
EFFICIENT COMPUTATION
OF DIVERSE QUERY RESULTS

LI LU

NATIONAL UNIVERSITY OF
SINGAPORE

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48811833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NATIONAL UNIVERSITY OF SINGAPORE

DOCTORAL THESIS

EFFICIENT COMPUTATION
OF DIVERSE QUERY RESULTS

Author:
LI Lu

Supervisor:
Prof. CHAN Chee-Yong

A thesis submitted
for the degree of Doctor of Philosophy

in the

Department of Computer Science
School of Computing

2015

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its
entirety.

I have duly acknowledged all the sources of information which have been used in the
thesis.

This thesis has also not been submitted for any degree in any university previously.

Li Lu

July, 2015

I

i

ACKNOWLEDGEMENT

This thesis is the majority part of the research work done in my six-year Ph.D. period. In
the period, I have received helps from many people. I will take this opportunity to thank
them.

I would like to express the deepest appreciation to my supervisor, Prof. Chan Chee-Yong.
Without his guidance and persist help, my thesis would not have been finished. During
the last six years, he has spent countless time to patiently guide me to build interesting
ideas, strengthen the algorithms and improve the writings. As a supervisor, he shows his
wisdom, insights, wide knowledge and conscientious attitude. All of these set me a good
example to be a good researcher.

I would like to sincerely thank Prof. Tan Kian Lee and Prof. Stephane Bressan, who
are members of my evaluation committee and provided me with constructive feedback to
refine my research work.

I would also thank the group members from the NUS database research group: Bao
Zhifeng, Wang Guoping, Wang Zhengkui, Zhang Dongxiang, Li Hao, Zeng Zhong, Kang
Wei, Zhou Jingbo, Wu Huayu, Zheng Yuxin, Tang Ruiming, Song Yi, Zeng Yong, Xiao
Qian, etc.

Last but not least, I would like to thank my family: my father Li Junming, my mother
Niu Yueling, my brother Li Wei, my sister Li Qi and my wife Wang Haiyan, for their
invaluable support and understanding throughout my six-year Ph.D. study.

CONTENTS

Declaration I

Acknowledgement i

Abstract ix

1 Introduction 1

1.1 Query Result Diversification . 2

1.2 Research Problems . 3

1.2.1 Indexing for Dynamic Diversity Queries 4

1.2.2 Evaluation of Multiple Diversity Queries 6

1.2.3 Diversified Spatial Keyword Search 8

1.3 Thesis Contributions . 11

1.4 Thesis Organization . 12

iii

CONTENTS

2 Related Work 15

2.1 Query Result Diversification . 15

2.1.1 Content-based Diversification 16

2.1.2 Intent-based Diversification . 18

2.1.3 Diversification Models . 19

2.2 Query Processing Techniques . 22

2.2.1 Multiple Query Optimization . 22

2.2.2 Adaptive Query Processing . 23

2.2.3 Index Tuning Systems . 24

2.3 Diversified Spatial Keyword Search . 24

2.3.1 Spatial Keyword Search . 25

2.3.2 Circle Placement Problem . 27

3 Indexing for Dynamic Diversity Queries 29

3.1 Overview . 29

3.2 Diverse Query Results . 30

3.3 Challenges for Dynamic Queries . 34

3.4 Our Approach . 36

3.4.1 Core Cover . 36

3.4.2 Diversity Index . 38

3.4.3 Result Trie . 40

3.4.4 Overview of Query Evaluation 41

iv

CONTENTS

3.4.5 Sufficient Condition for Core Cover 43

3.5 D-Index Variants . 47

3.5.1 Relevant Index Levels (RI-levels) 47

3.5.2 Definitions & Notations . 48

3.5.3 D-tree Index . 49

3.5.4 D+-tree Index . 51

3.5.5 Implementation Issues . 58

3.6 Evaluation Algorithms . 58

3.6.1 D-tree Index . 59

3.6.2 D+-tree Index . 60

3.7 Extended Evaluation Method . 62

3.8 Index Selection . 65

3.8.1 Full D+-tree Selection . 65

3.8.2 Partial D+-tree Selection . 67

3.9 Performance Study . 67

3.9.1 Static Diversity Queries . 70

3.9.2 Dynamic Diversity Queries . 73

3.9.3 Performance on Index Sets . 77

3.9.4 Comparison on Real Data Sets 78

3.10 Summary . 79

v

CONTENTS

4 Evaluation of Multiple Diversity Queries 81

4.1 Overview . 81

4.2 Framework . 83

4.3 Multiple Diversity Query Evaluation . 85

4.3.1 Query Evaluation Sharing . 86

4.3.2 Query Evaluation Switching . 89

4.4 Online Index Tuning . 92

4.4.1 Generation of Candidate Indexes 93

4.4.2 Index Selection . 94

4.5 System Implementation . 97

4.6 Performance Study . 101

4.6.1 Comparison for two queries . 103

4.6.2 Comparison for a query workload 105

4.7 Summary . 108

5 Diversified Spatial Keyword Search 111

5.1 Overview . 111

5.2 Problem Definition . 113

5.2.1 DSQ Query . 114

5.2.2 N-DSQ Query . 116

5.3 Challenges For Spatial Diversity Query 117

5.4 The IOQ-tree Index . 119

vi

CONTENTS

5.4.1 OQ-tree Index Structure . 120

5.4.2 Summary Information in Nodes 124

5.4.3 OQ-tree Vairants . 127

5.4.4 Data Operation . 130

5.5 Evaluation of DSQ queries . 134

5.5.1 OQ+-tree Evaluation . 135

5.5.2 OQ∗-tree Evaluation . 139

5.6 Evaluation of N-DSQqueries . 144

5.7 Experiments . 145

5.7.1 Simple DSQ queries with only one keyword concept 147

5.7.2 DSQ queries with multiple keyword concepts 151

5.7.3 Comparison on Evaluations for N-DSQ queries 154

5.8 Summary . 155

6 Conclusion 157

6.1 Contributions . 157

6.2 Future works . 159

6.2.1 d-order Recommendation . 159

6.2.2 Adaptive Query Evaluation Generalization 159

6.2.3 Efficient Spatial Diversification Model 159

Bibliography 160

vii

CONTENTS

A Lemma Proofs 171

A.1 Proof of Lemma 3.1 . 171

A.2 Proof of Theorem 3.1 . 172

A.3 Proof of Lemma 3.3 . 173

A.4 Proof of Lemma 4.1 . 173

A.5 Proof of Lemma 4.2 . 173

A.6 Proof of Lemma 5.1 . 173

A.7 Proof of Lemma 5.2 . 174

A.8 Proof of Lemma 5.3 . 175

viii

CONTENTS

Abstract

Query result diversification aims to enhance the quality of query results presented to users

by ranking the results based on diversity so that more informative results are presented

first. In this thesis, we study three problems related to the efficient computation of di-

verse query results. Firstly, we study the problem of evaluating diversity queries in the

context of relational database systems where query results are diversified with respect to

a sequence of attributes (known as the d-order) such that attributes that appear earlier

in the d-order have higher priority for result diversification. We design a new indexing

technique (termed D-Index), which is based on a trie-like structure, to efficiently evaluate

diversity queries. Our experimental evaluation demonstrates that the D-Index not only

outperforms the state-of-the-art techniques by up to a factor of 2.7 for diversity queries

with static d-orders but also outperforms baseline techniques by up to a factor of 3.5 for

diversity queries with dynamic d-orders.

Secondly, we study the optimization problem of evaluating multiple diversity queries in

an online environment, and develop three new evaluation techniques. The first optimiza-

tion technique aims to improve query response time by judiciously reordering queries

to increase opportunity for shared index scans. The second optimization is an adaptive

query evaluation technique that enables an existing running query to dynamically switch

to a different index scan that is used for evaluating a new query. The third optimization is

an online index tuning technique that leverages the results of an index scan evaluation to

create a new index at the same time. Our experimental evaluation demonstrates that our

proposed optimizations can improve performance by up to a factor of 2.

Finally, we study the novel problem of computing diverse query results in the context

of spatial keyword search which is useful for applications such as trip-planning. We

introduce two new types of spatial keyword queries to compute top-k diversified result

groups where each result group is a collection of closely located objects that match the

ix

CONTENTS

specified keywords. The first type of query diversifies the result groups based on the

semantic diversity of the objects while the second type of query additionally diversifies

the spatial locations of the result groups. We propose a novel Quadtree-based indexing

technique (termed OQ-tree), which uses both overlapping space decompositions as well as

precomputed summary information, to efficiently evaluate both types of spatial keyword

queries. Our experimental evaluation demonstrates that the OQ-tree outperforms baseline

techniques by up to a factor of 20.

x

LIST OF FIGURES

1.1 Two example diverse result sets . 6

1.2 Index Sharing Scan . 7

1.3 Example spatial objects . 10

2.1 Circle Placement Problem . 28

3.1 Diverse Query Results, d-order δ = (Brand, #Core, ScreenSzie) 31

3.2 Query Results in Example 3.3 . 37

3.3 D-index on R shown in Table 1.1 with key (Brand, #Core, ScreenSize,
BatteryLife) . 39

3.4 Example for Theorem 3.1 . 46

3.5 Example for the k-sufficient property . 46

3.6 Sequence of updates to result trie by D-tree evaluation in Example 3.12 51

3.7 Sequence of updates to result trie by D+-tree index evaluation in Exam-
ple 3.14 . 55

xi

LIST OF FIGURES

3.8 Comparison of two tree size . 57

3.9 Diversity Query . 68

3.10 Effect of data size on Q1 . 70

3.11 Effect of limit size k on Q1 . 71

3.12 Effect of the number of SPA . 72

3.13 Effect of the SPA Position for SDQs . 73

3.14 Effect of limit size k on Q6 . 74

3.15 Effect of the length of query d-order . 75

3.16 Effect of the attribute ordering . 75

3.17 Effect of the SPA Position for DDQs . 77

3.18 Comparison on different index sets . 78

3.19 Comparison with laptop data sets from eBay 79

4.1 The framework for multiple online diversity queries 83

4.2 An example plan-bipartite-graph for multiple diversity queries 86

4.3 Shared index scan . 87

4.4 D-Index I on R (shown in Figure 1.1) with index key (B,C,SS) 88

4.5 The mapping function . 90

4.6 D-Index I ′ on R (shown in Figure 1.1) with index key (B,C) 90

4.7 The diagram of index tuning component 92

4.8 The implementation of our system . 98

4.9 Example communication between the Scheduler and a Process 100

xii

LIST OF FIGURES

4.10 Two diversity queries . 103

4.11 Response time for two diversity queries 104

4.12 Total execution time . 104

4.13 Response time for two diversity queries 105

4.14 Total execution time . 105

4.15 The performance of ConcurrentSharedScan 106

4.16 The performance of ConcurrentTuning 107

4.17 Varying the number of clients . 108

4.18 Varying the size of reorder window . 109

5.1 Searching over basic quadtree node . 117

5.2 Example OQ-tree for the keyword concept “Singapore Restaurant” 121

5.3 Maintained summary information in a node N 125

5.4 Maintained scores for node N5 . 126

5.5 Mapping r into the r-score of N . 127

5.6 Maintained scores in a node N at level � 129

5.7 Example OQ-tree for the keyword concept “Entertainment Facility” . . . 138

5.8 Sequence of updating BHeap by OQ∗-tree evaluation in Example 5.2 . . 143

5.9 Index sizes on the two real datasets . 147

5.10 Effect of data size . 149

5.11 Effect of query limit, k . 149

5.12 Effect of query radius, r . 150

xiii

LIST OF FIGURES

5.13 Effect of query region RQ . 151

5.14 Vary κ . 151

5.15 Effect of the number of query keyword concepts |ψ| 152

5.16 Effect of query limit k . 153

5.17 Effect of query radius r . 153

5.18 Effect of query region RQ . 154

5.19 Effect of limit size k . 155

A.1 Overlap of two neighboring r-related nodes 174

xiv

LIST OF TABLES

1.1 Laptop Example . 5

3.1 Notation table of Chapter 3 . 31

3.2 Information on Synthetic Tables . 68

3.3 The query workload for real laptop data sets from ebay 80

4.1 Notation table of Chapter 4 . 82

4.2 Command messages send from the Scheduler 99

4.3 Notification messages send from a Process 99

4.4 Parameters for Diversity Queries . 106

5.1 Notation table for Chapter 5 . 113

5.2 The weights of relevant sub-concepts of “Singapore Restaurant” 114

5.3 Example of statistical information in node N5 126

5.4 The weights of relevant sub-concepts of “Entertainment Facility” 138

xv

LIST OF TABLES

5.5 r-related nodes in Tc1 . 139

5.6 r-related nodes in Tc2 . 139

5.7 Query Parameters . 146

5.8 Queries on Foursquare . 146

5.9 Queries on Tweets . 147

xvi

CHAPTER 1

INTRODUCTION

Query result diversification aims to enhance the quality of query results presented to users

by ranking the results based on diversity so that more informative results are presented

first. This thesis studies three problems related to efficiently compute diverse query re-

sults: efficient indexing for diverse query results, efficient processing of multiple diversity

queries and diversified spatial keyword search.

In this chapter, we first present some background on query result diversification. We then

state the three studied problems and contributions of this thesis. We finally describe the

thesis organization.

1

CHAPTER 1. INTRODUCTION

1.1 Query Result Diversification

Consider a query with a large number of relevant results. Rather than directly returning

all of these relevant results, an effective strategy is to choose and show a set of repre-

sentative relevant results. One traditional strategy is to find the top-k results based on a

pre-defined ranking function which only takes into account the relevance between each

result and the query. For a top-k query, they simply assume that the relevance of results is

independent with each other. Some of the top-k relevant results, however, could be very

similar with each other. Zhai et al. [78] point out that it is insufficient to simply return a

set of relevant results, since the correlations among the results are also very important. It

has been noticed that a large fraction of search queries are short and thus ambiguous or

under-specified [29]. For these queries, the targeted information for the same query could

be quite different given different users. For example, a simple ambiguous query “apple”

could be relevant to both Apple company and the fruit apple, and a non-ambiguous but

under-specified query “laptop” could be relevant to a Lenovo laptop or a Acer laptop.

Instead of showing a homogeneous collection of similar results, recently, an amount of

existing works [19, 62, 5, 70, 57, 71] study the problem of query result diversification to

satisfy different information needs of users, by taking into account both the relevance of

each result (wrt the query) as well as the dissimilarity among these results. The result

diversification has been studied on many different kinds of databases, such as web doc-

ument datasets [19, 62, 5, 18, 9, 71, 57, 24, 83], structured databases [42, 70, 34], graph

databases [40, 45], streaming data [53], time series data [39], spatial datasets [79], social

networks [27], recommender systems [14, 88] and so on. In general, the research area

of query result diversification can be broadly classified into intent-based diversification

(e.g., [77, 88, 18, 57]) which aims to provide search results that cover as many facets of

the query as possible to deal with ambiguous queries, and content-based diversification

(e.g., [71, 62, 9]) which aims to reduce information redundancy in search results.

In the intent-based diversification, the diversified results are covering different intents

2

CHAPTER 1. INTRODUCTION

to ensure that all users are satisfied, with the hope that the user will find at least one

relevant result for his information needs. For example, reconsider the simple ambiguous

query “apple”. A user might be interested in the fruit apple, while another user could be

interested in the products of the Apple company. It would be much helpful for different

users to show results, where some are relevant to the fruit apple and some others are

relevant to the Apple products. To minimize the average user dissatisfaction, user intents

are often modeled as a set of sub-topics (or categories) [5, 77], based on the analysis of

collected usage statistics. Some probabilistic models are used to diversify query results to

cover as many relevant subtopics as possible.

Differently, the content-based diversification model does not focus on ambiguous queries,

and most of existing works [19, 5, 38, 70, 71] in this model attempt to reduce information

redundancy by taking into account the dissimilarity (distance) between every two results.

For example, reconsider the non-ambiguous but under-specified query “laptop”. Instead

of showing laptops from only two brands (say Lenovo and Acer), it would be more inter-

esting to display laptops covering a more diverse range of brands (e.g. Lenovo, Acer, Dell,

HP, Samsung and so on). To reduce information redundancy, some different distances

have been used, such as the Euclidean distance, the explanation-based distance [74], Jac-

card dissimilarity function [42], the cosine dissimilarity function, taxonomy-based cate-

gorical distance [42], the pre-defined attribute ordering-based distance function [70], and

so on. Furthermore, some recent works [67, 79] study the special case of spatially diver-

sifying query results based on the geo-location based distance function (i.e. the Euclidean

distance on the geo-locations [67], the road network based distance [79]).

1.2 Research Problems

In this thesis, we study three research problems to efficiently compute the diverse query

results, namely, efficient indexing for dynamic diversity queries, evaluation of multiple di-

3

CHAPTER 1. INTRODUCTION

versity queries, and diversified spatial keyword search. Note that all of the three problems

fall under the content-based diversification.

1.2.1 Indexing for Dynamic Diversity Queries

Consider a user who is shopping online for a new laptop from a website which can display

a result table consisting of up to 20 laptops that match the user’s specification. As the

number of matching results is typically much larger than number of display records, it is

useful to return a diverse set of results for the user to browse. For example, instead of

showing the user 20 laptops from only two brands (say Lenovo and Acer), it would be

more interesting to show results covering a more diverse range of brands (e.g., Lenovo,

Acer, Dell, HP, Asus, Samsung). If Lenovo and Acer are indeed the only two brands of

laptops that satisfy the user’s query, then it would be better to show a more “balanced”

distribution of the 20 displayed laptops; for example, showing 10 laptops from each of

Lenovo and Acer is better than showing 18 laptops from Lenovo and 2 laptops from

Acer. Similarly, if the user is interested only in laptops from Dell, then it would be more

interesting to show a diverse range of Dell laptops with different screen sizes instead of

showing all Dell laptops with the same screen size.

In this problem, we try to diversify query results with respect to a sequence of attributes,

referred to as a d-order, where the intention is to first diversify the results with as many

different values of the first attribute as possible, and for records with the same attribute

value of the first attribute, we diversify them with as many different values of the second

attribute as possible, and so on. Thus, a d-order determines a priority order for diversifying

the query results, where the first attribute has higher priority to diversify than the second

attribute, and so on.

Vee et.al. [70] were the first to study the problem of computing diverse query results.

They formally define the notion of query result diversity and show that existing score

4

CHAPTER 1. INTRODUCTION

ID Brand #Core of CPU Screen Size Battery Life Color
1 HP 1 13.3 3 Red
2 HP 1 14.1 7 White
3 HP 2 14.1 3 Silver
4 HP 2 14.1 5 Silver
5 HP 2 14.1 7 Black
6 HP 2 15.4 3 Red
7 Acer 2 14.1 6 White
8 Acer 2 15.4 3 Silver
9 Acer 2 15.4 7 Red
10 Acer 4 13.3 3 Black
11 Acer 4 13.3 5 Black
12 Acer 4 14.1 5 Red
13 Acer 4 17.3 5 Black
14 Lenovo 2 14.1 3 White
15 Lenovo 2 14.1 5 Silver
16 Lenovo 2 14.1 7 Black
17 Lenovo 4 13.3 5 Black
18 Lenovo 4 13.3 7 White

Table 1.1: Laptop Example

based techniques are inadequate to guarantee diverse query results. They also propose an

inverted-list based approach to evaluate such queries. However, their work addresses only

static diversity queries (SDQs), where the query results are diversified wrt a static, pre-

defined d-order. Clearly, it would be useful to allow users to customize their diversification

preference. For example, Alice might be more interested to diversify the results wrt screen

size first, followed by brand, whereas Bob might be more interested to diversify the results

wrt brand first, followed by the number of CPU cores and screen size. Consider the

running example shown in Table 1.1: the attributes Brand, #Core of CPU, Screen Size,

Battery Life, and Color represent, respectively, laptop brand (B), number of CPU cores

(C), screen size in inches (SS), battery life in hours (BL), and laptop color (LC). Let us

simply assume that we can only show four results at a time. Among the two sets of laptops

shown in Figure 1.1, it would be helpful for Alice to show the diverse set S2 that contains

four laptops with different screen sizes, rather than returning the other set S1 that contains

four laptops with the same screen size. On the other hand, Bob would be interested in

the diverse set S1, where the four laptops contain three different brands, and the two Acer

5

CHAPTER 1. INTRODUCTION

laptops are with different screen sizes. The other set S2, however, is not as diverse since

the four laptops only contain two kinds of brands.

RID Brand #Core Screen Size
2 HP 1 14.1
7 Acer 2 14.1
12 Acer 4 14.1
14 Lenovo 2 14.1

RID Brand #Core Screen Size
7 Acer 2 14.1
13 Acer 4 17.3
14 Lenovo 2 14.1
17 Lenovo 4 13.3

(a) S1 (b) S2

Figure 1.1: Two example diverse result sets

In this thesis, we examine the more general problem of evaluating dynamic diversity

queries (DDQs) where each user’s query results are diversified wrt a user specified d-

order. Although we can extend the techniques designed for SDQs in [70] to evaluate

DDQs, the extended techniques are very inefficient for evaluating DDQs. Thus, in this

work, we study the problem of efficiently evaluating both SDQs as well as DDQs.

1.2.2 Evaluation of Multiple Diversity Queries

Popular online web services such as online shopping websites need to cope with high

transaction throughput. For instance, Amazon has to process about 0.44 billion requests

from around 53 million customers each day [2], while Taobao processes about 0.27 billion

requests from around 27.1 million customers per day [3]. For multiple online DDQs, it is

suboptimal to independently evaluate each DDQ. Therefore, in this thesis, we study the

optimization problem for multiple online diversity queries.

Different from the traditional multiple query optimization techniques [65, 60, 55, 86] for

an offline query workload, it is quite challenging to share processing among a newly ar-

rived query and other running queries. Lang et.al. [49] first study the techniques of shared

index scan to optimize the evaluations of multiple queries. For example, consider the sce-

nario that a system scans index I to evaluate some queries. As can be seen in Figure 1.2,

when picking a newly arrived query Q which can also be evaluated by scanning index I ,

6

CHAPTER 1. INTRODUCTION

the system marks the current accessing point on index I , followed by scanning the index

to evaluate both query Q and some other running queries. After reaching the end of index

I , the system can complete the evaluation of queryQ, by re-scanning index I from the be-

ginning until reaching the marked point. However, sometimes it would be suboptimal to

shared scan the current accessing index to evaluate these queries. In this thesis, we study

a new technique to switch the query evaluation to scan another index. Instead of shared

scanning the current index, we are able to scan a new index to concurrently evaluate these

queries, by switching their evaluations to scan the new index. To improve the opportunity

of shared index scan, we further present a new framework by allowing each incoming

query to be reordered, rather than simply processing them in the first-come-first-serve

order.

Figure 1.2: Index Sharing Scan

In the online environment, the characteristics of online diversity queries at different time

periods could be very different, and a fixed set of indexes might not be optimal for all

of these queries. Rather than tuning the set of physical indexes for the offline query

workload [7, 22, 6, 32, 89, 8], our system is able to automatically self-tune the index set

to improve the performance of future queries. Instead of assuming that the characteristics

of recent queries are similar to the characteristics of queries in the near future [15, 63, 64],

we generate new indexes by exploiting knowledge of those queries in the waiting queue.

Moreover, to minimize the IO cost, the index generation is able to share index scan with

other running queries.

In this thesis, we examine the optimization problem of concurrently evaluating multiple

7

CHAPTER 1. INTRODUCTION

online DDQs. However, evaluating these DDQs independently does not take advantage of

the shared index scans. To efficiently evaluate these online DDQs, in this work, we study

the optimization problem by introducing some new techniques.

1.2.3 Diversified Spatial Keyword Search

With the prevalence of geo-position devices GPS, a huge number of spatial objects as-

sociated with textual information are publicly accessible. In Foursquare, users have con-

tributed millions of venues associated with tips, reviews and category information [1].

Spatial keyword search is now a very popular service that helps users explore local restau-

rants, hotels and entertainment facilities. Existing works on this topic mainly focus on

how to conduct ranking and filtering using spatial and textual attributes. To improve

search performance, various indices have been proposed to facilitate spatial and textual

pruning simultaneously. However, existing ranking functions for spatial keyword queries

do not take into account of the semantic diversity of the query results. For a group of spa-

tial objects, the semantic diversity refers to the degree of the textual information variation

of these group objects.

Some existing works [87, 30] study the spatial keyword search problem to find the top-k

spatial objects by considering each spatial object in isolation. These returned spatial ob-

jects could be relatively far from each other. If one spatial fails to satisfy users, it could be

quite inconvenient to consider some others. Instead, S. Bogh et.al. [12] study the problem

of finding the top-k groups of objects that are closely located. These returned groups,

however, could contain too many objects with redundant information, since they have

not taken into account of the semantic diversity of objects in each group. For example,

consider group G3 in Figure 1.3(a). The four “Western Food” restaurants could be much

similar with each other. In this thesis, we propose two novel types of diversified queries

against spatial object databases that extend the ranking function to incorporate the seman-

8

CHAPTER 1. INTRODUCTION

tic diversity information. To ensure the spatial proximity of each group, a user-specified

radius r can be used to guarantee that all objects in each groups are within a circle of

radius r. The value of radius r could be determined by the user’s transportation modes,

such as by car, by bicycle or by foot.

Given a set of query keyword concepts, each of which could contain multiple keywords

(e.g. “Singapore Restaurant”) , a query radius r, the query region RQ and the limit size

k, our first query, named Diversity Spatial Query (DSQ), finds the top-k groups of spatial

objects inRQ with high spatial proximity (located within a circle of radius r) and semantic

diversity.

Example 1.1: Consider a group of tourists who are planning a trip to Singapore and wish

to stay at a convenient hotel so that they could favour different cuisines. The tourists

can submit a simple DSQ query with keyword concept “Singapore Restaurant”, a radius

r and the limit size 2. Figure 1.3(a) shows an example query region containing various

Singapore restaurants. In Figure 1.3(a), the top-2 groups G1 and G2 are returned for the

query. Each of the two groups contains three restaurants that provide different cuisines

and are located within a circle of radius r. The tourists can choose a desired one from

the top-2 groups, and then book a hotel near this selected group of restaurants so that it

is convenient for them to try out many different cuisines with minimum transportation

overhead. Observe that there is another group G3 (shown in Figure 1.3(a)) that contains

one more restaurant than G1 and G2. Group G3, however, is not preferable since the

four results in G3 provide similar western food. The group might not well satisfy users

who do not like western food. Consider another scenario where the tourists would like

to attend some entertainment activities after dining. They can issue a DSQ query with

keyword concepts “Singapore Restaurant” and “Entertainment Facility”. In Figure 1.3(b),

we show the top-2 groupsG′
1 andG′

2, and each group contains both Singapore restaurants

and entertainment facilities. �

9

CHAPTER 1. INTRODUCTION

(a) Singapore Restaurants (b) Singapore Restaurants & Entertainments

Figure 1.3: Example spatial objects

Some of the top-k groups for a DSQ query, however, could be highly spatially over-

lapped. For example, the top-2 groups G′
1 and G′

2 (shown in Figure 1.3(b)) for the pre-

vious DSQ query are closely located, and they share two common restaurants (“Chinese

Seafood Restaurant” and “Malay Food Restaurant”) and one common entertainment fa-

cility (“KTV Club”). In some scenarios, it is less interesting for users to retrieve some

highly overlapped similar groups at the same time. Therefore, this motivates us to pro-

pose our second query, named Non-overlapping Diversity Spatial Query (N-DSQ), that

extends DSQ to take into account of spatial diversity for the top-k groups. For example,

consider the extended N-DSQ query with keyword concepts “Singapore Restaurant” and

“Entertainment”, a radius r and the limit size 2. In Figure 1.3(b), two spatially diversified

groups G′
1 and G′

3 are returned.

In this thesis, we examine the problem of diversified spatial keyword search by designing

two novel spatial diversity keyword queries. Unfortunately, existing spatial indexes are in-

efficient to answer these queries. To efficiently evaluate them, we introduce a new textual-

first spatial index, named IOQ-tree, where each inverted postings list corresponding to a

keyword concept is organized based on a novel structure OQ-tree with two variants. For

each type of spatial keyword queries, we propose two efficient evaluation methods based

on the two variants of index.

10

CHAPTER 1. INTRODUCTION

1.3 Thesis Contributions

In this thesis, we make the following three contributions.

Indexing for dynamic diversity queries. In this work, we study the problem of efficient

indexing for diverse query results, and show that extending existing techniques designed

for SDQs [70] to evaluate DDQs are inefficient.

Subsequently, we introduce a novel approach for evaluating diversity queries that is based

on the concept of computing a core cover of a query. Based on this concept, we design

a new index method, D-Index, and introduce two index variants, namely, D-tree and

D+-tree.

Finally, we demonstrated with an experimental evaluation, which is based on a Post-

greSQL implementation, that our proposed D-Index technique consistently outperforms

[70] for both SDQs as well as DDQs.

This work has been published in VLDB 2013 [50].

Evaluation of multiple diversity queries. In this work, we study the optimization prob-

lem of concurrently evaluating multiple online DDQs. A new framework is proposed to

optimize multiple online queries by allowing each query to be reordered.

To improve the opportunity for shared index scans among multiple queries, we propose a

novel technique to dynamically adapt the query plans by switching query evaluations to

scan another inactive index. Furthermore, we also introduce a technique of online index

tuning to automatically adapt the set of physical indexes by looking-ahead at waiting

queries.

Finally, we implemented our approach on PostgreSQL and conducted a comprehensive

performance evaluation of multiple online diversity queries to show the efficiency of our

proposed techniques.

11

CHAPTER 1. INTRODUCTION

Diversified spatial keyword search. In this work, we study the problem of diversified

spatial keyword search. We first propose two novel spatial diversity keyword queries:

DSQ and N-DSQ, and show that existing spatial indexes are inefficient to evaluate these

newly proposed spatial queries.

Subsequently, we then introduce a new textual-first spatial index, named IOQ-tree, where

each inverted postings list corresponding to a keyword concept is organized based on a

novel spatial tree structure OQ-tree with two variants (OQ+-tree and OQ∗-tree). Based on

the two variants of IOQ-tree, two evaluation methods are proposed to efficiently evaluate

each spatial query.

Finally, we conducted a comprehensive experimental study to demonstrate the efficiency

of our proposed algorithms for these proposed spatial queries. Our experimental results on

two real datasets (Foursquare and Tweets) show that our proposed techniques outperform

the state-of-the-art technique [82] by up to one order of magnitude.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

• Chapter 2 describes the related works of the thesis.

• Chapter 3 studies the evaluation problem for DDQs and proposes efficient index-

based techniques to evaluate DDQs.

• Chapter 4 studies the optimization problem for multiple online DDQs and proposes

efficient techniques to optimize these online DDQs.

• Chapter 5 studies the problem of diversified spatial keyword searching with two

newly proposed spatial queries (DSQ and N-DSQ), and proposes efficient indexing

techniques for the evaluation of these spatial queries.

12

CHAPTER 1. INTRODUCTION

• Chapter 6 concludes our thesis and points out some directions for future work.

13

CHAPTER 2

RELATED WORK

In this chapter, we describe some related works. More specifically, we first present some

related works on the query result diversification. Subsequently, we describe some related

works on query processing techniques. Finally, we present some related works on diver-

sified spatial keyword search.

2.1 Query Result Diversification

Search result diversification is an active research area that aims to increase user satisfac-

tion in web search and recommender systems (e.g., [4, 37]). The result diversification can

be broadly classified into content-based diversification (e.g., [71, 62, 9, 14, 36, 78]) which

aims to reduce information redundancy in search results, and intent-based diversification

15

CHAPTER 2. RELATED WORK

(e.g., [77, 88, 18, 57]) which aims to provide search results that cover as many facets of

the query as possible to deal with ambiguous queries.

Now we describe some related works of content-based diversification and intent-based

diversification, followed by presenting some diversification models.

2.1.1 Content-based Diversification

The content-based diversification (e.g. [71, 62, 9, 14, 36, 78]) is to reduce information

redundancy in the selected results; this is accomplished by avoiding to return results that

offer little new information to the user, based on the already examined results.

Most of existing works [19, 5, 38, 70, 71] attempted to reduce information redundancy

by taking into account the dissimilarity (distance) between every two results. Based on

some traditional IR models, they first generated a candidate set of most relevant results,

followed by re-ranking these results based on their own objective functions for different

applications.

Furthermore, some existing works [46, 26] used the clustering techniques to avoid the

information redundancy. They first grouped these relevant results into different clusters,

followed by generating the diverse result set by picking one representative result from

each cluster. Sarma et al. [62] studied the diversification approach to analyze click logs

by examining both the clicked results and the bypassed results, which are skipped by the

user. They proposed several greedy algorithms to minimize the bypass rate of the selected

result sets. In these greedy algorithms, similar results are grouped into the same cluster,

and at most one result is picked from each one cluster.

Vee et.al. [70] first studied the problem of evaluating static diversity queries (SDQs)

based on a pre-defined sequence of attributes, where the first attribute has higher priority

16

CHAPTER 2. RELATED WORK

to diversify than the second attribute, and so on. They showed that existing score based

information retrieval techniques are inadequate for the problem and proposed two index-

ing methods, OnePass and Probe. To evaluate SDQs on a relationR, OnePass builds

an inverted-list index Ij for each attribute Aj in R, where each postings list in Ij is orga-

nized using a B+-tree with a pre-determined d-order, α = (A1, · · · , An), which consists

of all the attributes in R, as the index key. Thus, all the B+-trees in OnePass use α as

the index key. The B+-trees are compressed by replacing each key attribute value with

a Dewey encoded value (e.g., replace “Acer” by the value 0). Given a SDQ Q with a

selection predicate “Aj = v”, OnePass evaluates Q by an index scan on the B+-tree

corresponding to the value v in Ij . A run-time, a main-memory trie structure T is used

to organize the retrieved index key values such that each root-to-leaf path in T represents

a retrieved α-tuple. Since the index key and query’s d-order are both the same (i.e., α)

for SDQs, the B+-tree index scan ensures that the retrieved key values are inserted into

T “sequentially” by extending T with a rightmost path. This important property enables

OnePass to conveniently detect when there is a sufficient number of α-tuples in a subtrie

to form a diverse result set so that the B+-tree index scan can skip to retrieve tuples for

another subtrie in T . As an example, suppose that α = (A,B,C,D) and after inserting

a newly retrieved tuple (a1, b1, c1, d1) into T , OnePass detects that the subtrie rooted at

(a1, b1) has sufficient number of tuples; in this case, the index scan will skip to search for

index keys greater than (a1, b1, c∞, d∞), where c∞ and d∞ represent the largest domain

values for attributes C and D, respectively. To deal with multiple selection predicates on

different attributes, OnePass invokes a B+-tree index scan for each of the selection at-

tributes and uses an appropriate merge operation to combine the index keys retrieved from

the multiple index scans. Probe is a variant of OnePass that performs a bi-directional

B+-tree index scan instead of the single forward scan adopted in OnePass. The goal

of Probe is to reduce the number of useless retrieved tuples, which are tuples that are

retrieved into T but are later replaced by other tuples. However, Probe incurs more ran-

dom I/Os due to its bi-directional scan and the experimental results in [70] indicate that

17

CHAPTER 2. RELATED WORK

both OnePass and Probe performed similarly.

2.1.2 Intent-based Diversification

Different from content-based diversification, the goal of the intent-based diversification

is to return a good variety of results covering different intents to ensure that all users are

satisfied, with the hope that the user will find at least one relevant result for his information

need.

Zhai et al. [78] studied both novelty and relevancy in the language modeling framework,

and proposed an evaluation metrics for subtopic retrieval, based on the metrics of subtopic

recall and subtopic precision. In a later work [77], they formalized and proposed a risk

minimization approach that allows an arbitrary loss function over a set of returned objects

to be defined. The loss function is to determine the dissatisfaction of the user wrt the set

of selected objects.

Chen and Karger [24] used the standard IR techniques to improve diversity for ambiguous

queries. In this work, objects are selected sequentially according to the object relevance

score. The relevance is conditioned on objects having been already selected. Words in the

text of previous selected objects are associated with a negative weight to improve novelty.

