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Abstract 

Burgeoning genetic research is enabling the personalization of medical 

treatments based on patients’ individual genetic profile. One potential application that 

is likely to make significant impact in transforming patient care in the near future is 

pharmacogenetics, where patients’ genetic traits can predict their responses to 

drugs, and appropriate treatment that maximizes effectiveness and minimizes side 

effects can be selected based on genetic testing results. The pharmacogenetics of 

several life-threatening adverse drug reactions have been well established, however, 

the adoption of pharmacogenetic testing in clinical care has been slow. The main 

reason being that the clinical utility, adverse consequences and economic value of 

genetic testing are unclear. In many cases, the decision of technology adoption often 

involves tradeoffs between the above factors, which is difficult without a systematic 

evaluation of various factors all together and a commonly accepted standard.  

The objective of the thesis is to conduct health economic evaluations to 

generate evidence to inform clinical and regulatory decision making on whether 

pharmacogenetic testing should be routinely conducted in order to reduce the risk of 

a life-threatening adverse drug reaction named Stevens-Johnson syndrome (SJS) 

and Toxic Epidermal Necrolysis (TEN) in the context of Singapore. To assess the 

value of pharmacogenetic testing in Singapore, two health economics evaluation 

methods are employed: cost-effectiveness analysis (CEA) and discrete choice 

experiment (DCE).  

Cost-effectiveness analysis adopts a health system perspective to estimate 

the long-term cost and effectiveness related to pharmacogenetic testing in the 

population, with consideration of test accuracy, predictive power of test results, 

population risk allele prevalence, efficacy of various drugs, side effects of various 

drugs and their sequelae, patients’ quality of life, survival, and treatment costs. Cost-

effectiveness evaluates the incremental effectiveness and incremental costs 
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associated with genetic testing relative to the status quo treatment strategy to reveal 

the incremental value of genetic testing. A threshold of cost-effectiveness that 

reflects the societal willingness-to-pay can then be applied to judge whether genetic 

testing is cost-effective in the health system. Cost-effectiveness analysis favors 

technologies that achieve high effectiveness at low costs at the health system level, 

and is useful for policy makers to make resource allocation between various 

healthcare needs, and make efficient use of public healthcare resources. However, 

cost-effectiveness does not speak to what individuals would do or should do. To 

understand individual level decision making, discrete choice experiment can be used 

to elicit patients’ preferences and willingness-to-pay for genetic test to reduce risk of 

adverse drug reactions.   

The thesis consists of six chapters. Chapter 1 lays the general background of 

the thesis.  It outlines the advancement and challenges in the adoption of 

pharmacogenetic testing in clinical practice, and describes how health economics 

evaluations can inform the genetic testing decision making. Chapter 2 assesses the 

cost-effectiveness of HLA-B*1502 testing prior to carbamazepine treatment for 

epilepsy patients from a health system perspective to inform clinical and regulatory 

policy making in Singapore.  Results suggest that compared with the status quo 

strategy of providing carbamazepine to all patients without genotyping, genotyping 

and targeted treatment is highly cost-effective for Chinese and Malays, but not 

Indians in Singapore. The study, together with other related studies, has led to a 

regulatory recommendation of HLA-B*1502 testing prior to carbamazepine initiation 

among epilepsy patients, and subsequent adoption in clinical practice. These 

changes as well as intended outcomes and unintended consequences are briefly 

reviewed at the end of Chapter 2. Chapter 3 assesses the cost-effectiveness of HLA-

B*5801 testing, and other risk-mitigation strategies for allopurinol among chronic gout 

patients. Results suggest that HLA-B*5801 testing-guided treatment selection, in 

which allopurinol is avoided in test positive patients, is not cost-effective at the 
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population level, as the limited choice of alternative drugs to allopurinol will result in 

poorer serum urate control and worse gout treatment outcomes in some patients. On 

the other hand, a combination of genetic testing and a safety monitoring program is 

favored from the cost-effectiveness perspective under certain circumstances. 

Chapter 4 adopts a different perspective to review the literature on patients’ 

preferences for pharmacogenetic testing, and motivate the study in Chapter 5. 

Chapter 5 describes a discrete choice experiment to quantitatively measure patients’ 

preferences for genetic testing prior to initiating allopurinol in chronic gout treatment. 

Empirical data suggest that there is significant heterogeneity in patients’ preferences. 

A group of patients are risk averse, and have high willingness-to-pay for genetic 

testing even though the test is not perfectly predictive and treatment costs are 

significant higher. On the contrary, other patients are cost conscious, and consider 

cost containment to be more important than risk reduction. The preferences of both 

groups of patients are quantified in Chapter 5. In addition, this study also revealed 

the strong impact of doctor’s recommendation and herd effect on patients’ decision 

making. The thesis is concluded in Chapter 6, with recommendations for future 

research.  
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Chapter 1 . Challenges in adoption of Pharmacogenetic 
testing and the role of health economics analyses 

1.1 Chapter summary 

This chapter is an introduction to the general background of the thesis. It 

outlines the advancement of pharmacogenetics, particularly the application of 

pharmacogenetics in preventing severe adverse drug reactions. Then the current 

status of adoption and challenges are discussed, followed by an introduction of two 

health economics evaluation methods that can facilitate the decision of genetic testing 

adoption. 

1.2 Trend in personalized medicine and pharmacogenetics  

Burgeoning genetic research has started to transform medicine and enable the 

personalization of medical treatment based on patients’ individual genetic traits. 

Genetic testing is the process of identifying individual genetic variability, for a broad 

spectrum of medical applications using various testing methods.1 Diagnostic genetic 

testing can be used to confirm suspected diagnosis. Predictive genetic testing can be 

used to screen for genetic markers to predict susceptibility to a future disease.  

Pharmacogenetic testing, which can be used as companion diagnostic, 

predicts patient responses to a particular treatment. Among various applications, 

pharmacogenetic testing has direct and clear guidance on prescribing behavior, and is 

likely to have a more immediate impact in transforming clinical practice.2  

Pharmacogenetics study how genetic differences influence the variability in 

patients' responses to drugs, including individual variability in drug dose requirement, 

efficacy and risk of adverse reactions.3  Pharmacogenetic information may help to 

identify the patients who are most likely to respond to a certain drug, and/or to have 

adverse reactions, and therefore facilitate drug selection and optimize drug dosing to 

achieve better efficacy and lower risk of side effects.4 
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Large amount of pharmacogenomic information is available. Of 1200 drugs 

reviewed by the United States Food and Drug Administration (US FDA) between 1945 

and 2005, 10% have pharmacogenomic information in their drug label.4,5 A drug 

utilization review based on the prescription claims database of a large pharmacy 

benefits manager in the US showed that a quarter of all outpatients received at least 

one drug with pharmacogenomic information on the label.5 Applying pharmacogenetic 

information is therefore promising to have significant impact on medication usage and 

treatment outcomes.  

One success of pharmacogenetic testing in influencing clinical practice is the 

targeted treatment of cancers.6-9 Breast tumors that overexpress human epidermal 

growth factor receptor type 2 (HER2) have better response to the drug trastuzumab. 

HER2 gene-amplification test and HER2 protein immunochemistry tests are now used 

to identify patients whose tumor cells overexpress HER2 and are therefore more likely 

to benefit from trasuzumab treatment.6,8 The American Society of Clinical Oncology 

recommends KRAS mutation testing for all patients with metastic colorectal carcinoma 

before anti-EGFR antibody therapy, and states that those with mutations in codon 12 

or 13 should not receive anti-EGFR antibody therapy.9 Immunochemistry tests for two 

other proteins: EGFR and c-kit are also approved as “companion diagnostics” for the 

colorectal cancer drug Erbitux and the gastrointestinal stromal tumor drug Gleevec, 

respectively.6 

1.3  ADRs and pharmacogenetics 

Another area of pharmacogenetics with potential is to reduce the risk of 

adverse drug reactions (ADRs) and improve drug safety. ADRs incur significant health 

care burden and cost to the health system. It was estimated that in the US in 1994, 

overall 2216000 hospitalized patients had serious ADRs, among which 106,000 had 

fatal ADRs.10 5%-7% of hospital admissions in US and Europe are due to ADRs each 

year, which ranks among the top six causes of inpatient death.10,11 Other than the 
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threats to the quality of care and medical cost, ADRs have also resulted in the 

withdrawals of many effective drugs. Between 1999 and 2012, 43 drugs were 

withdrawn from the market due to ADRs,12 with an even larger number of drugs 

experiencing decreased usage after severe ADRs were reported. ADRs therefore have 

significant adverse impact on availability of drugs and the appropriate use of effective 

drugs at the health system level, in addition to the direct medical consequences.   

In Singapore, 3155 cases of ADRs are voluntarily reported each year to the 

Health Sciences Authority (HSA), with 49% being classified as severe ADRs, and 

22.4% being skin-related disorders.13 A review of admission causes in a general 

hospital in Singapore revealed that 0.42% of inpatients had drug allergy, with 

cutaneous eruptions being the most clinical presentation (95.7%).14 Serious cutaneous 

ADRs occurred in 5.2% of patients who had drug allergy.14 Cutaneous ADRs are 

therefore among the most concerned ADRs in Singapore.  

The most severe forms of cutaneous ADRs are Stevens-Johnson syndrome 

(SJS), and Toxic Epidermal Necrolysis (TEN). SJS and TEN are life-threatening 

hypersensitivity reactions, characterized by erosions of the mucous membranes, and 

extensive detachment of the epidermis.15,16 SJS is the milder form, where less than 

10% of body surface area has skin detachment, with an average mortality of 5%. TEN 

is the severe form, with skin detachment in more than 30% of body surface area, and a 

mortality of up to 40%.15,17 SJS-TEN overlap is a transition between SJS and TEN, 

with average mortality of 15%. Even though the incidence is low, SJS/TEN is a 

significant public health concern due to the high mortality, expensive hospitalization 

and treatment, as well as the fear and reluctance to treatment.18  

Medications are major causes of SJS/TEN.17 Notably, many SJS/TEN-causing 

drugs are commonly used, such as carbamazepine, allopurinol, phenytoin, 

phenobarbital, amoxicillin, coamoxiclav, cotrimoxazole, and non-steroidal anti-

inflammatory drugs (NSAIDs) of the oxicam type.13,18  Data from the multinational 
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EuroSCAR study revealed that allopurinol, the first line urate-lowering therapy for 

chronic gout management, is the most common cause of SJS in Europe and Israel.19 

In Singapore, among all voluntarily reported SJS cases between 2003 and 2008, 

carbamazepine, a drug commonly indicated for epilepsy, neuropathic pain and bipolar 

disorders, was the leading drug cause of SJS, followed by phenytoin, cortrimoxazole, 

and allopurinol.13 A retrospective study of case records of SJS patients in India 

revealed that carbamazepine was the most common cause of SJS.20 The incidence of 

SJS varies across populations. For instance, the incidence is significantly higher in 

Han Chinese than Caucasians (8 per million person-years vs 1-6 per million person-

years),17,21  presenting more challenges to drug safety in Asian countries.  

The associations between genetic factors and SJS induced by some commonly 

used drugs have been discovered in the past decade. Chung et al first discovered the 

strong association between carbamazepine-induced Stevens–Johnson syndrome and 

the human leukocyte antigen HLA–B*1502 allele among Han Chinese in Taiwan, with 

the odd ratio being 2,504.21 The strong association was subsequently confirmed in 

various other Asian populations, including Han Chinese in Taiwan,22 Hong Kong,23 

southern China,24 central China,25 northern China,26 Thai,27,28 Malaysian,29,30 

Singaporean,31,32 Korean,33 and Indian34 populations. On the other hand, the 

association was not found among Japanese35 or Caucasian36,37 populations. The 

association between allopurinol-induced SJS and the HLA-B*5801 allele was also 

identified in Han Chinese in Taiwan,38 Hong Kong,39 and mainland China,40 

Korean,41,42 and Thai,43 where a moderate percentage of population are carriers of the 

HLA-B*5801 allele (8-20%), as well as Japanese population35,44 even though the 

carrier frequency is low.45 The strong genetic association particularly in Asian 

populations presents promising opportunities to use genetic testing to guide drug 

selection to reduce risk of SJS/TEN in various Asian countries with higher incidence of 

SJS/TEN. 
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1.4 Adoption of Pharmacogenetic Testing and Barriers 

Despite rapid advancement in genetic research, the adoption of 

pharmacogenetic testing in routine clinical practice is still in its early stage. The 

number of genetic tests that are commonly used for routine clinical care is relatively 

small. Of all drug labels with pharmacogenomic information in US and Europe that 

were licensed between 1998 and 2012, only 14 labels direct clinicians to test prior to 

prescribing.46 Often times, the information doesn’t lead to specific actions or changes 

in clinical practice.  

There were several barriers in the adoption of pharmacogenetic testing. Four 

aspects were commonly emphasized when evaluating whether a genetic test should 

be used in clinical decision making: analytical validity, clinical validity, clinical utility and 

ethical, legal and social implications.47,48 Analytical validity and clinical validity requires 

that a test can accurately and reliably detect the genotype, and the association 

between genotype and clinical manifestation is statistically significant. Clinical utility is 

the extent to which the test can improve treatment outcome or reduce ADR risks for 

specific patients. Genetic tests that make non-actionable predictions will have limited 

clinical utility. Testing HLA-B*1502 and HLA-B*5801 allele for drug-induced SJS have 

relatively well-established analytical validity, clinical validity and clinical utility through 

case-control genetic association studies and randomized control trials in general 

patient population. However, three issues remain unclear. Firstly, the current clinical 

studies focus on the immediate outcome of SJS, but often ignore the long-term 

medical consequences. Genetic testing may influence the choice of medications, 

which also influence the long-term treatment efficacy and patients outcomes. Weighing 

different domains of clinical outcomes can be challenging. In an era of rising health 

care cost, the cost impact of genetic testing is important. Genetic test may results in 

higher or lower medical costs. When extra costs are incurred, the value of the service, 

or whether the benefit justify the cost, becomes an important issues. With limited 
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healthcare budget and resources, spending on the high value or cost-effective services 

will achieve the biggest outcome improvement. It is therefore important to quantify the 

benefit and cost of testing at a societal level to better inform the economic value of 

testing.   

The above barriers to the adoption of HLA-B*1502 and HLA-B*1502 

pharmacogenetic testing for SJS are not pure medical decisions, and involve the 

judgement and tradeoffs between various domains of clinical outcomes, long and 

short-term outcomes, as well as cost consequences, both at population level and 

individual patient level.  

In this dissertation, I employed a series of economic analyses and economic 

criteria to evaluate the value of pharmacogenetic testing for the two leading drug 

causes of SJS/TEN (carbamazepine and allopurinol) in Singapore from a health 

system perspective and an individual patient perspective. First, cost-effectiveness 

analyses were conducted to evaluate the long-term cost and benefit of 

pharmacogenetic testing for these two drugs at the population level. Subsequently, 

patients preferences for allopurinol pharmacogenetic testing, and tradeoffs made 

between various factors are quantified using a discrete choice experiment.  

