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SUMMARY 
 

Epigenetic mechanisms such as DNA methylation play profound and complex roles 

in affecting gene expression and contribute to phenotypic plasticity. DNA 

methylation has been shown to be implicated in a diverse array of functions such as 

X-chromosome inactivation, development, cell differentiation, cell type specificity 

and alternative splicing. High throughput sequencing technologies in combination 

with bioinformatics data mining methods allow for systematic genome-wide analysis 

between different -omics data types to elucidate complex interactive relationships.  

 

To quantify genome-wide DNA methylation while ensuring cost-effectiveness, we 

made improvements to existing reduced representation bisulfite sequencing protocol 

and developed an automated software to calculate CpG methylation from high 

throughput sequencing data. We further analysed results obtained from this pipeline 

to understand the impact of DNA methylation in a diversity of biological systems, 

namely (i) mouse white and brown adipocytes differentiation, (ii) human placenta 

tissues at early and late gestational age and (iii) human placenta tissues from 

pregnancies carrying Down’s syndrome (DS) and normal foetuses. 

 

Methylome profiling of both white and brown adipogenesis processes in mouse 

revealed a general hypermethylation during cell differentiation, with strongest 

predominance of hypermethylation in promoter regions. When comparing methylome 

between white and brown adipocytes at each point of differentiation, there was a 

consistent hypermethylation in white adipocytes. Contrastingly to cell differentiation, 

predominance of hypermethylation was strongest in non-promoter regions. In 

addition, I identified a number of Hox family genes with consistent promoter 
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methylation difference between white and brown adipocytes where DNA methylation 

anti-correlates with gene expression throughout adipogenesis.  

 

Next, through genome-wide correlation study between DNA methylation and gene 

expression in early and late trimester human placenta samples, I demonstrated that 

associations between DNA methylation and gene expression was highly complex and 

genomic context dependent.  

 

Lastly, we examined differences in placenta villi methylome between DS and normal 

samples and observed a genome-wide hypermethylation associated with DS 

phenotype. Genes with promoter hypermethylation were associated with functions 

related to DS phenotypes. DNA hypermethylation may be partially attributable to 

down regulation of TET family genes and REST/NRSF.   

  

Taken together, I have identified the existence of unique DNA methylation footprints 

in multiple biological processes such as cell differentiation, cell specificity and 

development. In addition, aberrant DNA methylation was also observed in conditions 

of genetic disorder. Further research can be focused on biological manipulations with 

either epigenetic status or gene expression to test hypothesis derived from the above 

omics studies.  
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CHAPTER 1 - INTRODUCTION 

 

1.1.  Epigenetics – The missing link between genetics and phenotype 

 

Genetics is defined as the scientific study of understanding how heritable traits were 

passed down from parents to their offspring. Such studies often include identifying 

genetic mutations causing and polymorphisms associated with human diseases in 

either families or cohorts (e.g. genome-wide association studies (GWAS)).  

 

Through GWAS, thousands of genetic variants associated with over 80 diseases and 

traits have been identified (http://www.gwascentral.org) [1, 2]. Despite so, most of 

the SNPs identified by application of rigorous statistics on large sample sizes have so 

far only achieved small effect sizes (OR <1.5), suggesting that individual SNPs have 

limited heritable accountability for phenotypic variation [1-5]. 

 

Moreover, despite almost all cells in an organism contain the same genetic sequence, 

each cell type expresses a unique set of gene signature [6]. This non-Mendelian 

inheritance resulting from the presence or absence of epigenetic marks, mediates a 

systematic control to qualitative and quantitative gene expression changes that are 

essential for cell lineage definition, cell differentiation and normal development [7, 

8].  

 

“Epigenetics” was first introduced in 1942 by Conrad Waddington, who first defined 

it as the study of casual interaction between genes and their productions which 

allowed for phenotypic expression [9, 10]. Recently, the term has evolved to become 

more specifically defined as the study of mechanisms which can regulate gene 

http://www.gwascentral.org/
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expression not caused by a change in DNA sequence [6, 9-11]. To date, main 

members of the epigenetics family include DNA methylation, histone modifications 

and non-coding RNA (ncRNA).  

 

Although most analyses have typically focused on a single epigenetic mechanism, 

increasing evidence has suggested that different mechanisms can act synergistically 

to activate or repress gene expression by affecting the accessibility of transcription 

factor binding or chromatin remodelling. Changes in environmental cues also 

contribute to the dynamics of the epigenetics, leading to a keen interest among 

researchers to associate epigenetic marks with phenotypic plasticity in mammals [6, 

10, 12, 13]. Summing up, combined properties of genetics and epigenetics have 

conferred the genome both stability and flexibility which are crucial to the mediation 

of diversified gene expression in various cell and tissues types [6, 10, 12, 13].  

 

Advancements in technologies have brought us into the age of high throughput 

sequencing (HTS) and any sample can theoretically be sequenced at a reasonable 

cost. Hence, it is now possible to interrogate whole genome signals on DNA, 

transcriptome and protein-DNA interactions. Ironic to this convenience, we are faced 

with a bottleneck of converting such a massive influx of digital data into usable 

biological signals. To optimize between noise removal while retaining true biological 

signals, we need better bioinformatics and biostatistical techniques and new 

biological hypotheses to perform proper data mining.  

 

Among the known epigenetic mechanisms, there is much interest to focus on DNA 

methylation due to its potential roles in regulating fundamental biological processes 

such as organism development, X-chromosome inactivation and genetic imprinting 
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and association with various diseases such as cancers [14, 15]. Furthermore, as DNA 

methylation is a chemical modification on the DNA, the easy accessibility and 

stability of the DNA makes DNA methylation a robust epigenetic marker for 

prognostic and diagnostic purposes [14, 16].  

 

In my thesis, I perform bioinformatics analyses on HTS data generated from 

biological samples to study the impact of DNA methylation in different systems, 

namely, (i) cell differentiation, (ii) different cell types, (iii) development and (iv) 

genetic disorder. 

 

1.2. Introduction to DNA methylation 
 

1.2.1. Writers and erasers of DNA methylation 

 

Among all known epigenetic mechanisms, DNA methylation makes modification 

directly on the DNA [17]. The covalent addition of a methyl group from the donor, S-

adenosylmethionine (SAM), to the 5’-position of a cytosine to form 5-methylcytosine 

(5mC) [6, 18] (Figure 1), is catalysed by DNA methyltransferase (DNMT). Newly 

added methyl group projects into the major groove of the DNA, resulting in structure 

changes that inhibit or facilitate DNA recognition by proteins [19].  

 

The key methyltransferses in the DNMT family include DNMT1, DNMT3A and 

DNMT3B and all of them have a similar architecture of a N-regulatory domain 

attached to a C-catalytic domain [6].  
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Figure 1: Biochemical reactions driving DNA methylation and demethylation. 

 

DNMT1 is a maintenance methyltransferase which is ubiquitously expressed in 

proliferating cells [20]. It is recruited by Np95/Uhrf1 [21, 22] during DNA replication 

and localises itself to the replication fork. This enzyme shows a 7-12 folds preference 

for hemimethylated DNA [23, 24] and copies the methylation marks from the 

parental template strand to the newly synthesized daughter strand [25, 26]. This not 

only ensures the symmetry of methylation marks on both Watson and Crick strands 

[17] but also makes sure the faithful preservation of original methylation patterns in a 

cell lineage during every cell division [6].  

 

Evidence has supported the appropriate and time-specific expression of DNMT1 is 

essential for normal mammalian development. Although DNMT1 knockout mouse ES 

cells displayed lower 5mc levels and enhanced microsatellite instability, they 

remained viable [18, 27, 28] whereas mouse embryos deficient for DNMT1 died in 

utero [29]. Conditional DNMT1 mutant mice were also viable but exhibit 

hypomethylation in the cortical and hippocampal cells in the dorsal forebrain from 
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E13.5 [30]. In addition, these mice showed learning and memory defects later in life, 

implying that DNA methylation is crucial to the proper regulation of neuronal 

maturation in the central nervous system [30]. On the other hand, overexpressing 

DNMT1 resulted in genomic hypermethylation, in turn caused a loss of imprinting 

marks [31] and finally led to a range of pregnancy complications or even embryo 

death [32, 33]. 

 

Contrary to DNMT1, DNMT3A demonstrates a threefold higher activity on 

unmethylated than hemimethylated DNA [23, 24]. DNMT3A and DNMT3B are 

known as de novo methyltransferase which catalyse the transfer of the methyl group 

onto naked DNA [6]. Both of these enzymes are believed to be important in early 

embryonic development by functioning as DNA methylation writers to re-establish 

methylation marks after embryonic implantation [9]. Mice heterozygous for 

DNMT3A or DNMT3B are normal and fertile, while DNMT3B-/- mutant mice are 

runted and died at about 4 weeks after birth [29]. 

 

Although DNA methylation marks are stable and heritable, mounting evidence 

generated in recent years has shown that these marks are not as static as once 

perceived [8]. In fact, the gain or loss of DNA methylation has been seen to occur 

either on a genome-wide scale according to developmental demands or on a gene-

specific scale according to specific somatic cell signals [8].  

 

Unlike DNA methylation, mechanism explaining the direct cleavage of the strong C-

C bond binding methyl group from cytosine to account for DNA demethylation 

remains elusive and has yet to be discovered in mammals [6]. To date, evidence of 

DNA demethylation has been shown to occur either actively or passively. Passive 

demethylation occurs via an inhibition of DNMT resulting in loss of methylation 

marks over successive cell divisions [9, 10]. In contrast, several mechanisms have 
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been proposed for active demethylation, which generally involves a series of 

chemical modifications from 5mC to various intermediate products. These products 

eventually enter the base excision repair (BER) pathway which makes use of thymine 

DNA glycosylase (TDG) to cleave off the “inappropriate” residue and replaces it with 

an “appropriate” naked cytosine [6, 34-36]. However, much debate still goes on with 

regards to the fitting of the correct puzzle pieces to explain the intermediate steps. 

Two possible pathways have been proposed: 

i. Deamination of 5mC by AID/APOBEC1 leading to a conversion from 

cytosine to thymine. This potentially results in a T-G mismatch and a 

subsequent call for base excision repair (BER).  

ii. Oxidation of 5mC to 5hmC by TET. From 5-hydroxylmethylcytosine 

(5hmC), the molecule either undergoes (a) iterative oxidation to 5-

formylcytosine (5fC) and to 5-carboxylcytosine (5CaC) and finally to 5C 

(Figure 1), or (b) deamination to form 5-hydroxylmethy-uracil (5hmU) 

which then goes into BER pathway. 

 

1.2.2. Landscape of DNA methylation  

 

Approximately 3% of the cytosine are methylated in the human genome [37]. In 

mammals, cytosine methylation mostly occurs in the context of the palindromic CpG 

dinucleotide located in various genomic regions such as promoters, gene bodies, 

intergenic and repetitive regions [38]. Main regulatory regions such as promoters, 

enhancers and first exon tend to be hypomethylated relative to gene bodies, intergenic 

or repetitive regions [39-42].  
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Approximately 70-80% of the CpGs are methylated in mammals [13]. These 

methylated CpGs are predominantly located in repetitive regions such as transposons 

[43]. The remaining 20% are often found in clusters of high CpG density known as 

CpG islands (CGI) [44], defined by the following [45]: 

i. Length ≥ 200bp 

ii. GC content ≥ 50% 

iii. 0.6 <
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
𝐶𝑝𝐺 =

#𝐶𝑝𝐺

#𝐶 × #𝐺
× 𝑁 over a moving average of 100bp 

window at 1bp step size 

Where N= total number of nucleotides 

 

About 72% of gene promoters lie within regions CpG rich region [46], which show 

high levels of conservation between human and mouse [6]. Additionally, genes with 

CpG rich promoters include most of the housekeeping genes [45].  

 

Gene expression is largely regulated by transcription factors [47], through their 

binding to genomic functional elements such as transcription factor binding motifs on 

the genome. Transcriptionally active genes are often marked by nucleosome-depleted 

regions characterized by H3K4me3 at their flanking nucleosome regions [48]. For a 

long time, promoter DNA methylation has been regarded as an epigenetic mark for 

gene silencing. Although such an association has been widely accepted, the cause-

and-effect relationship between DNA methylation and gene silencing remains a 

controversial topic of discussion [47].   

 

Early finding (1987) on mouse embryo reported that methylation of Hprt gene 

occurred after X chromosome inactivation, suggesting that DNA methylation could 

have acted as a reinforcement lock to ensure the repressed state of a gene [49]. 
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Additionally, several cancer studies have also shown that genes silenced by the 

polycomb complex have a higher tendency to be hypermethylated, further supporting 

the hypothesis that gene silencing precedes DNA methylation [50-53].  

 

From a second perspective (DNA methylation precedes gene silencing), presence of 

the methyl groups on the promoter regions physically impedes transcription factors 

from binding [54] and represses gene expression. Alternatively, various hypotheses 

linking DNA methylation and other epigenetic modifications have also been 

suggested. For example, methylated CpGs bind to methyl CpG binding protein 2 

(MeCP2) which subsequently recruits Sin3A followed by histone deacetylase (HDAC) 

[55]. This enzyme then removes the acetyl group on the histone causing a tighter 

remodelling of the chromatin, leading to reduced permissiveness for gene expression.  

 

Regardless of the sequential ordering of events, an anti-correlation between promoter 

DNA methylation and gene expression is generally accepted. However, such 

interferences cannot be extrapolated to other genomic regions. Before the advent of 

HTS, genome-wide correlations were not possible and inference of methylation-

expression correlation was mainly made from the context of promoters. In recent 

years, HTS enables a more comprehensive correlation between DNA methylation and 

gene expression. Analyses on gene bodies DNA methylation using different human 

cell lines [56, 57] and  X chromosome [58] have shown that DNA methylation tend to 

be positively correlated with gene expression. These results [59] suggest a far more 

complex role of DNA methylation in regulating gene expression, which is highly 

context dependent. 
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In terms of correlation between DNA methylation and gene expression, gene body 

typically starts from the end of the first exon due to this exon exhibiting the same 

gene repressive effect as the promoter [60]. Gene bodies typically have a 

considerably lower CpG content and are extensively methylated [47]. Thus, it is 

highly uncommon to locate CGI which are heavily methylated within gene bodies. 

[47]. Interestingly, even if such CGIs are identified, they do not block transcriptional 

elongation, implying that the gene silencing effect of DNA methylation is on 

transcription initiation and not on elongation [47]. 

 

Intragenic methylation is also speculated to be involved in regulating alternative 

splicing events. Various bioinformatics analyses performed on a genome-wide scale 

have reported hypermethylated CpGs in the exonic regions relative to the intronic 

counterparts [57, 61] . Such intriguing results has thus led to a series of questions. (i) 

Can DNA methylation be used as markers for defining exons [62]? (ii) Is DNA 

methylation a regulatory guide for directing alternative splicing? Although many of 

the mechanistic questions remain to be answered, Shukla et al. have proposed that 

DNA methylation could possibly affect CTCF binding to its target exons, leading to 

pausing of RNA pol II and a subsequent preference for the assembly of the co-

transcriptional spliceosome at the upstream splice sites [63]. 

 

The impact of DNA methylation is not limited to regulatory elements in the genome. 

DNA methylation plays a crucial role in regulating transcription of intergenic 

genomic sequences as well. The mammalian genome is made up of approximately 

45% repetitive and transposon elements [64], which when expressed, affects genomic 

stability and causes transcriptional dysregulation and DNA mutation [65-67]. 

Suppression of most of these potentially harmful genomic elements such as 

intracisternal A particle (IAP), short interspersed nuclear elements (SINE) and long 
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interspersed nuclear elements (LINE) elements are achieved by DNA methylation 

[68, 69]. 

 

1.3. Global reprogramming of DNA methylation define crucial 

mammalian development events  

 

Whilst DNA methylation had been perceived as a static mark for decades, mounting 

evidence in recent years has refuted this belief. Studies have revealed that these stable 

and heritable marks were removed either genome-wide during early development or 

in gene-specific context in somatic cells [8] for defining cell lineage or during 

differentiation. 

 

Extensive global reprogramming of DNA methylation takes place during mammalian 

development to direct cells into cell fate transition and developmental potency [70] 

(Figure 2), with the exceptions to specific genomic regions such as imprinting control 

regions (ICR) and IAP [8]. Such systematic programming of DNA methylome 

requires proper resetting and establishment of the epigenetic marks which are 

achieved by ten-eleven translocation methylcytosine dioxygenase (TET) and DNMT 

respectively (Figure 2).  

 

Shortly after fertilization, the sperm-derived pronucleus undergoes active 

demethylation (proposed to be catalysed by TET3) leading to rapid drop in global 

methylation levels [71, 72]. The sharp decline in 5mC is accompanied by an 

immediate increase of its corresponding first oxidation product, 5hmC.  

Unexpectedly, 5hmC is not removed immediately by BER, but have persisted into 

early embryogenesis. This suggests that demethylation in paternal pronucleus is 

brought by combined actions of oxidation and passive demethylation [73]. Unlike 
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paternal-derived pronucleus, maternal-derived pronucleus shows gentler decline in 

methylation as it solely undergoes passive demethylation through a few cell cycles 

[72]. This first wave of global demethylation is thought to allow cells to return to the 

totipotency state [72]. After embryo implantation, de novo methylation sets in to 

establish a new pattern eventually leading to more than 70% of the CpGs (mainly 

non-CGI CpGs) being methylated [72, 74].  

 

Following blastocyst implantation, embryoblast-derived epiblast gives rise to three 

germ layers (ectoderm, endoderm and mesoderm), which contain the precursors for 

all embryonic lineage [75]. In particular, the primordial germ cells (PGCs) undergoes 

a round of epigenetic reprogramming around E11.5 to E12.5 [76, 77] during which 

most of the DNA methylation marks will be erased by a combination of both active 

and passive demethylation [78-81].  Although exact mechanisms for global DNA 

methylation erasure remains elusive, recent work have reported the expressions of 

TET1 and TET2 in PGCs which peaked between E10.5 and E11.5 [79], suggesting 

that actions of these two enzymes could contribute to the phenomenon. Previous 

studies have shown that although mice deficient for TET1 or TET2 are viable and 

fertile, TET1 deficient mice display reduced body mass [82] while TET2 deficient 

mice show affected hematopietic stem cells [83, 84]. To test for redundancy functions 

of TET1 and TET2, Dawlaty et al. generated DKO mice which was found to have 

higher methylation in 94 imprinted loci [85], implying deficiency in TET1 and TET2 

affects the establishment of imprinting marks in gametes [85]. 
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Figure 2: Tremendous methylation reprogramming takes place throughout mammalian 

development. This is based on the mouse model. 

