′e′o and

σ′tsim(σtBt∩σtB′t) = sim(σ′tσtBt∩σ′tσtB′t) = sim(σ′σBt∩σ′σB′t) ⊇ sim(σ′Bo∩σ′B′o),

and σ′t(σtGt ∧ σtG′t) = σ′tσtGt ∧ σ′tσtG′t = σ′σGt ∩ σ′σG′t ⇐ σ′Go ∩ σ′G′o, we have

St ◦e′ S ′t ⇒ So ◦e S ′o.

47

...

n0

n

f 0

f

H

H 0

...

S0

S

FIGURE 3.2: Two Nodes in Derivation Tree

Second case. Since ∀e′ ∈ H ′t such that σe′ 6= e, we have σH ′t ⊆ H ′o − e. Thus

σ′σH ′t ⊆ σ′(Ho∪(H ′o−f)), σ′σB′t ⊇ σ′B′o ⊇ σ′Bo∩σ′B′o σ′σG′t ⇐ σ′G′o ⇐ σ′Go∩σ′G′o,
and σ′σe′t = σ′e′o. Therefore S ′t ⇒ So ◦e S ′o.

Based on Lemma 3.7, we prove Theorem 3.6 as follows.

Proof. (only if) Assume S is derivable from Rinit, then there exists a derivation tree Ti for

S on Rinit. Since a service S is removed from the basis only if it is implied by another

service S ′, we have ∀S ∈ Rinit,∃S ′ ∈ Rv, S
′ ⇒ S.

As a result, we should be able to replace all the labels of nodes in Ti with services in

Rv and get a new derivation tree Tv. Because some of the services are filtered out from

Rv to Rguided when their input events do not all belong to V, we further need to prove

that the nodes in Tv can be composed together until a derivation tree Tguided is formed so

that all the nodes in Tguided are labeled by services in Rguided. To continue our proof, we

assume that there exists two nodes n and n′ in Tv and they are linked by an edge e as

shown in Figure 3.2. We should have S, S ′ ∈ Rv such that S ⇒ [G] H −[B]→ e,

S ′ ⇒ [G′] H ′ −[B′]→ e′ and e ∈ H ′. If Se = [G ∩G′] (H −[B]→ e) ◦e (H ′ −[B′]→
e′) is defined, according to Lemma 3.7, we could replace the two nodes with only one

node in two different cases. In the first case, because Rv is the fixed-point of the service

composition, there should exist S ′′ ∈ Rv such that S ′′ ⇒ Se. In the second case, we can

remove the node n and link its incoming links directly to the n′, so that the new node n′

is still implied by S ′. We could continuously replace the nodes in the derivation tree until

no node can be further processed and we denote the new tree as Tguided. For every node in

48

Tguided, we prove the services labeled to the nodes are in Rguided as follows.

• For the leaves of the tree, their incoming edges are labeled by the events in V. So

the leaves are labeled by services in Rguided.

• For an inner node n′ of the tree with all its children’s service inputs in V. Because n′

cannot composed by its children, the inputs of the service labeled to n′ should also

be events in V. So the services labeled to all the inner nodes are in Rguided.

As a consequence, all the nodes in Tguided are labeled by services in Rguided, so S is deriv-

able from Rguided.

(if) For every service in Rv, it should be composed from existing services, which is in

turn composed from the initial service set. Thus all the services in Rv should be derivable

from Rinit. In the meanwhile, Rguided does not introduce extra services except for existing

services in Rv, so ∀S ∈ Rguided, S is derivable from Rinit.

Approximated Service Basis. New timestamps are often introduced in the service com-

position. When no longer used timestamps are removed from the composite service, the

timing constraints can be deemed as extended for unification. On the other hand, given

two services with the same inputs and output but they have different timing constraints,

they may be indifferent if all of the different constraints have exceeded a ceiling. For in-

stance, if the password has a fixed lifetime, its usefulness for the adversary remains the

same when the password has already expired. Since these services can be deemed as the

same, we remove their exceeded timing constraints to generalize their expressiveness. In

this work, heuristically, we assume that every service is very likely to be used by the ad-

versary for at least once in the attack trace and the timing constraints in the query also

play important role in the reachability checking, so we set the ceiling as 1 +
∑

max (B)

in which B comes from the initial service set and the query. For instance, in the WMF

protocol, the max (B) is 2 for both of the service (3.3) and (3.7), 0 for other initial ser-

vices, and 4 for the query, so we have the ceiling set as 9. We refer to the set of services

with the ceiling U as approximated service basis Rapprox = β(αUapprox,Rinit). The service

approximation function αUapprox is defined as follows.

49

Definition 3.8. Service approximation with ceiling U . Let S = [G] H −[B]→ e. We

define the service approximation with ceiling U as αUapprox(S) = [G] H −[B′]→ e. For

any two timestamps t, t′ in the service S, if d(B, t, t′) ≤ U , then d(B′, t, t′) = d(B, t, t′)

and c(B′, t, t′) = c(B, t, t′); else if d(B, t, t′) > U , then d(B′, t, t′) is∞ and c(B′, t, t′) is

<.

Since the timing constraints are enlarged after the approximation, false alarms may be

introduced into verification result. However, according to the experiment results shown in

Section 3.4, the false alarms could be prevented when the ceiling is properly configured.

when the ceiling is properly configured. On the other hand, whenever a timed protocol is

verified as correct under the approximation, it is guaranteed to be attack-free, which is the

same as ProVerif.

Theorem 3.9. Let U be the ceiling. For any service S in the form of [G] H −[B]→ e

where ∀ein ∈ H : ein ∈ V, if S is derivable from Rinit, S is also derivable from Rapprox.

Proof. The proof for this theorem is almost the same as the only if proof for Theo-

rem 3.6. Since service approximation only expands the timing constraints, given an initial

service set Rinit and a ceiling U , we should have that ∀S ∈ β(αguided,Rinit), ∃S ′ ∈
β(αUapprox,Rinit), S ′ ⇒ S. Because the only if for Theorem 3.6 is already proved, we

should also have that S is derivable from Rapprox whenever S is derivable from Rinit.

3.3.2 Query Searching

When the query is violated by a service in the service basis, we call it a contradiction to

the query. A service is a contradiction to the query if and only if its output event can be

unified to the query’s output, while it does not require all the predicate events in the query

or it has a larger timing range than the query constraints. Thus, the contradiction is defined

as follows.

Definition 3.10. Contradiction. A service S = [G] H −[B]→ e is a contradiction to the

query Q = e′ ←[B′]− H ′ if and only if G 6= false ∧ B 6= ∅, e and e′ are unifiable with

the most general unifier σ and ∀σ′, σ′σH ′ 6⊆ σH ∨ σB 6⊆ σ′σB′.

50

If we rewrite the query Q into a service of Sq = H ′ −[B′]→ e′, S is a contradiction

to Q if and only if e′ and e are unifiable with the most general unifier σ and we have

σSq 6⇒ σS. According to Definition 3.1, events in the query only contain variables and

timestamps that are different. Thus the accept event in Sq can be unified with any other

accept event. The contradiction checking could then be simplified to check whether S

outputs an accept event and satisfies Sq 6⇒ S. Given the service basis R, we thus search

the attacks as follows.

Rc = {S|S ∈ R, the output of S is an accept event ∧ Sq 6⇒ S}

Rc consists of the contradiction instances. We prove its partial correctness as follows.

Theorem 3.11. Partial Soundness. Assume R is Rguided. Let Q be a query of e′ ←[

B′]− H ′ and Sq = H ′ −[B′]→ e′. There exists S derivable from Rinit such that S is a

contradiction to Q if there exists S ′ ∈ R such that the output of S ′ is an accept event and

Sq 6⇒ S ′.

Proof. [R = Rguided] Since S ′ ∈ R of which the output is an accept event and Sq 6⇒ S ′,

according to the Definition 3.10, S ′ is a contradiction to the query Q. On the other hand,

according to Theorem 3.6, since S ′ ∈ R, S ′ is derivable from Rinit.

Theorem 3.12. Partial Completeness. Assume R is either Rguided or Rapprox. Let Q be a

query of e′ ←[B′]− H ′ and Sq = H ′ −[B′]→ e′. There exists S derivable from Rinit

such that S is a contradiction to Q only if there exists S ′ ∈ R such that the output of S ′ is

an accept event and Sq 6⇒ S ′.

Proof. [R = Rguided or Rapprox] If S derivable from Rinit is a contradiction to the Q,

according to Theorem 3.6 (Theorem 3.9 resp.), there is a derivation tree T with its nodes

labeled by services in Rguided (Rapprox resp.) for S. Suppose the root of T is labeled by

Sr ∈ Rguided (Sr ∈ Rapprox resp.), the output of Sr is an accept event, and the inputs of

Sr are events in V. Because nodes in the derivation tree cannot be connected by events,

the inputs corresponding to the edges connecting the children of root are singletons. If

Sq ⇒ Sr, Sr implies the node and all of the input events in Sr is also in S, we have

51

Sq ⇒ S, which conflicts the precondition Sq 6⇒ S. Thus Sq 6⇒ Sr. As Sr is in R such that

the output of Sr is an accept event, the theorem is then proved.

Partial Soundness for Approximated Service Basis under Restriction. The partial

soundness is not guaranteed for our verification algorithm when approximated service

basis is used. However, when the initial services are specified in some restricted form,

even though the approximated service basis is over-approximated, the partial soundness of

our query searching algorithm can be proved as well. One possible restriction is that for

any two timestamps t and t′ in every initial service with B, d(B′, t, t′) is required to be

no less than 0. If the ceiling is set to be larger than max (Bq) + 1 where Bq is the timing

constraints of the query, we prove the partial soundness of our verification algorithm as

follows. First, we prove that, under this restriction, for any service S in the approximated

service basis, we have a corresponding service S ′ in the guided service basis such that

S = αUapprox(S
′). Second, when the contradiction instance set Re is not empty for the

approximated service basis, we prove the existence of a corresponding attack instance in

the guided service basis. According to the Theorem 3.6, the attack found in the guided

service basis is guaranteed to be valid. So the protocol indeed has an attack and the partial

soundness for the approximated service basis under the restriction is then proved.

Lemma 3.13. Given an initial service set Rinit and a ceiling U . Every service in Rinit sat-

isfies the restriction that for any two timestamps t and t′ in the service with B, d(B′, t, t′)

is no less than 0. We have ∀S ∈ β(αUapprox,Rinit), ∃S ′ ∈ β(αguided,Rinit) such that

S = αUapprox(S
′).

Proof. First, we need to prove the equation αUapprox(α
U
approx(S)◦eαUapprox(S ′)) = αUapprox(S◦e

S ′) is hold when S and S ′ satisfy the restriction. Assume B is the timing constraint set for

S, and B′ for S ′, Ba for αUapprox(S), B′a for αUapprox(S)′ respectively. Given d = d(B, t, t′),

d′ = d(B′, t′, t′′), da = d(Ba, t, t
′) and d′a = d(B′a, t, t

′), we discuss different cases for d

and d′ as follows.

• If d > U ∧ d′ > U , we have da =∞∧ d′a =∞, so d+ d′ > U ∧ da + d′a > U .

52

• If d > U ∧ 0 ≤ d′ ≤ U , we have da =∞∧ d′a = d′, so d+ d′ > U ∧ da + d′a > U .

• If 0 ≤ d ≤ U ∧ d′ > U , we have da = d ∧ d′a =∞, so d+ d′ > U ∧ da + d′a > U .

• If 0 ≤ d ≤ U ∧ 0 ≤ d′ ≤ U , we have da = d ∧ d′a = d′, so d+ d′ = da + d′a.

Thus we have the timing constraints in αUapprox(α
U
approx(S) ◦e αUapprox(S ′)) are the same

as those in αUapprox(S ◦e S ′). Since the service approximation does not change the ser-

vices inputs and output, the equation is thus valid. Given an approximated service in

β(αUapprox,Rinit), there should exist a derivation tree labeled by services in Rinit and the

node is replaces by approximated services when two directly connected nodes are com-

posed, according to the proof of Theorem 3.6. By repeatedly using the above equation

during the node composition, we could delay the service approximation to a tree labeled

by services in β(αguided,Rinit). Because the service approximation does not modify the

service inputs and output, there should also be only one node in the tree. Hence we have

∀S ∈ β(αUapprox,Rinit), ∃S ′ ∈ β(αguided,Rinit) such that S = αUapprox(S
′).

Theorem 3.14. Partial Soundness under Restriction. Assume R is Rapprox. Every service

in Rinit satisfies the restriction that for any two timestamps t and t′ in the service with

B, d(B′, t, t′) is no less than 0. If the ceiling U is set to be larger than max (Bq) + 1

where Bq is the timing constraints of the query, R = β(αUapprox,Rinit). Let Q be a query of

e′ ←[B′]− H ′ and Sq = H ′ −[B′]→ e′. There exists S derivable from Rinit such that S

is a contradiction to Q if there exists S ′ ∈ R such that the output of S ′ is an accept event

and Sq 6⇒ S ′.

Proof. [R = Rapprox] According to Lemma 3.13, there should exist a service Sg in

β(αguided,Rinit) such that S ′ = αUapprox(Sg). Since the ceiling U is set to be larger than

max (Bq)+1, we have Sq 6⇒ Sg as well. Because of Theorem 3.11, we have Sg is derivable

from Rinit such that Sg is a contradiction to Q. The theorem is thus proved.

Whether this restriction is applicable to the experiments evaluated is indicated in Sec-

tion 3.4.

53

Remarks. Given a protocol with a valid attack, there should exist a derivation tree for

that attack. Since we do not bound the number of events presented in a derivation tree (a

composite service), we effectively deal with an unbounded number of sessions. The reason

why our algorithm could work (i.e., terminate with correct result) is mainly because of two

reasons. First, different from the explicit attack searching, we do not actively instantiate

the variables in the services. So it becomes possible to represent the infinite adversary

behaviors with a finite number of services. Second, we made a reasonable assumption in

this work such that different nonces have different values. If the same nonce is generated

in two sessions, those two sessions should be the same. Thus we merge them during

the verification. As a consequence, even though we do not abstract the nonces used in

the protocol as ProVerif does, this assumption could help us to find inconsistency in the

service and remove the invalid ones from the service basis.

3.4 Evaluations

The flexibility and expressiveness of our service framework make it suitable for specifying

and verifying timed security protocols, for instance, timed authentication protocols and

distance bound protocols, etc. We have implemented our verifier TAuth in C++ with about

8K LoC. All the experiments shown in this section are conducted under Mac OS X 10.9.1

with 2.3 GHz Intel Core i5 and 16G 1333MHz DDR3. The TAuth verifier and the models

shown in this section are available in [2].

We summarize some implementation choices in TAuth below. First, the timing con-

straints in the service are represented by Difference Bound Matrices (DBMs) [28]. Since

timestamps are unified and new timestamps are introduced in the service composition, we

use unique identifiers to distinguish the timestamps generated in the system so that dif-

ferent timestamps have different identifiers among services. Second, events in a service

are merged when the encoded fresh nonces are evaluated to a same value. The reason

is that the value of nonces generated in the session should be random, so different fresh

nonces should have different values. For instance, if the session key k is initiated in the

init event, init(A[], R1, [k]) and init(I, R2, [k]) should be merged and the substitution

{A[]/I,R1/R2} should be applied to the service. If such events cannot be merged, the

54

Protocol
Rguided Rapprox

]R Result Time]R Result Restriction Time
Wide Mouthed Frog [35] 26 Attack [84] 3ms 26 Attack SAT 4ms
Wide Mouthed Frog c [54] 19 Secure 3ms 19 Secure SAT 3ms
Wide Mouthed Frog Lowe [84] - - - 32 Secure SAT 8ms
CCITT X.509(1) [40] 35 Attack [6] 4ms 35 Attack SAT 3ms
CCITT X.509(1c) [6] 45 Secure 7ms 45 Secure SAT 7ms
CCITT X.509(3) [40] 111 Attack [35] 52ms 111 Attack SAT 51ms
CCITT X.509(3) BAN [35] 106 Secure 74ms 106 Secure SAT 70ms
NS PK [94] 50 Attack [82] 6ms 50 Attack SAT 6ms
NS PK Lowe [82] 51 Secure 8ms 51 Secure SAT 9ms
NS PK Lowe Na Compromise [55] 51 Secure 8ms 51 Secure SAT 8ms
NS PK Lowe Nb Compromise [55] 42 Attack [55] 3ms 42 Attack SAT 3ms
NS PK Lowe NC Time [55] 48 Secure 10ms 48 Secure UNSAT 10ms
SKEME [72] 77 Secure 73m 77 Secure SAT 74ms
Auth Range [33, 38] 17 Secure 2ms 17 Secure UNSAT 1ms
Ultrasound Dist Bound [103] 35 Attack [105] 2ms 35 Attack UNSAT 2ms

Table 3.2: Verification results for timed authentication protocols

service is invalid. Third, we check the query contradiction on the fly when new services

are composed. Whenever we find a contradiction, we stop the verification process and

report the security flaw. This optimization can potentially give the early termination to the

verification process when the protocol has security flaws.

Several different types of security protocols are analyzed in our experiments. In the

experiments, all the protocols are proved or dis-proved in a short time as summarized in

Table 3.2. For some protocols, the restriction mentioned in the Section 3.3.2 is applicable,

so that the attack is guaranteed to be correct whenever it can be found, which is indicated

in the table. Notice that, even though some protocols do not satisfy the restriction, all the

attacks found in the experiments are valid. First, untimed protocols such as Needham-

Schroeder series and SKEME are analyzed with TAuth. We use these protocols to show

that TAuth can work with untimed protocols. Additionally, timed protocols like CCITT

series are also checked by TAuth. However, the attacks found in these protocols are un-

timed. Furthermore, timed authentication protocols like the WMF series and the NS PK

Lowe NC Time are correctly analyzed as well. We use these protocols to demonstrate

that our approach can work with timed protocols and find timed attacks. Specifically, in

the NS PK Lowe Nb Compromise version, the nonces generated by the responder in the

protocol could be compromised [55], so the adversary could perform attacks to the proto-

55

Protocol Result TAuth ProVerif Scyther
NS PK Attack 6ms 6ms 200ms
NS PK Lowe Secure 8ms 5ms 177ms
NS PK Lowe Na Compromise Secure 8ms 5ms 170ms
NS PK Lowe Nb Compromise Attack 3ms 5ms 31ms

Table 3.3: Comparison with other untimed protocol verifiers.

col. Denning and Sacco [55] proposed a way to fix these security flaws by checking the

timestamps. In the NS PK Lowe NC Time version, we assume that extra time is needed

for the nonce compromise, so that freshness checking for the messages could ensure the

authentication is attack-free. Notice that the service approximation only works for WMF

Lowe version [84] in our experiment, that is a version of WMF fixed by Gavin Lowe, be-

cause it is the only protocol that cannot be early terminated by the on-the-fly algorithm (it

is attack-free) and its timing constraints involve infinite expansion.

Moreover, we successfully analyze two distance bounding protocols, that are Auth

Range [33, 38] and Ultrasound Dist Bound [103]. In the Auth Range protocol, the prover

wants to convince the verifier that he is within a pre-agreed distance with the verifier. For

instance, in a keyless entry system frequently adopted by cars, the prover is the remote

key and verifier is the car. In the Auth Range protocol, it is assumed that the prover is

honest and nothing can travel faster than light, so they could securely use the travel time

of radio signals to measure the distance. In the Ultrasound Dist Bound protocol which has

the same application scenario as the Auth Range protocol, the verifier uses radio signals

to send requests while the prover uses ultrasound to return the answers. Since ultrasound

travels much slower than radio and other processing time is negligible, the travel time

of ultrasound dominates the whole protocol execution time. However, this protocol does

not require the prover to be honest, so the prover can send his answer by either radio or

ultrasound to others. When the adversary has a cooperator near the verifier, he can send

the answer to the cooperator by radio and ask the cooperator to forward the answer by

ultrasound to the verifier. As a consequence, the verifier can be convinced that the prover

is within the distance even though the prover is not.

Finally, we compare our tool TAuth with other successful untimed protocol verifiers,

56

i.e., ProVerif [29] and Scyther [48]. The Needham Schroeder public key authentication

protocols except for its timed variant are chosen for the comparison as timestamps are ab-

sent in these protocols. The comparison results are summarized in the Table 3.3. It can be

seen that TAuth is almost as fast as ProVerif. TAuth is slightly slower mainly due to over-

head on handling timing constraints. Thanks to the on-the-fly algorithm, TAuth is faster

than ProVerif in finding the attack for the Lowe Nb Compromise version. Furthermore,

TAuth is much faster than Scyther. Notice that Scyther could only verify the Lowe version

and Lowe Na Compromise version with a bounded number of sessions while TAuth proves

for infinitely many sessions.

3.5 Discussions

We present a service framework which can automatically verify the timed authentication

protocols with an unbounded number of sessions. The partial correctness of our approach

have been formally proved in this work. The experiment results for four different types of

scenarios show that our framework is efficient and effective to verify a large range of timed

security protocols. Even though we only check timed authentication properties for security

protocols in this work, our framework could be easily extended to secrecy checking with

timing constraints.

