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Summary

Epidural anesthesia (EA) is widely used in surgery for pain relief. A properly

performed epidural procedure is the ‘gold standard’ of treatment to reduce

pain during childbirth. A major technical challenge of EA is the identification

of the needle entry site, which is clinically determined by palpating the surface

landmarks of the spine. Ultrasonography, as a safe and inexpensive imaging

modality, has been proved e↵ective for needle entry site localization for di�cult

epidural cases.

However, the key limitation of ultrasound in this application is the severe

influence of speckle noise that adversely hampers the interpretability of

ultrasound images. In order to remove the speckle noise, a pre-processing

algorithm named Di↵erence of Gaussian (DoG) enhanced local normalization

is proposed. The algorithm is especially suitable for lumbar ultrasound image

pre-processing as it not only eliminates the speckle noise, but also e↵ectively

overcomes the brightness di↵erence all over the images, thus alleviating the

wave attenuation problem encountered in ultrasound images.

The localization of needle entry site can be phased into two stages, the

longitudinal view enables the scan for spinal level identification and transverse

view allows the scan for precise needle entry point localization. The anatomical

features revealed in the ultrasound images are very di↵erent in longitudinal and

transverse views. Thus, two sets of image processing procedures are developed,

corresponding to the two scanning views respectively.

In the longitudinal view, the image processing procedure starts with
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automatic sacrum identification with support vector machine (SVM)

algorithm. After the sacrum is detected, an automated panorama image

stitching procedure is initiated to obtain the overall spinous processes

structure. Throughout the image stitching and ultrasound probe movement,

an image quality evaluation standard is utilized to select the suitable frames

to be stitched onto the panorama image, so as to eliminate the accidental

bad-quality frames in case the probe goes out-of-line during the scanning

movement. Meanwhile, the spinous levels are identified and divided on the

panorama image, which are then projected on the original ultrasound image

in real-time, so as to inform anesthetists the location of the L3-L4 level.

After L3-L4 level is identified, the ultrasound probe will be rotated to the

transverse view to locate the precise needle entry site. A cascading classifier

is first developed as a generalization of the expert knowledge in identifying

interspinous images. The cascading classifier contains four layers of weak

classifiers and each layers corresponds to a specific selection criterion. If the

image cannot be confidently described by a certain classifier then it will be

passed to the next classifier, until it is classified with a high confidence level.

An accuracy of 94.8% on training set and 93.23% on test set is achieved with

the proposed cascading classifier. In addition, the epidural space, i.e., target

for EA, can be identified and measured automatically, providing reference to

the needle insertion procedure. The automatic epidural space identification

versus manual measurement has a standard deviation of 0.0528 cm and mean

of 0.0028 cm.

In order to increase the robustness of the interspinous image classification, a

machine learning based method, including feature extraction, feature selection

and SVM learning procedures, is proposed for the classification of ultrasound

images in the transverse plane. The training and test database is established,

which contains 1840 images randomly selected from video streams of 46

pregnant subjects. A set of features, including matching values, positions and
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appearance of black pixels within predefined windows along the midline, are

extracted from the ultrasound images in the database. SVM is then utilized

to learn the pattern of interspinous and bone images. The proposed machine

learning model is accurate and robust, with 95% accuracy on training set

and 93.20% on test set. Further tests on the o↵-line saved ultrasound videos

indicates that the trained SVM model is able to identify the interspinous region

and bone region correctly on 45/46 video streams with a computational speed

fast enough for real-time processing.

Finally, the proposed algorithms is integrated and packaged with the

design of a graphical user interface, along with a real-time image acquisition

system. The user interface presents the anesthetists with the ultrasound image

processing results and provide guidance for needle entry site localization,

with trained SVM model and image processing algorithms working in the

background. It is designed in an intuitive approach, therefore requiring least

ultrasound knowledge on the part of anesthetists. The developed image

acquisition system and user interface has been tested on volunteers in real-time

and proved to be able to work accurately and e�ciently.

In a nutshell, an intelligent image processing algorithm and procedure based

on machine learning for lumbar ultrasound image processing has been proposed

and developed in the thesis. The algorithms are able to locate the precise

needle entry site as the operator moving the ultrasound probe following a

given procedure, thus facilitating the interpretation of ultrasound images and

realizing automatic localization of needle entry site.
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Chapter 1

Introduction

1.1 Background

Epidural anesthesia (EA) is a central neuraxial block technique that is widely

performed on women at the point of baby delivery, in order to alleviate the

labor pain. Around 60-90% of women in developed countries received EA for

pain relief, including both labor and cesarean delivery [1]. EA is also used to

provide pain relief after surgery. For some surgeries of the lower limb, such as

hip, knee replacement and abdominal surgery, the use of e↵ective EA has been

found to reduce blood loss [2, 3].

During EA, analgesic is delivered to the epidural space continuously

via a catheter, which provides long-lasting block e↵ect for time-consuming

surgery and post operation pain relief. It takes about 10-20 minutes for

the medicine to take e↵ect and last for hours. In cases where rapid onset

of analgesia is required, e.g. cesarean sections, usually combined spinal and

epidural anesthesia (CSE) will be adopted. During CSE, a small dose of local

anaesthetic is injected to the subarachnoid space to trigger the immediate

anesthetic e↵ect, while the EA provides continuous pain block. Both EA and

CSE involve inserting a needle into the lumbar epidural space.

In order to elaborate on the procedure of epidural needle insertion, it is
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Figure 1.1: Spine Anatomy

necessary to give a brief overview of the spine anatomy. The vertebral column

comprises 24 individual vertebrae, including 7 cervical, 12 thoracic and 5

lumbar vertebrae [4]. Extension of the vertebral column consists of the sacrum

and coccyx [5]. EA is usually performed at the lumbar spine, which comprises

5 lumbar vertebras, as shown on Fig 1.1 [6]. The lumbar spine starts from

L1 (the upper part) and ends at L5 (the lower part). Each lumbar vertebra

contains spinous process, transverse process, articular process and vertebra

body. Epidural space lies within the vertebra canal, stretching from foramen

magnum of the skull to the sacral hiatus [7]. It is located between ligamentum

flavum and dura mater, and contains fat, loose connective tissue and venous

plexus. The fat is loose and allows di↵usion of injected local anesthetic fluid

throughout the epidural space [8]. The width of epidural space ranges from

5-13 mm with 3-8 cm depth below the skin in the lumbar region [7, 9, 10]. It

is also reported that a positive correlation exists between the epidural depth

and the Body Mass Index (BMI) [10, 11].

Fig 1.2 shows the sagittal section view of the lumbar spine. Adjacent

2



Figure 1.2: Cross-sectional View of Lumbar Spine in the Longitudinal Direction

vertebrae are connected by interspinous ligaments. The interspinous region

between L3-L4 is the most common site chosen for epidural needle insertion

[12]. The interspinous spaces are the largest at those two levels and this will

reduce the di�culty of needle placement compared with the interspaces in

thoracic place or other lumbar interspinous levels [5]. Moreover, the width

of the epidural space is broader at those two levels, giving the largest safety

margin for needle insertion and catheter placement [6, 13]. Interspace above

L2-L3 are avoided so as to decrease the risk of dura puncture [12].

1.2 Procedure and Challenges of Epidural

Anesthesia

EA is rated as one of the most di�cult procedures to perform in anesthesiology

[14]. During the EA, an epidural needle, usually a Tuohy needle with hollow in

the center, is inserted into the epidural space. After the successful placement of

the epidural needle, a catheter will be inserted into the epidural space via the

lumen of the needle, which is used for the infusion of medicine. Fig 1.3 shows

the comparison of Tuohy needle and catheter. The detailed clinical procedure

3



Figure 1.3: Tuohy Needle and Catheter Used in EA

of EA is listed as below:

Step 1. Keep the patient in lateral or sitting position and lean forward, to

maximize the ‘opening’ of the vertebra interspaces;

Step 2. Identify anatomical landmarks with palpation, locate midline and

L3-L4 interspinous region, to determine the epidural needle insertion site;

Step 3. Sterilize the insertion area and place a local anesthetic to numb

the area;

Step 4. Insert epidural needle at the determined site into ligamentum

flavum;

Step 5. Loss of resistance technique: if needle is at ligamentum flavum,

remove the stylet and attach a syringe, apply steady pressure on the plunger,

slowly and steadily advance the needle until loss of resistance is noticed;

Step 6. Once epidural space is reached, insert catheter via the lumen of

the epidural needle into the epidural space;

Step 7. Deliver the anesthetic via the catheter and monitor the patients’

blood pressure and oxygen levels in the blood;

The procedure of CSE is di↵erent from EA in that: after Step 5 when

the epidural needle is placed at epidural space, a long fine spinal needle

is then introduced via the epidural needle and though the dura mater into

subarachnoid space; the correct position is confirmed when cerebrospinal fluid

(CSF) can be seen dripping from the spinal needle; a small dose of local
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anaesthetic will be instilled; then the spinal needle will be withdrawn and

catheter will be inserted into epidural space as in Step 6. Since the epidural

needle insertion procedures are similar for EA and CSE, from now on, only

EA will be mentioned.

Although EA has been practised clinically for decades, the failure rate of EA

is reported relatively high and in the range of 6-25%, and it is very sensitive

to the experience and skills of anesthetists [15, 16]. Caudal epidural trials

indicates a failure rate as high as 9-52% of injecting outside epidural space

[16, 17]. One of the major reasons leading to the failure and complications

of EA is derived from the blind nature of how EA is performed clinically.

This technique has remained as skills in the form of mental models, not

easily imparted to a trainee, resulting in steep learning curve. The practice

of epidural needle insertion relies primarily on the anatomical landmarks to

identify the needle insertion site. Anesthetists first identify the insertion

spinous level using the Tu�er’s line, which is commonly located at the same

horizontal level of L3-L4 interspinous region. But this relationship does not

always stand true [18]. It has been reported that by using palpation or

Tu�er’s line method, anaesthetists are correct at 30% of the time in identifying

puncture level, compared to the level determined by MRI [19]. After the

level is identified, which may not be accurate by palpation or Tu�er’s line,

the anesthetists then further locate the needle insertion site by palpating the

spinous process and interspinous.

However, surface anatomical landmarks, e.g. Tu�er’s line, spinous process

and interspaces, are not always easily palpable. Moreover, important features,

such as the needle entry angle and depth of epidural space, which determines

the estimated depth of needle insertion, cannot be obtained by the palpation

approach. The final needle insertion procedure can be the result of a trial

and error process. When the anesthetist feels that the needle is not inserted

along the right path or encounter the bones, they will re-direct the needle or
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withdraw the needle and insert it again at another site. This blind technique

can result in multiple insertion attempts, thus compounding the discomfort

and distress of patients and lowers the e�ciency of anesthesia. The di�culty

and therefore the failure rate is clearly higher for patients with obesity or

previous spinal injures, since the surface landmark is more di�cult to locate

with the manual palpation method for this population [20, 21].

1.3 Ultrasound Assisted Epidural Anesthesia

In recent years, the ultrasound imaging technique has been introduced to EA as

an imaging method to detect the inner anatomical structure of patients’ spine,

helping to identify a needle insertion site. Various lines of research in the

medical field have confirmed the e↵ectiveness of ultrasound imaging compared

to the traditional palpation method [22, 23]. For cases where the palpation

based method is di�cult or unable to place the needle successfully even after

several attempts, ultrasound imaging can help to identify the insertion site

[24, 25]. Ultrasound is also reported to significantly improve the epidural needle

insertion success than the traditional palpation landmark technique [26]. In

addition, with ultrasound imaging, trainee anesthetists are reported to achieve

a higher success rate and fewer epidural attempts, compared to those without

ultrasound guidance [27, 28]. It has been suggested that ultrasound imaging

should become part of continuing professional training for anesthetists and

serve as routine clinical practise, to ease the performing of epidurals and add

to patients’ comfort [9]. Therefore, ultrasound imaging has the potential to

bridge the move from a blind technique of needle insertion to a better guided

approach, which can help to increase the success rate of EA and reduce the

reliance on skills and experience for a successful epidural procedure.

Two acoustic windows are usually employed when using ultrasound for

epidural procedure: one is transverse midline approach, the other is the
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Figure 1.4: Ultrasound Image Feature in the Longitudinal View.

Figure 1.5: Ultrasound Image Feature of Bone Region in the Transverse View.
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Figure 1.6: Ultrasound Image Feature of Interspinous Region in the Transverse View.

longitudinal paramedian/ median approach. The anatomical features obtained

from those two scanning planes complements the other. For the longitudinal

plane, the ultrasound probe is positioned vertically, perpendicular to the long

axis of the spine. The anatomical elements identifiable includes: sacrum,

articular/spinous process, ligamentum flavum, dura mater, and vertebra body,

as indicated in Fig 1.4. The probe is initially placed near sacrum area along

midline (longitudinal median approach) or 3 cm to the left of the midline

(longitudinal paramedian approach). Then the probe is moved upward and

the ‘saw-like’ features which represents spinous process will be counted and

marked on skin, until L3-L4 interspinous level is reached [19].

After L3-L4 interspace is reached, the probe will be rotated to the

transverse approach. In the transverse plane, the probe is positioned

horizontally, perpendicular to the long axis of the spine. The identifiable

anatomical elements include: spinous process, articular process, transverse

process, ligamentum flavum and dura mater (those two usually appears as one

single line, given the closeness to each other and the low image resolution) and

vertebra body, as illustrated in Fig 1.5 and Fig 1.6. The probe will then be

slowly tuned both in angle and position, until the epidural space and vertebra
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body is shown clearly in the view, as in Fig 1.6. Then the anesthetist will align

the midline to the middle of the probe and mark the level and midline on the

patient’s back with a sterilized marker pen. The intersection point of the two

line is the optimal insertion point [19, 29].

1.4 Computer-Aided Lumbar Ultrasound

Interpretation

Ultrasound imaging is di↵erent from other medical imaging modalities, e.g.

X-ray, CT, MRI, in that it is safe, non-radioactive and low cost, making it

an appropriate imaging modality for assisting epidural needle insertion [30].

However, a barrier to reap these benefits lies in the ability to interpret the

ultrasound image e↵ectively. For ultrasound guided epidural needle insertion,

generally a low frequency (2-5 MHz) curvilinear probe will be adopted,

which allows a deeper penetration depth compared with high frequency linear

probe. But the deeper penetration depth is achieved at the sacrifice of image

quality. The resolution of an ultrasound image is low, usually 1-2 mm along

the axial direction and 1-3 mm along the lateral direction, given that the

penetration depth of the ultrasound wave is above 10 cm, as required by

depth of the spinal anatomical structures. Moreover, the ultrasound images

contain severe speckle noises, making the subtle structures indistinguishable

from surrounding background [30]. A full interpretation of ultrasound images

requires professional training and experiences. In a real-time procedure, the

luxury of time to read them carefully or to consult a second opinion is not

available. Therefore, while the base technology is viable, using it in an

e�cient manner, time and accuracy wise, to guide epidural needle insertion has

been an open issue, thus explaining the prevalence of conventional approaches

still being practised and the reluctance of practicing anesthetists to adopt an

ultrasound imaging tool.
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There has been some interest in the applicability of computer aided

automatic interpretation of ultrasound images, mainly in the longitudinal view.

The first research of automatic image interpretation is proposed by Kerby

et.al., which focused on the automatic identification of lumbar interspinous

level [31]. The ultrasound images were stitched together to generate a

panorama image; the obtained panorama image was then filtered with a

combination of median filter and linear filter; then least-square parabolic fit

was used to describe the edge points of bones, the local parabolic minimum

and intersection is identified as a vertebra. By using this algorithm, the author

realized the ‘automatic’ identification of spinous levels. 10 panorama images

were generated and the automatic level identification has a Root Mean Square

(RMS) error of 11.8 mm compared with level identified by sonographer and 4.4

mm compared with expert labeling on the generated panorama image. This

thesis is the first of this kind research of automatic level counting. However,

two major problems exist or need to be solved. First, the spinous label was

identified on the generated panoramas after the scanning process is over, which

means that the operator cannot get the real-time level counting information

during the scanning and extra landmarks has to be provided to coordinate the

level identification on the patients’ back. Secondly, sacrum was assumed as the

start point of panorama stitching, but it was not identified by the proposed

algorithm. This may result in the misidentification of the L5 spinous level and

introduce error to the level counting procedure.

On the basis of Kerby’s et.al research, Ashab et.al further proposed an

augmented reality system for the identification of spinous level [32]. Similar

level identification approaches were used in this research. Individual frames

were collected by the anesthetists and then stitched to a panorama by the

computer. Level dividing was performed on the obtained panorama, by

extracting the peak and valley of the lower edge of the binarized panorama.

The peak followed by a valley was deemed as the spinous process. The level
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dividing information was then imposed on the live camera video of the patients’

spine. This research has realized the coordination from the level information

to the patients back, with mean absolute error ranging from 2.5 mm to 4.2 mm

for L1-L5. However, drawbacks still exist for this research, mainly including:

1. it requires the operator to find the proper imaging plane and select the

images to be stitched, which still require substantial ultrasound training for

the anesthetists; 2. the level dividing using local maximum and minimum

may not be accurate for images with local maxima/minimum near each other.

In addition, similar as Kerby’s method, the identification of sacrum was not

considered in this paper, which may introduce errors to the level identification

of L5.

Tran et.al. utilized phase symmetry and template matching to extract the

lamina and ligamentum flavum in the paramedian images [33]. The algorithm

was able to detect the ligamentum flavum in 34 out of 39 paramedian images,

with an error of 3.7 mm compared to the one measured by sonographer.

However, this method failed on cases where the anatomical feature is not clear

or ligamentum flavum is not connected to lamina (i.e. the bone). In addition,

it takes 4.3s to process one single image on computer, thus limit its application

to o↵-line processing instead of on-line processing.

1.5 Research Gap and Objectives

As introduced in the last section, related literature mainly focused on the

paramedian view. There is a paucity of research reports in relation to

automatic image interpretation of US images in the transverse view. The

paramedian view is usually employed by practitioners to estimate the L3-L4

spinous level. However, for a more precise localization of the puncture site,

the transverse plane, which reveals reliable landmarks, is preferred by some

researchers [34, 35]. Furthermore, as the majority of anesthetists adopt a
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midline approach for needle insertion, the importance of the transverse view

cannot be overemphasized [34]. The major objective of this thesis is to fill

the gap of automatic ultrasound image interpretation of lumbar spine in the

transverse view for pregnant patients.

On the other hand, although automatic interpretation of longitudinal view

has been explored, none of the research has realized real-time online process

of the ultrasound image. In addition, sacrum identification is ignored by

the researchers, which will potentially bring error to the L5 identification

and spinous level counting. In this thesis, the longitudinal view will also

be investigated to realize the sacrum identification, accurate level dividing

and real-time on-line processing for the ultrasound images acquired from

longitudinal view.

The objective of this thesis is to realize the automatic interpretation

of lumbar ultrasound images in real-time, include both transverse and

longitudinal view. Algorithms have been developed to identify the proper

needle insertion level and precise entry point automatically in real-time as the

operator moves the probe. Furthermore, important anatomical features will

also be extracted automatically, including sacrum, spinous processes in the

longitudinal view and vertebra body, epidural space in the transverse view.

The information will be fed to the operator in real-time so as to estimate

needle insertion depth and the location of epidural space. The final purpose

of this research is to enable anesthetists utilizing ultrasound to an extent

that the use of ultrasound imaging is as simple as a needle site sensor is

available, so that they can enjoy the benefits of ultrasound while relieved

from extensive training of ultrasound interpretation. It is expected that the

developed image identification algorithms will be helpful to accelerate the

pace of ultrasound imaging becoming a routine practise of epidural needle

insertion, after the interpretation challenges are solved with the algorithms.

The developed algorithms will certainly be helpful for the trainee anesthetists,
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to help them better handle the challenges of epidural needle insertion and

improve their learning speed to become professionals.

1.6 Thesis Outline

The other six chapters of the thesis are organized as follows.

Chapter 2. Ultrasound Image Preprocessing

Ultrasound image has low spatial resolution and is contaminated with

speckle noises, which adversely a↵ect the interpretability. This chapter starts

with an general introduction of widely used ultrasound filtering algorithms.

Then a preprocessing algorithm of Di↵erence of Gaussian (DoG) enhanced

local normalization is proposed, which is able to remove speckle noises and

extract the major anatomical features of lumbar ultrasound image. The local

normalization algorithm is able to overcome the non-uniform illumination

or shading artifact, thus removing potential hazardous elements which may

negatively a↵ect the image identification in the following procedures. The

filtering result achieved by local normalization algorithm is also compared with

generally used filtering algorithms, proving the advantage of the proposed local

normalization algorithm on ultrasound preprocessing.

Chapter 3. Spinous Level Identification

In this chapter, the ultrasound image processing in the longitudinal view is

presented. An image processing procedure is proposed that is fully automatic

to identify the optimal insertion level (L3-L4). The image processing procedure

starts with automatic sacrum identification, with feature selection and support

vector machine (SVM) classification. After sacrum is detected, a panorama

image stitching procedure is initiated to obtain the overall spinous processes

structure. Throughout the image stitching and ultrasound probe movement, an

image quality evaluation standard is utilized to select the suitable frames to be

stitched onto the panorama image, so as to eliminate the accidental bad-quality
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frames in case the probe goes out-of-line during the scanning movement. In

the meantime, the spinous levels are identified and counted on the panorama

image, which are then projected on the original ultrasound image in real time,

so as to inform anesthetists where is the level L3-L4 and when to stop scanning.

