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Summary

Frequency control is essential to maintain the stability and reliability of a power

system. Traditionally, primary/secondary/tertiary reserve services with fossil-fuel

based generation units are used to stabilize the power system frequency upon a

contingency of supply-demand power imbalance, which, however, incur high oper-

ational costs. In future smart grid, demand response (DR) is an effective method

to control the power consumption of distributed users in real time, which can be

utilized to stabilize the power system frequency at low cost. This thesis is devoted

to investigating efficient algorithms for DR-enabled distributed frequency control in

smart gird.

This thesis starts with proposing a new frequency control algorithm based on

randomized on-off operation of distributed smart appliances (SAPPs), to stabilize

the power system frequency without the need of conventional primary reserve service.

We characterize various the impacts of SAPPs’ randomized responses on the system

frequency in terms of its mean and variance over time. Based on the proposed

frequency analysis, we then determine the average frequency recovery time, the

average number of responded SAPPs over time, and the probability of frequency

overshoot/undershoot, which provide important guidelines for designing SAPPs’

response rates in practical system.

Next, we extend the proposed algorithm (for SAPPs) to frequency control via

distributed charging/discharging operation of electric vehicles (EVs) that are con-

nected to the grid. Accordingly, we formulate an optimization problem to design

iv



Summary

the response rates of EVs to minimize the cost of implementing frequency control

subject to given performance requirements. Although the formulated problem is

non-convex, we solve it approximately and efficiently under certain practical as-

sumptions.

Lastly, we study a real-time pricing scheme to incentivize distributed self-

interested aggregators to reschedule their demand upon a contingency of supply

deficit to achieve cost-effective secondary/tertiary reserve services. By assuming

that the system operator has full knowledge of the behavior of aggregators, we for-

mulate a bilevel optimization problem to design real-time electricity prices for the

system operator to shape the sum demand of all aggregators in a way that minimizes

the total operational cost of the grid, including the frequency control cost. Although

the formulated problem is non-convex in general, we develop an efficient algorithm

to solve it locally optimally by exploring its equivalent one-level problem. Moreover,

we propose an iterative algorithm to solve the bilevel pricing problem sub-optimally,

which enables the system operator to design real-time electricity prices even without

any presumed knowledge of the aggregators.
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Chapter 1

Introduction

1.1 Smart Grid

Smart grid refers to an electric power system that deploys bidirectional commu-

nications and advanced signal processing techniques to gather and process informa-

tion from the suppliers (generation companies), distributors (transmission system

operators), and demand-side users (residential, commercial, and industrial) to op-

erate the system in a reliable, cost-efficient, and environmentally friendly manner.

For instance, the real-time information gathered from the installed sensors such as

current and voltage meters in remote transmission lines and substations can help

estimate the power system state more accurately. This enables the system operator

to achieve autonomous fault detection and self-healing functions [1], which are able

to withstand severe disturbances without interrupting power delivery to the users.

Furthermore, the information exchanged among the suppliers (offered electricity

prices) and users (willingness to pay for each unit of energy) help them adopt more

rational and flexible operational strategies. Particularly, the users can schedule their

demand over time in response to the electricity prices offered by the suppliers to save

their electricity bills, e.g., defer portions of their deferrable loads such as dishwashers

and/or cloth dryers to the off-peak-demand period with a lower electricity price. As

a result, the need for high-cost generation units such as diesel generators during the

peak-demand period decreases, which reduces the generation cost of suppliers and

also makes a greener power system.

1
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Bidirectional Communication System
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System 

Operator
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Supporting Bidirectional 

Power Flow

Figure 1.1: Smart grid schematic.

As shown in Fig. 1.1, smart grid supports bidirectional power flow, i.e., each

user can either draw power from the grid or inject power to it, which helps increase

the penetration rate of renewable energy sources (RESs) such as solar and wind

in the power system. Moreover, there is a globally increasing trend for generating

green energy with RESs in large scale. For example, the installed capacity of solar

photovoltaic (PV) panels in the Singapore power grid has exponentially increased

from 1MW in 2009 to 14.6MW in 2014 [2]. In the future, it is expected that users

can widely deploy distributed renewable energy generators to meet their individual

demand locally, store the surplus energy (if any) in their energy storage systems

(ESSs) for future use, and/or trade it with the system operator or other users to

gain monetary reward.

The massive deployment of RESs can significantly reduce both the carbon diox-

ide emissions of traditional fossil-fuel based power plants and the energy transmis-

sion losses from power plants to far apart users [3]. However, the intermittent and

stochastic characteristics of RESs can cause imbalanced supply with demand and

yield fluctuations in the power system frequency and/or voltage. Although ESSs can

2



Chapter 1. Introduction

be utilized to smooth out the power fluctuations in the renewable energy generation,

they are costly and not environmentally friendly since toxic chemicals such as nickel

and cadmium are commonly used to make rechargeable batteries. An alternative

greener solution is to adjust users’ power consumption over time to match the power

generation of their renewable energy generators as closely as possible. This solu-

tion can also help each user to minimize the power drawn from the grid, especially

during the peak-demand period to avoid causing significant disturbance to the grid.

The active engagement of users in rectifying their power consumption is known as

demand response (DR) in smart grid.

1.2 Demand Response (DR) in Smart Grid

According to the Federal Energy Regulatory Commission (FERC), DR is de-

fined as [4]:

“Changes in electric usage by end-use customers from their normal con-

sumption patterns in response to changes in the price of electricity over

time, or to incentive payments designed to induce lower electricity use

at times of high wholesale market prices or when system reliability is

jeopardized.”

In smart grid, the bidirectional communications are required to enable DR for

real-time information sharing among different entities in the system. Hence, users

can adjust their instantaneous demand in response to the power system condition

or a change in the electricity price. In practice, DR can be realized using either

direct load control (DLC) or indirect load control (ILC) schemes [5, 6], which are

explained in the following.

The DLC scheme is usually implemented in a centralized manner, under which

the system operator jointly designs the power consumption of individual users over

3



Chapter 1. Introduction

time to achieve a certain goal. For instance, the system operator can switch off

some users’ loads during the peak-demand period or upon a contingency of supply

shortfall to improve the power grid stability. However, the privacy issue and the

communication delay in gathering information from distributed users, as well as the

complexity of solving the required optimization problem involving many decision

variables and constraints, e.g., each user has various loads that need to be scheduled

over a given time interval, are the three main barriers to implement the DLC in

practice. To facilitate the implementation of DLC, aggregators are introduced as

coordinating agents between the system operator and preassigned groups of residen-

tial, commercial, and/or industrial users, under which the system optimization can

be solved in hierarchical manner with lower complexity in general.

In contrast, the ILC scheme is generally implemented in a distributed manner,

under which each user controls its demand independently according to the signal

received from the system operator. The signal can represent either the real-time

electricity price or a request for load shedding when an emergency event occurs

in the power grid. If users ignore the received signal by keeping their demand

unchanged, a cost is generally incurred, e.g., the users need to pay higher electricity

bills or get their electricity supply completely cut off. One potential challenge for

implementing the ILC is to avoid simultaneous responses of users. For example,

when the electricity price is cheap, the users are likely to reschedule their future

demand to the current time to reduce their electricity bills. This can result in a

sudden spike in the aggregate demand which causes frequency/voltage instability in

the power grid. Note that this problem occurs due to the fact that the ILC scheme

is implemented in a distributed manner and thus there is no centralized control over

the responses of users.

It is worth noting that both DLC and ILC schemes have been previously studied

in the literature to reshape users’ demand to achieve various goals [7–23]. Specif-

ically, the optimal demand scheduling for a group of residential users to minimize

4



Chapter 1. Introduction

the total power generation cost of the system over a finite time horizon was stud-

ied in [7–12]. The portfolio maximization of a generation utility via designing the

electricity prices offered to price-responsive users, in both day-ahead and real-time

pricing scenarios, was investigated in [13–15]. The peak-to-valley minimization of

the aggregate demand of users by scheduling their deferrable and reducible loads

was also considered in [16–18]. Another prominent application of DR is to provide

reserve (ancillary) services such as the voltage control [19, 20] and the frequency

control [21–23] in order to support continuous and reliable operation of the power

system.

In the following, we discuss the importance of frequency control in the power

system and introduce the conventional frequency controllers. Then, we explain how

DR can be used for frequency control in smart grid.

1.3 Frequency Control in Power System

The main goal of a power system is to deliver power to its users reliably and

stably. To achieve this goal, the power system should be able to withstand severe

disturbances without interrupting power delivery to the users. In practice, according

to the criterion proposed by Northeast Power Coordination Council (NPCC) [24],

the power system should be able to return to an equilibrium operating state subject

to any loss in each of its components by deploying various reserve services, e.g., the

system frequency and voltage controllers. Specifically, the reserve services facilitate

the power system to realize continuous flow of electricity from suppliers to the users

such that the supply meets the demand all the time.

Upon a contingency of supply-demand power imbalance due to e.g. the insuffi-

cient RES supplies, failures of power plants, breakdown of transmission lines, and/or

unexpected spikes in the total demand, the system frequency can deviate from its

nominal value, e.g., 50Hz in Singapore or 60Hz in North America. The magnitude
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Figure 1.2: Impact of reserve services on the system frequency after a contingency
of supply deficit, where f(t) denotes the system frequency over time t ≥ 0 with the
nominal value of 60Hz.

and speed of the frequency deviation depends on various parameters such as the

amount of the power imbalance, the power system’s size and topology, etc. Gen-

erally, given a fixed power imbalance level, the system frequency in a large power

system with higher mechanical inertia deviates less significantly than that in a small

power system with lower mechanical inertia. A sufficiently large frequency devia-

tion can jeopardize the power system reliability and cause serious damages to the

system components and industrial machinery. For instance, under a low-frequency

event due to the supply shortfall, generators, transformers, and heavy motors be-

come overheated, since the volts/hertz ratio increases in the power system [25].

Therefore, the system frequency deviation needs to be restored quickly to prevent

damages.

Conventionally, power plants providing reserve services are responsible for re-

turning the system frequency back to its nominal value after each contingency. As

shown in Fig. 1.2, the reserve services can be categorized into three main classes
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as primary (regulatory), secondary, and tertiary (replacement), based on their dif-

ferent activation times [27]. The primary reserve service refers to the immediate

responses of turbine governors and/or automatic generation controllers (AGCs) of

fast-ramping synchronized generation units that do not inject power to the grid or

inject power less than their maximum capacities when the system is under its nor-

mal condition. The primary reserve service arrests the system frequency decline,

which is very sharp initially, and restores it to a new steady state level in the vicin-

ity of the system frequency nominal value (±1% deviation in general) in typically

20–30 seconds. After this quick service, moderate-ramping synchronized genera-

tion units deliver the secondary reserve service. This service returns the system

frequency back to its nominal value by adjusting the supply to perfectly match the

demand in a couple of minutes, say, 5–10 minutes. Last, since the number of power

plants providing primary and secondary reserve services is limited in practice, the

system operator activates the tertiary reserve service that is slow-ramping through

the real-time electricity market, which is used to free the primary and secondary

reserve services for future use. The tertiary reserve service is usually provided by

desynchronized (standby) generation units.

Deploying the conventional primary and secondary reserve services for frequency

control incurs high operational costs, since they are provided by fast/moderate ramp-

ing generation units, e.g., diesel and gas-turbine generators, which have high gen-

eration costs due to their low fuel-to-energy efficiency in general. For instance,

according to the report of PJM energy market in 2013 and 2014 [28], on average,

16.6% and 15.4% of the electricity cost were due to the reliability and reserve ser-

vices, respectively. Besides the cost consideration, the overall efficiency of the power

system reduces when power plants are partially loaded to be enabled to provide

reserve services. Last but not least, the conventional reserve services are mostly

provided by power plants consuming fossil fuels that are not environmentally

green.

7
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In smart grid, an alternative and more cost-effective solution for controlling the

system frequency is via DR, which is discussed next.

1.4 DR for Frequency Control

In a conventional power system, demand can provide reserve services in the

form of interruptible users and/or under-frequency load shedding (UFLS) [29–31].

Under these two programs, the system operator interrupts power delivery to the

users in specific geographical areas for a short time period after the contingency so

as to reduce the demand to match the decreased supply. Note that this is in contrast

to the generation side controllers that increase the supply to match the demand. As

a result, users in the affected areas will experience electricity cut-off temporarily,

without prior notice. This degrades the users’ comfort levels.

In smart grid, bidirectional communications together with the advanced control

tools used in smart appliances (SAPPs), e.g., LG Smart THINQTM Appliances or

Whirlpoolr Smart Duet Pair with 6th Sense LiveTM Technology, as well as electric

vehicles (EVs) enable the control of the power consumption of distributed loads

independently to regulate the system frequency smoothly and swiftly, which is

discussed next.

Under the DLC scheme, the system operator can remotely switch on/off cer-

tain SAPPs, e.g., low priority loads such as dishwashers and cloth dryers, or change

the operational modes (charging, idle, and discharging) of grid-connected EVs in

response to the system frequency deviation [21, 32–40]. There are two main dis-

advantages of using the DLC scheme to control the system frequency. First, the

communication delay for collecting information from all SAPPs/EVs and the com-

putation time required to jointly design their responses can increase the overall

delay for activating DR. As a result, the DLC cannot be used in replacement of the

conventional primary reserve service in practice. Second, the DLC scheme creates
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serious privacy concern, since the system operator can infer personal information of

users based on the collected information [55].

Under the ILC scheme, SAPPs/EVs are designed to measure the system fre-

quency locally and adjust their power consumption independently in response to the

system frequency deviation using their respective control algorithms [41–53]. As an

example, when an EV detects that the system frequency is below a given threshold,

it can stop its ongoing charging process and/or inject power to the grid to help

boost the system frequency. However, when the system frequency recovers to its

safe range for a sufficient amount of time and the supply deficiency is compensated

using the secondary and tertiary reserve services, SAPPs/EVs can deactivate their

frequency control and resume their normal operation.

Besides improving the system flexibility to manage the variability and uncer-

tainty of the aggregate power supply resulting from the massive deployment of RESs,

using DR for frequency control has other benefits over the conventional frequency

controllers, as listed below [54]:

• Fast response time: the response time of the frequency controllers installed in

power plants is usually longer than that of the demand-side controllers due to

the high inertia of large mechanical components in power plants, e.g., turbines’

shafts and blades.

• Low operational cost: the need for generating extra power using fossil-fuel

based generation units decreases; as a result, the total fuel cost decreases.

• Environmentally green: the decrease in consuming fossil fuels can reduce green-

house gas emissions.

• Higher power quantity: except for must-run demand such as loads of hospitals

and military sites, the rest of demand can potentially take part in the frequency

control program.
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Figure 1.3: The proposed two-stage operation architecture for DR-enabled frequency
control in smart grid.

As shown in Fig. 1.3, in this thesis we consider a two-stage operation ar-

chitecture to utilize DR for frequency control using the ILC scheme. In the first

stage, the system operator notifies all users (SAPPs/EVs) to activate their individ-

ual frequency control algorithms by sending a command signal (e.g., bit ‘1’) upon a

contingency of supply-demand power imbalance. Accordingly, SAPPs/EVs respond

to their locally measured system frequency independently to help restore the system

frequency to its safe region swiftly, where their responses function similarly as the

conventional primary reserve service provided by fast-ramping generation units. In

the second stage, the system operator holds the real-time electricity market and

negotiates with the aggregators, each of which purchases electric power from the

system operator to satisfy the demand of its users, to provide cost-efficient sec-

ondary and tertiary reserve services. After the energy transaction is completed, i.e.,
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Figure 1.4: Frequency oscillation problem due to synchronized responses of SAPPs.

the demand of aggregators is rescheduled similar to the conventional secondary and

tertiary reserve services, the system operator sends a clear command (e.g., bit ‘0’) to

all SAPPs/EVs in order to deactivate their frequency controllers and resume their

normal operation.

1.5 Motivation

There are three main challenges in designing the proposed two-stage architec-

ture for DR-based frequency control, which are discussed in the following.

1.5.1 Frequency Oscillation Problem

The simultaneous responses of users’ frequency-responsive loads, i.e., SAPPs

and EVs, can potentially result in a frequency oscillation problem. To further

demonstrate this problem, we consider a simple frequency threshold based on-off

load control policy as follows. We assume that all SAPPs continuously monitor
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the system frequency and switch their loads off when the frequency drops below

a predetermined lower threshold, fmin = 59.8Hz, and switch them on again when

the frequency goes up to a predetermined upper threshold, fmax = 60.2Hz. We

assume that all SAPPs use the same frequency thresholds. We implement this load

control policy for the IEEE 9-Bus test system that represents a portion of the West-

ern System Coordinating Council (WSCC) power system [56]. By applying this

load control policy, a snapshot of the frequency dynamic in the IEEE 9-Bus test

system after a contingency of supply shortfall is shown in Fig. 1.4, from which a

frequency oscillation is observed. This phenomenon is due to the fact that

all SAPPs observe and respond by switching from on(off) to off(on) states at the

same time when the system frequency reaches one of the two frequency thresholds.

If SAPPs gradually adjust their power consumption in response to the system fre-

quency deviation [36, 38], then the system frequency can recover smoothly and the

frequency oscillation problem can be avoided. However, this assumption is not prac-

tically valid for many household appliances such as television sets, refrigerators, and

washing machines that operate with constant power load. A similar solution is to

continuously adjust the power charging/discharging rates of EVs in response to the

system frequency deviation [50–53, 57], which, however, is costly to implement in

practice.

It is worth noting that randomized algorithms have been widely applied in

practice to solve problems in other applications with similar issues as the frequency

oscillation problem in the power system. For example, randomized algorithms have

been successfully implemented to solve a collision problem in multi-user communica-

tion networks (using, e.g., CSMA or ALOHA based protocols [58–60]), by applying

random waiting times for each individual transmitter in order to minimize the prob-

ability of overlapping transmissions.

In the literature (see e.g. [41–47]), randomized methods to desynchronize re-

sponses of SAPPs/EVs, by using either random frequency thresholds for activa-
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tion/deactivation of their loads or random waiting times for activating their control,

have been proposed to solve the frequency oscillation problem. However, the fre-

quency control algorithms proposed therein require to be implemented continuously

in time, i.e., SAPPs/EVs need to monitor the system frequency all the time to re-

spond timely. However, the continuous monitoring of SAPPs/EVs are difficult to

be realized in practice due to practically large response times (say, tens of millisec-

onds) of commercially available frequency measurement sensors. Furthermore, the

continuous monitoring of a battery-powered sensor can reduce its operation time sig-

nificantly. Therefore, how to design efficient and low-cost methods to desynchronize

the responses of distributed SAPPs/EVs is still a challenging problem.

1.5.2 Frequency Characterization

The power system frequency upon a contingency can be easily expressed for the

case where the amount of power imbalance and the time that it occurs as well as the

time instants that SAPPs/EVs respond are known. However, there is no analysis

available in the literature for the case where all these variables are random, as in the

case of randomized frequency control. In the related prior studies [41–47, 49–53],

simulations have been extensively used to validate the performance of proposed

frequency control algorithms under different system setups. However, in order to

implement frequency control via randomized DR in practice, we need to choose

appropriate design parameters such as the average response rate and the inter-

response time distributions for frequency-responsive loads given the power system

characteristics to optimize the control performance. This is not feasible without

a rigorous analysis on the system frequency dynamics under randomized DR. Such

analytical results are crucial for the system operator to estimate how the randomized

responses of SAPPs/EVs affect the system frequency upon a contingency of supply-

demand imbalance. To our best knowledge, there has been no prior work that
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rigorously characterized the system frequency dynamics subject to randomized DR.

1.5.3 Optimal DR for Frequency Control

If we use DR to replace the conventional primary reserve service for frequency

control in smart grid, DR should be activated quickly, say, within 30 seconds. Thus,

it is not practically feasible to jointly design control parameters for a large num-

ber of SAPPs/EVs (e.g., for millions of users) in real time. Alternatively, their

control parameters can be designed off-line and then applied in real time. How-

ever, a mathematical framework to design the control parameters of SAPPs/EVs

with randomized responses for frequency control in smart grid is still missing in the

literature.

After instantaneous responses of SAPPs/EVs which arrest the system frequency

deviation and restore it to a new steady state within its safe range, the system op-

erator is given adequate time to provide DR-enabled secondary and tertiary reserve

services through the real-time electricity market. Particularly, the system operator

can negotiate with the aggregators by offering discounted electricity prices over off-

peak-demand period or other monetary rewards to reschedule their users’ demand

over time to reduce the overall demand to match the decreased supply. However,

designing the real-time electricity prices is a challenging task in general, since aggre-

gators are practically self-interested and aim to maximize their individual utilities

even when there is a contingency of supply deficit. As a result , if the real-time

electricity prices are not designed appropriately, aggregators may not be motivated

to reschedule their loads or they all shift loads into the same time in future, which

causes a spike in the aggregate demand. In the literature [61–70], various real-time

pricing algorithms have been devolved to design electricity prices for the system

operator by assuming that the power grid is operated under the normal condition.

However, there has been less effort to investigate real-time pricing for contingency
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management, which can improve the power system reliability with minimum cost.

1.6 Thesis Objective and Organization

Motivated by the above discussions, in this thesis we focus our study on ad-

dressing the three major challenges in implementing the two-stage architecture in

Fig. 1.3 for controlling the power system frequency via distributed DR, which are,

respectively, overcoming the frequency oscillation problem due to simultaneous re-

sponses of distributed SAPPs/EVs, characterizing the system frequency dynamics

subject to the randomized responses of SAPPs/EVs, and optimal DR management

to minimize the operational cost of the power system. The thesis is organized as

follows.

Chapter 1 presents the motivation, objective, and the major contributions of

this thesis.

Chapter 2 proposes a new frequency control algorithm for distributed SAPPs,

under which SAPPs locally monitor and respond to the system frequency over ran-

domized discrete times. The impacts of SAPPs’ randomized responses on the system

frequency dynamics are mathematically characterized, and extensive simulations

based on the IEEE 9-Bus test system and the aggregate model of the Ireland power

system are provided in order to verify the performance of our proposed frequency

control scheme. Specifically, we show that with the proposed control algorithm, us-

ing SAPPs’ responses can replace the conventional primary reserve service provided

by fast-response power plants to restore the system frequency reliably, even under

a severe contingency of supply-demand power imbalance up to 10% of the total

generation capacity.

Chapter 3 extends the proposed algorithm for SAPPs to control the system

frequency by exploiting randomized responses of distributed grid-connected EVs.

Accordingly, we characterize the impacts of EVs’ randomized responses on the sys-
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tem frequency. Furthermore, an optimization problem is formulated and efficiently

solved to design EVs’ response rates to minimize the expected cost of deploying

our proposed frequency control. Last, simulation results are provided to verify the

effectiveness of our proposed algorithm to control the system frequency via DR of

distributed EVs.

Chapter 4 presents a new real-time pricing scheme to manage the demand

rescheduling in a group of self-interested aggregators to provide cost-efficient sec-

ondary and tertiary reserve services. A bilevel optimization problem is formulated

to optimize real-time discounted electricity prices (cheaper than the day-ahead elec-

tricity prices) for the system operator to minimize the frequency recovery cost of the

power system after a contingency of supply-demand imbalance. Numerical exam-

ples are provided to show that our proposed real-time pricing scheme can effectively

reduce the frequency control cost of the power grid, while the aggregators also pay

less electricity bills with the designed discounted electricity prices.

Finally, Chapter 5 concludes this thesis and discusses about the future work.

1.7 Major Contributions of the Thesis

The major contributions of this thesis are summarized as follows.

1.7.1 New Randomized Algorithms to Desynchronize

Responses of SAPPs/EVs

The first contribution of this thesis is to propose new practical control algo-

rithms to desynchronize the responses of SAPPS/EVs to help recover the system

frequency smoothly.

In Chapter 2, we design SAPPs to monitor the system frequency over discrete

times (e.g., with the interval of 20–30 seconds) and respond based on a simple fre-

quency threshold based on-off policy. To desynchronize responses of SAPPs, we
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impose a constraint that each SAPP must wait a random time between any two

consecutive monitoring events, where the waiting times are assumed to be indepen-

dent and identically distributed (i.i.d.) exponential random variables with a given

mean value. The inverse of mean value is named response rate. We show via both

analytical and simulation results that by designing response rates of SAPPs appro-

priately, our proposed control algorithm can restore the system frequency smoothly,

without frequency oscillation.

In Chapter 3, we present a randomized frequency control algorithm for dis-

tributed EVs. The algorithm is in similar spirit of that presented in Chapter 2 for

desynchronizing responses of SAPPs, while the discharging control of EVs (i.e., by

injecting power to the grid) is considered in addition to the charging control for

frequency recovery. Specifically, EVs are designed to monitor the system frequency

locally over discrete randomized times and respond independently according to a

simple frequency threshold based mode switching policy. As compared to SAPPS,

deploying EVs for frequency control has more flexibility due to both charging and

discharging control, which can help restore the system frequency more smoothly.

1.7.2 Characterizing Impacts of Randomized Responses of

SAPPs/EVs on System Frequency

Under the randomized control of SAPPs/EVs, the system frequency is gener-

ally modeled as a stochastic process over time. In Chapters 2 and 3, we investigate

the impacts of randomized responses of SAPPs and EVs on the system frequency,

respectively. We first derive closed-form expressions for the mean and variance of

the system frequency over time upon a contingency of supply-load imbalance. Then,

we derive the average frequency recovery time, i.e., the average time needed to re-

cover the system frequency within its safe region after the contingency, the expected

number of responded SAPPs/EVs over time, and the probability of frequency over-

17



Chapter 1. Introduction

shoot over the preassigned threshold in steady state. This analysis provides useful

guidelines for the system operator to implement our algorithms in real time.

1.7.3 Optimal DR Management for Frequency Control

In Chapter 3, we formulate an optimization problem for the grid operator to

minimize the expected cost of implementing our proposed EV-enabled frequency

control by designing EVs’ response rates subject to the incentive prices requested

by their owners and the given power grid performance requirements. Although

the formulated problem is non-convex in general, we approximate it as a linear

programming (LP) problem under certain practical assumptions, and then solve it

efficiently. In practice, the grid operator can solve the problem in a hourly/daily

basis and then send the optimal response rates to the users to set up their individual

EVs for implementing frequency control in the future.

In Chapter 4, we formulate a bilevel optimization problem [98] to design real-

time discounted electricity prices for the system operator to minimize the cost of

motivating self-interested aggregators to reschedule their demand upon a contin-

gency. The problem is formulated by first assuming that the system operator has

the full knowledge of the behavior of all aggregators. Since the formulated problem

is non-convex in general, we develop a sequential convex programming (SCP) based

algorithm to solve it locally optimally. Moreover, we propose a randomized search

(RS) based algorithm to solve the problem heuristically, which is shown to be able to

design electricity prices even when the system operator does not have any presumed

knowledge about the aggregators. The performance of two proposed algorithms

are compared using a numerical example based on the Singapore power grid data,

from which it is observed that our pricing scheme can effectively manage DR of ag-

gregators in real-time electricity market to provide cost-efficient secondary/tertiary

reserve services. As shown in our numerical example, the demand rescheduling of

aggregators is activated through the real-time electricity market as fast as the con-
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ventional secondary reserve service, e.g., in nearly 80 seconds, while it can alleviate

the power imbalance for a sufficiently long time interval, e.g., up to 12 hours, which

is comparable to the conventional tertiary reserve service.
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Chapter 2

Frequency Control via
Randomized Responses of
Distributed SAPPs

2.1 Introduction

In this chapter, we propose a new frequency control algorithm based on the

randomized on-off operation of distributed SAPPs to alleviate the frequency oscilla-

tion problem, and stabilize the power system frequency swiftly without the need of

conventional primary reserve service. Next, we analyze the performance of our fre-

quency control algorithm upon a contingency of supply shortfall, where the obtained

results can help the system operator choose appropriate design parameters such as

the average response rates and the inter-response time distributions for SAPPs given

the power system parameters to optimize the control performance.