For future works, a throughout study on the termination of the algorithm would be very

interesting. Since the problem of verifying security protocols is undecidable in general, we

cannot guarantee the termination of our algorithm, but identifying the terminable scenario

for practical security protocol could help the general adoption of our techniques. Our

approach is inspired by the method used in ProVerif [29]. As is discussed in Section 3.3,

TAuth is as terminable as ProVerif when the service approximation is used. However, the

over-approximation also introduces false alarms. In order to remove the false alarms, as

is discussed in Section 3.3, we can apply some restriction to the specification so that the

found attacks are guaranteed to be valid. However, the restriction mentioned previously

is quite restrictive because network latency, brute force attack, etc. cannot be specified

under that restriction. Hence, how to restrict the specification in a practical way is another

interesting future work direction.

57

Chapter 4

Parameterized Timed Security Protocol Verification

Quantitative timing is often explicitly used in systems for better security, e.g., the cre-

dentials for automatic website logon often has limited lifetime. Verifying timing relevant

security protocols in these systems is very challenging as timing adds another dimension

of complexity compared with the untimed protocol verification. In Chapter 3, we proposed

an approach to check the correctness of the timed authentication in security protocols with

fixed timing constraints. However, a more difficult question persists, i.e., given a par-

ticular protocol design, whether the protocol has security flaws in its design or it can be

configured secure with proper parameter values? In this chapter, we answer this question

by proposing a parameterized verification framework, where the quantitative parameters

in the protocols can be intuitively specified as well as automatically analyzed. Given a

security protocol, our verification algorithm either produces the secure constraints of the

parameters, or constructs an attack that works for any parameter values. The correctness

of our algorithm is formally proved. We implement our method into a tool called PTAuth

and evaluate it with several security protocols. Using PTAuth, we have successfully found

a timing attack in Kerberos V which is unreported before.

58

4.1 Introduction

Time could be a powerful tool in designing security protocols. For instance, distance

bounding protocols rely heavily on time; session keys with limited lifetime are extensively

used in practice to achieve better security. However, designing timed security protocols is

more challenging than designing untimed ones because timing adds a range of attacking

surface, e.g., the adversary might be able to extend the session key without proper autho-

rization. Hence, it is important to have a formal verification framework to analyze the

timed security protocols. In our work [77] illustrated in Chapter 3, we developed a verifi-

cation algorithm to analyze whether a given protocol with fixed timing constraints is secure

or not. In this work, we answer a more difficult question, i.e., given a security protocol

with configurable parameters in the timing constraints, are there configuration methods

which could guarantee security and what are they? Having an approach to answer the

question is useful in a number of ways. Firstly, it can analyze, at once, all instances of

the security protocols with different parameter values. Secondly, it allows the protocol

designer to gain precise knowledge on the secure configuration of the parameters so as to

choose the best values (e.g., in terms of minimizing the protocol execution time).

In general, parameterized timing constraints are necessary in various scenarios. First

of all, they can be used to capture the general design of the protocols. For instance, since

the lifetime of credentials are often related to the runtime information like network la-

tency, it is best to keep them parameterized so that we can systematically find out their

secure relations. Furthermore, parameterized timing constraints are necessary to model

the properties of some special cryptographic primitives. For example, weak cryptographic

functions, which are breakable by consuming extra time, may be used in the sensor net-

works for higher computing performance and lower power consumption. Since breaking

different weak functions requires different attack time, in order to guarantee the correct-

ness of the protocols in these sensor networks, we need to parameterize the attack time and

59

compute the secure configuration accordingly. Moreover, agencies often give suggestions

on key crypto-period for cryptographic key management [22], so parameterized timing

constraints can be used to model long term protocols.

Nevertheless, this is a highly non-trivial task. The challenges for designing timed

protocol and providing proper parameter configuration are illustrated as follows. First,

in the setting of timed authentication over the Internet, given the network is completely

exposed to the adversary, we need to formally prove that the critical information cannot

be leaked and the protocol works as intended under arbitrary attacking behaviors from

the network. Second, timestamps are continuous values extracted from clocks to ensure

the validity of messages and credentials. Analyzing the continuous timing constraints

adds another dimension of complexity. Third, a protocol design might contain multiple

timing parameters, e.g., the network latency and the session key lifetime, which could

affect security of the system. Manually reasoning the least constrained and yet correct

configuration for the parameters in complex protocols is extremely hard and error-prone.

As a consequence, automatic analysis technique is needed for proving the correctness of

the protocol and computing the parameter configurations.

Contributions. Our contributions in this work are summarized as follows. (1) We propose

timed logic rules to specify parameterized timed protocols in Section 4.3 by extending our

previous work [77] with parameterized timing constraint, secrecy query, etc. Additionally,

we propose timed applied π-calculus to model the timed protocols in Section 4.4 and de-

fine its semantics based on the timed logic rules in Section 4.5. We thus facilitate intuitive

specification method for timed security protocols with timing parameters. (2) Based on the

timed logic rules, security protocols can be verified efficiently for an unbounded number

of protocol sessions in our framework as shown in Section 4.6. Generally, in this work,

we specify the adversary’s capabilities in the security protocols as a set of Horn logic rules

with parameterized timing constraints. Then, we compose these rules repeatedly until a

60

fixed-point is reached, so that we can check the desired security properties against them

and compute the largest parameter configurations. The parameter configuration is repre-

sented by succinct constraints of the parameters. When the protocol could be secure with

the right parameter values, our approach outputs a set of constraints on the parameters

that are necessary for security. Otherwise, an attack is generated, which would work for

any parameter configuration. We formally prove the correctness of our algorithm. (3) We

implement our method as a tool named PTAuth. In order to handle the parameters in the

timing constraints, we utilize the Parma Polyhedra Library (PPL) [17] in our tool to rep-

resent the relations between timestamps and parameters. We evaluate our approach with

several security protocols in Section 4.7. During the experiment, we found a timing attack

in the official document of Kerberos V [95] that has never been reported before.

4.2 Running Example: Wide Mouthed Frog

We use the same Wide Mouthed Frog (WMF) [35] protocol shown in Chapter 3 as a

running example to illustrate how our approach works. WMF is designed for exchanging

timely fresh session keys, ensuring that the key is generated by the protocol initiator within

a short time when the protocol responder accepts it.

Syntax Hierarchy. Before describing the WMF protocol, we first introduce the syntax to

represent the messages as shown in Table 4.1. Messages could be defined as functions,

names, nonces, variables or timestamps. Functions can be applied to a sequence of mes-

sages; names are globally shared constants; nonces are freshly generated random values

in sessions; variables are memory spaces for holding messages; and timestamps are clock

readings extracted during the protocol execution. In addition, we introduce parameters to

parameterize the timing constraints. The constraint function C(X) applies succinct con-

straints to X, where X is a set of timestamps and parameters. Each succinct constraint can

be written in a general form of l(t1 , . . . , tn , §p1, . . . , §pm) ∼ 0, where ∼∈ {<,≤} and

61

Type Expression
Message(m) f(m1,m2, ...,mn) (function)

a[] (name)
[n] (nonce)
v (variable)
t (timestamp)

Parameter(p) §p (parameter)
Constraint(B) C(t1, t2, . . . , tn (timing relation)

, §p1, §p2, . . . , §pm)
Configuration(L) C(§p1, §p2, . . . , §pm) (parameter config)
Event (e) init(?[d],m, t) (initialization)

join(?m, ?t) (participation)
accept(?[d],m, t) (acceptance)
know(?m, t) (knowledge)
new(?[n], loc[],m) (generation)
unique(?u, ?loc[],m) (uniqueness)
leak(?m) (leakage)

Rule(R) [G] e1, . . . , en −[B]→ e (rule)

Table 4.1: Syntax Hierarchy Structure

l is a linear function. In the following, the symmetric encryption function is denoted as

encs(m, k), wherem is the plaintext and k is the encryption key. Furthermore, all the mes-

sages transmitted in WMF is encrypted by the shared key represented as sk(u), which is

only known between the user u and the server. For simplicity, the concatenation function

tuplen(m1,m2, . . . ,mn) is written as 〈m1,m2, . . . ,mn〉.

Events are constructed by attaching predicates to the message sequences. In our frame-

work, we have seven different predicates:

• init([d],m, t) means that a session with id [d] has been initiated using the arguments

in m at time t.

• other participants can engage join(m, t) to show their participation in the protocol

using the arguments in m at time t.

• similarly, the responder engages accept([d],m, t) to indicate the protocol acceptance

62

under the arguments of m at time t in a session with id [d];

• the knowledge event know(m, t) means that the adversary knows the message m at

the time t ;

• the nonce generation event new([n], loc[],m) stands for the generation of nonce [n]

at the location loc[] where m records a message tuple that can be identified by the

nonce [n];

• the uniqueness event unique(u, loc[],m) means that the message u is a unique value

appeared at the location loc[], wherem records a message tuple that can be identified

by 〈u, loc[]〉;

• the event leak(m) is introduced to check the leakage of the secret message m that

violates the secrecy property, as shown in the example later.

Comparing with the nonce generation event where the nonce [n] should always be unique

regardless of the location, the uniqueness checking of u is location dependent. For the

same location, only one unique event can have u; while for two different locations, two

different unique events can be claimed for the same u.

Generally, the timed logic rules represent the capabilities of the adversary, written

as [G] e1, e2, . . . , en −[B]→ e, where G is a set of untimed guards, {e1, e2, . . . , en}

is a set of premise events, B is a set of timing constraints and e is a conclusion event.

It means that if the untimed guard condition G, the premise events {e1, e2, . . . , en} and

the timing constraints B can be satisfied, the conclusion event is ready to occur. For

simplicity, when G is empty, we omit the untimed guard condition in the rule. Notice

some arguments of every event shown in Table 4.1 are marked with a special symbol ?.

For every event, the ? marked arguments forms the key of the event. When the events in

the same rule have an identical key, they should be merged. For instance, given two know

63

events know(m1, t1) and know(m2, t2) in a rule’s premises, if m1 = m2, we merge them

by applying a substitution {t2 7→ t1} to the whole rule.

Wide Mouthed Frog. The WMF protocol is a key exchange protocol consisting of three

participants, i.e., the initiator Alice, the responder Bob and the server. It has the following

steps.

(1) Alice engages : new([k], alice gen[], 〈A[], B[], tA〉)
, init([k], 〈A[], B[], [k]〉, tA)

Alice → Server : 〈A[], encs(〈tA, B[], [k]〉, sk(A[]))〉
(2) Server checks : tS − tA ≤ §pa

Server engages : join(〈A[], B[], [k]〉, tS)
Server → Bob : encs(〈tS , A[], [k]〉, sk(B[]))

(3) Bob checks : tB − tS ≤ §pa
Bob engages : new([b], bob gen[], 〈A[], B[], [k], tS , tB〉)

, accept([b], 〈A[], B[], [k]〉, tB)

First, Alice generates a fresh key [k] at time tA with the new event and engages an initA

event to initiate the key exchange protocol with Bob. Second, Alice sends the fresh key

with the current time tA and Bob’s name to the server. Third, after receiving the request

from Alice, the server checks the freshness of the timestamp tA and accepts Alice’s request

by engaging an initS event. Fourth, the server sends a new message to Bob, informing him

that the server receives a request from Alice at time tS to communicate with him using the

key [k]. Fifth, Bob checks the timestamp and accepts the request from Alice if it is timely.

The transmitted messages are encrypted under the users’ shared keys.

Parameters. Whether or not WMF works relies on two crucial time parameters. The first

parameter is the real network latency §pd of the network, and the second one is the message

delay §pa allowed in the message freshness checking. §pd is initially configured as §pd > 0

because the network latency should be positive. However, the exact value of §pd depends

on the network itself and thus cannot be fixed in the protocol design. Parameter §pa on the

other hand might be related to §pd’s value, which should be answered by the verification.

That is to say, the values of the parameters are better modeled as unknown parameters

64

and we must be able to analyze the protocol without the concrete values of them. By

introducing these two parameters, we want to make sure that the WMF protocol exchanges

the secret session key successfully, and the correspondence between the request from Alice

and the acceptance from Bob is timely. Hence, ideally a tool would automatically show us

the secure configuration of §pd and §pa. Because WMF has two message transmissions,

we need to check whether tB − tA ≤ 2 ∗ §pa is always satisfied.

4.3 Specifying Protocols using Timed Logic Rules

In this section, we introduce how to model the parameterized timed security protocols.

Generally, protocols as well as their underlying cryptography foundation are represented

by a set of Horn logic rule variants [29] as shown in Table 4.1. They, denoted as Rinit ,

represent the capabilities of the adversary in the protocol.

Adversary Model. We assume that an active attacker exists in the network, extending

from the Dolev-Yao model [56]. The attacker can intercept all communications, compute

new messages, generate new nonces and send any message he obtained. For computation,

he can use all the publicly available functions, e.g., encryption, decryption, concatenation.

He can also ask the genuine protocol participants to take part in the protocol based on

his needs. Comparing our attack model with the Dolev-Yao model, attacking the weak

cryptographic functions and compromising legitimate protocol participant are allowed by

consuming extra time, as shown later in this section.

Rule Construction. Based on the adversary model described above, the interactions avail-

able to the adversary in the protocol can be represented by Horn logic rule variants guarded

by timed checking conditions. Generally, every rule consists of a set of untimed guard

conditions, several premise events, some timing constraints and one conclusion event as

shown in Table 4.1. When the guard conditions, the premise events and the timing con-

straints in a rule are fulfilled, its conclusion event becomes available to the adversary. We

65

remove the brackets if the rule has no guard condition. For instance, since the symmetric

encryption and decryption functions are publicly available in WMF, these capabilities of

the adversary can be represented by the following two rules.

know(m, t1), know(k, t2) −[t1 , t2 ≤ t]→ know(encs(m, k), t) (4.1)

know(encs(m, k), t1), know(k, t2) −[t1 , t2 ≤ t]→ know(m, t) (4.2)

The rule (4.1) means that given a message m and a key k, the adversary can compute its

encryption encs(m, k), and the encryption can only be known after the message and the

key are obtained. Similarly, the rule (4.2) shows the decryption capability of the adversary.

Furthermore, the adversary can register new accounts at the server, except for the ex-

isting ones of Alice and Bob. So, we have the following rule.

[c 6= A[] ∧ c 6= B[]] know(c, t1) −[t1 ≤ t]→ know(sk(c), t) (4.3)

For rules related to the protocol itself, they can be extracted from the protocol read-

ily. For instance, the adversary can actively ask Alice to initiate the first step of the

WMF protocol, so the messages in the second step can be intercepted from the network,

which is shown by the rule (4.4). As Alice can initiate this protocol with any user at any

time based on the adversary’s needs, the constant B[] is replaced with a variable R and

know(〈R, tA〉, t) is added to the premises of the rule, comparing with protocol description

in Section 4.2.

know(R,t), new([k], alice gen[], 〈A[], R, tA〉), initA([k], 〈A[], R, [k]〉, tA)

−[t ≤ tA]→ know(〈A[], encs(〈tA, R, [k]〉, sk(A[]))〉, tA) (4.4)

Similarly, based on the server’s behavior in the second step of WMF, we can construct

the rule (4.5) shown below. Since the server provides its service to all of its users, Alice

and Bob’s names are replaced by variables. The network latency and the message delay

are captured by the parameterized constraints.

know(〈I, encs(〈tI , R, k〉, sk(I))〉, t), join(〈I, R, k〉, tS)

−[tS − t ≥ §pd ∧ tS − tI ≤ §pa]→ know(encs(〈tS , I, k〉, sk(R)), tS) (4.5)

66

Finally, Bob accepts the protocol when he receives the message from the server, indi-

cating that the initiator is Alice and the request is fresh.

know(encs(〈tS , A[], k〉, sk(B[])), t), new([b], bob gen[], 〈A[], B[], k, tS , tB〉)

−[tB − t ≥ §pd ∧ tB − tS ≤ §pa]→ accept([b], 〈A[], B[], k〉, tB) (4.6)

Additional Attack Rule. In addition to the attacker capabilities in the Dolev-Yao model,

the attacker can compromise cryptographic primitives and legitimate protocol participants.

For instance, we can model the brute-force attack on a weak encryption function. Given

the name of the encryption function as Crypto and the least time of cracking Crypto as

§d, the attacking behavior can be modeled by the following rule.

know(Crypto(m, k), t1) −[t− t1 > §d]→ know(m, t)

Additionally, for some ciphers, key compromise can be conducted under certain condi-

tions. For example, for RC4 used by WEP, when a large number of ciphertexts are trans-

mitted in the network, the encryption key can be compromised, which could be measured

with time. Given an application scenario where such attack is possible and the attacking

time has a lower bound §d, we can model it as follows.

know(RC4 (m, k), t1)〉 −[t− t1 > §d]→ know(k, t)

Authentication Query. Similar to our previous work [77], verifying the timely authenti-

cation is allowed in our framework. The timely authentication not only asks for the proper

correspondence between the init and accept events but also requires the satisfaction of the

timing constraints, formalized as follows. Extended from our previous work [78], given

a timed security protocol, the timed non-injective authentication is satisfied if and only if

for every acceptance of the protocol responder, the protocol initiator indeed initiates the

protocol and the protocol partners indeed join in the protocol, agreeing on the protocol

arguments and timing requirements. We formally define the non-injective timed authenti-

cation as follows.

67

Definition 4.1. Non-injective Timed Authentication. In a timed protocol, non-injective

timed authentication

Qn = accept ←[B]− init , join1, . . . , joinn

holds if and only if for every occurrence of the event accept , all of the corresponding

events {init , join1, . . . , joinn} are engaged before, and their timestamps should always

satisfy the timing constraints B. In order to ensure the general timed authentication, the

arguments encoded in the query events should only be variables and timestamps.

The injective timed authentication additionally requires an injective correspondence

between the protocol initialization and acceptance in addition to satisfaction of the non-

injective timed authentication. Hence, the injective timed authentication, which ensures

the infeasibility of the replay attack, is strictly stronger than the non-injective one.

Definition 4.2. Injective Timed Authentication. The injective timed authentication, de-

noted as

Qi = accept ←[B]→ init , join1 , . . . , joinn ,

is satisfied by a timed protocol, if and only if (1) the non-injective timed authentication

Qn = accept ←[B]− init , join1 , . . . , joinn ,

is satisfied and (2) for any init event of Qi occurred in the protocol, at most one accept

event with an unique id can occur, agreeing on the arguments in the events and the timing

constraints in B.

For simplicity, given a non-injective query Qn = accept ←[B]− H and its injective

version Qi = accept ←[B]→ H , we have inj (Qn) = Qi and non inj (Qi) = Qn.

Similarly, given these two respective query sets Qn and Qi, we have inj (Qn) = Qi and

non inj (Qi) = Qn.

In WMF, the authentication should be accepted by the responder R only if the request

is made by the initiator I within 2 ∗ §pa. Thus, we have the following non-injective au-

thentication query

QWMF
n = accept([b], 〈I, R, k〉, kR)←[kR − kS ≤ §pa, kS − kI ≤ §pa]−

init([k], 〈I, R, k〉, tI), join(〈I, R, k〉, tS) (4.7)

68

and the corresponding injective authentication query inj (QWMF
n).

Secrecy Query. In this work, we extend the verification algorithm developed in our pre-

vious work [77] with secrecy checking that can be relevant to timing. Secrecy checking

is introduced with additional rules that lead to the leak events, representing the leakage of

the secret information.

Definition 4.3. Secrecy. In a security protocol, secrecy holds for a message m if the

event leak(m) is unreachable when “new 1, new 2, . . . , newn, know(m, t) −[]→ leak(m)”

is added to Rinit , where new 1, new 2, . . . , newn are the nonce generation events for all of

nonces in m. Notice that different nonce generation events should have different locations

so that they can be correctly identified in the protocol.

For instance, according to the WMF protocol, a secret session key [k] is sent over the

network. In order to check the secrecy property of [k], we add the following rule to Rinit

and then check the reachability of the leak event.

new([k], alice gen[], 〈A[], B[], tA〉), know([k], t) −[]→ leak([k]) (4.8)

It means that if the session key [k] generated by Alice for Bob can be known to the adver-

sary, the secrecy property of the session key is invalid in WMF.

4.4 Specifying Protocols using Timed Applied π-calculus

In order to model the timed security protocols naturally, a high-level specification lan-

guage should be provided. Hence, we develop timed applied π-calculus to specify timed

security protocols, which extends the applied π-calculus [5] with time related operations

and measurements. We use the Wide Mouthed Frog protocol [35] as a running example to

demonstrate our modeling method.

Comparing with the syntax of the applied π-calculus, generating, checking and using

timestamps are allowed in the timed applied π-calculus. The syntax of the timed applied π-

calculus is shown in Table 4.2, which consists of five expression categories, i.e., messages,

parameters, timing constraints, parameter configurations and processes.