The processing result with o↵-line collected lumbar ultrasound videos shows a

high accuracy on sacrum identification and spinous level identification.

Chapter 4. Cascading Classifier for Image Classification

This chapter focuses on the image classification in the transverse view,

so as to locate the proper needle entry point. A simple classifier based on

the position relationship of extracted anatomical features is first proposed,

for the classification of interspinous and bone images obtained from heathy

volunteers. However, this classifier is proved over-simplified and identifies the

ultrasound images from pregnant patients with low accuracy. In order to

improve the identification accuracy, a cascading classifier comprising four layers

and incorporating more parameters is proposed, which is able to classify the

ultrasound images from pregnant patients with higher accuracy. Apart from

the image classification, this chapter also evaluates the precision of epidural

space identification on the frames being identified as interspinous images. The

epidural space is calculated automatically by the algorithm, which provides

important information for anesthetist to estimate the needle insertion depth.

Chapter 5. Feature Extraction and Machine Learning

On the basis of Chapter 4, this chapter further explores the possibility of

improving image classification accuracy and classifier robustness by machine

learning method. A feature extraction, selection and machine learning

procedure is proposed. A set of features are extracted, including shape features

by template matching and black rate near midline by midline detection.

The extracted features are then evaluated on their predictability toward the

image label with cross correlation. Furthermore, a set of sub-features which

yields optimum performance are extracted. For the extracted features, a
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classic supervised machine learning method, SVM is employed to classify the

interspinous images and bone images, which achieved an accuracy of 95% for

training set and 93.20% for test set. The trained SVM model is further tested

on obtained o↵-line ultrasound videos and is able to identify the frame proper

for needle insertion.

Chapter 6. System Integration and Real Time User Interface

In order to facilitate anesthetists in using the image processing procedures

proposed in the previous chapters, a real-time image processing system with

graphical user interface is developed in this chapter. An operation protocol

is also designed for the anesthetists to utilize the user interface and locate

the needle entry point. Guidance will be provided by the interface on how to

move the probe, without the need for anesthetists to interpret the ultrasound

images. The whole scanning procedure requires minimal interferences from

the anesthetists. In addition, a scenario is sketched to incorporate the image

processing system in the clinical epidural procedure, by proposing a manual

procedure and a fully automated procedure with a mechanical device. The

concept of the mechanical needle insertion device has been designed, along

with the control system that enables the automated insertion procedure.

Chapter 7. Conclusions

This chapter draws conclusions to the thesis and presents possible works

for future research.
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Chapter 2

Image Preprocessing for

Lumbar Ultrasound Images

2.1 Introduction

Ultrasound imaging is widely used in medicine for diagnosis purpose and

increasingly being adopted in regional anesthesia for guidance purpose.

Compared with other medical imaging modalities, e.g., magnetic resonance

imaging (MRI), X-Ray and computed tomography (CT), ultrasound enjoys

the following advantages:

1) It is inexpensive, compared with MRI and CT;

2) It is compact and portable;

3) It works in real-time;

4) It is non-invasive;

5) It does not require ionizing radiation, unlike X-Ray and CT.

Those advantages make ultrasound a proper imaging modality to assist

epidural anesthesia, especially when the target patients are mostly pregnant

[36]. One of the limitations of ultrasound image is the severe influence on

the image due to random speckle noise. Speckle noise adversely hampers

the interpretability of ultrasound images by decreasing the spatial resolution
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of the image. Moreover, it overshadows and conceals the fine features of

interest in the image, making it rather di�cult to distinguish these features

from the surrounding background with the human eyes. Therefore, image

despeckling is among the most important steps in ultrasound image processing.

In addition, since ultrasound waves are attenuated as they propagate through

tissues, the deeper the anatomical target, the darker it appears on the

ultrasound image. Time gain compensation (TGC) technique, which increases

the amplification of ultrasound wave proportionally to the depth, is usually

used in the ultrasound machine to compensate for the wave attenuation [37].

However, even after TGC compensation, it is still di�cult to achieve an ideally

distributed brightness across the entire ultrasound image.

Ultrasound despeckling is one of the most active research areas in medical

image processing, with various techniques proposed to improve the ultrasound

image quality. Adaptive filters, including Lee’s filter [38, 39], Kuan’s filter

[40, 41] and Frost’s filter [42], are widely employed to remove speckle noise

because they are relatively easy to implement and control. Adaptive filters

smoothen the image by computing a linear combination of the center pixel

intensity with the average or weighted intensity of the filter window. Speckle

noise is partially suppressed by the filter, however at the expense of blurring

the image details. Another approach called Anisotropic Di↵usion (AD) is

developed for image despeckling [43, 44]. Anisotropic di↵usion removes the

speckle noise via the operations of partial di↵erential equations. AD is e↵ective

for speckle noise removal, but there are significant problems associated with

AD like blurring, loss of important structural details and generation of artificial

smear [45]. In addition, wavelets has also been widely investigated for speckle

reduction, as reported in [46–49]. Proper selection of threshold and parameters

can achieve good results in speckle elimination.

The filtering algorithms mentioned above are e↵ective for despeckling;

however, those algorithms cannot solve the non-uniform luminosity problem of
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ultrasound images. This problem can be solved by local contrast normalization

algorithm. Local contrast normalization was initially proposed to improve

the detection of micro-calcification clusters in mammograms by normalize the

contrast locally [50]. This technique was later utilized on retinal images to

normalize the luminosity and contrast [51]. It has also been reported that the

local contrast normalization is able to improve the discriminational ability of

individual features [52]. However, the local contrast normalization algorithm

may strengthen the high frequency information unnecessarily, thus not able to

remove the speckle noises.

In this chapter, the local contrast normalization algorithm is described in

details and then Di↵erence of Gaussian (DoG) enhanced local normalization

for pre-processing of ultrasound images is proposed. The DoG enhanced local

normalization is especially suitable for ultrasound image pre-processing as it

not only eliminates the speckle noise, but also e↵ectively overcomes the local

intensity variance all over the images, thus alleviating the wave attenuation

problem faced by ultrasound images. Furthermore, since the final target of

the image processing is the realization of an automatic identification of key

image features, removing the varying level of brightness across the image

will eliminate a potential element that might degrade the image recognition

accuracy. The details of the proposed algorithm will be presented in the

following sections.

2.2 Local Normalization Algorithm

The idea behind the local normalization algorithm is based on the

approximation of the perception of human eyes. The human perception

of image features depends on the average local characteristics near a pixel,

rather than the absolute signal magnitude at the pixel. In addition, the

key image features are generally presented via a high spatial frequency;
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Figure 2.1: Processing Flow of Local Normalization Algorithm

while the low spatial frequency, due to uneven luminosity, will not seriously

influence the perception of the image [53]. However, in computer-based

image processing and recognition, poor and uneven illumination conditions

will seriously influence the results of identification.

Local normalization is realized by first using an unsharp masking process

to preserve the high frequency content in the image, and then normalizing

the resultant image by dividing it with local standard deviation, thus the low

frequency part induced by luminosity will be eliminated.

v(x, y) = f(x, y)�
X

i,j

w(i, j)f(x+ i, y + j), (2.1)

where f(x, y) denote the original image; w(i, j) represent the low pass Gaussian

kernel:

w(i, j) =
1

2⇡�2
e

�(i2+j

2)/2�2
. (2.2)

Then to obtain the local variance, the following equation can be used:

�(x, y) =

sX

i,j

w(i, j)v(x+ i, y + j)2 (2.3)

The locally normalized image is given in equation 2.4.

g(x, y) = v(x, y)/�(x, y) (2.4)
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(a) (b) 
Figure 2.2: Processed Image After Local Normalization. (a). Original ultrasound
Image (the test ultrasound image is collected from healthy volunteers with scanning
frequency set as 5MHz and scanning depth as 10cm);(b). Processed result with
Local normalization

To illustrate the process more thoroughly, the processing flow is presented

in Fig 2.1. After the local normalization, the unevenly distributed background

brightness, which is due to the ultrasound wave attenuation, is successfully

overcame. The high frequency image content is preserved, as shown in Fig

2.2(b). However, since the first step of local normalization is unsharp masking,

in consequence, speckle noise, as a high frequency component, is emphasized

in the resultant image. Therefore, the main problem of speckle contamination

is not yet relieved, and its presence will influence the interpretation of the

ultrasound image.

2.3 Di↵erence of Gaussian Enhanced Local

Normalization Algorithm

In order to suppress the high frequency speckle noise, and also to overcome

the low frequency background luminosity, the DoG algorithm is proposed to

replace the unsharp masking procedure. DoG involves the subtraction of one

Gaussian kernel filtered image from another Gaussian kernel filtered image
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[53]. The first Gaussian kernel eliminates the high frequency speckle noise of

ultrasound images, while the subtraction process with the second Gaussian

kernel preserves the spatial frequency that lies between the range defined by

the two Gaussian kernels.

In the proposed modified local normalization with DoG, the first part of

local normalization is set as:

v(x, y) =
X

i,j

w1(i, j)f(x+ i, y + j) (2.5)

�
X

i,j

w2(i, j)f(x+ i, y + j).

in which w1(i, j) and w2(i, j) are the Gaussian kernels for the first and second

filter respectively and,

w

k

(i, j) =
1

2⇡�2
e

�(i2+j

2)/2�2
. (2.6)

The modified processing flow is shown in Fig2.3. It is important to choose

proper Gaussian kernel sizes and the � value for the two Gaussian filters,

in order to preserve the main features of the ultrasound images meanwhile

eliminating the speckle noise. Generally, the first Gaussian filter is utilized to

filter the high frequency speckle noise in the image, thus a proper Gaussian

kernel size and � value intended for e↵ective noise filtering should be chosen.

For the second Gaussian kernel, since it is desired that the di↵erence of the

two to preserve the main feature of the image, therefore, the second Gaussian

filter should yield an even more blurred image than the first. Thus, the second

Gaussian kernel should be assigned with a bigger � value compared to the first

Gaussian Kernel.

Comparing the results shown in Fig 2.4 where the Gaussian kernels are

chosen with di↵erent sizes and � values, the resultant images can be observed

to vary significantly. The test images was acquired at the frequency of 5MHz

and scanning depth of 10 cm, with the image size of 220⇥ 250. As evident in
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Figure 2.3: Processing Flow of Local Normalization Algorithm Modified with DoG

(a) 

(c) (d) 

(b) 

Figure 2.4: Processing Result of DoG Modified Local Normalization with Di↵erent
Gaussian Kernels. (a): Kernel 1 5 ⇥ 5,� = 1; Kernel 2 10 ⇥ 10,� = 4; (b): Kernel
1 10 ⇥ 10,� = 4; Kernel 2 15 ⇥ 15,� = 10; (c): Kernel 1 20 ⇥ 20,� = 4; Kernel 2
25⇥ 25,� = 10; (d): Kernel 1 35⇥ 35,� = 10; Kernel 2 35⇥ 35,� = 20
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the results in Fig 2.4(a), when the kernel size and � value are chosen too small

(Kernel 1 size 5 ⇥ 5, � = 1, kernel 2 size 10 ⇥ 10, � = 4), the speckle noise is

not removed e↵ectively. While in the results shown in Fig 2.4(d), the kernel

size and � value are chosen too large (Kernel 1 size 35 ⇥ 35, � = 10, kernel 2

size 35⇥35, � = 20), thus losing the important details and image features. Fig

2.4(c) presents an ideal processing result (Kernel 1 size 20⇥ 20, � = 4, kernel

2 size 25⇥ 25, � = 10), where the speckle noise is e↵ectively removed and the

image features are well preserved.

The results show that a proper selection of the kernel size and � value

can perfectly fulfill the purpose of the pre-processing step: strengthening

the image main features, while suppressing the speckle noise and removing

the local intensity variance. After the processing with DoG modified local

normalization algorithm, what is presented to the anesthetists will be the

anatomical structure of the ultrasound images, as shown in Fig 2.4. In this

form, the images already greatly facilitate anesthetists in their interpretation

of the images. Therefore, the proposed DoG modified local normalization

algorithm achieves ideal despeckling result, serving as a suitable preprocessing

step for ultrasound image classification.

2.4 Results

In this section, the result achieved by the proposed DoG enhanced local

normalization will be compared with other filtering algorithms, including the

widely used anisotropic di↵usion, wavelet, Lee’s filter and median filter. Two

simulated test image of di↵erent contrast, respectively 10dB and 5dB, are

employed for the comparison [54]. The test images are shown on Fig 2.5. The

signal/background contrast are higher for the 10dB image and it is easier to

di↵erentiate the signal on the image. While for the 5dB image, the contrast is

so low that it is more di�cult to recognise the circles.
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(a) (b) 
Figure 2.5: Simulated Test Ultrasound Image with Di↵erent Contrast. (a). Contrast
= 10dB; (b). Contrast = 5dB

The algorithms are implemented with MATLAB. The implementation of

anisotropic di↵usion is based on Perona and Malik’s paper [43] and Lee’s filter

is based on literature [38]. For wavelet and median filter, the Matlab Wavelet

and Image Processing toolbox are employed respectively. The parameters used

for the proposed algorithm is Kernel 1: 25⇥25, � = 5; Kernel 2: 35⇥35, � = 10.

For the other filters, the parameters are optimized to obtain the best filtering

result available for the specific filter. For anisotropic di↵usion filter, the optimal

result is obtained when conduction coe�cient is set as 20, di↵usion of speed is

set as 0.25 and the program runs 50 iterations. For wavelet denoising method,

the optimized filter is under soft threshold setting at 4 levels. For median filter

and Lee’s filter, the optimal filtering result is achieved when the window size

is set at 13⇥ 13 and 15⇥ 15 respectively.

The processing result with di↵erent algorithms are shown on Fig 2.6 and

2.7 for test image with 10dB contrast and Fig 2.8 and 2.9 for the one with

5dB contrast. As can be seen on Fig 2.6, when the contrast is 10dB, all
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the algorithms are able to suppress speckle noise quite well. The 3D mesh

plot shown in Fig 2.7 illustrates more clearly of how di↵erent algorithms

have improved the clarity of signals. The proposed DoG enhanced local

normalization algorithm removes the speckle noise entirely and extracts the

main signals, achieving better despeckling results than others. In the case

of the 5dB images, the signals are seriously contaminated and can hardly

be discerned from the background. The anisotropic di↵usion, median filter,

wavelet and Lee’s filter, although e↵ectively suppress the speckle noises, but it

is still di�cult to recognize the signals. The proposed algorithm successfully

extracted the the circle signals; but because of the low contrast, the algorithm

cannot remove all of the noise, resulting in several false positive points on the

upper right part of the image.

The performance of di↵erent filtering algorithm is further evaluated from

computational speed and peak signal-to-noise ratio (PSNR) aspects. PSNR

measures the ratio between the maximum power of a signal and the power

of noise. It is generally used as a quality measurement between the reference

image and noise-corrupted image. The higher the PSNR value, the better

the quality of the image. To compute PSNR, the mean square error (MSE)

between the reference image and the corrupted image is first calculated, as in

Eq 2.7.

MSE =

P
M,N

[f1(x, y)� f2(x, y)]2

M ⇥N

(2.7)

In the equation, M and N represents the number of rows and columns for the

image.

PSNR is then obtained by Eq 2.8. In the equation, R is the maximum

fluctuation for the input image data type, e.g. R is 1 for float data type and

256 for 8 bit unsigned data type. In this thesis, the image data type is float,
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(a). Original Image 

(f). Lee’s Filter (e). Wavelet Filter (d). Proposed Algorithm 

(c). Median Filter (b). Anisotropic Diffusion 

Figure 2.6: Comparison of Filtering Result for Test Image with Contrast of 10dB.
(a). Original image; (b). Result obtained with anisotropic di↵usion; (c). Result
obtained with median filter; (d). Result obtained with proposed filter; (e). Result
obtained from wavelet filter; (f). Result obtained from Lee’s filter
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(a). Original Image 

(f). Lee’s Filter (e). Wavelet Filter 

(d). Proposed Algorithm (c). Median Filter 

(b). Anisotropic Diffusion 

Figure 2.7: 3D Mesh Plot of Filtering Result for Test Image with Contrast of 10dB.
(a). 3D mesh plot of original image; (b). 3D plot for result obtained with anisotropic
di↵usion; (c). 3D plot for result obtained with median filter; (d). 3D plot for result
obtained with proposed filter; (e). 3D plot for result obtained from wavelet filter;
(f). 3D plot for result obtained from Lee’s filter
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(a). Original Image 

(f). Lee’s Filter (e). Wavelet Filter (d). Proposed Algorithm 

(c). Median Filter (b). Anisotropic Diffusion 

Figure 2.8: Comparison of Filtering Result for Test Image with Contrast of 5dB.
(a). Original image; (b). Result obtained with anisotropic di↵usion; (c). Result
obtained with median filter; (d). Result obtained with proposed filter; (e). Result
obtained from wavelet filter; (f). Result obtained from Lee’s filter
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(a). Original Image 

(f). Lee’s Filter (e). Wavelet Filter 

(d). Proposed Algorithm (c). Median Filter 

(b). Anisotropic Diffusion 

Figure 2.9: 3D Mesh Plot of Filtering Result for Test Image with Contrast of 5dB.
(a). 3D mesh plot of original image; (b). 3D plot for result obtained with anisotropic
di↵usion; (c). 3D plot for result obtained with median filter; (d). 3D plot for result
obtained with proposed filter; (e). 3D plot for result obtained from wavelet filter;
(f). 3D plot for result obtained from Lee’s filter
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Table 2.1: Performance Comparison Between Di↵erent Filtering Algorithms

10dB Image 5dB Image Time(ms)

Original Image 16.93 14.83 -

Anisotropic Di↵usion 20.34 17.41 120.52

Wavelet Filter 20.36 17.45 32.08

Lee’s Filter 21.13 17.85 5.81

Median Filter 20.54 17.19 149.36

Proposed Filter 24.86 21.09 29.29

thus R is set as 1.

PSNR = 10 · log10(
R

2

MSE

) (2.8)

Table 2.1 lists the detailed comparison of di↵erent filtering algorithms.

The proposed DoG enhanced local normalization algorithm achieved maximum

PSNR among the filtering algorithms, both for the 10dB and 5dB test images.

For the computational speed aspect, it takes 29.29 ms to process the test image

of size of 396⇥311, with kernel parameters of Kernel 1: 25⇥25, � = 5; Kernel

2: 35⇥ 35, � = 10 specifically.

The computational speed of the local normalization algorithm depends on

the size of the image and Gaussian kernels. If the Gaussian kernel size is

big, then the convolution between the image matrix and kernel matrix will

take longer time to compute. Thus the bigger the kernel, the slower the

computational speed. This problem can be solved by downsizing the original

image into smaller image, then the kernel size required to filter the image will

also shrink proportionally, therefore, accelerating the computational speed. It

has been tested that if the original image is downsized to half of the original

size, then the proper kernel size will be 15⇥15 and 20⇥20. The computational
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time is then shorten to 5.05ms.

The filtering result of the proposed algorithm is further tested on the clinical

collected lumbar ultrasound images from pregnant patients. In the clinical

settings, the lumbar ultrasound image may not be as clear as shown in Fig

2.2(a), which is obtained from volunteers. Fig 2.10(a) shows a clinical lumbar

ultrasound image collected with frequency of 5MHz and scanning depth of

9cm. The clinical ultrasound image has low contrast and sometimes di�cult

to interpret. The filtering results obtained from comparison algorithms, e.g

anisotropic di↵usion and wavelet, although suppress the speckles to certain

extent, are not good enough for interpretation. In contrast, the proposed

algorithm is able to extract the anatomical structures, such as vertebra body

and epidural space, from the given clinical lumbar ultrasound image.

2.5 Discussions

As analysed in the above sections, the proposed DoG enhanced local

normalization algorithm not only overcomes the non-uniform luminosity of

ultrasound images resulted by wave attenuation, it also removes the high

frequency speckle noises successfully, given that the kernel parameters are

properly chosen. The results obtained by comparing with other filters

indicate that the proposed algorithm is specially suitable for ultrasound image

processing for the ultrasound image processing.

The choice of Gaussian kernel parameters are especially important in order

to achieve desired despeckling e↵ect. The proper kernel parameters are related

to the size of the anatomical features to be extracted. They should be chosen

based on the principal that the second kernel should have larger � value

and slightly bigger than or same size with the first kernel, so that the DoG

procedure will be able extract the main anatomical structures/features of the

image. For the case of lumbar ultrasound image pre-processing, the default
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(a). Original Image (b). Anisotropic Diffusion 

(c). Median Filter (d). Proposed Algorithm 

(e). Wavelet Filter (f). Lee’s Filter 

Figure 2.10: Comparison of Filtering Result for Clinical Lumbar Ultrasound Image.
(a). Original image; (b). Result obtained with anisotropic di↵usion; (c). Result
obtained with median filter; (d). Result obtained with proposed filter; (e). Result
obtained from wavelet filter; (f). Result obtained from Lee’s filter
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value of the first kernel size may be set as size = ImageSize/12, � = size/5

and the second kernel can be set as size = ImageSize/10, � = Size/3. If the

initial test with the default value shows that the speckle noises are not removed

entirely, as shown in Fig 2.4(a), then need to increase the kernel parameters

progressively until good despeckling e↵ect is achieved; if the resultant image

shows that major anatomical features are mingled together, as shown in Fig

2.4(d), it indicates that the kernel parameters are chosen too big and required

to decrease the parameters.