2.2 Literature Review

In one preliminary work on the distributed DR-enabled frequency control in

smart grid, the Pacific Northwest National Laboratory (PNNL) [41] used a simple

threshold based on-off load switching policy with randomized activation/deactivation

frequency thresholds and randomized response delay times for domestic SAPPs to

rectify the system frequency fluctuations. The proposed frequency control algo-

rithm by PNNL was implemented on a small-scale demonstration project, including

150 cloth dryers and 50 water heaters, which yielded promising positive results.
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However, the theoretical analysis to characterize the system frequency dynamics

following the randomized responses of SAPPs has been not provided in [41]; there-

fore, there is no straightforward approach to verify whether their obtained results

are valid for power systems with larger number of SAPPs or not. It is worth noting

that the analytical approach proposed in this chapter can be applied to derive the

performance analysis for the PNNL algorithm. A novel thermostat control policy

for smart refrigerators was investigated in [42]. This control policy was designed to

autonomously increase the thermostat’s temperature set-point (subject to a given

cap, e.g., −1 ◦C) upon an under-frequency event to switch off the refrigerator’s

compressor temporarily. It was shown in [42] that the diversity of refrigerators’

physical specifications and differences in their initial inner temperatures can desyn-

chronize their responses, and thereby a smooth frequency recovery can be achieved

even without the need for the conventional primary reserve service in the gener-

ation side. Molina-Garcia et. al [43] proposed a multi-regional frequency control

algorithm for household SAPPs to achieve faster responses to larger frequency de-

viations (similar to an over-current protection relay in a transmission line which

disconnects the line from the grid faster when the current overshoot in the line in-

creases). To avoid frequency oscillation, [43] applied uniformly distributed turn-on

delay times and normally distributed minimum/maximum response time limits for

SAPPs. Alternatively, randomized frequency thresholds were deployed in [44] to

avoid simultaneous responses of SAPPs. The priority dependent frequency thresh-

olds were proposed in [45] to prevent high priority loads, e.g., lighting systems, from

responding to small frequency deviations. It was shown in [45] that utilizing the ran-

domized responses of approximately 200MW of SAPPs for frequency control in the

Great Britain’s (GB) power system can keep the system frequency over the desired

level 49.5Hz upon a contingency of 1320MW supply deficit which is the worst case

scenario in the GB’s power system. Recently, an experimental implementation of a

cost-efficient decentralized load control scheme on the Bornholm Island, Denmark (a
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small power grid with 33% penetration of wind energy) was reported in [46]. Specif-

ically, 70 thermostatically controlled loads were equipped with frequency control

devices to help regulate the system frequency. It was shown in [46] that deploying

frequency-responsive loads for frequency control can decrease both the cost and the

time required to stabilize the system frequency as compared to the conventional

primary reserve service. Last, Molina-Garcia et al. [47] utilized the same frequency

control algorithm as that reported in [42] to show that DR-enabled frequency control

can enhance the quality of frequency control by reducing the maximum frequency

deviation and also increasing the speed of restoring the frequency to its safe region

in a power system with high penetration of intermittent wind generation, even up

to 20% of the total generation capacity.

The frequency control algorithms proposed in [41–47] require to be implemented

continuously in time, while the continuous monitoring of SAPPs are difficult to

be achieved as discussed in Section 1.5.1. Hence, we develop a simple frequency

control algorithm to distributively switch on/off each SAPP in response to its lo-

cally measured system frequency over discrete randomized time instants. Further-

more, [41–47] used simulations and small-scale experiments to validate the perfor-

mance of their proposed algorithms. However, to implement DR-enabled frequency

control in practice, we need to choose appropriate design parameters such as the

average response rates and the inter-response time distributions for SAPPs given

the power system characteristics, which is not feasible without a rigorous analysis of

the system frequency dynamics. This motivates our work to analyze the impacts of

randomized responses of distributed SAPPs on the system frequency, which enables

the system operator to design their parameters to achieve desired power system sta-

bility with the minimum cost. In contrast to [49] that has investigated the behavior

of an individual smart refrigerator with random frequency control in response to the

system frequency, we focus on characterizing the system frequency by taking the

randomized responses of a large group of distributed SAPPs into account.
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Figure 2.1: Schematic of an aggregate power system model.

2.3 System Model

In this section, we first introduce an aggregate power system model. We next

study the frequency dynamics of this system upon a contingency of supply deficit.

Herein, we assume that there are no conventional frequency controllers such as

turbine governors and/or AGCs in the power system. Furthermore, we assume that

DR-enabled frequency controllers are all deactivated for the time being. In Sections

2.4.2 and 3.4.2, we will extend our analysis to capture responses of SAPPs and EVs,

respectively, on the system frequency dynamics.

2.3.1 Aggregate Power System Model

We consider a power system under the so-called synchronous operating regime,

where the whole system operates with a single system-wide frequency even upon

emergency events [72]. This assumption is reasonable due to the fact that most

power systems are designed to deal with any loss of a single component without

losing the system frequency synchronism according to the criterion proposed by the

Northeast Power Coordination Council (NPCC) [24]. As a result, we can model

the power system in an aggregate form, as shown in Fig. 2.1, where Ag(t) and

Ad(t) denote the aggregate output power of generation units and the aggregate

demand of energy consumers, respectively. The aggregate demand includes the
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power consumption of all residential, commercial, and industrial loads regardless

of whether they participate in frequency control or not, together with transmission

power losses.

Let f(t) denote the system frequency over time t ≥ 0, with the nominal value

of f0 at t = 0. Since the system voltage can be regulated separately by voltage

controllers that inject/absorb reactive power into/from the grid [79,80], the demand

power consumption (without responses of demand-side frequency controllers) can

be modeled as a function of the system frequency only. Based on the fact that the

system frequency deviation from its nominal value is practically small, the aggregate

demand power consumption can be expressed as a linear function of the system

frequency [72]. Specifically, we have

Ad(t) = A0 +

(
f(t)− f0

f0

)
KfA0, t ≥ 0, (2.1)

where A0 denotes the aggregated demand power consumption under the nominal

values of frequency and voltage at time t = 0. The second term on the right hand

side (RHS) of (2.1) indicates the demand power change due to the system frequency

deviation, where Kf > 0 is the frequency damping coefficient [72]. In fact, Kf

models the natural (passive) behaviors of loads such as motors and fans, where the

power consumption of each of them depends on the frequency of its supply source.

Although the aggregated power consumption of demand may not be a linear function

of the system frequency in general, we can still linearize it in the vicinity of the

nominal frequency (e.g., ±2%f0) using its first-order Taylor series approximation.

2.3.2 Frequency Dynamics in Power System

The frequency dynamics in a power system are governed by the physics of

motion (Newton’s laws of motion) and expressed by a so-called swing equation [72]
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as follows

2E

f0

df(t)

dt
= Ag(t)− Ad(t), t ≥ 0, (2.2)

where E > 0 denotes the stored energy in the rotational parts of the aggregate

generator. By substituting (2.1) into (2.2), we obtain

2E

f0

df(t)

dt
= Ag(t)− A0 −

(
f(t)− f0

f0

)
KfA0, t ≥ 0. (2.3)

We now investigate the system frequency upon a contingency of supply-demand

power imbalance. Without loss of generality, we assume that the aggregate gener-

ation power deviates Ae from its scheduled value at time t = 0, where Ae < 0

indicates the case of supply deficit and Ae > 0 indicates the case of supply surplus.

Given the assumption that there are no conventional frequency controllers in the

power system, we can set Ag(t) = A0 +Ae1{t≥0}, where 1{·} is an indicator function.

Accordingly, we re-write (2.3) as follows

2E

f0

df(t)

dt
= Ae −

(
f(t)− f0

f0

)
KfA0, t ≥ 0. (2.4)

By solving the above differential equation, we thus obtain

f(t) = f0 +
f0

KfA0

Ae
(
1− e−αt

)
, t ≥ 0, (2.5)

where α = (KfA0)/(2E). In general, a large α corresponds to a power system with

small mechanical inertia; thus, the system frequency reaches to its new steady state

more quickly after each disturbance [72]. From (2.5), it follows that Ae amount

of supply deviation yields (f0Ae)/(KfA0) amount of frequency deviation in steady

state, and this change on the system frequency occurs exponentially fast. In practice,

we have |Ae|/(KfA0) < 1, since |Ae| � A0.

In the rest of this thesis, we focus on the case of supply shortfall, i.e. Ae < 0,
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Figure 2.2: Threshold based one-off load control policy for each SAPP.

while all the obtained theoretical results can be readily extended to the case of

supply surplus, i.e. Ae > 0.

2.4 Frequency Control via Distributed SAPPs

In this section, we introduce our frequency control algorithm with randomized

responses of distributed SAPPs. For convenience, in this chapter we assume that

there is no EV available in the system, while the power system with EV integration

will be investigated later in Chapter 3. Specifically, we assume that the power system

consists of M ≥ 1 SAPPs, indexed by i, i ∈M = {1, · · · ,M}. We denote the power

consumption of SAPP i by Ai > 0, which is assumed to be constant regardless of

the system frequency and/or voltage deviation.

We assume that each SAPP can monitor the system frequency locally, e.g., by

measuring the voltage signal at its connecting point to the grid and then extracting

the dominant frequency of the measured signal via the Fast Fourier Transform (FFT)

analysis or other signal processing techniques [73]. As discussed in Section 1.4, the

system operator will notify all SAPPs via sending a command signal (e.g., bit ‘1’)

to activate their frequency controllers, as shown in Fig. 2.2, when the contingency

occurs. However, the system operator will send a clear signal (e.g., bit ‘0’) to SAPPs

to deactivate their algorithms and resume their normal operation when the system
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frequency gets back to its safe range for a sufficient amount of time by deploying

cost-efficient secondary/tertiary reserve services, which will be discussed later in

Chapter 4.

2.4.1 Frequency Threshold Based On-off Load Control

Policy

Let Si(t) ∈ {0, 1} denote the state of SAPP i at time t, where 0 and 1 indicate

the off and on states, respectively. Our proposed load control policy with a given

pair of lower and upper frequency thresholds, denoted by fmin < f0 and fmax > f0,

respectively, is then given by

Si(t
+) =


0, if Si(t) = 1 and f(t) < fmin

1, if Si(t) = 0 and f(t) > fmax

Si(t), otherwise.

(2.6)

where t+ = t + ∆t, with ∆t → 0+, denotes the time immediately after monitoring

the system frequency at time t. In the above algorithm, changes in the power

consumption of SAPP i can be tracked conveniently by a random process, defined

as Xi(t) = Ai(Si(t)− Si(t+)), which has three possible values in {±Ai, 0}.

For convenience, we assume that all SAPPs are initially in the on state at time

t = 0, i.e., we set Si(0) = 1, ∀i ∈ M. In Section 2.5.2, we then investigate a

more general case that the initial states of SAPPs and their power consumption are

modeled as stochastic variables.

2.4.2 Randomized Inter-Response Time

As shown in Fig. 1.4, if all SAPPs continuously monitor the system frequency

and respond according to the proposed on-off load control policy in (2.6), a fre-

quency oscillation will occur. 1.4. To tackle this issue, we propose that each SAPP
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i monitors and responds to the system frequency deviation only over a discrete

set of time instances given by the sequence in {t1,i, t2,i, · · · }, where tl,i denotes

the lth monitoring/response time of SAPP i. Thus, the number of responses of

SAPP i can be tracked by a continuous-time counting process Ci(t), defined as

Ci(t) =
∑∞

l=1 1{t≥tl,i}, where 1{t≥tl,i} indicates whether the lth response of SAPP i

has occurred before time t or not. To further desynchronize responses of SAPPs,

we impose a constraint that each SAPP has to wait a random time between any

two consecutive responses. Specifically, we define the lth inter-response time of

SAPP i as Tl,i = tl,i − tl−1,i, where t0,i = 0 by default. Accordingly, we design

Tl,i, l = 1, 2, · · · , to be independent and identically distributed (i.i.d.) exponential

random variables with the same mean 1/λi ≥ 0, where λi is called the response rate

of SAPP i. Under the above setting, it follows that Ci(t) is a Poisson process with

the rate λi.

Let Aa =
∑M

i=1Ai denote the aggregate load that can be shed by all SAPPs

when they switch their loads off upon the contingency (note that it is assumed

that SAPPs are on initially). Due to the fact that Aa � A0 holds in practice,

we can safely assume that A0 remains constant after responses of SAPPs. Ac-

cordingly, by taking responses of all SAPPs into account, we can modify the ag-

gregate demand model given in (2.1) as Ad(t) = A0 + ((f(t)− f0)/f0)KfA0 −∑M
i=1

∑Ci(t)
l=1 Xi(tl,i)1{t≥tl,i}. By substituting this result in (2.2) and solving the ob-

tained differential equation for Ag(t) = A0+Ae1{t≥0}, we can modify (2.5) to capture

the impacts of SAPPs on the system frequency as follows

f(t) = f0 +
f0

KfA0

(
Ae
(
1− e−αt

)
+

M∑
i=1

Ci(t)∑
l=1

Xi(tl,i)
(

1− e−α(t−tl,i)+
))

, t ≥ 0, (2.7)

where (z)+ = max{z, 0}. From (2.7), it follows that when a particular SAPP i

switches its load off at its lth monitoring event in t = tl,i, the system frequency

increases over t ≥ tl,i, since Xi(tl,i) = Ai. The opposite is also true when SAPP
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i switches its load on. Furthermore, since tl,i’s are random variables, the grid fre-

quency given in (2.7) is a random process in general, where its statistical character-

izations such as the mean and variance over time will be investigated in the next

section.

2.5 Analysis of System Frequency

In this section, we first present a numerical example to take some useful insight

into the different impacts of the supply shortfall and SAPPs’ responses on the sys-

tem frequency. We next provide our theoretical results on deriving the statistical

characteristics of the system frequency.

2.5.1 Impacts of Supply Deficit and Responses of SAPPs

on System Frequency

First, we study the effect of supply deficit Ae on the system frequency f(t)

given in (2.7). For convenience, we define a power threshold

Ae,min =
KfA0

f0

(fmin − f0), (2.8)

which denotes the minimum value of supply deficit under which the grid frequency

will reach the given lower frequency threshold fmin at some time t > 0. Specifically,

from (2.5), it follows that if Ae,min ≤ Ae < 0, then the system frequency will not

drop below the lower frequency threshold fmin. Thus, SAPPs do not change their

states, i.e., we have Xi(t) = 0, ∀i ∈ M, over time t ≥ 0. Accordingly, f(t) given in

(2.7) can be simplified to (2.5). However, if Ae < Ae,min, then the system frequency

drops below fmin at a certain time t = t0 (see Fig. 2.3), after which SAPPs respond

by changing their states according to the on-off control policy given in(2.6). From
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(2.5), we can derive

t0 = − 1

α
ln

(
1− Ae,min

Ae

)
. (2.9)

Next, by assuming Ae < Ae,min, we study the effect of the aggregate power

response of SAPPs Aa on f(t). For convenience, we define the following two power

thresholds

Aa,min =
KfA0

f0

(fmin − f0)− Ae, (2.10)

Aa,max =
KfA0

f0

(fmax − f0)− Ae, (2.11)

where Aa,min denotes the minimum value of Aa that is required to recover the grid

frequency to fmin in steady state after Ae amount of supply deficit, while Aa,max

denotes the minimum amount of Aa required to recover the grid frequency to fmax

in steady state. Given Ae < Ae,min, we thus discuss the following three cases.

• Case 1: Aa < Aa,min. In this case, from (2.7) it follows that f(t) will not

recover back to fmin even though all SAPPs respond after t0.

• Case 2: Aa,min ≤ Aa ≤ Aa,max. In this case, it can be shown from (2.7) that

f(t) recovers back to fmin at a certain time Tr > t0, termed frequency recovery

time, which can be more explicitly defined as the smallest time t > t0 solving

the following equation:

f(t) = fmin, (2.12)

with f(t) given in (2.7). However, f(t) will not overshoot the upper frequency

threshold fmax, regardless of the SAPPs’ response rate λi’s.

• Case 3: Aa > Aa,max. In this case, f(t) may or may not overshoot fmax

depending on λi’s.

Note that Case 3 is most challenging to investigate since in this case the response

rates of SAPPs will play a key role in adjusting the resulting trade-off between
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minimizing the probability of frequency overshoot versus minimizing the frequency

recovery time.

As an illustrative example, we consider the IEEE 9-Bus test system [56] with

the given parameters in Table 2.1 (see Section 2.6) under a contingency when the

system experiences a generation power loss that results in A0 = −20MW. We assume

that all SAPPs in the system have the identical power consumption Ai = 3kW and

response rate λi = λ, for i = 1, . . . ,M . Furthermore, we set the lower and upper

frequency thresholds of the control algorithm as fmin = 59.8Hz and fmax = 60.2Hz,

respectively, which result in Aa,min = 17.5MW and Aa,max = 22.5MW.

Fig. 2.3 shows the above three cases in the IEEE 9-Bus test system, when the

number of appliances is set as M = 5000, M = 7000, and M = 10000 in Cases 1,

2, and 3, respectively. Therefore, the aggregated power response of all appliances,

i.e., Aa, is obtained as 15MW, 21MW, and 30MW in Cases 1, 2, and 3, respectively.

The trade-off between the frequency recovery time minimization and the frequency

overshoot avoidance is clearly depicted in Fig. 2.3 (c) for different values of λ. As

observed, a higher value of response rate λ = 0.2Hz results in a shorter frequency

recovery time as compared to λ = 0.05Hz, but at the cost of a system frequency

overshoot upon fmax. A more detailed analysis on the average frequency recovery

time and the probability of frequency overshoot will be given later in Sections 2.5.3

and 2.5.5, respectively. At last, since Case 1 is not of our interest, in the rest of this

paper, we will focus only on Cases 2 and 3, i.e., Aa ≥ Aa,min.

2.5.2 Mean and Variance of System Frequency

With the randomized frequency control algorithm proposed in the previous

section, the system frequency f(t) given in (2.7) is a random process in general.

Specifically, we are interested to study the behavior of this random process over

time t0 ≤ t ≤ Tr, under which the system frequency is below the threshold fmin and
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Figure 2.3: Simulated system frequency of IEEE 9-Bus test system for the case
Ae < Ae,min.
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thus SAPPs respond by switching their loads off to recover the system frequency.

To investigate the statistical characteristics of f(t), we first derive closed-form ex-

pressions for its mean and variance over time in the following two propositions,

respectively, given the assumption Si(0) = 1, i = 1, . . . ,M . Next, we extend the

obtained results to a more general case that the initial states of SAPPs and their

power consumption are modeled as stochastic variables, but with known distribu-

tions.

Proposition 2.5.1. Given Ae < Ae,min and Aa ≥ Aa,min, the mean value of the

system frequency over time t0 ≤ t ≤ Tr is given by

E[f(t)] = f0 +
f0

KfA0

(
Ae
(
1− e−αt

)
+

M∑
i=1

hα(Ai, λi, t− t0)

)
, (2.13)

where hα(A, λ, s) = A(1− uα(λ, s)) and uα(λ, s) is defined as

uα(λ, s) =


λe−αs − αe−λs

λ− α
, if λ 6= α and s > 0

(λs+ 1)e−λs, if λ = α and s > 0

1, if s = 0.

(2.14)

Proof. Please see Appendix A.

The mean frequency given in (2.13) is due to both the deterministic frequency

dynamics without DR and that contributed by randomized responses of SAPPs,

where hα(Ai, λi, t − t0)f0/(KfA0) represents the contribution of SAPP i on the

mean system frequency over time. The contribution of SAPP i to the mean of the

system frequency takes effect only for t > t0, with t0 given in (2.9). This is due to

the fact that over t ≤ t0, although SAPP i monitors the system frequency, it does

not respond by switching its load off since f(t) ≥ fmin. From hα(Ai, λi, t − t0), it

also follows that the mean contribution of SAPP i to restore the system frequency

is linearly proportional to its power consumption Ai, but takes effect over time
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according to 1− uα(λi, s), which is exponentially fast.

Fig. 2.4 plots hα(Ai, λi, s) for both the Ireland power system (α = 0.15Hz)

and the IEEE 9-Bus test system (α = 0.1Hz), by setting Ai = 1W. It is observed

that given the same λi, the impact of SAPP i on the system frequency recovery

is faster in the Ireland power system as compared to the IEEE 9-Bus test system.

This phenomenon is due to the fact that the mechanical inertia of the Ireland power

system is smaller than IEEE 9-Bus test system; thus, its frequency response is faster

(cf. (2.5)). Furthermore, it is observed that under a fixed α, the impact of SAPP

i on the system mean frequency is more pronounced with higher values of response

rate λi. Last, it is observed that hα(Ai, λi, s) is upper-bounded by Ai(1 − e−αs)

when λi → ∞, which corresponds to the case that SAPP i continuously monitors

the system frequency and thus its resulting frequency contribution is deterministic

over time. This can be easily verified from (2.14).

Proposition 2.5.2. Given Ae < Ae,min and Aa ≥ Aa,min, the variance of the system

frequency over time t0 ≤ t ≤ Tr is given by

Var[f(t)] =
M∑
i=1

(
f0

KfA0

)2

qα(Ai, λi, t− t0), (2.15)

where qα(A, λ, s) = A2(u2α(λ, s)− (uα(λ, s))2).

Proof. Please see Appendix B.

Proposition 2.5.2 shows that the variance of the system frequency is the sum

of SAPPs’ individual variance contributions over time.

Fig. 2.5 plots qα(Ai, λi, s) for both the Ireland power system (α = 0.15Hz)

and the IEEE 9-Bus test system (α = 0.1Hz), by setting Ai = 1W. It is observed

that for a fixed value of λi, the impact of SAPP i on the system frequency variance

is more pronounced in the Ireland power system as compared to the IEEE 9-Bus

test system. This is mainly because given fixed λi, uα(λi, s) changes faster with a
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Figure 2.4: Frequency mean characterization function of SAPP i, hα(Ai, λi, s).
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Figure 2.5: Frequency variance characterization function of SAPP i, qα(Ai, λi, s).
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lager value of α. We also observe that the variance contribution of SAPP i follows

a single-peak pattern. To explain this observation, we consider a special case that

α� λi. Under this assumption, we can simplify the normalized frequency variance

characterization function to be qα(Ai, λi, s) = A2
i (e
−λis − e−2λis), which has the

global maximum at s∗ = (ln 2)/λi. Therefore, when the system time s < s∗, the

resulting variance contribution of SAPP i to the system frequency grows with time

since the probability of monitoring the system frequency by this particular SAPP

increases with s. However, when the system time s ≥ s∗, the variance contribution

decreases since it becomes more likely that SAPP i has already responded by time

s. In addition, it is observed that a larger response rate will result in an earlier peak

in the variance contribution, which is in accordance to s∗ in this case. It is also

worth noting that the variance contribution of SAPP i will asymptotically vanish to

zero as λi →∞. This is due to the fact that SAPP i monitors the system frequency

continuously over time when λi → ∞; as a result, its resulting response becomes

deterministic.

Finally, we extend our results given in Propositions 2.5.1 and 2.5.2 to the

case that Si(0) and Ai of each SAPP i ∈ M are modeled as stochastic variables

with known distributions, as discussed in the following. In particular, we model

Si(0) as a binary random variable with Pr{Si(0) = 1} = ζi, 0 ≤ ζi ≤ 1, and

Pr{Si(0) = 0} = 1 − ζi. Given Si(0) = 1, we model Ai as a random variable of

arbitrary given distribution (either continuous or discrete) with the mean Ai > 0,

i.e., E[Ai | Si(0) = 1] = Ai, and the variance σi ≥ 0, i.e., Var[Ai | Si(0) = 1] = σi.

Otherwise, given Si(0) = 0, we thus have Ai = 0. We assume that Si(0) and ti

as well as Ai and ti are independent random variables. This assumption is valid,

since the monitoring events of SAPP i are independent of its operational state and

power consumption rate in practice. Accordingly, we extend the mean and variance

functions of the system frequency given in Propositions 2.5.1 and 2.5.2 in the two

following corollaries, respectively.
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Corollary 2.5.1. Under the proposed stochastic models of Si(0)’s and Ai’s, the

mean value of the system frequency over time t0 ≤ t ≤ Tr is given by

E[f(t)] = f0 +
f0

KfA0

(
Ae
(
1− e−αt

)
+

M∑
i=1

ζihα(Ai, λi, t− t0)

)
. (2.16)

Corollary 2.5.2. Under the proposed stochastic models of Si(0)’s and Ai’s, the

variance of the system frequency over time t0 ≤ t ≤ Tr is given by

Var[f(t)] =
M∑
i=1

(
f0

KfP0

)2

q̇α(ζi, Ai, σi, λi, t− t0), (2.17)

where q̇α(ζ, A, σ, λ, s) is defined as

q̇α(ζ, A, σ, λ, s) = ζ(σ + A
2
) (1 + u2α(λ, s)− 2uα(λ, s))

− ζ2A
2 (

1 + (uα(λ, s))2 − 2uα(λ, s)
)
. (2.18)

The results given in corollaries 2.5.1 and 2.5.2 can be simplified to the results

given in Propositions 2.5.1 and 2.5.2, respectively, by simply setting ζi = 1, Ai = Ai,

and σi = 0, ∀i ∈M.

Based on the above analysis, in the following sections we investigate how dif-

ferent values of SAPPs’ response rates λi’s can affect the frequency recovery time

as well as the expected number of SAPPs switching their loads off to regulate the

system frequency. These results will help design optimal λi’s to meet a given require-

ment on the frequency recovery time, and yet minimize the number of responded

SAPPs for load shedding or equivalently the amount of service interruptions.

2.5.3 Average Frequency Recovery Time

Denote the average frequency recovery time by T r = E[Tr]. Since in general it is

difficult to obtain the distribution of Tr from (2.12), we approximate T r by using the
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mean of the system frequency E[f(t)] obtained in Proposition 2.5.1. This is justified

due to the fact that in a practical power system, although there are many SAPPs,

their individual power consumption are much smaller than the system aggregate

demand (Ai/A0 → 0, i = 1, . . . ,M); therefore, the variance of the system frequency

given in (2.17) is usually very small and thus can be safely ignored in our analysis.

This assumption will be validated later via simulations in Section 2.6.1 (see Fig.

2.7). Given Si(0) = 1, ∀i ∈M, we have the following proposition.

Proposition 2.5.3. Given Ae < Ae,min and Aa ≥ Aa,min, the average frequency

recovery time T r is approximated by the smallest t > t0 which is the solution of the

frequency equation E[f(t)] = fmin, where E[f(t)] is given in (2.13).

Note that the result given in Proposition 2.5.3 can be easily extended to the

case that Si(0)’s and Ai’s are modeled as random variables by using E[f(t)] given

in (2.16) in replacement of that given in (2.13).