69

Type Expression
Message(m) f(m1,m2, ...,mn) (function)

A,B,C (name)
n (nonce)
x, y, z (variable)
t (timestamp)

Parameter(p) p (parameter)
Constraint(B) C(t1, t2, . . . , tn, p1, p2, . . . , pm) (timing constraint)
Configuration(L) C(p1, p2, . . . , pm) (parameter relation)
Process(P,Q) 0 (null process)

P |Q (parallel)
!P (replication)
νn.P (nonce generation)
µt.P (clock reading)
if m1 = m2 then P [else Q] (untimed condition)
if B then P [else Q] (timed condition)
wait until µt : B then P (timing delay)
let m = f(. . .) then P [else Q] (function application)
c(m).P (channel input)
c(m).P (channel output)
check m as unique.P (replay checking)
init(m)@t.P (initialization claim)
join(m)@t.P (participation claim)
accept(m)@t.P (acceptance claim)
secrecy(m).P (secrecy claim)

Table 4.2: Syntax of Timed Applied π-calculus

Generally, messages represent the data transmitted during the process execution. They

can be hierarchal constructed by functions, names, nonces, variables and timestamps.

Functions can be applied to a sequence of messages; names are globally shared constants;

nonces are freshly generated random values in the processes; variables are memory spaces

for holding messages; and timestamps are clock readings extracted during the process ex-

ecution. Additionally, parameters stands for the timing settings that are generally agreed

or globally exist in the protocol. By comparing them with the timestamps in the protocol,

we can regulate the protocol execution trace.

Functions are defined as f(m1,m2, . . . ,mn)⇒ m@D, where f is the function name,

m1,m2, . . . ,mn are the input messages, m is the output message and D is the consumable

timing range. For simplicity, we add some syntactic sugar as follows. (1) When D =

70

[0,∞) which is the largest timing range of functions, we omit ‘@ D’ in the function

definition. (2) When m is exactly the same as f(m1,m2, . . . ,mn), we similarly omit ‘⇒
m’ for short. For instance, the symmetric encryption function encs is originally defined

as encs(m, k) ⇒ encs(m, k) @ [0,∞). It means that a symmetric encryption encs(m, k)

can be generated from a message m and a key k using the function encs with no negative

time. After the simplification, we can write its definition as encs(m, k). Similarly, the

symmetric decryption function decs can be defined as decs(encs(m, k), k) ⇒ m with the

same meaning of m and k. For illustration purpose, some frequently used functions are

defined in Table 4.3.

The constraint set B = C(t1, t2, . . . , tn, p1, p2, . . . , pm) represents a set of linear con-

straints over the timestamps and parameters, which can be used as checking condition and

timing assumption in the protocol. For instance, given a parameter pa as the maximum

lifetime of messages in the protocol, the message receiver may check the message fresh-

ness with a timing constraint t′ − t ≤ pa, when the message, generated by the sender at t,

is received at t′. Meanwhile, given another parameter pd as the minimum network delay,

we may have t′ − t ≥ pd as a general constraint on the message transmission. Another

constraint set L = C(p1, p2, . . . , pm) stands for the global linear relations over the timing

parameters. For example, the parameter relation pd ≤ pa should be generally satisfied

because no message can be delivered otherwise. Before the verification, L will be con-

figured to an initial relation. Later during the verification, whenever an attack is found, L

will be updated with new constraints so as to remove the attack and preserve the security

properties.

As shown in Table 4.2, processes are defined as follows. ‘0’ is a null process that

does nothing. ‘P |Q’ is a parallel composition of processes P and Q. The replication ‘!P ’

stands for an infinite parallel composition of process P , which captures an unbounded

number of protocol sessions running in parallel. The name restriction ‘νn.P ’ represents

that a fresh nonce n is generated and bound to the process P . The time restriction ‘µt.P ’

similarly means that a timestamp t is read from the user’s clock and bound to the process

71

Scheme Definition
Symmetric encs(m, k) (encryption)
Encryption decs(encs(m, k), k)⇒ m (decryption)
Asymmetric pk(skey) (generate public key)
Encryption enca(m, pkey) (encryption)

deca(encs(m, pk(skey)), skey)⇒ m (decryption)
Signature sign(m, skey) (generate signature)

check(sign(m, skey), pk(skey))⇒ true (check signature)
Hash hash(m) (generate hash value)
Tuple tuplen(m1, . . . ,mn) (generate tuple)

∀i ∈ {1 . . . n} : (extract tuple)
geti(tuplen(m1 , . . . ,mn))⇒ mi

Table 4.3: Cryptographic Function Definitions

P . The checking condition c in the expression ‘if c then P [else Q]’1 has two forms:

(1) the untimed condition m1 = m2 is a symbolic equivalence checking between two

messages; (2) the timed condition C(t1, t2, . . . , tn, p1, p2, . . . , pm) is a numeric constraint

over timestamps and parameters. When the condition c is valid, the process P is executed;

otherwise, Q is executed. The timing delay expression ‘wait until µt : B then P ’ means

that P is executed until the current clock reading satisfies the timing condition B. The

function application expression ‘let m = f(m1, . . . ,mn) then P else Q’ means if the

function f is applicable to a sequence of messages m1, . . . ,mn, its result is bound to the

message m in the process P ; otherwise, the process Q is executed. The channel input

expression ‘c(m).P ’ means that a message, bound to the name m, is received from the

channel c before executing P . The channel output expression ‘c(m).P ’ describes that

the message m is sent to the channel c before executing the process P . The uniqueness

checking expression ‘check m as unique .P ’ ensures that the value of m has never been

used before, comparing with other replications of this process. The uniqueness checking

is particularly useful to prevent replay attacks in practice.

Additionally, four events are introduced in the process calculus to specify the security

claims that can be made in the protocol.

• The protocol participant can engage a secrecy(m) event to indicate that the message

1 The expression in the brackets ‘[E]’ means that E can be omitted.

72

m should be kept as a secret to the adversary.

• Right before the initiator finishes its role in starting the protocol, which is usually

indicated by sending the last message, he emits an event init(m)@t, which means

that a session has been initiated using the arguments in m at time t.

• When the responder finishes the protocol successfully, he engages an event accept(m)@t

to indicate the protocol acceptance under the arguments in m at time t.

• When other participants join the protocol run, they can engage an event join(m)@t

to show their participation in the protocol using the arguments in m at time t.

Overall, we use the secrecy event to declare the secrecy property and use the init , join

and accept events to check the authentication properties claimed by the protocol. As these

events are closely related to the security properties, we explain them with the property

definitions.

Notations. Several widely accepted notations for cryptographic protocol analysis are used

in this chapter as follows. A variable m is bound to a process P when m is constructed

by the function application expression ‘let m = f(m1, . . .) then P else Q’ or the channel

input expression ‘c(m).P ’ as shown in Table 4.2. When a variable m appears in a process

P while it is not bound to P , it is a free variable in P . A process is closed when it does

not have any free variable. σ = {x1 7→ m1, . . . , xn 7→ mn} stands for the substitution that

replaces the variables x1, . . . , xn with the messages m1, . . . ,mn respectively. Given two

messages m and m′, when there exists a substitution σ such that σm = m′, we say that m

can be unified to m′, denoted as m m′; when no such substitution exists, we say that

m cannot be unified to m′, denoted as m 6 m′. Given two messages m1 and m2, if there

exists a substitution σ such that σe1 = σe2, we say e1 and e2 are unifiable and σ is an unifier

for e1 and e2. If e1 and e2 are unifiable, the most general unifier for e1 and e2 is an unifier

σ such that for all unifiers σ′ of e1 and e2 there exists a substitution σ′′ such that σ′ = σ′′σ.

The most general unifier for e1 and e2 is denoted as mgu(m1,m2). For simplicity, the

concatenation function tuplen(m1,m2, . . . ,mn) is written as 〈m1,m2, . . . ,mn〉 (or simply

73

m1,m2, . . . ,mn when no ambiguity is introduced). Given a tuple x = 〈x1, . . . , xi〉 and a

message y, their concatenation can be written as x · y = 〈x1, . . . , xi, y〉.
In the following, we again use the Wide Mouthed Frog (WMF) [35] protocol as an

example to illustrate our specification language. For review purpose, WMF is designed to

establish a timely fresh session key k from an initiator A to a responderB through a server

S. In WMF, whenever a message is received, the receiver checks the message freshness

before accepting it. To make a flexible specification, we thus use a parameter to represent

the maximum message lifetime as pa, ensuring that the message is received within pa. Ad-

ditionally, we consider another parameter pd, which stands for the minimal network delay,

during the verification. Since pd is a timing parameter related to the network environment,

it is not directly used in the protocol execution. Instead, it is a default and compulsory de-

lay that applies to all of the network transmissions, so we add this delay to every channel

inputs. In addition, we assume that the network latency is always positive, which makes

the initial parameter configuration as L0 = {pd > 0}. Notice that a positive network delay

is not compulsory in the protocol specification. However, setting the minimal network

latency as pd ≥ 0 sometimes introduces a misleading result: the protocol can be verified

as correct when pd strictly equals to 0. Since the network latency pd cannot be ensured as

0 in practice, the security protocol is thus proved as insecure instead. Because this final

step of manual deduction is undesirable, we can remove it by simply requiring a positive

network latency in the first place.

The Wide Mouthed Frog Protocol. The WMF protocol is a key exchange protocol that

involves three participants, e.g., an initiator Alice, a responder Bob and a server S. Alice

and Bob register their usernames as A and B at the server respectively. The generated key

of a user u are written as key(u). WMF then can be informally described as the following

three steps.

74

(1) A generates a random session key k
A→ S : 〈A, encs(〈ta, B, k〉, key(A))〉

(2) S receives the request from A at ts
S checks : ts − ta ≤ pa
S → B : encs(〈ts, A, k〉, key(B))

(3) B receives the message from S at tb
B checks : tb − ts ≤ pa
B accepts the session key k

First, A generates a fresh key k at time ta and initiates the WMF protocol with B by

sending the message 〈A, encs(〈ta, B, k〉, key(A))〉 to the server. Second, after receiving

the request from A, the server checks the freshness of the timestamp ta and accepts her

request by forwarding a new message encs(〈ts, A, k〉, key(B)) to B, informing him that

the server receives a request from A at time ts to communicate with him using the key k.

Third, B checks the message from the server as well and accepts the request from A if it

is timely. All of the transmitted messages are encrypted under the users’ long-term keys

pre-registered at the server.

In order to verify WMF in a hostile environment, we assume that (1) the adversary can

decide the protocol responder for A, (2) S provides its session key exchange service to all

of its registered users and (3) the adversary can register as any user at the server, except

for A and B. In WMF, because we are only interested in the protocol acceptance between

the legitimate users, we ask B to only accept the requests from A. Additionally, a public

channel c controlled by the adversary is used in this protocol for network communications.

Before the protocol starts, all of its participants need to register a secret long-term key

at the server. We assume that A and B have already registered at the server using their

names. Hence, the server can generate new keys for any other users (possibly personated

by the adversary), which can be shown as the process Pr below.

Pr = c(u).if u 6= A ∧ u 6= B then c(key(u)).0

In WMF, A takes a role of the initiator as specified by Pa below. She first starts the

protocol by receiving an responder’s name r from c, assuming that r is provided by the

adversary. Then, A generates a session key k and claims k should be unknown to the

adversary. Meanwhile, A emits an init event, saying that A initializes the WMF proto-

75

col at time ta, using the protocol arguments ma. Notice that ma is not clearly specified

here, because we have not formally introduced the authentication property yet. The vari-

able ma is instantiated later in this section according to different types of authentication

properties. Finally, the message 〈A, encs(〈ta, r, k〉, sk(A))〉 is sent from A to S. Since the

initialization time ta, the responder’s namer r and the session key k are encrypted with A’s

long-term key, which is only known to A and the server, the adversary cannot obtain them

directly.

Pa = c(r).νk.secrecy(k).µta.init(ma)@ta

.c(〈A, encs(〈ta, r, k〉, sk(A))〉).0

As specified by the process Ps, after the server receives a user’s request y, it records the

current time as ts. It gets the initiator’s name i from the unencrypted part of the request

and use the key key(i) to decrypt the encrypted part of the request. If the decryption

function applies successfully, it stores the initialization time, the responder’s name and the

session key into ti, r and k respectively. When the freshness checking ts − ti ≤ pa is

passed, the server then believes its participation in the current protocol run and engage a

join event at time ts. Similar to ma in the init event, we specify the argument ms with the

authentication properties. Later, a new message encrypted by the responder’s key, written

as encs(〈ts, i, k〉, key(r)), is sent to the responder over the public channel.

Ps = c(y).µts.let i = get1 (y) then

let x = get2 (y) then let m = decs(x , key(i)) then

let ti = get1 (m) then let r = get2 (m) then

let k = get3 (m) then if ts − ti ≤ pa then

join(ms)@ts.c(encs(〈ts, i, k〉, key(r))).0

Additionally, as shown in the process Pb, whenB receives the request from the initiator

through the server, B records his current time as tb and tries to decrypt request as a tuple

of the server’s processing time ts, the initiator’s id i and the session key k. If i = A and

the freshness checking tb − ts ≤ pa is valid, B then believes that the request is sent from

76

A within 2 ∗ pa (as the message freshness checking stacks) and engages the accept event

at time tb.

Pb = c(x).µtb.let m = decs(x , sk(B)) then

let ts = get1 (m) then let i = get2 (m) then

let k = get3 (m) then if i = A then

if tb − ts ≤ pa then accept(mb)@tb.0

Finally, we have a process Pp that broadcasts all of the public available names, e.g.,

Alice and Bob’s names.

Pp = c(A).c(B).0

The overall process P is an infinite parallel composition of the five processes described

above.

P = (!Pr)|(!Pa)|(!Ps)|(!Pb)|(!Pp)

In this work, we discuss two types of security properties, i.e., authentication and se-

crecy. In order to clearly illustrate them, we introduce the formal adversary model adopted

in this work first.

Adversary Model. We assume that an active attacker exists in the network, whose ca-

pability is defined based on and extended from the Dolev-Yao model [56]. The attacker

can intercept all communications, compute new messages, generate new nonces and send

any message he obtained. For computation, he can use all the publicly available functions,

e.g., encryption, decryption, concatenation. He can also ask the genuine protocol partici-

pants to take part in the protocol based on his needs. Comparing our attack model with the

Dolev-Yao model, attacking weak cryptographic functions and compromising legitimate

protocol participants are allowed additionally. Notice that the adversary cannot emit the

accept , init and secrecy events, because they can be only engaged by legitimate protocol

users for checking properties. A formal definition of the adversary model in timed applied

π-calculus is as follows.

77

Definition 4.4. Adversary Process. The adversary process is defined as a closed timed

applied π-calculus process S which does not emit the init , join accept and secrecy events.

Meanwhile, S can use all of the public functions.

Timed Authentication. Typically, in the protocol, we have an initiator who starts the

protocol and a responder who accepts the protocol. For instance, in WMF, Alice is the

initiator and Bob is the responder. Additionally, other entities, who are called partners,

can be involved during the protocol execution, such as the server in WMF. Given all of

the protocol participants, the protocol authentication generally aims at establishing some

common knowledge among them when the protocol successfully ends.

Since different participants take different roles in the protocol, we introduce the fol-

lowing three events for the initiator, the responder and the partners respectively. In these

events, the argument m stands for the arguments used in the current protocol session.

• The protocol initiator emits init event when he has initialized the protocol.

• The protocol responder emits accept event when he has finished the protocol.

• The protocol partner emits join event when his has participated in the protocol.

When any event is engaged, it means that the corresponding protocol participant believes

his participation in a protocol run. Hence, the above events should be engaged immediately

after the protocol participants successfully process all of the received messages according

to their roles, as his knowledge of the protocol execution state cannot be increased after

this point.

Based on the init , join and accept events, the protocol authentication then can be for-

mally specified as the event correspondence. Extending from [77, 78], we discuss the non-

injective and injective timed authentication properties in this work. Additionally, when

different arguments are checked in event correspondence, they can be further categorized

into agreement or synchronization properties.

Extended from our previous work [78], given a timed security protocol, the timed

non-injective authentication is satisfied if and only if for every acceptance of the protocol

responder, the protocol initiator indeed initiates the protocol and the protocol partners

78

indeed join in the protocol, agreeing on the protocol arguments and timing requirements.

We formally define the non-injective timed authentication as follows.

Definition 4.5. Non-injective Timed Authentication. The non-injective timed authentica-

tion, denoted as

Qn = accept ←[B]− init , join1 , . . . , joinn ,

is satisfied by a closed process P , if and only if for any adversary process S, for every

occurrence of an accept event in P |S, the corresponding init events and join events in

Qn have occurred before in P |S, agreeing on the arguments in these events and the timing

constraints in B.

The injective timed authentication additionally requires an injective correspondence

between the protocol initialization and acceptance in addition to satisfaction of the non-

injective timed authentication. Hence, the injective timed authentication, which ensures

the infeasibility of the replay attack, is strictly stronger than the non-injective one.

Definition 4.6. Injective Timed Authentication. The injective timed authentication, de-

noted as

Qi = accept ←[B]→ init , join1 , . . . , joinn ,

is satisfied by a closed process P , if and only if (1) the non-injective timed authentication

Qn = accept ←[B]− init , join1 , . . . , joinn ,

is satisfied by P and (2) for any adversary process S, corresponding to one init event ofQi

occurred in P |S, at most one accept event can occur in P |S, agreeing on the arguments

in the events and the timing constraints in B.

(1) Timed Agreement Properties. When the message m encoded in the authentication

events stands for the common knowledge established by the protocol among the par-

ticipants, we call these timed authentication properties as timed agreement properties.

The non-injective and injective timed agreement properties generally ensure the common

knowledge establishment among the protocol participants under the timing restrictions.

79

Example 4.7. In WMF, when B accepts the protocol, the common knowledge established

among A, S and B should be the initiator’s name, the responder’s name and the session

key. Hence, we specify the message m is different processes of WMF as follows.

ma = 〈A, r, k〉 in Pa

ms = 〈i, r, k〉 in Ps

mb = 〈i, B, k〉 in Pb

The non-injective timed agreement then should be written as

Qna = accept(〈i, r, k〉)@ti

←[ts−ti ≤ §pa ∧ tr − ts ≤ §pa]−

init(〈i, r, k〉)@ts, join(〈i, r, k〉)@tr (4.9)

where the responder accepts at time tr, the server joins at time ts and the initiator initial-

izes at time ti. Similarly, we have the injective timed agreement Qia = inj (Qna).

(2) Timed Synchronization Properties. However, the above timed agreement properties do

not necessarily guarantee the faithful message exchanges between protocol participants,

so the messages received by the receiver may not be the same message sent by the sender

in the protocol. Based on the synchronization defined in [52], when the message m en-

coded in the authentication events reflects the network input and output correspondence,

we name these timed authentication properties after timed synchronization properties. The

synchronization properties generally ensure that the messages exchanged in the protocol

are untampered, so the message received by the receiver is the message sent from the

sender for every network transmission.

Example 4.8. In WMF, we first specify the arguments of the authentication events as fol-

lows to reflect the network communications.

ma = 〈r, 〈A, encs(〈ta, r, k〉, sk(A))〉〉 in Pa

ms = 〈y, encs(〈ts, i, k〉, key(r))〉 in Ps

mb = 〈x〉 in Pb

80

Then, we specify the input and output correspondence in the non-injective timed synchro-

nization property, written as follows.

Qns = accept(〈s2b〉)@ti

←[ts−ti ≤ §pa ∧ tr − ts ≤ §pa]−

init(〈r, a2s〉)@ts, join(〈a2s, s2b〉)@tr

where the responder accepts at time tr, the server joins at time ts and the initiator initial-

izes at time ti. Notice that ‘a2s’ is the message sent from A to S and ‘s2b’ is the message

sent from S to B. Similarly, we have the injective timed synchronization Qis = inj (Qns).

Secrecy. When a protocol participant believes that a message m cannot be known to the

adversary, he emits the event secrecy(m) to claim for its secrecy.

Definition 4.9. Secrecy Property. The secrecy property, denoted as Qs = secrecy(m) is

satisfied by a closed process P , if and only if for any adversary process S, the message

cannot be sent to the public channel c in P |S.

4.5 Timed Applied π-calculus Semantics

The high-level timed applied π-calculus must facilitate efficient verification, e.g., with a

concise and compact low-level semantics. We thus propose its semantics based on the

Horn logic rules illustrated in Section 4.3. In this way, the timed security protocol thus

can be naturally specified as well as efficiently verified. In this section, we define the

semantics of the timed applied π-calculus illustrated previously based on the timed logic

rules introduced in Section 4.2.

(1) Semantics of Functions. Since functions can be generally defined (before simplifica-

tion) as

f(m1,m2, . . . ,mn) = m@D,

their semantic rules can be accordingly written as

know(m1, t1), know(m2, t2), . . . , know(mn, tn)

−[∀i ∈ {1 . . . n} : t − ti ∈ D ∧ t ′ ≥ t]→ know(m, t ′).

81

(2) Semantics of Processes. For processes, defining the semantics is more complex be-

cause we need to keep track of various protocol execution contexts. Thus, we introduce

several semantic states. Generally, the semantically equivalent timed logic rules of a pro-

cess P , can be denoted as bP cTNUMGHBσX .

• T is a set of timestamps that are generated before executing P . We use it to order

the timing of different behaviors. For instance, when a message is sent at time t in

P , ∀t′ ∈ T : t′ ≤ t should be satisfied.

• N is a set of nonces generated before P . They can identify the current process until

it terminates or sub-processes are forked.

• U is a set of value and location pairs that records the uniqueness checking happened

before P . Whenever the uniqueness of u is checked at the location l, the pair 〈u, l〉
will be added to U .