 

 

1.4. DNA methylation – Potentials for improved diagnostics and 

therapy  

 

Disease may occur as a result of gene transcriptional dysregulation. Progression in 

technologies allow probing of gene expression for any sample at a relative low cost. 

Therefore, much of the bioinformatics work have been directed towards the selection 

of potential key genes that mark unique differences between disease and normal 

samples. Identification of these genes not only offers hope for new therapeutic 

targets, but also serves as biomarkers for early detection of diseases.  

 

However, the search for biomarkers from gene expression profiles have faced much 

difficulty owing to the instability of RNA and high individual sample variation [11]. 

DNA methylation is a chemically stable mark and thus appears to be better candidate 

[11]. Recent studies conducted on cancer samples have shown that using DNA 
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methylation status of key genes provide a better discriminating sensitivity and 

specificity than either gene or protein expression [86-88].  

 

Secondly, perturbations of DNA methylation have been associated with a vast array 

of disease such as cancers and imprinting disorders such as Beckwith-Wiedemann 

syndrome, Prader-Willi syndrome, Angelman syndrome and Transient neonatal 

diabetes mellitus [43]. Genomic imprinting is an example of non-Mendelian genetic 

inheritance for which genes are expressed in a parent-of-origin-specific manner. 

These genes are controlled by regulatory elements known as imprinting control 

regions (ICRs), which are characterised by differential DNA methylation between 

paternal and maternal alleles. When imprinted epigenetics marks are disrupted by 

either an inappropriate gain or loss of a methyl group, the non-imprinted allele 

expression maybe affected thereby causing imprinting disorders [43].  

  

Lastly, DNA methylation of specific regions of interest such as promoters can also be 

profiled easily using loci-targeted platforms such as EpiTYPER assays, making it a 

convenient tool for molecular diagnostics [11]. 

 

1.5. Studying DNA methylation 
 

 

There are approximately 29 million CpGs on the human genome which carries a huge 

wealth of biological information. Methods for analysing DNA methylation have 

progressed from a local to a global level. A schematic diagram showing the main 

steps in typical DNA methylation studies is given in Figure 3. 
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Figure 3: Schematic diagram of DNA methylation analysis. *DMR- Differentially methylated 

regions, DMC-differentially methylated CpGs. 

 

To date, various methods such as immunoprecipitation, methylation sensitive 

restriction endonuclease and bisulfite conversion (Figure 3) have been developed to 

study DNA methylation, each with their unique pros and cons. 

 

Methylated DNA immunoprecipitation (MeDIP) makes use of 5mC-specific 

monoclonal antibody to immunocapture DNA fragments which are enriched for 5mC. 

Subsequently, these purified 5mC-enriched genomic fragments can be input on a 

microarray (MeDIP-chip) or sequencing platform (MeDIP-seq) followed by 

bioinformatics analyses to identify 5mC-enriched genomic regions, relative to a 

control sample [11]. While this method allows for a comprehensive coverage of 

genomic regions, it shows preference for sites with high methylation levels [2].  

 

Methylation sensitive restriction digestion (MRE) utilises both a methylation 

insensitive restriction enzyme (MspI) and a methylation sensitive restriction enzyme 

(HpaII) to identify methylated and unmethylated CpGs within the recognition site 5’-
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CCGG-3’. For this, analysed CpGs are limited by the selection of restriction enzyme 

[11].  

  

Lastly, bisulfite conversion makes use of sodium bisulfite to treat DNA which 

converts unmethylated cytosine to thymine while methylated cytosine (inclusive of 

5hmC) shows resistance to the conversion and remain as cytosine. By comparing the 

ratios or relative binding of cytosine and thymine by either sequencing or array based 

method, DNA methylation for the cytosine can be estimated. As much as it is the 

preferred method, it comes with potential limitation too. Any incomplete conversion 

of unmethylated cytosine will be read as C in sequencing and deemed as 5mC. This 

results in an overestimation of true methylation levels. Bisulfite treated samples can 

be analysed on either on array or deep sequencing platform (Bi-seq). Besides being 

susceptible to batch effects, array-based platforms are inferior to sequencing-based 

approaches due to the pre-designed probes that limit detection of SNPs and coverage 

of certain CpG sites.  

 

Before the development of the single molecule real time sequencing technique 

(SMRT), methylation based experiments were performed on a population of cells 

which are obtained from bodily fluids, tissues or cell cultures [89]. Although bodily 

fluids such as blood and tissues provide a more in vivo perspective than cell cultures, 

one should be cautious of the conclusions made from these studies. This is because 

such samples are made up of heterogeneous cell types for which the cell composition 

is dependent on the age of the organism. It is therefore highly recommended to first 

perform cell-sorting procedures followed by independent profiling for each separated 

cell type [89, 90].  

 

Another potential problem with using cell populations for DNA methylation studies 

lies with connecting estimated values with actual biological scenarios. For example, a 
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50% methylation for a CpG could imply either allelic-specific methylation or 50% of 

all cells being methylated [89]. Thus, methods for detecting and quantification of 

DNA methylation must be carefully selected. Out of the three main methods (bisulfite 

conversion, methylation sensitive restriction endonuclease and immunoprecipitation) 

(Figure 3) commonly used to quantify DNA methylation levels [91], bisulfite 

conversion remains the golden standard [92] as it is the only method that can address 

the question described above [89]. 

 

Methods for identifying differential methylation have been broadly classified under 

two categories: (i) individual CpG sites or (ii) regional level, abbreviated as DMC 

and DMR respectively (Figure 3). Many statistical software have been developed to 

identify both DMCs and DMR and usage is highly dependent on sample size and 

experimental platforms.  

 

In DMCs identification, fisher exact test or chi-squared test is the most 

straightforward method as it simply makes use of the number of methylated and 

unmethylated counts to generate a 2 by 2 contingency table for statistical testing. 

Despite its simplicity, this method fails to address biological variability [93].  

For this, the beta-binomial model has been proposed recently for DMC analysis. This 

model not only models the methylation distribution of biological replicates, but also 

considers coverage uncertainty for each CpG site.  

 

Although traditional studies have focused on DMCs, recent analysis have suggested 

DMR which appears to provide better predictability [94]. Furthermore, it is intuitive 

that a persistence of differential methylation over a region might be more robust and 

subjected to lower false discovery than reliance on a single CpG. In light of this, a 

number of DMR algorithms such as Bumphunter [95],Methylkit [93], MOABS [96], 

Methylsig [97] and Radmeth [98] have been developedThese algorithms typically 
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identify DMRs in two steps, beginning with the identification of DMCs followed by 

merging these sites into a genomic region by applying statistical techniques. For 

example, MOABS, Methylsig and Radmeth use beta-binomial model to identify 

DMCs followed by the application of Hidden Markov Model, tiling window and 

weight Z test for p-values respectively to merge DMCs into DMRs. For software such 

as Methylsig which uses a sliding window to detect DMR, caution should be taken to 

determine the appropriate size of the window. This is because the selection of too 

small a window might result fragmented DMRs which should have been merged 

together [14]. 
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CHAPTER 2 – STUDY DESIGN 

 

I hypothesize that novel biological insights and testable hypotheses can be derived 

from computational analyses of various epigenomics, genomics and transcriptomics 

data in cell differentiation, development and disease models.  

 

This project aims to apply computational and statistical methods to interrogate how 

DNA methylation correlates with gene expression. Comprehensive genome-wide 

analysis will be performed in increasing biological complexity, progressively from 

cell differentiation to organ development and finally to disease models (Figure 4).   

 
Figure 4: Project overview 
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2.1. Specific Aims 
 

2.1.1. Study 1 – Improved reduced representation bisulfite sequencing 

for epigenomic profiling of clinical samples (Chapter 3) 

  

An overwhelming amount of biological signal is embedded within the mammalian 

methylome and analysed cytosine tend to be limited by platforms and computational 

pipeline. Different platforms such as (i) microarrays, (ii) immunoprecipitation, (iii) 

Meth-seq, have been developed [92] to increase the pool of analysable CpGs, while 

keeping cost at a manageable level.  

 

To date, bisulfite sequencing (Bi-Seq) remains the golden standard to study DNA 

methylation [92]. Reduced representation bisulfite sequencing (RRBS) has emerged 

as the preferred method compared to whole genome bisulfite sequencing (WGBS) 

due to cost and genomic coverage considerations. There is increasing evidence to 

support that CpGs located in non-CpG rich regions exhibit correlation with gene 

expression. Thus, this calls for a need to improvise current protocol to select for such 

regions. In this project, we aim to  

i. Make use of a combination of two restriction enzymes to increase coverage 

on non-CpG rich regions 

ii. Improve existing protocol to increase number of unique and usable aligned 

reads by removal of repetitive regions 

iii. Develop a highly automated computational pipeline that allows user to 

quantify DNA methylation percentage for each sequenced CpG simply by 

inputting raw sequencing files and running through simple commands. 
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2.1.2. Study 2 – Epigenome-wide DNA methylation landscapes reveals 

systematic differences during adipogenesis and define cell type 

specificity (Chapter 4) 

 

Obesity is defined as a phenotypic manifestation of abnormal or excessive fat 

accumulation. It results from both an increase in the adipocyte cell size and the 

development of new mature cells from undifferentiated precursors [99, 100]. Obesity 

has been known to be well associated with metabolic risk factors such as diabetes, 

dyslipidaemia and hypertension [101]; conditions which indirectly increase mortality 

[99].  

 

The fat body distribution is variably distributed and its deposition affects metabolic 

risk towards the diseases [101]. Fat storage occurs in the adipocytes, which are the 

main cellular component of the adipose tissues. There are two main types of fat 

tissues, namely the (i) white adipose tissues (WAT) and (ii) brown adipose tissues 

(BAT). The former is the predominant type of fat tissue in human and is used as a 

storage depot for excess energy, whereas the latter is essential for classical non-

shivering thermogenesis [102].  

 

BAT is densely packed with mitochondria which expresses high levels of uncoupling 

protein 1 (UCP1). When activated, UCP1 facilitates a proton leak across the inner 

membrane of mitochondria to mitochondria matrix without ATP synthesis, resulting 

in heat generation [103-105]. Such exclusive characteristic of BAT makes it an 

attractive anti-obesity therapeutic target [104, 106]. Interestingly, recent studies have 

shown that depots of WA (white adipocytes) showed morphological resemblance to 

BA (brown adipocytes) when subjected to stimuli such as β-adrenergic receptor 

agonist or proliferator-activated receptor-γ (Ppar-γ) [105, 106]. With these, it is of 
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intense interest on how to modify metabolism of WA to resemble BA-like properties 

to be used as an anti-obesity therapeutic target.  

 

Before that, it is important to first understand the underlying biochemical and 

molecular differences between WAT and BAT, from a DNA methylation perspective. 

In this study, I aim to determine the importance of DNA methylation to adipocytes by 

addressing the following:  

i. Examine genome-wide DNA methylation changes during white and 

brown adipogenesis 

ii. Identify DNA-methylation regulated genes that are important in defining 

fat cell specificity 

  

2.1.3. Study 3 – A complex association between DNA methylation and 

gene expression in human placenta at first and third trimesters 

(Chapter 5) 

 

The human placenta is a maternal-foetal organ essential for normal foetal 

development. During pregnancy, the placenta undergoes many structural and 

functional changes in response to foetal needs and environmental exposures. Previous 

studies have demonstrated widespread epigenetic and gene expression changes from 

early to late pregnancy. However, on the global level, how DNA methylation changes 

impact on gene expression in human placenta is not yet well understood. I seek to: 

i. Identify trends of DNA methylome changes in human placenta across 

gestational age, in different genomic regions including promoters and 

gene bodies 
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ii. Understand the dynamic correlations between DNA methylation and 

gene expression changes at different gestational age.  

iii. Identify imprinted genes which are significantly changed from first to 

trimester in the placenta.  

2.1.4. Study 4 - Global DNA Hypermethylation in Down Syndrome 

Placenta (Chapter 6) 

 

Down syndrome (DS) is a genetic disease caused by an extra partial or full copy of 

chromosome 21 (chr21). It occurs in approximately one out of 700 live births and is 

associated with over 80 clinically defined phenotypes. Extrinsically, this includes 

growth delays, characteristic facial features, and mild to moderate intellectual 

disability [107]. Intrinsically, organs such as central nervous system, heart, 

gastrointestinal tract and immune system are affected to varying penetrance [108]. 

Previous studies on human and mouse DS have reported on the gene dosage effect 

brought by an extra copy of chr21 [109-111]. Surprisingly, dysregulation of gene 

expression was also observed for genes located on other chromosomes [112-114].  

 

Epigenetics is an important mechanism known to regulate many vital biological 

process and abnormalities have often lead to disease phenotypes. From this 

perspective, I investigated global DNA methylation differences between the placenta 

of mothers carrying normal and DS foetus to provide insights on the following: 

i. Understand potential perturbations of DNA methylation associated with 

DS 

ii. Investigate if these identified perturbations are functionally relevant to 

DS 
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CHAPTER 3 – IMPROVED REDUCED REPRESENTATION 

BISULFITE SEQUENCING FOR EPIGENOMIC PROFILING OF 

CLINICAL SAMPLES 

3.1. Background and Hypothesis 
 

DNA methylation refers to the reversible biochemical process by which a methyl 

group is transferred from SAM to the 5’ position of cytosine, producing 5mC [115, 

116]. The forward and reverse reactions are catalysed by DNMT and TET enzymes 

respectively [6, 117].  

 

The dynamic nature of DNA methylation allows for a switch in methylation marks at 

specific time-points that allows it to regulate cell differentiation, cell type specificity, 

X chromosome inactivation, parental imprinting and development [11, 27, 29, 118-

122]. Additionally, DNA methylation can also be subjected to environmental 

regulation which may change the methylation status, causing a potential deviation 

from the normal phenotype [123, 124].  

 

Precise and accurate quantification of DNA methylation is a crucial prerequisite to 

decipher and elucidate various mechanisms and pathways that could be perturbed by 

abnormalities in DNA methylation. The human genome contains about 29 million 

CpGs which are heavily methylated in genomic locations such as repetitive elements 

(SINE, LINES) and hypomethylated in CpG island associated promoters [11, 39, 125, 

126]. Due to limitations in technologies and cost-prohibition, most of the studies have 

centred around CpG enriched promoters with little focus made on non-CGI rich 

regions.  
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Of the methods and platforms used to investigate DNA methylation, bisulfite 

sequencing (Bis-Seq) remains the golden standard since it allows quantification at 

allelic, contiguous and single base pair resolution levels [92, 127]. Despite the 

theoretical suitability of the technique, its practical application on genome-wide 

studies is faced with computational and financial challenges. In clinical studies where 

statistical power is crucial in a well-designed and well-constructed experimental 

design, it may require tens or hundreds of samples to be sequenced. Consequently, 

performing of whole genome bisulfite sequencing (WGBS) on all samples might pose 

cost impracticability for a single study. To curb this issue while keeping the main 

advantages of Bis-Seq, Meissner et al. [128-130] developed a technique, Reduced 

Representation Bisulfite Sequencing (RRBS), that makes use of a single restriction 

enzyme (RE) digestion (MspI) to select for CpG enriched genomic regions, thereby 

reducing the number of sequenced reads. A major drawback of this method is that it 

does not cover non-CpG rich regions such as gene bodies. Recent studies have shown 

CpG poor regions which are distal to core promoters can perform important 

regulatory functions [131]. Furthermore, gene bodies which are often less CpG 

enriched than promoters have been shown to have correlate positively with gene 

expression, possibly by modulating alternative splicing events or transcription 

initiation sites [57, 58, 132].   

 

In this project, improvements have been made to the existing protocol by making use 

of a combination of two REs, MspI and Taq I, to cover both CpG rich and 

reasonably, the non-CpG rich regions. Furthermore, a computational pipeline has 

been developed to analyse bisulfite converted samples for quantification of DNA 

methylation at each sequenced CpG site.  
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3.2 Material and methods 
 

3.2.1. Samples 
 

Many clinical samples such as human placenta [133], umbilical cord and leukocytes 

have been processed using the described improved RRBS pipeline. Data from one of 

the human buffy coat samples will be presented. This study is supported by a Bench 

to Bedside grant (09/1/50/19/622) from BMRC-NMRC. 

3.2.2. Experimental protocol 
 

A schematic view for the experimental protocol is shown in Figure 5. 

Briefly, 1–5 µg of high molecular weight (>10 kb) genomic DNA was used for each 

library preparation. Each DNA sample was sequentially digested by MspI and TaqαI. 

The digested product was then purified, end-repaired, 3′-end-adenylated and adapter-

ligated. DNA fragments were size selected using gel electrophoresis with 3% agarose 

gel. Previous in silico analysis performed showed enrichment of repetitive sequences 

lying between 198 to 206 bp (with adaptor) and were thus first removed using 

GeneCatcher Gel Excision kit. Subsequently, fragments of 150-197 bp and 207-230 

bp were selected and purified by MinElute Gel Extraction Kit. 

 

Each DNA library was analysed by two lanes of paired-end sequencing (2×36 bp) 

read on an Illumina Genome Analyzer IIx. The read quality was then discriminated by 

a Phred score, given by the formula: 

Q(X) = -10 log10(P(~X)) 

where P(~X) is the estimated probability a wrong base calling [134, 135]. A cut-off of 

30 (Q30) was used, implying that probability of wrongly called base is 0.001.  
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Figure 5: Key laboratory steps in RRBS. Figure originally from [136]. 

 

3.2.3. Computational processing 
 

A schematic view for the computational pipeline is shown in Figure 6. 

The reference genome for the organism was converted independently twice into two 

new references, (i) all cytosine converted to thymine (C2T converted genome) and 

(ii) all guanine to adenosines (G2A converted genome). Usage of two references 
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allows the discrimination of sequenced CpGs into original bisulfite unconverted 

Watson and Crick strands.  