However, there are limitations for the proposed DoG enhanced local

normalization algorithm. In order to remove the speckle noise, the parameters

of the Gaussian kernels are usually chosen large to achieve smoothing e↵ect.

This may lead to the losing of tiny features and shape deformation, as shown

in Fig 2.8. If the target anatomical feature are too thin or too tiny that

its size is comparable to the speckle noises to be removed, the proposed

algorithm will eliminate the tiny features as speckle noise, thus not applicable.

In addition, for applications where the speckle texture serves as important

features, e.g., the liver cancer diagnosis, the proposed pre-processing algorithm

may be counterproductive to the purpose. Nevertheless, for the case of lumbar

ultrasound images, the target features, i.e. epidural space, vertebra body and

articular processes, are much larger than speckle noises in size. Therefore, the

proposed algorithm is applicable for lumbar ultrasound images.

2.6 Conclusion

In this chapter, DoG enhanced local normalization was proposed for lumbar

ultrasound image pre-processing. The algorithm successfully eliminates the

speckle noises and also e↵ectively extracts the major anatomical structures

revealed in the lumbar ultrasound image. In comparison with the general used

ultrasound image pre-processing algorithms, the proposed algorithm achieves
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better result in terms of PSNR. Therefore, the proposed algorithm is applicable

for lumbar ultrasound image pre-processing.
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Chapter 3

Lumbar Level Identification

3.1 Introduction

Lumbar level identification is an important procedure for epidural anesthesia,

so as to select the spinous level that is most appropriate for needle insertion,

usually in L3-L4 level, as shown on Fig 1.2 [5]. Conventionally, this procedure is

implemented by palpation on the patients spine for certain anatomic landmarks

[55]. However, it has been reported that only 30% success rate is achieved

with the palpation method to identify the accurate spine level [56]. The case

is clearly worse for patients with obesity issues, whose anatomical landmarks

are more di�cult to identify [57].

Ultrasound imaging, as a non-radioactive, convenient and inexpensive

medical imaging modality, has been introduced to epidural anesthesia to

assist epidural needle insertion since the 1950s [58]. Previous researches have

confirmed the e↵ectiveness of ultrasound imaging compared with traditional

palpation method [23, 27, 29]. However, despite the benefits of ultrasound, the

e↵ective interpretation of ultrasound images remains a challenge, especially for

anesthetists who received limited training in reading ultrasound images [58].

In order to assist the ultrasound image interpretation and facilitate the

applicability of ultrasound in epidural needle insertion, automatic identification
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Figure 3.1: (a).Ultrasound Image of the L5 and Sacrum. (b). Ultrasound Image of
the L3-L4 Spinous Level.
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of lumbar levels has been investigated by researchers. Kerby et.al [31] proposed

to label the lumbar level automatically with panorama images obtained from

the parasagittal plane. Rafii-Tari et.al [59] designed a simple system of using

camera mounted on the ultrasound transducer to generate the 3D ultrasound

volume, and then identify the spinous levels on the panorama image. An

augmented reality system was further proposed by Ashab et. al [32] which

is capable of generating panorama images, identifying spinous levels and

projecting the result on patients’ back with augmented reality.

The researches mentioned above are able to identify the spinous levels,

however, they are either not fully automatic [31], demand the external

modification of the transducer [59], or require the operator to choose the frames

for image stitching, thus posing a requirement of ultrasound knowledge on

the side of anesthetists [32]. In addition, all of the three papers mentioned

above failed to recognize the importance of sacrum, the neglect of which will

potentially bring error to the L5 identification and spinous level counting.

In this chapter, an ultrasound imaging processing procedure is proposed to

realize the fully automatic real time spinous level counting, which incorporates

automatic sacrum identification, panorama image stitching and spinous process

identification. The identification results are imposed on the original ultrasound

image in real-time while scanning, so that anesthetists are informed of which

level the probe is located, without meticulously counting the spinous levels

and read the ultrasound images. The system will provide simple guidance to

the anesthetists on how to move the probe, thus require least basic knowledge

on the part of anesthetists for ultrasound image interpretation. It is intended

for anesthetists who received limited training on ultrasound interpretation and

being utilized as a training tool to quickly get familiarized with epidural needle

insertion.
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3.2 Automatic Sacrum Identification

Sacrum is the starting point of the spinous level counting, followed by L5,

L4, L3, L2 and L1. The interspinous level between L3-L4 is the level most

appropriate for needle insertion, which provides largest interspinous gap and

wider epidural space [5]. The existing researches of spinous level identification

neglect the identification of sacrum on ultrasound image, assuming that sacrum

is readily palpated. However, the lack of sacrum identification may lead to the

misidentification of starting point, further resulting in missing levels.

In this section of the chapter, the automatic sacrum identification based on

feature extraction and support vector machine (SVM) is proposed. When the

scanning is commenced, the probe shall be placed in the longitudinal midline

view near the sacrum. The algorithm will start with sacrum detection, till

sacrum is identified successfully in continuous frames.

3.2.1 Feature Extraction

Before feature extraction, raw ultrasound images are pre-processed with DoG

enhanced local normalization proposed in the last chapter, so as to remove the

speckle noises and extract the anatomical structure. After pre-processing, local

intensity variance induced by wave attenuation is also eliminated. Therefore, a

potential element which might deteriorate the image classification is removed.

Sacrum appears to be a ‘continuous hyper echoic line parallel to the skin’

in the longitudinal ultrasound view, as shown on Fig 3.1(a) [19]. The feature

is very obvious on the ultrasound image, thus morphological features will

be su�cient to separate it from other anatomical structures. Firstly, local

normalization is utilized to preprocess the raw ultrasound image and extract

the key anatomical structures, and then the pre-processed image is binarized

with Otsu method to obtain the blob information. Since the sacrum may be

connected to the nearest L5 spinous level in the obtained binary image, thus
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adversely influence the morphological analysis. The open operation followed

by distance transformation is utilized to separate the connected S1 and L5

spinous level, to decrease the possibility that sacrum is merged to the L5 level.

Morphological features, including blob length, area, angle, center, linearity,

are extracted for every blob from the obtained binary image. The feature

extraction procedure is illustrated in Fig 3.2. The linearity of each blob is

simplified as the ratio between length and width of the containing rectangle.

The training and test database are established by randomly extracting

stills from o✏ine collected videos from 34 patients. The blob of sacrum will

be labelled as ‘1’, while the rest non-sacrum blobs will be labelled as ‘0’.

3.2.2 Support Vector Machine

After the feature has been extracted and normalized, SVM is employed to

optimally classify the sacrum blobs apart from the rest blobs on the binary

image. SVM is a supervised learning algorithm which seeks a decision

boundary (or separating hyperplane) with maximal margin for the training

set. The SVM model is trained with blobs data from randomly selected 17

cases (50%) and then tested on the rest 17 cases. The obtained SVM model is

saved in the computer for real time sacrum detection.

3.3 Panorama Image Stitching

If sacrum is detected continuously on the ultrasound frames (e.g. 9 out of

10 continuous frames), the algorithm will consider the sacrum is successfully

located and initiate the panorama image stitching procedure. The anesthetists

will be guided to move the ultrasound transducer upward slowly and

steadily. The panorama image stitching include three key procedures: motion

estimation, image quality evaluation and image stitching.
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Figure 3.2: Morphological Feature Extraction for Sacrum. (a) Original grayscale
image; (b). Binary image of the pre-processed image; (c). Morphological feature
extraction for each blob.
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3.3.1 Motion Estimation

Image stitching is a relatively time consuming operation, therefore it is

necessary to estimate the probe motion and select the frames of certain distance

to be stitched. During the ultrasound scanning, the transducer only takes

translational movement, thus, it is reasonable to assume that the motion model

is translational. In this chapter, phase correlation is utilized to obtain the

relative movement of two continuous frames, because it is robust to noise, thus

suitable for ultrasound image motion estimation.

Phase correlation is a Fourier-based approach which relies on the fact that

‘Fourier transform of a shifted signal has the same magnitude as the original

signal but of linearly vary phase’ [60]. For two similar images I0(x) and

I1(x + u) with shift, the function of phase correlation is:

F{E
PC

(u)} =
F{

P
I0(x)I1(x + u)}

| F{I0(x)} || F{I1(x + u)} |

=
I0(f)I⇤

1 (f)

| I0(f) || I1(f) |

(3.1)

where I1(f) = F{I1(x)}, denoting the Fourier transform of the image.

Since

F{I1(x+ u)} = F{I1(f)}e�2⇡juf

= I1(f)e
�2⇡juf = I0

(3.2)

Therefore,

F{E
PC

(u)} = e

�2⇡juf (3.3)

The final output of phase correlation is a spike located at the correct value

of the shift of two images, as shown on Fig 3.3. Therefore, it is able to estimate

the frame motion fast and conveniently.

The accumulated distance of the continuous frames are calculated, which,
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Figure 3.3: Phase Correlation Result of Two Similar Ultrasound Image With only
Translation Movement. (a) and (b). Two similar ultrasound images of the spinous
process; (c). Phase correlation result of the two images, with the maximum point
circled, which represents the relative position between the two images.
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if higher than certain threshold, serves as an prerequisite for selecting frames

to be stitched. However, if the accumulated distance is too large that there

is no overlapping region between the panorama image and the new frame, the

image stitching will be consider as a failure. For cases like this, the operator

will be informed to repeat panorama image stitching and start scanning from

sacrum again.

3.3.2 Frame Quality Evaluation

During the probe movement, it is inevitable that the probe may be slightly

shifted and the image will go out of line, resulting in bad image quality.

The frames of bad quality shall be excluded from image stitching, otherwise

deteriorating the panorama image quality.

Three parameters are employed to evaluate the frame quality, respectively

the template matching value of the spinous process, the cross correlation value

of the previous stitched frame with the current frame and the stabilization of

image features in the temporal domain.

The shape resembles the sinusoid peaks is utilized the the template (Fig

3.5(a)) and its matching value with the ultrasound frame serves as one

parameter for the image quality evaluation. Since the spinous process shapes

varies from one to another, once the spinous process is located with the given

sinusoid template, the template will be updated with the detected spinous

process shape, to ensure that the spinous process can be correctly identified in

the continuous frames. Cross correlation of the current frame with the stored

previous stitched frame will also be calculated, to ensure that the new frame

going to be stitched agreeing with the panorama image. The stabilization of

the image features is measured by the cross correlation value of previous and

current frame. The higher the value, the more steady of the image features,

thus excluding the bad quality frames resulted by accidental out-of-line of the

probe.
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(b) 

(a) 

Figure 3.4: Panorama Image Stitching. (a). Randomly selected ultrasound frames.
(b). The resultant panorama image

Only when the three parameters are above certain threshold will the frames

be considered good quality. Meanwhile, the accumulated distance obtained

with phase correlation shall pass certain value. If those prerequisites are

satisfied, the frame will be stitched onto the panorama image and related

accumulator and saved stitched frame will be updated. Otherwise, the

algorithm will drop the current frame and query for new frames to be stitched.

With this motion estimation and frame quality evaluation approach, the

algorithm ensures both the speed of panorama generation and quality of

panorama image.

3.3.3 Image Stitching

After the motion estimation triggers the stitching process and the frames are

evaluated to have good image quality, the frame will be selected as the one to be

stitched to the panorama image. Since phase correlation has already estimated
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(a) 

(c) 

(b) 

Figure 3.5: Spinous Level Identification. (a). Template used for spinous detection.
(b). Template matching result of the panorama image. (c). Identified spinous levels,
the circles marks the spinous processes, the vertical lines marks the interspinous
region of L3-L4 and L2-L3, the sacrum is also marked with the white line.

the relative motion between the existing panorama image and the frame to be

stitched, therefore, the image stitching process is simplified as aligning the new

frame with the panorama image and then combining them together [60]. Fig

3.4 displays several frames randomly selected from the collected video and the

final panorama image.

3.4 Spinous Level Identification

The target for level identification is to search for the L3-L4 interspinous region,

which is the most appropriate level for epidural needle insertion. The spinous

level identification is implemented based on the obtained panorama image.

Template matching, the same sinusoid peak template, is used to identify the

spinous processes. The local maximums of the template matching result are

deemed as the spinous processes, if the local maximum is bigger than the given
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Figure 3.6: Spinous Level Identification Result on Original Ultrasound Image

threshold. Fig 3.5 shows the procedure of level identification.

The identified spinous level information will be imposed on the original

ultrasound image and shown to the anesthetists, as shown on Fig 3.6. Probe

center is marked on the image, so as to facilitate the anesthetists to align the

L3-L4 level to the center of the probe.

3.5 Image Processing Procedure

The flow chart shown in Fig 3.7 illustrate the entire ultrasound image

processing in the longitudinal midline view. To start the image acquisition,

the operator holds the ultrasound transducer near sacrum with the midline

view. A frame grabber is employed to acquire the ultrasound frames form the

ultrasound machine and feed the video stream to a personal computer. The

raw ultrasound images acquired will be pre-processed with local normalization

first to remove the speckle noises and non-uniform illumination artifacts. In

the initial stage, the trained SVM model will be utilized to search for the

sacrum. If sacrum is identified in continuous frames, it will consider the

sacrum is successfully identified and the flag for sacrum search will be set false,
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eliminating sacrum searching in the following scanning. The algorithm will

send out guidance for the operator to move the probe upward slowly and steady,

initializing the panorama image stitching procedure. For the panorama image

stitching, the relative motion of the frames is estimated with phase correlation.

If the accumulated movement is bigger than certain threshold and the image

quality is good enough, the frame will be stitched to the panorama image. After

new frame is stitched to the panorama image, spinous processes identification

and level counting will be conducted on the obtained panorama image. The

spinous level information will be imposed on the original ultrasound frame

to keep the operator well-informed. This procedure will repeat until L3-L4

interspinous region is aligned to the middle of the probe.

3.5.1 Materials and Image Acquisition

For the o↵-line model training and algorithm development, 34 ultrasound

videos from 34 di↵erent subjects were collected. With the 34 collected

ultrasound videos, 17 are randomly selected for the training set and the

remaining 17 served as the test set for sacrum SVM model training

and validation. The image processing and SVM training algorithms are

implemented with Python programming language, with OpenCV, Scikit-Learn,

Numpy and PyQT open source libraries installed.

3.6 Results and Discussions

3.6.1 Sacrum Identification

The SVM model for sacrum detection is trained with blobs from randomly

selected 17 videos (50%) and tested with the rest 17 videos. The statistics of

the training and test database for sacrum identification is listed on table 3.1.

Table 3.2 lists the training and test result of the SVM model. The trained

SVM model achieved an accuracy of 98.52% on the test set, indicating that
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Figure 3.7: Flow Chart of Ultrasound Image Processing Procedure for Spinous Level
Counting
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Table 3.1: Statistics of Training Set and Test Set.

Training Set Test Set

Subject Number 17 17

Sampled Blobs 448 474

Interspinous 208 219

Bone Images 228 255

Table 3.2: Performance of SVM Classification for Sacrum Identification.

Training Set (%) Test Set (%)

Accuracy 99.55 98.52

Precision 99.04 97.75

Recall 100 99.08

F0.5 99.23 98.01

the model is well trained.

3.6.2 Result on Frame Quality Evaluation

Fig 3.8 displays the frames randomly extracted from one of the o↵-line video.

The frame quality is evaluated based on the three parameters proposed in

the previous section. In order to evaluate the quality selection criteria

independently, the prerequisite for distance between the current frame and

the existing panorama image is neglected. The evaluation parameter is listed

on Table3.3. Of the nine frames displayed on Fig 3.8, (2)(5)(8) and (9) are

selected as good quality frame. Frame (3) has the worst image quality, thus

resulted in low score on all of the three parameters. Frame (1) shows no

obvious spinous process and therefore get excluded. Frame(4) (6) and (7) is

captured when the probe is moving in speed. The movement is reflected on

the low temporal correlation parameter between the previous frame and the

current frame. Therefore, the three parameters are able to reject the bad
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Figure 3.8: Frame Quality Evaluation for Image Series.

quality frames that occasionally appears in the video stream. In the image

processing procedure, the stitching is conducted only when the accumulated

distance between the current frame with the panorama image exceeds a given

threshold. In this approach, the good quality frames that appears continuously

can be selected at a distance, thus alleviating the computational burden of the

image stitching procedure.

3.6.3 Image Stitching and Spinous Level Identification

For the o✏ine collected ultrasound videos, the panorama image were

successfully stitched on 33 out of 34 videos. The only failure case is induced by

the unsuccessful saving of the whole video stream by the ultrasound machine,

that the frames of the sacrum scanning part is missing in the saved video file.

Since the sacrum is not detected, thus the panorama image stitching process

is not triggered from the beginning.

The spinous level identification aims to locate the L3-L4 interspinous

region. In the set of collected videos, L3-L4 region is successfully identified
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Table 3.3: Parameters for Frame Quality Evaluation.

Image Spinous Panorama Temporal Acceptable

No. Matching Correlation Correlation Quality

(1) 0.44 0.66 0.76 No

(2) 0.56 0.98 0.53 Yes

(3) 0.47 0.1 0.39 No

(4) 0.63 0.96 0.21 No

(5) 0.66 0.93 0.62 Yes

(6) 0.7 0.98 0.2 No

(7) 0.67 0.94 0.48 No

(8) 0.62 0.98 0.98 Yes

(9) 0.71 0.75 0.94 Yes

on all of the videos where panorama are successfully stitched previously, i.e.,

33 out of 34 videos.

3.6.4 Computational Speed Tests

Table 3.4 lists the computational speed of major operations for the image

processing procedure. For the most time-consuming procedure, where the

frame is identified to be stitched to the panorama image, it takes 49.64 ms

to process one frame. For the least time-consuming procedure, where the

accumulated distance is less than the given threshold, it takes 15 ms to process

one frame. Given that the image acquisition speed is 15FPS for real time

online processing, the proposed image processing procedure is fast enough for

real time application.

3.7 Conclusion

In this chapter, a lumbar ultrasound image processing procedure was proposed

for spinous level identification in the longitudinal view. The algorithm starts
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Table 3.4: Computation Cost of Video Processing with Matlab.

Operation Computation Cost(ms)

Preprocessing 1.89

Sacrum Identification 7.52

Motion Estimation 4.39

Image Stitching 27.75

Spinous Level Counting 5.50

Maximum Processing Time Per Frame 49.64

Minimum Processing Time Per Frame 15.19

with automatic sacrum identification, by feature extraction and support vector

machine. The continuous identification of sacrum will initiate the panorama

image stitching process. Image quality is evaluated along with distance

calculation, to ensure that the frames being stitched to the panorama image

match certain standard. The spinous levels will be identified and divided based

on the obtained panorama image. The identification results are imposed on

the original ultrasound image in real time as the operator moving the probe.

Simple guidance will also be provided to the operator on how to move the

probe. The whole image processing procedure is fully automatic and requires

the least ultrasound knowledge for anesthetists.
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Chapter 4

Localization of Precise Needle

Insertion Site with Cascading

Classifier

4.1 Introduction

As mentioned in Chapter 1, the localization of epidural needle entry site

with ultrasound imaging involves two continuous stages: counting the lumbar

level in the longitudinal view and identify the accurate entry point in

the transverse view [19]. The ultrasound probe is first positioned in the

longitudinal orientation to search for the L3-L4 spinous level, the automatic

image interpretation of which has been discussed in the previous chapter. Then

the probe is rotated to the transverse view to further search for the precise

location of the needle insertion site.

The objective of this chapter is to fill the gap of automatic ultrasound

image interpretation of lumbar spine in the transverse view for pregnant

patients. First, a primary version classifier based on position relationships of

main anatomical features, called position correlator, was developed to identify

the interspinous image. The position correlator achieved a success rate of
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100% on ultrasound images obtained from lumbar spine of healthy volunteers.

However, since the clarity of anatomical features of lumbar spine might degrade

during pregnancy [61], the original position correlator designed for healthy

volunteers may not be e↵ectively applicable to the pregnant patients. In order

to solve this problem, a cascading classifier is proposed to improve the image

identification. The cascading structured classifier contains four layers and

imposes stricter rules for the image classification, from aspect of position and

intensity of anatomical features and black pixel rate along the midline. The

proposed cascading classifier was further tested on ultrasound video streams

collected from pregnant patients in an o↵-line manner and achieved much

better performance than the position correlator.

4.2 Ultrasound Image Features of Lumbar

Spine

Ultrasound imaging provides anatomical information on 2D B-mode images

corresponding to the plane where the probe is located. Along with the

movement of the ultrasound probe, the anatomical structures beneath the

probe will change accordingly, leading to di↵erent image features. When the

probe is placed directly on the spinous process, the ultrasound wave will be

impeded by bones, creating a long triangular hypo-echoic acoustic shadow

Fig4.1(a). The midline of the ultrasound image will be dark with a triangular

dark window in the middle, which is the main feature of bony images. When

the probe is moved to the interspinous region, more details beneath the skin

can be noted, as shown in Fig 4.1(b). The ‘flying bat’ like shape indicates

that the location of the probe is a suitable site for needle insertion [19]. The

important anatomical features, i.e, epidural space, vertebra body and articular

processes, will be revealed in the interspinous image.
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Figure 4.1: Ultrasound Image of Lumbar Spine. (a) Typical ultrasound image
when the probe is placed above spinous process, featured by the triangular anechoic
window; (b) Ultrasound image when probe is placed on interspinous space.