1.5 Health economic evaluations to inform decision making 

1.5.1 Cost-effectiveness analysis 

Cost-effectiveness analysis is a commonly used decision tool in health 

economics to evaluate new technologies and programs. It systematically compares the 

costs and effectiveness associated with each available alternative strategy to manage 

the same condition. Effectiveness is measured in Quality-adjusted life years (QALYs), 

which unifies various dimensions of clinical outcomes (such as treatment efficacy, side 

effects, mortality, disability, quality of life, disease duration) into one measure. Cost-

effectiveness of a new technology or program is usually calculated in incremental 

terms relative to a status quo strategy, to reveal the incremental value added by the 
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new treatment. A threshold which reflects the societal willingness-to-pay for one 

quality-adjusted life year is then applied to judge the incremental cost-effectiveness of 

the new technology or program. New technologies or programs that significantly 

improves effectiveness at low costs are considered to have high value. Cost-

effectiveness offers a criteria to allocate scare resources based on efficiency. 

Spending on high value treatment and services will lead to efficient use of healthcare 

resources.  

Cost-effectiveness analysis is increasingly used to facilitate decision making at 

various levels. Clinicians can evaluate the long-term cost and effectiveness of various 

treatment alternatives and choose the most cost-effective treatment. Regulatory 

agencies such the National Institute for Health and Clinical Excellence (NICE) in the 

UK uses a cost-effectiveness threshold in its assessment and guidance.49 Public and 

private payers can rely on cost-effectiveness criteria to determine whether a new 

technology or service will be reimbursed, based on the ground of value and efficiency.  

1.5.2 Discrete choice experiment 

Discrete choice experiment is a stated-preference method to quantify individual 

preferences using a series of choice questions.50-52 When revealed preferences or 

actual market behaviors are not observable, such as when a market does not exist, or 

when a product is not yet available, stated preference method can provide useful 

insights on preferences by offering hypothetical choice sets. Discrete choice experiment 

is also referred to as choice-based conjoint analysis. The name “Conjoint analysis“ 

arose from the key characteristics of this type of study that different features of products 

or services are “CONsidered JOINTly”.53 Each feature is referred to as an attribute. And 

each choice alternative is composed of combinations of levels or each attribute. 

Compared to other stated-preference methods, such as contingency valuation, DCE is 

advantageous in measuring preferences for each attribute level (the marginal value), 

the relative important of various attribute, and the tradeoffs between different 
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attributes.54 DCE elicit preferences using choice questions, which is a more intuitive and 

realistic way of everyday decision making, compared to other methods such as rating, 

or ranking.53  

First developed in marketing, later adopted by public and environmental 

economists, conjoint analysis and DCE have been increasingly used in health care in 

the recent decade. The preference of patients and other stakeholders regarding medical 

treatments, screening and preventive services, health service delivery, have been used 

to inform clinical practice and priority setting.53,55-59  Recently, DCE has gained popularity 

in informing regulatory decisions. US FDA has published a draft guidance on the use of 

patients’ preference information in 2015.60 The DCE methodology and the applications 

in weighing benefit and risk of drugs and devices were reviewed.   

Common attributes included in DCEs are health care outcome-related attributes 

(such as treatment efficacy, side effects, survival etc), health care process-related 

attributes (such as waiting time, quality of care, mode of service, and type of health care 

professional), cost attributes, and others. DCE allows the explicit quantification of 

tradeoffs individual make between different attributes. The tradeoff between an attribute 

and the cost attribute provides estimates on the monetary value of the attribute level, or 

the willingness-to-pay (WTP). The DCE results have also been used to predict the 

choice probability or the uptake rate of a certain product or service. 

1.6 Objective and structure of this thesis 

The objective of the thesis is to conduct health economic evaluations to 

generate evidence to inform clinical and regulatory decision making on whether 

pharmacogenetic testing should be routinely done in order to reduce the risk of drug-

induced SJS/TEN in the context of Singapore. The two leading causative agents, 

carbamazepine and allopurinol, were the focus of my studies.  

The thesis consists of four research chapters. Chapter 2 assesses the cost-

effectiveness of HLA-B*1502 testing prior to carbamazepine treatment for epilepsy 
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patients from a health system perspective to inform clinical and regulatory policy 

making in Singapore.  The study, together with other related studies, has led to a 

change in regulatory recommendation, and subsequent changes in clinical practice. 

These changes as well as intended outcomes and unintended consequences were 

briefly reviewed at the end of Chapter 2. Chapter 3 assesses the cost-effectiveness of 

HLA-B*5801 testing for allopurinol among chronic gout patients. Nevertheless, cost-

effectiveness analysis does not speak to what individual patients should do or will do. 

Chapter 4 adopts a different perspective to review the literature on patients’ 

preferences for pharmacogenetic testing, and motivate the study in Chapter 5. Chapter 

5 describes a discrete choice experiment to quantitatively measure patients’ 

preferences for genetic testing prior to initiating allopurinol in chronic gout treatment. 

The thesis is concluded in Chapter 6, with recommendations for future research. 
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Chapter 2 . Cost-effectiveness of HLA-B*1502 
Genotyping Newly Diagnosed Adult Epilepsy Patients in 
Singapore 

2.1 Abstract  

Objective 

Asians who carry the HLA-B*1502 allele have an elevated risk of developing 

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) when 

treated with the antiepileptic drugs (AEDs) carbamazepine (CBZ) and 

phenytoin (PHT). Using data in Singapore, this study evaluates the cost-

effectiveness of HLA-B*1502 genotyping, and identifies circumstances in which 

genotyping and targeted treatment with alternative antiepileptic drugs that do 

not induce SJS/TEN is likely to be more cost-effective. 

Methods 

A decision tree model was developed in TreeAge. The model takes into 

account costs of epilepsy treatments and genotyping, reductions in quality of 

life (QoL) and increased costs resulting from SJS/TEN complications, the 

prevalence of the risk allele, the positive predictive value (PPV) of genotyping, 

life expectancy and other factors.   

Results 

Compared with the status quo strategy of providing CBZ to all patients without 

genotyping, genotyping and targeted treatment results in an incremental cost-

effectiveness ratio of $37,030/QALY for Chinese patients, $7,930/QALY for 

Malays and $136,630/QALY for Indians in Singapore. 

Conclusions 

Due to the different population allele frequencies of HLA-B*1502, genotyping 

for HLA-B*1502 and targeted epilepsy treatment is cost-effective for 
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Singaporean Chinese and Malays, but not for Singaporean Indians. Based on 

the study results, policies and clinical practices have been changed. 
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2.2 Introduction   

The World Health Organization (WHO) estimates the population 

prevalence of active epilepsy to be 4 to 10 per 1,000 worldwide, but higher in 

developing countries.61 Roughly 50 million people worldwide suffer from 

epilepsy, with more than half living in Asia.61,62 The first line treatment for 

epilepsy consists of first generation antiepileptic drugs (AEDs) aimed at 

reducing the frequency of seizures. Due to their effectiveness and low cost, the 

most frequently prescribed drugs are carbamazepine (CBZ) and phenytoin 

(PHT).62,63 However, they are not without side effects, including cutaneous 

hypersensitivity reactions, ranging from mild rash to rare but potentially fatal 

Steven-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) and SJS-

TEN overlap.  These conditions are characterized by blistering exanthema of 

purpuric macules, mucosal involvement and skin detachment.16,64 The fatality 

rate is reported to be roughly 5% for SJS, 30% for TEN,17,64 and somewhere in 

between for SJS-TEN overlap.65  

Epidemiologic data reveal that epilepsy patients from certain Asian 

populations have a higher risk of developing SJS or TEN following CBZ 

treatment compared with Caucasians.28,66 In 2004, a strong association 

between the HLA-B*1502 allele and risk for CBZ-induced SJS and TEN was 

discovered among Han Chinese in Taiwan (odds ratio of 2,504, positive 

predicted value of 5.6%, and negative predicted value of 99.9%)66,67. This 

association was later confirmed in various other Asian populations including 

Han Chinese in Hong Kong,23 southern China,24 central China,25 northern 

China,26 Thai,27,28 Malaysian,29,30 Singaporean,31,32 Korean,33 and Indian34 

populations. On the other hand, the association was not found among 
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Japanese35 or Caucasian36,37 populations. For these groups with established 

genetic associations, the prevalence of the allele ranges between 5.7 % and 

27.5%,68whereas it is virtually absent in Caucasians and Japanese. These 

differences, along with differences in CBZ prescribing patterns, largely explain 

the differences in CBZ induced SJS/TEN across countries.  

Based on the evidence on genetic associations, in 2007, the US Food 

and Drug Administration (FDA) amended the prescribing information for CBZ, 

recommending (but not requiring) genotyping in populations in which HLA-

B*1502 is present before prescribing CBZ. 69 Though it is not yet accepted 

practice in Asia, given the above findings, it might seem appropriate to 

genotype for the HLA-B*1502 risk allele and provide an alternative to CBZ to 

those who are HLA-B*1502 positive. Phenytoin, another anti-epileptic drug, can 

also induce SJS/TEN and has also been associated with the HLA-B*1502 

allele.(Hung 2010) In Singapore, based on a registry of adverse drug reactions 

maintained by the Health Sciences Authority, between 2003 and 2009, 262 

reports of SJS, 35 reports of SJS-TEN overlap and 74 cases of TEN were 

received. CBZ was the leading suspected causative agent in 18% of the 

reports, whereas phenytoin (PHT) was suspected in 9.6% of cases.70 Therefore 

HLA-B*1502 genotyping may be considered prior to CBZ or PHT treatment for 

epilepsy patients in Singapore to reduce risk of SJS/TEN.  

Despite the risk reduction, there are several concerns related to the 

adoption of genotyping, particularly on the higher costs, and the predictive 

power of the genetic test. There are alternatives drugs to CBZ and PHT for 

those suffering from epileptic seizures, including sodium valproate (SVP), 

lamotrigine (LTG), topiramate (TPM), levetiracetam (LEV) and gabapentin 
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(GPT). These drugs have comparable efficacy to CBZ but lower or no risk of 

SJS/TEN. However, they are substantially more expensive. It is also not clear 

whether genotyping and using these alternative medications for those who test 

positive for the HLA-B*1502 risk allele is cost-effective. The other issue 

concerns the predictive power of the test. The risk allele is present in 5.2% of 

Singaporean Chinese (Singapore Immunology Network) and 15.7% of 

Malays,71 In contrast, the incidence of SJS/TEN is around 0.2% among Han 

Chinese, implying that even among risk allele-carriers, more than 90% will not 

develop SJS/TEN.     

The goal of this analysis is to present a cost-effectiveness model to 

allow for identifying those circumstances in which genetic testing and targeted 

treatment with an alternative medication for those who test positive is likely to 

be more cost-effective that: 1) treatment with CBZ or PHT without genotyping 

and 2) providing alternative drugs with no SJS/TEN risk without genotyping. 

Although the model is populated using cost and SJS or TEN data from 

Singapore, through sensitivity analyses it identifies the threshold conditions in 

which genotyping and targeted therapy would be cost-effective in other 

settings. The model and results will be useful for all countries and health plans 

considering the decision of whether or not to genotype for the risk allele. 

2.3 Methods 

A decision tree model was developed in TreeAge Pro 2011 (TreeAge 

Software, Williamstown, MA) to estimate the cost-effectiveness of HLA-B*1502 

genotyping for newly diagnosed adult epilepsy patients in Singapore for whom 

CBZ or PHT is considered suitable as first-line monotherapy (Figure 1). CBZ 

and PHT are assumed to be perfect substitutes in the model and denoted as 
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CBZ/PHT, for their similar cost, efficacy and safety profiles.72 A local anti-

epileptic drug usage study revealed that CBZ and PHT was used as first line 

monotherapy in 74% of adult patients with newly diagnosed epilepsy, most of 

whom had partial seizures. 73 The model also assumes VPA to have 

comparable efficacy and safety profile with CBZ/PHT but without SJS/TEN 

risk.74,75 Though the evidence on relative efficacy of various drugs remains 

inconclusive, this assumption is supported by clinical trials and meta-analyses 

on most seizure types.76 72,76,77   
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  Figure 1. Decision tree model of three treatment strategies for newly diagnosed adult epilepsy patients in Singapore for whom CBZ/PHT is considered 
appropriate treatment. CBZ: carbamazepine; PHT: phenytoin; VPA: valproate acid; SJS: Stevens-Johnson syndrome; TEN: toxic epidermal necrolysis; SF: 
seizure free. 
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Model structure 

Figure 1 shows the different strategies modeled, and the treatment 

pathway and patients outcomes for each treatment strategy. The upper branch 

of the decision tree represents the status quo practice, which is using CBZ/PHT 

as first line treatment without genotyping. The middle branch considers the 

genetic testing strategy, where all newly diagnosed adult epilepsy patients are 

genotyped for HLA-B*1502 allele before treatment initiation. Test positive 

patients will receive VPA as first line drug, and test negative patients receives 

CBZ/PHT due to minimal risk of SJS/TEN. The lower branch examines an 

alternative risk-mitigation strategy that is likely to occur in real clinic settings, 

where CBZ/PHT is avoided and all patients receive VPA as first line therapy 

without genotyping.  

Based on the clinical literature, five treatment outcomes are modeled 

post initial treatment (1) being seizure-free (SF) after treatment and 

continuously taking the same drug for the long term; (2) being non-SF but 

achieving satisfactory seizure control (defined as achieving greater than 50% 

reduction in seizure frequency), and taking the same drug for the long term; (3) 

showing no satisfactory response (defined as < 50% reduction in seizure 

frequency) to the drug and switching to an alternative drug; (4) having 

intolerable side effects (such as rash, fever, fatigue, dizziness, alopecia as 

documented in clinical trials), and switching to an alternative drug; (5) 

development of SJS /TEN and complete recovery, followed by alternative 

epilepsy treatment; (6) death due to SJS/TEN. The first four outcomes are 

common to all three strategies and the last 2 only possible in the status quo 

branch. 
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When SJS/TEN occurs, extensive and expensive medical care is 

required, but usually last for only a few days or weeks.65 Patients are assumed 

to either die within 1 month after CBZ/PHT initiation or to fully recover by the 

end of 1 month. For patients requiring second line epilepsy treatments (with 

outcome 3, 4 and 5), we modeled a hypothetical second drug whose cost is a 

weighted average of the commonly used anti-epileptics, and producing an 

efficacy reflecting the average efficacy of different drugs. For patients who fail 

CBZ/PHT treatment, the alternatives include VPA, Lamotrigine (LTG), 

Levetiracetam (LEV) and Topiramate (TPM), whereas for patients who fail with 

VPA treatment and intend to avoid all SJS/TEN-inducing drugs, LEV and TPM 

are the assumed alternatives. The choice of second line drugs and treatment 

pathway in each scenario, drug dosage and usage patterns were advised by 

physicians.  