Agrawal and Gollapudi [5] generated a taxonomy of information, based on the analysis

of query logs. Based on the taxonomy, each query and result can be represented as a

distribution over a set of categories of the taxonomy. A greedy approach was proposed

to minimize the risk of dissatisfaction of the average user, by finding a set of results to

capture as many categories of the user intents as possible.

Instead of simply satisfying as many categories as possible, Capannini et al. [18] designed

an approach to maximize the weighted coverage of the categories with relevant results. It

18

CHAPTER 2. RELATED WORK

is possible that there are many results related to a category that is a dominant interpretation

of the query, but there does not exist a result related to some unimportant categories.

Radlinski et al. [58] proposed an approach to directly learn a diverse ranking of results

based on users’ clicking behavior through online exploration. Since users tend not to click

on similar results, online learning produces a diverse set of results naturally. The approach

is to maximize the probability that a relevant result is found in the top-k positions.

Since user intents are not well represented in the original results, Radlinski and Dumais

[57] proposed an approach to understand the variety of user intents based on the query

reformulations instead of the topic categorization. Given a search query, the approach

first generates a set of more specific related queries, followed by collecting several results

for each generated specific query. Then the diverse set of results can be generated by

re-ranking the candidate set which is the union set of results for those specific related

queries.

2.1.3 Diversification Models

To improve the probability that a user can find at least one relevant result from the re-

turned results, several different diversification models were proposed by existing works.

In this section, we then present some well-known diversification models: combinatorial

optimization models, probabilistic language models, coverage-based diversification mod-

els and distance-based diversification models. Existing works [70, 5] studied the problem

of diversifying query result based on one or more of these diversification models. For

example, result diversification for SDQs [70] belongs to the distance-based diversifica-

tion models, and the diversification approach proposed in [5] uses both the probabilistic

language model and the coverage-based model.

Our first two works fall under the distance-based diversification model, while the third

19

CHAPTER 2. RELATED WORK

work falls under both the combinatorial optimization model and the coverage-based di-

versification model.

Combinatorial Optimization Models

Result diversification involves a trade-off between having more relevant results and hav-

ing diverse results in the top positions for a given query [19, 24]. The early work of Gol-

lapudi and Goldstein [19] first studied the result diversification problem, and proposed

the Maximal Marginal Relevance (MMR) ranking strategy based on the linear combina-

tion of query-relevance and information-novelty. Gollapudi and Sharma [42] proposed

an axiomatic approach to characterize the problem of result diversification with several

different combination functions: max-sum diversification, max-min diversification and

mono-objective formulation. More specifically, the first objective function max-sum di-

versification is to maximize the sum of the relevance and dissimilarity of the selected set,

the second objective function max-min diversification is to maximize the minimum rele-

vance and dissimilarity of the selected set, and the third objective function mono-objective

formulation is to maximize the “global” importance (i.e. not with respect to any selected

set, but with respect to the set of all relevant results) of each result. The first two objec-

tive functions can be reduced to the p-dispersion problem [56] which is a NP-Complete

problem. In [42], a 2-approximation algorithm was proposed to address the problem. For

the third objective function, the optimization algorithm is to compute the weight of each

result, followed by picking the top-k results.

Different from the traditional diversification problems where the pair-wise distance is

measured by some dissimilarity functions on the feature dimensions of each object, some

recent works [54, 67, 69, 21, 79] studied the spatial diversity problem to find a set of

relevant spatial objects which are well spread in the search region, by utilizing some

spatial distance functions on the object geo-locations (latitude and longitude), such as the

20

CHAPTER 2. RELATED WORK

Euclidean distance [69, 21] and the network distance based on a given road map [79]. In

this thesis, for a N-DSQ query, we use the Euclidean distance to spatially diversify query

result groups.

Probabilistic Language Models

To minimize query abandonment, which is the case that a user can not find any relevant

result in the selected results, some existing works [24, 77, 62] studied the result diversifi-

cation problem based on some probabilistic language models.

Agrawal et al. [5] proposed an objective function based on only the diversity score, which

is estimated with the probability that the document set would satisfy the user who issues

the query. The probabilities are estimated based on a classification taxonomy.

Santo et al. [61] proposed an objective function based on the relevance of documents to

query subtopics and the importance of query subtopics in a probabilistic framework.

Coverage-based Diversification Models

Some existing works [85] studied the diversification problem by computing the diver-

sity score based on the coverage of query subtopics (or named information nuggets and

query aspects). To define the coverage function which measures how well a result set cov-

ers the information of each query subtopic, Zheng et al. [85] proposed three strategies:

summation-based coverage function, loss-based coverage function and measure-based

coverage function. The summation-based coverage function is to sum up the coverage

scores of the individual results. The loss-based coverage function is measured by the

coverage of results that are not included in the selected result set. The measure-based

coverage function is based on the evaluation diversity measures over these subtopics (i.e.

Precision-IA [5], ERR-IA, α-nDCG [29] and NRBP [29]).

21

CHAPTER 2. RELATED WORK

Distance-based Diversification Models

Qin et.al. [5] proposed a framework to handle the diversified top-k search problem. Given

a lower-bound threshold τ for similarity, the database can be modeled as an undirect

graph, where each node represents a database record. Each edge of two nodes represents

that the similarity between these two corresponding records is no less than τ , while the

weight of each node represents the relevance of the query result. Therefore, the diversified

top-k search problem can be reduced to find an independent set of k nodes with maximum

weight sum.

Instead of simply returning k results, Drosou et al. [38] proposed a new model to generate

a diverse set of results given a threshold (or named radius) r. For a query, let U denote

the set of results, where every two results in U are considered to be similar if the distance

between the two results is no greater than r. The diversification model is to find such a

diverse result set S ⊆ U that (i) all results in U are similar with at least one result in S

and (ii) no two results in S are similar with each other.

2.2 Query Processing Techniques

Some existing techniques were proposed to efficiently process queries. Let us now present

some related techniques.

2.2.1 Multiple Query Optimization

The multi-query optimization has been addressed in [65, 60, 41, 55, 84, 66], and these

works mainly focused on how to share processing of the common subexpressions, which

22

CHAPTER 2. RELATED WORK

frequently appear in complex queries running in OLAP systems. However, these ap-

proaches are designed for the optimization of multiple queries in a query batch, but not

work well for online queries, since they do not support to share processing among running

queries and a newly arrived query.

In the online environment, Candea et.al. [16] proposed an approach to support table scan

sharing among different online queries, while Lang and Wong [49] studied the optimiza-

tion problem for multiple online queries by supporting shared index scanning. In this

thesis, we apply the technique of index scan sharing [49] to optimize multiple online di-

versity queries. However, it could be sub-optimal to shared scan a currently active index

to completely evaluate a running query, if there exists another more optimal index for the

query. In this thesis, we further optimize the query plan by supporting to switch the query

evaluation from scanning an active index to an inactive index.

2.2.2 Adaptive Query Processing

For a query, the traditional query optimization approaches try to find an optimal query

plan from a set of potential query plans, and evaluate this query based on the selected

query plan. Instead of identifying a query plan, some existing works [48, 52, 10] studied

the problem of run-time re-optimization. The principle behind these works is to execute

queries and monitor data characteristics simultaneously, and invoke re-optimization to

generate better query plans when currently running query plans become sub-optimal.

In some real applications, the data characteristics do not frequently change, but the char-

acteristics of online queries change frequently. Initially, an optimal query plan can be

identified for each running query.Some of these running queries could shared scan an

index. When the system picks a new query, it could be sub-optimal to shared scan the

current index to evaluate both the newly picked query and some other running queries.

To optimize the query evaluation, in this thesis, we study an index switching evaluation

23

CHAPTER 2. RELATED WORK

technique to shared scan a new index, and we also attempt to maximize the usage of the

previous query evaluation on the original index.

2.2.3 Index Tuning Systems

To optimize query evaluation, some existing works [7, 22, 6, 32, 89, 8, 15, 63, 64] studied

the automatic physical design tuning in DBMSs. Most of these works [7, 22, 6, 32, 89, 8]

focused on the offline physical tuning for a given query workload, while others [15, 63, 64]

focused on the physical tuning in the online environment. These approaches for online

physical tuning can automatically determine to generate a new index or remove an exist-

ing index, based on the analysis of the current physical configuration [15]. Rather than

only considering the current physical configuration, in this thesis, our proposed index tun-

ing approach also takes into account the evaluations of running queries, and we attempt to

minimize the overhead of new index generation by shared index scanning with these eval-

uations of running queries. Furthermore, to improve the performance of future queries,

these existing approaches [15, 63, 64] generate new indexes based on the historical logs of

recent queries, whose characteristics are assumed to be similar with the characteristics of

queries in the near future. Instead, our approach generates new indexes by directly look-

ing ahead at those queries in the waiting queue. Although we only focus on the online

physical tuning for the partial D+-tree indexes in this thesis, our approaches can also

generalize to the physical tunning for the normal B+-tree indexes.

2.3 Diversified Spatial Keyword Search

Some recent works [54, 21, 79] studied the diversified spatial keyword search problem to

find a set of relevant spatial objects which are well spread in the search region. For our

proposed N-DSQ queries, spatially diversify among different groups of closely spatial

24

CHAPTER 2. RELATED WORK

objects. The problem of identifying a highly ranked group of closely located objects is a

circle-placement problem.

Let us now present some related works in spatial keyword search and the circle-placement

problem.

2.3.1 Spatial Keyword Search

Recently, spatial keyword search is an active research area that aims to find spatial objects

that are textually relevant to a search query. Chen et al. [25] provided a detailed survey of

those techniques used for processing spatial keyword queries.

Spatial Index

To efficiently process spatial keyword queries, a number of geo-textual indexes [31, 33,

87, 68, 75, 28] have been proposed. In general, all spatial indexes can be classified into

three groups: (a) textual-first index [82, 59, 68, 87], (b) spatial-first index [68, 20, 75, 87],

and (c) hybrid spatial index [43, 31, 33, 72, 28]. A textual-first index usually maintains

an inverted postings list for each keyword, and organizes each inverted postings list in a

spatial structure, which can be an R-tree [59], a quadtree [82], a grid or a spatial filling

curve. In contrast, A spatial-first index organizes all objects in a spatial structure, whose

leaf nodes contain inverted files [75] or bitmaps for the text information of objects con-

tained in the nodes. On the other hand, a hybrid spatial index tightly combines both types

of information, by maintaining a text summary into every node of a spatial index [31, 33],

or integrating the spatial information into each inverted list [28]. For spatial keyword

queries with a small number of query keywords, it was reported [25, 82, 59] that textual-

first indexes outperform others when the number of query keywords is small. S2I [59]

and I3-index [82] are two of the state-of-the-art textual-first indexes. In a S2I [59],

25

CHAPTER 2. RELATED WORK

each inverted postings list is organized as a R-tree. On the other hand, in a I3-index

[82], each inverted postings list is organized as a quadtree, where each node corresponds

to a rectangular region and the corresponding region of each internal node is partitioned

into four non-overlapped sub-regions of the same size. However, none of these existing

textual-first indexes can efficiently evaluate our proposed spatial keyword queries, and we

will explain it in Chapter 5.

Spatial Keyword Queries

There are two kinds of spatial queries that are mostly related to our proposed queries:

(a) the collective spatial keyword search query [17, 51, 80, 81], and (b) the top-k PoI

group search query [12]. The collective spatial keyword query attempts to find a group

of closely located objects that collectively covers all query keywords. For each query

keyword, there exists at least such an spatial object in the group that covers the keyword,

and it is not necessary to contain more objects in a group to cover a query keyword.

That is, the maximum number of objects in each group is no more than the number of

query keywords. On the other hand, the top-k PoI group search query [12] is to find the

top-k groups of closely located Points of Interest (PoIs). Instead of collectively covering

all query keywords, the objects in each group are independently relevant to the query.

Moreover, there is no constraint on the size of each group. That is, for a group of objects,

the more objects it contains, the higher ranked it will be.

Similar to [12], we also do not constrain the number of objects in each returned group for

our propose spatial query (DSQ or N-DSQ). Differently, the objects in each group col-

lectively cover all query keywords. Additionally, we also take into account the semantic

diversity of these objects in each group to improve the user satisfaction.

26

CHAPTER 2. RELATED WORK

Spatial Diversity Search

Some recent works [54, 67, 69, 21, 79] studied the spatial diversity problem: given a

query region, a set of search keywords and a limit size k, the spatial diversity query on

a database of spatial objects is to find a set of k relevant objects that are well spread

within the query region. The textual information of each object is used to measure the

relevance of each object for a given query. However, the relevance of objects in a spatially

diversified set is considered to be independent with each other. Differently, we study a

novel spatial diversification problem for a set of object groups by taking into account of

the spatial diversity and the semantic diversity information of each group.

2.3.2 Circle Placement Problem

For our proposed spatial query (DSQ and N-DSQ) in this thesis, the problem of identi-

fying top-k result groups that are located within a circle of radius r is a circle placement

problem: given a set of points pi, i = 1, 2, · · · , n, each of weight wi, in the plane, and a

disk of radius r, find a location to place the disk such that the total weight of the points

covered by the disk is maximized. This problem is equivalent to the well known maximum

weighted clique problem for the circle intersection graph. Figure 2.1 shows an example

circle intersection graph for the four points (p1, p2, p3 and p4). In the graph, all circle are

of the same radius r. For the intersection area of the three circles with centers as p1, p2

and p3, any location within the intersection area can be the center of the disk that covers

p1, p2 and p3.

Existing work [35] studied the unweighted clique problem, and proposed an algorithm

with a time complexity of O(n2 lgn), which can be extended to solve the weighted clique

problem. For each circle, the algorithm first sorts the intersection points with other circles

in the plane, and then scans these points in clockwise (or anti-clockwise) order. A count of

27

CHAPTER 2. RELATED WORK

Figure 2.1: Circle Placement Problem

the number of intersecting circles is maintained during the scan. The count is incremented

by 1 when we enter the intersection arc of a new circle, and is decremented by 1 when we

leave the circle of concern.

To efficiently address the circle placement problem, Chazelle et.al. [23] proposed an

algorithm with a time complexity of O(n2). Based on the doubly connected edge list

presentation of the intersection graph, the algorithm identifies the optimal location by

traversing the intersection arcs in the clockwise (or anti-clockwise) order. In this thesis,

we apply this algorithm to identify the top-k result groups. Differently, rather than gener-

ating the global intersection graph for all spatial objects, our approach restricts the search

space based the proposed spatial index, and only generates and evaluates on some local

intersection graphs for some objects in some restricted area.

28

CHAPTER 3

INDEXING FOR DYNAMIC

DIVERSITY QUERIES

3.1 Overview

In this chapter, we study the problem of efficiently diversifying query results wrt a se-

quence of attributes(termed as d-order), where the first attribute has higher priority to

diversify than the second attribute, and so on. Vee et. al. [70] were the first to study

the evaluation for static diversity queries (SDQs) with a fixed d-order. To satisfy more

users with different preferences, in this chapter, we attempt to efficiently evaluate dy-

namic diversity queries (DDQs) with user defined d-orders. A DDQ can be expressed by

the following extended SQL syntax: “SELECT ... FROMR WHERE ... DIVERSIFY BY

D1, · · · , Dn LIMIT k” which retrieves a diverse set of at most k matching records from a

29

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

relation R such that the records are diversified wrt a d-order (D1, · · · , Dn). The attributes

in the SELECT clause must contain all the attributes in the DIVERSIFY BY clause.

In this chapter, we introduce a novel approach for evaluating diversity queries that is

based on the concept of computing a core cover of a query. Based on this concept, we

design a new index method, D-Index, and introduce two index variants, namely, D-tree

and D+-tree. Furthermore, we demonstrate with an experimental evaluation, which is

based on a PostgreSQL implementation, that our proposed D-Index technique consistently

outperforms [70] for both SDQs as well as DDQs.

For convenience, the notation table of this chapter is provided in Table 3.1, and the rest

of this chapter is organized as follows. In Section 3.2, we formally define some important

concepts for DDQs. Section 3.3 states the challenge of evaluating DDQs, and explains

the inefficiency of evaluating DDQs by extending existing techniques designed for SDQs

[70]. In Section 3.4, we give an overview of our approach. In Section 3.5, we introduce the

proposed index, D-Index, followed by describing the two evaluation algorithms (D-tree

and D+-tree) on the two variants of D-Index in Section 3.6. Section 3.7 presents an

extension of the proposed algorithm to improve the usage of an D-Index for evaluating

more DDQs. We describe an index selection algorithm in Section 3.8. Section 3.9 presents

an experimental performance evaluation of the proposed techniques. Finally, we conclude

this chapter in Section 3.10.

3.2 Diverse Query Results

In this section, we present the definition of diverse query results used in this work. Our

definition is based on that from [70], where a query result is diversified wrt a sequence of

attributes δ = (D1, · · · , Dm), referred to as a d-order. Essentially, δ specifies a priority

order for diversifying the query results with Di having a higher priority than Di+1 such

30

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

R Running example relation Q A diversity query

δ The query d-order θ
The set of selection predicate
attributes

k The limit size of query S A diverse result set
I A D-Index T A result trie

α The index key of a D-Index cover(T)
The core cover of a diversity
query

N A node in a D-Index V A node in a result trie T
TV The subtire rooted at V ptupδ(V) The δ-prefix tuple in V

ptupα(N) The α-prefix tuple of N ptupmax
δ (N) The maximal δ-tuple of N

rid(N)
The RID of some tuple covered

size(V) The number of leaf nodes in TVby ptupα(N)

Table 3.1: Notation table of Chapter 3

that we maximize the domain values shown for Di before Di+1. The goal is to maximize

the diversity of the attribute domain values shown as well as “balance” the number of

records for each attribute value.

RID B C SS

1 HP 1 13.3
4 HP 2 14.1
6 HP 2 15.4
15 Lenovo 2 14.1

(a) S1

RID B C SS

1 HP 1 13.3
4 HP 2 14.1
14 Lenovo 2 14.1
15 Lenovo 2 14.1

(b) S2

RID B C SS

1 HP 1 13.3
2 HP 1 14.1
8 Acer 2 15.4
15 Lenovo 2 14.1

(c) S3

RID B C SS

1 HP 1 13.3
4 HP 2 14.1
8 Acer 2 15.4
15 Lenovo 2 14.1

(d) S4

�

HP

1

13.3

2

14.1 15.4

Lenovo

2

15.4

�

HP

1

13.3

2

14.1

Lenovo

2

14.1
(e) T1 (f) T2

�

HP

1

13.3 14.1

Acer

2

15.4

Lenovo

2

14.1

�

HP

1

13.3

2

14.1

Acer

2

15.4

Lenovo

2

14.1
(g) T3 (h) T4

Figure 3.1: Diverse Query Results, d-order δ = (Brand, #Core, ScreenSzie)

Example 3.1: Consider a query Q on R (Table 1.1) with k = 4 and a selection pred-

icate “#Core ≤ 2”. Figs. 3.1(a)-(d) show four possible result sets (S1 to S4) for Q,

where only the attribute values for RID, B, C, and SS are shown. If the d-order for Q

is δ = (B,C, SS), we can organize each result set Si using a trie Ti (wrt δ) as depicted

in Figs. 3.1(e)-(g) which provides a more visual and convenient representation for com-

31

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

paring result diversity. Observe that T1 and T2 are equally diverse wrt the brand attribute

(each has two distinct brand values), but S2 is more balanced than S1 because S2 has two

records for each brand value, whereas S1 has three records for HP brand and one record

for Lenovo brand. However, compared to T3, both T1 and T2 are less diverse wrt the

brand attribute. Finally, we note that T4 is more diverse than T3: while both are equally

diverse wrt the brand attribute (each has three brand values), T4 is more diverse wrt the

#core attribute because T4 has two distinct #core values for its two records with HP brand,

whereas T3 has only one distinct #core value for its two records with HP brand. �

In the following, we formalize the above intuition of diverse query results.

Definition 3.1 (attribute ordering). An attribute ordering of a relation R is a sequence of

attributes (A1, · · · , An), where each Ai is a distinct attribute of R.

Note that an attribute ordering does not necessarily include all the attributes of R.

Consider an attribute ordering α = (A1, · · · , An) of R. We use αi to denote the length-i,

i ∈ [0, n], prefix of α; i.e., αi = (A1, · · · , Ai). We refer to each αi as a α-prefix.

Definition 3.2 (α-tuple, α-prefix tuple). A tuple t is defined to be an α-tuple if t ∈ πα(R)

for some attribute ordering α. We say that t is an α-prefix tuple if t is an αi-tuple for some

prefix αi of α.

Definition 3.3 (matching αi-tuple). An αi-tuple t, i ∈ [1, n] is defined to be a matching

tuple forQ if all the attributes in the selection predicates (i.e., θ) occur in αi and t satisfies

all the selection predicates of Q.

Note that it is not necessary for a matching tuple to contain all the d-order attributes or all

the attributes projected by the query.

Definition 3.4 (tuple cover). Given a α-tuple ta and a β-tuple tb, we say that ta covers tb

(or tb is covered by ta) if α ⊆ β and ta.Ai = tb.Ai for each attribute Ai ∈ α. We say that

a tuple t covers a set of tuples S if t covers each t′ ∈ S.

32

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Let S ⊆ R be a result set for a diversity query Q on relationR wrt d-order δ, and T be the

trie representation of S (wrt δ). Each node v in T corresponds to a unique δ-prefix tuple,

which we denote by ptupδ(v). For example, in Figure 3.1(f), if v refers to the rightmost

leaf node in T1, we have ptupδ(v) = (Lenovo, 2, 15.4).

Given a node v in T , we use Tv to denote the subtrie rooted at v representing the subset

of records S(v) ⊆ S; i.e., S(v) is the set of records contained in Tv. For example, in

Figure 3.1(f), if v refers to the node labeled “HP” in T2, then S(v) contains two records

with RID values of 1 and 4.

Consider a subtrie Tv where v has c child nodes, v1, · · · , vc. As a measure of the diversity

of S(v), define the metric

F (S(v)) = c|S(v)| − σ

where σ is the standard deviation of the set {|S(v1)|, · · · , |S(vc)|}.

To understand why the above metric is meaningful for comparing result set diversity,

consider a query Q to retrieve a result set of k tuples from relation R wrt d-order δ.

Consider the trie representations, T1 and T2, of two possible result sets, S1, S2 ⊆ R,

where |S1| = |S2| = k. Let F (S1) = c1k − σ1 and F (S2) = c2k − σ2. If S1 is more

diverse than S2, then either (1) the root node of T1 has more child nodes than that of T2

(i.e., c1 > c2), or (2) the root nodes of both T1 and T2 have the same number of child

nodes, but the child subtrees in T1 are more balanced than those in T2 (i.e., c1 = c2 and

σ1 < σ2). Effectively, F (S1) is larger than F (S2) if S1 is more diverse than S2.

In other words, given a result set S ⊆ R ofQ, if for every node v in the trie representation

of S, F (S(v)) can not be further increased (by replacing some records in S(v) by an equal

number of some other records fromR−S that are covered by ptupδ(v)), then the diversity

of S can not be increased (without increasing the cardinality of S), and we conclude that

S is a diverse result set of cardinality k. Thus, we can define a diverse result set S in terms

of maximizing F (v) for each node v in the trie representation of S.

33

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Definition 3.5 (diverse result set). Let T denote the trie representation of a result set

S ⊆ R for a diversity query Q on R wrt d-order δ. Let Tv denote a subtrie of T rooted at

v. We define S to be diverse wrt ptupδ(v) if F (S(v)) is maximized over all sets S ′ ⊆ R

that are covered by ptupδ(v) such that |S ′| = |S(v)|. We define S to be a diverse result

set for Q if S is diverse wrt every δ-prefix tuple in S.

Example 3.2: Consider the trie T4 in Figure 3.1(h). Let v0 denote the root node of T4,

and v1 denote the node in T4 with ptupδ(v1) = (HP). We have F (S4(v0)) = 12 −√
2/3

and F (S4(v1)) = 4. S4 is a diverse result set for Q following the definition: S4 is diverse

wrt ptupδ(v0) since there are only three brand values in R and v0 has three child nodes;

S4 is diverse wrt ptupδ(v1) since |S4(v1)| = 2 and v1 has two child nodes; and for each of

the remaining nodes v in T4, S4 is diverse wrt ptupδ(v) since |S4(v)| = 1. On the other

hand, T1 in Figure 3.1(e) is not a diverse result set because S1 is not diverse wrt ptupδ(v0)

where v0 is the root node of T1: F (S1(v0)) can be further increased by making the child

subtrees of v0 more balanced by replacing RID6 with RID14 to obtain T2 in Figure 3.1(f).

�

Note that our definition of diverse result set is equivalent to one in [70] in that a set is a

diverse result set under our definition if and only if it is also a diverse result set under the

definition in [70]. We have chosen to present the definition in terms of the metric F () as

we believe that it captures more closely the intuition behind the diversity definition. We

should emphasize that our contribution is not on the definition of diverse query result but

on the efficient evaluation of diversity queries.

3.3 Challenges for Dynamic Queries

To motivate the need for a new approach to evaluate DDQs, we argue that although ex-

isting techniques for SDQs [70] can be extended to support DDQs, their performance is

34

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

expected to be poor due to the need to scan a significant portion of the index. This is

validated by our experimental results in Section 3.9.

Let us first consider how to extend the basic technique, OnePass [70], to form a new

variant, termed OnePassD, for evaluating DDQs. To make the discussion concrete,

suppose that the B+-trees in OnePassD have index key α = (A,B,C,D,E) and we

are using OnePassD to evaluate a DDQ with a d-order of δ = (D,E) and a selection

predicate “A = a1”. Similar to OnePass, OnePassD performs an index scan on the

B+-tree corresponding to the value a1 in the inverted-list index Ia for attribute A. Each

retrieved α-tuple from the index scan is converted to a δ-tuple to update the main-memory

trie T . Due to the difference between α and δ, there are two extensions required for

OnePassD to work correctly. First, the tuples inserted into T are now in a “random”

instead of a “sequential” order (e.g., the index scan returns (a1, b1, c1, d2, e2) followed by

(a1, b1, c2, d1, e1), where d1 < d2). Thus, the simple scheme adopted in OnePass for

detecting when there are sufficient tuples in a subtrie no longer works due to this random

order and a more sophisticated detection scheme is required. Second, the Dewey encoding

scheme used for compressing index keys does not work correctly when the α-tuples are

mapped to δ-tuples (to update T) as the same attribute value could have different Dewey

encodings. The second extension is trivial to fix (encode each attribute value with a unique

value), but the first extension is more intricate (Section 3.4.5).

Although OnePassD can work correctly to evaluate DDQs, its performance could be

very inefficient as it might need to scan the entire index. Continuing with the example,

suppose that after updating T with a newly retrieved tuple (a1, b1, c1, d1, e1), OnePassD

detects that the subtrie rooted at (d1, e1) has sufficient number of tuples. However, OnePassD

cannot efficiently skip to search for the next value after (d1, e1) as the B and C attributes

preceding D are not part of the search attributes. Hence, in the worst case, no index skip

operation is possible in the OnePassD approach. For similar reasons, Probe could be

extended to correctly evaluate DDQs but would perform even worse than OnePassD as

35

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

the extended Probe would still incur random I/Os for its bi-directional scan but without

the benefit of reducing useless tuple retrievals due to the absence of index skip operations.

3.4 Our Approach

In this section, we present the key ideas behind our approach of evaluating diversity

queries.

3.4.1 Core Cover

Our approach for computing diverse query results is based on the concept of computing a

core cover for a query.

Definition 3.6 (core cover). A set of δ-prefix tuples C = {t1, · · · , t�}, � ∈ [1, k], is defined

to be a core cover for a diversity queryQ on relationR with d-order δ and limit k if there

exists � positive integers (β1, · · · , β�) such that (a)
∑�

i=1 βi = k and (b) for each ti ∈ C

and for each subset of βi matching records Si ⊆ R that is covered by ti,
⋃�

i=1 Si is a

diverse result set for Q.

Thus, each tuple in a core cover C covers at least one tuple in a diverse result set S. We

refer to (β1, · · · , β�) as the core cover assignment for Q. For the case where � = k, the

core cover assignment for Q is trivially given by βi = 1 for each i ∈ [1, �]. If � < k, then

there will be duplicate δ-tuples in S and the core cover assignment essentially allocates

the distribution of the duplicates among the tuples in C to ensure that S is a diverse result

set.

Example 3.3: Consider a query Q on R with δ = (B, SS), a single selection predicate

“#Core = 4”, and a limit of 5. Consider a set of (B,C,SS)-tuples, C = {t1, t2, t3, t4}, where

36

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

t1 = (Acer, 4, 13.3), t2 = (Acer, 4, 14.1), t3 = (Acer, 4, 17.3), and t4 = (Lenovo, 4, 13.3).

Then, C is a core cover forQwith a core cover assignment (1, 1, 1, 2). That is, there exists

a diverse result set S ⊆ R for Q where each of the tuples in {t1, t2, t3} covers one tuple in

S, and t4 covers two tuples in S. Based on R in Table 1.1 and the core cover assignment

(1, 1, 1, 2), there are two possible diverse result sets for Q corresponding to the two sets

of RIDs: {10, 12, 13, 17, 18} and {11, 12, 13, 17, 18}. Note that although there are two tu-

RID B SS

10/11 Acer 13.3
12 Acer 14.1
13 Acer 17.3
17 Lenovo 13.3
18 Lenovo 13.3

RID B SS

10 Acer 13.3
11 Acer 13.3
12 Acer 14.1
13 Acer 17.3

17/18 Lenovo 13.3

(a) Diverse result set for Q (b) Non-diverse result set for Q

Figure 3.2: Query Results in Example 3.3

ples in R (with RIDs 10 and 11) covered by t1, (2, 1, 1, 1) is not a core cover assignment

for Q as illustrated by the result sets shown above: the result set in (a) is more balanced

than that in (b) wrt Brand attribute. �

The concept of a core cover provides a useful design framework to consider techniques

for computing diverse query results. Re-examining OnePass [70] with this framework,

we see that the core cover C computed by OnePass, which is organized using a trie, is

characterized by the following two properties: (P1) |C| = k, and (P2) all the tuples in

C are δ-tuples. As OnePass is designed for SDQs, δ is the same as a pre-determined

index key α, and OnePass uses B+-trees to retrieve δ-tuples to compute C. This is a

reasonable approach when δ is the same as α. But as we explained in Section 3.3, this

index design becomes unacceptable when adapted to OnePassD for DDQs as using a

B+-tree index scan (with key α) to retrieve diverse δ-tuples could be extremely inefficient

when α and δ are very different.

To avoid the pitfall of OnePassD, we make the observation that since the tuples in a core

37

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

cover are δ-prefix tuples (of which δ-tuples are just a special case), a better index design is

to support the retrieval of δ-prefix tuples (instead of δ tuples). Thus, instead of supporting

only a single type of index scan with a single index key α, a more flexible index design

is to support multiple types of index scans using α-prefixes as keys to efficiently retrieve

α-prefix tuples to form δ-prefix tuples for the core cover.

The rest of this section presents our new index technique to evaluate diversity queries. Our

approach consists of two data structures: a novel disk-based diversity index or D-Index,

which supports efficient index scans with α-prefix keys (Section 3.4.2); and a run-time,

main-memory structure, called the result trie, to organize the tuples in the core cover and

guide the index traversal (Section 3.4.3). We give an overview of how these structures

operate together to evaluate diversity queries in Section 3.4.4, and establish a sufficient

condition for a result trie to be a core cover for a query in Section 3.4.5.

3.4.2 Diversity Index

A D-Index I on a relation R with index key α = (A1, · · · , An) is a height-balanced trie-

like structure on the set of tuples πα(R). The index consists of n+1 levels,L0, L1, · · · , Ln,

where each Li corresponds to attribute Ai, i ∈ [1, n]. L0 consists of a single root node,

denoted byNroot. Each nodeN at Li, i ∈ [1, n], corresponds to a unique αi-tuple, denoted

by ptupα(N). Thus, each Li contains |παi
(R)| nodes, i ∈ [1, n]. A node N at Li, i ∈

[1, n− 1], is the parent node of another node N ′ at Li+1 if ptupα(N) is a proper prefix of

ptupα(N
′).

Each node N at Li, i ∈ [1, n], consists of the following information: (1) ptupα(N), the

α-prefix tuple corresponding to N ; and (2) the RID, denoted by rid(N), of some tuple in

R that is covered by ptupα(N). ptupα(N) enables the retrieval of descendant index nodes

of N while rid(N) enables the retrieval of a tuple that is covered by ptupα(N).

38

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

�

HP

1

13.3

3

14.1

7

2

14.1

3 5 7

15.4

3

Acer

2

14.1

6

15.4

3 7

4

13.3

3 5

14.1

5

17.3

5

Lenovo

2

14.1

3 5 7

4

13.3

5 7

Figure 3.3: D-index on R shown in Table 1.1 with key (Brand, #Core, ScreenSize, Bat-
teryLife)

Example 3.4: Figure 3.3 shows the D-Index with index key (Brand, #Core, ScrnSze,

BatLife) on R (Table 1.1) If N denotes the left child node of the node “Acer”, then

ptupα(N) = (Acer, 2) and rid(N) ∈ {7, 8, 9}. �

In addition, the root node Nroot of I also maintains statistics on the number of distinct

values for each attribute in α, denoted by countNroot
(Aj); i.e., for each attribute Aj , j ∈

[1, n], we have countNroot
(Aj) = |πAj

(R)|. These statistics are used for checking certain

property of the result trie (to be described in Section 3.5.3).

A D-Index I can be used to evaluate a diversity query Q if all the δ attributes α and

selection predicate attributes θ occur in the index key α of I .

Definition 3.7 (matching index node). A nodeN in a D-Index I is defined to be a matching

index node for a diversity query Q if ptupα(N) is a matching tuple for Q.

The overall idea of using an index I to evaluate Q is to retrieve δ-prefix tuples from the

matching index nodes accessed to progressively compute a core cover forQ. Specifically,

for each index node N accessed during the traversal of I , if N is matching index node,

the α-prefix tuple corresponding to N (i.e., ptupα(N)) is used to update a core cover for

Q. However, since the key α of I and the d-order δ of Q are generally different attribute

orderings, we need to transform each α-prefix tuple t retrieved from I to its corresponding

δ-prefix tuple to update a core cover for Q. We refer to this transformed tuple as the

maximal δ-prefix tuple of t.

39

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Definition 3.8 (maximal δ-prefix). Given two attribute orderings ofR, αi = (A1, · · · , Ai)

and and δ = (D1, · · · , Dm), we define the maximal δ-prefix of αi to be (D1, · · · , Dj),

j ∈ [1, m], if (1) the set of attributes {D1, · · · , Dj} occurs in αi and (2) either j = m or

Dj+1 does not occur in αi. The maximal δ-prefix of αi is defined to be nil if D1 does not

occur in α.

Definition 3.9 (maximal δ-prefix tuple). Given two attribute orderings ofR, αi = (A1, · · · , Ai)

and δ = (D1, · · · , Dm), and a αi-tuple t, we define the maximal δ-tuple of t to be πδj (t),

where δj is the maximal δ-prefix of αi.

Given an index node N in I , we use ptupmax
δ (N) to denote the maximal δ-tuple of

ptupα(N).

Example 3.5: Consider α = (A,B,C,D,E) and δ = (C,A,E). The maximal δ-

prefix of α4 is (C,A). Given a α-tuple t = (1, 2, 3, 4, 5), the maximal δ-tuple of t is

(3, 1, 5). Consider a query Q with δ = (B, SS,BL) and let N denote the parent node

of the rightmost leaf node in the D-Index with α = (B,C, SS,BL) in Figure 3.3. Then

ptupmax
δ (N) = (Lenovo, 13.3). �

3.4.3 Result Trie

To keep track of the maximal δ-prefix tuples that form a core cover for Q, we use a main-

memory structure called the result trie (denoted by T).