4.3 Position Correlator

The visibility of ‘flying bat’ shape is the criterion adopted by anesthetists

to recognize interspinous images [19]. However, in computer vision, due to

the variation and distribution extent of the ‘flying bat’ shape in the image,

the recognition of the entire ‘flying bat’ shape is not a easy task. Although

algorithms like active contour can be employed to fit the shape, it usually

subjects to the limitation of slow computational speed; thus, not applicable

for the real time recognition purpose.

In order to make the signatory feature easily recognizable, the ‘flying bat’

is decomposed into smaller and more easily distinguished and independent

features to identify whether a certain position is suitable for needle insertion.

The three features that are most important in identifying the needle insertion

site are: the ‘bat ears’, which represents the combination of articular process

and transverse process as marked on Fig 4.1(b), the epidural space (which

actually includes both ligamentum flavum and dura mater, but usually seen

as a single line in ultrasound images), and the vertebra body.

The separation of a single big feature into these three smaller features also
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has the advantage that the distances between any two of the features can be

allowed to vary, as long as the relative positions hold. This allows versatility

for the approach to remain applicable to di↵erent patients, since the detailed

spine structures will inevitably vary from one person to another, resulting in a

di↵erent size of the ‘bat’. Thus, it is challenging to be able to use a single ‘bat’

as a signatory feature representative of everyone, but have three separated and

smaller signatory features will be more robust to such uncertainties. Only when

the probe is placed on the interspinous space, where it is suitable for needle

insertion, will all the three features be manifested together. When the probe is

placed above the spinous process, the image window is dark in the middle, thus

none or less than three features can be identified. This decomposition of the

conventional signatory feature is a key step contributing to the e↵ectiveness of

the proposed approach which will be highlighted in the following sections.

4.3.1 Template Matching Algorithm

In the quest for the three signatory features, the template matching algorithm

is leveraged on to search for the features from the ultrasound image. Template

matching, in essence, computes the cross correlation between templates and

images. The template moves from pixel to pixel and the degree of similarity

between the template and the area scanned by templates is computed. The

group of pixels giving the maximal correlation results will be deemed as the

desired feature.

g(x, y) =
X

i,j

T (i, j)I(x+ i, y + j) (4.1)

where g(x, y) represents the matching result, T (i, j) denotes the template and

I(x, y) denotes the target image.

Three signatory features, including the articular process, epidural space and

vertebra body, were used as the representation of interspinous space. Among
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(a) (b)

(c) (d)

Figure 4.2: Ultrasound image processing using template matching. (a) Signatory
template for articular process. (b) Signatory template for vertebra body. (c)
Matching results for articular process. (d) Matching result for vertebra body.

the three sub-features, the appearance of the epidural space and the vertebra

body both resemble a line. Thus, the same linear sub-template, as shown on

Fig 4.2(b), is employed for the recognition of both vertebra body and epidural

space. The signature of articular process is the ‘bat ear’ in ‘flying bat’ shape,

as shown on Fig 4.2(a). Fig 4.2(c) and (d) lists the template matching result

of the articular process and vertebra body for the interspinous respectively.

However, since the algorithm extracts the best match between the image

and the feature template, there may be mismatches arising from look-alikes in

the same image. As shown in Fig 4.3(b), which is the image of a bone, but

the template matching algorithm may extract it as the vertebra body, if no

di↵erentiation regulation is applied.
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Figure 4.3: Template Matching Results for Interspinous Image and Bone Image. (a).
template matching result for proper insertion site. (b). template matching result
for images above spinous process.

4.3.2 Position Correlator

Although the target features are now smaller and easier to find in the image,

another issue has occurred in its sensitivity to mismatches. Two solutions

are proposed to solve this sensitivity problem. 1. A threshold can be used

to limit the result of template matching output. A matching value which

is higher than the threshold is considered to be the desired feature; while

one lower than the threshold is dismissed as a mismatch. 2. The physical

position relationship between the two features can be exploited to sieve out

the mismatches. The ‘bat ear’ template on Figure 4.2(a), which represents the

left and right articular processes, is always located higher up in the image than

the vertebra body (template 2), following the anatomy structures of lumbar

spine. Thus, a position correlator leveraging on this relative locations can be

used to sieve out mismatches.

Even though the threshold method is widely employed when using template

matching, it is not necessarily robust, since the thresholds for di↵erent persons

will be vastly di↵erent. Even for the same person, the threshold is not constant

if the scanning angle and position changes. It is not quite possible to find a

threshold that fits all. However, the position correlation among the features
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remains the same. Therefore, the position correlation approach is utilized to

identify whether the identified feature is a good match. For matched results

with the vertebra body area located higher than the articular process, the

image is identified as a bone image. If the position correlation follows the

anatomy, then the image will be identified as the interspinous space and the

placement of the probe is a potential candidate for needle insertion.

The position correlator is a key function which makes up for the void created

from the decomposition of the ‘flying bat’ to keep the identification results

robust. In real experiments on a total of 239 ultrasound images collected from 5

healthy volunteers, comprising of 73 bone images and 166 interspinous images,

the position correlator is able to successfully sieve out the 73 bone images

which would otherwise be similarly interpreted as the interspinous space too.

4.3.3 Comparison of Identification Rate and

Computation Time

Another important aspect to note is the e↵ects of di↵erent local means of

the image and the template on the interspinous image detection. The local

intensity variance of the image and template significantly a↵ect the correlation

results, potentially shifting the search convergence from the best match point

to the brightest region instead. Therefore, before the computation of the

correlation statistics, the means of the templates and the local means of target

images covered by templates should be first normalized. From the experiments

conducted, it is observed that without the normalization step, the ratio of

incorrectly identifications over total images scanned is 166/239 (69.4%). In

these cases of incorrect identification, the algorithm is unable to distinguish

interspinous images from bone images. Thus, the pre-processing stage is

critical to improve the accuracy of template matching through a normalization
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(a). Accuracy (b). Computational Speed 

Figure 4.4: Identification Result for Template Matching. (a). Comparison of
identification rate; (b). Comparison of computational time

process as in Equation 4.2.

g(x, y) =

P
i,j

T (i, j)I(x+ i, y + j)
qP

i,j

T (i, j)2 ·
P

i,j

I(x+ i, y + j)2
. (4.2)

With the normalized correlation approach, the local standard deviation

of target image under the template has to be computed at every pixel

of the image. As a result, normalized template matching is generally a

computationally expensive algorithm. For a 151 ⇥ 151 8 bit gray-scale

ultrasound image, it consumes 0.968s to process an image with Matlab. This

duration is rather long for a real-time recognition application processing a

series of images acquired in quick succession.

To reduce the amount of computational time necessary, the DoG modified

local normalization algorithm is used to overcome the local intensity variance

of the ultrasound image, before template matching is computed. The results

point to an even higher accuracy achieved compared to template matching

with normalized correlation. The computational speed achieved is also 35

times faster than that with the normalized correlation approach. A thorough
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comparison between those two approaches is illustrated in Fig 4.4.

The normalized template matching algorithm, combining the position

correlator and DoG modified local normalization preprocessing proposed in

Chapter 2, achieves excellent recognition results in the experiments conducted.

In all of the 239 ultrasound images tested, the algorithm is able to find the

features of interest successfully on interspinous images. The position correlator

is able to e↵ectively sieve out incorrectly matched feature on images that are

collected above the bones. Therefore, collectively with these two algorithms,

the proposed approach is able to automatically identify the interspinous

images, at a speed which is amenable towards real-time applications, thus

potentially reducing the anesthetists interpretation of ultrasound images to an

easier one of following the guidance from the proposed system in the movement

of the probe along the patients to reach the suitable site.

4.4 Cascading Classifier

4.4.1 Improved Position Correlator

With respect to the ultrasound images collected from volunteers, the proposed

position correlator in the last section, which only is concerned with the

relative positions of articular process and vertebra body, achieved 100% success

rate on the 239 ultrasound images. However, the same position correlator

performed poorly on the video streams collected from pregnant patients,

since the visibility of key anatomical features decreases during pregnancy

[29]. In order to improve the identification accuracy, an improved version of

position correlator was developed, which takes into consideration more specific

conditions.

Taking into account the anatomical structure of the lumbar spine, an

improved version of the position correlator was formulated as shown in Fig

4.5.
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Figure 4.5: Position Correlator

The matched results for articular process (the left articular process is

represented by (x1, y1) and the right one is represented by (x2, y2)) and

vertebra body (position (x3, y3)) must fulfill the following criteria in order

to be identified as interspinous images:

Cond(1) : a(x1 + x2)/2 + b(y1 + y2)/2 + c ⇡ 0 (4.3)

Cond(2) : �b(x1 � x2) + a(y1 � y2) ⇡ 0 (4.4)

Cond(3) : ax3 + by3 + c ⇡ 0 (4.5)

Cond(4) : y3 >= D (4.6)

Cond(5) : y3 >> y1 (4.7)

Cond(6) : M >= ↵ (4.8)

Note: ax+ by + c = 0 is the function for symmetry axis, known as midline

for the spine structure, the detection of which will be discussed in the next

section. M denotes the maximum matching result of vertebra body. D and ↵
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represent the depth threshold and matching result threshold for vertebra body

as detected by template matching.

Equations 4.3 and 4.4 represent the relationship that the left and right

articular process should be symmetrical to each other along the symmetry axis.

Equation 4.5 indicates that the center of vertebra body should be located on or

near the symmetry axis. Equations 4.6, 4.7 and 4.8 indicate that the vertebra

body shall be located deeper than the articular process and the matching result

shall be larger than a given threshold ↵.

4.4.2 Midline Detection

In order to locate the midline, a cost function J(#, x0) based on the summation

of weighted pixel values within a predefined window was formulated. The

window is scanned through the entire image within [-45, +45] degrees. The

position (x0) and angle (#) that produces the minimal cost is considered to be

the midline of the image. This deduction is based on the fact that the bone

image yields a dark window near the midline; and for the interspinous image

this holds true most times.

To increase the accuracy of the midline detection in the interspinous images,

a penalty which decreases its weight as a function of depth is imposed on the

cost function. Because the vertebra body and epidural space usually appear at

the deeper part of the interspinous image, a weight that decreases with depth

will allow the appearance of the vertebra body to be penalized less toward

the cost function, and thus the midline location can be calculated with higher

accuracy for the interspinous images. Meanwhile, the weight change will not

a↵ect the bone images, because in the bone images, there are no white pixels
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(value is 1) along the midline.

J(#, x0) =
nX

i=1

CX

j=�C

[0.5 + exp(�0.05i)]⇥

f(i, itan#+ x0 + j)⇥
p
(1 + 0.3|#||x0 � n/2|);

(4.9)

The cost function J is formulated with two variables, the degree of the line

o↵ the vertical direction # and the starting point (1, x0). The first term of the

Equation 4.9 is the penalty term for the appearance of white pixels at di↵erent

depths. The third part is the penalty term if the detected midline is not near

the middle of the ultrasound image or that it is not vertical. In Equation 4.9,

f(i, j) denotes the binary image of the pre-processed ultrasound image with a

dimension of n ⇥m, i for depth direction and j for width direction; ✓ and x0

denote the angle and intercept of the midline. The pair of parameters # and

x0 that minimize the cost function will locate the midline, as shown in Fig 5.2.

C represents the half size of the predefined window, the value of which can be

optimally set between 5-10.

After the midline is obtained with the above cost function, the dark rate

� within the predefined window is calculated with Equation 4.10.

� = 1� min(J)

2 ⇤ C ⇤m (4.10)

Although the use of decreasing weight greatly improves the correct

identification of the midline of interspinous images, it is noticed that for

certain ultrasound images, a wrong midline may be identified by the cost

function. This is often the result of the articular process being far away from

the vertebra body in the horizontal direction. If the horizontal distance is

larger than the predefined window, then the cost function would be minimized

at the gap between articular process and the vertebra body, rather than

at the midline. In order to rectify this incorrect identification, symmetry

detection is employed. The ultrasound images of the lumbar spine should
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be symmetrical along the midline. Therefore, a symmetry indicator can serve

as the additional confirmation of the identification of the midline using the

cost function approach.

Using the cost function to obtain the midline and then using symmetry

detection to reconfirm its location improved the computational speed and

accuracy, compared with alternate methods, i.e. full symmetrical detection.

The symmetry parameter of the image against the midline detected by the

cost function is defined by the following equation:

S =

P
|f(x, y)� f(x0

, y

0)|
mx0

(4.11)

where (x, y)and(x0
, y

0) represent the coordinates of one pair of pixels which

are symmetrical to each other against the detected midline.

The midline detection adds another two conditions to the image

classification, the symmetrical parameter and the dark rate:

Cond(7) : S > T (4.12)

Cond(8) : � <= R (4.13)

In the equation, the T and R denote the threshold for symmetrical

parameter S and dark rate �, respectively.

4.4.3 Cascading Classifier for Image Classification

The position correlator with midline detection improved the recognition rate in

pregnant cases, compared to the original position correlator in the last section.

It was able to identify the interspinous images from 21 of the 36 ultrasound

video streams, as long as the articular process and vertebra body were both

clearly visible. However, among some of the collected pregnant cases, it was

noticed that the articular processes were not visible or easily recognizable for

certain cases, while only the vertebra body appeared, even on the best insertion
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point locations. Under those extreme cases, the position correlator would fail

to identify the interspinous images.

In order to strengthen the classifier and make it able to recognize the

extreme cases, a cascading classifier was developed. The cascading classifier is

composed of a series of classifiers so that if the image cannot be confidently

classified by a certain classifier then it will be passed to the next classifier,

until it is classified with a high confidence level. The structure of the proposed

cascading classifier is shown in the Fig 4.6.

The first layer of the cascading classifier is the appearance of vertebra body.

The criterion indicates that the vertebra body detector should be maximized

at the lower part of the image and close to the symmetry axis. If the first

criterion is not met, the image will be classified as a bone image. Otherwise

it will be passed to the second layer, which will compute the maximal dark

rate identified by the cost function. If the dark rate is lower than a certain

threshold, indicating that there is a considerable number of white pixels within

the predefined window, then the image will be identified as an interspinous

image. If the second criterion is satisfied, then the image will be identified

as an interspinous image; otherwise it will be passed to the third layer, the

position correlator described in the previous section. If the criterion at the

third layer is not satisfied, then the image will be passed to the fourth layer,

which classifies the images based on the symmetry detection parameter. If

the image symmetry parameter along the detected midline is higher than a

certain threshold, then the image will be classified as an interspinous image.

Otherwise, the image will be labeled as a bone image, as there are no further

classifier layers.

4.4.4 Identification of Epidural Space

Epidural space is the target for epidural anesthesia, where the needle is placed

and medication is delivered. The identification of the epidural space is also an
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Figure 4.6: Framework of Cascading Classifier
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important landmark for spinal needle insertion in case of spinal anesthesia. The

epidural space is only visible on ultrasound images taken from the interspinous

region. Once the processed image is identified to be an interspinous image with

the proposed cascading classifier, it is then possible to search for the epidural

space within a certain confine of the image.

The epidural space, according to the anatomical structure of lumbar

spine, is located between the articular process and vertebra body. Moreover,

like the vertebra body, the epidural space also appears as a linear feature

in the ultrasound images. The signatory template used for vertebra body

identification will also result in a large matching value at the epidural space,

though less than that of vertebra body, as indicated by the matching results in

Fig 4.7. In certain cases for the pregnant patients, the epidural space appears

more obvious than the vertebra body and the template matching result will

maximize at the epidural space instead of at the vertebra body. Under those

cases, the algorithm will search for the two brightest lines in the matching

results and identify the deeper one as vertebra body and the superior one as

epidural space. Therefore, the epidural space can also be identified from the

template matching results of the vertebra body.

4.4.5 Materials and Image Acquisition

The ultrasound video streams utilized in this research were collected from

KK Women’s and Children’s Hospital, with institutional review board (IRB)

approved and patients’ consent obtained. Pregnant women scheduled for a

caesarean procedure were recruited before they were sent to the operation

theater (OT). For the data collection, an ultrasound system (Moddel U660,

Canyearn Medical) and a 3.5 MHz curvilinear ultrasound probe (C3.5MHzR60,

Canyearn Medical) were employed, with the scanning depth set to 8-10 cm.

Contrast and gain were set as default, -10 and 80 respectively. The attenuation

compensation was set with Time Gain Compensation (TGC) function, which

68



Epidural  
  Space

Vertebra  
      Body

Figure 4.7: Search for Epidural Space

allowed for stepwise increase in gain to compensate for greater attenuation

of ultrasound waves returning from deeper structures. TGC was set as

proportional to the depth and remained unchanged for all of the cases collected.

The ultrasound video streams were collected from the patients’ lumbar spine

in the transverse view (L3-L4 or L2-L3) at a constant speed of 15 Frames Per

Second (FPS) and then saved as Windows Media Video (WMV) format for

processing. The length of collected video streams ranges from 10-20 seconds,

with 150-300 frames obtained from each participant. In total, 36 video streams

are recorded from 36 di↵erent pregnant subjects. The ultrasound video streams

were later processed with the described image processing algorithms o↵-line.

The image processing algorithm was implemented with the Matlab

Computer Vision System toolbox and run on a personal computer (3.3GHz

Core i5-3550 CPU and 8GB installed memory). Sector image were cropped

and downsampled by a factor of 2, so as to improve the computation speed.

An experienced sonographer participated in the research, helping to collect

ultrasound video streams and identify whether an image or video frame was

suitable for needle insertion, i.e., whether the image was an interspinous image
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Table 4.1: Statistics of Training Set and Test Set.

Training Set Test Set

Subject Number 20 16

Image Number 800 640

Non Labelled 58 26

Interspinous 448 349

Bone Images 294 265

or a bone image. The labeling provided by the sonographer was treated as the

‘gold standard’ and then compared with the classification results produced by

the algorithm, so as to evaluate the performance of the algorithm.

4.5 Results

There are four parameters (D, ↵, T and R) in the cascading classifier which

influence the performance of the classifier. In order to search for the parameters

that achieve the optimal performance, 20 video streams were randomly selected

from the 36 subjects as training set, and the remaining 16 video streams were

selected as a test set. From each of the training videos and test videos, 40

images were randomly extracted, so as to evaluate the classifier’s performance

qualitatively.

Each of the randomly selected ultrasound video frames were labeled by the

sonographer: as 1 for interspinous images and as �1 for bone images. Frames

located near the junction of interspinous image and bone image were labeled as

0, since it was di�cult to assign these with a clear label. The label provided by

the sonographer was utilized to tune the classifier’s parameters and evaluate

the accuracy of the algorithm. The basic statistics of the training and test set

are displayed in Table 4.1.

Parameters were tuned based on training set. The parameters that achieve
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Table 4.2: Classification Result on Training and Test Set.

Training Set Test Set

Accuracy 94.80% 93.23%

Precision 95.90% 93.94%

Recall 95.46% 93.00%

F0.5 95.81% 93.75%

the optimal accuracy are chosen as the threshold for the cascading classifier,

which corresponding to D = 4.5cm, ↵ = 0.45, T = 0.6 and R = 0.95. The

test result of the cascading classifier with the given parameters is displayed on

Table 4.2.

The proposed cascading classifier was also tested on the 36 video streams

themselves, trying to determine the best needle insertion location in real-time.

A successful identification of needle insertion site is defined as follows: if the

interspinous images appeared continuously, indicating that the probe is placed

on the interspinous space, the classifier shall be able to identify the interspinous

images in at least 5 consecutive images; while if the bone images appear

continuously in the video streams, then the classifier shall not give positive

results in more than two continuous frames. The classifier is not required

to identify all the interspinous frames and bone frames, but the ones that

appear continuously shall be correctly identified. Needle insertion points are

successfully located on 20/20 of training videos and 16/16 of the test videos.

An example of related video frames are shown in Fig 4.8 with the

identification results. The circle superimposed on the images indicates that

the image is identified as an interspinous image by the algorithm. For the case

4.8(a), the anatomical structures revealed on the image are very clear and the

‘flying bat’ shape is easily recognizable. For the case 4.8(b) and 4.8(d), the

‘flying bat’ shape is not as obvious but discernable. For case 4.8(c) and 4.8(e),

the ‘flying bat’ is hardly visible; however, the appearance of vertebra body
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Table 4.3: Computation Cost of Functions with Matlab.

Function Computation Cost(ms)

Preprocessing: DoG + normalization 9.0

Template Matching 13.1

Midline Detection 16.99

Symmetry Detection 18.98

Cascading Classifier 0.029

Processing Time Per Frame 59.9

indicates that the image is interspinous.

Table 4.3 lists the computational cost of major functions employed in the

image processing procedure. Matlab (R2012a) was used for the implementation

of the algorithm.Symmetry detection (18.98ms) and midline detection (16.99)

are the two functions that consume most of the computational cost (60.07%).

It takes 59.9ms to process one single frame, reaching the computational speed

of 16.67 FPS. Given that video streams are collected at a frame rate of 15 FPS,

the algorithm is fast enough for real-time video processing.

