
Moving Objects Management for
Location-Based Services

Guo Long

School of Computing

Computer Science Department

National University of Singapore

Supervisor: Kian-Lee TAN

A Thesis Submitted for the Degree of

Doctor of Philosophy

August 2015

I would like to dedicate this thesis to my beloved parents and wife for

their endless love and encouragement.

Declaration

I hereby declare that the thesis is my original work and it has been writ-

ten by me in its entirety. I have duly acknowledged all the sources of

information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

GUO Long

5 August 2015

 guolong

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Tan

Kian-Lee, for his excellent guidance, patience and support throughout my

study, and especially for providing me with an excellent atmosphere for

doing research. I would also like to thank Prof. Li Mong-Lee and Prof.

Roger Zimmermann for serving as members on my thesis committee.

I would like to express my very sincere gratitude to Dr. Zhang Dongxiang,

for his guidance and support in my research, and for all the philosophy of

life that I have learned from him. I am also thankful to my co-authors,

Prof. Li Guoliang, Prof. Cong Gao, Prof. Shao Jie, Prof. Bao zhifeng,

Dr. Wu Wei, Dr. Htoo Htet Aung and Chen Lu. They contribute a lot

of work to improve our papers. It has been great to work together with

them.

I would like to thank all my friends, for their understanding and encourage-

ment in my moments of crisis. Their friendship makes my life a wonderful

experience. I cannot list all the names here, but they are always on my

mind.

I especially thank my parents and sister. My hard-working parents have

sacrificed their lives for my sister and myself and provided unconditional

love and care. They never put pressure on us and their only wish is that

we can be happy. My elder sister have done her best to take care of me

and shared my parents’ burden for me. I love them so much, and I would

not have made it this far without them.

The best outcome from these past five years is finding my best friend,

soul-mate, and wife. I fell in love with her at first sight, and she lives in

my heart from then. She was always there cheering me up and stood by

me through the good times and bad. There are no words to convey how

much I love her. I wish to send this thesis as a gift to her, which is only

a beginning of our journey.

Abstract

With the rapid development of GPS-enabled devices and wireless commu-

nication technologies, location-based services have attracted significant

attention from both academic and industry communities. In this thesis,

we focus on the management of moving objects data to make location-

based services more intelligent in order to improve people’s quality of life.

Many interesting applications that target moving objects have great po-

tential to bring revolutionary changes to people’s life. However, there is

an urgent call for efficient algorithms to support these applications, due

to the explosion of geo-tagged information collected from various channels

in this era. In this thesis, we have identified problems that are related to

moving objects and have many interesting applications in location-based

services, and proposed frameworks with efficient algorithms to solve these

problems.

In particular, this thesis proposes three novel problems that deal with

three types of spatial queries, respectively. First, we study the efficient

processing of moving spatial keyword queries on road networks. Such

queries consider both spatial locations and textual descriptions to find

top k best objects of interest. Most of the existing studies on this topic

are restricted to the Euclidean space only. In many applications, position

and accessibility of spatial-textual objects are constrained by network con-

nectivity, and spatial proximity should be determined by the shortest path

distance rather than the Euclidean distance. However, there is still no re-

search effort on continuous monitoring of spatial keyword queries on road

networks. We propose two frameworks that traverse the network in an in-

cremental manner. Meanwhile, different techniques are designed for these

two frameworks to avoid unnecessary traversing of some network edges.

Second, we study the efficient processing of moving spatial queries against

dynamic event streams. In this problem, the server continuously moni-

tors moving users subscribing to dynamic event streams, and notifies users

instantly when there is a matching event nearby. Past research on such

problems either focused on how to handle incoming event streams effi-

ciently by assuming users’ locations are static or attempted to process

continuous moving subscriptions against a static event dataset. Thus, we

propose a novel location-aware pub/sub system named Elaps to support

moving spatial queries against dynamic event streams for the first time.

Elaps employs the concept of safe region to reduce the communication

overhead. In Elaps, we develop a new concept called impact region that

allows us to identify whether a safe region is affected by newly arrived

events. Moreover, we propose a novel cost model to optimize the safe

region size to keep the communication overhead low. Based on the cost

model, we design two incremental methods for safe region construction.

In addition, Elaps uses boolean expression, which is more expressive than

keywords, to model user intent and we propose a novel index to handle

spatial boolean expression matching.

Third, we study the efficient processing of optimal trajectories queries for

influence maximization. Such queries find k best trajectories to be at-

tached with a given advertisement and maximizes the expected influence

of the advertisement among a large group of audience. We are the first to

extend the classic influence maximization problem to the location-aware

advertising field. We show that the problem is NP-hard and propose both

exact and approximate solutions to find the best set of trajectories. In

the exact solution, we devise an expansion-based framework that enumer-

ates combinations of trajectories in a best-first manner. In addition, we

propose two effective methods for the upper bound estimation to facili-

tate early termination. To support large k, we propose three approximate

methods with performance guarantees. In particular, we propose a greedy

method and an improved cluster-based approach, both with an approxi-

mation ratio of (1 − 1/e). We also propose a threshold method that can

support any approximation ratio in (0, 1]. In addition, we extend our

problem to support influence maximization for a group of advertisements.

For each framework proposed in the thesis, we conduct extensive exper-

iments in realistic settings with both real and synthetic datasets. These

experiments reveal the effectiveness and efficiency of the proposed frame-

works.

Keywords: Moving objects, location-based services, spatial trajectory,

location-based queries, moving spatial keyword queries, road network,

moving range queries, dynamic event streams, optimal trajectories queries,

influence maximization, location-aware advertising, performance evalua-

tion.

Contents

List of Tables v

List of Figures vi

List of Algorithms viii

1 Introduction 1

1.1 Motivations . 1

1.2 Challenges . 5

1.2.1 Moving Spatial Keyword Queries on Road Networks 5

1.2.2 Moving Spatial Queries against Dynamic Event Streams . . . 6

1.2.3 Optimal Trajectories Queries for Influence Maximization . . . 7

1.3 Contributions . 7

1.3.1 Moving Spatial Keyword Queries on Road Networks 8

1.3.2 Moving Spatial Queries against Dynamic Event Streams . . . 8

1.3.3 Optimal Trajectories Queries for Influence Maximization . . . 9

1.4 Organization . 10

1.5 Published Material . 10

2 Background and Related Work 13

2.1 Location Based Services . 13

2.2 Trajectory Databases . 15

2.3 Moving Spatial Keyword Queries on Road Networks 17

2.3.1 Spatial Keyword Queries . 17

2.3.2 Continuous Monitoring . 17

2.4 Moving Spatial Keyword Queries Against Dynamic Event Streams . . 18

2.4.1 Location-aware Pub/sub . 18

2.4.2 Boolean expression matching 20

2.5 Optimal Trajectories Queries for Influence Maximization 21

i

2.5.1 Influence Maximization . 21

2.6 Facility location problem . 22

3 Efficient Moving Spatial Keyword Queries on Road Networks 23

3.1 Introduction . 23

3.2 Problem Statement . 25

3.3 Query-centric Algorithm . 27

3.3.1 Basic Idea . 27

3.3.2 Snapshot Query Algorithm . 28

3.3.3 Using Expansion Tree . 31

3.3.4 Deriving Top-k Results and Safe Segment 33

3.3.5 Complete QCA Monitoring 37

3.4 Object-centric Algorithm . 38

3.4.1 Basic Idea . 39

3.4.2 Network AW-Voronoi Diagram 39

3.4.3 Order-k Shortest Path Tree 42

3.4.4 Incremental kSPT Construction 45

3.4.5 Complete OCA Monitoring 48

3.5 Experimental Study . 49

3.5.1 Experimental Setup . 50

3.5.2 Experimental Results . 53

3.5.3 Discussion . 59

3.6 Summary . 59

4 Efficient Moving Spatial Queries Against Dynamic Event Streams 61

4.1 Introduction . 61

4.2 Moving Queries over Dynamic Event Streams 64

4.2.1 Safe Region against Static Event Datasets 65

4.2.2 Impact Region . 67

4.2.3 Cost Model for Safe Region Construction 70

4.2.4 Incremental Grid-based Method 72

4.2.5 Incremental Direction-aware GM 76

4.3 Spatial BE-Matching . 77

4.3.1 Spatial Event Index . 79

4.3.2 Index Maintenance . 80

4.3.3 Subscription Matching . 81

4.4 System Framework . 83

ii

4.5 Experimental Study . 85

4.5.1 Experimental Setup . 85

4.5.2 Parameter Tuning . 87

4.5.3 Evaluation on Continuous Moving Query Processing 89

4.5.3.1 Synthetic Trajectories 89

4.5.3.2 Taxi Trajectories . 92

4.5.3.3 Cost Model Evaluation 92

4.5.3.4 Server Computation Cost 94

4.5.4 Evaluation on Spatial Boolean Expression Matching 95

4.6 Summary . 97

5 Efficient Optimal Trajectories Queries for Influence Maximization 99

5.1 Introduction . 99

5.2 Problem Definition . 102

5.2.1 Trajectory Influence . 104

5.2.2 Problem Definition . 105

5.3 Expansion-based Algorithm . 106

5.3.1 Algorithm Sketch . 106

5.3.2 Estimation of UB0 and UB′0 108

5.3.3 Index-based Optimization . 110

5.4 Improved Bound Estimation . 113

5.4.1 Estimate UB1 by Incremental Influence 113

5.4.2 Upper bound UB2 with Better Tradeoff 115

5.5 Approximation Methods . 117

5.5.1 Baseline Greedy Algorithm . 117

5.5.2 Cluster-based Method . 119

5.5.2.1 Trajectory Clustering 119

5.5.2.2 Cluster-based Method 120

5.5.3 Threshold-based Method . 121

5.6 Influence Maximization for Advertisement Group 122

5.7 Complexity Analysis . 124

5.7.1 Index Complexity and Update 124

5.7.2 Algorithm Complexity Analysis 124

5.8 Experimental Study . 125

5.8.1 Evaluation on Indexes . 127

5.8.2 Evaluation on Accurate Methods 129

iii

5.8.3 Evaluation on Approximate Methods 131

5.8.3.1 Methods with (1-1/e) approximation ratio 131

5.8.3.2 Comparison between Threshold and Cluster 134

5.8.3.3 Methods for Advertisement Group 135

5.9 Summary . 136

6 Conclusion and Future Works 137

6.1 Conclusions . 137

6.2 Future Work . 138

Bibliography 141

iv

List of Tables

2.1 Comparison of existing location-aware pub/sub system. 19

3.1 Frequently used notations. 25

3.2 Characteristics of the datasets. 51

3.3 Parameters evaluated in the experiments. 51

4.1 Summary of Notations. 65

4.2 Parameters evaluated in the experiments 86

5.1 Summary of Notations . 103

5.2 Parameters evaluated in the experiments 127

v

List of Figures

1.1 LBS components and information flow. 2

2.1 LBS as an intersection of technologies. 13

2.2 Framework of Trajectory Databases. 15

3.1 Graph representing a road network and objects. 31

3.2 Valid part when computing the result set of n2 (the sub-tree of n2) of

the expansion tree rooted at n1. 33

3.3 Derivation of top-k results. 34

3.4 Derivation of safe segment. 35

3.5 Network AW-Voronoi diagram construction using the extended short-

est path tree technique. 41

3.6 Order-2 shortest path tree for the network in Fig. 3.1. 43

3.7 kSPT constructed when getting the top-2 results of n1. 47

3.8 kSPT constructed when getting the top-2 results of n2. 48

3.9 Effect of the monitoring length (l). 52

3.10 Effect of the number of keywords (n). 53

3.11 Effect of the number of results (k). 56

3.12 Effect of the preference parameter (α). 57

3.13 Performance on different datasets. 58

4.1 A working scenario of Elaps. 62

4.2 Applying existing methods for safe region construction. 66

4.3 Safe region and impact region expansion. 75

4.4 An example for BEQ-Tree. 79

4.5 Spatial range match. 82

4.6 The workflow in Elaps framework. 84

4.7 Parameter tuning for iGM and idGM. 87

4.8 Parameter tuning for BEQ-Tree. 88

vi

4.9 Effect of the event arrival rate. 89

4.10 Effect of the moving speed. 90

4.11 Effect of the notification radius. 91

4.12 Effect of the number of events. 91

4.13 Communication IO on the taxi trajectories. 92

4.14 Optimality evaluation. 93

4.15 Adaptability evaluation. 93

4.16 Server computation cost for safe region construction. 94

4.17 Effect of the number of events. 95

4.18 Effect of the subscription size. 96

4.19 Effect of the notification radius. 96

4.20 Update cost for BEQ-Tree. 97

5.1 A working scenario. 100

5.2 expansion-based method. 109

5.3 Trajectory Index. 112

5.4 baseline greedy method. 118

5.5 cluster-based method. 121

5.6 Evauation on the indexes. 128

5.7 Accurate methods on the bus dataset. 129

5.8 Accurate methods on the taxi dataset. 130

5.9 Approximate methods with (1-1/e) apprimation ratio on the bus dataset.132

5.10 Approximate methods with (1-1/e) approximation ratio on the taxi

dataset. 133

5.11 Comparison between Threshold and Cluster. 134

5.12 Methods for advertisement group on the bus dataset. 135

5.13 Methods for advertisement group on the taxi dataset. 136

vii

List of Algorithms

3.1 SnapshotQueryResult(Node s, Edge e) 29

3.2 FindCandidates(EdgeID eid, NodeID nid, Threshold ε) 30

3.3 QCA Monitoring . 38

3.4 Construct-kSPT . 44

3.5 GetLabelList(Node s) . 46

3.6 OCA Monitoring . 49

4.1 ConstructSafeRegion . 74

4.2 BESpatialMatch(Subscription s, Cell partition G) 81

5.1 Expansion-based Algorithm . 107

5.2 UpperBound(L, C, i+ 1) . 115

5.3 Select(L, S) . 118

5.4 Cluster-Select({Li}, S) . 120

viii

Chapter 1

Introduction

1.1 Motivations

Advances in location positioning and wireless communication technologies have given

rise to the prevalence of location-based services (LBS), leading to a myriad of location

data representing the mobility of a variety of moving objects, such as people and

vehicles. Such moving objects data has two characteristics. On the one hand, it

is real time. The location of an object can be obtained either by using the Global

Positioning System (GPS) or by using the mobile communication network in real

time. An application scenario is the moving spatial queries, where people want to

be notified of interesting events nearby by providing his/her locations in real time

in a certain period. On the other hand, it is traceable. In this case, the mobility

of moving objects is typically represented in the form of spatial trajectories. For

instance, in Flickr1, a series of geo-tagged photos can form a spatial trajectory as

each photo has a location tag and a time-stamp corresponding to where and when

the photo was taken. Likewise, the “check-ins” of a user in Foursquare2 can be

regarded as a trajectory, when sorted chronologically. In addition, many taxis in

major cities have been equipped with a GPS sensor, which enables them to report

a time-stamped location to a data center with a certain frequency. Such reports

contribute to a large amount of spatial trajectories. Overall, the ability to record the

moving objects have offered us unprecedented information to understand the value

hidden in data generated by the moving objects and great opportunity to explore its

broad applications. As such, lots of location-based services (LBS) have been studied

to improve people’s life quality.

1https://www.flickr.com/
2https://foursquare.com/

1

Mobile device

Communication

Network

Services

.restaurant finder

.car navigation

.best friend locator

.vicinity map

.tourist city guide

...

Data/Content

provider

Positioning

Internet

Figure 1.1: LBS components and information flow.

Location-based services are an important class of context-aware applications,

which answer location-related queries, where a location is either explicit or implicit.

Figure 1.1 presents the basic infrastructures required in the location-based services

and their connections. The mobile clients (e.g., pedestrians or vehicles) receive their

current GPS locations from the satellites and update their locations to the server via

the communication network (e.g., 3G network or WiFi). The server can provide a

variety of services to the user and is responsible for the service request processing.

Such services offer the functionality of recommending a tourist attraction, finding a

route, or searching specified information based on the user interest and so forth. Take

the nearest neighbor queries for example, this service can provide the user the nearest

object/person around him. In this thesis, we focus on the management of the moving

objects data to make the location-based services more intelligent.

From the server’s perspective, moving objects data can be classified into two

categories: real-time data and historical data, corresponding to its two characteristics.

For some applications, moving objects data continuously stream into the server that in

turn uses the data to process real-time queries, such as moving range queries or nearest

neighbour queries. For some other applications, the increasing number of location-

aware devices has resulted in the accumulation of a large amount of trajectory data

that capture the movement histories of a variety of moving objects, which enable the

server to answer even more sophisticated queries, such as route recommendation. In

this thesis, we study three different kinds of location-based queries from these two

2

aspects, introduced as follows.

The first query addressed in this thesis is the efficient processing of moving spatial

keyword queries on road networks. With the rapid development of GPS-enabled

mobile devices, there is a prevalent trend that web content is increasingly being

geotagged, such as messages on Facebook and Twitter. Spatial keyword queries,

which find best points of interest in terms of both spatial proximity to query location

and textual relevance to query keywords, adapt well to this trend, and thus, become

a new interest of the research community. Spatial keyword queries are also being

supported in real-life applications, such as Google Maps where points of interest can

be retrieved, Foursquare where geo-tagged documents can be retrieved, and Twitter

where tweets can be retrieved. On the one hand, most of the existing studies on this

topic [83, 14, 86, 27, 23, 82, 74, 75, 61, 80] are restricted to Euclidean space only. In

many applications, position and accessibility of spatial-textual objects are constrained

by network connectivity, and spatial proximity should be determined by shortest path

distance (rather than Euclidean distance, which may be inappropriate especially in

urban areas). On the other hand, Rocha-Junior and Nørv̊ag [62] studied static top-k

spatial keyword queries on road networks and proposed algorithms conducted in the

spatial and textual domains alternately to constrain the search region. However, until

now there has been no research effort on continuous monitoring of spatial keyword

queries on road networks. In location-based services, besides snapshot queries that

are evaluated only once, continuous moving queries are also very appealing, since

queries can be evaluated on dynamic settings more realistically. Motivated by these

two observations, we design a framework to efficiently process moving top-k spatial

keyword queries when query and objects of interest are on a road network.

The second query addressed in this thesis is the efficient processing of moving

spatial queries against dynamic event streams. The prevalence of social networks

and mobile devices has facilitated the real-time dissemination of local events such

as sales, shows and exhibitions. To notify users interesting events nearby, various

commercial location-aware pub/sub systems have been proposed, such as Foursquare’s

push notifications and Apple’s iBeacon. Location-aware pub/sub is also receiving

increasing interest in the research community. These fall into two categories: they

either focused on how to handle incoming event streams efficiently by assuming users’

locations are static [6, 50, 13, 24]; or they attempted to process continuous moving

subscriptions against a static event dataset [84, 35, 5, 75, 37, 32]. None of them can

really support subscriptions from mobile users moving all the time against spatial

events that are continuously published by local businesses. Therefore, we propose a

3

new location-aware pub/sub system, Elaps, that continuously monitors moving users

subscribing to dynamic event streams from social media and E-commerce applications

and notifies them instantly when there is a matching event nearby.

The third query addressed in this thesis is the efficient processing of optimal trajec-

tories queries for influence maximization. Influence Maximization is a key algorithmic

problem behind online viral marketing. By word-of-mouth propagation effect among

friends, it finds a seed set of k users to maximize the expected influence among all the

users in a social network. It has attracted significant attention from both academic

and industry communities due to its potential commercial value, such as viral mar-

keting [9, 30, 39], rumor control and information monitoring [25, 40, 60]. In this work,

we study a novel problem of influence maximization in trajectory databases to explore

the applications of advertising on moving objects. Given a trajectory database and a

group of audience attached with spatial-temporal patterns, for an advertisement, our

goal is to find k trajectories for moving vehicles to maximize the influence of the ad-

vertisement among the audience. Several applications can benefit from the trajectory

influence maximization problem. For instance, the trajectory influence maximization

problem is useful in moving advertisement management. Nowadays, mobile adver-

tisement (e.g., bus or subway) offers advertisers the opportunity to reach consumers

seamlessly as they spend more time commuting out of home. With the help of the

trajectory influence maximization problem, mobile advertisement can be well placed

to reach consumers on the go, delivering advertising messages to the right audience

at the right time. Besides that, the trajectory influence maximization problem also

have applications in route recommendation systems. Consider k vehicles which carry

some advertisement for a promotion activity (e.g., a presidential election or a beauty

pageant) waiting for route navigation. Given a trajectory database, we can issue a

top-k query and get k trajectories for the vehicles, which can maximize the influ-

ence of the promotion activity. With the help of the trajectory influence problem,

location-aware advertising can be made more intelligent.

There is great linkage among the three pieces of works. The first work only deals

with moving spatial queries to provide moving users with static events nearby. The

second work extends the first work by considering moving spatial queries against dy-

namic event streams, where users can receive much more rich information nearby.

While the first two works focus on the management of real-time locations of mov-

ing users to improve the location-based services, the third work further improves

the location-based services from another level by utilizing the trajectories of moving

4

vehicles and the past movement histories of users to provide better location-aware

advertising.

1.2 Challenges

Location based queries (LBQ) provide support for location based services. In general,

LBQ faces two main challenges, which are described as follows.

• How to satisfy the real time requirement. The increasing number of geo-tagged

information means that a naive execution of LBQ can be inefficient. This trans-

lates to long response time which may not be acceptable for real time applica-

tions. In order to solve this challenge, efficient indexing techniques has to be

proposed to save the query time.

• How to reduce the communication cost for the moving LBQ. The difficulties

arise from the need of keeping the answer to moving queries up to date while

optimizing the wireless communications. If we consider a moving query as just

a sequence of instantaneous queries that are periodically evaluated, we will

probably not be able to refresh the answer with the required frequency due to

the high communication cost. Thus, some new techniques are needed to process

continuous moving LBQ efficiently.

In the following, we present the challenges in each of the thesis research work in

order to reduce the computation cost and the communication cost.

1.2.1 Moving Spatial Keyword Queries on Road Networks

Although continuous moving queries with network distance can provide up-to-date

and accurate results as a query point moves, it is often costly to monitor such moving

queries. A straightforward solution is to traverse the road network to find the top-k

results every time the query is evaluated. However, such a scheme will lead to lots

of unnecessary repetitive traversing of network edges and lots of unnecessary com-

munication with the server, resulting in high computation cost and communication

cost. Many proposals for moving spatial keyword queries in Euclidean space such as

[55, 12, ?, 37] unitize the concept of safe region. In response to a query, its result

can be computed together with a safe region within which the result remains valid.

Only when the query exits its safe region will a new query (additional processing) be

invoked, which repeats the above process. In this way, both the computation cost and

5

communication cost can be reduced significantly. However, query processing on road

networks is fundamentally different compared with the query processing in Euclidean

space due to the constraint of the network connectivity. Thus, a different scheme

should be proposed to tackle the challenge induced by the road network. In addi-

tion, compared with previously proposed continuous moving spatial queries on road

networks [22, 20, 54] where only the spatial information of the objects of interest are

considered, how to exploit the opportunities of simultaneously using spatial proximity

and textual relevancy for joint pruning brings new challenges to query optimization

of our problem. Chapter 3 shows how these challenges are tackled.

1.2.2 Moving Spatial Queries against Dynamic Event Streams

There are two types of roles in this problem, subscribers and publishers. Subscribers

can submit his/her subscription in the form of boolean expressions and specify a no-

tification region. When a subscriber moves, the notification region moves along. On

the publisher side, an event is published at a location. The subscribers are moving

all the time and the events are arriving continuously. The moving subscribers should

be continuously monitored and notified once there is a matching event in their noti-

fication regions. In order to meet these desiderata, the following two main challenges

need to be tackled:

• how to effectively process continuous moving subscriptions against dynamic event

streams. Since we are dealing with continuous moving spatial queries, we can

utilize the safe region to reduce the communication cost and computation cost.

If there are no matching events nearby, the users are safe to disconnect from

the server and do not need to periodically update their locations. However, we

observe that the safe region techniques used in [84, 35, 5, 75, 37, 32] fail to

work effectively when dynamic events are considered. This is because all these

techniques assume the events are static. However, in our new scenario, events

are arriving continuously and newly arrived events can trigger new communica-

tion needed to update the safe region, besides the communication incurred by

location updates. Moreover, these two types of communication have conflict-

ing requirements on the size of the safe region. Therefore, there is a need to

reconsider how best to exploit the safe region.

• how to support symmetric boolean expression matching with spatial constraints

between subscribers and publishers. In other words, when a subscriber arrives,

we need to search in the event database for matching events within the specified

6

notification radius; when a new event arrives, we need to search in the subscriber

database to find matching subscribers and notify them. In order to satisfy

the real time requirement, efficient indexes should be proposed to handle the

challenge.

Chapter 4 present techniques to solve these two challenges.

1.2.3 Optimal Trajectories Queries for Influence Maximiza-
tion

Unlike traditional influence maximization problem, trajectory influence maximization

problem aims to select top-k trajectories for moving vehicles to maximize the influence

of an advertisement among a large group of audience. This problem is formulated

for the first time and shown to be NP-hard. All the previous methods focus on the

improvement based on the IC model or linear threshold model in social networks

and can not be applied to our problem. A naive solution for the trajectory influence

maximization problem is to exhaustively examine all the possible size-k combinations

and return the one with the maximum influence. However, this method is intractable

because the number of candidate sets grows exponentially with the number of tra-

jectories and the cost of influence calculation for each candidate set is expensive. In

order to reduce the number of candidates examined and find the best-k trajectory set

as early as possible, an exact algorithm with efficient pruning techniques are devised

in Chapter 5. In addition, when k is large, the computation overhead is expected

to be high. Thus, several approximation methods are also provided in Chapter 5 to

support the scenario when k is large.

1.3 Contributions

The main contribution of this thesis is the efficient management of the moving objects

data in order to make the location-based services more intelligent. Based on the two

characteristics (i.e., real time and traceable) of the moving objects data, we propose

three different kinds of location-based queries. The first query recommends objects

of interest to moving users based on the network distance instead of the Euclidean

distance, which makes the results more realistic. The second query further improves

users’ experience by allowing users subscribing to dynamic event streams. The third

query utilizes the historical movement pattern of the audience and can provide right

advertisement to the right audience at the right time, which can benefit not only

consumers but also companies.

7

1.3.1 Moving Spatial Keyword Queries on Road Networks

We formalize the problem of moving top-k spatial keyword (MkSK) queries in the

domain of road networks. Given a set of spatial-textual objects and a moving query

on a road network, MkSK queries continuously return k best objects. To the best of

our knowledge, this is the first attempt on this important problem with real-world

applications.

We propose two methods that traverse the network in an incremental manner,

namely, query-centric algorithm (QCA) and object-centric algorithm (OCA). In prin-

ciple, both methods benefit from the reduction of the problem from finding the objects

of interest for moving queries to examining static network nodes. QCA starts travers-

ing the network from an end node of the edge on which the query location lies, until

it finds the top-k results. Meanwhile, it maintains an expansion tree to avoid un-

necessary traversing of some network edges for subsequent processing. OCA takes a

different approach and starts the traversing from objects which are relevant to the

query keywords. In this way, after the initial processing, an order-k shortest path

tree is constructed and subsequent processing can use this tree to significantly reduce

the number of edges traversed.

We report an extensive set of experiments conducted with real road network

datasets to compare our algorithm performance with three baseline methods. In

some settings, the cost saving can be as much as one order of magnitude. Results

reveal that each of the proposed methods may perform best under different parameter

settings.

1.3.2 Moving Spatial Queries against Dynamic Event Streams

To the best of our knowledge, Elaps is the first location-aware pub/sub system that

takes into account continuous moving spatial queries as well as dynamic event streams.

To reduce the communication cost, we optimize the design and processing of safe

regions in several ways. First, given a safe region, we derive its impact region. The

impact region is a novel concept used to identify if its corresponding safe region

is affected by newly arrived events. Second, we propose a cost-based approach to

determine the optimal safe region size to keep the communication overhead low. Our

cost model considers the communication cost incurred by location updates as well as

that incurred by event arrival. Third, based on the cost model, we design two new

schemes, iGM and idGM, to incrementally construct safe regions. iGM partitions the

space into N×N cells and a safe region is represented by the set of cells that it covers.

8

Then iGM starts from the cell containing the user’s current location and iteratively

expands it to cover nearby cells. In each expansion, a cell is selected based on certain

criteria and added into the safe region. In the meantime, the impact region is updated

accordingly. The algorithm terminates when any further expansion violates our cost

model. To reduce the computation cost, we propose a new index named BEQ-Tree

which integrates Quadtree [29] with boolean expressions seamlessly to support spatial

boolean expression matching and safe region construction efficiently.

Moreover, we conduct comprehensive experiments using real datasets to evaluate

the system performance. We use geo-tweets from Twitter and venues from Foursquare

to simulate publishers and boolean expressions generated from AOL search log to

represent users intentions. We test user movement in both synthetic trajectories and

real taxi trajectories. The results show that our proposed iGM and idGM can reduce

the communication overhead by 10 times. Also, our proposed index handles spatial

boolean expression matching significantly faster than the competing methods.

1.3.3 Optimal Trajectories Queries for Influence Maximiza-
tion

We formulate the influence maximization problem in trajectory databases and show

it is NP-hard. Given a trajectory database and a group of audience attached with

spatial-temporal patterns, for an advertisement, our goal is to find k trajectories to

maximize the influence of the advertisement.

To efficiently find top-k trajectories, we propose an expansion-based method that

enumerates the trajectory combination in a best-first manner. The algorithm starts

by calculating the influence score of each trajectory w.r.t to the query advertisement.

The trajectories are then sorted by the influence and accessed in order. In each

iteration, combinations with the new trajectory are enumerated. If a combination

contains less than k trajectories, it is considered incomplete and we estimate its

upper bound influence. Otherwise, we have found a candidate with k trajectories

and can calculate its exact influence score. The algorithm terminates when the upper

bound influence scores of all the incomplete combinations and unvisited trajectories

are smaller than the best result ever found. To improve the efficiency, we propose two

effective estimations of the upper bound based on a new concept named incremental

influence. However, the expansion-based method is not scalable when k is large.

The number of candidates grows exponentially with k and the computation becomes

intractable and the memory cost is not affordable. To address the issue, we propose

three approximate methods with performance guarantees to solve the problem. The

9

first is a baseline greedy algorithm which finds the trajectory with the maximum

incremental influence at each iteration until k trajectories are found and achieves a

(1 − 1/e) approximation ratio. The second is a cluster-based algorithm that further

improves the efficiency of greedy algorithm and guarantees the same approximation

ratio. It partitions the trajectory database into clusters and allows us to access the

clusters in an order such that promising trajectories will be found earlier. Our third

approximate solution, named threshold-based method, provides a flexible means to

adjust the tradeoff between efficiency and accuracy using a threshold ε. It guarantees

a ε approximation ratio for any ε ∈ (0, 1]. In addition, we propose a group greedy

method to support the influence maximization for a group of advertisements, which

selects the trajectories by considering all the advertisements simultaneously and can

guarantee a (1− 1/e) approximation ratio.

We use three real Singapore datasets to model user motion patterns and construct

trajectory databases. The results show that our proposed methods can solve the

trajectory influence maximization problem efficiently.

1.4 Organization

The rest of the thesis is organized as follows:

• Chapter 2 reviews related topics. The surveyed topics include background

knowledge about location based services and trajectory databases.

• Chapter 3 presents our study on moving spatial keyword queries on road net-

works.

• Chapter 4 describes our location-aware pub/sub system named Elaps to handle

moving spatial keyword queries against dynamic event streams efficiently.

• Chapter 5 presents our framework that maximizes the influence of an advertise-

ment in trajectory databases.

• Chapter 6 concludes our thesis and discusses several possible directions for fu-

ture work.

1.5 Published Material

• The work in Chapter 3 has been published as a journal paper [32] in Geoinfor-

matica 2015:

10

Long Guo, Jie Shao, Htoo Htet Aung and Kian-Lee Tan, “Efficient Continuous

Top-k Spatial Keyword Queries on Road Networks”, Geoinformatica, 19(1):29-

60, Jan 2015, Springer.

• The work in Chapter 4 has been published as a conference paper [33] in SIG-

MOD 2015 and a demo paper [31] in ICDE 2015:

Long Guo, Dongxiang Zhang, Guoliang Li, Kian-Lee Tan, Zhifeng Bao, “Location-

Aware Pub/Sub System: When Continuous Moving Queries Meet Dynamic

Event Streams”, Proceedings of the 2015 ACM SIGMOD International Confer-

ence on Management of Data.

Long Guo, Lu Chen, Dongxiang Zhang, Guoliang Li, Kian-Lee Tan, Zhifeng

Bao, “Elaps: An Efficient Location-Aware Pub/Sub System”, 2015 IEEE 31st

International Conference on Data Engineering.

• The work in Chapter 5 is ready for submission:

Long Guo, Dongxiang Zhang, Gao Cong, Wei Wu, Kian-Lee Tan, “Efficient

Influence Maximization in Trajectory Databases”.

11

Chapter 2

Background and Related Work

In this chapter, we review some background knowledge and existing works that are

related to this thesis. As the three pieces of work in this thesis deal with spatial queries

related to moving objects and their trajectories to improve location-based services,

we first introduce some background knowledge about location-based services and

trajectory databases, and then describe existing works related to each of the spatial

queries studied in this thesis.

2.1 Location Based Services

GIS/Spatial

database

Web

GIS

Mobile

GIS
LBS

Internet Mobile

Internet

NICTs*/

mobile

devices

Figure 2.1: LBS as an intersection of technologies.

Location-based services (LBSs) are an important class of context-aware appli-

cations. They answer location-based queries, where a location is either explicit or

implicit. As shown in Fig. 2.1, location-based services are an intersection of three

12

technologies, which are created from New Information and Communication Tech-

nologies (NICTS) such as the mobile telecommunication system and GPS-enabled

devices, from Internet and from Geographic Information Systems (GIS) with spatial

databases [67, 66].

The service and application providers provide location based services by using

queries called location based queries (LBQ). The result of these queries is based on

the location of the mobile device. Some of the most popular LBQs are listed as

follows.

• Range Queries (RQ) retrieve the objects located within a specific region. If

the region is rectangular, the range queries are known as window queries. For

range queries, the objects of the query can be either stationary or moving, cor-

responding to several different query type. The problem addressed in Chapter 4

dealing with moving range queries falls in this category.

• Nearest neighbor (NN) queries are used to get the objects closest to a specific

location. If they are capable of getting top k objects other than the nearest one,

they are called kNN queries [63]. Reverse kNN queries [44] can fetch the objects

that have a specified location among their k nearest neighbors. Constrained NN

queries [28] are the queries with a range constraint for the objects retrieved.

Group NN queries [58] retrieve the objects with the smallest sum of distances

to all locations in a group.

• Spatial keyword queries (SKQ) retrieve k objects based on a ranking func-

tion that takes into account both textual relevance and spatial relevance. Actu-

ally, SKQ is a variant of kNN, which consider not only spatial locations but also

textual descriptions to find objects of interest. Recently, a considerable number

of studies have focused on this interesting problem [86, 27, 23, 82, 74, 61, 80, 83].

The problem addressed in Chapter 3 dealing with moving spatial keyword

queries falls in this category.