The result trie T consists of at most m + 1 levels, L0, L1, · · · , Lm, where each Li corre-

sponds to an attribute Di, i ∈ [1, m], in the d-order δ of Q. L0 consists of a single root

node, denoted by Vroot. Each node V at Li, i ∈ [1, m], corresponds to a δi-tuple, denoted

by ptupδ(V). A node V at Li, i ∈ [1, m − 1], is the parent node of another node V ′ at

Li+1 in T if ptupδ(V) is a proper prefix of ptupδ(V ′).

40

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Each node V of T consists of the following information: (1) ptupδ(V), the δ-prefix tuple

associated with V ; and (2) a set of entries, denoted by entry(V), where each entry e =

(ρ, rid) corresponds to an index node N such that ρ = ptupα(N), rid = rid(N), and

ptupmax
δ (N) = ptupδ(V). Note that entry(Nroot) = ∅.

Definition 3.10 (tree size). The size of a subtree T ′ of a result trie, denoted by size(T ′),

is defined to be the number of leaf nodes in T ′.

We use cover(T) to denote the set of δ-prefix tuples corresponding to the leaf nodes of T ;

i.e., cover(T) = {ptupδ(V) | V is a leaf node in T}.

Example 3.6: Figure 3.6(h) shows an example result trie wrt a query with δ = (Brand, ScrnSze,

BatLife). We have cover(T) = {(Acer, 13.3, 5), (Acer, 14.1, 5), (Acer, 17.3), (Lenovo)}.

If V denotes the rightmost child node of the node “Acer”, then ptupδ(V) = (Acer, 17.3).

�

Note that our result trie differs from the trie used in [70]: our trie is not necessarily

height-balanced, and it requires a more intricate maintenance procedure (Section 3.4.5) as

the tuples are inserted into it in a random rather than a sequential order.

3.4.4 Overview of Query Evaluation

Our overall approach to evaluate a diversity query Q using a D-Index I and result trie

T works as follows. For each matching index node N accessed in I , we update T with

ptupmax
δ (N). Thus, the result trie is used to organize the retrieved ptupmax

δ (N) tuples,

which is in turn used to guide the index traversal to construct a core cover forQ efficiently

with a small number of index node accesses.

If the result trie satisfies a sufficient condition for cover(T) to form a core cover for Q

(discussed in Section 3.4.5), the index traversal terminates and cover(T) is used to derive

41

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

a diverse result set for Q as follows. Let {V1, · · · , V�} denote the set of leaf nodes in T

and (β1, · · · , β�) denote the corresponding core cover assignment for Q. Then the rid

entries from entry(Vi) will be used to retrieve βi tuples to form the result set for Q.

If |entry(Vi)| < βi, then we need to retrieve additional matching tuples by using the

ρ entries from entry(Vi) to access additional matching index nodes. The core cover

assignment is computed to ensure that the trie representation of the derived result set is as

balanced as possible so that it is a diverse result set.

Cover Cover Assignment

Now we discuss how a core cover assignment (β(V1), · · · , β(V�)) is computed for a query

core cover cover(T) = {ptupδ(V1), · · · , ptupδ(V�)} that corresponds to the set of leaf

nodes LN = {V1, · · · , V�} in a result trie T .

For each leaf node Vi ∈ LN , let NTup(Vi) denote the cardinality of the set of matching

tuples in R that are covered by ptupδ(Vi). Thus, each NTup(Vi) ≥ 1 and each βi ∈
[1, NTup(Vi)].

For each non-leaf node V in T , let NTup(V) denote the sum of NTup(Vi) for each leaf

node Vi in TV ; and let β(V) denote the sum of βi for each leaf node Vi in TV . Note that

for each node V in T , size(TV) ≤ β(V) ≤ NTup(V).

Our inductive computation of β(V ′) proceeds top-down as follows. We start with V ′ =

Vroot; clearly β(V ′) = k if there are at least k matching tuples for Q. Let C denote

the set of child nodes of V ′. We now determine β(V ′
i) for each V ′

i ∈ C such that∑
V ′
i ∈C

β(V ′
i) = β(V ′). Let η be the smallest positive integer that satisfies the following

inequality:
∑

V ′
i ∈C

(max(size(TV ′
i
), min(NTup(V ′

i), η))) ≥ β(V ′). Each node V ′
i ∈ C

can be categorized into one of three groups: (G1) NTup(V ′
i) < η, (G2) size(TV ′

i
) < η ≤

NTup(V ′
i), or (G3) η ≤ size(TV ′

i
). If V ′

i belongs to G1, we set β(V ′
i) = NTup(V ′

i).

42

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

If V ′
i belongs to G3, we set β(V ′

i) = size(TV ′
i
). Finally, for each V ′

i that belongs to G3,

β(V ′
i) is set to either η or (η − 1) as follows.

Let C = C1,2 ∪ C3, where C1,2 denote the set of child nodes of V ′ that belong to G1 or

G2, and C3 = {V ′
1 , · · · , V ′

r} denote the set of child nodes of V ′ that belong to G3. For

convenience, let size(V ′
1) ≤ · · · ≤ size(V ′

r). Let β(C3) denote β(V ′)−∑
V ′
i ∈C1,2

β(V ′
i).

Let p = (η × r) − β(C3). Then for each V ′
i ∈ C3, we set β(V ′

i) = η − 1 if i ∈ [1, p];

otherwise, β(V ′
i) = η.

Therefore, by applying the above procedure inductively starting from Vroot, we compute

β(Vi) for each Vi ∈ LN , and it can be shown that (β(V1), · · · , β(V�)) is a core cover

assignment for cover(T).

3.4.5 Sufficient Condition for Core Cover

In this section, we establish a sufficient condition for cover(T) to be a core cover for a

query Q with limit of k.

Definition 3.11 (diverse trie). A result trie T for a queryQ on relationR with d-order δ is

a diverse trie if for any set of matching records S ⊆ R, |S| = |cover(T)|, that is covered

by cover(T), S is a diverse result set of size |S|. �

Definition 3.12 (expandable node). We say that a node V in a result trie is expandable

if it is possible to add a new child node to V . The new child node must correspond to a

yet-to-be accessed matching index node.

Definition 3.13 (balanced node). A node V in a result trie is defined to be balanced if for

each child subtree Ti of V , the difference between size(Ti) and size(T ′) is at most one,

where T ′ is the largest child subtree (in terms of size()) of V ; i.e., size(T ′)−size(Ti) ≤ 1.

43

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Definition 3.14 (balanced-diverse (b-diverse) tree). A subtree T rooted at a node V in a

result trie is defined to be a balanced-diverse (or b-diverse) tree if one of the following

conditions hold: (1) V is a leaf node, or (2) V is an internal node and either (a) the

number of child nodes of V is equal to size(T), or (b) V is balanced and not expandable,

and each child subtree of V is a b-diverse tree.

The following result states that a b-diverse result trie T is a sufficient condition for T to

be a diverse result trie.

Lemma 3.1. If a result trie T is b-diverse, then T is a diverse trie. In addition, if

|cover(T)| = k, then cover(T) is a core cover for Q. �

Definition 3.15 (k-sufficient tree). A subtree T rooted at a node V in a result trie is defined

to be a k-sufficient tree if one of the following conditions hold: either (1) V is the root node

and size(T) = k; or (2) V is not the root node, the subtree rooted at the parent node Vp of

V is k-sufficient, and the difference between size(T) and size(T ′) is at most one, where

T ′ is the largest child subtree (in terms of size()) of Vp (i.e., size(T ′)− size(T) ≤ 1).

The following result states that if a subtree T ′ in a result trie T is a k-sufficient tree, then

increasing size(T ′) will not improve the diversity of T .

Lemma 3.2. If T is a k-sufficient result trie for a query Q, then there exists a diverse

result set S for Q such that for each k-sufficient subtree T ′ rooted at V in T , the number

of tuples in S that are covered by ptupδ(V) is at most size(T ′). �

Definition 3.16 (k-optimal tree). A tree T is k-optimal if T is both b-diverse as well as

k-sufficient.

Example 3.7: Consider a D-Index I on R with α = (B,C, SS,BL), and a query Q on

R with δ = (B, SS,BL), a single selection predicate “#Core = 4” (i.e., θ = {C}), and a

limit of 4. Figure 3.6 shows a sequence of the states of the result trie as it is updated with

44

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

the δ-prefix tuples corresponding to a specific sequence of accessed index nodes. The

node “Acer” in Figure 3.6(f) is expandable as it is possible to add a new child node “17.3”

to it; however the node “Acer” is not expandable in both Figures 3.6(g) and (k). The root

node in Figure 3.6(h) is not balanced since the size of its left subtree is 3 while that of

its right subtres is 1; however, the root node in Figure 3.6(k) is balanced since the size of

each of its child subtrees is 2. In Figure 3.6(g), the subtree rooted at the node “Acer” is

4-optimal as it is both b-diverse and 4-sufficient; however, the entire trie is 4-sufficient but

not b-diverse. In Figure 3.6(i), the subtree rooted at the node “Acer” is 4-optimal, while

the subtree rooted at the node “Lenovo” is b-diverse but not 4-sufficient; the entire trie is

4-sufficient but not b-diverse. Finally, in Figure 3.6(k), the entire trie is 4-optimal. �

Based on Lemmas 3.1 and 3.2, we have the following sufficient condition for a result trie

to form a core cover for a query.

Theorem 3.1. If for each node V in a result trie T , the subtree rooted at V is k-optimal or

V is not expandable, then there exists a subtree T ′ of T such that cover(T ′) ⊆ cover(T)

and cover(T ′) is a core cover for Q. In addition, if T is k-optimal, then T ′ = T . �

Example 3.8: Consider a D-Index I on R with α = (B,C, SS, BL), and a query Q

on R with δ = (B, SS), a single selection predicate “#Core = 4”, and a limit of 4. In

the result trie T shown in Figure 3.4(a), although T is 4-sufficient, T is not b-diverse and

therefore also not 4-optimal. However, observe that Theorem 3.1 applies to T : each node

in the subtree rooted at “Acer” is 4-optimal, and the root node as well as each node in the

subtree rooted at “Lenovo” is not expandable. Therefore, there exists a subtree T ′ of T

(shown in Figure 3.4(b)) such that cover(T ′) is a core cover for Q. Indeed, Figure 3.4(c)

shows a diverse result set for Q that is covered by cover(T ′). �

Note that although Lemma 3.1 provides a sufficient condition for cover(T) to be a core

cover for Q, it is not efficient to use this condition alone to guide index navigation to

45

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

�

Acer

13.3 14.1 17.3

Lenovo

13.3

�

Acer

14.1 17.3

Lenovo

13.3

RID B SS

12 Acer 14.1
13 Acer 17.3
17 Lenovo 13.3
18 Lenovo 13.3

(a) T (b) T ′ (c) S

Figure 3.4: Example for Theorem 3.1

compute the query results as it can lead to many useless index access that retrieve δ-prefix

tuples that do not contribute to the final result trie. For efficiency reason, we therefore

combine the balanced-diverse and k-sufficient properties in Theorem 3.1 as a stronger

sufficient condition for cover(T) to be a core cover for Q. The following example illus-

trates this requirement.

Example 3.9: Consider a D-Index I on R with α = (B,C, SS, BL), and a query Q

on R with δ = (SS,BL), a single selection predicate “#Core = 2”, and a limit of 4.

In the result trie T1 shown in Figure 3.5(a), the subtree T ′ rooted at “14.1” is both b-

diverse and 4-sufficient (i.e., 4-optimal). Since T ′ is 4-sufficient, by Lemma 3.2, it is

actually unnecessary to access further index nodes to expand T ′ since there exists a diverse

result set S for Q where the number of records in S covered by (14.1) is no larger than

size(T ′) = 3. Indeed, Figure 3.5(b) shows such a diverse result set for Q. If we had not

used this k-sufficient property, then we could have access other unnecessary index nodes

(e.g., (Acer,2,14.1,6)) that are covered by (14.1). �

�

14.1

3 5 7

15.4

3

RID SS BL

3 14.1 3
4 14.1 5
6 15.4 3
9 15.4 7

(a) T (b) S

Figure 3.5: Example for the k-sufficient property

46

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

3.5 D-Index Variants

In this section, we present the key ideas of two instantiations of D-Index: D-tree is

the simpler variant, which traverses the index in a DFS manner, while D+-tree is an

improved variant to address the limitations of D-tree. The detailed evaluation algo-

rithms for D-tree and D+-tree will be discussed in Section 3.6. We use I to denote a

D-Index on a relation R with index key α = (A1, · · · , An).

3.5.1 Relevant Index Levels (RI-levels)

A D-Index I can be used to evaluate Q if all the attributes in δ and θ occur in α. Note

that the ordering of the attributes in δ and θ can be different from α, and α can contain

attributes that do not occur in δ or θ.

In general, not all of the index levels in I are relevant and useful for evaluating Q. We

classify an index level Li (corresponding to attribute Ai) as a relevant index level (or RI-

level) for Q if it satisfies the following four conditions. First, Ai must be relevant for

evaluating Q; i.e., Ai must be a diversity attribute in δ or a selection predicate attribute in

θ. Second, αi must contain all the selection predicate attributes in θ. This is necessary to

enable checking whether ptupα(N) for an accessed index nodeN at Li is a matching tuple

for Q. Third, if Ai corresponds to a diversity attribute Dj in δ, then αi must contain all

the attributes in δj . Recall that each matching tuple ptupα(N) needs to be transformed to

its maximal δ-prefix tuple to update the result trie. Therefore, if αi does not contain some

diversity attributeDr, r < j, then it means that the maximal δ-prefix of αi is at most δr−1,

which implies that the additional values of attributes {Dr, Dr+1, · · · , Dj} retrieved from

ptupα(N) are not utilized at all. In this case, we are better off accessing Lr−1 instead of

Li. Finally, if Ai corresponds to a selection predicate attribute in θ, then αi must contain

47

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

the first diversity attribute D1. Otherwise, the maximal δ-prefix of αi is empty which

means that the index nodes accessed from Li are useless for updating the result trie.

Example 3.10: Consider a D-Index I with α = (A,B, C,D, E, F,G) and a query Q

with δ = (E,C,G,A) and θ = {B}. Q can be evaluated using I since α contains all the

attributes in δ and θ. Only L5 and L7 (corrp. to E and G) are RI-levels. L1 (corrp. to A)

violates the second condition, L2 (corrp. to B) violates the fourth condition, L3 (corrp.

to C) violates the third condition, and L4 and L6 (corrp. to D and F) violate the first

condition. �

Trie implementation. As Example 3.10 illustrates, the RI-levels for a query Q are not

necessarily consecutive levels in I . Given an index node N , there are two basic access

patterns in D-Index: the first is to access the next node after N at the same index level,

and the second is to access the first descendant node of N at some RI-level. To efficiently

support these access patterns and avoid the overhead of accessing nodes at non-RI levels,

we implement each D-Index as a collection of B+-trees. Specifically, for each level Li

in I , the entries in Li are indexed by a B+-tree with index key αi; thus, there is one leaf

entry in the B+-tree for each level-i index node N in I , and the leaf entry contains its key

value ptupα(N) and rid(N). In this way, the B+-trees corresponding to non-RI levels for

Q will not be accessed for evaluating Q.

3.5.2 Definitions & Notations

Before we present the ideas behind the two index variants, we first introduce several ad-

ditional definitions and notations.

Definition 3.17 (corresponding T -node of N). Given a node N in a D-tree index, we

say that a node V in the result trie T is the corresponding T -node of N if ptupδ(V) is

ptupmax
δ (N).

48

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

In this work, we use N to denote an index node in I and use V to denote a node in the

result trie T . Given a node V in the result trie I , we use TV to denote the subtree of the

result trie T rooted at V . Given an index node N in I , we use TN to denote the subtree of

the result trie T rooted at the corresponding T -node of N .

Definition 3.18 (heavy/light leaf node). A leaf node V in T is defined to be a �heavy (light)

leaf node if for each ancestor node V ′ of V in T , the subtree rooted at V ′ is the largest

(smallest) subtree (in terms of size()) among its sibling subtrees.

Example 3.11: Let N denote the node in the D-Index in Figure 3.3 with ptupα(N) =

(Acer, 4, 14.1, 5). The corresponding T -node of N in Figure 3.6(g) is the node V with

ptupδ(V) = (Acer, 14.1, 5). In Figure 3.6(g), the two leftmost leaf nodes are heavy leaf

nodes, while the two rightmost leaf nodes are light leaf nodes. �

3.5.3 D-tree Index

In this section, we present the key ideas of evaluating a query Q with a D-tree index I .

The D-tree evaluation algorithm traverses the RI-levels of I in a top-down, depth-first

manner. For each matching index node N accessed, we update the result trie with the

maximal δ-tuple corresponding to N (i.e., ptupmax
δ (N)). If the corresponding T -node of

N already exists in T as V , and V is a leaf node in T , then we add an entry corresponding

to N into entry(V). On the other hand, if V does not exist in T , we add V into T and

update entry(V) as described.

If the update would cause size(T) to exceed k, we first need to select a “victim” tuple

from T , denoted by ptupδ(V), where V is some leaf node in T , and decide if replacing

ptupδ(V) by ptupmax
δ (N) would improve the diversity of T . To maximize the diversity

of T , we should pick V to be a heavy leaf node. For instance, consider the result trie

49

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

shown in Figure 3.6(g) from Example 3.7, where the two leftmost leaf nodes are heavy

leaf nodes; clearly, replacing any one of these leaf nodes is better for the diversity of T

than replacing any one of the non-heavy leaf nodes.

Having selected a victim tuple ptupδ(V), we need to determine whether the replacement

would improve the diversity of T . We use a simple sufficient condition to detect whether

its diversity would be affected: if V ′ is the corresponding T -node of N after ptupmax
δ (N)

has been inserted into T , Va is the youngest ancestor node of V with at least two child

nodes, and Va is an ancestor of V ′, then the replacement does not affect the diversity of T .

Thus, if this sufficient condition holds, we do not update T with ptupmax
δ (N). Continuing

with the example trie Tg in Figure 3.6(g), our approach would not update Tg if ptupmax
δ (N)

is say (Acer, 13.3, 7) but we would update Tg if ptupmax
δ (N) is (Lenovo). Thus, size(T)

does not decrease as the index evaluation progresses and size(T) is at most k.

For each accessed index node N , we proceed with the DFS-traversal from N to its next

descendant node (at the next RI-level) if TN is not k-optimal. Thus, when the index

traversal terminates, Theorem 3.1 guarantees that cover(T) is a core cover for Q. A

diverse result set for Q is derived from cover(T) as described in Section 3.4.4.

Example 3.12: Consider again Example 3.7. There are three RI-levels corresponding

to attributes C, SS, and BL. Figure 3.6 shows the sequence of updates to the result

trie as the D-tree is traversed to evaluate Q. In each of Figures 3.6(a) to (f), T is

not 4-sufficient. The insertion of (Acer,17.3) in Figure 3.6(g) causes T to become 4-

sufficient, but T is not b-diverse as Vroot is still expandable. In Figure 3.6(h), the insertion

of (Lenovo) replaces (Acer,13.3,3); and in Figure 3.6(i), the insertion of (Lenovo,13.3,7)

replaces (Acer,13.3,5). At this point, T is 4-optimal as it is both 4-sufficient and b-diverse.

�

To check if a level-i node V in T is expandable, we use the following sufficient condition:

50

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

�

Acer

�

Acer

13.3

�

Acer

13.3

3

�

Acer

13.3

3 5

�

Acer

13.3

3 5

14.1

�

Acer

13.3

3 5

14.1

5

�

Acer

13.3

3 5

14.1

5

17.3

(a) (b) (c) (d) (e) (f) (g)
�

Acer

13.3

5

14.1

5

17.3

Lenovo

�

Acer

13.3

5

14.1

5

17.3

Lenovo

13.3

�

Acer

13.3

5

14.1

5

17.3

Lenovo

13.3

5

�

Acer

14.1

5

17.3

Lenovo

13.3

5 7
(h) (i) (j) (k)

Figure 3.6: Sequence of updates to result trie by D-tree evaluation in Example 3.12

if the number of child nodes of V in T is less than the number of distinct values of attribute

Di+1, which is obtained from the statistic countNroot
(Di+1) stored in the index’s root

node, then V is expandable. For the remaining properties (i.e., balanced node, diverse

tree, and k-sufficient tree), they can be checked directly based on their definitions or

checked more efficiently by incrementally maintaining additional information with each

node (e.g., maintaining a flag to indicate whether a node is balanced).

3.5.4 D+-tree Index

One drawback of D-tree is that the DFS-traversal of the index nodes could result in

the retrieval of many matching index nodes that do not contribute to the eventual query’s

core cover; we refer to such index nodes as useless index nodes. For instance, in Exam-

ple 3.12, the three index nodes retrieved to form the result subtrie rooted at (Acer, 13.3)

in Figure 3.6(d) turn out to be useless index nodes as the subtrie was replaced in the final

result trie in Figure 3.6(k).

51

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

To reduce the number of useless index node access, we propose an improved variant of

D-tree, called the D+-tree, which differs from D-tree in three key ways. First,

D+-tree traverses the index nodes in a level-wise manner to alleviate the drawback of a

DFS-traveral of the index nodes.

Second, D+-tree uses additional statistics information to optimize the update of the

result trie T so that for each accessed index node N , it is possible to not only add a new

node V in T (i.e., V is the T -node corresponding toN) but also know about the number of

child nodes of V (but not their contents) in T . We refer to such child nodes as virtual child

nodes (or child vnodes). This “look-ahead” capability essentially provides a cost-effective

means to construct a larger and more informative result trie (with vnodes) without having

to first pay the cost to access the index nodes corresponding to these vnodes. If if turns

out that a vnode is subsequently replaced (i.e., its correponding index node is actually

useless), we would have saved the index access cost for the replaced vnode.

Third, unlike the D-tree where it traverses from one RI-level to the next immediate RI-

level, D+-tree uses a cost model to determine the next “best” RI-level to access from

a given index node. In this way, D+-tree is able to further optimize performance by

judiciously accessing a selected subset of RI-levels.

Additional statistics. To support the look-ahead capability in D+-tree, we extend the

statistics information that is stored only with the root node in D-tree to every node

in D+-tree. Specifically, for each level-i node N in a D+-tree, we maintain statis-

tics on the number of distinct values for each “descendant” attribute in the index subtree

rooted at N , denoted by countN(Aj); i.e., for each attribute Aj , j ∈ [i + 1, n], we have

countN(Aj) = |{t.Aj | t ∈ R, ptupα(N) covers t}|. Note that the statistics stored at the

index root node are the same for both D-tree and D+-tree.

Example 3.13: Let N denote the node labeled “Acer” in the D+-tree index I in Fig-

ure 3.3. We have countN(C) = 2, countN (SS) = 4, and countN(BL) = 4. �

52

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Level-wise traversal. In D+-tree, the top-down traversal of selected RI-levels of the

index is carried out in two phases. In the first phase, D+-tree selects a starting RI-

level (say level �) to traverse (based on a cost model) and scans for matching level-�

index nodes. For each accessed index node N , the result trie is updated with ptupmax
δ (N)

similar to what is done in D-tree. Let V denote the corresponding T -node ofN after the

update of T . If TV is not k-optimal, the evaluation algorithm will determine the maximum

number of child nodes of V , denoted by MC, for cover(T) to be a core cover for Q, and

insert an appropriate number of child vnodes for V so that the total number of its child

nodes in T is MC. Note that vnodes must be leaf nodes in T .

At the completion of the first phase, the result trie T constructed is height-balanced up

to level j, where δj is the maximal δ-prefix of α�, with possibly some vnodes at level

j + 1. If T contains vnodes or it is not k-optimal, we begin the second phase of scanning

other RI-levels of I which operates by performing a top-down, breadth-first traversal of

the result trie starting with level j. Suppose that the algorithm is currently scanning level-i

of the result trie, i ∈ [j,m), and Di occurs as attribute Ar in α. For each level-i result

trie node V accessed, if TV is not k-optimal or V has child vnodes, then we will start an

index scan wrt an index node N . The goal is to retrieve a sufficient number of descendant

index nodes of N from I so that their maximal δ-prefix tuples will be inserted into TV to

make V k-optimal (if TV is not k-optimal), or replace the child vnodes of V (if TV has

child vnodes). To determine N , we pick any one entry (ρ, rid) from entry(V), and let N

be the node such that ptupα(N) = ρ. Given N , we use a cost model to select the next

“best” RI-level (say �′) to access. As before, we update the result trie for each matching

level-�′ index node N ′ accessed and if V ′ is the corresponding T -node of N ′ and TV ′ is

not k-optimal, we insert an appropriate number of child vnodes for V ′.

Since T might have leaf nodes that are vnodes, each update of T should replace a vn-

ode whenever possible. For example, consider the result trie in Figure 3.7(d) where the

two leaf nodes of node (Lenovo, 13.3) are vnodes (indicated by ◦ nodes). When T is

53

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

updated with (Lenovo, 13.3, 5) in Figure 3.7(e), the update replaces one of the vnodes of

(Lenovo, 13.3).

At the completion of the second phase, T does not contain any vnodes, if T is k-optimal,

Theorem 3.1 guarantees that cover(T) is a core cover for Q, and the diverse result set is

constructed following the same procedure described in Section 3.4.4. Otherwise, Theo-

rem 3.1 guarantees that there exists a core cover cover(T ′), cover(T ′) ⊆ cover(T).

Now we discuss how to find a core cover cover(T ′), cover(T ′) ⊆ cover(T), from a result

trie T , where for each node V , TV is k-sufficient or V is not expandable.

For each node V in T , let NTup(V) denote the cardinality of the set of matching tuples

in R that are covered by ptupδ(Vi), and let β(V) denote the number of matching tuples in

a diverse result set that are covered by ptupδ(Vi).

Our inductive refinement from T to T ′ proceeds top-down as follows. We start with

V ′ = Vroot; clearly β(V ′) = k if there are at least k matching tuples for Q. If β(V ′) =

NTup(V ′) ,or β(V ′) = size(TV ′) and TV ′ is b-diverse, we do not need to remove any

subtrees in TV ′ . On the other hand, we need to check and refine the subtree TV ′ . Let

C denote the set of child nodes of V ′. If |C| ≥ β(V ′), we can only keep β(V ′) child

nodes and remove other nodes in the subtree TV ′ . Otherwise, we now determine β(V ′
i)

for each V ′
i ∈ C such that

∑
V ′
i ∈C

β(V ′
i) = β(V ′). Let η be the smallest positive integer

that satisfies the following inequality:
∑

V ′
i ∈C

(min(NTup(V ′
i), η)) ≥ β(V ′). Each node

V ′
i ∈ C can be categorized into one of two groups: (G1) NTup(V ′

i) < η, or (G2) η ≤
NTup(V ′

i). If V ′
i belongs to G1, we do not need to remove any nodes in TV ′

i
. If V ′

i belongs

to G2, β(V ′
i) is set to either η or (η − 1) as follows. Let C = C1 ∪ C2, where C1 denote

the set of child nodes of V ′ that belong to G1, and C2 = {V ′
1 , · · · , V ′

r} denote the set of

child nodes of V ′ that belong to G2. For convenience, let size(V ′
1) ≤ · · · ≤ size(V ′

r). Let

β(C2) denote β(V ′)−∑
V ′
i ∈C1

β(V ′
i). Let p = (η × r)− β(C2). Then for each V ′

i ∈ C2,

we set β(V ′
i) = η − 1 if i ∈ [1, p]; otherwise, β(V ′

i) = η.

54

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

After removing some nodes in T , we get such a result trie T ′ that cover(T ′) is a core cover

for Q.

Example 3.14: Consider again Example 3.7 but using D+-tree as the D-Index. Fig-

ure 3.7 shows the sequence of updates to the result trie as the D+-tree is traversed to

evaluate Q, where the vnodes are indicated by ◦ nodes. The first RI-level that D+-tree

chooses to access is the level corresponding to attribute SS; i.e., the RI-level correspond-

ing to attribute B is skipped. Thus, for the evaluation of Q, only two (i.e., corresponding

to SS and BL) out of the three RI-levels are accessed. Figure 3.7(h) shows the result trie

at the completion of scanning index nodes at the level for SS. Observe that the D+-tree

evaluation incurs only one useless index node access (i.e., (Acer, 13.3))) compared to

three useless index node access using D-tree in Example 3.12. �

�

Acer

13.3

�

Acer

13.3 14.1

�

Acer

13.3 14.1 17.3

�

Acer

14.1 17.3

Lenovo

13.3

�

Acer

14.1 17.3

Lenovo

13.3

5

�

Acer

14.1 17.3

Lenovo

13.3

5 7
(a) (b) (c) (d) (e) (f)

Figure 3.7: Sequence of updates to result trie by D+-tree index evaluation in Exam-
ple 3.14

Besides using the additional statistics to determine the number of child nodes of a result

trie node, the additional statistics can also be used to more accurately determine whether

a trie node is expandable. Instead of using the approximate statistics in the root node

for this purpose (as in D-tree), we perform the following for D+-tree: whenever we

update the result trie with ptupmax
δ (N) to create a new level-j leaf node V in T , we copy

the statistic countN(Dj+1) from N to V for this purpose, which is more accurate than

countNroot
(Dj+1).

Cost model for RI-level selection. We now outline how D+-tree uses a cost model to

55

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

select the next “best” RI-level to access wrt a level-� index nodeN . This RI-level selection

problem arises in three cases: (C1) N is the index root node (i.e., selection of the starting

RI-level); and (C2) N is the index node corresponding to some trie node V accessed

during the breath-first traversal of T , where (a) TV is not k-optimal or (b) V has some

child vnodes. For (C2b), since TV is already k-optimal, we can simply select the next RI-

level below the level ofN . For (C1) and (C2a), the procedure is more elaborate as the goal

is to pick an RI-level to minimize the overall index access cost to retrieve a target number

of index nodes (denoted by num). For (C1), num is equal to the query limit k, while

for (C2a), num is equal to maximum possible size of TV for cover(T) to be a core cover

for Q. The maximum subtree size is computed by the MaxSubtreeSize function in

Section 3.6.2. For simplify, we assume that the tree generated by accessing each RI-level

is balance, and then we present a simplified version of our cost model which is to find the

smallest RI-level i such that i > � and the estimated number of level-i matching index

nodes is at least num.

Now we discuss about the estimate function of the size of tree T by accessing a RI-level.

Consider query Q with τ predicates and d-order δ = (D1, · · · , Dm), and a RI-level L�.

Let δi, i ∈ [1, m], be the longest proper prefix of δ that each attributeDj , j ∈ [1, i], occurs

in α�.

For simplify, we first assume that τ = 0. Since the order of δi does not affect the size of

tree by accessing L�, we reorder δi as δ′i = (D′
1, · · · , D′

i) in the same order with α�. We

use φ(D′
j, D

′
j+1), j ∈ [1, i), to denote the average distinct number of D′

j+1 at the subtree

rooted at each node on the D+-tree level wrt D′
j . After that, we can estimate the size of

T as follow.

M = countNroot
(D′

1) ·
i−1∏
j=1

φ(D′
j , D

′
j+1) (3.1)

Now we consider the scenario that τ > 0. We reorder the τ selection predicate attributes

56

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

in the same order with α�, and denote them as (SPA1, · · · , SPAτ). For simplify of

the description, we assume that all of these predicates are equality predicates. Let τ ′

(τ ′ ∈ [0, τ]) be the maximal integer that (SPA1, · · · , SPAτ ′) is a proper prefix of α�. We

have a naive case that τ ′ = τ . Let N be the particular node in D+-tree identified by the

τ ′ predicates. In such case, we can easily estimate it in Equation 3.2. The only difference

with Equation 3.1 is that we use a more precise statistic information stored in node N .

M = countN(D
′
1) ·

i−1∏
j=1

φ(D′
j , D

′
j+1) (3.2)

At last, we consider about the most complex case that 0 < τ and τ ′ < τ . It is too hard

to directly estimate the size of T wrt δ′. Let γ = (A1, · · · , Am) be the order among the

attribute set of each SPA′
o, o ∈ (τ ′, τ], and D′

j , j ∈ [1, i], in the same order with α�.

Instead of directly estimate the size of T wrt δ′, we consider about the tree T ′ wrt γ. But

we should note that for a selection predicate attribute Ap, p ∈ [1, m], all nodes at level Lp

of T ′ labeled by the same value. Then we have that the size of T ′ is the same with that of

T . Let’s take an example to illustrate it.

Example 3.15: Reconsider again Example 3.12. Fig. 3.8(a) shows the tree T forQ, while

Fig. 3.8(b) shows the tree T ′ which contains the C level. Even though the structures of

the two tree are different, they have the same size. �

�

Acer

14.1

5

17.3

5

Lenovo

13.3

5 7

�

Acer

4 cores

14.1

5

17.3

5

Lenovo

4 cores

13.3

5 7

(a) (b)
Figure 3.8: Comparison of two tree size

Now we discuss about the estimation of the size of T ′. If we do not consider about these

predicate constraints on T ′, we can easily estimate the size by using Equation 3.1 and

57

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Equation 3.2. Based on these constraints, we can cut some branches in T ′. For a level

of T ′ wrt a selection predicate attribute Ap, p ∈ [1, m], there could be nodes labeled by

countN(Ap) different Ap values, but we only keep subtrees rooted at nodes labeled by the

predicate value. Now we can estimate the size of T ′ as follow.

N(Li) =
countN(A

′
1) ·

∏q

j=2 φ(A
′
j−1, A

′
j)∏τ

j=τ ′+1 countN(SPAj)
(3.3)

3.5.5 Implementation Issues

Insufficient RID problem. Note that it is possible that the D-Index might not have suf-

ficient RIDs to answer a query even though there are adequate number of records in the

relation R being indexed. This is due to the design of D-Index which stores only a single

RID in each index node. To address this problem, one way is to change the design of the

last index level (i.e., Ln) so that each level-n index node N now stores the RIDs of all the

records in R that are covered by ptupα(N) instead of just a single RID. With this design,

we can retrieve more RIDs associated with a leaf node V in T by first accessing some

entry (ρ, rid) from entry(V) and use the α-prefix tuple ρ to retrieve appropriate level-n

descendant nodes in I to obtain their RID-lists.

Index key compression. To optimize the performance of the constituent B+-trees of a D-

Index, we compress each index’s key values by using a mapping table to map the original

attribute values of the keys into compressed forms.

3.6 Evaluation Algorithms

In this section, we present the detailed evaluation algorithms for both D-tree and D+-tree.

58

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Algorithm 3.1: D-tree-Eval (Q, I)

Input: query Q with δ = (D1, · · · , Dm) and limit k, index I with
α = (A1, · · · , An)

Output: diverse result set S for Q
1 initialize result trie T with Vroot;
2 DFSIndexScan (Q, I,Nroot, T);
3 GetTuples(T, k);
4 initialize S to be empty;
5 foreach leaf node V in T do
6 foreach (ρ, rid) in entry(V) do
7 add rid into S;
8 return S;

Algorithm 3.2: DFSIndexScan (Q, I,N, T)

Input: query Q, index I with n levels, index node N , result trie T
Output: updates result trie T

1 �← NextRILevel (Q, I,N);
2 foreach matching level-� descendant node N ′ of N in I do
3 UpdateTrie (Q, I,N ′, T);
4 if (TN ′ is not k-optimal) and (� �= LastRILevel(Q, I)) then
5 DFSIndexScan (Q, I,N ′, T);
6 if TN is k-optimal then
7 break;

3.6.1 D-tree Index

The main algorithm for evaluating a query Q with a D-tree index I is shown in Al-

gorithm 3.1. After initializing the result trie T , the function DFSIndexScan (Algo-

rithm 3.2) is invoked to traverse the RI-levels of I in depth-first order starting at the root

node Nroot.

In DFSIndexScan, the function NextRILevel(Q, I,N) returns the next RI-level of

I (wrt Q) that is the closest level below the level of an index node N , while the function

LastRILevel(Q, I) returns the last RI-level of I (wrt Q). For each accessed index

node N , the result trie will be updated using the function UpdateTrie (Algorithm 3.3)

if N is a matching node for Q. The DFS-traversal at N is terminated if the corresponding

T -node of N is k-optimal or N is located at the bottommost RI-level.