2.5.4 Expected Number of Responded SAPPs

Without loss of generality, we assume that the power system consists of J ≥ 1

different classes of SAPPs, indexed by j, j ∈ J = {1, . . . , J}. We denote Mj ≥ 1,

Ãj > 0, and λ̃j ≥ 0 as the number of SAPPs, power consumption, and response

rate of each individual SAPP from Class j, respectively. To be consistent with our

previous notations, we also set
∑J

j=1Mj = M . For convenience, we again assume

that all SAPPs are initially in the on state at time t = 0, i.e., we have Si(0) = 1,

i = 1, . . . ,Mj, ∀j ∈ J .

Let Nj(t) be a random process that counts the number of responded SAPPs

from Class j which have responded by switching their loads off by time t, t0 ≤ t ≤ Tr.

Accordingly, we state our result in the following proposition.

Proposition 2.5.4. Given Ae < Ae,min and Aa ≥ Aa,min, the average number of

responded SAPPs from Class j ∈ J which have switched their loads off by time t,
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t0 ≤ t ≤ Tr, is given by

E[Nj(t)] = Mj

(
1− e−λ̃j(t−t0)

)
. (2.19)

Proof. Please see Appendix C.

From Proposition 2.5.4, it immediately follows that the average demand that

has been shed by all SAPPs from Class j by time t, t0 ≤ t ≤ Tr, is given by

MjÃj(1− e−λ̃j(t−t0)).

2.5.5 Probability of Frequency Overshoot

Now, we derive the probability that the system frequency overshoots the upper

threshold fmax due to over-response of SAPPs. Particularly, we assume Aa > Aa,max

holds in this section; otherwise, a frequency overshoot will not occur (see Cases 2

and 3 in Section 2.5.1).

Since it is assumed Si(0) = 1, i = 1, . . . ,Mj, ∀j ∈ J , the total demand that

has been shed by SAPPs from all classes by time t, t0 ≤ t ≤ Tr, is obtained as∑J
j=1 ÃjNj(t). Let nj = Nj(Tr), j = 1, . . . , J , i.e., nj is one realization for the

random variable Nj(Tr). The set of all possible values of n = [n1, . . . , nJ ]T that

will cause the system frequency overshoots fmax is then given in the set O, which is

defined as

O = {n | 0 ≤ nj ≤Mj, j = 1, . . . , J,
J∑
j=1

Ãjnj > Aa,max}. (2.20)

The probability that each SAPP from Class j has responded by switching its

load off by time t, t0 ≤ t ≤ Tr, can be expressed as 1 − e−λ̃j(t−t0). Since SAPPs

respond independently, the conditional probability that 0 ≤ nj ≤ Mj out of Mj

SAPPs from Class j have responded by switching their loads off by a given frequency
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recovery time Tr = s, with s > t0, is derived as

Pr{Nj(Tr) = nj | Tr = s} =

(
Mj

nj

)(
1− e−λ̃j(s−t0)

)nj
(
e−λ̃j(s−t0)

)Mj−nj

. (2.21)

The following proposition thus follows.

Proposition 2.5.5. Given Ae < Ae,min and Aa > Aa,max, the probability that the

system frequency overshoots fmax is approximated as

Pos ≈
∑
n∈O

J∏
j=1

(
Mj

nj

)(
1− e−λ̃j(T r−t0)

)nj
(
e−λ̃j(T r−t0)

)Mk−nj

, (2.22)

where T r is given in Proposition 2.5.3.

Proof. Please see Appendix D.

2.6 Simulation Results

In this section, we provide simulation results to validate our proposed analysis

in this chapter. For the purpose of exposition, we consider two power systems: one

is the IEEE 9-Bus test system [56], and the other is the aggregate model of Ireland

power system [25,26], for which simulation results are presented in the following two

sections, respectively.

2.6.1 IEEE 9-Bus Test System

We consider the IEEE 9-Bus test system consisting of 3 generators and 9 buses

with the initial steady state as shown in Fig. 2.6, which has been used widely in

the literature for the power system stability study. The aggregate model of this

power system can be characterized by the corresponding parameters given in Table

2.1. It is assumed that SAPPs are equally distributed among load Buses 5, 6, and
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Figure 2.6: Schematic of IEEE 9-Bus test system.

Table 2.1: Parameters of IEEE 9-Bus test system and Ireland power system.

System
Parameters

A0(MW) f0(Hz) Kf α(Hz)

IEEE 9-Bus 500 60 1.5 0.1

Ireland 6065 50 2.5 0.15

8 (see Fig. 2.6). We further assume that there are two classes of SAPPs, which in

total correspond to 5% of the aggregate demand. The Class 1 SAPPs consist of a

set of M1 = 9000 electrical water heaters, while Class 2 SAPPs consist of a set of

M2 = 6000 electric ovens. It is assumed that SAPPs operate separately and thus

they respond to the system frequency deviation independently. The more detailed

parameters of SAPPs from each class are provided in Table 2.2. We consider that a

contingency occurs at t = 0 when the system experiences a generation power loss due

to the partial failure of the connected generator to Bus 3 (see Fig. 2.6), which results

in Ae = −20MW. From (2.5) it thus follows that this amount of generation loss will
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Table 2.2: Parameters of SAPPs.

System
Parameters

Ã1(kW) Ã2(kW) fmin(Hz) fmax(Hz)

IEEE 9-Bus 3.0 0.5 59.80 60.20

Ireland 3.0 0.5 49.95 50.05

reduce the steady state frequency by 1.6Hz if DR and generation side frequency

controllers are all deactivated.

First, we plot the frequency dynamics of the IEEE 9-Bus test system in Fig.

2.7, where simulated results obtained using the PowerWorld simulator [74] are com-

pared with our analytical results assuming the aggregate power system model. We

set the response rates of SAPPs for the two classes as (λ̃1, λ̃2) = (0.06, 0.06)Hz or

(λ̃1, λ̃2) = (0.12, 1.2)Hz, which means that under the first (second) setting, each

SAPP in classes 1 and 2 on average monitors the system frequency every 16.66

and 8.33 seconds, respectively. With 100 randomly generated simulations under the

above setting, we plot the simulated mean frequency function over time as well as the

upper and lower extreme values of the frequency for each set of response rates in Fig.

2.7. It is observed that for the small response rates, (λ̃1, λ̃2) = (0.06, 0.06)Hz, the

system frequency is recovered within 24.5 seconds without any overshoot while the

maximum system frequency undershoot on average is 0.64Hz, which is practically

acceptable. On the other hand, for the large response rates, (λ̃1, λ̃2) = (0.12, 1.2)Hz,

the system frequency is recovered within 14 seconds with a single overshoot around

29.5 seconds, while the maximum system frequency undershoot on average is 0.38Hz.

Although increasing the response rates of SAPPs can simultaneously reduce both

the maximum system frequency undershoot and the frequency recovery time, it

may result in a frequency overshoot as shown in Fig. 2.7. Consequently, there is a

natural trade-off between minimizing the maximum value of the system frequency

undershoot/recovery time versus minimizing the probability of frequency overshoot.
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Figure 2.7: Frequency dynamics of IEEE 9-Bus test system.

Furthermore, it is observed that the frequency variance is very small, which is in

accordance with the result in Proposition 2.5.1. Lastly, it is observed that the ana-

lytical mean frequency given by (2.13) in Proposition 2.5.1 tightly fits the simulated

mean frequency over time, while a small discrepancy is due to our assumed aggre-

gate power system model, which has ignored the topology and nonlinear frequency

response characteristics of the actual power system.

Next, we investigate the average system frequency recovery time Tr and the

expected number of responded SAPPs which have switched their loads off (turn to

the off state) by the frequency recovery time Tr, under different values of λ̃1 with

fixed λ̃2 = 0.1Hz. Figs. 2.8 and 2.9 compare the average frequency recovery time and

the expected number of responded SAPPs based on simulations versus Propositions

2.5.3 and 2.5.4, respectively. As observed, the simulation results closely match

our analytical results. In particular, the variance of the frequency recovery time is

observed to be sufficiently small for it to be properly approximated by its mean value

as assumed in Proposition 2.5.5. Furthermore, we observe that when the response
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rate λ̃1 increases, the system recovery time decreases, since SAPPs from class 1 tend

to respond faster on average.

45



Chapter 2. Frequency Control via Randomized Responses of Distributed
SAPPs

20 20.5 21 21.5 22 22.5 23 23.5 24

T
r
 (Second)

0

0.2

0.4

0.6

0.8

1

P
os

Equation (2.24)
Simulated0.13

0.075

Figure 2.10: Probability of frequency overshoot versus average frequency recovery
time.

Last, we investigate the trade-off between minimizing the average frequency

recovery time versus the probability of frequency overshoot by setting different values

of λ̃1, but fixed λ̃2 = 0.1Hz. As shown in Fig. 2.10, the simulated frequency

overshoot probability and its approximation given in Proposition 2.5.5 follow the

same decreasing trend as the average frequency recovery time increases, while they

have some discrepancy. This is due to the fact that we use the average frequency

recovery time T r instead of its true distribution in evaluating Pos given in Proposition

2.5.5. With the approximated trade-off shown in Fig. 2.10, system operators can set

response rates of SAPPs to achieve a balanced performance between the frequency

recovery time and the probability of frequency overshoot.

2.6.2 Ireland Power System

In this section, we apply the aggregate model to the Ireland power system [25]

and evaluate the performance of our proposed distributed frequency control algo-
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rithm upon a contingency. The power system of the island of Ireland consists of both

Northern Ireland Electricity (NIE) system and the Electricity Supply Board (ESB)

system of the Republic of Ireland, which are tightly interconnected via multiple

tie-lines and operated under a same electricity market, known as Single Electricity

Market (SEM) [25]. The detailed information about the topology of transmission

lines and power plants including both the fossil-fuel and renewable energy based

generation units in the island of Ireland is given in [26]. The Ireland power system

during the winter peak demand is characterized by the corresponding parameters

given in Table 2.1, which are obtained based on the heuristic data provided in [25].

In this example, we assume that approximately 2% of the aggregated demand in the

Ireland power system corresponds to the demand side controllable loads, i.e., the

two classes of SAPPs as similarly assumed previously for the case of IEEE 9-Bus

test system. We set M1 = 35000 and M2 = 25000. Table 2.2 provides more details

of the assumed SAPPs in this system. We further assume that generation side fre-

quency controllers are deactivated and the system frequency can solely be restored

via SAPPs’ responses.

First, we compare the performance of our demand frequency control with expo-

nentially distributed inter-response time versus uniformly distributed inter-response

time which has been used as response delay time in [43]. We consider a scenario

that the Ireland power system experiences a generation power shortfall resulting in

Ae = −50MW at t = 0. For the case of exponential distribution, we set SAPPs’

response rates for the two classes as (λ̃1, λ̃2) = (0.1, 0.2)Hz. However, for the case

of uniform distribution, we set the inter-response time of Classes 1 and 2 to be

uniformly distributed as U(0, 20) and U(0, 10) in seconds, respectively. This setting

results in the mean inter-response time of 10 seconds and 5 seconds for Classes 1

and 2, respectively, which is exactly same as the case of exponential inter-response

time distribution. Fig. 2.11 shows the obtained experimental frequency mean for

the two distribution cases, from which it is observed that the frequency recovery
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time is shorter in the case of exponential distributions. Note that the main advan-

tage of considering the exponential distribution for inter-response time is to exploit

its memoryless property, which helps us characterize the mean and variance of the

system frequency over time in closed-form.

Next, we investigate the performance of our proposed demand frequency control

under a scenario that the power imbalance follows Ae = 58 cos(0.8πt)− 65 1{t>0} +

115 1{t>65}−100 1{t>115}+80 1{t>180} in MW, due to both the intermittent generation

power of a large wind farm such as Gruig plant in Antrim, Ireland, as well as

the aggregated demand power consumption variations over time. Note that the

sinusoidal term in Ae models the rapid power imbalance changes over time due

to e.g. fluctuations in the generation power of a wind farm due to variations in

the wind velocity and/or the wind blowing direction. Furthermore, we assume

that 50%(50%) of SAPPs from each of 2 classes are initially in the off(on) state

at time t = 0. We set SAPPs’ response rates as (λ̃1, λ̃2) = (0.6, 0.6)Hz, (λ̃1, λ̃2) =

(0.1, 0.1)Hz. We simulate the system frequency for each of the two settings 100
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Figure 2.12: Frequency dynamics of Ireland power system.

times independently and plot the experimental mean frequency curves in Fig. 2.12.

We also plot the system frequency dynamics for the case that the demand frequency

control is totally deactivated. It is observed that for both settings, the system

frequency by distributed frequency control is recovered back to the safe regime

49.95Hz to 50.05Hz following each of the power imbalances. However, the sinusoidal

parts of the presumed Ae results in an undamped frequency oscillation with an

amplitude ±0.0057Hz over the mean system frequency, which is too small to further

trigger the on/off frequency controller of SAPPs. By comparing the two curves,

it is also revealed that in this particular example higher values of response rates

(λ̃1, λ̃2) = (0.6, 0.6)Hz help reduce the frequency overshoot/undershoot peaks as

compared to the case of smaller values of response rates (λ̃1, λ̃2) = (0.1, 0.1)Hz.

2.7 Chapter Summary

In this chapter, we investigated a new distributed frequency control algorithm

to help stabilize the system frequency during a contingency of supply shortfall via
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randomized on-off switching of distributed SAPPs. We derived the closed-form

mean and variance of the system frequency over time as functions of the SAPPs’

response rates and the given characteristics of power system. The average frequency

recovery time and the average number of responded SAPPs over time were also

derived in closed form. Accordingly, we revealed an interesting trade-off between

minimizing the frequency recovery time and the probability of frequency overshoot

for the proposed algorithm in setting different values of response rates for SAPPs.

The analytical results were validated by extensive simulations based on the IEEE

9-Bus test system and the Ireland power system. It was shown by simulations that

the deployment of 30MW SAPPs in the IEEE 9-Bus test system, each with the

response rate of 10 to 20 seconds, can recover back the system frequency to a given

safe range after a supply deficit of 20MW in less than 30 seconds while the maximum

frequency drop does not exceed 0.7Hz. Moreover, it was shown that deployment of

117.5MW SAPPs in the Ireland power system recovers the system frequency after

a generation power shortfall of 50MW in less than 15 seconds while the maximum

frequency deviation does not exceed 0.1Hz. In conclusion, our proposed distributed

frequency control algorithm via randomized responses of SAPPs is a promising low-

cost alternative to the conventional primary reserve service provided by fast-ramping

fossil-fuel based power plants.
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Chapter 3

Frequency Control via
Randomized Responses of
Distributed EVs

3.1 Introduction

EVs have attracted great attention in the world due to the serious concern

over environment, climate change, fossil-fuel reserve, energy cost, etc. Therefore,

it is expected that the demand for EVs will increase remarkably in future [75]. As

reported in [76], it is approximated that hybrid electric vehicles (HEVs) and plug-in

hybrid electric vehicles (PHEVs) will share 60%, 72%, and 80% of the total vehicles

in the new-car market of the USA by 2020, 2030, and 2050, respectively.

Although EVs are safer and greener means of transportation than the conven-

tional internal combustion engine (CICE) vehicles, they will add significant load

on the power system as they become more widespread. As an example, a typical

EV that consumes 0.4–0.55kWh per one kilometer of driving can double the daily

energy consumption of a residential user [77]. On the other hand, the flexible charg-

ing/discharging requirements of EVs can help the system operator implement DR

successfully in practice, discussed as follows. Particularly, users connect their EVs

to the power grid in the evening in order to be fully charged by the next morning;

however, the charging time of a typical EV is much shorter than its connection

time to the grid, e.g., 1–2 hours charging time versus 10–12 hours connection time.

Moreover, upon a contingency of supply shortfall, the energy stored in the batteries

of EVs can be injected into the power grid temporarily to help restore the power
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system voltage and/or frequency to their nominal values. In summary, we can re-

gard each EV as either an interruptible load, a power generation unit, or an ESS,

under different system conditions.

According to the above discussions, controlling the power charging/discharging

rates of grid-connected EVs is an appealing approach to implement DR in smart

grid. This can help the system operator achieve various design objectives [66, 68,

77, 78, 82–87], discussed as follows. The optimal energy management of residential

users including their deferrable loads as well as their EVs in order to maximize

the social welfare or minimize users’ individual electricity bills was investigated

in [66, 68, 78, 82–84]. The charging coordination of a group of EVs subject to their

given desired charging time periods to flatten the aggregate demand profile over

time was studied in [77, 85, 86]. Specifically, it was shown in [85] that the charging

cost of each individual EV reduces by nearly 40% due to the flattened demand

profile achieved by coordinating the charging processes of EVs. Last, the charging

scheduling for a set of EVs to minimize the power transmission losses subject to

certain nodal voltage constraints, i.e., the power flow voltage constraints, was studied

in [87]. It was shown in [87] that coordinated charging of EVs can reduce the power

transmission loss (peak value) over the case of uncoordinated randomized charging

up to 77%, 68%, and 48% when 63%, 47%, and, 32% of the total demand is due to

the charging of EVs, respectively.

In contrast to the aforementioned studies [66, 68, 77, 78, 82–87], in this chapter

we extend the randomized control algorithm proposed in Chapter 2 to regulate the

system frequency via controlling operational modes of distributed EVs. Particularly,

utilizing EVs’ responses to control the system frequency can reduce the amount of

conventional primary reserve service required in the system and thus the operational

cost of grid reduces. Moreover, as compared to SAPPS, deploying EVs for frequency

control has more flexibility due to both the charging and discharging control, which

helps restore the system frequency more smoothly. A handful of centralized and
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distributed algorithms under DLC and ILC schemes have been proposed in the

literature for EV-enabled frequency control, which are discussed next.

3.2 Literature Review

Adopting centralized algorithms to jointly design power charging/discharging

rates of EVs to provide a cost-efficient primary reserve service was investigated

in [36–40]. However, it is difficult to implement these algorithms in practice, since

the system operator needs to access a bidirectional communication system to collect

large amount of information from all EVs, process the data and make a decision, and

then command EVs in real time. The complexity of solving the required optimization

problem for a large power system involving many decision variables is another barrier

for using centralized frequency control algorithms. On the other hand, distributed

algorithms to independently manage the power charging/discharging rates of EVs

in response to their locally measured system frequency was investigated in [50–53].

As shown in Fig. 3.1, these works have adopted a similar policy for adjusting the

power charging/discharging rates of each EV, which is a piecewise linear function

over the system frequency; hence, it needs to be implemented continuously in time

by varying over a wide range of power values. However, implementing the control

policy reported in [50–53] is difficult due to two main reasons. First, designing

rechargeable batteries that are highly efficient for such a wide operational power

range is challenging. Second, the controlling mechanisms of EVs need to be upgraded

to be enabled to adjust their power charging/discharging rates adaptively over time,

which is costly.

Although the aforementioned prior works [36–40, 50–52] have shown promis-

ing aspects of utilizing EVs’ responses to replace conventional reserve services for

restoring the system frequency, there has been less effort to theoretically charac-

terize the performance of their frequency control algorithms in large-scale dynamic
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Figure 3.1: Piecewise linear frequency control algorithm in [50–53].1

power systems. This thus motivates our work to mathematically characterize the

impacts of EVs’ randomized responses on the system frequency, which helps the

system operator design their control parameters more rigorously and effectively.

3.3 System Model

We consider the same power system as that considered in Section 2.3. We

assume that a contingency of supply deficit with Ae < 0 occurs at time t = 0.

In this chapter, we assume that EVs are solely utilized for DR-enabled frequency

control, while generation side controllers and frequency responses of SAPPs are all

deactivated. Specifically, we assume that V ≥ 1 EVs are connected to the power

grid, indexed by v, v ∈ V = {1, . . . , V }, where AC,v > 0 and AD,v > 0 denote the

given fixed power charging and discharging rates of EV v. We assume that upon

the contingency, the system operator will notify all EVs via sending a command

1Note that Kv > 0 is the response coefficient of EV v, f(t) is the locally measured system
frequency with the nominal value of f0, and Av(t) is the power exchanged between the EV and
the grid with the scheduled value of −Amax

D,v ≤ AS,v ≤ Amax
C,v under f0. Moreover, Amax

C,v > 0 and
Amax

D,v > 0 are the given charging and discharging power limits for the EV, respectively.
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signal (e.g., bit ‘1’) to activate their threshold based mode switching algorithms, as

shown in Fig. 3.2. When the system frequency recovers back to its nominal range

for a sufficient amount of time and the deficiency is compensated using alternative

sources of energy, the system operator will send a clear signal (e.g., bit ‘0’) to all EVs

to deactivate their algorithms and resume their normal operation. In our work, the

one-bit feedback signaling system is deployed to notify EVs to activate/deactivate

their switching algorithms, while no other information will be shared between the

system operator and EVs. This is in contrast to the bidirectional communication

system assumed in [36, 38], under which larger amount of information between the

system operator and EVs is shared in real time.

3.4 Frequency Control via Distributed EVs

In this section, we present the frequency control algorithm for EVs by extending

the load control policy proposed for SAPPs in Chapter 2.

3.4.1 Frequency Threshold Based Mode Switching

Let Sv(t) ∈ {1, 0,−1} denote the operational mode of EV v over time, where

1 indicates the charging mode when the EV draws AC,v amount of power from the

power grid, 0 indicates the idle mode when the EV has no power exchange with

the power grid, and −1 indicates the discharging mode when the EV injects AD,v

amount of power to the grid. Our proposed threshold based switching policy for EV

v with a given pair frequency thresholds, i.e., (fmin, fmax), is expressed as

Sv(t
+) =



0, if f(t) < fmin and Sv(t) = 1

0, if f(t) > fmax and Sv(t) = −1

−1, if f(t) < fmin and Sv(t) = 0

1, if f(t) > fmax and Sv(t) = 0

Sv(t), otherwise,

(3.1)
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Figure 3.2: Threshold based mode switching policy for each EV.

where t+ = t + ∆t, with ∆t → 0+. The control policy given in (3.1) is the exten-

sion of that proposed in (2.6) to switch on/off SAPPs in response to their locally

measured system frequency. For simplicity of analysis, we assume that EV v can

charge/discharge from/to the grid with given power rates AC,v and AD,v, respec-

tively, without the need of considering its battery level. This is justified due to the

fact that contingencies of supply-demand imbalances that deviate the system fre-

quency below fmin (or over fmax) do not occur frequently and also each contingency

lasts at most for a couple of minutes before the system frequency is permanently

restored. Therefore, during the period of the contingency of our interest, the battery

level of each EV changes marginally and thus is assumed to be a constant value.

Let Av(t) denote the power exchanged between EV v and the power system

over time, which is defined as

Av(t) =


AC,v, if Sv(t) = 1

0, if Sv(t) = 0

−AD,v, if Sv(t) = −1.

(3.2)

Accordingly, the power response of EV v over time is tracked by a stochastic process

Xv(t) = Av(t) − Av(t+), which has five values in {±AC,v, 0,±AD,v}. Particularly,

each EV can boost the system frequency by either discharging its battery to the

power grid or stopping its ongoing power charging. It also can help reduce the system

frequency by charging from the power grid or stopping its ongoing discharging. Last,
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for a particular EV v whose battery is nearly empty (e.g., its state of charge is less

than 5%), we assume that the effective power discharging rate of the EV is zero,

i.e., we set AD,v = 0. On the other hand, for EV v of which the battery is nearly

full (e.g., more than 95% of the full capacity), we assume that the effective power

charging rate of the EV is zero, i.e., we set AC,v = 0.

3.4.2 Randomized Inter-Response Time

If all EVs monitor the system frequency continuously over time, they are likely

to respond simultaneously by changing their operational modes when the system

frequency reaches one of the two frequency thresholds fmin or fmax. Hence, the

system frequency will oscillate between fmin and fmax over time. To address this

issue, we use the similar approach that has been used in Chapter 2 to desynchronize

the responses of SAPPs. Specifically, we design EV v to monitor and respond to

the system frequency in only discrete times, given in {t1,v, t2,v, . . .}, where tl,v is the

lth monitoring/response time of EV v. Denote Tl,v = tl,v − tl−1,v, l = 1, 2, . . ., with

t0,v = 0 by default, as the lth inter-response time of EV v. To further desynchronize

EVs’ responses, we design Tl,v, l = 1, 2, . . ., to follow independent exponentially

distributed random variables with mean 1/λC,v ≥ 0 when Sv(t) = 1, 1/λI,v ≥ 0

when Sv(t) = 0, or 1/λD,v ≥ 0 when Sv(t) = −1. The number of responses of EV v

over time t ≥ 0 can be thus counted by a continuous-time counting process, defined

as Cv(t) =
∑∞

l=1 1{t≥tl,v}, which is a Poisson process with time-varying rate due to

independent exponential inter-response times [81]. Note that (λC,v, λI,v, λD,v) are

the controlling parameters of EV v, which can be designed by the system operator

to achieve a certain design objective, e.g., minimizing the expected cost of employing

EVs’ frequency control for restoring the system frequency upon the contingency of

supply-demand imbalance, as will be discussed later in Section 3.5.4.

Fig. 3.3 shows responses of a particular EV v that is initially in the charging

mode at time t = 0 with the switching policy given in (3.1) applied, given the
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Figure 3.3: Illustration of EV responses by the proposed threshold based switching
algorithm and the randomized monitoring/response times.
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monitoring/response times and the system frequency f(t) shown in Fig. 3.3 (a).

It is observed that when the EV monitors the system frequency for the first time

at t = t1,v, it does not change its operational mode, since fmax ≤ f(t1,v) ≤ fmin.

However, the EV switches from the charging mode to the idle mode and then from

the idle mode to the discharging mode when it monitors the system frequency for the

second and third times at t = t2,v and t = t3,v, respectively, since f(t2,v), f(t3,v) <

fmin. The EV remains in the discharging mode until its fifth monitoring time at

t = t5,v, after which it switches from the discharging mode to the idle mode, since

f(t5,v) > fmax. It then switches from the idle mode to the charging mode at t = t6,v,

and remains in the charging mode for the rest of time, since fmin ≤ f(t) ≤ fmax for

t > t7,v.

Let Aa =
∑

v∈VC (AC,v + AD,v) +
∑

v∈VI AD,v denote the aggregate power that

can be shed and/or injected to the grid by all EVs after a contingency of supply

deficit.2 From (3.1), it follows that EVs in set VD do not respond when f(t) < f0.

Hence, Aa does not involve any terms related to EVs in set VD. Since Aa � A0 holds

in practice, we can modify the aggregate demand model given in (2.1) to capture

impacts of EVs’ responses as

Ad(t) = A0 +

(
f(t)− f0

f0

)
KfA0 −

V∑
v=1

Cv(t)∑
l=1

Xv(tl,v)1{t≥tl,v}. (3.3)

By substituting (3.3) into (2.3), and solving the obtained differential equation for

Ae amount of supply deficit, the system frequency is obtained as

f(t) = f0 +
f0

KfA0

(
Ae
(
1− e−αt

)
+

V∑
v=1

Cv(t)∑
l=1

Xv(tl,v)
(

1− e−α(t−tl,v)+
))

, t ≥ 0. (3.4)

2In Chapter 2, we defined Aa =
∑

i∈MAi to represent the aggregate demand that can be shed
by SAPPs upon a contingency of supply deficit. However, in this chapter, it is assumed that EVs
control the system frequency solely. Hence, we re-express Aa =

∑
v∈VC

(AC,v+AD,v)+
∑

v∈VI
AD,v.
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From (3.4), it follows that when a particular EV v switches from the charging mode

to the idle mode or from the idle mode to the discharging mode at its lth monitoring

event in t = tl,v, we have Xv(tl,v) = AC,v and Xv(tl,v) = AD,v, respectively, which

can help increase the grid frequency given in (2.7) over t ≥ tl,v. The opposite is also

true when EV v switches from the discharging mode to the idle mode or from the

idle mode to the charging mode. Moreover, since tl,v’s are random variables, the

grid frequency given in (2.7) is a random process in general, for which the statistical

characterizations such as the mean and variance over time will be investigated later

in this chapter.