 

High quality paired-end reads in Fastq format were first converted in silico into either 

C2T or G2A based on C/G base count ratio. These converted reads were then aligned 

to both converted genomes using the Bowtie program [137]. The bisulfite conversion 

rate was calculated by: 

 

100% 
TCCpG -non  CCCpG -non

TCCpG -non
  Rate Conversion Bisulfite 




  

 

Where non-CpG C→T indicates the number of successful conversion of C to T in 

non-CpG sites, and non-CpG C→C indicates the number of failed conversion of C to 

T in non-CpG sites. This method uses only non-CpG cytosine which are mostly 

methylated, to estimate conversion rate. By such calculation, any unconverted 

cytosine is entirely attributed to incomplete conversion. Therefore, this is a 

conservative measurement that underestimates the conversion rate, especially in 

embryonic stem cells where non-CpG cytosine is observed [39, 138].  

 

Due to the possible complications of polymorphic CpG sites, CpGs sites that had 

combined ‘CG’ and ‘TG’ for less than 80% of the reads were considered polymorphic 

and filtered from the analysis.  

 

Finally, for each CpG site, DNA methylation was quantified by the ratio of C to 

(C+T) in the Watson strand and G to (G+A) in the Crick strand. 
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Figure 6: Computational steps in data processing. Figure originally from [136]. 

 

3.3 Results  
 

A total of 289 motifs which were recognized by combinations of REs were analysed 

and in silico analysis was performed using Hg19 as testing reference genome. The 

assessment of the best combination was determined by the following criteria: 

i. Commercial availability of the REs and sensitivity of CpG methylation 

ii. Size distribution of the genomic fragments generate by REs 

iii. Obvious advantage brought by using double enzyme digestion from 

traditional single restriction enzyme digestion 

iv. Coverage of different genomic locations, specifically promoters (defined 

as -1kb to +500 bp relative to a transcription start site), gene bodies, 

transcription termination site (TTRs, defined by -500bp to +500 bp 

relative to transcription termination site), CGIs and CpG island shores 

(CGSs) 
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Finally, the combination of MspI and Taq I were selected for the protocol. 

3.3.1. In silico comparison of single vs double restriction enzyme digestion 

 

The standard RRBS protocol uses a single RE MspI, which recognises 5’ – CCGG – 

3’, as a cutting site to select for CpG enriched regions. In this improved protocol, a 

second RE, Taq I, which targets 5’ – TCGA – 3’ was added to widen genomic 

coverage.  

 

To assess the improvements brought by the addition of Taq I, simulation of double 

RE digestion was done on the genome under the assumptions of 100% efficiency and 

no off-target products. With double RE, the number of targeted 80-160bp fragments 

increased from 263,890 to 450,689, representing an approximate increase in 25% of 

CpG sites (Table 1) that was consistent across all chromosomes (Hg19) (Figure 7).  

 

MspI 

Recognition site: 

CCGG 

MspI, TaqαI 

Recognition site: CCGG, 

TCGA 

Total fragments 2,297,220 3,810,058 

Fragments of 80-160bp 263,890 450,689 

#CpGs covered in 

fragments of 80-160bp 
1,508,818 1,950,458 

Table 1: In silico comparison of the fragments generation and CpGs covered using a single 

and double RE (considering only CpGs on the Watson strand) 
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Figure 7: In silico comparison of covered CpGs in each chromosome (Hg19) using a single 

and double RE (considering only CpGs on the Watson strand) 

 

In addition, there was a moderate increase in the coverage of CpGs in CGI (7.4%), 

CGIs (6.3%) and promoter (12.7%) regions and a marked escalation in CpGs that laid 

in non-CGI regions (41.8%) (Table 2).  

 MspI MspI, TaqαI 
Percentage increase 

(%) 

CpGs in CGI regions 1,098,462 1,180,058 7.4 

CpGs in non-CGI 

regions 
1,919,174 2,720,858 41.8 

CGIs* 20,227 21,511 6.3 

Promoters* 

(-1kb and 500bp from 

TSS) 

24,520 27,633 12.7 

Table 2: In silico comparison of the genomic coverage of CpGs comparing the use of 1 and 2 

restriction enzymes.  *At least 3 CpGs need to be present in the region. Table originally from 

[136]. 
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3.3.2. Pipeline assessment using a buffy coat sample 
 

The results for a buffy coat sample will be presented below. 

3.3.2.1. Quality control measures 
 

Paired-end sequencing was performed on Illumina Genome Analysed IIx platform. 

Samples were loaded onto eight-lane flow cell surface, on which each lane contains 

120 tiles. At the end of each sequencing run, several quality controls measures were 

imposed to ensure data quality.  

i. The proportion of good quality to total sequenced reads will be is quantified 

for each tile and this typically lies between 70-90%. 

ii. The number of uniquely aligned reads to C2T or G2A (mutually exclusive) 

references will be assessed and the percentage generally ranges from 55-

65%.  

iii. Bisulfite conversion rate which is an indicator of bisulfite efficiency will be 

evaluated. With the exception of embryonic stem cells which have higher 

levels of non-CpG cytosine methylation [39, 138], most samples typically 

have a conversion rate of 99%. 

3.3.2.2. Assessment of library quality 
 

The sequence specific cutting property of restriction enzyme digestion confers some 

unique features to the prepared RRBS library.  

i. Following the protocol principles of sequence specific cleavage followed by 

end repair, bisulfite conversion and PCR, the first three nucleotides for 

Read 1 should be CGG/TGG (MspI), or CGA/TGA (TaqαI) and CAA for 

read 2 (Figure 8). As predicted, 97.8% of Read 1 had 

CGG/TGG/CGA/TGA for first three nucleotides while 91.9% of Read 2 

had CAA for the first three sequenced base.  
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Figure 8: Four possible paired-read ends from combinations of two REs, bisulfite conversion 

and PCR. 

 

ii. As illustrated in Figure 8, it is expected that Read 1 should either align to 

the positive strand of C2T reference or negative strand of the G2A 

reference. Correspondingly, Read 2 must be aligned in the exact opposite 

direction to Read 1, i.e. negative strand of C2T reference and positive strand 

of the G2A reference (Table 3).   
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Sample 
C2TRef G2ARef 

Read 1 Read 2 Read 1 Read 2 

S1 
2 - 3,412,630 - 3,406,274 - 3 - 

3,412,630 + 2 + 3 + 3,406,274 + 

S2 
1 - 3,143,620 - 3,139,936 - 1 - 

3,143,620 + 1 + 1 + 3,139,936 + 

S3 
3,283,607 + 3,283,607 - 3,274,004 - 2 - 

    2 + 3,274,004 + 

S4 
1 - 3,157,175 - 3,144,735 - 1 - 

3,157,175 + 1 + 1 + 3,144,735 + 

S6 
3 - 3,945,575 - 3,915,666 - 5 - 

3,945,575 + 3 + 5 + 3,915,666 + 

S7 
3 - 3,955,564 - 3,931,783 - 3,931,783 + 

3,955,564 + 3 +     

S8 
1 - 3,810,620 - 3,079,045 - 4 - 

3,810,620 + 1 + 4 + 3,079,045 + 

Table 3: Number of reads aligned to the positive or negative strand of the two converted 

reference genomes. C2TRef: C2T reference genome; G2ARef: G2A reference genome. Table 

originally from [136]. 

 

iii. When the relative ratio of cytosine to guanine is less than 1 in read 1, the 

corresponding read 2 would give a ratio of more than 1.  

iv. The protocol aims to select for genomic fragments of size 80-160bp for 

which repetitive sequences have been intentionally excluded. (128-136bp). 

Library size distribution analysis performed on seven samples (excluding 

phi control) showed two clear peaks separated by a dip at about 120 to 140 

bp (Figure 9).  
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Figure 9: Distribution of Library Insert Length. Figure originally from [136]. 

 

 

3.3.2.3. Genomic coverage of CpGs 
 

The sequencing depth of a CpG refers to the frequency of the site being sequenced. In 

RRBS, the choice of minimum sequencing depth is a fundamental yet crucial step in 

DNA methylation analysis. Its difficulty lies in optimizing the quality of DNA 

methylation estimation, yet not sacrificing the quantity of final analysed CpG list.   

 

A minimum sequencing depth of 10 as the cutoff, which leaves approximately 1.8 

million CpGs for subsequent analyses. This represented 3% of all CpGs in the 

genome, 76.7% of CGIs, 54.9% of CGSs and 52.2% of promoters (Table 4).  
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 Total in human genome 
Covered by 

RRBS 

Percentage 

(%) 

CpGs  56,434,896 1,837,502 3.3 

CGIs 27,718 21,252 76.7 

CGSs 49,300 27,074 54.9 

Promoters 

(-1kb and 500bp 

from TSS) 

44,399 23,168 52.2 

Table 4: Comparison of CpG coverages of specific genomic regions using RRBS to whole 

genome. At least three CpGs need to be present in each region. Table originally from [136]. 

 

In the context of CGIs, a total of 54% of these CpGs lie in either CGIs or CGSs 

(defined by 2kb upstream and downstream from CGI, Figure 10A). Alternatively, 

from the perspective of genomic context, most of the CpGs laid in intragenic regions 

(39%), followed by intergenic (37%), CGI promoters (18%), non-CGI promoters 

(4%) and TTRs (2%) (Figure 10B). 

 

Under the consideration that single CpG effect might be random and sporadic, 

analysis were based on genomic regions with at least three covered CpGs. As shown 

in Figure 10C, 30% of the covered regions were located at CGIs and CGSs and 

remaining 70% lies in regions 2kb upstream and downstream away from CGIs. 

Separately, the covered regions were found most in intergenic regions (62%), 

followed by intragenic (28%), CGI promoters (6%), non-CGI promoters (3%) and 

finally TTRs (2%) (Figure 10D). 
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Figure 10: Genomic coverage of covered CpGs. (A) Distribution of CpGs in 

CGIs/CGSs/Others, using a sequencing depth ≥ 10 as the cutoff; (B) Distribution of CpGs in 

Promoter/TTR/Intragenic/Intergenic regions; (C) Distribution of genomic regions in 

CGIs/CGSs/others. (D) Distribution of genomic regions in 

promoter/TTR/Intragenic/Intergenic regions. A genomic region was considered covered if at 

least three CpGs within the region were sequenced at a depth ≥ 10. Figure adapted from [136]. 

 

 

3.4. Discussion 
 

 

Through the addition of a second restriction enzyme to the existing RRBS protocol, it 

is now possible to cover both CpG rich and non-rich regions at a reasonable cost. 

This allows for genome-wide methylome analyses across large number of samples to 

be performed to decipher the role of DNA methylation in regulating fundamental 

biological processes such as cell differentiation, development and diseases.    
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3.5.         Summary  
 

Unlike most studies which typically focused only on either the experimental or 

computational aspects, this newly developed pipeline addresses improvements on 

both sides. Firstly, the usage of double RE digestion has greatly increased the number 

of analysable CpGs that are located outside of CGIs. Secondly, repetitive sequences 

have been deliberately removed to increase number of unique and usable reads for 

quantification. Thirdly, the computational pipeline is highly automated which could 

be operated by a few simple command lines on the Linux system.   
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CHAPTER 4 – EPIGENOME-WIDE DNA METHYLATION 

LANDSCAPE REVEALS SYSTEMATIC DIFFERENCES DURING 

ADIPOGENESIS AND DEFINE CELL TYPE SPECIFICITY  

 

4.1. Background and Hypothesis 
 

Improved quality of life and frequent consumption of energy-dense food are primary 

causes leading to an escalation of obesity rates (Figure 11) [139]. This alarming 

increase for the epidemic has brought much worldwide concerns due to its associated 

risks for diseases such as type 2 diabetes, cardiovascular diseases, hyperglycaemia, 

dyslipidaemia, hypertension and cancers [140-142]. Persistent rise in the morbidity 

eventually leads to increased financial burden on healthcare expenses and shorter life 

spans [143-145].   

 
Figure 11: Prevalence of obesity from 1980 to 2013. Statistics taken from [139]. 
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While white adipose tissues (WAT) function mainly as a primary organ of energy 

storage in the form of triglycerides to provide fuels during low glucose levels [142, 

146], brown adipose tissues (BAT) is the dominant site for non-shivering 

thermogenesis. Brown adipocytes in BAT is densely packed with highly oxidative 

and naturally uncoupled mitochondria [146] which contains highly expressed UCP1. 

When activated via a cascade of triggering events starting from release of 

norepinephrine, UCP1 facilitates a proton leak across the inner membrane of 

mitochondria to mitochondria matrix without ATP synthesis, resulting in heat 

generation [103-105] . Such exclusive characteristic of BAT makes it an attractive 

anti-obesity therapeutic target [104, 106].  

 

The re-discovery of BAT present in adult human using positron emission tomography 

(PET) scans have challenged the long held belief that BAT did not play an important 

role in adult energy metabolism [147-149]. Adding on to the excitement in this field, 

a third potential type of fat cells, known as beige or brite adipocytes, are found in 

WAT. While these cells look indistinguishable from white adipocytes in the basal 

state, they take morphological resemblance to BA and express comparable levels of 

UCP1 with BA when activated by β-adrenergic receptor agonist or proliferator-

activated receptor-γ (Ppar-γ) (Figure 12) [105, 106].  

 

Thus, elucidating molecular mechanisms that guide adipogenesis regulation and 

stimulation of browning in WA will build a complementary knowledge base in the 

identification of potential therapies or biomarkers in controlling obesity.   
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Figure 12: Origins of white, beige and brown adipocytes. 

 

DNA methylation is one of the most extensively studied epigenetic mechanisms 

involved in regulating cell differentiation, cell type specificity, X chromosome 

inactivation, parental imprinting and development [11, 27, 29, 118-122]. Previous 

knockdown studies on DNA methyltransferases (DNMT1, DNMT3A, DNMT3B) have 

shown that while DNA methylation is dispensable for maintaining the 

undifferentiated state in embryonic stem cell (ESC), it is necessary in lineage 

commitment [150, 151]. Selective examination of methylation status of four 

adipogenic markers (Leptin, Pparg2, Fabp4 and LPL) and three non-adipogenic 

makers (MYOG, CD31 and GAPDH) in human mesenchymal stem cells, adipose 

tissue-derived stems cells and human ESCs showed that adipogenic promoters tend to 

be hypomethylated compared to non-adipogenic promoters, suggestive of an 

epigenetic control on expression of adipogenic specific genes [152]. Recent study by 

Gentile et al. [153] reported an accelerated adipogenesis in 3T3-L1 by silencing 
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DNMT1. This was accompanied by an apparent early induction of adipocyte-specific 

genes (Glut4, Fabp4 and PPARγ), evident from gene expression data. 

 

To understand if DNA methylation is important in regulating adipocytes 

differentiation and tracing fat cells lineage, possibility through transcription factors, I 

analysed the DNA methylome profiles of nine samples, covering both white, beige 

and brown adipocytes across specific differentiation states. For the first time, a DNA 

methylome landscape has been provided to understand (i) profile changes in white 

and brown adipogenesis and (ii) identifying methylome signatures for defining cell 

types. In summary, I observed a global hypermethylation as cells reach differentiation 

termination. I have also made comparisons between different cell types and observed 

that methylation profile was distinctively higher in white adipocytes (WA) than either 

brown-induced white adipocytes (BWA) or brown adipocytes (BA).  

 

4.2. Material and methods 

4.2.1. Cell isolation and cell culture 

 

Brown and white preadipocytes were isolated from interscapular brown adipose 

tissues and inguinal white fat depot respectively. Eight BL6 mice were sacrificed at 3 

weeks and the harvested fat tissues were minced, collagenase digested and 

fractionated. Pre-adipocytes which were enriched at the bottom stromal vascular 

fractions were collected, resuspended and cultured to confluence. Subsequently, 

white and brown pre-adipocytes were induced to differentiate into mature BA and 

WA by exposure to differentiation medium. In additional, an independent set of white 

pre-adipocytes was brown induced at day 0 by treatment with a Norepinephrine, 
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followed by differentiation induction. All cells types at days 0, 4 and 6 were used for 

both RRBS and RNA-seq library preparation. 

 

4.2.2. DNA methylation 
 

Differentiating cells at days 0, 4 and 6 for both white and brown adipogenesis and 

induced brown adipocytes at days 4 and 6 were included in this study, making up a 

total of nine samples. Sample preparation and computational processing followed the 

steps described in Chapter 3, Section 3.2.2 and Section 3.2.3 respectively. The mouse 

July 2007 (NCBI37/mm9) genome assembly was used throughout the study. 

 

4.2.3. Differential DNA methylation analysis 
 

Differential methylation analysis was performed at both single CpG and regional 

level. Only autosome CpGs (sequencing depth >10) common to all nine samples were 

included in all subsequent analyses. 

 

Between a pair of samples, CpGs having methylation difference of at least 10% were 

selected for 2-sided fisher exact test. P values were then adjusted by the Benjamini 

Hochberg method. A CpG was considered significant if (i) difference between sample 

pair was at least 10% and (ii) FDR corrected p value <0.05.  A promoter was 

considered significantly differentially methylated if it contains at least two significant 

CpGs, all of which must be regulated in the same direction (either all 

hypermethylated or hypomethylated). 

 

All statistical analyses were performed using R package. 
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4.2.4. RNA-seq 
 

Total RNA from adipocytes were extracted according to Qiagen miRNeasy kit. RNA-

seq libraries were prepared according to NEBNext Ultra Directional RNA Library 

Prep Kit for Illumina and ran on Hiseq2000 sequencer platform.  The 100bp paired-

end reads were first quality checked with FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), subsequently aligned to 

mm9, using Tophat (version tophat-2.0.11). The aligned reads were then input into 

Cufflinks (Version 2.1.1) to quantify gene expression into units known as fragments 

per kilobase of exon per million fragments mapped (FPKM). Genes with low 

expression (FPKM< 1 in all samples) were removed, leaving 14,491 autosomal 

genes. 

4.2.5. q-PCR 
 

Total RNA from cell samples was isolated as mentioned above. RNA was reverse 

transcribed into cDNA with random primers (SuperScript II Reverse Transcriptase, 

Invitrogen), followed by PCR amplification using gene specific primers. Sybr Green 

based qPCR was performed in an Applied Biosystems 7900HT Fast Real-time PCR 

System, using RPL23 as an internal control for normalization. Data were analysed by 

the relative quantification (ΔΔCt) method.  