4.5.1 Precision and Accuracy of Epidural Space

Measurement

The visibility of epidural space can decrease for some cases during pregnancy

[29]. This was noted during the current study as well. Among the 36 ultrasound

video streams, the epidural space was visible in 31 of them. Fig 4.8(e) shows

a case where epidural space is not visible on the interspinous image. For the

31 video streams, epidural space was measured in two ways: manually by the

sonographer and automatically with the algorithm. For the manual manner,

the sonographer chose one frame which showed a clear epidural space and then

measured the depth using the caliper function of the ultrasound machine. For

the automatic manner, the algorithm first identified the interspinous image
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(a) 

(b) 

(c) 

(d) 

Bone Images Interspinous 

(e) 

Figure 4.8: Identification Result of Randomly Selected Video Streams. (Note: In
the image, the square box indicates the matching position for articular process and
the rectangle indicates the position of vertebra body. In the right column of the
images, the circle serves as a mark for the interspinous image and the white line
above the vertebra body is the epidural space identified by the algorithm.)
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Figure 4.9: Comparison of Automatic vs. Manual Measured Epidural Depth.
(a) Scatter plot; (b) Di↵erences between automatic measurement and manual
measurement

continuously and then epidural depth was measured by the mean of the

epidural depth as it appeared in the interspinous images.

Fig 4.9(a) shows the results for both measurements. Linear regression

analysis of the two methods result in the following relationship:

Automatic = 1.016⇥Manual � 0.078 (4.14)

The coe�cient of determination (R2) is 0.9861 for the linear regression

equation, indicating a high and linear correlation between the manual

measurement and automatic measurement. As demonstrated by the plot in

Fig 4.9(b), the error between automatic measured depth and manual measured

depth ranges from -0.128 cm to 0.15 cm, with the average of 0.0028 cm,

standard deviation of 0.0528 cm and 95% limits of agreement of -0.1008 cm to

0.1064 cm.
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4.6 Discussions

The low resolution of ultrasound image and the corresponding decrease in

clarity of the subtle anatomy structures pose a challenge in interspinous image

identification for the pregnant population, resulting in a low recall rate with

the position correlator. The cascading structured classifier developed in this

chapter addresses this problem by using layers of weak classifiers. Important

parameters, including matching values and positions of signatory templates,

symmetry against midline and black rate within the predefined window along

midline, serve as weak classifiers to discriminate bone images and interspinous

images. The first layer of the cascading classifier ensures the appearance

of vertebra body, which is the basic criterion for images to be identified as

interspinous images; whereas the continuous layers increases the possibility for

interspinous images to be picked up from the imaging pool. Therefore, the

cascading classifier achieved a balance between precision and recall, further

increasing the identification accuracy.

The error of intraobserver repeatability of ultrasound imaging measurement

was reported to range from 4.75% to 7% [62]. Given that the average of

measured epidural depth is 4.727 cm in this study, the error of manual

measurement of epidural depth may fluctuate among [0.2245 cm, 0.3309 cm],

which is higher than the di↵erence between automatic measurement and

manual measurement. Therefore, the automatic measurement is acceptable

compared with the manual measurement.

In the image processing procedure, the incorporation of pre-processing

alleviates the negative influence of image quality on the recognition result.

The ultrasound image quality generally depends on the experience of

sonographer and proper setting of machine parameters, e.g., contrast and

gain. Pre-processing using DoG enhanced local normalization mitigates

the dependence of classifier performance on good image quality. After the

pre-processing, the divergence of image intensity induced by contrast and gain
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is filtered, increasing robustness. In the five cases displayed in Fig 4.8, the gain

parameter in case (d) was set to 67, while the rest was set at 80, leading to

di↵erent image intensities. Nevertheless, the algorithm successfully identified

all of the cases regardless of the di↵erence in image intensity. Thus, anesthetists

can use the ultrasound system for epidural needle insertion assistance without

requiring extensive knowledge over the machine parameter setting and image

interpretation.

Although it is not necessary for the operator to tune the optimal contrast

and gain parameter to obtain the best image quality, scanning depth must still

be properly chosen. The size of anatomy structures revealed on the ultrasound

image will be di↵erent under di↵erent scanning depths, influencing the optimal

choice of Gaussian kernels. If the depth is set excessively deep, then the

anatomical structures will be very small and a large size Gaussian kernel will

filter the tiny anatomical structure as noise, which is not desired. Since the

epidural space is usually 3-8 cm below the skin and vertebra body is 1-2 cm

deeper than the epidural space, thus the proper setting of scanning depth is

suggested to be around 8-10 cm. During the data collection, the depth was set

between 8-10 cm and the two Gaussian kernels remain unchanged for all the

videos. The chosen Gaussian kernels are able to pre-process the raw ultrasound

images properly with minor change in scanning depth.

Midline detection is another important feature of the video processing

procedure. It not only provides the dark rate � for the cascading classifier,

but also e↵ectively detects the angle and position of the ultrasound probe

against the spine midline. In the real-time procedure, a reference line that is

vertical and corresponds to the middle of the probe can be superimposed on

the image window, so that the operator can be guided to align the detected

midline with the reference line. Therefore, while the cascading classifier locates

the plane that is proper for needle insertion, midline detection will locate the

spine midline, and the combination of the two techniques can locate the precise
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insertion point.

The clinical workflow with the developed algorithm is envisioned as follows:

(1), The operator holds the ultrasound probe in the transverse plane with

an ultrasound system running the algorithm in the background in real-time,

moving it along the patient’s midline slowly, until a set of continuous

interspinous images are detected. (2), At this point, the operator is prompted

to adjust the angle and position of the probe until the detected midline is

aligned with the reference line. (3), When alignment is accomplished, the

location of the center of the ultrasound probe will correspond to a proper

needle insertion point.

4.7 Conclusions

In this chapter, an image processing and identification procedure for automatic

ultrasound image interpretation of lumbar spine in the transverse plane was

proposed. An initially proposed position correlator was strengthened by using

a cascading classifier approach. It includes a cost function based on minimal

appearance of white pixels is formulated to locate the midline of the ultrasound

image, and a symmetrical indicator to ensure the accuracy of the midline

detection. This enhanced classifier e↵ectively identifies the interspinous images

with four layers of weak classifiers and successfully locates the proper needle

insertion point on the 36 pregnant cases collected so far.

The automatic identification of interspinous images and bone images has

been realized with the proposed algorithm. In the following chapters, the

interpretation of lumbar ultrasound images will be realized in an automatic

and real time manner by computers, so that anesthetists are not required to

read ultrasound images which are not easily interpretable. It is expected that

the use of the ultrasound system can be as easy as a direct sensor for needle

site indicator, with the image processing and classification algorithms working
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in the background in real-time. The di�culty associated with epidural needle

insertion can thus be potentially alleviated by the developed approach.
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Chapter 5

Image Classification with

Machine Learning

5.1 Introduction

In the previous chapter, the identification algorithms for lumbar ultrasound

images in the transverse view was proposed, including position correlator for

healthy volunteers and cascading classifier for pregnant patients. The position

correlator is a simple version of classifier which considers the position of

detected anatomical features as the criteria to di↵erentiate the interspinous

image and bone image. It achieved high accuracy on images collected from

healthy volunteers, the anatomical feature of which are clear and easier

to recognize. However, since the clarity of anatomical features of lumbar

spine might degrade during pregnancy [61], the original position correlator

designed for healthy volunteers may not be e↵ectively applicable to the

pregnant patients. In order to improve the identification accuracy for pregnant

women, a more sophisticated model with cascading structures were proposed.

The cascading classifier contains four weak classifier layers and picks up the

interspinous images from the image pool if the criteria in each layer is satisfied.

The performance evaluation of the cascading classifier runs on ultrasound
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images collected from 36 pregnant subjects (20 for training set and 16 for

test set), and achieved an accuracy of 94.80% on training set and 93.23% on

test set.

Although high success rate has been accomplished by using the cascading

classifier, there are still several aspects needs to be improved. The cascading

classifier contains four tunable parameters, including the reference depth

of vertebra body D, matching intensity of vertebra body ↵, symmetrical

parameter S and dark rate along the midline R. A slight change in the

parameters may seriously influence the performance of the classifier; thus, the

cascading classifier is not very robust.

This chapter further extended the research of automatic identification

for transverse lumbar ultrasound images by proposing a machine learning

based approach to further increase the classification accuracy and make the

classification algorithm more intelligent and robust. An intelligent image

identification procedure is proposed, which includes feature extraction, feature

selection and classification algorithm based on a support vector machine

(SVM).

5.2 Materials and Image Acquisition

During the study, 46 ultrasound video streams were collected from 46 di↵erent

subjects. After video streams were collected, the image database was obtained

by extracting still images from the video streams. 40 images were randomly

extracted from each of the video streams, constituting 1840 ultrasound

images in the training and test database in total. In order to reduce label

noise, the extracted images were labelled by two experienced sonographers

independently: ‘1’ for interspinous images, ‘-1’ for bone images and other

images not proper for needle insertion. Since two experts were involved

in the labelling of image database, it was inevitable that they may have

80



di↵erent opinions on certain images, especially for the images located near the

junction of interspinous and bone region. The labels assigned with unanimous

categorization by the two experts were treated as ‘gold standard’ and used for

SVM training and testing. On the contrary, the images with adversarial labels

indicates that the two experts did not agree on the particular categorization

of the image. The adversarial labels were regarded as label noise and removed

from the database, so as to decrease the negative influence of faulty labels on

supervised learning.

The feature extraction, feature selection and SVM training algorithms were

implemented with Matlab (Version R2012a, The MathWorks, Natick, MA,

USA) and run on a personal computer (3.3GHz Core i5-3550 CPU and 8GB

installed memory). Sector images were cropped and downsampled by a factor

of 2, so as to improve the computation speed.

5.3 Feature Extraction

Before feature extraction, raw ultrasound images were pre-processed with the

DoG enhanced local normalization, so as to remove speckle noise and extract

anatomical structures, with kernel parameters set as 20 ⇥ 20, � = 4 for first

kernel and 20⇥20, � = 10 for second kernel [63, 64]. After pre-processing, local

intensity variance induced by ultrasound wave attenuation was also eliminated.

Therefore, a potential element which might degrade the image classification

was removed.

Feature extraction procedure is extraordinarily important for image

classification. Medical images generally su↵er from limited data size, induced

by the hight cost of equipment and man power for image collecting and labelling

[65, 66]. Therefore, the feature dimension is typically limited. Otherwise,

the learning models will have high variance and cannot be optimally trained

[67, 68]. In order to represent the lumbar ultrasound image with low feature
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dimensions, the image features is extracted with two approaches: the template

matching method to detect the key anatomical features and midline detection

approach to obtain image features along midline.

5.3.1 Template Matching

The visibility of ‘flying bat’ shape is the criterion adopted by anesthetists

to recognize interspinous images [19]. However, in computer vision, due to

the variation and distribution extent of the ‘flying bat’ shape in the image,

the recognition of the entire ‘flying bat’ shape is not an easy task. Although

algorithms like the active contour model can be employed to fit the shape,

it is usually subject to the limitation of slow computational speed; thus,

not applicable for the real time recognition purpose [69]. In the previous

research, the ‘flying bat’ shape is decomposed into three sub-features: the ‘bat

ear’ (articular process), epidural space and vertebra body. The decomposed

sub-features matched the articular process and vertebra body with high

accuracy on images obtained from volunteers [63].

In this chapter, similar decomposition was employed. Template matching

was used to obtain the matching position and matching value between the

sub-features and the images. Among the three sub-features, the appearance

of the epidural space and the vertebra body both resemble a line. Thus,

the same linear sub-template (as shown on Fig 5.1(a)) was employed for the

recognition of both vertebra body and epidural space. Of the two maximum

matching blobs, the one that locates lower in the image is vertebra body and

the superior one is epidural space, which follows the anatomical structure of

the lumbar spine. In the interspinous images, the visibility of vertebra body

and epidural space was clear and both of them can be correctly recognized. On

the contrary, in the bone images, the maximum matching of the sub-template

occurs at di↵erent regions in the image; and the matching values for both

epidural space and vertebra body were low, as indicated by Fig 5.1(b). The
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Left  Articular
Process

Right  Articular
Process(a)

(b)

Figure 5.1: Feature Extraction with Template Matching. (a) Sub-templates for
anatomical features, from left to right: vertebra body and epidural space, left
articular process and right articular process; (b) Matching result of key anatomical
features: The left column: matching result of vertebra body sub-template; the
right column: matching result for articular process sub-templates; the upper row:
interspinous image; the lower row: bone image. The optimal matching position is
marked by a circle.
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situation was the same for the matching of articular processes, except that the

maximum matching of articular processes appears on the left and right side of

the midline. Therefore, based on the matching position and matching value, it

was possible to partially discriminate the interspinous images and bone images.

The parameters obtained with template matching can be utilized to

constitute part of the feature vector for the purpose of image classification,

including the retrospective depth measurement of epidural space (D1) and

vertebra body (D2), their matching values (V1 and V2), matching position of

two articular processes (P3, D3 for left articular process and P4, D4 for right

articular process) and their matching values (V3 and V4).

5.3.2 Midline Detection

The image features along the midline of the ultrasound image is di↵erent

for interspinous images and bone images. For the bone images, ultrasound

is impeded by the spinous process, resulting in an anechoic region along

the midline; while for interspinous images, the epidural space and vertebra

body along the midline will be visible. Therefore, the appearance of black

pixels along the midline serve as an important feature for the classification of

interspinous / bone images.

For the detection of the midline, a cost function J(#, x0) based on the

summation of white pixels within a predefined scanning window was formulated

at Chapter 4 in Equation 4.9. The window was scanned though the entire image

within [-45, +45] degrees. The position and degree that gives the minimum

cost function value will locate the midline, as demonstrated by Fig 5.2. In

order to increase the accuracy of midline detection for interspinous images, a

penalty which decreases its weight as a function of depth was imposed on the

cost function, so as to allow the appearance of epidural space and vertebra

body to be less penalized in the cost function.

After optimal #

0 and x

0
0 is obtained and the midline is located, the
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(1, 𝑥଴) 

Figure 5.2: Feature Extraction with Midline Detection. (Note: the background
image is the pre-processed binary image; The horizontal dashed line is the depth
threshold used to calculate R

w

.)

proportion of black pixels within the predefined scanning window can be

calculated using the following equation:

R
b

= 1�
P

n

i=1

P
C

j=�C

f(i, itan#0 + x

0
0 + j)

n⇥ 2C
(5.1)

The depth of epidural space was reported to range from 3-8 cm, indicating

that the epidural space and vertebra body appear deeper than 3cm in the

image [35, 70]. Thus, the proportion of potential epidural space and vertebra

body within the scanning window can be calculated with:

R
w

=

P
n

i>=3cm

P
C

j=�C

f(i, itan#0 + x

0
0 + j)

n⇥ 2C
(5.2)

Because of the presence of epidural space and vertebra body at the lower

part of the interspinous image, the parameter R
w

is bigger than 0. On the

contrary, for the images obtained from bone regions, the lower part of the

image is black. Thus, R
w

approximates 0 for bone images.

After the midline is located via the cost function approach, a symmetry
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measurement is utilized to doubly confirm the accuracy of midline detection.

The introduction of the symmetrical parameter is based on the fact that the

anatomical structure of lumbar spine exhibits mirror symmetry with respect to

the midline. The symmetrical parameter S is simply calculated with Equation

5.3 [71].

S =

P
|f(x, y)� f(x0

, y

0)|
nx

0
0

(5.3)

where (x, y) and (x0
, y

0) represent the coordinates of one pair of pixels which

are symmetrical to each other against the detected midline.

R
b

, R
w

and S add another three parameters for the feature vector.

Therefore, combining the 10 parameters obtained from template matching

and 3 parameters from midline detection, a feature vector of length 13 was

formulated. A detailed description of template matching and midline detection

on lumbar ultrasound image processing can be further examined in [71].

5.4 Feature Ranking and Feature Selection

A cross correlation method was employed to evaluate the ‘relevance’ of the

features to the corresponding interspinous or bone label. The higher the

correlation value (or the absolute value of the correlation value if the parameter

is negatively related to the labels), the better the predicability of the feature

[72].

The cross correlation between the ith feature X
i

with label Y is calculated

as:

F (X
i

,Y) =

P
N

j=1(xj

� X̄
i

)(y
j

� Ȳ)
qP

N

j=1(xj

� X̄
i

)2
P

N

j=1(yj � Ȳ)2
(5.4)

in which X
i

= X(:, i).

Fig 5.3 shows the cross correlation value of the extracted feature
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Figure 5.3: Ranking of Individual Features. (Note: The three parameters on the
left side of the dashed line are generated from midline detection. The rest of the
parameters on the right side are generated from template matching)

parameters. The features were then ranked according to their correlation value,

resulting in the following feature order:

[R
w

,D1,V1,D2,V2,Rb

,V3,V4,P4,P3,S,D4,D3].

The target of feature selection is to search for the best combinations of

features which produces the optimal performance. It can also help to reduce the

computation time by using a subset of features, instead of computing the whole

set of parameters. In this thesis, although only 13 parameters were used as

features, they were obtained with di↵erent approaches and the calculation for

some of them, e.g. symmetrical parameter and template matching positions,

were time consuming. If some of the parameters were not within the best

feature subset, then the computational speed of image classification procedure

can be accelerated.

In order to find the optimal feature subset with minimum dimension,

forward search was utilized for the feature selection. Algorithm 1 lists the

details of the algorithm [73].
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Algorithm 1: Feature Selection with Forward Search

Input: Training Set: {X, Y}
Output: Optimal Feature Subset F

1 Initialization : F
i

= ;;
2 for i 1 to n do
3 for j  1 to n do
4 F

j

= F
i

5 if X(:, j) /2 F
j

then
6 F

j

= F
j

[X(:, j)

7 Train the classifier with feature subset F
j

8 Select the best feature subset of i dimension: F
i

= F
j,opti

9 Select the feature subset with optimal performance: F = F
i,opti

10 end

5.5 Support Vector Machine

After the best feature subset has been obtained and normalized, SVM was

employed to optimally classify the interspinous images and bone images.

SVM is a supervised learning algorithm which seeks a decision boundary (or

separating hyperplane) with maximal margin for the training set [74]. In cases

where the data is linearly non-separable, usually a soft-margin SVM is used,

which allows for mislabeled training examples and makes the algorithm less

sensitive to outliers.

For the given training samples, {(x
i

, y

i

)}N
i=1, the optimization problem is

formulated as:

min

w,b

1

2
wTw+ C

NX

i=1

⇠

i

s.t. y

i

g(x
i

) = y

i

(wTx
i

+ b) � 1� ⇠

i

, 8i

⇠

i

� 0, 8i

(5.5)

In the equation 5.5, (w, b) denotes the weight and intercept parameters of

the separation hyperplane. ⇠
i

is the slack variable and measures the degree of

misclassification of training data x
i

. Training data which were misclassified

will have their corresponding ⇠

i

> 1. The parameter C is a regularization term
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that controls the relative weighting between the two goals of achieving larger

margin and decreasing classification error. A larger C corresponds to assigning

a higher penalty to errors and classifying all training examples correctly.

The dual form of the optimization in Equation 5.5 is:

max↵ Q(↵) =
NX

i=1

↵

i

� 1

2

NX

i=1

NX

j=1

↵

i

↵

j

y

i

y

j

xT

i

x
j

s.t. 0  ↵

i

 C, 8i
NX

i=1

↵

i

y

i

= 0

(5.6)

Quadratic programming can be employed to calculate ↵. ↵
i

will be nonzero

only for the support vectors, which includes the data points on the margin

boundary and those on the wrong side of the margin boundary. While for the

data points that is distant from the decision boundary, i.e. the non-support

vector points, ↵
i

will be zero.

After ↵ is obtained, the w parameter in the decision boundary can be

calculated by:

w =
NX

i=1

↵

i

y

i

x
i

(5.7)

The intercept parameter b will be calculated based on the support vectors,

i.e, where 0 < ↵

i

 C,

b =

P
m

i=1(1/yi �wTx
i

)

m

(5.8)

where m is the number of support vectors in the training set.

For the data points x to be tested, it’s decision function and class will be
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Figure 5.4: Image Identification Procedure for Lumbar Ultrasound Image

determined by:

g(x) = wTx+ b

=
NX

i=1

↵

i

y

i

xT

i

x+ b

y = sgn(g(x))

(5.9)

5.6 Image Identification Procedure

Fig 5.4 describes the entire image processing and identification procedure for

the lumbar ultrasound images. Raw ultrasound images were first preprocessed

by local normalization to filter the speckle noises; then the feature vector was

extracted with template matching and midline detection. The best feature

subset was then selected and normalized before passed to the SVM classifier.

The SVM model, after properly trained with the training database, identified

the labels of the images with the normalized feature vector.
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5.7 SVM Performance Evaluation Criteria

In order to evaluate the performance of feature selection and SVM classification

comprehensively, four commonly used parameters were utilized; specifically:

accuracy, precision, recall and F-Measure. Accuracy denotes the correct rate

of the classification result compared to the true label. Precision indicates

the proportion of the predicted positive cases that are true positives, i.e,

confidence of positive classification. Recall demonstrates the proportion of true

positive cases that are correctly predicted by the classifier, i.e. sensitivity of

the model to pick up the positive samples [75]. F-Measure combines precision

and sensitivity and evaluates the weighted value of the two.

The mathematical definition of the four parameters is listed as follows:

Accuracy = TP+TN

TP+FP+TN+FN

(5.10)

Precision = TP

TP+FP

(5.11)

Recall = TP

TP+FN

(5.12)

F �Measure = (1 + �

2)⇥ Precision·Recall

�

2·Precision+Recall

(5.13)

(Note: TP : True Positive; TN : True Negative; FP : False Negative; FN :

False Negative.)