• M is a tuple of messages that is determined by the current process’s id. M consists

of the process inputs, the generated timestamps and nonces. Their order in M fol-

lows the operation order in the process. The process outputs are not included in M

because they can be determined by M as the process is deterministic.

• G is a set of untimed guard conditions that leads to the current process location.

Given two messages m and m′, two types of untimed guard conditions can be added

to G, i.e., m 6= m′ and m 6 m′.

• B is a set of timing conditions that leads to the current process location, consisting

of linear constraints over timestamps and parameters.

• σ is a naming substitution set that is applicable to P .

• X is a pair set of semi-completed timed logic rules and substitutions. Specifically,

these rules do not have the new events for nonces in N and the unique events for

unique pairs in U , which can identify the current process. This is because the current

process has not been finished yet. So we record the substitutions when the logic

82

rules are generated, and generate the completed rules when the process terminates

or forks.

Given an initial process P0, the Horn logic rules thus can be represented as bP0c∅∅∅〈〉∅∅∅∅∅.
In order to simplify the presentation of the translation, given a ruleR = [G]H −[B]→ e,

we write R +p H
′ = [G] H ∪H ′ −[B]→ e.

First, we discuss three types of expressions that either terminate the current process

or fork sub-processes, so that the nonces in N and the unique pairs in U cannot identify

the current process after the expression. They are the null process ‘0’, the process parallel

‘P |Q’ and the process replication ‘!P ’. Given the null process in b0cTNUMGHBσX ,

the behavior tuple M of the current process is finally complete, so we can add the new

events and the unique events into the rules in X . The parallel composition process ‘P |Q’

can be considered as three processes: P andQ are executed without being identified by the

nonces inN and the pairs inU , and the current process terminates with the session ids from

N . The infinite process replication ‘!P ’ can be similarly described as an infinite process

parallel P | . . . |P . Upon constructing the new event for a nonce [n] in N , we introduce a

function loc([n]) to provide an unique name depending on the generation location of [n].

In practice, the function loc can be implemented as {l = l + 1; return l; } where l is a

global variable initialized as 0.

Given H ′ = {new([n],loc([n]),M) | [n] ∈ N ∧M 6= 〈〉}

∪ {update(u, l [],M) | 〈u, l []〉 ∈ U ∧M 6= 〈〉}

b0cTNUMGHBσX = {σ′(R +p H
′) | 〈R, σ′〉 ∈ X}

bP |QcTNUMGHBσX = b0cTNUMGHBσX

∪ bP cT (∅)(∅)MG(H ∪H ′)Bσ(∅)

∪ bQcT (∅)(∅)MG(H ∪H ′)Bσ(∅)

b!P cTNUMGHBσX = b0cTNUMGHBσX

∪ bP cT (∅)(∅)MG(H ∪H ′)Bσ(∅)

Second, for the nonce and timestamp generation expressions, we add the nonces and

83

the timestamps into the nonce set N and the timestamp set T respectively. Furthermore,

for the timestamp generation, we also add timing constraints to describe that the newly

generated timestamp is larger or equal to the previously generated ones.

bνn.P cTNUMGHBσX

= bP cT (N ∪ {[n]})U(M · [n])GHBσX

bµt.P cTNUMGHBσX

= bP c(T ∪ {t})NU(M · t)GH(B ∩ {t ′ ≤ t | t ′ ∈ T})σX

Third, four conditional expressions exist in timed applied π-calculus. The inequiva-

lence condition between messages should be included in G, while the timing constraints

should be added toB. The timing delay expression requires that the current timing satisfies

some timing constraint.

bif m1 = m2 then P else QcTNUMGHBσX

= bP cTNUMGHB(mgu(m,m′) · σ)X ∪ bP cTNUM(G ∧m1 6= m2)HBσX

bif B0 then P else QcTNUMGHBσX

= bP cTNUMGH(B ∩B0)σX ∪ (∪{bQcTNUMGH(B ∩ ¬c)σX | ∀c ∈ B0})

bwait until µt : Bt then P cTNUMGHBσX

= bP c(T ∪ {t})NU(M · t)GH(B ∩ {t ′ ≤ t | t ′ ∈ T} ∩Bt)σX

Given function f defined as f(m′1, . . . ,m
′
n)⇒ m′@D

and σ′ = mgu(〈m1, . . . ,mn〉, 〈m′1, . . . ,m′n〉), we have

blet m = f(m1, . . . ,mn) then P else QcTNUMGHBσX

= bµt1.wait until µt2 : t2 − t1 ∈ D then P cTNUMGHB({m 7→ m′} · σ′ · σ)X

∪ bQcTNUM(G ∧ 〈m′1, . . . ,m′n〉 6 〈m1, . . . ,mn〉)HBσX

Fourth, network communications can happen in the timed applied π-calculus. For

network input, we record the timing when it is received and add a premise event as a

requirement to know that message. For every network output, we store an incomplete

84

rules with the current substitution into X , considering that the output can be sent to the

network and known to the adversary as a result when all the premise events, untimed

guards and timing constraints are satisfied.

Given t as a new timestamp, we have

bc(m).P cTNUMGHBσX

= bP c(T ∪ {t})NU(M ·m)G(H ∪ {know(m, t)})(B ∪ {t ′ ≤ t | t ′ ∈ T})σX

bc(m).P cTNUMGHBσX

= bP cTNUMGHBσ(X ∪ {〈[G] H −[B ∩ {t − t ′ ≥ §pd | t ′ ∈ T}]→ know(m, t), σ〉})

Fifth, we can check the uniqueness of values in the process, which could be particularly

useful to prevent replay attacks, ensuring the injective timed authentication. In practice,

the uniqueness checking is usually implemented by maintaining a database and comparing

the new values with the existing ones. Notice that we reuse the function loc(m) to calculate

the checking location.

bcheck m as unique.P cTNUMGHBσX

= bP cTN(U · 〈m, loc(m)〉)MGHBσX

Sixth, three types of authentication events can be engaged in the process. The join

event is similar to the join expression in the calculus. However, for the init and accept

events, although their meanings are preserved in the timed logic rules, in order to check

the injective authentication property, we add an additional argument to them to represent

the session id. In fact, any nonce generated in the current session that is stored in N can

be used as the session id. When N is an empty set, we active generate a nonce before en-

gaging these two events. Both of the init and join events are added into the rule premises,

85

while the accept event acts as the rule conclusion.

binit(m)@t.P cTNUMGHBσX

= if @[d] ∈ N then bνn.init(m)@t.P cTNUMGHBσX

else bP cTNUMG(H ∪ {init([d],m, t)})(B ∪ {t ≥ t ′|∀t ′ ∈ T})σX

bjoin(m)@t.P cTNUMGHBσX

= bP cTNUMG(H ∪ {join(m, t)})(B ∩ {t ≥ t ′|∀t ′ ∈ T})σX

baccept(m)@t.P cTNUMGHBσX

= if @[d] ∈ N then bνn.accept(m)@t.P cTNUMGHBσX

else bP cTNUMGHBσ(X ∪ {〈[G] H −[(B ∩ {t ≥ t ′|∀t ′ ∈ T})]→ accept([d],m, t), σ〉})

Seventh, the last expression in the timed applied π-calculus is the secrecy claim. How-

ever, the secrecy property is checked as an absence of information leakage as shown in

Section 4.6, so we use the event leak(m) as an contradiction event against secrecy(m).

bsecrecy(m).P cTNUMGHBσX

= bP cTNUMGHBσ(X ∪ {〈[G] H ∪ {know(m, t)} −[B]→ leak(m), σ〉})

4.6 Verification Algorithm

Given a rule R = [G] H −[B]→ e, a set of rules R and a parameter configuration L, we

use α(R,L) = [G]H −[B∩L]→ e and α(R, L) = {α(R)|R ∈ R} to represent the rules

under the configuration L. Since the initial rules Rinit can be extracted from the protocol

as shown in Section 4.3, the satisfaction of an authentication query Q then depends on

whether the adversary can actively guide the protocol to reach the accept event based on

α(Rinit , L) without engaging the corresponding init events in Q or satisfying the timing

constraints. Similarly, the verification of the secrecy query needs to check that the leak

event is unreachable based on α(Rinit , L). In this section, we focus on computing the

largest parameter configuration that ensures the correctness of the desired authentication

and secrecy properties.

86

Given any parameter configuration L, in order to determine whether a query Q is sat-

isfied by α(Rinit , L), we can adapt the verification algorithm in [77]. However, there

might be infinitely many possible parameter configurations. Thus, in this work, we de-

velop an approach to handle the parameters symbolically. Specifically, the verification

is divided into two sequential phases: the rule basis construction phase and the query

searching phase. In the rule base construction phase, we generate new rules by composing

two rules (through unifying the conclusion of the first rule and the premise of the second

rule). Our verification algorithm uses this method repeatedly to generate new rules until a

fixed-point is reached. This fixed-point is called the rule basis if it exists. Subsequently,

in the query searching phase, the query is checked against the rule basis to find counter

examples. Generally, we need to check the event correspondence as well as the parame-

terized timing constraints, the verification either proves the correctness of the protocol by

providing the secure configuration of the parameters (represented as succinct constraints),

or reports attacks because no parameter configuration can be found. Since the verifica-

tion for security protocol is generally undecidable [41], our algorithm cannot guarantee

termination. However, as shown in Section 4.7, our algorithm can terminate on most of

the evaluated security protocols. Additionally, limiting the number of protocol sessions is

allowed in our framework which would guarantee the termination of our algorithm.

Rule Basis Construction. Before constructing the rule basis, we need to review some

basic concepts introduced in Chapter 3 first:

• If σ is a substitution for both events e1 and e2 such that σe1 = σe2, we say e1 and

e2 are unifiable and σ is an unifier for e1 and e2. If e1 and e2 are unifiable, the most

general unifier for e1 and e2 is an unifier σ such that for all unifiers σ′ of e1 and e2

there exists a substitution σ′′ such that σ′ = σ′′σ.

• Given two rules R = [G] H −[B]→ e and R′ = [G′] H ′ −[B′]→ e′, if e and

e0 ∈ H ′ can be unified with the most general unifier σ such that σG ∧ σG′ can be

valid, their composition is denoted as R ◦e0 R′ = σ([G ∧G′] H ∪ (H ′ − {e0})) −[
σ(B ∩B′)]→ σe′.

87

• Additionally, given the above two rules R and R′, we define R implies R′ denoted

as R⇒ R′ when ∃σ, σe = e′ ∧G′ ⇒ σG ∧ σH ⊆ H ′ ∧B′ ⊆ σB.

We construct the rule basis β(Rinit) based on the initial rules Rinit. Firstly, we de-

fine Rv as follows, representing the minimal closure of the initial rules Rinit. (1) ∀R ∈
Rinit,∃R′ ∈ Rv, R

′ ⇒ R, which means that every initial rule is implied by a rule in

Rv. (2) ∀R,R′ ∈ Rv, R 6⇒ R′, which means that no duplicated rule exists in Rv. (3)

∀R,R′ ∈ Rv and R = [G] H −[B]→ e, if ∀e′ ∈ H, e′ ∈ V and ∃e0 6∈ V, S ◦e0 S ′ is

defined, then ∃S ′′ ∈ Rv, S
′′ ⇒ R ◦e0 R′, where V is a set of events that can be provided by

the adversary. In this work, V consists of the init events, the join events, the new events,

the unique events and the know(x, t) event where x is a variable or a timestamp. The third

rule means that for any two rules in Rv, if all premises of one rule are trivially satisfiable

and their composition exists, their composition is implied by a rule in Rv. Based on Rv,

we can calculate the rule basis as follows.

β(Rinit) = {R | R = [G] H −[B]→ e ∈ Rv ∧ ∀e′ ∈ H : e′ ∈ V}

Theorem 4.10 means that the rules in α(Rinit, L) is equivalent to those in α(β(Rinit), L).

Since the premises of the rules in α(β(Rinit), L) are trivially satisfiable according to the

function β, the attack searching based on α(β(Rinit), L) would be much easier.

Theorem 4.10. For any rule R in the form of [G] H −[B]→ e where ∀e′ ∈ H : e′ ∈ V,

R is derivable from α(Rinit, L) if and only if R is derivable from α(β(Rinit), L).

Proof. Given a derivation tree T of R, we define Γ(T, L) as a derivation tree where every

node’s label R′ is replaced with α(R′, L). According to Theorem 3.6, R = [G] H −[
B]→ e is derivable from Rinit if and only if R is derivable from β(Rinit). It means that

we can construct a derivation tree T of R based on Rinit if and only if we can construct a

derivation tree T ′ of R based on β(Rinit). After applying the configuration L to all of the

labels of T , we have the following two conditions.

• If B ∩ L 6= ∅, Γ(T, L) becomes a derivation tree of α(R,L) based on α(Rinit, L),

and Γ(T ′, L) becomes a derivation tree of α(R,L) based on α(β(Rinit), L).

88

• If B ∩ L = ∅, α(R,L) becomes invalid, so both of Γ(T, L) and Γ(T ′, L) do not

exist.

Hence, α(R,L) is derivable from α(Rinit, L) if and only if α(R,L) is derivable from

α(β(Rinit), L). The theorem is then proved.

Query Searching. A rule is a contradiction rule to the non-injective authentication query

if and only if its conclusion event is an accept event, while it does not require all the init

and join events as premises or it has looser timing constraints comparing with those in the

query. Otherwise, it is an obedience rule to the non-injective agreement query.

Definition 4.11. Non-injective Authentication Contradiction and Obedience. A ruleR =

[G] H −[B]→ e is a contradiction to the non-injective authentication query Qn =

accept ←[B′]− H ′ denoted as Qn 0 R if and only if G 6= false ∧ B 6= ∅, e and accept

are unifiable with the most general unifier σ such that ∀e′ ∈ H, e′ ∈ V and ∀σ′, (σ′σH ′ 6⊆
σH) ∨ (σB 6⊆ σ′σB′). On the other hand, it is an obedience to Qn denoted as Qn ` R if

and only if G 6= false ∧B 6= ∅, e and accept are unifiable with the most general unifier σ

such that ∀e′ ∈ H, e′ ∈ V and ∃σ′, (σ′σH ′ ⊆ σH) ∧ (σB ⊆ σ′σB′).

Furthermore, the injective authentication query is violated if and only if (1) there exists

a contradiction to the non-injective version of the query, or (2) given two obedience rules

to the non-injective version of the query, when the corresponding init events have identical

session ids, the accept events in these two rules are not necessarily the same.

Definition 4.12. Injective Authentication Contradiction. Given a pair of (not necessarily

different) rules R and R′ , it is a contradiction to the injective authentication query Qi =

accept ←[B′]→ init , J ′ denoted asQi 0 〈R,R′〉 if and only if (1)R andR′ are obedience

rules to non inj (Qi); (2) when the corresponding init events in R and R′ have the same

session id, the accept events of R and R′ do not necessarily have the same session id.

Finally, a rule is a contradiction to the secrecy query when the leak event is reachable.

89

Algorithm 1 Parameter Configuration Computation
1: Input: β(Rinit) - the rule basis
2: Input: L0 - the initial configuration
3: Input: Qn - the non-injective authentication queries
4: Input: Qi - the injective authentication queries
5: Input: Qi - the secrecy queries
6: Output: L - a set of parameter configurations
7: L = {L0};
8: for Q ∈ Qn∪Qs∪non inj (Qi), L ∈ L, R = [G] H −[B]→ e ∈ α(β(Rinit), L) do
9: if Q 0 R then

10: L = L− {L};
11: for L′ : B ∩ L′ = ∅ ∨Q ` α(R,L′) do
12: L = L ∪ {L ∩ L′};
13: end for
14: end if
15: end for
16: for Q ∈ Qi, L ∈ L, R = [G] H −[B]→ e and R′ = [G′] H ′ −[B′]→ e′ ∈

α(β(Rinit), L) do
17: if non inj (Q) ` R ∧ non inj (Q) ` R′ ∧Q 0 〈R,R′〉 then
18: L = L− {L};
19: for L′ : B ∩ L′ = ∅ ∨B′ ∩ L′ = ∅ do
20: L = L ∪ {L ∩ L′};
21: end for
22: end if
23: end for
24: for L ∈ L, Q ∈ Qn ∪ non inj (Qi) do
25: if @R ∈ α(β(Rinit), L), Q ` R then
26: L = L− {L};
27: end if
28: end for
29: return L;

Definition 4.13. Secrecy Contradiction. A rule R = [G] H −[B]→ e is a contradiction

to the secrecy query denoted as Qs 0 R if and only if G 6= false ∧ B 6= ∅, e = leak(m)

and ∀e′ ∈ H : e′ ∈ V.

During the verification, our goal is to ensure that (1) no contradiction exists for all

queries while (2) at least one obedience rule exists for every non-injective authentication

query. Hence, given the non-injective authentication queries Qn, the injective authenti-

cation queries Qi and the secrecy queries Qs, our goal is to compute the largest L that

90

satisfies the following conditions.

(1) ∀Q ∈ Qn ∪Qs ∪ non inj (Qi),

@R ∈ α(β(Rinit), L) : Q 0 R

(2) ∀Q ∈ Qi,@R,R′ ∈ α(β(Rinit), L),

non inj (Q) ` R,R′ : Q 0 〈R,R′〉

(3) ∀Q ∈ Qn ∪ non inj (Qi),

∃R ∈ α(β(Rinit), L) : Q ` R

Algorithm 1 illustrates the computing process of the largest L. From line 8 to line 15,

we compute the parameter configurations that remove the contradictions for Qn and Qs.

From line 16 to line 23, when we find a pair of rules that is a contradiction to an injective

authentication query, we remove one of them by updating the global configurations. From

line 24 to line 28, we ensure that every non-injective authentication query has at least one

obedience rule.

In order to prove the correctness of our algorithm, we need to show that for any con-

figuration L, a contradiction exists in α(β(Rinit), L) if and only if it exists in α(Rinit, L).

Theorem 4.14. Partial Correctness. Let Rinit be the initial rule set. When Q is a secrecy

query or a non-injective authentication query, there exists R derivable from α(Rinit, L)

such that Q 0 R if and only if there exists R′ ∈ α(β(Rinit), L) such that Q 0 R′. When

Q is an injective authentication query, there exists R1 and R2 derivable from α(Rinit, L)

such that Q 0 〈R1, R2〉 if and only if there exists R′1, R
′
2 ∈ α(β(Rinit), L) such that

Q 0 〈R′1, R′2〉.

Proof. Partial Soundness. Given any rule in α(β(Rinit), L), according to Theorem 4.10,

they are derivable from α(Rinit, L). Hence, any contradiction found in α(β(Rinit), L) is

a contradiction derivable from the initial rules α(Rinit, L). Partial Completeness. (1)

When Q is a secrecy query or a non-injective authentication query, suppose we have a

rule R derivable from α(Rinit, L) such that Q 0 R. According to Theorem 4.10, R is

also derivable from α(β(Rinit), L). So there exists a derivation tree of R whose nodes

91

are labeled by rules in α(β(Rinit), L). We prove that the rule Rt = [Gt] Ht −[Bt]→
et labeled on the tree’s root is also a contradiction as follows. Notice that R is a rule

composed by Rt with other rules, so Gt 6= false and B 6= ∅.

• If Q is a secrecy query, Rt has a leak event as conclusion because Q 0 R. Addition-

ally, since Rt ∈ α(β(Rinit), L), ∀e′t ∈ Ht, e
′
t ∈ V. Thus, Q 0 Rt.

• If Q = accept ←[Bq]− Hq is a non-injective authentication query, et should be an

accept event. So, Rt should satisfy either Q ` Rt or Q 0 Rt. If Q ` Rt, as all of

the arguments in accept are variables, there exists a substitution σ of et and accept

satisfying σaccept = et, and ∃σ′, (σ′σHq ⊆ σHt) ∧ (σBt ⊆ σ′σBq) Meanwhile,

incoming edges of the tree root cannot be init events and new events, so these events

should also persist in R0. Hence, Q ` R0. This violates our precondition that

Q 0 R0. We then have Q 0 Rt.