To mirror clinical practice, we explicitly modeled three distinct treatment 

periods. The first period spans the first month after treatment initiation, after 

which clinicians evaluate the risk of intolerable side effects and life-threatening 

SJS/TEN. One month is chosen as the literature shows most SJS/TEN cases 

develop within 3 weeks.64  The second period encompasses months 2 through 

6, which allows physicians to evaluate short-term drug efficacy. Short-term 

efficacy data are from a clinical trial conducted in the UK.78 Based on treatment 

efficacy in the second period, treatment is adjusted in the third period and 

continues for an additional seven years, which is roughly the median 

cumulative treatment duration. Even though some guidelines and physicians 

support life-time treatment even for those who remain seizure-free, it is not 

common in practice. Beyond the treatment period we assume that treatment is 
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discontinued and health related quality of life is restored to perfect health and 

lasts for another 30 years. The time horizon of 30 years is chosen as the 

average onset age for adult epilepsy is around 40 and average life expectancy 

for epilepsy patients is 70 (ten years shorter than that of the general 

population).79 The impact of these assumptions on results was evaluated in 

sensitivity analyses. 

Model Inputs 

Table 1 lists all input variables and sensitivity ranges. Several key 

variables are described below.  
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Table 1. Model Inputs.   

Variable Name Base-case 
value 

Range for 
sensitivity 
analysis 

Source 

Cost (in 2010 US dollars) 
Average annual cost of CBZ/PHT 
(Daily median dosage = 420mg /300mg) 170 85-340 

Selling prices were from IMS 
HEALTH and median daily dosage 

prescribed by local clinicians 

Average annual cost of VPA  
(Daily median dosage=1050 mg) 470 235-940 

Average annual cost of hypothetical 
therapy for patients who fail CBZ treatment 1,100 550-2,200 

Average annual cost of hypothetical 
therapy for patients who fail VPA treatment 1,860 930-3,720 

Cost of HLA-B*1502 genotyping 270 80-380 

Cost of per case SJS treatment 3,480 1,740-5,220 

 Singapore public hospital 
discharge data 

Cost of per case SJS-TEN overlap 
treatment 10,250 5,125-

15,380 

Cost of per case TEN treatment 17,030 8,510-
25,540 

Cost of therapeutic drug monitoring test 15 8-23 
Public hospitals in Singapore  

cost of neurologist consultation (per visit) 80 38-115 
QoL 
SF with tolerable side effects 0.9418 0.8836-1 

80,81 

Non-SF but show >50% reduction in 
seizure frequency 0.907 0.814-1 

No effect 0.8288 0.7576-0.9 

On hypothetical treatment 0.909 0.868-0.95 

Intolerable side effects 0.8 0.7-0.9 

SJS (duration=8.9 days) 0.35 0.175-0.525 
Estimated with reference to QoL of 

burn patients82 SJS-TEN overlap  (duration=9.2days) 0.3 0.15-0.45 

TEN (duration=12.4 days) 0.25 0.125-0.375 
SJS/TEN fatality and incidence 
Fatality for SJS  5% 2.5-7.5% 

 64 Fatality for SJS-TEN overlap 15% 7.5-22.5% 

Fatality for TEN 30% 15-45% 

Percentage of SJS-TEN overlap among 
SJS/TEN overlap and TEN 10% 5-15% 

 
Singapore Health Sciences 
Authority (2003-2009 data)70 

Percentage of TEN among SJS/TEN 20% 10-30%  
HLA-B*1502 genotyping 

Population frequency of HLA-B*1502a 14.87% 11-18.74% 

83 and unpublished data from 
Singapore Genome Variation 
Project and Singapore 
Immunology Network  

Positive predictive value of positive 
genotyping results in CBZ/PHT usersa 5. 96% 4-7.92%  84 

Efficacy and safety of CBZ (clinical response at 6 months post treatment initiation among patients with partial 
seizures) 
Non-seizure-free but show >50% reduction 
in seizure frequency and stay on treatment 48% 38-58% 

 78 No effect 8% 2-14% 

Intolerable side effects 25% 5-45% 
Other inputs 
Duration modeled (in years) 30 20-40  79 
Percentage of duration on epilepsy 
treatment 23.3% 25%-41% 

Clinician’s recommendation 
Annual discount rate 3% 0-5% 
All monetary amounts are presented in US dollars. Data in Singapore dollars were converted to US dollars using 
exchange rate $1.3 Singapore dollars =$1 US dollar. 
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Incidence of SJS/TEN  

Calculating the incidence of CBZ/PHT-induced SJS/TEN in Singapore 

is challenging, as the exact number of new CBZ/PHT users are not measured, 

and cases are reported on voluntary basis. A study in Taiwan used the 

national insurance claims database and estimated the incidence of CBZ-

induced SJS to be 0.23%. Taiwan Chinese and Singaporean Chinese have 

similar origin, and genetic profiles. Therefore, the incidence among Singapore 

Chinese is assumed to be the same as that in Taiwan (0.23%).84 To estimate 

the incidence in Singaporean Malays and Indians, we used data from a 

voluntary adverse drug reaction registry maintained by the Singapore Health 

Sciences Authority.70 There may be under-reporting in voluntary registries, we 

therefore assumed the incidence to be the same among Singaporean 

Chinese and Taiwan Chinese, and scaled the estimated incidence for 

Singaporean Malays and Indians assuming equal degree of under-reporting 

for different ethnic groups. The adjusted incidence of CBZ/PHT-induced 

SJS/TEN among Singapore Malays and Indians patients initiating CBZ/PHT 

are 0.61% and 0.14%.  More than 95% of Singapore resident population are 

Chinese, Malays or Indians. 85 Among ethnicity-weighted Singapore CBZ/PHT 

users, the incidence is 0.27%.  

Positive predictive value (PPV) of HLA-B*1502 genotyping 

PPV is defined as the probability of actually developing the condition 

when the test predicts the condition. Based on the sensitivity and specificity 

established in Taiwan Chinese (98.3% and 95.8% respectively),84 PPVs of 

HLA-B*1502 genotyping were estimated as 5.96% for the entire population, 

5.1% for Singapore Chinese, 12.5% for Singapore Malays and 3.2% for 

21 

 



 

Singapore Indians. In the base case analysis, we considered the ethnicity-

weighted Singapore population. The ethnicity-weighted Singapore population 

was considered for main analysis. The negative predictive value (NPV) is 

close to 100%. 

Costs and Utilization 

Wholesale prices of available anti-epileptic drugs in Singapore in 2010 

were obtained from IMS HEALTH. To approximate the retail prices, the 

obtained wholesale prices were multiplied by 1.2 to account for the markup. 

Average daily costs for each drug was calculated by multiplying the unit price 

by the median dosage for each drug, as commonly prescribed by local 

clinicians (Supplementary Table e1). The costs of hypothetical drugs were 

calculated as a weighted (by utilization) average of the several commonly 

used alternative drugs. SJS and TEN treatment costs were estimated based 

on National University Hospital discharge data for 20 cases. None of these 

cases were fatal, and we assumed the costs for cases that ended in a fatality 

to be double of the base case value due to additional resources required at 

the end of life. We made the assumptions that each patient required one 

therapeutic drug monitoring test immediately after treatment initiation, four 

specialists visits in the first year of treatment and 2 visits per year thereafter 

during treatment period. All costs were converted to US dollars at the 

exchange rate of $1.3 Singapore dollars to $1 US dollar as of October 2010. 

Sensitivity Analyses 

The robustness of the cost-effectiveness results and the impact of 

specific parameters were tested through one-way sensitivity analyses and a 

probabilistic sensitivity analysis (PSA). In one way sensitivity analyses, 
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variables were varied one at a time, within reasonable sensitivity ranges, and 

the incremental cost-effectiveness ratios were calculated. Several key 

variables of interests were further analyzed using threshold analysis to identify 

the threshold at which the cost-effectiveness results will be altered. Scenario 

analysis and two-way sensitivity analyses were also conducted.  

The probabilistic sensitivity analyses allowed all variables to vary 

simultaneously based on 10,000 repeated draws from assigned distributions. 

All variables except percentage of remaining life expectancy on treatment 

were assumed to follow triangular distributions. The base-case value was 

used as the likeliest value in the triangular distribution, and the lower and 

upper bounds of the sensitivity ranges were used as the min and max (Table 

1). The percentage of remaining life time a patient is on epilepsy treatment is 

approximated using a bimodal distribution, which was constructed as a 

combination of two triangular distributions to account for patient heterogeneity 

in drug responses and epilepsy recurrence. The first triangular distribution 

(min=2 yrs; mode=3.5 yrs; max=5 yrs) represents patients with good 

responses to drugs and no recurrence, whereas the second triangular 

distribution (min=10 yrs; mode=15 yrs; max=20 yrs) corresponds to patients 

who require longer term treatment. We assumed that 60% of patients fall in 

the first distribution and 40% in the second, based on expert opinions. We 

conducted sensitivity analyses to explore the impact of this assumption on the 

cost-effectiveness results (Supplementary Table e2). This study was reviewed 

and granted exemption by the National University of Singapore Institutional 

Review Board (NUS IRB). 

2.4 Results  
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Base case cost-effectiveness results are shown in Table 2. 

Effectiveness is measured in quality-adjusted life years (QALYs), which is, the 

remaining life years after adjusting for quality of life (Qol) within that time 

period. Qol is a quality weight between 0 and 1, with 0 indicates death and 1 

represents perfect health). Our results show that genotyping and prescribing 

VPA for those who test positive generates a modest improvement in QALYs 

(0.019 QALYs) at a $570 marginal increase in cost relative to the status quo 

practice, resulting in an incremental cost-effectiveness ratio (ICER) of 

$29,750/QALY. The strategy of providing VPA to all patients without 

genotyping is not favorable as it gives the same QALYs as the genotyping 

strategy but at a higher cost. This is referred to as a dominated strategy. If the 

annual cost of VPA drops to within $37 of the cost of CBZ, this strategy would 

become cost-effective.  

 

Table 2. Cost-effectiveness of 3 strategies for newly diagnosed epilepsy 
patients in Singapore for whom CBZ/PHT is considered appropriate treatment 

Strategy 
Cost 
(US 

dollars) 

Incremental 
Cost (US 
dollars) 

QALYs Incremental 
QALYs 

ICER (US 
dollars/QALY) Dominance 

No genotyping and 
CBZ/PHT for all patients 4,110 - 18.846 - - Not 

Dominated 

Genotyping and VPA for 
test positive patients 
and CBZ/PHT to test 
negative patients 

4,680 570 18.865 0.019 29,750 Not 
Dominated 

No genotyping and VPA 
for all patients 6,780 2,100 18.865 0 0 Dominated 

ICER: incremental cost-effectiveness ratio, QALY: quality-adjusted life-years  
 

 

The cost-effectiveness results for Singapore Chinese, Malays and 

Indians are shown separately in Table 3. Relative to the status quo strategy, 

24 

 



 

genotyping is cost-effective for Chinese and Malays and but not for Indians in 

Singapore. 

 

 
Table 3. Incremental cost-effectiveness of genotyping versus no genotyping 
strategy for 3 major ethnical populations in Singapore 

Ethnicity Cost (US 
dollars) 

Incremental 
Cost (US 
dollars) 

QALYs Incremental 
QALYs 

ICER (US 
dollars/QALY) 

Singapore Chinese 4,650 560 18.865 0.015 37,030 
Singapore Malays - 5,050 610 18.865 0.077 7,930 
Singapore Indians 4,370 360 18.865 0.00263 136,630 

ICER: incremental cost-effectiveness ratio, QALY: quality-adjusted life-years  
 
 

 Sensitivity analyses  

A commonly used cost-effective threshold is $50,000/QALY86. Using 

this threshold to define what signifies cost-effectiveness, the one-way 

sensitivity analyses (Figure 2 Panel A) show that any single variable when 

varied within the assigned sensitivity does not increase the ICER beyond the 

cost-effectiveness threshold.   
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Figure 2. Sensitivity analyses. (A) One-way sensitivity analysis of all uncorrelated 
variables on Incremental cost-effectiveness ratio (ICER) of the genotyping strategy. 
Variables that are correlated with other variable(s) were not shown. The minus sign 
at the left side of the bar indicates ICER decreases when the variable increases. SF: 
seizure free. (B) Two-way sensitivity analysis of the effects of positive predictive 
value (PPV) and population HLA-B*1502 frequency on ICER. (C) Cost-effectiveness 
acceptability curves of 3 treatment strategies from probabilistic sensitivity analysis. 
Red vertical line: the willingness-to-pay at which genotyping is cost-effective for 50% 
of the iterations. 
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In efforts to generalize the model beyond Singapore, various sensitivity 

analyses were conducted. Two population-specific variables, PPV and 

frequency of HLA-B*1502 allele in the population, were varied within wider 

ranges to identify the threshold values at which the cost-effectiveness results 

would alter. Holding other variables constant at the base case values, a PPV 

below 3.8% will increase the ICER to above $50,000/QALY, as will an HLA-

B*1502 population frequency lower than 6.1%. To show the impact of 

combinations of PPV and allele frequency on the ICER, two-way sensitivity 

analyses are shown in Figure 2B. Genotyping is cost-effective in populations 

with higher test PPV and higher HLA-B*1502 frequency. A higher allele 

frequency could compensate for a lower PPV to make genotyping cost-

effective. However, if the PPV is below 3%, genotyping is likely to be not cost-

effective regardless of allele frequency. This result holds under current 

genotyping costs, however, a lower genotyping cost could compensate for a 

lower PPV.   

Using the base case values of input variables, the probabilistic 

sensitivity analysis (PSA) reveals that, assuming a willingness-to-pay of 

$50,000/QALY, genotyping is cost-effective in 75% of iterations. As long as 

the societal willingness-to-pay is higher than $31,000/QALY, genotyping 

would be preferred in more than 50% of iterations among 10,000 draws in the 

simulation (Figure 2C).  Additionally, the genotyping cost of $270 currently 

represents roughly 6% of the expected epilepsy treatment cost. This 

percentage is likely to decrease in the future due to technological 

advancements and increased availability of genotyping services, which will 

make genotyping even more cost-effective. 
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2.5 Discussion 

The study estimated the incremental cost-effectiveness of genotyping 

for each ethnic group in Singapore, and revealed the differences in cost-

effectiveness for each ethnic groups. This is due to the differences in 

population characteristics HLA-B*1502 frequency and PPV of genotyping. The 

product of the two determines the likelihood of an average CBZ/PHT user 

developing SJS/TEN. In the base case, it is estimated that the proportion of 

new patients who would develop SJS/TEN after initiating CBZ/PHT is 0.70% 

among Chinese, 3.55% among Malays and 0.12% among Indians. Among 

those who develop SJS/TEN, fatality is expected to be 9.5%. To prevent one 

case of SJS/TEN, 142 Chinese patients, 28 Malay patients, or 833 Indian 

patients would need to be genotyped on average. To avoid one death due to 

CBZ/PHT-induced SJS/TEN, 1,500 Chinese patients, 297 Malays patients 

and 8,770 Indians patients would need to be genotyped prior to initiating 

CBZ/PHT.  

Besides population HLA-B*1502 allele frequency and PPV of HLA-

B*1502 genotyping, two additional factors influential on results are the 

treatment duration and remaining life expectancy (Table e2). Longer 

treatment duration increases the long-term costs of providing expensive 

alternative medications. However, among those expected to live a long life, 

such as young people, death due to SJS/TEN generates a large loss of 

QALYs. The cost-effectiveness results from the tradeoff of these two factors. 