Let VC , VI , and VD denote the subsets of EVs that are initially in charging, idle,

and discharging modes at time t = 0, respectively, where |VC | = VC , |VI | = VI , and

|VD| = VD, with VC + VI + VD = V . In the following, we discuss how the aggregate

power response of all EVs Aa as well as EVs’ response rates (λC,v, λI,v, λD,v)’s can

affect the system frequency. For convenience, we use the following power thresholds

Aa,min =
KfA0

f0

(fmin − f0)− Ae, (3.5)

Aa,max =
KfA0

f0

(fmax − f0)− Ae, (3.6)

where Aa,min is the minimum value of Aa that is required to recover the grid frequency

to fmin in steady state after the contingency of supply deficit Ae, while Aa,max is the

minimum amount of Aa required to recover the grid frequency to fmax in steady

state. From (3.4), we discuss the following three cases assuming Ae < Ae,min, with

Ae,min given in (2.8), which ensures that the system frequency drops below fmin after

the contingency and thus EVs can respond according to their frequency control

algorithms. Case 1: Aa < Aa,min, it follows that the system frequency f(t) does

not recover back to fmin even though all EVs respond after time t > t0. Case 2:

Aa,min ≤ Aa ≤ Aa,max, it follows that f(t) recovers back to fmin at a certain time

Tr > t0 (see Fig. 2.3), while it will not overshoot fmax. The frequency recovery time
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Tr is rigorously defined as the smallest time t > t0 that solves f(t) = fmin, with

f(t) given in (3.4). Case 3: Aa > Aa,max, it follows that f(t) may overshoot fmax for

t > Tr, when EVs’ response rates are not well designed, e.g., response rates are set

very large.

For the purpose of exposition, we study the Ireland power system [25] with

the given parameters in Table 2.1 (in Section 2.6) under a contingency with Ae =

−100MW that satisfies Ae < Ae,min. For ease of explanation, we assume that all EVs

in the system have the identical power charging/discharging rates as well as response

rates. Specifically, we set AC,v = 11.2kW, AD,v = 8.96kW, λC,v = λC , λI,v = λI ,

and λD,v = λD, v = 1, . . . , V . We also assume that all EVs are initially in the

charging mode, i.e., Sv(0) = 1, ∀v ∈ V . In addition, we set the frequency thresholds

for all EVs as fmin = 49.8Hz and fmax = 50.2Hz, which yield Ae,min = −60.65MW,

Aa,min = 139.35MW, and Aa,max = 260.65MW.

Fig. 3.4 shows Cases 1 (Aa < Aa,min), 2 (Aa,min ≤ Aa ≤ Aa,max), and 3 (Aa >

Aa,max) for the Ireland power system when the number of EVs is set as V = 5000,

V = 10000, and V = 35000, respectively. It follows that the EVs’ aggregate power

response Aa is 100.8MW, 201.6MW, and 705.6MW. We consider two different sets of

response rates for EVs. In the first set, we have (λC , λI , λD) = (0.05, 0.05, 0.05)Hz.

In the second set, we have (λC , λI , λD) = (0.5, 0.5, 0.5)Hz, which are much larger

than those in the first set. It is observed that for all cases, the second set of response

rates results in smaller frequency recovery times as compared to the first set. This

is reasonable since by increasing response rates, EVs monitor the system frequency

more frequently and thus respond to any frequency deviations more quickly. How-

ever, the second set causes an undesired frequency overshoot in Case 3, as shown

in Fig. 3.4 (c), due to over-responses of EVs. A simple rule of thumb for restoring

the system frequency smoothly is to set λC,v, λI,v, λD,v � α, ∀v ∈ V . This helps

prevent over-responses of EVs, since they will wait longer times (on average) before

responding to the system frequency deviations, which however can increase the fre-

61



Chapter 3. Frequency Control via Randomized Responses of Distributed
EVs

0 10 20 30 40 50 60 70 80

t (second)

49.4

49.6

49.8

50

50.2

50.4

50.6

f(
t)

 (
H

z)

(λ
C

,λ
I
,λ

D
)=(0.05,0.05,0.05)Hz

(λ
C

,λ
I
,λ

D
)=(0.5,0.5,0.5)Hz

t
0

f
min

f
max

(a) Case 1

0 10 20 30 40 50 60 70 80

t (second)

49.4

49.6

49.8

50

50.2

50.4

50.6

f(
t)

 (
H

z)

(λ
C

,λ
I
,λ

D
)=(0.05,0.05,0.05)Hz

(λ
C

,λ
I
,λ

D
)=(0.5,0.5,0.5)Hz

t
0

T
r

T
r

f
max

f
min

(b) Case 2

0 10 20 30 40 50 60 70 80

t (second)

49.4

49.6

49.8

50

50.2

50.4

50.6

f(
t)

 (
H

z)

(λ
C

,λ
I
,λ

D
)=(0.05,0.05,0.05)Hz

(λ
C

,λ
I
,λ

D
)=(0.5,0.5,0.5)HzFrequency Overshoot

T
r

T
r

t
0

f
min

f
max

(c) Case 3

Figure 3.4: Simulated system frequency of Ireland power system for the case Ae <
Ae,min.
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quency recovery time considerably. Specifically, there is a trade-off for minimizing

the frequency recovery time and avoiding the frequency overshoot. The analysis on

the mean frequency recovery time and the probability of frequency overshoot will

be given later in Sections 3.5.2 and 3.5.4, respectively. At last, since Case 1 is not

of our interest, we will focus on Cases 2 and 3, i.e., we assume Aa ≥ Aa,min.

In summary, as shown in Fig. 3.4, designing EVs’ response rates, (λC,v, λI,v, λD,v),

∀v ∈ V , is a challenging task that requires a rigorous understanding of the impact

of each individual EV on the system frequency. Hence, we first provide theoretical

results in Section 3.5 to characterize the performance of our EV-enabled frequency

control algorithm. Based on the obtained analysis, we then design EVs’ response

rates in Section 3.6.

3.5 Analysis of System Frequency

In this section, we present our analysis on the impacts of randomized responses

of EVs on the system frequency, including the mean and variance analysis, the

average frequency recovery time, and the probability of frequency overshoot.

3.5.1 Mean and Variance of System Frequency

With the distributed frequency control algorithm discussed in Section 3.4, the

system frequency f(t) given in (3.4) is a random process in general. Particularly, we

are interested to study the behavior of this random process over t0 ≤ t ≤ Tr, under

which the system frequency drops below fmin and thus EVs respond by switching

from the charging mode to the idle mode and/or from the charging mode to the idle

mode. Therefore, in the following two propositions, we analyze statistical properties

of the system frequency by deriving its mean and variance over time in terms of

EVs’ response rates and given power system parameters.

In this chapter, we assume that the number of grid-connected EVs as well as
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their initial operation modes are all known.

Proposition 3.5.1. Given Ae < Ae,min and Aa ≥ Aa,min, the mean of the system

frequency over time t0 ≤ t ≤ Tr is given by

E[f(t)] = f0 +
f0

KfA0

(
Ae
(
1− e−αt

)
+
∑
v∈VC

hα(AC,v, AD,v, λC,v, λI,v, t− t0)

+
∑
v∈VI

hα(AD,v, 0, λI,v, 0, t− t0)

)
, (3.7)

where

hα(AC , AD, λC , λI , s) = AC(1− uα(λC , s)) + AD(1− u̇α(λC , λI , s)), (3.8)

with uα(λ, s) given in (2.14) and u̇α(λC , λI , s) defined as

u̇α(λC , λI , s) =


λIuα(λC , s)− λCuα(λI , s)

λI − λC
, λC 6= λI

uα(λI , s)−
∂uα(λI , s)

∂λI
, λC = λI .

(3.9)

Proof. Please see Appendix E.

From the frequency mean characterization function of EV v that is in the charg-

ing mode initially, i.e., hα(AC,v, AD,v, λC,v, λI,v, s), it follows that the contribution

of EV v on the mean system frequency is linearly proportional to its power charg-

ing rate AC,v and power discharging rate AD,v. It also follows that the response

rate λD,v does not affect the contribution of EV v when f(t) < fmin, as expected

from Fig. 3.2. In addition, EVs in set VD do not affect the mean system fre-

quency over time t0 ≤ t ≤ Tr, which is expected from (3.1). It can also be ver-

ified that hα(AC,v, AD,v, λC,v, λI,v, s) is upper-bounded by (AC,v + AD,v)(1 − e−αs)

when (λC,v, λI,v)→ (∞,∞), which corresponds to the case that EV v continuously

monitors and responds to the system frequency and thus its resulting contribu-
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tion is deterministic. Last, the result given in Proposition 3.5.1 can be simpli-

fied to that obtained in Proposition 2.5.1 by setting AD,v = 0 and λI,v = 0 in

hα(AC,v, AD,v, λC,v, λI,v, s).

Fig. 3.5 plots hα(AC,v, AD,v, λC,v, λI,v, s) for both the Ireland power system (α =

0.15Hz) and the IEEE 9-Bus test system (α = 0.1Hz), by setting AC,v = 1W and

AD,v = 1W. It is observed that the frequency mean function quickly reaches the first

level AC,v = 1W and then increases smoothly to the second level AC,v +AD,v = 2W.

This is due to the fact that λI,v � λC,v in our example. Hence, EV v quickly responds

by switching from the charging mode to the idle mode as the system frequency drops

below fmin, while waits a much longer time before switching from the idle mode to

the discharging mode. By setting λI,v � λC,v, we can avoid unnecessary discharging

of EV v into the power grid (injecting power to the grid), since the EV will wait

sufficiently long time before discharging to ensure that the system frequency is below

fmin. We use this rule for designing EVs’ response rates later in Section 3.6.

Proposition 3.5.2. Given Ae < Ae,min and Aa ≥ Aa,min, the variance of the system

frequency over time t0≤ t ≤Tr is given by

Var[f(t)] =

(
f0

KfA0

)2( ∑
v∈VC

qα(AC,v, AD,v, λC,v, λI,v, t− t0)

+
∑
v∈VI

qα(AD,v, 0, λI,v, 0, t− t0)

)
, (3.10)

where qα(AC , AD, λC , λI , s) = 2hα(A2
C , A

2
D, λC , λI , s) − h2α(A2

C , A
2
D, λC , λI , s)−

(hα(AC , 0, λC , λI , s))
2 − (hα(0, AD, λC , λI , s))

2, with hα(Ac, AD, λC , λI , s) given in

(3.8).

Proof. Please see Appendix F.

The result given in Proposition 3.5.2 can be simplified to that given in Propo-

sition 2.5.2 for the case that the power system consists of SAPPs solely, by setting

AD,v = 0 and λI,v = 0.
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Figure 3.5: Frequency mean characterization function of EV v that is in the charging
mode initially, hα(AC,v, AD,v, λC,v, λI,v, s).
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Figure 3.6: Frequency variance characterization function of EV v that is in the
charging mode initially, qα(AC,v, AD,v, λC,v, λI,v, s).

67



Chapter 3. Frequency Control via Randomized Responses of Distributed
EVs

Fig. 3.6 plots qα(AC,v, AD,v, λC,v, λI,v, s) for both the Ireland power system

(α = 0.15Hz) and the IEEE 9-Bus test system (α = 0.1Hz), by setting AC,v = 1W

and AD,v = 1W. It is observed that for a fixed pair of (λC,v, λI,v), the peak of

the frequency variance characterization function is sharper in the Ireland power

system as compared to the IEEE 9-Bus test system. It is also observed that

qα(AC,v, AD,v, λC,v, λI,v, s) has two peaks that are approximately located on λ−1
C,v

and λ−1
C,v+λ−1

I,v corresponding to the average waiting time before the first and second

responses of EV v after t0, respectively. The first response refers to the switching

from the charging mode to the idle mode, while the second response refers to the

switching from the idle mode to the discharging mode.

3.5.2 Average Frequency Recovery Time

Obtaining the distribution of Tr is not feasible because of large degree of ran-

domness in f(t) given in (3.4). Hence, we use the mean of the system frequency

given in Proposition 3.5.1 to approximate the average frequency recovery time T r.

This approximation is valid due to the fact that the variance of the system frequency

given in Proposition 3.5.2 is very small in practice, since the power charging and

discharging rates of individual EVs are much smaller than the aggregate demand,

i.e., (AC,v/A0)2, (AD,v/A0)2 → 0, v = 1, . . . , V . We verify this approximation later

via simulations (see Fig. 3.9). Thus, we have the following proposition.

Proposition 3.5.3. Given Ae < Ae,min and Aa ≥ Aa,min, the average frequency

recovery time T r can be approximated by the smallest time t > t0 that solves

E[f(t)] = fmin, where E[f(t)] is given in (3.7).

3.5.3 Expected Number of EVs in Each Operational Mode

Without loss of generality, we assume that the power system consists of K ≥ 1

different classes of EVs, indexed by k, k ∈ K = {1, . . . , K}, where ÃC,k > 0,

ÃD,k > 0, and (λ̃C,k ≥ 0, λ̃I,k ≥ 0, λ̃D,k ≥ 0) are the power charging rate, power
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discharging rate, and response rates of each EV from Class k, respectively. We define

NC,k(t), NI,k(t), and ND,k(t) as random processes representing the numbers of EVs

from Class k that are in the charging, idle, and discharging modes, respectively, over

time t ≥ 0. Obviously, we always have NC,k(t)+NI,k(t)+ND,k(t) = VC,k+VI,k+VD,k,

where VC,k ≥ 0, VI,k ≥ 0, and VD,k ≥ 0 are the numbers of EVs from Class k that

are initially in the charging, idle, and discharging modes at time t = 0, respectively.

To be consistent with previous notations, we set
∑K

k=1 VC,k = VC ,
∑K

k=1 VI,k = VI ,

and
∑K

k=1 VD,k = MD. We have the following proposition.

Proposition 3.5.4. Given Ae < Ae,min and Aa ≥ Aa,min, the expected number of

EVs from Class k, k ∈ K, that are in the charging, idle, or discharging modes over

time t0 ≤ t ≤ Tr is given by

E[NC,k(t)] = VC,k p1(λ̃C,k, λ̃I,k, t− t0), (3.11)

E[NI,k(t)] = VC,k p2(λ̃C,k, λ̃I,k, t− t0) + VI,k p1(λ̃I,k, 0, t− t0), (3.12)

E[ND,k(t)] = VC,k p3(λ̃C,k, λ̃I,k, t− t0) + VI,k p2(λ̃I,k, 0, t− t0) + VD,k, (3.13)

where p1(λC , λI , s) = 1−p2(λC , λI , s)−p3(λC , λI , s), with p2(λC , λI , s) and p3(λC , λI , s)

given by

p2(λC , λI , s) =



λC
(
1− e−λCs

)
− λC

(
1− e−λIs

)
λC − λI

, if λC 6= λI and s > 0

λCse
−λCs, if λC = λI and s > 0

0, if s = 0,

(3.14)

p3(λC , λI , s) =



λI
(
1− e−λCs

)
− λC

(
1− e−λIs

)
λI − λC

, if λC 6= λI and s > 0

1− (1 + λCs) e
−λCs, if λC = λI and s > 0

0, if s = 0.

(3.15)
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Proof. Please see Appendix G.

In (3.12), p1(λ̃C,k, λ̃I,k, t− t0) is the probability that an EV from Class k that is

initially in the charging mode has remained in the charging mode by time t, t0 ≤ t ≤

T1; however, p2(λ̃C,k, λ̃I,k, t − t0) and p3(λ̃C,k, λ̃I,k, t − t0) are probabilities that this

EV has switched to the idle and discharging modes, respectively. Similarly, in (3.13),

p1(λ̃I,k, 0, t − t0) denotes the probability that an EV from Class k that is initially

in the idle mode has remained in the idle mode by time t, t0 ≤ t ≤ Tr; however,

p2(λ̃I,k, 0, t − t0) is the probability that this EV has switched to the discharging

mode. From the mode switching policy given in (3.1), it follows that an EV that is

initially in the discharging mode (from any classes) cannot switch to other modes

within an under-frequency event.

3.5.4 Probability of Frequency Overshoot

First, we specify the condition under which the system frequency will overshoot

fmax assuming Aa > Aa,max, as shown in Fig. 3.4 (c). Let Ar(t) denote the total

power that has been shed and/or injected to the grid by all EVs in different classes

by time t, t0 ≤ t ≤ Tr. Particularly, we can express

Ar(t) =
K∑
k=1

(
ÃC,k + ÃD,k

)(
VC,k −NC,k(t)

)
+ ÃD,k

(
VI,k −NI,k(t)

)
, (3.16)

where Ar(t) ≤ Aa always holds. We have the following proposition.

Proposition 3.5.5. Given Ae < Ae,min and Aa > Aa,max, the system frequency will

overshoot fmax at some time t > Tr, if and only if (iff) Ar(Tr) > Aa,max.

The result given in Proposition 3.5.5 can be directly verified from (3.4). Using

this result, the probability of frequency overshoot is then obtained as follows. Let

mC,k = NC,k(Tr), mI,k = NI,k(Tr), mD,k = ND,k(Tr), and mk = [mC,k,mI,k,mD,k]
T ,

∀k ∈ K (mC,k is a realization of the random variable ND,k(Tr)). From (3.16)
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and Proposition 3.5.5, all possible values of M = [m1, . . . ,mK ] resulting in the

frequency overshoot are given in the set S =
{
M

∣∣ 0 ≤ mC,k ≤ VC,k, 0 ≤

mI,k ≤ VC,k + VI,k, VD,k ≤ mD,k ≤ VC,k + VI,k + VD,k, mC,k + mI,k + mD,k =

VC,k + VI,k + VD,k, ∀k ∈ K,
∑K

k=1(ÃC,k + ÃD,k)(VC,k −mC,k) + ÃD,k(VI,k −mI,k) >

Aa,max

}
. Since EVs respond independently, the conditional probability Pk(mk, s) =

Pr{[NC,k(Tr), NI,k(Tr), ND,k(Tr)]
T = mk | Tr = s}, with s > t0, can be derived as

follows

Pk(mk, s) =

VC,k−mC,k∑
m=0

βj(mj,m)

((
p1(λ̃C,k, λ̃I,k, s− t0)

)mC,k

(
p2(λ̃C,k, λ̃I,k, s− t0)

)VC,k−mC,k−m (
p3(λ̃C,k, λ̃I,k, s− t0)

)m
(
p1(λ̃I,k, 0, s− t0)

)VI,k−ṁD,k+m (
p2(λ̃I,k, 0, s− t0)

)ṁD,k−m
)
, (3.17)

where βk(mk,m) =
(
VC,k

mC,k

)(
VC,k−mC,k

m

)(
VI,k

ṁD,k−m

)
and ṁD,k = mD,k − VD,k. The prob-

ability that the system frequency overshoots fmax is thus derived as follows.

Proposition 3.5.6. Given Ae < Ae,min and Aa > Aa,max, the probability of fre-

quency overshooting the upper frequency threshold fmax is approximated as

Pos ≈
∑
M∈S

K∏
k=1

Pk(mk, T r), (3.18)

where T r is given in Proposition 3.5.3.

Proof. Please see Appendix H.

Proposition 3.5.6 expresses the probability of frequency overshoot upon a con-

tingency of supply deficit. On the other hand, the probability of frequency under-

shoot in the case of supply surplus, i.e., Ae > 0, can be studied using the same

methodology.

Last, the results given in Propositions 3.5.1–3.5.6, their inter-relations, and
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Figure 3.7: Summary of analytical results and their use in the optimal design of
EVs’ response rates.

their use in the optimal design of EVs’ response rates (see Problem (P1) in the next

section) are summarized in Fig. 3.7.

3.6 Optimal Response Rates for EVs

In the previous sections, we have provided theoretical results to characterize

the performance of our frequency control algorithm via EVs. In this section, we

discuss how to design EVs’ response rates in different classes, i.e., (λ̃C,k, λ̃I,k, λ̃D,k),

k = 1, . . . , K, so as to minimize the expected cost of implementing our frequency

control algorithm subject to the EVs’ requested incentive prices, EVs’ practical

constraints, and the given power grid performance requirements. The formulated

problem can be solved offline and its solution is then be applied to set EVs’ response

rates in real time accordingly. For instance, the system operator can solve the
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problem in a hourly/daily basis and then sends the optimal response rates to the

users to set up their individual EVs. To have non-trivial cases, in this section, we

assume Ae < Ae,min and Aa > Aa,min.

3.6.1 Expected Frequency Control Cost

Denote ωCI,k > 0 and ωID,k > 0 as incentive prices requested by the owner of

each EV from Class k to switch its EV from the charging mode to the idle mode and

from the idle mode to the discharging mode, respectively. Incentive prices requested

by the owner of each EV to switch its EV from the discharging mode to the idle

mode or from the idle mode to the charging mode are assumed to be zero. This is

justified since the owner can charge the battery of its EV by absorbing the supply

surplus or stop its ongoing discharging without any inconveniences and/or costs,

which is a reasonable incentive for participating in the system frequency control.

In practice, ωID,k � ωCI,k, ∀k ∈ K, since the cost/inconvenience of discharging to

the power grid for each EV is much higher than that of the interrupting charging

temporarily.

The expected cost of implementing our frequency control due to an EV from

Class k that is initially in the charging mode given a desired frequency recovery time

Tr,des > t0 is derived as

GC(λ̃C,k, λ̃I,k, Tr,des) = ωCI,kp2(λ̃C,k, λ̃I,k, Tr,des − t0)

+ (ωCI,k + ωDI,k) p3(λ̃C,k, λ̃I,k, Tr,des − t0), (3.19)

where p2(λC , λI , s) and p3(λC , λI , s) are given in (3.14) and (3.15), respectively. The

first term on RHS of (3.19) shows the expected cost due to the switching from the

charging mode to the idle mode, while the second term is due to the switching

from the charging mode to the discharging mode. Similarly, the expected frequency

control cost for an EV from Class k that is initially in the idle mode is derived as
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follows

GI(λ̃C,k, λ̃I,k, Tr,des) = ωID,kp2(λ̃I,k, 0, Tr,des − t0). (3.20)

The results given in (3.19) and (3.20) reveal that there is a fundamental trade-

off for utilizing EVs in different classes to control the system frequency, since their

cost coefficients as well as their power charging/discharging rates are different in

practice.

3.6.2 Problem Formulation and Solution

With cost functions obtained in the above subsection, we now proceed to op-

timize decision variables {(λ̃C,k, λ̃I,k, λ̃D,k)}k∈K for minimizing the implementation

cost given the desired frequency recovery time Tr,des. We impose an additional con-

straint to prevent the frequency overshoot (on average) based on the result given in

Proposition 3.5.5. Thus, we consider the following optimization problem.

(P1) : min.
{(λ̃C,k,λ̃I,k,λ̃D,k)}k∈K

K∑
k=1

(
VC,kGC(λ̃C,k, λ̃I,k, Tr,des)

+ VI,kGI(λ̃C,k, λ̃I,k, Tr,des)

)
(3.21)

s.t. E [ f(Tr,des) ] ≥ fmin, (3.22)

E [Aa(Tr,des)] ≤ Aa,max, (3.23)

0 ≤ λ̃C,k ≤ λC,k, 0 ≤ λ̃I,k ≤ λI,k, 0 ≤ λ̃I,D ≤ λI,D, ∀k ∈ K, (3.24)

where λC,k > 0, λI,k > 0, and λD,k > 0 are the maximum response rates of each EV

from Class k in the charging, idle, and discharging modes, respectively. In (P1), the

constraint (3.22) is for assuring that the mean of the system frequency will recover

back to fmin by time t = Tr,des, while the constraint (3.23) is for recovering the

system frequency smoothly without overshooting fmax. In Section 3.7.1, we verify
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that when constraint (3.23) holds, Pos is very small, i.e, the probability of frequency

overshoot is negligible.

It can be verified that (P1) is a non-convex optimization problem and hence

it cannot be solved globally optimally using standard convex optimization tech-

niques such as the interior point method [90]. Consequently, we use following

two assumptions to simplify (P1). First, we assume λC,k � α, ∀k ∈ K. This

assumption is valid since it is practically required to ensure that the system fre-

quency is restored smoothly upon the contingency (see Figs. 3.4 (c)). Second,

we assume λI,k � λC,k, ∀k ∈ K. This assumption is also valid since we have

ωID,k � ωCI,k for all classes; as a result, λ̃I,k � λ̃C,k, ∀k ∈ K, always holds in

practice to avoid unnecessary discharging of EVs. Using the aforementioned as-

sumptions, the frequency mean characterization function can be approximated as

hα(ÃC,k, ÃD,k, λ̃C,k, λ̃I,k, s) ≈ ÃC,k(1 − e−λ̃C,ks). Furthermore, we can approximate

probability functions given in (3.14) and (3.15) as p2(λ̃C,k, λ̃I,k, s) ≈ 1− e−λ̃C,ks and

p3(λ̃C,k, λ̃I,k, s) ≈ 0. Next, we make a change of variables as (λ̃C,k, λ̃I,k, λ̃D,k) →

(φC,k, φI,k, φD,k) with φC,k = 1 − e−λ̃C,k(Tr,des−t0), φI,k = 1 − e−λ̃I,k(Tr,des−t0), and

φD,k = 1 − e−λ̃D,k(Tr,des−t0), ∀k ∈ K. From the above approximations and the given

variable changes, we can reformulate (P1) as the following problem.

(P2) : min.
{(φC,k,φI,k,φD,k)}k∈K

K∑
k=1

(
ωCI,kVC,kφC,k + ωID,kVI,kφI,k

)
(3.25)

s.t.

K∑
k=1

VC,kÃC,kφC,k + VI,kÃD,kφI,k ≥ At,min, (3.26)

K∑
k=1

VC,kÃC,kφC,k + VI,kÃD,kφI,k ≤ At,max, (3.27)

0 ≤ φC,k ≤ φC,k, 0 ≤ φI,k ≤ φI,k, 0 ≤ φD,k ≤ φD,k, ∀k ∈ K, (3.28)

where φC,k = 1−e−λC,k(Tr,des−t0), φI,k = 1−e−λI,k(Tr,des−t0), and φD,k = 1−e−λD,k(Tr,des−t0),

∀k ∈ K. Note that (P2) is a LP; therefore, it can be solved efficiently using
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standard optimization software, e.g., CVX [91]. From (3.26) and (3.28), it fol-

lows that (P2) is feasible iff
∑K

k=1 VC,kÃC,kφC,k + VI,kÃD,kφI,k ≥ At,min holds, where

Aa,min is given in (3.5). After solving (P2), we accordingly set the optimal re-

sponse rates of EVs from different classes as λ̃C,k = − log(1 − φC,k)/(Tr,des − t0),

λ̃I,k = − log(1− φI,k)/(Tr,des− t0), and λ̃D,k = − log(1− φD,k)/(Tr,des− t0), ∀k ∈ K,

respectively.