(2) WhenQ is an injective authentication query, suppose we have a rule pair 〈R,R′〉 deriv-

able from α(Rinit, L) such that Q 0 〈R,R′〉, in the following we prove that there exists

a pair of rules 〈Rβ, R
′
β〉 in α(β(Rinit), L) such that Q 0 〈Rβ, R

′
β〉. According to Theo-

rem 4.10, R and R′ are also derivable from α(β(Rinit), L). So there exists two derivation

trees for R and R′ respectively whose nodes are labeled by rules in α(β(Rinit), L). Sup-

pose the root nodes of these two trees are labeled by Rt and R′t respectively. We already

proved that Rt and R′t are obedience rules to non inj (Q) as above. Given σ is the sub-

stitution when the init events are merged in R and R′, it should also work when the init

events are merged in Rt and R′t. Because σ cannot merge the accept events in R and R′, it

cannot merge the accept events Rt and R′t as well. Hence, we have Q 0 〈Rt, R
′
t〉

Checking WMF. After checking the specification of WMF using the above-mentioned

algorithm, PTAuth claims an attack. The two key rules in β(Rinit) are shown below. The

rule (4.10) represents the execution trace that the server transmits the key once from Alice

to Bob. It is obedient to the query (4.7). However, the rule (4.11) is a contradiction to

the query (4.7), because it has a weaker timing range (tB ≤ tA + 4 ∗ §pa) than that in the

92

query (tB ≤ tA + 2 ∗ §pa). This rule stands for the execution trace that the adversary sends

the message from the server back to server twice and then forwards it to Alice. According

to the rule (4.5), the timestamp in the message can be updated in this method. Hence,

Bob would not notice that the message is actually delayed when he receives it. In order to

remove the contradiction, we need to configure the parameters as either §pa < §pd or §pa ≤
0. However, applying any one of these constraints to the initial configuration 0 < §pd leads

to the removal of the rule (4.10), the only obedience rule in α(β(Rinit), L). Hence, PTAuth

claims that an attack is found, which means that no parameter configuration would make

the protocol work.

new([k], alice gen[], 〈A[], B[], tA〉), init([k], 〈A[], B[], [k]〉, tA)

,new([b], bob gen[], 〈A[], B[], [k], tS, tB〉), join(〈A[], B[], [k]〉, tS)

−[t ≤ tA, tB ≤ tS + §pa ≤ tA + 2 ∗ §pa, tA + 2 ∗ §pd ≤ tS + §pd ≤ tB,]→

accept([b], 〈A[], B[], [k]〉, tB) (4.10)

new([k], alice gen[], 〈A[], B[], tA〉), init([k], 〈A[], B[], [k]〉, tA)

,new([b], bob gen[], 〈A[], B[], [k], tS3, tB〉), join(〈A[], B[], [k]〉, tS1)

, join(〈B[], A[], [k]〉, tS2), join(〈A[], B[], [k]〉, tS3)

−[t ≤ tA, tB ≤ tS3 + §pa ≤ tS2 + 2 ∗ §pa ≤ tS1 + 3 ∗ §pa ≤ tA + 4 ∗ §pa,

tA + 4 ∗ §pd ≤ tS1 + 3 ∗ §pd ≤ tS2 + 2 ∗ §pd ≤ tS3 + §pd ≤ tB]→

accept([b], 〈A[], B[], [k]〉, tB) (4.11)

Corrected WMF for Non-injective Timed Agreement. The WMF protocol can be fixed

by inserting two different constants m1 and m2 into the messages sent to and received

from the server respectively, which breaks their symmetric structure. Using this method,

the server can distinguish the messages that it sent out previously, and refuse to process

them again. Our algorithm proves the non-injective timed agreement of this modified

WMF protocol and produces the timing constraints 0 < §pd ≤ §pa with the following

obedience rule. However, the injective timed agreement of WMF is still unsatisfied.

93

Corrected WMF for Injective Timed Agreement. In fact, there exist two methods to

modify the WMF protocol so that the injective timed agreement can be satisfied.

• In practice, Bob can maintain a database which stores the previously used session

keys. When a new request is received, Bob checks the new session key against the

old ones to make sure its uniqueness. Hence, any session key generated by Alice can

at most correspond to one acceptance by Bob. By using the unique event, we can

check the uniqueness of values in our calculus.

• According to Lowe’s method [82], we can ensure the injective authentication prop-

erty by adding another round of communications between the protocol initiator and

the protocol responder. Before Bob engages the accept event in the process Pb, Bob

can generate a fresh nonce [n] and send it back to Alice under the newly agreed

encryption key [k]. When Alice receives the nonce [n], she send [n] + 1 back to

Bob. Since Alice will only reply once, Bob then can ensure that his acceptance

corresponds to at most one protocol initialization from Alice.

Our tool can prove the injective timed agreement property for these two corrected versions

of WMF.

4.7 Evaluations

Based on our verification framework, we have implemented a tool named PTAuth. We

encode PPL [17] in our tool to analyze the satisfaction of timing constraints. Meanwhile,

in order to improve the performance, we implement an on-the-fly verification algorithm

that updates the parameter configuration whenever a rule is generated. Hence, the veri-

fication process can terminate early if an attack can be found. We use PTAuth to check

many security protocols as shown in Table 4.4. All the experiments shown in this section

are conducted under Mac OS X 10.10.1 with 2.3 GHz Intel Core i5 and 16G 1333MHz

DDR3. In the experiments, we have checked several timed protocols i.e., the WMF proto-

cols [35, 54], the Kerberos protocols [95], the distance bounding protocolse [33, 38, 103]

and the CCITT protocols [40, 6, 35]. Additionally, we analyze the untimed protocols like

the Needham-Schroeder series [94, 82] and SKEME [72]. As can be seen, most of the

94

Protocol Parameterized Bounded]R Result Time
Wide Mouthed Frog [35] Yes No 40 Attack [84] 39ms
Wide Mouthed Frog (c) [54] Yes No 35 Secure 13ms
Kerberos V [95] Yes No 19370 Attack 23m5s
Kerberos V (c) Yes Yes 438664 Secure 2h41m
Auth Range [33, 38] Yes No 21 Secure 10ms
Ultrasound Dist Bound [103] Yes No 50 Attack [105] 18ms
CCITT X.509 (1) [40] No No 45 Attack [6] 14ms
CCITT X.509 (1c) [6] No No 62 Secure 37ms
CCITT X.509 (3) [40] No No 127 Attack [35] 84ms
CCITT X.509 (3) BAN [35] No No 148 Secure 131ms
NS PK [94] No No 68 Attack [82] 30ms
NS PK Lowe [82] No No 61 Secure 28ms
SKEME [72] No No 127 Secure 466ms

Table 4.4: Experiment Results

protocols can be verified or falsified by PTAuth quickly for an unbounded number of pro-

tocol sessions. Notice that the secure configuration is given based on the satisfaction of

all of the queries, so we do not show the results for different queries separately in the ta-

ble. The justification for the bounded verification of the corrected version of Kerberos V

is presented later in this section. The PTAuth tool and the models shown in this section

are available in [2]. Particularly, we have successfully found a new attack in Kerberos

V [95] using PTAuth. In the following, we present the detailed findings in Kerberos V.

Since Kerberos V is the latest version, we denote it as Kerberos for short unless otherwise

indicated.

Kerberos Overview. Kerberos is a widely used security protocol for accessing services.

For instance, Microsoft Window uses Kerberos as its default authentication method; many

UNIX and UNIX-like operating systems include software for Kerberos authentication.

Kerberos has a salient property such that its user can obtain accesses to a network service

within a period of time using a single request. In general, this is achieved by granting

an access ticket to the user, so that the user can subsequently use this ticket to authen-

ticate himself to the server. Kerberos is complex because multiple ticket operations are

supported simultaneously and many fields are optional, which are heavily relying on time.

So, configuring Kerberos is hard and error-prone.

95

Kerberos consists of five types of entities: User, Client, Kerberos Authentication Server

(KAS), Ticket Granting Server (TGS) and Application Server (AP). KAS and TGS to-

gether are also known as Key Distribution Centre (KDC). Specifically, Users usually are

humans, and Clients represent their identities in the Kerberos network. KAS is the place

where a User can initiate a logon session to the Kerberos network with a pre-registered

Client. In return, KAS provides the User with (1) a Ticket Granting Ticket (TGT) and (2)

an encrypted session key as the authorization proof to access TGS. After TGS checks the

authorization from KAS, TGS issues two similar credentials (1) a Service Ticket (ST) and

(2) a new encrypted session key to the User as authorization proof to access AP. Then, the

User can finally use them to retrieve the Service from AP. Additionally, both of the TGT

and the ST can be postdated, validated and renewed by KDC when these operations are

permitted in the Kerberos network.

Specification Highlights. Generally, by following the method described in Section 4.3,

the specification for Kerberos itself can be extracted easily. In order to verify Kerberos

comprehensively, we model several keys and timestamps (which could be optional) by

following precisely its official document RFC 4120 [95].

• The user and the server are allowed to specify sub-session keys in the messages.

When a sub-session key is specified, the message receiver must use it to transmit the

next message rather than using the default session-key.

• Optional timestamps are allowed in the user requests and the tickets. In the follow-

ing, fq , tq and rq denote the start-time, the end-time and the maximum renewable

end-time requested by the users. Similarly, sp, ep and rp denote the start-time, the

end-time and the maximum renewable end-time agreed by the servers. sp, ep and rp

are encoded in the tickets, corresponding to fq , tq and rq respectively. An additional

timestamp ap is encoded in the ticket to represent the initial authentication time of

the ticket. Furthermore, cq represents the current-time when the request is made by

the user, and cp stands for the current-time when the ticket is issued by the server. In

Kerberos, fq , rq , sp and rp are optional. So the servers need to check their presence

and construct replies accordingly.

96

In this work, two parameters are considered in Kerberos, i.e., the maximum lifetime

§l and the maximum renewable lifetime §r of the tickets. Based on these parameters, the

servers can only issue tickets whose lifetime and renewable lifetime are shorter than §l
and §r respectively. Furthermore, five operations are modeled for the Kerberos servers

as follows. (1) Postdated tickets can be generated for future usage. They are marked as

invalid initially and they must be validated later. (2) Postdated tickets must be validated

before usage. (3) Renewable tickets can be renewed before they expire. (4) Initial tickets

are generated at KAS using user’s client. (5) Sub-tickets are generated at TGS using

existing tickets. Notice that the end-time ep of the sub-ticket should be no larger than the

end-time of the existing ticket. The complete model of Kerberos is available at [2].

Queries. In order to specify the queries, we define three events as follows. Since the

injective authentication is not required, we remove the session id encoded in the events for

simplicity.

• When an initial ticket is generated at KAS, an initauth(〈k, C, S〉, t) event is en-

gaged, where k is the fresh session key, C is the client’s name, S is the target

server’s name, and t is the beginning of the ticket’s lifetime.

• Whenever an new ticket is generated at KAS or TGS, an initgen(〈k, C, S〉, t) event

is engaged. Its arguments have the same meaning as those in initauth .

• Whenever an ticket is accepted by the server, an accept(〈k, C, S〉, t) event is en-

gaged, where k is the agreed session key, C is the client’s name, S is the current

server’s name, and t is the acceptance time.

In Kerberos, we need to ensure the correctness of two timed authentications. First, when-

ever a server accepts a ticket, the ticket should be indeed generated within §l time units

using the same session key. Second, whenever a server accepts a ticket, the initial ticket

should be indeed generated within §r time units.

accept(〈k, C, S〉, t)←[t − t ′ ≤ §l]− initgen(〈k, C, S〉, t ′) (4.12)

accept(〈k, C, S〉, t)←[t − t ′ ≤ §r]− initauth(〈k′, C, S ′〉, t ′) (4.13)

97

Ticket (TGT)
• ap1 = 0

• ep1 = 3

• rp1 = 5

with Authentication Event

• initauth(〈[k1], A[], TGS[]〉, 0)

• initgen(〈[k1], A[], TGS[]〉, 0)

Ticket (ST)

• ap2 = 0

• ep2 = 3

• rp2 = 7

with Authentication Event

• accept(〈[k1], A[], TGS[]〉, 2)

• initgen(〈[k2], A[], AP []〉, 2)

Ticket (ST)

• ap3 = 0

• ep3 = 6

• rp3 = 7

with Authentication Event

• accept(〈[k2], A[], AP []〉, 3)

• initgen(〈[k3], A[], AP []〉, 3)

Service

with Authentication Event

• accept(〈[k3], A[], AP []〉, 6)

KDC

• §l = 3

• §r = 5

Sub-ticket Request for AP

• cp1 = 2

• eq1 = 3

• rq1 = 7

Renew Request

• cp2 = 3

• eq2 = 6

Service Request

• cp3 = 6

FIGURE 4.1: Attack Found in Kerberos V

Verification Results. For the termination of the verification, we need to initially con-

figure the parameters as §r < n ∗ §l, where n can be any integer larger than 1. The

requirement for this constraint is justified as follows. Algorithm 1 updates parameter

configuration at line 15 to eliminate the contradiction rules. Suppose we have a rule

initauth(〈k, C, S〉, t ′) −[t − t ′ ≤ c ∗ §l]→ accept(〈k, C, S〉, t) in the rule basis, where

c > 1. This rule is a contradiction to the query (4.13) because §r is not necessarily larger

than c ∗ §l. However, Algorithm 1 can add a new constraint c ∗ §l ≤ §r to the existing

configuration and then continue searching. Since we have infinitely many such rules in

β(Rinit) with different values of c, the verification cannot terminate. Hence, in this work,

we set the initial configuration as §r < 2 ∗ §l to avoid the non-termination. Notice that this

initial configuration does not prevent us from finding attacks because it does not limit the

number of sequential operations allowed in the Kerberos protocol.

After analyzing Kerberos using PTAuth, we have successfully found a security flaw in

its specification document RFC 4120 [95]. (When the network latency is not considered,

98

PTAuth directly reports the attack; when the network latency is considered, PTAuth claims

that the protocol is correct only if l ≤ 2 ∗ §pd, which is clearly undesired.) The attack

trace is depicted in Figure 4.1. Suppose the Kerberos is configured with §l = 3 and

§r = 52, and a user Alice has already obtained a renewable ticket at time 0. Then, she

can request for a sub-ticket of AP at time 2 that is renewable until time 7, satisfying rq1

− cp1 ≤ §r. Notice the new sub-ticket’s end-time ep2 cannot be larger than the end-

time ep1 of the existing ticket. Later, she renews the new sub-ticket before it expires and

gets a ticket valid until time 6. Finally, she requests the service at time 6 and engages an

event accept(〈[k3], A[], AP []〉, 6). However, this accept event does not correspond to any

initauth event satisfying Query (4.13), which leads to an attack. In fact, Alice can use this

method to request sub-ticket for AP repeatedly so that she can have access to the service

forever. Obviously, the server who made the authentication initially does not intend to

do so. Fortunately, after checking the source code of Kerberos, we find that this flaw is

prevented in its implementations [90, 74]. An additional checking condition3 has been

inserted to regulate that the renewable lifetime in the sub-ticket should be smaller than the

renewable lifetime in the existing ticket. We later confirmed with Kerberos team that this

is an error in its specification document, which could have led to a security issue but has

not done so in its current implementation.

Corrected Version. After adding the timing constraints on renewable lifetime between

the base-ticket and the sub-ticket, the verification cannot terminate. This is caused by an

infinite dependency trace formed by tickets, as we do not limit its length. Hence, we bound

the number of tickets that can be generated during the verification, which in turn bounds

the number of initgen events in the rule. In this work, we bound the ticket number to five.

This is justified as we have five different methods to generate tickets in Kerberos: the

servers can postdate, validate, renew tickets, generate initial tickets and issue sub-tickets.

After bounding the ticket number that can be generated, our tool proves the correctness of

Kerberos and produces the configuration 0 ≤ §l ≤ §r < 2 ∗ §l.
2 §l and §r are represented by symbols during the verification.
3 For krb5-1.13 from MIT, the checking is located in the file src/kdc/kdc util.c at line 1740 - 1741. We also

checked other implementations, like heimdal-1.5.2.

99

4.8 Related Works

As mentioned, this work is related to the work [77] shown in Chapter 3. In this work, we

additionally introduce timing parameters, secrecy and injective authentication properties,

and enhance the computation capability of the timing constraint with PPL. Furthermore,

we provide the algorithm to compute the least constrained secure configuration of param-

eters in this work. We successfully analyze several protocols including Kerberos V and

find an attack in the Kerberos V specification [95] that is unreported before. The analyz-

ing framework closest to ours was proposed by Delzanno and Ganty [54] which applies

MSR(L) to specify unbounded crypto protocols by combining first order multiset rewrit-

ing rules and linear constraints. According to [54], the protocol specification is modified

by explicitly encoding an additional timestamp, representing the initialization time, into

some messages. Thus the attack can be found by comparing the original timestamps with

the new one in the messages. However, it is unclear how to verify timed protocol in gen-

eral using their approach. On the other hand, our approach can be applied to protocols

without any protocol modification. Many tools for verifying protocols [29, 48, 89] are

related. However, they are not designed for timed protocols.

Kerberos has been scrutinized over years using formal methods. In [27], Bella et al. an-

alyzed Kerberos IV using the Isabelle theorem prover. They checked various secrecy and

authentication properties and took time into consideration. However, Kerberos is largely

simplified in their analysis and the specification method in their work is not as intuitive as

ours. Later, Kerberos V has been analyzed by Mitchell et al. [91] using state exploration

tool Murϕ. They claimed that an attack is found in [70] when two servers exists. How-

ever, this attack is actually prevented in Kerberos’s official specification document RFC

1510 [69], which is later superseded by RFC 4120 [95] analyzed in this work. The biggest

advantages of our method is that the verification is given for an unbounded number of

sessions, which is not achievable previously with the state exploration approach. For the

above literatures, they did not consider alternative options supported in the protocol that

may accidentally introduce attacks as we do in this work. Similar to our work, Kerberos V

has been analyzed in a theorem proving context by Butler et al. [36]. They took many fea-

100

tures into consideration, i.e., the error messages, the encryption types and the cross-realm

support. These features are not cover in this work since we focus on the timestamps and

timing constraint checking. Meanwhile, our framework can provide intuitive modeling

and automatic verifying, while Kerberos V is analyzed manually in [36].

4.9 Discussions

In this work, we developed an automatic verification framework for timed parameterized

security protocols. It can verify authentication properties as well as secrecy properties for

an unbounded number of protocol sessions. We have implemented our approach into a

tool named PTAuth and used it to analyze a wide range of protocols shown in Section 4.7.

In the experiments, we have found a timed attack in Kerberos V document that has never

been reported before.

Since the problem of verifying security protocols is undecidable in general, we cannot

guarantee the termination of our verification algorithm. When we use PTAuth to analyze

the corrected version of Kerberos, PTAuth cannot terminate because of the infinite depen-

dency chain of tickets. Hence, we have to bound the number of tickets generated in the

protocol. However, in Kerberos, generating more tickets may not be helpful to break its

security. Based on this observation, we want to detect and prune the non-terminable veri-

fication branches heuristically without affecting the final results in our future work. This

could help us to verify large-sized and complex protocols that we cannot verify currently,

as our verification algorithm only considers the general approach at present.

101

Chapter 5

Analyzing Software-based Attestation in Practice

An increasing number of “smart” embedded devices are employed in our living environ-

ment. Unlike traditional computer systems, these devices are often physically accessi-

ble to the attackers. It is therefore almost impossible to guarantee that they are un-

compromised, i.e., that indeed the devices are executing the intended software. In such

a context, software-based attestation [108, 110, 106] is deemed as a promising solution to

validate their software integrity. It guarantees that the softwares running on the embedded

devices are un-compromised without any hardware support. However, designing software-

based attestation protocols has been shown as error-prone [111, 39]. In this chapter, we

develop a framework to design and analyze the software-based attestation protocols. We

first propose a generic attestation scheme that captures most existing software-based attes-

tation protocols. After formalizing the security criteria for the generic scheme, we apply

our analysis framework to several well-known software-based attestation protocols and re-

port various potential vulnerabilities. To the best of our knowledge, this is the first practical

analysis framework for software-based attestation protocols.

102

5.1 Introduction

“Smart” sensory embedded devices are getting more and more popular. They are fre-

quently used for temperature measurement, fire detection, water saving, etc. In the near

future, they are expected to be ubiquitous. However, their wide adoption poses threats to

our safety and privacy as well. Unlike traditional computer systems, these devices are of-

ten physically accessible to the attackers and it is almost impossible to guarantee that they

are un-compromised, i.e., that indeed the devices are executing the intended software. Ef-

fective techniques for verifying and validating the embedded devices against malicious

adversary becomes increasingly important and urgent. Traditional hardware-based attes-

tation [14, 58, 102, 67] is cost-ineffective in such a context. Thus, software-based attesta-

tion [108, 110, 106], which aims to function without any dedicated security hardware, is

deemed as a promising solution for verifying the integrity of these massive, inexpensive,

and resource constrained devices.

Software-based attestation is based on the challenge-response paradigm between the

trusted verifier and the potentially compromised prover (the embedded device). It typi-

cally works as follows. The verifier first sends a random challenge to the prover and asks

the prover to generate a checksum for its memory state based on the challenge. Since the

prover’s computing and memory resources are designed to be fully utilized in the attesta-

tion, if the memory is tampered by the adversary, the prover needs to take extra time to

compute the correct checksum. We further assume that the verifier knows the expected

memory state of the prover. He thus can compute the same checksum and compare it with

the one received from the prover. By exploiting the fact that the prover is resource con-

strained, software-based attestation ensures that the prover can return the correct response

in time only if it is genuine. On the other hand, whenever the prover fails to reply in time

or returns an incorrect checksum, it is highly likely compromised.

The software-based attestation protocol design is challenging and error-prone [111,

103

39]. Hence, in this work, we propose an analysis framework for software-based attesta-

tion that can be easily adopted in practice. First, our framework provides a parameterized

generic software-based attestation scheme that captures most existing software-based at-

testation protocols. The adversary modeled in this work can not only compromise the

prover before the attestation, but also communicate with the compromised prover during

the attestation. We then formalize the security criteria for the generic scheme based on the

knowledge of network latency (which is important as timing is essential here) and adver-

sary model. Since the real software-based attestation protocols are instances of the generic

scheme, these criteria thus naturally should be hold in the real protocols as well. Hence,

we apply our analysis framework to three well-known software-based attestation schemes,

i.e., SWATT [108], SCUBA [106] and VIPER [79], and find four potential vulnerabilities

that have not been reported before. As far as we know, this is the first framework that can

give practical analysis to real software-based attestation protocols.