In Equation 5.13, � is a non-negative value that balances the weight of

precision and recall. If � < 1, the F-measure will weigh precision higher

than recall; vice versa for the case of � > 1. Concerning the application of

needle entry site identification, the precision of positive identification is more

important than the recall. Thus, a higher weight was imposed on the precision

and � was chosen as � = 0.5 (i.e F0.5).

Apart from the four parameters mentioned above, the Receiver Operator

Characteristic (ROC) curve is another commonly used criterion to evaluate

the performance of binary decision problems in machine learning [76]. The

ROC curve shows how the rate of correctly classified positive samples (true
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(a) (b) 

Figure 5.5: Two Representative Images with Adversarial Labels

positive rate) varies with the rate of incorrectly classified negative samples

(false positive rate). The closer the area under curve (AUC) of ROC to 1, the

better the predictive performance of the classifier.

5.8 Results

The two groups of labels provided by experts were compared and analyzed

before passing to the SVM learning. 1799 (97.77%) out of the 1840 extracted

images had consistent labels. The rest 41 (2.23%) images were assigned

with opposite labels, thus excluded from the database. Fig 5.5 shows two

representatives of the images with adversarial labels. On Fig 5.5(a), the

epidural space and vertebra body is discernable, but vague and not clear.

Compared with continuous interspinous frames, the interspinous feature of

this image is not obvious; but it is certainly not a bone image. On Fig 5.5(b),

the dark anechoic window casted by spinous process appears at the middle of

the image window, indicating that it may be a bone image; but the epidural

space and vertebra body are visible on the image. Images with adversarial

labels were treated as label noise and excluded from the database.

For the purpose of SVM model training, 26 (57%) of the collected videos
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Table 5.1: Statistics of Training Set and Test Set.

Training Set Test Set Total Number

Subject Number 26 20 46

Image Number 1040 800 1840

Interspinous 540 410 950

Bone Images 471 378 849

Adversarial Label 29 12 41

were randomly selected as training set and the remaining 20 (43%) were used

as test set [68]. The training and test sets were divided on the level of subjects

instead of extracted images, which followed the assumption that in the clinical

setting the detailed lumbar spine structure of individuals were not known nor

examined with MRI or other imaging modalities before epidural anesthesia.

Since 40 images were extracted from each video, there were in total 1040

images in the training set and 800 images in the test set. The SVM model

was trained 10 times continuously, so as to evaluate the feature performance

without statistical bias. The detailed statistical information for one of the

training is listed in Table 1.

5.8.1 Results of Feature Selection

In order to avoid over-fitting along with the increasing of feature dimension,

the feature selection procedure was implemented on the training set with

Algorithm 1 and then validated on the test set.

As shown on the Fig 5.6 and 5.7, the trends of SVM performance, evaluated

by the accuracy, precision, sensitivity, F0.5 and AUC, along with increase

of feature dimension was similar for both training set (Fig 5.6) and test set

(Fig 5.7). When the feature dimension was below 4, the SVM performance

improved dramatically along with the increase of feature length. When the

feature dimension was between 5 - 10, the SVM performance improved along
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Figure 5.6: Trends of Accuracy, Precision, Recall, F0.5 and AUC along with Feature
Dimensions for Training Set

with feature length, but at a much slower speed. The maximum performance

was achieved when the feature dimension is 10; then the performance started

to degrade with the increase of feature dimension. Therefore, the dimension

of best feature set was chosen as 10, where the parameter of symmetry S and

matching depth of articular process D3, D4 were excluded.

5.8.2 Performance of Support Vector Machine

Based on the training set with the optimal feature set obtained in the last

section, the soft SVM model was trained to get the optimal hyperplane. The

trained model parameters were then validated on the test set. The only free

parameter in the soft margin SVM model is the regularization term C. C

was tested in the range from 0.1 to 100 at the interval of 0.1, and the best

performance was achieved when setting C = 1.0. Fig 5.8 displays the general

performance of the SVM model in the 10 continuous training.

Table 2 lists the best and worst SVM performance in the 10 trials. The
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Figure 5.7: Trends of Accuracy, Precision, Recall, F0.5 and AUC along with Feature
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Figure 5.8: SVM Performance in 10 Continuous Training
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Table 5.2: Best and Worst SVM Performance in the 10 Continuous Training

Best Performance Worst Performance

Training Set (%) Test Set (%) Training Set (%) Test Set (%)

Accuracy 95.00 93.20 94.84 92.01

Precision 98.01 94.17 95.96 93.18

Recall 92.31 93.05 93.50 92.76

F0.5 97.70 93.95 95.45 93.10

AUC 98.08 97.55 97.71 96.18

highest accuracy in the test set was 93.20%, while the lowest was 92.01%.

Fig 5.9 and 5.10 shows the distribution of decision function value for

training set (Fig 5.9) and test set (Fig 5.10) respectively. The red curve on the

negative side of each image represents the distribution of bone classes and the

blue curve on the positive side represents the interspinous class. The decision

function value of training set has the maximum probability density at -2.3 for

bone class and 1.9 for interspinous class. The probability density at the test set

is maximized at -3.5 for bone class and 1.7 for interspinous class. Furthermore,

decision function value of the wrongly classified data is analyzed for the test

set, as shown in Fig 5.11. Most of the misclassified data has low absolute

decision function value of around zero, within the range of [-2, 3].

5.8.3 Video Processing

The trained SVM model with best performance was further tested on the

collected ultrasound video streams to identify the interspinous region and

bone region, with 10 features used. In the video processing, the interspinous

region is defined by the continuous appearance of more than 5 interspinous

images; while for the negative detections, if it is in the interspinous region, no

more than 2 bone images shall be detected by the image; vice versa for bone

region. According to the definition above, the trained SVM model was able
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Figure 5.9: Probability Density Estimation of Decision Function Value for Training
Set
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Figure 5.10: Probability Density Estimation of Decision Function Value for Test Set
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to identify the interspinous region and bone region correctly on 45/46 video

streams collected.

An example of video frame identification result is provided in Fig 5.12. Only

region-of-interest is extracted and shown on the image. The white vertical line

is the midline identified by the algorithm. The circle on the right side of the

images indicates that the image is classified as interspinous images by the SVM

model, with vertebra body marked by rectangles and epidural space marked

by white line. The digit on the upper left corner of each frame is the decision

function value calculated with the SVM model. Fig 5.12(d) shows the failure

case, which is from the same case as shown on Fig 5.5(b).

Table 3 lists the computation time for major operations in the

pre-processing, feature extraction and SVM classification procedure. Matlab

(R2012a, The MathWorks, Natick, MA, USA) was used for the implementation

of the algorithm. The computation time for each frame was 52.77 ms. Given

that the video was collected at the frame rate of 15 FPS, thus the computation

speed is fast enough for real-time processing. Further improvement in
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Figure 5.12: Classification Result of Selected Video Frames.
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Table 5.3: Computation Cost of Video Processing with Matlab.

Operation Computation Cost(ms)

Preprocessing 9.2

Template Matching 17.1

Midline Detection 17.84

SVM Classification 0.14

Others 8.49

Processing Time Per Frame 52.77

computational speed has been achieved by implementing the program using

Python (Version 2.7.6) with Numpy (Version 1.8.1, [77]), OpenCV (Version

2.4.8, [78]) and Scikit-learn (Version 0.15.0, [79]) open source library, which

shortened the computation time to 30.46 ms per frame. Therefore, the

proposed image processing procedure is applicable to real time processing.

5.9 Discussions

The feature extraction method using template matching and midline detection

utilized in this research provides a compact description for the ultrasound

image obtained from lumbar spine in the transverse plane. It extracts the

specific shape and midline features of the lumbar ultrasound images, which

achieves high classification accuracy on the clinical data. However, the feature

extraction method in this chapter may not be widely applicable for ultrasound

images obtained from other body areas, considering the specific features of

di↵erent anatomical structures.

Of the ten parameters generated from template matching, the parameters

related to vertebra body and epidural space (D1,V1,D2,V2) have higher rank

than the ones related to articular processes (V3,P3,D3,V4,P4,D4). Part of the

reason leading to this phenomenon is revealed in Fig 5.1(b). In the left column

of Fig 5.1(b), the template matching intensity and position for epidural space
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and vertebra body is dramatically di↵erent on the interspinous image (the

upper two images) and bone image (the lower two images). On the contrary,

in the right column, the matching results of both articular processes don’t di↵er

much for the interspinous and bone images, revealing the reason for their lower

ranking in the feature order.

Another feature extraction method used in this research is midline

detection. On the bone region, ultrasound waves are impeded by the spinous

process, thus creating the anechoic window along the midline. Hence, the

proportion of black pixels serve as an important indicator for the identification

of bone image. On the other hand, for the interspinous image, the epidural

space and vertebra body appear at the bottom part along the midline; while

for the bone image, no white pixels appear at the bottom part. Therefore,

the appearance of white pixels under certain depth threshold indicates the

image being classified as interspinous image, indicated by the large correlation

value of the R
w

parameter. The symmetrical parameter was proposed so as to

confirm the correctness of midline detection. A higher symmetrical parameter

implies that the midline is correctly located. The symmetry parameter was

not directly related to the image labeling, which is the reason why it had lower

rank among the features.

Feature selection is a standard procedure for machine learning problems

when the feature dimension is high, so as to avoid the ‘curse of dimension’

and decrease computational cost. Although the feature dimension used in this

chapter is low, the feature selection procedure is still a necessary step and helps

to select the best feature subset wisely. For the optimal feature subset obtained

via feature selection, 10 out of 13 feature parameters were selected; whereas

the symmetrical parameter S and matching position of articular process P3,

P4 were excluded. The computational cost for symmetrical detection was

18.98 ms per frame, the discarding of which greatly improved the computation

speed. Therefore, the system performance, including identification accuracy

101



and computational speed, were greatly improved by the feature selection

procedure.

The SVM model is a supervised machine learning method, which requires

that correct labels must be provided for every sample in the database. As

an e↵ort to decrease the label noise, two approaches were employed in this

research. Firstly, the adversarial labels assigned by the two sonographers were

removed from the training and test database. The images with adversarial

labels has higher possibility of being misclassified, the removal of which will

help to purify the database. Secondly, SVM with soft margin was utilized

for the data training. Soft margin SVM is less sensitive to outliers and

the sensitivity can be regulated by the regulation parameter C. The proper

selection of C is able to balance the two goal of achieving high accuracy in

the training set, but avoiding over-fitting for the outliers and mis-labeled data.

Those two methods will help to decrease the adverse influence of the label

noise.

For the test data, the value of decision function represents the distance of

data to the optimal separation hyperplane obtained by SVM training. The

higher the absolute decision function value, the higher the possibility that the

data may be correctly classified. Therefore, the decision function value serves

as an indicator for the confidence of classification. In the real-time processing,

the value will be listed on the corner of the image to keep the operator informed

of the identification confidence, as displayed in Fig 5.12. The optimal needle

entry angle can be obtained by slowly tuning the angle of the probe, until the

largest identification confidence is achieved.

The only video stream that SVM failed to locate the interspinous region in

this research was the case shown on Fig 5.12(d). It is the same case shown on

Fig 5.5(b) where sonographers disagreed on the label of the image. Although

the image was excluded from training database as label noise, it was tested in

the video processing procedure. The SVM model correctly identified the bone
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region with high confidence. However, for the interspinous image, the dark

shadow casted by spinous process influenced the template matching of vertebra

body and epidural space; hence the SVM model was not able to recognize it.

This was a typical case near the junction region of bone and interspinous, so

that part of the ultrasound waves were obstructed, while the rest were able to

reach the epidural space. It was speculated that the interspinous region might

be correctly identified by the SVM model if the operator moved the probe

downward or upward a little or that the probe angle was slightly adjusted

upward to avoid the spinous process.

In conclusion, four contributions were achieved with this chapter. First, a

set of features were extracted from the lumbar ultrasound images with template

matching and midline detection methods. Secondly, the ‘predictability’ of

extracted features were evaluated using cross correlation and the forward

search approach was utilized for feature selection, so as to choose the feature

subset with optimal performance. Thirdly, the SVM model was trained using

the extracted feature sets, so as to generate the maximal margin for the

classification. A high success rate was achieved with the proposed feature

extraction and SVM classification algorithm on images collected from the

pregnant patients. Finally, the trained SVM model was also tested on 46

videos and it successfully identified the interspinous region and bone region on

45 of the cases collected, with a computational speed fast enough for real-time

processing.

5.10 Conclusions

In this chapter, a feature extraction, ranking and the selection procedure

is proposed for the ultrasound images collected from lumbar spine. The

important anatomical features, including epidural space, vertebra body and

articular processes were extracted from the ultrasound images. Moreover,
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the proportion of black pixels along with midline were also extracted with

midline detection. Feature selection was further employed to select the feature

subset with optimal performance and decrease computation cost. Based on the

features extracted from training samples and test samples, a SVM was used to

classify the interspinous and bone images with maximal margin. The trained

SVM model was further tested on the ultrasound video streams collected from

pregnant patients, and successfully identified the interspinous region / bone

region on 45 out of the 46 videos collected.
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Chapter 6

System Integration

6.1 Introduction

In the previous chapters, computer-aided automatic interpretation of lumbar

ultrasound images, both in the longitudinal view and transverse view, has

been discussed. The purpose of longitudinal view scanning is to identify the

the lumbar level of L3-L4. The algorithm will search for sacrum first, the

identification of which will initiate the panorama stitching process when the

operator moving up the ultrasound transducer. The spinous level dividing is

performed on the generated panorama image by extracting the local maxima

of template matching result. When L3-L4 level is identified, the algorithm will

generate a signal to alert the operator that insertion level has been reached.

The operator will then be guided to rotate the transducer to the transverse

view, so as to locate the precise needle entry point. In the transverse view,

along with the vertical movement of the probe, the algorithm will extract the

features from the pre-processed ultrasound streams and identify whether the

image is interspinous or bone image with the trained SVM model. When the

interspinous images are detected continuously, the algorithm will deem it as

proper needle insertion site and notify the operator to stop scanning and mark

the position.
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Although algorithms have already been developed in the previous chapters,

there are remaining problems of applying the algorithms online to provide

real-time in situ analysis and how to present the interpretation result in an

intuitive and user-friendly approach. In this chapter, the interface between

the ultrasound machine and computer will be developed, so as to realize the

real-time image acquisition and on-line analysis of the ultrasound images.

A graphical user interface will be developed to present the anesthetists

with real-time image processing results and provide guidance for entry point

localization. In addition, as an e↵ort to realize the automatic epidural needle

insertion, this chapter will also discuss the problem of improving the needle

insertion procedure after entry site has been located. A mechanical system

performing needle insertion procedure while preserving the entry site and entry

angle detected by transducer will be proposed. A manual approach of using

customized ultrasound transducer with thin slit which allows the penetration of

epidural needle will also be proposed. This approach will realize the real-time

ultrasound guidance for the whole needle insertion procedure.

6.2 Image Acquisition System Development

In order to realize the on-line image processing for the ultrasound images, the

image acquisition system is required. Generally, the ultrasound machine is

equipped with a video output port, which is capable of exporting the living

stream to external devices. Di↵erent ultrasound machine may have di↵erent

types of video port. The commonly used video output port types mainly

includes: Video Graphics Array (VGA), Digital Visual Interface (DVI) and

High-Definition Multimedia Interface (HDMI) etc.

The video signals from the video output port, whether analog or digital,

are usually for displaying purpose, e.g., showing the video on an external

monitor. In order to convert the video streams into a signal that is suitable
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Ultrasound 
Machine 

Computer Frame Grabber 

Figure 6.1: Image Acquisition System

for computer processing, a frame grabber (also called video capture card) is

usually employed. Frame grabber is able to capture the individual, digital still

frames from analog video signal (VGA etc) or digital video stream (DVI or

HDMI etc). The system architecture of the image acquisition system is shown

in Fig 6.1.

In this research, the video port of the employed ultrasound machine is the

VGA port. The video frames are generated at 15 frames per second (FPS)

with size of 800⇥ 600. In order to captures the video without frame lost, the

frame grabber are required to have an update rate above 15 FPS. The Epiphan

DVI2USB 3.0 (Epiphan, Ottawa, Canada) is adopted as the frame grabber,

which provides up to a speed of 60 FPS under the resolution of 800 ⇥ 600.

Moreover, the DVI2USB device is compatible with VGA, DVI and HDMI

port; thus the device can be fed with ultrasound with di↵erent video output

port. Further experimental tests with the acquisition system indicated that,

the DVI2USB device is able to acquire the ultrasound video streams smoothly

and accurately.

6.3 Graphical User Interface Design

In this section, the requirements and implementation of graphical user interface

will be discussed. The target of user interface design is to present the

anesthetists with real-time processing results of the video stream acquired by
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the frame grabber; provide guidance to the anesthetists on how to move the

transducer or to mark the position when optimal insertion site is located. The

user interface is required to present the necessary information in a user friendly

and readily understood approach, so that anesthetists can get the information

conveniently.

In the procedure of searching for the optimal needle entry site, two di↵erent

views are employed, the longitudinal view and transverse view, the details

of which can be found in the introduction section. The information and

guidance that needs to be imparted to anesthetists are di↵erent in those

two views. The longitudinal view is mainly used for the identification of

insertion level (L3-L4). The critical information in this view includes the

identification of sacrum, which is the starting point for transducer scanning,

and the level dividing of spinous process. The simplified guidance required

includes: searching for sacrum in the sacrum area with probe hold vertically,

moving up in the midline plane after sacrum is identified, stop scanning when

L3-L4 is identified and rotate the transducer to the transverse plane. The

target in the transverse plane is to locate the precise needle entry point. The

information needs to be obtained in this view contains: the identification

whether the current frame is bone image or interspinous image, and the depth

of epidural space. Guidance required to be provided to anesthetists includes:

holding the transducer horizontally and moving up slowly, aligning the probe

center to the midline, stopping scanning when the optimal position is localized

and marking the position on the patients skin with sterilized marker pen.

6.3.1 Longitudinal User Interface

The graphic user interface of the longitudinal view is designed as shown in

Fig 6.2. Before scanning, the operator is required to place the transducer near

the sacrum area and hold the transducer with marker pointed upwards. The

scanning depth is set as 73 mm by default, which is suitable for most patients.
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However, if the patients is estimated to have deeper vertebra body caused

by obesity issues, then the operator may need to set the depth to around 91

mm. Di↵erent scanning depth influence the region of interest of the ultrasound

image. Thus unless necessary, the scanning depth shall keep the default value

without change. The preparation stage is stated clearly at the ‘Warning’ box,

to inform the operator to perform the necessary machine and system tuning

before scanning. After the preparation, the anesthetists can click the button

of ‘Load Video’ to start ultrasound scanning, or by press the keyboard of ‘0’.

All the operations can be invoked by either mouse or keyboard, to provide the

anesthetists with shortcuts and multiple choices.

The user interface is composed of three major image displaying windows.

The upper left one displays the original full size ultrasound image, as the one

from ultrasound machine. The level dividing result will be imposed on the

image to inform the anesthetists of the lumbar level where the transducer is

located. The lower left window exhibits the panorama image stitching result

as the transducer moving. The spinous identification and level dividing result

are also marked on the panorama image. The right image window shows an

illustration of the lumbar spine anatomy. The blue line indicates the lumbar

level calculated by the algorithm and it will move along with the movement of

transducer. This provides a direct notation for the anesthetists of the lumbar

level where the transducer is located. The whole scanning procedure will be

automatically saved by the system for the purpose of further examine.

The icon on the upper right corner of the user interface provides guidance to

the anesthetists based on the processing results. Before the sacrum is located,

it will be a ‘searching’ icon, so as to notify the anesthetists to keep searching

in the sacrum area. After the system detected sacrum continuously, the icon

will be changed to ‘moving up’ icon, as shown on Fig 6.2. After L3-L4 or

L2-L3 lumbar level is identified, the icon will be changed to a green ‘Correct’

icon, to alert the anesthetists that the correct level has been reached. Fig
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Start

Initialization:
1. Place the probe in sacrum 

area, with marker upward
2. Set the scanning depth

Searching for Sacrum
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Moving Probe Upward

If L3-L4 level located?
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transverse view

End
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Figure 6.3: Working Flow of the Longitudinal User Interface

6.3 shows the working flow the longitudinal user interface. The processing

algorithms working in the background in real-time along with the movement

of transducer and providing result and guidance to the anesthetists.

6.3.2 Transverse User Interface

Fig 6.4 indicates the designed graphical user interface in the transverse view.

After the transducer is rotated to the transverse view, the anesthetists will be

guided to hold the probe with marker toward left, then the image acquisition

will be initiated. The algorithm will identify whether the current frame is

interspinous image or bone image.

The transverse view user interface contains two image windows. The left

one shows the original ultrasound view acquired from ultrasound machine,

with probe center reference line and detected midline marked on the image.