59

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Algorithm 3.3: UpdateTrie (Q, I,N, T)

Input: query Q with limit k, D-tree index I , index node N , result trie T
Output: updates result trie T

1 let V be the node in T such that ptupδ(V) is the longest prefix of ptupmax
δ (N);

2 if (ptupδ(V) is a proper prefix of ptupmax
δ (N)) and ((V is a leaf node) or

(size(T) < k)) then
3 insert ptupmax

δ (N) into T to form a new leaf node V ′;
4 entry(V ′) ← {(ptupα(N), rid(N))};
5 else
6 if (|entry(V)|+ size(T) < k) then
7 add (ptupα(N), rid(N)) to entry(V);
8 else
9 if ptupδ(V) is a proper prefix of ptupmax

δ (N) then
10 let Vh be a heavy leaf node in T , and Va be the youngest ancestor node

of Vh with at least 2 child nodes;
11 if Va is not an ancestor node of V then
12 delete ptupδ(h) from T ;
13 insert ptupmax

δ (N) into T to form a new leaf node V ′;
14 entry(V ′) ← {(ptupα(N), rid(N))};

The function GetTuples (step 3) takes the query’s core cover computed by DFSIndexScan

to derive a diverse result set forQ by retrieving an appropriate number of additional tuples

into entry(V) for each leaf node V in T (Section 3.4.4). Finally, steps 4 to 7 collect the

RIDs from the leaf nodes of T to return a diverse result set for Q. The details of function

GetTuples are omitted due to lack of space.

3.6.2 D+-tree Index

The main algorithm for evaluating a query Q with a D+-tree index I is shown in Al-

gorithm 3.4. The function ScanIndexLevel (Algorithm 3.5) is invoked wrt an index

node N and to access matching index nodes at a single RI-level (below the level of N).

This RI-level, denoted by �, is selected using the the function NextBestRILevel (step

2). The function NextBestRILevel(Q, I,N) returns the next “best” RI-level to tra-

verse, based on some cost model.

In ScanIndexLevel, the function IndexLevel(I, C) returns the level in I that cor-

60

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

responds to a given attribute C; i.e., IndexLevel(C) = i if C occurs as Ai in the index

key α, i ∈ [1, n].

In RefineTrie, we first determine the maximum number of child nodes of V , denoted

by MC, for cover(T) to be a core cover for Q. The number of vnodes to be inserted for

V is then given by MC − ct, where ct is the existing number of child nodes of V . MC is

the minimum of countN(A�), which represents the maximum number of child nodes of V

in T , and maxsize, which is the maximum value of size(TV) for cover(T) to be a core

cover for Q.

The function MaxSubtreeSize(T, V) (Algorithm 3.8) computes maxsize. This is

computed inductively by computing MaxSubtreeSize (T, V ′) for each ancestor node

V ′ of V in T . Let Vp denote the parent node of V , and let kp denote the computed

maximum possible value for size(Vp). Then M = size(TV) + kp − size(Vp) denote the

size of TV after inserting kp − size(Vp) entries into TV to enlarge TVp
to its maximum

possible size. So long as there is some sibling node V ′ of V with size(TV ′) > size(TV),

we can further enlarge TV with new insertions into TV that replace entries in TV ′ . For

sibling nodes of V whose subtrees are shrunk in this way, they all must be reduced to

the same size which we denote by λ, and the enlarged size of TV must be either λ or

λ + 1. Given this, let S denote the set of sibling nodes of V in T , and E denote λ +∑
V ′∈S min(size(TV ′), λ). Then MaxSubtreeSize(T, V ′) is computed by finding the

largest integer value for λ such that λ ≥ M and kp − 1 ≤ E ≤ kp. If E = kp − 1, then

MaxSubtreeSize(T, V) = λ+ 1; otherwise, MaxSubtreeSize(T, V) = λ.

The function InsertChildVNodes (Algorithm 3.7), which is a slight variation of

UpdateTrie, updates the result trie T by inserting up to num number of virtual child

nodes to a trie node V ; for each vnode V ′ added, entry(V ′) is initialized to an empty set.

61

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Algorithm 3.4: D+-tree-Eval (Q, I)

Input: Query Q with δ = (D1, · · · , Dm) and limit k, index I with
α = (A1, · · · , An)

Output: diverse result set S for Q
1 initialize result trie T with Vroot;
2 �← ScanIndexLevel(Q, I,Nroot, T);
3 let δj be the maximal δ-prefix of α�;
4 for i = j tom− 1 do
5 if T is k-optimal and has no vnodes then
6 break;
7 foreach level-i node V in T that is not k-optimal or has some child vnode do
8 pick an entry e = (ρ, rid) from entry(V);
9 let N be the index node in I with ptupα(N) = ρ;

10 ScanIndexLevel(Q, I,N, T);
11 if V is an internal node in T then
12 remove e from entry(V);
13 if T is k-optimal and has no vnodes then
14 break;
15 construct S following steps 3-7 in Algorithm 3.1;
16 return S;

3.7 Extended Evaluation Method

Consider a diversity queryQ, we have described two methods to evaluateQ on I , if all the

attributes in δ and θ occur in α. However, it is not necessary to ensure that all attributes in

δ occur in α. In this section, we discuss an extended evaluation method to evaluate Q on

I even if some attributes on δ do not occur in α.

The following result states that a k-optimal result trie T for query Q is still k-optimal for

another query Q′, whose d-order is an extension from the d-order of Q.

Lemma 3.3. Consider two diversity queries Q andQ′ with the same selection predicates

and the same k, δQ is a proper prefix of δQ′ . Let cover(T) be a core cover for Q. If T is

k-optimal, then cover(T) is also a core cover for Q′. �

Let’s take an example to illustrate it.

Example 3.16: Consider again Example 3.7, and another diversity query Q′ with δ =

62

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Algorithm 3.5: ScanIndexLevel (Q, I,N, T)

Input: Query Q with δ = (D1, · · · , Dm) and limit k, index I with
α = (A1, · · · , An), N is an index node, T is result trie

Output: updates result trie T , returns scanned RI-level
1 let V be the corresponding T -node of N ;
2 �← NextBestRILevel (Q, I,N);
3 if TN is not k-optimal then
4 foreach matching level-� descendant node N ′ of N do
5 UpdateTrie+(Q, I,N ′, T);
6 if (TN ′ is not k-optimal) and (� �= LastRILevel(Q, I)) then
7 RefineTrie (Q, I,N ′, T) ;
8 if TN is k-optimal then
9 break;

10 else
11 if V has some child vnode then
12 i← IndexLevel(I,D|ptupδ(V)|+1);
13 cv ← number of child vnodes of V ;
14 if cv ≤ countN(Ai) then
15 foreach level-� descendant node N ′ of N do
16 UpdateTrie+(Q, I,N ′, T);
17 if V has no child vnodes then
18 break;
19 return �;

Algorithm 3.6: RefineTrie (Q, I,N, T)

Input: Query Q with limit k, D-tree index I , N is a level-i index node, result trie
T

Output: updates result trie T
1 let V be the corresponding T -node of N ;
2 let ct be the number of child nodes of V in T ;
3 let � = IndexLevel(I,D|ptupδ(V)|+1);
4 if countN(A�) > max(1, ct) then
5 maxsize ← MaxSubtreeSize(V, T);
6 MC ← min(countN(A�), maxsize);
7 if MC = maxsize then
8 entry(V) ← ∅;
9 InsertChildVNodes(Q, I, V,MC − ct, T);

10 insert (ptupα(N), rid(N)) into entry(V);

63

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Algorithm 3.7: InsertChildVNodes (Q, V, num, T)

Input: Query Q with limit k, V is a node in result trie T , num is the number of
child vnodes to add to V

Output: updates result trie T
1 for i = 1 to num do
2 if size(T) < k then
3 add a child vnode V ′ to V in T ;
4 entry(V ′) ← ∅;
5 else
6 let Vh be a heavy leaf node in T ;
7 let Vanc be the youngest ancestor node of V and Vh;
8 if Vanc is not the parent node of Vh then
9 delete ptupδ(h) from T ;

10 add a child vnode V ′ to V in T ;
11 entry(V ′) ← ∅;

Algorithm 3.8: MaxSubtreeSize(V, T, k)
Input: node V in result trie T , k is the limit of query
Output: maximum possible value of size(TV)

1 if V is Vroot then
2 x← k;
3 else
4 let V ′ be the parent node of V in T ;
5 y ← size(TV) + MaxSubtreeSize(V ′, T, k)− size(TV ′);
6 x← y;
7 let V1, · · · , Vs be the sibling nodes of V in T such that

size(TV1
) ≥ · · · ≥ size(TVs

);
8 for i← 1 to s do
9 if x > size(TVi

) then
10 break;
11 else
12 x← �y+Σi

j=1|size(TVi
)|

i+1

;

13 return x;

64

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

(B, SS,BL, LC) and the same selection predicate and limit size as Q. In Figure 3.6(k),

the entire trie T is 4-optimal for both of Q and Q′. Therefore, cover(T) is a core cover

for both queries. �

As can be seen in Example 3.16, the two queries share the same core cover, and thus the

D-Index I with α = (B,C, SS,BL) can be used to execute Q′, even though LC does not

occur in α.

Consider index I and query Q. Let δ′ be the longest proper prefix of δ that each attribute

occurs in α, and letQ′ be the query with d-order δ′. Based on the cost model, we estimate

the result trie T for Q′, and we can get the cover core of Q by evaluating Q′ on I if T is

k-optimal.

In summary, instead of the strict constraint of the two evaluation methods, the extended

evaluation method ensures that an index I can be used to evaluate more diversity queries.

3.8 Index Selection

In this section, we consider the index selection problem of recommending a set of D+-tree

indexes to optimize the performance of a given query workloadW with respect to a space

constraint. We discuss two variants of the problem. The first variant, full D+-tree selec-

tion, treats each collection of B+-trees for a D+-tree as an atomic unit while the second

variant, partial D+-tree selection, treats each B+-tree in a D+-tree as an atomic unit.

3.8.1 Full D+-tree Selection

The optimization for the full D+-tree selection problem is NP-complete, since it can

be reduce from Set-Cover problem. Now we present a heuristic approach for the full

65

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

D+-tree selection problem. Consider a query Qi with τ predicates and d-order δQi
=

(D1, ..., Dm). For each permutation of selection predicate attributes ordering (SPA1, .., SPAτ),

we generate a set of candidate index Ij , j ∈ [1, m], with index key αj = (SPA1, .., SPAτ , D1, ..., Dj).

Therefore, for query Qi, we can generate at most m · τ ! different candidate indexes.

After generating a set of candidate indexes for each query in the workload, we can gen-

erate more candidate indexes by merging two candidate indexes. Let C be the set of

candidate indexes for queries in the workload. For a candidate index I ∈ C, we use α′
I

to denote the ordering for the selection predicate attributes in αI , and α′′
I to denote the

ordering for the remaining attributes in αI . Let S(α) be the set of attributes in αI .

Consider two candidate indexes I1 and I2 in C. We generate two more candidate indexes

by merging them together, if |S(αI1) ∪ S(αI2)| ≤ |S(αI1) ∩ S(αI2)| + 1. The intuition

behind is to minimize the evaluation time on the merged index for all queries which can

be evaluated on either I1 or I2. Let β be the attribute ordering (α′
I1
, α′

I2
, α′′

I1
, α′′

I2
). We

generate an attributes ordering α by removing all duplicate attributes in β. More precisely,

consider an attribute Ai in β, we can remove it if Ai appears in the proper prefix βi−1.

Subsequently, we generate a new candidate index with the index key α. On the other hand,

let β ′ be the attribute ordering (α′
I2
, α′

I1
, α′′

I2
, α′′

I1
). We can generate another candidate

index with the index key α′ which is obtained by removing all duplicate attributes in β ′.

We repeatedly merge two candidate indexes in C until that C reaches a fixed point. We

now discuss the heuristic for selecting the indexes. Now we use the greedy algorithm used

in GreedyCube [44] to select a set of full D+-tree indexes under the space constraint.

Let IS be the current set of D+-tree indexes. We useCost(IS,W) to denote the cost of

queries in W executed by using the indexes in IS, and use B(I, IS) to denote the benefit

of index I relative to IS. Then we haveB(I, IS) = Cost(IS,W)−Cost({I}∪ IS,W).

At the beginning, we initialize IS as an empty set, and repeatedly select the index with

the maximal benefit until that there is no more space.

66

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

3.8.2 Partial D+-tree Selection

Similarly, the optimization for partial D+-tree selection problem is also NP-complete.

Now we discuss the heuristic approach for partial D+-tree selection. Like above, we

use the same strategy to generate a set of partial D+-tree indexes, and also use the

greedy algorithm to select a set of partial D+-tree indexes. However, we should note

that the cost of a query executing on a partial D+-tree index is different from that of

executing on a full D+-tree index, since we can only access on the single level of a

partial D+-tree index.

After obtaining a set of partial D+-tree indexes, we need to organize these selected

indexes as a DAG, since we need to probe access to optimize the result trie if it is not

enough to just accessing the current partial D+-tree index. In order to probe access

between these indexes, we consider each index pair (I1, I2) (S(αI1) ⊂ S(αI2)) which are

directly connected in DAG. If the first attribute A1 of αI2 is not in the attribute set S(αI1),

we modify I1 by appending A1 in the tail of αI1; otherwise, we do not need to modify I1.

3.9 Performance Study

We conducted an experimental study to evaluate the effectiveness of our proposed tech-

niques. Sections 3.9.1 and 3.9.2 compare the performance of SDQs and DDQs, respec-

tively, using synthetic datasets. Section 3.9.4 reports the comparison using real datasets.

Our results show that D+-tree has the best performance. For synthetic datasets, D+-tree

is on average 2× and up to 4.4× faster than OnePass for SDQs, and on average 5× and

up to 35× faster than OnePassD for DDQs. For real datasets, D+-tree is on average

1.8× and up to 2.7× faster than OnePass for SDQs, and on average 2.2× and up to 3.5×
faster than OnePassD for DDQs.

67

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Data sets. We generated four synthetic tables, R1, · · · , R4, by computing the join of the

lineitem, part, customer, and orders relations from the TPC-H benchmark using four dif-

ferent scale factors (SF). The properties of these tables are as follows: Each Ri consists

Relation SF Size (GB) No. of tuples (million)
R1 0.75 1.03 4
R2 4.4 4.83 18.73
R3 16 9.9 38.35
R4 36 15 56.35

Table 3.2: Information on Synthetic Tables

of 10 attributes; for convenience, we use A, · · · , J , respectively, to denote the attributes

linenumber, discount, tax, returnflag, container, shipinstruct, shipmode, linestatus, na-

tionkey, and orderstatus.

The synthetic datasets are evaluated using the following 5 SDQs (Q1 to Q5) and 5 DDQs

(Q6 to Q10): All the SDQs share the same d-order δ = (A,B,C, D, E, F ,G,H, I, J).

Query θ

Q1 A
Q2 C
Q3 F
Q4 C,F
Q5 A,C,F

Query θ Diversity Ordering, δ
Q6 A A,F,B,C,D,E,J,G,H,I
Q7 A B,C,D
Q8 A B,D,C
Q9 A C,D,B
Q10 A D,B,C

(a) SDQ (b) DDQ

Figure 3.9: Diversity Query

Recall that θ represents a query’s set of selection predicate attributes (SPA). To be fair to

OnePass [70], we used only equality selection predicates for all queries.

Algorithms. We compared our proposed D-tree and D+-tree against OnePass

[70] and OnePassD. Recall from Section 3.3 that OnePassD is an extended vari-

ant of OnePass to evaluate DDQs; we incorporated D-Index’s result trie structure into

OnePassD to support the random order of trie updates. Since Probe performed simi-

larly to OnePass for SDQs [70] and is expected to be worse than OnePassD for DDQs

68

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

(Section 3.3), we omit the comparison against Probe and its extension. We also eval-

uated the performance of two sequential scan techniques: TableScan scans the relation

while DIndexScan scans the last RI-level of a D-Index. However, as these two techniques

performed significantly worse than D+-tree (D+-tree is about 50× and 100× faster

than DIndexScan and TableScan, respectively), we omit these two techniques in this work.

All the algorithms were implemented in PostgreSQL 9.0.2: we extended PostgreSQL’s

GIN index to support the skip operations for OnePass [70] and OnePassD, and both

D-tree and D+-tree were implemented as a collection of B+-trees (Section 3.5.1).

For each table Ri, we built a D-tree and D+-tree with index key α = (A, · · · , J),
and built the B+-trees of OnePass and OnePassD with α as the index key. Our imple-

mentation shows that D+-tree index is about 4 times smaller than the GIN index used in

OnePass and OnePassD: As an example, for the 15GB table, the size of the D+-tree

is only 1.9GB while the size of the GIN index is 8.5GB.

Parameters. We varied the following four experimental parameters: (1) the size of dataset

with the default size of 10GB using R3, (2) the query limit k with a default value of 10,

(3) the number of selection predicate attributes (SPA) with a default value of 1, and (4)

the position of a SPA with a default value of 1.

For comparing DDQs, we also varied two additional parameters: (1) length of query d-

order (i.e., |δ|), and (2) the ordering of the attributes for a given set of diversity attributes.

The experiments were conducted on a PC with a Qual-Core Intel Xeon 2.66Ghz processor,

8GB of memory, one 500G SATA disk and another 750GB SATA disk, running Ubuntu

10.04.4. Both the operating system and PostgreSQL were built on the 500GB disk, while

the database was stored on the 750GB disk.

In our experiments, each execution time reported refers to the total running time for a

query. Each running time is measured with the query running alone in the database sys-

69

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

tem, and the database system is restarted between queries. Each query is run 5 times, and

the reported running time is the average of 3 values excluding the minimum and maximum

values.

3.9.1 Static Diversity Queries

Effect of data size

Figure 3.10 compares the performance for different data sizes on Q1. The results show

that D+-tree gives the best performance and it outperforms OnePass by an increasing

factor of 1.7, 2.4, 2.7, and 3.0 as the data size increases. Observe that while D+-tree

performs similarly for the different data sizes, OnePass’s performance worsens with

increasing data size. The results demonstrate that D+-tree’s level-wise index traversal

is more effective and scalable than the depth-first traversal of D-tree. The results also

show that D-tree generally outperformsOnePass: the reason is that while it is possible

for D-tree is to terminate its DFS-traversal at any index level, OnePass can only

terminate its scan at the leaf level.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1G 5G 10G 15G

E
xe

cu
tio

n
Ti

m
e

(s
)

Size of Table(GB)

D+-tree
D-tree

OnePass

Figure 3.10: Effect of data size on Q1

70

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Effect of query limit, k

Figure 3.11 compares the performance for different values of the query limit k on Q1.

Here again, the results show that D+-tree gives the best performance which outperforms

OnePass by up to a factor of 3. The number of index entries accessed by OnePass

increases from 211 to 17723 as k increases from 10 to 150, while that for D+-tree only

increases from 11 to 297. Note that the performance fluctuations for D-tree is due to the

fact that as k increases, although the number of accessed pages increases, the I/O access

pattern also becomes more sequential.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10 30 60 90 120 150

E
xe

cu
tio

n
Ti

m
e

(s
)

Limit Size

D+-tree
D-tree

OnePass

Figure 3.11: Effect of limit size k on Q1

Effect of number of SPA

Figure 3.12 compares the performance as the number of selection predicate attributes is

varied. We used queries Q3, Q4 and Q5, which have 1, 2, and 3, SPAs, respectively, and

query selectivity factors (denoted by sel) of 20%, 2%, and 0.5%, respectively.

The results show that D+-tree gives the best performance and it outperforms OnePass

by an increasing factor of 1.7, 4.1, and 4.4, as sel decreases. For both D-tree and

D+-tree, their performance improves (as expected) when sel decreases. However,

OnePass actually performs worse when sel drops from 20% to 2%, and then improves

71

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

D+-tree D-tree OnePass

E
xe

cu
tio

n
Ti

m
e

(s
)

Evaluation Methods

Q5(0.5%)
Q4(2%)

Q3(20%)

Figure 3.12: Effect of the number of SPA

when sel drops further to 0.5%. There are two factors affecting the performance of

OnePass when there are multiple SPAs: one is the increase in number and cost of index

scans with more SPAs, and the other is the more effective index skips with more SPAs.

Thus, OnePass performs worse for Q4 compared to Q3 as the first factor dominates the

second factor; however, it performs better for Q5 compared to Q4 as the second factor

dominates the first factor.

Effect of SPA position

Figure 3.13(a) compares the performance of 10 SDQs with the same d-order of δ and a

single SPA whose position varies from 1 to 10. The results show that OnePass performs

similarly for all of the 10 queries as it is insensitive to the SPA position. In contrast, while

both D-tree and D+-tree perform similarly for the first six queries (i.e., with SPA

position between 1 and 6) their performance deteriorate significantly for the last three

queries (i.e., when the SPA position is at least 8). The reason is that the size of the first

RI-levels for the last three queries are very large.

However, this performance issue with using a single D-Index to evaluate a set of work-

load queries can be addressed by selecting a set of indexes (wrt to some space constraint)

to evaluate the workload. Indeed, we have developed an efficient heuristic for this index

72

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(s
)

SPA Postion

D+-tree
D-tree

OnePass

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(s
)

SPA Postion

D+-tree
D-tree

OnePass

(a) Compare with a single D-Index (b) Compare with a set of D-Index

Figure 3.13: Effect of the SPA Position for SDQs

selection problem, and for this workload of ten queries, it turns out that building an addi-

tional D-Index with index key α′ = (A, F,B,H, J,G, I, C ,D,E) is sufficient to address

the performance issue. The total size of the two D-Indexes is only 36% of the size of the

single index used by OnePass. Figure 3.13(b) shows the performance comparison with

both D-tree and D+-tree using this two-index configuration (i.e., each query is eval-

uated using the more efficient index between the two). The results show that D+-tree is

consistently the most efficient method. Note that since all the static queries have the same

d-order δ, the index key used in the single OnePass index (which is equal to δ) is already

the optimal index key for evaluating each of the static queries. Therefore, unlike the D-

Index, the performance of OnePass will remain the same even if additional indexes are

created for the OnePass approach.

3.9.2 Dynamic Diversity Queries

Effect of query limit, k

Figure 3.14 compares the performance for different values of the query limit k onQ6. The

results show that D+-tree outperforms OnePassD by up to a factor of 35. Comparing

73

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Figure 3.14 for DDQs with Figure 3.11 for SDQs, we observe that the performance of both

D+-tree and D-tree do not vary too much, but the performance of OnePassD for

DDQs is worse than that of OnePass for SDQs. This demonstrates that it is not effective

to extend OnePass, which was designed for SDQs, to handle DDQs. For example, when

k = 10, OnePassD scans a total of 1761346 index entries of which only 61 of them are

used to update the result trie. This result concurs with our explanation of OnePassD’s

expected poor performance in Section 3.3.

 0

 2

 4

 6

 8

 10

10 30 60 90 120 150

E
xe

cu
tio

n
Ti

m
e(

s)

Limit Size

D+-tree
D-tree

OnePassD

Figure 3.14: Effect of limit size k on Q6

Effect of length of query d-order, |δ|

In this experiment, we examine the effect of varying the length of the query d-order. We

generated 8 DDQs, Q3
1, · · · , Q10

1 , from Q1, where each of these queries is the same as Q1

except that the d-order of Qi
1 is the length-i prefix of that of Q1; thus, Q10

1 is the same as

Q1.

The results in Figure 3.15 show that D+-tree consistently outperforms OnePassD by

up to a factor of 2.2. Observe that the performance of D+-tree is very similar for all the

queries; indeed, D+-tree selects the same initial RI-level of 3 for all the queries. The

performance of OnePassD is also not too sensitive to |δ| as it does not seriously affect

the number of index pages accessed. For D-tree, its performance becomes worse for

74

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

the last four queries due to an increase in the number of index node access: the number

of index pages accessed by D-tree for the 8 queries are 3, 4, 8, 10, 20, 27, 37, and 47,

respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(s
)

Diversity Ordering Length

D+-tree
D-tree

OnePassD

Figure 3.15: Effect of the length of query d-order

Effect of ordering of diversity attributes.

In this experiment, we examine the effect of different orderings of a same set of diversity

attributes. Figure 3.16 compares the performance for the queries Q7, Q8, Q9, and Q10

which all share the same set of diversity attributes {B,C,D}. In the following discussion,

we use δQi to denote the d-order for Qi.

 0

 0.5

 1

 1.5

 2

 2.5

Q7 Q8 Q9 Q10

E
xe

cu
tio

n
Ti

m
e

(s
)

Diversity Queries

D+-tree
D-tree

OnePassD

Figure 3.16: Effect of the attribute ordering

The results show that the performance of both D-tree and D+-tree are not sensitive

to the attribute ordering. This is because the number of RI-levels for these four queries

75

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

are small: they are 3, 2, 2 and 1 levels, respectively. More importantly, the sizes of

these RI-levels are also small. In contrast, the performance of OnePassD varies rather

widely. OnePassD performs the best for Q7 with δQ7 = (B,C,D) because together

with the selection attribute A, (A,B,C,D) forms a proper prefix of the index ordering

α which enables OnePassD to perform efficiently. For Q8 with δQ8 = (B,D,C), the

performance of OnePassD is slightly worse relative to that for Q7 because δQ8 with

selection attribute A now forms a shorter proper prefix (A,B) of α and its evaluation

now requires more skip operations compared to that for Q7. However, for queries Q9 and

Q10, the performance of OnePassD becomes significantly worse because both δQ9 as

well as δQ10 are ordered drastically differently from α which is not conducive at all for

the performance of OnePassD as explained in Section 3.3. Thus, OnePassD performs

equally poorly for the last two queries.

Effect of SPA position

Figure 3.17(a) compares the performance of 10 DDQs with the same d-order as that of

Q6 and a single SPA whose position varies from 1 to 10. Comparing the performance

for DDQs in Figure 3.17(a) with that for SDQs in Figure 3.13(a), we have two key ob-

servations. First, the performance behaviour of D-Index (i.e., D-tree and D+-tree)

is similar for both SDQs and DDQs; and OnePassD outperforms D-Index when the

SPA position is 9. Second, while OnePass performs efficiently for for all the SDQs in

Figure 3.13(a), OnePassD performs poorly for DDQs in Figure 3.17(a). Note that the

performance of D-Index depends very much on the size of the starting RI-levels while

that of OnePassD depends on the size of the selected inverted lists. Thus, if the size

of the starting RI-levels is much larger than that of the inverted lists, OnePassD could

outperform D-Index.

However, similar to our discussion for SDQs in Figure 3.13(b), the performance for evalu-

ating a set of queries could be improved by using more than one index. In Figure 3.17(b),

76

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(s
)

SPA Position

D+-tree
D-tree

OnePassD

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(s
)

SPA Position

D+-tree
D-tree

OnePassD

(a) Compare with a single D-Index (b) Compare with a set of D-Index

Figure 3.17: Effect of the SPA Position for DDQs

we compare the performance of the methods using a set of two indexes. For OnePassD,

the optimal index has key (A,F,B,C,D,E,J,G,H,I), while for both D-tree and D+-tree,

the optimal set of two indexes have keys (A,F,B,C,D,E,J,G,H,I) and (A,J,F,G,H,B,I,C,D,E).

Comparing the results in Figure 3.17(a) and Figure 3.17(b), it is clear that the performance

of each of the methods improve with an additional index, and D+-tree significantly out-

performs OnePassD in Figure 3.17b). Note that the total size of the two D-Indexes is

only 26% of the size of the single index used by OnePassD.

3.9.3 Performance on Index Sets

After investigating the performance on one single D-tree Index, now we compare the

performance on a full D+-tree index set and a partial D+-tree index set for a given

diversity query workload.

We first need to generate a query workload. Since not all attributes are equally im-

portant for users, we group the ten attributes into three small clusters: {A,B,C,D},

{E, F,G,H} and {I, J}. We randomly generate a workload of 30 diversity queries, each

one contains 1-3 predicate and 5-8 diversity attributes. The limit size of each query is in

the range [10, 100]. For each query, when generating a selection predicate attribute or a

77

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

diversity attribute, the probability of choosing an attribute from the first cluster is 2 times

of that from the second cluster, and 4 times of that for the third cluster.

After obtaining the query workload, we generate a set of full D+-tree indexes and a set

of partial D+-tree indexes under the same space constraint (20% of the size of original

table), based on the heuristics in Section 3.8. Let I be the single full D+-tree index,

ISf be the set of full D+-tree indexes, and ISp be the set of partial D+-tree indexes.

 0

 0.2

 0.4

 0.6

 0.8

 1

I ISf ISp

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

(s
) D-tree

D+-tree

Figure 3.18: Comparison on different index sets

We run each query of the workload on I, ISf and ISp, respectively. Fig. 3.18 shows

the average execution time of D-tree and D+-tree for queries in workload on I, ISf

and ISp. As can be seen in Fig. 3.18, both of D-tree and D+-tree give the best

performance on ISp. D+-tree on ISp outperforms D+-tree on I by a factor of 1.4,

and outperforms D+-tree on ISf by a factor of 1.1.

3.9.4 Comparison on Real Data Sets

In this section, we present performance results using a real dataset on laptop products

extracted from eBay. The original dataset (denoted by Laptop1) is a relation with 11

attributes containing 39,411 laptop records (24MB). We created a larger dataset (denoted

by Laptop2) from Laptop1 by duplicating it 100 times. For each of these two datasets,

78

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

we created four indexes, OnePass, OnePassD, D-tree, and D+-tree, all with the

same index key (B, T, C,M,D, S, P,O), where B, T , C, M , D, S, P , and O denote

attributes brand, type, condition, memory, disk, screen size, processor type and operating

system, respectively. We used the following nine diversity queries for this experiment:

queries Q1 to Q4 are SDQs, while queries Q5 to Q9 are DDQs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

E
xe

cu
tio

n
Ti

m
e

(s
)

Diversity Queries

D+-tree
D-tree

OnePass/OnePassD

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

E
xe

cu
tio

n
Ti

m
e

(s
)

Diversity Queries

D+-tree
D-tree

OnePass/OnePassD

(a) Laptop1 (24MB) (b) Laptop2 (2.3GB)

Figure 3.19: Comparison with laptop data sets from eBay

The performance results in Figures 3.19(a)-(b) shows that the performance gain of D+-tree

over OnePass and OnePassD increase with the data size. For the Laptop1 dataset,

Figure 3.19(a) shows that D+-tree outperforms OnePass by up to a factor of 1.5 for

SDQs and outperforms OnePassD by up to a factor of 1.6 for DDQs. For the Laptop2

dataset, Figure 3.19(b) shows that D+-tree outperforms OnePass by up to a factor of

2.7 for SDQs and outperforms OnePassD by up to a factor of 3.5 for DDQs.

3.10 Summary

In this chapter, we have examined the problem of computing diverse query results. We

have proposed a novel indexing technique, D-Index, that is based on the concept of com-

puting a core cover, for evaluating both static as well as dynamic diversity queries. We also

79

CHAPTER 3. INDEXING FOR DYNAMIC DIVERSITY QUERIES

Q Selection Predicates Diversity Ordering, δ k
Q1 B = ’HP’ B, T, C, M, D, S, P, O 10
Q2 B = ’HP’ B, T, C, M, D, S, P, O 20
Q3 C = ’New’ B, T, C, M, D, S, P, O 10
Q4 B = ’HP’ and C = ’New’ B, T, C, M, D, S, P, O 10
Q5 B = ’HP’ T, M, C, S, D, P 10
Q6 B = ’HP’ T, M, C, S 10
Q7 B = ’HP’ M, D, S, C, T, P 10
Q8 B = ’HP’ and C = ’New’ T, M, S, D, P 10
Q9 B = ’HP’ T, M, C, S, D, P 20

Table 3.3: The query workload for real laptop data sets from ebay

have designed two instantiations of the D-Index, D-tree and D+-tree. Our compre-

hensive performance study comparing against the state-of-the-art technique for static di-

versity queries, OnePass, and its extended variant for dynamic diversity queries, showed

that D+-tree outperforms existing techniques on average by a factor of 2.

80

CHAPTER 4

EVALUATION OF MULTIPLE

DIVERSITY QUERIES

4.1 Overview

In this chapter, we study the optimization problem of evaluating multiple online diver-

sity queries. For each diversity query, we apply the most efficient evaluation algorithm

D+-tree proposed in Chapter 3 based on a given set of partial D+-tree indexes. Rather

than independently evaluating each individual query, in this chapter, we concurrently

evaluate multiple queries by applying the techniques of the shared index scan [49], the

switched index evaluation and the online index-tuning.

In this chapter, we propose a new framework, where all online diversity queries are mod-

eled as a sequence in order of their arrival time. All of these queries are maintained in a

81

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

waiting queue. Instead of simply applying the first-come-first-serve strategy, each waiting

query is allowed to be reordered to improve the opportunity of index scan sharing. The

system can also adaptively change an index scan for an existing running query to use a

different index scan that could be shared scan with the query evaluation for a new query.

Furthermore, the running system can automatically self-tune the set of partial D+-tree

indexes to improve the evaluations of future queries. Consequently, we demonstrate with

an experimental evaluation, which is based on a PostgreSQL implementation, that our

proposed techniques consistently outperform the independent concurrent evaluations of

multiple queries.

For convenience, the notation table of this chapter is provided in Table 4.1, and the rest

of this chapter is organized as follows. In Section 4.2, we describe the proposed frame-

work. Section 4.3 presents the concurrent evaluations for multiple online diversity queries

by sharing the index scan among a set of partial D+-tree indexes. In Section 4.4, we

introduce the self-adaptive component of automatically update the set of indexes. Sec-

tion 4.5 presents the implementation of our optimization system. Section 4.6 presents an

experimental performance evaluation of the proposed techniques. Finally, we conclude

this chapter in Section 4.7.

R Running example relation
Q A diversity query
δ The query d-order
k The limit size
I , I ′ A partial D+-tree index
IS The set of partial D+-tree indexes

e, e′, ei, e′i An entry in an index
Sr The set of running diversity queries
Sw The set of waiting diversity queries in the queue
N The maximum number of concurrent evaluated queries

Table 4.1: Notation table of Chapter 4

82

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

4.2 Framework

In this section, we describe our framework for the optimization of multiple online diversity

queries. Figure 4.1 shows the diagram of the framework. Different users can issue and

submit their own diversity queries into the system. As the system could receive a large

number of queries at the same time, it is impossible to evaluate all of them immediately.

Therefore, a waiting queue is designed to maintain these queries. Several queries will

be picked from the waiting queue for processing, when the running system is available.

Let us assume that the running system can concurrently evaluate at most N queries. The

index selection algorithm mentioned in Section 3.9.3 is applied to generate a set of partial

D+-tree indexes to evaluate diversity queries. Additionally, the system automatically

self-tunes the index set to improve the performance of query evaluations.

Figure 4.1: The framework for multiple online diversity queries

When the running system is available to evaluate one more query, the straight-forward way

is to directly pick the first query in the waiting queue. However, the picked query might

not share index scan with other running queries. To improve the opportunity of shared

index scan and improve performance, each waiting query is allowed to be reordered in

the queue. However, for a waiting query which is not able to share index scan with other

queries, it could be infinitely delayed. To avoid such kind of infinite delay phenomenon,

83

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

we can constrain that the execution of each query in the queue can be delayed at most m

times. In other words, the reordering allows at most m queries that are waiting behind

the first query Q to be executed before Q is executed. More specifically, for a query Qi

in the queue, let ψ(Qi) be the unique logical timestamp of Qi the waiting queue, where

ψ(Qi) ∈ 1, 2, · · ·. Then Qi can be reordered within the interval [ψ(Qi)−m,ψ(Qi) +m].

After picking a waiting query from the queue, the running system then concurrently eval-

uates both the newly picked query as well as other running queries. In this thesis, we

apply the technique [49] to support the shared index scan among these queries. For a set

of diversity queries, we use a plan-bipartite-graph to represent the set of potential query

plans, and select the optimal query plan from these potential query plans. For a newly

picked query Q, the system can shared scan the current D+-tree index to evaluate both

Q and other running queries if the current index can be used to evaluate Q. This query

plan, however, could be suboptimal if there exists another switchable D+-tree index for

these queries. Therefore, our system can dynamically adapt the query plans by switching

these query evaluations to scan another D+-tree index.