• Optimal routes queries (ORQ) aim to find the optimal routes based on

some predefined preference score [68, 70, 46]. The preference score can be

defined based on the spatial-textual attributes of some POIs (e.g., restaurants

or tourist attractions) or the past movement historical data of some users. The

problem addressed in Chapter 5 dealing with trajectories recommendation based

on the motion patterns of the users falls in this category.

13

Location-based queries can also be classified on the basis of the query movement.

The queries corresponding to a static query are called snapshot queries, where the

answer is computed only once and forwarded to the user at once, such as the optimal

routes queries in Chapter 5. The queries corresponding to a moving query are called

continuous queries, which are evaluated continuously until the user decides to termi-

nate them, such as the moving spatial keyword queries in Chapter 3 and the moving

range queries in Chapter 4.

2.2 Trajectory Databases

A spatial trajectory is a trace generated by a moving object in geographical spaces,

usually represented by a series of chronologically ordered points, e.g., p1 → p2 →
... → pn, where each point consists of a geospatial coordinate set and a timestamp

such as p = (x, y, t). Spatial trajectories have offered us unprecedented information to

understand moving objects and locations, calling for systematic research and devel-

opment of new computing technologies for the processing, retrieving, and mining of

trajectory data and exploring its broad applications. Therefore, trajectory databases

has become an important research area and attracted a great deal of research interest

during the last decade.

Spatial

Trajectories
Spatial

Trajectories

Spatial

Trajectories

Data Level

Trajectory Preprocessing (Prior Databases)

Trajectory Indexing and Retrieval (In Databases)

Database Level

Application Level

Route Recommendation

for Driving

Trajectory Pattern

Mining

Activity Recognition

Based on Trajectories

...

Figure 2.2: Framework of Trajectory Databases.

14

Fig. 2.2 presents the framework of the trajectory databases. We introduce the

trajectory databases from the following three levels.

• Data Level. With the help of location positioning and wireless communica-

tion technologies, more and more spatial trajectories representing the mobility

of a variety of moving objects, such as people, vehicles, animals, and natural

phenomena, in both indoor and outdoor environments can be collected. For

example, travelers log their travel routes with GPS trajectories for the purpose

of memorizing a journey and sharing experiences with friends; a user carrying a

bus smart card unintentionally generates many spatial trajectories represented

by a sequence of bus station locations with corresponding boarding times; many

taxis in major cities equipped with a GPS sensor report a time-stamped loca-

tion to a data center with a certain frequency; biologists solicit the moving

trajectories of animals like migratory birds for research projects.

• Database Level. While spatial trajectories carry rich information that is valu-

able in a variety of applications, we have to deal with a number of issues before

using them. First, the continuous movement of an object is usually recorded in

an approximate form as discrete samples of location points. On the one hand,

a high sampling rate of location points leads to high overhead in data storage,

communications and processing due to the large amount of data generated. In

this case, it is vital to design data reduction techniques that compress the size

of a trajectory while maintaining the utility of the trajectory. On the other

hand, a low sampling rate of locations results in some uncertainty between the

two updated locations of a moving object. In this case, some techniques need

to be proposed to remedy the uncertainty between two locations to improve

the accuracy of a trajectory. Second, a trajectory is usually generated with

occasional outliers or some noisy points caused by the poor signal of location

positioning systems. As a result, techniques for filtering the noisy points are

needed for preprocessing spatial trajectories. After the preprocessing work, the

spatial trajectories needs to be stored in trajectory databases in the form of

trajectory indexes to facilitate and accelerate the retrieval of the trajectories

based on some search conditions.

• Application Level. After preprocessing and organizing spatial trajectories

with corresponding techniques, we can start using them in a variety of applica-

tions, such as route recommendation for driving, trajectory pattern mining and

activity recognition based on trajectories.

15

2.3 Moving Spatial Keyword Queries on Road Net-

works

In this section, we discuss some related studies of spatial keyword query, and contin-

uous monitoring of moving queries.

2.3.1 Spatial Keyword Queries

Spatial keyword queries have drawn lots of attention in recent years. Zhou et al. [86]

evaluate three different hybrid indexing structures of integrating inverted files and

R∗-trees. Their experiment shows that building an inverted index on top of R∗-tree is

the best scheme. The IR-tree [23] also incorporates the inverted files and R∗-trees to

answer a top-k spatial keyword query. Unlike the method in [86] which first uses one

index to filter web documents and then uses the other index to process the query, the

IR-tree combines these two indexes to jointly prune the search space. In [74], the IR-

tree is further extended with multiple query optimization for a group of top-k spatial

keyword queries to simultaneously prune the search space. Felipe et al. [27] propose

an index called IR2-tree which integrates an R-tree and signature files to answer a

top-k spatial keyword query. Rocha-Junior et al. [61] propose the S2I index which

uses textual-first partition and splits the database into inverted lists. If a keyword

is frequent, an aggregated R-tree is built. Otherwise, the infrequent keywords are

stored in a flat file. Zhang et al. [83] propose the I3 index which also uses textual-

first partition. Unlike the S2I in [61], I3 maps a keyword to a list of keyword cells

which are generated using Quadtree. Zhang et al. [82] propose an m-closest keywords

(mCK) query that retrieves the spatially closest objects which match m user-specified

keywords. An index called bR∗-tree is devised to augment each node with a bitmap

for query processing. These studies all assume Euclidean space and are not applicable

to road networks.

The only work that supports spatial keyword query on road networks is reported in

[62], where the authors describe the indexing structure and utilize overlay network for

efficient query processing. However, the problem of processing continuous queries has

not been addressed in the literature, which arises naturally in a travel environment.

2.3.2 Continuous Monitoring

We consider the setting of moving query and stationary objects. In the following,

we review related work under this setting. Kolahdouzan and Shahabi [43] propose

16

an upper bound algorithm for continuous k nearest neighbor queries in spatial net-

works. Their algorithm retrieves (k+1) objects given a query location and calculates

an upper bound, which is used to eliminate the computation of kNN queries between

locations that the result does not change. Cho and Chung [22] propose a continuous

kNN technique that performs snapshot kNN queries at intersections along the query

trajectory. Conceptually, the basic idea of our two methods is similar to this. How-

ever, in addition to performing snapshot queries at the intersections, we maintain an

expansion tree to further reduce the number of edges traversed. Moreover, none of

the studies on continuous spatial queries on road network consider textual relevancy

of objects.

Recently, Wu et al. [75] and Huang et al. [37] both study continuously moving top-

k spatial keyword queries. They propose different algorithms for computing safe zones

that guarantee correct results. However, their algorithms are restricted to Euclidean

space, and thus, cannot be applied to our problem where query and objects of interest

are constrained on a road network.

2.4 Moving Spatial Keyword Queries Against Dy-

namic Event Streams

In Elaps, our primary goal is to build a pub/sub system that caters for both continuous

moving subscribers and dynamic event streams from publishers, and our secondary

goal is to support a more expressive event matching semantic than pure keywords.

Thus, in this section, we first highlight the novelty of Elaps as compared with existing

location-aware pub/sub systems and then present the related work about boolean

expression matching.

2.4.1 Location-aware Pub/sub

To clearly distinguish Elaps from other works in the literature, we first present a

taxonomy of the existing location-aware pub/sub systems and our proposed Elaps

in three aspects: support for continuous moving queries, support for dynamic event

streams and event matching semantic (see Table 2.1).

Location-aware pub/sub system. A location-aware pub/sub system sends

matching geo-tagged events to the corresponding subscribers. Compared to existing

location-aware pub/sub systems [50, 13, 24], Elaps has two distinguishing features, as

shown in Table 2.1. First, it continuously monitors users’ locations and sends nearby

notifications in real time, while [50, 13, 24] assume users’ locations are static. Second,

17

Location-aware news feed Location-aware pub/sub Continuous spatial queries
GeoFeed[6] MobiFeed[78] Rt-tree[50] IQ-tree[13] CLCB[24] KNN/Range Spatial keyword Elaps

CMQa 7 7 7 7 7 3 3 3

DESb 3 3 3 3 3 7 7 3

MSc - - keyword keyword BE - keyword BE

Table 2.1: Comparison of existing location-aware pub/sub system.

acontinuous moving queries
bdynamic event streams
cmatching semantic

it allows users to specify their interests with boolean expressions, which provides

better flexibility and expressiveness in shaping an interest than keyword subscription

in [50, 13].

Continuous spatial queries. Another problem that is closely related to our

research is the processing of continuous spatial queries such as continuous KNN/range

queries [84, 35, 5, 48] and continuous spatial keyword queries [75, 37, 32]. Given a

moving query, existing works have developed techniques to continuously return a

set of objects satisfying the spatial constraint [84, 35, 5] or the combined spatial

and textual constraints [75, 37, 32]. To reduce the communication overhead, these

methods typically require users to update their locations only when they move out

of their safe regions. Moreover, users within the safe regions can safely disconnect

from the server as long as there is no matching event in their neighborhood. Since we

focus on range query, the safe region construction methods for spatial keyword query

in [75, 37, 32] cannot be applied. Besides, those proposed for continuous knn/range

queries [84, 35, 5, 48] assume the publisher events are static, so they fail to solve

our problem either (Please refer to Section 4.2 for a detailed justification). Lastly,

these methods allow users to search for relevant events by keyword subscriptions while

Elaps uses a more expressive boolean expression to model user intent.

Location-aware news feed system. We also note that location-aware news

feed systems enable mobile users to share geo-tagged user-generated messages. In

GeoFeed [6], users retrieve geo-related message updates from either their social friends

or social media. It differs from Elaps in that: (1) GeoFeed is pull-based, which poses

a high chance of missing interesting events, (2) users are static objects, (3) users

cannot customize the messages they are interested in explicitly. MobiFeed [78] extends

GeoFeed to support mobile users. Instead of monitoring the location of moving users

from time to time like Elaps, it predicts the potential next locations for a moving

user in advance and pushes the messages around these locations to the user. Thus,

18

it cannot support continuous moving queries; moreover, there is no guarantee that

users will not miss any matching event.

Therefore, to our knowledge, Elaps is the first location-aware pub/sub system that

takes into account continuous moving queries as well as dynamic event streams.

2.4.2 Boolean expression matching

Unlike existing pub/sub systems, Elaps uses boolean expressions, which are more

expressive than keywords, to model user intent. The advantage of using boolean

expressions is that users can subscribe to structured, semi-structured and unstruc-

tured data. For instance, the pub/sub systems based on keyword subscription cannot

support numeric attribute matching such as price < $1000, while the numeric at-

tribute matching can be easily supported by boolean expressions. In the following,

we introduce some related work about boolean expression matching.

There have been several studies on efficient event matching over a large quantity

of subscriptions [26, 71, 64]. Whang et al. [71] propose k-index which partitions

the subscriptions into inverted lists, whose key is a triple of subscription size, at-

tribute name and attribute value. To further improve efficiency and expressiveness,

Sadoghi and Jacobsen propose the BE-Tree [64] and develop a two-stage partition

mechanism to facilitate pruning. Zhang et al. [81] propose a scalable and extensible

index named OpIndex to support high-dimensional and sparse database effectively.

OpIndex adopts a two-layer partition scheme and can be extended to support more

expressive subscriptions.

In Elaps, we require not only event matching but also subscription matching over

a large quantity of events. Among the above methods, only k-index and OpIndex

can be extended to support subscription matching. Both indexes adopt a two-layer

partitioning scheme and use the inverted list to group the attributes in the second

layer. Their difference is the way they partition the events in the first layer. k-index

partitions the events based on the event size, while OpIndex partitions the events

based on the pivot attribute selected for each event. However, both partitioning

schemes are not efficient in supporting subscription matching, especially when the

spatial matching is taken into consideration. In Chapter 4, we propose a more efficient

index BEQ-Tree to support spatial subscription matching.

19

2.5 Optimal Trajectories Queries for Influence Max-

imization

In this section, we introduce several topics related to the influence maximization on

moving objects.

2.5.1 Influence Maximization

Influence Maximization in Social Networks. The influence maximization prob-

lem is proposed in [25, 60] and has attracted great attention ever since. Initially, the

proposed methods are probabilistic and have no bounded influence spread guarantee.

To fix the issue, Kempe et al. [40] propose two discrete influence spread models: Inde-

pendent Cascade (IC) model and Linear Threshold model. They prove the influence

maximization problem is NP-hard based on the spread models and propose a greedy

framework with (1−1/e) approximation ratio guarantee. There are many subsequent

studies aiming at improving the efficiency of the greedy framework. When Indepen-

dent Cascade (IC) model is considered, Kimura et al. [41] use the shortest path to

approximate the actual spread process. Leskovec et al. [47] propose a “lazy-forward”

algorithm. Chen et al. [18] propose a degree-discount heuristics for an IC model

where all propagation probabilities are the same. Chen et al. [17] propose the PMIA

algorithm to solve the influence spread maximization problem. Similar ideas [19] have

also been applied to support Linear Threshold model. The latest work comes from

Tang et al. [69] who propose an algorithm with near-optimal time complexity and

novel heuristics for improving empirical efficiency.

Topic-aware Influence Maximization. Barbieri et al. [7] propose the Topic-

Aware Influence Cascade (TIC) model. In the TIC model, the relationship strength

between two vertices is computed by their topic preference learned from history ac-

tivities on a social network. Based on the TIC model, Barbieri et al. [4] propose

a similarity-based method, INFLEX, to support topic-aware influence maximization.

Chen et al. [16] develop a preprocessing based strategy, MIS, for topic-aware influence

maximization. However, both INFLEX and MIS have no influence spread guarantee.

Chen et al. [15] propose a best effort method which has an influence spread guarantee

while keeping high performance.

Location-aware Influence Maximization. Li et al. [49] extend the influence

maximization problem by considering the spatial context. In particular, the problem

finds top-k users in a location-aware social network that have the highest influence

20

upon a group of audience in a specified region. They use IC model for influence

propagation and proposed several efficient algorithms.

In Chapter 5, we consider a novel influence maximization problem in trajectory

databases. We are the first to formulate the problem and exhibit its usefulness in

location-aware advertising. All the above three categories are focused on the im-

provement based on the IC model or linear threshold model in social networks and

cannot be applied to our problem. Besides that, we are the first to propose an ac-

curate method to solve the influence maximization problem while previous methods

only provide approximate methods.

2.6 Facility location problem

The facility location problem, also known as the MaxBRNN problem, is first intro-

duced by Cabello et al. [11]. It finds a location for a new facility which can attract

the maximal number of audiences. The literature falls into two categories. In the first

category, the consumers are associated with static locations. Wong et al. [73] pro-

pose the first polynomial-time complexity algorithm, MaxOverlap. Some variations,

such as the extension of the MaxOverlap algorithm in a three-dimensional space and

other Lp-norm metric spaces, are studied in [72]. Liu et al. [52] develop an improved

algorithm MaxSegment. Zhou et al. [87] study a generalized MaxBRkNN problem

in which a client may have different probabilities to visit different servers. Recently,

Chen et al. [21] propose an efficient algorithm, MinMax-Alg, for the optimal location

query. In the second category [1, 8, 51], the consumers are modeled as moving ob-

jects. The goal is to identify a location or segment that intercepts the most flow from

moving customers. Flows are made up by pre-planned customer trips and the idea is

that customers can choose to interrupt their trip to receive a service from a facility

at a nearby location.

The facility location problem aims to minimize the overall distance from the given

users to the new facility while our problem aims to maximize the influence of the

advertisement in the given users. In addition, in our problem, the advertisement is

considered to be moving with the trajectory, which is more challenging than a fixed

location in the facility location problem.

21

Chapter 3

Efficient Moving Spatial Keyword
Queries on Road Networks

3.1 Introduction

In this chapter, we study how to efficiently process continuous top-k spatial keyword

queries when query and objects of interest are on a road network. Consider a scenario

that Alice and Bob are visiting a foreign city. When Bob intends to find a buffet

seafood restaurant for lunch, a spatial keyword query can be submitted to obtain

information about some buffet seafood restaurants opening for lunch nearest to them.

However, Alice is not satisfied with these results. With continuous spatial keyword

queries, they can just keep traveling and up-to-date results will be reported to let

them choose from, until an attractive one appears.

Although continuous queries with network distance can provide up-to-date and

accurate results as the query point moves, it is often costly to monitor such moving

queries. A straightforward solution is to traverse the road network to find the top-k

results every time the query is evaluated. However, such a scheme will lead to lots

of unnecessary repetitive traversing of network edges. Many proposals for moving

queries in Euclidean space such as [55, 12, ?, 37] unitize the concept of safe region.

In response to a query, its result can be computed together with a safe region within

which the result remains valid. Only when the query exits its safe region will a new

query (additional processing) be invoked, which repeats the above process. However,

query processing on road networks is fundamentally different. Compared with pre-

viously proposed continuous spatial queries on road networks such as [22, 20, 54],

how to exploit the opportunities of simultaneously using spatial proximity and tex-

tual relevancy for joint pruning brings new challenges to query optimization of our

problem.

22

We propose two methods that traverse the network in an incremental manner,

namely, query-centric algorithm (QCA) and object-centric algorithm (OCA). In prin-

ciple, both methods benefit from the reduction of the problem from finding the objects

of interest for moving queries to examining static network nodes. QCA starts travers-

ing the network from an end node of the edge on which the query location lies and

incrementally expands the network from a query node which is similar in spirit to Di-

jkstra’s algorithm, but further uses a pair of upper and lower bounds to exploit both

spatial and textual domains for joint pruning. The expansion terminates until it finds

the top-k results. Meanwhile, it maintains an expansion tree to avoid unnecessary

traversing of some network edges for subsequent processing.

OCA takes a different approach and starts the traversing from objects which are

relevant to the query keywords. At the beginning, OCA loads relevant objects that

match at least one of the query keywords in their descriptions. Instead of traversing

from the end nodes of the edge on which the query location lies, OCA starts traversing

the network from a relevant object and constructs a shortest path tree. We can get

the results of the two end nodes of the edge on which the query location lies using

the shortest path tree. Moreover, the incremental shortest path tree construction is

characterized by allowing the construction process to halt when the top-k results of

the requested node are found and to resume when more results are required. OCA

does not suffer from repetitive result evaluation, since query results of each node

are obtained via object-centric expansion, where the shortest path tree remain valid.

In addition, when constructing the shortest path tree, OCA also obtains results or

partial results of surrounding nodes, which makes it suitable for the processing of

moving spatial keyword queries on road networks.

Our contributions are summarized as follows.

• We formalize the problem of continuous top-k spatial keyword queries in the

domain of road networks. To the best of our knowledge, this is the first attempt

on this important problem with real-world applications.

• We propose two algorithms that incrementally expand the network from the

query location and objects relevant to the query keywords, respectively. Both

of them can reduce lots of unnecessary repetitive traversing of network edges

for continuous monitoring.

• We report an extensive set of experiments conducted with real road network

datasets to compare our algorithm performance with three baseline methods. In

23

some settings, the cost saving can be as much as one order of magnitude. Results

reveal that each of the proposed methods may perform best under different

parameter settings.

The rest of this chapter is organized as follows. First, we present formal defini-

tion of the problem in Section 3.2. Then, we describe the query-centric algorithm in

Section 3.3, followed by the object-centric algorithm in Section 3.4. We report the ex-

perimental evaluation in Section 3.5. Finally, we conclude this chapter in Section 3.6.

3.2 Problem Statement

Symbol Description

G(N,E) the graph model of road network
N the set of nodes in G
E the set of edges in G

(ni,nj) the edge that connects ni to nj
ni an intersection node or terminal node
T the expansion tree
O the set of spatial-textual objects on G
Or the set of objects relevant with the query keywords
Ore the set of relevant objects in the expansion tree

O(ni,nj) the set of objects lying on the edge(ni,nj)
o a spatial-textual object
q a top-k spatial-keyword query
q.l the query location
q.d the set of query keywords
q.k the number of requested objects of interest
q.r the moving direction of the query
τ the score which is used to rank the objects
δ spatial proximity
θ textual relevance
Rq the top-k results of query q
Rni

the top-k results of node ni
Od1, Od2 the set of objects in Rq that can be replaced
Or1, Or2 the set of objects that can replace the objects in Rq

d(p1, p2) the shortest path distance between two points p1 and p2

|p1, p2| the length of the segment between p1 and p2

Table 3.1: Frequently used notations.

In this section, we introduce the continuous moving spatial keyword queries on

road networks formally. Table 3.1 summarizes the notations frequently used in the

24

chapter.

Road network. A road network is generally represented by a connected and

undirected planar graph G(N,E)1, where N is the set of nodes and E is the set of

edges. In this work, we define the edge as follows.

Definition 3.1 (Edge) An edge is defined as one or multiple road segments (i) two

endpoints are intersection nodes (with degree above 2) or terminal nodes (with degree

1) and (ii) intermediate nodes all have degree 2.

In the following context when we use edge, it indicates that this edge has two end-

points, which are either intersections or terminal nodes.

Object set. Let O represent a set of spatial-textual objects on the edges E of

G, where each object o ∈ O has a spatial location o.l and a textual description (or

called document) o.d. Denote |o, n| and |o, n′| as the distances between an object o

and two end nodes of the edge (n, n′) on which it lies. The shortest path distance

between two objects o and o′ on G is defined as d(o, o′).

Top-k spatial keyword query on a road network. Define q =< q.l, q.d, q.k, q.r >

to be a top-k spatial keyword query on a road network G, where q.l is the query lo-

cation, q.d is the set of query keywords, q.k is the number of requested results and

q.r is the moving direction of q. Given a set O of spatial-textual objects on G, a

top-k spatial keyword query q returns q.k objects from O in ascending order of score

τ , which is defined as

τ(q, o) = α · δ(q.l, o.l) + (1− α) · [1− θ(q.d, o.d)], (3.1)

where δ(q.l, o.l) reflects spatial proximity of o.l from the query location q.l, and

θ(q.d, o.d) reflects textual relevance of o.d with respect to the query keywords q.d.

Like other typical work of spatial keyword queries such as [23], a preference parame-

ter α ∈ (0, 1) is used to define relative importance of one measure over the other. For

example, α < 0.5 increases the weight of textual relevance over spatial proximity.

Spatial proximity (δ). Spatial proximity measure can be defined as

δ(q.l, o.l) =
d(q.l, o.l)

dmax
, (3.2)

where dmax is the largest network distance between any object and any location in

G. dmax can be obtained by traversing the network from each object until the entire

network is expanded and keeping the maximum distance. δ is in the range of [0,1].

1Note that the methods proposed in this chapter can also be applied to the directed road network.
The only difference is that now the connectivity between edges depends on not only the adjacency
between edges but also the direction of edges.

25

Textual relevance (θ). Textual relevance measure can be captured by any infor-

mation retrieval model. In this work, cosine similarity [88, 62] is used to evaluate the

similarity between q.d and o.d, which is defined as

θ(q.d, o.d) =

∑
t∈q.d ωt,q.d · ωt,o.d√∑

t∈q.d (ωt,q.d)
2 ·
∑

t∈o.d (ωt,o.d)
2
, (3.3)

the weight ωt,q.d = ln (1 + |O|
df t

), where |O| is the number of objects in O and df t is the

number of objects with t in their descriptions (document frequency); and the weight

ωt,o.d = 1 + ln (ft,o.d), where ft,o.d is the number of occurrences (frequency) of term t

in o.d. θ is in the range of [0,1] (property of cosine).

For simplicity of computation, Equation 3.3 can be rewritten in the impact form

as

θ(q.d, o.d) =
∑
t∈q.d

λt,q.d · λt,o.d, (3.4)

where the impact λt,d =
ωt,d√∑
t∈d (ωt,d)2

is normalized weight of the term in the document,

by taking document length into account [65, 2].

A lower score τ means the object is better. In this chapter, we study the efficient

processing of moving top-k spatial keyword (MkSK) queries on road networks which

is defined as follows.

Definition 3.2 (MkSK queries on road networks) Given a set O of spatial-textual

objects and a moving query q on a road network G, MkSK queries continuously re-

turn k ranked objects in ascending order of score τ .

3.3 Query-centric Algorithm

In this section, we present our first method named query-centric algorithm (QCA).

We start with the basic idea of our query processing in Section 3.3.1, followed by the

snapshot query algorithm in Section 3.3.2. We present the usage of expansion tree in

Section 3.3.3 and show how the top-k results can be derived and safe segment can be

computed in Section 3.3.4. Finally, we give complete QCA monitoring algorithm in

Section 3.3.5.

3.3.1 Basic Idea

To solve the MkSK queries, we examine result updates for intersections along the

trajectory on which the query point moves. Specifically, our method is based on the

following lemma:

26

Lemma 3.1 The top-k results Rq of any spatial keyword query q whose query location

q.l lies on an edge(ni, nj) are in the union of (i) the set of relevant objects O(ni,nj) on

the edge, and (ii) the top-k results Rni
and Rnj

of the end nodes of the edge, which

can be formulated as:

Rq ⊆ (O(ni,nj) ∪Rni
∪Rnj

),

where relevant object refers to object that matches at least one of the query keywords

in its description.

Proof 3.1 We prove this lemma by contradiction. First assume that there exists an

object o satisfying o ∈ Rq and o/∈ (O(ni,nj) ∪ Rni
∪ Rnj

). Since o/∈ O(ni,nj), o is not

on the edge. The shortest path from the query location q.l to o then must go through

either ni or nj. Without loss of generality, assume o is closer to ni. Let o′ be any one

of the objects in Rni
. Since o/∈Rni

, we know that τ(ni, o) > τ(ni, o
′). Because |q.l, ni|

can be added to the spatial proximity part of both sides of the above inequality and the

textual relevance part remains constant, we have τ(q, o) > τ(q, o′). This means that

all of the top-k results in Rni
have a lower score than o with respect to q.l. Thus, o

should not be in the top-k results Rq. This is contradictory to the initial assumption

that o ∈ Rq.

We adopt a client-server architecture along with safe segment. When a top-k

spatial keyword query q is submitted by a client, the edge on which it lies can be

located and the result sets of the two end nodes of this edge are computed first.

Then, the top-k results of q can be derived from the result sets of the end nodes,

which are sent back to the client. Only when the client exits the safe segment will it

send a location update to the server, which repeats the above process.

3.3.2 Snapshot Query Algorithm

Our work focuses on continuous monitoring, and in QCA, we employ a method sim-

ilar to the algorithm named enhanced presented in [62] as our underlying snapshot

query algorithm for a single spatial keyword query on a road network. It incremen-

tally expands the network from a query node which is similar in spirit to Dijkstra’s

algorithm, but it further uses a pair of upper and lower bounds to exploit both spatial

and textual domains for joint pruning. Besides the basic steps used in [62], our QCA

maintains an expansion tree in T while traversing the network edges (these steps

are underlined in Algorithm 3.1). The expansion tree is a critical component that is

necessary to facilitate efficient processing of moving queries. We defer the discussion

27

Algorithm 3.1: SnapshotQueryResult(Node s, Edge e)

environment: Objects O, Query q, MinHeap N , Tree T
input : Node s, Edge e
output : Results Rq

1 update ε using Rq; //kth score in Rq; while |Rq| < q.k, ε← 1
2 (s, n′)← e;
3 set n′ as child of s in T ;

4 insert s and n′ into N , mark s, n′ as visited;
5 C ← FindCandidates(e.ID, s, ε);
6 update Rq and ε with o ∈ C;
7 n← N .pop(); //node n in N with minimum d(s, n)
8 while n 6= φ and α · δ(s, n) < ε do
9 foreach non-visited adjacent node n′ of n do

10 set n′ as the child of n in T ;

11 insert n′ into N , mark n′ as visited;
12 C ← FindCandidates((n, n′).ID, n, ε);
13 update Rq and ε with o ∈ C;

14 n← N .pop();
15 return Rq;

of the expansion tree and the related algorithms to the next subsection. First, we

briefly introduce the indexing structure the snapshot algorithm used (refer to [62] for

more details).

• Spatial component. This component is used to locate the edge on which the

query lies.

• Adjacency component. This component points to adjacent nodes of a given

node permitting traversing the network from node to node. We use a B-tree

to point to the block in the adjacency file where the adjacent nodes of a given

node are. The adjacency file stores for each node: (i) the id of each edge, and

(ii) the length of the edge.

• Mapping component. We also use a B-tree that maps a key composed of the

pair of edge id and term id to the inverted list that contains the objects lying

on the edge with the term in their descriptions. This component contains also

the maximum impact of a given term t among the descriptions of the objects

lying on a given edge. The maximum impact is an upper-bound impact for any

object on the edge that contains t. Therefore, the inverted list of a term t on

an edge is accessed only if the lower-bound score derived by minimum distance

28

Algorithm 3.2: FindCandidates(EdgeID eid, NodeID nid, Threshold ε)

input: EdgeID eid, NodeID nid, Threshold ε
output: Candidates C

22 compute θmax and τmin;
44 if θmax > 0 then
66 O(n,n′) ← objects on the edge;
88 foreach o ∈ O(n,n′) do

91111 o.parent = nid;

1313 insert o into Ore; //preserve relevant objects in expansion tree

1515 if τmin < ε then
1717 foreach o ∈ O(n,n′) do
1919 compute o.score;
2121 if o.score < ε then
2323 insert o into C;

2525 return C;

and maximum impact may turn an object, present on the edge, inside the top-k

objects found so far.

• Inverted file component. This component contains inverted lists and a vo-

cabulary. Each inverted list stores the objects lying on an edge with a term

in their descriptions. For each object, the inverted list stores: (i) the distance

between the object and the reference node of the edge, and (ii) the impact of

the term in the description of the object. The vocabulary file stores the docu-

ment frequency df t of each term. This information is used to compute textual

relevance of the object for a given query.

Algorithm 3.1 provides detailed steps of how snapshot query results can be ob-

tained. The algorithm receives a query node s whose result set is to be computed and

the edge e on which s lies as input, and returns a result set Rq of k ranked objects

in ascending order of score τ . A priority queue (implemented as min-heap) N , which

is initially empty, is used to organize the encountered nodes in increasing order of

distance from s. First, the algorithm updates ε, which is the score of the current kth

object in Rq (line 1). Then, it locates the other end node n′ of e and sets s as the

root of T with child n′ (lines 2-3). Next, s and n′ are inserted into N and marked as

visited (line 4). After that, it uses a FindCandidates procedure to retrieve candidate

objects C lying on the edge(s, n′) with score lower than ε, and updates Rq and ε using

the objects in C (lines 5-6). Subsequently, the algorithm dequeues the nearest node n

29

n5

n1n3 n2

n4n6

o1 o2o3

o4

o5

o6 o7

1 1 3 2 2 2

5

2

2

5

2 3 3 3

12

q.ln7

n8

n9

n10

2

1

2

3

1

1

2

o8

o9

o10

{a,c} {a,b,c}

{b,c}

{c}

Figure 3.1: Graph representing a road network and objects.

from s in N (line 7), and processes non-visited adjacent nodes of n (lines 9-13). The

algorithm terminates when the entire network is expanded, or the minimum network

distance to any remaining object produces a lower-bound score higher or equal to the

score of the kth object already found (line 8). The lower-bound score of a node n is

obtained through the network distance between s and n and the maximum textual

relevance (θ = 1). Therefore, if the lower-bound score of a node is higher than or

equal to ε, it means that even if there is a non-visited object o matching all the query

keywords with maximum textual relevance, its ranking cannot be better than the kth

object in Rq, as δ(s, o.l) ≥ δ(s, n). This is guaranteed by the fact that the algorithm

strictly expands the node with minimum distance from s.

Algorithm 3.2 provides detailed steps of the FindCandidates procedure. It first

computes a maximum textual relevance θmax using the maximum impact λmax of each

term t ∈ q.d stored in the mapping component, and then a lower-bound score τmin

using the minimum network distance between the edge and the query node s and

the maximum textual relevance θmax (line 1). Only if the lower-bound score τmin is

smaller than ε will it compute exact scores of the objects on the edge and returns a

candidate set C of objects with scores lower than ε (lines 7-12).

3.3.3 Using Expansion Tree

When we need to obtain the top-k results of the end node of an edge, we can use

Algorithm 3.1 described above. However, after getting the result set of one end node

30

n, if we retraverse the network from the other end point n′ for its result set, potentially

there are many redundant operations here. This is the reason why we maintain the

expansion tree. The sub-tree of n′ of the expansion tree rooted at n is actually still

valid when computing the result set of n′ and thus, we can reuse this information to

avoid repetitive traversing of some network edges.

Fig. 3.1 shows an example of top-2 spatial keyword query on a road network at

q.l with q.d = {c}. For ease of description, we only mark the objects that contain the

term ‘c’, and assume that the textual relevance θ is the number of occurrences of the

query keywords in the description of an object o.d divided by the number of keywords

in the document. For example, textual relevance θ of o1 whose o1.d = {a, c} is 0.5.

In addition, we assume the maximum distance used to normalize spatial proximity δ

is 30 units and the preference parameter α is 0.5.

First, we can get the result set of n1 by using Algorithm 3.1, which is {o9, o1}. The

score of o9 is 0.5× 17
30

+0.5×(1−1) = 0.28 and the score of o1 is 0.5× 3
30

+0.5×(1− 1
2
) =

0.3. The expansion tree of n1 is shown in Fig. 3.2, where the valid sub-tree of n2 is

shown in the ellipse. The part which is not included in the ellipse is invalid because

there may be an optimal path from n2 to the nodes in the invalid part. For example,

path {n2 → n4 → n6} is shorter than path {n2 → n1 → n6}. We use a tree structure

T to maintain the expansion tree. For each node, if it is a non-leaf node, we preserve

a child list for it (line 3 & line 10).

In order to get the result set of n2, we use the following steps.

• First, we update the expansion tree T by removing the invalid part. This can

be achieved by removing the nodes which are not descendants of n2. We first

build a new tree root using n2. Then we remove the ancestors of n2 and their

children.

• Second, we insert the objects lying on the valid sub-tree whose textual relevance

θ is larger than zero into the current result set Rn2 of n2 (with updated scores).

A key observation here is that we need to consider all the relevant objects in Ore

belonging to the valid sub-tree rather than only considering the results of n1 that

fall in the valid sub-tree. The reason is that the distances from the query node

(which is n2 now) to the objects in Ore become smaller, which makes it possible

for the objects to replace the top-k results of n1 which belong to the invalid part.

For example, we need to insert o4 and o9 into Rn2 rather than just o9. We need

to consider o4 because it can replace o1. The top-2 results of n2 are {o9, o4} with

scores of 0.13 (0.5× 8
30

+ 0.5× 0) and 0.33 (0.5× 5
30

+ 0.5× 1
2
) respectively. As

31

n5

n1n3 n2

n4n6

o1 o2o3

o4

o5

q.ln7

n8

n9

n10

o8

o9

o10

Figure 3.2: Valid part when computing the result set of n2 (the sub-tree of n2) of the
expansion tree rooted at n1.

can be seen, o4 has a score of 0.33 lower than the score 0.35 (0.5× 6
30

+ 0.5× 1
2
)

of o1 and replaces o1, which demonstrates the observation. Although o4 is not

a result of n1, it has a probability to be a result of n2. Therefore, we need

to preserve the qualifying objects (θ > 0) in O(n,n′) when the FindCandidates

procedure is called, which can be found in Algorithm 3.2 (lines 4-6). o.parent

is used to tell whether object o belongs to the valid sub-tree.