The right window shows the cropped region of interest. The circle in the
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Figure 6.5: Working Flow of the Transverse View User Interface

center indicates that the image is being identified as interspinous image, and

the brightness of the circle is proportional to the confidence of the detection,

i.e. the higher possibility that the image is interspinous image, the brighter

the circle. Vertebra body and epidural space will also be marked, as shown

in Fig 6.4. If bone images are identified, the icon on the lower right corner of

the window will be marked as ‘Wrong’ icon, indicating that this is the worst

possible site for needle insertion. If the bone image and interspinous images are

not detected continuously, but appeared over every other images, indicating

that the transducer is located on the interval region between interspinous

region and bone region, then the marker will be shown as ‘blank’, indicating

that the algorithm cannot identify the bone/ interspinous region in this area. If

the interspinous images are identified continuously, the icon on the lower right

window will be changed to a green ‘Correct’ icon, indicating that this site

is proper as needle entry site. The anesthetists will then be guided to align
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the midline to the reference line of probe center, by aligning the white line

(detected midline) shown on the left window to overlapping on the reference

black line. The algorithm will further identify the epidural space and estimate

the depth of epidural space, and then displaying it on the right dialog box

for the information of anesthetists. After those procedures, the correct spot

for needle entry is identified and the transducer is properly aligned. Then the

anesthetists will stop scanning and mark the site on the patients skin with a

sterilized marker pen. The detailed procedure is shown on Fig 6.5.

6.4 Result for Real-time Image Processing

The image acquisition system, together with the proposed algorithms and

graphical user interface, has been tested in real-time on healthy volunteers

at KK Womens and Childrens Hospital (Singapore), with IRB approval

and individual participant’s consent obtained. A Sonosite Titan ultrasound

system (SonoSite, Bothell, WA, USA) and a 2MHz curvilinear ultrasound

probe (SonoSite, Bothell, WA, USA) are used for the study. For the image

acquisition, an Epiphan DVI2USB 3.0 video capture card (Epiphan, Ottawa,

Canada) is adopted. As a primary test of the applicability of the system, 5

volunteers has been recruited so far.

During the study, the operator moves the probe as instructed by the

interface, following the protocol in the section ‘Appendix A’. An experienced

sonographer is involved in the study to evaluate the landmarks identification

accuracy of the program in real-time. For the longitudinal view, the key

evaluation criteria is the correct detection of the sacrum and level counting of

the L3-L4; for the transverse view, the key criteria is the accurate identification

of interspinous image and precise measurement of epidural depth.

In the longitudinal view, the sacrum is successfully recognized for all of the

5 subjects. L3-L4 spinous level is successfully identified on 3 out of 5 cases for
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the first scan (case (a)(b)(c)). For the other two cases, it takes two scans to

locate the L3-L4 level (case (d)(e)). As shown on Fig 6.6, for the successful

scans, the panorama images are properly stitched (left column) and L3-L4 is

correctly identified and displayed on the frame in real-time (right column).

Fig 6.7 shows two representative frames of the cases (d)(e) for the failed

first scan. The failure of first scan for the two cases is resulted by the fact

that the volunteers are so skinny, such that the curvilinear probe cannot be

properly covered by skin tissues, leading to the large area of anechoic window

near the two ends of the frame. The frames with large black area are deemed

as bad quality by the algorithm, thus cannot be properly stitched to the

panorama image. On the second trial, the subject is requested to keep their

back straight. Under this condition, the majority part of the probe is covered

by body tissue; therefore, the panorama image is successfully stitched and

L3-L4 level is correctly identified in the second trial.

After L3-L4 level is identified, the ultrasound probe is rotated to the

transverse view to locate the precise needle entry site. The interspinous region

identified by the algorithm accords to that identified by the sonographer for all

of the 5 subjects. The epidural space is correctly identified for the 5 subject,

to the precision of 0.1mm. The real-time transverse image processing result of

the 5 subject is displayed on Fig 6.8. The left column shows the bone region

images for the 5 subjects; the right column displays the identified interspinous

region for the volunteers. The vertical white line is the midline identified by the

algorithm. The circle on the right column denotes that the image is identified

as interspinous image by the algorithm, with the brightness indicating the

confidence of identification. The vertebra body recognized by the algorithm is

marked by the rectangle; the horizontal line above the vertebra body denotes

the epidural space identified by the algorithm.

The primary real-time results indicate that the program is applicable for

needle entry site localization for volunteers. However, further test on more
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 6.6: Real-time Image Processing Result of Longitudinal View for Volunteers.
The left column lists the stitched panorama image; the right column displays the
level dividing result on real-time frames.
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(d) 

(e) 

Figure 6.7: Representative Anechoic Region for the Two Failure Cases at First Scan.
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Bone Region Interspinous Region 

Figure 6.8: Real-time Image Processing Result of Transverse View for Volunteers.
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subjects is required in order to fully validate the applicability of the system.

6.5 Manual Needle Insertion with Ultrasound

Guidance

After the needle entry site has been located by the image acquisition and

processing system, anesthetists will proceed with the epidural needle insertion

procedure. In the clinical practice, anesthetists will first sterilize the lumbar

area to avoid infection; then insert the needle at the identified point towards

the epidural space. When the needle encounters ligamentum flavum, the

dense tissue outside epidural space, the penetration force will increase; the

anesthetists will connect the needle hollow with a syringe which filled with air

or saline. Along with the carefully advancement of needle through ligamentum

flavum, anesthetists are required to press the syringe to apply constant

pressure. When the needle tip penetrates through the ligamentum flavum

and enters the epidural space, the pressure inside the epidural space will be

lower than the pressure inside the syringe, thus the saline will be released,

so called ‘loss of resistance’ technique. This procedure is highly risky. The

advancing force applied on the needle is high when the needle passing through

ligamentum flavum; when the needle enters epidural space, the insertion force

will drop quickly, thus it requires expert skills to stop the needle inside the

epidural space, without penetrating the dura mater.

The insertion procedure described above is a blind procedure and it depends

highly on the skills of the anesthetists. In order to make the needle insertion

more secure, ultrasound is utilized to assist the needle insertion in real-time.

Real-time ultrasound guided needle insertion has been widely employed in

areas like biopsy. In EA, Trans et al. has proposed to use the ultrasound

imaging in the longitudinal view to guide the needle insertion [80]. However,

in Trans’ approach, since the needle is inserted in the longitudinal view and
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not perpendicular to the skin, thus the insertion length are much longer than

in the transverse view. Transverse view is widely adopted by anesthetists

when inserting epidural needle, because the insertion distance is shortest in

this plane. However, the problem with real-time ultrasound guided needle

insertion in the transverse view is that the ultrasound probe itself will block

the needle entry site.

In order to realize the real-time ultrasound guided needle insertion in the

midline plane, the ultrasound probe needs to be customized so as to leave space

for needle insertion. It is expected that the customized ultrasound probe has

a hole or slit in the probe center, where the epidural needle can pass through.

Such customized probe is available in the market.

Fig 6.9 illustrates the simulated ultrasound image with the customized

probe during needle insertion. The probe center provides a fixed trajectory for

needle insertion, and the trajectory can be easily planed before insertion, as

shown by the dashed line in Fig 6.9. In addition, since the needle is inserted

through the center of the probe, thus the needle is located in the same plane

as the ultrasound image. Under this condition, the inserting needle resembles

a bright line in the ultrasound image. The needle insertion procedure will

thus be simplified to following the dashed line guidance till epidural space is

reached.

6.6 Mechanical System Design

In this section, the concept of mechanical system which supports automatic

epidural needle insertion will be proposed. The mechanical system aims to

insert the needle to the epidural space after the optimal insertion site is located

by the image processing algorithms. It is composed of a mechanical design

system and control system.
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Figure 6.9: Simulated Ultrasound Image for the Customized Probe: the black dashed
line represents the predicted needle trajectory, the thick white line is the detected
needle path, the horizontal white line represented detected epidural space which is
the target of needle insertion.

6.6.1 Mechanical Design

Fig 6.10 shows a theoretically feasible mechanical design of the insertion

device. In the insertion system, the epidural needle is propelled by a precise

linear motorized stage. Moreover, a highly sensitive force sensor is utilized

to measure the exertion force on the needle, which will guide the needle to

penetrate the correct distance into the lumbar spine to reach the epidural

space. Additionally, the customized ultrasound probe is attached to the main

structure and allows the needle pass through the slit, enabling the real-time

image guidance and needle detection during the insertion process.

Two parameters can be used to identify and confirm the arrival of needle

tip into the epidural space: pushing force (measured by force sensor integrated

with the actuator) and reference epidural depth (automatically identified and

measured by image processing algorithm). Moreover, under the real-time

image guidance, the needle tip will be detected and tracked in real time.

Relative position to the epidural space can be easily measured. Those
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Figure 6.10: Mechanical System Design

parameters combined together will identify the epidural space accurately and

prevent the dura mater from being punctured.

6.6.2 Control System

The role of control unit is to control the actuation of motor and sensor fusion,

further, realizing the automatic procedure of epidural needle insertion. It

consists of a sensor fusion algorithm for epidural space detection, a motion

controller and a supervisory controller.

In the sensor fusion algorithm, two sensing modalities are employed. (1)

Real time ultrasound image guidance is used to detect the needle tip, so

as to estimate the insertion depth and its relative distance to the epidural

space; and (2) The force sensor is used to measure the exertion force on the

needle. As reported in related literatures, the insertion force will drop when the

needle tip reaches the epidural space [81]. The real-time ultrasound guidance

is more obvious and direct in indicating the needle insertion progress than

the force sensor. But limited by the resolution of ultrasound imaging (1mm -

2mm), ligamentum flavum and dura mater usually appears as 1 layer in the

image, while epidural space lies between those two layers. The ultrasound

image guidance is very helpful in estimating the approaching of needle tip
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near epidural space, but cannot fully confirmed the accurate puncture of

ligamentum flavum and entry of epidural space, limited by the low resolution.

At this point, the force sensor would be very helpful and e↵ective. The force

drop after ligamentum flavum getting punctured is very obvious and can be

captured by the force sensor. This would trigger an immediate stop of the

needle insertion. But the limitation of force sensor is that there may be force

positives at di↵erent stage of needle insertion, e.g. when skin is punctured.

Therefore, only the combination of the two sensing approaches can accurately

and precisely confirms the arrival of epidural space.

The epidural space is located right after the ligamentum flavum (a dense

tissue) and it is in a relatively narrow space. If the speed is too fast, the

needle may not be able to stop immediately after it penetrates the ligamentum,

which may lead to accidental dura puncture. Therefore, the insertion speed

when the needle passing through the ligamentum flavum should be reduced

in order to avoid dura puncture. On the contrary, the spinous ligament is

softer and relatively further away from the epidural space; thus, the speed

when the needle passes though the spinous ligaments can be faster, so as to

speed up the procedure. Therefore, di↵erent speeds can be employed regarding

di↵erent tissues, so that the execution time can be minimized. To this end, all

the sensing information is connected to the motion controller. A supervisory

control system is constructed which aims to control and manage the speed and

the movements of the actuator precisely.

In the inner loop of the control system, a motion controller is used, which

is able to achieve high level of performance for the motors. Thereby, precise

motions can be realized for the insertion. Fig 6.11 illustrates a feasible control

diagram for the system, which integrate the depth and the relative distance

to epidural space information detected from ultrasound images as well as the

sensory output from force sensor, so as to realize the speed control of the motor

and the precise location control of needle tip inside the epidural space.
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Figure 6.11: Control System Design

Figure 6.12: Proposed System Architecture

6.6.3 System Integration

Including the image processing system discussed in the previous sections, the

proposed medical device comprises three sub-systems: image processing unit,

mechanical system and control unit. The system architecture is shown in Fig

6.12 below.

Fig 6.13 indicates the system working procedure. The image processing

unit will automatically interpret the ultrasound images and identify proper

needle insertion site when the operator moves the probe along the lumbar spine.

Then the whole system will be fixed in position and the mechanical system will
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Figure 6.13: Proposed System Working Flow

be initialized. The needle insertion process is controlled with feedback from

real-time needle detection and force sensing on the needle, until the needle tip

enters the epidural space. Then the needle will be released with its tip inside

the epidural space. Anesthetists can now precede with catheter insertion and

the continuous anesthesia procedures.

6.7 Conclusion

In this chapter, on the basis of the image processing algorithms proposed in

the previous chapters, a real-time ultrasound image acquisition and processing

system with graphical user interface is developed. The image acquisition

system is composed of three components: the ultrasound machine, frame

grabber and computer. The frame grabber acquires the real-time image flow

from the ultrasound machine and feeds it to the computer in a format that

is proper for image processing. The graphical user interface integrates the

image processing algorithms in both longitudinal view and transverse view,

and presents the processing results to the operator in an easily understanding

approach, with algorithms runs in the background. The developed real-time

image processing system has been tested in a volunteer user study. The primary

results on 5 volunteers achieves a success rate of 3/5 for first longitudinal scan
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and 5/5 for second longitudinal scan. For transverse view, the success rate

is 5/5 on first trial. Apart from this, a scenario where the developed system

might be incorporated in the clinical practise is depicted. In the manual needle

insertion, a customized probe with slit in the center can be employed to allow

the needle passing through at the site located by the developed algorithm.

A mechanical system and control system which support the automatic spinal

needle insertion is also proposed in this chapter.
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Chapter 7

Conclusions and Future Work

In this chapter, the summary of contributions for this thesis is drawn at first,

followed by the suggestions for future work.

7.1 Summary of Contributions

Firstly, this thesis proposed a pre-processing algorithm, di↵erence of Gaussian

(DoG) enhanced local normalization algorithm, for lumbar ultrasound images.

Ultrasound images generally su↵er from low resolution, speckle noises and

uneven brightness induced by wave attenuation problem, which negatively

hampers the interpretability of ultrasound images. In order to solve the

problem, the DoG algorithm was utilized to replace the unsharp masking

procedure in the local normalization algorithm. The DoG enhanced local

normalization algorithm is able to extract the key anatomical structures in

the lumbar ultrasound image, remove the speckle noises, as well as eliminate

the brightness variance problem encountered by ultrasound images. Compared

with widely used ultrasound pre-processing algorithm, e.g., the median filter,

Lees filter, anisotropic di↵usion filter and wavelet filter etc, the proposed

algorithm achieved better result in removing the speckle noise and getting

higher PSNR value for the filtered images.

Secondly, this thesis improved the existing research work for computer
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aided ultrasound image interpretation in the longitudinal view. Although

there has been several researches conducted for the lumbar ultrasound image

processing in the longitudinal view, they were either not fully automatic,

required the external modification of probe, or required the operator to select

the image frames for processing. In addition, one common problem faced by

the existing researches is that they assume the sacrum being readily recognized

by the operator, while neglect the importance of automatic identification with

algorithm; therefore, introducing error in the starting point of spinous level

counting. In this thesis, the sacrum is identified automatically with machine

learning model. The level counting procedure started with sacrum searching,

the continuous identification of which would initiate the panorama image

stitching procedure. The image quality of the ultrasound stream is evaluated

to determine the frames to be stitched on the panorama images, so as to

remove the accidental out-of-line bad quality frames. The level dividing is

realized by matching the spinous process template on the generated panorama

image. Then the level counting information is imposed on the ultrasound

stream in real-time as the probe is moved. Moreover, detailed guidance would

be provided to anesthetists on how to move the probe, so as to locate the L3-L4

interspinous level e�ciently. Therefore, the whole level counting procedure is

fully automatic and realized in real-time, thus requiring the least ultrasound

knowledge on the part of anesthetists.

Thirdly, as the first research for automatic lumbar ultrasound interpretation

in the transverse view, this thesis proposed and developed two workable

classifiers for interspinous image identification, with a high accuracy achieved

for data collected from clinical IRB study. The purpose of transverse view

scanning is to identify the interspinous region, i.e, position suitable for needle

insertion. In order to di↵erentiate the interspinous images (image suitable for

needle insertion) and bone images (image not suitable for needle insertion),

a cascading classifier was initially developed, which generalized the expert
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knowledge in recognizing interspinous image. The cascading classifier is

composed of four layers of weak classifiers and each weak classifier corresponds

to one criterion for interspinous image recognition. It works in a cascading

approach such that if the image cannot be confidently classified by a certain

classifier then it will be passed to the next classifier, until it is classified with

a high confidence level. With a proper selection of the four model parameters,

the cascading classifier is able to classify the interspinous and bone images with

a high accuracy. On the basis of the cascading classifier, in order to increase

the robustness of the classification, a machine learning based classification

algorithm is further proposed. The algorithm is consisted of feature extraction,

feature selection and SVM training procedure. The important anatomical

features, including epidural space, vertebra body and articular processes are

extracted from the ultrasound images. Moreover, the proportion of black pixels

along with midline is also extracted with midline detection. Feature selection

is further employed to select the feature subset with optimal performance and

decrease computation cost. Based on the features extracted from training

samples and test samples, a SVM is used to classify the interspinous and bone

images with maximal margin. The trained SVM model is further tested on the

ultrasound video streams collected from pregnant patients, and successfully

identifies the interspinous region / bone region on 45 out of the 46 videos

collected. In addition, after the interspinous region is located, the epidural

space, the space where the epidural needle will be placed, will be identified

and measured automatically, providing a depth reference to anesthetists for

the following needle insertion procedures.

Finally, as an e↵ort to facilitate the application of the developed algorithms

for anesthetists, a real-time image acquisition system and graphical user

interface (GUI) are designed. The image acquisition system captures the

real-time ultrasound stream from the ultrasound machine and feeds it to the

computer for image processing, via a video capture card. The machine learning

129



based algorithm then processes the ultrasound stream, in both longitudinal

view and transverse view, and presents the identification result on the GUI

and provides detailed guidance to the anesthetists. The GUI simplify the

usage of the developed algorithms by displaying the processing result in an

intuitive and easily understandable approach; while the meticulous codes and

algorithms are concealed in the background and remained a black-box for the

anesthetists, therefore greatly facilitate the applicability of the algorithms for

anesthetists. The developed image processing algorithms, together with the

image acquisition system and GUI, enables the real-time image processing of

the lumbar ultrasound images. An IRB study has been conducted to test

the accuracy and applicability of the real-time image processing system on

volunteers. The primary result on healthy volunteers shows that the system

is able to identify the lumbar anatomical features accurately and locate the

interspinous region correctly.

7.2 Suggestions for Future Work

The proposed image processing algorithms has been proved to be able to

identify the lumbar anatomical structures and locate the interspinous region

with high accuracy. User interface has also been designed to facilitate the

usage of the algorithms for anesthetists. However, there are some limitations

in this study and further research is required to overcome those limitations

and extend the current research.

• The current research is based on ultrasound images and videos collected

from limited number of volunteers and pregnant patients. Since the

image processing procedure is based on machine learning algorithms, the

expansion of the database will certainly increase the performance of the

machine learning models. Future work can be done to collect lumbar

ultrasound samples from more subjects with di↵erent demographic
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features, i.e., body mass index, height and age etc., to establish a more

comprehensive machine learning database.

• The real-time image processing system has currently been tested on

healthy volunteers. Future study can be conducted to test the real-time

system on patients in the clinical setting, to validate its applicability on

clinical routine procedures.

• The current research realizes the automatic localization of needle

insertion site. For a complete technical solution to the epidural needle

insertion challenge, future research can be conducted to develop the

mechanical system and control system that supports the epidural needle

insertion procedure. Further research can also focus on providing

guidance and real-time monitoring for the needle insertion procedure.

• As a meaningful extension to the current research, a training tool, which

combines the ultrasound machine with lumbar spine mock-up, can be

developed in the future to teach trainee anesthetists in learning how to

read ultrasound images, as well as to locate the needle entry point with

ultrasound.

• Current image processing algorithm is based on 2D lumbar ultrasound

image. As 3D ultrasound is becoming a future trend for ultrasound

research, future work can be conducted to extend the algorithms to 3D

image processing.

• Extend the application of the machine learning based framework to other

medical ultrasound applications, with the frameworks as shown on Fig

7.1. The modular framework used in this thesis can be easily extended

to other medical ultrasound applications, given that training database of

the specific anatomical ultrasound images is provided.
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Appendix A

Protocol for Real-time

Volunteer Study

A.1 Computer Software Setup:

Install the necessary software package and driver on computer to ensure that

the program can work properly.

(1). PyCharm: Python integrated development environment

https://www.jetbrains.com/pycharm/download/

(2). Anaconda: Python library package for data analysis and engineering

http://continuum.io/downloads

(3). OpenCV for Python: image processing library

http://www.lfd.uci.edu/⇠gohlke/pythonlibs/

(4). DVI2USB Video Capture Card Driver

http://www.epiphan.com/products/dvi2usb-3-0/downloads/

A.2 Hardware Preparation

(1). Make sure that the ultrasound machine is equipped with the 2MHz

curved probe; otherwise, change the probe to curved probe. Connect the

ultrasound machine to power supply and start the ultrasound machine. Tune
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the scanning depth to 7.3cm (default) or 9.1cm.

(2). Connect one end of the video capture card to the VGA (or DVI)

output port of the ultrasound machine, and then connect the other end to the

computer USB port.

(3). Check whether the video capture card now flashes GREEN light.

If it is RED light, then pull out the USB connector and reconnect again

or repeat step (2). If GREEN light of the video capture card is on, then

double click on the ‘Epiphan Caputure Tool’ icon on the desktop to check

whether the ultrasound image appears properly on the main window. If the
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ultrasound video frames are captured properly, then close the window and

continue with following steps. Otherwise, check if the video capture card is

properly connected.

(4). Start the computer and load the PyCharm program by double clicking

of the ‘PyCharm’ icon on the desktop.

