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Abstract

Finite Geometry has been one of the interesting areas of research in the field of
Combinatorics and has seen tremendous advancement in the 20" century after
the introduction of Finite Nets by R. H. Bruck in 1951. In the early chapters
of the thesis, we survey the concept of “Nets (finite) and Translation Nets” in
two dimension and in three dimension. We also try to fill in the gaps found
and formulate equivalent mathematical definitions. Some of the drawbacks in
Laskar’s definition for nets of dimension three led to the redefinition by fixing
the parameters involved. Then, the concept of “partial congruence partition” in
three dimension, denoted by PCP® isintroduced and the equivalence of PCP®
and translation nets of dimension three is also proved. The latter chapters cover
the concept of Association Scheme and extend the definition of a net and partial
congruence partition to n-dimension. Several new parameters for “Association

Scheme of class 3” are also derived.

In the first chapter, finite geometry and incidence relation are introduced,
followed by one of the major topics in finite geometry called finite affine planes.
The generalization of finite affine planes are given by the concept called nets,
introduced by R. H. Bruck. Some of the issues with basic results of Bruck’s
net are addressed by adding a new axiom. Important results about nets are
highlighted and then our focus shifts to a different way of looking at nets, which
is, the well-known latin squares. A formal proof of equivalence between nets

and a set of mutually orthogonal latin squares is also presented.



ABSTRACT

Translation nets (in two dimension) are introduced in the second chapter. We
present a proof of the equivalence of partial congruence partition and transla-
tion nets in two dimension. The proof is slightly different from the original proof
given by A. P. Sprague in 1982. Upper bounds for certain parameters of the nets

are then discussed and supporting examples are given.

The discussion about three dimensional case begins in the third chapter with
the definition of incidence relation in three dimension and the original definition
of nets of dimension three (we call it as 3-nets), introduced by R. Laskar in 1971.
We address some of the issues found in the Laskar’s definition by redefining one
of the conditions and modifying the initial condition for the parameters used.
Later, it is proved that the new definition recovers the old definition. Some of

the results about special cases are also discussed at the end of the chapter.

We introduce the concept of “partial congruence partition” in three dimen-
sion (PCP®)) in the fourth chapter. The proof of the equivalence between PCP®)
and translation nets of dimension three is presented in this chapter. An example
for construction of (4,3,7)-PCP®) is given, followed by a generalization of such
construction. Upper bounds for some of the parameters of 3-nets have also been

established along with suitable examples.

Chapter five emphasizes the concept of “Association scheme”. The the
relationship between class three association scheme and a 3-net is revisited.
Then, we calculate certain new parameters for “Association Scheme of class 3.
Chapter six extends the concept of finite nets to n-dimension. In this last chapter
we also define partial congruence partition in n-dimension. Thus, paving the
way to extend the translation nets to any arbitrary finite dimension. We conclude

by quoting some of the results which can be extended to n-dimension.



Chapter 1

Introduction

1.1 Finite Affine Planes

Any geometry that studies only a finite number of points is said to be a finite
geometry. One of the well-studied class of finite plane geometries is the class
of affine planes (defined in 1.2). The existence of non-intersecting lines in finite
affine planes plays a vital role in these studies. We are interested in the general-
ization of this category of finite geometry where we can define parallel classes

of lines.

Since we are dealing with finite geometry, any system we define throughout
the thesis will have only finite number of points and only finite number of any

other objects (e.g., lines, planes, etc).

Definition 1.1 (Incidence Relation) A plane geometry (2-dimensional) is an

incident structure (X, L,T) where,

(a) X is the set of points and L is the set of lines;
(b) X and L are disjoint sets; and

(c) T C X x L is the incident relation between points and lines.
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In this thesis, we adopt most of the commonly used terms in the study of
geometries without explicitly defining them. For example, the following are

equivalent ways to describe the relation (p,l) € Z forp € X and [ € L.

1. A point p is on a line /.
2. Aline [ passes through a point p.
3. A point p is incident with a line /.

4. A line [ contains a point p.

The following are equivalent ways to describe the parallel relation between
lines [,I' € L, i.e., eitherl =1l"or{ pe X : (pl) €Z } N{peX:(pl)e
T} =0.

1. For any two lines [ and [, either they are the same or they have no point in

common.
2. Two lines [ and !’ are parallel (or symbolically [ || ).

3. For any two lines [ and [/, either they are the same or they do not meet.

1.1.1 Definitions and Example

Definition 1.2 (Finite Affine Plane) A finite affine plane is an incidence struc-

ture A = (X, L,T), satisfying the following conditions:

(Al) Any two distinct points lie on precisely one line.

ie., forany p,p € X, there exists a unique line | € L such that (p,l) € T

and (p',1) € T.

(A2) Any line has at least two points on it.

ie,foranyle L,{pe X :(p,l)e L} >2.
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(A3) Whenever a point p is not on a line |, there is precisely one line l' passing
through p and having no common point with .
i.e., forany p € X and | € L with (p,l) & Z, there exists a unique line
' € L such thatl || I" and (p,1') € L.

(A4) There exists three non-collinear points.
i.e., there exists three distinct points py, ps, ps € X such that, foralll € L,

(pi, 1) & X for somei € {1,2,3}.

Remark 1.3 (A2) and (A4) are used to eliminate the trivial cases (e.g., no lines
or no points or single line with all the points) whereas the rest of the conditions
determines the structure of the geometry. (Al) and (A2) eliminates the scenarios

of points not on any line and lines with no points respectively.

Remark 1.4 (A3) guarantees the existence of parallel lines and it is often known

as Playfair’s axiom.

Remark 1.5 |X| > 4 and |L| > 6. In words, the minimum number of points
and lines in a finite affine plane are 4 and 6 respectively. Example 1.7 shows the

simplest form of this geometry.

Definition 1.6 (Order of a finite affine plane) We define the order of a finite
affine plane to be the number of points on a line. We shall later show that for

a finite affine plane, every line has the same number of points, proving that it is

well-defined.

Example 1.7 The most basic example is the rectangle with diagonals, where
the set of points are only the vertices of the rectangle (so the intersection of
diagonals is not considered as a point and thus they do not meet) and the set of
lines are the sides together with the diagonals. Thus, we can see that the order

is 2 and there are three parallel classes of lines.
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Points are highlighted in red while the lines that belong to three different

parallel classes are highlighted in blue, and green.

1.1.2 Basic results

First we prove that the parallel property of finite affine plane is indeed an

equivalence relation. Thus, the partition of the lines in the geometry is obtained.

Theorem 1.8 The lines of a finite affine plane can be partitioned into parallel

classes of lines.

Proof : To prove the existence of partition, it is sufficient to prove that the rela-
tion “parallel” is an equivalence relation. Reflexive and Symmetric properties

are obvious. We only give the details of Transitivity property.

Let [y, > and I3 be pairwise distinct lines such that [; is parallel to I, and [y
is parallel to /3. Now, we need to prove that [; and /5 are parallel. Assume on
the contrary that /; and /3 are not parallel, and hence they have a common point,
say p. Then, observe that the line [, does not contain p (because /; || [ and
I || I3). By (A3) we must have a unique line parallel to /5 containing the point
p, but we have [; and [ such that [; # [3 containing p and parallel to /5, hence a
contradiction. Thus, transitivity holds and therefore “parallel” is an equivalence

relation.

Remark 1.9 (A3) and (A4) guarantees the existence of more than one parallel
class of lines. In fact, by (Al) and (A4), the minimum number of parallel classes

of lines is three.

10
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Remark 1.10 Any line of the geometry is in exactly one parallel class and any

point of the geometry is in exactly one line from each parallel class.

Remark 1.11 In the proof of Theorem 1.8, we have not used the finiteness of

points. Thus, the theorem is true for any affine plane.

Theorem 1.12 Let A be a finite affine plane, and if there exists a line with n

points, then:
(i) Every line has n points.
(ii) Every class of parallel lines has n lines.
(iii) Every point is on n + 1 lines.
(iv) There are n + 1 classes of parallel lines.
(v) A has n? points and n* 4 n lines.

Proof : Let [ be a line with n points.

By Remarks 1.9 and 1.10 and by Theorem 1.8, there exists non-empty parallel
classes of lines C and C’. Let [ be a line in C but not in C’. By the conditions in

Definition 1.2 and using Theorem 1.8 we observe the following.

(a) every point of [ must lie on a unique line of C’; and
yp q

(b) every line in C’ must intersect with [ (and every other line C) at a unique

point.

By (a), we must have n lines in C’. So, |I| = |C’| = n. Let C” be another non-
empty parallel class of lines. Then, we have |C”| = n using similar argument.

Let m be a line other than [ in C, then m also has n points (since the above
argument doesn’t depend on the choice of /). Thus, any line on the parallel class

C has n points.

11
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Let I’ be a line in C’, then using (b) I’ has n points since C” has n lines.
Hence, every line in C’ has n points. Similarly, every line in C” has n points.

Thus, we have shown that every line on each parallel class has n points proving (i).

To complete the proof of (ii), we just reverse the role of [ and I’ (and thus C

and C’), and see that C has precisely n lines. Thus, (i) and (ii) are proved.

Let p’ be a point on [’ distinct from [, then every point of [ must join with
p’ by (Al) giving n (because [ has n points on it) parallel classes of lines.
By (A2) we can consider the line [’ and [ to be in the same parallel class and
thus there are n + 1 parallel classes due to p’. So, we have show (iv) from a
point not on [. To prove (iv) for a point on [/, consider a point p on the line
[ and reversing the argument for p and p’ (and thus for [ and [’) gives n + 1
classes of parallel lines [note that this is valid since [’ also has n points by (i)].

Thus, we have n+1 parallel classes of lines in the geometry. Hence (iv) is proved.

Proof of (iii) is a direct consequence of Remark 1.10 and (iv).

Let p be a point of the geometry and by (iii) we know that there are (n + 1)
lines passing through p and by (i) we know that each line has n points. Therefore,
we have n(n + 1) = n? + n points but not all of them are distinct. Because
we have accounted for the point p, (n + 1) times (once for each line passing
through p) instead of only one. Thus, subtracting the over counting, we have

n? +n — n = n? distinct points in the geometry proving part of (v).

Other part of (v) is quite straightforward. By (iv) we have n + 1 parallel
classes of lines and each parallel class has n lines by (ii). Since, they form a
partition they all distinct and hence we have n(n + 1) = n? + n lines in the

geometry.

12
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1.2 Nets

R. H. Bruck in 1951 [1] introduced the concept of (finite) nets (which Laskar
in [3] called them as (finite) nets of dimension two and we call them as 2-nets)

which is a generalization of finite affine planes.

1.2.1 Definition and Examples

Definition 1.13 (Net or 2-net) Let s and t be positive integers. An (s,t)-net (or
(s,t)-net of dimension two) is an incidence structure N = (X, L,T) satisfying

the following conditions:

(N1®) These exists a point.

e, |X| > 1

(N2?) The lines of the net can be partitioned into t disjoint, non-empty parallel
classes such that:
(a) every point of the net is incident with only one line of each class; and
(b) any two lines from two distinct classes intersect at only one point of

the net.

i.e., There exist C1,Cs,...,Cy C L with
t
L= UCi , Ci # 0 foralliand C;NC; =0 forall i # j such that:
i=1

(a) for all p € X and for all i, there exists a unique l; € C;, such that

(p7 l’L) € I

(b) letl; € C;andl; € C; such that for all i # j, then there exists a unique

point p € X such that (p,l;) € T and (p,1;) € T.

(N3)) Every line is incident with s points of the net.

ie,foranyle L,{pe X :(p,l) e L} =s.

13
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Definition 1.14 (Order and Degree of a 2-net) We define the order of an (s, t)-
net to be the number of points on a line (i.e, the parameter s) and degree of an
(s,t)-net to be the number of parallel classes of lines (i.e., the parameter t). In

short, s is called the order of a 2-net and t is called the degree of a 2-net.

Example 1.15 A finite affine plane of order s is a (s, s + 1)-net (by Theorem
1.12 (iv)).

Remark 1.16 Bruck’s definition does not rule out the existence of a line which
contains all the points of the net. Hence most of the basic results discussed in [2]
may not be accurate unless t > 2. To address this, we need to add the following

axiom.

(N4?)) Given a line, there exists a point which is not incident with the line.
Equivalently, there does not exist a line which contains all the points of
the net.

i.e., there exists p € P and | € L such that (p,l) ¢ Z.

1.2.2 Basic results

Using the conditions in the definition of a 2-net and (N4(?)) from Remark 1.16,

we discuss the basic properties of a 2-net for three different cases of .

I. If ¢ > 3, then as pointed out in [2], we can weaken (N3®) in Definition

1.13 to the following

(N3'®) There exists a line with s points.

ie., there exists | € Lwith |{p € X : (p,]) € L }] = s.

Then, we have the following facts as stated in [2].

(i) Every line is incident with s points of the net.

14



CHAPTER 1. INTRODUCTION 1.2. NETS

(ii) Every point of the net lies on precisely ¢ distinct lines.

(iii) The net has exactly ts distinct lines each of which fall into ¢ distinct

parallel classes of s lines each.
(iv) The net has exactly s? points.
The proof of these results are similar to the proof in Theorem 1.12. The

following result is an immediate consequence of (N4(?)) which is not stated

in [2].
(v) Every parallel class of the net contains at least two lines.

II. Ift = 2, we state some of the results below (this special case is not discussed
in [2]).
(i) Every point of the net lies on precisely rwo distinct lines.