5.2 Generic Specification for Software-based Attestation

We start with defining a generic software-based attestation scheme which captures most

existing software-based attestation protocols. The idea is that analysis results based on

the generic schema can be extended to concrete protocols readily as we show in later

sections. The generic software-based attestation scheme involves three parties, i.e., the

trusted verifier V , the prover (the embedded device) P and the adversaryA. We denote the

genuine prover and the compromised prover as Pg and Pc respectively. In this section, we

first present the system model, including the system architecture, the security property and

the threat model. Then we propose a generic software-based attestation scheme between

the trusted verifier V and the genuine prover Pg based on our system.

104

5.2.1 System Overview

Software-based attestation is proposed to verify the resource constrained embedded de-

vices without using any security hardware (e.g., TPMs [3]). Before presenting the details

of the generic attestation scheme, we first describe the system model employed in this

work. The attestation procedure is conducted between a trusted verifier V and a prover P

over the network. We explicitly consider the network round-trip time (RTT).

The architecture of the verifier V and the prover P considered in this work are depicted

as follows. P consists of a computing processor, several registers and a memory M . The

data memoryMd and the program memoryMp are two different memory space that should

be attested in M . Specifically, Md stores the runtime data (e.g., stack information, data

collected from the environment) that are unpredictable to V , hence its content cannot be

attested directly in the attestation procedure. Mp stores the program code which is known

to V . The attestation routine verif on the prover side is pre-installed in Mp before the

attestation starts. In general, the size of Md could be 0 when the attestation for the data

memory is not required. Notice that some memory can be excluded from the attestation

in some specific attestation protocols [107, 106, 79], and thus Md + Mp may not equal to

M . Meanwhile, V is a powerful base station who can simulate the execution of P . When

V has the image of both Md and Mp in P , V can compute the memory checksum based on

the image.

During the attestation, P’s data memory Md will be first overwritten into a state that

is known to V . The attestation then aims at verifying whether P has a genuine state

for both Md and Mp as V expected. Let State(P) be the memory state of Md + Mp

in the prover P . When State(P) is known to V , the attestation can be modeled by a

game between the verifier V and the prover P . In the game, V first sends a random chal-

lenge to P , and then P picks a checksum reply based on the challenge. The prover P

wins if the used time is less than some threshold and the checksum is correct, other-

105

wise P loses the game. We denote the percentage of differences between two memory

states S and S ′ as λ(S, S ′) and the winning probability of P as Pw(L,P), where L de-

notes the system and its configurations. We define an attestation protocol as correct if

Pw(L,Pg) = 1, which means that the genuine prover Pg can always win. On the other

hand, when µ is the least memory proportion that should be modified in the compromised

proverPc to perform a meaningful attack, we define an attestation protocol as 〈ε, µ〉-secure

if ∀Pc, λ(State(Pc), State(Pg)) ≥ µ > 0⇒ Pw(L,Pc) ≤ ε, which means that any prover

who needs to overwrite at least µ percentage of the attested memory has the winning prob-

ability of no more than ε. In the attestation, the adversary wins if and only if he can keep

the malicious code in the attested memory after the attestation. However, software-based

attestation does not guarantee that the device is unmodified before the attestation.

The adversary A’s capability is specified with two phases. Before the attestation be-

gins, A can use unlimited resources to reprogram the memory in Pc. However, A cannot

change the physical hardware and the network infrastructure, so Pc’s memory storage,

computing power and network latency are fixed. Once the attestation starts, A cannot

modify Pc’s memory content anymore. Nevertheless, A can communicate with Pc over

the network and compute with unlimited resources.

Notations. The notations used in this chapter are listed as follows. We write X, Y, Z to

denote sets and x, y, z to denote elements in the sets. f(x : X, y : Y) → z : Z represents

a function f that maps the tuple of two elements x, y to the element z. Let n be a natural

number. Xn stands for the concatenation of n elements in X . X × Y is the Cartesian

product of X and Y . Let D be a probabilistic distribution over set X . x←[D]− X means

assigning an element of X to x according to D. [n . . .m] represents the integers from n

to m. [n,m] stands for the real numbers from n to m. max x,y{f(x, y)} stands for the

maximum value of f(x, y) for any x and y. Pr [x] denotes the probability of x.

106

Checksum Computation comp(Sa, g0, r0)
Sa is the memory state of P under attestation.
g0 is the address generator seed.
r0 is the checksum response seed.
for i in [1 . . . n] do
gi = Gen(gi−1);
ai = Addr(gi);
ci = Read(Sa, ai);
ri = Chk(ri−1, ci);

end
return rn;

g0 Gen g1

Addr

a1

Read

c1

Chkr0 r1

Gen g2

Addr

a2

Read

c2

Chk r2

. . .

. . .

Gen gn

Addr

an

Read

cn

Chk rn

FIGURE 5.1: Checksum Computation

5.2.2 Generic Attestation Scheme

In this section, we propose a generic specification for software-based attestation scheme

that captures most existing software-based attestation protocols. The specification is de-

scribed in two parts. First, given a memory state Sa = State(P) of both Md and Mp, we

introduce the checksum computation routine that compute the memory checksum as shown

in Figure 5.1. Then, we illustrate the generic software-based attestation scheme which first

securely erases the data memory Md and then attests the whole memory Md + Mp with

the checksum computation routine.

The checksum computation routine comp(Sa, g0, r0) aims at computing the unforgeable

checksum for memory state Sa based on the initial address generator g0 and initial memory

checksum r0. It iteratively computes the address generator gi, the memory address ai, the

memory content ci and the checksum response ri for i ∈ [1 . . . n] as shown in Figure 5.1.

The four functions used in the generic scheme are illustrated as follows. In the following

chapter, lg, la, lc and lr represent lengths of gi, ai, ci and ri respectively.

• Gen(gi−1 : {0, 1}lg) → gi : {0, 1}lg computes the generator gi of the memory

addresses in a random manner incrementally.

• Addr(gi : {0, 1}lg)→ ai : {0, 1}la converts the random generator gi to the memory

address ai.

107

VerifierVerifier

Prover Prover

Registers

(2.2)
V : record(t1)

V : o

(1.3)
P : fill(Md, S

0
d)

(2.3)
P : Gen0(o, g0)

P : Chk0(o, r0)

P : comp(Sa, g0, r0)

(2.5)
V : bound(t1, t2)

V : equal(comp(Sa, g0, r0), rn)

V : code update . . .

(2.1)
V : rand(o)

Registers Registers(1.1)
V : rand(S0

d)

V : fill(M 0
d, S

0
d)

(1.2)
V ! P : S0

d

(1.4)
P ! V : FIN

(2.4)
P ! V : rn

 V : record(t2)

 M 0
d(0) M 0

d(S
0
d)

 Md(Sd) Md(S
0
d)

 Mp(Sp)

 Verif Verif

Register

 Mp(Sp)

 M 0
p(Sp)

 Sa = S0
d + Sp

 M 0
p(Sp)

FIGURE 5.2: Generic Software-based Attestation Scheme

• Read(Sa : {0, 1}la×{0, 1}lc , ai : {0, 1}la)→ ci : {0, 1}lc reads the memory content

ci located at the address ai in Sa.

• Chk(ri−1 : {0, 1}lr , ci : {0, 1}lc) → ri{0, 1}lr updates the last checksum response

ri−1 with the memory content ci to the new checksum ri.

The generic software-based attestation scheme is shown in Figure 5.2. The functions

used in the figure are illustrated as follows. rand(x) generates a random bit-string and

stores it into x. fill(M,S) fills the memory M with state S. Gen0(o, g0) and Chk 0(o, r0)

derive the initial values for the generator and the checksum from the challenge o and

store them into g0 and r0 respectively. comp(Sa, g0, r0) illustrated previously computes

the checksum for memory state Sa with the generator seed g0 and the response seed r0.

108

record(t) records the current time into t. bound(t1, t2) checks whether t2 − t1 is smaller

than a time bound. equal(x, y) checks if x and y are equivalent. I : op means that I

conducts the operation op. I1 → I2 : m means that I1 sends the message m to I2. The

generic software-based attestation scheme proposed in this work is divided into two phases

as shown in Figure 5.2.

Phase 1. Secure Erasure overwrites the data memory Md with random noise. Initially,

P’s data memory image M ′
d in V are filled with 0, while Md in P has the memory

state Sd consisting of information generated at runtime. At the end of this phase, P

and P’s image in V have the same memory state S ′d filled with random noise.

1. When V wants to start the attestation, it first overwritesP’s data memory image

M ′
d in V to a random state S ′d, which is generated by the rand(S ′d) function.

2. V sends S ′d to P and asks P to overwrite its Md with S ′d.

3. P accepts V’s requests and updates his Md with S ′d. In fact, the last step (1.2)

and this step (1.3) can be streamlined. Whenever P receives a value from V ,

he writes it into the corresponding data memory location.

4. When Md is filled with S ′d, P sends a FIN signal to start the second phase.

Phase 2. Checksum Computation aims at attesting both Md and Mp in P and discov-

ering memory modification with overwhelming probability. When the first phase

is finished, V can run the second phase for multiple times consecutively. Upon the

beginning of the second phase, V knows the memory state Sa = State(P).

1. V first picks a random challenge o.

2. V sends o to P and asks P to compute the checksum for his memory state

Sa = Sp + S ′d. V also records the time t1 when the request is sent.

109

3. After P derives the initial address generator g0 and the initial checksum re-

sponse r0 from the challenge o, he computes the checksum over the memory

state Sa with comp(Sa, g0, r0) illustrated in Figure 5.1.

4. As soon as the checksum computation routine is finished, P sends the check-

sum rn back to V . V again records the time t2 when rn is received.

5. Once V receives rn from P , he checks two conditions: (1) whether the check-

sum is received within the timing threshold {bound(t1, t2) = true} and (2)

whether the checksum is correct {equal(comp(Sa, g0, r0), rn) = true}. If both

of the conditions are satisfied, P is trusted as genuine and V will update P’s

unattested memory. Otherwise, P is deemed as compromised.

Adversary Model. The attacker has full control over the memory of the device. However,

the attacker cannot modify the hardware of the device and increase the computation power

of the device. For instance, the attacker cannot increase the size of the memory with new

memory cards; the attacker cannot increase the clock speed of the processor with the BIOS

settings.

Assumptions. In order to guarantee the correctness of the protocol, we make the fol-

lowing assumptions. First, P either has the attestation procedure verif pre-deployed in

its program memory Mp or can download it into a pre-allocated memory space in Mp at

runtime before the attestation starts. Second, V knows the exact memory image of Mp

in P . Md and Mp share the same address space. Third, the attestation procedure verif

implemented in P is optimal in terms of execution speed. Fourth, S ′d and o are unpre-

dictable to the prover. Fifth, the cryptographic primitives used in the attestation procedure

are perfect. This assumption does not reduce the security offered by our framework to the

real applications. We can update the attestation procedure with the state-of-the-art crypto-

graphic implementations that are unbreakable at the moment. For instance, when a hash

function is needed in the attestation, we use SHA-2 or SHA-3 that are safe for the time

110

being. Sixth, the adversary cannot personate the prover and communicate with the verifier

directly, which means that the verifier is connected to the prover via a controllable chan-

nel during the attestation, e.g., a bus used in [79]. When the adversary can personate the

prover, the software-based attestation protocol is trivially broken because the adversary

can answer the challenge for the prover.

5.3 Security Criteria Formalization

In this section, we introduce several attack scenarios. Based on the attacks, we formalize

the security criteria for the generic attestation scheme. When the compromised prover

Pc computes the checksum by itself, we need to discuss two cases: (1) the checksum is

computed with the checksum computation routine at runtime, or (2) the checksum is pre-

computed. In the first case, when the memory and the registers are fully utilized as shown

in Section 5.3.1, we measure the winning probability of Pc who trades computation power

for memory space (memory recovering attack) in Section 5.3.2. In the second case, we

discuss the scenario where Pc stores the pre-computed challenge-response pairs in the its

memory (challenge buffering attack) in Section 5.3.3. On the other hand, whenPc does not

compute the checksum by itself, it can ask A to compute the checksum (proxy attack) as

introduced in Section 5.3.4. When the memory and the registers are fully attested, since the

above three attack methods are orthogonal, the winning probability of the compromised

prover Pw(L,Pc) then can be calculated by the most effective attack among them. Some

used notations are summarized in Table 5.1.

5.3.1 Full Utilization of Memory and Registers

In the checksum computation routine, the memory are accessed in a random manner which

is unpredictable for the prover before the attestation. Whenever the attested memory is

tampered, the malicious prover thus need to take extra time to recover the original memory.

In order to prevent the malicious prover from cheating, every memory address should

111

Name Explanation Size
Md(Sd) Data memory Md filled with memory image state Sd md unit
Mp(Sp) Program memory Mp filled with memory image state Sp mp unit
M(S) Overall memory M filled with memory image state S m unit
o The challenge sent from V to P lo bit
gi Address generators for i ∈ [0 . . . n] lg bit
ai Memory addresses for i ∈ [0 . . . n] la bit
ci Memory contents for i ∈ [0 . . . n] lc bit
ri Checksum responses for i ∈ [0 . . . n] lr bit
Tmin
V , Tmax

V Network RTT between V and Pg varies from dmin
g to dmax

g -
Tmin
A , Tmax

A Network RTT between A and Pc varies from dmin
c to dmax

c -
dGen , dAddr , dRead , dChk Computation time for Gen, Addr , Read and Chk resp. -
dg The time needed by Pg to compute the memory checksum -
dth The timing threshold on the verifier side -
n The number of iterations in a single checksum computation -
k The number of consecutive checksum computation (Phase 2) -
u The number of registers used to store the checksum -

Table 5.1: Notation Summary

be accessible in the checksum computation. Additionally, the registers should be fully

occupied as well. In this section, we formalize several design principles to ensure fully

utilization of the memory and registers in the checksum computation routine.

Choosing Random Function. During the checksum computation, Gen is a random func-

tion from lg bits to lg bits, and Addr converts the lg bit generators to the la bit addresses.

Thus, we can take the concatenation of Gen and Addr as a random function from lg bits to

la bits. Since all possible addresses should be accessible when the generators are traversed,

proper configuration of the random function in the attestation scheme becomes non-trivial.

We discuss two kinds of randomization functions in this work, i.e., the hash oracle and the

encryption oracle.

The hash oracle receives a bit-string as input and returns a corresponding random

bit-string as output. Since every hash output is computed independently, according to

the coupon collector’s problem, the expected number of independent runs to cover all

possible output values grows as Θ(t · log(t)) where t is the number of possible out-

put values. In other words, if the addresses (ai) and the generators (gi) have the same

112

length, it is very likely that some memory addresses are uncovered. For instance, when

the hash function SHA-2 is used and both of the generator and the memory address have

the same length of 32bit, only 64% of the addresses can be covered on average when

the generators are traversed in our experiments. By enumerating all possible genera-

tors in the preparation phase, the adversary may find sufficient uncovered addresses and

use them to store the malicious code. As a consequence, when hash oracle is used in

the attestation protocols, the number of generators should be much larger than the num-

ber of addresses. By applying the tail estimate to the coupon collector’s problem, we

can calculate the probability lower-bound of covering all addresses under attestation as

1− (md +mp)
1−2lg/((md+mp)·log(md+mp)).

On the other hand, the encryption oracle can be used to generate random numbers as

well by revealing the encryption key to the public. Since the encryption oracle is bijec-

tive, all of the memory addresses should be covered in the generator traversal when the

generator length is not less than the address length. As a result, the encryption oracle

becomes very suitable for the random number generation in software-based attestation.

Two heavily used implementations of the encryption oracle in the software-based attesta-

tion protocols are the stream cipher RC4 and the T-function [68]. RC4 is chosen as the

PRNG in SWATT [108] because of its extreme efficiency and compact implementation in

the embedded devices. Meanwhile, T-function can produce a single cycle, which ensures

the traversal of generators. Thus, it is employed in ICE scheme proposed in ICUBA [106].

A widely used T-function is x← x+ (x2 ∨ 5) where ∨ is the bitwise or operator.

Full Address Coverage at Runtime. Even though the addresses can be fully covered

in the generator traversal, the actual address coverage is also related to the number of

addresses generated at the runtime, which is decided by the number n in the checksum

computation routine (Figure 5.2) and the repeat time k of the consecutive checksum com-

putation (Phase 2). According to the coupon collector’s problem, in order to fully traverse

113

the whole memory space in the attestation procedure, the minimal number of memory

access n · k should satisfy

Pr [n · k > c · (md +mp) · log(md +mp)] ≤ (md +mp)
1−c. (5.1)

Full Register Occupation. According to several existing works [108, 106, 79], the regis-

ters in P are frequently used to store the checksum results. During every iteration in the

checksum computation, one of them gets updated to a new value. When any register is

unused in the attestation, the malicious prover can exploit it to conduct attacks. Thus, all

the registers should be occupied. Moreover, the registers should be chosen in a random or-

der so the malicious prover cannot predict which one is used next. Let the total number of

registers used for storing the checksum be u. According to the coupon collector’s problem,

the probability of covering all registers in the checksum computation is lower-bounded by

1− u1−n/(u·log(u)).

5.3.2 Pc Compute Checksum at Runtime: Memory Recovering Attack

Given a genuine prover Pg with the memory state Sg and a compromised prover Pc with

the memory state Sc, the probability of distinguishing their states with a single memory

access depends on two factors. The first factor is the percentage of the differences between

Sg and Sc, which could be defined as λ(Sg, Sc) = Pr [Read(Sg, a) 6= Read(Sc, a)|a ∈

{0, 1}la]. When λ(Sg, Sc) is sufficiently large, we can easily detect the modifications in the

memory. The second factor is related to the memory content bias in Pg. For instance, the

program in Pg usually contains a large amount of duplicated assembly code such as mov,

jmp, call, cmp, nop, etc. These assembly code can be approximated with high probability.

As a consequence, the compromised prover can overwrite the biased memory content into

malicious code and recover the original content using a recovering algorithm C with high

probability. Assume the overwriting algorithm isW , the minimal overwriting potion is µ,

and memory recovering time dC is no more than δ · dRead as required, we could calculate

114

the optimal success probability of the memory recovery as

Pm(S, µ, δ) = max C,W{Pr [Read(S, a) = C(W(S), a)

| a ∈ {0, 1}la]| δ · dRead ≥ dC ∧ λ(S,W(S)) ≥ µ}

for any recovering algorithm C and overwriting algorithm W . δ is the allowed timing

overhead for the recovering algorithm comparing with the Read operation. We will discuss

more about δ in Section 5.3.4. When δ ≥ 1, we can always implement the recovering

algorithm C for any S as C(S, a) = Read(S, a), so Pm(S, µ, δ) ≥ 1− µ.

Since Pc needs to recover the memory content for n times in the checksum compu-

tation routine, he can compute the correct checksum if either the memory is recovered

successfully for every iteration or the computed checksum collides with the correct one.

So overall success probability for Pc is Pnm(S, µ, δ) + (1 − Pnm(S, µ, δ)) · 2−lr . As can be

seen from the formula, the success probability is lower-bounded by 2−lr . So increasing

n becomes less significant when n becomes larger. As a consequence, we can define a

threshold η for the potential probability increase and then give a lower-bound to the n

used in the checksum computation.

Pnm(S, µ, δ) · (1− 2−lr) ≤ η =⇒ n ≥ log(η)− log(1− 2−lr)

log(Pm(S, µ, δ))
(5.2)

In this work, we suggest to set η = 2−lr which is the success probability’s lower-bound.

Additionally, we recommend the attestation protocols to set n as the lower-bound given

in formula (5.2) for efficiency and conduct the checksum computation phase (Phase 2) for

multiple times to give better security guarantee.

Full Randomization of Data Memory. In the first phase of the generic attestation scheme,

V asksP to overwrite its data memory with S ′d filled with noise. The unpredictability of S ′d

enforces P to erase its data memory completely. A similar design is taken in [44], but its

S ′d is generated by P using a PRNG seeded by a challenge sent from V . As we discussed

above, the recovering algorithm can use the PRNG to generate the memory state with the

115

received challenge at runtime, so Pc can trade the computation time for memory space. As

a result, Pc can keep the malicious code in its memory, but still produce a valid checksum.

In Section 5.3.4, we show that the checksum computation can have overhead to a degree,

so this attack is practical. We thus emphasize that S ′d should be fully randomized by V .

5.3.3 Pc Pre-compute Checksum: Challenge Buffering Attack

The attestation scheme is trivially vulnerable to challenge buffering attack that stores the

challenge-response pairs directly in the memory. Upon receiving a particular challenge

from V , Pc looks for the corresponding checksum from its memory without computation.

Since S ′d and o are received in the attestation procedure, the challenge-response stored in

the memory is the tuple 〈o, rn〉 which has the length of lo + lr. Thus, the memory can

hold m · lc/(lo + lr) records at most. Additionally, we have 2lo different receivable values.

When Pc cannot find the record, he can choose a random response from {0, 1}lr . As a

consequence, the probability of computing the correct response with challenge buffering

attack method for Pc can be expressed as follows.