• Finally, we compute the remaining top-k results of n2 with Algorithm 3.1 by

initializing N to contain the leaves of the valid sub-tree and n2 (with updated

distances from s). Let us consider the leaves of the valid sub-tree. They consist

of two node types: (i) the node that does not have adjacent nodes or whose

adjacent nodes have all been visited, and (ii) the node n with α · δ(n, s) ≥ ε

that stops Algorithm 3.1. After adding these two types of nodes to N , the

algorithm can start from the leaves to further traverse the network, in order to

get remaining results.

3.3.4 Deriving Top-k Results and Safe Segment

We have shown that the top-k results of any query location are contained in the union

of the relevant objects on the edge on which the query location lies and the result

32

sets of two end nodes of this edge (Lemma 3.1). In this subsection, we present how

to analytically derive the top-k results of any location on an edge from this union.

n1 n2o1 o2q.l

length=9

d=5

Figure 3.3: Derivation of top-k results.

Top-k results. We use Fig. 3.3 to illustrate how the top-k results can be derived

from the the union based on Lemma 3.1. Let d denote the distance from n1 to q.l

along the edge (n1, n2). In the example, the query point is on edge (n1, n2) with d of

5 units, and length = |n1, n2| of 9 units. We have known from the above subsection

that the top-2 results of n1 and n2 are {o9, o1} and {o9, o4} respectively. For each

object o from the results of both nodes that does not lie on the edge on which the

query location lies, we set d(q.l, o.l) to the minimum distance of (d(n1, o.l) + d) and

(d(n2, o.l) + length− d) and update o.score using δ(q.l, o.l). For the objects lying on

the edge, we compute their scores directly. Then, we select the top-k objects with

the lowest scores. Applying this principle to o1, o2, o4, o9, we can see that:

• δ(q.l, o1.l) = 2
30

; τ(q, o1) = 0.5× 2
30

+ 0.5× (1− 1
2
) = 0.28

• δ(q.l, o2.l) = 2
30

; τ(q, o2) = 0.5× 2
30

+ 0.5× (1− 1
3
) = 0.37

• δ(q.l, o4.l) = min{14+5,5+9−5}
30

; τ(q, o4) = 0.5× 9
30

+ 0.5× (1− 1
2
) = 0.4

• δ(q.l, o9.l) = min{17+5,8+9−5}
30

; τ(q, o9) = 0.5× 12
30

+ 0.5× (1− 1) = 0.2

Therefore, the top-2 results of q should be {o9, o1}.
Safe segment. A straightforward solution to the continuous monitoring of spatial

keyword queries on road networks is to periodically invoke the snapshot query algo-

rithm (we use this method as a comparative method in the experiments). However,

this method can yield excessive costs. In this work, we adopt a standard server-client

architecture with safe segment [36, 77], which is defined as follows.

Definition 3.3 (safe segment) A safe segment is a portion of an edge which can

guarantee that as long as the client stays in it, its top-k results remain valid.

In the following, we introduce how a safe segment can be computed. Assume

we know the moving direction of the client, as depicted in Fig. 3.4. There are two

key observations that support for the computation of the safe segment, which are

introduced as follows.

33

n1 n2o1 o2q.l o4

D

D

Rq={o1, o2, o3 ,o6}

Rn2={o2,o5}

Od1={o1,o3}

Od2={o2}

Or1={o4}

Or2={o5}o5

o6o3

Figure 3.4: Derivation of safe segment.

Observation 3.1 (the ‘replaced’ rule) When the client moves towards the direc-

tion within the edge(n1,n2), only two parts of the top-k results Rq can be replaced,

which are (i) the objects lying on the left of q.l, and (ii) the objects lying between q.l

and n2. We use Od1 to denote the first part of objects and Od2 to denote the second

part of objects.

Proof 3.2 An example of Od1 and Od2 is shown in Fig. 3.4. When the client moves

from q.l toward n2, some objects in Rq may be replaced by other objects. The object o

∈ Rq may be replaced only when the distance from the new query location to o becomes

larger. In this case, the score τ(q, o) becomes larger. Thus, o may be replaced by other

objects whose score τ becomes smaller. The part of Rq that satisfy the larger distance

condition are Od1 and Od2. For other objects in Rq lying on the right of n2, such as

o6, the distance becomes smaller, resulting in a smaller score τ . Thus, we only need

to consider Od1 and Od2, which may be replaced.

Observation 3.2 (the ‘replace’ rule) When the client moves towards the direc-

tion within the edge(n1,n2), only two parts of objects can replace some objects in the

top-k results Rq, which are (i) the objects lying on the right of n2 which belong to

the top-k results of n2, and (ii) the objects lying between q.l and n2. We use Or1 to

denote the first part of objects and Or2 to denote the second part of objects.

Proof 3.3 An example of Or1 and Or2 is shown in Fig. 3.4. When the client moves

from q.l toward n2, some objects may replace the objects in Rq. The object o may

replace some object in Rq only when the distance from the new query location to o

becomes smaller. In this case, the score τ(q, o) becomes smaller. Thus, o may replace

some object in Rq whose score τ becomes larger. The objects that satisfy the smaller

distance condition are Or1 and Or2. According to Lemma 3.1, we do not need to

consider the objects lying on the right of n2 which do not belong to the top-k results

of n2.

34

According to the two observations, we compute the safe segment in the following

two steps.

First, we consider the objects in Od1 and the objects in Or1 and Or2. For every

object od1 belonging to Od1 and object or belonging to Or1 or Or2, the distance from

the new query location to od1 becomes larger and the distance from the new query

location to or becomes smaller. Thus, we can compute a candidate safe segment D

using Equation 3.5. Note that D should be normalized when added to δ(q.l, o.l).

α · [δ(q.l, od1.l) +
D

dmax
] + (1− α) · [1− θ(q.d, od1.d)] =

α · [δ(q.l, or.l)−
D

dmax
] + (1− α) · [1− θ(q.d, or.d)]

(3.5)

Second, we consider the objects in Od2 and the objects in Or1 and Or2. We need to

be more careful here. For every object od2 belonging to Od2 and object or belonging to

Or1 or Or2, only when the client moves to the right of od2 will it be possible for od2 to

be replaced, since the distance from od2 to the new query location will become larger

from then on. Therefore, we first compute an offset D′ that indicates how far the

client moves to the right of od2 when od2 is replaced using Equation 3.6. An example

is shown in Fig. 3.4. We then get a candidate safe segment D using Equation 3.7

which simply adds the offset D′ to the distance of q and od2.

α ·D′ + (1− α) · [1− θ(q.d, od2.d)] =

α · [δ(q.l, or.l)− δ(q.l, od2.l)−D′] + (1− α) · [1− θ(q.d, or.d)] (3.6)

D = [δ(q.l, od2.l) +D′] · dmax (3.7)

If or belongs to Or2, only the positive D value smaller than |q.l, or.l| is valid. This

is because after the client moves to the right of or, the distance between the new query

location and or will become larger. Thus, or loses the ability to replace some object

in Rq. If or belongs to Or1, only the positive D value smaller than |q.l, n2| is valid.

After the above two steps, we calculate the minimum distance dmin from the valid

candidate safe segments and dmin is the safe segment obtained. What can happen

is that there is no valid safe segment at last, which indicates that before the client

reaches n2, the top-k results remain valid. In this case, the length of safe segment

is |q.l, n2|. Note that as we have reduced the problem to examining static network

nodes (Lemma 3.1), the safe segment does not contribute much to computation cost

reduction. However, it can greatly reduce the communication cost between the client

and the server.

35

3.3.5 Complete QCA Monitoring

In this subsection, we describe the complete QCA monitoring. A standard server-

client architecture is adopted to monitor the moving queries. Algorithm 3.3 provides

the steps of how the server responses to different messages sent from the client. There

are four types of messages: (i) M1 that a client first submits a query (line 2), (ii) M2

that the client exits a safe segment (line 15), (iii) M3 that the client exits an edge

(line 17) and (iv) M4 that the client changes direction (line 30). In the following, we

introduce how the server responds to each message type.

• For M1, the server takes some initialization steps. First, the spatial component

is used to find the edge on which q.l lies (line 3). Then, the moving direction

q.r of the client is used to locate the next encountered node (lines 4-5). Finally,

polyline of the edge is used to compute network distances between q.l and the

end nodes of the edge (line 6). After the initialization steps, the server computes

the result sets of the two end nodes and then gets safe segment as described in

the last subsection. The server sends the top-k results and safe segment to the

client (line 14).

• It is easy for the server to process M2. As the client does not leave the edge,

the server just recomputes the top-k results and safe segment (line 16).

• When the client moves out of the edge, there are two cases. If the new edge

is adjacent with the old edge (line 22), the result set of their intersecting node

does not need to be recomputed. The server can just reuse the result set it

computed last time. In order to guarantee the reuse, when processing M1 and

M3, the server locates the intersecting node using the moving direction of the

client (lines 4-5 and lines 19-20). Then the server reuses the result set of the

intersecting node and computes the result set of the other node (lines 23-24).

There is also a possibility that the client moves to a new edge which is not

adjacent with the old edge due to some unpredictable factor, such as the fast

speed of the client or the communication problem between the client and the

sever. In this case, the server recomputes the result set of the two end nodes

using the expansion tree T (lines 26-29).

• The algorithm can also process the situation when the client changes moving

direction. The server first relocates the next encountered node (lines 31-32),

and then recomputes the top-k results and safe segment (line 33) due to the

fact that the client still moves on the same edge.

36

Algorithm 3.3: QCA Monitoring

environment: Graph G, Objects O

1 foreach moving client c do
2 if receive M1 with query q =< q.l, q.d, q.k, q.r > then
3 e← network edges on which q.l lies;
4 n1 ← the next encountered node using q.r;
5 n2 ← the other node of e;
6 compute |q.l, n1| and |q.l, n2|;
7 Rn2 ← SnapshotQueryResult(n2, (n1, n2));
8 delete the invalid part of T ;
9 insert the objects in Ore falling in T to Rn1 ;

10 insert the leaves of T to N ;
11 Rn1 ← SnapshotQueryResult(n1, (n1, n2));
12 Rq ← get results using Rn1 , Rn2 and |q.l, n1|;
13 S ← safe segment;
14 send Rq and S to the client;

15 if receive M2 then
16 lines 12-14;
17 if receive M3 then
18 e′ ← network edges on which q.lnew lies;
19 n1 ← the next encountered node using q.r;
20 n2 ← the other node of e;
21 compute |q.lnew, n1| and |q.lnew, n2|;
22 if e′ is adjacent with e then
23 Rn2 ← Rn1 ;
24 lines 8-14;

25 else
26 delete the invalid part of T ;
27 insert the objects in Ore falling in T to Rn2 ;
28 insert the leaves of T to N ;
29 lines 7-14;

30 if receive M4 then
31 n1 ← the next encountered node using q.rnew;
32 n2 ← the other node of e;
33 lines 12-14;

3.4 Object-centric Algorithm

In this section, we present our second method named object-centric algorithm (OCA).

We start with the basic idea of our query processing in Section 3.4.1, and then in

Section 3.4.2 we introduce the network additively weighted Voronoi diagram which

can be used for monitoring continuous spatial keyword queries. To support obtaining

37

top-k results instead of a single result, we present the order-k shortest path tree

(kSPT) used in OCA in Section 3.4.3 and show how a kSPT can be incrementally

constructed in Section 3.4.4. Finally, we give the complete OCA monitoring algorithm

in Section 3.4.5.

3.4.1 Basic Idea

A shortcoming of using QCA for the MkSK queries is that it has to reevaluate the

query results of each unvisited node encountered by the moving query point, since

a new node may make some shortest paths invalid. Although it can avoid repeti-

tive traversing of some network edges using expansion tree, QCA still has to traverse

many edges that belong to the invalid part of the expansion tree. In this section, we

introduce a different approach that applies a special property of the studied contin-

uous monitoring problem: the textual relevance θ is independent of the query point

movement. This motivates us to utilize the concept of network additively weighted

Voronoi diagram (NAWVD) for monitoring spatial keyword queries.

At the beginning, OCA loads relevant objects that match at least one of the

query keywords in their descriptions. Instead of traversing from the end nodes of

the edge on which the query location lies, OCA starts traversing the network from

a relevant object and constructs a shortest path tree. We get the results of the two

end nodes of the edge on which the query location lies using the shortest path tree.

Moreover, the incremental shortest path tree construction is characterized by allowing

the construction process to halt when the top-k results of the requested node are found

and to resume when more results are required. OCA does not suffer from repetitive

result evaluation, since query results of each node are obtained via object-centric

expansion, where the shortest paths remain valid. Moreover, when constructing the

shortest path tree, OCA also obtains results or partial results of surrounding nodes,

which makes it suitable for the MkSK queries.

3.4.2 Network AW-Voronoi Diagram

Ordinary Voronoi diagram over a set of n points (or called generators) is a partition

of the space into n disjoint Voronoi cells, where the nearest neighbor of any point

inside a Voronoi cell is the generator of that Voronoi cell. Network Voronoi diagram

[56, 42] can be analogously constructed to partition the space into network Voronoi

cells (or Voronoi edge sets), by restricting objects on edges that connect nodes and

considering network distance.

38

The weighted Voronoi diagram family (including multiplicatively, additively, com-

poundly, etc.) differs from the ordinary Voronoi diagram in that the generators do

not have the same weight, reflecting their variable properties [56]. In our problem, in

order to find the result for each individual query q, we consider not only the spatial

proximity measure δ(q.l, o.l) but also the textual relevance measure θ(q.d, o.d), and the

latter can be regarded as a weight to be considered in addition to the former. Thus,

we can utilize additively weighted Voronoi diagram (or in short, AW-Voronoi diagram)

for processing the MkSK queries. By regarding the set of objects Or = {o1, . . . , on}
where oi 6= oj for i 6= j, i, j ∈ In = {1, . . . , n} as weighted generators2, additively

weighted distance between a point p and one of the generators oi can be written as

DAW (p, oi) = D(p.l, oi.l) + ωi

= δ(p.l, oi.l) +
1− α
α

[1− θ(q.d, oi.d)]
(3.8)

where ωi is the designated weight of the generator oi, corresponding to (1−α)/α[1−
θ(q.d, oi.d)] (which is a non-spatial attribute associated with oi, and independent of

the query point movement).

Given a road network G(N,E), a set of edges E = {e1, . . . , em} connect the nodes

N in G. For j ∈ In − {i}, the dominance region of oi over oj on edges specifies

all locations on the edges in E that are closer to oi or of equal distance to oj with

additively weighted network distance, which is

Dom(oi, oj) = {p|p ∈
m⋃
l=1

el, DAW (p, oi) ≤ DAW (p, oj)}. (3.9)

The network Voronoi cell generated by oi is the closures of these regions and can be

defined as

Vedge(oi) =
⋂

j∈In\{i}

Dom(oi, oj). (3.10)

The network AW-Voronoi diagram over a set of generators O partitions E, and each

network Voronoi cell Vedge(oi) includes edges or portions of edges. A network AW-

Voronoi cell Vedge(oi) specifies all the locations on the network where oi should be the

top ranked object of the spatial keyword query. This is because the generator oi of

the network AW-Voronoi cell that contains the query location q.l has the smallest

value of DAW (q, o) among all generators, while DAW (q, o) = τ(q, o)/α according to

Equations 3.1 and 3.8.

2Note that for the MkSK queries, the generators are the relevant objects in Or that match at
least one of the query keywords in their descriptions.

39

n1 n2 n3

n4 n5

n6 n7 n8

o1

o2 o3

T

(a)

n1 n2 n3

n4 n5

n6 n7 n8

o1

o2 o3

T

(b)

Figure 3.5: Network AW-Voronoi diagram construction using the extended shortest
path tree technique.

Next, we briefly describe how a network AW-Voronoi diagram can be constructed

based on a technique using the extended shortest path trees [57]. The shortest path

tree (SPT), defined as the set of edges connecting all nodes such that the sum of the

edge lengths from a given root to each node is minimum. A simple example is shown

in Fig. 3.5(a), where the SPT rooted at T , SPT (T), is signified by the line segments.

The edges signified by the dotted line segments which are referred to as uncovered

edges are not included in the SPT. To cover the whole network, the shortest path

tree is extended as shown in Fig. 3.5(b) in the following manner. On each uncovered

edge, we first find a break point, bi, such that the shortest path distance from the

point bi to the root node through one end node of the uncovered edge is equal to the

shortest path distance to the root node through the other end node, as signified by

the small black dots in the figure. We then cut the network at these break points

and add nodes on both cut ends. For this modified network, we again construct the

ordinary SPT. The result is called the extended shortest path tree (ESPT). It gives the

information on the shortest path from any arbitrary point on the network to a given

root node. Given a road network G = (N,E), the network AW-Voronoi diagram can

be obtained using the ESPT. First, we assume a dummy node T as the root node

and join T to each generator oi with the length (1−α)
α

[1 − θ(p.d, oi.d)] as the weight.

Then, we construct the extended shortest path tree of T .

There are two major limitations of using the above NAWVD construction tech-

nique for the MkSK queries. First, it can only handle a single object (top ranked) but

40

cannot support top-k results. Second, it requires to construct the whole network AW-

Voronoi diagram. In the following, we generalize the SPT technique to the order-k

SPT (kSPT), and show how kSPT can be constructed in an incremental manner.

3.4.3 Order-k Shortest Path Tree

In order to support obtaining top-k results, we can extend SPT by introducing over-

laps between branches. The kSPT branches are overlapped in such a way that each

node appears in the tree exactly k times, in k different branches. We first introduce

the data structure used by our algorithm of constructing kSPT.

Indexing structure. OCA uses the spatial component and the adjacency com-

ponent (introduced in Section 3.3.2) to locate the edges on which the objects lie and

to get the adjacent nodes of a given node, respectively. Besides, our algorithm uses

an inverted index to load some objects, which match at least one of the query key-

words in their descriptions, at the beginning of the algorithm. We use a B-tree that

maps the term id to the inverted list that contains the objects with term t in their

documents.

Node structure. The structure of a node ni contains the following attributes:

• ID : the node identification;

• LabelList : a list of (at most) k labels. For each label (o, d) in the label list of

ni, o represents an object, and labeling distance d represents τ(q,o)
α

;

• Type: a node type is ‘Labelable’ by default and becomes ‘Permanent’ upon

completion of k labels.

Fig. 3.6 shows the order-2 shortest path tree for the network shown in Fig. 3.1,

where the X coordinate represents the labeling distance d. T is the dummy root node

as illustrated in Fig. 3.5. We construct the order-k shortest path tree similar with

SPT, but we stop the construction until each node in the network appears in the tree

exactly twice, in two different branches. Each generator (i.e., o9, o4 and o1) has a

branch. The first label indicates the labeling distance between the corresponding node

and the generator whose branch the node locates on is the shortest, while the second

label indicates a second shortest labeling distance. For example, n1 first appears in

the branch of o9 and then in the branch of o1. Thus, the top-2 results of n1 should

be o9 and o1.

We describe kSPT construction steps in Algorithm 3.4. The algorithm receives a

query q and a set Or of relevant objects that match at least one of the query keywords

41

o2o2

n2n2

00
30

15

30

20

o9o9

n9n9

n4n4

n10n10

n6n6

n2n2

n5n5

o4o4

o1o1

n444n4

n1n1

o4o4 o2o2 o1o1

o9o9

30

10

30

5

n1n1

n3n3

n3n3

n9n9

n7n7

n8n8

n7n7

n8n8

n6n6 n5n5

n10n10

30

25
11

TT

Second labelFirst labelRoot node: T Generator: o9, o4, o1

Figure 3.6: Order-2 shortest path tree for the network in Fig. 3.1.

in their descriptions as input. The output kSPT is provided as G(N,E) with top-k

result information embedded. Specifically, we obtain k labels for each ni in N . The

initialization (lines 1-10) includes the following steps.

• First, a priority queue PQ is initialized. An entry of PQ is a tuple (n, o, d),

where n is the node to which the entry corresponds, and the other two elements

o and d form a labeling candidate for an entry in n.LabelList. Entries in PQ

are ranked according to the labeling distance d.

• Second, for each object o ∈ Or, we create a node entry no and insert it into

G(N,E) where affected edges in E are accordingly modified (lines 3-4). We

create an entry of PQ for no with the associated object o and the labeling

distance d of 1−α
α

[1− θ(q.d, o.d)] (lines 5-7).

• Third, for each network node, we create an empty label list and set the node

type to ‘Labelable’ (lines 8-10).

Best-first search is handled by the while loop (lines 11-20). The first step of

each iteration is to dequeue the head entry (n, o, d) from PQ (line 12). Since we are

interested in only the first k labels of each node, the entry is ignored if the label list

of the node already contains k labels, i.e., the node is ‘Permanent’. In addition, to

ensure that each node is associated with k unique results, the entry is also ignored if

42

Algorithm 3.4: Construct-kSPT

environment: Graph G(N,E), MinHeap PQ
input : Query q, Objects Or

output : Labeled G

1 Initialize PQ;
2 foreach o ∈ Or do
3 Node no ← create a network node from o;
4 G(N,E).Insert(no);
5 Distance d ← 1−α

α
[1− θ(q.d, o.d)];

6 PQEntry e ← tuple (no, o, d);
7 insert e into PQ;

8 foreach n ∈ N do
9 n.LabelList ← create an empty list of labels;

10 n.Type ← Labelable;

11 while PQ is not empty do
12 PQEntry (n, o, d)← PQ.pop();
13 if n.Type is Labelable and no existing label with o then
14 n.LabelList.Add((o, d));
15 if n.LabelList.Length = k then
16 n.Type← Permanent;
17 foreach adjacent node na of n and na is Labelable do

18 Distance ω ← (na,n).Weight
dmax

;

19 PQEntry ea ← tuple (na, o, d+ ω);
20 PQ.Insert(ea);

there exists an entry with object o as the associated object in the label list. Otherwise,

a label (o, d) is added to the label list of the node (line 14). The node type becomes

‘Permanent’ if this label is the kth entry in the label list (lines 15-16). In lines 18 to

20, for each node na adjacent to n, we create a PQ entry ea, (na, o, d+ ω), where

• na is the node to which this entry corresponds;

• o is the associated object;

• (d+ω) is the labeling distance calculated by adding the current labeling distance

d to the normalized weight of edge (i.e., divided by dmax) between n and na.

The entry ea is then inserted into PQ. The while loop continues until PQ is ex-

hausted, i.e., every node is labeled k times.

Let us consider the first few steps of the algorithm, using the network in Fig. 3.1.

Likewise, we also assume the maximum distance dmax used to normalize δ is 30 units

43

and α is 0.5. After the initialization steps, the priority queue PQ has the following

initial entries: [
(o9, o9, 0), (o4, o4,

1

2
), (o1, o1,

1

2
), (o2, o2,

2

3
)

]
.

Then the first entry (o9, o9, 0) is dequeued from PQ. As a result, node o9 is labeled

with o9 itself as the first object of interest and the labeling distance of 0, which is

obtained using 1−α
α

[1− θ(q.d, o9.d)]. Next, two entries (n4, o9,
1
30

) and (n9, o9,
2
30

) are

created using the two nodes adjacent to o9, n4 and n9, respectively. These entries are

then inserted into PQ, resulting in the following entries in PQ:[
(n4, o9,

1

30
), (n9, o9,

2

30
), (o4, o4,

1

2
), (o1, o1,

1

2
), (o2, o2,

2

3
)

]
.

The entry that is dequeued next is (n4, o9,
1
30

), so we apply the label (o9,
1
30

) to n4.

The same process continues until PQ is exhausted.

A drawback of Algorithm 3.4 is that it requires global access to all nodes, which can

be disadvantageous especially in a large network. Next, we show how this drawback

can be alleviated.

3.4.4 Incremental kSPT Construction

We now present our OCA approach which incrementally retrieves objects and com-

putes node labels as the monitoring process progresses. The cost of order-k shortest

path tree construction can be greatly reduced by exploiting the fact that the offset as-

signed to each object o corresponds to the textual relevance 1−α
α

[1−θ(q.d, o.d)]. Thus,

objects that are not very relevant to q.d are likely to be involved in the computation

later than objects relevant to q.d. Based on this property, we devise a mechanism

which is incremental (it halts when a desired label list is obtained and resumes when

more label lists are required). Incremental kSPT construction usually requires only

local information. As a result, we can eliminate the global access requirement of the

network nodes and limit the search region to a much smaller size.

As the labeling process progresses, objects are incrementally retrieved according to

their textual relevance to q.d (the most relevant object is first retrieved). The scope of

this object retrieval is denoted as a search radius r, where r is set to 1−α
α

[1−θ(q.d, o.d)].

Whenever a new object o is retrieved, r is updated. The value of r indicates whether

a node is safe to label or more objects are needed.

Algorithm 3.5 provides detailed steps of how the label list of a node is obtained.

The first step is to check whether the k labels of the node already exist, in which case

the labels are returned straightaway without further traversal of the network (lines

44

Algorithm 3.5: GetLabelList(Node s)

environment: Graph G(N,E), Objects Or, Query q, MinHeap PQ
input : Node s
output : LabelList 〈l1, . . . , lk〉

1 if s has been initialized and s.Type is Permanent then
2 return s.LabelList;
3 while PQ is not empty do
4 PQEntry (n, o, d)← PQ.head();
5 while r < d do
6 Object o← Or.pop() ;
7 Node no ← create a network node from o;
8 G(N,E).Insert(no);
9 PQEntry e ← tuple (no, o,

1−α
α

[1− θ(q.d, o.d)]);
10 insert e into PQ;
11 r = 1−α

α
[1− θ(q.d, o.d)];

12 PQEntry (n, o, d)← PQ.pop();
13 if n.Type is Labelable and no existing label with o then
14 if n is not initialized then
15 n.LabelList ← create an empty list of labels;
16 n.Type ← Labelable;

17 n.LabelList.Add((o, d));
18 foreach adjacent node na of n and na is Labelable do

19 Distance ω ← (na,n).Weight
dmax

;

20 PQEntry ea ← tuple (na, o, d+ ω);
21 insert ea into PQ;

22 if n.LabelList.Length = k then
23 n.Type← Permanent;
24 if n.ID=s.ID then
25 return n.〈L1, . . . , Lk〉;

1-2). If the requested label list is otherwise incomplete, we proceed to the main while

loop (lines 3-25). The while loop in Algorithm 3.5 is similar to that in Algorithm 3.4.

The following modifications are applied to make Algorithm 3.5 incremental.

• The first modification is the search radius check (lines 5-11), which ensures that

the value of r is not smaller than the labeling distance d. Specifically, until r is

larger than or equal to d, the following steps are repeated:

– retrieving the next relevant object with respect to q.d (line 6),

– performing graph modification and priority queue insertion (lines 7-10)

similar to Algorithm 3.4,

45

00
30

15

30

20

o9o9

n9n9

n4n4

n10n10

n6n6

n2n2

n5n5

n1n1

o4o4

o1o1 n1n1

0=r
2

1
=r

3

2
=r

First laba el

First label

Second laba el

Second label

o4o4 o2o2 o1o1

n4n4 o9o9TT

Figure 3.7: kSPT constructed when getting the top-2 results of n1.

– setting the search radius r to 1−α
α

[1− θ(q.d, o.d)] of object o (line 11);

• The second modification is deferral of node initialization (lines 14-16);

• The third modification is a halt to the node labeling process after the requested

node has k labels (lines 24-25).

Fig. 3.7 presents a stepped explanation of how the k labels of n1 can be computed

though incremental object retrieval and incremental node labeling.

• The first retrieved object (the object most relevant with the query keywords) is

o9. The search radius r is set to 1−α
α

[1 − θ(q.d, o9.d)] = 0. The only node that

can be labeled with this r value is o9 itself. After the labeling, we proceed to

consider the next object.

• The next retrieved object is o4. The search radius r is updated to 1
2
, which

allows the nodes belonging to r = 1
2

and o4 itself to be labeled. After that, the

object o1 is retrieved. As the search radius r remains to be 1
2
, only o1 is labeled.

• Then o2 is retrieved. The search radius r is updated to 2
3
, which allows the nodes

belonging to r = 2
3

to be labeled. The labeling process halts upon completion

of the second label of n1. From the figure, we can see that n1 appears first in

the branch of o9 and again in the branch of o1. We can therefore infer that the

top-2 result set of n1 is {o9, o1}.

46

o2o2

n2n2

00
30

15

30

20

o9o9

n9n9

n4n4

n10n10

n6n6

n2n2

n5n5

n1n1

o4o4

o1o1

n4n4

n1n1

0=r

2

1
=r

3

2
=r

First laba el

First label

Second laba el

Second label

o4o4 o2o2 o1o1

o9o9

n3n3

TT

Figure 3.8: kSPT constructed when getting the top-2 results of n2.

Compared with Fig. 3.6 where the whole order-2 shortest path tree is built, Fig. 3.7

only need to build a part of the order-2 shortest path tree, and thus can reduce the

edge traversing cost especially in a large network.

Fig. 3.8 shows how a subsequent top-2 result set of the other end node n2 of the

edge on which the query location lies can be obtained. As can be seen, the second label

of n2 can be obtained by resuming the labeling process halted after the completion

of the second label of n1. The figure also shows that we only need to label o2, n3 and

n2 before obtaining the second label of n2. Likewise, we know the top-2 result set of

n2 is {o9, o4}.

3.4.5 Complete OCA Monitoring

In this subsection, we describe the complete OCA monitoring, which is shown in

Algorithm 3.6. The OCA algorithm has the following parameters as input: a network

graph G and a set of objects O. The initialization steps (lines 2-8) include:

• loading the relevant objects into a priority queue Or, which is accomplished

by first computing the textual relevance θ for the relevant objects using the

inverted index and then inserting them into Or;

• retrieving the most relevant object to q.d as the initial object o which provides

a bound of search space, and inserting it into G(N,E) and PQ;

• setting the search radius r to 1−α
α

[1− θ(q.d, o.d)].

47

Algorithm 3.6: OCA Monitoring

environment: Graph G, Objects O

1 foreach moving client c do
2 Or ← load relevant objects;
3 o← Or.pop() ;
4 r = 1−α

α
[1− θ(q.d, o.d)];

5 Node no ← create a network node from o;
6 G(N,E).Insert(no);
7 PQEntry e ← tuple (no, o,

1−α
α

[1− θ(q.d, o.d)]);
8 insert e into PQ;
9 while receive message of first query or exiting the safe segment do

10 (ni, nj)← network edge on which q.l lies;
11 LabelList Li ← GetLabelList(ni);
12 LabelList Lj ← GetLabelList(nj);
13 Rq ← get results using LabelList Li and LabelList Lj;
14 S ← safe segment;
15 send Rq and S to the client

After the initialization steps, the OCA algorithm enters the monitoring stage (lines

9-15). Once it receives the message from the client when the client first submits a

query or exits the safe segment, it locates the edge on which q.l lies and obtains the

top-k result sets for the two end nodes using Algorithm 3.5 (lines 11-12). Since OCA

uses shortest path tree instead of expansion tree as used in QCA, the server does

not need the direction information of the client. Note that only if the client enters

a new edge, do the top-k result sets for the two end nodes need to be recomputed.

Moreover, with the help of shortest path tree, only a few more edges need to be

traversed. Similar to QCA, OCA also makes use of Lemma 3.1 to examine network

nodes. From the labels of two end nodes of the edge on which the query location

lies, we can derive query results easily using the method presented in Section 3.3.4

(line 13). OCA computes the safe segment using the same method as used in QCA

(line 14). To provide a more comprehensive cost comparison of the above mentioned

methods, experimental results are reported in the next section.

3.5 Experimental Study

In this section, we evaluate the efficiency of QCA and OCA. To test the advantage

of using expansion tree in QCA, we implement a baseline method called incremental

network expansion (INE), which is essentially QCA without using expansion tree.

48

To test the advantage of incrementally constructing the shortest path tree used in

OCA, we implement a baseline method called order-k shortest path tree (kSPT),

which corresponds to the non-incremental Algorithm 3.4 in Section 3.4.3. We also

implement a straightforward method (STM) for MkSK queries on road networks that

computes query results from scratch at every timestamp using the snapshot query

algorithm similar to Algorithm 3.1 (the snapshot query algorithm does not maintain

the expansion tree, and can start a query from any location on the network). We

can understand the effect of using Lemma 3.1 and safe segment by comparing STM

and INE. These five methods return the same result set for a query and are all

implemented in Java.

3.5.1 Experimental Setup

We use three real datasets, Singapore, London and Australia, for evaluation. Singa-

pore is obtained from the Land Transport Authority, Singapore. The original road

network has 57,138 edges. We reformatted the network to make the endpoints of

its edges have degree equal to 1 or larger than 2, resulting in a network with 15,076

edges. London and Australia datasets are obtained from [62], and the formats already

satisfy our requirement. Table 3.2 presents some characteristics of each dataset.

We use Brinkhoff’s generator [10] to generate the trajectories of moving queries.

The input of the generator is the road network of the dataset used. The output is a

set of objects (e.g., cars or pedestrians) moving on the network, where each object

is represented by its location at consecutive timestamps. An object appears on a

network node, completes the shortest path to a random destination, and then disap-

pears. We generate each trajectory with 100 points, where each location is generated

per timestamp (second), i.e., we monitor each trajectory for 100 seconds. The key-

word set of each query is generated based on the word distribution of the vocabulary

dataset used. Each experiment has 100 moving queries with such trajectories and the

average result is reported.

Table 3.3 shows the main parameters and values used throughout the experiments

(default values are in bold). In the experiments, we measure the following metrics:

• (i) execution time, which is the amount of time an algorithm runs to process a

query trajectory;

• (ii) edges expanded, which is the number of edges expanded before an algorithm

finishes processing;

49

Attribute Singapore London Australia

Total size 5 MB 51 MB 560 MB
Total no. of nodes 13,023 203,383 1,181,142
Total no. of edges 15,076 274,947 1,631,421
Avg. no. of lines per edge 3.79 5.79 13.65
Avg. edge length (m) 175.00 105.12 740.47
Total no. of objects 5,387 34,162 69,884
Avg. no. of objects per edge 0.35 0.12 0.04
Total no. of words 17,049 121,049 225,865
Total no. of distinct words 1,007 12,551 18,875
Avg. no. of distinct words
per object

0.20 3.35 3.04

Table 3.2: Characteristics of the datasets.

Parameter Values

Monitoring length l 0, 20, 40, 60, 80
Number of keywords n 1, 2, 3, 4, 5
Number of results k 5, 15, 25, 35, 45
Preference parameter α 0.1, 0.3, 0.5, 0.7, 0.9
Dataset Singapore, London, Australia

Table 3.3: Parameters evaluated in the experiments.

• (iii) memory cost, which is the memory space consumed to process a query

trajectory;

• (iv) communication cost, which is the total number of objects transferred by

the server to the client;

• (v) communication frequency, which is the probability of sending a request to

the server, and can be computed by the ratio of the number of messages sent

to the server by the client to the number of timestamps of the query trajectory.