(ii) Each parallel class of lines has s lines.

(Proof- Immediate from the conditions (N3(®) and (N2(?)) in 1.13)

(iii) The net has exactly 2s distinct lines each of which fall into rwo distinct

parallel classes of s lines each.

(iv) The net has exactly s? points.
(Proof: Immediate from the conditions (N3(?)) and (N2(?)) and by

(b) above)

III. If ¢ = 1, we state the corresponding facts below assuming the number of

lines in the net is d (this special case is also not discussed in [2]).

(i) Every point of the net lies on precisely one line.
(ii) Sincet = 1, there is only one parallel class of lines having d lines.

(iii) The net has exactly ds points.

15
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1.3 MOLS and Nets

1.3.1 Definitions and Examples

Definition 1.17 (Latin Square) A Latin Square of order n is an n X n matrix
or array consisting of n distinct symbols (or objects) from a symbol set, say S,
such that every symbol appear exactly once in each row and exactly once in each
column. While the n distinct symbols from the symbol set S can be arbitrary,

conventionally it is taken from the set of positive integers { 1,2,...,n }.

The name Latin Square was believed to be inspired from the papers of,
one of the great mathematicians of all time, Leonhard Euler. Euler used Latin

characters to construct such an array and hence the name.

Example 1.18 If we take S = { 1,2,3 }, we get a Latin Square of order 3 as

shown below.

1123
2131
3112

Example 1.19 Ifwe take S = { A, B, C, D }, we get a Latin Square of order 4

as given below.

oCla|w|»
Q|9 |» | W
w | » | O |0
> | w0 | T

16
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Example 1.20 Well-known Sudoku puzzles are Latin Squares (usually consid-
ered to be of order 9 with some additional constraints). Sudoku latin square of

order 4 is shown below.

1 213 4
3 411 2
2 114 3
4 312 1

Example 1.21 Multiplication tables in group theory are also particular type of

Latin Squares.

Remark 1.22 We can also use a matrix form to represent a Latin Square L, i.e.,
if L is a latin square of order n associated with a symbol set S, then we write
L = (aij), such that a;; € S and 1 < i,j < n, where the entries a;; denote the

h

symbol in i'" row and j"* column. Hence L can be regarded as a square matrix

with entries from its associated symbol set.

Definition 1.23 (Mutually orthogonal Latin Square - MOLS) Let L = (a;;) and
L' = (b;;) be two latin squares of order n associated with the symbol set S and
S’ respectively. We say L and L' are mutually orthogonal or simply orthogonal,
if the ordered pairs formed by taking an entry a;; of L and its corresponding

entry b;; of L are all different.

In other words, L and L' are orthogonal if the entries in superimposing of L
and L' gives exactly the elements of the set S x S'. By superimposing we mean
to form a new matrix M of same order as L and L' whose entries are given by,
M = (a;jb;j), i.e., for each entry in L, adjoin the corresponding entry in L' to

get the respective entry of M.

17
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Remark 1.24 The set of ordered pairs formed using the entries of L and L’ is

exactly the set S x S'.

Definition 1.25 (A set of MOLS) Let £ be a set consisting of latin squares
Liyi = 1,2,...,t; such that all of them are of same order, say s. We call the
set & = { Ly, Lo, ..., L} aset of t mutually orthogonal latin squares, if any
two distinct latin squares in £ are orthogonal. (i.e., for any © # j, L;L; is

orthogonal). We call the set £ in short as a set of MOLS.

Example 1.26 Let L and L' be two latin squares of order 3 associated with the

same symbol set S = { 1,2,3 } as given below.

1 2 3 1 2 3

2 3 1 31 2

31 2 2 3 1
Latin Square L Latin Square L/

Superimposing these two latin squares L and L', we get the following matrix M

and observe that the entries in M is the set S x S.

11 22 33
23 31 12
32 13 21

Superimposed matrix M

Note that 1 is just an permutation of entries in second and third row of L

(keeping first row fixed).

1.3.2 Basic results

We list some of the interesting results about Latin Squares and MOLS without

proof.

18
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Results on Latin Squares:
1. Latin square of order n exists for all n.

2. A permutation of rows or columns of a latin square gives back a latin

square.

3. A permutation on the n-symbols of a latin square also results in a latin

square.

Definition 1.27 (Complete set of MOLS) Let ¥ = { Ly, La, ..., L; } a set of
MOLS, where each L;’s are of order s. We call the set £ complete if |.L| = s—1,

Le,t=s—1.

Results on MOLS:

1. Let Ly, Lo, ..., L; be a set of MOLS of order s > 1. Then.

2. There exists a complete set of MOLS of order s if and only if there exists

a finite affine plane of order s.
3. There exist pairs of orthogonal Latin Squares of every odd order.

4. Euler conjectured that there are no pairs of mutually orthogonal latin
squares for order s > 2 of the form s = 2 (mod 4). It was proved to be
false by the joint efforts of Bose, Shrikhande and Parker except for s = 6;

the only case where Euler was true, as proved by G. Tarry.

1.3.3 A set of MOLS < Nets

Theorem 1.28 (Equivalence of MOLS and 2-nets) A set of t—2 (t > 3) mutually
orthogonal latin squares of order s (as defined in 1.25) is equivalent to an (s, t)-

net (as defined in 1.13).

19
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Proof : Let N = (X, L,7) be a (s,t)-net such that ¢ > 3. Take two parallel
classes of lines as follows:
C={l,ls,...,ls }and
C'={0,1,....0}
Then we can create a coordinate system A such that for every point p € X,

we identify p with the ordered pair (i, j) where p € [; and p € I’ i.e.,
Aw={(i,j):p€lipeljlicCandl;€C'}

It is easy to see that |[A| = s? (by (N2()) in Definition 1.13).Given a parallel

class of lines C” as below,

c"=A{u1,...0"}, whereC" #C,C’
define a s X s array by

L := (aj;) such that (a;;) = kif (4,7) € I}

Since any two distinct line of the net from different classes of lines intersect at
exactly one point, every entry in L appear exactly once in each row and each
column. This proves that L is a latin square (obtained from 3 parallel classes of
planes).

Let C" = {1I{",1Y,...,1” } ,where C" # C,C’,C". Then we can obtain

another latin square L’ by defining another s x s array as follows.
L = (b”) such that (bU) = kif (Z,j) € l%/

Since there are ¢ parallel classes of lines, we can proceed in the same manner
to obtain ¢ — 2 latin squares of order s, say .. Let L, and Ly be any two latin
squares of the set .Z obtained by parallel classes of lines C; and C, respectively.
Then, since the intersection of a line from C and a line from C’ is contained in
exactly one line from C; and exactly one line from C,, we have L; and L, are

orthogonal latin square.

Now just reversing the argument would yield an (s, ¢)-net from a set of ¢ — 2

MOLS.

20



Chapter 2

Translation Nets in 2-dimension

2.1 Definitions

Definition 2.1 (Regular or Sharply transitive group action) Let X be a finite set
of points. Let G be a group of permutations on X. Then we call that G acts on
X. Furthermore, G is said to be regular or acting regularly on X (sometimes
it is also referred as sharply transitive) if for all x,y € X, there exists a unique

g € G such that x9 = y.

Definition 2.2 (Homomorphism of a geometry) Let B and B’ be two geometries
with incidence structures B = (X, L,Z) and B' = (X', L',T"). A homomor-
phism from B to B is a mapping
f:xuL — X'ucr

such that, forallp € X and | € L,

(i) pf e X', 1f € £ and

(ii) if (p,1) € T then (p’,1/) € T'.
Definition 2.3 (Isomorphism of a geometry) We call a homomorphism f from

B=(X,L,T)to B'= (X', L', T') as an isomorphism if f is bijective.

21
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Definition 2.4 (Automorphism of a geometry) We call an isomorphism f from
B=(X,L,T)to B = (X', L',T') as an automorphism if B = B, i.e, [ is an

isomorphism from B to itself.

Definition 2.5 (Automorphism group of a geometry) Let B be a geometry with

an incidence structure B = (X, L,T). Define Aut(B) as follows:

Aut(B) :={ f : f is an automorphism on B }

A subset G of Aut(B) is called an automorphism group of B if the set G forms

a group using the composition of mappings as the binary operator.

Definition 2.6 (7ranslation Net and Translation Group) Let N = (X, L,T) be

an (s, t)-net. The net N with an automorphism group G such that
(a) G acts regularly on X and

(b) G fixes each parallel class of lines

is called an (s,t)-translation net or simply a translation net and the group G is

called the translation group.

Lemma 2.7 Let N = (X,L,Z) be a 2-net and G be the corresponding auto-
morphism group of N such that G acts regularly on the points of N, then there
exists a bijection

c:Gg—X

i.e., there exists a bijection between the points of the net and the automorphism

group of the net. Furthermore, if we define a binary operation on X by

vy =o(c Y (2)o W y)), forz,y€X

then X is a group isomorphic to G.
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Proof : Let z € X be fixed. Since G acts regularly on X, by Definition 2.1,
for any y € X there exists a unique g € G such that z¢ = y. Hence the map o
defined by

c:g— X

g — 29
gives a 1-1 correspondence between X’ and G. The definition of group structure
in X implies

o(g)o(h) =o(gh), forall gheg
and thus X is a group isomorphic to G.

Remark 2.8 By Definition 2.6 (a) and by the above Lemma 2.7, it is important
to note that every point of a net N can be identified with an element of G and
the lines of N can be regarded as subsets of G (because the lines of a net can be

considered as a subset of the points on the net).

Remark 2.9 Let | be line of a net N and C be its parallel class. By (b) in

Definition 2.6 implies that 19 also belongs to C.

Definition 2.10 (Partial Congruence Partition - PCP) Let G be a group of order
s? > 1. Define H to be the set containing some subgroups of G, such that the

following conditions hold:
(a) |H| =1
(b) |H| = s, forall H in H

(c) HNH' = {e}, forany H, H' in H; where e is the identity element of the

group G.

In other words, H C { H : H < G and |H| = s}, such that |H| = t and

HNH' = {e}, forany H, H' in H; where e is the identity element of the group G.
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Then H is called a partial congruence partition (PCP) in G with parameters
s and t, in short, (s,1)-PCP or just PCP in G, where the elements of H are

often referred as components. Because of (b), axiom (c) is equivalent to

(") HH' = G, for any two distinct components H, H' of H.

2.2 PCP < Translation Nets

First, we list some basic results from group theory in the following Lemmas.

Lemma 2.11 Let G be a group and H, K be any two subgroups of G. If
aH N bK # 0 for distinct a,b € G, then 3 g € G such that aH N DK =

g (H N K). Moreover, g is unique if HN K = { e }.

Proof : Since aH NbK # 0,3 x € aH N bK, which means z € aH and

z € bK. Thus, we have

r€aH = x2H =aH
rE€bK = 2K =bK

Thus, cH NbK =xzHNxK = x(HNK).
If HN K = { e}, then observe that aH NOK =x(HNK)=a{e}={z}.

Lemma 2.12 Let G be a group and H, K be any two subgroups of G such that
HK = G. Then, for distinct a,b € G, we have aH N bK # ().

Proof : First we observe that,
aHNOK # 0 <= a ' (aHNbK) # 0 < HNcK # 0, forc=a"1b € G.

Since G = HK and ¢ € (G, we write ¢ = hk, forsome h € H,k € K. So,
HnNeK = HNhK. Now observe that h € hiX and h € H givingh € HNhK

proving H N ¢K # () and thus the result follows.
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Next we show that a PCP with the appropriate geometric structure (defined

in Proposition 2.13) yields an (s, t)-net.

Proposition 2.13 (PCP = 2-net) Let G be a group of order s> > 1 and H be
the corresponding PCP as defined in 2.10. Define a plane geometry (X, L,T)

where
(i) X =G,
(ii) L={gH :9€ Gand H € H } and
(iii) Z={(9,hH) : g,h € G,H € Hand g € hH }.
Then (X, L,T) is an (s,t)-net.

Proof : To prove that it forms an (s, t)-net, we prove the conditions in Definition

1.13 are satisfied.
(N1?)) Since s > 1, this is true.

(N2®?) For each H € H, define

Cy:={gH:9g€G}.

Then { Cy } ey gives us a partition of £. The set Cy is often referred
as the set of all left cosets of H in G. There are ¢ non-empty, distinct
subgroups in H, giving ¢ disjoint, non-empty parallel classes. To see (a)

and (b), observe the following:

(a) Letg € G. Thenforall H € H, we have g € gH and g ¢ hH for any

h € G,h # g, because gH N hH is either empty or they are equal.

(b) Let aH and bK be the lines of distinct classes for distinct H, K € H.
Need to show aH NbK = { z }, for one z € G. Note that |H| =
|K|=sand HNK = {e}. Thus, G = HK satisfying the conditions

of Lemmas 2.11 and 2.12 above, giving the desired result.
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(N3?)) By the constructionof H € H, |H| = s = |gH| = s, forall g € G. Thus,

all lines have s points.

Theorem 2.14 (A. P. Sprague, 1982) Partial congruence partition-PCP with the
setting in Proposition 2.13 gives rise to translation nets and conversely, every

translation net produce a PCP.

Proof :

(=) This direction is trivial from Proposition 2.13.

(<) Let G be a translation group of a (s,t)-net N such that points of N
are identified with elements of G and lines are subsets of G. So, we have
|G| = s® > 1. Let H be the set of all lines containing the identity element. It
is obvious that |[H| = s, forall H € H and H N K = { e}, for all distinct

H, K € H. Now it remains to show that every H € H is indeed a subgroup.