Pb(lo, lc, lr,md,m) = b+
1− b
2lr

where b =
m · lc

(lo + lr) · 2lo
(5.3)

As can be seen, Pb(lo, lc, lr,md,m) is also lower-bounded by 2−lr . So we make the similar

suggestion for formula (5.3) as in Section 5.3.2 that b · (1− 2−lr) ≤ 2−lr .

5.3.4 Pc Forward Checksum Computation to A: Proxy Attack

As reported in [79], the software-based attestation is particular vulnerable to the proxy

attack, in which the compromised prover Pc forwards the challenge to the adversary A (a

base station) and asks A to compute the checksum for it. In order to prevent the proxy

attack, the expected checksum computation time should be no larger than a time bound,

so that Pc does not have time to wait for the response from A. However, one assumption

should be made that A cannot personate Pc and communicate with V directly. Otherwise,

116

the software-based attestation is trivially broken. The assumption can be hold when V is

connected to Pc using special channels (e.g., bus, usb) that A has no direct access to.

Assume the network RTT between V and Pg varies from Tmin
V to Tmax

V and the honest

prover Pg can finish the checksum computation with time dg = n · (dGen +dAddr +dRead +

dChk), the timing threshold dth on the verifier side thus should be configured as

dth ≥ dg + Tmax
V (5.4)

to ensure the correctness of the attestation protocol defined in Section 5.2. Hence, the

maximum usable time for Pc can be defined as dc(T) = dth − T , where T ∈ [Tmin
V , Tmax

V]

is the real network latency between Pc and V .

On one hand, Pc could use dc(T) to conduct the proxy attack. If the network RTT

between A and Pc varies from Tmin
A and Tmax

A , in order to prevent the proxy attack com-

pletely, we need to make sure that dc(Tmin
V) < Tmin

A , which means the proxy attack cannot

be conducted even under the optimal RTT forPc. Thus, the attestation time for the genuine

prover should be constrained by

dth < Tmin
A + Tmin

V . (5.5)

On the other hand, Pc could use dc(T) to conduct the memory recovering attack. So

we calculate the δ specified in the memory recovery attack as follows.

dGen + dAddr + δ · dRead + dChk

dGen + dAddr + dRead + dChk

=
dc(T)

dg
=
dth − T
dg

(5.6)

Since, δ ∝ d−1g ∝ n−1, in order to keep the δ small, the checksum computation routine

should use the largest n as possible, when formula (5.4) and (5.5) are still satisfied.

5.4 Case Studies

In this section, we analyze three well-known software-based attestation protocols, i.e.,

SWATT [108], SCUBA [106] and VIPER [79]. Since the generic software-based attes-

tation scheme is configured with the parameters listed in Table 5.1, we first extract them

117

Parameters SWATT SCUBA VIPER
lo, lg, lr (bit) 2048, 16, 64 128, 16, 160 -, 32, 832
lc, la (bit) 8, 14 8, 7 8, 13
md,mp,m (unit) 1K, 16K, 17K 0K, 512, 58K 0K, 8K, 4120K
Tmin
A , Tmax

A - ≤ 22ms, 51ms 1152ns(43.34ms), 44.10ms
Tmin
V , Tmax

V - ≤ 22ms, 51ms 1375ns, 1375ns
dth , dg -, 1.8s 2.915s, 2.864s 2300ns, 827ns
n, k, u 3.2E+05, 1, 8 4.0E+04, 1, 10 3, 300, 26

Table 5.2: Settings of Software-based Attestation Protocols Studied in Section 5.4

from the real protocols as shown in Table 5.2. As can be seen, our generic attestation

scheme can capture existing software-based attestation protocols readily. Then, we apply

the security criteria described in Section 5.3 manually to the extracted parameters to find

security flaws. In the following subsections, we briefly introduce the protocols first, and

then give detailed vulnerabilities and justifications grouped by the topics in bold font. We

mark the topics with “?” if they are reported for the first time in the literature.

5.4.1 SWATT

SWATT [108] randomly traverses the memory to compute the checksum. Its security is

guaranteed by the side channel on time consumed in the checksum computation. SWATT

does not consider network RTT, so we do not discuss time related properties for SWATT.

In addition, SWATT uses RC4 as the PRNG and takes the challenge as the seed of the

RC4. As the length of the challenge chosen in the SWATT is not mentioned in [108], we

assume that the challenge is long enough to fully randomize the initial state of RC4, which

means lo = 256 · 8 bits.

Unattested Data Memory. The micro-controller in SWATT has 16KB program memory

and 1KB data memory. Based on the analysis of the generic attestation scheme, SWATT

is insecure because it neither has Secure Erasure Phase to overwrite the data memory

nor uses any additional complement to secure the data memory. In fact, the authors of

118

SWATT assumed in [108] that non-executable data memory can do no harm to the security

of software-based attestation by mistake. In [39], Castelluccia et al. point out that the

data memory should be verified in SWATT, otherwise the protocol is vulnerable to the

ROP [109, 34] attack. In this work, we suggest to securely erase the data memory in

SWATT by following our generic attestation scheme.

?Too Large Iteration Number for Computing One Checksum. The main loop of

SWATT has only 16 assembly instructions, which takes 23 machine cycles. Inserting one

if statement in the loop will cause additional 13% overhead. As a result, we assume that

the recovering algorithm C only has time to read the memory content as Read does without

doing any extra computation. Hence, the success probability of the memory recovering of

SWATT becomes Pm(S, µ, δ) = 1−µ, where µ is the percentage of the modified memory.

According to the formula (5.2), after setting η as suggested, we have n ≥ −64/log(1−µ).

When µ = 0.001 which left only 16 byte memory for the adversary, we should set n

as 44340, which is much smaller than the iteration number 320000 used in SWATT. In

order to increase the difficulty of attacking the attestation protocol and traverse the mem-

ory address in the platform, more rounds of checksum computation could be conducted.

According to formula (5.1), when µ = 0.001, n = 44340 and c = 2 (the same setting

in SWATT), we have k ≥ 11. So we should conduct the checksum computation for 11

times. By using this new configuration, the overall memory access time is approximately

the same as SWATT while security guarantee becomes dramatically better.

5.4.2 SCUBA

SCUBA [106] is a software-based attestation protocol that based on Indisputable Code

Execution (ICE). Rather than attesting the whole memory, the ICE offers security guar-

antee by only verifying a small portion of the code. The Read and Chk implemented in

the ICE scheme are different from those given in Section 5.2.2. However, they can be

generalized into our framework. In SCUBA, Read not only reads the memory content, but

119

also returns the Program Pointer (PC), the current address, the current generator, the loop

counter and other registers. The Chk function then computes the checksum based on all

of them. In order to compute the correct checksum for the modified attestation routine, the

malicious prover has to simulate the execution for all of them, which thus lead to large and

detectable overhead on the computation time. If the malicious prover do not change the

attested code, the attested code can update the prover’s whole memory to a genuine state

so the malicious code shall be removed from the prover.

?Proxy Attack is Indefensible. In SCUBA, network RTT is explicitly evaluated in the

experiment as summarized in Table 5.2. The prover in SCUBA communicates with the

verifier over wireless network. Even though the adversary is assumed to be physically

absent during the attestation in SCUBA, this assumption seems to be too strong to be hold

when a wireless network presents. Thus, we give a detailed analysis for the proxy attack

to SCUBA as follows.

According to [106], the maximum network RTT is 51ms in SCUBA. By observing

the experiment results, the minimum network RTT should be no larger than 22ms. As the

adversary and the verifier share the same wireless network, the network latency for their

communication with the prover should be indifferent. So we have Tmin
A = Tmin

V ≤ 22ms

and Tmax
A = Tmax

V = 51ms. According to formula (5.4), we have dth ≥ dg + Tmax
V ≥

51ms. On the other hand, according to formula (5.5), we have dth < Tmin
A +Tmin

V ≤ 44ms.

Hence, we cannot find a valid threshold dth from this network configuration. When the

adversary presents in the attestation, the proxy attack thus cannot be defended by SCUBA

without additional assumptions.

Moreover, if the verifier does not communicate with the prover with a secure channel

(e.g., the verifier uses the wireless network to the communicate with the prover in this

case), the adversary can personate the prover and send the checksum to the verifier directly.

Since the adversary can compromise the prover, he can obtain the secret key stored in

120

the prover as well. So encrypting the wireless channel will not work. We suggest that

the verifier should communicate with the prover in an exclusive method, such as the usb

connection, which is also inexpensive. More importantly, the adversary cannot use this

communication method as it is highly controllable.

Security Claim Justification. Our framework can not only be used to find potential vul-

nerabilities, but also give justifications to the security claims made in existing works. In

SCUBA [106], the malicious prover may exploit the network latency to conduct memory

recovering attack without being detected. However, if the timing overhead of the attack is

even larger than the largest network latency, the attack then becomes detectable. Accord-

ing to this, the authors of SCUBA claim that the checksum computation time adopted in

SCUBA can always detect the memory copy attack, which is the most efficient memory

recovering attack method known to the authors, even if the malicious prover can commu-

nicate without network delay.

In this work, we can justify their security claim with our framework. When the proxy

attack is not considered in SCUBA, increasing the checksum computation time does not

introduce vulnerability. According to formula (5.6), we have dc(T)/dg = (dth − T)/dg.

The experiment results in [106] show that the memory copy attack is most efficient at-

tack which introduces 3% overhead to the checksum computation. In order to detect the

memory copy attack, we should ensure that ∀T ∈ [Tmin
V , Tmax

V], dc(T)/dg < 1.03. As we

assume that the malicious prover can communicate without network delay, we set Tmin
V

as 0. By applying formula (5.4), we have dg > 1700ms. Since dg chosen in SCUBA is

indeed larger than 1700ms, the security claim made by the authors is valid.

5.4.3 VIPER

VIPER [79] is a software-based attestation scheme designed to verify the integrity of pe-

ripherals’ firmware in a typical x86 computer system. They are proposed to defend all

known software-based attacks, including the proxy attack.

121

?Absence of Random Function. VIPER uses a similar design as ICE scheme, while its

generators are not produced by a PRNG during the checksum computation, which does

not comply to our generic attestation scheme. The authors implement the checksum func-

tion into 32 code blocks. One register is updated in every code block with the memory

content and the program counter (PC). Both of the code block and the memory address

are chosen based on the current checksum. Thus, the randomness of the checksum is

purely introduced by the PC and the memory content. However, the PC is incremented in

a deterministic way inside each code block and the memory content usually is biased as

illustrated in Section 5.3.2. As the randomness could be biased, the adversary can traverse

all challenge values and he may find some memory addresses that are unreachable for

the checksum computation routine, as we discussed in Section 5.3.1. Hence, the security

provided by VIPER is unclear.

?Insufficient Iteration Number. In VIPER, the number of iterations used in the checksum

computation routine is only 3, which leads to at least 23 unused registers in the attestation.

Vulnerabilities may be introduced as discussed in Section 5.3.1. Even if the registers are

chosen in a fully randomized manner and the adversary cannot predict which register will

be used beforehand, the malicious prover still has a high probability to use some registers

without being detected. In fact, two or even one register could be enough for conducting

an attack in practice.

5.5 Related Works

A large amount of software-based attestation protocols have been designed and imple-

mented [66, 108, 63, 110, 107, 106, 120, 62, 7, 97, 79, 71]. Specifically, SWATT [108] is a

software-based attestation scheme that uses the response timing of the memory checksum

computation to identify the compromised embedded devices. In order to prevent replay at-

tack, the prover’s memory is traversed in SWATT in a random manner based on a challenge

122

sent from the verifier. Rather than attesting the whole memory content, SCUBA [106] only

checks the protocol implemented in the embedded devices and securely updates the mem-

ory content of the embedded devices after the attestation is finished successfully. It is

based on the ICE (Indisputable Code Execution) checksum computation scheme, which

enables the verifier to obtain an indisputable guarantee that the SCUBA protocol will be

executed as untampered in the embedded devices. VIPER [79] is later proposed to de-

fense against the adversary who can communicate with the embedded devices during the

attestation. Network latency is consider in VIPER to prevent the proxy attack. Perito et

al. [97] develop a software-based secure code update protocol. It first overwrites the target

device’s whole memory with random noise and then asks the target device to generate a

checksum based on its memory state. The target device could generate the correct check-

sum only if it has erased all its memory content, so the malicious code should also be

removed. Besides the attestation protocol designed for resource constrained devices, Se-

shadri et al. [107] develop the software-based attestation protocol named Pioneer for the

Intel Pentium IV Xeon Processor with x86 architecture.

However, the software-based attestation protocol design is challenging and error-prone [111,

39]. Hence, it becomes necessary and urgent to develop an analysis framework for the at-

testation protocol design. Armknecht et al. [15] recently provide a security framework

for the analysis and design of software attestation. In their work, they assume the crypto-

graphic primitives such as Pseudo-Random Number Generators (PRNGs) and hash func-

tions might be insecure and give a upper-bound to the advantage of the malicious prover

in the attestation scheme. They mainly consider six factors: (1) the memory content could

be biased; (2) the memory addresses traversed in the checksum computation may not be

fully randomized; (3) the memory addresses could be computed without using the default

method; (4) the correct checksum could be computed without finishing the checksum com-

putation routine; (5) the checksum could be generated without using the default checksum

computation function; (6) the challenge-response pairs could be pre-computed and stored

123

in the memory. In this work, we do not consider factor (2-5) based on two reasons. First,

the attestation routine used in the protocol can be updated at runtime, so we can always up-

date the cryptographic functions to meet the higher security standard and requirement. For

instance, since the hash function like MD5 could be insecure, we can replace it with SHA-

2 or SHA-3 to reclaim security. More importantly, the upper-bounds of the factor (2-5)

are very hard to measure in practice. For example, given a well-known weak hash func-

tion like MD5, it is hard to measure the time-bounded pseudo-randomness, corresponding

to factor (2), defined in [15]. Comparing with [15], we additionally consider observable

network latency, stronger threat model, unpredictable data memory, several security crite-

ria and various attack schemes. More importantly, our framework has been successfully

applied to several existing software-based attestation protocols to find vulnerabilities.

5.6 Discussions

In this work, we present a practical analysis framework for software-based attestation

scheme. We explicitly consider the network latency and the data memory in the system.

Furthermore, the adversary presented in this work can not only reprogram the compro-

mised provers before the attestation but also communicate with them during the attestation.

We successfully apply our framework to three well-known software-based attestation pro-

tocols manually. The results show that our framework can practically find security flaws

in their protocol design and give justifications to their security claims.

The deployment environment, including device architecture, network environment, ef-

ficiency requirement, etc. usually complicates the correctness of the software-based at-

testation protocols. Specifically, identifying the most effective overwriting and recovering

algorithms becomes very hard, which limits the application of our framework. For fu-

ture works, we believe that fine-grain measurement for the overwriting and recovering

algorithms in the practical application context is useful. Another future work is investi-

124

gating the impact of timing requirement when the attestation efficiency is concerned. In

this work, we assume that software-based attestation can take as much time as it needs.

Nevertheless, in reality, we may require the attestation protocols to be finished within a

timing threshold. Hence, the probability of identifying the compromised prover will be

affected, and choosing the right configurations (e.g., the iteration number) then becomes

more challenging.

125

Chapter 6

Conclusions

In the thesis, we first present an analysis to a vehicle charging protocol in Chapter 2 that

considers many security properties including secrecy, authentication and privacy. During

the analysis, we find several weaknesses of the existing tools as they either make strong

abstractions during the verification or cannot verify security protocols for an unbounded

number of sessions. Hence, we propose a verification framework that can verify protocols

of an unbounded number of sessions without abstraction, which is particularly useful for

verifying timed security protocols as shown in Chapter 3. We prove the partial correctness

of the verification algorithm and use it to check many security protocols efficiently. Con-

sidering the timing is fixed in Chapter 3 but it should be flexible in design, we extend our

framework with capabilities to verify parameterized timed protocols in Chapter 4. Further-

more, we develop the timed applied π-calculus as a specification language so that timed

security protocols can be specified in a concise and natural way. However, the security

protocols may consider physical properties in their execution context so that they cannot

be specified and verified using symbolic verification method directly. In order to analyze

the protocols with physical properties, we propose an analysis approach to generalize the

126

protocol design into a generic scheme and check the correctness based on the scheme in

Chapter 5. We use this approach to analyze a family of the software-based attestation

protocols and find several security weaknesses in them.

Based on the above works, I believe that our framework can be applied to verifying

real security protocol specifications and implementations efficiently and automatically.

Extensions required for specific domains can be extended to our framework readily. By

using my current works as a verification foundation, I would like to continue my research

in the following research topics.

Automatic verification for security protocol implementations. The protocol implemen-

tation usually does not completely comply with its formal specification. This can result

from the incomplete interface specifications, additional environment requirements, etc. In

order to ensure the correctness of protocol implementation, studying the approach that

extracts the security protocol directly from their implementations and verifies it in our

framework can be very interesting. The basic idea is as follows. First, we need to translate

the implementation into an intermediate representation consisting of branches guarded by

condition checking, API invoking and network communication using Control Flow Graph

(CFG) [8]. Then, the intermediate model can be transformed into our verification frame-

work based on the functional mapping between the APIs and their symbolic representa-

tions. Finally, if any security flaw is found during the verification, we need to validate it in

the original implementation and refine the protocol abstraction whenever false alarm oc-

curs. I believe the automatic verification of security protocol implementations is extremely

promising.

A heuristic method for pruning non-terminable verification branches. The security

protocol verification for an unbounded number of sessions has been proved as undecidable,

so the termination of verification cannot be guaranteed in general. In our framework, the

nontermination is introduced by two factors: the infinite knowledge deduction and the

127

infinite timing expansion. We resolve the second one by introducing over-approximation

to the timing constraints. However, the first factor still persists in our framework. Even

though no general approach exists for deciding the termination of verification process,

detecting the non-terminable cases heuristically is still possible so that we can prune some

of the verification branches without affecting the final result. This work could help us

to verify large-sized and complex protocols that we cannot verify currently, because our

verification algorithm only considers the general approach at present.

A compositional approach for automatic security protocol generation. Designing se-

curity protocols is challenging and error-prone. Fortunately, automatic generation of se-

curity protocols is possible. Several methods [99, 98] have been previously proposed by

many researchers. However, existing methods are inefficient. Recently, a new compo-

sitional security paradigm is proposed, which is called universal composable (UC) secu-

rity [37]. It has a salient property that a secure protocol can be constructed with an arbi-

trary set of protocol components compositionally. Under this paradigm, we can specify

these security protocol components in our security protocol verification framework, and

efficiently search for security protocols with the required properties under our framework.

Extending PAT to verify security protocols. PAT [117] has been successfully applied to

verifying security protocols [88]. PAT is a compact tool which supports verification of real-

time systems [10, 116] with model checking [114, 81] as well as hybrid approach [115]. I

believe that extending PAT with security protocol verification could make it a comprehen-

sive verification tool for the end-users. The security protocol verification could also benefit

from its explicit model checking engine to handle protocol states and global variables.

128

Bibliography

[1] Models of the electric vehicle charging protocol in ProVerif and Tamarin.
http://www.comp.nus.edu.sg/˜li-li/r/saevcp.html.

[2] Timed and untimed models for TAuth.
http://www.comp.nus.edu.sg/˜li-li/r/time.html.

[3] Trusted Platform Module.
http://www.trustedcomputinggroup.org/developers/
trusted_platform_module.

[4] M. Abadi. Explicit communication revisited: Two new attacks on authentication
protocols. IEEE Trans. Software Eng., 23(3):185–186, 1997.

[5] M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In POPL, pages 104–115, 2001.

[6] M. Abadi and R. M. Needham. Prudent engineering practice for cryptographic
protocols. IEEE Trans. Software Eng., 22(1):6–15, 1996.

[7] T. AbuHmed, N. Nyamaa, and D. Nyang. Software-based remote code attestation
in wireless sensor network. In Proc. of the Global Communications Conference
(GLOBECOM’09), pages 1–8. IEEE, 2009.

[8] F. E. Allen. Control flow analysis. In Proc. of a Symposium on Compiler Optimiza-
tion, pages 1–19. ACM, 1970.

[9] R. Anderson and R. Needham. Programming satan’s computer. In Computer Sci-
ence Today, volume 1000, pages 426–440. Springer, 1995.

[10] É. André, Y. Liu, J. Sun, and J. S. Dong. Parameter synthesis for hierarchical
concurrent real-time systems. Real-Time Systems, 50(5-6):620–679, 2014.

[11] H. Andréka, I. Németi, and J. van Benthem. Modal languages and bounded frag-
ments of predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998.

129

[12] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In Proc. 23rd IEEE Computer Security
Foundations Symposium (CSF), pages 107–121. IEEE CS, 2010.

[13] M. Arapinis, E. Ritter, and M. D. Ryan. StatVerif: Verification of stateful processes.
In Proc. 24th IEEE Computer Security Foundations Symposium (CSF), pages 33–
47. IEEE CS, 2011.

[14] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap
architecture. In Proc. of 1997 IEEE Symposium on Security and Privacy (S&P’97),
pages 65–71. IEEE CS, 1997.