Under a space constraint, a fixed set of partial D+-tree indexes can be generated for an

offline diversity query workload, based on the algorithm mentioned in Section 3.8.2. In

the online environment, the fixed set of partial D+-tree indexes, however, could not be

universally optimal for the online query workload at different periods of time, since the

characteristics of queries at different time could be much different. To efficiently evaluate

multiple online queries, our system can automatically adjust the set of partial D+-tree

indexes, by looking ahead at those queries in the waiting queue. Furthermore, to minimize

the overhead of the automatic index tuning, the index generation can shared index scan

with the evaluations of running queries.

84

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

4.3 Multiple Diversity Query Evaluation

In this section, we introduce the evaluation of multiple online diversity queries, given a

set of partial D+-tree index set IS. As mentioned in Section 4.2, each query in the

waiting queue is allowed to be reordered to improve the opportunity of index scan sharing

with other running queries. Let Sr be the set of currently running diversity queries, and

Sw be the set of queries waiting in the queue. If |Sr| < N , it indicates that the system is

available to evaluate more queries, and then several queries in Sw would be picked to be

evaluated.

LetQmin (Qmin ∈ Sw) denote the query in the queue with the minimum timestamp, and Sc

represent the candidate set of waiting queries that are allowed to be picked by the running

system at this time. Thus, we have Sc = {Q ∈ Sw | ψ(Q) ≥ ψ(Qmin)+m}. In this thesis,

the system picks a candidate query Q′, Q′ ∈ Sc, to minimize the average remaining time

that is needed to complete the evaluation of the queries in the set Sr ∪ {Q′}. Intuitively,

the system can efficiently evaluate this newly picked query, and the execution of newly

picked query will not delay or slow down the evaluations of other running queries in Sr.

After discussing the metric used for the selection of the next waiting query, let us now

introduce the concurrent evaluation for multiple running queries. We first introduce the

plan-bipartite-graph to represent the set of potential query plans for multiple diversity

queries. More specifically, given a set of partial D+-tree indexes IS, a plan-bipartite-

graph can be generated for the running diversity queries Sr (|Sr| ≤ N). In the plan-

bipartite-graph, the two sets of nodes are Sr and IS; and there exists an edge between

query Q, Q ∈ Sr, and index I , I ∈ IS, if index I can be used to evaluate query Q. For

example, given a query set Sr = {Qα, Qβ, Qγ} and an index set IS = {I1, I2, I3, I4}, an

example plan-bipartite-graph is shown in Figure 4.2. As can be seen in Figure 4.2, the two

edges (Qα, I1) and (Qα, I2) indicate that both of index I1 and I3 can be used to evaluate

to query Qα.

85

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

Figure 4.2: An example plan-bipartite-graph for multiple diversity queries

To evaluate the set of diversity queries, one of the straight-forward methods is to indepen-

dently identify the optimal index for each individual query. In practice, several different

indexes could be selected for different queries. When concurrently scanning these indexes

which are allocated on the same disk, the performance could be very inefficient to evaluate

these queries, due to the random seeks among these disk-based indexes [49].

Instead of independently evaluating these queries, we identify the optimal query plans to

concurrently evaluate them, by utilizing the techniques of shared index scan and adaptive

query evaluation, which are described in the following two subsections.

4.3.1 Query Evaluation Sharing

In this section, we introduce the concurrent evaluation of multiple diversity queries by

sharing scans of partial D+-tree indexes. From the set of potential plans that are rep-

resented by the plan-bipartite-graph, an optimal query plan can be identified to evaluate

multiple queries. For example, based on the plan-bipartite-graph shown in Figure 4.2, the

optimal query plan could be to concurrently evaluate the three queries (Qα, Qβ and Qγ)

by shared scanning index I3. The optimization problem of identifying an optimal set of

indexes for the set of running queries is a NP-complete problem, since it is reduced from

the weighted set cover problem, which is a well-studied NP-complete problem. In this

chapter, we use the approximate algorithm proposed in [47] to address our problem, and

which is an ln�-approximation algorithm, where � is the number of indexes in the system.

86

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

For multiple diversity queries that are able to be evaluated by scanning index I , let us

now discuss the concurrent evaluation of these queries by shared scanning index I . We

first consider a simple case of evaluating multiple queries without picking a new query,

and then discuss a more complicated scenario of evaluating multiple queries including

a newly picked query. For simplicity, in later sections we only discuss the simple case

of concurrently evaluating only two queries by sharing scan of index I . Without loss of

generality, we can also generalize to evaluate more than two queries by sharing scan of

index I .

Consider a partial D+-tree index I and two diversity queries Q and Q′ that are able

to be evaluated by scanning index I . The system can concurrently evaluate both queries

by shared scanning I from the beginning. For each accessed entry ei of I , the system

can concurrently evaluate both queries by pipelining entry ei into the evaluations of the

two queries. However, it could be suboptimal to shared scan I from the beginning. Let

us consider the case that the evaluation of query Q only needs to scan a small middle

portion of index I and that of query Q′ needs to scan the whole index I . As can be seen

in Figure 4.3(a), the shaded part B of I is the relevant part for query Q. If the scan of I is

started from the beginning as shown in Figure 4.3(a), the system is unable to evaluate Q

until the scan has reached the part B as shown in Figure 4.3(b).

(a) Scan from part A (b) Scan from part B

Figure 4.3: Shared index scan

To avoid the delay for the evaluation of Q, one possible solution is to concurrently eval-

uate both queries by shared scanning I started from the beginning of part B as shown

in Figure 4.3(b). After the completion of scanning part B, the evaluation of query Q is

completed, but the evaluation of query Q′ has not be finished. To complete the evaluation

of query Q′, the system then scans part C and part A of I . Comparing with the previ-

ous query plan of scanning I from the beginning, the response time of query Q′ does not

87

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

change too much, but the response time of query Q has been reduced by avoiding to wait

in the period of scanning part A.

Let us take an example to illustrate the shared index scan.

Example 4.1: Consider a partial D+-tree index I on the example laptop relation R

(shown in Figure 1.1) with index key (B,C,SS) as shown in Figure 4.4, where ei is an

index entry relevant to the key value, and two following diversity queries Q1 and Q2.

Q1 : select ∗ from R where B = “Acer” diversify by C, SS limit 4

Q2 : select ∗ from R diversify by B, C limit 4

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

(

HP
1

13.3)

(

HP
1

14.1)

(

HP
2

14.1)

(
HP
2

15.4)

(

Acer
2

14.1)

(

Acer
2

15.4)

(

Acer
4

13.3)

(

Acer
4

14.1)

(

Acer
4

17.3)

(

Lenovo
2

14.1)

(

Lenovo
4

13.3)

Figure 4.4: D-Index I on R (shown in Figure 1.1) with index key (B,C,SS)

The evaluation of Q2 needs to fully scan I , while that of Q1 only needs to access the rel-

evant part of I from entry e5 to entry e9, where each entry is of the same brand (“Acer”).

Assuming that t presents the time of accessing each entry in I . If both queries are evalu-

ated by scanning I from the beginning, the response time of Q1 is 9 · t which is equal to

the time of scanning I from e1 to e9, while the response time of Q2 is 11 · t. On the other

hand, if both queries are evaluated by scanning I from e5, the response time of Q1 is 5 · t
which is equal to the access time of the five entries from e5 to e9, while the response time

of Q2 is equal to 11 · t. �

We now consider a more complex one where the shared index scan is among a newly

picked query and the running queries. Consider a running query Qα that is currently

evaluated by scanning index I , and a newly picked query Qβ that can also be evaluated

by scanning I . Let us assume that the system picks Qβ after accessing entry e in I . Then

88

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

the system concurrently evaluates both queries by shared scanning I from the next entry

of e. When reaching the last entry of I , the system continues with the evaluation of Qβ

by re-scanning I from the first entry of I to entry e.

Let us consider an example to illustrate the shared index scan for a newly picked query.

Example 4.2: Reconsider the two queries Q1, Q2 and index I in Example 4.1. At the

very beginning, there is only one running query Q1 in the system, and the system then

evaluates Q1 by accessing I from e5. Let us assume that the system picks a new query

Q2 after accessing e6. The system can concurrently evaluate both queries by shared scan

I from the next entry e7. The evaluation of Q1 will be completed after accessing e9. To

complete the evaluation of Q2, the system continues to scan e10 and e11, followed by

accessing I from e1 to e8. Therefore, the response time of Q1 is 5 · t, where t denotes the

time of accessing each entry in I , while the response time of Q2 is 11 · t. �

4.3.2 Query Evaluation Switching

While the shared index scan evaluation presented is an improvement over the independent

index scan evaluation, the former could also be sub-optimal. Consider a diversity queryQ

with d-order δ = (D1, · · · , Dm), an index I with index key (A1, A2, · · · , An) and another

index I ′ with index key (A′
1, A

′
2, · · · , A′

�). Each of the two indexes can be used to evaluate

query Q. At the beginning, query Q is evaluated by scanning index I . Assume that the

evaluation of Q using I has just completed scanning the gray portion of index I (labeled

E) in Figure 4.5(b). Instead of continuing the index scan on the original index I , let us

introduce the technique to switch the query evaluation ofQ to scan the new index I ′. Thus

the challenging problem is how to deal with the evaluation of Q on the original index I .

Rather than simply giving up this previous evaluation, the better strategy is to re-use it by

mapping the previous evaluation into the evaluation on the new index I ′.

89

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

Figure 4.5: The mapping function

e′1 e′2 e′3 e′4 e′5 e′6(

HP
1)

(

HP
2)

(

Acer
2)

(

Acer
4)

(

Lenovo
2)

(

Lenovo
4)

Figure 4.6: D-Index I ′ on R (shown in Figure 1.1) with index key (B,C)

Let τ present the length of the maximum common prefix of the two index keys of I and

I ′. Now we first define a mapping function MI→I ′(e) to map entry e : (a1, a2, · · · , an) on

I into a list of consecutive entries with key values (a1, · · · , aτ ,−, · · · ,−) on I ′ as shown

in Figure 4.5(a). For example, consider index I with the index key (B,C, SS) (shown in

Figure 4.4) and another index I ′ with the index key (B,C) (shown in Figure 4.6). For

entry e7 : (Acer, 4, 13.1) on I , the mapped entry MI→I′(e) is e′4 : (Acer, 4) on I ′.

The following result states the sufficient condition of identifying an equivalent entry on I ′

for each accessed entry e on I .

Lemma 4.1. Consider two index I and I ′ that could be used to evaluated some query

Q. For any accessed entry e in an index I , there exists such an entry e′ ∈ MI→I′(e) that

result of evaluating Q by using entry e is equivalent to that using entry e′.

For a list of consecutive accessed entries E on index I , we further define a general map-

ping function MI→I′(E) to map E into a contiguous list of entries on I ′ as shown in

Figure 4.5. Let eα be the last entry in the left of E on index I , eγ be the first entry in the

90

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

right of E on index I . Therefore, MI→I′(E) can be identified as follows:

MI→I′(E) =
⋃
e∈E

MI→I′(e)−MI→I′(eα)−MI→I′(eγ) (4.1)

For example, consider the list of entries (e7, e8 and e9) on I (shown in Figure 4.4). The

mapped partition MI→I′(E) is e′4.

The following result states the sufficient condition of reusing the previous evaluation on

I .

Lemma 4.2. The evaluation of Q by only scanning I will be equivalent to the evaluation

of Q by scanning both of partition E on I and partition I ′ −MI→I′(E) on I ′.

Let us consider an example to illustrate the adaptive index evaluation technique.

Example 4.3: Reconsider Example 4.2. At the very beginning, there is only one running

queryQ1 in the system, and the system then evaluatesQ1 by accessing I from e5. The sys-

tem picks Q2 after access e6 on I , and then shared scans I to evaluate both queries. After

accessing e9, the evaluation of Q1 has been completed. Subsequently, instead of contin-

uing to scan I to evaluate Q2, the system can map the list of accessed entries {e7, e8, e9}
into the entry {e′4}, and then evaluate Q2 by scanning the list of entries {e′5, e′6, e′1, e′2, e′3}
on I ′. The response time of Q2 will be 8 · t, which is less than the response time of Q2 if

we continue the scan on I . �

Furthermore, it is observed that we have MI→I′(E) = ∅ if τ = 0. That is, the previous

evaluation on index I can not be re-used if there is no common prefix between the two

index keys of I and I ′. For example, consider another index I ′′ with index key (C,B).

Although I ′′ can be used to evaluate Q2 (shown in Example 4.1), the previous evaluation

of Q2 by scanning {e7, e8, e9} on I can not be re-used if the system decides to continue

the evaluations of Q2 by scanning I ′′.

91

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

4.4 Online Index Tuning

After discussing the evaluation of multiple online diversity queries given a fixed set of

partial D+-tree indexes, we now introduce the technique of automatic index tuning to

further optimize these evaluations. In the Section 3.8.2, we have presented an offline al-

gorithm to generate a set of partial D+-tree indexes for a workload of diversity queries

under a space constraint, but this algorithm does not work very well in the online envi-

ronment. In our system, we automatically self-tune the set of physical indexes by looking

ahead at those future yet-to-be evaluated queries in the waiting queue. More specifically,

the online index tuning in our system consists of two parts: (a) index candidate gener-

ation, and (b) index selection for materialization. The first component is to generate a

set of candidate indexes, while the second component is to select some candidate indexes

for materialization. Figure 4.7 shows the diagram of the index tuning component in our

system. For each accessed entry e (shown in Figure 4.7), the system can push it into both

the query evaluation component and the index generation component. As mentioned in

Section 4.3, the system can concurrently evaluate several different queries by scanning an

index I . Based on the accessed index I , a large set of candidate indexes can be generated

on-the-fly. Instead of generating and materializing all of them, we look ahead at the wait-

ing queries in the queue, and only generate and materialize a small subset of candidate

indexes to improve the performance of these waiting queries.

Figure 4.7: The diagram of index tuning component

92

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

4.4.1 Generation of Candidate Indexes

In this section, we describe the generation of candidate indexes in detail. We assume

that the system is scanning a partial D+-tree index I with index key (A1, A2, · · · , An).

To minimize the overhead of generating a new index, we only consider the case that the

system is evaluating some queries by entirely scanning the whole index I . In such case,

it is guarantee that the index generation component does not need to scan extra parts of

index I or additional indexes, since it will slow down the evaluations of current running

queries by scanning these extra parts or indexes.

As can be seen in Figure 4.7, after accessing an entry e on index I , the system can push

e into the evaluation component for evaluating the currently running queries, and also

can simultaneously push it into the index generation component for generating new can-

didate indexes. Consider a candidate index I ′ with index key (A′
1, A

′
2, · · · , A′

�), where

{A′
1, A

′
2, · · · , A′

�} ⊆ {A1, A2, · · · , An}. Let us now describe how to generate index I ′ by

entirely scanning index I . In the generation, we maintain a hash table HTable to avoid

creating duplicate entries for index I ′. We initialize HTable to be empty. For each ac-

cessed entry e(a1, a2, · · · , an) in I , we map it into a new entry e′(a′1, a′2, · · · , a′�), where

the key value (a′1, a
′
2, · · · , a′�) is equal to πA′

1,A
′
2,··· ,A

′
�
(a1, a2, · · · , an). Based on HTable,

we can easily check whether there already exists an entry e′′(a′′1, a′′2, · · · , a′′�) such that

(a′1, a
′
2, · · · , a′�) = (a′′1, a

′′
2, · · · , a′′�). If e′′ does not exist, we can directly insert e′ into

HTable; otherwise, we can simply discard it. After the completion of accessing index

I , we then sort all entries in HTable in order of the index key of I ′, and organize those

sorted entries as the new index I ′.

Let ISc
I present the set of candidate indexes (excluding I itself). In theory, the cardinality

of ISc
I is Σn

k=2P (n, k) − 1, where P (n, k) is the number of k-permutations of n. For

instance, consider accessing an index I with index key (B,C, SS,BL,CL). There are

204 different candidate indexes (e.g. Iμ(B,C, SS), Iν(B,C,BL,CL), · · ·).

93

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

4.4.2 Index Selection

As mentioned above, the cardinality of ISc
I will be very large when n is large. So it is

not feasible to generate and materialize them all. Let us now discuss how to select several

candidate indexes to be generated and materialized. In the online system, the intuition be-

hind index selection is to materialize some indexes to improve the performance of queries

in the future. Users are likely to submit a series of similar queries when shopping online.

Therefore, in some sense, the waiting queries in the queue represent the future queries. By

looking ahead at the waiting queries in the queue, we try to select and materialize several

indexes to improve the performance of incoming queries in the future.

Let us now formalize the above intuition of index selection. Let IS be the set of existing

available partial D+-tree indexes. In the waiting queue, we assume that there are μ

queries, denoted as Q1, Q2, · · · , Qμ. For a waiting query Qi, i ∈ [1, μ], let CIS(Qi) be

the estimated minimum evaluation cost of Qi based on the index set IS.

Definition 4.1 (Benefit of a Candidate Index). For a candidate index I ′, I ′ ∈ ISc
I , I ′ /∈

IS, and a waiting query Qi, i ∈ [1, μ], we define the benefit of I ′ for Qi wrt IS as

BIS(I
′, Qi) =

μ−i+1
N

(CIS(Qi)− CIS∪{I′}(Qi)).

The function BIS(I
′, Qi) is to measure the performance improvement based on the new

index set including the additional candidate index I ′. The response time of Qi is directly

reduced by the period of time t = CIS(Qi) − CIS∪{I′}(Qi). Note that the response time

of later arrived queries can also be affected. In the case N = 1, the response time of each

later arrived query Qj , j ∈ (i, μ], can be indirectly reduced by time t. Otherwise, each

time N queries can be concurrently evaluated by the system. That is, to complete the

evaluations of all later arrived queries (Qi+1, · · · , Qμ), the system needs to execute about
μ−i+1

N
rounds. Among the these μ − i + 1 queries, the response time of abound μ−i+1

N

queries can be affected by the performance improvement of Qi.

94

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

Subsequently, we further define the benefit of a set of candidate indexes for a waiting

query as follows.

Definition 4.2 (Benefit of a Candidate Index Set). Given a set of selected candidate

indexes ISs
I , ISs

I ⊆ ISc
I , the benefit of ISs

I for Qi, i ∈ [1, μ], wrt IS is defined as

BIS(IS
s
I , Qi) = maxI′∈ISs

I
BIS(I

′, Qi). Furthermore, we can define the benefit of ISs
I for

Sw wrt IS as BIS(IS
s
I , Sw) =

∑
Qi∈Sw

BIS(IS
s
I , Qi).

To identify a set of candidate indexes for materialization, we utilize the “what-if” query

plan to use these candidate indexes to estimate the costs of query evaluations, even though

these candidate indexes are not physically created. For a candidate index I ′ ∈ ISc
I , we

use Cost(I ′) to denote the total cost (IO and CPU cost) of index generation and materi-

alization. Then our goal of index selection is to identify an optimal subset of candidate

index ISs
I ⊆ ISc

I with the maximum value of BIS(IS
s
I , Sw) −

∑
I′∈ISs

I
Cost(I ′). Since

the performance of running queries will be diminished if the system spends too many

resources to generate and materialize a large set of candidate indexes, in this thesis, we

simply restrict the cardinality of ISs
I under γ, which is set as �N

8

.

The problem of identifying the optimal set of candidate indexes is NP-Complete, since it

is reduced from the set-cover problem that is a well-known NP-Complete problem. In this

thesis, we use a greedy algorithm shown in Algorithm 4.1 to find an approximate set of

selected candidate indexes ISs
I . In Algorithm 4.1, we iteratively select an candidate index

I ′ with the maximum value of BIS∪ISs
I
(I ′, Sw)− Cost(I ′).

The time complexity of Algorithm 4.1 is O(μ·(|IS|+γ|ISc
I|)). The system can frequently

trigger it to select an approximate set of indexes. For example, the system can trigger

it when the number of newly arrived queries is greater than a given threshold. After

obtaining the approximate index set ISs
I , we need to determine whether it is interesting to

generate and materialize them. It is known that frequently tuning can result in unwanted

oscillations, in which the same indexes are continuously created and dropped. To avoid

95

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

Algorithm 4.1: CandidateIndexSelect (IS, ISc
I , Sw, γ)

Input: The existing index set IS, the candidate index set ISc
I , the set of waiting

queries Sw and the maximum number of the selected index set γ
Output: The set of selected candidate indexes ISs

I

1 ISs
I ← ∅;

2 while |ISs
I | < γ do

3 Let I ′ ∈ ISc
I be the index with the maximum value of

BIS∪ISs
I
(I ′, Sw)− Cost(I ′);

4 if BIS∪ISs
I
(I ′, Sw)− Cost(I ′) ≤ 0 then

5 Break;
6 else
7 ISs

I ← ISs
I ∪ {I ′};

8 ISc
I ← ISc

I − {I ′};
9 Return ISs

I ;

the unwanted oscillations, we utilize the strategy provided in [15] by setting a lower bound

B and only allow to create these indexes if BIS(IS
s
I , Sw)−

∑
I′∈ISs

I
Cost(I ′) > B.

Furthermore, we should first guarantee that the system has enough available disk space

to materialize the selected set of candidate indexes. If it has enough space, they can be

easily materialized; otherwise, we have to drop some existing indexes that are not very

useful. Let Γ denote the lower bound of extra space needed for the materialization of these

selected candidate indexes. Therefore, we need to drop such a subset of indexes ISd ⊂ IS

that the total size of indexes in ISd is no less than Γ, and the benefit BIS−ISd(ISd, Sw) is

minimized.

The same as before, the problem is also NP-Complete. We use a greedy algorithm shown

in Algorithm 4.2 to free the space of some indexes for materializing those indexes in ISs
I .

In Algorithm 4.2, we iteratively free the space of an index from IS with the minimum

benefit until that the freed space is large enough.

Normally, the size of ISd is roughly equal to that of ISs
I . Therefore, the time complexity

of Algorithm 4.2 is O((1 + γ) · |μ| · |IS|+ |ISs
I |).

96

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

Algorithm 4.2: ReallocateIndexSpace (IS, Sw,Γ)
Input: The index set IS, the set of waiting queries Sw and the lower bound of

space Γ that is needed to be free
1 P ← ∅;
2 ISd ← ∅;
3 while P < Γ do
4 Let I ′ ∈ IS be the index with the minimum benefit BIS−ISd(ISd, Sw);
5 P ← P+ the size of I ′;
6 ISd ← ISd ∪ {I ′};
7 IS ← IS − {I ′};
8 foreach I ′ ∈ ISd do
9 Free the space of I ′;

4.5 System Implementation

In this section, we describe the implementation of our system. Figure 4.8 shows the

diagram of our system architecture. As can be seen in Figure 4.8, our system consists of

two parts: the middleware part and the DBMS part. The middleware part is to manage

multiple online diversity queries issued by different users, and to pick and send waiting

queries into the DBMS part for processing. On the other hand, the DBMS part is to

concurrently evaluate multiple diversity queries, followed by returning these diverse result

sets to users. In the system, JDBC is used to communicate between the two parts.

The middleware part was implemented in Java. In the middleware part, a query queue

is created to maintain the diversity queries issued by different users. As mentioned in

previous sections, we improve the opportunity for shared index scan, by supporting query

reordering in the query queue. Reordering waiting queries, however, needs some statistic

information about query evaluations in the database system. For instance, for a running di-

versity query, the middleware needs to know which index is being used to evaluate it, and

how many index pages are still needed to be accessed. To fetch such kind of information

from the database system, a Notifier module is designed to periodically notify relevant

kernel information of DBMS to the middleware. Based on these notified information, the

middleware can get a snapshot of the current state of the database system. Consequently,

97

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

Figure 4.8: The implementation of our system

the middleware can more precisely pick the next query to maximize shared index scans.

We implemented the multiple query optimization component in PostgreSQL 9.0.2, which

contains several background worker processes. The PostgreSQL server maintains a pro-

cess pool that contains N processes for evaluating queries. When receiving a query, the

server will find an idle process to evaluate the query. In the DBMS part, the master/slave

model is used to communicate among different processes to concurrently evaluate sev-

eral different diversity queries. More specifically, we have designed a Scheduler module

(master) to control the concurrent executions of multiple queries. To support the com-

munication between the Scheduler (master) and each process (slave) that is to evaluate

an individual diversity query or to generate a new D-Index, we have designed two dif-

ferent kinds of communication channels: the Command Message Queue (CMQ), and the

Notification Message Queue (NMQ).

98

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

Message Operation
start command message command the Process to start the query execution

execute command message command the Process to continue the execution
switch command message command the Process to switch to scan a new index

Table 4.2: Command messages send from the Scheduler

For each process P , there is a unique CMQ used for communicating between P and the

Scheduler. In our system, we have defined three different kinds of command messages:

(a) start command message, (b) execute command message, and (c) switch command

message. As can be seen in Table 4.2, the start command message is to command the

Process to start a query evaluation on a partial D+-tree index, the execute command

message is to command the Process to continue a query evaluation by conducting a disk

page read (multiple disk pages could be read in each time), and the switch command

message is to command the Process to switch its query evaluation to scan a different

partial D+-tree index. Based on these command messages, the Scheduler can precisely

control the actions of each process.

Message Operation
initialize notification message inform the Scheduler of a new query to be evaluated

start notification message inform the Scheduler of the execution that has just started

execute notification message inform the Scheduler of a query execution that
has just conducted an index page read

switch notification message inform the Scheduler of the execution that switches to
scan a different index

end notification message inform the Scheduler of the completion of a query evaluation

Table 4.3: Notification messages send from a Process

For a process, when taking actions, it also needs to inform the Scheduler of this action.

A NMQ is created to maintain all notification messages from different processes to the

Scheduler. There are five different kinds of notification message: (a) initialize notifica-

tion message, (b) start notification message, (c) execute notification message, (d) switch

notification message and (e) end notification message. As can be seen in Table 4.3, the

initialize notification message is to inform the Scheduler of a new query that needs to

be evaluated, the start notification message is to inform the Scheduler of the query eval-

99

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

uation that has just started, the execute notification message is to inform the Scheduler

that a query evaluation that has just conducted an index page read, the switch notification

message is to inform the Scheduler that a query evaluation has just switched to scan a new

partial D+-tree index, and the end notification message is to inform the Scheduler of

the completion of a current query evaluation.

Figure 4.9: Example communication between the Scheduler and a Process

Figure 4.9 shows the communication between the Scheduler and a Process P . In Fig-

ure 4.9, C-msg and N-msg present the command message and the notification message,

respectively. A waiting query Q is picked to be evaluated if there exists an idle Process P

in the process pool of the DBMS. P is now ready to evaluate Q, and it sends an Initial-

ize Notification Message to the Scheduler. After receiving this notification message, the

Scheduler finds an optimal partial D+-tree index I for evaluating for Q, followed by

sending a Start Command Message to P . After receiving this message that contains the

information of index I , P starts to evaluate Q by scanning I (shared scan a particular dis

page with other queries or scan from the beginning), followed by informing the Sched-

uler when the first page has been processed. The Scheduler commands P to continue the

query evaluation by accessing the next index page. When the pages of a disk read have

been processed, P informs the Scheduler. In this way, P iteratively process the next disk

read to evaluate Q. In some cases, the Scheduler could decide to switch the query evalu-

ation to scan another index I ′, and then it sends a Switch Command Message to P . After

receiving this message that contains the information of the new index I ′, P switches the

query evaluation to scan index I ′. P then iteratively scans each disk page until that the

100

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

evaluation of Q has been completed. Consequently, when the query evaluation has been

completed, P sends a End Notification Message to inform the Scheduler of the completion

of query evaluation.

Furthermore, as mentioned in Section 4.4, our system is capable of online index tuning to

further optimize query evaluation. After deciding to create a new index, the middleware

can issue a special “query” to inform the database system to generate the new index. The

evaluation of the special “query” can also share the index scan with other normal diversity

queries as shown in Figure 4.8.

4.6 Performance Study

We conducted an experimental study to evaluate the effectiveness of our proposed frame-

work. Section 4.6.1 compares the performance of shared index scan and switched index

techniques by considering two queries, and Section 4.6.2 compares their performance

based on a query workload.

Data sets. We used the same four synthetic tablesR1(1G),R2(5G),R3(10G) andR4(15G)

from the previous chapter, and the properties of these tables are shown in Table 3.2. Each

Ri consists of 10 attributes, denoted as A, · · · , J .

Database Indexes We generated a set of partial D+-tree indexes on each Ri under the

space constraint of 20% of the table size. Specifically, for each databaseRi, we generated

six partial D+-tree indexes as follows: I1(A,B,C,D, E, F,G,H, I), I2(A,B,C,D,E,

F,G,H, I, J), I3(A,B,C,D,E, F,G,H), I4(A,B,C,D,E, F,G), I5(A,B,C,D,E, F)

and I6(A,B,C, F,G,H).

Algorithms Based on the set of partial D+-tree implemented in PostgresSQL 9.0.2, we

compared the performance of the following five evaluation algorithms:

101

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

• Concurrent: this strategy concurrently processes multiple diversity queries, each

of which is individually evaluated by selecting the optimal partial D+-tree index

to scan;

• Sequential: this strategy sequentially processes each diversity query using a

single database server;

• ConcurrentSharedScan: this strategy concurrently processes multiple diver-

sity queries, by supporting shared index scan technique;

• ConcurrentSwitchedScan: concurrently process multiple diversity queries,

by supporting both shared index scan and switched index evaluation techniques;

• ConcurrentTuning: concurrently process multiple diversity queries, by sup-

porting all the proposed techniques (shared index scan, switched index evaluation,

online index tuning).

The first two strategies are baseline algorithms and the remaining three strategies are our

proposed techniques.

Parameters. We varied the following two experimental parameters: (1) the number of

clients (background worker processes in PostgreSQL) with a default value of 4, (2) the

size of reorder window with a default size of 10.

The experiments were conducted on a server with an Intel Xeon 1.80GHz processor,

32GB of memory, two 1TB disks, running CentOS 3.13.0. Both the operating system

and PostgreSQL were installed on the one disk, while the database was installed on the

other disk. In our experiments, we measured the response time for each query in the

workload, and the total execution time of the query workload.

102

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

4.6.1 Comparison for two queries

To study the performance of ConcurrentSharedScan and ConcurrentSwitchedScan,

we first consider the two diversity queries shown in Figure 4.10.

Query Selection Predicate d-order Limit
Attribute Size

Q1 C I, F, A, D, B 10
Q2 C J, F, A, D, B 10

Figure 4.10: Two diversity queries

Firstly, we consider the case that the two queries arrive at the same time. Concurrent

can concurrently evaluate the two queries by only simultaneously scan partial D+-tree

index I1 (A,B,C,D,E, F,G,H, I) and partial D+-tree index I2 (A,B,C,D,E, F,G,

H, I, J); Sequential can evaluate Q1 by scanning I1, followed by evaluating Q2

by shared scanning I2; ConcurrentSharedScan can concurrently evaluate the two

queries by only scanning I2. Figure 4.11 shows the response time of the two queries on

different data sizes by applying Concurrent, Sequential and ConcurrentShar

-edScan , respectively. Note that the response time of Q2 by applying Sequential

includes the waiting time for the evaluation of Q1. Figure 4.12 compares the total execu-

tion time of the two queries. As can be seen in Figure 4.12, ConcurrentSharedScan

outperforms the other two algorithms. Furthermore, the performance of Concurrent is

the worse one, due to the random seeks on the two different indexes.

Subsequently, to evaluate the performance of ConcurrentSwitchedScan, we as-

sume that the two queries do not arrive at the same time: the system first pick query Q1,

followed by receiving query Q2 one second later. The two algorithms Concurrent and

Sequential performed the same as in the previous case. Let us now compare the exe-

cutions of the two queries by using ConcurrentSharedScan and ConcurrentSwi

tchedScan . When Query Q1 arrives, both of the algorithms choose I1 to evaluate

Q1. After Query Q2 arrives, ConcurrentSharedScan has to delay the execution

103

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

 0

 20

 40

 60

 80

 100

 120

 140

R1 R2 R3 R4

R
es

po
ns

e
Ti

m
e

(s
)

Size of Table(GB)

Concurrent
Sequential

ConcurrentSharedScan

 0

 20

 40

 60

 80

 100

 120

 140

R1 R2 R3 R4

R
es

po
ns

e
Ti

m
e

(s
)

Size of Table(GB)

Concurrent
Sequential

ConcurrentSharedScan

(a) Query Q1 (b) Query Q2

Figure 4.11: Response time for two diversity queries

 0

 20

 40

 60

 80

 100

 120

 140

R1 R2 R3 R4

E
xe

cu
tio

n
Ti

m
e

(s
)

Size of Table(GB)

Concurrent
Sequential

ConcurrentSharedScan

Figure 4.12: Total execution time

of Q2 since the currently accessed index I1 is not able to be used to evaluate Q2. There-

fore, the performance of ConcurrentSharedScan is similar with Sequential. On

the other hand, ConcurrentSwitchedScan can switch the evaluation of Q1 to scan

I2. Then ConcurrentSwitchedScan can scan I2 to concurrently evaluate the two

queries. Figure 4.13 shows the response time of the two queries on different data sizes by

applying the four algorithms. For both of Sequential and ConcurrentSharedScan,

the response time of query Q2 includes the waiting time of the evaluation of query Q1 by

scanning index I1. Figure 4.14 shows the total execution time of the two queries. As can

be seen in Figure 4.14, ConcurrentSwitchedScanoutperforms ConcurrentShar

-edScan by a factor of 2.

104

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

 0

 20

 40

 60

 80

 100

 120

 140

R1 R2 R3 R4

R
es

po
ns

e
Ti

m
e

(s
)

Size of Table(GB)

Concurrent
Sequential

ConcurrentSharedScan
ConcurrentSwitchedScan

 0

 20

 40

 60

 80

 100

 120

 140

R1 R2 R3 R4

R
es

po
ns

e
Ti

m
e

(s
)

Size of Table(GB)

Concurrent
Sequential

ConcurrentSharedScan
ConcurrentSwitchedScan

(a) Query Q1 (b) Query Q2

Figure 4.13: Response time for two diversity queries

 0

 20

 40

 60

 80

 100

 120

 140

R1 R2 R3 R4

E
xe

cu
tio

n
Ti

m
e

(s
)

Size of Table(GB)

Concurrent
Sequential

ConcurrentSharedScan
ConcurrentSwitchedScan

Figure 4.14: Total execution time

4.6.2 Comparison for a query workload

We now compare the performance of the five algorithms for a query workload. To simu-

late the online environment, we randomly generated a stream of queries at a constant rate,

and each query was generated based on the parameters shown in Table 4.4. In our experi-

ment, we randomly generated a workload including 50 diversity queries, which arrives at

different time. In the workload, the query arrival rate was one query per second.

105

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

Query Parameter Value
of predicates [1-3]

length of d-order [4-10]
limit size k 10 - 50

Table 4.4: Parameters for Diversity Queries

Effectiveness of online index tuning

In this experiment, we examine the effect of self-tuning the set of partial D+-tree in-

dexes. Figure 4.15-4.16 show the performance comparison between ConcurrentSwit

-chedScan and ConcurrentTuning. In ConcurrentSwitchedScan, we use

the default set of partial D+-tree indexes. As can be seen in Figure 4.15, for some query

(e.g. Q3, Q4, Q29 and Q35), its execution time is rather slow due to the large size of the

accessed index such as I1 and I2. In ConcurrentTuning, the system can generate a

new index I7(A,B,C,D, F,G, I, J) when shared scanning index I2 to concurrently eval-

uate query Q4 and Q7. Due to the space constraint, the system removes index I3. As can

be seen in Figure 4.16, the system performance can be improved by choosing index I7

rather than I2 to evaluate some subsequent queries, such as Q29 and Q35.