As a remark, the main memory cost for QCA is the maintaining of the expansion

tree, and the main memory cost for kSPT and OCA is the maintaining of the relevant

objects and the order-k shortest path tree. For other algorithms, the memory cost

is low. Thus, we only test the memory cost for QCA, kSPT and OCA. In addition,

since all testing algorithms except STM use safe segments and have the same com-

munication cost and communication frequency, we only test one of these algorithms

and compare the results with those of STM. Note that for STM, the communication

frequency is always 1, since the client will send a location update message to the

50

1

10

100

 0 20 40 60 80

ti
m

e
 (

se
c
o

n
d

)

l

STM
INE

QCA
kSPT
OCA

(a) Execution time

100

1K

10K

100K

 0 20 40 60 80

ed
g

es
 e

x
p

an
d

ed
 (

×
1

0
0

0
 e

d
g

es
)

l

STM
INE

QCA
kSPT
OCA

(b) Edges expanded

100

1K

10K

100K

 0 20 40 60 80

sp
ac

e
(K

B
y

te
s)

l

QCA
kSPT
OCA

(c) Memory cost

1

10

100

1K

10K

 0 20 40 60 80

o
b

je
ct

s
tr

an
sf

er
re

d

l

STM
OCA

(d) Communication cost

0.01

0.1

1

 0 20 40 60 80

co
m

m
u

n
ic

at
io

n
 f

re
q

u
en

cy

l

(e) Communication frequency

Figure 3.9: Effect of the monitoring length (l).

server at each timestamp. Our experiments are conducted on a 3.20 GHz Intel Core

i5 machine with 4 GB of RAM.

51

1

10

100

 1 2 3 4 5

ti
m

e
 (

se
c
o

n
d

)

n

STM
INE

QCA
kSPT
OCA

(a) Execution time

100

1K

10K

100K

 1 2 3 4 5

ed
g

es
 e

x
p

an
d

ed
 (

×
1

0
0

0
 e

d
g

es
)

n

STM
INE

QCA
kSPT
OCA

(b) Edges expanded

100

1K

10K

100K

 1 2 3 4 5

sp
ac

e
(K

B
y

te
s)

n

QCA
kSPT
OCA

(c) Memory cost

1

10

100

1K

10K

 1 2 3 4 5

o
b

je
ct

s
tr

an
sf

er
re

d

n

STM
OCA

(d) Communication cost

0.01

0.1

1

 1 2 3 4 5

co
m

m
u

n
ic

at
io

n
 f

re
q

u
en

cy

n

(e) Communication frequency

Figure 3.10: Effect of the number of keywords (n).

3.5.2 Experimental Results

In this subsection, we report the experiment results of STM, INE, kSPT, QCA and

OCA methods.

Effect of l. In this experiment, we evaluate the effect of the monitoring length

l, as shown in Fig. 3.9. The value of l is ranged from 0 to 80 points. The value of 0

52

corresponds to the situation when the query is used as a snapshot query. As can be

seen in Fig. 3.9(a) and Fig. 3.9(b), when used as snapshot query, STM, INE and QCA

behave better than kSPT and OCA. However, as l increases, execution time and edges

expanded of these three methods consistently increase. INE has a better performance

than STM, because it does not have to reevaluate the query and retraverse the network

at each timestamp by using safe segment and Lemma 3.1, respectively. QCA behaves

better than INE as QCA can avoid some repetitive traversing using expansion tree,

which can be seen in Fig. 3.9(b). In spite of this, it is still outperformed by OCA. This

is because QCA has to reevaluate the query results of each unvisited node encountered

by the query point. Although it can avoid repetitive traversing of some network

edges using expansion tree, QCA still has to traverse the edges which belong to the

invalid part of the tree. For kSPT, both execution time and edges expanded remain

unchanged, because kSPT computes the k results for all nodes on the network. For

OCA, changes in l do not produce a noticeable effect on both cost measures, because

when computing the top-k results of the initial query node, OCA also obtains results

or partial results of its surrounding nodes. Thus, the incremental cost of computing

subsequent nodes can be negligible. OCA behaves much better than kSPT, because

OCA adopts an incremental version of kSPT and halts when top-k results of the

requested nodes are found. The experimental results show that both QCA and OCA

perform much better than STM, while OCA is the best method when used for longer

query trajectories. For the memory cost, Fig. 3.9(c) shows that OCA consumes more

space than QCA. This is because QCA only needs to preserve the node information

for the expansion tree, while OCA has to preserve not only the node information but

also the label information for each node. In addition, OCA also has to preserve the

relevant objects. Note that compared with the order-k shortest path tree preserved

by OCA, the relevant objects consume rather low memory. On the other hand, OCA

consumes much less space than kSPT, since OCA adopts an incremental version

of kSPT. Actually, the memory consumed by kSPT is an upper bound for OCA.

However, as can be seen, the incremental method is very effective and OCA consumes

only a small part of the memory. For the communication cost and communication

frequency, we can see that with the help of safe segment, all four methods have a very

low cost compared with STM. The communication frequency is insensitive to l.

Effect of n. In this experiment, we evaluate the effect of n, the number of query

keywords, as shown in Fig. 3.10. As can be seen in Fig. 3.10(a) and Fig. 3.10(b), there

is a slight increase of execution time and edges expanded when n increases. This is

because the larger the number of keywords in the query, the larger the number of

53

objects that may be relevant for the query. For STM, INE and QCA, more objects

need to be examined during the expansion phase of the snapshot query algorithm.

While for kSPT and OCA, more relevant objects have to be taken into account and

loaded into the object heap at the beginning of the algorithm and more edges have

to be expanded before terminating the algorithm. QCA and OCA still perform much

better than STM, while OCA remains to be the best method. Fig. 3.10(c) shows that

the memory cost increases slightly with the number of query keywords. Fig. 3.10(d)

and Fig. 3.10(e) show that the communication cost and communication frequency

increases slightly with the number of query keywords. This is because larger query

keyword sets increase the possibility of top-k objects to be replaced by other candidate

objects, which yields shorter safe segments.

Effect of k. In this experiment, we evaluate the effect of k, the number of

requested results. Fig. 3.11(a) and Fig. 3.11(b) show that k has no noticeable effect

on the execution time or edges expanded of STM, INE and QCA. This is because when

running the snapshot query algorithm, the algorithms also considers some relevant

objects that are not in the final results. However, they may fall in the results when

k increases. Therefore, although k increases, these methods consider similar number

of relevant objects and do not induce much additional processing cost. On the other

hand, kSPT and OCA are more sensitive to the parameter k. This is because k

determines the number of labels for each node. For kSPT, more edges need to be

expanded to complete k labels of each node. For OCA, the larger the number of

results, the later OCA terminates when requested nodes are complete, which means

more edges need to be expanded and longer execution time. These can also explain

the results shown in Fig. 3.11(c). As k increases, the memory cost for kSPT and OCA

increase quickly, while the memory cost for QCA has no noticeable increase. In this

case, QCA scales better than OCA when k increases. Fig. 3.11(d) and Fig. 3.11(e)

show that the communication cost and communication frequency increase when k

increases. This is because more objects need to be considered due to a larger k,

which yields shorter safe segments. In addition, for the communication cost, a larger

k means the server needs to send more objects to the client.

Effect of α. In this experiment, we evaluate the effect of the query preference

parameter α, as shown in Fig. 3.12. A small value of α gives more preference to the

textual description of the objects, while a large value of α gives more preference to

the network proximity. As can be seen, kSPT and OCA are not sensitive to α. This

is because α has little influence on the node labeling process of the requested nodes.

All the other three methods perform slightly better for larger values of α. This is

54

1

10

100

 5 15 25 35 45

ti
m

e
 (

se
c
o

n
d

)

k

STM
INE

QCA
kSPT
OCA

(a) Execution time

100

1K

10K

100K

 5 15 25 35 45

ed
g

es
 e

x
p

an
d

ed
 (

×
1

0
0

0
 e

d
g

es
)

k

STM
INE

QCA
kSPT
OCA

(b) Edges expanded

100

1K

10K

100K

 5 15 25 35 45

sp
ac

e
(K

B
y

te
s)

k

QCA
kSPT
OCA

(c) Memory cost

1

10

100

1K

10K

 5 15 25 35 45

o
b

je
ct

s
tr

an
sf

er
re

d

k

STM
OCA

(d) Communication cost

0.01

0.1

1

 5 15 25 35 45

co
m

m
u

n
ic

at
io

n
 f

re
q

u
en

cy

k

(e) Communication frequency

Figure 3.11: Effect of the number of results (k).

reasonable as the objects near the query location have a lower score when α increases,

and thus, STM, INE and QCA can process fewer edges or terminates the algorithm

earlier. Fig. 3.12(c) shows that the memory cost behaves similarly as the execution

time. As can be seen in Fig. 3.12(d) and Fig. 3.12(e), the communication cost and

communication frequency are insensitive to α.

55

1

10

100

 0.1 0.3 0.5 0.7 0.9

ti
m

e
 (

se
c
o

n
d

)

α

STM
INE

QCA
kSPT
OCA

(a) Execution time

100

1K

10K

100K

 0.1 0.3 0.5 0.7 0.9

ed
g

es
 e

x
p

an
d

ed
 (

×
1

0
0

0
 e

d
g

es
)

α

STM
INE

QCA
kSPT
OCA

(b) Edges expanded

100

1K

10K

100K

 0.1 0.3 0.5 0.7 0.9

sp
ac

e
(K

B
y

te
s)

α

QCA
kSPT
OCA

(c) Memory cost

1

10

100

1K

10K

 0.1 0.3 0.5 0.7 0.9

o
b

je
ct

s
tr

an
sf

er
re

d

α

STM
OCA

(d) Communication cost

0.01

0.1

1

 0.1 0.3 0.5 0.7 0.9

co
m

m
u

n
ic

at
io

n
 f

re
q

u
en

cy

α

(e) Communication frequency

Figure 3.12: Effect of the preference parameter (α).

Effect of different datasets. In this experiment, we study the total running

time and the number of edges expanded for three real road network datasets of dif-

ferent sizes, as shown in Fig. 3.13(a) and Fig. 3.13(b). As can be seen, OCA scales

well when the dataset size increases. The OCA method is more than one order of

magnitude better than baseline methods STM and INE in terms of execution time for

56

1

10

100

1K

Singapore London Australia

ti
m

e
(s

ec
o

n
d

)

dataset

STM
INE

QCA
kSPT
OCA

(a) Execution time

10

100

1K

10K

100K

Singapore London Australia

ed
g

es
 e

x
p

an
d

ed
 (

×
1

0
0

0
 e

d
g

es
)

dataset

STM
INE

QCA
kSPT
OCA

(b) Edges expanded

10

100

1K

10K

100K

Singapore London Australia

sp
ac

e
(K

B
y

te
s)

dataset

QCA
kSPT
OCA

(c) Memory cost

1

10

100

1K

10K

Singapore London Australia

o
b

je
ct

s
tr

an
sf

er
re

d

dataset

STM
OCA

(d) Communication cost

0.01

0.1

1

Singapore London Australia

co
m

m
u

n
ic

at
io

n
 f

re
q

u
en

cy

dataset

(e) Communication frequency

Figure 3.13: Performance on different datasets.

the Australia dataset. Fig. 3.13(c) shows that QCA consumes the least space among

the three methods, while OCA consumes much less space than kSPT. We also test the

communication cost and communication frequency for these three datasets, as shown

in Fig. 3.13(d) and Fig. 3.13(e). All four methods have a low communication cost

and communication frequency compared with STM due to the use of safe segments.

57

3.5.3 Discussion

We have tested the effect of different parameters about MkSK queries. QCA behaves

better than STM and INE because of using Lemma 3.1 with safe segment and ex-

pansion tree, while OCA behaves better than kSPT because of incremental order-k

shortest path tree construction. OCA scales better than QCA as the monitoring

length l increases, while QCA scales better than OCA as the number of results k

increases. Thus, this provides an insight on which method should be used in the

realistic monitoring applications. If the number of results k required by the client is

large, it is better to use QCA to answer the query. Otherwise, it is better to use OCA.

Overall, OCA behaves better than QCA for MkSK queries with a realistic parameter

setting. One disadvantage of OCA is that it consumes more memory than QCA,

which makes it be able to support less clients simultaneously than QCA. However,

this disadvantage can be alleviated by the fact that the order-k shortest path tree is

valid for all the queries with the same query keywords, since OCA starts traversing

the network from the relevant objects rather than the query location. Thus, for the

queries with the same keywords which are submitted to the server during the same

period, the server only needs to build one order-k shortest path tree. In this way,

both the execution time and the memory cost can be reduced dramatically, and the

server can support more clients simultaneously. In addition, the server can cache the

order-k shortest path tree built for the frequent keywords, which can be used for the

subsequent queries with these frequent keywords. QCA also has a potential advantage

that other optimized snapshot query algorithms for top-k spatial keyword queries on

road networks (such as the overlay method in [62]) could be employed to further im-

prove the performance, which is orthogonal to our work. Moreover, with the help of

safe segment, QCA and OCA can have a rather low communication frequency, which

is very important in the realistic monitoring applications.

3.6 Summary

In this chapter, we investigate the problem of continuous top-k spatial keyword

(MkSK) queries on road networks, and propose two efficient methods for query pro-

cessing. QCA monitors the top-k results of the moving point by examining the inter-

sections the query encounters. It uses expansion tree to avoid repetitive traversing

of some network edges. OCA incrementally retrieves the top-k results according to

textual relevance first and computes all or partial top-k results of a subset of nodes

on the network. We compare the proposed methods with three baseline methods.

58

Experimental results confirm the superiority of our two methods and reveal their

relative advantages.

59

Chapter 4

Efficient Moving Spatial Queries
Against Dynamic Event Streams

4.1 Introduction

In the previous chapter, we have discussed the efficient processing of moving spatial

keyword queries on road networks. There, we have moving queries but the POIs are

static. In this chapter, we extend the traditional moving spatial queries to search

for not only static POIs but also dynamic events in order to provide users more rich

information they are interested.

The prevalence of social networks and mobile devices has facilitated the real-time

dissemination of local events such as sales, shows and exhibitions. To avoid missing

interesting events in the neighborhood, various location-aware pub/sub systems have

been proposed. These fall into two categories: they either focused on how to handle

incoming event streams efficiently by assuming users’ locations are static [6, 50, 13,

24]; or they attempted to process continuous moving subscriptions against a static

event dataset [84, 35, 5, 75, 37, 32]. None of them can really support subscriptions

from mobile users moving all the time against spatial events that are continuously

published by local businesses.

In this chapter, we propose a new location-aware pub/sub system, Elaps, that

continuously monitors moving users subscribing to dynamic event streams from so-

cial media and E-commerce applications. Users are notified instantly when there is a

matching event nearby. Unlike existing pub/sub systems, Elaps uses boolean expres-

sions, which are more expressive than keywords, to model user intent. This means

users can subscribe to structured, semi-structured and unstructured data.

Fig. 4.1 illustrates a working scenario of such a system. Here, the subscribers with

mobile devices are the moving objects, and a subscription is represented in the form of

60

name = ochirly

model = dress
$200 < price < $500

service = car maintaining

car model = Porsche
price = $1500

name = museum

category = technology
close time > 6pm

name = museum

category = technology
open time = 8am

close time = 6pm

name = shoes

model = Jordan AJ23
price < $1000

name = shoes

model = Jordan AJ23
limited = yes

price = $899

service = car maintaining

car model = Porsche
price = $1500

name = ochirly

model = dress
price = $489

Figure 4.1: A working scenario of Elaps.

a boolean expression. For example, if a user is interested in Jordan basketball shoes,

he can use a boolean expression to model the interest: (name=shoes ∧ model=Jordan

AJ23 ∧ price < $1000). Note that pub/sub systems based on keyword subscription

cannot support numeric attribute matching such as price < $1000. To specify the

locational matching constraint, a subscriber can set a notification radius so that

events lying inside the circle are considered as candidates. For example, the circles

in Fig. 4.1 represent the notification regions of different users. When a user moves,

the notification region moves along. On the publisher side, an event is published at a

location. If a shoe shop has a sale, then the location of the shop is the event location.

Our system continuously monitors the moving subscribers and notify them once there

is a matching event in their circles.

To meet the above desiderata, our system is designed to tackle the following

challenges:

The first challenge is how to effectively process continuous moving subscriptions

against dynamic event streams. Safe region has been widely used to reduce com-

munication cost for continuous moving query processing [84, 35, 5, 75, 37, 32]. The

intuition behind the notion of safe region is that if there are no matching events

nearby, the users are safe to disconnect from the server and do not need to period-

ically update their locations. However, we observed that the safe region techniques

used in [84, 35, 5, 75, 37, 32] fail to work effectively when dynamic events are con-

61

sidered. This is because newly arrived events can trigger new communication needed

to update the safe regions, besides the communication incurred by location updates.

Moreover, these two types of communication have conflicting requirements on the

size of safe regions. Therefore, there is a need to reconsider how best to exploit safe

regions. In order to handle the dynamic event streams, we propose the impact region

and exploit it as well as the safe region to monitor the newly arriving events. The

impact region serves as a filtering mechanism so that only newly published events

located within the impact region has a probability to change the safe region. Fur-

thermore, we propose a novel cost model to capture the tradeoff between safe region

size and the communication cost in a more precise way, and use it as a guide to find

the optimal safe region for the moving subscribers against the dynamic event streams.

Based on this cost model, we propose two safe region construction methods iGM and

idGM that construct the safe region in an incremental manner. These two methods

expand the safe region staring from the current location of the subscriber and stop

when a termination condition based on the cost model is satisfied.

The second challenge is how to design a system scalable to the fast growth of the

number of subscriptions and events, as the number of mobile users worldwide and

the volume of internet information published have been growing exponentially. Two

types of matching are considered here: event matching and subscription matching.

Given an event, event matching returns the set of subscriptions matching this event.

Given a subscription, subscription matching returns the set of events matching this

subscription. Event matching has been well studied and we can simply adopt existing

techniques [26, 71, 64]. However, there is a lack of efficient solutions to subscription

matching.

It in turn brings the third challenge to the table, i.e. can we support a more

expressive subscription beyond the keyword subscription. Thereby, we adopt boolean

expression as our subscription semantic, and to bridge the gap in the second challenge,

we propose a novel index named BEQ-Tree which uses a grid-based hierarchical struc-

ture and integrates the spatial information into the boolean expression information

seamlessly to support spatial subscription matching efficiently.

More specifically, our technical contributions are summarized as follows:

• We optimize the design and processing of safe regions in several ways. First,

given a safe region, we derive its impact region. The impact region is a novel

concept used to identify if its corresponding safe region is affected by newly

arrived events. Second, we propose a cost-based approach to determine the

optimal safe region size to keep the communication overhead low. Our cost

62

model considers the communication cost incurred by location updates as well

as that incurred by event arrival. Third, based on the cost model, we design

two new schemes, iGM and idGM, to incrementally construct safe regions.

• We propose a new index named BEQ-Tree which integrates Quadtree [29] with

boolean expressions seamlessly to support spatial boolean expression matching

and safe region construction efficiently.

Moreover, we conduct comprehensive experiments using real datasets to evaluate

the system performance. We use geo-tweets from Twitter and venues from Foursquare

to simulate publishers and boolean expressions generated from AOL search log to

represent users intentions. We test user movement in both synthetic trajectories and

real taxi trajectories. The results show that our proposed iGM and idGM can reduce

the communication overhead by 10 times. Also, our proposed index handles spatial

boolean expression matching significantly faster than the competing methods.

In this chapter, we study the efficient processing of continuous moving range

queries against dynamic event streams. Given a set of continuous arriving events, for

a moving subscriber with a boolean expression subscription associated with a notifi-

cation region, the subscriber is notified once there is a matching event located within

his notification region. We aim for a solution that (i) optimizes the client/server

communication cost and (ii) guarantees that the matching events are disseminated to

subscribers in real-time.

The rest of this chapter is organized as follows. We first propose how to handle

continuous moving queries against dynamic event streams in Section 4.2. We further

introduce how to handle spatial boolean expression matching in Section 4.3. Based

on the techniques proposed in Section 4.2 and Section 4.3, we present the system

framework of Elaps in Section 4.4. Finally, we evaluate our system performance in

Section 4.5 and conclude this chapter in Section 4.6.

4.2 Moving Queries over Dynamic Event Streams

Compared to existing location-based pub/sub systems, Elaps is the first to consider

continuous moving queries against dynamic event streams from publishers. The main

challenge is to reduce communication overhead because users have to periodically

report their current locations to the server to guarantee that no matching events in

their neighborhood are missed. Existing pub/sub systems that can handle moving

users mainly use safe region techniques to reduce communication cost. The intuition

63

Symbol Description
s a moving subscriber
e a spatial event
O notification region specified by a subscriber
r notification radius
R safe region of a subscriber
I impact region of a subscriber
f event arrival rate
vs user moving speed
n total number of events in the system
ne total number of matching events in I

d(s,R) the minimum distance from s to the boundary of R
c a grid cell in iGM and idGM
G a cell partition in BEQ-Tree
σ a reference point in G
y the spatial attribute for distance indexing
W counter array in each cell partition in BEQ-Tree

Table 4.1: Summary of Notations.

behind the notion of safe region is that if there are no matching events nearby, the

users are safe to disconnect from the server and do not need to periodically update

their locations. In this way, the communication cost can be significantly reduced and

there would be no matching events missed. In this section, we first propose how to

apply these techniques into our pub/sub application. Then, we explain why the safe

regions constructed in these systems fail to work well when dynamic event streams

are considered. Finally, we propose our solutions based on a concept named impact

region as well as a new cost model for safe region construction.

4.2.1 Safe Region against Static Event Datasets

Safe region has been widely used to reduce communication cost for continuous spa-

tial query processing [84, 35, 5]. In these work, a common assumption is that the

continuous query is issued against a static dataset and the goal is to determine an

area in which there is no matching events or the matching events remain the same.

Since the publisher dataset is static, there would be no new event matching in the

safe region. For our application, we define a region is safe if its minimum distance to

any matching event is larger than the user’s notification radius, denoted by r1.

1A notation table consisting of symbols and their meanings is provided in Table 4.1

64

Definition 4.1 (Safe Region) The safe region R for a subscriber s is a region such

that s ∈ R and for any matching event e, we have d(p, e) > r for any p ∈ R.

In the following, we examine existing safe region techniques and show how to ap-

ply them for continuous proximity detection between subscribers and their matching

events.

e1

e3

e2

e4

s r

r

Safe Region Impact Region

(a) VM

s r

e4

e1

r

r

r r

e2

Safe Region Impact Region

e3

(b) GM

Figure 4.2: Applying existing methods for safe region construction.

Voronoi-based Method (VM). Voronoi diagram is often used in processing

continuous kNN queries in continuous spatial query applications [84, 35]. Since the

publisher dataset is static, the space is partitioned into Voronoi cells based on the

locations of publishers. Each Voronoi cell indicates a region dominated by a publisher

such that as long as a subscriber moves in that cell, the publisher is assured to be the

nearest neighbor. To apply Voronoi diagram in our application, we first find all the

matching events outside of the notification region 2 and construct Voronoi cells based

on the matching events. Each cell contains one matching event. The safe region is

the Voronoi cell containing the user, excluding the circle centered at the matching

event with notification radius.

Figure 4.2(a) shows an example of safe region based on Voronoi diagram. There

are four matching events that partition the space into four Voronoi cells. Since the

subscriber is located in e4, the safe region is the Voronoi cell for e4 excluding the

circle and marked in the shaded area. As long as the user moves in the safe region,

2If a matching event appears in the notification region, we notify the subscriber immediately
about the matching. Then, the event will not be considered again for this user in the future.

65

we can guarantee that there is no matching event nearby and the user only need to

check his distance with e4 and can temporarily disconnect from the server.

Grid-based Method (GM). In [5], safe region based on grid cells was proposed

to handle spatial alarm applications. By partitioning the space into cells, a safe region

is represented by a set of cells whose distance to any matching events is larger than the

notification radius. An example of grid-based safe region is shown in Figure 4.2(b).

The safe region for the subscriber contains the whole space except the cells close to

the matching events. Compared to the Voronoi diagram method, the grid based safe

region is easier to construct and contains a larger region than VM.

When the event dataset is static, GM generates a larger safe region and achieves

better performance in terms of communication I/O. However, when we consider dy-

namic event streams, the results can be totally different. In this case, a larger safe

region does not necessarily mean a better solution. When a new matching event ar-

rives close or inside the safe region, the region may not be “safe” any more. Then the

whole safe region has to be re-constructed, leading to additional communication I/O.

This observation motivates us to first develop a new concept named impact region

to identify whether a safe region is “safe” or not when a new event arrives, and then

propose a novel cost model based on the safe region and impact region to guide the

construction of the safe region .

4.2.2 Impact Region

We first define the impact region for a certain safe region R, and use it to determine

whetherR will be affected by the arrival of a new event. Intuitively, if a new matching

event arrives in the impact region, the safe region R is not “safe” any more and needs

to be updated. Otherwise, the safe region remains the same. With the help of the

impact region, we do not need to update the safe region each time a new matching

event arrives. Thus, the impact region can help reduce the communication cost

incurred by event arrival. The concept of impact region will also be needed in our

proposed cost model to estimate the expected time before the next matching event

affects its corresponding safe region.

Definition 4.2 (impact region) Given a safe region R, the impact region I for R
is defined as

{p | p ∈ U and ∃ p′ ∈ R (d(p, p′) < r)}

where U is the whole space and r is the notification radius.

66

Based on the definition, we know that if a point is located outside the impact

region, its minimum distance to safe region R must be larger than r. Hence, we can

consider impact region as an expansion of the safe region by the length of notification

radius. Note that the impact region is uniquely determined by the safe region and

should always be used together with the safe region. In the following, we briefly

introduce how to construct impact regions from the safe regions in Figure 4.2.

Example 4.1 In VM, the impact region is constructed by expanding the Voroni cell

of the nearest event with distance r. As shown in Figure 4.2, the impact region

covers the notification region of the subscriber after the expansion. We can guarantee

that when a new event arrives outside the impact region, its minimum distance to the

impact region is larger than the notification radius. This new event will not fall inside

the notification region as long as the user moves within the safe region. Hence, we

only need to update the safe regions whose impact region contains this new event.

In GM, the impact region is constructed by expanding the safe region with r to see

which cells are contained in or intersected with the expanded region, which is the whole

space in this example. When a new matching event arrives in the impact region, we

need users to report their location to guarantee that the current safe region is “safe”

and no matching notification is missed. Since the impact region contains the whole

space, new communication overhead is incurred each time when a new matching event

arrives.

Up till now, we have introduced the three types of regions maintained for each

moving user: notification region O, safe region R and impact region I. The notifica-

tion region is set by the subscribers and move with them. It is a circle centered at the

subscriber’s current location with radius r. For each subscriber, the system constructs

a safe region and an impact region for him. The safe region is sent to the subscriber

to monitor the location update and the impact region is stored at the server side to

monitor the event arrival. Their relationships are summarized as follows:

Lemma 4.1 O is contained in I, denoted by O ⊆ I.

Proof 4.1 Suppose we can find a point p ∈ O but p /∈ I. Since p /∈ I, based on

the definition of the impact region, for any point p′ in the safe region R, we have

d(p, p′) > r. Since the safe region is required to cover the user’s current location s,

i.e, s ∈ R, we have d(p, s) > r. However, since p is located in the notification region,

for any points p ∈ O, we have d(p, s) < r. This leads to a contradiction.

67

Lemma 4.2 R is contained in I, denoted by R ⊆ I.

Proof 4.2 Based on the definition of impact region, for any point p ∈ R, if we can

find a point p′ ∈ R such that d(p, p′) < r, we know p is also a point in the impact

region. Let p = p′ and we finish the proof.

Note that the safe region R does not necessarily contain the notification region

O. In fact, when a user increases his notification radius r, the safe region shrinks

such that the minimum distance of the new safe region to any matching event is

guaranteed to be larger than r. In addition, we can prove that the area of impact

region grows when the safe region expands.

Lemma 4.3 Given I1 derived from R1 and I2 derived from R2, if R1 ⊆ R2, we have

I1 ⊆ I2.

Proof 4.3 Suppose we can find a point p ∈ I1 but p /∈ I2. Since p /∈ I2, based on

the definition of the impact region, for any point p′ ∈ R2, we have d(p, p′) > r. Since

R1 ⊆ R2, this conclusion also applied in the sub-region, i.e., for any point p′ ∈ R1,

we have d(p, p′) > r. This leads to a contradiction with p ∈ I1. Hence, if p ∈ I1, we

have p ∈ I2. a new matching event e with p as its location will influence R1 because

e is located within I1. Since R1 ⊆ R2, e will also influence R2. However, since e

is located outside I2, this contradicts with the definition of impact region that any

matching event located outside the impact region will not influence the safe region.

Hence, if p ∈ I1, we have p ∈ I2.

In the following, we show that there is no matching event in the impact region.

Lemma 4.4 Suppose I is an impact region constructed for subscriber s, for any event

e matching s, e is located outside I.

Proof 4.4 If there is a matching event e ∈ I, based on the definition of the impact

region, we can find a point p in the safe region such that d(p, e) < r. Then, by

following the definition of safe region, since p ∈ R, we have d(p, e) > r. This leads

to a contradiction. Hence, e must be located outside I.

From Lemma 4.4, we can ensure that if a matching event expires, it is located

outside the impact region and has no effect on the current safe region.

68

4.2.3 Cost Model for Safe Region Construction

Since we consider continuous query processing against dynamic event streams, we

first identify all the possible cases in which new communication can be triggered for

an existing subscriber.

1. The subscriber moves out of his current safe region. He needs to report his new

precise location to the server. At the server side, a new safe region is calculated

and sent back to the user.

2. A new matching event arrives in the system. Whether a communication is trig-

gered depends on the location of the new event. If the event is located outside

the impact region, the safe region is not affected based on the definition. Oth-

erwise, the safe region has to be updated. This triggers a new communication.

First, the server notifies the subscriber to update the location. Then, the precise

location is reported by the client. When the server receives the accurate loca-

tion, it calculates the distance from the event to the subscriber. If the distance

is smaller than the user’s notification radius, a matching notification is sent to

the user. Otherwise, the server needs to calculate and sends a new safe region

to the client. In the meanwhile, the impact region is updated, but stored at the

server side.

3. An existing matching event is expired and removed from the system. Based on

Lemma 4.4, the matching event is located outside the impact region. We can

guarantee that the current safe region is still “safe”. As long as the subscriber

is in the current safe region, he can disconnect from the server and no matching

event will be missed.

Therefore, there are two types of communication incurred when handling a con-

tinuous query over dynamic event streams: I) The subscriber moves out of the safe

region. II) A new matching event arrives in the impact region. These two types of

communication have conflicting requirements on the size of safe region. The first type

prefers larger safe region so that it takes longer time for the subscriber to move out of

the safe region. However, the second type prefers smaller safe region. This is because

a smaller safe region results in a smaller impact region according to Lemma 4.3 and it

becomes less likely for a matching event to occur in the impact region. Existing safe

region techniques do not work well for dynamic event streams because they neglect

the second type of communication. Therefore, we propose a new cost model for safe

region construction taking into account all these two types of communication.

The goal of our cost model is to minimize the communication overhead which is

measured by the number of the two types of communication I/O for a subscriber s.

69

Hence, we construct a safe region R for s such that the expected elapsed time before

the next communication I/O is maximized. The expected elapsed time is denoted

by fobj(R, I) and used as the objective function to maximize. Let ts(R) denote the

expected time to move out of the current safe region R and ti(I) denote the expected

time before the next matching event occurs in the impact region I constructed from

R. Since there are only two circumstances in which communication I/O is triggered,

we have

fobj(R, I) = min(ts(R), ti(I)) (4.1)

Next, we define bm to measure the tradeoff between the two types of communica-

tion.

bm(R, I) =
ts(R)

ti(I)
(4.2)

We can prove that bm(R, I) has a positive correlation with the area of R:

Lemma 4.5 Given two safe regions R and R′ with R ⊆ R′, we have bm(R, I) ≤
bm(R′, I ′).

Proof 4.5 Since R ⊆ R′, we know that ts(R) ≤ ts(R′) and ti(I) ≥ ti(I ′) based

on Lemma 4.3 and the definition of ts and ti. Hence, bm(R, I) = ts(R)
ti(I)

≤ ts(R′)
ti(I′) =

bm(R′, I ′).

If bm(R, I) ≤ 1, we have ts(R) ≤ ti(I) and fobj = ts(R). In this case, we need

to maximize ts(R) and we prefer a larger safe region for R. If bm(R, I) > 1, we

have fobj = ti(I) and we prefer a smaller safe region for R. The relationship between

fobj(R, I) and bm(R, I) are stated in the following two lemmas:

Lemma 4.6 Given two safe regions R and R′ with R ⊆ R′, suppose bm(R′, I ′) ≤ 1,

we have fobj(R, I) ≤ fobj(R′, I ′).

Proof 4.6 Based on Lemma 4.5, bm(R, I) ≤ bm(R′, I ′) ≤ 1 because R ⊆ R′. For

R, since bm(R, I) ≤ 1, we have ts(R) ≤ ti(I) and thus fobj(R, I) = ts(R). Similarly,

fobj(R′, I ′) = ts(R′). Since R is contained in R′, we have ts(R) ≤ ts(R′). Therefore,

fobj(R, I) = ts(R) ≤ ts(R′) = fobj(R′, I ′).

Lemma 4.7 Given two safe regions R and R′ with R ⊆ R′, suppose bm(R, I) ≥ 1,

we have fobj(R, I) ≥ fobj(R′, I ′).

70

Proof 4.7 Based on Lemma 4.5, bm(R′, I ′) ≥ bm(R, I) ≥ 1 because R ⊆ R′. For

R, since bm(R, I) ≥ 1, we have ts(R) ≥ ti(I) and thus fobj(R, I) = ti(I). Similarly,

fobj(R′, I ′) = ti(I ′). Since R′ is contained in R, we have ti(I) ≥ ti(I ′). Therefore,

fobj(R, I) = ti(I) ≥ ti(I ′) = fobj(R′, I ′).

Our safe region construction method relies on the above lemmas. The idea is to

start from the user’s current location and incrementally expand the area towards an

“optimal” safe region (i.e., fobj is maximized). Initially, R contains only a point.

Thus, ts can be seen as 0 and bm(R, I) ≤ 1. When we expand R, bm(R, I) and

fobj(R, I) also increase (Lemma 4.5 and 4.6). In this case, it encourages us to expand

the safe region until any further expansion would cause bm(R, I) ≥ 1 or the region

not “safe”. This is because fobj(R, I) decreases when bm(R, I) ≥ 1 if we continue to

expand R based on Lemma 4.7.

Note that there are many possible ways to expand a safe region, resulting in lots

of candidate safe regions. For each of these candidate safe regions, we have bm ≤ 1

and thus fobj = ts. Hence, the “optimal” safe region is the candidate safe region with

the largest ts. Based on this observation, we should expand the safe region in such a

way that the corresponding ts can be maximized.

4.2.4 Incremental Grid-based Method

We are now ready to present our incremental method, named iGM (incremental Grid-

based Method), towards optimal safe region construction. Since we need a flexible

way to represent safe region in arbitrary shape, we partition the space into N × N
cells and a safe region is represented by the set of cells that it covers. Our algorithm

starts from the cell containing the user’s current location and iteratively expands it

to cover nearby cells. In each expansion, a “good” cell based on certain criteria is

added to the current safe region. When a cell is added into the current safe region,

we also need to expand the corresponding impact region to calculate bm(R, I). The

algorithm terminates when any further expansion would cause bm(R, I) > 1 or there

is no more valid adjacent cells to expand. In the following, we introduce the estimation

of bm(R, I) for a candidate safe region R as well as the selection criteria for the next

cell to expand.