4.3. Results  

4.3.1. Samples used 

 

A total of nine samples were included in this study, covering three main adipogenic 

differentiation stages (Day 0, 4 and 6) for each type of adipocytes (BA, WA and 

BWA) (Figure 13).  

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure 13: A total of 9 samples were included in this study. BA: Brown adipocytes, WA: 

white adipocytes, BWA: brown induced white adipocytes 

 

The adipogenic model was first validated by quantitative PCR of general adipogenic 

and brown fat specific marker genes. All three general adipogenesis marker genes 

(AdipoQ, Fabp4, and Pparγ, Figure 14A-D) showed increased expression relative to 

day 0 for brown adipocytes (BA), white adipocytes (WA) and brown induced white 

adipocytes (BWA).  

 

In addition, another three brown fat markers (Pgc1a, Ucp1 and Cidea, Figure 14E-F) 

were selected and as expected, gene profiles for BA were distinctively different from 

WA and BWA. These data provided evidence that the cells had differentiated well 

into their designated respective cell types.  
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Figure 14: Quantitative PCR results for general fat markers (A, B, C) and brown fat specific 

markers (D, E, F). 

 

4.3.2. Descriptive Statistics for RRBS quality 
 

An improved version of RRBS [133, 136] was applied to interrogate genome-wide 

DNA methylation profiles of (i) BA, (ii) WA and (iii) BWA at different stages of cell 

differentiation and between cell types (Figure 13).  
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There was an average of 52.5 million pass filter reads per sample for nine samples, 

with an average alignment rate (C2T and G2A) of 60.0%. A high bisulfite conversion 

rate of above 99% was achieved for all the samples (Figure 15A). Using a minimum 

sequencing depth of 10 as the cut off, we obtained on average 1.3 million autosomal 

CpGs per sample (Figure 15B). 

 
Figure 15: Descriptive statistics of the 9 samples. (A) For each sample, red bars represent the 

number of uniquely aligned reads, while blue bars are the non-uniquely or unaligned reads. 

The blue line gives the bisulfite rate for each sample. (B) The histogram gives the average 

number of CpGs sites for 9 samples, with varying minimum sequencing depths. Error bars 

represents standard deviation for 9 samples.  

4.3.3. Genomic coverage of CpGs 
 

To facilitate time series and cross cell type comparisons in an unbiased manner, only 

CpGs which with at least10× coverage for all nine samples were retained. This 

reduced the pool of analysable autosomal CpGs to 838,481. The CpGs were 
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approximately equally distributed in promoters (defined as 1kb upstream and 500bp 

from TSS, 287,243 CpGs, 33%), gene bodies (defined as from end of promoter to 

TTS, 315,733 CpGs, 40%) and intergenic regions (27%) (Figure 16A). About half of 

the CpGs were located within 6kb of annotated CGIs, comprising of CGIs (37%), CG 

shores (2kb up/downstream from CGI, 10%) and CG shelves (2kb up/downstream 

from CG shores, 3%) (Figure 16B). On a regional level, these CpGs covered 47.5% 

of promoters, 56.1% of gene bodies and 63.8% of CGIs on the mouse genome, for 

which each region required at least two covered CpGs. (Figure 16A-B).  

 

Repetitive elements make up approximately 45% of the mouse genome 

(http://www.repeatmasker.org/species/mm.html) and DNA methylation changes in 

these regions have been associated with gene transcriptional regulation, 

differentiation and cancer [154]. The RRBS experimental protocol intentionally 

removes genomic fragments enriched for repetitive regions and thus only 14.7% of 

the analysed CpGs (122,818 CpGs) were mapped to repetitive elements. With this 

caveat, a total of 78% of all CpGs mapped to repetitive elements fell in class I of 

transposon elements (LINE, SINE and LTR), which was slightly lower than the 

92.3% on a whole genome scale (http://www.repeatmasker.org/species/mm.html). 

http://www.repeatmasker.org/species/mm.html
http://www.repeatmasker.org/species/mm.html
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Figure 16: Coverage of CpGs for RRBS. A total of 838,481 CpGs were covered in all 9 

samples, at a sequencing depth >10. (A) About one third of the CpGs are located in promoters, 

gene bodies and intergenic region each. Half of annotated promoters and gene bodies were 

covered. (B) A total of 50% of the CpGs lie in CpG rich and medium rich regions. (C)  

Combined percentage of LINE, SINE and LTR made up 78% of all 122,818 CpGs mapped to 

repetitive elements. 

 

4.3.4. DNA methylation profile distinguishes samples by cell types while 

gene expression profile separates samples by stages of 

differentiation  

 

To test if DNA methylome encrypt similar biological signals as transcriptome, I 

applied PCA and hierarchical clustering to the dataset. To do so, I used average 

methylation levels of multi-CpG genomic fragments created by merging nearby CpGs 
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as input for DNA methylome analysis while the time-matched RNA-seq data was 

used for gene expression analysis.  

 

Although PCA and hierarchical clustering worked by different statistical and 

mathematical principles, they pointed towards consistent and interesting conclusions. 

By using methylome, samples were shown to be grouped by cell types than by stages 

of differentiation (Figure 17A-B). In addition, closer proximity of BWA to WA than 

BA suggested that BWA and WA shared greater epigenetic similarity. On the other 

hand, same analyses performed using gene expression profile clearly shows that 

samples were, instead, separated by stages of differentiation (Figure 17C-D).  

 
Figure 17: PCA and hierarchical clustering analyses of DNA methylation (A, B) and gene 

expression data (C, D) of all nine analysed samples.  

 

4.3.5. Distinct hypermethylation was observed in WA than BA or BWA 
 

Results from Figure 17 intrigued me to probe further test if there are any systematic 

differences in the DNA methylome between cell types so as to gain a deeper insight 
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to understanding the role of DNA methylation in defining adipocyte specificity. To 

do so, I made pairwise comparisons between various cell types for all stages of 

differentiation. I only considered CpGs having at least 10% difference to remove for 

noisy data. Consistent among all possible combinatorial pairs of comparisons (BA vs. 

WA, BA vs. BWA, BWA vs. WA) within each time point, greatest dissimilarity was 

observed between BA and WA. Additionally, across all analysed time points, there 

was a uniform trend of higher frequency of CpGs being hypermethylated in WA than 

BA (Figure 18A). Persistent skewed difference observed throughout adipogenesis 

suggested the regulatory role of DNA methylation in defining and maintaining cell 

lineage. Trend differences between BA and BWA were similar to Figure 18A, though 

to a relatively smaller extent (Figure 18B). In contrast, comparisons of 

hypermethylated and hypomethylated CpGs between WA and BWA showed more 

subtle difference in numbers (Figure 18C). These further supported conclusions made 

from PCA and hierarchical clustering diagrams from Figure 17A-B.  
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Figure 18: Frequencies of hypermethylated and hypomethylated CpGs between cell types at 

different stages of differentiation, using varying cutoffs at 10, 20 and 30%. (A) Higher 

frequency of hypermethylated CpGs in WA than BA at 10%, 20% and 30 cut-off at days 0, 4 

and 6. (B) Higher frequency of hypermethylated CpGs in BWA than BA at 10%, 20% and 30 

cut-off at days 4 and 6. (C) Higher frequency of hypermethylated CpGs in WA than BWA at 

10%, 20% and 30 cut-off at days 4 and 6.  

 

4.3.6. Dominance of hypermethylated DMCs in WA than BA in non-

promoter regions 

 

Starting with CpGs having at least 10% methylation difference, Fisher exact test 

followed by FDR were applied to identify significantly differentially methylated 

CpGs (DMCs) between all pairs of cell types (Figure 19). Across all differentiation 

stages, there were more significant DMCs in WA than BA and in WA than BWA. On 

the contrary, comparisons between BWA and WA on both days 4 and 6 generated 
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much fewer number of DMCs than the rest of comparisons. Consolidating the 

observations, I inferred that the  

i) DNA methylation was the highest in WA and lowest in BA.   

ii) DNA methylome between WA and BWA were highly comparable 

iii) Greatest cell type methylation difference occurred at day 4   

iv) Least cell type methylation difference occurred at day 6, i.e. fully 

differentiated adipocytes 

 
Figure 19: Frequency of significant CpGs by comparing different cell types at various stages 

of differentiation. Green arrows: hypomethylation. Red arrows: hypermethylation. 

 

Next, I asked if these DMCs were enriched at any genomic locations. Upon mapping 

these statistically significant DMCs to their respective genomic locations, most 

changes occurred at non-promoter regions (Figure 20). To test if there was a 
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dominance of hypermethylation in all genomic locations, I examined the ratios of 

hypermethylated and hypomethylated DMCs within each genomic category. Amongst 

all categories, exons showed greatest deviation from equal proportions, followed by 

introns, intergenic and finally promoters (Figure 20).  This was consistent in all other 

comparisons.   

 
Figure 20: Proportions of significant differentially methylated CpGs in each genomic 

category. DMCs were mostly located in intron and intergenic regions. Ratio between 

hypermethylated and hypomethylated DMCs were highest in exonic regions. 
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4.3.7. Gene ontology analysis for DMPs   
 

Extending from single CpGs, I went on to identify significantly differentially 

methylated promoters (DMPs). Similar to DMCs analyses, dissimilarity between cell 

types were most apparent between BA and WA (Table 5, Table 6 and Table 7), 

especially at day 4 (Table 5).  

RNA 

classes 

Day 0 Day 4 Day6 

BA>WA BA<WA BA>WA BA<WA BA>WA BA<WA 

mRNA 70 86 144 138 58 54 

miRNA 3 8 10 10 2 3 

ncRNA 8 18 22 32 6 10 

Total  81 113 176 180 66 67 

Table 5: Frequencies of DMPs between BA and WA at days 0, 4 and 6 their respective RNA 

classes.   

 

RNA classes Day 4 Day6 

BA>BWA BA<BWA BA>BWA BA<BWA 

mRNA 122 123 50 42 

miRNA 8 6 0 6 

ncRNA 20 25 2 5 

Total  150 154 52 53 

Table 6: Frequencies of DMPs between BA and BWA at days 0, 4 and 6 their respective RNA 

classes.   

 

RNA classes Day 4 Day6 

BWA>WA BWA<WA BWA>WA BWA<WA 

mRNA 22 31 4 19 

miRNA 3 2 1 0 

ncRNA 6 4 0 2 

Total  31 37 5 21 

Table 7: Frequencies of DMPs between BWA and WA at days 0, 4 and 6 their respective 

RNA classes.   

 

I next examined if DMPs identified between BA and WA showed any biological 

importance by using QIAGEN’s Ingenuity IPA to implement gene ontology analysis. 

Upon separate analyses performed on hyper- and hypomethylated DMPs, two of five 

top regulatory networks in hypomethylated DMPs (BA<WA) showed relevance to 

BA functions. These networks were “Cancer, skeletal and Muscular disorders, Tissue 

morphology” and “Energy Production, Lipid Metabolism, Small molecule 

biochemistry” (Figure 21). Genes in the latter network (Figure 21B) showed direct 
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and indirect connections with PPARα, a brown fat specific marker that was proposed 

to be involved in the coordination of transcriptional activation for lipid oxidation and 

induction of UCP1 [155].   

 
Figure 21: Two out of five top regulatory networks showed relevance to brown adipocytes 

functions. (A) Cancer, skeletal and Muscular disorders, Tissue morphology (B) Energy 

Production, Lipid Metabolism, Small molecule biochemistry  

 
 

4.3.8. Strongest correlation between promoter DNA methylation and 

gene expression was seen at day 4 

 

To test if the DMPs have any functional significance, sample matched RNA-seq data 

was added to the analysis. Up-regulated genes in the mature BA compared to mature 

WA showed enrichment in brown fat related functions, validating the quality of the 

RNA-seq dataset (Figure 22A-B).   
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Figure 22: Gene set enrichment analysis showed that genes up-regulated in BA compared to 

WA at day 6 were enriched in (A) Mitochondrial respiratory chain and (B) Fatty acid 

oxidation.  

 

Although most DMPs (Table 5) were not associated with gene expression changes 

(Figure 23), there was an increase in proportion of genes exhibiting the inverse 

relationship between these two variables along cell differentiation (49.1% at day 0, 

60.3% at day 4, 61.5% at day 6). 
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Figure 23: Scatterplot of gene expression changes (fold change ≥ 1.5) against promoter 

methylation differences for DMPs at (A) day 0, (B) day 4 and (C) day 6. Most of the genes  

showed anti-correlation between promoter methylation change and gene expression change.    

 

 

4.3.9. Multiple Hox genes were identified in DMPs between cell types for 

which methylation difference was maintained throughout cell 

differentiation  

 

To test if DNA methylation is important for tracing cell lineage, I intersected the lists 

of DMPs identified between WA and BA at three three analysed time points. (Figure 

24). A total of 31 promoters (23 with BA<WA, 8 with BA > WA) were found to be 

significantly differentially methylated consistently at all three time points of 

differentiation (Figure 24A-B). The common set of 23 promoters having 



69 

 

hypomethylation in WA represented one-third of the 67 genes identified at day 0. 

This substantial overlap suggested that genes which showed potential ability in 

discriminating cell types were epigenetically controlled at the precursor stage and had 

their marks maintained throughout adipogenesis.  

 

  
Figure 24: Overlaps of DMPs between BA and WA at days 0, 4 and 6. Promoters were split 

into (A) BA > WA and (B) BA < WA. (C) Heatmap representation of methylation differences 

for gene promoters (between BA and WA) which were either consistently hypo or 

hypermethylated from day 0 to 6 of cell differentiation.  

 

Next, I extracted the identities of these 31 genes and represented the methylation 

difference (between BA and WA) in Figure 24C. Notably, five members from the 

homeotic (Hox) gene family (Hoxa2, Hoxa5, Hoxc4, Hoxc9 and Hoxc10) appeared in 

the list, of which Hoxc9 is a white adipocyte marker [156]. Intrigued by the 
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observation, the gene expression changes for these genes were extracted from RNA-

seq results and further validated with q-PCR (Figure 25). Except for Hoxc4, four 

genes (Hoxa2, Hoxa5, Hoxc9 and Hoxc10) showed consistent anti-correlation 

between DNA methylation and gene expression changes across the three time points 

of differentiation.  

 
Figure 25: (A) Heatmap of promoter DNA methylation difference and gene expression 

changes for five Hox genes. (B-D) q-PCR results for same set of five Hox genes. 

 

Products of the Hox genes are transcription factors which bind to DNA enhancers via 

homeodomain to either activate or suppress gene expression. Among many essential 

roles of the Hox genes include proper embryo development and control of cell death 

and cell proliferation [157, 158]. Recent study by Benton et al. [159] compared 

methylation changes before and after gastric bypass and weight loss human 

subcutaneous adipose and have identified Hox genes from multiple Hox clusters 

having significant methylation change. 

 

4.3.10. General hypermethylation during adipogenesis 
 

PCA analyses performed on white and brown adipogenesis separately revealed a 

distinctive sequential separation of samples by adipogenic progression just by PC1 

(Figure 26A-B).   
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As I had analysed populations of cultured cells, the methylation status of each CpG 

was reflected on a continuous scale, ranging from 0 to 100%. Thus, I categorised 

these CpGs into lowly methylated (LM, <30%), partially methylated (PM, 30-70%) 

and highly methylated (HM, >70%) groups. In both white and brown adipogenesis, 

there was uniform decrease in proportions of CpGs in LM group, accompanied by a 

consistent increase in the proportions in both PM and HM groups (Figure 26C-D). 

These implied a shift of methylation status from LM to PM and HM as cells 

differentiate.   

 
Figure 26: PCA analyses of (A) BA and (B) WA at day 0, 4 and 6. (C, D) CpGs were grouped 

by methylation levels into LM (<30%), PM (30-70%) and HM (>70%). Clear decreasing 

trends for LM and increasing trends for PM and HM were observed in both (C) brown and (D) 

white adipogenesis. 
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Next, I obtained the methylation difference for each CpG between time points and 

tabulated the frequencies using varying cutoffs of 10%, 20% and 30%. Concordant 

trends were observed for both adipogenesis processes for which the frequencies of 

CpGs showing hypermethylation at a later time point were consistently found in more 

abundance than hypomethylation (Figure 27).   

  

 
Figure 27: Frequencies of hypermethylated and hypomethylated CpGs between comparative 

time points, using varying cutoffs at 10, 20 and 30%.  

 

4.3.11. Hypermethylated DMCs were predominant in promoter regions 
 

To test if there is any systematic trend in methylation change during adipogenesis, I 

performed statistical test to identify DMCs. To do so, three pairwise comparisons 

were made for each cell type, (i) Day 0 vs Day 4, (ii) Day 4 vs Day 6, and (iii) Day 0 

vs Day 6. Overall, I obtained more CpGs having an elevated DNA methylation across 

adipogenesis (Figure 28).   



73 

 

 
Figure 28: Frequency of significant CpGs by comparing stages of cell differentiation. Green 

arrows: hypomethylation. Red arrows: hypermethylation. Comparisons were made with 

respect to the earlier time point. 

 

 

Next, I tested if these DMCs were enriched in any specific genomic locations. 

Consistent in all six comparisons, about 7% of the DMCs were located in promoters, 

16-17% in exons, 36-38% in introns and 39-40% in intergenic regions. Notably, 

although a third of covered CpG are within promoter regions, only 7% of identified 

DMCs from promoter regions. Furthermore, dominance of hypermethylation was 

most pronounced in promoters, followed by exons, introns and finally intergenic 

regions (Figure 29). This is contrastingly different to cell type differences for which a 

dominance of hypermethylation was observed in non-promoter regions.  

 

These observations suggested that during differentiation, promoter methylation is 

tightly regulated, with a strong preference towards DNA hypermethylation.  
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Figure 29: Proportions of significant differentially methylated CpGs in each genomic 

category. Ratios of hyper- to hypomethylated CpGs was highest in promoters for all 

comparisons.  