(5). Open the VideoGUI project on the PyCharm program. Load the

‘VideoGUI.py’ (or ‘VideoGUI June20.py’) file on the IDE. Then right click

on the tab and choose ‘Run VideoGUI’ . The user interface will then appear.

Set the scanning depth the same as the depth set in ultrasound

machine (eg: ultrasound machine set as 7.3 cm, fill 73 on the user

interface. The default is 73).
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A.3 Volunteer Preparation

(1). Ask the volunteer to sit on the chair, facing the computer screen, so

that operator can see the computer interface while scanning.
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(2). Ask the volunteer to bend forward. However, if the volunteer is thin,

ask them to keep their back straight.

A.4 Longitudinal View Scanning

(1). Hold the probe in the midline view, with marker facing upward.

(2). Press the keyboard ‘0’ or click on the ‘Load Video’ button on

the ‘Midline’ tab, to start video processing in the midline view.

(3). Place the probe near sacrum area and checking on the computer

interface to see whether the sacrum has been identified.

(4). If sacrum is identified by the algorithm continuously and the guidance

sign has changed to ‘moving up’, then move the probe upward constantly

along the midline. NOTICE: CANNOT moving backward once the

user interface shows the sign of ‘moving up’; If moving backward is

required in case of improper scan position, please press ‘0’ to start

all over from sacrum again.
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(5). Keep moving the probe upward constantly, the L4L5, L3L4 and L2L3

level will be shown on the screen. Move the L3L4 level to align with the probe

center, the black reference line.

(6). If the ‘Right’ sign appears, stop scanning and turn the probe to the

transverse view along the probe center.
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A.5 Transverse View Scanning

(1). Turn the probe in the transverse view, with marker leftward.

(2). Press keyboard ‘1’ or click on the ‘Load Video’ button on the

‘Transverse’ tab, to start video processing in the transverse view.

(3). Slightly move the probe upward or downward to search for the

interspinous region. The computer interface will show a red cross if the region

is identified as bone region and a green checkmark if the region is identified as

interspinous region.
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(4). In the bone region, align the identified midline with the probe center,

the black reference line (because the midline identification is more accurate in

the bone region).

(5). Slightly tune the probe until the green checkmark appears

constantly without flashing.
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PARTICIPANT INFORMATION SHEET 
 
 

Dear Mdm, 
 
You are being invited to participate in a research study. 
 
Before you take part in this research study, the study must be explained to you and you must 
be given the chance to ask questions. Please read carefully the information provided here. If 
you agree to participate, please sign the informed consent form. You will be given a copy of 
this document to take home with you. 

 

STUDY INFORMATION 

Protocol Title:  

Ultrasound Imaging Guided Automatic Localization of Needle Insertion Site for Epidural 
Anaesthesia with Computer Programming System 

Principal Investigator: 
Dr Sng Ban Leong 
Department of Women’s Anaesthesia, KKH 
Phone: 63941081 Fax: 62912661 

Co-Investigators: 

Dr Tan Kok Kiong, Department of Electrical and Computer Engineering, NUS 

Ms Yu Shuang, Department of Electrical and Computer Engineering, NUS 

Ms Li Shengjin, Duke-NUS GMS Singapore 

 

PURPOSE OF THE RESEARCH STUDY 

You are being invited to participate in this research study as you are undergoing a 
Caesarean section under spinal anaesthesia (local anaesthetics injected into your spinal 
area to numb the lower part of your body) containing routine spinal morphine (strong pain 
killer for pain relief after surgery). 

This study is to test the effectiveness of using ultrasound to automatically identify a needle 
insertion site for spinal/ epidural anesthesia before caesarean section. A computer image 
processing system is developed to automatically process the images when the ultrasound 
probe scans on the lumbar spine. Based on the processing result of ultrasound images, the 
system will provide guidance to the anesthetists on which direction to move the probe, until 
best insertion site is reached. Therefore, the efficiency and success rate of spinal/ epidural 
anesthesia will be improved by the proposed system.  

This study will recruit 150 respondents from KK Hospital over a period of 2 years between 
June 2013 to May 2015. 

STUDY PROCEDURES AND VISIT SCHEDULE 

If you agree to take part in this study, you will be assessed on your eligibility for this study 
and some general medical information. The general medication information will include 
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demographic, surgical and obstetric information. This is performed in a comfortable 
environment in the privacy of the pre-anaesthesia clinic and general ward. 

In addition to standardized regimen for spinal anaesthesia, anaesthetists will use ultrasound 
machine to scan your spine immediately before the spinal anaesthesia procedure. This 
scanning is to obtain images of the anatomical structure of the spinal bones for study 
purpose. The images will be used to search for a needle insertion site. The scanning process 
takes about 2 minutes. The image obtained will be stored in authorized computer for image 
processing. Only the Principal and Co-Investigators would have access to your image 
results. No tests other than those authorized in the signed consent will be performed on your 
image unless further consent is given. We will protect the confidentiality of the data by 
assigning them a specific code. Your ultrasound image will not be specifically identified but a 
code will link you to the sample. Decoding can only be performed by the Principal or Co-
investigators. Image will be kept at KK Hospital for a period of 2 years after completion of the 
study. All the images will be destroyed at the end of 2 years. 

Schedule of visits and procedures:  
There are no additional visits or procedures for this study. 

 

YOUR RESPONSIBILITIES IN THE STUDY 
If you agree to take part in this study, a written consent will be obtained from you. If there are 
any queries, the investigators will be happy to answer any questions. There is no follow-up in 
the outpatient clinic. 

 

WITHDRAWAL FROM STUDY 

You are free to withdraw your consent and discontinue your participation at any time without 
prejudice to you or effect on your medical care. This ultrasound scanning has no impact on 
your surgery or ward management. 

 

WHAT IS NOT STANDARD CARE OR EXPERIMENTAL IN THIS STUDY 
This study is being conducted because the there is a potential to increase the efficiency of 
spinal/epidural needle insertion by increasing the interpretability of ultrasound images with 
computer image processing algorithm. The system will alleviate the need for anesthetists to 
interpret noisy ultrasound images in real time, meanwhile enabling them to perform other 
anesthesia related tasks and procedures. We hope that your participation will help us to 
improve the computer image processing algorithm.  

Although spinal anaesthesia is a commonly performed anaesthetic technique for caesarean 
section, this ultrasound scanning before needle insertion is undertaken for the purposes of 
research and not part of standard care.  

 

POSSIBLE RISKS, DISCOMFORTS AND INCONVENIENCES 

A scanning procedure is added to the standard regimen, which will take an additional 2 
minutes. Other than this, there are no added risk and discomforts associated with this study. 
We appreciate your effort in participating in this study and we apologise for any 
inconvenience of your time. 

POTENTIAL BENEFITS 

There is no assurance you will benefit from this study. However, your participation may 
contribute to the improvement of ultrasound imaging interpretation and help with future real 
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time ultrasound imaging guidance system development. 

ALTERNATIVES 
The alternative will be to not take part in this study. If you are not participating in this study, 
spinal anaesthesia will be done under standard regimen and no additional time is taken for 
scanning. However, in case of difficult localization of needle insertion site, it might take more 
attempts if ultrasound machine is not used before attempts.  

SUBJECT’S RIGHTS  

Your participation in this study is entirely voluntary. Your questions will be answered clearly 
and to your satisfaction.  

By signing and participating in the survey, you do not waive any of your legal rights to revoke 
your consent and withdraw from the survey at any time. 

 

CONFIDENTIALITY OF STUDY AND MEDICAL RECORDS 

Information collected for this study will be kept confidential. Your records, to the extent of the 
applicable laws and regulations, will not be made publicly available. Only your Investigators 
will have access to the confidential information being collected. 

However, Regulatory Agencies, Institution Review Board and Ministry of Health will be 
granted direct access to your original medical records to check study procedures and data, 
without making any of your information public. By signing the Informed Consent Form 
attached, you or your legal representative is authorizing such access to your study and 
medical records. 

Data collected and entered into the Data Collection Forms are the property of KK Hospital. In 
the event of any publication regarding this study, your identity will remain confidential.  

 

COSTS OF PARTICIPATION 
There will be no additional charges. 
 
RESEARCH RELATED INJURY AND COMPENSATION 
The Hospital does not make any provisions to compensate trial subjects for research related 
injury. However, compensation may be considered on a case-by-case basis for unexpected 
injuries due to non-negligent causes. 
 
By signing this consent form, you will not waive any of your legal rights or release the parties 
involved in this study from liability for negligence.  
 
 
WHO TO CONTACT IF YOU HAVE QUESTIONS 

If you have questions about this research study and your rights or in the case of any injuries 
during the course of this study, you may contact the investigators Dr Sng Ban Leong of the 
Department of Women’s Anaesthesia (office telephone 63941081 or after office hours 
62934044) of KK Hospital or Prof Tan Kok Kiong or Yu Shuang (office telephone 65164460). 

If you have questions about the study or your rights as a participant, you can call the 
SingHealth Centralised Institutional Review Board, which is the committee that reviewed and 
approved this study, the telephone number is 6323 7515 during office hours (8:30 am to 
5:30pm). 
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CONSENT BY RESEARCH SUBJECT 

Details of Research Study 
Protocol Title: 
Ultrasound Imaging Guided Automatic Localization of Needle Insertion Site for Epidural Anaesthesia with 
Computer Programming System 
Principal Investigator: 
Dr Sng Ban Leong 
Department of Women’s Anaesthesia, KK Women’s and Children’s Hospital 
63941081, 62934044 

Subject’s Particulars 
Name:        NRIC No.: 
Address: 
Sex:  Female              Date of birth   _______________ 
                        dd/mm/yyyy                   
Race:  Chinese/ Malay/ Indian /Others (please specify)   ________________________       
 

Part I  
 
I, _____________________________________(NRIC/Passport No._______________________) 
                   (Name of patient) 
agree to participate in the research study as described and on the terms set out in the Patient 
Information Sheet. The nature of my participation in the proposed research study has been 
explained to me in   
 
_______________________ by Dr/Mr/Ms ______________________________  
       (Language / Dialect)                                        (Name of healthcare worker) 
 
I have fully discussed and understood the purpose and procedures of this study. I have been given 
the Participant Information Sheet and the opportunity to ask questions about this study and have 
received satisfactory answers and information.  
 
I understand that my participation is voluntary and that I am free to withdraw at any time, without 
giving any reasons and without my medical care being affected.  
 
I also give permission for information in my medical records to be used for research. In any event 
of publication, I understand that this information will not bear my name or other identifiers and that 
due care will be taken to preserve the confidentiality of this information. 
 
 
____________________________________                                  ________________________ 
  [Signature/Thumbprint (Right / Left) of participant]                                             (Date of signing) 
 

162



Version 2, 25 May 2013 Page 5 of 5 
 

Part II – to be filled by parent / legal guardian / legal representative, where applicable 
 
I, ___________________________ hereby give consent for the above participant to participate in  
            (parent / legal guardian) 
the proposed research study.  The nature, risks and benefits of the study have been explained 
clearly to me and I fully understand them. 
 
   
 
______________________________________________ ___________________ 
  [Signature/Thumbprint (Right / Left) of parent /legal guardian]                           (Date of signing) 
 
Part III – to be filled witness, where applicable 
 
An impartial witness should be present during the entire informed consent discussion if a subject 
or the subject’s legally acceptable representative is unable to read. After the written informed 
consent form and any written information to be provided to subjects, is read and explained to the 
subject or the subject’s legally acceptable representative, and after the subject or the subject’s 
legally representative has orally consented to the subject’s participation in the study and, if 
capable of doing so, has signed and personally dated the consent form, the witness should sign 
and personally date the consent form.  
 
Witnessed by: ________________________________ ________________________ 
  (Name of witness)  (Designation of witness) 
 
 
 
 ________________________________ ________________________ 
  (Signature of witness)  (Date of signing) 
   
Part IV– Investigator’s Statement 

 I, the undersigned, certify to the best of my knowledge that the patient/patient’s legally acceptable 
representative signing this informed consent form had the study fully explained and clearly 
understands the nature, risks and benefits of his/her / his ward’s / her ward’s participation in the 
study. 
 
 
________________________ _______________________ ________________ 
         Name of Investigator  Signature   Date 
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PARTICIPANT INFORMATION SHEET 
 
 

You are being invited to participate in a research study. 
 
Before you take part in this research study, the study must be explained to you and you must 
be given the chance to ask questions. Please read carefully the information provided here. If 
you agree to participate, please sign the informed consent form. You will be given a copy of 
this document to take home with you. 

 

STUDY INFORMATION 

Protocol Title:  

Automatic Spinal Landmarks Identification with Real-time Ultrasound Image Processing 
System for Healthy Volunteers 

Principal Investigator: 

Dr Sng Ban Leong 
Department of Women’s Anaesthesia, KK Women’s & Children’s Hospital 
100 Bukit Timah Road, Singapore 229899 
Phone: 63941081 Fax: 62912661 

PURPOSE OF THE RESEARCH STUDY 

You are being invited to participate in a research study of automatic spinal landmarks 
identification with real-time ultrasound image processing system. We hope to learn the 
effectiveness of using a developed computer programming system to automatically identify 
the spinal landmarks. You were selected as a possible subject in this study because you are 
qualified for the selection criteria. 

This study will recruit 30 subjects from KK Women’s and Children’s Hospital over a period of 
1 year.  

 

STUDY PROCEDURES AND VISIT SCHEDULE 

If you agree to take part in this study, you will be asked to sit down on chair bending forward 
a little bit. The operator will then use ultrasound probe to scan your lumbar spine. The image 
processing system will process the ultrasound images and identify the spinal landmarks on 
the image automatically. The operator will evaluate the computer programming system 
based on whether correct spinal landmarks are detected and whether proper guidance is 
provided for moving the probe. The whole procedure is non-invasive.  

Your participation in the study will last around 7 minutes. No follow up is required for this 
study. 

Any ultrasound images and medical data obtained during the course of this study will be 
stored and analysed only for the purposes of this study for a period not exceeding 6 years, 
and will be destroyed after completion of the study. 

Schedule of visits and procedures:  
There are no additional visits or procedures for this study.  
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YOUR RESPONSIBILITIES IN THIS STUDY 
If you agree to take part in this study, a written consent will be obtained from you. If there are 
any queries, the investigators will be happy to answer any questions.  
  

WITHDRAWAL FROM STUDY 

You are free to withdraw your consent and discontinue your participation at any time without 
prejudice to you or effect on your medical care. If you decide to stop taking part in this study, 
you should tell the Principal Investigator. 

Your doctor, the Principal Investigator and/or the Sponsor of this study may stop your 
participation in the study at any time for one or more of the following reasons: 

� Failure to follow the instructions of the Principal Investigator and/or study staff 

� The study is cancelled 

 

WHAT IS NOT STANDARD CARE OR EXPERIMENTAL IN THIS STUDY 

The study is being conducted because there is a potential to identify the spinal landmarks 
and increase the interpretability of ultrasound images with computer image processing 
algorithm. The system will alleviate the need for doctors to interpret noisy ultrasound images 
in real time. We hope that your participation will help us to evaluate whether the developed 
image processing system is accurate in identifying the spinal landmarks revealed by 
ultrasound images. 

Although scanning the lumbar spine area with ultrasound machine may be part of standard 
medical care, in this study this / these procedure(s) are being performed for the purposes of 
the research.  

POSSIBLE RISKS, DISCOMFORTS AND INCONVENIENCES 

There is a potential risk of having rash if you are allergic to ultrasound gel, but the possibility 
of allergy to ultrasound gel is rare. 

POTENTIAL BENEFITS 

There is no assurance you will benefit from this study. However, your participation may 
contribute to the improvement of ultrasound imaging interpretation and help with future real 
time ultrasound imaging guidance system development.  

ALTERNATIVES 
The alternative will be to not take part in this study.  

SUBJECT’S RIGHTS  

Your participation in this study is entirely voluntary. Your questions will be answered clearly 
and to your satisfaction.   

In the event of any new information becoming available that may be relevant to your 
willingness to continue in this study, you or your legal representative will be informed in a 
timely manner by the Principal Investigator or his/her representative. 

By signing and participating in the study, you do not waive any of your legal rights to revoke 
your consent and withdraw from the study at any time.   
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CONFIDENTIALITY OF STUDY AND MEDICAL RECORDS 

Information collected for this study will be kept confidential. Your records, to the extent of the 
applicable laws and regulations, will not be made publicly available. Only your Investigator(s) 
will have access to the confidential information being collected. 

However, the Regulatory Agencies, Institutional Review Board and Ministry of Health will be 
granted direct access to your original medical records to check study procedures and data, 
without making any of your information public.  

By signing the Informed Consent Form attached, you or your legal representative are 
authorizing (i) collection, access to, use and storage of your “Personal Data, and (ii) 
disclosure to authorised service providers and relevant third parties.  

“Personal Data” means data about you which makes you identifiable (i) from such data or (ii) 
from that data and other information which an organisation has or likely to have access.  This 
includes medical conditions, medications, investigations and treatment history.  

Research arising in the future, based on this Personal Data, will be subject to review by the 
relevant institutional review board.  

By participating in this research study, you are confirming that you have read, understood 
and consent to the SingHealth Data Protection Policy- the full version is available at 
www.singhealth.com.sg/pdpa. Hard copies are also available on request.   

Data collected and entered into the Data Collection Form are the property of KKH. In the 
event of any publication regarding this study, your identity will remain confidential. 

COSTS OF PARTICIPATION 
There will be no additional charges. 
 

RESEARCH RELATED INJURY AND COMPENSATION 
The Hospital does not make any provisions to compensate study subjects for research 
related injury. However, compensation may be considered on a case-by-case basis for 
unexpected injuries due to non-negligent causes. 
 
By signing this consent form, you will not waive any of your legal rights or release the parties 
involved in this study from liability for negligence.  
 
 

WHO TO CONTACT IF YOU HAVE QUESTIONS 

If you have questions about this research study or in the case of any injuries during the 
course of this study, you may contact the Principal Investigator Dr Sng Ban Leong of the 
Department of Women’s Anaesthesia (office telephone 63941081) of KK Women’s and 
Children’s Hospital. After office hours, in case of emergencies, you may also contact Dr Sng 
Ban Leong (mobile 98306621). 

This study has been reviewed by the SingHealth Centralised Institutional Review Board for 
ethics approval.  

If you have questions about your rights as a participant, you can call the SingHealth 
Centralised Institutional Review Board at 6323 7515 during office hours (8:30 am to 5:30pm). 

If you have any complaints about this research study, you may contact the Principal 
Investigator or the SingHealth Centralised Institutional Review Board.  
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CONSENT BY RESEARCH SUBJECT 

Details of Research Study 
Protocol Title: 
Automatic Spinal Landmarks Identification with Real-time Ultrasound Image Processing System 
for Healthy Volunteers  
 
Principal Investigator: 
Dr Sng Ban Leong 
Department of Women’s Anaesthesia, KK Women’s and Children’s Hospital 
63941081, Fax 62912661 

Subject’s Particulars 
Name:        NRIC No.: 
Address: 
Sex:  Female/Male       Date of birth   _______________ 
                        dd/mm/yyyy                   
Race:  Chinese/ Malay/ Indian /Others (please specify)   ________________________       
 

 
I, _____________________________________(NRIC/Passport No._______________________) 
                   (Name of patient) 
agree to participate in the research study as described and on the terms set out in the Patient 
Information Sheet.  
 
I have fully discussed and understood the purpose and procedures of this study. I have been given 
the Participant Information Sheet and the opportunity to ask questions about this study and have 
received satisfactory answers and information.  
 
I understand that my participation is voluntary and that I am free to withdraw at any time, without 
giving any reasons and without my medical care being affected.  
 
By participating in this research study, I confirm that I have read, understood and consent to the 
SingHealth Data Protection Policy. I also consent to the use of my Personal Data for the purposes 
of engaging in related research arising in the future.  
 
 
_______________________________________                                  ______________________ 
Signature/Thumbprint (Right / Left) of participant                                             Date of signing 
 
To be filled by parent / legal guardian / legal representative, where applicable 
 
I, ___________________________ hereby give consent for the above participant to participate in  
            (parent / legal guardian) 
the proposed research study.  The nature, risks and benefits of the study have been explained 
clearly to me and I fully understand them. 
 
   
 
________________________________________________   ________________________ 
Signature/Thumbprint (Right / Left) of parent /legal guardian                           Date of signing 
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Translator Information (if required) 
 
The study has been explained to the participant/ legal representative in  
 
____________________________________by _____________________________________. 
                             Language                                                           Name of translator 
 
To be filled witness, where applicable 
 
An impartial witness should be present during the entire informed consent discussion if a subject 
or the subject’s legal representative is unable to read. After the written informed consent form and 
any written information to be provided to subjects, is read and explained to the subject or the 
subject’s legal representative, and after the subject or the subject’s legal representative has orally 
consented to the subject’s participation in the study and, if capable of doing so, has signed and 
personally dated the consent form, the witness should sign and personally date the consent form.  
 
Witnessed by: ________________________________ ________________________ 
  Name of witness  Designation of witness 
 
 
 
 ________________________________ ________________________ 
  Signature of witness  Date of signing 
   
 
Investigator’s Statement 

I, the undersigned, certify to the best of my knowledge that the patient/patient’s legal 
representative signing this informed consent form had the study fully explained and clearly 
understands the nature, risks and benefits of his/her / his ward’s / her ward’s participation in the 
study. 
 
 
________________________ _______________________ ________________ 
         Name of Investigator  Signature   Date 
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