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40 45 50

E
xe

cu
tio

n
Ti

m
e

(s
)

Query Sequence

ConcurrentSwitchedScan

Figure 4.15: The performance of ConcurrentSharedScan

106

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40 45 50

E
xe

cu
tio

n
Ti

m
e

(s
)

Query Sequence

ConcurrentTuning

Figure 4.16: The performance of ConcurrentTuning

Varying the number of clients

In this experiment, we examine the effect of varying the number of clients. Figure 4.17

shows the performance of the five algorithms when varying the number of clients.

As can be seen in Figure 4.17, our three algorithms consistently outperform the two

baseline algorithm. Furthermore, different from the results mentioned in Section 4.6.1,

Concurrent outperforms Sequential. The reason behind is that some index pages

are buffered in the system when evaluating queries, and these buffered index page could

benefit the concurrent evaluation of subsequent queries.

When increasing the number of clients, the performance is improved for our three algo-

rithms. However, when increasing the number of clients from n1 to n2, the improvement

factor is smaller than n2/n1. There are two main reasons: (1) not all of the running query

evaluations are able to shared index scan with each other, and (2) the communication cost

among these clients will increase when increasing the number of clients.

107

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

 0

 50

 100

 150

 200

 250

 300

2 4 8

R
es

po
ns

e
Ti

m
e

(s
)

Number of Clients

Concurrent
Sequential

ConcurrentSharedScan
ConcurrentSwitchedScan

ConcurrentTuning

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 4 8

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of Clients

Concurrent
Sequential

ConcurrentSharedScan
ConcurrentSwitchedScan

ConcurrentTuning

(a) Average Response Time (b) Total Execution Time

Figure 4.17: Varying the number of clients

Varying the size of reorder window

In this experiment, we examine the effect of varying the size of the reorder window.

Figure 4.18 shows the performance of our three algorithms when varying the size of the

reorder window. As can be seen in Figure 4.18, when increasing the size from 10 to 20,

both of the average response time and the total execution time are improved by around

20%. The reason of this improvement is that increasing the size of the reorder window

can improve the opportunity for shared index scans. However, when increasing the size

from 20 to 30, the performance is only slightly improved. Even though it can further

improve the opportunity of shared index scans, our system will avoid to skip over a large

number of queries to first pick a later arrived query. If such a query is picked, the average

response time could be increased due to the execution delay of a large number of skipped

queries.

4.7 Summary

In this chapter, we have examined the problem of optimizing multiple online diversity

queries. To optimize the evaluations of multiple diversity queries, we have proposed a new

108

CHAPTER 4. EVALUATION OF MULTIPLE DIVERSITY QUERIES

 0

 10

 20

 30

 40

 50

10 20 30

R
es

po
ns

e
Ti

m
e

(s
)

Reorder Window Size

ConcurrentSharedScan
ConcurrentSwitchedScan

ConcurrentTuning

 0

 20

 40

 60

 80

 100

 120

 140

10 20 30

E
xe

cu
tio

n
Ti

m
e

(s
)

Reorder Window Size

ConcurrentSharedScan
ConcurrentSwitchedScan

ConcurrentTuning

(a) Average Response Time (b) Total Execution Time

Figure 4.18: Varying the size of reorder window

framework to allow to reorder an online query, and presented a new technique to support to

switch a query evaluation from scanning an index to a different index, and implemented

a new online index tuning technique to automatically update the set of indexes. Our

comprehensive performance study shows the efficiency of our proposed techniques.

109

CHAPTER 5

DIVERSIFIED SPATIAL KEYWORD

SEARCH

5.1 Overview

In this chapter, we study the problem of diversified spatial keyword search and design

two types of spatial diversity queries: DSQ, and N-DSQ. Given a set of keyword con-

cepts, each of which could contain multiple words (e.g. “Singapore Restaurant”), a DSQ

query can be issued to find top-k groups of diversified objects which collectively cover

all keyword concepts and are closely located. For example, reconsider the simple DSQ

query with only one keyword concept “Singapore Restaurant”. In Figure 1.3(a), the top-2

groups G1 and G2 are returned, and each one of the two groups contains three restau-

rants that provide three different kinds of cuisines. Although groupG3 contains one more

111

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

restaurant than each of the top-2 groups, we prefer not to return G3 since all of the four

restaurants provide the same cuisine (“Western Food”). If a user is not interested in west-

ern food, group G3 will not satisfy user’s preference. For another example, reconsider

the DSQ query with multiple keyword concepts “Singapore Restaurant” and “Entertain-

ment Facility”. In Figure 1.3(b), the top-2 groups G′
1 and G′

2 are returned, and each one

contains both restaurants and entertainment facilities. For the top-k returned groups for

a DSQ query, it is possible that some of them could be highly overlapped. For example,

the top-2 groups G′
1 and G′

2 (shown in Figure 1.3(b)) for the previous DSQ query are

highly overlapped. Therefore, instead of only focusing on the semantic diversity among

the objects within each result group, we extend DSQ to a new type of query N-DSQ for

returning the top-k spatially diversified groups by taking account of the inter-group dis-

tance among different groups. For example, reconsider the N-DSQ query with keyword

concepts “Singapore Restaurant” and “Entertainment Facility”. In Figure 1.3(b), the two

spatially diversified groups G′
1 and G′

3 are returned.

In this chapter, we show that some existing spatial indexes can be extended to evaluate

the new types of queries, but they are very inefficient. To efficiently evaluate the two new

types of queries, we propose a novel textual-first spatial index, named IOQ-tree index. In

an IOQ-tree index, each partition corresponding to a keyword concept is organized based

on a new structure called OQ-tree, where several upper bound scores are maintained in

each node. We further introduce two index variants of OQ-tree to organize each partition,

named OQ+-tree and OQ∗-tree.

For each type of spatial queries, we propose two efficient evaluation methods based on

the two proposed index variants. The key idea of these evaluation methods is to reduce

the search space by using suitably maintained upper bound scores to filter out as many

nodes in OQ-trees as possible. More specifically, the first evaluation method is based

on the top-down traversal of the OQ+-tree index, while the second evaluation is based

on the sorted list maintained in the OQ∗-tree index. We demonstrate the efficiency of our

112

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

proposed approaches with a comprehensive experimental evaluation which shows that our

approaches outperform the state-of-the-art algorithms by up to one order of magnitude.

For convenience, the notation table of this chapter is provided in Table 5.1, and the rest

of this chapter is organized as follows. Section 5.2 presents the formal definitions of our

proposed two types of queries. We then present the problem challenges in Section 5.3.

A novel index is described in Section 5.4. Based on the proposed index, we present

evaluation methods for the two different types of queries in Section 5.5 and Section 5.6,

respectively. Subsequently, we present a performance study in Section 5.7. Finally, we

conclude this chapter in Section 5.8.

D The spatial object database o, oi, o′i A spatial object in the database

R
The whole rectangular region

dis(p1, p2)
The distance between two geo-

for each OQ-tree location points p1 and p2
c, c′, ci A keyword concept Q.ψ The keyword concepts of Q
ζc The relevant sub-concepts of c

ζc(o)
The relevant sub-concepts of c

covc(o) The coverage score of o wrt c covered by object o
r The query radius RQ The query region
k The query limit size Q(D) The query result of Q on D

G, Gi, G′
i A candidate result group ξψ(G) The ranking score of G wrt ψ

ξc(G) The diversity score of G wrt c I The IOQ-tree index

fψ(S)
The spatial diversity ranking

Tc
The OQ-tree that

of S wrt ψ corresponds to c
T An OQ-tree Nroot The root node of an OQ-tree
N A node in an OQ-tree N c

root The root node of Tc

Nid
A node in an OQ-tree with

N c
id

A node in Tc with id as node
id as node ID ID

κ # of maintained scores N.εi The i-th score in N

N.ε�i
The hierarchical i-th score in N.ε(r) The r-score of N
N for descendants at level � Γ The diameter of RQ

Table 5.1: Notation table for Chapter 5

5.2 Problem Definition

Let D be a set of spatial objects. Each object o ∈ D is associated with a geo-location

denoted by o.λ = (o.lat, o.long) and a set of keyword concepts denoted by o.ψ. For

113

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

any two geo-location points p1, p2, we use dis(p1, p2) to denote the Euclidean distance

between the two points.

For each keyword concept c, there are several relevant sub-concepts that cover differ-

ent aspects of c [5, 85]. Let ζc present the set of relevant sub-concepts of c. We use

υc(c
′), υc(c′) ∈ [0, 1], to denote the weight of a relevant sub-concept c′, c′ ∈ ζc, such that∑

c′∈ζc
υc(c

′) = 1. Intuitively, with respect to keyword concept c, the higher the weight

υc(c
′) is, the more relevant is the sub-concept c′ to c. The sub-concept weights can be

determined by analyzing the historical behavior of users [5]. For example, for keyword

concept c : “Singapore Restaurant”, the set of relevant sub-concepts could be ζc = { “Chi-

nese Food”, “Japanese Food”, “India Food”, “Western Food”, “Korean Food”, “Malay

Food” }. Table 5.2 shows an example for the weights of relevant sub-concepts wrt the

keyword concept “Singapore Restaurant”.

Relevant Chinese Japanese Indian Western Korean Malay
Sub-concept Food Food Food Food Food Food

Weight 0.25 0.125 0.15 0.175 0.15 0.2

Table 5.2: The weights of relevant sub-concepts of “Singapore Restaurant”

We are now ready to formally define the two types of novel diversified spatial keyword

search queries.

5.2.1 DSQ Query

Consider a DSQ query Q (ψ, r, RQ, k), where ψ is the set of query keyword concepts, r

denotes the query radius, RQ is the query rectangular region and k represents the limit

size of query.

Let us first define a candidate result group for Q as follows:

Definition 5.1 (A candidate result group). For a DSQ query Q (ψ, r, RQ, k), a candidate

result group G, G ⊆ D, is defined as a set of objects that collectively cover the keyword

114

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

concepts ψ and are located in a circle of radius r within the query region RQ. That is,

there exists a geo-location point p such that G = {o ∈ D : o.ψ ∩ ψ �= ∅ ∧ o.λ ∈
RQ ∧ dis(o.λ, p) ≤ r} and for each keyword concept c, c ∈ ψ, there always exists at least

one object o in G such that c ∈ o.ψ.

For example, consider a DSQ query Q with two keyword concepts “Singapore Restau-

rant” and “Entertainment Facility”. Group G′
1 shown in Figure 1.3(b) is a candidate

result group for Q, and G′
1 contains three restaurants and two entertainment places which

are within a circle. However, group G2 shown in Figure 1.3(a) is not a candidate result

group for Q since there does not exist an entertainment place in G2.

With respect to a keyword concept c, c ∈ ψ, intuitively, we prefer to highly rank a candi-

date result group G which covers more sub-concepts of c. We use covc′(o) to denote the

coverage score of an object o wrt a specific subtopic c′, c′ ∈ ζc, and the coverage score is

defined as follows:

covc′(o) =

⎧⎪⎪⎨
⎪⎪⎩
0 if c′ /∈ o.ψ,

P (o|c′) if c′ ∈ o.ψ

(5.1)

whereP (o|c′) is the probability that o is relevant to c′ [5]. The probability can be estimated

based on some existing models [5, 73, 76], and in this thesis, we compute it using Dirichlet

method [76].

Based on the coverage-based diversification model [85], we compute the diversity score

of a candidate result group G wrt a keyword concept c, c ∈ ψ, as follows:

ξc(G) =
∑
c′∈ζc

υc(c
′) · ln

(
1 +

∑
o∈G

covc′(o)

)
(5.2)

The logarithm function in Equation 5.2 is to ensure the decrease of gain when adding one

more object covering the sub-concept that has already been well covered. Intuitively, the

benefit of adding an object covering the sub-concept c′ should be smaller if c′ has already

115

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

been well covered by G and this is desired from end users’ viewpoints [29].

The result of Q on database D is the top-k result groups based on the ranking function as

follows:

ξψ(G) =
1

|ψ|
∑
c∈ψ

ξc(G) (5.3)

5.2.2 N-DSQ Query

A N-DSQ query extends DSQ query and takes the spatial diversity into account. Given

a N-DSQ Q(ψ, r, RQ, k), intuitively, the top-k spatially diversified result groups should

have high ranking scores defined in Equation. 5.3 and spatially disperse within the query

search region.

Given two result groups G and G′, we use Dis(G,G′) to denote the distance of the

two groups. Let us now discuss how to measure the distance Dis(G,G′). For a result

group G, we say p(G) is a geo-center of G, if all objects in G are located within the

circle of radius r with p as circle center. The distance Dis(G,G′) can be simply mea-

sured by dis(p(G), p(G′)). Unfortunately, there could be more than one geo-center for

each group. Instead, for group G, we further define the mass center σ(G) as σ(G) =

(
∑

o∈G o.lat

|G|
,
∑

o∈G o.long

|G|
). Thus, the distance Dis(G,G′) is measured by dis(σ(G), σ(G′))

which is the Euclidean distance between the two mass centers σ(G) and σ(G′).

The result of Q is defined to be the set S, |S| = k, of top-k spatially diversified result

groups based on the the popular max-sum diversification function [19, 42]:

fψ(S) =
δ

k
·
∑
G∈S

ξψ(G)

ξmax

+
1− δ

k(k − 1)
·

∑
G,G′∈S

Dis(G,G′)

Γ
(5.4)

where ξmax is the normalized factor which is the maximum ranking score among all result

groups with circle area of radius r, Γ is the normalized factor which is the diameter of

116

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

query region, and the factor δ, δ ∈ [0, 1], is used to balance between the ranking scores of

these result groups and the distances among these result groups. When δ = 1, the N-DSQ

query is reduced to a DSQ query. Note that the max-sum diversification problem has been

proved to be NP-Complete [42], since it can be reduced from the classic MAX-SUM-

DISPERSION problem.

5.3 Challenges For Spatial Diversity Query

To motivate the need for a new approach to evaluate the two types of queries proposed

in this chapter, we argue that existing spatial indexes are very inefficient to evaluate the

new queries. For a spatial keyword query with a small number of query keywords, it

is reported [25, 82] that the textual-first spatial indexes outperform the other two kinds

of spatial indexes (the spatial-first index and the hybrid spatial index) since only those

textual postings lists corresponding to query keyword concepts need to be accessed. Let

us now discuss how to evaluate a new type of query (DSQ or N-DSQ) by using I3-index

[82] and S2I [59], which are the state-of-the-art textual-first spatial indices for the top-k

spatial keyword search. Furthermore, we show the inefficiency of these evaluations.

Figure 5.1: Searching over basic quadtree node

The I3-index[82] maintains an inverted postings list for each keyword concept, and

each postings list is organized as a quadtree, where each node corresponds to a rectan-

gular region, and the region of each internal node is partitioned into four non-overlapped

sub-regions of the same size shown as in Figure 5.1(a). Consider a simple DSQ query

117

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Q(ψ, r, RQ, k), where |ψ| = 1. The query evaluation of Q needs to search the quadtree

that corresponds to the query keyword concept c ∈ ψ. Note that any candidate result

group must be within a circle of radius r. To find out the top-k result groups, the query

evaluation has to search these circles, which could be within a single node or span several

neighboring nodes. For example, as can be seen in Figure 5.1(b), circle1 is within the left-

top node, while circle2 spans the two bottom nodes. For circles within a single node, the

query evaluation can enumerate them to find the highly ranked candidate result groups by

applying the existing circle-placement algorithm [23] with a time complexity of O(n2),

where n is the number of objects located in the node. Additionally, some upper bound

scores can be maintained in each node to improve the query evaluation, by efficiently

filtering out some sparse nodes which do not contribute to the final top-k result groups.

On the other hand, for those circles spanning several neighboring nodes, the evaluation

has to enumerate and search a large number of node combinations where the distance be-

tween every two nodes is no larger than 2 × r. It is very costly to enumerate too many

node combinations. Unfortunately, there does not exist an efficient strategy that can be

used to improve the query evaluation by avoiding to search too many node combinations.

More generally, for a query (DSQ or N-DSQ) with multiple keyword concepts, the query

evaluations are also inefficient due to the large search space.

In S2I [59], each inverted postings list is organized as a R-tree. Similarly, for a simple

DSQ query with radius r and a single keyword concept c, the query evaluation has to

search the R-tree that corresponds to c, and enumerate a large number of node combina-

tions where the distance between the Minimum Bounding Rectangles (MBRs) of every

two nodes is no larger than 2×r. More generally, for a query (DSQ or N-DSQ) with mul-

tiple keyword concepts, the query evaluation has to spatial join among several different

R-trees. Comparing with the spatial join on multiple quadtrees based on a uniform space

decomposition mechanism, the spatial join on different R-trees is very costly [82].

118

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

5.4 The IOQ-tree Index

An efficient index is required to support the evaluations of the two new types of spatial

queries. In this section, we introduce a novel textual-first spatial index, named IOQ-

tree (Inverted Overlapping-Quadtree), to manipulate the inverted postings list for each

keyword concept.

For each spatial object o, o ∈ D, we represent it using a set of |o.ψ| tuples. Each tuple t is

associated with only one keyword concept c ∈ o.ψ, and is in the following format:

t = 〈t.id, t.c, o.id, o.λ, ζc(o)〉

Here, the tuple inherits the object id and the location coordinate from the object o. ζc(o)

, ζc(o) = ζc ∩ ζc(o), represents the set of relevant sub-concepts of keyword concept c

covered by the object o.

After partitioning these tuples according to their keyword concepts, all tuples correspond-

ing to the same keyword concept are organized as an OQ-tree (Overlapping-Quadtree),

which is a variant of Quadtree. There are two important goals that OQ-tree aims to

achieve. Towards an efficient search, the first is to guarantee that each query circle only

falls into a small number of index nodes to eliminate the high overhead of enumerat-

ing many node combinations. The second is to achieve an efficient query evaluation by

pruning the search space. The first goal is achieved by providing a new space decomposi-

tion mechanism that is introduced in Section 5.4.1, while the second goal is achieved by

maintaining summary information in each node which is introduced in Section 5.4.2. To

efficiently support query evaluations, we further introduce two index variants of OQ-tree

in Section 5.4.3. Finally, the data operations of OQ-tree are described in Section 5.4.4.

119

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

5.4.1 OQ-tree Index Structure

In this section, we introduce a disk-based space-partitioning tree structure OQ-tree for

storing all tuples that corresponds to the same keyword concept. Each index node N cor-

responds to a rectangular region, denoted by N.R. All tuples are stored in disk pages,

each of which is pointed to a leaf node in an OQ-tree. When the disk page corresponding

to a leaf node is full, the node is split into several nodes and all tuples in the disk page

are redistributed among these child nodes. Different from the Quadtree where the region

of each internal node is split into four non-overlapping sub-regions, the region of each

internal node in the OQ-tree is split into at most nine overlapping sub-regions with region

number from 1 to 9 as shown in Figure 5.2(b). However, not every internal node is split

into nine child nodes that corresponds to the nine split sub-regions, since these overlap-

ping sub-regions would bring duplicate nodes if every internal node were split into nine

child nodes.

Consider the example data partition for the keyword concept “Singapore Restaurant” as

shown in Figure 5.2(a). The partition can be organized as an OQ-tree as shown in Fig-

ure 5.2(c), where we assume that each disk page can store at most 3 tuples.

In an OQ-tree, the root node Nroot (at level 0) corresponds to the whole region space

R = {[Xmin, Xmax], [Ymin, Ymax]}, and all nodes at level �, � > 0, correspond to the same

region size whose width and length are X� = 2−�(Xmax − Xmin), and Y� = 2−�(Ymax −
Ymin), respectively. For a nodeN at level �, � ≥ 0, its regionN.R is specified by {[Xmin+

i
2
X�, Xmin +

i+1
2
X�], [Ymin +

j

2
Y�, Ymin +

j+1
2
Y�]}, i, j ∈ {0, 1, · · · , 2�+1 − 1}. To avoid

occurring duplicate nodes that correspond to those overlapping regions, each node N in

an OQ-tree are classified into four different types depending on the i and j values of N.R

as follows:

120

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Figure 5.2: Example OQ-tree for the keyword concept “Singapore Restaurant”

• N is an α-node if both of i and j are even;

• N is a β-node if i is odd but j is even;

• N is a γ-node if i is even but j is odd;

• N is a ω-node if both of i and j are odd.

The root node Nroot at level 0 is an α-node. The number of child nodes for an internal

node N varies from 1 to 9 depending on the node type. Each child node corresponds

to one of the nine sub-regions shown in Figure 5.2(b). More specifically, an internal α-

node is split into nine child nodes that correspond to all of the nine sub-regions. Four

of them are α-nodes corresponding to sub-regions with region IDs from 1 to 4; two of

them are β-nodes corresponding to sub-regions with region IDs 5 and 6; two of them are

γ-nodes corresponding to sub-regions with region IDs 7 and 8; and one of them is ω-node

121

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

corresponding to the sub-region with region ID 9. For example, the root node Nroot in the

OQ-tree shown in Figure 5.2(c) is split into nine child nodes that contains four α-nodes,

two β-nodes, two γ-nodes and one ω-node.

An internal β-node is split into three child nodes that correspond to only three of the nine

sub-regions. Two of child nodes are β-nodes corresponding to sub-regions with region

IDs 5 and 6; one of them is ω-node corresponding to the sub-region with region ID 9.

For example, the β-node N5 in the OQ-tree is split into three child nodes including two

β-nodes and one ω node.

An internal γ-node is split into three child nodes that correspond to only three of the nine

sub-regions. Two of them are γ-nodes corresponding to sub-regions with region IDs 7 and

8; one of them is ω-node corresponding to the sub-region with region ID 9. For example,

the γ-node N8 in the OQ-tree is split into three child nodes with two γ-nodes and one ω

node.

An internal ω-node only has one child node that corresponds to the sub-region with region

ID 9. For example, the ω-node N9 in the OQ-tree has only one child node N9.9. Note that

if the sub-region corresponding to a child nodeN is empty (it does not contain any tuple),

then N is not physically created. For example, in the OQ-tree shown in Figure 5.2(c), the

α-nodeN2 only has five child nodes since the other four child nodes correspond to empty

sub-regions.

For convenience, each node at level �, � > 0, is represented as Nid, where id is the ID

of this node. For each node at level 1, its ID is set as the region ID of the corresponding

region. For example, the first child node of Nroot in the example OQ-tree is represented

as N1. For a node at level �, � > 0, its ID is specified by “z1.z2. · · · .z�” which is con-

structed by appending the region ID of its corresponding region “z�” to its parent node’s ID

“z1.z2. · · · .z�−1”. For example, the three child nodes of node N8 shown in Figure 5.2(c)

are represented as N8.7, N8.8 and N8.9, respectively.

122

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

In an OQ-tree, let S(N.R) denote the set of tuples within the region N.R of node N .

Each leaf node N in an OQ-tree is of the form (id, R, P , s) , where id is the node id, R

is the corresponding region, P refers to the corresponding disk page that stores all tuples

in S(N.R), and s is some summary information (to be explained later) which is used to

speed up query processing.

Each internal α-node N is of the form (id, R, children-pointers, s) , where children-

pointers are the pointers pointing to its child nodes. Based on these children-pointers, the

tuple set S(N.R) can be retrieved by recursively traversing all descendant α leaf nodes of

N , since the region N.R is equal to the union of the regions of these descendant α leaf

nodes.

Each internal non-α-node N is of the form (id, R, children-pointers, referred-pointers,

s) , where referred-pointers are the pointers pointing to the four lowest α nodes whose

regions enclose the split sub-regions with region IDs from 1 to 4. of neighboring α-nodes

that cover the four partitioned subregions with ID from 1 to 4. Note that some of these

pointers could be empty. The intuition of including these referred-pointers is to facilitate

the retrieval of S(N.R), since N.R is not equal to the union of the regions of its child

nodes. For example, consider a α node N5 in Figure 5.2(c). There are three referred

nodes N1.2, N1.4 and N2.1, and there is no referred node that covers the empty sub-region

with region ID 4.Thus, the set S(N.R) can be retrieved from S(N1.2.R) ∪ S(N1.4.R) ∪
S(N2.1.R).

Consider a simple DSQ query Q with only one keyword concept c and query radius r

r ∈ (0, LR

2
], where LR denotes the breadth of the whole region R. Let Tc denote the OQ-

tree corresponding to c. We are able to answer Q by only considering the r-related nodes

in Tc defined as follows:

Definition 5.2 (r-related node). A r-related node in an index Tc is defined to be a node at

level �r, �r = �lg LR

4r
�, or a leaf node at a higher level �′r, �′r < �r.

123

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

For example, given a DSQ query with keyword concept c :“Singapore Restaurant” and

radius r = LR

16
, the set of r-related nodes in Tc (shown in Figure 5.2(c)) contains all nodes

at level 2 and the two leaf nodes (N4 and N6) at level 1.

The following result states the sufficient condition of utilizing r-related nodes to evaluate

a DSQ or N-DSQ query, rather than considering combinations of neighboring nodes.

Lemma 5.1. Consider a radius r, a query region RQ and an OQ-tree T. For any circle of

radius r within RQ, there exists a r-related node in T that contains that circle.

For example, consider the DSQ query with radius r = 0.1 · LR, we only need to focus on

the nine r-related nodes from N1 to N9 as shown in Figure 5.2(a).

5.4.2 Summary Information in Nodes

In this section, we present the summary information maintained in each node. The ob-

jective of the summary information is to prune the search space of a query evaluation by

avoiding the enumeration of too many r-related nodes.

Consider the corresponding OQ-tree of keyword concept c. In each node N , a naive

design is to maintain the upper bound score ξc(S(N.R)). Comparing with the top-1 group

G ⊆ S(N.R), the upper bound score ξc(S(N.R)) could be very “loose”, since the circle

of radius r is much smaller than the region of a r-related node. For example, consider a

simple DSQ query with keyword concept c : “Singapore Restaurant” and radius r = 0.1 ·
LR, and a r-related node N5 (shown in Figure 5.4(a)) which contains five tuples (t10, t12,

t13, t14 and t15). For convenience, the coverage score covc′(o) is simply computed as 1 if

c′ ∈ o.ψ. The groupGwithin the circle contains three tuples (t13, t14 and t15), and we have

ξc(G) = 0.399, which is much smaller than the naive upper bound ξc(S(N.R)) = 0.556.

124

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

To provide a tighter bound for a given radius r, we maintain a series of κ upper bound ag-

gregation scores that are suitable for different circle radii. Figure 5.3 shows the summary

information maintained in each node N of an OQ-tree Tc. For node N , we maintain κ

scores, denoted as N.ε1, N.ε2, · · · , N.εκ, and also maintain some statistical information

to facilitate the incremental update of these scores.

Scores
N.ε1 N.ε2 · · · N.εκ

Statistical Information
〈 p1, ζ11 , · · · , ζ |ζc|1 〉
〈 p2, ζ12 , · · · , ζ |ζc|2 〉

· · ·
〈 pκ, ζ1κ, · · · , ζ |ζc|κ 〉

(a) maintained scores (b) maintained statistical information

Figure 5.3: Maintained summary information in a node N

More specifically, after partitioning the regionN.R into 2τ×2τ , τ > 2, grids, we maintain

a series of κ, κ = 2τ−2, upper bound aggregation scores, where the i-th, i ∈ [1, κ], score

N.εi represents the maximum aggregation score of tuples that are located within any one

region covering (κ+ i+ 1)× (κ+ i+ 1) grids. For convenience, let Ri be such a region

covering (κ + i + 1) × (κ + i + 1) grids where the set of tuples is with the maximum

aggregation score. That is, we have N.εi = ξc(S(Ri)), where S(Ri) is the set of tuples

located withinRi. Note that the advantage of the grid partitioning is to efficiently calculate

and update these scores based on the quadtree-like structure. For example, assuming that

τ = 2, we maintain 2 scoresN5.ε1 andN5.ε2 for nodeN5. As can be seen in Figure 5.4(b),

after partitioning regionN5.R into 8×8 grids, the first score N5.ε1 denotes the maximum

aggregation score of tuples within any one region covering 4 × 4 grids, while the second

score N5.ε2 represents the maximum aggregation score of tuples within any one region

covering 5× 5 grids.

To support the incremental update of score N.εi, i ∈ [1, κ], we record some statistical

information 〈 pi, ζ1i , · · · , ζ |ζc|i 〉, where pi represents the left bottom corner point of Ri,

and ζji , j ∈ [1, |ζc|], denotes the sum of coverage scores for those objects which are

located in Ri. That is, ζji =
∑

o∈S(Ri)
covc′j(o). For example, reconsider node N5 and

125

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

(a) node N5 (b) a series of scores for N5

Figure 5.4: Maintained scores for node N5

the two maintained scores shown in Figure 5.4. To support the incremental update, the

maintained statistical information for the two maintained scores is shown in Table 5.3.

Based on the weights of these relevant sub-concepts as shown in Table 5.2, score N5.ε1

can be calculated as 0.25 · ln(1 + 1)+ 0.175 · ln(1 + 1)+ 0.15 · ln(1 + 1) = 0.399. In the

same way, we can also calculate score N5.ε2 = 0.482.

Covered Left-bottom Chinese Japanese Indian Western Korean Malay
Objects Corner Food Food Food Food Food Food

R1
t13, t14,

p1 1 0 0 1 1 0
t15

R2
o12, o13,

p2 1 1 0 1 1 0
t14 t15

Table 5.3: Example of statistical information in node N5

After introducing the series of maintained scores, let us now discuss how to find the suit-

able score for a given radius r. For convenience, we use L� to denote the breadth of region

N.R for a node N at level �. The following result states the sufficient condition of using

the i-th score of a r-related node as the upper bound score.

Lemma 5.2. Consider a DSQ queryQ ({c}, r, RQ, k) and a r-related nodeN at level � in

Tc. From the set of tuples S(N.R), let G be the candidate result group with the maximum

score. If r ≤ L�

8
+ i

8κ
, we have N.εi ≥ ξc(G).

Among the series of maintained scores for a r-related node, let us further define the r-

score as follows:

126

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Figure 5.5: Mapping r into the r-score of N

Definition 5.3 (r-score of a r-related node). For a r-related node N , the r-score N.ε(r)

is defined to be the tightest score for the given radius r. If N is at level �r, �r = �lg LR

4r
�,

the r-score N.ε(r) will be N.εi, where r ∈ (
L�r

8
+ i−1

8κ
,
L�r

8
+ i

8κ
]. Otherwise, N is a leaf

node at level �′r, �′r < �r, and the r-score N.ε(r) will be N.ε1.

Consider a r-related node N at level �r associated with the two maintained scores N.ε1

and N.ε2 as shown in Figure 5.5. If r ∈ (1
8
L�r ,

3
16
L�r], the r-score N.ε(r) will be N.ε1. If

r ∈ (3
16
L�r ,

1
4
L�r], we have N.ε(r) = N.ε2.

For example, reconsider the previous DSQ query with radius r = 0.1 · LR and node N5.

Since r ∈ (1
8
L�r ,

3
16
L�r], the r-score of N5 is equal to N5.ε1 = 0.399. Comparing with the

naive score ξc(N5), the r-score is much tighter.

5.4.3 OQ-tree Vairants

Based on the OQ-tree, the query evaluation needs to enumerate and evaluate the r-related

nodes with high r-scores. Therefore, to efficiently support the query evaluation, let us now

present two different variants of OQ-tree: the OQ+-tree index and the OQ∗-tree index.

Besides the series of maintained scores mentioned in Section 5.4.2, the OQ+-tree index

maintains some additional information in each node to improve the search space pruning

127

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

of the query evaluation. In an OQ+-tree index, each node N additionally maintains a

hierarchical series of upper bound scores for each low level of the subtree rooted atN . The

OQ+-tree index is able to efficiently support the query evaluation in a top-down manner.

When searching a node N with multiple r-related descendant nodes, the query evaluation

can directly utilize these maintained hierarchical scores in N to determine whether there

exist r-related descendant nodes with higher r-scores. If there does not exist, the query

evaluation can efficiently filter out the enumerations of all r-related descendants of N .

On the other hand, instead of maintaining the additional information in each node, the

OQ∗-tree index additionally maintains several sorted node reference lists for each level of

the OQ-tree. Based on these sorted lists, the OQ∗-tree index can efficiently support the

query evaluation by directly searching those r-related nodes in descending order of their

r-scores.

The OQ+-tree Index

We now introduce the first variant index (OQ+-tree index). In an OQ+-tree, node N

maintains both the basic summary information (shown in Figure 5.3) as well as the ad-

ditional hierarchical scores (shown in Figure 5.6(b)). Consider a node N at level � with

descendant nodes at level �′, �′ ∈ (�, L], where L is the lowest level of the subtree rooted

at N . For each level �′ of its subtree, node N maintains a hierarchical series of scores,

denoted as {N.ε�′1 , · · · , N.ε�′κ}, as shown in Figure 5.6(b). For convenience, each main-

tained score N.εi, i ∈ [1, κ], can also be denoted as N.ε�i . For example, reconsider node

N5 in Figure 5.4(a). The score N5.ε1 can also be denoted as N5.ε
1
1, since N5 is at level 1.

To efficiently support the hierarchical filtering, each maintained hierarchical score N.ε�′i ,

�′ ∈ (�, L], is the maximum value among the i-th score maintained in any descendant

node at level �′ and the 1-st score maintained in any descendant leaf node at a high level

�′′, �′′ ∈ (�, �′).

128

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Scores
N.ε1 N.ε2 · · · N.εκ

Subtree level Hierarchical scores
� N.ε�1 N.ε�2 · · · N.ε�κ

�+ 1 N.ε�+1
1 N.ε�+1

2 · · · N.ε�+1
κ

· · · · · · · · · · · · · · ·
L N.εL1 N.εL2 · · · N.εLκ

(a) scores (b) hierarchical scores

Figure 5.6: Maintained scores in a node N at level �

For example, reconsider node N5 with three child nodes N5.5, N5.6 and N5.9 as shown

in Figure 5.2(c). For child node N5.5, we can estimate the two upper bound scores

N5.5.ε1 and N5.5.ε2 as 0.173 and 0.295, respectively. For child node N5.6, we can esti-

mate the two scores N5.6.ε1 and N5.6.ε2 as 0.087 and 0.087, respectively. For another

child node N5.9, the two scores N5.9.ε1 and N5.9.ε2 can be estimated as 0.173 and 0.173,

respectively. The hierarchical score N5.ε
2
1 can be set as max(N5.5.ε

2
1, N5.6.ε

2
1, N5.9.ε

2
1) =

max(0.173, 0.087, 0.173) = 0.173, andN5.ε
2
2 can be set asmax(N5.5.ε

2
2, N5.6.ε

2
2, N5.9.ε

2
2) =

max(0.295, 0.087, 0.173) = 0.295.

More generally, we define the r-score of a node in OQ+-tree with some r-related descen-

dant nodes to facilitate the hierarchical filtering of the query evaluation.

Definition 5.4 (r-score of a node). Consider a node N at level � and a given radius

r ∈ (0, L�

4
]. It is known that node N has some r-related descendant nodes, and the r-

score of node N , denoted as N.ε(r), is generally defined as the maximum score among

the r-scores of these r-related descendant nodes of N . If r ∈ (
L�′

8
+ i−1

8κ
,
L�′

8
+ i

8κ
],

�′ ∈ [�, L] i ∈ [1, κ], the r-score of N N.ε(r) will be N.ε�′i . If r < LL

8
, we have N.ε(r) is

N.εL1 .

For example, reconsider node N5 (shown in Figure 5.2(c)) and a simple DSQ query with

keyword concept c : “Singapore Restaurant” and radius r = LR

16
. The r-score ofN5 equals

to N5.ε
2
2.

129

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

The OQ∗-tree Index

Instead of hierarchically filtering those r-related nodes with low r-scores, we introduce

the second variant index (OQ∗-tree index) to support the direct access of r-related nodes

in descending order of their r-scores.