 

To gain further insights on the dynamics of methylation change for these DMCs, I 

identified CpGs displaying significant methylation changes (i) from day 0 to 4, (ii) 

from day 4 to 6 or both. Most of the identified DMCs showed significant changes 

from Day 0 to 4, followed by a maintenance of the methylation marks thereafter (blue 

portion of the venn diagram in Figure 30).  
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Although the frequency of DMCs showing dynamic changes throughout adipogenesis 

was higher in brown adipocytes (3,691 CpGs) than white adipocytes (2,531 

CpGs),(indicated by yellow in venn diagram, Figure 30), the relative proportions of 

these CpGs in various genomic regions were similar in both fat cells (~5% promoters, 

~17% exons, ~36% introns, ~41% intergenic). Interestingly, of these DMCs, only a 

mere 212 (5.25%) and 63 (2.5%) CpGs for brown and white adipogenesis 

respectively had either continuous hyper or hypomethylation from Day 0 to Day 4, 

and then to Day 6. Vast majority of these CpGs showed a transient hyper or 

hypomethylation at Day 4, i.e. a hypermethylation from Day 0 to Day 4 is followed 

by a hypomethylation from Day 4 to Day 6 (or vice versa).   
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Figure 30: DMCs having significant methylation changes throughout adipogenesis. More than 

90% of the DMCs did not show maintenance of methylation differences from day 0 to 6.  

 

4.3.12. DMPs in adipogenesis were enriched for functions related to cell 

proliferation and cell differentiation 

 

Similar to DMCs analysis, there was a dominance of hypermethylated events at a 

later time point (Table 8 and Table 9) in both brown and white adipogenesis. 
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Interestingly, while there was about twice the number of DMPs found in brown 

adipogenesis between days 0 to 4, comparison made between days 0 and 6 revealed 

more DMPs during white adipogenesis. This suggested that methylation changes in 

white adipogenesis were gradual and accumulative whereas brown adipogenesis 

which showed greatest differences from day 0 to 4.  

 

Promoter RNA classes Brown adipocytes White adipocytes 

D0 > D4 D0 < D4 D0 > D4 D0 < D4 

mRNA 32 144 13 67 

miRNA 3 9 2 5 

ncRNA 5 17 5 10 

Total  40 170 20 82 

Table 8: Frequencies of DMPs between days 0 to 4 for brown and white adipogenesis and 

their respective RNA classes.   

 

Promoter RNA classes Brown adipocytes White adipocytes 

D4 > D6 D4 < D6 D4 > D6 D4 < D6 

mRNA 12 47 26 42 

miRNA 3 4 2 3 

ncRNA 4 6 1 2 

Total  19 57 29 47 

Table 9: Frequencies of DMPs between days 4 to 6 for brown and white adipogenesis and 

their respective RNA classes.   

 

Promoter RNA classes Brown adipocytes White adipocytes 

D0 > D6 D0 < D6 D0 > D6 D0 < D6 

mRNA 10 67 27 98 

miRNA 2 3 2 2 

ncRNA 3 7 4 17 

Total  15 77 33 117 

Table 10: Frequencies of DMPs between days 0 to 6 for brown and white adipogenesis and 

their respective RNA classes.   

 

Independent functional enrichment analyses on DMPs of brown and white 

adipogenesis (day 0 vs day 4) showed significant enrichments in cell proliferation and 

cell differentiation (Figure 31A-B). There were significant overlaps of DMPs 

between white and brown adipogenesis from day 0 to day 4 (19 genes, 

hypergeometric test p<3.586 x 10-18, Figure 31C,Table 11,), day 4 to 6 (5 genes, 

hypergeometric test p<7.441 x 10-6, Figure 31B, Table 12) and from day 0 to day 6 
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(22 genes, hypergeometric test p<5.231 x 10-27, Figure 31E, Table 13). These three 

lists included a number of genes related to cell proliferation and cell differentiation 

(Table 11, Table 12, Table 13). Noteworthy, Hoxa1 and its antisense counterpart, 

Hotairm1 have been identified to show significant hypermethylation at day 6 relative 

to day 0 during both brown and white cell differentiation.   

 

 
Figure 31: Hypermethylated DMPs of (A) BA and (B) WA from day 0 to 4 showed enriched 

functions in cell differentiation and cell proliferation. Overlaps of hypermethylated DMPs 

between BA and WA for comparison of (C) day 0 vs day 4, (D) day 4 vs day 6 and (E) day 0 

vs day 6. 
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Gene 
RNA 

category 

Brown adipogenesis White adipogenesis 

#DMC 
D0 

(DMC) 

D4 

(DMC) 

D4-D0 

(DMC) 
#DMC 

D0 

(DMC) 

D4 

(DMC) 

D4-D0 

(DMC) 

Akap5 mRNA 8 14.07 34.66 20.59 7 6.61 25.65 19.04 

Bcl2l11* mRNA 3 46.11 69.27 23.16 2 4.61 17.98 13.37 

Cldn3 mRNA 2 0.00 17.55 17.55 2 1.57 17.79 16.21 

Cxcl3 mRNA 2 17.06 51.66 34.61 2 17.06 39.10 22.04 

Cyba mRNA 3 3.45 21.69 17.73 2 2.22 17.92 15.71 

Derl3 mRNA 3 16.11 53.47 37.36 5 18.45 48.54 30.09 

Des* mRNA 2 18.51 48.23 16.42 3 5.17 22.12 16.95 

Dio3os ncRNA 3 22.18 45.52 23.34 2 18.13 43.38 25.25 

Foxr1 mRNA 2 70.61 92.35 21.74 3 78.69 95.50 16.81 

Gm12992 ncRNA 4 15.23 57.77 42.54 2 23.64 58.33 34.70 

Gm16793 ncRNA 4 56.75 82.03 25.28 2 21.51 45.91 24.40 

Il34* mRNA 2 23.38 60.17 36.78 3 36.36 59.09 28.76 

Inafm1 mRNA 3 11.72 32.97 21.24 2 24.36 52.20 27.84 

Mir219a-2* miRNA 3 60.45 82.37 21.91 2 64.87 84.04 19.18 

Podxl2 mRNA 6 12.73 34.44 21.72 2 2.63 13.67 11.04 

Scx* mRNA 7 11.20 34.11 22.91 3 14.49 31.09 16.61 

Slc5a5 mRNA 22 9.53 32.65 23.13 16 8.52 32.30 23.78 

Syce2 mRNA 2 20.37 46.81 26.44 2 0.00 23.68 23.68 

Tdgf1* mRNA 7 52.18 79.79 27.61 2 33.75 59.40 25.65 

Table 11: Methylation information for 19 promoters which were hypermethylated at day 4 

wither respect to day 0 for both BA and WA. *Genes involved in cell proliferation or cell 

differentiation. 

 

Gene 
RNA 

category 

Brown adipogenesis White adipogenesis 

#DMC 
D4 

(DMC) 

D6 

(DMC) 

D6-D4 

(DMC) 
#DMC 

D4 

(DMC) 

D6 

(DMC) 

D6-D4 

(DMC) 

Des* mRNA 3 10.38 39.29 28.90 4 5.67 26.09 20.42 

Madcam1* mRNA 2 51.21 83.72 32.52 3 48.13 70.15 22.02 

Npas4 mRNA 2 14.47 61.11 46.64 2 23.34 53.21 29.98 

Rn45s ncRNA 2 14.67 31.53 16.86 2 44.40 68.08 23,68 

Tmem171 mRNA 2 0.86 20 19.14 2 15.96 45.81 29.85 

Table 12: Methylation information for 5 promoters which were hypermethylated at day 6 with 

respect to day 4 for both BA and WA. *Genes involved in cell differentiation. 

 

Gene 
RNA 

category 

Brown adipogenesis White adipogenesis 

#DMC 
D0 

(DMC) 

D6 

(DMC) 

D6-D0 

(DMC) 
#DMC 

D0 

(DMC) 

D6 

(DMC) 

D6-D0 

(DMC) 

1700124L1

6Rik nrRNA 2 1.05 17.65 16.59 2 4.65 21.54 16.89 

Akap5 mRNA 6 13.45 47.73 34.28 4 9.81 34.08 24.27 

B3gnt2 mRNA 3 8.01 37.04 29.02 2 8.06 36.36 28.30 

Ccdc8 mRNA 8 1.11 15.39 14.29 8 0.42 16.07 15.65 
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Chad mRNA 2 34.22 79.19 44.97 4 30.66 60.66 30.00 

Cpt1b mRNA 2 17.67 43.03 25.36 2 5.13 39.06 33.93 

Derl3 mRNA 6 11.50 49.14 37.64 4 11.26 42.46 31.20 

Des* mRNA 6 7.43 34.63 27.20 3 0.51 16.51 16.00 

Fgr mRNA 4 49.60 80.21 30.61 3 40.62 67.12 26.50 

Gm128 mRNA 2 69.70 97.73 28.03 2 32.92 62.47 29.56 

Gm12992 ncRNA 5 12.18 53.33 41.15 4 9.43 38.20 28.77 

Gm16157 ncRNA 4 25.51 57.44 31.93 4 17.24 47.43 30.19 

Hapln3 mRNA 2 2.91 23.33 20.43 2 3.97 21.43 17.46 

Hotairm1 ncRNA 2 10.50 27.65 17.15 5 24.31 47.46 23.16 

Hoxa1* mRNA 2 10.50 27.65 17.15 5 24.31 47.46 23.16 

Nbl1* mRNA 6 12.20 46.88 34.67 3 15.68 39.06 23.38 

Podxl2 mRNA 3 6.21 20.63 14.43 3 3.07 16.62 13.55 

Rexo4 mRNA 2 11.74 32.78 21.04 2 26.40 58.89 32.49 

Scx* mRNA 4 6.94 27.21 20.26 2 11.54 36.84 25.30 

Slc5a5 mRNA 14 10.35 39.74 29.39 12 8.36 37.77 29.40 

Tex40 mRNA 2 13.50 32.02 18.51 2 19.64 50.79 31.15 

Ttc16 mRNA 2 2.78 20.15 17.38 2 3.00 18.25 15.26 

Table 13: Methylation information for 22 promoters which were hypermethylated at day 6 

wither respect to day 0 for both BA and WA. *Genes involved in cell differentiation. 

 

4.3.13. Correlating promoter DNA methylation with gene expression 

during adipogenesis  

 

Next, I asked how promoter DNA methylation changes affects gene expression 

during adipocytes differentiation by integrating sample matched RNA-seq data to 

RRBS data. Comparing the transcriptome profiles of mature brown and white 

adipocytes with respect to their precursors (day 0 vs day 6), there was enrichment of 

“Mitochondrial Respiratory Chain” and “Lipid Metabolic Process” in up-regulated 

genes (Figure 32).  
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Figure 32: Gene set enrichment analysis on (A) up-regulated genes during brown adipogenesis 

and (B) white adipogenesis using RNA-seq data. 

 

Among all correlations (Figure 33), expression changes during brown adipogenesis 

appears to be more correlated with DNA methylation changes than white 

adipogenesis, especially during earlier time points (day 0 versus day 4) (Figure 33A). 

In this category, as many as 48 out of 70 genes (68.5%) were anti-correlated between 

DNA methylation and gene expression changes, representing a statistically significant 

difference in frequencies between the positively and negatively correlations (2 sided 

binomial test, p=0.0095). Within this list, 16 genes (Table 14) with functional 

relevance to cell proliferation or cell differentiation were identified. Out of these, 

eleven of them showed anti-correlation between promoter methylation changes with 

gene expression changes.  
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Figure 33: Scatterplot of gene expression changes against promoter methylation differences 

for brown adipogenesis (A) day0 vs day4 in BA, (B) day4 vs day6 in BA, (C) day0 vs day6 in 

BA, (D) day0 vs day6 in WA, (E) day4 vs day6 in WA, (F) day0 vs day6 in WA. 

  

 

 Genes #DMCs BA_D4-D0 RNA category log2(D4/D0) 

Arhgef19 2 -37.07 mRNA -3.61 

Atp2c1* 3 -31.97 mRNA -1.41 

D130017N08Rik 3 -21.23 ncRNA -0.75 

Hoxc8* 2 -14.29 mRNA -0.78 

Nufip1 2 -25.00 mRNA -0.84 

Slc39a14 2 -13.64 mRNA -2.66 

8430408G22Rik 2 -11.08 mRNA 7.09 
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 Genes #DMCs BA_D4-D0 RNA category log2(D4/D0) 

Aldh3b2 2 -17.06 mRNA 6.54 

Gm2a 2 -31.68 mRNA 1.22 

Homez 2 -29.97 mRNA 1.71 

Letmd1 2 -11.63 mRNA 2.95 

Mcts2 4 -20.70 mRNA 1.37 

N6amt2 2 -16.58 mRNA 0.59 

Psd 2 -13.95 mRNA 1.27 

Tmem45b 3 -12.67 mRNA 9.06 

6820431F20Rik 2 14.69 ncRNA -1.25 

Adcyap1r1 2 21.58 mRNA -4.15 

Aldh1a3 2 16.08 mRNA -3.77 

Apoe* 2 21.33 mRNA -0.79 

Bcl2l11* 3 23.16 mRNA -1.21 

C920025E04Rik 2 24.81 mRNA -2.25 

Camk1d 2 13.80 mRNA -3.27 

Ccdc8 4 13.00 mRNA -2.15 

Crocc 2 20.15 mRNA -0.72 

Cuedc1 2 27.23 mRNA -0.96 

Ddr1* 2 23.01 mRNA -2.52 

Dio3os 3 23.34 ncRNA -1.56 

Elmo2 2 35.14 mRNA -0.79 

Fads6 2 12.64 mRNA -3.16 

Fchsd1 2 14.32 mRNA -1.33 

Flrt2 4 14.16 mRNA -4.37 

Fosl2* 2 14.08 mRNA -1.04 

Galnt1 2 11.78 mRNA -0.76 

Ganab 2 23.97 mRNA -0.63 

Gng11 2 24.92 mRNA -0.85 

Htra3 4 14.47 mRNA -1.29 

Isyna1 2 13.92 mRNA -2.67 

Lck* 3 26.53 mRNA -3.75 

Lrp4* 3 16.55 mRNA -4.07 

Lvrn 2 20.14 mRNA -2.17 

Map6 2 14.63 mRNA -3.29 

Mmp23 2 17.39 mRNA -3.29 

Mtss1l 2 17.76 mRNA -1.91 

Nbl1* 3 31.29 mRNA -3.69 

Notum 2 11.86 mRNA -0.69 

Nrip2 2 25.57 mRNA -1.18 

Palm3 2 21.86 mRNA -1.92 

Pawr* 2 16.79 mRNA -2.58 

Pcnxl3 2 12.49 mRNA -1.33 

Podxl2 6 21.72 mRNA -2.00 
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 Genes #DMCs BA_D4-D0 RNA category log2(D4/D0) 

Sema4c* 2 19.65 mRNA -2.31 

Smad1* 3 30.33 mRNA -2.16 

Ttll3 2 32.82 mRNA -0.71 

Tyro3* 3 14.27 mRNA -2.96 

Acvr1c 2 12.62 mRNA 6.04 

Armt1 2 12.96 mRNA 1.22 

Derl3 3 37.36 mRNA 1.49 

Des 2 16.42 mRNA 4.29 

Fcgrt 2 22.00 mRNA 0.70 

Hotairm1 2 15.88 ncRNA 2.03 

Hspa9 2 17.42 mRNA 1.58 

Il34 2 36.78 mRNA 0.70 

Inafm1 3 21.24 mRNA 1.45 

Lrrc14b 2 24.42 mRNA 1.18 

Mxi1* 2 13.15 mRNA 2.55 

Nat8l 2 28.43 mRNA 7.29 

Rbm47* 3 28.79 mRNA 1.01 

Rgs2* 2 14.02 mRNA 5.18 

Rmnd1 2 12.96 mRNA 2.93 

Samm50 2 16.25 mRNA 1.96 

Slc25a34 2 20.60 mRNA 9.34 

Tmem229b 2 14.29 mRNA 1.60 

Uba52 2 23.59 mRNA 1.39 

Table 14: List of DMPs between day 0 and 4 of brown adipocytes with a gene expression fold 

change of at least 1.5. *Genes which are relevant to cell differentiation/ cell proliferation.  

 

4.3.14. 5-Azacytidine treated BA and WA induced gene expressions in 

Hoxc9 and Hoxc10 for both BA and WA 

 

Intrigued by the correlation between promoter methylation changes and gene 

expression changes (Figure 25), I investigated if the gene expression of these gene 

were indeed an effect of DNA methylation alterations. To test the hypothesis, both 

brown and white pre-adipocytes were treated with varying concentrations (5μm and 

10μm) of DNA methylation inhibitor, 5-Azacytidine. As shown in Figure 34, both 

Hoxc9 and Hoxc10 were up-regulated in both BA and WA at day 5 when DNA 



85 

 

methylation is inhibited by drug treatment. These results implied that both Hoxc9 and 

Hoxc10 gene expression may be regulated by promoter methylation manipulation.  

 
Figure 34: q-PCR results of five Hox genes being subjected to 2μm and 10μm of 5-Azacitidine 

treatment for (A) BA and (B) WA at day 5. 
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4.4. Discussion 
 

Comprehensive understanding of molecular mechanisms which are involved in (i) 

adipogenesis regulation and (ii) guiding differentiation of mesenchymal stem cells 

into distinct fat cells are necessary to identify optimal therapeutic targets for obesity.  

DNA methylation is one of the most well-studied epigenetic mechanisms and have 

been shown to be important in cell differentiation [152, 160] and defining cell 

lineages. Due to its versatile capacity, DNA methylation presents itself as an ideal 

target mechanism for this study. Here, I present the first comprehensive genome-wide 

DNA methylation landscape for both white and brown adipogenesis, with the aim of 

understanding how DNA methylation could affect both fat cells differentiation and 

cell fate commitment. 

 

During adipogenesis, precursors loses its pluripotency and becomes specialised in 

function and morphology. Overall, DNA methylation increases during both white and 

brown adipogenesis. Significantly differentially methylation promoters from both 

adipogenesis were enriched for functional categories related to cell differentiation and 

cell proliferation. Interestingly, when comparing the ratios of hyper- and 

hypomethylated DMCs based on cell specificity (white vs. brown) and time series (at 

different time points during differentiation), we observed: 

i. Steepest ratio in promoter regions for time series,  

ii. Steepest ratio in non-promoter regions when comparing cell types. 