Nevertheless, our model shows that if treatment is life-long, then genotyping 

is not cost-effective regardless of remaining life expectancy. This is because 

when the life expectancy is short, preventing an SJS/TEN-induced death 
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results in few QALYs saved; whereas for long life expectancies, the increased 

cost of lifetime alternative treatments, drives the ICER beyond the acceptable 

threshold. As a general rule of thumb, as the percentage of remaining life on 

treatment increases, genotyping becomes less cost-effective.  

 The above analysis assumes drug prices to be at the base case 

values.  However, there is substantial variation in medical practices and drug 

prices across countries and across health plans within countries. Higher drug 

prices (due to either higher dosage prescribed or higher prices per unit) would 

reduce the cost-effectiveness of HLA-B*1502 genotyping, all else equal. For 

example, if all drugs cost 5 times that of the base case values, the ICER of 

genotyping would increase to $107,520/QALY, which is no longer cost-

effective. However, locations with high anti-epileptic drug costs are likely to 

also have higher costs of SJS/TEN treatments, which may drive the cost-

effectiveness ratio back to acceptable levels depending on the magnitude of 

the increase. If the costs of a particular drug change differentially from the 

other drugs, such as when patent expires or when the demand changes, 

ICERs will change accordingly. For example, if VPA and CBZ have the same 

price, then providing VPA to all patients as first line therapy would be the 

preferred strategy as it avoids the risk of SJS/TEN without the need to 

genotype. On the other hand, if the prices of all alternative drugs increase 

beyond $1,420 per year while the price of CBZ remains unchanged, 

genotyping be not cost-effective, and using CBZ/PHT without genotyping 

would become the optimal strategy, as the higher long-term costs of epilepsy 

treatment would outweigh the benefit of genotyping.  
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In the study, it is assumed that health related qualify of life is restored 

to perfect health after anti-epileptic treatment. Actual health related qualify of 

life may be lower due to imperfect responses to drugs, recurrence of epilepsy, 

or other health problems. If true, the QALY gains due to prevention of 

SJS/TEN and related death might be over-estimated. However, scenario 

analysis shows that even assuming that the low QoL during treatment is 

sustained until death, the ICER for genotyping ($27,980) is still below the 

cost-effectiveness threshold. Additional sensitivity analyses reveal that, based 

on our assumptions, as long as the QoL for successful treatment is greater 

than 0.83, genotyping is cost-effective. We also made assumptions on the 

clinical treatment pathways, following clinical guidelines and experts opinions. 

However, in reality, treatment decisions depends on many factors and may 

substantially deviate from our base case assumptions. For instance, when 

selecting anti-epileptics, patients who does not tolerate a single seizure may 

request to switch to the (more expensive) alternative drugs even when they 

have a substantial reduction in seizure frequency. Among those patients, 

genotyping would not be cost-effective as they are more likely to switch to the 

more expensive drugs irrespective of the genotyping results. In addition to the 

above, the model includes several additional assumptions and simplifications. 

The model simplifies the treatment rules for who receives which drugs. In real 

clinic settings, many factors, including seizure type may influence the 

treatment regimens. Besides, treatment options are sometimes more 

complicated than what’s captured in the model, such as when more than two 

lines of treatments and combination therapies using multiple drugs are 

involved. In addition, based on available literature, this study assumes VPA, 
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CBZ, and PHT to have similar efficacy for the epileptic conditions concerned 

in this study. This assumption is supported by clinical trials and meta-analyses 

for generalized seizures and secondary generalized tonic-clonic seizures76,77. 

For partial seizures, some evidence suggests CBZ is superior to VPA in the 

short term for complex partial seizures75-77. In cases where CBZ is superior to 

VPA, genotyping will be less cost-effective. Moreover, the effectiveness data 

is from clinical trials in Caucasian populations. Though no evidence suggests 

differences on drug response and QoL perception among epilepsy patients 

across different ethnicities, we cannot rule out the possibilities of population 

variations in drug response, cultural differences on QoL values, or different 

clinical practices.  

 A final limitation is that genotyping results are assumed to be 

immediately accessible at the time of diagnosis, which may be challenging in 

clinical practice. While waiting for testing results (several days), it may be 

appropriate to provide an alternative treatment to CBZ/PHT until when the 

genotyping results can be obtained, and then, switch to CBZ/PHT for those 

who test negative.   

 Barring the above limitations, this model provides a template to 

assess the cost-effectiveness of HLA-B*1502 genotyping in other Asian 

countries, though local clinical practice and medical costs should be 

considered. In general, in countries with high HLA-B*1502 frequency and high 

incidence of CBZ/PHT-induced SJS/TEN, genotyping is more likely to be cost-

effective. This includes many Southeast Asian countries (such as Singapore, 

Malaysia, Vietnam, Thailand, Indonesia, and the Philippines) and southern 

eastern regions of Asia (such as Hong Kong, Taiwan and certain southern 
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provinces of china). The frequency of HLA-B*1502 in these populations is 

generally higher than 5% and even above 20% in some ethnic groups287. 

Contrarily, prevalence is below 2.5% in India (except certain ethnic groups) 

and northern Asian countries including Japan, South Korea, and northern 

regions of China, suggesting that genotyping is unlikely to be cost-effective in 

these regions.  

 

2.6 Changes in HLA-B*1502 genotyping policies and 
practices in Singapore 

Various regulatory actions have been undertaken after the completion 

of this study, and clinical practice has changed as a result of this study and 

other related studies. Through the collaborative effort of multiple sectors to 

implement HLA-B*1502 testing in clinical practice, valuable lessons have 

been learned. 

Before this study 

In March 2009, the Health Sciences Authority (HSA) published a 

Product Safety Alert on serious adverse skin reactions associated with 

carbamazepine based on international studies on the genetic association, 

local ADR reports and US FDA recommendations.88 The package insert of 

Tegretol® (carbamazepine) was updated in Singapore by the manufacturer to 

reflect the association observed between HLA-B*1502 allele and CBZ-

induced SJS, the prevalence of this allele in various Asian population, and a 

recommendation to consider testing for the presence of HLA-B*1502 allele in 

patients with Asian ancestry prior to prescribing Tegretol®. In the package 

insert, it was also stated that the use of carbamazepine should be avoided in 
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tested patients who are found to be positive for HLA-B*1502 unless the 

benefits clearly outweigh the risks.  

However, as the test was new to Singapore, the service was not readily 

available in hospitals or clinics in Singapore where carbamazepine was 

prescribed. The only accredited lab in Singapore that offers the HLA-B*1502 

test was the HSA’s Tissue Typing Laboratory, which conducted 

comprehensive HLA typing mostly for patients prior to organ transplantation 

and bone marrow transplantation.  

There were several perceived barriers to the uptake of the test. Firstly, 

the test could only be done outside practitioners’ institutions, which adds 

additional administrative workload for physicians and hospital staff to order 

the test, transport samples, and receive hard copy test results. The 

independency of the IT systems between different institutions created 

difficulties to the delivery of test results, the incorporation of results into 

electronic medical record, and the sharing of test results between different 

providers such as the tertiary hospitals and primary care clinics.  Secondly, 

the available test service was not tailored for carbamazepine testing. The 

tissue-typing based procedure has high accuracy, but high cost (S$350) and 

long turnover time (3-7 working days). A cost of S$350 was considered high 

relative to the cost of carbamazepine. In addition, for epilepsy patients who 

require immediate relief, a turnover time of 3-7 days may cause delay in their 

critical treatment. Indeed, a low take-up rate was observed. On the other 

hand, an unpublished analysis of the anti-epileptics sales data from IMS 

HEALTH database and communications with neurologist both suggested a 

drop in the use of carbamazepine. Similar trend was also observed in Hong 
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Kong.89 With the risk information provided, and barriers to testing, an easy 

alternative solution was to switch away from carbamazepine to alternative 

medicines. Carbamazepine is an old generic drug with long proven clinical 

efficacy and low cost. Switching from carbamazepine to alternative drugs that 

are often branded and more expensive will elevate medical costs.  This is 

considered an unintended consequence of policy. More efforts were needed 

to promote the appropriate use of the risk information.  

After the study 

With stronger evidence on genetic association, clinical utility, and cost-

effectiveness (thanks to our study), in April 2013, Singapore Ministry of Health 

(MOH) made an announcement that HLA-B*1502 genotyping prior to the 

initiation of carbamazepine therapy in new patients of for Asian ancestry was 

the new standard of care. HSA, together with MOH, issued a Dear Healthcare 

Professional Letter to communicate the new recommendations for HLA-

B*1502 genotyping the use of test results.90 Meanwhile the National University 

Hospital (NUH) Molecular Diagnosis Centre (MDC) started to offer the test at 

a cost of S$187 (excluding GST) with a turnover time of 2-4 working days. 

The decrease in price was due to economies of scale and improvements in 

testing methods. To ensure the access to test service by low-income patients, 

75% of the test cost was subsidized for patients from the MOH-funded 

restructured hospitals and institutions. The test later became available in 

several other hospitals, with improvement in IT system and results delivery. 

6 months after the new recommendation was announced, a preliminary 

evaluation was published by HSA in November 2013.91 A total of 307 tests 

were performed, with 9.8% of samples tested positive for HLA-B*1502. 
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Contrary to a historical average of 15 CBZ-SJS/TEN reports to HSA per year, 

no SJS/TEN report related to carbamazepine was received by the time of 

publication.  
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Chapter 3 . HLA-B*5801 genetic testing and safety 
program when initiating allopurinol therapy for chronic 
gout management: a cost-effectiveness analysis 

3.1 Abstract 

 

Objective 

Allopurinol is an efficacious urate-lowering therapy (ULT), but on rare occasions, 

patients develop potentially fatal adverse reactions. The risk of reactions such as 

Stevens-Johnson syndrome (SJS) is significantly higher among HLA-B*5801 carriers. 

We assessed the cost-effectiveness of risk-mitigation strategies that use HLA-B*5801 

genetic testing, an enhanced safety program or a combination of both.  

Methods 

The analysis adopted a health systems perspective and considered Singaporean 

patients with chronic gout, over a lifetime horizon, where allopurinol and probenecid are 

appropriate medications. The model incorporated SJS outcomes, long-term gout 

treatment outcomes, HLA-B*5801 allele frequencies, drug prices, and other medical 

costs.  

Results and Conclusions 

Based on a cost-effectiveness threshold of US$50,000/QALY, HLA-B*5801 guided 

ULT selection or enhanced safety program were not cost-effective in the base case 

analysis. Avoidance of ULTs was the least preferred strategy as uncontrolled gout 

leads to lower QALYs and higher costs. Conditions under which genotyping or 

enhanced safety program would become cost-effective were identified. 

 

3.2 Introduction  

Gout is a common rheumatic disease with increasing prevalence worldwide due 

to increased longevity, dietary changes, and greater use of medications with urate 
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retentive effects such as diuretics and low-dose aspirin.92-94 Gout increases medical 

costs, reduces patients’ quality of life (QoL), 95-97 and is an independent risk factor for 

all-cause and cardiovascular mortality.98  

Pharmacologic management of chronic gout aims to reduce serum uric acid 

(SUA) levels to prevent formation and promote crystal dissolution.97 Allopurinol is 

generally well-tolerated and the most commonly used urate-lowering therapy (ULT).99 

However, Allopurinol was one of the drugs most commonly associated with Stevens-

Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN),17,18,100-103 which are 

rare but serious cutaneous reactions with average fatality at 30% for TEN.64,104  

Strong genetic association between HLA-B*5801 and allopurinol-induced 

SJS/TEN was confirmed in various populations,42,43,102,105-107 suggesting that genotyping 

may mitigate risks of allopurinol-induced SJS/TEN. The test has a negative predictive 

value (NPV) of close to 100% but a positive predictive value (PPV) of only 1.52% for 

SJS/TEN among Han Chinese in Taiwan.43,106 The American College of Rheumatology 

recommends HLA-B*5801 genotyping as a risk management measure for at-risk 

populations;94 however the European Medicines Agency (EMA) Pharmacovigilance 

Working Party cautions against routine HLA-B*5801 genotyping given the lack of 

suitable alternative therapies to allopurinol and the lack of evidence of clinical utility.108 

The Taiwan Food and Drug Administration has issued a notice that HLA-B*5801 should 

be considered prior to allopurinol treatment, but testing is not mandatory.109 Given the 

seriousness of SJS/TEN, but low PPV of the HLA-B*5801 genetic test, it is still unclear 

what role HLA-B*5801 genetic testing should play in clinical practice, especially in Asian 

populations with high prevalence of HLA-B*5801 allele, such as the Han Chinese, 

Southeast Asian, and Korean.110 When available, HLA-B*5801 genetic testing results 

will influence physicians’ choice of ULTs in gout management, which has impact not 

only on rates of adverse drug reactions (ADRs), but also the long-term clinical outcomes 

and treatment costs of chronic gout. These long-term implications of HLA-B*5801 testing 

are not well envisaged, and are often neglected in evaluations of genetic testing. 
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An alternative risk mitigation strategy is enhanced safety monitoring of SJS/TEN 

symptoms for early drug withdrawal and SJS/TEN management. It has been shown that 

early withdrawal of causative drugs among SJS/TEN patients is associated with lower 

risk of dying.111   

 This study examined the incremental cost-effectiveness of six strategies, 

including those involving genetic testing and safety monitoring program, to mitigate the 

risk of allopurinol-induced SJS/TEN and to identify the conditions in which each strategy 

is incrementally cost-effective over a life time horizon, from the Singapore health system 

perspective. 

3.3 Methods  

A decision tree model was developed for a hypothetical cohort of gout patients 

who were eligible for allopurinol and probenecid, using TreeAge Pro 2013 (TreeAge 

Software, Williamstown) to evaluate incremental cost-effectiveness of five strategies 

over a 30-year time horizon. 30 years roughly represents the remaining life expectancy 

of gout patients, given an average onset age of 50,112 and life expectancy of 80.113 

Treatment strategies  

The strategies modeled were: (a) Standard ULT with allopurinol as first-line drug 

(Standard ULT); (b) Standard ULT with allopurinol as first-line drug coupled to a safety 

program (ULT+SP). The hypothetical 3-month safety program (SP) comprised of one 

nurse-led  patient education session on SJS/TEN, 6 fortnightly phone calls to check for 

early signs of SJS/TEN and a hotline for adverse reaction reporting and triaging for 

medical attention when needed; (c) HLA-B*5801 genetic testing-guided ULT treatment 

(GULT) in which patients received different first-line ULT based on test results 

(probenecid for test positive, allopurinol for test negative); (d) HLA-B*5801 genetic 

testing to enroll test positive patients in SP when initiating allopurinol  (GSP); test 

negative patients would receive allopurinol without SP; (e) HLA-B*5801 genetic test-

guided ULT with the enhanced safety program (GULTSP), in which test positive 

patients are initially given probenecid as in the GULT strategy, but non-responders 
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are subsequently switched to allopurinol and monitored via the enhanced safety 

program; (f) No ULT and treatment of acute flares only (no ULT) (Table 4).  