Assume that subscribers are moving with linear motion functions. The expected

time ts(R) to move out of R can be calculated by

ts(R) =
d(s,R)

vs
(4.3)

71

where d(s,R) is the minimum distance from a subscriber’s location to the boundary

of a candidate safe region R and vs is the current moving speed.

The expected time ti(I) before the next matching event occurs in the impact

region I for R, is estimated by

ti(I) =
te

p(e, I)
(4.4)

where te is the average time interval between two new events arriving at the system

and p(e, I) is the probability for a new event to match subscriber s and occur in his

impact region I.

We can estimate te from the average arrival speed in the event streams. We

denote the average arriving rate of the new events by f and we have te = 1
f
. The

probability p(e, I) can also be estimated from the distributions of the existing events

in the system. Let ne be the number of matching events located in the impact region

I. ne can be estimated by ne =
∑

c∈I nc where nc is the number of existing matching

events located within cell c. Let n be the total number of events in the system. We

can estimate p(e, I) = ne

n
. Then ti can be calculated as follows.

ti(I) =
n

f · ne
(4.5)

Based on Equation 4.3 and Equation 4.5, we have

bm(R, I) =
ts(R)

ti(I)
=
f · ne · d(s,R)

n · vs
(4.6)

Note that among the parameters, vs, f and n are system statistics and are independent

of the safe region and impact region. d(s,R) and ne are dependent on the areas of

the candidate safe region and impact region, respectively.

Next, we introduce our expansion criteria. Suppose the current safe region is R.

We mark all the cells covered by or intersected with R as visited. The candidate

cells to expand include all the adjacent cells of R that are unvisited. Our expansion

criteria is to pick the cell c with the minimum distance to the subscriber. In other

words, we expand the area circularly. This is because we expand the safe region

until any expansion would cause bm(R, I) ≥ 1. In this process, we have bm(R, I)

always smaller than 1 and our goal is to maximize ts. Since the moving pattern of

the subscriber is not available, we expand the cells in every direction uniformly so as

to improve the performance in the worst case.

Our iGM algorithm for safe region construction is shown in Algorithm 4.1. The

input is a subscription s with notification radius r and speed vs. We first initialize

72

Algorithm 4.1: ConstructSafeRegion

input: Subscription s
output: Safe region R and impact region I

1 bm ← 0
2 ne ← 0
3 d(s,R)← 0
4 H ← ∅
5 c← the cell that contains s
6 HEntry h← tuple(c, d(s, c))
7 insert h into H, mark c as visited
8 while H 6= ∅ do
9 HEntry (c′, d(s, c′))← H.pop()

10 if β[c′] 6= false then
11 d(s,R)← min{H.top().dist,min{d(s, c′′)}}
12 Ic ← getImpactCells(c′)
13 foreach cn ∈ Ic do
14 ne = ne + φ[cn]

15 bm = f ·ne·d(s,R)
n·vs

16 if bm ≤ 1 then
17 R ← R∪ c′
18 I ← I ∪ Ic
19 foreach non-visited adjacent unit cell c′′ do
20 HEntry h← tuple (c′′, d(s, c′′))
21 insert h into H, mark c′′ as visited

22 return R and I

the parameters bm, ne and d(s,R) (lines 1-3) and build a min-heap H whose root

stores the cell candidate with the minimum distance to s. The heap is initialized to

contain the cell c where the subscriber is located (lines 4-7). After the initialization

steps, we expand the safe region in a breadth-first fashion (lines 8-21). The candidate

cell c′ with the minimum distance to s is popped in each iteration (line 9). A boolean

array B is used to indicate whether a grid cell is safe or not. A cell in the array is

set to safe if its distance to the nearest matching event is larger than the notification

radius of s. If c′ is not safe, we simply ignore it and continue to examine the next

cell in the heap. Otherwise, we calculate d(s,R) and ne for the enlarged safe region

R ∪ c′ and impact region I ∪ Ic to evaluate bm (lines 10-18), where Ic is the set of

candidate cells that need to be added to I if c′ is added to R. The calculation of

d(s,R) follows the equation:

d(s,R∪ c′) = min{H.top().dist,min{d(s, c′′)}} (4.7)

73

c1

e1

e3

e4

e2

Safe Region Impact Region

c1

e1

e3

e4

e2e1

e3

e4

e2

1 2

45

e1

e3

e4

e2 c'1 c'2 c'3 c'4 c'5

c1

c2

c2

c3

c4

c'6

c1

c2

c3

c4

c5

c'7

c'8

c'9

c'10

c'11

Figure 4.3: Safe region and impact region expansion.

where c′′ is an unvisited adjacent cell of c′(line 11). The procedure getImpactCells

is used to get Ic(line 12). Then we update ne(I ∪ Ic) (lines 13-14) and calculate

bm(R ∪ c′, I ∪ Ic) (line 15). If bm(R ∪ c′, I ∪ Ic) ≤ 1, we enlarge R to contain cell

c′ and I to contain the cells in Ic (lines 16-18). We then insert the adjacent cells of

c′ which are not visited to H (lines 19-21). The whole algorithm terminates when H
becomes empty and we return the safe region and impact region. Note that the two

types of regions are constructed together in the expansion.

When a cell is added into the current safe region, we expand the impact region in

the meanwhile. A naive solution is to scan all the cells within the notification radius

and add them into current impact region. However, this incurs many redundant

operations because a candidate cell will be added into impact region multiple times.

To avoid scanning so many cells in each expansion, we propose an incremental solution

that is able to add only the unvisited cells into the impact region. We use an example

to illustrate our idea.

Example 4.2 Illustrating examples of safe region expansion in multiple steps are

74

shown in Figure 4.3. In the first step, the safe region R is initialized to the cell

containing s, i.e., R = c1 and the impact region is an enlarged area of R by notifi-

cation radius r. In the second step, a neighboring cell c2 with the minimum distance

is selected. Since c2 has a neighboring cell c1 included in the safe region, we know

that the cells within distance to c1 has been added in the impact region. Thus, we can

directly add cells c′1, c′2, c′3, c′4 and c′5 into the impact region without scanning all the

cells. In the third step, c3 is selected into the safe region. The expansion of impact

region is similar to the second step and we do not show this step in the figure. In

the fourth step, the nearest unvisited cell c4 is selected. This time, the cell has two

adjacent cells included in the safe region. We only need to add one cell c′6 to the

impact region. As the expansion process continues, the safe region and impact region

become larger, resulting in a larger bm. Suppose c5 is the last cell to cause bm ≤ 1

during the expansion, we can terminate the algorithm after we expand the safe region

to include c5 and update the impact region accordingly.

Next, we propose a direction-aware version of iGM when the direction information

of the moving objects is available.

4.2.5 Incremental Direction-aware GM

Since most smartphones are equipped with sensors for direction detection, we propose

a direction-aware iGM, named idGM, that takes into account user moving direction

to better maximize ts(R), the expected time to leave a safe region.

To make iGM direction-aware, we should take into account the direction informa-

tion when expanding the safe region. In other words, the original expansion mech-

anism relies on the distance between d(s,R ∪ c) and each time the cell with the

minimum distance is selected. We extend the idea to propose a more general scoring

function in determining the next cell to expand. The ranking function takes into

account of the user moving direction as well as the cell distance and is defined as

follows:

τ(s, c) = α · A(s, c) + (1− α) · D(s, c) (4.8)

The direction preference A(s, c) is the cosine value of the angle θ between the

moving direction ~vs and the vector ~sc from s to c.

A(s, c) = cosθ =
~vs · ~sc
‖~vs‖‖~sc‖

(4.9)

75

The distance preference D(s, c) is the normalized distance from c to s, which is

defined as

D(s, c) =
d(s, c)

dmax
(4.10)

where dmax is a normalization parameter which can be set to the maximum distance

between any two points in the space.

Note that our goal is to maximize ts in the safe region construction until the

condition bm ≤ 1 is not satisfied. If the user moving pattern is predictable and we

have high confidence that the user will continue to move along the direction, we

can set α to a value close to 1. Then, the cells within the user’s moving direction

have higher priority to be added to the safe region. As long as the direction does not

change, the user can stay in the safe region for a long time. If the user moving pattern

is not clear and there are many uncertainties, we can set α to be a small value and

uniformly expand the safe region in all directions.

With the new scoring function τ , we can modify Algorithm 4.1 to be direction-

aware. The entry of H is modified as a tuple (c, d(s, c), τ) (line 7). And the entries

in H are sorted in increasing order of τ . Now the algorithm expands the safe region

by taking both the distance preference and direction preference into consideration.

The grid cell with the minimum τ will be accessed firstly. Compared to iGM, idGM

constructs a direction-aware safe region which takes a longer period before the next

communication occurs.

To reduce the bytes transferred in the communication between servers and sub-

scribers, we use Bitmap as a more compact representation of safe region. We allocate

a Bitmap whose length is the number of cells. If a cell is in the safe region, we set the

corresponding element of the Bitmap to be 1. During the communication, we adopt

the run-length encoding compression method (e.g., BBC [3] and WAH [76]) to further

reduce the size of the Bitmap. In this way, we achieve a very compact representation

of the safe region. When subscribers receive the message, they first decode it into the

original Bitmap and can easily detect whether the cell they are located in is in the

safe region or not.

4.3 Spatial BE-Matching

In Section 4.2, we have introduced how to optimize the communication cost between

the server and the client. In this section, we present how to disseminate the matching

events to the subscribers in real-time. We observe that existing pub/sub systems using

boolean expression matching [26, 71, 64, 81] rarely pay attention to index construction

76

for the event stream. However, in the location-based service scenario, a subscriber

wants to be notified when there is a matching event near him, even though this event

has already been published before his subscription. This motivates us to build an

index to cater for continuously arriving subscriptions’ matching, namely BEQ-Tree

(Boolean Expression Quad-Tree). In addition, we can utilize BEQ-Tree to improve

the efficiency of construcing the safe region in iGM and idGM.

First of all, we describe the problem setting. In Elaps, a subscriber expresses his

interest in the form of spatial subscription and is modeled as a moving object, while

a publisher is associated with a geo-location and publishes spatial events.

Spatial Subscription. A spatial subscription extends a boolean expression with

a notification region O. In this work, we model a boolean expression as a conjunction

of predicates. Each predicate is determined by three elements: an attribute A, an

operator fop and an operand o. It accepts an input value x and the output is a boolean

value indicating whether the operator constraint is satisfied or not: P (A,fop,ō)(x) →
{0, 1}. Elaps can support relational operators <,≤,=, >,≥,[] 3 and set operators

∈, /∈. As mentioned, the notification region O is a circle centered at user’s current

location with radius r. Formally, a spatial subscription s is defined over |s| predicates

and an notification region O:

s : P
A,fop,o
1 (x) ∧ PA,fop,o

2 (x) ∧ ... ∧ PA,fop,o

|s| (x) ∧ O

For example, a user interested in Samsung TQ can submit a subscription like (brand=samsung

∧ size>50)∧ r=1km ∧ lat=1.28 ∧ lng=103.8). Note that the location is detected au-

tomatically. Hereafter, we use spatial subscription and subscription interchangeably.

Spatial Event. A spatial event e contains |e| tuples and a location loc: e : (A1 =

o1)∧(A2 = o2)∧...∧(A|e| = o|e|)∧loc, where Ai is the attribute and ōi is the associated

value or operand. For example, a Samsung TQ promotion event can be represented

by (brand=samsung ∧ size=55 ∧ 3D=yes ∧ lat=1.28 ∧ lng=103.8).

Spatial Subscription Match. The match between a spatial boolean expression

s and an event e consists of two aspects: boolean expression match and spatial match,

as defined below.

Definition 4.3 (Boolean Expression Match) A boolean expression match is sat-

isfied if for each predicate P in s, P is satisfied by a tuple Ai = oi in e. We use s∼be
to denote a boolean expression match and say S be-matches E.

Definition 4.4 (Spatial Match) We say there is a spatial match between s and e,

denoted by s∼se, if the location loc of e is inside the notification region O of s.

3In this case, the operand o contains two values: o.l and o.r

77

A

2

5

B

3

6

y

ye1

ye2

A

1

C

7

4

y

ye4

ye6

C

7

y

ye3

B

9

y

ye5

WG1 e1 e2 WG2 e3 WG32 e5 WG33 e4 e6

G3

G32 G33

G1 G2

e5

e3

σ4

e6

e1
e2

σ2σ1

e4 σ33

σ32

G1 G2

G31

G3
G32

G33 G34

G4

e1

e2

e3

e4

e5

e6 A = 4 C = 7

B = 9

A = 1

C = 7

A = 2 B = 6

A = 5 B = 3

Root

Figure 4.4: An example for BEQ-Tree.

Definition 4.5 (Match) We say a subscription s matches an event e, denoted by

s∼e, if s∼be and s∼se.

4.3.1 Spatial Event Index

BEQ-Tree is designed to be efficient in both query processing and event update. It

adopts a two-layer partitioning mechanism, one for the spatial attribute and the other

for the predicates in the boolean expression.

In the first layer, we partition the events based on the spatial attribute. Since

Quadtree [29] can answer spatial range query quickly and support efficient update

operations, we adopt it to partition the space such that each cell in the leaf level

contains at most Emax events, where Emax is a moderately large number. In each

cell, we select a reference point and adopt the idea of iDistance [38] to calculate and

index the distance from each event to the reference point. The reference point is

denoted as σ and selected as the center of a tree cell in this work.

In the second layer, we further partition the events in each cell based on the

attributes in the predicates. The predicates with the same attribute and appear in

the same tree cell are organized in the same inverted list, denoted by L〈Gi,A〉 where Gi

is the tree cell and A is the attribute. The location of an event e in Gi is converted to

78

a single dimensional value y = dist(e, σi), where dist(e, σi) represents the Euclidean

distance between e and σi. We then build an inverted list for attribute y for each cell.

Each inverted list is sorted by the operand value. For each cell, we also maintain a

counter array for all the events in this cell.

Example 4.3 Fig. 4.4 shows an example for the BEQ-Tree, where we set Emax = 2

for a Quadtree cell. The space is first hierarchically partitioned into cells. Each cell

Gi is associated with a set of inverted lists to store predicates with the same attribute.

All tuple lists are sorted in ascending order of their tuple values. There is an extended

attribute y to store the distance from the event to the reference point in a cell. Each

predicate has a pointer to a counting array for the corresponding Quadtree cell, which

will be used in subscription matching.

Memory Cost. Let E denote the set of spatial events published to Elaps, E
denote the size of E, |T | denote the total number of tuples in E and |t| denote the

memory space cost by an entry in the list. The event index contains two components:

the tuple lists and the counter arrays. Each tuple corresponds to a unique entry in

the tuple lists. Thus, the tuple lists occupy O(|T ||t|) memory space. In addition, each

event corresponds to a unique entry in the counter arrays. Since the size of an entry

in the counter arrays is much smaller than the size of an entry in the tuple list, the

total memory cost for the index is O(|T ||t|). As can be seen, our index takes linear

space cost.

4.3.2 Index Maintenance

In our system, new events will be continually published by the publishers. Each

event has a valid period and will expire after this period. Thus, BEQ-Tree should be

efficient in terms of the maintenance cost.

We first consider how a new event is inserted into the BEQ-Tree index. Given an

event E, we first find the cell with the lowest level that contains E. If the number

of events within that cell is smaller than maxevent, we append a new entry e in the

associated counter array VGi
and set its value to the location of E. For each non-

spatial attribute, we insert its value and the key pointing to e into the corresponding

tuple list. For the spatial attribute, we convert it to the one-dimensional distance y

and insert y to the spatial list. If the cell is full, we need to partition it into four child

cells and insert the event into the corresponding child cell.

The delete operation is processed as follows. We first find the cell with the lowest

level that contains E. Then, we traverse the inverted lists whose attribute is contained

79

Algorithm 4.2: BESpatialMatch(Subscription s, Cell partition G)

1 Re ← ∅
2 for each predicate (A fop ō) ∈ s do
3 if G does not contain A then
4 return Re

5 WG ← counter array associated with G
6 for each predicate (A fop ō) ∈ s do
7 for each operator fop ∈ {=, 6=,≤,≥, []} do
8 determine the range Ra in L〈G,A〉
9 for each matching entry t ∈ Ra do

10 ++WG[t.e]

11 y ← dist(s, σ)
12 if s is located within G then
13 dmin ← y − r, dmax ← y + r
14 else
15 dmin ← y − r
16 determine dmax accordingly

17 for each t ∈ L〈G,y〉 and t.ō ∈ [dmin, dmax] do
18 if WG[t.e] == |s| then
19 if dist(s.l, t.l) ≤ r then
20 add the corresponding event into Re

21 return Re

in E and delete the tuple. The deletion is fast because the list is sorted and we can

use binary search to quickly identify the tuple to delete. If the cell becomes empty

after deletion, we check whether its sibling nodes are also empty. If yes, we merge

them to the parent node.

Update Complexity. Let N denote the maximum level of the BEQ-Tree, |L|
denote the maximum length of the tuple lists and P denote the maximum number of

conjunctions in a subscription. The cost of Quadtree cell identification is O(N). The

insertion or deletion cost of a conjunction into a sorted list is log(|L|). Thus, the total

insertion or deletion complexity is O(N) + O(Plog|L|) = O(Plog|L|), because usually

N � L in our BEQ-Tree. Note that with the help of the hierarchical structure in our

index, |L| will not be too large, making the index maintenance very efficient.

4.3.3 Subscription Matching

In the following, we show how to find the matching events given a subscription s with

an notification region O. We first find all the leaf cells that intersect with O using

80

σ4

σ2σ1

σ3

s
r

dmax

RRG1

RRG3

G1 G2

G3 G4

y - r y + r

y - r dmax

Figure 4.5: Spatial range match.

the Quadtree, and then examine the events in each candidate leaf cell G by calling

Algorithm 4.2.

In Algorithm 4.2, we first check whether a cell partition G in the BEQ-Tree

contains all the attributes that appear in s. If we find an attribute of s not appearing

in G, we can prune the search space and examine other cells (lines 2-4). Otherwise,

we copy the counter array associated with G and set the initial values of the entries

to be 0 (line 5). Next, we introduce how to find the matching events by performing

boolean expression match (lines 6-10) and spatial range match (lines 11-20).

The boolean expression match algorithm adopts the idea of the classic counting

algorithm in [79, 26, 71]. Given a predicate A fop ō, we use different accessing strategy

for different operators in s (lines 6-8). If fop is ‘=’, we can check whether ō appears

in the sorted tuple list L〈G,A〉 using binary search. If fop is ‘6=’, all the values in the

tuple list except ō are visited. If fop is ‘≤’ (‘<’), all the tuple entries whose value is

no larger (smaller) than ō match A fop ō. The case is similar for ‘≥’ (or ‘>’) and ‘[]’.

For each list entry visited, we increase the corresponding counter value by 1 (lines

9-10). If the value increases to the size of s, the corresponding event be-matches s

(see Definition 4.3).

We use Fig. 4.5 to explain how to perform spatial range match. Similar to boolean

expression match, we need to locate the interval in the spatial list within which the

corresponding event may fit in the notification region O. There are two cases to

consider. First, s is located within G (lines 11-13). In this case, the interval is

[y− r, y+ r], where y is the one-dimensional distance value of s. Second, s lies out of

G (lines 14-16). In this case, the lower bound of the interval is y−r. If the notification

range contains a vertex of G, we have dmax = ∞, which means that we start from

dmin and traverse to the end of the spatial list. Otherwise, dmax = max{dist(σ, pi)},
where pi is one of the intersection points between G and O. As shown in Fig. 4.5,

the notification region crosses two grid cells and we need to conduct spatial range

81

search in these two partitions. The shaded areas indicate the search interval using

the indexed distance. The interval for G1 is [y− r, y+ r], because s is located within

G1. The interval for G2 is [y − r, dmax], because s is located outside G2 and O does

not contain the vertex. For each tuple in the interval, if its corresponding event be-

matches s, we check whether the event is located within O. If yes, we find a match

(lines 17-20). Since subscribers tend to specify a small notification range, the spatial

range match would be very efficient, because only a few entries in the spatial list are

traversed.

By performing the boolean expression match and spatial match, we only need

to traverse a small part of entries in a list, which can further improve the matching

performance besides the spatial pruning of the first layer.

BEQ-Tree used in iGM and idGM. To construct the safe region in iGM

and idGM, the set of be-matching events should be found first. A naive method

is to find all the be-matching events in the whole space. However, one property of

iGM and idGM is that these two algorithms usually do not expand to the whole

space with the constraint of bm(R, I) ≤ 1. Based on this property, we use BEQ-Tree

in an incremental manner to get the be-matching events on demand. To construct

the safe region for a subscriber s, we start from the cell c containing s and search

the BEQ-Tree to get the set of be-matching events in c. In the meantime, if the

leaf Qudatree cells intersected with c contains other cells around c, we also get the

be-matching events in these cells. When iGM or idGM expands to a cell whose be-

matching events have not been found, we check the surrounding Quadtree cells to

get the be-matching events. In this way, we only need to find the set of be-matching

events on demand and traverse only a part of the space.

4.4 System Framework

So far, we have introduced the techniques of safe region and impact region to reduce

communication I/O and the BEQ-Tree to reduce the response time. In this section,

we present the system framework in Fig. 4.6 as a whole picture to see how differ-

ent function components are connected. In particular, we introduce how to process

subscription arrival/expiration, event arrival/expiration and user location update.

Subscription arrival/expiration. In Elaps, users can submit new subscriptions

and an existing subscription expires if the user is no longer interested in receiving

matching events. Such kind of messages are handled by the Subscription Processor.

When a new subscription arrives, we need to find if there exist any matching events

82

Subscription Processor

Matching Event

Finder

Subscription

Handler

Safe Region

Constructor

update

publish/expire
subscribe/exit

update

update

SubscribersSubscribers

Safe RegionPublishersPublishers

Event Processor

Impact Region

Updater

affected update

Impact Region

Verifier

Event

Handler

Subscription

Index

Impact Region

Index

Event Index

Figure 4.6: The workflow in Elaps framework.

in the event database. Since this is an extension of boolean expression matching with

spatial constraints, we propose a new index named BEQ-Tree to solve the problem

in Section 4.3. For each new subscriber, we also call Algorithm 4.1 in Section 4.2

to construct a new safe region and impact region for the user. The safe region is

sent to the user and the impact region is maintained at the server side. The impact

region is inserted into an inverted index with cell id as the key and the elements are

impact regions covering the cell. When a subscription expires, we remove it from the

subscription index and impact region index.

Event arrival and expiration. When a new event e arrives, we need to identify

from the subscriber database the users whose interests match the new event (e is

contained in the notification region) and those users whose safe regions are affected

(e is contained in the impact region). Since we use safe region to reduce the commu-

nication overhead, the subscriber’s precise location is not maintained at the server

side. We only know the user is currently in the safe region but the precise location is

not available. Thus, we build separate indexes to handle boolean expression match-

ing and spatial constraint verification. For the boolean expression matching, we can

simply adopt existing subscription index such as OpIndex [81] and BE-Tree [64]. For

the spatial attribute, we store the impact region for subscribers in the impact region

index maintained as a hash table. When e arrives, we find the matching users U

from the subscription index. For each subscriber u ∈ U , we check whether e locates

within his impact region. If yes, the server send e to u. If the distance from u to e

is smaller than the notification radius, the user is notified. Otherwise, we calculate a

new safe region and impact region. The new safe region is sent to the subscriber and

the impact region index is also updated.

83

User location update. Each time a subscriber moves out of the safe region,

he reports the new location to the server. Once the server receives the new location,

it calls Algorithm 4.1 to construct a new safe region and impact region for the user.

Again, the safe region is sent to the subscriber and the inverted index for impact

regions is updated.

4.5 Experimental Study

In this section, we present a comprehensive evaluation of the performance for Elaps.

In particular, we are interested in evaluating (1) the communication overhead caused

by continuous moving query processing against dynamic event streams and (2) the

matching efficiency of our proposed BEQ-Tree. For safe region techniques, we com-

pare our proposed iGM and idGM based on the new cost model against existing

methods VM and GM. In all these methods, we calculate and store the impact re-

gions at the server side for performance evaluation. For spatial boolean expression

matching, we compare BEQ-Tree with three baseline algorithms: (i) Quad-tree, which

first filters events outside the notification region using the spatial index Quad-tree [34]

and then verifies the boolean expression matching; (ii) extension of k-index [71], which

finds matching events for a given subscription. The be-matching events are further

verified for spatial matching; (iii) OpIndex, which first filters the events not matching

the boolean expressions using a variant of OpIndex [81] and then verifies the spatial

matching. Note that all the indexes are memory resident and all the approaches pro-

duce the same and complete results. We implemented all the methods in C++ and

conducted the experiments on a server with 48GB memory running Centos 5.6.

4.5.1 Experimental Setup

Event and Subscription Datasets. We use geo-tweets from Twitter and venues

from Foursquare to simulate the event streams. In Twitter, each geo-tweet is con-

sidered as a spatial event. We treat each keyword as an attribute and the value is

the frequency of the keyword in the tweet. This converts a geo-tweet into a list of

attribute-value pairs. In the following experiments, we use 50 million geo-tweets as

the event database and another 10 million to simulate a dynamic event stream. To

generate subscriptions on the Twitter dataset, we adopt the same technique in [81] to

convert a keyword query in AOL search log 4 into a boolean expression. For example,

a query “SIGMOD Melbourne” can be transformed to (SIGMOD=1 ∧ Melbourne=1)

4http://www.gregsadetsky.com/aol-data/

84

to support equal operator or (SIGMOD∈[5,20] ∧ MelBourne∈[2,8]) to support interval

operator. In Foursquare, each venue is considered as one spatial event. We extract

structured information, i.e., attribute-value pairs, from the venues. Each venue has

around 50 attributes and we harvest 1, 832, 418 venues. Among them, we use 1.5 mil-

lion venues as the event database and the remaining to simulate the event stream. To

generate the subscriptions over the Foursquare venue stream, we let the subscriptions

follow the same distribution as the venues. In other words, if an attribute is frequent

in the venues, it is also frequent in the subscriptions. The operators and operands in

the predicates are synthetically attached.

User Trajectory Datasets. We use both synthetic trajectories and real trajec-

tories to simulate user moving patterns. For the synthetic trajectories, we generate

10, 000 trajectories using Brinkoff’s generator [10]. The average travel period of each

trajectory is 1000 timestamps. In our experiments, timestamp is used to capture the

periodicity of location update. We set each timestamp to be 5 seconds in the following

experiments, which means the GPS location of a user is sampled every 5 seconds. For

the real trajectories, we use the GPS probing records of taxies in Singapore as the

real trajectories [85]. We extract 10,000 trajectories from different taxies and each

trajectory contains 1000 sequential points.

Communication Overhead
Event arrival rate f (/tm) 10, 50, 100, 500
Moving speed vs (m/tm) 20, 40, 60, 80, 100

Notification radius r (km) 1, 2, 3, 4, 5
Number of events E 10M, 20M, 30M, 40M, 50M

Matching Performance
Number of events E 10M, 20M, 30M, 40M, 50M

Avg. sub size δ 1, 2, 3, 4, 5
Notification radius r (km) 1, 2, 3, 4, 5

Table 4.2: Parameters evaluated in the experiments

Compression Method. Our proposed algorithm iGM and idGM use a set of

cells to approximate the safe region. Thus, when the safe region of a user is updated,

a list of cell ids are sent to the user. In our implementation, we assign each cell a

value derived from the z-ordering of the cells [59]. Based on the z-order, the cells

close to each other will be assigned similar ids. Then, we use the classic WHC [76] to

compress the list of ids. Our experimental results show that the size of compressed

ids is around 5%− 10% of the original size.

85

Performance Metrics. In the experiments, we report the following metrics:

(i) Average Communication I/O, which is the average number of messages incurred

for a subscriber moving along the synthetic or real trajectory; (ii) Matching Time,

which is the average time cost to match a spatial subscription against a large event

corpus. Note that the communication cost and matching time are our primary op-

timization goal, as elaborated in the problem statement. We also report the server

side computation cost in safe region construction during the experiment period (i.e.,

1000 seconds), which is a dominating operation in the server side.

Evaluation Parameters. Table 4.2 shows the main parameters and values used

throughout the experiments (default values are in bold). To evaluate continuous

moving query processing, we examine the scalability with respect to increasing event

arrival rate f , user moving speed vs, notification radius r and event corpus size E.

To evaluate the matching performance of spatial boolean expressions, we examine

increasing event corpus size E, average subscription size δ and notification radius r.

The system performance can be measured by the average communication I/O and

event matching time for a subscriber. Note that we do not need to examine the

performance w.r.t. increasing number of subscribers. This is because the subscribers

will not affect each other in terms of communication overhead and event matching

efficiency. In our system, the number of subscribers directly influences the scalability

of the subscription index (see Fig. 4.6). However, in this work, we adopt an existing

index (OpIndex [81]) which has been shown to be scalable even for a large number of

subscribers. Moreover, the focus of this work is not on the subscription index. Thus,

we did not look into this any further. Pease refer to [15] for details.

4.5.2 Parameter Tuning

200 400 600 800 1K
0

1K

2K

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

m
s
)

N

0

30

60

 C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Communication I/O

Construction Time

(a) Varying N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

α

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Synthetic Trajectories

Taxi Trajectories

(b) Varying α

Figure 4.7: Parameter tuning for iGM and idGM.

86

In continuous moving query processing, our proposed iGM and idGM use small

cells to approximate the safe region and impact region. Suppose the whole space is

split into N×N cells and we increase N from 200 to 1000 to test how the performance

varies when the cell size becomes smaller. As shown in Fig. 4.7(a), when N increases,

we can represent the cell in a more precise fashion and the optimal safe region is better

approximated. Thus, it can reduce communication I/O. However, it requires more

construction time since we need more iterations to expand the safe region until the

termination condition is satisfied. For the following experiments, we set N to be 600

as a tradeoff between communication I/O and CPU cost in safe region construction5

Another parameter in idGM is α which reflects the confidence level of user moving

pattern. In the synthetic trajectories, we increase α from 0 to 1.0. If α = 0, idGM

degrades to iGM. We can see that direction is a factor that can improve system

performance. The optimal performance occurs when α = 0.5. If α is set very high,

the performance is bad because the system assumes that the subscriber always moves

along the original direction and is likely to construct a safe region along the direction.

Then, it is easy for the subscriber to move out of the safe region when he changes the

moving direction.

5K 10K 20K 40K 60K 80K 100K 120K
5

10

15

20

25

E
max

M
a
tc

h
in

g
 T

im
e
 (

m
s
)

(a) Matching Time

5K 10K 20K 40K 60K 80K100K120K
0

1

2

3

4

5

E
max

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

x
1
0
0
0
s
)

(b) Index Construction Time

Figure 4.8: Parameter tuning for BEQ-Tree.

For BEQ-Tree, we tune the parameter Emax which is the maximum number of

events in a cell. Fig. 4.8(a) and Fig. 4.8(b) illustrate the matching time and construc-

tion time of BEQ-Tree when varying Emax. When Emax increases, the cell becomes

larger and the effect of spatial pruning degrades. Thus, it takes more matching time

(Fig. 4.8(a)). However, a smaller Emax results in more levels in the BEQ-Tree, which

5The parameter tuning in this section hold for all the data set and experiments.

87

increases the update cost (Fig. 4.8(b)). Therefor, we set Emax to be 60K as a good

tradeoff between subscription matching time and event update cost.

4.5.3 Evaluation on Continuous Moving Query Processing

In this part, we evaluate the communication overhead caused by continuous moving

query processing against dynamic event streams.

4.5.3.1 Synthetic Trajectories

The first set of experiments on continuous moving query processing are conducted on

the synthetic trajectories using the Twitter and Foursquare events.

0

300

600

900

1.2K

1.5K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Event Arrival Rate

3.5Klocation update
event arrival

50010050100

(a) Twitter

0

200

400

600

800

1K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Event Arrival Rate

2.5Klocation update
event arrival

50010050100

(b) Foursquare

Figure 4.9: Effect of the event arrival rate.

Effect of the event arrival rate f . Fig. 4.9 presents the impact of the event

arrival rate f on the performance. We report the communication overhead incurred

when users move out of the safe region (location update) and when a new matching

event occurs in the impact region (event arrival), respectively. We have the following

observations. (1) As f increases, all the methods scale in varying degrees. Because

there would be more matching events that fall within the impact region, which in-

creases the cost incurred by event arrival. (2) in terms of the total communication

cost, iGM and idGM can outperform the other baseline methods by one order of

magnitude. Such performance gain increases when f increases, especially on the cost

incurred by event arrival. This is because iGM and idGM can adjust the size of the

safe region dynamically according to several parameters of the system to balance the

cost incurred by location update and the cost incurred by event arrival. (3) Regard-

ing the cost incurred by location update alone, GM has the smallest one, because it

constructs the largest safe region. VM performs much worse than the other methods,

because it constructs a safe region around the nearest matching event regardless of

88

the user’s location. idGM performs better than iGM, because idGM can construct a

safe region with a larger ts which is the expected time before the subscriber leaves

the safe region by considering the user’s moving direction. (4) Regarding the cost

incurred by event arrival alone, GM is the highest, because it constructs a rather large

impact region even though f is very high. Although VM can construct a smaller im-

pact region compared to GM, the impact region of VM always contains some highly

skewed area (around the nearest matching event). Therefore, the cost incurred by

event arrival of VM is also high. When f is larger, iGM and idGM would construct

a smaller safe region and impact region based on the cost model. Thus, the cost

incurred by event arrival can be controlled very well.

0

400

800

1.2K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Speed

location update event arrival

10080604020

(a) Twitter

0

200

400

600

800

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Speed

location update event arrival

10080604020

(b) Foursquare

Figure 4.10: Effect of the moving speed.

Effect of the speed vs. Fig. 4.10 depicts the effect of another key factor, the

moving speed v, on the communication overhead. When v increases, the subscriber

would leave the safe region more frequently, resulting in an increased cost incurred by

location update. Therefore, the total communication cost increases for all methods

except GM. GM is not sensitive to v for Foursquare and Twitter, because it constructs

a rather large safe region. As shown, iGM and idGM still outperform the rest, since

they can dynamically increase the size of the safe region as v increases. We can also

observe that the superiority of idGM compared with iGM is more significant with a

larger v.

Effect of the notification radius r. Next, we evaluate the effect of the notifi-

cation radius r. The results are shown in Fig. 4.11. A larger r results in a smaller safe

region, which increases the cost incurred by location update for all the methods. For

VM, the cost incurred by event arrival increases. This is because we expand the safe

region for VM by the length of r and thus a larger r results in a larger impact region.

In contrast, iGM and idGM can adjust the size of the impact region dynamically

89

0

400

800

1.2K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Radius Size

location update event arrival

5km4km3km2km1km

(a) Twitter

0

200

400

600

800

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Radius Size

location update event arrival

5km4km3km2km1km

(b) Foursquare

Figure 4.11: Effect of the notification radius.

even though r increases. Thus, iGM and idGM show 10X better performance than

the other baseline methods.

0

400

800

1.2K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Number of Events

location update event arrival

50M40M30M20M10M

Figure 4.12: Effect of the number of events.