Such opposite trends were intriguing and suggested that genomic context dependent 

DNA methylation changes may perform different biological functions. 

 

I have identified a set of 31 promoters which showed consistent hyper- or 

hypomethylation between WA and BA for all time points of analyses (Figure 24). 
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Out of these 31 genes, five Hox genes (Hoxa2, Hoxa5, Hoxc4, Hoxc9, Hoxc10) were 

included which four of them (Hoxa2, Hoxa5, Hoxc9, Hoxc10) all showed negative 

correlation with gene expression changes (RNA-seq and q-PCR). Hox gene members 

are a super family of transcription factors [158] which are highly conservative in 

sequence and functions. Not only are they well known for their roles in normal in 

embryonic development [158], Hox genes have also gained much recognition in the 

adipogenic field such as displaying cell specific expression and involvement in 

metabolic diseases such as diabetes [158, 161]. My data suggested that Hox genes are 

important in defining cell lineage, which in turn may be regulated by DNA 

methylation.  

 

A few issues were yet addressed in this study and should be considered for future 

work. Firstly, the RRBS approach to analysing DNA methylation covers only about 

3% of CpGs in the genome and 50% of the promoters. Though being data-to-cost 

effective, biased selection of CpG rich regions might not fully represent true genomic 

features. Secondly, simple bisulfite sequencing does not allow discrimination 

between 5mC and 5hmC. Although the distinct functions of 5hmC have yet to be 

defined, this modified base was found in stem cells and brain, especially on the gene 

bodies within the genome [162-164]. Enrichment of 5hmC in the gene bodies have 

been suggested to be involved in facilitating transcription in olfactory sensory 

neurons [165]. Thus, to be able to distinguish among C, 5mC and 5hmC, single-

molecule real-time (SMRT) sequencing could be enlisted [166].  

 

Thirdly, so far analyses have been conducted on mouse adipogenic cell culture 

models, whose results might not be extrapolated to in vivo model or to human. Thus, 

future work could be targeted at perturbing DNA methylation to test for phenotypic 

variations in mouse models and using human cell models.  
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4.5. Summary 
 

In this study, we provided the first DNA methylome profiles for brown and white 

adipogenic differentiations. We aimed to understand the impacts of DNA methylation 

on adipogenesis and cell type specification. To do that, comprehensive comparisons 

were made  

i. Across white adipogenesis 

ii. Across brown adipogenesis 

iii. Inter cell types (BA, BWA and WA) at each analysed time points. 

We also did RNA-seq profiling and correlated it with the DNA methylation data. We 

made the following key findings: 

i. DNA methylation was similar between WA and BWA 

ii. Greatest methylation difference existed between WA and BA 

iii. Five Hox genes promoters (Hoxa2, Hoxa5, Hoxc4, Hoxc9, and Hoxc10) 

were found to be uniformly hypo or hypermethylated in the same 

direction between WA and BA for days 0, 4 and 6. With the exception of 

Hoxc4, the rest showed anti-correlation with gene expression changes.    

iv. General hypermethylation was observed with progression of cell 

differentiation in both WA and BA. DMPs identified showed enriched 

functions for cell proliferation and cell differentiation. 

v. Predominance of hypermethylated DMCs were located in promoters for 

adipogenesis analyses while a predominance of hypomethylated DMCs 

(with respect to BA) were found in non-promoter regions.  
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CHAPTER 5 – A COMPLEX ASSOCIATION BETWEEN DNA 

METHYLATION AND GENE EXPRESSION IN HUMAN PLACENTA 

AT FIRST AND THIRD TRIMESTERS  

 

5.1. Background and Hypothesis 
 

 

The human placenta is a temporary maternal-foetal organ essential for normal foetal 

development. It serves a number of functions such as exchange of oxygen, nutrients 

and waste products between the mother and fetus. The dysfunction of the placenta 

usually leads to dire consequences such as recurrent pregnancy loss, preterm birth, 

pre-eclampsia and intrauterine growth restrictions (IUGR). Conditions of preterm and 

IUGR often leads to low birth weight, which is associated with diseases such as 

hypertension and type 2 diabetes that might show up later in life [167-173]. During 

pregnancy, the human placenta undergoes tremendous growth in size, morphology 

and structure to cope with the development of the fetus [174-176].  

 

Not surprisingly, extensive molecular changes occur during placenta development. A 

number of studies have investigated gene expression profiles at different structural 

locations of the placenta [177], and at different gestational ages of the placenta, with 

gene expression changes often correlating with functional changes at different 

gestational ages. However, the molecular mechanisms underlying such drastic gene 

expression changes remain to be elucidated. 

 

Epigenetics is considered as a fundamental mechanism regulating gene expression 

during development. The placenta has long been a favourite organ for the study of 

epigenetics, particularly in genomic imprinting [178-183]. Epigenetics is also widely 
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considered as a mechanism for environmental factors to impact on development. For 

this reason, studying the epigenetics of the human placenta is particularly interesting 

as the placenta serves as the portal for the foetus to experience the external 

environment. Recently, a number of groups have investigated the DNA methylation 

changes of the placenta at different gestational ages [184] and due to foetal 

abnormalities [133].  

 

In this study, I systematically analysed the transcriptomes and the DNA methylomes 

of human placenta samples derived from different gestational ages. Furthermore, we 

studied the dynamic correlations between gene expression and DNA methylation at 

different gestational ages.  

 

5.2. Material and methods 
 

5.2.1. Samples 

 

Women with euploidy pregnancies who attended KK Women and Children’s 

Hospital were recruited in this study. Chorionic villus samples from subjects at the 

first or early second trimesters of pregnancy were collected by chronic villus 

sampling (CVS). Placenta villi samples (foetal side) were collected from third 

trimester of pregnancy after delivery.  

 

5.2.2. DNA methylation 

 

Six first trimester and five third trimester samples were included in the study.  
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Sample preparation and computational processing followed the steps described in 

Chapter 3, Section 3.2.2 and Section 3.2.3 respectively.  

 

5.2.3. Differential DNA methylation analysis 

 

Differential methylation analysis was performed at regional levels to identify 

differentially methylated promoters (defined as 1kb upstream and 500 bp downstream 

from transcription start site) and gene bodies. Autosome CpGs (sequencing 

depth >10) covered in at least 3 early and 3 late gestational samples were used for all 

subsequent analyses. 

 

A 2-sided Mann Whitney U test was first performed at single CpG level and p values 

were adjusted within regions using the Benjamini Hochberg method. A promoter was 

considered significantly differentially methylated if 1) methylation difference 

between average first trimester and third trimester samples was at least 10% and 2) 

contained at least 2 CpGs with FDR corrected p < 0.05. For gene bodies, in additional 

to the above two criteria, we require that all significantly differential methylated 

fragments mapped to the gene body be regulated in the same direction (either all 

hypermethylated or hypomethylated). 

 

All statistical analyses were performed using R package. 

 

5.2.4. RNA-seq 

 

Five first and second trimester samples from women carrying normal foetuses were 

included in this study. 
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Gene expression was quantified using RNA-seq, details found in [133]. Five RNA 

samples from normal pregnancies and four samples from pregnancies carrying DS 

were included in the study. Briefly, 2–5 µg of total RNA was used for each library 

preparation. Each RNA sample was treated with DNase I, subsequently subjected to 

messenger RNA purification and fragmentation, complementary DNA synthesis, end-

repair, 3′-end-adenylation and adapter-ligation. Adapter-ligated cDNA fragments 

were size-selected using a 3% agarose gel (200±25 bp). The DNA samples were then 

amplified by PCR and purified using 3% agarose gels and further quantified.  

The single end reads from RNA-seq was then analysed using Illumina RNA-Seq 

pipeline, CASAVA software version 1.7. Alignment of the reads was done using the 

default parameters and performed step-wise on three references, (i) contaminant 

reference made up of mitochondrial DNA (chrM), (ii) genome assembly of the 

species of interest, and (iii) splice junction set created from the exon information of 

annotated genes. All the reference sequences were downloaded from UCSC website 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/). 

 

5.2.5. Differential RNA-seq analysis 

 

RPKM values generated by running the Illumina RNA-seq pipeline represented gene 

expression. Average RPKM values for each gene in each sample group (early and late 

gestational age groups) were calculated. When the average RPKM for a gene is less 

than 0.5, the value was set as 0.5. A gene was considered to be differentially 

expressed between first and third samples when: 1) two-sided Mann Whitney U test 

p-value < 0.05; and 2) the ratio of gene expression between compared groups ≥ 2 or ≤ 

0.5. R package was used for all statistical analyses. 

 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
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5.3. Results  
 

5.3.1. Descriptive statistics for RRBS quality 
  

Using an improved version of reduced representation bisulfite sequencing (RRBS) 

[133, 136], we quantified DNA methylation of six first trimester and five third 

trimester placenta villi samples. There was an average of 37.5 million pass filter reads 

for the 11 samples, with an average alignment rate (C2T and G2A) of 58.5%. A high 

bisulfite conversion rate of above 99% was achieved for all the samples (Figure 35A). 

Using a minimum sequencing depth of 10 as the cut off, we obtained on average 1.8 

million CpGs per sample (Figure 35B).  

 
Figure 35: Descriptive statistics of the 11 samples. (A) For each sample, red bars represent the 

number of uniquely aligned reads, while blue bars are the non-uniquely or unaligned reads. 

The blue line gives the bisulfite rate for each sample. (B) The histogram gives the average 
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number of CpGs sites for 11 samples, with varying minimum sequencing depths. Error bars 

represents standard deviation for 11 samples.  

 

5.3.2. Genomic coverage of the analysed CpGs 
 

To facilitate cross gestation comparison, I further removed CpG sites that were on the 

sex chromosomes or were present in less than three samples in either the first or the 

third trimester group, resulting in 1.7 million CpG sites for further analysis. These 

CpGs represented about 3% of Hg19 autosomal CpGs, 78% of CGIs, 70.8% of core 

promoters (defined as -1kb upstream and +500bp downstream from a transcription 

start site) and 64.2% of gene bodies (defined as +1kb downstream from a 

transcription start site to transcription termination site) (Figure 36).  

 
Figure 36: Coverage of CpGs for RRBS. (A) A total of 1,707,910 CpGs were covered in at 

least 3 first and 3 third trimester samples, at a sequencing depth >10. This covers 3% of all 
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CpGs on Hg19 (autosomes).  (B) 78% of CGIs, (C) 70.8% of promoters and (D) 64.2% of 

gene bodies. All regions required at least 3 covered CpGs. 

 

 

5.3.3. Global methylation profiles were different depending on CGI 

status and between placenta at different gestational ages  

 

The distribution of individual CpG methylation levels were drastically different for 

CpG island (CGI) and non-CpG island (non-CGI) regions, as were shown in many 

earlier studies in placenta and other cell types [57, 129, 131, 133, 185, 186] (Figure 

37A-B). Similar distribution was observed for DNA fragments from merging 

neighbouring CpGs (Figure 37C-D).  

 

For both individual CpGs and regional levels, methylation profiles associated with 

CGIs have a peak at 0-5%, making the distributions heavily skewed to the right. In 

non-CGI regions, there was an apparent enrichment of highly methylated CpGs (95-

100% methylation) in the third trimester samples (Figure 37B, Figure 37D), 

indicative of global differences in DNA methylation at different gestation ages.  
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Figure 37: DNA methylation profiles of single and regional autosomes CpGs in CGIs and 

non-CGIs.  Regions are created by merging nearby CpGs of less than 500bp together. (A) 

Distribution of the average DNA methylation by gestational age for single CpGs (723,727 

CpGs sites) which lie in CGIs. (B) Distribution of the average DNA methylation by 

gestational age for single CpGs (984,183 CpGs sites) which do not lie in CGIs. (C) 

Distribution of the average DNA methylation by gestational age for regions (22,652 regions 

sites) which lie in CGIs. (D) Distribution of the average DNA methylation by gestational age 

for regions (153,563 regions) which do not lie in CGIs. 

 

Principal component analysis showed distinct separation of samples based on 

gestation age (Figure 38A). Additionally, there was a significant increase in mean 

CpG methylation in third trimester samples (p = 0.028, 2-sided Mann-Whitney U 

test) (Figure 38B). Furthermore, at both individual CpG and genomic fragment level, 

hypermethylation was consistently and significantly more abundant than 

hypomethylation (Figure 38C, Figure 38D).  
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Figure 38: DNA methylation distinguishes samples by gestational age. (A) PCA plot on 1.7 

million autosome CpGs shows separation between first and third trimester samples. (B) Dot 

plot of the average DNA methylation for each sample using 730,594 common CpGs across 11 

samples. The third trimester samples show higher DNA methylation than the first trimester 

samples. Mann-Whitney U test on the average DNA methylation values show significant 

differences (p = 0.028). (C) Distribution of the difference in average DNA methylation 

between first and third trimester samples, at single CpG level. Strong evidence of 

hypermethylation was observed, supported by higher peaks in the red bars for all bins of DNA 

methylation difference. (D) Distribution of the difference in average DNA methylation 

between first and third trimester samples, at regional level. A similar hypermethylation 

observation in Figure 2C was observed at regional level.  

 

5.3.4. Identification of significantly differentially methylated promoters 

and gene bodies 

 

DNA methylation changes in promoters and gene bodies were further analysed as 

methylation of these regions have been demonstrated to be associated with gene 

expression. A total of 199 promoters (corresponding to 189 genes) were found to be 

significantly differentially methylated between the first and third trimester samples, 

with 193 (corresponding to 183 genes) (96.8%) showing higher methylation in the 

third trimester group. I also identified 2,297 gene bodies to be significantly 
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differentially methylated, with 2,136 (93.0%) being hypermethylated in the third 

trimester samples. In both promoters and gene bodies, the hypermethylated counts 

greatly outnumbered the hypomethylated counts. 

5.3.5. RNA-seq analysis 
 

Next, RNA-Seq analysis was carried out on five first/second trimester and four third 

trimester placenta villi samples. Genes with low expression levels (RPKM < 0.5) in 

both sample groups were filtered out, leaving 13,756 genes for differential gene 

expression analysis. A total of 2,447 genes were significantly differentially expressed 

between first and third trimester samples, of which, 1,889 (77.2%) were down-

regulated and 588 (22.8%) were up-regulated in the third trimester samples (Figure 

39). Gene ontology analysis with multiple testing correction (p < 0.05) using a 

commercial database (MetaCore from GeneGo Inc.) was performed independently on 

the down-regulated and up-regulated gene lists. The down-regulated genes were 

enriched mainly in the cell cycle pathways, with the top three pathways being “Cell 

cycle_The metaphase checkpoint”, “Cell cycle_Role of APC in cell cycle regulation” 

and “Apoptosis and survival_DNA-damage-induced apoptosis” The up-regulated 

genes, on the other hand, were mainly related to immune response, with the top three 

pathways being “Immune response_Alternative complement pathway”, “Immune 

response_Classical complement pathway” and “Immune response_Lectin induced 

complement pathway”.  
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Figure 39: Expression changes during placental development across gestational age.  

Distribution of gene expression changes from first to third trimester for the genes that showed 

at least 2 fold changes. There is a general gene repression from first to third trimester, 

indicated by higher green bars. 

 

 
Eleven imprinted genes were also differentially expressed, of which ten (SLC22A18, 

PEG10, MEST, NAP1L5, MIMT1, PSIMCT-1, PEG3, LIN28B, DGCR6, PLAGL1) 

showed higher expression for the first trimester samples and one showed higher 

expression in the third trimester (ANO1). This represented 20.8% of the imprinted 

genes that were expressed in placenta (average RPKM > 0.5 in either early or late 

gestational group) 

 

5.3.6. Correlation between DNA methylation and gene expression 
 

To explore the correlation between DNA methylation and gene expression, I first 

equally separated the genes into 50 bins with increasing expression levels. The 

average DNA methylation level of the promoters in each bin was then calculated. 

Interestingly, for both CGI promoters (promoters overlapping with CGIs) and non-

CGI promoters, a non-linear correlation between DNA methylation and gene 

expression was observed (Figure 40A-B). There was a clear anti-correlation for genes 
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with lower expression levels (expression bins 1 to 20). However, for genes at higher 

expression levels (bins 21 and above), DNA methylation levels were largely similar 

regardless of gene expression level.  

 
Figure 40: Correlation between DNA methylation and gene expression. Genes were grouped 

into 50 bins, in order of increasing gene expression. DNA methylation of the promoter or gene 

body fragments within each gene expression groups were then averaged to obtain the 

relationship. (A) Scatterplot of the DNA methylation of promoters in CGI against the gene 

expression showed anti-correlation for the lower expressed genes. (B) Scatterplot of the DNA 

methylation of promoters in non-CGI against the gene expression showed anti-correlation for 

the lower expressed genes. The non-CGI promoters showed higher DNA methylation than the 

CGI promoters. (C) Scatterplot of the DNA methylation of gene body fragments in CGI 

against the gene expression shows positive correlation. (D) Scatterplot of the DNA 

methylation of gene bodies in non-CGI against the gene expression shows positive correlation. 

The non-CGI gene bodies showed higher DNA methylation than the CGI gene bodies.  

 

The correlation between DNA methylation at gene bodies and gene expression was 

also non-linear, with CGI gene bodies and non-CGI gene bodies behaving somewhat 

differently (Figure 40C-D). For CGI gene bodies, there was a positive correlation 
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between DNA methylation and gene expression, for genes in bin 1 to bin 40, 

followed by a seemingly negative correlation for genes in bin 41 to 50. For non-CGI 

gene bodies, the positive correlation was only observed for genes in bin 1 to bin 25. 

DNA methylation levels for the genes falling within bin 26 to about 40 were largely 

similar, beyond which a seemingly negatively correlation was observed (Figure 40). 

We did not observe a difference in exonic and intronic regions (Figure 41). 

 
Figure 41: Correlation between DNA methylation and gene expression. Genes were grouped 

into 50 bins, in order of increasing gene expression. DNA methylation of the exons/introns 

fragments within each gene expression group was then averaged to obtain the relationship. 

Scatterplot of the DNA methylation of gene body exons and introns against the gene 

expression showed positive correlation. The DNA methylation in exons and introns did not 

exhibit clear differences.  