 

 
Table 4. Components of six strategies 

Strategy 1st line therapy 
Genetic 
testing 

Safety Program 

ULT Allopurinol No No 
ULT + SP Allopurinol No Yes 

GULT 

Allopurinol (for HLA-B*5801 
negative patients) 

Probenecid (for HLA-B*5801 
positive patients) 

Yes No 

GSP Allopurinol Yes 
Yes (for HLA-B*5801 

positive patients only) 

GULTSP 

Allopurinol (for HLA-B*5801 
negative patients) 

Probenecid (for HLA-B*5801 
positive patients) 

Yes 
Yes (for HLA-B*5801 

positive patients who do not 
respond to probenecid only) 

No ULT Treatment of Acute flares only No No 
ULT, urate-lowering therapy; SP, safety program; G, HLA-B*5801 genetic testing. 

 

 

Treatment sequence 

Treatment sequence was based on international gout management guidelines 

and local clinical practices.97,99,114 Response to ULT treatment was defined as achieving 

target SUA ≤6 mg/dl (360 µmol/l) and non-response referred to SUA > 6 mg/dl.97 First-

line ULT was assumed to be allopurinol at 300 mg/day.115 As higher doses may be 

necessary to reach SUA target for some patients,116,117 allopurinol up to 600 mg/day was 

modeled as next treatment step for non-responders. Probenecid (up to 2g/day) was 

modeled as the second-line treatment.118  

 

Model structure 
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The decision tree in Figure 3 describes the treatment pathways. To mirror clinical 

treatment pathway, a titration period and a maintenance period were modeled. In 

titration period, patients on genetic-testing guided ULT strategy (GULT) received 

allopurinol if test negative or probenecid if test positive. Patients on other strategies 

except no ULT, received allopurinol. After 3 months, patients’ response was evaluated 

and next step in the treatment sequence was initiated for non-responders, and those 

with side effects. In maintenance period, appropriate ULT identified in titration period 

was maintained over 20 years. When no appropriate ULT was identified, no ULT was 

given in maintenance period and only acute flares were treated.  
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Figure 3.  Decision tree model. ULT, urate-lowering therapy; SP, safety program; G, HLA-B*5801 genetic testing; SJS, Stevens-
Johnson syndrome; TEN, Toxic Epidermal Necrolysis. 

 

 



 

SJS/TEN may occur shortly after allopurinol exposure.119,120 Most allopurinol-

induced SJS/TEN cases occur within 60 days of allopurinol exposure,119 and the average 

duration for SJS/TEN treatment is within 2 weeks.65 Patients who develop SJS/TEN are 

therefore assumed to succumb within 3 months after allopurinol initiation or to recover after 

treatment. Various complications such as ocular complications may occur among patients 

recovered from SJS/TEN, and have long-term implications on quality of life and medical 

costs.121,122 The common and lasting condition, dry eye syndrome, was modeled to account 

for the impact of SJS complications. 

Model inputs 

Model input variables and the sensitivity ranges are listed in Table 5. 

Quantification of key variables is described below. 
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Table 5. Input variables and sensitivity ranges 

Variable name 

Base 
case 
value 

Minimu
m 

Maximu
m References 

Cost, 2012 US$  
  Cost of per case SJS treatment 3,477 1,738 6,962 

123 
 Cost of per case SJS-TEN overlap treatment 10,254 5,123 20,500 
  Cost of per case TEN treatment 17,031 8,515 34,062 

  Cost of HLA-B*5801 genetic testing 270 135 404 
Singapore Health Sciences 
Authority tissue typing lab 

  
Average annual cost of allopurinol (daily dosage=up 
to 300mg) 33 16 66 

Median selling price in public 
healthcare institutions in 
Singapore 

  
Average annual cost of allopurinol (daily dosage=up 
to 600mg) 66 33 132 

  
Average annual cost of probenecid (daily 
dosage=up to 2g) 132 66 265 

 
Average drug cost of acute gout flare treatment (7 
days) 22 11 92 

  Cost of doctor consultation (per visit) 46 23 123 
Public healthcare institutions in 
Singapore 

  Cost of safety program (per 3 month) 62 31 123 

Cost estimate based on similar 
programs in public healthcare 
institutions in Singapore 

  Average annual cost to manage dry eye syndrome 200 100 800 124 
QoL/Utility  
  SJS (duration=8.9 days) 0.35 0.25 0.45 

123 
  SJS-TEN overlap (duration=9.2 days) 0.3 0.2 0.4 
  TEN (duration=12.4 days) 0.25 0.15 0.35 
  Achieving SUA target * 0.7463 0.6463 0.8463 

125   Not achieving  SUA target * 0.7 0.6 0.8 
  Utility discounting factor for dry eye syndrome 0.8 0.7 0.9 126 
Treatment outcomes of ULTs (clinical response at 3 months post treatment initiation among patients with gout)  

  
Proportion of patients achieving SUA target with 
allopurinol daily dose up to 300mg/day* 0.38 0.2 0.5 127,128 

  
Proportion of patients who achieve SUA target  with 
allopurinol daily dose up to 600mg/day* 0.76 0.4 0.85 129 

  
Proportion of patients who achieve SUA target with 
probenecid daily dose up to 2g/day* 0.68 0.4 0.85 130 

  
Proportion of patients having side effects (excluding 
SJS/TEN) upon taking allopurinol  0.05 0.025 0.1 130  

 
Proportion of patients having side effects upon 
taking probenecid 0.12 0.035 0.14 131,132  

 
Annual number of flares experienced by chronic 
gout patients with uncontrolled SUA 4 2 10 Assumption 

SJS/TEN fatality and  incidence 

 
Incidence of allopurinol-induced SJS/TEN among 
patients who initiate allopurinol 0.002 0.001 0.004 43,106 

  Fatality of SJS 0.05 0.025 0.1 

123 

  Fatality of SJS-TEN overlap 0.15 0.075 0.3 
  Fatality of TEN 0.3 0.15 0.6 
  Proportion of SJS among SJS/TEN 0.7 0.65 0.75 
  Proportion of TEN among SJS/TEN 0.2 0.15 0.25 

  
Percentage of SJS/TEN patients developing dry eye 
syndrome 0.59 0.3  0.8 121 

HLA-B*5801 genotyping  

 
Proportion of HLA-B*5801 carriers in the Singapore 
population (ethnicity-weighted) 0.185 0.1 0.3 133 

  
Incidence of allopurinol-induced SJS/TEN among 
patients who initiate allopurinol for the first time 0.002 0.001 0.004 106,134  

Effectiveness of safety program 
 Percentage reduction in SJS/TEN mortality 0.3 0.1 0.8 111 
Other inputs 
  Duration modeled , years 30 10 40 Assumption 
  Annual discount rate  0.03 0.01 0.05 Assumption 

43 

 



 

Predictive value of HLA-B*5801 genetic testing 

Prevalence of HLA-B*5801 carriers is 22.3%, 7.3% and 3.5% among Singaporean 

Chinese, Malays and Indians respectively, based on published allele frequencies and 

Hardy-Weinberg Equilibrium,133 resulting in an ethnicity-weighted prevalence of 18.5%. 

Among Asian populations with SJS/TEN incidence data, Taiwan has the closest ethnic 

makeup to Singapore. The incidence of allopurinol-induced SJS/TEN in Singapore was 

assumed to be the same as Taiwan, or 0.2%.134 Sensitivity and specificity of HLA-B*5801 

test were assumed to be 100% and 85% respectively with resulting PPV of 1.52% and NPV 

of 100%.134  

Safety program 

Early withdrawal of causative drugs among SJS/TEN patients is associated with 

lower risk of dying (odds ratio 0.69 per day),111 though early withdrawal may not stop 

disease progression.135 We therefore assumed that the hypothetical safety program did not 

reduce the incidence of SJS/TEN but reduced SJS/TEN mortality by 30%.  

Costs and utilization 

In first year of treatment, patients are assumed to require four doctor consultations 

for ULT initiation and dose titration. Patients achieving satisfactory response with ULTs 

were assumed to continue life-time ULT treatment with the same ULT, and maintained 

satisfactory SUA levels. As hyperuricemia is a major risk factor for flares, patients meeting 

SUA target were assumed to have no flares in maintenance period and require two routine 

doctor visits annually. Patients who failed ULTs or had side effects were assumed to receive 

no ULT in the long-term, and have four flares on average, which were treated using 

colchicine, non-steroidal anti-inflammatory drugs (cyclooxygenase-1 and 2 inhibitors),or 

glucocorticoids. In addition to four doctor consultations for acute gout treatment, these 

patients were assumed to have 3 hospital admissions every 10 years. This estimate was 

based on a study which reported average number of hospital admission for gout or gout-

related complications to be 1.5 over 10 year.136 We doubled this number to reflect the higher 

accessibility of hospital care in Singapore. Costs of doctor consultations, ULTs, medications 
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for acute flares management, and gout-related admissions were obtained from public 

healthcare institutions in Singapore. Based on the bills of 11 gout-related admissions 

between 2012 and 2013, average cost per admission was around US$1,484 and the 

average length of stay being 3.36. All costs were displayed in US dollars with 1US$ 

equivalent to 1.27 Singapore dollars as of 2 October, 2014.137 

Cost-effectiveness analysis 

The total costs and QALYs associated with each treatment strategy were calculated 

over 30-year time horizon. QALYs is define as life years adjusted for QoL, and was 

calculated as  

 

where QoL or utility score ranges between 0 and 1, with 1 indicating perfect health and 0 

indicating death; d, annual discount rate is 3%; and t indicates years since treatment 

initiation. Incremental Cost-effectiveness Ratios (ICERs) was calculated as incremental 

cost over incremental QALYs.  

Sensitivity analysis 

To examine the robustness of results over various assumptions, one-way sensitivity 

and probabilistic sensitivity analyses were conducted. In the one-way sensitivity analyses, 

variable were varied within the sensitivity ranges, one at a time, and ICERs were generated 

(Figure 4). In the probabilistic sensitivity analysis, all variables were varied simultaneously, 

and the distribution of ICERs based on 10,000 repeated draws from assigned distributions 

were obtained. All variables were assumed to follow triangular distributions, with most likely 

values being base case; minimum and maximum being lower and upper bounds of 

sensitivity ranges. 
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Figure 4. One-way sensitivity analysis of assumptions on the incremental cost-effectiveness ratio (ICER). (A) G->ULT->SP 
compared to standard ULT; (B) ULT+SP compared to Standard ULT. ULT, urate-lowering therapy; SP, safety program, SJS, Stevens-
Johnson syndrome. 
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3.4 Results  

Cost-effectiveness  
 

Consistent with recommendations,138 strategies were listed according to increasing 

order of costs, and ICERs were calculated regards to the next most costly strategy (Table 

6). Standard ULT coupled to a safety program (ULT+SP) compared to standard ULT alone 

yields an ICER of US$79,140/QALY, relative to standard ULT. GULTSP had an ICER 

of US$85,630/QALY compared to ULT+SP. Three strategies were dominated (more 

expensive and less QALYs than another strategy): genetic testing to enroll test positive 

allopurinol patients in SP (GSP); genetic testing-guided ULT treatment (GULT); and no 

ULT. US$50,000 is a commonly used ICER threshold to identify cost-effective 

interventions.86 This is very similar to the National Institute of Health and Clinical Excellence 

ICER threshold of £20,000-30,000,49 which is approximately US$48,000 at the currency 

exchange rate on 2 October 2014.137 In the base case, genotyping and safety program are 

both not cost-effective, by any of the commonly used cost-effectiveness thresholds. 

 

Table 6. Cost-effectiveness of six strategies for ethnicity-weighted Singaporean patients 
requiring ULTs 

Strategy 
Cost 

($) 
Incremental 

cost ($) 
QALYs 

Incremental 
QALYs 

ICER 
($/QALY) 

Dominance 

Standard ULT 4,130 - 14.9966 - - Undominated 
ULT+SP 4,200 60 14.9974 0.0008 79,140 Undominated 
GSP 4,420 220 14.9974 0 - Dominated 
GULTSP 4,590 390 15.0020 0.0046 85,630 Undominated 
G ULT 5,160 570 14.9597 -0.0423 -13,510 Dominated 
No ULT 15,310 10,720 14.1319 -0.8701 -12,320 Dominated 
ULT, urate-lowering therapy; SP, safety program; G, HLA-B*5801 genetic testing; QALY, quality-
adjusted life years; ICER, incremental cost-effectiveness ratio. 

 

Sensitivity analyses 

One-way sensitivity analysis shows that cost of safety program, mortality reduction 

due to safety program, and the incidence of SJS/TEN were the most influential factors on 
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ICERs, and variations in all others inputs within the defined ranges did not alter the cost-

effectiveness results (Figure 4). Probabilistic sensitivity analysis showed based on 

willingness-to-pay of US$50,000/QALY, allopurinol without genetic testing (standard ULT) 

is the preferred strategy in 40.7% of iterations, compared to 38.5% of iterations and 20.8% 

of iterations for ULT+SP and GULTSP, respectively. (Figure 5) 
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Figure 5. Probabilistic Sensitivity Analysis. (A) Strategy Selection at Willingness-to-Pay of $50000/QALY. (B) Cost-effectiveness 
acceptability curves of six strategies. ULT, urate-lowering therapy; SP, safety program; G, HLA-B*5801 genetic testing; QALY, quality-
adjusted life years. 
 

 

 

  

 

 

 



 

3.5 Discussion  

This study compares six potential risk mitigation strategies in chronic gout 

management. Among all strategies, no ULT resulted in the lowest QALYs, and 

surprisingly the highest long-term cost. This is because high SUA levels result in more 

frequent flares, and higher costs due to flare treatments and hospitalizations. This 

suggests that forgoing ULT treatment because of the fear of SJS/TEN risk would 

results in worse outcome and higher life-time gout treatment costs.  

Genetic testing strategies  

The three strategies involving genetic testing were either dominated or not cost-

effective under the base case scenarios. Genetic testing-guided ULT treatment 

(GULT) incurs additional testing costs and higher drug costs as the alternative drugs 

for HLA-B*5801 positive patients are more expensive than allopurinol. Paradoxically, 

if allopurinol is completely avoided among test positive patients, these patients have 

lower QALYs as they are restricted to fewer alternative ULT options, and consequently, 

will have poorer SUA management outcomes. Patients who test positive of HLA-

B*5801 and fail to respond to probenecid would receive no ULT in the long term and 

have more frequent flares when they might have benefitted from allopurinol. Given the 

HLA-B*5801 prevalence in the Singapore population (18.5%) and the low PPV of the 

test (1.52%), a GULT strategy, in which genetic test results dictate the selection of 

the initial ULT, will switch 18.5% of patients away from allopurinol when only 1.52% of 

them would be expected to develop SJS/TEN.  

We also considered whether genetic testing might be a useful tool for 

prioritizing high-risk patients for an enhanced safety program upon allopurinol initiation 

(GSP) when it is operationally challenging to enroll all gout patients in safety program 

in busy clinic settings. We found that GSP is more expensive, as the current cost of 

genetic testing (US$270) is relatively high compared to that of an enhanced safety 

program (US$63). If the cost of genetic testing drops to US$23, GSP achieves the 
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same cost as the safety program for all patients. At this cost, genotyping may be a 

useful strategy in busy clinics to screen patients and prioritize monitoring resources to 

the most at-risk patients. 