Besides the tree structure of OQ-tree, the OQ∗-tree index additionally maintains several

sorted node reference lists for each level of the OQ-tree. More specifically, for nodes at

level �, the OQ∗-tree maintains κ+1 sorted lists, denoted as list�1, · · · , list�κ , llist�1. Each

entry of these lists is with the same format 〈ref(N), N.ε〉, where ref(N) is the node

reference of node N . The sorted list list�i , i ∈ [1, κ], maintains all entries 〈ref(N), N.εi〉
in descending order of N.εi, where N is any node at level �. Differently, the list llist�1

only focuses on those leaf nodes at level �, and maintains all entries 〈ref(N), N.ε1〉 in

descending order of N.ε1, where N is any leaf node at level �. Note that llist�1 could be

empty if there is no leaf node at level �.

Based on Definition 5.2, all r-related nodes are within either list of list�ri , llist�r−1
1 , · · · ,

llist11, where �r = �lg LR

4r
� and r ∈ (

L�r

8
+ i−1

8κ
,
L�r

8
+ i

8κ
]. By run-time merging these lists,

we can generate a list of all r-related nodes in descending order of their r-scores. In the

OQ∗-tree corresponding to a keyword concept c, we denote the sorted list as listc(r).

5.4.4 Data Operation

Now we introduce how to build and maintain the index. More specifically, we explain

three basic data operations on an IOQ-tree index, including data insertion, deletion and

update. Furthermore, we also discuss the data operations on the two index variants.

130

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Algorithm 5.1: Insert (N, t)

Input: Node N of the OQ-tree subtree and the tuple t
1 if (N is a leaf node) and (N.P is full) then
2 N.childs← childs by splittingN ;
3 foreach tuple t′ in N.P do
4 foreach child node N ′ ∈ N.childs, where t′ is located do
5 if N ′.P = null then
6 N ′.P ← allocate a new disk page;
7 Insert(N ′, t′);
8 delete N.P ;
9 if N is an internal node then

10 foreach child node N ′ ∈ N.childs, where t will be located do
11 Insert(N ′, t);
12 else
13 store t in N.P ;
14 UpdateSeriesScores (N, t);

Algorithm 5.2: UpdateSeriesScores (N, t)

Input: Node N at level � and the tuple t
1 for i← 1 to κ do
2 if t is located within N.Ri then
3 update the sum of the coverage score of relevant sub-concepts by using

tuple t;
4 calculate N.ε�i ;
5 else
6 identify the optimal region covering (κ+ i+ 1)× (κ+ i+ 1) partitioned

grids;
7 calculate N.ε�i ;

Data Insertion

We first present the insertion operation on an OQ-tree, following by the discussion on the

two index variants (OQ+-tree and OQ∗-tree). Algorithm 5.1 shows the psecudocode of

recursively inserting a tuple t into the subtree of the OQ-tree rooted at nodeN . Therefore,

we can insert t into the OQ-tree by evoking Insert(Nroot, t).

In the function Insert, we first check whether it is necessary to split node N (line 1). If

N is a leaf node, we have to splitN if the page is full (line 2-8). All tuples in the full page

will be reinserted into these new split child nodes of N . Subsequently, we then inserts the

131

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Algorithm 5.3: UpdateHierarchicalScores (N)

Input: Node N at level �
1 L← the lowest level of the subtree rooted at N ;
2 for �′ ← �+ 1 to L do
3 foreach child node N ′ ∈ N.childs, where t is located do
4 L′ ← the lowest level of the subtree rooted at N ′;
5 for i← 1 to κ do
6 if �′ ≤ L′ then N.ε�

′

i ← max(N.ε�
′

i , N
′.ε�

′

i) ;
7 else N.ε�

′

i ← max(N.ε�
′

i , N
′.εL

′

1) ;

tuple t into the current node N (line 9-13). If N is an internal node, we recursively insert

tuple t into each of those child nodes, whose corresponding regions cover t (line 9-11).

Otherwise, we store tuple t in the disk page N.P if N is a leaf node (line 13). Finally, we

update the hierarchical series of scores with the inserted tuple t by evoking the function

UpdateSeriesScores shown in Algorithm 5.2.

In the function UpdateSeriesScores as shown in Algorithm 5.2, we update the se-

ries of scores for nodeN at level �. For each scoreN.ε�i , i ∈ [1, κ], we will check whether

tuple t is located in the recorded optimal region covering (κ+ i+1)× (κ+ i+1) grids. If

it is, we can directly update the sum of coverage scores of relevant subconcepts, followed

by calculating the score based on the Equation 5.2 (line 2-4). Otherwise, we identify the

optimal region covering (κ+ i+1)× (κ+ i+1) grids, and calculate the score for the set

of tuples covered by the optimal region (line 6-7).

The time complexity of inserting a tuple into an OQ-tree by applying the function Insert

is O(3H), where H is the height of the OQ-tree.

Subsequently, we discuss the insertion operation on the OQ+-tree index. A tuple can be

inserted into an OQ+-tree index, by applying an extension insertion function of Insert

(shown in Algorithm 5.1). To update the hierarchical scores maintained in nodeN , we can

extend the function Insert by evoking the function UpdateHierarchicalScores

(shown in Algorithm 5.3) at the end. In the function UpdateHierarchicalScores,

132

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

each hierarchical score can be updated based on those hierarchical scores maintained in

the child nodes ofN . The time complexity of the insertion on an OQ+-tree is also O(3H).

Finally, we now present the insertion operation on the OQ∗-tree index. We first apply the

function Insert (shown in Algorithm 5.1) to update these maintained scores in nodeN .

After that, for each updated score N.εi, i ∈ [1, κ], we need to update the reference entry

〈ref(N), N.εi〉 in the sorted list list�i . Therefore, the time complexity of the insertion on

an OQ∗-tree will be O(3H + 3(κ+ 1)H).

Data Deletion and Update

After discussing the insertion operation, the deletion is much easier to be understood.

Consider a tuple t which needs to be deleted. We can traverse the corresponding OQ-tree

downward started from the root. After identifying the disk page where t is stored, we

can directly remove t from the page, and the page will be dropped if it becomes empty.

Furthermore, we will update the series of scores maintained in each node N where t is

located. For the score N.ε�i where � is the level of N and i ∈ [1, κ], we do not need to

verify if tuple t is not located in the recorded optimal region covering (κ+i+1)×(κ+i+1)

partitioned grids. Otherwise, we have to identify the new optimal region, and update the

score.

In an OQ+-tree index, the update of the maintained scores in N will propagate upwards

the update of the hierarchical series of scores for each ancestor node ofN . In an OQ∗-tree

index, the update of each maintained score will also affect the sorted lists as mentioned

before.

Overall, the time complexity of the deletion operation is the same with the insertion oper-

ation.

133

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

An update operation is treated as a deletion followed by an insertion because its location

information or keyword information could be changed and the tuple belongs to another

node.

5.5 Evaluation of DSQ queries

In this section, we present our approach for evaluating a DSQ query Q(ψ, r, RQ, k) with

an IOQ-tree index I . Let us assume that ψ = {c1, · · · , cn}, and for keyword concept

ci ∈ ψ, we use Tc1 to denote the OQ-tree corresponding to ci. To evaluate query Q, the

query evaluation needs to traverse these corresponding OQ-trees Tc1 , · · · , Tcn in parallel.

To distinguish nodes in different OQ-trees, we use N ci
id , ci ∈ ψ, to represent a node in Tci .

As mentioned in Section 5.4, all of these OQ-trees are based on the uniform space de-

composition mechanism. For a node N ci in an OQ-tree Tci , there always exists such a

node N cj in another OQ-tree Tcj , ci �= cj , such that N ci.R is the same with N cj .R or

N cj .R contains N ci .R if N cj is a leaf node. To facilitate the parallel traversal, let us first

introduce a parallel state η with the format 〈R, {N c1, · · · , N cn}〉, whereR is a partitioned

region and N ci .R, ci ∈ ψ, represents the lowest node in Tci covering region R. For two

parallel states η : 〈R, {N c1, · · · , N cn}〉 and ηu : 〈Ru, {N c1
u , · · · , N cn

u }〉, we say that ηu is

a descendant parallel state of η if R ⊃ Ru. Additionally, we say η is a r-related parallel

state if each node N ci , ci ∈ ψ, is a r-related node in Tci .

Based on Lemma 5.1, we have the following sufficient condition for evaluating a spatial

query by only considering each r-related parallel states.

Lemma 5.3. Consider a DSQ query Q(ψ, r, RQ, k) and ψ = {c1, · · · , cn}. For any

candidate result group G, there exists a r-related parallel state η : 〈R, {N c1 , · · · , N cn}〉
such that G ⊆ ∪ci∈ψS(N

ci .R).

134

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

The key idea of the query evaluation is to maintain and refine the top-k result groups

{G1, · · · , Gk} by enumerating these r-related parallel states. Rather than simply enu-

merating all r-related parallel states, we would like to reduce the search space of query

evaluation by filtering out as many r-related parallel states as possible. Based on the two

OQ-tree variants, we propose two efficient evaluation methods: OQ+-tree and OQ∗-tree.

For a parallel state η : 〈R, {N c1, · · · , N cn}〉, we maintain an upper bound score F (η)

for any result group G, G ⊆ ∪ci∈ψS(N
ci.R). A simple upper bound score F (η) can

be estimated as 1
n

∑
ci∈ψ

F η(N ci), where F η(N ci) is set as N ci.ε(r). Additionally, in

the later section, we show that F (η) can be further restricted by refining F η(N ci) after

retrieving tuples that are within N ci.R.

5.5.1 OQ+-tree Evaluation

Let us first introduce the OQ+-tree evaluation, which traverses these corresponding OQ+-

tree indexes Tc1 , · · · , Tcn in a top-down, best-first manner. For each r-related parallel

state η : 〈R, {N c1, · · · , N cn}〉, the query evaluation retrieves tuples within these r-related

nodes {N c1 , · · · , N cn} if F (η) ≥ ξψ(Gk), and then finds highly ranked candidate result

groups from these retrieved tuples to refine the current maintained top-k result groups

{G1, · · · , Gk}. On the other hand, for each parallel state η : 〈R, {N c1, · · · , N cn}〉 with

some descendant r-related parallel states, we search down these subtrees Tc1(N c1), · · · ,
Tcn(N

cn)} in parallel, in the case that F (η) ≥ ξψ(Gk).

Algorithm 5.4 shows the pseudo-code of the OQ+-tree evaluation method. To efficiently

support the best-first parallel traversal, a priority queue PQ is designed to maintain the set

of parallel states, whose upper bound scores are greater than ξψ(Gk). In the priority queue

PQ, the top one will always be with the highest upper bound score. After initializing the

priority queue PQ and each maintained group Gi, i ∈ [1, k], as ∅, we start the query eval-

uation by pushing the initial parallel state 〈R, {N c1
root, · · · , N cn

root}〉, where R is the uniform

135

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Algorithm 5.4: OQ+-tree-Eval (Q, I)

Input: the DSQ query Q(ψ, r, RQ, k) with the keyword concepts
ψ = {c1, · · · , cn}, and the IOQ-tree index I

Output: the top-k result groups {G1, · · · , Gk}
1 PQ← ∅, {G1, · · · , Gk} ← {∅, · · · , ∅};
2 push 〈R, {N c1

root, · · · , N cn
root}〉 into PQ;

3 while PQ is not empty do
4 pop the top state η : 〈R, {N c1 , · · · , N cn}〉 from PQ;
5 if F (η) < ξψ(Gk) then break ;
6 if η is not a r-related parallel state then
7 Sη ← GenerateChildStates(η, RQ) ;
8 foreach child state ηu ∈ Sη do
9 push ηu into PQ if F (ηu) ≥ ξ(Gk);

10 else
11 if tuples for all nodes of η have been retrieved then
12 S ← ⋃

i∈[1,n] S
η
i (R,RQ);

13 foreach group G that can be generated from S do
14 if ξψ(G) > ξψ(Gk) then
15 refine {G1, · · · , Gk} with G;
16 else
17 retrieve tuples of Ni that is the non-retrieved node of η at the highest

level;
18 let Sη

i (R,RQ) be the retrieved tuples of S(N ci.R) which are located
within R and RQ;

19 restrict F (η) by replacing F η(N ci) with ξψ(Sη
i (R,RQ));

20 if Sη
i (R,RQ) �= ∅ then

21 re-push η into PQ;
22 return {G1, G2, · · · , Gk};

whole region, and N ci
root, ci ∈ ψ, denotes the root node of Tci (line 1-2). Subsequently, we

then iteratively pop and process the top parallel state η : 〈R, {N c1 , · · · , N ci, · · · , N cn}〉
of PQ.

In the case that the top state η is not a r-related parallel state, a set of child parallel states

can be generated by evoking the function GenerateChildStates(Algorithm 5.5).

We then push those generated child states into PQ for further processing, if their upper

bound scores are greater than ξψ(Gk) (line 8-9).

On the other hand, let us focus on the case that the top state η is r-related parallel state. For

each node N ci in η, all tuples in S(N ci .R) need to be retrieved. Based on these retrieved

136

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Algorithm 5.5: GenerateChildStates (η, RQ)

Input: the parallel state η : 〈R, {N c1, · · · , N cn}〉 and the query region RQ

Output: the set of child states Sη

1 let N ci , i ∈ [1, n], be the node at the lowest level among N c1 , · · · , N cn ;
2 split N ci.R into several sub-regions based on the type of node N ci ;
3 Sη ← ∅ ;
4 foreach splitted sub-region Ru do
5 if Ru ∩RQ = ∅ then continue ;
6 for node N ci in η do
7 if N ci is a leaf node then
8 N ci

u ← N ci ;
9 else

10 N ci
u ← the child node of N ci covering Ru ;

11 if every node N ci
u is not empty then

12 Generate the child parallel state ηu : 〈Ru, {N c1
u , · · · , N cn

u }〉 ;
13 Sη ← Sη∪ {ηu} ;
14 Return Sη ;

tuples, we can apply the circle-placement algorithm [23] to identify those candidate result

groups whose ranking scores are greater than ξc(Gk), followed by refining the current

top-k result groups {G1, · · · , Gk}. One of the straight-forward methods is to directly

retrieve tuples for all nodes of η at a time. As mentioned, nodes in η could be at different

levels. For a node N ci , N ci .R ⊃ R at a high level, we use Sη
i (R,RQ) to represent the set

of tuples of N ci that are located within R and RQ. Sometimes the set Sη
i (R,RQ) could

be empty, and there will not exist a candidate result group in η based on Definition 5.1.

The IO cost of retrieving tuples for nodes in η will be wasted. Instead, we prefer to first

retrieve tuples of the non-retrieved nodeN ci at the highest level (line 17). After retrieving

tuples in S(N ci .R), we then restrict F (η) by replacing F η(N ci) with ξψ(Sη
i (R,RQ)) (line

19). If the restricted upper bound is no greater than ξψ(Gk), all the tuples in other non-

retrieved nodes of η will not be retrieved. Otherwise, before immediately retrieving tuples

in the non-retrieved node of η at the next highest level, we re-push η into PQ to guarantee

that each time only the state with the highest upper bound score will be processed, since

the upper bound score F (η) after restriction could be lower than the upper bound score

of the top state of the current priority queue excluding η (line 20-21). After restriction,

137

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

we can directly process to refine {G1, · · · , Gk} if the tuples for all nodes in η have been

retrieved (line 12-15). Finally, the query evaluation is terminated when there exist no

more unprocessed parallel states whose upper bound scores are greater than ξψ(Gk).

The function GenerateChildStates(η, RQ) (shown in Algorithm 5.5) generates the

child parallel states of state η : 〈R, {N c1, · · · , N cn}〉. Among these nodes in η, let N ci be

the one at the lowest level. Based on the type of node N ci , we split the region N ci .R into

several different sub-regions. For each sub-region Ru, we try to generate a child parallel

state ηu : 〈Ru, {N c1
u , · · · , N cn

u }〉, where N ci
u is the lowest node in Tci covering Ru.

(a) partition (b) an OQ-tree

Figure 5.7: Example OQ-tree for the keyword concept “Entertainment Facility”

Relevant Sub-concept Movie Theater KTV Club Bar
Weights 0.3 0.3 0.4

Table 5.4: The weights of relevant sub-concepts of “Entertainment Facility”

Let us take an example to illustrate the OQ+-tree evaluation method.

Example 5.1: Reconsider a DSQ query Q with the query keyword concepts c1 : “Singa-

pore Restaurant” and c2 : “Entertainment Facility”, a limit size 2, and the query radius

r = 0.1 · LR. Table 5.4 shows the weights of relevant sub-concepts of the keyword

concept “Entertainment Facility”. For the two keyword concepts, the corresponding par-

titions are shown in Figure 5.2(a) and Figure 5.7(a), respectively. Assuming the max-

imum tuple capacity of each disk page is 3, the corresponding OQ+-trees Tc1 and Tc2

are shown in Figure 5.2(c) and Figure 5.7(b), respectively. Table 5.5 and Table 5.6

138

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

region R1 R2 R3 R4 R5 R6 R7 R8 R9

r-related node N
c1
1 N

c1
2 N

c1
3 N

c1
4 N

c1
5 N

c1
6 N

c1
7 N

c1
8 N

c1
9

r-score 0.282 0.399 0.537 0.433 0.399 0.295 0.433 0.504 0.295

Table 5.5: r-related nodes in Tc1
region R1 R2 R3 R5 R7 R8 R9

r-related node N
c2
1 N

c2
2 N

c2
3 N

c2
5 N

c2
7 N

c2
8 N

c2
9

r-score 0.208 0.482 0.416 0.482 0.482 0.277 0.277

Table 5.6: r-related nodes in Tc2

show the r-related nodes associated with their r-scores in Tc1 and Tc2 , respectively. The

OQ+-tree evaluation traverses down the two OQ+-trees Tc1 and Tc2 in parallel. From the

root state η : 〈R, {N c1
root, N

c2
root}〉, the evaluation generates 7 r-related parallel states η1 :

〈R1, {N c1
1 , N

c2
1 }〉, η2 : 〈R2, {N c1

2 , N
c2
2 }〉, η3 : 〈R3, {N c1

3 , N
c2
3 }〉, η5 : 〈R5, {N c1

5 , N
c2
5 }〉,

η7 : 〈R7, {N c1
7 , N

c2
7 }〉, η8 : 〈R8, {N c1

8 , N
c2
8 }〉, and η9 : 〈R9, {N c1

9 , N
c2
9 }〉. All of these

states are pushed into the maintained priority queue.

The OQ+-tree evaluation first pops and processes the top state η3 with the upper bound

F (η3) as 0.4765, and then obtains two candidate result groups G′
1 (ξψ(G′

1) = 0.458), and

G′
2 (ξψ(G′

2) = 0.312) shown in Figure 1.3(b). After searching state η7 with the upper

bound score F (η7) as 0.4575, state η5 with the upper bound score F (η5) as 0.440, state

η2 with the upper bound score F (η2) as 0.440 and state η8 with the upper bound score

F (η8) as 0.3905, the evaluation will be terminated since the upper bound scores of all

other states are smaller than ξψ(G′
2). �

5.5.2 OQ∗-tree Evaluation

Having discussed the OQ+-tree evaluation based on the top-down traversals of these cor-

responding OQ+-trees Tc1 , · · · , Tcn , let us now introduce the OQ∗-tree evaluation to di-

rectly search the r-related parallel states constructed by accessing r-related nodes from

the sorted lists listc1(r), · · · , listcn(r). In the process of constructing parallel states, some

parallel states with unseen nodes can be generated. To distinguish them from those par-

allel states without unseen nodes, we say that a parallel state η : 〈R, {N c1, · · · , N cn}〉 is

139

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

complete if every N ci , ci ∈ ψ, is an accessed node. Otherwise, we say that η is a partial

parallel state.

Consider a constructed r-related parallel state η : 〈R, {N c1, · · · , N cn}〉. In the case that

η is complete, the upper bound score F (η) is initialized by setting F η(N cn) as N ci .ε(r).

Otherwise, for an unseen node N ci , F (η) is estimated by substituting F η(N ci) with the

r-score of the last accessed r-related node in listci(r). During query evaluation, we use

a binary heap BHeap to maintain all constructed (partial or complete) r-related parallel

states in descending order of their upper bound scores.

The main algorithm of the OQ∗-tree evaluation is shown in Algorithm 5.6. The evaluation

is started by initializing the binary heap BHeap and each maintained groupGi, i ∈ [1, k],

as ∅ (line 1). We then iteratively access and process the next r-related node N ci from

listci(r) in parallel (line 2-17). Based on these newly accessed r-related nodes, we are

able to construct some new parallel states, followed by pushing them into BHeap. Some

existing partial parallel states could also be updated by joining with these newly accessed

r-related nodes, and the upper bound score of each partial state inBHeap is also updated.

Consider a new r-related nodeN ci that has just been accessed from listci(r). For a partial

state η without an accessed node in listci(r), the upper bound score F (η) is refined by

setting F η(N ci) as N ci.ε(r). After updating the upper bound scores for states in BHeap,

the evaluation then iteratively pops and processes the top state η only if η is complete. For

a top state η : 〈R, {N c1, · · · , N cn}〉 that is complete, we first retrieve tuples for the node

of η at the highest level, rather than retrieving all tuples in all of these nodes at a time.

After retrieving tuples in the node at the highest level, we restrict the upper bound scores

of η and other states in BHeap by evoking the function RestrictUpperBound (Al-

gorithm 5.7). If tuples for all nodes in the top state have been retrieved, we directly refine

{G1, · · · , Gk} (line 12). The evaluation is terminated if there exist no more unprocessed

(partial or complete) r-related parallel states whose upper bound scores are greater than

ξψ(Gk).

140

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Algorithm 5.6: OQ∗-tree-Eval (Q, I)

Input: the DSQ query Q(ψ, r, RQ, k) with the keyword concept set
ψ = {c1, · · · , cn}, and the IOQ-tree index I

Output: the top-k result groups {G1, · · · , Gk}
1 BHeap← ∅, {G1, · · · , Gk} ← {∅, · · · , ∅};
2 while there exists at least one unaccessed r-related node in either inverted list
listci(r), ci ∈ ψ do

3 access the next r-related node N ci (N ci.R ∩RQ �= ∅) from each list listci(r) in
parallel;

4 construct r-related parallel states with newly accessed nodes, and push them
into BHeap;

5 join spatial parallel states in BHeap with these newly accessed nodes;
6 foreach newly accessed node N ci do
7 update the upper bound score for each partial state without an accessed

node in listci(r);
8 while the top state is a complete do
9 pop the top state η : 〈R, {N c1, · · · , N cn}〉 from BHeap;

10 if F (η) ≤ ξψ(Gk) then break ;
11 if tuples for all nodes of η have been retrieved then
12 refine {G1, · · · , Gk} following steps 12-15 in Algorithm 5.4;
13 else
14 RestrictUpperBound(η, BHeap,RQ);
15 η ← the top state in BHeap;
16 if F (η) ≤ ξψ(Gk) then
17 break;
18 return {G1, · · · , Gk};

The function RestrictUpperBound(η, BHeap,RQ) (shown in Algorithm 5.7) re-

stricts F (η) by retrieving tuples from the non-retrieved node N ci at the highest level in

η, and also restricts the upper bound scores for all parallel states in BHeap containing

N ci . For the parallel state ηu : 〈Ru, {· · · , N ci, · · · }〉, let Sη
i (Ru, RQ) denote the set of

retrieved tuples from S(N ci .R) which are located within RQ. If Sη
i (Ru, RQ) is empty,

we can directly discard ηu from BHeap to avoid to spend extra IOs to retrieve tuples

from other non-retrieved nodes in ηu. Otherwise, F (ηu) is restricted by setting F ηu(N ci)

as ξψ(Sη
i (Ru, RQ)). Overall, the upper bound score restriction can benefit the OQ∗-tree

evaluation by improving the filter rating of these parallel states.

141

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Algorithm 5.7: RestrictUpperBound (η, BHeap, ψ,RQ)

Input: the complete r-related parallel state η : 〈R, {N c1, · · · , N cn}〉, the binary
heap BHeap, the query keyword concepts ψ and the query region RQ

1 let N ci be the non-accessed node at the highest level among {N c1 , · · · , N cn} ;
2 retrieve tuples which are located in N ci ;
3 let Sη

i (R,RQ) be the retrieved tuples S(N ci.R) which are located withinR and RQ;
4 restrict F (η) by replacing F η(N ci) with ξψ(Sη

i (R,RQ));
5 if Sη

i (R,RQ) �= ∅ then
6 re-push η into BHeap;
7 foreach each state ηu : 〈Ru, {· · · , N ci, · · · }〉 do
8 let Sη

i (Ru, RQ) denote the retrieved tuples which are located within the
intersection area of Ru and RQ;

9 if Sη
i (Ru, RQ) = ∅ then

10 remove ηu from BHeap;
11 else
12 refine F (ηu) by setting F ηu(Ci) as ξψ(Sη

i (R
′, RQ));

Let us now take an example to illustrate the OQ∗-tree evaluation method.

Example 5.2: Reconsider the DSQ query in Example 5.1. The OQ∗-tree evaluation ac-

cesses the r-related nodes of Tc1 in the order of N c1
3 , N c1

8 , N c1
4 , N c1

7 , N c1
5 , N c1

2 , N c1
6 , N c1

9 ,

N c1
1 , while the evaluation scan the r-related nodes of Tc2 in the order of N c2

2 , N c2
5 , N c2

7 ,

N c2
3 , N c2

8 , N c2
9 , N c2

1 . Figure 5.8 shows the sequence of updating BHeap by OQ∗-tree

evaluation.

• (a) The evaluation accesses N c1
3 and N c2

2 , followed by generating two partial states

η3 : 〈R3, {N c1
3 ,−}〉 and η2 : 〈R2, {−, N c2

2 }〉 with the upper bound score 0.5095 as

shown in Figure 5.8(a).

• (b) The evaluation scans N c1
8 and N c2

5 , followed by generating two partial states

η8 : 〈R8, {N c1
8 ,−}〉 and η5 : 〈R5, {−, N c2

5 }〉 with the upper bound score 0.492 as

shown in Figure 5.8(b). Furthermore, F (η2) is refined as 0.492, due to the decrease

of r-score of last seen node in listc2(r).

• (c) The evaluation scans N c1
4 and N c2

7 , followed by generating two partial states

η4 : 〈R4, {N c1
4 ,−}〉 and η7 : 〈R7, {−, N c2

7 }〉 and refining the upper bounds for η2

142

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

States Scores
〈R3, {N c1

3 ,−}〉 0.5095
〈R2, {−, N

c2
2 }〉 0.5095

States Scores
〈R3, {N c1

3 ,−}〉 0.5095
〈R2, {−, N

c2
2 }〉 0.492

〈R8, {N c1
8 ,−}〉 0.492

〈R5, {−, N
c2
5 }〉 0.492

States Scores
〈R3, {N c1

3 ,−}〉 0.5095
〈R8, {N c1

8 ,−}〉 0.492
〈R7, {−, N

c2
7 }〉 0.4575

〈R2, {−, N
c2
2 }〉 0.4575

〈R4, {N c1
4 ,−}〉 0.4575

〈R5, {−, N
c2
5 }〉 0.4575

(a) access N c1
3 and N c2

2 (b) access N c1
8 and N c2

5 (c) access N c1
4 and N c2

7

States Scores
〈R3, {N c1

3 , N c2
3 }〉 0.4765

〈R8, {N c1
8 ,−}〉 0.46

〈R7, {N c1
7 , N c2

7 }〉 0.4575
〈R2, {−, N c2

2 }〉 0.4575
〈R5, {−, N

c2
5 }〉 0.4575

〈R4, {N c1
4 ,−}〉 0.4245

States Scores
〈R7, {N c1

7 , N
c2
7 }〉 0.4575

〈R5, {N c1
5 , N

c2
5 }〉 0.4405

〈R2, {−, N
c2
2 }〉 0.4405

〈R8, {N c1
8 , N

c2
8 }〉 0.3905

〈R4, {N c1
4 ,−}〉 0.355

States Scores
〈R2, {N c1

2 , N c2
2 }〉 0.4405

〈R8, {N c1
8 , N c2

8 }〉 0.3905
〈R4, {N c1

4 ,−}〉 0.355
〈R9, {−, N

c2
9 }〉 0.3205

(d) access N c1
7 and N c2

3 (e) access N c1
2 and N c2

8 (f) access N c1
5 and N c2

9

States Scores
〈R4, {N c1

4 ,−}〉 0.3205
〈R9, {−, N c2

9 }〉 0.286
〈R6, {N c1

6 ,−}〉 0.2515
〈R1, {−, N c2

1 }〉 0.2515

(g) access N c1
6 and N c2

1

Figure 5.8: Sequence of updating BHeap by OQ∗-tree evaluation in Example 5.2

and η5 as shown in Figure 5.8(c).

• (d) The evaluation accesses N c1
7 and N c2

3 , followed by generating two complete

states η3 and η7, and refining the upper bounds for other states. As can be seen in

Figure 5.8(d), the top state η3 is a complete state, and we can obtain the current

top-2 result groups G′
1 (ξψ(G′

1) = 0.458) and G′
2 (ξψ(G′

2) = 0.315) (shown in

Figure 1.3(b)) based on the retrieved tuples of N c1
3 and N c2

3 .

• (e) The evaluation scans N c1
5 and N c2

8 , and obtain two complete states η5 and η8.

The top-2 states η7 and η5 can be processed.

• (f) The evaluation scans N c1
2 and N c2

9 , and obtain the complete state η2. The top-2

states η2 and η8 are processed.

143

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Algorithm 5.8: OQ-tree-SD-Eval (Q, I,N)

Input: the N-DSQ query Q(ψ, r, RQ, k), and the IOQ-tree I , and the size of
candidate groups N

Output: the spatially diversified set of k result groups
1 U ← the top-N highly ranked result groups generated by evoking
OQ+-tree-Eval or OQ∗-tree-Eval;

2 S ← ∅;
3 while |S| < k do
4 find G ∈ U to maximize fG(S);
5 S ← S ∪ {G};
6 U ← U − {G};
7 return S;

• (g) The evaluation scans N c1
6 and N c2

1 , followed by generating two partial states η6

and η9. Even though the top partial η4 whose upper bound score is greater than

ξψ(G
′
2), there does not exist an candidate result group within R4, since there exist

no more r-related nodes in listc2(r). Additionally, the upper bound scores of other

states are smaller than ξψ(G′
2). Therefore, the evaluation is terminated.

�

5.6 Evaluation of N-DSQqueries

In this section, we discuss the query evaluation for a N-DSQ query Q(ψ, r, RQ, k). In the

query evaluation, we apply the well known two-phase diversification model proposed in

[19]: (a) retrieving the top-N high ranked result groups as the candidate set and (b) find-

ing out the k spatially diversified result groups from the candidate set. More specifically,

the candidate collection of result groups can be generated by applying the top-N evalu-

ation methods mentioned in previous section. To address the NP-Complete problem of

finding out the k spatial diversified result group from the candidate set, we use the greedy

algorithm proposed in [13] with an approximation rate of 2.

144

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

The query evaluation will iteratively selecting one result group from the the candidate

set. Let us first define the marginal gain of selecting a new candidate result group. For

any given subset S ⊆ U and an element G ∈ U − S, let fG
ψ (S) be the marginal gain of

selecting G from the set U − S calculated as

fG
ψ (S) = δ · ξ(G)

ξmax

+
1− δ

|S|+ 1
·
∑
G′∈S

dis(G,G′)

Γ
(5.5)

The main algorithm of the query evaluation is shown in Algorithm 5.8. After generating

the top-N result groups, the query evaluation iteratively picks the result group G with the

maximum marginal gain fG(S) until that |S| = k.

5.7 Experiments

We conducted an experimental study to evaluate the efficiency of our proposed techniques.

All of the indexes were implemented in Java and experiments were conducted on a server

with an Intel Xeon 1.80GHz processor, 32GB of memory, running Ubuntu 14.04. In our

experiments, each execution time reported refers to the total running time for a query.

Each query is run 5 times, and the reported running time is the average of 3 values ex-

cluding the minimum and maximum values.

Algorithms. For DSQ queries, we compared OQ+-tree and OQ∗-tree against the baseline

I3+, which is an extended evaluation method by using I3-index (mentioned in Sec-

tion 5.3). For N-DSQ queries, we compared OQ+-tree-SD and OQ∗-tree-SD against the

baseline I3+-SD. The three methods OQ+-tree-SD, OQ∗-tree-SD and I3+-SD generate the

candidate set by applying OQ+-tree, OQ∗-tree and I3+, respectively. In our experiments,

we did not compare our proposed algorithms against the baseline algorithm using R-tree,

since the spatial join on different R-trees is very costly.

145

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Dataset. In this experiment, we used two real spatial datasets Foursquare with 3,396,580

spatial Points of Interest (PoIs) and Tweets with 122,472,892 geo-tweets.

Parameter Parameter Value (Default Value)
number of keyword concepts (DSQ or N-DSQ) 1-4 (2)

query limit size k 1-100 (10)
query radius r 0.001◦-0.004◦ (0.002◦)

query region RQ Global, US, UK, Germany (Global)

Table 5.7: Query Parameters

Queries. Table 5.7 shows the parameters of spatial queries used in our experiments. For

a DSQ or N-DSQ query, we varied the number of query keyword concepts from 1 to 4,

with the default value of 2, and varied the limit size from 1 to 100, with the default value

of 10. The query radius r was varied from 0.001◦ to 0.004◦, with the default value of

0.002◦. Note that the geo-distance is around 111 meter when r equals to 0.001◦. To study

the effect of the query region RQ, we investigated the performance on different query

regions: the global geo-location region {[−180◦, 180◦][−90◦, 90◦]}, the US geo-location

region {[−125◦,−70◦][30◦, 48◦]}, the UK geo-location region {[−7◦, 2◦][50◦, 58◦]} and

the Germany geo-location region {[6◦, 15◦][47◦, 55◦]}.

The real dataset Foursquare was evaluated using the five queries (Q1 to Q5) shown in

Table 5.8, while the real dataset Tweets was evaluated using the five queries (Q′
1 to Q′

5)

shown in Table 5.9.

Query Query Type Keyword Concepts
Q1 DSQ “Restaurant”
Q2 DSQ “Restaurant”, “Entertainment”

Q3 DSQ “Restaurant”, “Entertainment”,
“Hotel”

Q4 DSQ “Restaurant”, “Entertainment”,
“Hotel”, “Shopping”

Q5 N-DSQ “Restaurant”, “Entertainment”

Table 5.8: Queries on Foursquare

For each real dataset, we built an IOQ+-tree that is a variant of IOQ-tree where each

146

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Query Query Type Keyword Concepts
Q′

1 DSQ “Sport”
Q′

2 DSQ “Sport”, “Health Eating”

Q′
3 DSQ “Sport”, “Health Eating”,

“Healthcare”

Q′
4 DSQ “Sport”, “Health Eating”,

“Healthcare”, “Exercise”
Q′

5 N-DSQ “Sport”, “Health Eating”

Table 5.9: Queries on Tweets

partition is organized as an OQ+-tree, an IOQ∗-tree that is a variant of IOQ-tree where

each partition is organized as an OQ∗-tree, and an I3 [82]. For each keyword concept,

we used the LDA model [11] to generate the set of relevant sub-concepts associated with

their weights. In our experiments, the number of relevant sub-concepts is set as 16. In

the IOQ+-tree and IOQ∗-tree, we varied the number of maintained scores κ from 4 to 8,

with a default value of 8. Figure 5.9 shows the size of implemented indexes for the two

real datasets. Our implementation shows that IOQ+-tree is about 2.4 times larger than I3,

while IOQ∗-tree is about 7.6 times larger than I3. As an example, when κ = 8, the size of

IOQ+-tree in Foursquare is 4.4GB while the size of I3 is only 1.3GB. Furthermore, when

κ increases from 4 to 8, the size of IOQ+-tree increases by a factor of 1.6.

Index Index Size
κ = 4 κ = 5

I3 1.3GB 1.3GB
IOQ+-tree 2.7GB 4.4GB
IOQ∗-tree 5.1GB 9.9GB

Index Index Size
κ = 4 κ = 5

I3 48.7GB 48.7GB
IOQ+-tree 101.8GB 173.6GB
IOQ∗-tree 196.8GB 381.9GB

(a) Foursquare (b) Tweets

Figure 5.9: Index sizes on the two real datasets

5.7.1 Simple DSQ queries with only one keyword concept

In this section, we investigate the performance study of simple DSQ queries containing

only one keyword concept, by varying several different parameters.