 

However, the DNA methylation levels of CGI exons were consistently higher than 

CGI introns, regardless of gene expression levels (Figure 42A-Figure 42B).  
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Figure 42: Correlation between DNA methylation and gene expression. Genes were grouped 

into 50 bins, in order of increasing gene expression. DNA methylation of the exons/introns 

fragments within each gene expression group was then averaged to obtain the relationship. 

The genes were divided into 4 groups where non-CGI introns and exons showed similar 

pattern while differences were observed between exons and introns in CGI gene bodies. First 

and third trimester samples showed similar patterns and trends.  

 

Lastly, I asked how changes in DNA methylation from early gestation to late 

gestation in human placenta affects gene expression. A total of 25 genes (Table 15) 

showed both differential gene expression and differential DNA methylation in 

promoters when comparing the two gestation groups (Figure 43A). Of those, 19 

genes (78%) showed anti-correlation between changes in gene expression and 

changes in promoter DNA methylation. There was a statistically significant 

difference between the positive and negative correlations (2-sided binomial test, p = 

0.015). We validated the results in five genes (GJB5, LOC401109, BRDT, BIN2 and 
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ANGPTL2) using the dual luciferase assay by cloning the respective promoters into 

the reporter vectors. Gene expression repression was observed in all five genes when 

the vectors were treated with the methyltransferase M.SssI (Figure 43B). 

Gene Promoter DNA methylation change 

(3T-1T) 

Gene Expression 

(log2(3T/1T)) 

ANGPTL2 22.32 -2.20 

BIN2 18.44 -3.19 

BRDT 12.26 -3.01 

CCRL2 23.06 -1.69 

CYP2W1 15.00 -3.72 

FAM111A 14.58 -1.10 

FBXO17 16.93 -1.49 

FGL2 26.25 -1.49 

GJB5 -24.29 2.51 

GREB1 17.90 -1.06 

HSPB2 10.37 -1.28 

ISLR 18.62 -1.23 

LOC100289019 14.03 1.06 

LOC401109 -13.71 1.16 

MAL 10.43 2.36 

PLEKHA6 20.11 1.58 

PTPRE 10.36 -1.03 

RAB42 18.59 -1.51 

RHOBTB2 14.66 -1.38 

SEMA6D 24.79 -1.56 

SNORD110 13.68 -1.85 

SNRPF 14.89 -1.43 

ST5 19.15 1.36 

STRA6 16.80 1.71 

SYNPO 23.10 1.27 

Table 15: List of genes having both significant promoter DNA methylation difference and 

significant gene expression between first and third trimester placenta samples. 
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Figure 43: Correlation between significant differential DNA methylation and differential gene 

expression. (A) Scatterplot of differentially methylated promoters with differential gene 

expression between first and third trimester samples. 19 out of 25 promoters showed anti-

correlation. (B) Experimental validation of the genes labelled in Figure 5A, showing DNA 

methylation is associated with gene repression. Dual luciferase assays were performed, using 

empty vector as negative control. 

 

A total of 370 genes showed both differential gene expression and differential DNA 

methylation in gene bodies when comparing the two gestation groups (Figure 44). Of 

those, 233 (63%) showed negative correlation between changes in gene expression 

and changes in gene body DNA methylation. Similar to the promoters, there was a 

statistically significant difference between the positive and negative correlations (2-

sided binomial test, p = 6.85 x 10-7).  
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Figure 44: Scatterplot of differentially methylated gene bodies with differential gene 

expression between first and third trimester samples. Majority of the genes showed negative 

correlation.  

 

Given that the correlation between gene body methylation and gene expression was 

positive for genes with relatively lower expression, but negative for genes with higher 

expression (Figure 40C-D), we hypothesized that the negatively correlated genes (233 

genes) were of higher expression levels than the positively correlated genes. RNA-

seq data confirmed our hypothesis (Figure 45).  

 
Figure 45: The differential expressed and methylated gene bodies from Figure 44 were 

grouped by positive and negative correlation. A boxplot comparing the initial gene expression 

at first trimester was given. The negatively correlated group showed elevated gene expression 

compared to the positively correlated group (2 sided p-value=8.38*10-6). 
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5.4. Discussion  

 

In this study, next generation sequencing techniques was applied to study the gene 

expression (by RNA-Seq) and DNA methylation profiles (by RRBS) of placenta 

tissues derived from early and late gestations.  

 

 The RNA-seq results shows that a total of 2,477 genes, including eleven imprinted 

genes, were found to be differentially expressed between the early and late gestational 

age placenta samples (Table 16). Of the list of eleven imprinted genes, eight were 

paternally expressed, two were maternally expressed and the remaining one being 

random. All of the eight paternally expressed genes were down-regulated by the 

third/term trimester, which is coherent with the fully developed status of the foetus.  

 

Gene  Average first 

trimester 

(RPKM) 

Average third 

trimester 

(RPKM) 

log2 (third 

trimester/first 

trimester) 

p-

value 

Maternal/Paternal 

imprinted 

SLC22A18 23.25 3.90 -2.58 0.016 Maternal 

PEG10 612.10 188.34 -1.70 0.016 Paternal 

MEST 291.60 93.04 -1.65 0.016 Paternal 

NAPIL5 4.26 1.48 -1.53 0.016 Paternal 

MIMT1 1.34 0.50 -1.42 0.032 Paternal 

PSIMCT-1 3.246 1.35 -1.26 0.032 Paternal 

PEG3 194.33 81.51 -1.25 0.016 Paternal 

LIN28B 23.84 10.08 -1.24 0.016 Paternal 

DGCR6 1.38 0.64 -1.11 0.032 Unknown 

PLAGL1 119.87 56.75 -1.08 0.016 Paternal 

Table 16: Information of the differentially expressed imprinted genes. The list was obtained 

from http://www.geneimprint.com. Expression was given relative to the third trimester 

samples. 

 

Imprinted genes are essential to the normal growth and development of the 

mammalian foetus. Paternally and maternally expressed genes have been known to 

promote and repress foetal growth respectively [187]. Alterations in imprinted genes 

have been implicated in pregnancy complications such as intrauterine growth 

restriction (IUGR) [188, 189], preeclampsia (PE) [190, 191] and lethality [32, 33]. 

http://www.geneimprint.com/
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Prospectively, even if the foetus survives to birth, these effects may be exhibited 

chronically and are linked to increased risks for hypertension [192],cardiovascular 

disease [193-195], abnormalities in neuro [196] and renal development [197, 198].  

 

Distinct profiles of DNA methylation were observed for the placenta samples at 

different gestational ages. A similar trend had been reported in a study by Novakovic 

et al. [184], whose group made use of the Illumina Infinium HumanMethylation 27 

Beadchip to demonstrate the hypermethylation effects in promoters with gestational 

age increment.  

 

Interestingly, DNA methylation changes in both promoters and gene bodies were 

predominantly hypermethylation in later pregnancy, coincident with largely gene 

expression repression. On the genomic level, this suggests that DNA 

hypermethylation may be used to reduce transcriptional activity in later pregnancy.  

 

The association between DNA methylation and gene expression was found to be 

complex and dependent on at least two factors: genomic context (promoters or gene 

bodies) and gene expression level. Consistent with published results [184], we found 

a negative correlation between gene expression level and promoter methylation level 

in both early and late pregnancies, as well as a positive correlation between gene 

expression level and gene body methylation level. However, we also found that such 

negative and positive correlations were no longer present in genes with higher 

expression levels (Figure 40). In contrast, for genes with the highest expression 

levels, there was a negative correlation between gene expression and DNA 

methylation (Figure 40).  
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There are a few limitations in our study. First, the placenta is a complex organs with 

different cell types at different structural locations with different expression profiles 

[177]. Thus, the molecular profiling at these different locations may reveal different 

functional changes during pregnancies. Secondly, placenta samples from additional 

time points during pregnancy may provide more dynamic and detailed changes in 

gene expression and DNA methylation. Thirdly, other epigenetic mechanisms such as 

histone modification, transcriptional factor binding and nucleosome positioning may 

provide further insight into gene regulation.  

 

 

5.5. Summary 

 

In this study, we profiled DNA methylation and transcriptome of human placental 

villi samples from early and late gestational ages. Comprehensive comparisons of 

DNA methylome were made by stratifying the genome into functional units and 

subsequently correlating it with gene expression profiles. The following key finding s 

were made: 

i. Distinctive global hypermethylation in promoters and gene bodies with 

increasing gestational age 

ii. Global gene repression with increasing gestational age 

iii. Correlations between DNA methylation and gene expression were 

genomic context dependent and non-linear 
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CHAPTER 6– GLOBAL DNA HYPERMETHYLATION IN DOWN 

SYNDROME PLACENTA  

 

6.1. Background and Hypothesis 

 

Down syndrome (DS) is a genetic disorder that is caused by an extra copy of 

chromosome 21 (chr21) as a result of random error that occurs during cell division. 

The incidence of DS occurs one in every 700 live births, across all ethnic groups and 

social status [108, 199].  

 

Although the cause of DS is clearly defined, there is currently no cure for the 

condition. DS is mainly caused by three types of chr21 related abnormalities, (i) 

complete T21, (ii) translocation T21 and (iii) mosaic T21 [200-203], resulting in 

variable penetrance and expressivity of the aneuploidy effect. There have been over 

80 clinically defined phenotypes associated with DS, ranging from affected 

intellectual ability, characteristic facial features, physical growth delays to affecting 

organs such as central nervous system, heart, gastrointestinal tract and immune 

system [108].  

 

By the gene dosage imbalance hypothesis [108, 204, 205], it is unsurprising that most 

genes located on chr21 showed an increased expression in DS than normal samples. 

Even so, not all the chr21 genes with altered expression result in a phenotypic effect, 

possibly attributed to dosage compensation via other regulatory networks or negative 

feedback loops [108, 204, 205]. What is more intriguing is genes located on other 

chromosomes are also dys-regulated [112-114], leading to the question of how an 

extra chromosome is capable of causing a global gene expression change.  
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The search for therapeutics for DS is mainly been directed towards either silencing 

the entire extra chromosome [206] or bringing the elevated gene expression to normal 

levels. Epigenetic regulation such as DNA methylation is often viewed as an 

epigenetic switch that can silence gene expression. DNA methylation related enzyme 

such as DNMT1, DNMT3A and TET1 are abundantly expressed in the nervous system 

[207, 208] and epigenetic alterations have been frequently observed in intellectual 

disability syndromes [209].    

 

It was reported that children with DS have perturbed homocysteine metabolism, 

which could result in lower levels of the methyl donor (SAM) and its corresponding 

reduced form (SAH) [210]. Under such condition, it was thus beyond expectation to 

see hypermethylation in DS, which indicates that SAM is unlikely is unlikely to be a 

key player in the DS phenotype [211].  

 

Here, we would like to understand that at an epigenome level, if the perturbations are 

associated to DS and if such perturbations are functionally relevant to DS. To do so, 

we quantified the CpG methylation of 17 placenta villi samples, comprising of 11 DS 

and six normal samples. In addition, we also quantified the transcriptome of four DS 

and five normal placenta villi. We observed a genome-wide hypermethylation 

associated with DS phenotype. Furthermore, genes with promoter hypermethylation 

were associated with functions related to DS phenotypes. Our results thus support that 

perturbation in the DNA methylome maybe one of the regulative mechanisms 

explaining for the DS phenotypes.  
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6.2. Material and methods 

6.2.1. Samples 

 

Women with euploidy and DS pregnancies who attended KK Women’s and 

Children’s Hospital, Singapore, were recruited. Chorionic villus samples from 

subjects carrying a normal or DS foetus at the first or second trimesters of pregnancy 

were collected by chorionic villus sampling (CVS). Placenta villi samples (foetal 

side) from DS foetuses were collected from termination of pregnancy (TOP).  

This study by supported by a Bench to Bedside grant (09/1/50/19/622) from BMRC-

NMRC. 

 

6.2.2. DNA methylation 

 

Six DNA samples from normal pregnancies and 11 samples from carrying DS 

foetuses were chosen for DNA methylation analysis by RRBS [133]. Sequencing data 

were deposited into the GEO database with accession numbers GSE42144. 

Sample preparation and computational processing followed the steps described in 

Chapter 3, Section 3.2.2 and Section 3.2.3 respectively.  

 

6.2.3. Differential DNA methylation analysis 

 

Differential DNA methylation between normal and DS samples were analysed at both 

single CpG and genomic level. Autosome CpGs (sequencing depth >10) covered in at 

least 3 normal and 6 DS samples were used for all subsequent analyses. A CpG was 

considered differentially methylated if the methylation difference between average 

DS and average normal samples was at least 10%; and 2) p<0.05 (Wilcoxon rank-
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sum test, two-sided). For genomic regions, the same set of criteria follows, with an 

extra requirement that the region should include at least 6 CpGs. 

The probability density functions (PDF) for comparison between DS and normal 

samples were calculated and plotted using R package.  

 

6.2.4. RNA-seq 

 

Gene expression was quantified using RNA-seq, details found in [133]. Five RNA 

samples from normal pregnancies and four samples from pregnancies carrying DS 

were included in the study. The protocol followed the steps from Chapter 5, Section 

5.2.4. 

 

6.2.5. Differential RNA-seq analysis  

 

The expression level for each gene was represented by the reads per kilobase per 

million mapped reads (RPKM) value, using the formula below: 

610  
(kb) gene for thelength  Transcript  reads aligned  totalofNumber 

interest of gene afor  reads aligned ofNumber 
RPKM 


  

 

Average RPKM values for each gene in each sample group (normal and DS) were 

calculated. When the average RPKM for a gene is less than 0.5, the value was set as 

0.5. A gene was considered to be differentially expressed between normal and DS 

samples when: 1) Binomial test with a Benjamini-Hochberg corrected p value of less 

than 0.01; and 2) the ratio of (Average DS/Average normal) ≥1.25 or ≤0.8. We used 

the R package to calculate the probability density functions (PDF) distributions for 

various gene groups with regard to the expression changes represented by 

log2(Average DS/Average normal). 
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6.2.6. DNA methylation validation by EpiTYPER assays 
 

An independent set of gestational age matched samples were used for validating 

results from RRBS and computational analyses. 14 normal (gestational age: 

17.41+3.77 weeks) and 17 DS (gestational age: 17.41+3.77 weeks) placental villi 

samples were included. All reagents and equipment were from Sequenom (San 

Diego, California, USA). Briefly, 1 µg of genomic DNA was bisulfite converted with 

EZ DNA Methylation Gold Kit (Zymo Research, USA) and subsequently amplified. 

The PCR products were then treated with shrimp alkaline phosphatase (SAP), 

followed by T-cleavage transcription/RNase A cocktail from EpiTYPER Reagent Kit 

(Sequenom). The products were then conditioned by Clean Resin and fragments 

analysed using MassARRAY system and data was analysed with EpiTYPER 1.2 

software (Sequenom). For each sample, the DNA methylation level was obtained by 

taking the average of all analysed CpGs within the target amplicon.  

 

6.2.7. Quantitative real-time PCR validation 
 

An independent set of gestational age matched samples were used for validating 

results from RRBS and computational analyses. 8 normal (gestational age: 

19.18+3.56 weeks) and 10 DS (gestational age: 178.37+2.70 weeks) placental villi 

samples were included. All reagents and equipment were from Life Technologies. 

Briefly, 0.5 to 1 µg total RNA was treated with DNase I and subsequently subjected 

to first strand DNA synthesis by SuperScript III First-Strand Synthesis SuperMix Kit. 

Quantitative real-time PCR was performed on Applied Biosystems 7900HT Fast 

Real-time PCR system with 384-well block module. Each assay were duplicated and 

the average Ct value was obtained using SDS version 2.3 software. GAPDH was used 

for normalisation using the formula: 
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(GAPDH))Ct  - gene)Ct(target (2gene target a of level Expression   

6.3. Results  
 

6.3.1. Descriptive statistics for RRBS quality 

 
We quantified DNA methylation using RRBS on 11 DS and 6 normal samples. On 

average, there were approximately 37.5 million reads per sample with 21.4 million 

aligned reads (C2T or G2A references), corresponding to 57% alignment rate. The 

bisulfite conversion were above 99% for all the samples (Figure 46A).  

 

We used a minimum sequencing depth of at least ten, leaving an average of about 1.7 

million CpGs (Figure 46B) in each placenta villi samples.  
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Figure 46: Descriptive statistics of the 17 samples. (A) For each sample, red bars represent the 

number of uniquely aligned reads, while blue bars are the non-uniquely or unaligned reads. 

The blue line gives the bisulfite rate for each sample. (B) Number of CpGs at 5x and 10x 

coverage 

 

6.3.2. Genomic coverage of the analysed CpGs 
 

The assayed CpG sites represented about 3% of all the CpG sites in Hg19, on both 

Watson and Crick strands (Figure 47A). On a genomic level (includes at least 3 

CpGs), the assayed CpG sites covers 75.1% of annotated CGIs (Figure 47B), 50.8% 

of CGSs (Figure 47C) and 51.9% of promoter regions (Figure 47D).  
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Figure 47: A CpG site was considered covered if the sequencing depth was ≥10. A genomic 

region (CGI, CGI shore or promoter) was considered covered if at least 3 CpGs within the 

region was sequenced at a depth ≥10. Figure adapted from [133]. 

 

Next, we examined the locations of the CpGs with respect to CpG content. A total of 

56% of the CpGs were located in either CpG rich CGIs (731,924 CpGs corresponding 

to 43%) or CpG medium rich CGSs (218,659 corresponding to 13%) and the 

remaining 44% (738,598 CpGs) are found in CpG poor regions (Figure 48A). 

Independently, we also assessed the genomic locations of the CpGs. They were 

mostly located in intragenic regions (38%), followed by intergenic (36%), then 

promoters (defined as -1kb to +500bp from transcription start site, 23%) and lastly, 

transcription termination regions (TTR, defined as -500bp to +500bp from TTS, 2%) 

(Figure 48B). 
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Figure 48: Distributions of covered CpGs in different functional regions. (A) Context of CpG 

richness (B) Genomic locations. Figure adapted from [133]. 