As completely avoiding allopurinol in test positive patients is not favorable from 

cost-effectiveness perspective, the alternative strategy GULTSP provides an 

option for clinicians who would like to achieve good SUA control with a lowered risk of 

SJS/TEN. This involves using probenecid first in test-positive patients, before 

embarking on allopurinol therapy with an enhanced safety program for those who do 

not respond to probenecid. This strategy has an ICER of US$85,630/QALY and is not 

cost-effective at an ICER threshold of US$50,000. However, it would become cost-

effective if the cost of the genetic test drops below US$90, which is possible.  

The main reason why genetic guided ULT selection reduced QALYs is the 

limited alternative options. Febuxostat, widely used in Europe and USA as a alternative 

drug, is not readily available in Singapore, and the current cost is 40 times higher than 

allopurinol. However, when febuxostat was modeled as third-line ULT, genetic testing-

guided ULT still yields fewer QALYs than standard ULT and at higher cost, which 

implies that using allopurinol, probenecid and febuxostat to optimize treatment for 

patients achieves higher overall response rate than using probenecid and febuxostat 

only. Moreover, hypersensitivity reactions associated with febuxostat, including 

Stevens-Johnson syndrome, have also been reported.139 

In contrast to our results, Saokaew 140 et al. concluded genetic testing is very 

cost-effective (ICER=US$5,062/QALY) in preventing allopurinol-induced SJS/TEN in 

Thai population. 140The divergent findings result from differences in 1) treatment costs, 

2) incidence of allopurinol-induced SJS/TEN in the respective populations, 3) 

population frequency of HLA-B*5801, and 4) assumptions on gout treatment outcomes. 

To the latter point, whereas Saokaew et al. didn’t distinguish responders and non-

responders to ULTs, we assigned different QoL and treatment costs to the two groups, 
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which we believe is more realistic. This is a key difference that generated the divergent 

results. 

In addition to SJS/TEN, HLA-B*5801 is also associated with other adverse skin 

reactions such as Drug Rash with Eosinophilia and Systemic Symptoms (DRESS).106 

Data on incidence, costs of treatment, and long-term complications of DRESS are 

scarce. As an approximation of incidence, we examined the number of DRESS cases 

in the national Singapore voluntary adverse drug reaction database. Between 1993 

and 2014, DRESS constituted 30% of all serious cutaneous adverse reactions (SCAR) 

associated with allopurinol. In the base case model, we assumed that the incidence of 

SJS/TEN alone is 0.2%; an estimate of the combined incidence of DRESS and 

SJS/TEN therefore is 0.28%. As noted above, the ICER of the GULTSP strategy 

only drops below the cost-effectiveness threshold when the incidence is higher than 

0.35%.  

Safety program 

Based on the commonly cited cost-effectiveness threshold of 

US$50,000/QALY, enrolment of all gout patients into safety program when initiating 

allopurinol is not cost-effective compared with ULT alone, under base case 

assumptions.86 However it would become cost-effective compared with standard ULT, 

if cost of safety program were reduced to below US$39 per patient, or if safety program 

resulted in over 47% reduction in SJS/TEN mortality, or 24% reduction in SJS/TEN 

incidence. In fact a 30% reduction in mortality assumed under base case may not fully 

capture the benefits of safety program, which may reduce seriousness and costs of 

treating other adverse reactions reported within the wide clinical spectrum of 

AHS.141,142  

Study limitations 

This study has several limitations. First, the study presumes the efficacy of 

ULTs in the short term continues for the long-term when metabolic changes, 

comorbidities and other medical therapies may ensue with aging. Second, long-term 
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complications of SJS/TEN and other side effects of gout management may be 

underestimated due to lack of long-term data. However, sensitivity analysis on 

treatment costs showed the results are robust even when the costs were doubled. 

Third, the treatment outcomes modelled were based on published clinical studies. In 

practice, effectiveness of ULTs may be lower than controlled circumstances; as 

monitoring of SUA and up-titration of drug dosage may not be universally performed, 

and patients’ non-adherence to ULT is an issue.143-145 Nonetheless, as these factors 

pertain to ULT treatment in general, conclusions on genetic testing and safety program 

are not likely to be influenced. Finally, this study is likely to underestimate the benefits 

of HLA-B*5801 genetic testing in reducing the mortality and morbidities attributable to 

other serious cutaneous adverse reactions.141  

3.6 Conclusion 

Complete avoidance of ULT due to the fear of SJS/TEN in chronic gout 

management results in the worst outcome and highest long-term costs. An enhanced 

safety program for all patients initiating ULT may become cost-effective if program 

costs are low or if significant mortality reduction can be achieved. HLA-B*5801 genetic 

testing for all gout patients commencing ULT, if used to avoid allopurinol in all test-

positive patients, reduces the overall QALYs at a population level. Test positive 

patients (18.5%) would have fewer alternative treatment options, and thus worse gout 

outcomes, while SJS/TEN would be avoided in 1.5% of patients. HLA-B*5801 genetic 

testing and prescribing probenecid in test-positive patients initially, but switching non-

responders to allopurinol coupled with an enhanced safety program, although not cost 

effective currently, would become cost-effective if testing costs drop substantially. Our 

results do not preclude individuals from seeking genetic test should they choose to do 

so nor implementation of safety program for extra clinical vigilance, only that the use 

of public resources is not justifiable based on existing data and thresholds for cost-

effectiveness.
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Chapter 4 . Introduction to patients’ preference for using 
pharmacogenetic testing to reduce severe adverse drug 
reactions 

4.1 Introduction 

Severe adverse drug reactions (ADRs) have long been a medical and public 

health concern. With the advancement of genetic research, genetic testing has been 

shown promising to select drugs for safer gout treatment.106 Cost-effectiveness 

analysis (CEA) described in Chapter 3 provides information on the value of HLA-

B*5801 testing from the health system. The negative cost-effectiveness results 

suggests that implementing HLA-B*5801 testing at the system level will not bring high 

value from the public resource allocation perspective. However, this does not 

necessarily imply that individual patients and doctors should not test. In fact, cost-

effectiveness analyses are not aimed to answer the question whether patients should 

or would use the test. The adoption of genetic test is a complex issue, concerning the 

interplay between various stakeholders (patients, physicians, providers, payers, 

regulators). Patients are the consumers, and often times the payers too. Patients’ 

preferences are therefore crucial to determine the uptake of HLA-B*5801 genetic test 

and inform testing policies.  

This chapter is an introduction to patients’ preferences for using 

pharmacogenetic testing to reduce risk of severe ADRs. It motivates the empirical 

study in Chapter 5, and facilitates the formulation of research questions and 

hypotheses. This chapter starts by outlining the importance of understanding patients’ 

preferences, and then reviews the theoretical framework to analyze patients’ 

preferences, followed by the literature on patients’ attitudes towards genetic testing. I 

then review the evidence on the determinants of patients’ preferences for genetic 

testing, with a focus on the methods using which these determinants were studied. At 
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the end of this chapter, I summarized the research question and hypotheses, which are 

studied in the next chapter.  

4.2 Why is patients’ preference important? 

4.2.1 Why may individual preferences for HLA-B*5801 testing differ 

from assessment at the health system level? 

Cost-effectiveness analysis assesses the benefit and cost of genetic testing to 

the health system, and applies a societal willingness-to-pay to determine whether a 

service is of high value from a public resource allocation perspective. However, individual 

patients may not go through the same process in their decision making, and significant 

heterogeneity can be expected. Patients’ decisions may be different from system level 

cost-effectiveness analysis for several reasons.  

First, cost-effectiveness applies a threshold (such as $50,000/QALY to define 

cost-effectiveness),86 which is meant to represent the societal willingness-to-pay for one 

quality-adjusted life year (QALY). However, there may be individual variations in the 

perceived value and benefit of pharmacogenetic test, and therefore the worthiness of 

testing. The willingness-to-pay may also correlate with individual’s ability to pay and other 

socio-demographic characteristics.  

Second, when uncertainty is involved, the decision making usually deviates from 

expected value calculation, as used in CEAs. In CEAs, expected reduction in utility due 

to SJS is calculated as the chance of SJS multiplying by the utility reduction associated 

with SJS, which is consistent with the expected utility theory.146 As the chance of SJS is 

only 0.2%, the adverse negative impact of SJS at the population level is small. Despite 

the low incidence, life-threatening adverse drug reactions, is a big safety concern among 

some patients and physicians. In prospect theory, the probabilities of outcomes 

happening are transformed into decision weights, which can be thought as the decision 

maker’s perception about the probabilities. 147,148 Therefore the utility can be written as  
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Where w(pi) is the decision weight of probability pi, and v(xi) is the valuation of outcome 

xi. For small probability events, such a life-threatening adverse drug reaction, individuals 

tend to overvalue the small probability (ie. w(𝑝𝑝𝑖𝑖) > 𝑝𝑝𝑖𝑖) Therefore, individuals may have a 

high willingness-to-pay to avoid the small chance of developing SJS.  

Third, the judgement of cost-effectiveness is relative to a comparator which is 

often the current practice. In the CEA described in the previous chapter, it is assumed 

the status quo to be allopurinol treatment for all eligible chronic gout patients, based on 

clinical guidelines. In reality, some doctors and patients are not comfortable with 

prescribing or taking allopurinol knowing the risk of SJS. The fear may results in lack of 

ULT treatment, which the cost-effectiveness analysis showed to be the most costly and 

least effective strategy. Genetic testing, in addition to reduce risk of SJS, may also 

improve gout control, due to the more confident use of allopurinol. Therefore, the actual 

benefit of genetic testing may be higher than modelled in CEA. However without data, 

these cannot be precisely quantified.  

Fourth, cost-effectiveness evaluates the benefit of testing in terms of the clinical 

utility, which is the potential of the test results to improve treatment outcome.149 

Consequently, those who have negative test results, which will not alter their treatment, 

receive no health benefit from testing. However, from patients’ perspective, there may 

be a “value of knowing”,150 which is, those who test negative derive utility from the 

assurance that they are not at risk.  

Cost-effectiveness analysis offers a convenient and standardized tool for policy 

makers to efficiently allocate scarce public resources among competing needs to achieve 

the most value or best health outcomes within budget constraints. The fact that HLA-

B*5801 is not cost-effective suggests public resources spent on reimbursing the test 

would not achieve high value for the health system compared to a cost-effective 

intervention. However question remains whether services should be made available for 
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voluntary test, and whether clinical practice guidelines should encourage routine genetic 

testing.  

4.2.2 Why is understanding patients’ preferences important for 

medical practices and policy-making? 

Knowing the availability of the genetic test, there is an urgent demand for 

information and guidance on the use of genetic test and genetic-test guided treatment 

regimen from the physician community. However, existing evidence does not provide 

sufficient indications on the appropriate use of genetic test. To inform policy making, we 

sought to understand patients’ preferences. Patients, as the consumer of medical 

services, derive utility from the services, even though often times the treatment is not 

directly chosen by patients. Treatment effectiveness, side effects, financial burden, and 

care experiences all influence patient’s utility. Minimizing risk of severe side effect does 

not necessarily maximize patient’s utility if the treatment effectiveness is compromised, 

or if significant financial burden is incurred.  Patient’s preference information are useful 

to physicians for several reasons. Firstly, knowing the tradeoffs can enable physicians 

to communicate risk and mitigation strategies more effectively, and choose the most 

suitable treatment based on each patient’s medical profile and preference profile. 

Secondly, inaccuracy (such as false positive, false negative results) of test can lead to 

difficult medical decisions, as false results may lead to suboptimal treatment. Directly 

eliciting patients’ preferences on accuracy parameters allow the identification of the 

maximum acceptable risk, which can facilitate clinical decision making.  

Patients’ preferences are also useful for other stakeholders. From a service 

provider perspective, a forecast of uptake rate is desirable to facilitate operation 

planning, and price setting. From the regulator perspective, understanding patients’ 

preferences can inform the formulation of risk communication letters to health 

professionals, and revise drug package insert to incorporate genetic information and 

usage advice.  Knowledge on patient’s preference could also inform the design of 
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effective vigilance and risk minimization programs. In many cases, the uptake rates for 

public health-promoting programs are below target. For instance, colorectal cancer 

screening is promoted, and reimbursed in the United States, yet around 50% of 

individuals older than 50 years have never been screened.151 This implies some 

preference or motivation factors are underlying the screening decision. Without 

understanding the decision making process, information provision and financial incentive 

may not be successful in meeting the intended uptake target. Patients’ preferences can 

also inform the research and development of genetic tests. Identifying what test features 

patients value most, and understanding patients’ willingness-to-pay for test features can 

facilitate the development of more useful tests.150 In a broader context, understanding 

patients’ preferences may help to set agenda and prioritize pharmacogenetics research.  

Recently, patients’ preferences have garnered more attention, and have been 

increasingly considered by the medical community and regulators. In clinical guidelines, 

patients’ preferences are often mentioned, especially in situations when tradeoffs 

between risk and benefit are involved.152 One area of application by regulators is to weigh 

the benefit and risk for new drugs and medical devices.153,154 For instance, some effective 

treatments may be associated with risk of life threatening side effects. The regulatory 

and clinical perspective is usually to minimize risk or weigh the benefit and risk, which 

often runs into difficulty, as it is unclear how therapeutic benefits and risk of side effects 

should be traded off. Patients may be willing to accept higher risk of severe side effects 

in exchange for better treatment outcome, especially for conditions with limited 

alternative therapeutic options. Measuring patients’ preferences is one potential solution 

to quantify the tolerable risk in exchange for better disease management. US FDA has 

published guidance on the use of patients’ reported outcome in regulatory decisions in 

2010, and released a draft guidance on patients’ preference information in 2015.60,154 

The guidance reviews the methods to measure patient’s preferences, and the use in 

premarket approval applications (PMA), Humanitarian Device Exemption (HDE), and 

de novo review processes.154 
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4.3 Patients’ general attitudes and preferences for the use of 
pharmacogenetic testing to reduce severe ADRs 

Literature on the preference for using pharmacogenetic testing to reduce severe 

ADRs is relatively new and limited, mainly because the basic science and clinical 

evidence were only developed in the last decade, and not yet widely applied clinically. 

Nevertheless, qualitative and quantitative studies on patients’ attitudes towards 

pharmacogenetic testing revealed wide public interest. 

Qualitative studies on patients’ perceptions about pharmacogenetic testing 

identified the lack of prior knowledge on pharmacogenetic testing.155 However, when 

educated about the definition and applications of pharmacogenetic tests, the public were 

generally enthusiastic towards pharmacogenetic testing.155-157 In a phone interview with 

328 German patients with asthma or chronic obstructive pulmonary disease, 96% of 

patients appreciated the availability of pharmacogenetic tests, and claimed the 

willingness to take a test prior to receiving asthma medication.155 In this group, the ability 

of the test to avoid side effects is an important consideration, and majority of patients 

were worried about the possibility that the test could not find the suitable drug with best 

therapeutic outcome and lowest risk of side effects. Similarly, a random-digit-dial 

telephone survey of 1,139 US adults showed that 85% of respondents were willing to 

take a pharmacogenetic test to predict serious side effects.157   

A few studies have examined patients’ preferences for pharmacogenetic tests in 

specific clinical scenarios quantitatively, and also confirmed patients’ preferences for 

taking genetic test to reduce risk of adverse drug reactions. Payne et al studied patients’ 

preferences for using pharmacogenetic test to identify the side effect neutropenia 

associated with the immunosuppressant azathioprine.158 In the study, various 

dimensions of test were listed, and patients were found to pay significant attention to the 

predictive accuracy of the test (ie. the ability of the test to predict risk of side effect). 