Remark 3.6.1. In (P2), φD,k’s do not appear neither in the objective function (3.25)

nor in constraints (3.26) and (3.27). As a result, we can choose any φD,k ∈ [0, φD,k]

as the optimal solution to (P2). By default, we set φD,k = φD,k, ∀k ∈ K, which

yields λ̃D,k = λD,k, ∀k ∈ K.

3.7 Simulation Results

To validate our analysis in Section 3.5, i.e., Propositions 3.5.1–3.5.6, we first

simulate the grid frequency dynamics of IEEE 9-Bus test system [56] by setting the

response rates of EVs in different classes based on the optimal solution to (P2). We

then study the performance of our algorithm in the Ireland power system [25], which

has a higher capacity.

3.7.1 IEEE 9-Bus Test System

We consider the IEEE 9-Bus test system [56], as shown in Fig. 3.8, where the

wind farm connected to Bus 3 is planned to deliver 35MW to the power system. The

aggregate model of this system is summarized in Table 2.1 (Chapter 2). We consider

that there are K = 2 classes of EVs connected to the IEEE 9-Bus test system,

where their respective parameters are given in Table 3.1, according to SAE J1772

standard [92]. Consequently, we have Aa = 44.64MW. The rest of demand is non-

frequency-responsive and hence does not respond to system frequency deviations.
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Figure 3.8: Schematic of IEEE 9-Bus test system.

We assume that EVs are equally distributed among Buses 5, 6, and 8 as shown in

Fig. 3.8. We set frequency thresholds of the mode switching policies for all EVs as

(fmin, fmax) = (59.8, 60.2)Hz. Let (ωCI,1, ωID,1) = (0.20, 1.35)$ and (ωCI,2, ωID,2) =

(0.15, 1.10)$.3 Assume (λC,1, λI,1, λD,1) = (λC,2, λI,2, λD,2) = (0.05, 0.02, 0.05)Hz. In

the following, we study the system frequency upon a contingency of supply-demand

imbalance with Ae = −25MW, e.g., due to the deficit in power generation of the

wind farm connected to Bus 3.

First, let Tr,des = 60 seconds, which is practically valid when the power im-

balance is large [72]. By solving (P2) given the above system setting, we ob-

tain (λ̃C,1, λ̃I,1, λ̃D,1) = (0.05, 0.019, 0.05)Hz and (λ̃C,2, λ̃I,2, λ̃D,2) = (0.05, 0, 0.05)Hz,

3Note that the incentive prices (ωCI,k, ωID,k)’s are chosen randomly subject to the following
practical constraints: i) ωCI,k < ωID,k; and ii) ωID,k > ωk,min, where ωk,min denotes the minimum
incentive that the owner of an EV from Class k needs to receive from the grid operator so as to
recharge its EVs’ battery to the same level as that before injecting power to the grid within the
contingency. By assuming that the contingency of supply-demand power imbalance remains for
approximately 10 minutes and the electricity tariff is 25cents/kWh, we have ωk,min = 0.042AD,k$,
with AD,k given in kW.
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Table 3.1: Parameters of EVs in IEEE-9 Bus test system.

Class
Parameters

(k)
Supply Voltage

(V)
ÃC,k
(kW)

ÃD,k
(kW)

VC,k VI,k VD,k

1 208-240 AC 3.4 2.72 1200 2100 240

2 208-240 AC 11.2 8.96 900 1500 180

where these optimal response rates are used in all simulations presented in the rest

of this subsection. Given the obtained optimal response rates, we compare the sys-

tem frequency dynamics obtained by simulating the IEEE 9-Bus test system using

Power World simulator [74] with that obtained in Proposition 3.5.1 based on the

aggregate power system model. We simulate the system frequency under the above

setting 100 times. The simulated system frequency mean together with its upper

and lower envelopes over time are then plotted in Fig. 3.9. It is observed that

the system frequency is recovered back to fmin, without any overshoot, in about 55

seconds on average (less than the target frequency recovery time), as expected from

(P2). It is also observed that the theoretical mean given in (3.7) fits very well to the

simulated mean. Moreover, it is observed that the variance of the system frequency

is very small, which is in accordance with our assumption made in Proposition 3.5.3.

Last, from (3.4), it follows that when EVs’ responses are deactivated, the system

frequency drops to the steady state level 58.334Hz eventually. On the other hand,

from Fig. 3.9, it is observed that when EVs’ responses are active, the system fre-

quency never drops below 58.85Hz and also returns back to the steady state level

60.01Hz quickly, which is desired for the reliable operation of the power system.

Second, we show how EVs in the same class respond in different time instants

under our proposed randomized control algorithm. We consider 4 different EVs from

Class 1 that are all in the charging mode initially at time t = 0. The states of the

considered EVs over time are plotted in Fig. 3.10. From Fig. 2.7, it is observed that

the grid frequency drops below fmin after t0 = 1.1 seconds. Accordingly, EVs 1, 2, 3,
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Figure 3.9: Simulated frequency dynamics of IEEE 9-Bus test system.

and 4 respond by switching from the charging mode to the idle mode at t = 11.39,

t = 29.72, t = 24.51, and t = 18.18 seconds, respectively, as shown in Fig. 3.10. This

is expected since due to the memoryless property of the exponential distribution,

the waiting time to the first monitoring event after t0 for an EV from Class 1 that

is initially in the charging mode follows an exponential distribution with the mean

1/λ̃C,1 = 20 seconds. Accordingly, for the four considered EVs, the mean waiting

time to their first responses after t0 is obtained as 19.85 seconds. Furthermore, it

is observed from Fig. 3.10 that EVs 1 and 4 respond by switching from the idle

mode to the discharging mode at t = 49.71 and t = 52.24 seconds, respectively,

while EVs 2 and 3 remain in the idle mode. This is also reasonable since given

(λ̃C,1, λ̃I,1, λ̃D,1) = (0.05, 0.019, 0.05)Hz, from (3.15) it follows that a particular EV

from Class 1 that is initially in the charging mode will switch to the discharging

mode given the frequency recovery time Tr ≈ T r = 55 seconds with the probability

0.46, i.e., it is expected that approximately 1 from every 2 EVs in Class 5 switches

from the charging mode to the discharging mode by the given frequency recovery
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Figure 3.10: Response trajectories of four different EVs from Class 1.

time.

Third, under the above system setup, we compare the simulated and theoretical

results for the frequency recovery time and the expected number of EVs from Class

1 that are in each of the three operation modes over time in Fig. 3.11. It is observed

that within time t0 < t < Tr, EVs from Class 1 respond by switching from the

charging and idle modes to the discharging mode to boost the system frequency.

Specifically, since λ̃C,1 > λ̃I,1, the number of EVs from Class 1 that are in the

idle mode, i.e., NI,1(t), increases initially until t = 12 seconds. It is also observed

that the simulated results match our analysis given in Propositions 3.5.3 and 3.5.4

perfectly.

Fourth, we compare the probability of frequency overshoot obtained by the

simulation versus the approximation given in (3.18). As shown in Fig. 3.11, the

theoretical recovery time derived from Proposition 2.5.3 is T r = 54.26 seconds. By

substituting this value in (3.18), we obtain Pos = 10−8 ≈ 0. On the other hand,

as shown in Fig. 3.9, the upper envelope of simulated system frequency is always
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below fmax, which shows that the probability of frequency overshoot is almost zero.

As a result, the experimental result matches our derived theoretical approximation

accurately.

Last, we evaluate the optimal frequency control solution to (P2) over Tr,des ≥

40.5, where (P2) is feasible in this range. Fig. 3.12 (a) shows the optimal (minimum)

expected cost for implementing our frequency control scheme as a function of Tr,des,

from which it is observed that the expected cost increases as the desired frequency

recovery time reduces. This is due to the fact that for lowering the frequency

recovery time, we need to set higher values for EVs’ response rates and hence more

EVs respond by switching their operational modes. As a result, the expected cost

increases. Fig. 3.12 (b) also show the corresponding optimal response rates of EVs

over Tr,des. It is observed that both λI,2 and λI,1 reduce when Tr,des increases, since

ωID,1 > wCI,1 and wID,2 > wCI,1. Moreover, it is observed that λI,2 declines faster

than λI,1 over Tr,des. This is due to the fact that wID,2 > wID,1.
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Table 3.2: Parameters of electric vehicles in Ireland power systrem.

Class
Parameters

(k)
Supply Voltage

(V)
ÃC,k
(kW)

ÃD,k
(kW)

VC,k VI,k VD,k

1 120 AC 1.7 1.36 4000 3500 1050

2 208-240 AC 3.4 2.72 2500 1400 400

3 208-240 AC 11.2 8.96 5500 1500 1200

4 600 DC 40 32 200 1200 300

5 600 DC 100 80 100 350 200

3.7.2 Ireland Power System

In this subsection, we evaluate the performance of our EV-based frequency con-

trol algorithm upon a large-scale contingency in the Ireland power system, where

parameters of the aggregate model of the Ireland power system during the winter

peak demand are summarized in Table 2.1 (see Section 2.6.2 for detailed informa-

tion about the Ireland power grid), which are derived based on the realistic data

given in [25]. In this example, we consider that there are five different classes of

EVs connected to the Ireland power system, where their corresponding parame-

ters are given in Table 3.2, according to SAE J1772 standard [92]. Thus, we have

Aa = 258.14MW. We assume that EVs are distributed evenly in the whole power

grid. We set the frequency thresholds for all EVs as (fmin, fmax) = (49.8, 50.2)Hz.

Let (ωCI,1, ωID,1) = (0.12, 0.55)$, (ωCI,2, ωID,2) = (0.20, 1.35)$, (ωCI,3, ωID,3) =

(0.15, 1.10)$, (ωCI,4, ωID,4) = (0.35, 2.35)$, and (ωCI,5, ωID,5) = (0.75, 3.65)$. As-

sume (λC,k, λI,k, λD,k) = (0.05, 0.02, 0.05)Hz, k = 1, . . . , 5. In the following, we study

the system frequency upon a contingency of supply-demand imbalance with Ae =

12.5 cos(0.3πt) + 3.15 cos(5.5πt)− 1051{t≥0} + 1901{t≥60} − 1651{t≥155} − 551{t≥210}

in MW, resulting from the intermittent generation power of the Slieve-Divena wind

farm (30MW) in Londonderry, North Ireland, the Knockacummer wind farm (87.5

MW) in Cork and the Mount Lucas wind far (84 MW) in Offaly, Republic of Ireland,
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Figure 3.13: System frequency with/without EVs’ responses.

as well as fluctuation of the demand over time, while |∆Ag| ≤ 201.5MW.

By solving (P2) for the worst case scenario, i.e., Ae = −201.5MW, with the

given Tr,des = 60 seconds, we obtain EVs’ response rates as (λ̃C,1, λ̃I,1, λ̃D,1) =

(λ̃C,2, λ̃I,2, λ̃D,2) = (0.05, 0, 0.05)Hz, (λ̃C,3, λ̃I,3, λ̃D,3) = (0.05, 0.0087, 0.05)Hz, and

(λ̃C,4, λ̃I,4, λ̃D,4) = (λ̃C,5, λ̃I,5, λ̃D,5) = (0.05, 0.02, 0.05)Hz. Given the obtained opti-

mal response rates, we then plot the system frequency dynamics for both cases that

EVs’ responses are active versus deactivate in Fig. 3.13. It is observed that EVs’ re-

sponses help recover the system frequency to its safe region [49.8, 50.2]Hz following

each of the major power imbalances at t = 0, 60, 155, 210 seconds. However, each

sinusoidal part of Ae yields an undamped frequency oscillation with a very small

amplitude over the system frequency, which cannot further trigger EVs’ controllers.

Second, we plot the number of EVs from Class 2 that are in each of the three

operation modes over time in Fig. 3.14. It is observed that the number of EVs from

this class which are in the idle mode increases over time, while the number of EVs

that are in each of the charging and discharging modes decreases. This is due to the
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Figure 3.14: Responses of EVs in the Ireland power system.

fact that λ̃I,2 = 0, while λ̃C,2 = λ̃D,2 = 0.05Hz. This means that EVs from Class 2

can switch from the charging and discharging modes to the idle mode, while they

cannot switch out of the idle mode. Hence, the number of EVs in the idle mode

increases over time, while those for the other two modes decrease.

Last, we discuss how responses of EVs from different classes can affect the ex-

pected cost of implementing our frequency control algorithm. We consider five dif-

ferent scenarios, where for the lth scenario, l = 1, . . . , 5, it is assumed that responses

of EVs from Class k = l are deactivated, i.e., VC,l = VI,l = VD,l = 0. Accordingly,

given Ae = −200MW (Ae = −150MW and Ae = −100MW) and Tr,des = 60 seconds,

we solve (P2) for each scenario and the resulting objective value, i.e., the expected

implementation cost, is given in Table 3.3. Moreover, we solve (P2) for the case

that responses of EVs from all the five classes are active, where the resulting ex-

pected implementation cost is 438.56$, 1780$, and 8153.2$, given Ae = −100MW,

Ae = −150MW, and Ae = −200MW, respectively. It is observed that for each Ae,

the lowest cost is achieved when responses of EVs from all classes are active. This
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Table 3.3: Impacts of different active EV classes on the expected cost.

Scenario
Cost ($)

(l)
Ae =−100MW Ae =−150MW Ae =−200MW

1 438.56 1780.58 13401.12

2 438.56 1780.58 Infeasible

3 1470.51 Infeasible Infeasible

4 472.757 2154.72 Infeasible

5 492.81 2604.54 Infeasible

show that the diversity of EVs in response rate provide extra degree of freedom for

the system operator to further minimize the cost. It is also observed that given

Ae = −200MW, (P2) is infeasible under scenarios l, l = 2, . . . , 5. Similarly, given

Ae = −150MW, (P2) is infeasible under the third scenario. These are due to the

fact that there are not enough EVs available in the system to respond and restore

the system frequency to fmin in Tr,des = 60 seconds.

3.8 Chapter Summary

In this chapter, we proposed a new DR-enabled frequency control algorithm by

utilizing randomized responses of distributed EVs. We analyzed the performance

of our proposed algorithm upon a contingency of supply shortfall from various per-

spectives, including the mean and variance of the resulting system frequency over

time, the average frequency recovery time, the expected number of EVs responded

in different operational modes, and the probability of frequency overshoot due to

the responses of EVs. Accordingly, we jointly designed the response rates of EVs

to minimize the expected cost for implementing our proposed frequency control

subject to the power grid performance requirements. It was shown via extensive

simulations that the randomized responses of EVs can restore the system frequency

cost-efficiently and smoothly when their response rates are appropriately designed.
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Chapter 4

Frequency Control via Demand
Rescheduling of Aggregators

4.1 Introduction

Price based demand response (PDR) is a commonly adopted ILC method, which

adjusts the electricity prices in either day-ahead [16, 94] or real-time [95, 96] to

shape the power consumption of users over time so as to achieve a certain goal. For

instance, the system operator can motivate users to shift portions of their loads from

the peak-demand period to the off-peak-demand period by lowering the electricity

price during the off-peak-demand period. Although PDR has been successfully

implemented for industrial and/or commercial users, it is challenging to utilize PDR

for residential users in general due to their large population. Furthermore, each

residential user has a very small amount of power consumption as compared to the

aggregate demand; therefore, its contribution on the power system is insignificant.

Hence, the user cannot negotiate with the system operator effectively. In this case,

deploying aggregators [97] as coordinating agents between the system operator and

preassigned groups of residential (and/or commercial, industrial) users can facilitate

the implementation of PDR. Due to the fact that each aggregator controls a larger

amount of load demand, it can effectively take part in the electricity market on

behalf of its users and negotiate with the system operator, based on the agreements

with both parties.

In this chapter, we investigate real-time pricing for a power system operator

that sells electricity to a group of self-interested aggregators within a particular day,
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named actual day, to achieve balanced demand and supply in long term, after a

contingency of supply shortfall.1 Under our scheme, the system operator offers real-

time discounted electricity prices, which are cheaper than the day-ahead prices, to

aggregators in order to incentivize them to reschedule their day-ahead demand over

time; while the day-ahead values of electricity prices and demand are assumed to

be given by the day-ahead electricity market before the beginning of the actual day.

Since aggregators are regarded as self-interested entities, given discounted electricity

prices, each aggregator reschedules its day-ahead demand over time to maximize its

own utility. If discounted electricity prices are designed appropriately, aggregators

will shift portions of their instantaneous demand (which are planned in the day-

ahead electricity market to be consumed at this particular time) to future time

periods. This can decrease the need for deploying conventional secondary/tertiary

reserve services to address the supply deficit; thus, the overall cost of the power

system reduces.

By assuming that the system operator has full knowledge about the behavior

of aggregators, i.e., aggregators convey all data about their rescheduling problems

to the system operator, we formulate a bilevel optimization problem, named bilevel

discount pricing problem (BDPP), to design discounted electricity prices in order

to minimize the system operator’s residual cost, defined as the sum of operational

costs (including the frequency control cost) from the contingency up to the end

of the actual day.2 Note that our proposed formulation is practically valid, since

aggregators are rewarded by receiving cheaper electricity prices when they share the

data about their rescheduling problems with the system operator. We then derive

the equivalent one-level optimization problem of BDPP, named one-level discount

pricing problem (ODPP), to solve the proposed problem efficiently.

1The real-time pricing scheme proposed in this paper exploits DR for providing a sec-
ondary/tertiary reserve service. Hence, it is assumed that the contingency holds for a long-time,
e.g., couples of ten minutes up to hours.

2The results of this chapter can be extended to optimize other objective functions of the system
operator, e.g., maximizing the profit or revenue of selling electric power to aggregators.
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Solving BDPP and ODPP optimally is difficult, since both the problems are

non-convex in general. Furthermore, the problems need to be solved efficiently to

alleviate the power imbalance resulted from the contingency quickly; otherwise, the

power system may experience catastrophic damages such as wide-area blackouts.

Hence, we develop an efficient algorithm based on the sequential convex program-

ming (SCP) method [99] to solve ODPP locally optimally. We also propose a ran-

domized search (RS) based algorithm to solve heuristically BDPP, where by relying

over a bidirectional communication system, this algorithm can be used to solve

BDPP iteratively even without any presumed information about behavior of the

aggregators.

Last, we show via a numerical example based on the Singapore power grid

data [102] that the demand rescheduling of aggregators can function similarly as the

conventional secondary/tertiary reserve services provided by generation units, but

in a more cost-efficient manner.

4.2 Literature Review

There have been related studies reported in the literature on day-ahead or real-

time pricing for managing DR [61–71]. The real-time pricing was utilized in [61–65]

as a tool to motivate users to schedule their loads over time so as to achieve the

maximum social welfare. Particularly, Meng et al. [65] solved a bilevel optimiza-

tion problem to maximize the social welfare subject to reducing the electricity bills

of individual users as compared to the case without DR. The real-time pricing for

maximizing the net revenue of a retailer selling electric power to a group of price-

responsive users was investigated in [66], where a simulated annealing based al-

gorithm was adopted to design electricity prices offered to different users. On the

other hand, the day-ahead pricing for maximizing the system operator’s profit under

a non-cooperative market structure was discussed in [67], where a greedy algorithm
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was developed to solve the pricing problem approximately. The demand scheduling

problem for a set of selfish users in a non-collaborative scenario was studied in [68],

where a strategic game was adopted to solve the problem under a tiered proportional

billing scheme. However, Kim et al. [68] did not provide any justification to show

that the tiered proportional billing scheme can either minimize the total cost of the

system operator or maximize its profit. Samadi et al. [69] studied real-time pricing

for minimizing the peak-to-average ratio of the aggregate demand in a smart power

grid, where the stochastic approximation approach was used to develop an efficient

algorithm to design electricity prices sub-optimally. Recently, Vivekananthan et

al. [70] introduced a reward based DR mechanism in order to shave the peak power

consumption of residential users, for which the reward received by each particular

user was set to be proportional to the total load deferred to the off-peak-demand

period by this user as well as the impact of load adjustment of this user on improving

the power grid voltage stability.

In summary, [61–70] proposed algorithms to design electricity prices/rewards

for the system operator assuming that the power grid is operated under its normal

condition. However, there has been less effort to investigate real-time pricing for

contingency management. This is a more challenging scenario, since the proposed

pricing algorithms need to converge quickly (say, in less than 5-10 minutes); oth-

erwise, the system reliability will be jeopardized. Recently, a real-time balancing

market with elastic demand was studied in [71], while the optimal bidding strate-

gies of users in response the real-time electricity prices offered by the suppliers were

unaddressed for simplicity of analysis. In contrast, in this chapter we propose a

real-time pricing scheme for the system operator to manage DR in a group of self-

interested aggregators to provide cost-efficient secondary/tertiary reserve services.

Last, note that our formulated pricing problem in this chapter substantially differs

from that investigated in [9,36,71], since we take the selfish behavior of aggregators

into account.
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4.3 System Model

We consider a power system consisting of H ≥ 1 aggregators, indexed by h, h ∈

H = {1, . . . , H}, each of which purchases electric power from the system operator

to satisfy demand of its residential, commercial, and/or industrial users within the

actual day. We consider a time-slotted system with index n, n ∈ N = {1, . . . , N},

where N ≥ 1 (typical values are 24 or 48) is the total number of time slots in the

actual day that have even durations of 24/N hours. We further consider a quasi-

static time-varying model for demand of aggregators, where the demand of each

aggregator is constant during each time slot, but it may change from one time slot

to another time slot.

We assume that the day-ahead electricity market is held before the beginning

of the actual day, where ẋh = [ẋh,1, . . . , ẋh,N ]T and ẏh = [ẏh,1, . . . , ẏh,N ]T are given

as the day-ahead electricity price and the day-ahead demand (i.e., the sum of its

users’ demand) for each aggregator h, respectively. Note that ẏh and ẋh are the

scheduled/planned values of demand and price for aggregator h within the actual

day, respectively. By default, we assume
∑N

n=1 ẏh,n = yh,tot, yh,n ≤ ẏh,n ≤ yh,n,

xh,n ≥ xn, ∀h ∈ H, ∀n ∈ N , hold, where xn > 0’s are the marginal electricity

prices over time and yh,tot,
∑N

n=1 yh,n ≤ yh,tot ≤
∑N

n=1 yh,n, is the total demand of

aggregator h in the actual day, which should be fully satisfied by the end of time

slot N . However, y
h,n

> 0 and yh,n > y
h,n

represent the minimum and maximum

limits for the demand of aggregator h at time slot n, respectively, which should be

held to meet time-inflexible demand of its users.

In the actual day, we assume that an emergency event occurs at the beginning

of time slot n0, 1 ≤ n0 < N , which results in Ae < 0 amount of supply-demand

power imbalance (supply deficit) over time slots n0 ≤ n ≤ n1, where n1 ∈ N0 =

{n0, . . . , N}. In this cases, the system operator holds the real-time electricity market

and negotiates with the aggregators to reschedule their demand to alleviate the
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Figure 4.1: Real-time versus day-ahead market information sharing.

power imbalance in long term, which is in contrast to the short term responses of

SAPPs/EVs that have been discussed previously in Chapters 2 and 3.

4.4 Proposed Real-Time Pricing Scheme

Fig. 4.1 shows the schematic of the power system considered in this paper.

We assume that the system operator offers the real-time discounted electricity price

xh = [xh,n0 , . . . , xh,N ]T , xn ≤ xh,n ≤ ẋh,n, ∀n ∈ N0, to each aggregator h in order to

incentivize this aggregator to reschedule its day-ahead demand over time slots n0 ≤

n ≤ N . Typically, the real-time price xh,n is more attractive (lower as compared to

the day-ahead price ẋh,n) after the contingency, i.e., n1 < n ≤ N , versus during the

contingency, i.e., n0 ≤ n ≤ n1, to motivate aggregator h to shift more loads to future

time slots after the contingency. Let yh = [yh,n0 , . . . , yh,N ]T , where
∑N

n=n0
yh,n =

yh,tot −
∑n0−1

n=1 ẏh,n and y
h,n
≤ yh,n ≤ yh,n, ∀n ∈ N0, be the rescheduled demand of
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aggregator h. Since aggregators are regarded as self-interested entities, given the

discounted electricity price xh, each aggregator h designs its rescheduled demand

yh to maximize its utility. On the other hand, the system operator designs xh,

∀h ∈ H, so as to minimize its residual cost, i.e., the sum of operational costs of the

power system over time slots n = n0, . . . , N (time slots n = 1, . . . , n0 − 1 are past

and no changes can be applied for these slots). Note that this approach can help

the system operator to reduce its total operational cost, while aggregators also have

the opportunity to reduce their total electricity bills by responding to the offered

discounted electricity prices.

4.5 Problem Formulation

In this section, we first formulate the demand rescheduling problem for each

aggregator h, given the offered discounted electricity price xh. Next, we formulate

BDPP for the system operator to design xh, h = 1, . . . , H. Moreover, we derive

ODPP, i.e., the equivalent one-level optimization problem of BDPP, to derive our

solution based on it.

4.5.1 Demand Rescheduling Problem

Each aggregator h designs its rescheduled demand yh to maximize its utility,

where the utility is defined as the weighted sum of the negative of its residual bill for

purchasing electric power from the system operator, Bh(xh,yh) =
∑N

n=n0
xh,n yh,n,

and its service quality index that interprets the satisfaction of its users given the

rescheduled demand. Specifically, we model the service quality index of aggregator h

by a predefined function Qh(yh), which is assumed to be concave and differentiable

over yh ≥ 0. We also assume that Qh(yh) achieves its maximum value equal to unity

iff yh,n = ẏh,n, ∀n ∈ N0, i.e., the planned demand of aggregator in the day-ahead

electricity market remains unchanged.
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Given the discounted electricity price xh, we present the rescheduling problem

for each aggregator h, as follows

(DR− h) : max.
yh

Qh(yh)− θhBh(xh,yh) (4.1)

s.t. y
h,n
≤ yh,n ≤ yh,n, ∀n ∈ N0, (4.2)

N∑
n=n0

yh,n = yh,tot −
n0−1∑
n=1

ẏh,n, (4.3)

where θh ≥ 0 is a constant weight for aggregator h, which can be used to adjust the

trade-off between its service quality index and its residual electricity bill. It can be

readily verified that with given xh, (DR−h) is a convex optimization problem. For

convenience, we define Uh(yh,xh) = Qh(yh) − θhBh(xh,yh) and Ωh as the utility

function of aggregator h and the convex set specified by the constraints given in

(4.2) and (4.3) over yh, respectively.

4.5.2 Bilevel Discount Pricing Problem (BDPP)

The system operator designs discounted electricity prices xh, ∀h ∈ H, so as

to minimize its total operational cost till the end of actual day. We model the

operational costs (including the costs of power generation, transmission, ramping

up/down reserve services, etc.) of the system operator over time by a sequence of

time-variant functions Cn(gn), ∀n ∈ N , where gn ≥ 0 is the total electric power

generated at time slot n. Specifically, we assume that each Cn(gn) is a convex non-

decreasing function with a finite value over gn ≤ gn, where gn �
∑H

h=1 yh,n. This

is justified by considering that fact that the power system has adequate generation

resources to meet the maximum demand of all aggregators, while the generation

cost may increase drastically.