 

6.3.3. Methylation distribution profiles are unique to genomic location 

regardless of normal or DS status 

 

The methylation of all the CpGs showed a distinct bimodal profile with prominent 

peaks at the two extreme ends (Figure 49A), consistent in other studies involving 

different cell types [39, 57, 129, 131, 185, 186]. ~30% of the CpGs have methylation 

0-5% while another ~10% of them have methylation 95-100%. This made up a total 

of 40% of all analysed CpGs in a mere combined 10% interval. However, this is an 

underestimation as the fully methylated CpGs located in repetitive regions have been 

intentionally removed as a part of the RRBS feature.  

 

Upon stratifying the genomic regions by the functional locations (promoters, TTR, 

intragenic and intergenic), we observed dramatic differences in the methylation 

profiles, with promoters being most distinctive from the rest (Figure 49B- E). Unlike 

TTR, intragenic and intergenic regions which have similar profiles, promoters have a 

positively skewed distribution where there is a strong enrichment (~70%) of the CpGs 

in 0-5% methylation. In contrast, the non-promoter regions have higher proportions 

of partially methylated CpGs (30-70%), as have been observed by other groups [131].  
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Figure 49: Distributions for individual CpG methylation at respective genomic regions. (A) 

All analysed CpGs; (B); Promoter regions (C) Transcription termination regions (TTR); (D) 

Intragenic regions; (E) Intergenic regions. The average methylation for normal and DS 

samples at each CpG site was used for the plots. Figure originally from [133]. 

 

6.3.4. Inter-Individual Variability of Normal Foetuses 
  

We next assessed the inter-individual variability by using CpGs from five normal 

male foetuses, from the motivation that CpGs with high variability might be potential 
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biomarker candidates [212]. Thus, we only selected CpGs with partial methylation, as 

defined by those having average methylation of 30-70% as this range would have 

higher variability than the extreme values. Varying sequencing depth of 10, 20 and 50 

were also used to demonstrate the impact of sequencing depths to the accurate 

quantification of DNA methylation.  

 

Most CpGs (~50% to 75%, depending on minimum sequencing depth) have standard 

deviation among the five samples within 10% and almost all the CpGs have standard 

deviations within 27.5% (Figure 50).  Unsurprisingly, increasing the cut off for 

sequencing depth gives rise to lower variability, suggesting that besides biological 

variability, sequencing depth is also an important contributor towards observed 

variation among similar samples.  

 
Figure 50: Inter-individual variability for CpGs. Only CpGs with methylation 30-70% for five 

normal male foetuses were included in the analysis. Analysis was performed at varying 

sequencing depth cut offs of 10, 20 and 50. Figure originally from [133]. 

 

6.3.5. Methylation status distinguishes samples by disease status  
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PCA is a statistical technique that is commonly used to linearly transform a set of 

possibly correlated variables (CpG methylation) into a set of linearly uncorrelated 

variables known as principle components. By doing so, it also reduces the dimension 

of the data. Typically, the first principle component accounts for most of the 

variability in the data.  

 

PCA based on DNA methylation percentage of the CpGs revealed that the samples 

were separated by disease status and not on gender (Figure 51). The combined first 

and second principle component accounts for 20.6% of the variability.  

 
Figure 51: PCA plot using analysed CpGs. Samples were clearly separated by disease status. 

Figure originally from [133]. 

  

6.3.6. Global hypermethylation in DS Samples 
 

Earlier studies performed on DS chorionic villus samples and leukocytes have shown 

a dominance of hypermethylated to the hypomethylated promoters [211, 213]. In our 

study, we made extended from promoter analysis and observed a global 

hypermethylation which was consistent in all defined genomic regions (CGIs, 

promoters, gene bodies, TTRs, intergenic) (Figure 52A-F). This observation was 
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demonstrated by an elevated probability density curve for hypermethylation (DS > 

Normal, red curve) than the curve for hypomethylation (DS < Normal, blue curve). In 

addition, such a phenomenon was not only limited to genomic location but across all 

autosomes (Figure 52G). As shown in Figure 52H, the average DNA methylation of 

CGIs, given by the average methylation of all CpGs (at least 6) falling within the 

CGI, was significantly higher in the DS than normal samples (2 sided Wilcoxon rank-

sum test, p<0.002). 
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Figure 52: (A) Probability density function (PDF) distribution for methylation difference 

between DS and normal samples for individual CpGs. Similarly, the methylation difference 

values for (B) 18,939 CGIs (each CGI with at least 6 covered CpGs), (C) 19,479 promoters 

(each promoter with at least 6 covered CpGs), (D) 30,648 gene bodies (each gene body with at 

least 6 covered CpGs), (E) 3,215 TTRs (each TTR with at least 6 covered CpGs) and (F) 

8,611 intergenic regions (each intergenic region with at least 6 covered CpGs) were used for 

calculating their respective PDF distributions. In (A–F), hypermethylation in DS 

(DS>Normal) occurs much more frequently than hypomethylation in DS (Normal>DS). (G) 

Percentages of hyper- and hypomethylated CpGs in each autosome. (H) Average CGI 

methylation was higher in DS than in normal samples (p<0.002, Wilcoxon rank-sum test, two-

sided). Only CGIs with at least 6 covered CpGs were included. Figure originally from [133]. 
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Next, we performed significant differential analysis on the CpGs, details provided in 

Section 6.2.2. Of all the genomic regions analysed, TTRs and intergenic regions have 

the highest proportion of significant DMC, followed by intragenic, non-CGI 

promoters and finally CGI promoters (Figure 53). Despite so, the ratio of 

hypermethylated to hypomethylated CpGs was the highest in promoters among all 

other categories (ratio of 56.2).  

 

 
Figure 53: Proportion and frequencies of differentially methylated CpGs in different genomic 

regions.  
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6.3.7. DNA methylation perturbations in DS may occur early in 

development 

 

We compared our list of significantly differentially promoters against a study by 

Kerkel et al. [213], in which the authors identified nine genes with differential 

methylation between peripheral blood leukocytes (PBLs) from DS and karyotypically 

normal controls. Out of this list of nine, three of them (TCF7, FAM62C and CPT1B) 

were also found in our results. The statistical significant overlap between studies 

involving different developmental origins suggests that perturbations in DNA 

methylation of DS phenotypes could have occurred during early development. 

 

6.3.8. Hypermethylated genes largely correlated with gene repression 
 

RNA-seq analysis was performed on five normal and four DS placenta villi samples. 

Gene expression was measured using RPKM. We removed the genes which have an 

average RPKM<0.5 in both normal and DS groups and reduced the analysed gene list 

to 14,090. Out of these, 1,413 were significantly higher expressed in DS which 

includes 73 chr21 genes. Meanwhile, out of 3,449 genes which were significantly up-

regulated in normal samples, only three were chr21 genes.  

 

We next compared the expression change profiles between chr21 and all background 

genes. There was an apparent right shift of the chr21 genes relative to all genes, 

corresponding to an average of 53% up regulation in gene expression in DS samples 

(Figure 54). This is consistent with gene dosage imbalance hypothesis [108, 204, 205] 

and other reports [109-111].  
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A total of 589 genes located on the autosomes were significantly hypermethylated on 

DS samples. Of these, 207 of them were non chr21 genes which passed the minimum 

gene expression threshold (RPKM > 0.5 in either DS or normal group). There was 

significant down regulation of gene expression (two-sided Wilcoxon rank-sum test, p 

<0.05), indicating an anti-correlation with promoter DNA methylation changes. This 

was consistent with the left shift of the PDF for hypermethylated genes relative to 

“All genes” curve (Figure 54).   

 

 
Figure 54: Proportion and frequencies of differentially methylated CpGs in different genomic 

regions. Figure originally from [133]. 

 

Four genes (CS1, TFAP2E, CDH13, and NDN) with hypermethylated promoters and 

corresponding gene repression were selected for validation with EpiTYPER assays 

and quantitative real-time PCR on an additional set of gestational age matched 

samples (Figure 55). 
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Figure 55: Genes with hypermethylated promoters are associated with expression down-

regulation in DS. (A) Promoter hypermethylation in DS samples. (B) Down-regulation of gene 

expression in DS samples. *: p<0.05, **: p<0.01, ***: p<0.001, t-test, two-sided. Error bars 

represent standard deviations. EpiTYPER: normal n = 14, DS n = 17. Gene expression: 

normal n = 8, DS n = 10. Figure originally from [133]. 

 

6.3.9. Gene ontology analysis of significantly differentially methylated 

promoters 

 

Gene ontology analysis was next carried out on the list of significant differentially 

methylated promoters (589 hypermethylated and 9 hypomethylated) using a 

commercial database (MetaCore from GeneGo Inc.). The top three enriched pathway 

maps were: 

i. Immune response_Lectin induced complement pathway 

ii. Neurophysiological process Dopamine D2 receptor signalling in CNS 

iii. Cytoskeleton remodelling Neurofilaments   

 

Additionally, the software also identified top three significantly enriched process 

networks being 

i. Inflammation complement system 

ii. Signal transduction Neuropeptide signalling pathways 

iii. Developmental Neurogenesis Axonal Guidance  
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The results from these two analyses were highly correlated which implied an 

involvement of perturbations in the immune system and neural development, related 

to DS phenotypes.  

 

 

6.3.10. Possible mechanisms to explain for genome-wide 

hypermethylation  

 

Previous studies have reported of lowered levels of SAM in the plasma of DS 

individuals. However, we noticed a global hypermethylation which was opposite to 

what would be expected given a reduced availability of the methyl donor for 

methylation. This implied other mechanisms have acted to bring about methylome 

changes in the DS.  

 

The TET family is involved in DNA demethylation [35, 208, 214, 215] and is made 

up of three main members (TET1 on chr10, TET2 on chr4 and TET3 on chr2) which 

none are located on chr21. Our RNA-seq results showed that all three genes were 

significantly down regulated in DS (Table 17). We further validated the results by 

using quantitative real-time PCR on a new set of gestational matched samples (Figure 

56), which confirmed that TET1 and TET2 were indeed significantly differentially 

expressed between normal and DS samples.  

 
Gene Chromosome Average 

(NormalRPKM) 

Average 

(DSRPKM) 

(DSRPKM/ 

NormalRPKM) 

Corrected 

p-value 

TET1 Chr10 0.80 0.57 0.71 5.89E-03 

TET2 Chr4 4.01 2.54 0.63 5.18E-19 

TET3 Chr2 5.44 3.40 0.62 1.14E-29 

REST Chr4 5.73 3.41 0.60 1.30E-25 

Table 17: RNA-seq expression values for TET1, TET2, TET3 and REST 
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Figure 56: Quantitative real-time PCR validation of expression changes for (A) TET1, 

(B) TET2, (C) TET3 and (D) REST. *: p<0.05, **: p<0.01. T-test, two-sided. Error bars 

represent standard deviations. Sample size: normal n = 8, DS n = 10. Figure originally from 

[133]. 

 

Repressor element 1 silencing transcription factor (REST) is a transcriptional 

repressor in that regulates gene expression in neuronal and non-neuronal cells. We 

observed significant down regulation of REST in both our RNA-seq data (Figure 57) 

and quantitative real-time PCR (c). In conjunction with recent studies showing (i) 

DNA hypermethylation observed in REST -/- cells and (ii) REST binding to the target 

regions is able to maintain the hypomethylated states in low methylated regions (10-

50%) [131], we investigated the expression profiles of the REST target genes. The 

REST target genes were slightly up-regulated compared to the background gene list as 

shown in Figure 57. With a down-regulation of REST expression in DS, this could 

have caused a reduction in the binding of REST to the target genes, leading to DNA 

hypermethylation relative to the non-REST target genes.  
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Figure 57: PDF distributions of methylation difference for all promoters and promoters 

targeted by REST. Figure originally from [133]. 

 

6.4. Discussion  
 

In this study, we analysed the DNA methylation profiles of human placenta villi 

tissues derived from mothers carrying normal and DS foetuses to investigate if 

perturbations in DNA methylation is a possible mechanism connecting Trisomy 21 

and varying DS phenotypes.   

 

Comparison made between placenta villi (our study) and PBL (Kerkel et al.) 

identified three common genes (out of nine genes from Kerkel et al.) being 

differentially methylated in a similar fashion. This suggests that epigenetic 

perturbation occurs early in DS embryo development and persists to adulthood. These 

epigenetic perturbations may occur either early or later during development, leading 

to varying predisposition to certain disease. 
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Data from other studies, together with our RNA-seq results, have provided possible 

explanations to the observed global methylation via manipulations to important genes 

which can affect DNA methylation. 

i. RNA-seq data from our study has shown that genes from the TET family 

were down regulated in DS. It may be possible that a decrease in TET 

gene expression may cause a hypermethylation to the target regions by a 

reduction in DNA demethylation.  

ii. DYRK1A is a chr21 gene located in DS critical region. This gene was up 

regulated in DS and may have induced global epigenetic changes by 

down regulating REST, which is a transcription factor important to 

maintain DNA hypomethylation in low methylated regions [131], thereby 

leading to hypermethylation of the REST target genes.  

 

The study design of using clinical samples such as placenta villi to investigate DNA 

has to be carefully planned to avoid scrutiny from a statistical perspective. Being 

aware of possible confounding factors such as gestational age of the placenta, gender, 

potentially different cell mixtures from different samples, we have validated some 

genes for both DNA methylation and gene expression data on a new gestational age 

match dataset using EpiTYPER and quantitative PCR. 

6.5. Summary  
 

We compared the DNA methylomes and expression profiles between the placental 

villi samples from subjects carrying a normal or DS foetus. The key findings have 

been summarised below: 

i. An overall hypermethylation was observed in the DS samples which was 

consistent across all genomic regions.  
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ii. Genes located on chromosome 21 were on average up-regulated by 50% 

in DS samples.  

iii. Genes with hypermethylated promoters were associated with down-

regulation 

iv. Comparative studies between placental villi and adult PBL showed a 

significant overlap, suggesting global epigenetic changes occurs early in 

development, leading to DS phenotypes 

v. Global hypermethylation could be partly attributed to reduced gene 

expression in TET and REST in the DS samples.  
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CHAPTER 7 – CONCLUSION 
 

The regulations of the eukaryotic genome and gene expression are complex processes 

which involve multiple layers of mechanisms. Increasing evidence have argued that 

gene expression is no longer a simple reflection of DNA sequences; instead, 

modifications to DNA and histones known as epigenetics may play a fundamental 

role. In recent years, HTS technologies in combination with bioinformatics data 

mining methods allow for systematic genome-wide analysis among different -omics 

data types to elucidate complex interactive relationships.  

 

Taken together, we have shown that DNA methylation is a simple yet powerful 

epigenetic mark for which its impact cannot be neglected in regulating fundamental 

biological process such as cell differentiation (Study 2), defining cell linage (Study 2) 

and development (Study 3) (Figure 58). Our data from these genome-wide studies 

have demonstrated that DNA methylation changes are tightly controlled both 

temporally and spatially, resulting in the uniqueness of methylated marks at each 

specific developmental time point and cell types.  

 

DNA methylation have been implicated in both cell differentiation and cell lineage 

commitment. In our study (Study 2, Chapter 4), I have examined both questions in 

mouse adipogenic models. We found a predominance of hypermethylation during 

differentiation while a predominance of hypermethylation in WA compared to BA 

occurred in non-promoter regions. This strongly suggests that functional relevance of 

DNA methylation is highly context dependent.  

 



133 

 

I also demonstrated the hypothesis of context dependency DNA methylation effect on 

gene expression by investigating changes in DNA methylome across gestational ages 

in human placenta tissues (Study 3, Chapter 5). I performed an in-depth analysis by 

stratifying the genomic regions. On a broad picture, a positive correlation between 

gene expression and DNA methylation was found in gene bodies as opposed to 

negative correlation for promoter regions. Upon  stratifying gene bodies by the CGI 

and exonic status, CGI exon and introns exhibited differences in correlation.   

  

Conclusions made from the above studies have laid a foundation that DNA 

methylation is indeed important to fundamental process in organism survival. Thus, it 

became unsurprising that there was an aberrant genome-wide hypermethylation in the 

DS phenotype (Study 4, Chapter 6). In fact, genes with promoter hypermethylation 

were association with overall gene repression and were enriched in pathways related 

to neuronal activities. Down-regulation of genes involved in epigenetic regulation, 

particularly TET and REST/NRSF, may contribute to hypermethylation in DS 

phenotypes. 
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Figure 58: Schematic diagram binding four studies together 

 

From the above conclusions, I have shown that DNA methylation is indeed important 

in various diverse biological processes by using bisulfite conversion techniques. 

However, this technique fails to distinguish between 5mC and 5hmC. Recent 

discovery of 5hmC as an oxidative product of 5mC via TET (Figure 1) [4-6] being 

highly abundant in brain than ESC has suggested that it is a stable epigenetic mark 

which might be important in carrying out cell specific mechanisms in the brain [164, 

216-218]. Furthermore, recent studies have also found that the genomic locations of 

5hmC are distinctly different between brain and ES cells which intrigues the field to 

understand more on the functions of 5hmC [164].  

 

To distinguish between 5mC and 5hmC, Booth et al. developed oxBS-seq which 

makes use of a highly selective chemical oxidation to convert 5hmC to 5fC [219]. 

Subsequently, the converted 5fC will be deformylated and deaminated to uracil after 

bisulfite treatment. To identify 5mC alone, an independent performance of BS-seq 
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has to be performed and combining results from oxBS-seq, both 5mC and 5hmC can 

be discriminated [219].  

 

Following detection of 5hmC, Booth et al developed another method, redBS-Seq to 

decode 5fC at single-base resolution [220]. Opposed to oxBS-seq, this technique is 

based on a selective chemical reduction of 5fC to 5hmC and followed by bisulfite 

treatment. By using a combination of oxBS-seq, BS-seq and redBS-seq, it is now 

possible to generate genome-wide landscape of 5mC, 5hmC and 5fC at single base 

resolution to provide biological insights of their respective functions [220].  

 

Overall, I have established that epigenetic wide association studies (EWAS) via HTS 

coupled with bioinformatics analysis does bring us useful insights, such as biomarker 

discovery. In time to come, we will experience another paradigm shift from next 

generation sequencing to third generation sequencing such as the SMRT sequencing. 

These improved technologies, together with bioinformatics, will be crucial in helping 

us to seek answers to the many unknown questions in the epigenetics world.  
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