Take any H € H, then by Remark 2.9, for any line // in N and forany g € G,
HI:={gh:heH}

is also a line in the same parallel class of . Hence, either H9 = H or
HYN H = (). Since ¢ € H, then for any g € H, we have g € HY = HY = H.
Thus, H is a subgroup. That is, the lines of N containing the identity are the

subgroups of G.

2.3 Upper bounds for ¢ and T

We have established 1-1 correspondence between PCP and Translation Nets in
Theorem 2.14 and hence the existence of translation nets is a purely group-
theoretic problem. In order to find the maximum number of parallel class for
which an (s, t)-translation nets can exist, we formulate the problem in group-

theoretic language as follows:
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Let G be a group of order s> > 1. Find the number T (defined below)

precisely or at least find a bound for it.

Te :=max {t < s+ 1: there exists an (s,t)-PCPin G } (2.1)

Lemma 2.15 Let G be a group of order s> > 1 and H be the corresponding

PCP in G. Then, the number of components in PCP is at most s + 1.

Proof : Let ¢ be the number of components in the PCP. By (b) and (c) in Defi-
nition 2.10, we note that there are (s — 1) non-identity elements in H, for each

H € H. Thus, we have ¢ - (s — 1) non-identity elements of G in H.

Hence, the total number of elements in H is [t - (s — 1) + 1]. But |G| = s>

So, we must have

Remark 2.16 By Proposition 2.13 we can talk about the degree of a net given a
PCP. Hence from Lemma 2.15 we see that the degree of a net is at most s + 1. It
is a well know fact that t in Lemma 2.15 attains its maximum if and only if any
two points of the net are joined by exactly one line and if this happens then the

net is just an finite affine plane of order s, as pointed out in Example 1.15.

Remark 2.16 gives an example where the maximum upper bound for a 2-net
is attained. In the next example we construct a PCP (equivalently translation

net) for which the maximum upper bound 7¢; is attained.

Example 2.17 Consider a 2-dimensional vector space whose entries are from
IF,, where q is a prime power, that is, let V = { (z,y) : x,y € F, }. Then, we

have |V| = ¢* and note that V' is a group with operation being addition. Next,

27



CHAPTER 2. TRANSLATION NETS IN 2-DIMENSION 2.3. UPPER BOUNDS FORT AND Tq

we consider the following collection of subgroups of V.

He={(0,1) ) J{((Ly) yeF,}

Observe that H is a PCP in V (refer Definition 2.10) and |H| = q+ 1. Hence
the value of the parameters are s = q and t = q + 1, giving a (¢,q + 1)-PCP
and hence an example of (s,s + 1)-translation net for s = q. Since q is a
prime power, say q = p" for some positive integer n and a prime p, we have

Vi=q¢*=p™andthus Tg =q+1=p"+ 1.

Remark 2.18 Translation nets can be regarded as a generalizations of transla-
tion planes, studied by André (one of the pioneers to study translation planes)
[11] (another reference is Lineburg [12]); and it may be worthy to note that the

translation group of a translation plane is elementary abelian.

Remark 2.19 If G is an elementary abelian group of order p*"* > 1 (where p is

a prime number), then Tz = p™ + 1.

Since the upper bound is achievable for elementary abelian group (Remark
2.19), the next natural question dealt by D. Jungnickel, 1981 [13] is to ask for
the upper bounds of 7¢; if GG is not elementary abelian. We present some useful

results below to illustrate the upper bound for 7.

Lemma 2.20 If H is a subgroup of a group G then for any g € G,gHg ' is a

group isomorphic to H.

Lemma 2.21 [f H and K are subgroups of a group G such that HK = G and
then for any a,b € G, we have (aHa™') N (bKb™1) = ¢(H N K)c™, for some
ced.

Proof : Leta € G = HK = KH, then we can write a = kh for some k& €

K and h € H. Now we see that, aHa~! = khHh 'k~' = kHk™'. Hence,

(aHa Y)YNK =k(HNK)k™ (2.2)
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Let H' = aHa™", then by Lemma 2.20,
|H| = |aHa™"| = |H'| (2.3)
and from equation (2.2), we have
|H' N K| = |k(HNK)k™| = |H N K| [by equation (2.3)] (2.4)

Since HK = G, we have

|H| - |K]

Lyl (2.5)

G| = |HK]| =

Now we observe the following

H'|- K|
H'K :l—
| | |H' N K|

|H|- K]

= W , by equations (2.3) and (2.4)

= |G| , by equation (2.5)

Thus, and hence we apply the same arguments above (in the
beginning of the proof) to H' instead of H and set b = h'k’, for some h' € H

and k£’ € K. So, we get

(bKb YN H' =k (KNH )W
=HWH NK)W!
= h(aHa N K)n'™*
= RWk(HNK)k™'h~!, by equation (2.2)

=c(HNK)c ', wherec=hkec G

Hence, (aHa ') N (bKb™') = H' N (bKb™') = ¢(H N K)c™!, for some
ceG.

29



CHAPTER 2. TRANSLATION NETS IN 2-DIMENSION 2.3. UPPER BOUNDS FORT AND Tq

Remark 2.22 In Lemma 2.21 above, if we also have H N K = { e }, then

(aHa )N (bKb™) ={cec'} ={e}.

Lemma 2.23 Let G be a finite group. Suppose p is a prime divisor of |G|. Let
P be a Sylow p-subgroup of G. For any subgroup H of G, there exists g € G

such that gHg~* N P is a Sylow p-subgroup of gHg~'.

Proof : Let () be a Sylow p-subgroup of H. By Sylow theorems, we know that ()
must be contained in a Sylow p-subgroup of G, say, P’. Also there exists g € G
such that gP’g~! = P. Hence gHg ' N P = gQQg ' is a Sylow p-subgroup of

gHg™'.

Theorem 2.24 Let G be a group of order s*. Suppose p is a prime divisor of s.
Let P be a Sylow p-subgroup of G. If there exists a PCP of G with t subgroups,

then there exists a PCP of P with t subgroups.

Proof : Let H be a PCP of GG. For each H € H, we can choose g € GG such that
with gHg~! N P is a Sylow p-subgroup of gH ¢~! (by Lemma 2.23). Now if we
replace H by gHg~!, then the resultant is still a PCP of G (because of Lemmas

2.20, 2.21 and Remark 2.22). Let us define the set ' as follows:

W ={(g;Hig;)NP:H eH,1<i<t}

Then we prove that H' is a PCP of P, i.e., the elements in H' satisfies the

conditions (a) to (c¢) in Definition 2.10.

(a) Since |H| =t, we have |[H'| = t.

(b) Since pdivides s, we have | H| = s = p”-n, for some positive integer n. Now

1

by Lemma 2.23, we have (gHg ') N P is a sylow p-subgroup of gH g~* and

by Lemma 2.20, [gHg | = |H| = s = p" - n. Hence |gHg ' N P| = p".
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(©) (g1H1g;'NP) N (92Hag; ' NP) = (91H197 'Ng2Hag; )NP = {e}NP =

{ e }, where the second last equal to is because of Lemma 2.21.

Theorem 2.25 Let G be a group of order s*> > 1 such that, |G| = s* = p® - n,

and let R be the Sylow-p-subgroup of G. Then any (s,t)-PCP in G induces a

PCPin R, i.e.,Tg < Tkg.

The proof of Theorem 2.25 was due to Frohardt [14] (but the result appeared
in [7]). It serves as a motivation to study the existence of partial congruence
partition in p-groups. Hachenberger in [15,16] carried out the study for groups
of order p>™ for n > 2. We shall state the result for groups of order p?" that are
not elementary abelian and n > 4 from [16], while the groups of order p*" for

the case n = 2 and n = 3 are handled in [15] and [16] respectively.

Theorem 2.26 (Hachenberger) Let p be any prime and let G be a group of order

p?"™ which is not elementary abelian. If n > 4, then

T(;<(pn_l—l)(p—l)_l:p”_2+...+p—|—1.

2.4 Normal components in PCP

Definition 2.27 (Normal component) Let G be a group of order s*> > 1 and H
be the corresponding PCP. Recall from the definition of PCP in 2.10, elements
of H are called components. Also notice that the elements are nothing but
subgroups of G. We call the elements of H as normal components if they are

normal subgroups of G.

The corresponding definition with respect to translation nets can be found in

[6], which introduces central collineation to nets.
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A. P. Sprague in [6] opened the gates for the study of normal components
in PCP (or in translation net depending on the context) by discussing Sylow-
subgroup properties of G with specific order. Later Hachenberger and Jungnickel
[17,18] studied the normal components for certain specific cases. It may be an
useful observation based on the results stated below from [6], which points out

that, it is advantageous to classify PCP into the following:

(a) there exists no normal component;
(b) there exists exactly one normal component;
(c) there exists exactly two normal components and

(d) there exists at least three normal components.

Theorem 2.28 Let G be a group of order s* and H be the corresponding PCP of
G such that it has at least two subgroups which are normal in G, i.e., G = H x H’
forany H, H' € H. Then all the components of H are isomorphic and hence

are all normal.

Theorem 2.29 Let N be a translation net and G be a translation group associ-
ated with N such that at least three parallel classes of N are normal. Then G is

abelian.

More details about the discussion on p-groups and cases including two normal

components can be seen in [7] and [8].
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Chapter 3

Nets of Dimension Three

Inspired by the definition of 2-net given by Bruck, in 1971 R. Laskar took the
next step to extend the definition to a 3-dimensional finite geometry. Laskar
considered planes along with points and lines in the definition of Bruck to define
a finite net of dimension three [3] with various parameters. We simply call it a

3-net instead of a 3-dimensional net.

3.1 Definitions and Examples

Definition 3.1 (Incidence Relation for 3-dimensional geometry) A 3-dimensional

plane geometry is an incident structure (X, L, P,T) where,

(a) X is the set of points, L is the set of lines and P is the set of planes;
(b) X, L and P are pairwise disjoint sets; and

(c) T C(XxL) U (X xP)U (L xP)is the incident relation between

points and lines, points and planes and lines and planes.

Since there are three objects under consideration (points, lines and planes), we
can talk about the following types of relationships. Again, we adopt most of
the commonly used terms in the study of geometries without explicitly defining
them. We list below some of these terminologies for the different types of

relationships.

33



CHAPTER 3. NETS OF DIMENSION THREE 3.1. DEFINITIONS AND EXAMPLES

1. point-plane relationship:

(i) The following are equivalent ways to describe the relation: (p, I1) €
ZLforpe Xand Il € P.
(a) A point p is on a plane /.
(b) A plane I passes through a point p.
(c) A point p is incident with a plane 1.
(d) A plane II contains a point p.

(ii) A point p € X is not on a plane /I € P is equivalent to (p, I1) ¢ T.

2. line-plane relationship: As it will be pointed out in Remark 3.2, there
are three types of line-plane interactions; but we consider only two types

(type (i) and (iii) in Remark 3.2) and describe the relationship below.

(i) The following are equivalent ways to describe the relation: (I, IT) €
Zforle Land I] € P.
(a) Aline [ is on a plane II.
(b) A line [ is incident with a plane /1.

(c) A plane /] contains a line /.

(ii) Aline! € L is not on a plane I1 € P is equivalent to (I, []) ¢ Z.
3. point-line relationship:

(i) (Coplanar) A pointp € X andaline! € L lie on a plane is equivalent
to saying that there exists a plane /I € P such that (p, I]) € Z and
(I,II) € Z. We call p and [ are coplanar. Here, we discuss the
incidence relation between a point and a line which are coplanar. In
aplane /I € P, we refer to the paragraph after Definition 1.1 for the
equivalent ways to describe the relation: a point p € X and a line

l € Lsuchthat (p,II) € Z,(l,1I) € Z and (p,l) € I.
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(i) (Non-Coplanar) A point p € X and aline [ € £ do not lie on a plane
is equivalent to saying that for any plane /7 € P we have (p, IT) ¢ 7
or (I,II) ¢ Z. In such a situation the point and the line is called
non-coplanar and there is no incidence relation between a point and

a line.
4. line-line relationship:

(i) (Coplanar lines) Two lines [,I’ € L lie on a plane is equivalent to
saying that there exists a plane II € P such that ([, II) € Z and
(I',1I) € Z. The lines [ and !’ are called coplanar lines. Now
we can discuss the parallel relation between two coplanar lines.
Inside a plane /I € P, the equivalent ways to describe the following
relation is defined in 1.1 and in (ii) below (non coplanar lines are
parallel): for [,!’ € £ and a plane II € P such that (I, I]) € Z and
(I',I1) € Z, either (I,II) = (I',/[I)or {p € X : (p,II) € T and
p,)eZ}N{peX:(p,lI)eZand (p,l')eT} =10

(i) (Non-Coplanar lines) Two lines [,I’ € L do not lie on a plane is
equivalent to saying that for any plane I7 € P we have either (I, IT) €
Zbout (I',IT1) ¢ Zor (I',1I) € Zbout (I, II) ¢ Z. Then the lines [ and

I" are called non coplanar lines.

5. plane-plane relationship: The following are equivalent ways to describe
the parallel relation between two planes 1, [I' € P: either II = II' or

{peX:(p)eZ} N{peX:(p,I')el}=0.

(a) For any two planes I1 and II’, either they are the same or they have
no point in common.