[15] F. Armknecht, A.-R. Sadeghi, S. Schulz, and C. Wachsmann. A security frame-
work for the analysis and design of software attestation. In Proc. of the 2013 ACM
SIGSAC Conference on Computer and Communications Security (CCS’13), pages
1–12. ACM, 2013.

[16] M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA. In Proc. 5th
Conference on Security and Cryptography for Networks (SCN), volume 4116 of
LNCS, pages 111–125, 2006.

[17] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex
polyhedra and the parma polyhedra library. In SAS, pages 213–229. Springer, 2002.

[18] G. Bai. Formally Analyzing and Verifying Secure System Design and Implementa-
tion. PhD thesis, National University of Singapore, 2015.

[19] G. Bai, J. Hao, J. Wu, Y. Liu, Z. Liang, and A. Martin. TrustFound: Towards a
Formal Foundation for Model Checking Trusted Computing Platforms. In Proc. of
the 19th International Symposium on Formal Methods (FM), pages 110–126, 2014.

[20] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena, J. Sun, Y. Liu, and J. S.
Dong. AuthScan: Automatic Extraction of Web Authentication Protocols from
Implementations. In Proc. of the 20th Annual Network and Distributed System
Security Symposium (NDSS), February 2013.

[21] G. Bai, J. Sun, J. Wu, Q. Ye, L. Li, J. S. Dong, and S. Guo. All Your Sessions
are Belong to us: Investigating Authenticator Leakage through Backup Channels
on Android. In Proceedings of the 20th International Conference on Engineering
of Complex Computer Systems (ICECCS), 2015.

[22] E. B. Barker, W. C. Barker, W. E. Burr, W. T. Polk, and M. E. Smid. SP 800-
57. Recommendation for key management. Technical report, National Institute of
Standards & Technology, 2007.

130

[23] D. A. Basin, S. Capkun, P. Schaller, and B. Schmidt. Formal reasoning about phys-
ical properties of security protocols. ACM Trans. Inf. Syst. Secur., 14(2):16, 2011.

[24] D. A. Basin and C. J. F. Cremers. From dolev-yao to strong adaptive corruption:
Analyzing security in the presence of compromising adversaries. IACR Cryptology
ePrint Archive, 2009:79, 2009.

[25] D. A. Basin and C. J. F. Cremers. Degrees of security: Protocol guarantees in the
face of compromising adversaries. In Computer Science Logic, 24th International
Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Repub-
lic, August 23-27, 2010. Proceedings, volume 6247 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2010.

[26] D. A. Basin and C. J. F. Cremers. Modeling and analyzing security in the pres-
ence of compromising adversaries. In Computer Security - ESORICS 2010, 15th
European Symposium on Research in Computer Security, Athens, Greece, Septem-
ber 20-22, 2010. Proceedings, volume 6345 of Lecture Notes in Computer Science,
pages 340–356. Springer, 2010.

[27] G. Bella and L. C. Paulson. Kerberos version 4: Inductive analysis of the secrecy
goals. In ESORICS, pages 361–375. Springer, 1998.

[28] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[29] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
CSFW, pages 82–96. IEEE CS, 2001.

[30] B. Blanchet. From secrecy to authenticity in security protocols. In Static Analysis,
9th International Symposium, SAS 2002, Madrid, Spain, September 17-20, 2002,
Proceedings, volume 2477 of Lecture Notes in Computer Science, pages 342–359.
Springer, 2002.

[31] B. Blanchet. Automatic proof of strong secrecy for security protocols. In Proc./
of IEEE Symposium on Security and Privacy, pages 86–. IEEE Computer Society,
2004.

[32] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiva-
lences for security protocols. J. Log. Algebr. Program., 75(1):3–51, 2008.

[33] S. Brands and D. Chaum. Distance-bounding protocols (extended abstract). In
EUROCRYPT, volume 765 of Lecture Notes in Computer Science, pages 344–359.
Springer, 1993.

131

[34] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions go
bad: generalizing return-oriented programming to risc. In Proc. of the 2008 ACM
Conference on Computer and Communications Security (CCS’08), pages 27–38.
ACM, 2008.

[35] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. ACM Trans.
Comput. Syst., 8(1):18–36, 1990.

[36] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad. Formal analysis
of kerberos 5. Theor. Comput. Sci., 367:57–87, 2006.

[37] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. of the 42nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 136–145, 2001.

[38] S. Capkun and J.-P. Hubaux. Secure positioning in wireless networks. IEEE Journal
on Selected Areas in Communications, 24(2):221–232, 2006.

[39] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the difficulty of
software-based attestation of embedded devices. In Proc. of the 2009 ACM Confer-
ence on Computer and Communications Security (CCS’09), pages 400–409. ACM,
2009.

[40] CCITT. The directory authentication framework - Version 7, 1987. Draft Recom-
mendation X.509.

[41] I. Cervesato, N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-
notation for protocol analysis. In CSFW, pages 55–69. IEEE CS, 1999.

[42] I. Cervesato, N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-
notation for protocol analysis. In Proc. 12th IEEE Computer Security Foundations
Workshop (CSFW), pages 55–69. IEEE CS, 1999.

[43] V. Cheval and B. Blanchet. Proving more observational equivalences with proverif.
In Principles of Security and Trust - Second International Conference, POST 2013,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7796 of
Lecture Notes in Computer Science, pages 226–246. Springer, 2013.

[44] Y.-G. Choi, J. Kang, and D. Nyang. Proactive code verification protocol in wire-
less sensor network. In Computational Science and Its Applications (ICCSA’07),
volume 4706 of LNCS, pages 1085–1096. Springer, 2007.

132

[45] T. Chothia, B. Smyth, and C. Staite. Automatically checking commitment protocols
in proverif without false attacks. In POST, pages 137–155, 2015.

[46] A. Church. A function of positive integers is effectively calculable only if recursive.
1936.

[47] R. Corin, S. Etalle, P. H. Hartel, and A. Mader. Timed model checking of security
protocols. In FMSE, pages 23–32. ACM, 2004.

[48] C. Cremers. The Scyther tool: Verification, falsification, and analysis of security
protocols. In CAV, pages 414–418. Springer, 2008.

[49] C. J. F. Cremers. Formally and practically relating the ck, ck-hmqv, and eck security
models for authenticated key exchange. IACR Cryptology ePrint Archive, 2009:253,
2009.

[50] C. J. F. Cremers. Session-state reveal is stronger than ephemeral key reveal: Attack-
ing the naxos authenticated key exchange protocol. In Applied Cryptography and
Network Security, 7th International Conference, ACNS 2009, Paris-Rocquencourt,
France, June 2-5, 2009. Proceedings, volume 5536 of Lecture Notes in Computer
Science, pages 20–33, 2009.

[51] C. J. F. Cremers and M. Feltz. Beyond eck: Perfect forward secrecy under actor
compromise and ephemeral-key reveal. In Computer Security - ESORICS 2012 -
17th European Symposium on Research in Computer Security, Pisa, Italy, Septem-
ber 10-12, 2012. Proceedings, volume 7459 of Lecture Notes in Computer Science,
pages 734–751. Springer, 2012.

[52] C. J. F. Cremers, S. Mauw, and E. P. de Vink. Injective synchronisation: An ex-
tension of the authentication hierarchy. Theor. Comput. Sci., 367(1-2):139–161,
2006.

[53] S. Delaune, S. Kremer, and M. Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

[54] G. Delzanno and P. Ganty. Automatic verification of time sensitive cryptographic
protocols. In TACAS, pages 342–356. Springer, 2004.

[55] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Com-
mun. ACM, 24(8):533–536, 1981.

[56] D. Dolev and A. C.-C. Yao. On the security of public key protocols. IEEE Trans-
actions on Information Theory, 29(2):198–207, 1983.

133

[57] N. Dong, H. L. Jonker, and J. Pang. Formal analysis of privacy in an eHealth
protocol. In Proc. 17th European Symposium on Research in Computer Security
(ESORICS), volume 7459 of LNCS, pages 325–342. Springer, 2012.

[58] P. England, B. W. Lampson, J. Manferdelli, M. Peinado, and B. Willman. A trusted
open platform. IEEE Computer, 36(7):55–62, 2003.

[59] N. Evans and S. Schneider. Analysing time dependent security properties in csp
using pvs. In ESORICS, pages 222–237. Springer, 2000.

[60] F. J. T. Fábrega. Strand spaces: proving security protocols correct. Journal Com-
puter Security, 7(2-3):191–230, 1999.

[61] A. Francillon, B. Danev, and S. Capkun. Relay attacks on passive keyless entry and
start systems in modern cars. In NDSS. The Internet Society, 2011.

[62] R. W. Gardner, S. Garera, and A. D. Rubin. Detecting code alteration by creating
a temporary memory bottleneck. IEEE Transactions on Information Forensics and
Security, 4(4), 2009.

[63] J. T. Giffin, M. Christodorescu, and L. Kruger. Strengthening software self-
checksumming via self-modifying code. In Proc. of the 21st Annual Computer
Security Applications Conference (ACSAC’05), pages 23–32. IEEE CS, 2005.

[64] J. Hao, Y. Liu, W. Cai, G. Bai, and J. Sun. vTRUST: A Formal Modeling and Ver-
ification Framework for Virtualization Systems. In 15th International Conference
on Formal Engineering Methods (ICFEM), pages 329–346, 2013.

[65] G. Jakubowska and W. Penczek. Is your security protocol on time? In FSEN, pages
65–80. Springer, 2007.

[66] R. Kennell and L. H. Jamieson. Establishing the genuinity of remote computer
systems. In Proc. of the 12th Conference on USENIX Security Symposium, pages
21–21. USENIX, 2003.

[67] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang. Remote attestation to
dynamic system properties: Towards providing complete system integrity evidence.
In Proc. of the 2009 IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’09), pages 115–124. IEEE, 2009.

[68] A. Klimov and A. Shamir. New cryptographic primitives based on multiword t-
functions. In Proc. of the 11th International Workshop on Fast Software Encryption
(FSE’04), volume 3017 of LNCS, pages 1–15. Springer, 2004.

134

[69] J. Kohl and B. C. Neuman. The Kerberos Network Authentication Service (Version
5). Internet Request for Comments RFC-1510. RFC Editor, 1993.

[70] J. T. Kohl, B. C. Neuman, and T. Y. T’so. The evolution of the kerberos authentica-
tion system. In Distributed Open Systems, pages 78–94. IEEE CS, 1994.

[71] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and J. Butterworth.
New results for timing-based attestation. In Proc. of IEEE Symposium on Security
and Privacy (S&P’12), pages 239–253. IEEE CS, 2012.

[72] H. Krawczyk. Skeme: a versatile secure key exchange mechanism for internet. In
NDSS, pages 114–127. IEEE CS, 1996.

[73] S. Kremer and R. Künnemann. Automated analysis of security protocols with global
state. In Proceedings of the Symposium on Security and Privacy, pages 163–178,
2014.

[74] LDAP Account Manager. Kerberos V implementation heimdal-1.5.2. http://
www.h5l.org, 2014.

[75] L. Li, H. Hu, J. Sun, Y. Liu, and J. S. Dong. Practical analysis framework for
software-based attestation scheme. In Proc. 16th International Conference on For-
mal Engineering Methods, pages 284–299. Springer, 2014.

[76] L. Li, J. Pang, Y. Liu, J. Sun, and J. S. Dong. Symbolic analysis of an electric
vehicle charging protocol. In Proc. 19th International Conference on Engineering
of Complex Computer Systems, pages 11–18. Springer, 2014.

[77] L. Li, J. Sun, Y. Liu, and J. S. Dong. Tauth: Verifying timed security protocols. In
Proc. 16th International Conference on Formal Engineering Methods, pages 300–
315. Springer, 2014.

[78] L. Li, J. Sun, Y. Liu, and J. S. Dong. Verifying parameterized timed security pro-
tocols. In Proc. of the 20th International Symposium on Formal Methods, page
342–359. Springer, 2015.

[79] Y. Li, J. M. McCune, and A. Perrig. Viper: verifying the integrity of peripherals’
firmware. In Proc. of the 18th ACM Conference on Computer and Communications
Security (CCS’11), pages 3–16. ACM, 2011.

[80] J. K. Liu, M. H. Au, W. Susilo, and J. Zhou. Enhancing location privacy for electric
vehicles (at the right time). In Proc. 17th European Symposium on Research in

135

Computer Security (ESORICS), volume 7459 of LNCS, pages 397–414. Springer,
2012.

[81] Y. Liu, J. Sun, and J. S. Dong. An analyzer for extended compositional process
algebras. In 30th International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 10-18, 2008, Companion Volume, pages 919–920, 2008.

[82] G. Lowe. An attack on the needham-schroeder public-key authentication protocol.
Information Processing Letters, 56:131–133, 1995.

[83] G. Lowe. Breaking and fixing the needham-schroeder public-key protocol using
fdr. In TACAS, pages 147–166. Springer, 1996.

[84] G. Lowe. A family of attacks upon authentication protocols. Technical report,
Department of Mathematics and Computer Science, University of Leicester, 1997.

[85] G. Lowe. A hierarchy of authentication specification. In CSFW, pages 31–44. IEEE
Computer Society, 1997.

[86] G. Lowe. Casper: A compiler for the analysis of security protocols. Journal of
Computer Security, 6(1-2):53–84, 1998.

[87] G. Lowe. Towards a completeness result for model checking of security protocols.
Journal of Computer Security, 7(1):89–146, 1999.

[88] A. T. Luu, J. Sun, Y. Liu, J. S. Dong, X. Li, and T. T. Quan. Seve: automatic
tool for verification of security protocols. Frontiers of Computer Science in China,
6(1):57–75, 2012.

[89] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The Tamarin prover for the
symbolic analysis of security protocols. In CAV, pages 696–701. Springer, 2013.

[90] MIT. Kerberos V implementation krb5-1.13. http://web.mit.edu/
kerberos/, 2014.

[91] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic proto-
cols using Murϕ;. In S&P, pages 141–151, 1997.

[92] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.

[93] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 12 1978.

136

[94] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 1978.

[95] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network Authenti-
cation Service (Version 5). RFC-4120. RFC Editor, 2005.

[96] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Proc. 11th Annual International Cryptology Conference (CRYPTO),
volume 576 of LNCS, pages 129–140. Springer, 1991.

[97] D. Perito and G. Tsudik. Secure code update for embedded devices via proofs
of secure erasure. In Proc. 15th European Symposium on Research in Computer
Security (ESORICS’10), volume 6345 of LNCS, pages 643–662. Springer, 2010.

[98] A. Perrig and D. Song. Looking for diamonds in the desert - extending automatic
protocol generation to three-party authentication and key agreement protocols. In
Proc. of the 13th IEEE Computer Security Foundations Workshop (CSFW), pages
64–76, 2000.

[99] A. Perrig and D. X. Song. A first step towards the automatic generation of security
protocols. In Proc. of the Network and Distributed System Security Symposium
(NDSS), San Diego, California, USA, 2000.

[100] K. B. Rasmussen, C. Castelluccia, T. S. Heydt-Benjamin, and S. Capkun.
Proximity-based access control for implantable medical devices. In CCS, pages
410–419. ACM, 2009.

[101] A. W. Roscoe and P. J. Broadfoot. Proving security protocols with model checkers
by data independence techniques. Journal of Computer Security, 7(1):147–190,
1999.

[102] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a
tcg-based integrity measurement architecture. In Proc. of the 13th USENIX Security
Symposium, pages 223–238. USENIX, 2004.

[103] N. Sastry, U. Shankar, and D. Wagner. Secure verification of location claims. In
Workshop on Wireless Security, pages 1–10. ACM, 2003.

[104] B. Schmidt, S. Meier, C. J. F. Cremers, and D. A. Basin. Automated analysis of
diffie-hellman protocols and advanced security properties. In 25th IEEE Computer
Security Foundations Symposium, CSF 2012, Cambridge, MA, USA, June 25-27,
2012, pages 78–94. IEEE, 2012.

137

[105] S. Sedighpour, S. Capkun, S. Ganeriwal, and M. B. Srivastava. Implementation of
attacks on ultrasonic ranging systems (demo). In SenSys, page 312. ACM, 2005.

[106] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. K. Khosla. Scuba: Secure
code update by attestation in sensor networks. In Proc. of the 2006 ACM Workshop
on Wireless Security, pages 85–94. ACM, 2006.

[107] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. K. Khosla. Pio-
neer: verifying code integrity and enforcing untampered code execution on legacy
systems. In Proc. of the 20th ACM Symposium on Operating Systems Principles
(SOSP’05), pages 1–16. ACM, 2005.

[108] A. Seshadri, A. Perrig, L. van Doorn, and P. K. Khosla. Swatt: Software-based
attestation for embedded devices. In Proc. of the 2004 IEEE Symposium on Security
and Privacy (S&P’04), pages 272–. IEEE CS, 2004.

[109] H. Shacham. The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In Proc. of the 2007 ACM Conference on Computer and
Communications Security (CCS’07), pages 552–561. ACM, 2007.

[110] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim. Remote software-based attesta-
tion for wireless sensors. In Proc. of the 2nd European Workshop of Security and
Privacy in Ad-hoc and Sensor Networks (ESAS’05), pages 27–41. Springer, 2005.

[111] U. Shankar, M. Chew, and J. D. Tygar. Side effects are not sufficient to authen-
ticate software. In Proc. of the 13th USENIX Security Symposium, pages 89–102.
USENIX, 2004.

[112] D. X. Song. Athena: A new efficient automatic checker for security protocol anal-
ysis. In Proceedings of the 12th IEEE Computer Security Foundations Workshop,
CSFW 1999, Mordano, Italy, June 28-30, 1999, pages 192–202. IEEE Computer
Society, 1999.

[113] D. X. Song, S. Berezin, and A. Perrig. Athena: a novel approach to efficient au-
tomatic security protocol analysis. Journal of Computer Security, 9(1-2):47–74,
2001.

[114] J. Sun, Y. Liu, and J. S. Dong. Model checking CSP revisited: Introducing a pro-
cess analysis toolkit. In Leveraging Applications of Formal Methods, Verification
and Validation, Third International Symposium, ISoLA 2008, Porto Sani, Greece,
October 13-15, 2008. Proceedings, pages 307–322, 2008.

138

[115] J. Sun, Y. Liu, J. S. Dong, and C. Chen. Integrating specification and programs for
system modeling and verification. In TASE 2009, Third IEEE International Sym-
posium on Theoretical Aspects of Software Engineering, 29-31 July 2009, Tianjin,
China, pages 127–135, 2009.

[116] J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, and É. André. Modeling and verifying
hierarchical real-time systems using stateful timed CSP. ACM Trans. Softw. Eng.
Methodol., 22(1):3, 2013.

[117] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: towards flexible verification under
fairness. In Computer Aided Verification, 21st International Conference, CAV 2009,
Grenoble, France, June 26 - July 2, 2009. Proceedings, pages 709–714, 2009.

[118] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security
protocol correct? In Security and Privacy - 1998 IEEE Symposium on Security and
Privacy, Oakland, CA, USA, May 3-6, 1998, Proceedings, pages 160–171. IEEE
Computer Society, 1998.

[119] C. Weidenbach. Towards an automatic analysis of security protocols in first-order
logic. In CADE, volume 1632 of Lecture Notes in Computer Science, pages 314–
328. Springer, 1999.

[120] Y. Yang, X. Wang, S. Zhu, and G. Cao. Distributed software-based attestation for
node compromise detection in sensor networks. In Proc. 26th IEEE Symposium on
Reliable Distributed Systems (SRDS’07), pages 219–230. IEEE CS, 2007.

139

	Declaration
	Acknowledgements
	Abstract
	Summary
	List of Tables
	List of Figures
	Introduction
	Literature Review
	The Objectives and Contributions
	Publications

	Evaluation of Existing Tools: Symbolic Analysis of an Electric Vehicle Charging Protocol
	Introduction
	The Protocol
	Cryptographic Primitives
	Protocol Overview
	Assumptions
	Primitives Modeling

	Tools
	Analysis in Tamarin
	Abstractions
	Modeling
	Checking Secrecy and Authentication

	Analysis in ProVerif
	Abstractions
	Modeling
	Checking Privacy

	Discussions

	Timed Security Protocol Verification
	Introduction
	Protocol Specification Framework
	Service Syntax
	Service Modeling
	Security Properties

	Verification Algorithm
	Service Basis Construction
	Query Searching

	Evaluations
	Discussions

	Parameterized Timed Security Protocol Verification
	Introduction
	Running Example: Wide Mouthed Frog
	Specifying Protocols using Timed Logic Rules
	Specifying Protocols using Timed Applied -calculus
	Timed Applied -calculus Semantics
	Verification Algorithm
	Evaluations
	Related Works
	Discussions

	Analyzing Software-based Attestation in Practice
	Introduction
	Generic Specification for Software-based Attestation
	System Overview
	Generic Attestation Scheme

	Security Criteria Formalization
	Full Utilization of Memory and Registers
	Pc Compute Checksum at Runtime: Memory Recovering Attack
	Pc Pre-compute Checksum: Challenge Buffering Attack
	Pc Forward Checksum Computation to A: Proxy Attack

	Case Studies
	SWATT
	SCUBA
	VIPER

	Related Works
	Discussions

	Conclusions
	Bibliography