From (DR−h), it has been revealed that the rescheduled demand of aggregator

h is an implicit function of the discounted electricity price xh. Hence, there is a
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hierarchical relationship between demand rescheduling problems of aggregators and

the discount pricing problem of the system operator. Assume that the system oper-

ator has full knowledge about behavior of all aggregators, i.e., the system operator

knows (DR−h), ∀h ∈ H. We thus formulate BDPP to minimize the residual cost of

the power system as

(G1) : min.
{xh}h∈H,{yh}h∈H

n1∑
n=n0

Cn(
H∑
h=1

yh,n − Ae) +
N∑

n=n1+1

Cn(
H∑
h=1

yh,n) (4.4)

s.t. xn ≤ xh,n ≤ ẋh,n, ∀n ∈ N0, ∀h ∈ H, (4.5)

yh ∈ arg max.
zh∈Ωh

Uh(zh,xh), ∀h ∈ H, (4.6)

where zh = [zh,n0 , . . . , zh,N ]T , ∀h ∈ H, are dummy variables. Alternatively, interac-

tions among the system operator and aggregators can be captured by Stackelberg

game (see Appendix I for more information), where the solution to (G1) returns the

Stackelberg equilibrium point. It is also worth noting that [104, 105] have recently

proposed mathematical models to approximately express the behavior of each aggre-

gator (or user) in response to the electricity prices offered by the system operator,

where the coefficients of the models are all tuned based on the historical data of

the electricity market. In this case, we can replace the constraints given in (4.6) by

the models proposed in [104, 105] to approximately design electricity prices for the

system operator.

In (G1), the electric power generated at each time slot n, n0 ≤ n ≤ n1, is offset

by −Ae (Ae < 0), which means that the system operator generates −Ae amount of

electric power more than that requested by all aggregators to compensate the supply

shortfall. From the hierarchical point of view, we term the minimization problem

resulted from (G1) by ignoring the constraints in (4.6) as the upper level problem,

while we term (DR−h), ∀h ∈ H, as lower level problems, which appear in (4.6) to

interpret the impacts of aggregators’ demand rescheduling problems on the pricing
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problem of system operator.

For convenience, we define Cres(y1, . . . ,yH) =
∑n1

n=n0
Cn(
∑H

h=1 yh,n − Ae) +∑N
n=n1+1 Cn(

∑H
h=1 yh,n). Although Cres(·) is a convex function over yh’s and the

constraints given in (4.5) specify a convex set over xh’s, (G1) is in general a non-

convex optimization problem. This is due to the coupling between xh and yh for

each h ∈ H as expressed in (4.6), together with the fact that Uh(yh,xh) is neither

a convex nor concave function over yh and xh. As a result, (G1) cannot be solved

optimally globally via standard convex optimization techniques such as interior point

method. In the following, we reformulate (G1) into a simplified form by exploiting

the dual problem of (DR−h), ∀h ∈ H, to obtain a locally optimal solution to the

resulting problem.

4.5.3 One-level Discount Pricing Problem (ODPP)

For (DR−h), we denote vh,n and vh,n, ∀n ∈ N0, as the Lagrange dual variables

associated with constraints y
h,n
≤ yh,n and yh,n ≤ yh,n, respectively, given in (4.2).

We also denote wh, h = 1, . . . , H, as the Lagrange dual variables associated with

the constraints given in (4.3). For convenience, we define vh = [vh,n0
, . . . , vh,N ]T

and vh = [vh,n0 , . . . , vh,N ]T . Accordingly, we can derive the Lagrangian of problem

(DR−h) as

Lh = Qh(yh)− θhBh(xh,yh) +
N∑

n=n0

vh,n(yh,n − yh,n)

+
N∑

n=n0

vh,n(yh,n − yh,n)− wh
( N∑
n=n0

yh,n − yh,tot +

n0−1∑
n=1

ẏh,n

)
. (4.7)

Since (DR−h) is a convex optimization problem and holds the Slater’s condition

(linear constraints), any set of primal and dual points, i.e., (yh,vh,vh, wh), which

satisfies the Karush-Kuhn-Tucker (KKT) conditions of (DR−h), will be its primal

and dual optimal solutions [90]. Specifically, the KKT conditions of (DR−h) are
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listed below

qh,n(yh)− θhxh,n + vh,n − vh,n − wh = 0, ∀n ∈ N0, (4.8)

vh,n(yh,n − yh,n) = 0, ∀n ∈ N0, (4.9)

vh,n(yh,n − yh,n) = 0, ∀n ∈ N0, (4.10)

y
h,n
≤ yh,n ≤ yh,n, ∀n ∈ N0, (4.11)

N∑
n=n0

yh,n = yh,tot −
n0−1∑
n=1

yh,n, (4.12)

vh,n ≥ 0, vh,n ≥ 0, ∀n ∈ N0, (4.13)

where qh,n(yh) = ∂Qh(yh)/∂yh,n. Note that (4.8) follows due to the fact that the

gradient of the Lagrangian with respect to yh must vanish, (4.9) and (4.10) stand

for the complimentary slackness, and (4.11)–(4.13) represent the primal and dual

feasibility constraints. Let w = [w1, . . . , wH ]T . Based on the KKT conditions listed

above, we can rewrite (G1) as a one-level optimization problem, named ODPP, as

follows

(G2) : min.
{xh}h∈H,{yh}h∈H,{vh}h∈H,{vh}h∈H,w

Cres(y1, . . . ,yH)

s.t. (4.5) and (4.8)− (4.13), ∀h ∈ H.

It can be verified that (G2) is a non-convex optimization problem due to the con-

straints given in (4.8)–(4.10), ∀h ∈ H. However, we can solve (G2) at least locally

optimally, as will be shown in the next section.

4.6 Proposed Solution

Herein, we develop an SCP based algorithm [99] to solve ODPP, i.e., (G2). We

also propose an RS based algorithm to solve BDPP, i.e., (G1).
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4.6.1 SCP Based Algorithm

SCP is an iterative method to solve non-convex problems locally optimally, by

leveraging convex optimization techniques shown as follows. At each iteration itr,

itr = 1, 2, . . ., we approximate non-convex constraints and/or objective function of

the considered optimization problem, i.e., the constraints (4.8)–(4.10), ∀h ∈ H, in

problem (G2), by a set of convex functions (linear or quadratic function) over a cer-

tain convex trust region R(itr) to form a convex approximate optimization problem.

Next, we set the decision variables for iteration itr as the optimal solution to the

approximate problem at iteration itr. The algorithm continues until a presumed

stopping criterion is satisfied. In the following, we provide details of our SCP based

algorithm to solve (G2).

Let π
(itr−1)
SCP = ({x(itr−1)

h,SCP }h∈H, {y
(itr−1)
h,SCP }h∈H, {v

(itr−1)
h,SCP }h∈H, {v

(itr−1)
h,SCP }h∈H,w

(itr−1)
SCP )

denote the values of decision variables of (G2) at the beginning of iteration each itr,

where π
(0)
SCP is a given initial point at iteration 1. For each h ∈ H, n ∈ N0, we

approximate its corresponding constrain in (4.8) using its first-order Taylor series

around π
(itr−1)
SCP as follows

qh,n(y
(itr−1)
h,SCP ) +∇qh,n(y

(itr−1)
h,SCP )T (yh − y

(itr−1)
h,SCP )− θhxh,n + vh,n − vh,n − wh = 0,

(4.14)

with ∇qh,n(yh) = [∂qh,n(yh)/∂yh,n0 , . . . , ∂qh,n(yh)/∂yh,N ]T . Similarly, for each h ∈

H, n ∈ N0, we approximate its corresponding constrains in (4.9) and (4.10) using

their first-order Taylor series around π
(itr−1)
SCP as

vh,n(y
(itr−1)
h,n,SCP − yh,n) + v

(itr−1)
h,n,SCP (yh,n − y(itr−1)

h,n,SCP ) = 0, (4.15)

vh,n(yh,n − y
(itr−1)
h,n,SCP )− v(itr−1)

h,n,SCP (yh,n − y(itr−1)
h,n,SCP ) = 0, (4.16)

respectively. Since approximations given in (4.14)–(4.16) are accurate in the vicinity
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of ({y(itr−1)
h,SCP }h∈H, {v

(itr−1)
h,SCP }h∈H, {v

(itr−1)
h,SCP }h∈H), we define a convex trust region R(itr)

to restrict the space of searching for π
(itr)
SCP with better accuracy. In particular, at

iteration itr, we define

R(itr) =

{
({yh}h∈H, {vh}h∈H, {vh}h∈H)

∣∣ ‖yh − y
(itr−1)
h,SCP ‖∞ ≤ ρ,

‖vh − v
(itr−1)
h,SCP ‖∞ ≤ ρ, ‖vh − v

(itr−1)
h,SCP ‖∞ ≤ ρ, ∀h ∈ H

}
, (4.17)

where ρ > 0 is a constant that controls the size of the trust region. We set ρ to

be a small value (as compared to the range of decision variables) to have accurate

approximations. Note that for R(itr), we do not impose any limits on xh’s and w

since the non-linear terms of constraints (4.8)–(4.10) do not involve these decision

variables.

Although for each h we can replace the constraints given in (4.8)–(4.10) by the

approximated expressions derived in (4.14)–(4.16) to form the approximate problem

of (G2), the resulting problem may or may not be feasible given any arbitrary chosen

initial point π
(0)
SCP . To alleviate this issue, we add a penalty function associated with

the constraints in (4.14)–(4.16) into the objective of the approximate problem of

(G2) instead of applying them as explicit constraints [99]. For each h ∈ H, we

define the penalty function at iteration itr as follows

φ
(itr)
h (xh,yh,vh,vh, wh) =

ξ

( N∑
n=n0

∣∣qh,n(y
(itr−1)
h,SCP ) +∇qh,n(y

(itr−1)
h,SCP )T (yh − y

(itr−1)
h,SCP )− θhxh,n + vh,n − vh,n − wh

∣∣
+

N∑
n=n0

∣∣vh,n(y
(itr)
h,n,SCP − yh,n) + v

(itr−1)
h,n,SCP (yh,n − y(itr−1)

h,n,SCP )
∣∣

+
N∑

n=n0

∣∣vh,n(yh,n − y
(itr−1)
h,n,SCP )− v(itr−1)

h,n,SCP (yh,n − y(itr−1)
h,n,SCP )

∣∣), (4.18)

where ξ � 1 (a large constant) is a given penalty coefficient. Accordingly, we can
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express the approximate problem of (G2) for each iteration itr, it = 1, 2, . . ., as

follows

(G2− itr) : min.
{xh}h∈H,{yh}h∈H,{vh}h∈H,{vh}h∈H,w

Cres(·) +
H∑
h=1

φ
(itr)
h (·)

s.t. (4.5) and (4.11)− (4.13),∀h ∈ H,

({yh}h∈H, {vh}h∈H, {vh}h∈H) ∈ R(itr).

It can be verified that (G2−itr) is a convex optimization problem and thus it can

be solved efficiently by, e.g., the interior-point method [90]. After solving (G2−itr),

we then set π
(itr)
SCP to be the obtained optimal solution.

In order to stop the algorithm, we first derive the Euclidean distance between

π
(itr−1)
SCP and π

(itr)
SCP as

ED(π
(itr−1)
SCP , π

(itr)
SCP ) =

(
‖r(itr−1)

SCP − r
(itr)
SCP‖

2
2 +

H∑
h=1

(
‖x(itr−1)

h,SCP − x
(itr)
h,SCP‖

2
2

+ ‖y(itr−1)
h,SCP − y

(itr)
h,SCP‖

2
2 + ‖v(itr−1)

h,SCP − v
(itr)
h,SCP‖

2
2 + ‖v(itr−1)

h,SCP − v
(itr)
h,SCP‖

2
2

))1/2

.

(4.19)

Accordingly, we evaluate

E = max

{
1

ξ

H∑
h=1

φ
(itr)
h (x

(itr)
h,SCP ,y

(itr)
h,SCP ,v

(itr)
h,SCP ,v

(itr)
h,SCP , w

(itr)
h,SCP ),

ED(π
(itr−1)
SCP , π

(itr)
SCP )

}
. (4.20)

Let ε > 0 be a given stopping threshold for the algorithm. If E ≤ ε, then the

algorithm terminates. Otherwise, if E > ε, then the algorithm continues to the next

iteration. Our SCP based algorithm is summarized in Table 4.1. Last, note that

since (G2-itr) is decreasing over the iteration, the convergence of the SCP based

algorithm is guaranteed.
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Table 4.1: SCP based algorithm for (G2).

a) Initialize itr ← 0, ρ > 0, ξ � 1, ε > 0, E > ε, and choose any initial point

π
(0)
SCP satisfying the linear constraints given in (4.5) and (4.11)–(4.13).

b) While Err < ε do:

1) Set itr ← itr + 1.

2) Specify the trust region R(itr) given in (4.17).

3) Form φ
(itr)
h (xh,yh,vh,vh, wh), ∀h ∈ H, as given in (4.18).

4) Solve (G2−itr) and save its optimal solution as π
(itr)
SCP .

5) Update E based on (4.20).

c) Return π
(itr)
SCP as the solution to (G2).

Proposition 4.6.1. Given ε→ 0, the solution returned by the SCP based algorithm

given in Table 4.1 locally minimizes (G2).

Proof. See Appendix J.

4.6.2 RS Based Algorithm

In this subsection, we propose an alternative algorithm, which is in similar

spirit of the well-know simulated annealing algorithm [100], in order to solve (G1)

directly by the approach of randomized search over the set of all possible values

of decision variables, discussed as follows. At each iteration itr, itr = 1, 2, . . ., we

replace each decision variable of (G1), one by one, by a randomly generated feasible

point. Accordingly, we evaluate the change in the objective value of (G1). Since

(G1) is a minimization problem, if the change in the objective value is negative, i.e.,

the objective value decreases as compared to the previous iteration, then we set this

particular decision variable for iteration itr − 1 as the given randomly generated

point with probability 1/2 < %1 ≤ 1 or we set it the same as its value at iteration itr

with probability 1− %1. If the change in objective value is positive, then we set this
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Table 4.2: RS based algorithm for (G1).

a) Initialize itr ← 0, itrmax > 1, 1/2 < %1 ≤ 1, 0 ≤ %2 < 1/2, Obest =∞, and set

π
(0)
RS as an arbitrary pint satisfying the constraints given in (4.5) and (4.6).

b) While itr < itrmax do:

1) Set itr ← itr + 1.

2) For all h ∈ H in order of h = 1 to h = H do:

• For all n ∈ N0 in order of n = n0 to n = N do:

• Set the discounted electricity price x̃h =
[x

(itr)
h,n0,RS

, . . . , x
(itr)
h,n−1,RS, x

′
h,n, x

(itr−1)
h,n+1,RS, . . . , x

(itr−1)
h,N,RS]T , where x′h,n

is randomly chose from xn ≤ x′h,n ≤ ẋh,n.

• Given xh = x̃h, solve (DR−h) and save its optimal solution (resched-
uled demand of aggregator h) as ỹh = [ỹh,n0 , . . . , ỹh,N ]T .

• Compute ∆ based on (4.21).

• If ∆ < 0 then set (x
(itr)
h,RS,y

(itr)
h,RS) = (x̃h, ỹh) with probability %1 or

(x
(itr)
h,RS,y

(itr)
h,RS) = (x

(itr−1)
h,RS ,y

(itr−1)
h,RS ) with probability 1− %1.

• If ∆ ≥ 0 then set (x
(itr)
h,RS,y

(itr)
h,RS) = (x̃h, ỹh) with probability %2 or

(x
(itr)
h,RS,y

(itr)
h,RS) = (x

(itr−1)
h,RS ,y

(itr−1)
h,RS ) with probability 1− %2.

3) If Cres(y
(itr)
1,RS, . . . ,y

(itr)
H,RS) < Obest then set Obest ← Cres(y

(itr)
1,RS, . . . ,y

(itr)
H,RS)

and πbest ← ({x(itr)
h,RS}h∈H, {y

(itr)
h,RS}h∈H).

c) Return πbest as the solution to (G1).

particular decision variable for iteration itr as the given randomly generated point

with probability 0 ≤ %2 < 1/2 or we set it the same as its value at iteration itr − 1

with probability 1−%2. The algorithm continues until a presumed stopping criterion

is satisfied. In the following, we provide the details of our RS based algorithm to

solve (G1).

Denote π
(itr−1)
RS = ({x(itr−1)

h,RS }h∈H, {y
(itr−1)
h,RS }h∈H) as the set of decision variables

of (G1) at the beginning of each iteration itr, where π
(0)
RS is a given initial point

at the beginning of iteration 1. Starting from h = 1 to h = H, we derive de-

cision variables for iteration itr, one by one, according to the following proce-

dure. For a particular aggregator h, starting from n = n0 to n = N , we first set
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x̃h = [x
(itr)
h,n0,RS

, . . . , x
(itr)
h,n−1,RS, x

′
h,n, x

(itr−1)
h,n+1,RS, . . . , x

(itr−1)
h,N,RS]T , where x′h,n is randomly

generated over xn ≤ x′h,n ≤ ẋh,n. Given xh = x̃h, we solve (DR−h) and denote its

optimal solution as ỹh = [ỹh,n0 , . . . , ỹh,N ]T . Accordingly, we evaluate the change in

the objective value of (G1) as

∆ = Cres(y
(itr)
1,RS, . . . ,y

(itr)
h−1,RS, ỹh,y

(itr−1)
h+1,RS, . . . ,y

(itr−1)
H,RS )

− Cres(y(itr)
1,RS, . . . ,y

(itr)
h−1,RS,y

(itr−1)
h,RS ,y

(itr−1)
h+1,RS, . . . ,y

(itr−1)
H,RS ). (4.21)

If ∆ < 0, we set (x
(itr)
h,RS,y

(itr)
h,RS) = (x̃h, ỹh) with probability %1 or (x

(itr)
h,RS,y

(itr)
h,RS) =

(x
(itr−1)
h,RS ,y

(itr−1)
h,RS ) with probability 1−%1. Otherwise, if ∆ ≥ 0, we set (x

(itr)
h,RS,y

(itr)
h,RS) =

(x̃h, ỹh) with probability %2 or (x
(itr)
h,RS,y

(itr)
h,RS) = (x

(itr−1)
h,RS ,y

(itr−1)
h,RS ) with probabil-

ity 1 − %2. Furthermore, we can track the best achieved solution to (G1) and

its resulted objective value, denoted by πbest and Obest, respectively, as follows.

At the end of iteration itr, if Cres(y
(itr)
1,RS, . . . ,y

(itr)
H,RS) < Obest, we update both

πbest = ({x(itr)
h,RS}h∈H, {y

(itr)
h,RS}h∈H) and Obest = Cres(y

(itr)
1,RS, . . . ,y

(itr)
H,RS). Otherwise,

no update is needed. Last, the algorithm terminates when itr = itrmax, where

itrmax > 1 is a given stopping threshold. Our RS based algorithm is summarized

in Table 4.2. As a concluding remark, note that due to the randomized nature of

the RS based algorithm for setting xh’s, this algorithm cannot ensure the fairness

among different aggregators, i.e., some aggregators may receiver higher discount as

compared to the others.

Note that by relying on a bidirectional communication system, we can deploy

the RS based algorithm to solve BDPP even without any presumed knowledge about

behavior of aggregators, which is discussed in the following remark.

Remark 4.6.1. At each iteration itr, given x̃h announced by the system operator

(distributed via the communication system), aggregator h solves its rescheduling

problem (DR−h) by setting xh = x̃h, which is required in Step b.1, bullet 3, in

Table 4.2. Then, aggregator h returns its rescheduled demand, i.e., ỹh, via the
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Figure 4.2: Hourly day-ahead demand of aggregator 1.

communication system to the system operator. Accordingly, the system operator

sets the new price and the above is repeated until the algorithm terminates.

4.7 Simulation Results

We consider a power system consisting of a single aggregatorH = 1 withN = 24

time slots (each slot duration is 1 hour). We set the day-ahead electricity price for

aggregator 1 to be time-invariant as ẋ1,n = 257.3$/MWh (xn = 253$/MWh), ∀n ∈

N , according to the electricity tariff for household users in Singapore (announced

in 01 January, 2014) [101]. We set the day-ahead demand ẏ1 to be the hourly

demand over one day (03 March, 2014) in the Singapore power grid [102], which

is plotted in Fig. 4.2. We also model the service quality index of aggregator 1 as

Q1(y1) = 1−
∑N

n=n0
(1− y1,n/ẏ1,n)2 [67] and set θ1 = 0.8×10−4, y

1,n
= 0.75ẏ1,n, and

y1,n = 1.25ẏ1,n, ∀n ∈ N , which means that aggregator 1 can change the day-ahead

demand of its users within ±25% at each time slot, but the total demand y1,tot

should be satisfied by time slot N = 24. Furthermore, we model the operational
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Figure 4.3: Changes in the residual cost of the system operator.

costs of the system operator over time slots by Cn(gn) = 0.037g2
n + 2.4gn$, ∀n ∈ N ,

with gn in MW.

We assume that the power system experiences a contingency from time slot

n0 = 12 till time slot n1 = 16, which results in Ae amount of supply deficit, with

Ae ∈ [−5000, −1000]MW. Given the above system setup, we solve ODPP, i.e. (G2),

locally optimally via our SCP based algorithm given in Table 4.1 by setting ρ = 100

(small as compared to the demand range), ξ = 108, and ε = 10−3. We also use our

RS based algorithm given in Table 4.1 to heuristically solve BDPP, i.e. (G1), by

setting itrmax = 2× 103, %1 = 0.95, and %2 = 0.1.

Fig. 4.3 plots saving in the residual cost of the system operator, defined as

∆Cres = Cres(y
′
1) − Cres(y1) with y′1 = [ẏ1,n0 , . . . , ẏ1,N ]. It is observed that both

algorithms help reduce the system operator’s residual cost significantly, e.g., 4.68%

(1.28 × 106$) and 7.02% (2.48 × 106$) for Ae = −3000MW and Ae = −5000MW,

respectively, for the SCP based algorithm. However, the saving resulted from de-

ploying the RS based algorithm is lower than that by the SCP based algorithm
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Figure 4.4: Reduction in the residual bill of aggregator 1.

consistently. This is expected since the RS based algorithm randomly searches over

the set of feasible values of decision variables regardless of the results obtained in

previous iterations. In contrast, the SCP based algorithm modifies the direction of

searching at each iteration according to the results of previous iterations to find a

solution with a lower objective value.

Figs. 4.4 shows reduction in the residual bill of aggregator 1, defined as

∆B1 = B1(x′1,y
′
1) − B1(x1,y1) with x′1 = [ẋ1,n0 , . . . , ẋ1,N ]. Fig. 4.5 also depicts

changes in the profit of the system operator, defined as ∆P = ∆Cres − ∆B1. By

comparing two figures, it is observed that although aggregator 1 pays less bill after

demand rescheduling, the residual profit of the system operator increases. This can

be explained by considering the fact that offering the discounted electric price x1

motivates aggregator 1 to shift a portion of its demand from time slots 12 ≤ n ≤ 16

to time slots 17 ≤ n ≤ 24 with lower electricity prices. Thus, as shown in Fig. 4.3,

the residual cost of the system operator reduces remarkably, which offsets the re-

duction in the bill of aggregator 1, i.e., ∆Cres > ∆B1. Moreover, it is observed that
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Figure 4.5: Changes in the profit of the system operator.

SCP based algorithm results in higher profit than the RS based algorithm. This is

due to the fact that RS based algorithm offers over-discounted electricity prices to

aggregator 1, which reduce the total bill of aggregator 1 more than that of the SCP

based algorithm, while these over-discounted electricity prices cannot help reduce

the residual cost of the system operator more than that of the SCP based algorithm.

Fig. 4.6 shows the impact of the weight coefficient θ1, which controls the trade-

off between the residual bill of aggregator 1 and its service quality index, on the profit

of the system operator ∆P , given Ae = −3000MW. It is observed that the profit of

system operator increases over θ1. This is due to the fact that when θ1 increases,

aggregator 1 pays less attention to its service quality index as compared to its

residual bill (see (4.2)); therefore, the system operator can motivate the aggregator

to reschedule its demand by offering lower discounts. This increases the revenue

of the system operator from selling energy to the aggregator and hence its profit

increases.
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Table 4.3: Average convergence time of algorithms.

Ae (MW)
Convergence time (Second)

SCP based algorithm RS based algorithm

-1000 82.37 78.31

-3500 82.12 79.16

Last, we set θ1 = 0.8× 10−4 again, and compare the average convergence time

of th two algorithms under Ae = −1000/− 3500MW in Table 4.3.3 To derive the

average convergence time, we use 103 randomly generated initial points for each

algorithm. It is observed that SCP based and RS based algorithms solve the prob-

lem in approximately 82 and 79 seconds on average, respectively, which are largely

shorter than the activation time limit for the secondary reserve service, typically,

5–10 minutes. As a result, our proposed pricing scheme can be implemented in real

time as both secondary/tertiary reserve services for achieving balanced supply and

demand for long term after the contingency. Note that for the RA based algorithm,

3Simulations are implemented on MATLAB R2011a and tested on a PC with a Core i7-2600
CPU,3.4-GHz processor, 8-GB RAM, and Windows 7.
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it is assumed that any data exchanges between the system operator and aggregator

1 over the communication system in both directions incur a 0.2 millisecond delay

(0.1 millisecond for each direction).

4.8 Chapter Summary

In this chapter, we proposed a real-time pricing scheme for the system operator

to balance the supply and demand in long term, say, a couple of hours, after a con-

tingency of supply deficit. Under our proposed scheme, the system operator is aimed

to minimize the operational costs of the power grid by offering discounted electricity

prices to self-interested aggregators in order to incentivize them to reschedule their

day-ahead demand for frequency control. We formulated BDPP and ODPP problem

to design discounted electricity prices for the system operator, for which two efficient

algorithms were proposed. Based on the Singapore power grid data, it was shown

that the real-time pricing scheme proposed is beneficial for both the system operator

and aggregators upon the contingency, i.e, the cost of the system operator decreases

(7% saving at 5000MW amount of supply deficiency), while each aggregator pays

less bill than the case without demand rescheduling (1% saving correspondingly). It

was also shown that our proposed algorithms for solving BDPP and ODPP converge

in an efficient time, e.g., nearly 80 seconds by considering the processing delay of

the communication system. Hence, our proposed pricing scheme can manage DR of

aggregators in real time to provide cost-efficient secondary/tertiary reserve services.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis has pursued a comprehensive and in-depth investigation of deploying

distributed DR for frequency control, which can be used in replacement of the con-

ventional primary/secondary/tertiary reserve services in smart grid. We summarize

the main contributions of this thesis as follows.

• In Chapter 2, we proposed a demand-side frequency control algorithm via ran-

domized on-off operation of distributed SAPPs. We characterized the impacts

of SAPPs’ randomized responses on the system frequency upon a contingency

of supply shortfall. Moreover, we verified the performance of our proposed

frequency control via extensive simulations based on the IEEE 9-Bus test sys-

tem as well as the aggregate model of the Ireland power grid. It was observed

that with our proposed frequency control algorithm, SAPPs’ responses can re-

place the conventional primary reserve service to restore the system frequency

reliably and cost-efficiently.

• In Chapter 3, we proposed a randomized frequency control algorithm via dis-

tributed EVs, where both the charging and discharging control of EVs was

used for frequency recovery. We characterized the system frequency upon a

contingency of supply deficit by taking EVs’ randomized responses into ac-

count. Based on the derived analytical results, we formulated an optimization

problem to design EVs’ response rates so as to minimize the expected cost of
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deploying our proposed frequency control algorithm subject to the given power

grid requirements. An efficient algorithm was proposed to efficiently solve the

formulated problem under certain practical assumptions. Last, we validated

our analysis via simulations, from which it was observed that our distributed

frequency control algorithm via EVs can be a promising low-cost solution to

help maintain the power system stability.