147

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Effect of data size

Figure 5.10 compares the performance for different data sizes on Q1 and Q′
1. For Q1

on the Foursquare dataset, there are a total of 796,482 PoIs (denoted by Set3) that cover

the keyword concept “Restaurant”. To study the effect of data size, we generated two

small data sets Set1 and Set2, by randomly picking 300,000 and 500,000 PoIs from Set3,

respectively. As can be seen in Figure 5.10(a), the results show that OQ∗-tree gives the

best performance and it outperforms I3+ by an increasing factor of 10.1, 16.4 and 30.4 as

the data size increases. Observe that while OQ+-tree and OQ∗-tree perform similarly for

the different data sizes, I3+’s performance worsens with increasing data size. Furthermore,

the results also show that OQ∗-tree outperforms OQ+-tree by up to a factor of 2.7. The

number of accessed r-related nodes by OQ∗-tree increases from 23 to 29 and 40 as the

dataset is varied from Set1 to Set2 and Set3, while the number of accessed nodes by OQ+-

tree increases from 67 to 102 and 141.

For Q′
1 on the Tweets dataset, there are a total of 931,827 geo-tweets (denoted by Set′4)

that cover the keyword concept “Sport”. Additionally, we generated three small sets Set′1,

Set′2 and Set′3 by randomly picking 300,000, 500,000, 700,000 geo-tweets from Set′4, re-

spectively. In Figure 5.10(b), the results for Q′
1 show similar performance trends with the

previously mentioned results for Q1.

Effect of query limit, k

Figure 5.11 compares the performance for different values of the query limit k on Q1 and

Q′
1. Here again, the results for Q1 show that OQ∗-tree gives the best performance which

outperforms I3+ by up to a factor of 27. The number of r-related nodes accessed by OQ∗-

tree increases from 34 to 139 as k increases from 1 to 100, while the number of nodes and

node-combinations accessed by I3+ increases from 149,776 to 198,832. The results for

Q′
1 show similar performance trends.

148

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

 0

 10

 20

 30

 40

 50

 60

Set1 Set2 Set3

E
xe

cu
tio

n
Ti

m
e

(s
)

Size of Dataset

OQ*-tree
OQ+-tree

I3+

 0
 10
 20
 30
 40
 50
 60
 70
 80

Set1’ Set2’ Set3’ Set4’

E
xe

cu
tio

n
Ti

m
e

(s
)

Size of DataSet

OQ*-tree
OQ+-tree

I3+

(a) Foursquare (b) Tweets

Figure 5.10: Effect of data size

 0

 10

 20

 30

 40

 50

 60

 70

1 10 25 50 75 100

E
xe

cu
tio

n
Ti

m
e

(s
)

Limit Size

OQ*-tree
OQ+-tree

I3+

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 10 25 50 75 100

E
xe

cu
tio

n
Ti

m
e

(s
)

Limit Size

OQ*-tree
OQ+-tree

I3+

(a) Foursquare (b) Tweets

Figure 5.11: Effect of query limit, k

Effect of query radius, r

Figure 5.12 compares the performance for different query radius r on Q1 and Q′
1. The

results for Q1 show that OQ∗-tree gives the best performance which outperforms I3+ by

up to a factor of 21. Observe that the performance of each method worsens with increasing

query radius r. The performance is dominated by the circle-placement evaluation on the

increasing number of tuples within each accessed r-related node as the radius r increases.

The CPU execution time of OQ∗-tree increases from 1.9 second to 2.2, 6.7 and 7.9 as

radius r increases from 0.001◦ to 0.002◦, 0.003◦ and 0.004◦. The results for Q′
1 show

149

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

similar performance trends.

 0

 20

 40

 60

 80

 100

 120

0.001o 0.002o 0.003o 0.004o

E
xe

cu
tio

n
Ti

m
e

(s
)

Radius

OQ*-tree
OQ+-tree

I3+

 0

 20

 40

 60

 80

 100

 120

 140

0.001o 0.002o 0.003o 0.004o

E
xe

cu
tio

n
Ti

m
e

(s
)

Radius

OQ*-tree
OQ+-tree

I3+

(a) Foursquare (b) Tweets

Figure 5.12: Effect of query radius, r

Effect of size of query region, RQ

Figure 5.13 compares the performance for different query search regionRQ onQ1 andQ′
1

when varying the query search region RQ from the global geo-location region to the US

geo-location region, the UK geo-location region and the Germany geo-location region.

The results for Q1 show that OQ∗-tree gives the best performance which is improved by

the percentages of 15.1%, 58.7% and 54.5% as the global region is restricted to the geo-

location region of US, UK and Germany, respectively. The number of r-related nodes

accessed by OQ∗-tree reduces from 70 to 30, 27 and 23 asRQ is restricted from the global

region to US, UK and Germany, respectively. Observe that the performance of other two

methods (OQ+-tree and I3+) is also improved as RQ is restricted. The results for Q′
1

show similar performance trends.

Effect of the number of maintained scores, κ

Figure 5.14 compares the performance for different values of the number of maintained

scores κ onQ1 andQ′
1. The results forQ1 show that the performance of the two proposed

150

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

 0

 10

 20

 30

 40

 50

 60

Global US UK Germany

E
xe

cu
tio

n
Ti

m
e

(s
)

Query Region

OQ*-tree
OQ+-tree

I3+

 0
 10
 20
 30
 40
 50
 60
 70
 80

Global US UK Germany

E
xe

cu
tio

n
Ti

m
e

(s
)

Query Region

OQ*-tree
OQ+-tree

I3+

(a) Foursquare (b) Tweets

Figure 5.13: Effect of query region RQ

evaluation methods (OQ+-tree and OQ∗-tree) is improved as κ increases from 4 to 8. The

number of r-related nodes accessed by OQ∗-tree reduces from 147 to 70 as κ increases

from 4 to 8. Furthermore, the results for Q′
1 show similar performance trends.

 0

 2

 4

 6

 8

 10

4 8

E
xe

cu
tio

n
Ti

m
e

(s
)

of maintained scores

OQ*-tree
OQ+-tree

 0

 2

 4

 6

 8

 10

4 8

E
xe

cu
tio

n
Ti

m
e

(s
)

of maintained scores

OQ*-tree
OQ+-tree

(a) Foursquare (b) Tweets

Figure 5.14: Vary κ

5.7.2 DSQ queries with multiple keyword concepts

In this section, we investigate the performance study of DSQ queries with multiple key-

word concepts by varying different parameters.

151

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Effect of the number of query keyword concepts, |ψ|

Figure 5.15 compares the performance as the number of query keyword concepts is varied.

In the dataset Foursquare, we used queriesQ2,Q3 andQ4, which have 2, 3 and 4 keyword

concepts, respectively. In the dataset Tweets, we used queries Q′
2, Q′

3 and Q′
4, which have

2, 3 and 4 keyword concepts, respectively.

The results for Q2, Q3 and Q4 show that OQ∗-tree gives the best performance and it

outperforms I3+ by a factor of 19.1, 16.8 and 13.3, respectively. For the three methods,

their performance worsens when |ψ| increases from 2 to 4, since they need to spatially

join among more OQ-trees (Quadtrees). The results for the three queries (Q′
2, Q′

3 and Q′
4)

in Tweets show similar performance trends.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

2 3 4

E
xe

cu
tio

n
Ti

m
e

(s
)

of Keyword Concepts

OQ*-tree
OQ+-tree

I3+

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

2 3 4

E
xe

cu
tio

n
Ti

m
e

(s
)

of Keyword Concepts

OQ*-tree
OQ+-tree

I3+

(a) Foursquare (b) Tweets

Figure 5.15: Effect of the number of query keyword concepts |ψ|

Effect of query limit, k

Figure 5.16 compares the performance for different values of the query limit k on Q2

and Q′
2. The results for Q2 show that OQ+-tree and OQ∗-tree perform similarly and they

outperform I3+ by up to a factor of 21.5. The results for Q′
2 show similar performance

trends.

152

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

 0

 10

 20

 30

 40

 50

 60

1 10 25 50 75 100

E
xe

cu
tio

n
Ti

m
e

(s
)

Limit Size

OQ*-tree
OQ+-tree

I3+

 0

 10

 20

 30

 40

 50

 60

1 10 25 50 75 100

E
xe

cu
tio

n
Ti

m
e

(s
)

Limit Size

OQ*-tree
OQ+-tree

I3+

(a) Foursquare (b) Tweets

Figure 5.16: Effect of query limit k

Effect of query radius, r

Figure 5.17 compares the performance for different query radius r on Q2 and Q′
2. The

results for Q2 show that OQ∗-tree gives the best performance which outperforms I3+ by

up to a factor of 21. Observe that the performance of each method worsens with increasing

query radius r. Similar with our previous study of the effect of r for DSQ queries with

one keyword concept, the performance of each method for Q2 worsens with increasing

query radius r. The results for Q′
2 show similar performance trends.

 0
 10
 20
 30
 40
 50
 60
 70
 80

0.001o 0.002o 0.003o 0.004o

E
xe

cu
tio

n
Ti

m
e

(s
)

Radius

OQ*-tree
OQ+-tree

I3+

 0

 20

 40

 60

 80

 100

 120

 140

0.001o 0.002o 0.003o 0.004o

E
xe

cu
tio

n
Ti

m
e

(s
)

Radius

OQ*-tree
OQ+-tree

I3+

(a) Foursquare (b) Tweets

Figure 5.17: Effect of query radius r

153

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

Effect of size of query region, RQ

Figure 5.13 compares the performance for different query region RQ on Q2 and Q′
2 when

RQ is varied from the global geo-location region to the geo-location regions of US, UK

and Germany. The results for Q2 show that the performance of OQ+-tree and OQ∗-tree

is improved as RQ is restricted and they outperform I3+ by up to a factor of 19.1. The

results for Q′
2 show similar performance trends.

 0

 10

 20

 30

 40

 50

 60

Global US UK Germany

E
xe

cu
tio

n
Ti

m
e

(s
)

Query Region

OQ*-tree
OQ+-tree

I3+

 0
 10
 20
 30
 40
 50
 60
 70
 80

Global US UK Germany

E
xe

cu
tio

n
Ti

m
e

(s
)

Query Region

OQ*-tree
OQ+-tree

I3+

(a) Foursquare (b) Tweets

Figure 5.18: Effect of query region RQ

5.7.3 Comparison on Evaluations for N-DSQ queries

For N-DSQ queries, the two-phase diversification model [19] is applied for each com-

pared method. More specifically, each method first collect a candidate set of top-N result

groups, followed by spatially diversifying k groups from the candidate collection.

In our experiments, we setN = 5×k. Figure 5.19 compares the performance for different

values of query limit on Q5 and Q′
5. The results for Q5 show that OQ+-tree-SD and OQ∗-

tree-SD perform similarly and they outperform I3+-SD by up to a factor of 20.7, and the

results for Q′
5 show similar performance trends. Observe that the performance trends of

Q5 andQ′
5 are similar to that ofQ2 andQ′

2 shown in Figure 5.16, since the query execution

154

CHAPTER 5. DIVERSIFIED SPATIAL KEYWORD SEARCH

is dominated by generating the candidate set for a relative small k. Therefore, we omit the

study of the effect of other parameters due to the performance domination of generating

the top-N result groups by using either method (OQ+-tree, OQ∗-tree and I3+).

 0

 10

 20

 30

 40

 50

 60

1 10 25 50 75 100

E
xe

cu
tio

n
Ti

m
e

(s
)

Limit Size

OQ*-tree-SD
OQ+tree-SD

I3+-SD

 0

 10

 20

 30

 40

 50

 60

1 10 25 50 75 100
E

xe
cu

tio
n

Ti
m

e
(s

)
Limit Size

OQ*-tree-SD
OQ+-tree-SD

I3+-SD

(a) Foursquare (b) Tweets

Figure 5.19: Effect of limit size k

5.8 Summary

In this chapter, we have examined the problem of diversified spatial keyword search. We

have designed two novel spatial diversity queries (DSQ and N-DSQ), and proposed a

novel textual-first index, IOQ-tree, to evaluate each type of spatial queries. Based on

the spatial index, two evaluation methods have been proposed to efficiently evaluate each

type of spatial queries. Our comprehensive performance study comparing against the

state-of-the-art technique [82] showed that both of our proposed algorithms (OQ+-tree

and OQ∗-tree) outperforms existing techniques on average by a factor of 20. For spatial

diversity queries with only one keyword concept, the OQ∗-tree algorithm outperforms

OQ+-tree by up to a factor of 2.7. On the other hand, for spatial diversity queries with

multiple keyword concepts, the two algorithms have the similar performance. Therefore,

for these queries, we recommend the OQ+-tree algorithm due to the low maintainance

cost of the OQ+-tree indexes.

155

CHAPTER 6

CONCLUSION

In this thesis, we have studied three problems related to the efficient computation of di-

verse query results, namely, indexing for dynamic diversity queries, evaluation of multiple

diversity queries, and diversified spatial keyword search. In this chapter, we summarize

our works and highlight some interesting works that are worthy of further exploration.

6.1 Contributions

Our first contribution is the study of efficient evaluation techniques for the computation

of diverse query results with respect to a sequence of attributes known as the d-order. We

observe that it is very inefficient to evaluate dynamic diversity queries (DDQs) with dy-

namic d-orders by extending existing techniques [70] designed for static diversity queries

157

CHAPTER 6. CONCLUSION

(SDQs) with a predefined d-order. We further propose a novel approach for evaluating di-

versity queries that is based on the concept of computing a core cover of a query. Based on

this concept, we design a new index method, D-Index, and introduce two index variants,

namely, D-tree and D+-tree. Our experimental results on PostgreSQL demonstrate

that our proposed D-Index technique consistently outperforms [70] for both SDQs as well

as DDQs.

Our second contribution is the study of optimization of multiple online DDQs. We first

propose a new framework to maximize the shared index scans among multiple online

queries by reordering the execution of these online queries. We then present a novel tech-

nique of adaptive query evaluation to dynamically adapt the query plans by switching

query evaluation to scan another inactive index. Moreover, we introduce an online index

tuning technique to automatically adapt the set of physical indexes by exploiting the wait-

ing queries. Our experimental results on PostgreSQL demonstrate the efficiency of our

proposed techniques.

Our third contribution is the study of diversified spatial keyword search. We first propose

two novel spatial diversity keyword queries: DSQ and N-DSQ. We observe that existing

spatial indexes [82] are inefficient to evaluate such spatial queries, and we introduce a new

textual-first spatial index, termed IOQ-tree, where each inverted posting list correspond-

ing to a keyword concept is organized based on a novel space-partitioning Quadtree-like

structure termed OQ-tree with two variants (OQ+-tree and OQ∗-tree). Based on the two

variants of IOQ-tree, we propose two efficient evaluation methods for each type of spatial

queries. Our experimental results on two real datasets (Foursquare and Tweets) demon-

strate that our proposed techniques outperforms the state-of-the-art technique [82] by up

to one order of magnitude.

158

CHAPTER 6. CONCLUSION

6.2 Future works

In this section, we discuss some interesting future directions related to the problems ex-

amined in this thesis.

6.2.1 d-order Recommendation

In Chapter 3, we studied the problem of diversifying DDQs, based on the assumption

that the d-order of a DDQ can well represent the user preference. However, in some real

applications, a user might not be familiar with his own preference, and it will be quite

challenging for him to issue a proper d-order. An interesting direction for future work is

to improve the database usability by recommending a set of frequently used d-orders.

6.2.2 Adaptive Query Evaluation Generalization

The technique of adaptive query evaluation studied in Chapter 4 can be used to dynam-

ically adapt the query plans for DDQs by switching a current query evaluation to scan

an inactive partial D+-tree index. As mentioned, a partial D+-tree index is a B+-

tree index, which is frequently used to evaluate the conventional SQL queries in DBMSs.

An interesting direction for future work is to generalize the technique of adaptive query

evaluation to optimize multiple queries evaluations on B+-tree indexes.

6.2.3 Efficient Spatial Diversification Model

For a N-DSQ query, the query evaluation studied in Chapter 5 uses the two-phase model to

first generating a candidate set of top-N result groups, followed by spatially diversifying

159

CHAPTER 6. CONCLUSION

the candidate set. One disadvantage of this approach is how to determine the value of N .

In some real applications, the top-N groups could be highly spatially overlapped. In such

scenario, we need to set N to be a large value, and the query performance could be much

worse for the large N . This motivated an interesting direction to directly diversify result

groups rather than using the two-phase model.

160

BIBLIOGRAPHY

[1] ”foursquare offical website”. https://foursquare.com/.

[2] The statistics for amazon. http://www.123cha.com/alexa/amazon.com.

[3] The statistics for taobao. http://www.123cha.com/alexa/taobao.com.

[4] Result diversity. IEEE Data Eng. Bull., 32(4), 2009.

[5] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results.

In WSDM, pages 5–14, 2009.

[6] S. Agrawal, S. Chaudhuri, L. Kollar, A. P. Marathe, V. R. Narasayya, and M. Sya-

mala. Database tuning advisor for microsoft sql server 2005. In SIGMOD, pages

930–932, 2005.

[7] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of materialized

views and indexes in sql databases. In PVLDB, pages 496–505, 2000.

[8] S. Agrawal, E. Chu, and V. Narasayya. Automatic physical design tuning: Workload

as a sequence. In SIGMOD, pages 683–694, 2006.

161

BIBLIOGRAPHY

[9] A. Angel and N. Koudas. Efficient diversity-aware search. In SIGMOD, pages 781–

792, 2011.

[10] S. Babu and P. Bizarro. Adaptive query processing in the looking glass. In CIDR,

pages 238–249, 2005.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn.

Res., 3:993–1022, 2003.

[12] K. S. Bøgh, A. Skovsgaard, and C. S. Jensen. Groupfinder: A new approach to top-k

point-of-interest group retrieval. In PVLDB, pages 1226–1229, 2013.

[13] A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversification, monotone submodular

functions and dynamic updates. CoRR, abs/1203.6397, 2012.

[14] K. Bradley and B. Smyth. Improving recommendation diversity. In AICS, pages

75–84, 2001.

[15] N. Bruno and S. Chaudhuri. An online approach to physical design tuning. In ICDE,

pages 826–835, 2007.

[16] G. Candea, N. Polyzotis, and R. Vingralek. A scalable, predictable join operator for

highly concurrent data warehouses. In PVLDB, pages 277–288, 2009.

[17] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword querying.

In SIGMOD, pages 373–384, 2011.

[18] G. Capannini, F. M. Nardini, R. Perego, and F. Silvestri. Efficient diversification of

web search results. In PVLDB, pages 451–459, 2011.

[19] J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for reorder-

ing documents and producing summaries. In SIGIR, pages 335–336, 1998.

[20] A. Cary, O. Wolfson, and N. Rishe. Efficient and scalable method for processing

top-k spatial boolean queries. In SSDBM, pages 87–95, 2010.

162

BIBLIOGRAPHY

[21] I. Catallo, E. Ciceri, P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Top-k diver-

sity queries over bounded regions. ACM Trans. Database Syst., 38(2):10:1–10:44,

2013.

[22] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven index selection tool for

microsoft sql server. In PVLDB, pages 146–155, 1997.

[23] B. M. Chazelle and D. T. Lee. On a circle placement problem. Computing, 36(1-

2):1–16, 1986.

[24] H. Chen and D. R. Karger. Less is more: Probabilistic models for retrieving fewer

relevant documents. In SIGIR, pages 429–436, 2006.

[25] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query processing: an

experimental evaluation. In PVLDB, pages 217–228, 2013.

[26] Z. Chen and T. Li. Addressing diverse user preferences in sql-query-result naviga-

tion. In SIGMOD, pages 641–652, 2007.

[27] S. Cheng, A. Arvanitis, M. Chrobak, and V. Hristidis. Multi-query diversification in

microblogging posts. In EDBT, pages 133–144, 2014.

[28] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel. Text vs. space:

Efficient geo-search query processing. In CIKM, pages 423–432, 2011.

[29] C. L. Clarke, M. Kolla, and O. Vechtomova. An effectiveness measure for ambigu-

ous and underspecified queries. In ICTIR, pages 188–199, 2009.

[30] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant

spatial web objects. In PVLDB, pages 337–348, 2009.

[31] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant

spatial web objects. In PVLDB, pages 337–348, 2009.

163

BIBLIOGRAPHY

[32] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin. Automatic sql

tuning in oracle 10g. In PVLDB, pages 1098–1109, 2004.

[33] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In

ICDE, pages 656–665, 2008.

[34] E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl. Divq: Diversification for

keyword search over structured databases. In SIGIR, pages 331–338, 2010.

[35] Z. Drezner. Note—on a modified one-center model. Management Science,

27(7):848–851, 1981.

[36] M. Drosou and E. Pitoura. Diversity over continuous data. IEEE Data Eng. Bull.,

32(4):49–56, 2009.

[37] M. Drosou and E. Pitoura. Search result diversification. SIGMOD Rec., 39(1):41–

47, 2010.

[38] M. Drosou and E. Pitoura. Disc diversity: Result diversification based on dissimi-

larity and coverage. In PVLDB, pages 13–24, 2012.

[39] B. Eravci and H. Ferhatosmanoglu. Diversity based relevance feedback for time

series search. In PVLDB, pages 109–120, 2013.

[40] W. Fan, X. Wang, and Y. Wu. Diversified top-k graph pattern matching. In PVLDB,

pages 1510–1521, 2013.

[41] S. Finkelstein. Common expression analysis in database applications. In SIGMOD,

pages 235–245, 1982.

[42] S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In

WWW, pages 381–390. ACM, 2009.

[43] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (sk)

queries in geographic information retrieval (gir) systems. In SSDBM, page 16, 2007.

164

BIBLIOGRAPHY

[44] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes effi-

ciently. SIGMOD Rec., 25(2):205–216, 1996.

[45] X. Huang, H. Cheng, R.-H. Li, L. Qin, and J. X. Yu. Top-k structural diversity search

in large networks. In PVLDB, pages 1618–1629, 2013.

[46] A. Jain, P. Sarda, and J. R. Haritsa. Providing diversity in k-nearest neighbor query

results. In PAKDD, pages 404–413, 2004.

[47] D. S. Johnson. Approximation algorithms for combinatorial problems. In STOC,

pages 38–49, 1973.

[48] N. Kabra and D. J. DeWitt. Efficient mid-query re-optimization of sub-optimal query

execution plans. SIGMOD Rec., 27(2):106–117, 1998.

[49] C. A. Lang, B. Bhattacharjee, T. Malkemus, and K. Wong. Increasing buffer-locality

for multiple index based scans through intelligent placement and index scan speed

control. In PVLDB, pages 1298–1309, 2007.

[50] L. Li and C.-Y. Chan. Efficient indexing for diverse query results. In PVLDB, pages

745–756, 2013.

[51] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu. Collective spatial keyword

queries: A distance owner-driven approach. In SIGMOD, pages 689–700, 2013.

[52] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, and H. Pirahesh. Robust query

processing through progressive optimization. In SIGMOD, pages 659–670, 2004.

[53] E. Minack, W. Siberski, and W. Nejdl. Incremental diversification for very large

sets: A streaming-based approach. In SIGIR, pages 585–594, 2011.

[54] M. L. Paramita, J. Tang, and M. Sanderson. Generic and spatial approaches to image

search results diversification. In ECIR, pages 603–610, 2009.

165

BIBLIOGRAPHY

[55] J. Park and A. Segev. Using common subexpressions to optimize multiple queries.

In ICDE, pages 311–319, 1988.

[56] O. A. Prokopyev, N. Kong, and D. L. Martinez-Torres. The equitable dispersion

problem. EJOR, 197(1):59–67, 2009.

[57] F. Radlinski and S. Dumais. Improving personalized web search using result diver-

sification. In SIGIR, pages 691–692, 2006.

[58] F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-

armed bandits. In ICML, pages 784–791, 2008.

[59] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Norvag. Efficient processing

of top-k spatial keyword queries. In SSTD, pages 205–222, 2011.

[60] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms

for multi query optimization. SIGMOD Rec., 29(2):249–260, 2000.

[61] R. L. Santos, C. Macdonald, and I. Ounis. Exploiting query reformulations for web

search result diversification. In WWW, pages 881–890, 2010.

[62] A. D. Sarma, S. Gollapudi, and S. Ieong. Bypass rates: reducing query abandonment

using negative inferences. In KDD, pages 177–185, 2008.

[63] K.-U. Sattler, I. Geist, and E. Schallehn. Quiet: Continuous query-driven index

tuning. In PVLDB, pages 1129–1132, 2003.

[64] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis. Colt: continuous on-line

tuning. In SIGMOD, pages 793–795, 2006.

[65] T. K. Sellis. Multiple-query optimization. ACM Transactions on Database Systems,

13:23–52, 1988.

[66] S. N. Subramanian and S. Venkataraman. Cost-based optimization of decision sup-

port queries using transient views. In SIGMOD, pages 319–330, 1998.

166

BIBLIOGRAPHY

[67] J. Tang and M. Sanderson. Evaluation and user preference study on spatial diversity.

In ECIR, pages 179–190, 2010.

[68] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. Spatio-textual indexing for geo-

graphical search on the web. In SSTD, pages 218–235, 2005.

[69] M. J. van Kreveld, I. Reinbacher, A. Arampatzis, and R. van Zwol. Multi-

dimensional scattered ranking methods for geographic information retrieval. GeoIn-

formatica, 9(1):61–84, 2005.

[70] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. Amer-Yahia. Efficient

computation of diverse query results. In ICDE, pages 228–236, 2008.

[71] M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou, D. Srivastava,

C. Traina-Jr., and V. J. Tsotras. On query result diversification. In ICDE, pages

1163–1174, 2011.

[72] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen. Joint top-k spatial keyword query

processing. IEEE Trans. Knowl. Data Eng., 24(10):1889–1903, 2012.

[73] D. Yin, Z. Xue, X. Qi, and B. D. Davison. Diversifying search results with popular

subtopics. In TREC, 2009.

[74] C. Yu, L. Lakshmanan, and S. A. Yahia. It takes variety to make a world: diversifi-

cation in recommender systems. In EDBT, pages 368–378, 2009.

[75] Y. yu Chen. Efficient query processing in geographic web search engines. In SIG-

MOD, pages 277–288, 2006.

[76] C. Zhai and J. Lafferty. A study of smoothing methods for language models applied

to information retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

[77] C. Zhai and J. Lafferty. A risk minimization framework for information retrieval.

Inf. Process. Manage., 42(1):31 – 55, 2006.

167

BIBLIOGRAPHY

[78] C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond independent relevance: methods

and evaluation metrics for subtopic retrieval. In SIGIR, pages 10–17, 2003.

[79] C. Zhang, Y. Zhang, W. Zhang, X. Lin, M. A. Cheema, and X. Wang. Diversified

spatial keyword search on road networks. In EDBT, pages 367–378, 2014.

[80] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa. Keyword

search in spatial databases: Towards searching by document. In ICDE, pages 688–

699, 2009.

[81] D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped resources in web 2.0. In

ICDE, pages 521–532, 2010.

[82] D. Zhang, K.-L. Tan, and A. K. H. Tung. Scalable top-k spatial keyword search. In

EDBT, pages 359–370, 2013.

[83] Y. Zhang, J. Callan, and T. Minka. Novelty and redundancy detection in adaptive

filtering. In SIGIR, pages 81–88, 2002.

[84] Y. Zhao, P. M. Deshpande, J. F. Naughton, and A. Shukla. Simultaneous optimiza-

tion and evaluation of multiple dimensional queries. SIGMOD Rec., 27(2):271–282,

1998.

[85] W. Zheng, X. Wang, H. Fang, and H. Cheng. Coverage-based search result diversi-

fication. Inf. Retr., 15(5):433–457, 2012.

[86] J. Zhou, P.-A. Larson, J. C. Freytag, and W. Lehner. Efficient exploitation of similar

subexpressions for query processing. In SIGMOD, pages 533–544, 2007.

[87] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid index structures for

location-based web search. In CIKM, pages 155–162, 2005.

[88] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommen-

dation lists through topic diversification. In WWW, pages 22–32, 2005.

168

BIBLIOGRAPHY

[89] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-Arellano, and

S. Fadden. Db2 design advisor: Integrated automatic physical database design. In

PVLDB, pages 1087–1097, 2004.

169

APPENDIX A

LEMMA PROOFS

A.1 Proof of Lemma 3.1

Proof. We now prove the first part of Lemma 3.1. Consider subtree T ′ rooted at a node V ′.

(1) If V ′ is a leaf node, T ′ is obviously a diverse tree, since there is only one tuple covered

by ptupδ(V ′) in a diverse result set. (2) Otherwise, V ′ is an internal node, (a) if the number

of child nodes of V ′ is equal to size(T ′), T ′ is also a diverse tree, since for each two tuples

t, t′ covered by ptupδ(V ′) in a diverse result set, we have that SIMδ,ptupδ(V ′)(t, t
′) = 0; (b)

we focus on the last case that V ′ is balanced and not expandable. Since V ′ is balanced, the

only way to reduce
∑

t,t′∈S(ptupδ(V ′)) SIMδ,ptupδ(V ′)(t, t
′) is that there are more different

child nodes for V ′, but it is impossible since V ′ is not expandable. Therefore, T ′ is also a

diverse tree.

171

APPENDIX A. LEMMA PROOFS

Subsequently, we consider the case that T ′ is T . Since T is a b-diverse tree, we have that

each subtree rooted at each node in T is a b-diverse tree. Therefore, each subtree is a

diverse tree, and we can conclude that T is a diverse result trie, since T is a diverse tree

wrt each δ-prefix tuple.

A.2 Proof of Theorem 3.1

Proof. Let’s prove it by contradiction. Consider a core cover cover(T) for Q, there exists

such a node V in T that V is expandable and TV is not k-optimal. Then we need to

consider two cases: (1) V is expandable and TV is not k-sufficient; (2) V is expandable

and TV is k-sufficient but not b-diverse.

We first discuss about Case 1. For simplify, we assume that V is the highest node in T that

V is expandable and TV is not k-sufficient. If V is the root of T , we can easily improve the

diversity of T by expanding V , so cover(T) is not a core cover for Q. Otherwise, let T ′

be the largest subtree rooted at a sibling node V ′ of V , and we have that T ′ is k-sufficient

and size(T ′)− size(T) > 1. Since V is expandable, and we use Ve to denote an expand

child node of V . Let S1 be a result set cover by cover(T), and we construct a new result

set S2 by replacing a tuple covered by ptupδ(V ′) in S1 with a tuple covered by ptupδ(Ve).

Let Vp be the parent node of V and V ′, and we have that S2 is more diverse wrt ptupδ(Vp).

Therefore, cover(T) is not a core cover for Q.

On the other hand, we discuss about Case 2. In such case, we have that the size of TV is

larger than the number of child nodes of V . Let T ′ be the largest child subtree rooted at

V ′, and then we have that size(T ′) > 1. Since V is expandable, and we use Ve to denote

an expand child node of V . Let S1 be a result set cover by cover(T), and we construct a

new result set S2 by replacing a tuple covered by ptupδ(V ′) in S1 with a tuple covered by

172

APPENDIX A. LEMMA PROOFS

ptupδ(Ve). Subsequently, we have that S2 is more diverse wrt ptupδ(V). Therefore, we

can conclude a contradictory result that cover(T) is not a core cover for Q.

A.3 Proof of Lemma 3.3

Proof. Lemma 3.3 can be easily proved based on the core cover definition.

A.4 Proof of Lemma 4.1

Proof. let us now prove Lemma 4.1. For an accessed entry e(a1, a2, · · · , an) on in-

dex I with index key (A1, A2, · · · , An), the evaluation of query Q with d-order δ =

(D1, · · · , Dm)will optimize the current diverse result set by extracting the prefix (d1, · · · , dm) =
πδe. For another index I ′ with index key (A′

1, A
′
2, · · · , A′

n), we can find such an entry

e′ ∈MI→I′(e) that (d1, · · · , dm) = πδe based on the definition of D-Index. Therefore, we

have the evaluation on entry e is equivalent to that on entry e′.

A.5 Proof of Lemma 4.2

Proof. We can easily prove Lemma 4.2 since for any entry e on partition I − E of index

I , there will exist an equivalent entry e′ on the partition I ′ −MI→I′(E) of index I ′.

A.6 Proof of Lemma 5.1

Proof. Let us prove Lemma 5.1 by contradiction. We assume that there does not exist a

r-related node that covers a circle of radius r. That is, there will exist such a circle of

173

APPENDIX A. LEMMA PROOFS

radius r that spans two neighboring r-related nodes at level �r as shown in Figure A.1.

For convenience, we use L� to denote the breadth of the corresponding rectangular region

of node N at level �. Thus, we have that 2r > 1
2
L�r . However, we can deduce the

contradiction that r > 1
4
L�r ≥ LR

4·2�r
= LR

4·2�lg
LR
4r

�
≥ LR

4·2lg
LR
4r

= r.

Figure A.1: Overlap of two neighboring r-related nodes

A.7 Proof of Lemma 5.2

Proof. Based on Definition 5.2, a r-related node is a node at level �r, �r = �lg LR

4r
�, or a

leaf node at a higher level �′r, �′r < �r. Let us now prove Lemma 5.2 by considering the

two kinds of r-related nodes. For convenience, we use L� to denote the breadth of the

corresponding rectangular region of node N at level �.

Let us first consider a r-related nodeN at level �r, when r ∈ (
L�r

8
,
L�r

4
]. Then, the breadth

of each partitioned grid is L�r

4κ
. For any circle of radius r, r ∈ (

L�r

8
+ i−1

8κ
,
L�r

8
+ i

8κ
], inN.R,

we need to prove that there always exists such a regionRi covering (κ+i+1)×(κ+i+1)

grids that encloses the circle. Let us prove it by contradiction. We assume that there does

not exists such a circle. That is, there exists such a circle that spans two neighboring

covered regions. Then we have that 2r > (κ + i)
L�r

4κ
since the maximum overlap of two

neighboring covered regions contains (κ + i) × (κ + i) grids. However, we can deduce

174

APPENDIX A. LEMMA PROOFS

the contradiction that r > L�r

8
+ i

8κ
= (κ + i)

L�r

4κ
≥ r. Therefore, the i-th score N.εi is

the tightest score if r ∈ (
L�r

8
+ i−1

8κ
,
L�r

8
+ i

8κ
].

Subsequently, let us consider a r-related leaf node N ′ at a high level �′r, �′r < �r, the first

score N ′.ε1 is the tightest score since any circle of radius r can be enclosed by a region

covering (κ + 2)× (κ+ 2) grids.

A.8 Proof of Lemma 5.3

Proof. Let us prove Lemma 5.3 in the two following cases: (1) |c| = 1 and (2) |c| > 1.

We first discuss about Case 1. In such case, this lemma will be reduced to Lemma 5.1.

Then we focus on Case 2. Now we attempt to prove it by generating a parallel state for

any candidate result group. Based on Definition 5.1, any candidate result group will be

within a circle of radius r. Consider a candidate result group G within a circle of radius

r, denoted as CircleG. Based on Lemma 5.1, there exists at least one r-related node

N ci in Tci that encloses CircleG. Now we present the generation of the parallel state, by

identifying r-related nodes from these corresponding OQ-trees Tc1 , · · · , Tcn .

For the first keyword concept c1 ∈ ψ, let N c1 be the r-related node whose corresponding

region encloses CircleG. We setR asN c1 .R, and set the current lowest level � as the level

of N c1 .

For the second keyword concept c2 ∈ ψ, there could exist several r-related nodes that

enclose CircleG. If there exists a r-related node that encloses the region R, we set N c2

as such node. Otherwise, all of these r-related nodes are at lower levels. We set N c2 as

anyone r-related node, and update R as N c2 .

In the same way, we then incrementally identify N ci for other keyword concepts, and the

parallel state 〈R, {N c1, · · · , N cn}〉 can be generated.

175

	thesis1
	thesis2
	thesis3
	thesis4
	thesis5
	thesis6
	thesis7