(b) Two planes IT and I1’ are parallel (or symbolically I7 || IT").

(c) For any two planes /7 and II’, either they are the same or they do not

intersect.
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Remark 3.2 There are three scenarios possible for the interaction between a

line and a plane:

(i) a line and a plane do not meet at all;
(ii) a line and a plane meet at a point;

(iii) a line and a plane meet at a line, i.e., the line is completely contained in

the plane.

The line-plane relationship defined in 3.1 refers only to the scenarios (i) and

(iii) above (i.e., we do not consider the scenario (ii)).

Remark 3.3 In this thesis, we also adopt the following equivalent ways of writing

the incidence relation between points, lines and planes.

(1) (p,) eZ

(15) (p,II) eI

pel <= apointp € X liesonalinel € L.

pell <= apointp e X liesonaplane Il € P.
(i13) (I,II)eZ lell <= alinele LliesonaplaneIl € P.
(iv) (p.)) ¢ 1
(v) (p,11) ¢ T

(vi) (I,IT) ¢ T

pél <= a point p € X does not lieon a linel € L.

p &¢Il <= apointp € X does not lie on a plane |l € L.

rt11717

1 ¢ Il <= alinel € L does not lie on a plane II € P.

First, we present below the original definition for “finite nets of dimension

three” by Laskar [3].

Definition 3.4 (3-dimensional net or 3-net) Let s, t, 5 and r be positive integers.

An (s,t, B,r)-net (or a net of dimension three) is an incidence structure N =

(X, L, P,T) satisfying the following conditions:
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(NI®) If a point p lies on a line |, and the line [ lies on a plane II, then p lies on

1.
(N2®)) Any two non-parallel lines intersecting at a point, lie on the same plane.
(N3®) Points and lines incident with a plane form a (s, t)-net.

(N4®)) The planes of the net can be partitioned into 3 disjoint, non-empty parallel

classes such that:

(a) every point of the net is incident with only one plane of each class;

(b) any two planes from two distinct classes intersect at only one line of

the net.

(N5®)) Two lines are identified as non-intersecting if they do not have a common
point. The lines of the net are partitioned into a finite number of maximal

non-intersecting sets of lines such that:

(a) every point of the net is incident with only one line of each set;

(b) any two lines from distinct sets intersect at at most one point of the

net.
(N6)) There exists a line incident with r planes.

Remark 3.5 In (N5®)), by the maximality of non-intersecting sets of lines, we
mean that for any two distinct classes of lines C; and C; (for some finite index
t,7) and a line l; in C;, there exists at least one line l; in C; such that l; and [;

are not parallel.

Definition 3.6 (Order and Degree of a 3-net) We define the order of a 3-net to
be the number of points in a line (i.e, the parameter s) and degree of a 3-net to
be the number of parallel classes of planes (i.e., the parameter [3). In short, s is

called the order of a 3-net and (3 is called the degree of a 3-net.
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Remark 3.7 Laskar’s definition does not rule out the existence of lines which
has no point and do not lie on any plane. Hence the basic results in [3] (or in
section 3.2 below) does not hold if the parameters s,t, 5 and r are not greater
than 1. To address this, we need to assume that the parameters s,t, 3 and r are

greater than 1.

Example 3.8 Consider a 3-dimensional vectors (as triplets) whose entries are

from Z,, that is, let V = { (abc) : a,b,c € Z, }. Here, just for the sake of

convenience we write the triplet as (abc) instead of (a, b, c). Then, |V| = n® and

V' is a group with operation being addition. If we set the collection of planes to

be K ={ K,, K,, K, }, where the planes are given by

K,={(xbc):bceZ,}

and the collection of lines H = { H,,Hy.,H,, }, where the lines formed by the

intersection of planes are given by

Hyy={(xyc):cel,}=K,NK,

H,={(ayz2):a€Z,}=K,NK,

H,,={(xb2):b€Z,} =K,NK, .

Then they form a 3-net.

3.2 Basic Results

We list some of the basic but important results obtained from the conditions
in Definition 3.4, assuming s, ¢, 5 and r are greater than one. We only prove

Lemmas 3.13, 3.14 and Theorem 3.15, while we refer to [3] and [10] for the
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proof of the remaining results.

Theorem 3.9 (Basic properties of 3-net)

(i) Every line is incident with at least one plane.

(ii) Every plane contains exactly s* points and ts lines.
(iii) Every line is incident with s points.

(iv) Every point is incident with ( planes.

Theorem 3.10 Every line is incident with r planes. Equivalently every line of

the net is incident with the same number of planes.
Theorem 3.11 Every point of the net is incident with

t-fg .
u = —— lines.

Theorem 3.12 The number of planes in a parallel class is s. In other words, the
number of planes in a parallel class is equal to the number of lines of a parallel

class in a plane.
O

Let r be the number of planes passing through any line of a 3-net NV and «
be the number of lines passing through any point. We first count u in two ways

as given in Lemma 3.13 and 3.14 below.

Lemma 3.13

Proof : Let p € X be a point of the net. For any plane I/ € P such that p is

incident with I7, we have ¢ lines passing through p on IT by (N3®).
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For each of these ¢ lines, there are (r — 1) planes II’ # I1 passing through the
line (because by assumption, there are r planes passing through any line of the
net). On each of these planes, again there are ¢ lines passing through p. Hence,

we have (r — 1)t lines passing through p in the planes other than I7.

If we fix a line in 7 passing through p, then there are 1 + (r — 1)t lines
passing through p, and since there are ¢ such lines in /7 passing through p, we
have t[1 + (r — 1)t] = t + (r — 1)¢* lines in total passing through p. Note that
each line passing through p is counted r times and hence the total number of
lines passing through any point in /V is given by

t+ (r—1)t2
. :

u =

Lemma 3.14

u=1+(t—1r.

Proof : Let p € X be a point of the net and [ € L be a line containing p [this
is possible because there is no stand alone point by (N3®)) and (N4(®))]. There
are r planes passing through /, and in each of these planes there are (¢t — 1) lines
(other than /) passing through p. Thus, the total number of lines passing through

pis1+ (t—1)r.

Theorem 3.15 Let N be a 3-net with the parameters s,t, 5 and r. Then the

following holds:
(i) r=1t.
(ii) f=1>—t+ 1.

Proof :
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@

(ii)

Lemmas 3.13 and 3.14 give two ways of counting the number of lines
passing through a given point of the net. Hence, they are one and the same.

So, we have

t —1)¢?
Lzﬂr(t—l)r
T

Simplifying, we get (t —r)[rt — (t+ 1)+ 1] = 0. Hence, either (t —7) = 0
orrt —(t+7r)+1=0,ie,t=rorrt+1=1t+r. Weshall show that
latter case is not possible.

Since r and t are integers greater than two, we have rt + 1 > r + ¢ for all

r,t and hence 7t + 1 > r +¢. Thus[r = ¢].

From Theorem 3.11,

Since r =t by (i) above and t > 1, .

Now using r = tand v = §in Lemma 3.14, we get = 1 + (t — 1)t =

2 —t+1.

Lemma 3.16 The total number of points, lines and planes in N are s, s*(t* —

t + 1) and s(t* — t + 1) respectively.

3.3 Redefining old definition

Sometimes the meaning of “maximal non-intersecting sets” in the definition of

3-net may be misleading or unclear. We address this issue by giving a simpler

axiom to replace (N5©)):

(N5'®) Every line is incident with at least one plane. 3.1)

Sometimes it is convenient to define the 3-nets (nets of dimension three) in

terms of Mathematical language, as used in the incidence relation. We perform
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the following to give a new definition of a 3-net and define it Mathematically in

Definition 3.17.

(i) Assume the parameters s, ¢, 5 and r to be greater than one.
(ii) Use the conditions (N1®)) to (N4®)) in Definition 3.4.
(iii) Replace (N5®)) with (N5/)),

(iv) Remove (N6(3)) (because it can be proved from other conditions and hence

we consider it as redundant).

Definition 3.17 (Mathematical reformulation of a 3-net) Let s,t, 3 and r be
integers greater than one. An (s,t,[3,r)-net (or net of dimension three) is an

incidence structure N = (X, L, P, T) satisfying the following conditions:

(NI®) For p € X1 € Land IT € P, if (p,]) € T and (I,I1) € I, then
(p,1I) € T.

(N2®) Forp € X,l1,ly € L, if (p,11) € T and (p,ly) € T, there is a Il € P such
that (I, IT) € Z and (I, IT) € T.

(N3®)) Foreach II € P, let us define
X' ={peX:(pll)el}
L£'={leL:(,II)eT}; and
Z={(pl):(p,l)eZ,pe X andl e L }.
Then (X', L', T") forms a 2-net.
(N4®)) There exist By, By, ..., Bs C P such that

(a) By,Bs, ..., Bgis a partition of P;
(b) for each B;, and for any I1,II' € B; with II # II', Il and II' are

parallel;
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(c) let B; and B; be any two distinct classes of planes. For each II € B,
and II' € B; there is a unique | € L such that (I,1I) € T and
(1,IT") € Z; and

(d) for each p € X and for each i € {1,2,...,0 }, there is a unique
II € B; such that (p,II) € 1.

The sets By, B, ..., Bg are called the parallel classes of planes.

(N5'®) Foralll € L, there is a Il € P such that (1, II) € T.

It is natural to ask whether the new axiom in equation (3.1) is equivalent to
the old one, which we answer in Theorem 3.22. Prior to that, it is important
to redefine the maximal non-intersecting classes with a precise relation between

any two given lines.

Definition 3.18 (Maximal non-intersecting ~ classes) The maximal non inter-

secting classes of lines is defined by the relation given below:

“two lines are related if there exist two parallel classes B, and B of planes
such that each of the two lines are the intersection of a plane from By with a

plane from By”.

Before proving that this relation is an equivalence relation, we first observe

a useful result in the form of a lemma below.

Lemma 3.19 Let | ~ I'. If B is a class of plane such that there exists II € B
and | is incident with 11, then there exists II' € B such that U is incident with

Ir.
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Proof : Since [ ~ [, there exist two parallel classes of planes 53; and B, such
that

[ = II, N I, for some II; € By and 1], € B5 and

' = II{ N II} for some 1] € By and 11}, € Bs.

Since /1] and II; belong to different classes of planes, they intersect at a line,
say I” = Il N I1]. Let p be a point incident with I” € II, and B be a class of
plane such that [ € I for some /I € B. Since Il € B,, and B,, B are different
class of planes, by (N4)®))(a) there exists a plane /1" € B incident with p. Let
m be the line of intersection of I1” and I, incident with p. Now, observe the
following:

[ is parallel to " because [1 is parallel to /7] and

[ is parallel to m because I1 is parallel to 11"”.

[,1"” and m lie on the plane II,, so by the transitivity of parallel class for
lines in Il,, " is parallel to m. p € [ and p € m implies that m = [”. Thus, for

any I € B incident with [ there is a plane IT” € B incident with [”.

Now, we repeat the above argument replacing [ by [ and II by I1”, and

consider the lines [ and !’ to get the required I1’' € B.
Proposition 3.20 The relation defined in 3.18 is indeed an equivalence relation.

Proof : It is easy to see that the relation satisfies the Reflexive and Symmetric

properties. So, it remains to show the Transitivity.

ly ~ 1y = [, and [, are defined by two classes of planes B; and Bs.
ly ~ I3 = by Lemma 3.19 /5 and [3 are defined by two classes of planes B;

and Bs.

Hence, [; and I3 are defined by two classes of planes B, and B,, proving [; ~ [3.
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Remark 3.21 From Lemma 3.19, we observe that each class of lines can be

defined by two distinct classes of planes, say B; and Bj, for some i,j &

{1,2,....8}.

Theorem 3.22 (New axiom = old axiom) The (old) axiom (N5®) can be proved

by our new axiom (N5'®)), i.e., the following holds:
(i) property of maximal non-intersecting sets as stated in Remark 3.5.
(ii) (N5%)) (a) and (b).

Proof :

(i) Let C; and C; be two distinct classes of lines. Let /; be a line from C;. We
need to find a line in C; intersecting /; at a point. Let p be a point on /;
and let C; be defined by two classes of planes B; and B, (using Remark
3.21). Then, there exists [, € B; and II, € B, such that p € II; N I15.

Let II, N II, = 1}, then p € [;. Hence, [ is the required line.

(ii) (a) Let p be a point on the net and C be a class of lines. Again by the
Remark 3.21, C is defined by two classes of planes 3; and B>. We need
to show that p lie on exactly one line in C. By (N4(), p lie on exactly
one plane from each class of By and B,. Let I1; € B; and I1; € B, be
such planes containing p. Since //; and /], belongs to different class
of planes, they intersect at exactly one line [ and since p lie on /7; and
115, p lie on [. This [ is the unique line in C containing p, as p cannot

lie on any other planes in 3; and B, by (N4(3)),

(b) Any two lines belong to either same plane or different planes. If they
belong to different plane, they do not intersect, and if they belong to

same plane they intersect at at most one point by (N3()).
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3.3.1 Another reformulation (using point-line incidence rela-
tion)

We reformulate (N5'®)) in equation (3.1) as follows:

(N5"®) Every line is incident with at least one point. (3.2)

We may consider (N5’ @)Y in equation (3.1) as reformulation with respect to
planes, while (N5”®®)) in equation (3.2) may be regarded as reformulation with
respect to points. Again, one can ask the equivalence of (N5'(®) and (N5”())

and we discuss this below in Theorem 3.23.