Herbild et al. measured Danish populations’ preference for pharmacogenetic testing prior 

to depression treatment, and found that patients were willing to pay a significant amount 
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of money to avoid change of medication due to lack of effectiveness or unacceptable 

side effect.159  

4.4 Determinants of preferences for genetic testing to reduce 
risk of severe ADR 

4.4.1 Approach 

To identify the determinants of patients’ pharmacogenetic testing decisions, three 

synergistic approaches were adopted. Firstly, I reviewed the conceptual models of health 

behaviors, the determining factors outlined in the model, and operationalized these 

factors in the context of allopurinol pharmacogenetic testing in Singapore. Secondly, the 

empirical literature on determinants of patients’ attitudes and preferences for 

pharmacogenetic testing and other screening services are reviewed. Lastly, the 

identified factors were verified via in-depth interview with diabetes patients.  

4.4.2 The health belief model 

Various models have been proposed to explain health behaviors, such as the 

acceptance of screening or preventive services. Some commonly used models are the 

Health belief model (HBM)160,161, Anderson’s health behavior model162,163, and the theory 

of planned behavior164. The Health Belief Model was used here to conceptualize 

individual patients’ genetic testing decisions.  

Health Belief Model is one of the most commonly used models to explain and 

predict individuals’ health behaviors. It was first developed in the 1950’s and 1960’s by 

Rosenstock et al. at the United States Public Health Service to explain the series of 

failures of programs to promote disease preventives or screening tests for tuberculosis 

(TB), cervical cancer, dental disease, rheumatic fever, polio and influenza, even though 

these services were provided free of charge or at very low cost for demonstration.160,161  

HBM focuses on individual-level belief and decision making, and assumes the decision 

makers to be rational.165 HBM has outlined six key variables that will determine whether 

an individual will take preventive actions.161 Four variables concerning individual’s 
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perceptions are: 1) perceived susceptibility to disease, 2) perceived seriousness of 

disease, 3) perceived benefits of taking actions, and 4) perceived barriers to taking 

actions. Two variables to trigger the actions are 5) cues to action, and 6) self efficacy. 

Besides the six key considerations, there are also modifiable factors, which can modify 

the perceived threat, and benefit of taken the action, and subsequently influence the 

likelihood of health behaviours. Using the HBM framework, I identified the factors that 

may determine whether or not an individual will take a genetic test before initiating 

allopurinol treatment to avoid potential life-threatening adverse reaction SJS that can be 

induced by allopurinol (Figure 6). Empirical evidence on each factor was also briefly 

reviewed. 
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Figure 6. Determinants of genetic testing decisions identified using the Health Belief Model framework. 
 

 

 

 



 

4.4.3 Literature review and conceptualization of determinants of 

pharmacogenetic testing decisions in the health belief model 

(HBM) framework 

The perceived susceptibility of the perceived seriousness 

Perceived threat of disease is the main motivation to take a screening test. The 

level of threat depends on the seriousness of disease and perceived individual 

susceptibility. Haga et al. found in a phone survey that more US individuals were more 

interested in using pharmacogenetic testing to predict serious side effect than mild side 

effects (85% vs 73%).157 Hall et al. compared the preferences of the general public and 

a high risk population (the Jewish population) to test for Tay Sachs disease, and 

discovered that Jewish respondents were more likely to be tested.166  

SJS/TEN are serious conditions that have an average mortality of 10% (5%-

40%), cause severe pain during onset, and may have long-term sequelae such as dry 

eye syndrome and blindness.16,17,122 Moreover, SJS/TEN treatment is costly, mainly due 

to hospitalization and the use of antibiotics. The seriousness of the condition is the 

primary motivation for taking the genetic test to predict the risk of SJS/TEN, and select 

appropriate drug to minimize SJS/TEN.  

The susceptibility can be best quantified by the likelihood of developing SJS/TEN 

upon initiating allopurinol. Among Taiwan Han Chinese patients receiving allopurinol 

treatment, around 0.2% would develop SJS/TEN.106,167 0.2% is a small probability that 

individuals do not commonly encounter in everyday life. It’s unclear how individuals 

interpret their susceptibility. Psychology and behavioural economics evidence suggests 

that when very small risk is involved, individual may exaggerate the probability or neglect 

the probability in their decision making.147,168-170 It is therefore not clear whether or not 

individuals are concerned about this level of risk, and motivated to take preventive 

actions.  
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Perceived benefit of taking actions 

The major benefit of testing prior to initiate allopurinol is to reduce the risk of 

allopurinol-induced SJS/TEN. The benefit of testing can be measured by the reduction 

in the risk of SJS/TEN. The extent of risk reduction depends on the accuracy and 

predictive power of the test. Indeed, many studies on patients’ preferences on diagnostic 

tests have highlighted the importance of test accuracy in influencing patients’ testing 

behaviours using various accuracy indicators. Hall et al. studied the false negative rate 

of genetic test, defined as the chance that someone carries the risk gene when the test 

is negative, and found that higher false negative rate significantly discouraged testing.166 

Knight et al. also used the false negative rate as an indicator for accuracy for a colorectal 

screening test.171 Payne et al. varied the predictive accuracy (defined as the ability of the 

test to predict the risk of the side effect) in their study, and discovered that patients were 

willing to compromise test experiences (eg. waiting longer) for a small improvement in 

predictive accuracy of test.158 Marshall et al. examined patients’ decisions on colorectal 

cancer screening, and found the sensitivity and specificity of screening test to be crucial 

information.172  

Despite patients’ strong preferences for more information on test being 

provided,158 it has long been recognized that the framing of risk and accuracy information 

can influence patients’ perceptions and decisions.173 For instance, there are several 

ways to describe the accuracy of the HLA-B*5801 test for allopurinol-induced SJS/TEN: 

(a) the test-guided treatment can reduce the risk of SJS/TEN from 0.2% to almost 0; (b) 

the test-guided treatment can reduce the risk of SJS/TEN by more than 99%; (c) the test 

have a sensitivity of 98%, and a specificity of 95.8%; and (d) the test has a 0% false 

negative rate, but a 98% false positive rate. All statements are true, yet people may react 

differently.169 It is therefore worth considering the appropriate form of accuracy 

information communication, and the impact of framing on the responses elicited. Though 

technical terms such as sensitivity, specificity, false positive/negative rate, and 

positive/negative predictive value are often used to describe the accuracy of test, 
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laypeople and even health care professionals may not understand the precise meaning 

of these terms. In the case of HLA-B*5801 test, the most straightforward and objective 

indicator of accuracy is the risk of SJS/TEN with and without testing (format a). When 

both probabilities are provided, respondents can easily visualize the absolute magnitude 

of risk reduction, without the need to understand technical jargons or undertake 

additional calculations. Format b can potentially be misleading as it emphasizes on the 

relative level of risk reduction (over 99%), but neglects the fact that the incidence of 

allopurinol-induced SJS/TEN is low (0.2%) even without testing. Format c and d are not 

easily comprehensible by laypeople, and the need to understand technical jargons may 

increase the cognitive burden of making testing decision. 

Other benefits of testing can result from the reduction in SJS/TEN risk, such as 

lower risk of dying, lower chance of having high medical expenditure to treat SJS. In 

addition, some literature suggests the “value of knowing” regarding the utility of testing, 

where even no treatment or preventive actions are involved after the test, knowing the 

test result has value.149,174,175  

Barriers of taking actions 

One type of barrier was cost. The HLA-B*5801 test currently costs S$375 in 

Singapore. Compared to allopurinol treatment cost of around $200 per year, test cost is 

high. Taking an expensive test for an inexpensive medicine may be a barrier to the 

uptake of genetic testing. The cost of long-term gout treatment depends on the genetic 

test results. Test positive patients require alternative drugs that do not induce SJS/TEN, 

but are significantly more expensive. Depending on the choice of second line drug, and 

the dosage, the medication cost can be twice to ten times the cost of allopurinol. Gout is 

a chronic condition, requiring long-term management. Switching to a more expensive 

medication may incur significant long-term cost.  

Empirical evidence shows patients are sensitive to price when making medical 

decisions.166,171,176 Various structural factors such as government subsidy and insurance 

reimbursement directly alter the out-of-pocket cost, which is the part of price that patients 
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pay. A study on the actual use of colorectal cancer screening services revealed that 

those with insurance coverage were more likely to attend screening.151 Government 

subsidy and insurance coverage are therefore possible ways to remove the cost barriers 

of testing.  

In addition to cost, there are other test-process related barriers. At the moment, 

HLA-B*5801 can only be done in centralized laboratories. Therefore the logistics is 

inconvenient, and the waiting time to receive test results is relatively long. In addition, 

patients will not receive urate lowering therapy before test result is received. An 

additional clinic visit may be required for test result pickup and prescription filing.  

Ethical concerns for genetic testing has long been recognized.177-179 For those 

genetic tests used to predict future disease risks, knowing the information may have 

negative impact because patients and  family members worry about unfavorable results, 

especially for diseases without a cure or a prevention strategy.166,174 The availability of 

genetic predisposition to insurers may lead to discrimination against the insured.180,181 

However, for pharmacogenetic testing, which has more defined clinical utility (ie. to guide 

drug selection, and dosage adjustment), empirical studies find relatively low level of 

ethical concerns. A phone survey of a sample of the U.S. public found that 90% of 

respondents were extremely or somewhat comfortable to share their pharmacogenetic 

test results with other doctors involved in their care management. 70% of respondents 

felt comfortable with incorporating their pharmacogenetic test results into their personal 

record. A survey targeting German patients revealed that only 27% of respondents were 

very or slightly worried about results sharing with insurance companies.155 

Cues to action 

A decision maker not only evaluates the benefits and harms of testing, but can 

also be influenced by the information cues. Medical decisions are not made in isolation. 

Even when information on treatment options is provided, patients usually seek other 

sources of information such as doctor’s recommendation, media information, internet, or 
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opinions of family, friends, and the other peer patients. Among these cues, the research 

on doctor’s recommendation and herd behaviour were extensively studied. 

 Doctor’s recommendation 

Studies have demonstrated the power of doctor’s recommendation in influencing 

patients stated choices as well as actual behaviors on choosing treatment options, taking 

up screening tests or vaccinations.166,182-187 Doctor’s recommendation is one of the most 

important factors in patients decision making, and an experiment that randomly assigned 

recommendations led patients to choose an option that was obviously suboptimal.188 

Though patients are encouraged to make informed decisions on their own treatments, a 

survey on patients preferred role in medial decision making revealed that even though 

nearly all respondents preferred to know the different options, half prefer to leave the 

final decision to their physician.189 The extent to which patient prefer decision making by 

physicians also vary by gender, education, and health status.189  

In fact, physicians’ preferences for pharmacogenetic testing are more extensively 

studied than patients’ preferences for its importance in shaping behaviors. In general, 

physicians have positive believes that pharmacogenetic test may improve patient care 

by personalizing treatment for patients, and anticipate increased clinical usage.155,190 

However, even some recent studies revealed the lack of genetic testing knowledge and 

training among physicians. A survey of 260 US specialist and primary care physicians in 

2010 identified that 40% to 72% of them had “no to minimal knowledge” on genetic topics, 

and were not certain how to incorporate genomic medicine into their practice.191  Another 

national survey of a sample of US primary care physicians in 2011 showed that only 13% 

of responding physicians were comfortable ordering pharmacogenetic tests.192 Therefore 

for successful implementation of test programs, physician education is crucial.  

Different forms and strength of physician recommendation may have different 

impact. Among the studies reviewed, both general recommendations (recommend a 

behavior such as screening) and specific recommendations (recommend a specific test) 

improves the test uptake.166,187 Stronger recommendations is associated with higher 
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uptake rate. 182 186 A study to examine the relationship between strength of 

recommendation and HPV vaccination status revealed that, when the strength of doctor’s 

recommendation was rated on a 1 to 5 scale, there is a 4-fold difference in the likelihood 

of vaccination between those receiving a strong recommendation and those receiving a 

weak recommendation.182 Recommendations on the timing of test and location of test 

may also influence patients’ decision.184,186,187   

Patients consider physician recommendation important for many reasons, in a 

patient’s survey by Gurmankin et al., the most common reasons of following the doctor’s 

recommendations are: “physicians had important additional information”, “physician had 

information about my risk that went beyond the data given in the question”, “physicians 

know best” “I don’t like having the responsibility of making my own medical decisions” “I 

don’t trust myself to make the right decision”.188 Recommendation by physicians 

indicates the quality of a treatment option. Following doctor’s recommendation may 

therefore be a decision heuristics that allows easy and fast decision making.193,194 

Though deviates from the “rational” decision making pathway based on logic and 

calculation, some empirical findings and economic theories have recognized the 

presence and advantages of decision heuristics.193-195 

Herd behavior 

Herd behavior has been recognized as another decision heuristic or shortcut. 

Herd behavior describes the trend that individuals’ decisions tend to be influenced by 

what people around them are doing. Several related concepts are “following the herd” 

and “social conformity”. It was first recognized by psychologist Soloman, and then widely 

observed in psychology, economics, consumer behaviors and finance.194-199. Though 

relatively fewer studies were conducted to understand patients’ herd behavior in medical 

decisions, several studies have demonstrated the presence of herd behavior in fertility 

choices, and physician’s prescription behaviors.166,200-204. One choice experiment by Hall 

et al. attempted to quantify the effect of providing information on other people’s decision 

about genetic carrier screening on individual respondent’s decision.166 When informed 

68 

 



 

that “80% of people like you have been tested”, respondents were more likely to test, all 

else equal. 

Following the herd is a simple decision heuristic, especially when health decision 

is difficult, and the optimal choice is unclear. Banerjee argues that in a sequential 

decision model, it is rational for decision makers to look at the decisions made the 

previous decision makers, as other decision makers may have information that is 

important. Moreover, he demonstrated that the optimizing strategy is to do what other 

people do, rather than using their information.195 Carlsson developed an economic model 

of environmental conformity for the consumption of eco-friendly coffee. The key 

assumption is that individuals derive utility not only from consumption, but also from 

following certain social norms. Carlsson modeled the utility from eco-friendly coffee as 

the sum of direct utility from consumption and a self-image component.205 The self-image 

of the individual can be negatively influenced by the difference between the product 

chosen by the individual and the social norm (eg: when 90% of people choose the eco-

friendly coffee, consuming eco-friendly coffee is the norm).  

Self-efficacy 

Self-efficacy refers to one’s confidence in his or her ability to take the action and 

overcome the barriers. Studies suggest that decision are useful to the extent decision 

maker have the confidence to adequately implement the behaviour.206 Self-efficacy is 

therefore important to determine the actual health behaviours.  