• In Chapter 4, we proposed a real-time pricing scheme to manage DR in a group

of self-interested aggregators to provide inexpensive secondary/tertiary reserve

services. Specifically, we formulated a bilevel optimization problem to design

discounted electricity prices for the system operator, where efficient algorithms

were developed to solve the problem. We compared the performance of various

algorithms via a numerical example based on the Singapore power grid data.

It was observed that the demand rescheduling of aggregators can reduce the

frequency recovery cost remarkably, while aggregators also pay less electricity

bills than the case without demand rescheduling.

5.2 Future Work

Last, we point out some future work directions in the following which we deem

important and worthy of further investigations by extending the results presented

in this thesis.

In Chapters 2 and 3, we characterized the impacts of randomized responses

of distributed frequency-responsive loads, i.e., SAPPs and EVs, on the system fre-

quency dynamics by assuming a simplified model of the power system. However, to

achieve a more detailed assessment of DR on a power system with a certain network

topology, we need to use a more complex power system representation, as proposed

in [89]. Moreover, the joint design of our proposed DR-enable frequency control
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Figure 5.1: Markov process illustrating the motion of an EV over time.

together with the conventional generation-side controllers is practically important

and worthy of future investigation.

In our analysis in Chapter3, we assumed that the number of EVs that are

connected to the grid as well as their initial operational modes are known perfectly.

However, this assumption may not be practically valid due to, e.g., the random

deployment of EVs. Recently, Soares et al. [106] used a Markovian model with

time-varying transient probabilities to represent the stochastic nature of motion of

an EV over time. This model with the state transient probabilities pi(t), i = 1, . . . , 6,

at each time slot t, t ∈ {1, . . . , 24}, is shown in Fig. 5.1. A similar model can be

also developed to express the operational mode of an EV over time. Based on

these stochastic models, we can extend the theoretical results given in Chapter 3

to consider the impacts of random number of grid-connected EVs as well as their

randomized operational modes on the system frequency.

In Chapter 4, we assumed that each aggregator can adjust the power consump-

tion of its users in real time, but at the cost of degrading the service quality. In

practice, users can also be modelled as selfish entities and thus the aggregators need
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to motivate them to defer their loads, e.g., by offering some monetary rewards in

return. Accordingly, the real-time pricing problem of the system operator can be

formulated as a general three-level optimization problem with two-sided energy trad-

ing, where the first two layers are the same as our formulated bilevel optimization

problem in Chapter 4, while the third layer is the users’ utility maximization.

113



Appendix A

Proof of Proposition 2.5.1

Given Ae < Ae,min and Aa ≥ Aa,min, it follows that there exist t0 > 0 and

consequently Tr > t0. Over time t0 ≤ t ≤ Tr, all SAPPs that respond by switching

off their loads will remain in the off state since f(t) ≤ fmin. Since it is assumed that

Si(0) = 1, i = 1, . . . ,M , the system frequency given in (2.7) can be simplified as

follows

f(t) = f0 +
f0

KfA0

(
Ae
(
1− e−αt

)
+

M∑
i=1

Ai

(
1− e−α(t−t0−T ∗i )+

))
, (A.1)

where T ∗i = t∗i − t0 ≥ 0 denotes the duration between t0 and the first response

(monitoring event) by SAPP i after t0, denoted by t∗i . From (A.1) and by considering

the fact that SAPPs respond independently, it follows that the mean value of the

system frequency function is given by

E [f(t)] = f0 +
f0

KfA0

(
Ae
(
1− e−αt

)
+

M∑
i=1

E
[
Ai

(
1− e−α(t−t0−T ∗i )+

)])
. (A.2)

We rewrite each of the summation term on the RHS of (A.2) as follows

E
[
Ai

(
1− e−α(t−t0−T ∗i )+

)]
= AiE

[(
1− e−α(t−t0−T ∗i )+

)]
= Ai

(
1− E

[
e−α(t−t0−T ∗i )+

])
. (A.3)

Due to the memoryless property of the Poisson process [81], it follows that T ∗i is

exponentially distributed with mean of 1/λi. Therefore, we obtain E[e−α(t−t0−T ∗i )+ ]
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as follows

E[e−α(t−t0−T ∗i )+ ] =

∫ ∞
0

e−α(t−t0−z)+λie
−λizdz

=

∫ t−t0

0

λie
−α(t−t0−z)e−λizdz +

∫ ∞
t−t0

λie
−λizdz

=


λi

λi − α
e−α(t−t0) − α

λi − α
e−λi(t−t0), if λi 6= α and t > t0

λi(t− t0)e−α(t−t0) + e−λi(t−t0), if λi = α and t > t0

1, if t = 0.

(A.4)

From (A.3) and (A.4), the proof of Proposition 2.5.1 is thus completed.
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Proof of Proposition 2.5.2

Similar to the proof of Proposition 2.5.1, overt time t0 ≤ t ≤ Tr, since it is

assumed that Si(0) = 1, i = 1, . . . ,M , the variance of the system frequency is

expressed as

Var [f(t)] =

(
f0

KfA0

)2

Var

[
M∑
i=1

Ai

(
1− e−α(t−t0−T ∗i )+

)]
(?)
=

(
f0

KfA0

)2 M∑
i=1

A2
i Var

[
1− e−α(t−t0−T ∗i )+

]
(B.1)

where (?) is due to the fact that T ∗i ’s are independent over i. In the following, we

can derive each of the variance terms on the RHS of (B.1) as follows

Var
[
1− e−α(t−t0−T ∗i )+

]
= E

[(
1− e−α(t−t0−T ∗i )+

)2
]
−
(
E
[
1− e−α(t−t0−T ∗i )+

])2

.

(B.2)

First, we derive

E
[(

1− e−α(t−t0−T ∗i )+
)2
]

= E
[
1 + e−2α(t−t0−T ∗i )+ − 2e−α(t−t0−T ∗i )+

]
= 1− 2E

[
e−α(t−t0−T ∗i )+

]
+ E

[
e−2α(t−t0−T ∗i )+

]
= 1− 2uα(λi, t− t0) + u2α(λi, t− t0). (B.3)
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Next, we derive

(
E
[
1− e−α(t−t0−T ∗i )+

])2

=
(

1− E
[
e−α(t−t0−T ∗i )+

])2

= 1− 2uα(λi, t− t0) + (uα(λi, t− t0))2 . (B.4)

By substituting (B.3) and (B.4) into (B.2), we then obtain

Var
[
1− e−α(t−t0−T ∗i )+

]
= u2α(λi, t− t0)− (uα(λi, t− t0))2 (B.5)

By defining v(α, λ, s) = u2α(λ, s) − (h(α, λ, s))2 and substituting (B.5) into (B.1),

the proof of Proposition 2.5.2 is thus completed.

117



Appendix C

Proof of Proposition 2.5.4

The probability that an SAPP in Class j has responded by switching off its load

by time t, t0 ≤ t ≤ Tr, is obtained as 1 − e−λ̃j(t−t0). Note that since it is assumed

that all SAPPs in Class j are initially in an on state, they will respond by switching

off their loads at their first frequency monitoring event after t0. The mean value of

Nj(t), over time t0 ≤ t ≤ Tr, can be thus derived as

E[Nj(t)] =

Mj∑
m=1

m

(
Mc

j

)(
1− e−λ̃j(t−t0)

)m (
1− e−λ̃j(t−t0)

)Mj−m

= Mj

(
1− e−λ̃j(t−t0)

) Mj∑
m=1

(
Mj − 1

m− 1

)(
1− e−λ̃j(t−t0)

)m−1 (
e−λ̃j(t−t0)

)Mj−m

= Mj

(
1− e−λ̃j(t−t0)

)(
1− e−λ̃j(t−t0) + e−λ̃j(t−t0)

)Mj−1

= Mj

(
1− e−λ̃j(t−t0)

)
. (C.1)

The proof of Proposition 2.5.4 is thus completed.
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Proof of Proposition 2.5.5

Let Pos|s denote the conditional probability of frequency overshoot due to over-

responses of SAPPs given a frequency recovery time Tr = s, with s > t0. Since

SAPPs respond independently, we thus have

Pos|s =
∑
n∈O

J∏
j=1

Pr{Ñj(Tr) = nj | Tr = s} (D.1)

=
∑
n∈O

J∏
j=1

(
Mj

nj

)(
1− e−λ̃j(s−t0)

)nj
(
e−λ̃j(s−t0)

)Mj−nj

, (D.2)

where (D.1) follows from (2.20) and (D.2) follows from (2.21). Note that Pos|s is

the probability of frequency overshoot conditioned given Tr = s, which should be

averaged over the distribution of Tr to obtain the exact value of the probability of

frequency overshoot. Similar to Proposition 2.5.3, since the distribution of Tr is

difficult to be obtained, we use the average frequency recovery time T r to obtain

an approximation for Pos. By replacing Tr by T r in (D.2), Proposition 2.5.5 thus

follows.
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Proof of Proposition 3.5.1

First, we consider the case of VI = 0 and VD = 0. Based on (3.1), over time

t0 ≤ t ≤ Tr, each EV in the charging mode responds by first switching to the idle

mode and then to the discharging mode at its first and second frequency monitoring

events after t0, respectively. Hence, we simplify (3.4) as

f(t) = f0 +
f0

KfA0

(
Ae
(
1− e−αt

)
+
∑
v∈VC

AC,v

(
1− e−α(t−t0−T̂ ∗1,v)+

)
+
∑
v∈VC

AD,v

(
1− e−α(t−t0−T̂ ∗3,v)+

))
, (E.1)

where T̂ ∗3,v = T̂ ∗1,v + T̂ ∗2,v. Specifically, T̂ ∗1,v = t̂∗1,v − t0 denotes the time duration

between t0 and the first monitoring event of EV v after t0, while T̂ ∗2,v = t̂∗2,v − t̂∗1,v
denotes the time duration between the first and second monitoring events of EV v

after t0. Since all EVs respond independently, the mean value of the given system

frequency given in (E.1) can be expressed as

E[f(t)] = f0 +
f0

KfA0

(
Ae
(
1− e−αt

)
+
∑
v∈MC

AC,v

(
1− E

[
e−α(t−t0−T̂ ∗1,v)+

])
+
∑
v∈VC

AD,v

(
1− E

[
e−α(t−t0−T̂ ∗3,v)+

]))
. (E.2)

Due to the memoryless property of Poisson processes [81], it can be readily

verified that both T̂ ∗1,v and T̂ ∗2,v are exponentially distributed with respective mean

values of 1/λC,v and 1/λI,v for EV v. As a result, the probability distribution
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function (PDF) of T̂ ∗3,v assuming λ∗C,v 6= λ∗I,v (the sum of two exponential variables

with different mean values) is given by

fT̂ ∗3,v(z) =
λC,vλI,v
λI,v − λC,v

(
e−λC,vz − e−λI,vz

)
, z ≥ 0. (E.3)

On the other hand, the distribution function of T̂ ∗3,v assuming λC,v = λI,v (the sum

of two exponential variables with the same mean value) is given by

fT̂3,v(z) = λ2
C,vze

−λC,vz, z ≥ 0. (E.4)

Accordingly, we simplify (E.2) by showing

E
[
e−α(t−t0−T̂ ∗1,v)+

]
=

∫ ∞
0

e−α(t−t0−z)+λC,ve
−λC,vzdz

=

∫ t−t0

0

e−α(t−t0−z)λC,ve
−λC,vzdz +

∫ ∞
t−t0

λC,ve
−λC,vzdz

=


λC,ve

−α(t−t0) − αe−λC,v(t−t0)

λC,v − α
, if λC,v 6= α and t > t0

λC,v(t− t0)e−α(t−t0) + e−λC,v(t−t0), if λC,v = α and t > t0

1, if t = 0.

(E.5)

For our convenience, uα(λ, s) has been previously defined in (2.14). Assuming λC,v 6=

λI,v, we then have

E
[
e−α(t−t0−T̂ ∗3,v)+

]
=

∫ ∞
0

e−α(t−t0−z)+ λC,vλI,v
λI,v − λC,v

(
e−λC,vz − e−λI,vz

)
dz

=
λI,v

λI,v − λC,v

∫ ∞
0

e−α(t−t0−z)+λC,ve
−λC,vzdz +

λC,v
λC,v − λI,v

∫ ∞
0

e−α(t−t0−z)+λI,ve
−λI,vzdz

=
λI,v

λI,v − λC,v
uα(λC,v, t− t0) +

λC,v
λC,v − λI,v

uα(λI,v, t− t0). (E.6)
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Similarly, assuming λC,v = λI,v, we have

E
[
e−α(t−t0−T̂ ∗3,v)+

]
=

∫ ∞
0

e−α(t−t0−z)+λ2
C,v z e

−λC,vzdz

=

∫ ∞
0

e−α(t−t0−z)+λC,ve
−λC,vzdz − λC,v

∂

∂λC,v

∫ ∞
0

λC,ve
−λC,vzdz

= uα(λC,v, t− t0)− λC,v
∂

∂λC,v
uα(λC,v, t− t0). (E.7)

By substituting (E.5), (E.6), and (E.7) into (E.2), the proof is thus completed for

the case of VI = 0 and VD = 0. The obtained results hold (without any changes)

for the case of VD 6= 0 due to the fact that EVs that are initially in the charging

mode do not respond over time t0 ≤ t ≤ Tr since f(t) < fmin. The above proof can

also be easily extended to the case of VI 6= 0, for which the details are omitted for

brevity. Proposition 3.5.1 is thus proved.
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Proof of Proposition 3.5.2

First, we consider the case of VI = 0 and VD = 0. Similar to the proof of

Proposition 3.5.1, over time t0 ≤ t ≤ Tr, by considering the fact that T̂ ∗1,v and T̂ ∗3,v

are independent over v (see Appendix E), the variance of the system frequency is

expressed as

Var [f(t)] =

(
f0

KfA0

)2(
A2
C,v

∑
v∈Vc

Var
[(

1− e−α(t−t0−T̂ ∗1,v)+
)]

+A2
D,v

∑
v∈Vc

Var
[(

1− e−α(t−t0−T̂ ∗3,v)+
)])

. (F.1)

We simplify (F.1) by showing that

Var
[
1− e−α(t−t0−T̂ ∗1,v)+

]
= E

[(
1− e−α(t−t0−T̂ ∗1,v)+

)2
]
−
(
E
[
1− e−α(t−t0−T̂ ∗1,v)+

])2

= E
[
1− 2e−α(t−t0−T̂ ∗1,v)+ + e−2α(t−t0−T̂ ∗1,v)+

]
−
(
E
[
1− e−α(t−t0−T̂ ∗1,v)+

])2

= 2E
[
1− e−α(t−t0−T̂ ∗1,v)+

]
− E

[
1− e−2α(t−t0−T̂ ∗1,v)+

]
−
(
E
[
1− e−α(t−t0−T̂ ∗1,v)+

])2

= 2hα(1, 0, λC,v, λI,v, t− t0)

− h2α(1, 0, λC,v, λI,v, t− t0)− (hα(1, 0, λC,v, λI,v, t− t0))2 . (F.2)
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Moreover, we can show that

Var
[
1− e−α(t−t0−T̂ ∗3,v)+

]
= E

[(
1− e−α(t−t0−T̂ ∗3,v)+

)2
]
−
(
E
[
1− e−α(t−t0−T̂ ∗3,v)+

])2

= E
[
1− 2e−α(t−t0−T̂ ∗3,v)+ + e−2α(t−t0−T̂ ∗3,v)+

]
−
(
E
[
1− e−α(t−t0−T̂ ∗3,v)+

])2

= 2E
[
1− e−α(t−t0−T̂ ∗3,v)+

]
− E

[
1− e−2α(t−t0−T̂ ∗3,v)+

]
−
(
E
[
1− e−α(t−t0−T̂ ∗3,v)+

])2

= 2hα(0, 1, λC,v, λI,v, t− t0)

− h2α(0, 1, λC,v, λI,v, t− t0)− (hα(0, 1, λC,v, λI,v, t− t0))2 . (F.3)

By substituting (F.2) and (F.3) into (F.1), the proof of Proposition 3.5.2 is thus

completed for the case of VI = 0 and VD = 0. The obtained results hold for the

case of VD 6= 0 due to the fact that EVs that are initially in the charging mode do

not respond over time t0 ≤ t ≤ Tr since f(t) ≤ fmin. The above proof also can be

easily extended to the case of VI 6= 0, for which the details are omitted for brevity.

Proposition 3.5.2 is thus proved.
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Proof of Proposition 3.5.4

First, we consider the case of VI,k = 0 and VD,k = 0. By assuming λ̃C,k 6= λ̃I,k,

the probability that an EV from Class k has switched from the charging mode to

the idle mode by time t, t0 ≤ t ≤ Tr, is derived as

Pr
{
t0 + T̂ ∗1,k < t ∩ t0 + T̂ ∗1,k + T̂ ∗2,k > t

}
=

∫ t−t0

0

∫ +∞

t−t0−z1
λ̃C,ke

−λ̃C,kz1λ̃I,ke
−λ̃I,kz2dz2 dz1

=


λ̃C,k

(
1− e−λ̃C,k(t−t0)

)
− λ̃C,k

(
1− e−λ̃I,k(t−t0)

)
λ̃C,k − λ̃I,k

, if t > t0

0, otherwise,

(G.1)

while the probability of switching from the charging mode to the discharging mode

is given by

Pr
{
t0 + T̂ ∗1,k + T̂ ∗2,k < t

}
=

∫ s

0

∫ s−z1

0

λ̃C,ke
−λ̃C,kz1λ̃I,ke

−λ̃I,kz2dz2 dz1

=


λ̃I,k

(
1− e−λ̃C,ks

)
− λ̃C,k

(
1− e−λ̃I,ks

)
λ̃I,k − λ̃C,k

, if t > t0

0, otherwise.

(G.2)

Similarly, we can derive the aforementioned probabilities for the case of λ̃C,k = λ̃I,k.

For convenience, we define p2(λC , λI , s) and p3(λC , λI , s) in (3.14) and (3.15) to

represent the results given in (G.1) and (G.2), respectively. The probability that an
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EV from Class k remains in the charging mode by time t, t0 ≤ t ≤ Tr, is thus given

by 1 − p2(λ̃C,k, λ̃I,k, t − t0) − p3(λ̃C,k, λ̃I,k, t − t0). For convenience, we also define

p1(λC , λI , s) = 1− p2(λC , λI , s)− p3(λC , λI , s).

Next, we show the expected number of EVs from Class k which remain in the

charging mode by time t, t0 ≤ t ≤ Tr, is given by

E[NC,k(t)]

=

VC,k∑
m=1

m

(
VC,k
m

)(
p1(λ̃C,k, λ̃I,k, t− t0)

)m (
1− p1(λ̃C,k, λ̃I,k, t− t0)

)VC,k−m

=

VC,k∑
m=1

VC,k

(
VC,k − 1

m− 1

)(
p1(λ̃C,k, λ̃I,k, t− t0)

)m (
1− p1(λ̃C,k, λ̃I,k, t− t0)

)VC,k−m

= VC,kp1(λ̃C,k, λ̃I,k, t− t0)
(
p1(λ̃C,k, λ̃I,k, t− t0) + 1− p1(λ̃C,k, λ̃I,k, t− t0)

)VC,k−1

= VC,kp1(λ̃C,k, λ̃I,k, t− t0), (G.3)

Then the average number of EVs from Class k which are in the idle and discharging

modes can be obtained similarly. The above proof can be extended to the case of

VI,k 6= 0 and VD,k 6= 0, from which the details are omitted for brevity. The proof of

Proposition 3.5.4 is thus completed.
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Proof of Proposition 3.5.6

Let Pos|s denote the conditional probability of frequency overshoot due to over-

responses of EVs given Tr = s, with s > t0. Based on the fact that EVs respond

independently, we thus have

Pos|s =
∑
M∈S

K∏
k=1

Pj(mj, s), (H.1)

where M = [m1, . . . ,mK ]T and Pj(mj, t) is given in (3.18). In general, we need

the distribution of Tr to obtain the exact probability of frequency overshoot, Pos, by

averaging (H.1) over the given distribution. Since the distribution of Tr is difficult

to be obtained, the average frequency recovery time T r given in Proposition 3.5.3 is

used to find an approximation for Pos by replacing Tr with T r in (H.1). The proof

is thus completed.
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Appendix I

Stackelberg Game

Stackelberg game was developed in 1934 by Heinrich Stackelberg [107], which

was a breaking point in the history of market structure study. Stackelberg game

is a model of imperfect competition based on a sequential non-cooperative game

in which the leader, i.e., the system operator in this thesis, moves first and then

the followers, i.e., aggregators in this thesis, move sequentially in response to the

leader’s decision.

Let us study a simple example of Stackelberg game consisting of two electric

companies selling power in the real-time electricity market under a given price per

unit function (given by the users), but different generation cost functions. In this

example, we assume that Company 1 is a well-known brand in the market and

hence plays the role of leader, while Company 2 is a newly established brand and

hence plays the role of follower. First, Company 1 decides to sell q1 > 0 unit of

power. In response to this decision, Company 2 decides to sell q2 > 0 unit of

power. Let P (q1, q2) = a − b(q1 + q2), with a > 0 and b > 0, denote the price

per unit function given by the users. Furthermore, denote C1(q1) = c1q
2
1, with

c1 > 0, and C2(q2) = c2q
2
2, with c2 > 0, as the cost functions of Companies 1

and 2, respectively. The net profits of Companies 1 and 2, are thus derived as

Π1(q1, q2) = aq1 − b(q1 + q2)q1 − c1q
2
1 and Π2(q1, q2) = aq2 − b(q1 + q2)q2 − c2q

2
2,

respectively, from which it is observed that the benefit of each individual company

is a function of its selling power as well as that of the other company. To find

the Nash equilibrium of the aforementioned game, we can use backward induction,
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Figure I.1: Obtained Π∗1 and Π∗2 versus the cost coefficient c2.

which is discussed in the following.

Given q1, the Company 2 can maximize its profit by setting q2 = f(q1) =

[(a − bq1)]+/(2(b + c2)). By assuming that Company 1 knows (or predicts) the

behavior of Company 2, i.e., f(q1) is known to Company 1, it can maximize its

profit by setting q1 = q∗1 = max{0, z}, where z solves

a− b

2(b+ c2)
[a− bz]+ − 2(b+ c1)z = 0. (I.1)

The Nash equilibrium is thus given by (q1, q2) = (q∗1, f(q∗1)). Given the Nash

equilibrium, the achievable profits for the two companies are obtained as Π∗1 =

Π1(q∗1, f(q1∗)) and Π∗2 = Π2(q∗1, f(q∗1)).

For the purpose of exposition, we now consider a numerical example. Set a =

10$, b = 0.5$/MW, c1 = 0.2$/MW2, and vary 0 < c2 < 1.6$/MW2 in the above

example. Fig. I.1 compares Π∗1 and Π∗2 versus c2, from which it is observed that

Π∗2 monotonically decreases over c2, while the opposite is true for Π∗1. This can be
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explained by considering the fact that the generation cot (per unit) of Company

2 increases when c2 increases. As a result, Company 2 reduces selling power q2 to

moderate the increasing trend of its generation cot, which lowers its revenue from

selling power to the users. On the other hand, the price per unit, i.e., P (q1, q2) =

10 − 0.5(q1 + q2), increases when q2 decreases, with q1 fixed. Hence, the profit of

Company 1 increases. This example verifies that in Stackelberg game, the followers’

parameters can implicitly affect the decision/utility of the leader. The opposite is

also true, i.e., the change in decision of the leader affects the followers’ ultimate

decisions.
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Proof of Proposition 4.6.1

Let itr? > 1 denotes the iteration that algorithm terminates, as a result, the

algorithm given in Table 4.1 returns π
(itr?)
SCP as the solution to (G2). Herein, we prove

that π
(itr?)
SCP is a locally optimal solution to (G2). Our proof consists of two main

steps. First, we show that π
(itr?)
SCP is a feasible point to (G2). Second, we show that

π
(itr?)
SCP locally minimizes (G2).

First, due to the fact that the stopping criterion is satisfied at the iteration itr?,

i.e., E ≤ ε holds, it thus follows that both the conditions
∑H

h=1 φ
(itr?)
h (x

(itr?)
h,SCP ,y

(itr?)
h,SCP ,

v
(itr?)
h,SCP ,v

(itr?)
h,SCP , w

(itr?)
h,SCP ) ≤ ε and ED(π

(itr?−1)
SCP , π

(itr?)
SCP ) ≤ ε hold simultaneously. Due

to the fact that φ
(itr)
h (·), h = 1, . . . , H, and ED(·) are all non-negative functions,

given ε→ 0 and ξ � 1, we obtain

φ
(itr?)
h (x

(itr?)
h,SCP ,y

(itr?)
h,SCP ,v

(itr?)
h,SCP,v

(itr?)
h,SCP , w

(itr?)
h,SCP ) = 0, ∀h ∈ H, (J.1)

ED(π
(itr?−1)
SCP , π

(itr?)
SCP ) = 0. (J.2)

From (J.1), it follows that |qh,n(y
(itr?−1)
h,SCP ) + ∇qh,n(y

(itr?−1)
h,SCP )T (y

(itr?)
h,SCP − y

(itr?−1)
h,SCP ) −

θhx
(itr?)
h,n,SCP+t

(itr?)
h,n,SCP−t

(itr?)
h,n,SCP−r

(itr?)
h,SCP |=0, |v(itr?)

h,n,SCP (y
(itr?−1)
h,n,SCP−ya,h)+v

(itr?−1)
h,n,SCP (y

(itr?)
h,n,SCP

−y(itr?−1)
h,n,SCP )| = 0, and |v(itr?)

h,n,SCP (yh,n − y
(itr?−1)
h,n,SCP ) − v(itr?−1)

h,n,SCP (y
(itr?)
h,n,SCP − y

(itr?−1)
h,n,SCP )| = 0,

n = n0, . . . , N , h = 1, . . . , H. From (J.2), it also follows that ‖x(itr?−1)
h,SCP −x

(itr?)
h,SCP‖2 =

0, ‖y(itr?−1)
h,SCP − y

(itr?)
h,SCP‖2 = 0, ‖v(itr?−1)

h,SCP − v
(itr?)
h,SCP‖2 = 0, ‖v(itr?−1)

h,SCP − v
(itr?)
h,SCP‖2 = 0,

h = 1, . . . , H, and ‖w(itr?−1)
SCP −w(itr?)

SCP ‖2 = 0. According to the above results obtained
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from (J.1) and (J.2), we thus have

qh,n(y
(itr?)
h,SCP )− θhx(itr?)

h,n,SCP + v
(itr?)
h,n,SCP − v

(itr?)
h,n,SCP − w

(itr?)
h,SCP = 0, ∀n ∈ N0, ∀h ∈ H,

(J.3)

v
(itr?)
h,n,SCP (y

(itr?)
h,n,SCP − yh,n) = 0, ∀n ∈ N0, ∀h ∈ H, (J.4)

v
(itr?)
h,n,SCP (yh,n − y

(itr?)
h,n,SCP ) = 0, ∀n ∈ N0, ∀h ∈ H. (J.5)

Since π
(itr?)
SCP is a feasible point of (G2−itr), it holds the constraints given in (4.5)

and (4.11)–(4.13). Furthermore, π
(itr?)
SCP satisfies the constraint given in (J.3), (J.4),

and (J.5), which are equivalent to those given in (4.8), (4.9), and (4.9), respectively.