Effect of the number of events E. Lastly, we study the communication over-

head when increasing the size of the Twitter events from 10M to 50M. The results

are shown in Fig. 4.12. More events (i.e., more matching events) in the system result

in a smaller safe region and impact region. A smaller safe region leads to more cost

incurred by location update, while a smaller impact region leads to less cost incurred

by event arrival. For VM, the overall communication overhead increases because the

increase in the cost incurred by location update surpasses that in the cost incurred

by event arrival. On the other hand, for GM, the overall communication overhead

decreases, because the performance of GM relies more on the impact region. Com-

pared with VM and GM, our two methods can adjust the area of the safe region and

impact region better when the system environment changes and thus scale very well

when the event size increases.

90

0

300

600

900

1.2K

1.5K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Event Arrival Rate

3.6Klocation update
event arrival

50010050100

(a) Event arrival rate

0

400

800

1.2K

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

V
M
G
M
iG
M
id
G
M

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Radius Size

location update event arrival

5km4km3km2km1km

(b) Notification radius

Figure 4.13: Communication IO on the taxi trajectories.

4.5.3.2 Taxi Trajectories

The second set of experiments are conducted on the real taxi trajectories in Singapore.

Since the trajectories are only located within Singapore, we extract those geo-tweets

located within Singapore from the Twitter dataset. In total, we extract 906,977

geo-tweets. We use 0.5 million of them as the event database and the remaining to

simulate the event stream. We evaluate the communication overhead with respect

to the event arrival rate f and the notification radius r. The results are shown in

Fig. 4.13(a) and Fig. 4.13(b). Compared with the synthetic trajectories where the

speed is constant, the taxi trajectories contain all kinds of taxies with different moving

status. Besides, the moving speed of a taxi is influenced by the road traffic greatly.

Therefore, it is more difficult to predict the moving behavior for the taxi trajectories.

However, as can be seen, our two methods can still achieve a much better performance

compared with the other baseline methods. As compared to the counterpart GM, our

iGM and idGM have a comparable performance in terms of the cost incurred by

location update and reduce the cost incurred by event arrival significantly by more

than 1 order of magnitude.

4.5.3.3 Cost Model Evaluation

In this part, we study the optimality and robustness of our cost model.

Optimality Evaluation. When constructing a safe region for a subscriber,

we start from his location and incrementally expand. In this process, the value of

bm(R, I) increases and our cost model indicates that the best safe region occurs when

bm(R, I) = 1. To test the optimality, we terminate the expansion at different values

of bm(R, I) and this value is denoted by β. As shown in Fig. 4.14, we can see that

91

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

20

30

40

50

60

70

80

90

β (b
m

≤ β)

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

iGM on Foursquare

idGM on Foursquare

iGM on Twitter

idGM on Twitter

Figure 4.14: Optimality evaluation.

when terminating too early (β < 1) or too late (β > 1), the performance is inferior

to the case when β = 1.

0

200

400

600

800

Twitter Foursquare

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Frequency

1.9K 1.4K

(a) Dynamic arrival rate

0

200

400

Twitter Foursquare

A
v
g
.

C
o
m

m
u
n
ic

a
ti
o
n
 I

/O

Speed

1.1K 0.8K
VM
GM
iGM
idGM
iGM-opi
idGM-opi

(b) Dynamic speed

Figure 4.15: Adaptability evaluation.

Adaptability Evaluation. To evaluate the robustness of our cost model, we

look into two parameters that may change frequently in reality: the event arrival rate

f and the speed vs (The other parameters are dependent on the area of safe region

and impact region). We set up a dynamic environment in which f or vs varies all

the time. For comparison, we designed two optimal methods, iGM-opi and idGM-

opi with the knowledge of future pattern update in advance. When f or v varies,

the optimal methods would construct a new safe region accordingly using the new

parameters and such safe region update is not counted as a new communication I/O

in the experiments. Fig. 4.15(a) and Fig. 4.15(b) show the experimental results with

92

dynamic f and vs, respectively. We gradually increase the event arrival rate f from

0/tm to 500/tm and then reduce it back to 0/tm. This process is repeated 10 times.

The dynamic moving speed vs is set in a similar way (0 → 100m/tm → 0m/tm).

As shown in Figure 4.15, iGM and idGM can achieve a comparable performance as

iGM-opt and idGM-opt due to the good adaptability, because they can adapt to the

update of f and vs when the update causes a communication. This shows that our

methods are robust to different user motion and event arrival patterns.

4.5.3.4 Server Computation Cost

0 10 50 100 500
1

10

100

1K

10K

Event Arrival Rate

S
e
rv

e
r

C
o
m

p
u
ta

ti
o
n
 C

o
s
t

(s
) VM

GM

iGM−BE

idGM−BE

iGM−BEQ

idGM−BEQ

(a) Varing event arrival rate

20 40 60 80 100
1

10

100

1K

Speed

S
e
rv

e
r

C
o
m

p
u
ta

ti
o
n
 C

o
s
t

(s
)

VM

GM

iGM−BE

idGM−BE

iGM−BEQ

idGM−BEQ

(b) Varing speed

1km 2km 3km 4km 5km
10

100

1K

Radius Size

S
e
rv

e
r

C
o
m

p
u
ta

ti
o
n
 C

o
s
t

(s
)

VM

GM

iGM−BE

idGM−BE

iGM−BEQ

idGM−BEQ

(c) Varing radius

10M 20M 30M 40M 50M
10

100

1K

10K

Number of Events

S
e
rv

e
r

C
o
m

p
u
ta

ti
o
n
 C

o
s
t

(s
) VM

GM

iGM−BE

idGM−BE

iGM−BEQ

idGM−BEQ

(d) Varing number of events

Figure 4.16: Server computation cost for safe region construction.

In the following, we report the average server computation cost for safe region and

impact region construction during the experiment period (i.e., 1000 timestamps). For

VM, GM, iGM-BE, idGM-BE, we use k-index to find all the matching events first

and then construct the safe region and impact region. For iGM-BEQ and idGM-

BEQ, we use BEQ-Tree to find the set of matching events on demand, as described in

Section 4.3.3. The results are shown in Fig. 4.16. We have the following observations.

93

(1) VM performs worse than GM in terms of computation cost although VM incurs

less communication cost than GM, because VM needs more time to construct the

safe region and impact region. (2) iGM and idGM can outperform VM and GM by

one order of magnitude, because each communication would trigger an update for the

safe region and impact region while the communication cost of iGM and idGM can

be reduced significantly with the guide of the cost model. (3) iGM-BEQ and idGM-

BEQ show superior performance than iGM-BE and idGM-BE, because our safe region

construction methods usually do not expand to the whole space and we can use BEQ-

Tree to traverse only a part of the whole space. In addition, the advantage is more

obvious when the event arrival rate is higher or the number of events is larger, making

our system more scalable.

4.5.4 Evaluation on Spatial Boolean Expression Matching

In this section, we study the efficiency in spatial boolean expression matching, which

can be further categorized into the elapsed time on the boolean expression match and

that on the spatial match, namely BE and Spatial, respectively. In particular, we use

the Twitter dataset to compare our proposed BEQ-Tree with several baseline indexes

as described at the beginning of Section 4.5.

0

100

200

300

400

500

600

700

800

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

M
a
tc

h
in

g
 T

im
e
 (

m
s
)

Number of Events

BE
Spatial

50M40M30M20M10M

Figure 4.17: Effect of the number of events.

Effect of the number of events E. We evaluate the average matching time

when increasing the number of events. From the results presented in Fig. 4.17, we have

the following findings: (1) Quadtree can do the spatial match quickly, but it needs

much time to filter candidate events. (2) k-index and OpIndex need more time for

spatial match compared to Quadtree. (3) BEQ-Tree outperforms the other methods,

and exhibits a 97% better matching time as compared to the next best algorithm.

This is because it utilizes a Quadtree-like structure in the first layer that exhibits

94

good pruning power, and maintains a sorted inverted list in the second layer, with

which fewer events are examined. As shown, BEQ-Tree can answer the subscription

matching within a few microseconds for a 20 million dataset, which is highly favored

in real applications.

0

100

200

300

400

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

M
a
tc

h
in

g
 T

im
e
 (

m
s
)

Sub Size

BE
Spatial

54321

Figure 4.18: Effect of the subscription size.

Effect of the subscription size δ. Fig. 4.18 presents the elapsed time w.r.t.

the varying subscription size δ. We make three observations. (1) Overall, BEQ-Tree

achieves a speedup of 20 times w.r.t. Quadtree, k-index and OpIndex, respectively.

(2) Regarding the boolean expression match (BE) time, more attributes are involved

in the match as δ increases, resulting in a higher computation time. (3) Regarding

the spatial match time, k-index and OpIndex are sensitive to the subscription size,

because they generate fewer candidate events as δ increases.

0

100

200

300

400

500

600

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

Q
uadtree

k-index

O
pIndex

B
EQ
-Tree

M
a
tc

h
in

g
 T

im
e
 (

m
s
)

Radius Size

BE
Spatial

5km4km3km2km1km

Figure 4.19: Effect of the notification radius.

Effect of the notification radius r. The matching performance w.r.t. varying

notification radius r is presented in Fig. 4.19. Only Quadtree is sensitive to r, because

more candidate events are generated in the first step. In contrast, the performance

of BEQ-Tree is stable and scales very well with r.

95

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

Inserted/Deleted Event Size (M)

U
p
d
a
te

 C
o
s
t

(x
1
0
0
0
s
)

Insertion

Deletion

Figure 4.20: Update cost for BEQ-Tree.

BEQ-Tree Update Cost. At last, Fig. 4.20 shows the update cost for BEQ-

Tree. To test the insertion cost, we start from a BEQ-Tree with 20 million events

and incrementally insert 10 million events. The total time of inserting every 1 million

tuples is plotted in Figure 4.20. We can see that as the size BEQ-Tree increases,

it takes more time to insert the same number of tuples because the tree height also

increases. The deletion process starts from a BEQ-Tree with 30 million events and

the cost for deleting every 1 million records is reported in Figure 4.20 as well. We

can see that as more records are deleted, the tree becomes smaller and the deletion

operation becomes faster. In both cases, it takes less than 300 seconds to delete or

insert 1 million events, which means our BEQ-Tree is efficient in update.

4.6 Summary

In this chapter, we build a novel location-aware pub/sub system, Elaps, which takes

into account continuous moving queries over dynamic event streams. To reduce com-

munication overhead, we propose a concept named impact region and a novel cost

model. Based on the cost model, we propose two incremental methods to construct

the safe region and impact region. To reduce the response time of Elaps, we propose

a novel index BEQ-Tree which can support efficient spatial subscription matching

over a collection of events in the dynamic event environment. Experimental results

on real datasets show that Elaps can greatly reduce the communication overhead and

disseminate events to users in real-time.

96

Chapter 5

Efficient Optimal Trajectories
Queries for Influence Maximization

5.1 Introduction

In Chapter 3 and Chapter 4, we process the moving spatial queries that only focuses

on real-time location data of moving objects to improve location-based services. With

the increasing availability of trajectory data, it is interesting and important to be able

to use trajectories to support many real-life applications. In this chapter, we look

at how trajectories can be exploited for mobile advertisement. In particular, we

extend the traditional influence maximization problem to the trajectory databases to

maximize the influence of an advertisement by mining important motion patterns of

users from their historical movement data.

Influence Maximization in a social network is a key algorithmic problem behind

online viral marketing. By word-of-mouth propagation effect among friends, it finds

a set of k seeds to maximize the expected influence among all the users. It has

attracted significant attention from both academic and industry communities due to

its potential commercial value, such as viral marketing [9, 30, 39], rumor control and

information monitoring [25, 40, 60].

There have been some efforts to extend the influence maximization problem to

topic-aware influence maximization [7, 4, 16, 15] so as to support online advertise-

ments. The propagation model is required to take into account influence probability

based on different topics so that relevant users play a more important role in the

advertisement propagation. The topic-aware influence maximization can be used in

many fields, such as topic-aware advertisement and topic-aware rumor control.

To our knowledge, we are the first to study influence maximization in a trajectory

database. In our data model, a trajectory derived from a vehicle can be attached

97

u1:0.4

u11:0.7

u2:0.6
u3:0.8

u4:0.2

u5:0.9

u6:0.6

 u10:0.5

u7:0.3

u8:0.7

u9:0.1

u12:0.8

u1: {NBA 0.8, pizza 0.3}u1: {NBA 0.8, pizza 0.3}

u4: {pizza 0.5, swim 0.5}

u7: {pizza 0.9, gym 0.1}

u2: {pizza 0.9, NBA 0.4} u3: {pizza 0.6, NBA 0.8}

u5: {pizza 0.9, gym 0.2} u6: {pizza 0.3, swim 0.9}

u8: {pizza 0.5, gym 0.5} u9: {pizza 0.1, NBA 0.9}

o2
o3

o4

u10: {NBA 0.9, gym 0.1} u11: {gym 0.9, swim 0.4} u12:{gym 0.9, swim 0.4}

T1 :{o4,o3,o2,o1} T2 :{o8,o3,o2,o1} T3 :{o10} T4 :{o9}

T5 :{o5,o6} T6 :{o1,o2,o5} T7 :{o7,o6,o3} T8 :{o8,o4}

T1

T2T4 T8o10
T3

T6 o1

o9

o5T5

o6

o7
T7

o8

Ad:{pizza:1}

k = 3

Figure 5.1: A working scenario.

with an advertisement. An audience is associated with a personal profile as well

as motion patterns. If a user meets a moving vehicle and the profile matches the

carried advertisement, we consider the user influenced by the trajectory. Given an

advertisement, our goal is to find k trajectories such that when they are attached

with the advertisement, the expected influence is maximized. The problem finds

many useful applications in offline local marketing.

Mobile advertisement management. Nowadays, mobile advertisement (e.g.,

bus or subway) offers advertisers the opportunity to reach consumers seamlessly as

they spend more time commuting out of home. With the help of the trajectory

influence maximization, mobile advertisement can be well placed to reach consumers

on the go, delivering advertising messages to the right audience at the right time.

Fig. 5.1 shows a working scenario with 8 trajectories from different buses. Each user

is associated with a profile as well as motion patterns. For example, u2 likes pizza

and visits the bus stop o2 with probability 0.6 in a certain time period 1. Given an

advertisement for “pizza”, our goal is to find top-k buses (trajectories) to carry the

advertisement to maximize the influence, where k is determined by the campaign

budget

Route recommendation systems. Given k vehicles decorated for a presidential

election or a boxing match waiting for route navigation, the trajectory influence

1For the ease of presentation, the temporal attribute is not displayed in the figure.

98

maximization problem can help select k best trajectories from a large collection of

candidates to maximize the influence of the promotion activity.

In this work, we formulate the trajectory influence maximization problem and

show that it is NP-hard. To find the exact top-k trajectories, we propose an expansion-

based framework that enumerates the trajectory combinations in a best-first manner.

The algorithm starts by calculating the influence score of each trajectory w.r.t. to the

query advertisement. The trajectories are then sorted by the influence and accessed

accordingly. In each iteration, combinations with the new trajectory are enumerated.

If a combination contains fewer than k trajectories, it is considered incomplete and

we estimate its upper bound influence from the unvisited trajectories. If a combi-

nation is complete, we calculate its exact influence score. The algorithm terminates

when the upper bound influence score of all the incomplete combinations are smaller

than the best result ever found. To further improve the performance, we propose two

effective and tighter upper bound estimation methods based on a new concept named

incremental influence for early termination.

However, the expansion-based method is not scalable when k is large. This is

because the number of candidates grows exponentially with k, resulting in high com-

putation cost and memory consumption. To address the issue, we propose three

approximate methods with performance guarantees to solve the problem. The first is

a baseline greedy algorithm which finds the trajectory with the maximum incremen-

tal influence at each iteration until k trajectories are found and achieves a (1− 1/e)

approximation ratio. The second is a cluster-based algorithm that further improves

the efficiency of the greedy algorithm and guarantees the same approximation ra-

tio. It partitions the trajectory database into clusters and allows us to access the

clusters in an order such that promising trajectories will be found earlier. Our third

approximate solution, named threshold-based method, provides a flexible means to

adjust the tradeoff between efficiency and accuracy using a threshold ε. It guarantees

a ε approximation ratio for any ε ∈ (0, 1]. In addition, we propose a group greedy

method to support the influence maximization for a group of advertisements, which

selects the trajectories by considering all the advertisements simultaneously and can

guarantee a (1− 1/e) approximation ratio.

To sum up, our contributions of this chapter include:

• We are the first to study and formulate the influence maximization problem in

trajectory databases.

99

• We devise an expansion-based framework that enumerates the trajectory combi-

nation in a best-first manner. In addition, we design two effective upper bound

estimation techniques based on a concept named incremental influence.

• We propose three approximate methods with performance guarantees to solve

the problem when k is large.

• We extend the influence maximization problem to find k best trajectories for a

group of advertisements .

• We use real datasets to construct user profiles, motion patterns and trajectory

databases. Experimental results show that our proposed methods can solve the

trajectory influence maximization problem efficiently.

The rest of this chapter is organized as follows. We first formulate the problem in

Section 5.2. The exact algorithm is proposed in Section 5.3. We present two effective

methods for the upper bound estimation in Section 5.4. We further propose three

approximate methods with performance guarantees in Section 5.5. The solution for

influence maximization for a group of advertisements is provided in Section 5.6. In

Section 5.8, we conduct extensive performance evaluations for our proposed methods.

Finally, we conclude this chapter in Section 5.9.

5.2 Problem Definition

In this work, we study a novel problem named trajectory influence maximization.

Given an advertisement, the query finds top-k trajectories with the maximum ex-

pected influence to a large group of audience. Table 5.1 summarizes the notations

frequently used in the chapter. In our data model, three types of roles are involved:

Audience. An audience u is modeled as a text profile associated with spatial-

temporal patterns. It captures a user’s preference in terms of tags and the likelihood

to visit a region in certain time period. In this work, we use a POI (place of interest) to

represent a region. We partition a day into a fixed number of time periods {t1, t2, . . .}
and formally represent each audience as u = {t, (o1, t1, p1), . . . , (om, tm, pm)}, where

t are tags of the audience, oi is a POI, ti is a period and pi ∈ (0, 1] refers to the

probability that u visits oi during time period ti.

Trajectory. A trajectory is generated by a vehicle which serves as the carrier

for an advertisement. Traditionally, a trajectory is represented by a sequence of

timestamped geo-coordinates. In this work, we preprocess a trajectory and represent

100

Symbol Description

T a trajectory

q an advertisement

Q a group of advertisement

u an audience

U an audience set

T a trajectory database

o a POI

o a POI attached with a time period

σ(u, q) the textual relevance score between u and q

S a trajectory set with k trajectories

I(q, u, T) the influence between user u and a trajectory T with adver-
tisement q

I(q, u, S) the influence between u and a set of trajectories S with
advertisement q

I(q, U, S) the expected influence between a group of audience U and
a set of trajectories S with advertisement q

I(Q,U, S) the expected influence between a group of audience U and
a set of trajectories S with a group of advertisements Q

I(q, U, T |S) the incremental influence by adding T into the trajectory
set S

C an incomplete candidate

Cn a complete candidate

C a candidate set

OD(Ti, Tj) the overlap distance between Ti and Tj

Table 5.1: Summary of Notations

a trajectory by a sequence of POIs 2 along the roads, each associated with a time

period when the POI is visited by the vehicle. Let T denote a trajectory and T =

{o1 : (o1, t1), . . . , on : (on, tn)}, where oi is a POI and ti is the time period when the

trajectory passes the POI.

Advertisement. An advertisement q is represented by a set of weighted tags.

Our goal is to find the top-k best trajectories to carry the advertisement and generate

the maximum influence.

In the following, we propose how to define the expected influence and present a

formal problem definition. We then prove that the new problem is NP-hard.

2The notion of POI refers to any two-dimensional location that can be semantically annotated.

101

5.2.1 Trajectory Influence

Given an advertisement q, we can define the influence score between an audience u

and a trajectory T carrying q as follows:

I(q, u, T) = σ(q, u) · ρ(u, T) (5.1)

where σ(q, u) measures the textual relevance between an advertisement and an audi-

ence, and ρ(u, T) measures the influence probability that an audience will “meet” a

vehicle that carries the advertisement. Such an influence score captures the textual

relevance, spatial relevance and temporal relevance between u and a vehicle attached

with q moving along T .

Given an advertisement q, an audience u is influenced by an advertisement q

attached on a trajectory T if the following two conditions are satisfied:

1. σ(q, u) > 0.

2. ρ(u, T) > 0, i.e., ∃(oi, ti) ∈ T ∧ ∃(oj, tj, pj) ∈ u such that oi = oj and ti = tj.

In other words, if an audience is influenced by a trajectory carrying advertisement q,

they have to be matching in the textual, spatial and temporal attributes.

Textual relevance (σ). Textual relevance can be captured by any information

retrieval model. In this work, cosine similarity is used to evaluate the similarity

between q and u, which is defined as

σ(q, u) =
q.t · u.t
‖q.t‖ ‖u.t‖

=

∑
w∈q.t

q.t[w] · u.t[w]√ ∑
w∈q.t

(q.t[w])2 ·
∑
w∈u.t

(u.t[w])2
(5.2)

where q.t[w] is the weight of w in an advertisement and u.t[w] is the weight of w in

the audience profile.

Influence probability (ρ). Let M(u, T) denote the spatial-temporal components of

an audience u that match a trajectory T . We have

M(u, T) = {j|∃(oj, tj, pj) ∈ u ∃(oi, ti) ∈ T, oi = oj ∧ ti = tj} (5.3)

Then, influence probability can be defined as

ρ(u, T) = 1−
∏

j∈M(u,T)

(1− pj) (5.4)

where
∏

j∈M(u,T) (1− pj) measures the probability that an audience will not “meet”

a vehicle that carries the advertisement.

102

Similar to Eqn. 5.1, we measure the influence between an audience u and a set of

trajectories S = {T1, T2, . . . , Tk} carrying the same advertisement q as follows:

I(q, u, S) = σ(q, u) · ρ(u, S)

= σ(q, u) · (1−
∏

j∈M(u,T1)
⋃
...

⋃
M(u,Tk)

(1− pj)) (5.5)

Again,
∏

j∈M(u,T1)
⋃
...

⋃
M(u,Tk) (1− pj) measures the probability that u will not be

influenced by any of the k trajectories in S.

5.2.2 Problem Definition

Let U denote a group of audience. We define the expected influence between a group

of audience U and a set of trajectories S with advertisement q:

I(q, U, S) =
∑
u∈U

I(q, u, S). (5.6)

Property 5.1 I(q, U, S) is a submodular function, i.e., for any two trajectory sets

S1 and S2, we have I(q, U, S1) + I(q, U, S2) ≥ I(q, U, S1 ∪ S2) + I(q, U, S1 ∩ S2)

Now, we are ready to present the influence maximization problem in a trajectory

database.

Definition 5.1 (Trajectory Influence Maximization) Given a trajectory database

T and a group of audience U attached with profiles and spatial-temporal patterns, for

an advertisement q, our goal is to find a trajectory set S where S ⊂ T and |S| = k

such that the expected influence I(q, U, S) is maximized.

We show the hardness of the trajectory influence maximization problem.

Theorem 5.1 The trajectory influence maximization problem is NP-hard.

Proof 5.1 We prove by reducing the Set Cover problem to our trajectory influ-

ence maximization problem. In the Set Cover problem, given a collection of subsets

S1, S2, ..., Sm of a ground set G = {g1, g2, ..., gn}, we wish to know whether there ex-

ist k of the subsets whose union is equal to G. We map each subset Si in the Set

Cover problem to the set of audience influenced by a trajectory Ti ∈ T . We also map

each gi ∈ G to each user ui ∈ U . If an audience u is influenced, we set the score

I(q, u, T) = 1. Consequently, if there are n users influenced by a trajectory set S,

the expected influence I(q, U, S) = n. Based on the settings, the Set Cover problem

finds k subsets whose union is equal to G. It is equivalent to deciding if there is a

k-advertiser set S with the maximum influence |G| in our problem. Since the Set

Cover is NP-complete, we finish the proof.

103

5.3 Expansion-based Algorithm

A naive solution to finding the best k trajectories for advertisement is to exhaustively

examine all the possible size-k combinations, calculate the generated influence score

for each candidate set and return the one with the maximum influence. However, the

method is intractable because the number of candidate sets grows exponentially with

the number of trajectories and the cost of influence calculation for each candidate

set is expensive. In this section, we propose an expansion-based algorithm with early

termination to improve the naive method.

5.3.1 Algorithm Sketch

Our expansion-based algorithm starts by sorting the trajectories in descending order

according to their influence I(q, U, T) upon all the audience, which is defined as

I(q, U, T) =
∑
u∈U

I(q, u, T). (5.7)

Then, we iteratively examine the trajectories according to the order and enumerate

all the possible combinations whose size is at most k. If a candidate set contains

k trajectories, we call it a complete candidate, denoted by C∗, and can calculate its

accurate influence using Eqn. 5.7. Otherwise, it contains fewer than k trajectories and

we call it an incomplete candidate, denoted by C. In each iteration, we check the next

trajectory in the sorted list and enumerate new combinations by extending existing

incomplete candidates with this trajectory. The algorithm can be safely terminated

if we can guarantee that the influence score of the current best k-trajectory set is

larger than the upper bound influence score of all the possible complete candidates

that have not been enumerated.

The pseudo-code sketch of our expansion-based algorithm is illustrated in Algo-

rithm 5.1. For each trajectory, we calculate its influence score and insert it into a

list L sorted by the value (line 1). Then, we initialize S to contain the first k tra-

jectories in the sorted list (line 2) and initialize the global maximum influence Iopt
to be I(q, U, S) (line 3) to facilitate pruning in the following enumerations of new

candidates. We also maintain a set C to contain the incomplete candidates that have

been enumerated (line 4). The candidates in C are sorted by the candidate size,

which refers to the number of trajectories in the candidate, in descending order. In

this way, we can generate complete candidates earlier and use the updated Iopt to

help pruning.

104

Algorithm 5.1: Expansion-based Algorithm

input: An advertisement query q, a trajectory database T and an audience set
U

output: k-trajectory set S

1 Sort trajectories in L according to their influence I(q, U, T)
2 Initialize S to contain the first k trajectories in L
3 Iopt ← I(q, U, S)
4 C← {∅}
5 for i = 1; i ≤ |L|; i+ + do
6 T ← L[i]
7 foreach incomplete combination C ∈ C do
8 Cn ← C

⋃
{T}

9 if |Cn| < k then
10 UB0 ← UpperBound(L, Cn, i+ 1)
11 if UB0 > Iopt then
12 Insert Cn into C
13 UB0 = max(UB0, UB0)

14 else
15 if I(q, U, Cn) > Iopt then
16 S ← Cn
17 Iopt ← I(q, U, Cn)

18 if UpperBound(L, C, i+ 1) < Iopt then
19 Remove C from C
20 UB′0 ← UpperBound(L, ∅, i+ 1)

21 if UB0 ≤ Iopt ∧ UB′0 ≤ Iopt then
22 break

23 return S

We iteratively examine the trajectories in L in descending order of the influence

score (lines 5-22). When visiting trajectory T in the i-th iteration, we scan all the

incomplete candidates stored in C 3. For each C ∈ C, we first examine the new

candidate Cn generated by combining C and T (line 8). If Cn is an incomplete

candidate, only when its upper bound score is larger than Iopt, will the new candidate

be inserted into C (lines 9-13). If Cn is a complete candidate, we calculate the exact

influence using I(q, U, Cn) in Eqn. 5.6. If a better result is found, we update Iopt
and S accordingly (lines 14-17). Then, we update the upper bound score of C by

combining the trajectories that have not been visited. If the new upper bound is

smaller than Iopt, we remove C from C (lines 18-19). Note that the upper bound for

the same incomplete candidate C could be different as iterations continue because we

3C = ∅ is also viewed as an incomplete candidate in C

105

only examine its combinations with the unvisited trajectories. The reason for being

aggressive in reducing the size of C is that each incomplete candidate may spawn

exponential number of new candidates if it is not pruned early. We use UB0 to denote

the upper bound influence for all the incomplete candidates in C and UB′0 to denote

the upper bound influence for candidates that only contain unvisited trajectories. If

we can guarantee that UB0 and UB′0 are both no greater than Iopt, the algorithm can

be terminated safely. Note that it is not safe to terminate the algorithm when only

UB0 is no greater than Iopt. We should also guarantee that UB′0 is no greater than

Iopt. This is because a better combination may be composed solely of the unvisited

trajectories, due to the fact that the influence of the trajectories is not independent

to each other. In the following, we present how to estimate UB0 and UB′0 for early

termination.

5.3.2 Estimation of UB0 and UB′0

To calculate UB0, we calculate an upper bound influence UB0 for each incomplete

candidate C in C and UB0 is the maximum UB0. A straightforward method is

to examine all the possible combinations with k − |C| unvisited trajectories. The

derived bound is accurate but incurs too much computational cost. A more efficient

alternative is to aggregate the influence score of the first k−|C| unvisited trajectories

to estimate UB0 for C. Let Tu denote the set of unvisited trajectories following the

same order in L 4 and T0 denote a set containing the first k − |C| trajectories in Tu.
We define our upper bound for an incomplete candidate C as

UB0 = I(q, U, C) +
∑
T∈T0

I(q, U, T), (5.8)

We prove that UB0 is an upper bound score.

Lemma 5.1 For any complete candidate C∗ that contains C and trajectories from

Tu, we have I(q, U, C) ≤ UB0.

Proof 5.2 Let Copt be the optimal candidate expanded from C. Due to the submodular

property of the influence scoring function, we have

I(q, U, Copt) ≤ I(q, U, C) +
∑

T∈Copt\C

I(q, U, T)

4In other words, Tu = {L[i+ 1],L[i+ 2], . . .}

106

Since T0 contains trajectories with the maximum influence in Tu, we have∑
T∈Copt\C

I(q, U, T) ≤
∑
T∈T0

I(q, U, T)

Therefore, we have UB0 ≥ I(q, U, Copt), which indicates UB0 is an upper bound

influence for any candidate expanded from C.

Next we present how to estimate UB′0. It is equivalent to estimating the upper

bound for an empty set using trajectories in Tu. Thus, we can still apply Eqn. 5.8 to

get the bound.

UB′0 =
∑
T∈T0

I(q, U, T). (5.9)

T8: 0.18T2: 1.182 T5: 0.477T6: 0.872T3: 0.879T7: 1.267T1: 1.342

update S

Iopt=2.997

{T7,T2} 2.835

{T7,T2,T3} 2.842

{T1,T2} 2.215

{T1,T2,T3} 2.222

{T7} 2.616

{T7,T3} 3.018

{T1} 2.691

{T1,T3} 3.093

{T1,T7} 2.990

{T1,T7,T3} 2.997

{T2} 2.531

{T2,T3} 2.933

remove

remove

remove

remove

remove

remove

insert

After visiting T3
S={T1,T7,T3}

Iopt=2.997

Before visiting T3
S={T1,T7,T2}

Iopt=2.139

093.30 =UB

228.21 =UB

093.30 =UB

529.11 =UB

3.093{T1}

{T2}

{T1,T2}

2.933

3.018

2.842

2.997

3.093{T1T }

{T2TT }

{T1T ,T2TT }

2.933

3.018

2.842

2.997

C UB0

{T7}

{T1,T7}

{T7,T2}

2.222

3.0183.018

C UB0

{T7,T3}

Ø Nan

{T3} 2.228

Ø Nan

insert

3.093{T1,T3}

Figure 5.2: expansion-based method.

Example 5.1 Fig. 5.2 shows a snapshot of our expansion-based method in the 4-th

iteration. Before this, we have sorted the trajectories based on the influence score

in descending order, examined the top 3 trajectories {T1, T7, T2} and enumerated the

incomplete candidates in the candidate table. The current best solution is to select

107

{T1, T7, T2} with an expected influence Iopt = 2.139. We can also estimate two up-

per bounds UB0 an UB′0 to be 3.093 and 2.228 respectively. For example, based on

Eqn. 5.9, UB′0 = I(q, U, T3) + I(q, U, T6) + I(q, U, T5) = 2.228.

When accessing T3 in the 4-th iteration, we enumerate all the possible combinations

by combining T3 and the candidates in the candidate table. The candidates in the table

are sorted by the cardinality so that complete candidates can be evaluated earlier. For

each candidate C visited, we first generate a new candidate Cn by combining C with

T3. If Cn is a complete candidate, we calculate its influence to check whether it is

better than S. For example, when we visit {T1, T7}, we calculate the influence for

the new complete candidate {T1, T7, T3}. Since {T1, T7, T3} is a better candidate with

higher influence score than S, we update S and Iopt. If Cn is an incomplete candidate,

we calculate its upper bound UB0 to check whether to insert it into the candidate table.

For example, when we visit {T7}, we calculate the upper bound for the new incomplete

candidate {T7, T3}. Since its upper bound is larger than Iopt, it may generate a better

candidate than S and thus is inserted into the candidate table. After checking the

newly generated candidate, we also need to estimate a new upper bound for the old

candidate C. This is because before accessing T3, its upper bound is estimated by

taking T3 into consideration when forming new expansions. Since we have examined

T3 in the 4-th iteration, their upper bound should consider trajectories excluding T3. If

the new upper bound is smaller than Iopt, the candidate can be pruned. For example,

the old candidate {T1, T7} has a smaller upper bound than Iopt and thus is removed

from the candidate table. After visiting all the non-empty candidates in the candidate

table, we generate a new candidate {T3} to combine ∅ with the unvisited trajectories.

Since the candidate {T3} has a smaller upper bound than Iopt, we do not insert it into

the candidate table.

After visiting T3, we have only two incomplete candidates left in C. The current

best k-advertiser set S is {T1, T7, T3} and Iopt increases from 2.139 to 2.997. The

algorithm will terminate when the termination condition max(UB0, UB′0) < Iopt is

satisfied.

5.3.3 Index-based Optimization

In the initialization steps of Algorithm 5.1, we need to calculate the influence for

each trajectory and sort them in L. To calculate I(q, U, T) for a trajectory T , we

need to first identify audience that intersect with T in spatial, temporal and textual

attributes. Then, among these influenced audience, we aggregate the influence score.

108

When there are a large number of trajectories and audience, the computation overhead

could be very high.

To reduce the cost of influence calculation, a straightforward method is to maintain

an inverted index between trajectories and users based on two-level partitioning.

In the first level, we partition by trajectories. For each trajectory, we maintain a

partition containing users who could be influenced by the trajectory in the spatial

and temporal attributes. In the second level, we maintain inverted lists for the user

profiles. To calculate the influence score of T w.r.t. an advertisement q, we retrieve

the inverted lists relevant to q and located in the partition of T , scan the users and

aggregate their scores.

Although efficient, we still need to traverse the users to calculate the influence.

To further reduce the computation time, we propose a method that converts the

scoring function I(q, U, T) into the form of f(U, T) · g(q, U, T), where f(U, T) is a

term independent of query q and can be pre-computed offline while g(q, U, T) is a

term that needs to be computed online. To achieve the goal, we define

λq,w =
q.t[w]√ ∑

w∈q.t
(q.t[w])2

, λu,w =
u.t[w]√ ∑

w∈u.t
(u.t[w])2

and get a new representation of the relevance σ(q, u) as follows.