Theorem 3.23 If we fix the conditions NI1® to N4®) in Definition of a 3-net,

then we have (N5'®)) <= (N5"®)).

Proof :

(=) Since every line is incident with at least one plane, we may treat the
lines and its corresponding incident plane just as a 2-net. In 2-net there is no
stand alone lines (by (N3)) in Definition 1.13), i.e., every line is incident with

at least one point.

(<) Let [ be aline and p be a point on /. Since 8 > 1 and by (N43))(b), there
exists at least 2 planes containing p, say /1 and /I’ (which belong to different

classes of planes). If [ is incident with I7 or I1’, we are done.
If not, let I’ # [ be the line of intersection of /T and II'. Since p € I, Il

= p € I’ = [ and !’ intersect at p. Hence, by (N2®)), [ and ! lie on the same

plane, say 11”.
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3.4 Special cases

The integers s, ¢, 3 and r are assumed to be greater than one for geometrical
purposes. But, the trivial cases where either one of them is equal to 1 cannot
be completely ignored. So, we discuss some results for some of the special
cases such as # = 1 and t = 1. Theorem 3.24 discusses about maximal non-
intersecting classes for the special case § = 1. Theorem 3.25 discusses about the
special case ¢ = 1. In both these theorems, we use the conditions in Definition
3.17 instead of the conditions in Definition 3.4. In particular, we will use (N5’ (3))

rather than (N5®)) (a) and (b).

Theorem 3.24 Let N be a 3-net as defined in 3.17 with the parameters 3 = 1
and s,1 and r are greater than 1. Then the maximal non-intersecting classes
exists and (N5®)) (a) and (b) is valid, i.e., Theorem 3.22 holds for the special

case [ = 1.

Proof : Let P be the collection of planes. For each plane I € P, there are
t classes of parallel lines on the plane. We label them as Cy(I1), Co(I1), ...,
Ci(II). Let us define

1epP

Then Cy, Cs, . . ., C; are the required maximal non-intersecting classes of lines.

Let /; be incident with a plane /7 and let C; be the class of lines containing /;.
Then, [; belongs to C;(II), for some i = 1,2,...,t. Let C; be a different class of
lines (j = 1,2,...,tand i # j) so that [; ¢ C;. Then C;(II) is a different class
of lines in /1 such that there exists a line /; which intersect with /; (in fact, every
line in C;(II) will intersect with [;). Thus, property of maximal non-intersecting

sets as stated in Remark 3.5 holds.

When [ = 1, it is nothing but a collection of 2-dimension nets and hence

(N5®)) (a) and (b) is obvious.
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i

Since the proof of Theorem 1.2 in [3] does not hold when ¢t = 1, we give

below a modified proof for the special case.

Theorem 3.25 Let N be a 3-net as defined in 3.17 with the parameters t = 1
and s, 3 and r are greater than 1. Then every line is incident with exactly [

planes, i.e., v = (3.

Proof : Let 3 be the number of classes of planes. Let [ be a line and p be
a point on /. Suppose [ lies on a plane I/ and let B be the class of planes
which contains I/. For each ¢ € 1,2,...,5 — 1 and for each parallel class
of planes B; other than the one containing /I, there exists a plane I/; in each
class that contains the point p. For each i, let [; be the line of intersection
of I and II;. Since t = 1, II and IIs are (s, 1)-nets and there is only one
parallel class of lines in I7 and I/;. Since [ and [; are lines on /] containing a
common point p, they are not parallel and hence they must be the same, that is

[ = l;, forall <. Hence, [ is incident with [ planes (/] and I1;,2 = 1,2, ..., 5—1).
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Chapter 4

Translation Nets in 3-dimension

We attempt to introduce the definition of Partial Congruence Partition (PCP) in
3-dimension for the first time. Several examples and results (similar to the two
dimensional cases) that we attempted to prove are successful. I acknowledge
that one of the most useful references is Mai Thi Thanh Hien’s Honours project.
Suggestions from my supervisor are immense and it helped me in proving the
important results (sections 4.2 and 4.3) of this chapter. Definitions, examples,

main results and properties of a PCP in 3-dimension are new research materials.

4.1 Definitions and Examples

Definition 4.1 (Translation Net and Translation Group in 3-dimension)
Let N = (X,L,P,Z) be an (s,t,3,r)-net. N with an automorphism group G

(regard automorphism as permutation) such that
(a) G acts regularly on X; and
(b) G fixes each parallel class of planes,

is called a (s,t, 3, r)-translation net or simply a translation net of dimension
three and the group G is called the translation group of dimension three. We

call the former as 3d-translation net while the latter as 3d-translation group.
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The immediate question one can ask is, whether there is a PCP setting
similar to the one of dimension two. We answer this question in the following

definition.

Definition 4.2 (Partial Congruence Partition - PCP in 3-dimension) Let G be
a group of order s3, s > 2. Let K C{ K : K < G and |K| = s* } (i.e., set of

some subgroups of G of order s?). Let
H={H=KnK :K K €K,K # K'}, such that the following conditions
hold:

(a) forall H,H € H, either H = H or HNH' = {e}, where e is the identity

element of G;

(b) for all H € H,|H| = s and by the choice of K € K we have, for all
K e K,|K| = s%

(c) for all K € K, there are exactly t distinct subgroups H € H such that

HCK,t>2; and
(d) forall H H' € H, there exists a subgroup K € IC such that HU H' C K.

Then (K, H) is called a partial congruence partition in G of dimension
three, denoted by PCP®) 1, where the elements of IC are called plane components
and the elements of H are called line components. If we assume |KC| = (3, we

call the partial congruence partition as (s,t,5)-PCP1in G.

Example 4.3 Let ¥, be the finite field with n elements, and consider the following
(i) G =T3, ie., G is the set of 3-dimensional vectors of F,,;
(ii) IC be the collection of all the 2-dimensional subspaces of G; and

(iii) H be the collection of all the 1-dimensional subspaces of G.

LGoing forward, to distinguish the PCP in Definition 2.10 and the one in Definition 4.2, we
denote the former by PCP® and the latter by PCP®3).
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Then (IC, H) forms a PCP® of G.

Example 4.4 (Construction of a PCP®) for s=4) Consider the field F, with 4
elements, Fy = {0,1,a,a® }, where a +1 = da% a+a* = 1, a> + a*> = 0 and
a?+1=a.

Define G to be the set of 3-dimensional vectors in the vector space Ff’), ie.,
G ={zyz: x,y,z € Fy }; where we have abused the notation (x,y, z) of a
3-dimensional vectors by simply writing it as xyz. Note that |G| = 4* and G has
a group structure with respect to addition based on the structure in ¥y as shown

below.

ala o 0 1

a?la®> a 1 O

Now, we need to construct the collection of subgroups K and H. Let us first form

the elements of IC as shown below.

K, = (010,100 ) = { 2(010) + »(100) : z,y € F4 }
= {000,010, 0a0, 0a0, 100, @00, a*00, 110, a10, a*10, 1a0, aa0, a*a0,
1420, aa®0, a*a®0 }
Ky = (001,100 ) = { 2(001) 4+ y(100) : 2,y € Fy }
= {000, 001, 00a, 00a*, 100, @00, a*00, 101, a01, a*01, 10a, aOa, a*Oa,
10a*, a0a®, a*0a” }
K3 = {001,010 ) = { 2(001) + 5(010) : z,y € Fy }
= {000, 001, 00a, 00a*, 010, 0a0, 0a*0, 011, 0al, 0a*1, 01a, Oaa, Oa’a,

0la®, 0aa®, 0a®a® }
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Ky =(100,011) = { 2(100) + y(011) : z,y € Fy }
= {000, 100, @00, a*00, 011, Oaa, 0a*a?, 111, laa, 1a*a®, all, aaa,
aa’a?, a’11, a*aa, a®a*a® }
K5 = (010,101 ) = { #(010) 4+ y(101) : z,y € Fy }
= {000,010, 0a0, 0¢*0, 101, ala, a*0a?, 111, ala, a*1a?, lal, aaa,
a*aa’, 16’1, ad’a, a*a*a® }
K¢ = (001,110 ) = { 2(001) 4+ y(110) : 2,y € Fy }
= {000,001, 00a, 00a*, 110, aa0, a*a*0, 111, aal, a*a®1, 11a, aaa,
a*a*a,11a* aaa®, a*a*a’® }
K;=(110,011) = { 2(110) + y(011) : 2,y € F4 }
= {000, 110, aa0, a*a*0, 011, Oaa, 0a*a?, 101, 1a*a, laa®, aa*1,

ala, ala®, a*al,a’1a, a*0a® }

Define the set K := { Ky, K,,..., K7 }. Then,

K;| = 42 for all i =
1,2,...,7. Next, we construct the collection of subgroups H by the intersection

of the elements in K.

H; = (100) = K; N K, N K4 = {000,100, a00, a*00 }
Hy = (010) = K; N K3N K5 = {000,010, 0a0, 0a%0 }
Hs = (001) = K, N K3N Kg = {000,001, 00a,00a” }
Hy={110) = K, N K¢ N K; = {000,110, aa0, a*a*0 }
Hs; = (101) = Ky N K5 N K; = {000,101, a0a, a*0a® }
Hg = (011) = K3 N K, N K; = {000,011, 0aa, 0a*a® }

H; = (111) = K, N K5 N K¢ = {000, 111, aaa, a*a*a® }

Define the set H := {Hy, Ho, ..., H7}. Then, |H;| = 4foralli =1,2,...,7.

It is straightforward to see the parameters value are
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(i) s =4,

(ii) since for each K € K there are three H!s contained in it (e.g., K contains

H,, Hy and Hy), thent = 3 and

(iii) since |KC| =7, then B = T.

Hence, the group G together with the collection KC and H as defined above

forms a (4,3,7)-PCP®).

Example 4.5 (Generalized construction of Example 4.4) Let IF,, be a finite field
with n elements, KC be a collection of 2-dimensional subspaces of T2 and H be a
collection of 1-dimensional subspaces of F> such that it generate a 3-dimension
net. Let [y, be a finite extension of IF,,, where the the order is k = n™, for some m.
For each K in K take a basis { x,y } for K. Then, K = {ax +by : a,b € F,, }.
Define the following:

K :={ax+by:abeFy}and

K:={K:KekKk}.

We check whether this K' generate a PCP®) of [} (and hence it generates a

3-dimensional net).

To check this, we need to prove the following properties [note that (ii) and (iii)

corresponds to the properties in the Definition of PC'P®)].

(i) Definition of K is independent of the choice of basis for K.
(ii) Foreach K’ € K', we have |K'| = k2.

(iii) Construct a collection H' = { H' = K| N K}, : K], K, € K } satisfying

the conditions (a) to (d) in the definition of PC' P®).

Proof :
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(i) If there exists a different basis { 2,1y’ } of K, we show that the definition
for K’ still holds. Since z/,y’ € K and { x,y } is a basis of K, we can

write and 2’ and 3/ as follows:

¥ = ayx + by, for some a,, b, € F,

y' = asx + byy , for some as, by € IF,,

Then for any u € K’, we have

u = az’ + by, for some a;, b, € F},
= a(a1z + bry) + b(aszr + byy)
= (aal + Clgb)l’ + (ab1 + bbg)y

=ad'z+ by, where ' = aa; + asb € F, and b/ = ab; + bby € Fy,

Hence, the definition of K’ holds for different bases of K.
(i) Itis clear from the definition of K’ € K’ that |K'| = |Fy|* = k%

(iii) We only show the construction of the set H’; while the conditions (a) to

(d) in the definition of PC'P®) are easy to check.

Foreach H € H, since H is a non-trivial intersection of two 2-dimensional
subspaces, H is a 1-dimensional subspace of F3,say H = { az:a € F }
for some non-zero vector z € H. Now, define H' = {az : a € Fy }
and H' = { H' : H € H }. Suppose for H € H, H = K, N K, where

K, Ky € K. We need to show that H' is exactly the set K| N K.

Let Ky = {ax1+by; : a,b € F,} and Ky = {axs+bys : a,b € F,, } where

x1,y; and x9, yo are the vectors chosen to define K| and K7, respectively.
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Since H C K4, z = ayx1 + b1y, for some a, b, € F,,.

Since H C K5, z = asxy + boys, for some as, by € F,,.

Butthen z € K{NKJ), by the definition of K| and K. Hence H' C K|NK,.

The intersection of two different 2-dimensional subspaces is either the zero
vector or a 1-dimensional subspace. As H' C K] N K}, K] N K, # {0}

and hence is a 1-dimensional subspace. So, K| N K} = H'.

4.2 PCP®) < 3d-Translation Nets

Before we prove the equivalence of PC'P®) and 3d-translation nets, we first

prove a useful lemma from the conditions in Definition 3.17.

Lemma 4.6 If | € L then there exists I1,, I, € P such that (1,11,) € T and
(I,I1,) € T.

Proof : Let p € X such that (p,l) € Z. Since § > 1, there exist II and
II" (I # II') in P from different classes of planes such that (p, I1) € Z and
(p, IT") € T (by (N4®)(a) in Definition 3.17). If (I, I1) € T and (I, IT') € T, we

are done.

If not, we might have either (I, IT) ¢ Z or (I, II') ¢ Z, or both. WLOG, we
assume ([, IT) ¢ Z. Since t > 1, we must have [; and [y in IT (i.e., (I;,I]) € T

and (lo, IT) € Z) such that (p,l;) € Z and (p, l3) € .