Therefore, it follows that π
(itr?)
SCP is a feasible point to (G2).

Next, we want to show that π
(itr?)
SCP is a locally optimal solution to (G2). Since

π
(itr?)
SCP is the optimal solution to (G2− itr?), it follows that for any feasible point

({xh}h∈H, {yh}h∈H, {vh}h∈H, {vh}h∈H,w) to (G2− itr?), we have

Cres(y
(itr?)
1,SCP , . . . ,y

(itr?)
H,SCP ) +

H∑
h=1

φ
(itr?)
h (x

(itr?)
h,SCP ,y

(itr?)
h,SCP ,v

(itr?)
h,SCP ,v

(itr?)
h,SCP , w

(itr?)
h,SCP ) ≤

Cres(y1, . . . ,yH) +
H∑
h=1

φ
(itr)
h (xh,yh,vh,vh, wh). (J.6)

Moreover, from (J.2), it follows that
∑H

h=1 φ
(itr?)
h (xh,yh,vh,vh, wh) = 0 for any

point ({xh}h∈H, {yh}h∈H, {vh}h∈H, {vh}h∈H,w) in the close vicinity of π
(itr?)
SCP . Ac-

cordingly, we can simplify (J.6) as follows

Cres(y
(itr?)
1,SCP , . . . ,y

(itr?)
H,SCP ) ≤ Cres(y1, . . . ,yH), (J.7)

where Cres(·) is the objective function of (G2). Last, since π
(itr?)
SCP is a feasible point

to (G2) and (J.7) is valid for yh’s nearby y
(itr?)
h,SCP (neighboring points only), it follows

that π
(itr∗)
SCP locally minimizes (G2). The proof is thus completed.

132



References

[1] A. Zidan, and E. F. El-Saadany, “A cooperative multiagent framework for self-
healing mechanisms in distribution systems, IEEE Trans. Smart Grid, vol. 3,
no. 3, pp. 1525-1539, Sept. 2012.

[2] Operation statistics, available online at https://www.ema.gov.sg/cmsmedia/
Publications_and_Statistics/Publications/SES\%202014\%20Chapters/

Chapter\%206\%20Solar.pdf, May 2015.

[3] K. Rahbar, J. Xu, and R. Zhang, “Real-time energy storage management for
renewable integration in microgrid: an Off-Line optimization approach, IEEE
Trans. Smart Grid, vol. 6, no. 1, pp. 124-134, Jan. 2015.

[4] Technical Report, available online at http://energy.gov/sites/prod/

files/oeprod/DocumentsandMedia/DOE_Benefits_of_Demand_Response_

in_Electricity_Markets_and_Recommendations_for_Achieving_Them_

Report_to_Congress.pdf, Feb. 2006.

[5] S. Mohagheghi, J. Stoupis, Z. Y. Wang, Z. Li, and H. Kazemzadeh, “Demand
response architecture: integration into the distribution management system,”
IEEE Int. Conf. Smart Grid Communications (SmartGridComm), pp. 501-506,
Oct. 2010.

[6] S. C. Chan, K. M. Tsui, H. C. Wu, Y. Hou, Y. Wu, and F. F. Wu, “Load/price
forecasting and managing demand response for smart grids: methodologies and
challenges,” IEEE Sig. Process. Mag., vol. 29, no. 5, pp. 68-85, Sept. 2012.

[7] C. O. Adika and F. Wang, “Autonomous appliance scheduling for household
energy management, IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 673-682, Mar.
2014.

[8] P. Snchez-Martn, G. Snchez, and G. Morales-Espaa, “Direct load control deci-
sion model for aggregated EV charging points,” IEEE Trans. Power Sys., vol.
27, no. 3, pp. 1577-1584, June 2013.

[9] M. Alizadeh, A. Scaglione, and R. J. Thomas, “From packet to power switching:
digital direct load scheduling,” IEEE J. Sel. Areas Commun., vol. 30, no. 6,
pp. 1027-1036, July 2012.

133



Bibliography

[10] I. Koutsopoulos and L. Tassiulas, “Optimal control policies for power demand
scheduling in the smart grid,” IEEE J. Sel. Areas Commun., vol. 30, no. 6, pp.
1049-1060, July 2012.

[11] A. Mohsenian-Rad and A. Leon-Garcia, “Optimal residential load control with
price prediction in real-time electricity pricing environments,” IEEE Trans.
Smart Grid, vol. 1, no. 2, pp. 120-133, Sept. 2010.

[12] I. Atzeni, L. G. Ordez, G. Scutari, D. P. Palomar, and J. R. Fonollosa, “Non-
cooperative and cooperative optimization of distributed energy generation and
storage in the demand-side of the smart grid,” IEEE Trans. Sig. Process., vol.
61, no. 10, pp. 2454-2472, May 2013.

[13] L. P. Qian, Y. J. Zhang, J. Huang, and Y. Wu, “Demand response manage-
ment via real-time electricity price control in smart grids,” IEEE J. Sel. Areas
Commun., vol. 31, no. 7, pp. 1268-1280, July 2013.

[14] P. Samadi, A. Mohsenian-Rad, R. Schober, V. W. S. Wong, and J. Jatskevich,
“Optimal real-time pricing algorithm based on utility maximization for smart
grid,” IEEE Int. Conf. Smart Grid Communications (SmartGridComm), pp.
320-331, Oct. 2010.

[15] C. Joe-Wong, S. Sen, S. Ha, and M. Chiang, “Optimized day-ahead pricing
for smart grids with device-specic scheduling flexibility,” IEEE J. Sel. Areas
Commun., vol. 30, no. 6, pp. 1075-1085, July 2012.

[16] A. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and A. Leon-
Garcia, “Autonomous demand-side management based on game-theoretic en-
ergy consumption scheduling for the future smart grid,” IEEE Trans. Smart
Grid, vol. 1, no. 3, pp. 320-331, Dec. 2010.

[17] S. Caron and G. Kesidis, “Incentive-based energy consumption scheduling al-
gorithms for the smart grid,” IEEE Int. Conf. Smart Grid Communications
(SmartGridComm), pp. 391-396, Oct. 2010.

[18] A. Sepulveda, L. Paull, W. G. Morsi, H. Li, C. P. Diduch, and L. Chang,
“A novel demand side management program using water heaters and particle
swarm optimization,” IEEE Int. Conf. Electric Power and Energy Conference
(EPEC), pp. 1-5, Aug. 2010.

[19] J. Yi, P. Wang, P. C. Taylor, P. J. Davison, P. F. Lyons, D. Liang, S. Brown,
and D. Roberts , “Distribution network voltage control using energy storage and
demand side response,” IEEE Int. Conf. Innovative Smart Grid Technologies
(ISGT), pp. 1-8, Oct. 2012.

[20] A. L. M. Mufaris and J. Baba , “Local control of heat pump water heaters for
voltage control with high penetration of residential PV systems,” IEEE Int.
Conf. Industrial and Information Systems (ICIIS), pp. 18-23, Dec. 2013.

134



Bibliography

[21] S. A. Pourmousavi and M. H. Nehrir, “Real-time central demand response for
primary frequency regulation in microgrids,” IEEE Trans. Smart Grid, vol. 3,
no. 4, pp. 1988-1996, Dec. 2012.

[22] N. Lu, and Y. Zhang, “Design considerations of a centralized load controller
using thermostatically controlled appliances for continuous regulation reserves,”
IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 914-921, June 2013.

[23] O. Ma, N. Alkadi, P. Cappers et al., “Demand response for ancillary services,”
IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1988-1995, Dec. 2013.

[24] Technical Report, “Basic criteria for design and operation of intercon-
nected power systems,” Northeast Power Coordinating Council, available on-
line at http://www.iso-ne.com/committees/comm_wkgrps/relblty_comm/

relblty/mtrls/2004/nov12004/A8-1_A-02\%20old.pdf, May 2004.

[25] G. Lalor, “Frequency control on an Island power system with evolving plant
mix,” PhD Thesis, University College Dublin, 2005.

[26] Transmission system map, available online at http://smartgriddashboard.

eirgrid.com/#all/transmission-map.

[27] Technical report, “Alternative approaches for incentivizing the frequency re-
sponsive reserve ancillary service,” National Renewable Energy Laboratory
(NREL), available online at http://www.nrel.gov/docs/fy12osti/54393.

pdf, Mar. 2012.

[28] State of the Market Report for PJM, “Monitoring Analytics,” PJM Electricity
Market, available online at http://www.monitoringanalytics.com/reports/
PJM_State_of_the_Market/2014/2014-som-pjm-volume1.pdf, Mar. 2015.

[29] V. V. Terzija, “Adaptive under-frequency load shedding based on the magnitude
of the disturbance estimation,” IEEE Trans. Power Sys., vol. 21, no. 3, pp.
1260-1266, Aug. 2006.

[30] A. Ketabi and M. H. Fini, “An under-frequency load Shedding Scheme for
Hybrid and Multiarea Power Systems,” IEEE Trans. Smart Grid, vol. 6, no. 1,
pp. 82-91, Jan. 2015.

[31] A. Saffarian and M. Sanaye-Pasand, “Enhancement of power system stability
using adaptive combinational load shedding methods,” IEEE Trans. Power
Sys., vol. 26, no. 3, pp. 1010-1020, Aug. 2011.

[32] H. Sekyung, H. Soohee, and K. Sezaki, “Development of an optimal vehicle-to-
grid aggregator for frequency regulation,” IEEE Trans. Smart Grid, vol. 1, no.
1, pp. 65-72, June 2010.

135



Bibliography

[33] M. D. Galus, S. Koch, and G. Andersson, “Provision of load frequency control
by PHEVs, controllable loads, and a cogeneration unit,” IEEE Trans. Ind.
Electron., vol. 58, no. 10, pp. 4568-4582, June 2010.

[34] L. Chang-Chien, L. N. An, T. Lin, and W. Lee, “Incorporating demand re-
sponse with spinning reserve to realize an adaptive frequency restoration plan
for system contingencies,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1145-1153,
Sept. 2012.

[35] G. Sharma, L. Xie, and P. R. Kumar, “Large population optimal demand re-
sponse for thermostatically controlled inertial loads,” IEEE Int. Conf. Smart
Grid Communications (SmartGidComm), pp. 259 - 264 , Oct. 2013.

[36] M. A. Ortega-Vazquez, F. Bouffard, and V. Silva, “Electric vehicle aggrega-
tor/system operator coordination for charging scheduling and services procure-
ment,” IEEE Trans. Power Sys., vol. 28, no. 2, pp. 1806-1815, May 2013.

[37] F. Kennel, D. Gorges, and S. Liu, “Energy management for smart grids with
electric vehicles based on hierarchical MPC,” IEEE Trans. Ind. Informat., vol.
9, no. 3, pp. 1528-1537, Aug. 2013.

[38] A. Papavasiliou and S. S. Oren, “Large-scale integration of deferrable demand
and renewable energy sources,” IEEE Trans. Power Sys., vol. 29, no. 1, pp.
489-499, Jan. 2014.

[39] J. Lin, K. Leung, and V. O. K. Li, “Online scheduling with vehicle-to-grid
regulation service,” IEEE Trans. Smart Grid, vol. 1, no. 6, pp. 556-569, Dec.
2014.

[40] Z. Liu, D. Wang, H. Jia, N. Djilali, and W. Zhang, “Aggregation and bidi-
rectional charging power control of plug-in hybrid electric vehicles: generation
system adequacy analysis,” IEEE Trans. Sustain. Energy, vol. 6, no. 2, pp.
325-335, Apr. 2015.

[41] Technical Report, “Pacific northwest gridwise testbed demonstration projects
– part II: grid friendly appliance project,” Pacific Northwest National Labola-
tory (PNNL), available online at http://www.pnl.gov/main/publications/

external/technical_reports/PNNL-17079.pdf, Oct. 2007.

[42] J. A. Short, D. G. Infield, and L. L. Freris, “Stabilization of grid frequency
through dynamic demand control,” IEEE Trans. Power Sys., vol. 22, no. 3, pp.
1284-1293, Aug. 2007.

[43] A. Molina-Garcia, F. Bouffard, and D. S. Kirschen, “Decentralized demand-side
contribution to primary frequency control,” IEEE Trans. Power Sys., vol. 26,
no. 1, pp. 411-418, Feb. 2011.

136



Bibliography

[44] X. Zhao, J. Østergaard, and M. Togeby, “Demand as frequency controlled re-
serve,” IEEE Trans. Power Sys., vol. 26, no. 3, pp. 1062-1071, Aug. 2011.

[45] K. Samarakoon, J. Ekayanake, and N. Jenkins, “Investigation of domestic
load control to provide primary frequency response using smart meters,” IEEE
Trans. Smart Grid, vol. 3, no. 1, pp. 282-292, Mar. 2012.

[46] P. J. Douglass, R. Garcia-Valle, P. Nyeng, J. Ostergaard, M. Togeby “Smart
demand for frequency regulation,” IEEE Trans. Smart Grid, vol. 4, no. 3, pp.
1713-1720, Sept. 2013.

[47] A. Molina-Garcia, I. Munoz-Benavente, A. D. Hansen, F. Gomez-Lazaro,
“Demand-side contribution to primary frequency control with wind farm aux-
iliary control,” IEEE Trans. Power Sys., vol. 29, no. 5, pp. 2391-2399, Sept.
2014.

[48] S. Hild, S. Leavey, C. Graf, and B. Sorazu, “Smart charging technologies for
portable electronic devices,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 328-336,
Jan. 2014.

[49] D. Angeli and P. A. Kountouriotis, “A stochastic approach to dynamic-demand
refrigerator control,” IEEE Trans. Control Sys. Tech., vol. 20, no. 3, pp. 581-
592, May 2012.

[50] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba, and A. Yokoyama,
“Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,
” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559-564, Mar. 2012.

[51] J. A. P. Lopes, F. J. Soares, and P. M. R. Almeida, “Integration of electric
vehicles in the electric power system,” IEEE Proc., vol. 99, no. 1, pp. 168-183,
Jan. 2011.

[52] H. Yang, Member, C. Y. Chung, and J. Zhao, “Application of plug-in electric
vehicles to frequency regulation based on distributed signal acquisition via lim-
ited communication, ” IEEE Trans. Power Sys., vol. 28, no. 2, pp. 1017-1026,
May 2013.

[53] J. Pahasa and I. Ngamroo, “PHEVs bidirectional charging/discharging and
SoC control for microgrid frequency stabilization using multiple MPC”, IEEE
Trans. Smart Grid, vol. 6, no. 2, pp. 526-533, Mar. 2015.

[54] M. Aunedi, P. A. Kountouriotis, J. E. O. Calderon, D. Angeli and G. Strbac,
“Economic and environmental benefits of dynamic demand in providing fre-
quency regulation”, IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2036-2048, Dec.
2013.

137



Bibliography

[55] K. Dehghanpour and S. Afsharnia, “Electrical demand side contribution to
frequency control in power systems:a review on technical aspects,” Renewable
and Sustainable Energy Reviews, vol. 41, pp. 1267-1276, Jan. 2015.

[56] Power systems test case archive, available online at http://publish.

illinois.edu/smartergrid/wscc-9-bus-system/.

[57] C. Zhao, U. Topcu, and S. H. Low, “Frequency-based load control in power
systems,” IEEE American Control Conference (ACC), pp. 4423-4430, June
2012.

[58] R. G. Gallager, “A perspective on multiaccess channels,” IEEE Trans. Inf.
Theory, vol. 31, no. 2, pp. 124-142, Mar. 1985.

[59] Y. Yang and T. P. Yum,“Delay distributions of slotted ALOHA and CSMA,”
IEEE Trans. Commun., vol. 51, no. 11, pp. 1846-1857, Nov. 2003.

[60] P. Zhou, H. Hu, H. Wang, and H. Chen,“An efficient random access scheme for
OFDMA systems with implicit message transmission,” IEEE Trans. Wireless
Commun., vol. 7, no. 7, pp. 2790-2797, July 2008.

[61] P. Samadi, A. Mohsenian-Rad, R. Schober, V. W. S. Wong, and J. Jatskevich,
“Optimal real-time pricing algorithm based on utility maximization for smart
grid,” IEEE Int. Conf. Smart Grid Communications (SmartGridComm), pp.
415-420, Oct. 2010.

[62] R. Yu, W. Yang, and S. Rahardja, “A statistical demand-price model with its
application in optimal real-time price,” IEEE Trans. Smart Grid, vol. 3, no. 4,
pp. 1734-1742, Dec. 2012.

[63] J. Chen, B. Yang, and X. Guan, “Optimal demand response scheduling with
Stackelberg game approach under load uncertainty for smart grid,” IEEE Trans.
Smart Grid, pp. 546-551, Nov. 2012.

[64] F. Meng and X. Zeng, “A stackelberg game approach to maximise electric-
ity retailer’s profit and minimse customers’ bills for future smart grid,” IEEE
Workshop Computational Intelligence, pp. 1-7, Sept. 2012.

[65] F. Meng and X. Zeng, “An Optimal Real-time Pricing Algorithm for the Smart
Grid: A Bi-level Programming Approach,” Imperial College Computing Student
Workshop (ICCSW), pp. 81-88, Sept. 2013.

[66] L. P. Qian, Y. J. Zhang, J. Huang, and Y. Wu, “Demand response manage-
ment via real-time electricity price control in smart grids,” IEEE J. Sel. Areas
Commun., vol. 31, no. 7, pp. 1268-1280, July 2013.

[67] L. Gkatzikis, I. Koutsopoulos, and T. Salonidis, “The role of aggregators in
smart grid demand response markets,” IEEE J. Sel. Areas Commun., vol. 31,
no. 7, pp. 1247-1257, July 2013.

138



Bibliography

[68] B. Kim, S. Ren, M. Schaar, and J. Lee, “Bidirectional energy trading and
residential load scheduling with electric vehicles in the smart grid,” IEEE J.
Sel. Areas Commun., vol. 31, no. 7, pp. 1219-1234, July 2013.

[69] P. Samadi, A. Mohsenian-Rad, V. W. S. Wong, and R. Schober, “Real-time
pricing for demand response based on stochastic approximation,” IEEE Trans.
Smart Grid, vol. 5, no. 2, pp. 789-798, Mar. 2014.

[70] C. Vivekananthan, Y. Mishra, G. Ledwich, and F. Li, “Demand response for
residential appliances via customer reward scheme,” IEEE Trans. Smart Grid,
vol. 5, no. 2, pp. 809-820, Mar. 2014.

[71] A. G. Vlachos and P. N. Biskas, “Demand response in a real-time balancing
market clearing with pay-as-bid pricing,” IEEE Trans. Smart Grid, vol. 4, no.
4, pp. 1966-1975, Dec. 2015.

[72] P. Kundur, Power System Stability and Control, McGraw-Hill, 1994.

[73] Z. Chen, Z. Sahinoglu, and H. Li, “Fast frequency and phase estimation in three
phase power systems,” IEEE Power and Energy Society General Meeting, pp.
1-5, July 2013.

[74] Computer software, “PowerWorld simulator,” Ver. 16, available online at www.
powerworld.com.

[75] G. Xiao, C. Li, Z. Yu, Y. Cao, and B. Fang, “Review of the impact of electric
vehicles participating in frequency regulation on power Grid,” IEEE Chinese
Automation Congress (CAC), pp. 75-80, Nov. 2013.

[76] Technical Report, “Environmental assessment of plug-in hybrid electric ve-
hicles, volume 1: nationwide greenhouse gas emissions,” Electric Power Re-
search Institute, available online at http://www.epri.com/abstracts/pages/
ProductAbstract.aspx?productId=000000000001015325, July 2007.

[77] F. Rassaei, W. Sohc, and K. C. Chua, “A Statistical modelling and analysis of
residential electric vehicles’ charging demand in smart grids,” available online
at http://arxiv.org/pdf/1408.2320v1.pdf, Aug. 2014.

[78] M. F. Shaaban, M. Ismail, E. F. El-Saadany, and W. Zhuang, “Real-time PEV
charging/discharging coordination in smart distribution systems,” IEEE Trans.
Smart Grid, vol. 5, no. 4, pp. 1797-1807, July 2014.

[79] J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics: Sta-
bility and Control, Wiley, 2008.

[80] G. Kasal and B. Singh, “Decoupled voltage and frequency controller for isolated
asynchronous generators feeding three-phase four-wire loads,” IEEE Trans.
Power Delivery, vol. 23, no. 2, pp. 966-973, Apr. 2008.

139



Bibliography

[81] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic
Processes, McGraw-Hill, 2002.

[82] D. T. Nguyen and L. B. Le, “Joint optimization of electric vehicle and home
energy scheduling considering user comfort preference,” IEEE Trans. Smart
Grid, vol. 5, no. 1, pp. 188-199, Jan. 2014.

[83] J. Donadee and M D. Ilic, “Stochastic optimization of grid to vehicle frequency
regulation capacity bids,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 1061-1069,
Mar. 2014.

[84] W. Hu, C. Su, Z. Chen, and B. Bak-Jensen, “Optimal operation of plug-in
electric vehicles in power systems with high wind power penetrations,” IEEE
Trans. Sustain. Energy, vol. 4, no. 3, pp. 577-585, July 2013.

[85] Y. Cao, S. Tang, C. Li, P. Zhang, Y. Tan, Z. Zhang, and J. Li, “An optimized
EV charging model considering TOU price and SOC curve,” IEEE Trans. Smart
Grid, vol. 3, no. 1, pp. 388-393, Mar. 2012.

[86] K. Mets, R. D’hulst, and C. Develder, “Comparison of intelligent charging
algorithms for electric vehicles to reduce peak load and demand variability in
a distribution grid,” J. Commun. and Net., vol. 14, no. 6, pp. 672-681, Dec.
2012.

[87] S. Deilami, A. S. Masoum, P. S. Moses, and M. A. S. Masoum,“Real-time
coordination of plug-in electric vehicle charging in smart grids to minimize
power losses and improve voltage prole,” IEEE Trans. Smart Grid, vol. 2, no.
3, pp. 456-467, Sept. 2011.

[88] G. Delille, B. Franois, and G. Malarange, “Dynamic frequency control support
by energy storage to reduce the impact of wind and solar generation on isolated
power systems inertia,” IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 931-929,
Oct. 2012.

[89] D. L. H. Aik, “A general-order system frequency response model incorporating
load shedding: analytic modeling and applications,” IEEE Trans. Power Sys.,
vol. 21, no. 2, pp. 709-717, May 2006.

[90] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University
Press, 2004.

[91] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex program-
ming, Ver. 2.0 beta, available online at http://cvxr.com/cvx, Sept. 2012.

[92] Technical Report, “PEV charging standards status including AC, DC and
wireless technologies,” Theodore Bohn Argonne National Laboratory, avail-
able online at http://www.sae.org/events/gim/presentations/2013/pev_

charging_standards_status.pdf, 2013.

140



Bibliography

[93] P. Yi, X. Dong, A. Iwayemi, C. Zhou, and S. Li, “Real-time opportunistic
scheduling for residential demand response,” IEEE Trans. Smart Grid, vol. 4,
no. 1, pp. 227-234, Mar. 2013.

[94] C. Joe-Wong, S. Sen, S. Ha, and M. Chiang, “Optimized day-ahead pricing
for smart grids with device-specific scheduling flexibility,” IEEE J. Sel. Areas
Commun., vol. 30, no. 6, pp. 1075-1085, July 2012.

[95] J. H. Yoon, R. Baldick, and A. Novoselac, “Dynamic demand response con-
troller based on real-time retail price for residential buildings,” IEEE Trans.
Smart Grid, vol. 5, no. 1, pp. 121-129, Jan. 2014.

[96] S. Li, D. Zhang, A. B. Roget, and Z. O’Neill, “Integrating home energy simu-
lation and dynamic electricity price for demand response study,” IEEE Trans.
Smart Grid, vol. 5, no. 2, pp. 779-788, Mar. 2014.

[97] Technical Report, “Commercially available aggregator programs in California,”
available online at http://www.pge.com/includes/docs/pdfs/mybusiness/

energysavingsrebates/demandresponse/amp/fs_aggregatorprograms.

pdf, Aug. 2013.

[98] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,”
Ann. Oper. Res., vol. 153, no. 1, pp. 235-256, Sept. 2007.

[99] S. Boyd, “Convex optimization II,” Stanford University, available online at
http://www.stanford.edu/class/ee364b/lectures.html

[100] P. J. M. Laarhoven and E. H. L. Aarts, Simulated annealing: theory and
applications, Springer, 1987.

[101] Operation statistics, available online at http://www.singaporepower.

com.sg/irj/go/km/docs/wpccontent/Sites/SP\%20Services/Site\

%20Content/Tariffs/documents/Historical\%20Electricity\%20Tariff.

pdf.

[102] Operation statistics, available online at https://www.emcsg.com/

MarketData/PriceInformation.

[103] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control,
Wiley, 1996.

[104] I. Maruta and Y. Takarada “Modeling of dynamics in demand response for
real-time pricing,” IEEE Int. Conf. Smart Grid Communications (SmartGrtid-
Comm), pp. 806-811, Nov. 2014.

[105] S. Zhao and Zhou Ming, “Modeling demand response under time-of-use pric-
ing,” IEEE Int. Conf. Power System Technology (POWERCON), pp. 1948-
1955, Oct. 2014.

141



Bibliography

[106] F. J. Soares, J. A. P. Lopes, P. M. R. Almeida, C. L. Moreira, and L. Seca, “A
stochastic model to simulate electric vehicles motion and quantify the energy
required from the grid,” IEEE Int. Conf. Power Systems Computation, pp.
369-374, Aug. 2011.

[107] H. Stackelberg, Market Structure and Equilibrium, Springer, 2011.

142



List of Publications

Journal Publications

(J1) M. R. V. Moghadam and R. Zhang, “Multiuser wireless power transfer via
magnetic resonant coupling: performance analysis, charging control, and power
region characterization,” IEEE Transactions on Signal and Information Pro-
cessing over Networks, Dec. 2015. (early access on IEEE Xplore).

(J2) M. R. V. Moghadam, R. Zhang, and R. T. B. Ma, “Distributed frequency con-
trol in smart grid via randomized response of electric vehicles,” IEEE Trans-
actions on Sustainable Energy, Nov. 2015. (early access on IEEE Xplore)

(J3) M. R. V. Moghadam, R. T. B. Ma, and R. Zhang, “Distributed frequency
control in smart grids via randomized demand response,” IEEE Transactions
on Smart Grid, pp. 2798-2809, Nov. 2014.

Conference Publications

(C1) M. R. V. Moghadam and R. Zhang, “Multiuser charging control in wireless
power transfer via magnetic resonant coupling,” IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1-5, Apr.
2015.

(C2) M. R. V. Moghadam, R. Zhang, and R. T. B. Ma, “Demand response for
contingency management via real-time pricing in smart grids,” IEEE Inter-
national Conference on Smart Grid Communications (SmartGridComm), pp.
632-637, Nov. 2014.

(C3) M. R. V. Moghadam, R. Zhang, and R. T. B. Ma, “Randomized response
electric vehicles for distributed frequency control in smart grid,” IEEE Inter-
national Conference on Smart Grid Communications (SmartGrtidComm), pp.
139-144, Oct. 2013.

(C4) M. R. V. Moghadam, R. T. B. Ma, and R. Zhang, “Distributed frequency
control via demand responses in smart grids,” IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), May 2013.

143