σ(q, u) =
∑
w∈q.t

λq,w · λu,w. (5.10)

To avoid iterating users when calculating the influence score, we pre-compute

the influence of a trajectory based on a keyword w and define a partial influence

Ip(w,U, T) for each trajectory and each keyword:

Ip(w,U, T) =
∑
u∈U

Ip(w, u, T) =
∑
u∈U

λu,w · (1−
∏

j∈M(u,T)

(1− pj)), (5.11)

We can see that the partial influence is a term not relevant to a query advertisement q

and can be pre-computed offline. Then, we can get a new representation of I(q, U, T)

to be

I(q, U, T) =
∑
w∈q.t

λq,w · Ip(w,U, T), (5.12)

109

because ∑
w∈q.t

λq,w · Ip(w,U, T)

=
∑
w∈q.t

λq,w ·
∑
u∈U

λu,w · (1−
∏

j∈M(u,T)

(1− pj))

=
∑
w∈q.t

∑
u∈U

(λq,w · λu,w) · (1−
∏

j∈M(u,T)

(1− pj))

=
∑
u∈U

(
∑
w∈q.t

λq,w · λu,w) · (1−
∏

j∈M(u,T)

(1− pj))

=
∑
u∈U

σ(q, u) · (1−
∏

j∈M(u,T)

(1− pj))

=
∑
u∈U

I(q, u, T).

Based on Eqn. 5.12, we propose a trajectory index Nt to compute the influence

for the trajectories efficiently, as follows. For each keyword w, we maintain an in-

verted list containing trajectories whose partial influence score w.r.t. w is not zero.

i.e., Ip(w,U, T) 6= 0. The inverted list is sorted by the trajectory id. Then given an

advertisement q and trajectory T , we can easily retrieve the partial influence score in

each relevant list. With the partial influence scores, we can efficiently compute the

final influence based on Eqn. 5.12. With the help of Nt, we can reduce the computa-

tion time and index size significantly compared to the naive inverted index, because

Ip(w,U, T) is pre-computed and Nt only includes the trajectories whose number is

much smaller than the audience.

T1

T2

T3

T5

T6

T7

T8

1.342

1.182

0.879

0.477

0.872

1.267

0.180

seafood

T1 0.375

swim

T1 0.425

gym

T1

T2

T3

0.640

1.360

0.195

pizza

T5

T6 T5

T6

0.497

0.872 0.088

0.141

q = {pizza: 0.3, seafood: 0.4}

T6

T8

0.284

0.141

T2 0.375 T2 0.284

T7

T8

0.529

0.720

Figure 5.3: Trajectory Index.

Example 5.2 Fig. 5.3 shows the trajectory index Nt built for the trajectories in

Fig. 4.1. Each keyword is associated with a trajectory list, in which we calculate

110

the partial influence for each trajectory and sort them by the trajectory id. Given

an advertisement {pizza : 0.3, seafood : 0.4}, we first access the two trajectory lists

matching the keywords in the advertisement, and then scan them by the trajectory

id for partial score aggregation in a DAAT (Document-At-A-Time) manner. For ex-

ample, T1 exists in both the lists under pizza and seafood. Thus, its influence is

calculated by aggregating the two partial scores in lists of “pizza” and “seafood”, i.e.,

I(q, U, T1) = (0.3/
√

0.32 + 0.72) · 1.342 + (0.7/
√

0.32 + 0.72) · 0.375 = 0.873.

5.4 Improved Bound Estimation

In the expansion-based method, we propose an upper bound UB0 for an incomplete

combination C which picks the top k − |C| trajectories with the largest influence.

Although UB0 is computationally efficient, it is too loose to facilitate pruning. In

this section, we propose two improved estimations of the upper bound.

5.4.1 Estimate UB1 by Incremental Influence

We propose a new concept named incremental influence to estimate a tighter upper

bound UB1. Given an incomplete candidate C, let I(q, U, T |C) denote the incre-

mental influence by adding T into the incomplete trajectory set C. Formally, we

have

I(q, U, T |C) = I(q, U, {T ∪ C})− I(q, U, C) (5.13)

Since I(q, U, C) is a submodular function, the incremental influence function I(q, U, T |C)

is also a submodular function based on its definition. Then we have the following

property.

Property 5.2 For any two sets S1 and S2, we have I(q, U, S1|C) + I(q, U, S2|C) ≥
I(q, U, S1 ∪ S2|C) + I(q, U, S1 ∩ S2|C).

Based on the submodular property, we have the following lemma.

Lemma 5.2 Given an incomplete candidate C and a complete candidate C∗ expanded

from C, we have

I(q, U, C∗) ≤ I(q, U, C) +
∑

T∈C∗\C

I(q, U, T |C).

111

Proof 5.3

I(q, U, C) +
∑

T∈C∗\C

I(q, U, T |C)

≥ I(q, U, C) + I(q, U, (C∗ − C)|C)

= I(q, U, C∗)

For each unvisited trajectory in the sorted list L, we can calculate its incremental

influence with respect to C. Suppose set T1 contains k−|C| unvisited trajectories with

the maximum incremental influence, we can define a new upper bound for candidate

C as follows:

UB1 = I(q, U, C) +
∑
T∈T1

I(q, U, T |C) (5.14)

Lemma 5.3 For any complete candidate C∗ that contains C and trajectories from

L, we have I(q, U, C∗) ≤ UB1.

Proof 5.4 Based on Lemma 5.2, for any complete candidate C∗ expanded from C,

we have

I(q, U, C∗) ≤ I(q, U, C) +
∑

T∈C∗\C

I(q, U, T |C)

≤ I(q, U, C) +
∑
T∈T1

I(q, U, T |C)

Furthermore, we prove that UB1 is a tighter bound than UB0.

Lemma 5.4 UB1 ≤ UB0

Proof 5.5

UB1 = I(q, U, C) +
∑
T∈T1

I(q, U, T |C)

≤ I(q, U, C) +
∑
T∈T1

I(q, U, T)

≤ I(q, U, C) +
∑
T∈T0

I(q, U, T)

= UB0

To estimate the new upper bound defined in Eqn. 5.14, we need to find k − |C|
trajectories in L with the largest incremental influence. We propose an efficient

method in Algorithm 5.2 in which we iteratively access the trajectories in L according

to its original order. Our pruning is based on an important observation stated in the

following lemma.

112

Algorithm 5.2: UpperBound(L, C, i+ 1)

1 Build a max-heap H ← ∅
2 UB1 ← I(q, U, C)
3 j ← 0
4 while j < k − |C| do
5 T ← L[i+ 1]
6 if I(q, U, T) > H.top() then
7 Insert I(q, U, T |C) into heap H
8 i← i+ 1

9 else
10 UB1 ← UB1 +H.top()
11 j ← j + 1
12 H.pop()

13 return UB1

Lemma 5.5 I(q, U,L[j]) is an upper bound of incremental influence for all the tra-

jectories L[m], where m > j.

Proof 5.6 Since L is sorted by the influence score, we have

I(q, U,L[m]|C) ≤ I(q, U,L[m]) ≤ I(q, U,L[j])

The max-heap H is used to contain the incremental influence of the trajectory and

the incremental influence are sorted in a descending order (line 1). If the influence

score of T is larger than the top incremental influence in H, we simply calculate

the incremental influence of T and insert the incremental influence into H (lines 7-

8). Otherwise, we can guarantee that the incremental influence of all the remaining

trajectories in L will not be better than the one in the heap based on Lemma 5.5.

Thus, we consider it as a top-k answer in terms of incremental influence. We update

UB1 and pop it from H (lines 10-12). The algorithm terminates when the top-k

trajectories with the maximum incremental influence are identified.

5.4.2 Upper bound UB2 with Better Tradeoff

Although UB1 is a tighter bound, its estimation in Algorithm 5.2 requires frequent

calculation of incremental influence I(q, U, T |C), whose computational cost is expen-

sive. To achieve a better tradeoff between efficiency and effectiveness in pruning,

we propose a new upper bound UB2 which is slightly looser than UB1 but can be

computed much more efficiently. More specifically, we define our new bound

UB2 = I(q, U, C) +
∑
u∈T2

Î(q, U, T |C) (5.15)

113

by replacing the exact incremental influence I(q, U, T |C) in UB1 with its upper bound

Î(q, U, T |C) and T2 is the set of k− |C| trajectories with the largest Î(q, U, T |C). In

the following, we introduce how to find such a bound that is computationally efficient

and only slightly larger than I(q, U, T |C).

Let I(q, U, o) denote the influence of a POI in the time period o.ti. It is equivalent

to the influence I(q, U, T) of a trajectory T with T = {o}. Similarly, we can define

incremental influence I(q, U, o|C) w.r.t. to an incomplete candidate C to be

I(q, U, o|C) = I(q, U, C ∪ {o})− I(q, U, C). (5.16)

Then, we can use I(q, U, o|C) to estimate the upper bound of I(q, U, T |C) by defining

Î(q, U, T |C) =
∑

o∈{T\O}

I(q, U, o). (5.17)

where O is a set containing all the POIs of the trajectories in C. We prove that

Î(q, U, T |C) is an upper bound of I(q, U, T |C).

Lemma 5.6 I(q, U, T |C) ≤ Î(q, U, T |C).

Proof 5.7 Based on the submodular property of I(q, U, T |C) (see Property 5.2), we

have

I(q, U, T |C) = I(q, U, {o1, o2, ...on}|C)

≤
∑
o∈T

I(q, U, o|C)

If a POI o belongs to O∩ T , the incremental influence of o would be 0. Thus, we

have

I(q, U, T |C) ≤
∑

o∈{T\O}

I(q, U, o|C)

≤
∑

o∈{T\O}

I(q, U, o).

The estimation of Î(q, U, T |C) can be done efficiently by maintaining an inverted

index No for the POIs. For each keyword, we first retrieve the relevant audience in the

textual attribute. Then, we find the set of POIs that can influence these users and put

them in the inverted list of the keyword. For each POI in the list, we pre-compute its

partial influence score Ip(w,U, o). When calculating I(w,U, o), we simply aggregate

the partial influences according to Eqn. 5.12 in Section 5.3.

114

5.5 Approximation Methods

Although the bound-based algorithms can find the accurate top-k trajectories, they

are not scalable to k because the number of candidates grows exponentially with k.

When k is large, the computation becomes expensive and the memory cost is not af-

fordable. In this section, we propose three approximation methods with performance

guarantees to solve the problem.

5.5.1 Baseline Greedy Algorithm

We can extend existing greedy framework to support our problem [40], which starts

by picking the trajectory with the maximum influence I(q, U, T). In the following

k − 1 iterations, it greedily selects the trajectory with the maximum incremental

influence I(q, U, T |S) where S contains the candidates selected in previous steps.

The algorithm is more efficient than the accurate methods because it only involves

k iterations. The greedy algorithm guarantees an approximation ratio of (1 − 1/e)

based on the the following theorem.

Theorem 5.2 [40] For a non-negative, monotone submodular function f , let S be

a set of size k obtained by selecting elements one at a time, each time choosing an

element that provides the largest incremental increase in the function value. Let S∗

be a set that maximizes the value of f over all k-element sets. Then S provides a

(1− 1/e)-approximation.

However, the greedy algorithm has a limitation that in each iteration it computes

the incremental influence for every unvisited trajectory which is expensive. Thus, we

optimize the greedy algorithm by avoiding examining all the unvisited trajectories,

which is achieved by scanning the trajectories in order and terminating as early as

possible, and avoiding calculating the incremental influence for each examined tra-

jectory, which is achieved by utilizing the estimated incremental influence Î(q, U, T)

proposed in Eqn. 5.17 in Section 5.4.2. We assume that the trajectories in L are

visited in descending order of their I(q, U, T). We also maintain a max-heap H which

sorts the trajectories in descending order of their estimated incremental influence

Î(q, U, T). In each iteration, we use Algorithm 5.3 to select the trajectory Tmax with

the maximum incremental influence. The procedure is as follows. If the influence

score I(q, U, T) of a trajectory T in L is larger than the estimated incremental influ-

ence of the top trajectory in H, we calculate the estimated incremental influence of T

instead of its exact incremental influence and insert it into H (lines 5-7). Only when

115

Algorithm 5.3: Select(L, S)

1 Initialize a max-heap H ← ∅ and Tm with I(q, U, Tm|S)← 0
2 i = |S|+ 1
3 while i ≤ |L| do
4 T ← L[i]

5 if I(q, U, T) > H.top().Î then

6 Insert 〈T, Î(q, U, T |S)〉 into H
7 i← i+ 1

8 else
9 T ′ ← H.top().T

10 H.pop()
11 if I(q, U, T ′|S) > I(q, U, Tm|S) then
12 Tm ← T ′

13 if I(q, U, Tm|S) > max(I(q, U, T),H.top().Î) then
14 return Tm
15 return Tm

I(q, U, T) is smaller than the estimated incremental influence of the top trajectory,

do we need to calculate the exact incremental influence I(q, U,H.top()|S) and check

if this is a better candidate than the best trajectory Tmax ever found (lines 9-12).

The algorithm can terminate early if I(q, U, Tmax|S) is larger than the estimated in-

cremental influence of all the trajectories in H and the influence of all the unvisited

trajectories in L (lines 13-14).

T8: 0.18T2: 1.182 T5: 0.477T6: 0.872T3: 0.879T7: 1.267T1: 1.342

Sorted List : L

(1) (2)

T3: 0.879Tm

0.793T7

T estimated

Max Heap : H

0.793

0.879T3

T7

T estimated

Max Heap : H

T6 0.180

T2 0.010

0.793T7

T estimated

Max Heap : H

T6 0.180

T2 0.010

(3)

Figure 5.4: baseline greedy method.

Example 5.3 Fig. 5.4 shows a snapshot of the greedy algorithm in the 2nd iteration.

In the 1st iteration, T1 has the largest influence and is selected as the first seed. (1).

In this iteration, we start from T7. Since its influence is larger than the estimated

incremental influence of the top trajectory (i.e., ∅) in H, we calculate Î(q, U, T7|S) =

116

0.793 and insert 〈T7, 0.793〉 into H. (2). Similarly, T2, T3 and T6 are inserted into

H. (3). Next T5 is traversed. Since its influence is smaller than Î(q, U, T3|S), we

calculate I(q, U, T3|S) = 0.879 and use T3 as Tmax. I(q, U, Tmax|S) is larger than the

estimated incremental influence of all the trajectories in H and the influence of all

the unvisited trajectories in L. We can terminate this iteration and select T3 as the

second seed.

5.5.2 Cluster-based Method

The baseline greedy algorithm has two limitations. First, to find the trajectory Tmax

with the maximum incremental influence in each iteration, it always scans the sorted

list L in the same order. It neglects the fact that the incremental influence I(q, U, T |S)

for a trajectory T varies in different iterations, because a trajectory overlapped with

T may be inserted into S. Thus, following the same accessing order in different

iterations may result in examining more trajectories. To improve the efficiency, we

propose a cluster-based algorithm that first partitions the trajectory database into

clusters and always accesses the cluster with the maximum estimated incremental

influence Î(q, U, T |S) in each iteration so that a more promising trajectory Tm can

be found earlier. Second, it pushes all the trajectories with an influence larger than

I(q, U, Tm|S) into the heap H. To reduce the number of trajectories pushed into H,

we utilize Tm to prune the insignificant trajectories.

5.5.2.1 Trajectory Clustering

In our data model, a trajectory is represented by a sequence of POIs. If two tra-

jectories share more POIs, they have higher chance to influence the same group of

audience and demonstrate similar amount of influence increase when calculating the

incremental influence. Formally, we define the distance measure used in our trajectory

clustering as follows:

Definition 5.2 (Overlap Distance)

OD(Ti, Tj) =
|Ti|+ |Tj| − |Ti

⋂
Tj|

|Ti|+ |Tj|
,

where |T | is the number of POIs contained in T and |Ti
⋂
Tj| is the number of match-

ing POIs between Ti and Tj.

To partition the trajectories into n clusters based on the Overlap Distance, we

design a simple clustering method with n fixed seeds. We first sort the trajectories

117

Algorithm 5.4: Cluster-Select({Li}, S)

1 Initialize a max-heap H ← ∅
2 Calculate Î(q, U, Ti|S) for the first Ti in each Li
3 Lm ← the trajectory list with the largest Î(q, U, Ti|S)
4 Tm ← Select(Lm, S)
5 for each of the other trajectory lists Li do

6 Insert 〈T ′, Î(q, U, T ′|S)〉 with Î(q, U, T ′|S) > I(q, U, Tm|S) to H
7 while I(q, U, Tm|S) < Î(q, U,H.top()|S) do
8 T ′ ← H.pop()
9 if I(q, U, T ′|S) > I(q, U, Tm|S) then

10 Tm ← T ′

11 return Tm

based on the number of potential audience to influence, i.e., the intersection between

the audience and the trajectory in the spatial and temporal attributes. We then use

n iterations to select n seeds. In the i-th iteration, we select the trajectory which

can maximize the number of audience influenced by the selected i seeds as the i-th

seed. Next, each trajectory T is assigned to the cluster whose seed is closest to T . An

example is shown in Fig. 5.5 which clusters the trajectories in Fig. 4.1 into 3 clusters.

We do not use conventional k-means clustering because we found that k-means would

generate lots of insignificant clusters in which the trajectories have small influence.

For the trajectories in a cluster, we build the same inverted index as in Section 5.3

to store trajectories whose partial influence is not zero for each keyword.

5.5.2.2 Cluster-based Method

We propose a more efficient algorithm after the trajectory clustering and index con-

struction. As discussed, the greedy algorithm has no idea on which trajectory may

have a large incremental influence and can only traverse the trajectories in the same

order. As a result, a large number of unnecessary trajectories are pushed into the

heap H. Thus we define a new order of accessing trajectories. The purpose is to

initialize a good Tm for pruning.

Given a query q, for each cluster Ci, we compute the influence of the trajectories

in Ci and build a sorted list Li. In each iteration, we call the Algorithm 5.4 to get the

trajectory with the maximum incremental influence w.r.t. the current advertiser set S.

As shown in Algorithm 5.4, given an incomplete candidate S with top-|S| trajectories,

our algorithm starts by calculating an estimated incremental influence Î(q, U, Ti|S),

where Ti is the first unvisited trajectory in the sorted list Li (line 2). Then, we find the

118

sorted list Li with the maximum Î(q, U, Ti|S) and call the function select to get the

trajectory Tm with the maximum incremental influence in Li (line 4). The intuition is

that if a trajectory has a high incremental influence w.r.t. S, the trajectories belonging

to the same cluster may also have a high incremental influence, because they share

many identical POIs. For the remaining clusters, we can filter all the trajectories

whose Î(q, U, T |S) ≤ I(q, U, Tm|S) (lines 5-6). The valid candidates are pushed

into a heap H and accessed in decreasing order of Î(q, U, T |S). For each popped

trajectory fromH, if its estimated incremental influence is smaller than I(q, U, Tm|S),

we calculate the exact incremental influence and update Tm when necessary (lines 7-

10). Otherwise, the algorithm can be terminated and Tm is selected as the seed.

T6: 0.872 T8: 0.180T2: 1.182T1: 1.342

T1
T2 T6

T8

T3: 0.879T3TT : 0.879T5: 0.477T7: 1.267 T5TT : 0.477T7TT : 1.267

T3T7 T5

L1 L2 L3

C1 C2 C3

0

T estimated

Max Heap : H

Lm = L3

Tm = T3 Ø

T3: 0.879Tm

(1) (2) (3)

Figure 5.5: cluster-based method.

Example 5.4 Fig. 5.5 shows a snapshot of the 2nd iteration of our cluster-based

method. (1) In the 2nd iteration, we calculate Î(q, U, T |S) for the first trajectory T

in each sorted list, and select the trajectory list with the largest Î(q, U, T |S) as Lm,

i.e., L3. Next we use the select function to get the trajectory Tm that has the largest

incremental influence in L3, i.e., T3. (2) After that, we insert all the trajectories

whose Î(q, U, T |S) are larger than I(q, U, T3|S) into H. In this example, we can see

that no trajectory is inserted into H. (3) Since H is empty, T3 is selected as the

second seed. As shown, in this iteration, we access L3 instead of L1. The advantage

is that we can get a good trajectory T3 with large incremental influence earlier. With

the help of T3, T7, T6 and T2 are avoided inserting into H compared to the greedy

method.

5.5.3 Threshold-based Method

The tradeoff between efficiency and accuracy provided by the above algorithms may

not be satisfactory in certain applications. The exact algorithms return accurate

119

top-k results with much longer computation time, while the approximate algorithms

can only guarantee a (1 − 1/e)-approximation ratio. To provide a flexible means

to adjust the tradeoff between the efficiency and the approximation ratio ε ∈ (0, 1],

we propose our threshold-based algorithm. In the exact algorithms (Algorithm 5.1),

the termination condition is max(UB0, UB′0) ≤ Iopt which requires the current best

optimal influence Iopt to be larger than the upper bound of all the candidates in C
and unvisited trajectories. To terminate earlier, we revise the termination condition

to be max(UB0 · ε, UB′0 · ε) ≤ Iopt in our threshold-based algorithm and prove that

the revised algorithm achieves a ε-approximation ratio.

Lemma 5.7 The threshold-based method achieves an approximation ratio of ε for

any ε ∈ (0, 1].

Proof 5.8 Let C+ and C∗ denote top-k trajectories returned by threshold-based algo-

rithm and the accurate algorithm, respectively. We know that C∗ is the exact answer

and Iopt = I(q, U, C∗). Suppose the threshold-based method terminates after eval-

uating a trajectory set C+ such that I(q, U, C+) < Iopt · ε. In the threshold-based

algorithm, since UB0 is the upper bound for all the candidates in C and C∗ has not

been found, we have UB0 ≥ Iopt. Then, UB0 · ε ≥ Iopt · ε > I(q, U, C+). The ter-

mination condition is not satisfied and the threshold-based algorithm will continue to

explore more candidates until find one candidate satisfying max(UB0·ε, UB′0·ε) ≤ Iopt.
Thus, our algorithm guarantees I(q, U, C+) ≥ Iopt · ε when terminated.

5.6 Influence Maximization for Advertisement Group

In this section, we consider how to find k trajectories to maximize the influence

for a group of advertisements Q = {q1, q2, . . . , q|Q|}. For example, a company may

have a promotion campaign for multiple products at the same time. We assume

that the number of buses ki to carry each advertisement qi has been determined and∑
1≤i≤|Q|

ki = k. Our goal is to find k trajectories to maximize the total influence

I(Q,U, S) of Q, which is defined as follows.

I(Q,U, S) =
∑

1≤i≤|Q|

I(qi, U, Si) (5.18)

where Si denotes the set of trajectories allocated to qi.

To solve the problem, we cannot directly select the specified number of trajectories

for each advertisement qi ∈ Q separately by using the previous proposed methods.

120

The reason is that a trajectory may be selected multiple times but in reality a bus

or vehicle cannot hold two advertisements at the same time. A naive method is to

find the ki-trajectory set for each advertisement qi separately, pick the set with the

maximum average influence score and mark the trajectories in this set as selected.

This process is repeated for the remaining advertisements. After |Q| iterations, we

can find a trajectory set for each advertisement. However, this method has to find a

set for each advertisement repeatedly and has no performance guarantee. Thus, we

propose a group greedy method which selects the trajectories for all the advertise-

ments simultaneously and guarantee an approximation ratio of (1−1/e) by extending

our proposed approximate methods (i.e., Greedy and Cluster).

The group greedy method is based on Theorem 5.2 in Section. 5.5.1. There are k

iterations in our group greedy method. At each iteration, we select a seed that has the

largest incremental influence w.r.t. S. After k iterations, we can get a k-trajectory

set S. According to Theorem 5.2, S provides a (1− 1/e)-approximation ratio.

Next we introduce how to select the seed in each iteration based on the following

lemma.

Lemma 5.8 Given a trajectory Ti attached with advertisement qi in Q, let Si denote

the trajectory set allocated to qi, we have

I(qi, U, Ti|Si) = I(Q,U, Ti|S). (5.19)

The procedure of the group selection method is as follows. We maintain a max

heap H to access the trajectories in descending order of their incremental influence

I(qi, U, T |Si). We also maintain a status for each trajectory to indicate whether it

has been selected as a seed. In the first iteration, we select the trajectory Ti with the

largest I(qi, U, Ti|Si) for each advertisement qi separately using Select in the greedy

method or Cluster-Select in the cluster-based method and insert it into H. Then

we select the trajectory T on top of H as the first seed, because T also has the largest

I(Q,U, T |S) according to Lemma 5.8. In the meantime, we mark the status of T as

a seed. Suppose T is allocated to q, we need to select the next trajectory with the

largest incremental influence for q and insert it into H. In the following iterations, we

select the trajectory Ti on top of H. If the status of Ti has been marked, we ignore

it, select the next trajectory for qi and insert it into H. Otherwise, Ti is selected as

the next seed, its status is marked and the next trajectory for qi is inserted into H.

In addition, if we have selected the specified number of trajectories for qi, we ignore

qi and select the seeds from the remaining advertisements. The process repeats until

we have k trajectories with status marked.

121

5.7 Complexity Analysis

In this section, we present the complexity analysis for the trajectory index Nt and

the approximation algorithms.

5.7.1 Index Complexity and Update

Complexity and Update. Let K denote the total number of tags in Nt and |Ti|
denote the average number of trajectories in the inverted list under the tag wi. The

space complexity of Nt is O(
∑

1≤i≤K |Ti|), where |Ti| = |T | in the worst case. In order

for efficient update of Nt, we maintain a POI-trajectory index in which each POI o

is followed by the trajectories that pass o and a POI-audience index in which each

each POI o is followed by the audience that visit o. To update Nt due to the update

of the profile or spatial-temporal patterns of a certain audience u, we first find the

trajectories Te that could influence u using the POI-trajectory index. The complexity

is O(Nu), where Nu is the number of POIs contained in the motion patterns of u.

We then find the partial influence Ip(w,U, T) for each trajectory T ∈ Te and each

tag w of u, and update Ip(w,U, T) by subtracting the original influence of u and

adding the new influence of u. The complexity is O(|Te|Mu), whereMu denotes the

cost of calculating Ip(w, u, T). Thus, the total complexity is O(Nu + |Te|Mu). It is

similar to update Nt due to the insertion or deletion of a user. To update Nt due

to the insertion or deletion of a trajectory T , we first find the users Ue that could

be influenced by T using the POI-audience index. The complexity is O(Nt), where

O(Nt) is the number of POIs passed by T . Let te denote the set of tags contained in

Ue. Then for each tag w in te, we calculate Ip(w,Ue, T) and insert 〈T, Ip(w,Ue, T)〉
into the inverted list of w. The complexity is O(|te|Mu), whereMu denotes the cost

of calculating Ip(w,Ue, T). Thus, the total complexity is O(Nt + |te|Mu)

5.7.2 Algorithm Complexity Analysis

We first discuss the approximate methods for one single advertisement. The base-

line greedy algorithm consists of two major steps: 1) initialization of the sorted

list L. 2) k iterations of finding a trajectory with the maximum incremental influ-

ence. In the initialization step, we use our inverted lists of partial scores to calculate

the influence for each trajectory and sort them according to the value. The cost is

O(m|T | + |T |log(|T |)), where m is the number of tags in the advertisement. In the

following k iterations, we use a heap to help find the trajectory with the maximum

incremental influence from a sorted list. In the worst case, the algorithm examines all

122

the trajectories and the cost is O(k|T |Me), whereMe denotes the cost of calculating

incremental influence I(q, U, T |S), which is an expensive operation because it needs

to scan the affected audience to get the accurate score. The clustering algorithm

has the same worst case performance as the baseline algorithm. However, it takes

advantage of trajectory similarity and provides a flexible order in accessing the tra-

jectories to find a promising trajectory. With the help of the promising trajectory,

a large number of insignificant trajectories can be pruned from the heap. In our ex-

periments, the results show that it can achieve better performance than the baseline

greedy algorithm. The complexity analysis of the threshold-based algorithm is not

provided because it depends on the value of ε. Its performance can be arbitrarily bad

when ε is close to 1.

Next, we discuss the analysis of the approximate method for a group of adver-

tisements Q. The group greedy algorithm also consists of two major steps: 1) initial-

ization of the sorted list Li for each advertisement q in Q. The cost is O(|Q|m|T |+
|Q||T |log(|T |)). 2) k iterations of finding a trajectory with the maximum incremental

influence from the |Q| sorted lists. In the worst case, the algorithm examines all the

trajectories in the |Q| sorted lists. The cost is O(
∑

1≤i≤|Q| ki|T |Me) = O(k|T |Me).

The complexity is the same with selecting k trajectories for a single advertisement,

which shows the superiority of the group greedy method.

5.8 Experimental Study

In this section, we show how to apply the trajectory influence maximization problem

to the moving advertisement management field and report results of extensive exper-

iments conducted to evaluate both the efficiency and effectiveness of our proposed

methods using real datasets.

Audience Dataset. In a modern city, it is common for people to take the

bus to their destinations (e.g., workplace, shopping mall or home). They need to

wait for a bus at the bus stations and have a high probability to be influenced by

the passing vehicles. We modeled such important spatial-temporal patterns of the

audience group from the EZLink dataset in Singapore. The Singapore EZLink system

works as follows. Each user has an EZLink card with some stored value. When an

user boards a bus, he/she will tap on an on-board EZLink device. This essentially

records the check-in station and check-in timestamp. Likewise, when the user alights

from the bus, he/she will tap on another on-board EZLink device, which records the

check-out station and check-out timestamp. The amount corresponding to the fare of

123

the journey will be deducted from the stored value. Each record of the dataset thus

contains the check-in station, check-in timestamp, check-out station and check-out

timestamp of a certain audience with a certain bus. Our dataset is provided by the

Land Transport Authority company in Singapore. In total, we have three months of

EZlink records, which correspond to hundreds of millions of records. To model the

spatial-temporal patterns, we represented a POI by a bus station and partitioned a

day into 144 time periods (i.e., each time period corresponds to 10 minutes). For

each audience u, we extracted the records of u and mapped each record into the

corresponding bus station and time period. For each bus station o, we calculated

the probability that u occurs in o as No/Nt, where No represents the number of

records mapped to o and Nt represents the total number of records of u. In total,

we extracted the spatial-temporal patterns for 5 million audience. There are several

possible ways to model the textual profile for an audience. One way is to perform

an online questionnaire for the audience to collect their interest. The other way is

to link an audience in the EZlink dataset with the same user in some online social

networks (e.g., Twitter and facebook) where there are rich interest information for

the audience by using some profile linking technique. Profile linking is the ability to

connect profiles of a user on different social networks and has been studied extensively

in recent years [53, 52, 45]. In our experiments, we crawled a large number of geo-

tweets in Singapore from Twitter. Then, we modeled the geo-profile of each bus stop

by aggregating the tweets nearby. Since the probability of a user visiting a bus stop

has been derived, we can aggregate the geo-profiles of the visited bus stops based on

the probability to generate the profile for the user.

Trajectory Dataset. We constructed two trajectory datasets from bus sched-

ules and GPS logs of taxies in Singapore. The bus trajectory dataset contains 10, 000

trajectories and each trajectory is represented by a sequence of bus stations associ-

ated with timestamp. The raw taxi dataset contains logs of two-dimensional geo-

coordinates and timestamps reported periodically from the taxies. We need some

pre-processing to convert them into a sequence of bus stations. Hence, we define a

visual distance threshold to filter those locations in the raw taxi dataset whose dis-

tance to the nearest bus stations is larger than the threshold. In total, we extracted

1 million non-empty trajectories, which is large enough for a trajectory database.

Algorithms. For the exact methods, we implemented and compared three vari-

ants of the expansion-based framework with three different upper bound estimation

techniques, denoted by Expansion-UB0 (Eqn. 5.8), Expansion-UB1 (Eqn. 5.14) and

124

Expansion-UB2 (Eqn. 5.15), respectively. For the approximate methods, we com-

pared the greedy method (Greedy), the cluster-based method (Cluster) and the

threshold-based method (Threshold). We also compare our group greedy method

(Group) with the naive method (Naive). All the indexes are memory resident and

implemented in C++.

Number of tags m 6, 7, 8, 9, 10
Audience dataset size |U | 1M, 2M, 3M, 4M, 5M

Trajectory dataset size |T | Bus 2K, 4K, 6K, 8K, 10K
Taxi 0.2M, 0.4M, 0.6M, 0.8M, 1M

Exact Methods
k 10, 20, 30, 40, 50

Approximate Methods / Naive v.s. Group

k
Bus 100, 200, 300, 400, 500
Taxi 200, 400, 600, 800, 1000

Threshold v.s. Cluster
k 60, 70, 80, 90, 100

Naive v.s. Group
Number of advertisements |Q| 10, 20, 30, 40, 50

Table 5.2: Parameters evaluated in the experiments

Parameters and Metrics. Table 5.2 shows the main parameters and values

used throughout the experiments with default values in bold. We tested larger k

values for the approximate methods than the exact methods to show the scalability

to k. For Cluster, we generated 50 clusters for evaluation. For Threshold, we

evaluated the performance when ε is set to 1− 1/e, 0.8 and 0.9. As for the methods

for a group of advertisements Q, we randomly specify the number of trajectories

for each advertisement in Q. In the experiments, we measure the following metrics:

(i) efficiency, the amount of time an algorithm runs to process a top-k query; (ii)

influence score, the expected influence obtained by the returned top-k trajectories for

an algorithm.

5.8.1 Evaluation on Indexes

In the initialization steps of all the algorithms, we need to calculate the influence

for each trajectory in the trajectory dataset. There are two types of indexes that

can be built to accelerate the calculation, the naive inverted index (Invert) and Nt
(see Section 5.3.3). In this section, we compare Invert and Nt in terms of index

sizes and trajectory influence computation time on the taxi dataset which contains

125

 0.1

 1

 10

 100

1M 2M 3M 4M 5M

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

Audience dataset size

Invert
Nt

(a) Computation time

 0

 5

 10

 15

 20

 25

 30

 35

 40

1M 2M 3M 4M 5M

In
d
e
x
 s

iz
e
 (

G
B

)

Audience dataset size

Invert
Nt

(b) Index size

 0.1

 1

 10

 100

0.2M 0.4M 0.6M 0.8M 1M

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

Trajectory dataset size

Invert
Nt

(c) Computation time

 0

 5

 10

 15

 20

 25

 30

0.2M 0.4M 0.6M 0.8M 1M

In
d
e
x
 s

iz
e
 (

G
B

)

Trajectory dataset size

Invert
Nt

(d) Index size

Figure 5.6: Evauation on the indexes.

1 million trajectories. The results are shown in Fig. 5.6. We can see that Nt beats

Invert with better efficiency (orders of magnitude better) and smaller index size (50%

smaller). This is due to the advantage of the partial influence Ip(w,U, T) proposed

in Section 5.3.3. For the index size, Nt only needs to store the trajectories with their

corresponding partial influence. However, Invert needs to store all the audience

whose number is much larger than that of the trajectories. For the computation time,

Nt only needs to perform simple linear computation for each trajectory according to

Eqn. 5.12. However, Invert needs to traverse the corresponding users to calculate

the influence according to Eqn. 5.7. In addition, Nt scales much better than Invert

when the audience dataset or the trajectory dataset size increases with the help of the

partial influence. In the following experiments, all the methods utilize Nt to calculate

the influence for each trajectory.