Consider [ and [, since (p,1) € T and (p, ;) € Z, by (N23)) there exists a
II; € P suchthat (I, I1;) € Z and (1, I1;) € Z. Similarly for [ and [5, there is a
II, € P such that (I, I15) € Z and (I3, I15) € Z. Now we have ([, I1;) € Z and
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(I, I1y) € Z. So, it remains to show that I7; # II,. Observe that (I;, I) € Z and
(li, Hl) €71 fori= 1, 2 1mphes Hl 7£ HQ (as ll 7£ lg)

Proposition 4.7 (PCP®) = 3-net) Let G be a group of order s* (s > 2) and
(IC,H) be a PCP®) as defined in 4.2. Define a plane geometry (X,L,P,T)

where

(i) X =G,

(ii) L={gH :9ge Gand H € H };
(iii) P={gK:g€Gand K € K }; and

(iv) T ={(9,hH):9,h € GGH e Handg € hH } U { (9.kK) : g,k €
G KeKandge kK } U{(hH,kK):h ke G,H € H,K € K and
hH C kK }.

Then (X,L,P,T) is a 3-net.

Proof : To prove that the plane geometry forms a 3-net, we prove the conditions
in Definition 3.17 (note that s > 2 and axiom (c) in Definition 4.2 guarantees

that s, ¢, r and (3 are greater than one).

(NI1®) If (g,hH) € T for some g,h € G and H € H and hH C kK for some
k € G and kK € K, then clearly (¢, kK) € T.

(N2®)) Let gH, hH' € L be two lines of the geometry such that g NhH' # 0, for
some g,h € Gand H, H' € H. Since gH NhH # (,and HNH = {e},

by Lemma 2.11, we have gH N hH' = { = }, for some = € G.

By axiom (d) of PCP®) there exists some K € K such that H U H' C K

and hence H, H' C K. Now we have

x € gH implies tH = gH,and H C K implies zH C 2K,
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(N3B))

(N4®))

(N5'®)

together we have tH = gH C z K. Similarly for x € hH’ we have
x € hH' implies tH' = hH', and H' C K implies tH' C zK,

again combining the two statements we have xtH’ = hH' C zK. This

implies that g and hH' lie on z K for some K € K.

For any K € IC, the conditions (a), (b) and (c) in Definition 4.2 gives the

PCP® for a 2-net. Thus, by Proposition 2.13, we get a (s, t)-net in K.

Since we are dealing with a finite group, counting the number of elements
in C will give us the desired partition number, let us say /5. For each
K € K, define

B :={gK:9€G}.

Then { Bx }iex gives us a partition of P. The set By is often referred as
the set of all left cosets of K in GG. There are 3 such non-empty, distinct
subgroups in /C, giving (3 disjoint, non-empty parallel classes. To see (a)

and (b), observe the following:

(a) Letg € G. Then, forall K € K, we have g € gK and g ¢ hK for any

h € G,h # g, because g K N hK is either empty or they are equal.

(b) Let aK, bK, be planes from distinct classes (K # K3). By Lemma
2.11 and by the definition of H, we get a K1Nb K, = g(K1NK3) = gH,
for some g € G, H € H and the uniqueness is by the choice of g, K

and K.

Let H € H, then H = K N K’ for some K, K’ € K (by Definition
of PCP® in 4.2). Thus H C K and hence for any ¢ € G we have

gH C gK, proving that every line is incident with at least one plane.

Remark 4.8 We can say a stronger fact about (N5'®)) in the proof of Proposition

4.7. Since H = K N K', we can conclude that v > 2, i.e., every line is incident

with at least two planes.
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Theorem 4.9 Partial congruence partition-PCP®) with the setting in Proposi-
tion 4.7 gives rise to a 3d-net and conversely, every translation net of dimension

three produces a PCP®),

Proof :

(=) This direction is trivial from Proposition 4.7.

(<) To prove this direction we need to construct a group of order s with
proper subgroups of orders s? and s, satisfying the Definition 4.2. First we

construct the group and it’s subgroups.

Let G be the translation group of a 3-net, N = (X', £L,’P,Z), such that the
points of NV are identified with elements of G, while the lines and the planes are
subsets of G. Let IC be the set of planes containing identity element e. We need
to prove that the elements of K are indeed subgroups of G. Let K € K, then
to prove that A is a subgroup, it is enough to prove the closure of K, since we
are dealing with a finite set, i.e., if g, h € K then we need to show gh € K. By

Definition 4.1(b), if K is a plane of the net, then for any g € G,

K9:={gh:he K}

is also a plane in the same parallel class of K. Then, either K9 = K or
K9NK = 0. Since e € K, then for any g € K, we have g € K9 = K9 = K.
Hence for any g, h € K, we have gh € K9 = K. Thus, K is a subgroup of
g, that is, the planes of N containing the identity are the subgroups of G. Now,

observe the following properties:

(i) By Theorem 3.9 (ii), we get the order of the subgroups |K| = s* and

(ii) Since |G| = |X|, by Lemma 3.16, we get the order of the group |G| = s>.
Next, we prove the conditions (a) to (d) in the Definition 4.2.
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(a) Lemma 4.6 shows that the lines of /V are intersection of planes and we have
shown above that the planes are subgroups of G. Hence, the lines of N
are the subgroups [ of K. Now form the collection H of subgroups of
intersection of K’s such that the pairwise intersection of every element in

this collection is trivial.

(b) Every line of the net inside a plane contains s points. Hence, the subgroups

in ‘H has precisely s points each.
(c) This is true by axiom (N3()) in Definition 3.17.
(d) This is true by axiom (N2®)) in Definition 3.17.

Thus (K, H) is a PCP®),

4.3 Upper bounds for 5 and Tg’)

Similar to 2-dimensional case, we have established 1-1 correspondence between
PCP®) and 3d-Translation Nets in Theorem 4.9. Hence, the existence of trans-
lation nets in three dimension is again a purely group-theoretic problem, as in
the case of two dimension. In order to find the maximum number of parallel
class of planes for which a (s, ¢, §)-translation nets can exist, it is therefore we

formulate this in group-theoretic language as follows:

Let G be a group of order s> > 1. Find the number Tg’) (defined below)

precisely or at least find a bound for it.

T = maz { < s>+ s+1: there exists an (s, t, 3)-PCP (or PCP®) in G }
“4.1)

3

Lemma 4.10 Let G be a group of order s> > 1 and K be the corresponding

PCP®) in G. Then, the number of plane components in PCP®) is at most s*+s+1.
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Proof : Let 3 be the number of plane components in the PCP® of G. By

Theorem 3.15(ii), we have

B=t"—t+1,
and by Lemma 2.15 we have
t<s—+1.
Thus,
B=t"—t+1

<(s+1)*=(s+1)+1

=s?+s5+1

Remark 4.11 Lemma 4.10 above tells that the number of parallel classes of

planes () in a 3-net is at most s*> + s + 1.

Remark 4.12 Following the proof of Lemma 4.10, we see that the maximum

value of B can be attained if and only if the maximum value of t is attained.

Example 4.13 (Construction of a PCP®) with maximum value of 3) We take
s = 2 and construct a PCP®) with maximum value of B, i.e., B = 7. Consider
the field ¥y with 2 elements. Let us define G to be the set of 3-dimensional
vectors in the vector space IF(3), ie, G ={xyz:xvy,z € Fy }; where we have
abused the notation (x,vy, z) of a 3-dimensional vectors by simply writing it as
xyz. Note that |G| = 23 and G has a group structure with respect to addition
based on the structure in Fo. Now we construct the collection of subgroups K

and H. First, let us form the elements of KC as shown below.

K; = (010,100 ) = { 000,010,100, 110 }
K, = (001,100 ) = { 000,001,100, 101 }

K5 = (001,010 ) = { 000,001,010, 011 }
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K, = (100,011 ) = {000,100,011,111 }
Ks = (010,101 ) = {000,010, 101,111 }
K = (001,110 ) = { 000,001, 110,111 }

K7 = (110,011 ) = {000,110, 011,101 }

Define the set K = { Ky, Ks,...,K; }. Then,

K| = 22 for all i =
1,2,...,7. Next, we construct the collection of subgroups H by the intersection

of the elements in .

Hy ={100) = K, N K, N K4 = {000,100 }
H,={010) = K, N K3 N K5 = {000,010 }
Hs = {(001) = Ky N K3 N Kg = {000,001 }
Hy={110) = K, N K¢ N K7 = {000,110 }
H;={101) = Ky N K5 N K7 = {000,101 }
Hg={(011) = K3 N K, N K7 = {000,011 }

H;={111) = K, N K5 N Kg = { 000,111 }

Define the set H := {Hy, Hs, ..., H7}. Then,

H;| =2foralli=1,2,...,7.

It is straightforward to see the parameters value are
(i) s =2;

(ii) since for each K € K there are three H!s contained in it (e.g., K, contains

Hi, Hy and H,), thent = 3 and
(iii) since |IC| =7, then § =T.

Hence, the group G together with the collection K and ‘H as defined above
forms a (2,3,7)-PCP®),
Example 4.14 (Generalized construction of PCP® with maximum value of /3)

Let T, be a finite field and G = F3, K be the collection of all the 2-dimensional
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subspaces of G and H be the collection of all the 1-dimensional subspaces of G,
then (IC, H) is a POP® of G, as seen in Example 4.3. If we set s = n and then

we calculate the value of 8 using the following result.

If V is an m-dimensional vector space over F,, then the number of

k-dimensional subspaces of V' is

(n™ —1)(n™ —n)--- (n™ — nk1)
(nkF —1)(n* —n)--- (nkF —nk-1)

Here, to find out the value of B means, to find the number of elements in the

collection K. Hence, use m = 3 and k = 2 in the above result and we get

(n®—1)(n* —n)
b (n?2 —1)(n% —n)
_(n— (n?>+n+1)(n)(n*—-1)
(n?* =1)(n)(n —1)

Since n = s, we have | = s*> + s+ 1/.

4.4 Some results from group theory

Theorem 4.15 Let G be a nilpotent group of order s> (s > 2) and p be a prime
divisor of s. Let P be a Sylow p-subgroup of G. If there exists a collection of
subgroups K and H as defined in Definition 4.2, i.e., if there exists a (s,t, 3)-

PCP®) of G, then there exists a PCP®) of P.

Proof : Let (IC,H) be a PCP®® of G such that |G| = s* = p*" - n, for some
positive integers r and n. Since G is nilpotent, P is a normal subgroup (unique
Sylow p-subgroup) of G. For any K € K (note that |[K| = s* = p*" - m, for
some positive integer m), we have K N P is a Sylow p-subgroup of K and hence

|KNP| = p?". Alsoforany H € H, by the same reasoning we have |[HNP| = p.
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Now replace K by K N P and H by H N P and form the new collection of
subgroups X' and H’ respectively. By above details, the conditions (a) and (b)
in the definition of PCP® for (K, ') of the group P are verified. Axiom (c) is
true because the new collection 7’ is induced by the old collection H. To prove

the axiom (d), let H, H}, € H' such that
(i) H{ = H, NP and H), = Hy, N P, where H,, H, € ‘H and
(ii) (H1 U Hy) C K for some K € K.

Then,

H{UH,=(HiNP)U(HyNP)
=(HiUH)NP
CKNP

= K', for some K’ € K’ such that K’ = K N P

i

In the above theorem we discussed PCP®) from nilpotent groups. But, it
may not be possible to generalize the result to any groups. However, we can still
obtain a weaker result (for any group), which we prove in the Theorem 4.18.

First, we observe some useful lemmas.

Lemma 4.16 Suppose (K, H) is a PCP® on a group G of order s>. If H € H
and K € K suchthat H ¢ K, then HNK = {e }and HK = G.

Proof : Every subgroup H € H is formed by the intersection of K’s in /C, but
H ¢ K implies H contains no other element of K except the identity element
e. Thus H intersects trivially with K. The second part is trivial from first part

by counting the number of elements in H .

Lemma 4.17 Suppose (IC, H) is a PCP®) on a group G of order s. Then for

any two distinct K1, Ky € K, we have K1 K5 = G.
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Proof : Let K; # K, be two elements of /C in the PCP®) of G. Then
K, N Ky, = H for some H € H such that |H| = s, by axiom (b) of PCP®).

Hence,
K| K] 878t

K Ky| = = = g3
| ! 2| |K1F‘|K2| S s

Since K1 Ky C G, we get K1 Ky = G.

Theorem 4.18 Let G be a group of order s* (s > 2) and p be a prime divisor
of s. Let P be a Sylow p-subgroup of G. If there exists a collection of subgroups
K and H as defined in Definition 4.2, i.e., if there exists a (s, t, 3)-PCP®) of G,
then there exists collections K' and H' such that (K', H') satisfies the conditions

(a) to (c) in Definition of PCP®) for P.

Proof : Let (K, ) be a PCP® of G. For each K € K, there is a g € G such
that with g/K g~ N P is a Sylow p-subgroup of gK ¢g~! (by Lemma 2.23). Now,

replace K by gK ¢! and define the new collection of subgroups K’ as follows:

K ={(gKg)NP: K, eK,1<i<p}

Then, for each i,

(9:K;9; ') N P| = p*" and moreover, |K'| = 8 since |K| = 8.

Let us define the new collection of subgroups #’'.
H={H =K/ NK,: K|,K,eK'}

(a) Let H], H), € H', and K| € K’ such that

(i) Hy # Hjy, Hi = K1 N K3, Hy = Ky N K
(ii) K| = g;K;g; ' for K; € Kandi=1,2,3,4;
(lll) Kl N K2 = Hl,Kg N K4 = Hl, for Hl,HQ € H and

(iv) either H; € Ksor Hy € K4
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Then,

Hi N Hy = (K] N K () (KN KD
= (1 K197 N (925295 )] () [(93 K395 ) N (9aKagy DI () P
= [g(K1 N K)g™'] () (95 K55 ) N (9aKags DI () P
for some g € GG [by Lemmas 4.17 and 2.21]
= [(gHg™") N (95K395 )] N (9akagy ) N P
={e} N (gsK4g9;") N P, if H; Z K3 then use Lemma 4.16
and Remark 2.22 to get trivial intersection for the first two
terms (else we must have H; ¢ K,) and apply same argument

to 1° and 3" term

={e}
(b) For H' € ‘H', we have

H' = K| N K3, for some K, K € K’
= (1 K197 ") N (g2 K295 1) N P, for some g1, g2 € G and K1, Ky € K
= g(K1 N Ky)g~' N P, for some g € G [by Lemmas 4.17 and 2.21]

= gHg ' N P, for some H € H
By Lemma 2.23, gHg ! N P is a Sylow p-subgroup of gH g~ ! and hence
|H'| = |gHg™ ' N P|=p"
(¢) True by the definition of K’ and H'.

Theorem 4.19 Let G be an abelian group of order s> (s > 2). Suppose (K, H)
is a PCP®) of G. Then G =2 H, x Hy x Hs, for three some Hy, Hy, Hs € H.

Proof : Let K, K; € K such that K; N Ky = Hj3. Then, by Definition
4.2 axiom (c), there exists H; C K; and Hy C K,, where H{, H, € H and
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H, # Hj3, Hy, # Hs. Then, we have H3; ¢ H; x H,. By Definition 4.2
conditions (a) and (b), we see that each H; (« = 1, 2, 3) intersect trivially and
|G| = |H,HoH;| = s*. Hence, using these facts and that H3 ¢ H, x H,, we
conclude G & H; x Hy x Hj.

Theorem 4.20 Let G be group of order s* (s > 2). Suppose (K,H) is a PCP®)
of G. Let H € H such that H is a characteristic subgroup of some K € K and
H ¢ K’ for some K' +# K in K. If K, K' are normal subgroups of G, then
G>=HXxK'.

Proof : Since H € ‘H and K’ € K such that H ¢ K’, by Lemma 4.16 we have

HNK ={e}andG=HK'

Since K’ and K are normal subgroups of GG, and H is characteristic in K,
we have H is a normal subgroup of G. Hence, G is a direct product of H and

K'.
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Chapter 5

Association Scheme

In 1952, Bose and Shimamoto [19] introduced the concept of an association
scheme of class n or simply n-class association scheme. In this chapter we
establish a relationship between 3-net and association scheme of class three [3]

and calculate various parameters that are not listed in [3].

5.1 Definition and Example

Definition 5.1 Let A be a finite set and R;’s be non-empty subsets of the cartesian

product of A, where i € {0, 1,--- ,n}, satisfying the following conditions:
(AS1) Ry ={(z,z):z € A};
(AS2) Ax A==} R;and R; N\ R; = 0 fori # j;

(AS3) foreachi € {0,1,--- ,n}, define RI as follows:

RT;:{(y7$)€AXAZ([E,y)GRi},

7

then RI = R; for some j € {0,1,--- ,n}; and

(AS4) for each i,j,k € {0,1,--- n} and for each (x,y) € R;, the number
of z € A such that (x,z) € R; and (z,y) € Ry, denoted by pé»k ,isa

constant.
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S = (A; Ro, Ry, -+, R,,) is an association scheme of class n on the finite set

A.

Furthermore, we say S is symmetric if

(AS5) foralli =1,2,--- .,n, RI = R; ; and

we say S is commutative if
(AS6) foralli,j,k=1,2,--- n, pj-k = p};j )

Remark 5.2 It is a well know fact that a symmetric association scheme is always

a commutative association scheme.

Example 5.3 (Strongly Regular Graphs) Let G = (V, E) be a strongly regular
graph with V' being the vertex set and F being the edge set of the graph (please
refer to [4] for definition of strongly regular graph with parameters of an asso-
ciation scheme). Let us define the classes (R;’s, for i = 0,1, 2) in the following

way:

Ry={(v,v):veV}
Ry = { (u,v) : foru,v € V, there exists an e € FE such that e = uv }; and

Ry = { (u,v) : foru,v € V, there does not exists any e € E such that e = uv } .

Then (G; Ry, R1, Ry) is a symmetric association scheme of class 2 on G.

5.2 2-net and Association Scheme of Class 2

Using the incidence relationship between the points and lines we prove that a
2-net gives rise to an association scheme of class 2. First, we define some of the

notations below.
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Notations : In this chapter, we will use the following notations for all 7, 7, k =

1,2, 3.
(i) n;(p) denotes the number of i*" associates of p € X’;
(ii) n; denotes number of i*" associates of any point on the net; and

(i) if p,p’ € X are i*" associates, the number of j" associates of p which are
k" associates of p’ is denoted by pé- +(p, p') and the same is simply denoted

by pl, for any p,p’ € X.

Theorem 5.4 (2-net = Association Scheme of Class 2) Let N = (X, L,T) be

a 2-net. Define the following
(@) Ro={(z,z):xeX };
(b) Ry ={ (z,y) : x,y € lfor somel € L and x # y }; and
(¢c) Ro={(x,y):x,yé¢lforanyl € Landx #y }.
Then S = (X; Ry, Ry, Ry) is an association scheme of class 2 on X.
Proof :
(AS1) R, satisfies (AS1) trivially.

(AS2) For any two points of the net p; and ps, only one of the following scenarios

can happen:

(i) there exists I € L such that (p;,l) € Z and (ps,!) € Z (i.e., they are
joined by a line) or
(ii) for any [ € L one has (p1,1) ¢ Z and (po,1) ¢ Z (i.e., they are not

joined by a line)

Hence, the definition of ?; and R, coincide exactly with these possible
scenarios, where I?; corresponds to (i) while Ry corresponds to (ii). They
are also disjoint, i.e., both the scenarios cannot happen at the same time.

Thus, R; and R, gives a partition of X X A" and thus satisfying (AS2).
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(AS3) It is trivial to see that RZ-T = R; for all ¢ and so it satisfies (AS6). Thus
(AS3) is also satisfied (with j = 7).

(AS4) We calculate the parameters below.

(i) n =t(s—1),
(ii) 12 = s> — (s — 1),
(i) pyy = (s —2) + (t = 1)(t — 2),
(iv) Py = t(t — 1),
(V) 3z = n2(p) — P21 (P, P),
(Vi) py1 = pia = na(p) — p1: (p, ).

Now, it is clear that all the parameters are dependent on s and ¢, which are

constants. Hence, pé- ;. is constant for all 7, 7, k.

5.3 3-net and Association Scheme of Class 3

In this section we use the incidence relationship between the points, lines and

planes to define the association between them as in [3].

Definition 5.5 Let N = (X, L, P,Z) be a 3-net and let us define the following.
(a) Ry ={(z,z):x€X};

(b) Ry ={(z,y) : z,y € lforsomel € Landx # y };

(¢c) Ro={(x,y): 2,y ¢ RyURyand x,y € II for some II € P }; and

(d) Rz = X?\ (RyURUR,).

We call the set of points x,y with (x,y) € Ry as first associates, the set of
points x,y with (z,y) € Ry as second associates and the set of points x,y with

(x,y) € Rs as third associates.
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In words, we say that two distinct points of N are first associates if they lie
on the same line, second associates if they do not lie on the same line but lie on

the same plane and third associates if they do no lie on the same plane.

The following theorem is proved by R. Laskar in sections 2, 3 and 4 of [3].

Theorem 5.6 Let N = (X, L,P,T) be a 3-net and Ry, R, Ry and R3 be de-
fined as in Definition 5.5. Then S = (X; Ry, Ry, Rs, R3) is an association

scheme of class three on X.

Before we begin the calculation of parameters that are not listed in [3], we
state some of the important results from [3], which are very much useful in our

calculation.

Theorem 5.7 Let p be a point of a 3-net and | be a line of the net such that p

and | are non-coplanar. Then, there are (3 — 1) second associates of p on .

Theorem 5.8 Let p be a point of a 3-net and II be a plane of the net such that p

and 11 are non-coplanar. Then

(i) there are ( — 1) lines in II which are coplanar with p;

(ii) there are v points on II such that they are first associates of p, where

(B-0(-1
=,

v =
(iii) there are w points on II such that they are second associates of p, where

w=<DK5—D@—H4%H%—B+UW—ML
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Notations : In the following results, below notations are used, in addition to the
ones defined in Section 5.2. For all 7, j, k = 1,2, 3;
(i) n¥(p) denotes number of 7' associates of a point p on the plane 7; and

h

(ii) if p,p’ lie on a same plane IT such that they are i*" associates in II, the

number of ;" associates of p which are k" associates of p’ in IT is denoted

by "pt,..

Lemma 5.9 Let N = (X,L,P,I) be a 3-net as in Definition 3.4 and for all
1,7,k = 1,2,3, let n; and pé-k be the notations as defined above, and u be the
number of lines passing through any given point of the net. Then, for any two

points p and p' of N, we have

(i) piz =31 =0,

(ii) pis=p3; = (u—1t)(s—B+r),
(iii) piy = piy = u(s = f+r —1).
Proof :

(i) Let p and p’ be first associates. Then p}, means that the number of first
associates of p which are third associates of p/. That is same as saying,
the number of first associates of p other than p’ which are not the first or

second associates of p’, which is represented by the following equation.

pis = (ni(p) — 1) — pli(p. p') — pa(p, P) (5.1)

Here, we use the following results from [3], in the above equation (5.1).

ni(p) =u(s—1);
ph(p,p) = (s —2)+ (u—1)(t —2) ; and

Pio(p, ) = (u—1)(s —t+1).

72



CHAPTER 5. ASSOCIATION SCHEME 5.3. 3-NET AND ASSOCIATION SCHEME OF CLASS 3

Thus,

pis = [u(s = 1) = 1] = p11 (0. 7') = P1a(p, P)
(s —1) =1 —(s—2) = (u=1)(t—=2) — (u—1)(s —t +1)
—uls—1)—1—s+2—(u—1)(t—2+s—t+1)
—u(s—1) —s+1—(u—1)(s—1)
— (5= D(u—us1)—(s—1)
(5= 1) = (s - 1)
~0

(ii) Let p and p’ be second associates and use the same logic in the proof of (i)

to see that

pls =ni(p) — i (p,0') — Pia(p. D).

From [3], p?,(p,p’) = t(t — 1) and use the value of p%,(p, p’) from Lemma
5.11(iii). Thus,

pla=uls —1) —t(t —=1) = t(s —t) = (u—t)(B =1 —1)
=u(s—1)—tlt—1+s—t)— (u—t)(B—r—1)
=u(s—1)—t(s=1) = (u=t)(F—r—1)
= -Du—-t)—(u=-t)(F—r—1)
=(u—t)(s=1-F+r+1)

=(u—t)(s—F+r)

(iii) Let p and p’ be third associates and similar to the proof of (i) and (ii) above,

we see that

Py = n1(p) — iy (p,p') — pis(p, 1)
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From [3], p3,(p,p’) = 0 and use the value of p?, from Lemma 5.14(i).

Thus,

pis =u(s —1) —u(B —7)

=u(s—F+r—1)

Remark 5.10 Part (i) above can be proved easily by observing that the first
associates of p are coplanar with p'. Because, if we let | passes through p and
P, then any other line passing through p is coplanar with | and so its points are
coplanar with the points on l. So, the first associates of p can only be a first or
a second associate but not a third associate of p'. Method of proof given above

is just to follow a general principle for (i), (ii) and (iii).

Lemma 5.11 Let N = (X, L, P,T) be a 3-net as in Definition 3.4 and for all
i,j,k =1,2,3, let n(p), Hpé-k and pi-k be the notations as defined above. Let
u be the number of lines passing through any given point of the net and v, w be
the notation in Theorem 5.8. Then, for any second associates p and p' of N, we

have
(i) there is exactly one plane containing p and p/,

(ii) "p}y = piy,

(iii) p3y = pla = t(s =) + (u =)(B —r = 1),

(iv) P =p3s = B(s = (s =t +1) = [s* = t(s = )] = [(B = 1)(v+ w)],
(v) pis = ns(p) — Pa (P, P') — Pia(p, 1')-

Proof :

(i) Let I, II' € P be distinct planes containing the points p and p’. Since p, p’
are second associates, let [ be the line containing one of them, say p, such

that [ does not contain p’. For a point to lie on two planes, it must lie on
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the line of intersection of the two planes. Let I’ be the intersection of I7
and [I’. Since two planes intersect at exactly one line, p and p’ must lie on
I'. But this makes p and p’ to be first associates contradicting that they are
second associates. Hence, there is only one plane incident with any two

points which are second associates.

(ii) Itis an immediate consequence of part (i) above.

For the proof of (iii) to (vi) we let IT be the only plane containing both p and p'.
(iii) We calculate p2, in two parts :

(a) the number of second associates of p which are first associates of p’

on I1, denoted by /p2,; and
(b) the number of second associates of p which are first associates of p’

on planes other than /1, denoted by ~7p3,.