126

 0.1

 1

 10

 100

 1000

10 20 30 40 50

E
ff

ic
ie

n
c
y
 (

s
)

k

Expansion-UB0
Expansion-UB1
Expansion-UB2

(a) Varying number of trajectories

 0

 50

 100

 150

 200

6 7 8 9 10

E
ff

ic
ie

n
c
y
 (

s
)

Number of tags

Expansion-UB0
Expansion-UB1
Expansion-UB2

(b) Varying number of tags

 0

 50

 100

 150

 200

 250

 300

1M 2M 3M 4M 5M

E
ff

ic
ie

n
c
y
 (

s
)

Audience dataset size

Expansion-UB0
Expansion-UB1
Expansion-UB2

(c) Varying audience dataset size

 0

 50

 100

 150

 200

2K 4K 6K 8K 10K

E
ff

ic
ie

n
c
y
 (

s
)

Trajectory dataset size

Expansion-UB0
Expansion-UB1
Expansion-UB2

(d) Varying trajectory dataset size

Figure 5.7: Accurate methods on the bus dataset.

5.8.2 Evaluation on Accurate Methods

In our first set of experiments, we compare our proposed expansion-based framework

with three different upper bounds UB0, UB1 and UB2. The expansion-based frame-

work can guarantee to find the accurate top-k trajectories with the largest influence

score.

Effect of k. Fig. 5.7(a) and Fig. 5.8(a) show the impact of k in the top-k query.

We have the following observations. First, Expansion-UB0 achieves the worst perfor-

mance due to the rather loose upper bound UB0. Even though UB0 can be calculated

efficiently, Expansion-UB0 would generate a large number of incomplete candidates in

C and need to calculate the influence for each incomplete candidates, resulting in a

large computation cost. As shown in the figures, it takes hundreds of seconds to return

a top-20 trajectories using Expansion-UB0. It takes much more time when k is larger

than 30 and we did not report their results. Second, Expansion-UB1 achieves much

better performance than Expansion-UB0. Even though UB1 is computationally expen-

sive, Expansion-UB1 can provide a rather tight upper bound for each incomplete can-

127

 0.1

 1

 10

 100

 1000

10 20 30 40 50

E
ff

ic
ie

n
c
y
 (

s
)

k

Expansion-UB0
Expansion-UB1
Expansion-UB2

(a) Varying number of trajectories

 0

 100

 200

 300

 400

 500

6 7 8 9 10

E
ff

ic
ie

n
c
y
 (

s
)

Number of tags

Expansion-UB0
Expansion-UB1
Expansion-UB2

(b) Varying number of tags

 0

 100

 200

 300

 400

 500

1M 2M 3M 4M 5M

E
ff

ic
ie

n
c
y
 (

s
)

Audience dataset size

Expansion-UB0
Expansion-UB1
Expansion-UB2

(c) Varying audience dataset size

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.2M 0.4M 0.6M 0.8M 1M

E
ff

ic
ie

n
c
y
 (

s
)

Trajectory dataset size

Expansion-UB0
Expansion-UB1
Expansion-UB2

(d) Varying trajectory dataset size

Figure 5.8: Accurate methods on the taxi dataset.

didate and prune much more insignificant candidates than Expansion-UB0, reducing

the cost of calculating the influence of the incomplete candidates. Third, Expansion-

UB2 achieves the best performance. This is because Expansion-UB2 can estimate a

rather tight upper bound Î(q, U, T |C) for the incremental influence I(q, U, T |C) of a

trajectory T w.r.t. an incomplete candidate C by considering the overlaps between

T and C. In addition, Î(q, U, T |C) can be calculated efficiently by precomputing the

partial influence for each POI. As shown in the figures, Expansion-UB2 achieves 10X

better performance than the other two methods. It takes only about 5 seconds to find

the top-20 trajectories for the bus dataset and about 10 seconds for the taxi dataset.

However, we can also see that the accurate methods do not scale well w.r.t. k because

the number of incomplete candidates grows exponentially with k. Thus, we propose

three approximate methods with performance gurantees to support the case when k

is large, which will be evaluated in Section 5.8.3.

Effect of the number of tags m. Fig. 5.7(b) and Fig. 5.8(b) depict the effect

of the number of tags m in the advertisement. As shown, the performance of all the

128

methods degrade when m increases. This is because in our expansion-based method,

we iteratively enumerate all the promising candidates. For each newly generated

candidate, we need to calculate the influence score on the fly. We also need to calculate

the influence score for a large number of incomplete candidates when calculating UB1

for Expansion-UB1. Such calculation is a frequent operator and increasing m would

make the operation more expensive because we need to scan more relevant users in

order to calculate the exact influence score. Expansion-UB0 scales worst in terms of

increasing m because it examines much more trajectories and generates much more

candidates than the other two methods, leading to higher computation cost in total.

In contrast, Expansion-UB2 is more scalable w.r.t. to m because it estimates a tight

upper bound which prunes a large number of incomplete candidates from C and

uses Î(q, U, T |C) to calculate UB2 which does not involve any candidate influence

computation.

Effect of the audience dataset size |U |. Next, we evaluate the effect of the

audience dataset size |U |. The results are shown in Fig. 5.7(c) and Fig. 5.8(c). As

expected, the running time increases as |U | becomes larger. This is because it takes

more time to scan the relevant audience to calculate the influence score for incomplete

candidates. In other words, it takes the same effect as increasing the number of query

tags m in an advertisement. Still, Expansion-UB2 achieves the best performance.

Effect of the trajectory dataset size |T |. Lastly, we evaluate the efficiency

when increasing the trajectory dataset size |T |. The results are shown in Fig. 5.7(d)

and Fig. 5.8(d). We can see that all the methods only increase slightly when |T |
increases. The reason for such insensitivity is that our expansion-based method enu-

merates the trajectory in a best-first manner. With the help of our proposed upper

bounds, the algorithm can be terminated early without enumerating all the trajec-

tories. As a result, only a small part of the trajectories with high influence are

traversed. In addition, with the help of our proposed index Nt, the cost of calculating

the influence of a trajectory is not sensitive to |T | as well.

5.8.3 Evaluation on Approximate Methods

For the approximate methods, we report both the running time of an advertisement

and the expected influence score to measure both the efficiency and effectiveness.

5.8.3.1 Methods with (1-1/e) approximation ratio

We first compare the efficiency of two approximate methods (i.e., Greedy and Cluster)

that return the same top-k trajectories and achieve the same approximation ratio.

129

 20

 40

 60

 80

 100

 120

 140

100 200 300 400 500

E
ff

ic
ie

n
c
y
 (

s
)

k

Greedy
Cluster

(a) Varying number of trajectories

 0

 10

 20

 30

 40

 50

6 7 8 9 10

E
ff

ic
ie

n
c
y
 (

s
)

Number of Tags

Greedy
Cluster

(b) Varying number of tags

 0

 5

 10

 15

 20

 25

 30

 35

 40

1M 2M 3M 4M 5M

E
ff

ic
ie

n
c
y
 (

s
)

Audience dataset size

Greedy
Cluster

(c) Varying audience dataset size

 10

 15

 20

 25

 30

 35

 40

2K 4K 6K 8K 10K

E
ff

ic
ie

n
c
y
 (

s
)

Trajectory dataset size

Greedy
Cluster

(d) Varying trajectory dataset size

Figure 5.9: Approximate methods with (1-1/e) apprimation ratio on the bus dataset.

Effect of k. Fig. 5.9(a) and Fig. 5.10(a) present the impact of k. We have the fol-

lowing observations. First, Greedy performs much more efficiently w.r.t. k compared

with the above accurate methods, because it only needs k iterations to find the top-k

trajectory set. In each iteration, it adopts a best-first manner to traverse the trajec-

tories and utilizes the upper bound Î(q, U, T |S) to avoid calculating the incremental

influence for each trajectory pushed into the heap. It takes thousands of seconds to

answer a top-50 query for exact methods in Fig 5.7(a) and Fig 5.8(a), but Greedy

requires less than 50 seconds to answer a top-100 query. Second, Cluster achieves

much better performance than Greedy. This is attributed to its pre-knowledge about

the promising trajectory, which is obtained by clustering the trajectories first and ac-

cessing the clusters according to a different order related to the incremental influence.

With the help of the promising trajectory, it can prune a large number of insignificant

trajectories and only push a small number of trajectories into the heap. As shown in

the figures, the superiority of Cluster compared with Greedy is more obvious with

a larger k. It takes about 10 seconds to return top-100 trajectories.

130

 50

 100

 150

 200

 250

 300

 350

200 400 600 800 1000

E
ff

ic
ie

n
c
y
 (

s
)

k

Greedy
Cluster

(a) Varying number of trajectories

 0

 20

 40

 60

 80

 100

 120

 140

6 7 8 9 10

E
ff

ic
ie

n
c
y
 (

s
)

Number of Tags

Greedy
Cluster

(b) Varying number of tags

 0

 20

 40

 60

 80

 100

 120

 140

 160

1M 2M 3M 4M 5M

E
ff

ic
ie

n
c
y
 (

s
)

Audience dataset size

Greedy
Cluster

(c) Varying audience dataset size

 60

 70

 80

 90

 100

 110

 120

 130

0.2M 0.4M 0.6M 0.8M 1M

E
ff

ic
ie

n
c
y
 (

s
)

Trajectory dataset size

Greedy
Cluster

(d) Varying trajectory dataset size

Figure 5.10: Approximate methods with (1-1/e) approximation ratio on the taxi
dataset.

Effect of the number of tags m. Fig. 5.9(b) and Fig. 5.10(b) depict the effect

of the number of tags m in the query. We can see that the computation cost of

Greedy and Cluster increases when m increases. This is because more users are

relevant with the advertisement and it needs more time to calculate the incremental

influence.

Effect of the audience dataset size |U |. Next, we evaluate the effect of the

audience dataset size |U |. The results are shown in Fig. 5.9(c) and Fig. 5.10(c). |U |
has a similar impact to the case of increasing m. A larger |U | results in more users

involved in an advertisement and increases the computation cost.

Effect of the trajectory dataset size |T |. Lastly, we evaluate the efficiency

when increasing the trajectory dataset size |T |. The results are shown in Fig. 5.9(d)

and Fig. 5.10(c). We can see that all the methods are not sensitive to |T |. This is

because both Greedy and Cluster enumerate the trajectory in a best-first manner

until they find a trajectory with the largest incremental influence w.r.t. S in each

131

 1

 10

 100

 1000

60 70 80 90 100

E
ff

ic
ie

n
c
y
 (

s
)

k

Threshold-0.9
Threshold-0.8

Threshold-(1-1/e)
Cluster

(a) Efficiency-Bus

 70

 80

 90

 100

 110

 120

60 70 80 90 100

In
fl
u
e
n
c
e
 s

c
o
re

k

Expansion
Threshold-0.9
Threshold-0.8

Threshold-(1-1/e)
Cluster

(b) Influence score-Bus

 1

 10

 100

 1000

60 70 80 90 100

E
ff

ic
ie

n
c
y
 (

s
)

k

Threshold-0.9
Threshold-0.8

Threshold-(1-1/e)
Cluster

(c) Efficiency-Taxi

 60

 65

 70

 75

 80

 85

 90

 95

 100

60 70 80 90 100

In
fl
u
e
n
c
e
 s

c
o
re

k

Expansion
Threshold-0.9
Threshold-0.8

Threshold-(1-1/e)
Cluster

(d) Influence score-Taxi

Figure 5.11: Comparison between Threshold and Cluster.

iteration. As a result, only a small part of trajectories in the front of the sorted list

would be traversed.

5.8.3.2 Comparison between Threshold and Cluster

In this section, we compare Threhold with Cluster on efficiency and influence score

to see the influence of ε. We did not compare with Greedy because Cluster finds the

same results as Greedy and achieves better performance. For better comparison, we

also report the influence score of Expansion when k is smaller than 90. The efficiency

of Expansion was not reported because it took very long time for Expansion when

k is large.

Fig. 5.11 shows the efficiency and influence score of the methods. We have the

following observations. (1) When ε decreases from 0.9 to 1− 1/e, the running time of

Threshold drops dramatically but the expected influence also decreases, leading to

less accurate results. (2) Threshold demonstrates a good tradeoff between efficiency

and accuracy. When ε is set to 0.9, it achieves almost the same influence score with

132

 0

 20

 40

 60

 80

 100

100 200 300 400 500

E
ff

ic
ie

n
c
y
 (

s
)

k

Naive
Group

(a) Varying k

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

100 200 300 400 500

In
fl
u
e
n
c
e
 s

c
o
re

k

Naive
Group

(b) Varying k

 0

 100

 200

 300

 400

 500

 600

10 20 30 40 50

E
ff

ic
ie

n
c
y
 (

s
)

Number of Advertisements

Naive
Group

(c) Varying |Q|

 0

 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50

In
fl
u
e
n
c
e
 s

c
o
re

Number of Advertisements

Naive
Group

(d) Varying |Q|

Figure 5.12: Methods for advertisement group on the bus dataset.

the exact method but the computation cost is reduced by more than two orders of

magnitude. (3) When the approximation ratio is set to (1−1/e), the influence scores

of Cluster and Threshold are very close. However, it takes much less time for the

Cluster to answer a query.

Based on the above observations, we recommend to use Cluster method when an

approximation ratio of (1− 1/e) has met the requirement of applications. Otherwise,

Threshold is recommended because it achieves a good tradeoff between efficiency

and accuracy. When ε is set to be close to 1, it returns results similar to the exact

solutions but with much less computation cost.

5.8.3.3 Methods for Advertisement Group

We compare the efficiency and effectiveness of Naive and Group. The results are

shown in Fig. 5.12 and Fig. 5.13. We have the following observations. (1) In terms of

efficiency, Group performs much better than Naive. This is because Group selects the

trajectory for the advertisements simultaneously to avoid repetitive processing. (2) In

133

 0

 50

 100

 150

 200

200 400 600 800 1000

E
ff

ic
ie

n
c
y
 (

s
)

k

Naive
Group

(a) Varying k

 0

 100

 200

 300

 400

 500

 600

200 400 600 800 1000

In
fl
u
e
n
c
e
 s

c
o
re

k

Naive
Group

(b) Varying k

 0

 100

 200

 300

 400

 500

 600

10 20 30 40 50

E
ff

ic
ie

n
c
y
 (

s
)

Number of Advertisements

Naive
Group

(c) Varying |Q|

 0

 100

 200

 300

 400

 500

10 20 30 40 50

In
fl
u
e
n
c
e
 s

c
o
re

Number of Advertisements

Naive
Group

(d) Varying |Q|

Figure 5.13: Methods for advertisement group on the taxi dataset.

terms of effectiveness, Group can find a k-trajectory set with a higher influence score

than that found by Naive, because Group can guarantee an approximation ratio of

(1− 1/e) while Naive does not provide any performance guarantee. (3) Group scales

much better than Naive w.r.t. the number of advertisements. As shown in Fig. 5.12(c)

and Fig. 5.12(d), Group have a 10X better performance than Naive when |Q| = 50.

5.9 Summary

In this work, we formulate the trajectory influence maximization problem and prove

it is NP-hard. To calculate the accurate results efficiently, we devise an expansion-

based framework that enumerates the trajectory in a best-first manner. In addition,

we propose two effective methods for the upper bound estimation. To support the tra-

jectory influence maximization problem with large k, we propose three approximate

methods with performance guarantees. Experimental results on real datasets show

that our methods can solve the trajectory influence maximization problem efficiently.

134

Chapter 6

Conclusion and Future Works

6.1 Conclusions

With the rapid development of GPS-enabled devices and the explosive increase of

geo-tagged information, new challenges have rise in location-based services where

large-scale real-time locations of moving objects can be recorded and collected. It

is challenging to devise efficient and effective algorithms to process moving location-

based queries and extract valuable information buried in the trajectory data repre-

senting the mobility of moving objects. This thesis addresses these challenges by

solving three types of problems: the moving spatial keyword queries on road net-

works, the moving spatial queries against dynamic event streams and the optimal

trajectories queries for influence maximization.

The first problem deals with moving spatial keyword queries on road networks,

where top k ranked objects satisfying a moving query on a road network are contin-

uously returned. We propose two efficient methods for query processing. QCA mon-

itors the top-k results of the moving point by examining the intersections the query

encounters. It uses expansion tree to avoid repetitive traversing of some network

edges. OCA incrementally retrieves the top-k results according to textual relevance

first and computes all or partial top-k results of a subset of nodes on the network.

It constructs a shortest path tree to facilitate subsequent processing. We compare

the proposed methods with three baseline methods. Experimental results confirm the

superiority of our two methods and revealed their relative advantages.

The second problem deals with moving spatial queries against dynamic event

streams. In this problem, the server continuously monitors moving users subscribing

to dynamic event streams, and notifies users instantly when there is a matching event

nearby. We propose a new location-aware pub/sub system named Elaps to support

continuous moving spatial queries against dynamic event streams. We exploit how to

135

use safe region together with a novel concept name impact region to reduce the com-

munication cost. Based on a novel cost model, we propose two incremental methods

to construct the safe region and impact region. To reduce the response time of Elaps,

we propose a novel index BEQ-Tree which can support efficient spatial subscription

matching over a collection of events in the dynamic event environment. Experimen-

tal results on real datasets show that Elaps can greatly reduce the communication

overhead and disseminate events to users in real-time.

The last problem deals with optimal trajectories queries for influence maximiza-

tion, which finds top k trajectories to maximize the influence of an advertisement

among a large number of audience. We formulate the influence maximization prob-

lem in trajectory databases and prove it is NP-hard. To calculate the accurate results

efficiently, we devise an expansion-based framework that enumerates the trajectory in

a best-first manner and proposed two effective methods for the upper bound estima-

tion. To support the problem with large k, we propose three approximate methods

with performance guarantees. In addition, we extend the problem to find k best tra-

jectories for a group of advertisements. Experimental results on real datasets show

that our methods can solve the trajectory influence maximization problem efficiently.

6.2 Future Work

There are several directions that we would like to work on in the future.

In Chapter 3, we drive a safe segment within one edge to reduce the communication

cost between the server and the clients. As long as a user stays within the safe

segment, there is no need to communicate with the server. It should be noted that

a limitation exists in this study. If we can build a safe segment crossing several

edges, the user can stay within the safe segment with a longer time, resulting in less

communication cost. A naive solution to solve this limitation is to find the top-k

objects for each vertex near the user and locate the points along the edges where the

top-k results of the query would change when the user overpasses the points. However,

the naive method sacrifices the computation cost to reduce the communication cost.

Future work should be conducted to study how to find the safe segment crossing

several edges more efficiently.

In Chapter 4, while our system can monitor the moving subscribers efficiently,

the publisher in our system are static. Future work is needed to process a more

sophisticated scenario where both the subscribers and publishers are moving. In this

case, a subscriber can be a publisher at the same time. For instance, two moving

136

users with similar interest can be notified when they stay close to each other. This

problem can find many applications such as advertising and recommending friends.

A naive solution for this problem is to build a safe region and impact region for

each user and check whether there is a match when the user exits the safe region.

However, the naive solution still suffers from the problem of communicating with the

server frequently. This is because the publishers are also moving, resulting in the

need to update the safe region and impact region frequently. Thus, future work is

needed to consider how to maintain the safe region and impact region effectively to

reduce the communication overhead. Another direction that can be worked on is to

extend the problem in Chapter 4 to support the scenario where the subscribers and

publishers are constrained on a road network. To solve this new problem, we can

still adopt the idea of safe region and impact region to reduce the communication

cost, and also construct a cost model to balance the tradeoff between safe region size

and communication cost. However, future work is needed to redesign the methods to

construct the cost model and safe region due to the constraint of the underlying road

networks.

In Chapter 5, the spatial-temporal patterns of a user is represented by the like-

lihood to visit a POI in certain time period. Future work can extend the problem

setting to represent the motion patterns by replacing a POI to a spatial region. Un-

der the new problem setting, we can adopt some spatial indexes for efficient pruning

when finding influenced audience w.r.t a trajectory or finding trajectories that can

influence an audience.

The advances in location positioning and wireless communication technologies

have led to a myriad of user-generated spatial trajectories. One promising direction

is to utilize rich information about user behavior, interests, and preferences buried in

these trajectories to further improve location-based services. For instance, we can un-

derstand the similarity between two different users with user-generated trajectories,

thereby providing a user with personalized services and enabling friend recommen-

dation and community discovery. We can also extract the correlations between two

different locations based on upon the information from users, thereby offering users

better personalized travel recommendations.

137

Bibliography

[1] Robert Aboolian, Oded Berman, and Dmitry Krass. Efficient solution approaches

for a discrete multi-facility competitive interaction model. Annals of Operations

Research, 167(1):297–306, 2009.

[2] Vo Ngoc Anh, Owen de Kretser, and Alistair Moffat. Vector-space ranking with

effective early termination. In SIGIR, pages 35–42, 2001.

[3] Gennady Antoshenkov and Mohamed Ziauddin. Query processing and optimiza-

tion in oracle rdb. The VLDB Journal, 5(4):229–237, 1996.

[4] Cigdem Aslay, Nicola Barbieri, Francesco Bonchi, and Ricardo A. Baeza-Yates.

Online topic-aware influence maximization queries. In EDBT, pages 295–306,

2014.

[5] Bhuvan Bamba, Ling Liu, Arun Iyengar, and Philip S Yu. Safe region techniques

for fast spatial alarm evaluation. Georgia Institute of Technology, 2008.

[6] Jie Bao, M.F. Mokbel, and Chi-Yin Chow. Geofeed: A location aware news feed

system. In ICDE, pages 54–65, 2012.

[7] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. Topic-aware social

influence propagation models. In ICDM, pages 81–90, 2012.

[8] Oded Berman, Dmitry Krass, and ChenWei Xu. Locating flow-intercepting facili-

ties: New approaches and results. Annals of Operations Research, 60(1):121–143,

1995.

[9] F. Bonchi. Influence propagation in social networks: A data mining perspective.

In WI-IAT, volume 1, pages 2–2, 2011.

[10] Thomas Brinkhoff. A framework for generating network-based moving objects.

GeoInformatica, 6(2):153–180, 2002.

138

[11] Sergio Cabello, J. Miguel Diaz-Banez, Stefan Langerman, Carlos Seara, and

Inma Ventura. Reverse facility location problems. In CCCG, pages 68–71, 2005.

[12] Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang, and

Wei Wang. Continuous monitoring of distance-based range queries. IEEE Trans.

Knowl. Data Eng., 23(8):1182–1199, 2011.

[13] Lisi Chen, Gao Cong, and Xin Cao. An efficient query indexing mechanism for

filtering geo-textual data. In SIGMOD, pages 749–760, 2013.

[14] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. Spatial keyword

query processing: an experimental evaluation. In VLDB, pages 217–228, 2013.

[15] Shuo Chen, Ju Fan, Guoliang Li, Jianhua Feng, Kian-lee Tan, and Jinhui Tang.

Online topic-aware influence maximization. PVLDB, 8(6):666–677, 2015.

[16] Wei Chen, Tian Lin, and Cheng Yang. Efficient topic-aware influence maximiza-

tion using preprocessing. CoRR, 2014.

[17] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for

prevalent viral marketing in large-scale social networks. In KDD, pages 1029–

1038, 2010.

[18] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in

social networks. In KDD, pages 199–208, 2009.

[19] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social

networks under the linear threshold model. In ICDM, pages 88–97, 2010.

[20] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, and Jeffrey Xu Yu. Monitoring

path nearest neighbor in road networks. In SIGMOD, pages 591–602, 2009.

[21] Zitong Chen, Yubao Liu, Raymond Chi-Wing Wong, Jiamin Xiong, Ganglin

Mai, and Cheng Long. Efficient algorithms for optimal location queries in road

networks. In SIGMOD, pages 123–134, 2014.

[22] Hyung-Ju Cho and Chin-Wan Chung. An efficient and scalable approach to cnn

queries in a road network. In VLDB, pages 865–876, 2005.

[23] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient retrieval of the

top-k most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

139

[24] Gianpaolo Cugola and Alessandro Margara. High-performance location-aware

publish-subscribe on gpus. In Middleware, pages 312–331, 2012.

[25] Pedro Domingos and Matt Richardson. Mining the network value of customers.

In KDD, pages 57–66, 2001.

[26] Françoise Fabret, H. Arno Jacobsen, François Llirbat, Joăo Pereira, Kenneth A.

Ross, and Dennis Shasha. Filtering algorithms and implementation for very fast

publish/subscribe systems. In SIGMOD, pages 115–126, 2001.

[27] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword search on spatial

databases. In ICDE, pages 656–665, 2008.

[28] Hakan Ferhatosmanoglu, Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi.

Constrained nearest neighbor queries. In SSTD, pages 257–278, 2001.

[29] R.A. Finkel and J.L. Bentley. Quad trees a data structure for retrieval on com-

posite keys. Acta Informatica, 4(1):1–9, 1974.

[30] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. A data-based

approach to social influence maximization. PVLDB, 5(1):73–84, 2011.

[31] Long Guo, Lu Chen, Dongxiang Zhang, Guoliang Li, Kian-Lee Tan, and Zhifeng

Bao. Elaps: An efficient location-aware pub/sub system. In ICDE 2015, pages

1504–1507, 2015.

[32] Long Guo, Jie Shao, HtooHtet Aung, and Kian-Lee Tan. Efficient continuous

top-k spatial keyword queries on road networks. GeoInformatica, 19(1):29–60,

2015.

[33] Long Guo, Dongxiang Zhang, Guoliang Li, Kian-Lee Tan, and Zhifeng Bao.

Location-aware pub/sub system: When continuous moving queries meet dynamic

event streams. In SIGMOD 2015, pages 843–857, 2015.

[34] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In

SIGMOD, pages 47–57, 1984.

[35] Mahady Hasan, Muhammad Aamir Cheema, Xuemin Lin, and Ying Zhang. Effi-

cient construction of safe regions for moving knn queries over dynamic datasets.

In SSTD, pages 373–379, 2009.

140

[36] Haibo Hu, Jianliang Xu, and Dik Lun Lee. A generic framework for monitoring

continuous spatial queries over moving objects. In SIGMOD, pages 479–490,

2005.

[37] Weihuang Huang, Guoliang Li, Kian-Lee Tan, and Jianhua Feng. Efficient safe-

region construction for moving top-k spatial keyword queries. In CIKM, pages

932–941, 2012.

[38] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang. idistance:

An adaptive b+-tree based indexing method for nearest neighbor search. TODS,

30(2):364–397, 2005.

[39] Qingye Jiang, Guojie Song, Gao Cong, Yu Wang, Wenjun Si, and Kunqing Xie.

Simulated annealing based influence maximization in social networks. In AAAI,

2011.

[40] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influ-

ence through a social network. In KDD, pages 137–146, 2003.

[41] Masahiro Kimura and Kazumi Saito. Tractable models for information diffusion

in social networks. In PKDD, pages 259–271, 2006.

[42] Mohammad R. Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neigh-

bor search for spatial network databases. In VLDB, pages 840–851, 2004.

[43] Mohammad R. Kolahdouzan and Cyrus Shahabi. Alternative solutions for con-

tinuous k nearest neighbor queries in spatial network databases. GeoInformatica,

9(4):321–341, 2005.

[44] Flip Korn and S. Muthukrishnan. Influence sets based on reverse nearest neighbor

queries. In SIGMOD, pages 201–212, 2000.

[45] Nitish Korula and Silvio Lattanzi. An efficient reconciliation algorithm for social

networks. PVLDB, 7(5):377–388, 2014.

[46] Takeshi Kurashima, Tomoharu Iwata, Go Irie, and Ko Fujimura. Travel route

recommendation using geotags in photo sharing sites. In CIKM, pages 579–588,

2010.

[47] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne M.

VanBriesen, and Natalie S. Glance. Cost-effective outbreak detection in net-

works. In KDD, pages 420–429, 2007.

141

[48] Chuanwen Li, Yu Gu, Jianzhong Qi, Ge Yu, Rui Zhang, and Wang Yi. Processing

moving knn queries using influential neighbor sets. PVLDB, 8(2):113–124, 2014.

[49] Guoliang Li, Shuo Chen, Jianhua Feng, Kian-lee Tan, and Wen-syan Li. Efficient

location-aware influence maximization. In SIGMOD, pages 87–98, 2014.

[50] Guoliang Li, Yang Wang, Ting Wang, and Jianhua Feng. Location-aware pub-

lish/subscribe. In KDD, pages 802–810, 2013.

[51] Xiaohui Li, Vaida Čeikute, Christian S. Jensen, and Kian-Lee Tan. Trajectory

based optimal segment computation in road network databases. In SIGSPATIAL,

pages 396–399, 2013.

[52] Jing Liu, Fan Zhang, Xinying Song, Young-In Song, Chin-Yew Lin, and Hsiao-

Wuen Hon. What’s in a name?: An unsupervised approach to link users across

communities. In WSDM, pages 495–504, 2013.

[53] Anshu Malhotra, Luam Totti, Wagner Meira Jr., Ponnurangam Kumaraguru,

and Virgilio Almeida. Studying user footprints in different online social networks.

In ASONAM, pages 1065–1070, 2012.

[54] Sarana Nutanong, Egemen Tanin, Jie Shao, Rui Zhang, and Kotagiri Ramamo-

hanarao. Continuous detour queries in spatial networks. IEEE Trans. Knowl.

Data Eng., 24(7):1201–1215, 2012.

[55] Sarana Nutanong, Rui Zhang, Egemen Tanin, and Lars Kulik. The v*-diagram:

a query-dependent approach to moving knn queries. PVLDB, 1(1):1095–1106,

2008.

[56] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial

Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley &

Sons, Ltd, Chichester, second edition, 2000.

[57] Atsuyuki Okabe, Toshiaki Satoh, T. Furuta, A. Suzuki, and K. Okano. General-

ized network voronoi diagrams: Concepts, computational methods, and applica-

tions. International Journal of Geographical Information Science, 22(9):965–994,

2008.

[58] Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis. Group

nearest neighbor queries. In ICDE, pages 301–312, 2004.

142

[59] Frank Ramsak, Volker Markl, Robert Fenk, Martin Zirkel, Klaus Elhardt, and

Rudolf Bayer. Integrating the ub-tree into a database system kernel. In VLDB,

pages 263–272, 2000.

[60] Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites for

viral marketing. In KDD, pages 61–70, 2002.

[61] João B. Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil Nørv̊ag.

Efficient processing of top-k spatial keyword queries. In SSTD, pages 205–222,

2011.

[62] João B. Rocha-Junior and Kjetil Nørv̊ag. Top-k spatial keyword queries on road

networks. In EDBT, pages 168–179, 2012.

[63] Nick Roussopoulos, Stephen Kelley, and Frdic Vincent. Nearest neighbor queries.

In SIGMOD, pages 71–79, 1995.

[64] Mohammad Sadoghi and Hans-Arno Jacobsen. Be-tree: An index structure to

efficiently match boolean expressions over high-dimensional discrete space. In

SIGMOD, pages 637–648, 2011.

[65] Gerard Salton and Chris Buckley. Term-weighting approaches in automatic text

retrieval. Inf. Process. Manage., 24(5):513–523, 1988.

[66] Narushige Shiode, Chao Li, Michael Batty, Paul Longley, and David Maguire.

The impact and penetration of location-based services. In Telegeoinformatics,

2004.

[67] Stefan Steiniger, Moritz Neun, and Alistair Edwardes. Foundations of location

based services.

[68] Han Su, Kai Zheng, Jiamin Huang, Hoyoung Jeung, Lei Chen, and Xiaofang

Zhou. Crowdplanner: A crowd-based route recommendation system. In ICDE,

pages 1144–1155, 2014.

[69] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization: Near-

optimal time complexity meets practical efficiency. In SIGMOD, pages 75–86,

2014.

[70] Henan Wang, Guoliang Li, Huiqi Hu, Shuo Chen, Bingwen Shen, Hao Wu, Wen-

Syan Li, and Kian-Lee Tan. R3: A real-time route recommendation system.

PVLDB, 7(13):1549–1552, 2014.

143

[71] Steven Euijong Whang, Hector Garcia-Molina, Chad Brower, Jayavel Shanmuga-

sundaram, Sergei Vassilvitskii, Erik Vee, and Ramana Yerneni. Indexing boolean

expressions. PVLDB, 2(1):37–48, 2009.

[72] Raymond Chi-Wing Wong, M. Tamer Özsu, Ada Wai-Chee Fu, Philip S. Yu,

Lian Liu, and Yubao Liu. Maximizing bichromatic reverse nearest neighbor for

lp-norm in two- and three-dimensional spaces. The VLDB Journal, 20(6):893–

919, 2011.

[73] Raymond Chi-Wing Wong, M. Tamer Özsu, Philip S. Yu, Ada Wai-Chee Fu, and

Lian Liu. Efficient method for maximizing bichromatic reverse nearest neighbor.

PVLDB, 2(1):1126–1137, 2009.

[74] Dingming Wu, Man Lung Yiu, Gao Cong, and Christian S. Jensen. Joint top-k

spatial keyword query processing. IEEE Trans. Knowl. Data Eng., 24(10):1889–

1903, 2012.

[75] Dingming Wu, Man Lung Yiu, Christian S. Jensen, and Gao Cong. Efficient

continuously moving top-k spatial keyword query processing. In ICDE, pages

541–552, 2011.

[76] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Optimizing bitmap indices with

efficient compression. ACM Trans. Database Syst., 31(1):1–38, 2006.

[77] Wei Wu, Wenyuan Guo, and Kian-Lee Tan. Distributed processing of moving

k-nearest-neighbor query on moving objects. In ICDE, pages 1116–1125, 2007.

[78] Wenjian Xu, Chi-Yin Chow, Man Lung Yiu, Qing Li, and Chung Keung Poon.

Mobifeed: A location-aware news feed system for mobile users. In SIGSPATIAL,

pages 538–541, 2012.

[79] Tak W. Yan and Héctor Garćıa-Molina. Index structures for selective dissemi-

nation of information under the boolean model. TODS, 19(2):332–364, 1994.

[80] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. Inverted linear

quadtree: Efficient top k spatial keyword search. In ICDE, 2013.

[81] Dongxiang Zhang, Chee-Yong Chan, and Kian-Lee Tan. An efficient pub-

lish/subscribe index for ecommerce databases. PVLDB, 7(8):613–624, 2014.

144

[82] Dongxiang Zhang, Yeow Meng Chee, Anirban Mondal, Anthony K. H. Tung, and

Masaru Kitsuregawa. Keyword search in spatial databases: Towards searching

by document. In ICDE, pages 688–699, 2009.

[83] Dongxiang Zhang, Kian-Lee Tan, and Anthony K. H. Tung. Scalable top-k

spatial keyword search. In EDBT, pages 359–370, 2013.

[84] Jun Zhang, Manli Zhu, Dimitris Papadias, Yufei Tao, and Dik Lun Lee. Location-

based spatial queries. In SIGMOD, pages 443–454, 2003.

[85] Jingbo Zhou, Anthony K.H. Tung, Wei Wu, and Wee Siong Ng. A semi-lazy

approach to probabilistic path prediction in dynamic environments. In KDD,

pages 748–756, 2013.

[86] Yinghua Zhou, Xing Xie, Chuang Wang, Yuchang Gong, and Wei-Ying Ma.

Hybrid index structures for location-based web search. In CIKM, pages 155–

162, 2005.

[87] Zenan Zhou, Wei Wu, Xiaohui Li, Mong Li Lee, and Wynne Hsu. Maxfirst for

maxbrknn. In ICDE, pages 828–839, 2011.

[88] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM

Comput. Surv., 38(2), 2006.

145