Then,

pgl = (Hpgﬂ + (_Hpg1)~

(a) The number of second associates of p which are first associates of p’
inside 71, is nothing but the number of first associates of p’ in 7, take
away the number of first associates of p which are first associates of p’

in I/, i.e.,

Tps, =ni'(p)) — "py =0’ () — piy-

Next we calculate ni(p’), the number of first associates of p’ in I1.
By the axiom (N3()) of a 3-net, there are ¢ lines passing through p’

in IT and for each of these lines, there are (s — 1) points other than p'.
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Hence, the number of first associates of p/ is

Thus,

(b) There are (u — t) lines passing through p’ such that the lines are not
incident with I/. By Theorem 5.7 each of these lines intersect with
(6 —r —1) planes (other than IT) containing p (but not containing the
lines through p, otherwise that will make these planes contain both p

and p/, giving a contradiction). Hence,

My = (u—=t)(B—r—1).

Finally, we get

P =ts =)+ @w—-1)(B-r—1)

(iv) No point of /7 will contribute to our count, so we consider only the points
on planes other than /7. To find the third associates of p which are second
associates of p/, it is the same as saying that count the second associates
of p’ outside /I and take away the first and second associates of p on
the planes passing through p’ from that count. For the latter, we just use
Theorem 5.8 (ii) and (iii) by considering the planes through p’ and the
point p (note that none of these planes will contain p, and hence we can

apply Theorem 5.8). Thus,
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p§2 = second associates of p’ — first and second associates of p on the
outside [/ planes passing through p’
= [@) - "n@)] - [(B-D+w)

={B(s = 1)(s =t +1)] = [s* = t(s = D]} = {[(B - (v +w)]}

where we have used “ny(p') = s2 — t(s — 1).

(v) Similar to the proof of Lemma 5.9(i).

Lemma 5.12 Let N = (X, L, P,Z) be a 3-net as in Definition 3.4 and for all
i,j,k = 1,2,3, let nf'(p), "p’), and p’y, be the notations as defined above. Let
u be the number of lines passing through any given point of the net and v, w be
the notation in Theorem 5.8. Then, for any first associates p and p' of N and [

be the line passing through p and p', we have

(i) pp =Py = (u—1)(s =t + 1),

(ii) pgy = pyg = (B —7)[s* —t(s — 1) —w],
(iii) 35 =n3(p) — P31 (p: D) — P32 (. D).
Proof :

(i) Since [ contains p and p’, any point on [ is a first associate of p’ but not a
second associate of p and hence it cannot contribute to our required count.
Also, the third associates of p cannot be first associate of p’. So, it remains
to remove the first associates of p which are first associates of p’ other than
the points on the line [ from the overall first associates of p’ other than the

points on [, i.e.,

py, = first associates of p  —  first associates of p which are first

not on / | associates of p’ not on [

(a) (b)
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(a) There are (u — 1) lines through p’ other than [ and for each of these

lines, there are (s — 1) points other than p’. Hence,

(@) =(u—1)(s—1).

(b) Since each point of the net passes through u lines, p’ passes through
(u—1) lines (ignoring the line [ which passes through p) that lie on the
same plane as p’. Every such line intersect with (¢ — 2) lines passing
through p’. Hence, for each of these (v — 1) lines, there are (¢ — 2)

points other than p. Thus,

(b) = (u = 1)(t = 2).

Hence, we have

Py = (u=1)(s = 1) = (u=1)(t - 2)
=u—-1)(s—1—-t+2)
=(u—1)(s—t+1)

(ii) The number of second associates of p’ on a plane containing p’ is s? —
t(s — 1). There are exactly r planes containing [. Hence, there are exactly
r planes containing both p and p’. So, (8 — r) planes contain only p (but
not [ and p). Thus, we have (3 — r)[s? — t(s — 1)] second associates on
the planes only incident with p’. Of these, there are points which lie on
the same plane as p which needs to be removed. By Theorem 5.8 (iii),
this count is w for each plane containing p and there are exactly (3 — r)
such planes. Hence, the points that needs to be removed from the previous

count is (f — r)w. Thus, the total count is

Pp=(B—r)[s" —t(s =] = (B—r)w=(8—7)[s" —t(s — 1) —w].

(iii) Similar to the proof of Lemma 5.9(i).
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Remark 5.13 Part (i) in Lemma 5.12 above can also be proved using the same

logic in Lemma 5.9 (i), i.e., using the equation

py =nm(p) — 1 —py(p.p') — pii(p, D).

Lemma 5.14 Let N = (X, L, P,Z) be a 3-net as in Definition 3.4 and for all
i,5,k =1,2,3, let n(p), ! p;.k and pé»k be the notations as defined above. Let u
be the number of lines passing through any given point of the net and v, w be the

notation in Theorem 5.8. Then, for any third associates p and p' of N, we have

(i) p3 = pla = uw(B — 1),

(i) p3y = p3s = Bls* —t(s — 1) —w],
(iii) p3s = n3(p) — P31 (0, P') — P3a(p, )
Proof :

(i) There are u lines through p’ and since p and p’ are non-coplanar, each of
these lines are non-coplanar with p. By Theorem 5.7, for each of these u

lines, there are (3 — r) second associates. Thus, p3, = u(8 — 7).

(ii) The second associates of p’ on a plane containing p’ is s> — (s — 1). Since
there are 3 planes containing p’, we have 3[s* — (s — 1)] second associates
on the planes incident with p’. Of these, there are points which lie on the
same plane as p which needs to be removed. By Theorem 5.8 (iii), this
count is w for each plane containing p and there are 3 such planes. Hence,
the points that needs to be removed from the previous count is Jw. Thus,

the total count is
Py = Bls* —t(s —1)] — Bw = B[s* —t(s — 1) — w].

(iii) Similar to the proof of Lemma 5.9(i).
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Lemma 5.15 Let N = (X, L,P,Z) be a 3-net as in Definition 3.4 and for all
1,7,k =0,1,2,3, let n; and pé-k be the notations as defined in Section 5.2. Then,
we have the following results (where part (i), (ii) and (iii) takes only non-zero

values of i, 7, and k).

' o 0 Jj#k . , 0 ¢#0
() Pjr = (iv) Poo =
n; j==k 1 +=0
0 i#k 0 7#0
(41) Pox = (v) p?oz
1 i=k 1 7=0
: 0 i#j 0 k+#0
(iid)  pjo = (vi)  pox =
1 1= 1 k=0

Proof : Let p and p’ be distinct points of the net N. We prove part (i) and (ii)

only, as the proof of the remaining results are similar and easy.

(i) Let p be the zero associate (i.e., p itself) and p’ be a j** associate of p.
Then, if we want p’ to be a k" associate of p, we must have j=k;elsep
does not exists. For example, if j = 1 and k& = 2, then p’ cannot be first
associate of p and second associate of p at the same time. Thus, p?k =n;

when j = k and zero otherwise.

(ii) Let p and p’ be i associates. It is clear that the only possible values of D
are 0 and 1. If we want p to be a k*" associate of p’, we must have i = k.
For example, if p and p’ are first associates (i = 1), since the zero associate
of p is just p, p can only be first associate of p’ (k = 1). Thus, pi, = 1

when 7 = k and zero otherwise.
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Chapter 6

Higher dimensional Nets

6.1 Finite nets of dimension n

J. Dunbar and R. Laskar extended the notion of Bruck’s net to an arbitrary
dimension n in 1978 [10]. We do not give the original definition of finite nets
of dimension n; but we present below the equivalent definition using incidence

relation and call it as n-net.

Definition 6.1 (n-dimensional net or n-net) Let s,t,r,n and 3;, 1 < i < n,
be integers greater than one. Then a system N™ consisting of (n + 1)-tuple
(Noy N1, ..., N1, Z), where each N;, 0 < i < n — 1, is a non-empty finite
collection of undefined objects called i-sets or i-flats, together with incidence
structure L defined by

Ic |J NN

i,j: i4,i<]
satisfying the following conditions is called n-dimensional net. For convenience

we shall simply call it as n-net instead of n-dimensional net.

(N1™) Foreachi=1,2,--- ,n—2andfor N € Ni_1, N' € N;and N" € Ni|1,
such that (N, N') € T and (N',N") € Z, then (N, N") € 1.

(N2 For eachi = 1,2,--- ,n — 2 and for M € N;_, and N,N' € N; such
that (M,N) € T and (M,N’) € I, there exists M' € N1 such that
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(N, M) € T and (N', M") € T.

(N3™) Foreachi=1,2,--- ,n—1andfor N € N;, there exists N' € N, such
that (N,N") € T.

(N4™) The 0-sets and (n — 1)-sets on N™ are called points and hyperplanes
respectively. For each | = 1,2,--- ,n — 1, there exists B, B, - - - ,Bgl
such that
(a) BY, B, B} is a partition of Ni;

(b) For each BL(k = 1,2,--- ;) and for any N;, N; € B, either they
are the same or they are parallel;
ie, N; = Njor{Nye Ny: (No,N;) eZ} N{No €Ny :
(No, N;) €Z} =0.

(c) For each N; € B and N; € B, such that m # k, there exists a
unique N € Nj_y such that (N;, N) € T and (N;, N) € I. Further,
forany N € N, (I <n—3) suchthat (N, N;) € Z)and (N, N;) € 1),
then N € Nj;

(d) For each Ny € Ny and for each k = 1,2,--- , 3, there is a unique
N € Bl such that (Ny, N) € T.

The sets BL, B, . . ., Bgl are called the parallel classes of hyperplanes.

(N5™) (a) For each Ny € Ny, if we define

N(;:{N()ENOZ(N(),NQ)EI}
N{:{Nl GNll(Nl,NQ)EI}

T = {(No, V1) : (No, Ny) € Z, Ny € Njjand N, € N }

then (N, N{,T') forms a 2-net.

(b) For any i such that, 3 < i < n — 1, let N; be a i-set. A finite net of
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dimension i, say NGO je.,
NGO = (No, N1, -+, N;_1) is a finite net of dimension 1,
is formed by the k-sets defined by
L ={N €Ny :(N,N;) €Z,N,; € N;}, forall k such that 0 < k < i.

We also have [(3;, the number of parallel classes of each hyperplane

N
Example 6.2 A finite affine n-space with s points on each line [10].

Definition 6.3 (Partial Congruence Partition - PCP in n-dimension) Let G be a

group of order s™, s > 2. Let us define the following collections of subgroups of

G

Icn—l g {Hn—l . Hn—l S G and |Hn—1‘ — sn—l}
(i.e., K"t is a collection of some subgroups of G of order s"')
K2 ={H"?=H{""NHy" :H"' Hy ' € K" and |H"?| = 5"}

K2 ={H"?=H{">NHy?: H> Hy > € K" ?and |H"*| = 5" }

K'={H'=H{NH;:H{ H) € K*and |H'| = s}

such that the following conditions hold:

(a) forall H}, HY € K, either Hl = Hy or Hl N H} = { e }, where ¢ is the

identity element of G,

(b) foralli =1,2,--- ,n— 1and for all H* € K, there are exactly j3; distinct

subgroups H'=' € K'=! such that H'~' c H',t > 2;
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(c) foralli =1,2,--- ,n— 1and forall Hi, Hy € K', there exists a subgroup

H™ € K™ such that H U Hy € H'™;

(d) For any i such that, 3 <1 < n — 1, and for k such that 0 < k < i,

(KF, KF1 ..o KY) isa PCPY, ie., PCP of dimension i.

Then (K", K72 -+ K1) is called a partial congruence partition of di-
mension n in G, denoted by PCP™. If we assume |[K"7'| = BV (ie,
the number of elements in K", not the (n — 1) power of j3), then we call
(s,t, 3""V)-PCP in G, where the elements of K"~ are called hyperplane com-

ponents and the elements of K' are called line components.

Remark 6.4 K" K2 ... K can be defined recursively as follows. For

K'={H =H""nH;" : H{"" Hi™ € K" and |H'| = ' }.

Proposition 6.5 (PCP™ = n-net) Let G be a group and (K"~', K72, .- | K1)

bea PCP™ as defined in 6.3. Define aplane geometry N™ = (Ny, N1, ..., Ny_1,T)

where
(l) NO - G;
(ii) foreachi =1,2,--- ,n — 1 define the sets N; recursively as follows:

Ni={gH :g€Gand H € K'} ; and

(iii) T = { (g,hH") : gh € G,H" € K" and g € hH' for each i =

,2,---,n—1} U { (hH  KH™) : hk € G,H" € K' such that

hH' C kH™! foreachi=1,2,--- ,n—2}.
Then (No, N1, ..., N,_1,T) is an n-net.
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6.2 Conclusion

Since we have defined PC'P™, then we can follow the same group theoretic
approach as discussed in two dimension and three dimension cases and get the
similar results for n-dimensional case. We state some of them below. The proofs
should be very similar but are really tedious and long to write down. Hence, we

do not go into those details.

First major result we can immediately infer is that, one can recover a n-net
from PC P using the incidence relation and by doing a proper setting of points
and hyperplanes from the definition of PC' P . We can also define translation
nets of dimension n and prove the equivalency between translation nets of di-

mension n and PCP™,

The upper bounds for each (; can be calculated using the similar approach
in Chapters two and four. Also, it is not difficult to use the examples in these
chapters to construct examples with maximum value of ;, for each ¢. Later,
one can use the sylow theorems in group theory and can attempt to express the

groups in translation nets of dimension 7 as direct product of it’s subgroups.
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