Modifiable factors 

In the Health Belief Model, another set of variables are the modifiable factors, 

which can influence individual’s perceived threat of disease, perceived benefit of action, 

and therefore the likelihood of action. Such factors include socio-demographic factors 

(eg: age, gender, ethnicity, employment status, income, housing type, education), and 

knowledge and experiences with gout, and genetics. Empirically, decision maker 

characteristics have been found to influence the attitudes towards genetic testing. Those 
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with higher income and education are found more likely to attend regular colorectal 

cancer screening.151  

A summary of important variables 

In summary, various determinants of testing decisions have been identified and 

summarized in Table 7. These factors were investigated in in-depth interviews with 

Singapore patients. 

 
Table 7. Determinants of testing decisions 
Concepts/ Domains Attributes/Factors Related attributes 

Perceived threat 
Risk of SJS/TEN  

Severity of SJS/TEN  

Perceived benefit 

SJS/TEN risk reduction 

(Some related factors are : 

 

Accuracy and predictive value of 

test (sensitivity, specificity, false 

positive rate, false negative rate, 

positive predictive power, 

negative predictive power) 

Fatality reduction 

Cost saving 

Barriers of testing 

Cost of test   

Availability of insurance 

reimbursement, government 

subsidy  

Cost of long-term gout 

treatment 
 

Convenience of testing  

Patients’ privacy  

Cue to action 
Doctor’s recommendation  

Herd behavior  

Self-efficacy Self-efficacy  

Modifiable factors 

Socio-demographic 

background 
 

Knowledge and awareness of 

test 
 

Knowledge of gout   
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4.5 In-depth interview to gauge patients’ opinions 

After identifying the determining factors in the literature, in-depth interviews were 

conducted with 5 patients to understand laypeople’s attitudes towards pharmacogenetic 

testing, and the decision making process. Individual interview was chosen over focused 

group, in order to understand each respondent’s independent perception and valuation 

of genetic testing while minimizing the impact of peer respondents. The in-depth 

interview was aimed to achieve 3 objectives: 1) understand respondents’ general 

perceptions and attitudes towards genetic testing; 2) verify whether respondents 

consider the pre-identified attributes to be important for their decision to adopt genetic 

testing; and 3) identify other important factors that were missing.  

A structured interview guide was designed to guide the in-depth interview. 

(Appendix A) The guide included an introduction to gout and pharmacogenetic testing, a 

section on general preferences for genetic testing, and considerations on various test 

outcome features identified in the literature review. Then respondents were then asked 

to share their thoughts on the role of doctor’s recommendation, and most common choice 

when making a testing decision. The perceptions and expectations about test service 

delivery process and use of genetics data were also elicited.  Interviewer asked the 

guiding questions, and allowed respondents to share their opinions freely. Specific 

questions on the guide that were not answered by respondent in the previous step were 

asked again as a probe. Respondents were also given the opportunity to share other 

important factors that were not raised by interviewer. 

Consistent with the literature, respondents were generally receptive to the idea 

of using a genetic test to reduce the risk of severe adverse drug reactions. Respondents 

considered the test outcome features (risk of SJS, test accuracy, cost of test, cost of 

long-term gout treatment) very important, while the service delivery process factors (test 

location, sample collection, results delivery) to be less important. Majority of respondents 

considered doctor’s recommendation to be very important. Most respondents would 
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consider the choice of peer patients, but would not necessarily follow. No additional 

salient factors were raised by respondents. In addition, heterogeneity in preferences 

were observed across different respondents.  

Findings from the in-depth interview, combined with the literature information, 

formed a pool of attributes, the effect of which would be quantified and further 

investigated using a discrete choice experiment (DCE). 

 

4.6 Using discrete choice experiment (DCE) to study 
preferences for pharmacogenetic testing 

Discrete choice experiment is a stated-preference method to quantify 

preferences using a series of choice questions.50-52 When revealed preferences or actual 

market behaviors are not observable, such as when a market does not exist, or when a 

product is not yet available, stated preference method can provide useful insights on 

preferences by offering hypothetical choice sets. Discrete choice experiment is also 

referred to as choice-based conjoint analysis. The name “Conjoint analysis” arose from 

the key characteristics of this type of study that different features of products or services 

are “CONsidered JOINTly”.53 Each feature is referred to as an attribute. And each choice 

alternative is composed of combinations of levels of each attribute. Compared to other 

stated-preference methods, such as contingency valuation, the key advantage of DCE 

is that it is better at measuring the preferences for each attribute level (the marginal 

value), the relative importance of various attributes, and the tradeoffs between different 

attributes.54 DCE elicit preferences using choice questions, which is a more intuitive and 

realistic way of everyday decision making, compared to other methods such as rating, 

or ranking.53  

First developed in marketing, later adopted by public and environmental 

economists, conjoint analysis and DCE have been increasingly used in health care in the 

recent decade. The preference of patients and other stakeholders regarding medical 

treatments, screening and preventive services, and health service delivery have been 
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used to inform clinical practices.53,55-59  Recently, DCE has gained popularity in informing 

regulatory decisions. US FDA has published a draft guidance on the use of patients’ 

preference information in 2015,60 with a section on the methodology of DCE and its 

applications in weighing the benefit and risk of new drugs and devices.   

Common attributes included in DCEs are health care outcome-related attributes 

(such as treatment efficacy, side effects, and survival), health care process-related 

attributes (such as waiting time, quality of care, mode of service, and type of health care 

professionals), cost attributes, and others. DCE allows the explicit quantification of 

tradeoffs individuals make between different attributes. The tradeoff between an attribute 

and the cost attribute provides estimates on the monetary value of the attribute level, or 

the willingness-to-pay (WTP). The DCE results have also been used to predict the choice 

probability or the uptake rate of a certain product or service. 

As will be described in chapter 5, a DCE was conducted to understand patients’ 

preferences for pharmacogenetic testing to reduce risk of severe adverse drug reactions 

prior to starting allopurinol in gout treatment in Singapore. Based on the literature and in-

depth interview presented in this chapter, factors important for patients’ testing decision 

making were included as attributes in the DCE. These factors include: the risk of SJS, 

the accuracy of genetic test, the test cost, the long-term treatment cost, doctor’s 

recommendation and herd behavior. The objective is to examine the relative importance 

of these attribute, and quantify the tradeoffs patients made between different attributes. 

The WTP for genetic testing, and the test uptake rate were of interest. In addition, the 

impact of potential policies or test feature changes on test uptake was simulated to inform 

clinical practice and policy making. The hypotheses are: 1) Respondents prefer lower 

risk of SJS, lower cost of genetic test and long-term gout treatment; 2) There is 

preference heterogeneity across patients, in terms of relative importance of attributes 

and willingness-to-pay; 3) Information that an alternative is recommended by doctor 

leads to higher willingness-to-pay and higher uptake rate for this alternative, compared 

to when it is not the doctor recommended; and 4) Information that an alternative is the 
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most common choice results in higher willingness-to-pay and higher uptake rate for this 

alternative, compared to when it is not the most common choice.   

Several factors were not studied in DCE. First, self-efficacy factors were not 

considered, as DCE only elicit stated preferences, but not actual behaviors. Second, test 

process variables (such as location of test, waiting time for test results, test results 

disclosure) were not included in the study, as respondents considered these factors to 

be less important. Third, those factors that are unlikely to change (such as incidence and 

mortality of SJS) were given as background information, instead of as attributes in DCE. 

 

4.7 Conclusion 

This chapter outlined the importance of understanding patients’ preferences, 

and reviewed the theoretical and empirical literature on patients’ preferences for 

genetic testing and its determinants. These leads to the formulation of specific research 

hypotheses to be tested in the DCE.
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Chapter 5 High-risk Asian patients’ preferences for 
pharmacogenetic testing to identify risk of severe 
adverse drug reaction in chronic gout treatment--A 
discrete choice experiment 

5.1 Abstract 

Aims 

This study aims to investigate patients’ preferences for using genetic testing to reduce 

the risk of a life-threatening adverse drug reaction named Stevens-Johnson syndrome 

(SJS). This study also explored the impact of doctor’s recommendation and herd 

behavior on patients’ decision making. 

Methods 

A discrete choice experiment was conducted in which 200 patients were asked to 

choose between 3 treatment alternatives that differed in six attributes: whether genetic 

test is involved, risk of developing SJS, cost of the test, cost of long-term gout 

treatment, doctor’s recommendation, and the most common choice. Conditional logit, 

mixed logit, and latent class models were used to analyze the choice data. Relative 

importance of attributes, willingness-to-pay for risk reduction, and test uptake rate were 

estimated. 

Results 

The latent class model identified two distinct classes of patients. Most patients are risk 

averse, and had higher preference weights for level of risk reduction than for cost of 

test. Other patients are more cost conscious, and considered cost of test and long-term 

treatment more important than the level of risk reduction. Given the current available 

genetic test, the risk-averse class had higher willingness-to-pay (S$1,215) and 

predicted test uptake rate (98.3%) at a price of S$400 compared to the cost-conscious 

class (S$0, and 8.8%). Overall, our results predicted the test uptake rate to be 65.10% 

in Singapore. The study also revealed the strong impact of doctor’s recommendation 

and moderate effect of herd behavior in shaping individuals’ test decisions.   
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Conclusions  

There is a potentially large demand for genetic tests that could reduce the risk of life-

threatening ADRs. Physician recommendations and providing information on the 

choices of others are powerful influences on demand, even more so than moderate 

price reductions.   
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5.2 Introduction 

Using a discrete choice experiment (DCE), this study aims to investigate 

patients’ preferences for using genetic testing to reduce the risk of a life-threatening 

adverse drug reaction named Stevens-Johnson syndrome (SJS). Based on the 

literature review and in-depth interview described in the previous chapter, various test 

features and decision context information were included as attributes in the DCE. 

Based on DCE results, the willingness-to-pay for risk reduction and test uptake rate 

were estimated for various scenarios to inform clinical practice and policies. The 

specific aims and hypotheses are: 

Aim 1: To quantify patients’ preferences for various features of pharmacogenetic 

test.  

Hypothesis 1.1: Respondents prefer lower risk of SJS, lower cost of genetic test 

and long-term gout treatment. 

Hypothesis 1.2: The test uptake rate will be higher when a test can reduce the 

risk of SJS to a lower level, or when the cost of genetic test and long-term gout 

treatment is lower. 

Hypothesis 1.3: Patients are willing to pay additional cost for a test-guided 

treatment strategy that results in lower risk of SJS. 

Hypothesis 1.4: There is preference heterogeneity across patients, in terms of 

relative importance of attributes and willingness-to-pay. Some patients may 

consider the risk of SJS as the most important factor and have high willingness-

to-pay for risk reduction, whereas others may care more about cost.  

Aim 2: To quantify the extent to which information on doctor’s recommendation 

can influence the likelihood of an alternative being chosen.  

Hypothesis 2.1: Information that an alternative is recommended by doctor leads 

to higher willingness-to-pay and higher uptake rate for this alternative, compared 

to when it is not the doctor recommended.   
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Hypothesis2.3: Doctor’s recommendation is more influential among women, 

elderly, and those with lower educational attainment.  

Aim 3: To quantify the extent to which information on the most common choice 

can influence the likelihood of an alternative being chosen.  

Hypothesis 3.1: Information that an alternative is the most common choice 

results in higher willingness-to-pay and higher uptake rate for this alternative, 

compared to when it is not the most common choice.   

Hypothesis 3.3: Information on the most common choice is more influential 

among women, elderly, and those will lower educational attainment.  

Hypothesis 3.4: When doctor’s recommendation differs from the most common 

choice, doctor’s recommendation is more influential on the final decision.    

Aim 4: To forecast the impact of various hypothetical policies on test uptake 

rate.  

Hypothesis 4: Providing information that a test is recommended by doctor is 

more effective in improving the test uptake rate compared to a strategy that 

lowers the cost of test or long-term gout treatment.  

 

In addition to addressing the above research questions, this chapter also aims 

to provide a detailed description of the techniques and processes of conducting a DCE 

when decision context attributes are involved. Standard DCEs require attributes levels 

to vary independently in different choice alternatives within the same choice set. 

However, the presence of choice context requires the different choice alternatives to 

have correlated attribute levels, which adds to the complexity of study design. 

Alternative options are discussed to illustrate the process of evaluating and choosing 

the most appropriate method.  

5.3 Methods 
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Conducting a DCE involves several key tasks: problem refinement and stimuli 

development, experimental design, survey instrument construction, data collection, and 

statistical analysis (Figure 7).50 Stimuli development refers to the determination of 

attributes, levels, and choice question format. Experimental design is the process of 

systematically combining attribute levels to make choice alternatives and choice sets. 

The design process and methods have been reviewed in the literature.50,51,207,208 Table 

8 lists the questions to be addressed in each step. Importantly, study design is an 

iterative process. In-depth interview, cognitive interview and pre-testing are necessary 

to obtain respondents’ feedback on the design, and suggest improvements on the 

earlier tasks. For instance, experimental design considerations and respondents 

feedback may require the modification of attribute levels. An untested design may fail 

to answer the research questions, and lead to biased preference estimates.  

In this study, three iterations were undertaken for survey instrument design. The 

first iteration involved the identification of a preliminary list of attributes based on the 

literature review and in-depth interview. In the second iteration, attribute levels and 

choice question format were selected, and tested in cognitive interviews. In a cognitive 

interview, each participant was asked to answer specially constructed DCE questions, 

and “think aloud” to describe their decision making process and rationale to the 

interviewer.176 Interviewer also directed questions to better understand the responses. 

Based on responses, attributes levels were fine-tuned, and choice format was revised 

so that respondents can understand the questions, and make trade-offs between 

various attributes and levels as intended. An experimental design and choice sets were 

generated at the end of the second iteration. The third iteration was a pre-test of the 

draft survey instrument before fielding to a large number of respondents.   
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Figure 7. The process and key tasks of undertaking a discrete choice 
experiment. Modified from “Applied choice analysis: a primer.” By Hensher, 
David A., John M. Rose, and William H. Greene.  2005. Cambridge University 
Press.50 
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Table 8. Checklist of factors to consider in undertaking and assessing the 
quality of a discrete choice experiment.  

 

From "Conducting discrete choice experiments to inform healthcare decision 
making." By Lancsar, Emily, and Jordan Louviere. Pharmacoeconomics 26, no. 
8 (2008): 661-677.51  
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5.3.1 Problem refinement and stimuli development 

This step involves the development of attributes, levels, and choice question 

format, the process of which is described in details in this section. The final set of 

attributes and levels are shown in Table 9. Two sample choice sets are displayed in 

Figure 8.  

 

Table 9. Final attributes and levels studied in DCE 
Attributes Levels 

The chance of getting the severe 
side effect 

 
1 out of one million patients 
1 out of 5,000 patients                       
1 out of 1,000 patients  
1 out of 600 patients 

Cost of one-time genetic test 

 
S$20                                  
S$200 
S$400 
S$1,000  

Cost of gout medicines (over 
two years)  

 
S$250 if test positive (2 in 10 chance), S$200 if test 
negative (8 in 10 chance)                              
S$400 if test positive (2 in 10 chance), S$200 if test 
negative (8 in 10 chance)                              
S$1,500 if test positive (2 in 10 chance), S$200 if test 
negative (8 in 10 chance)                              
S$4,000 if test positive (2 in 10 chance), S$200 if test 
negative (8 in 10 chance)                              

Your doctor’s recommendation 

 
No information on doctor’s recommendation 
An alternative is the doctor recommended alternative 
An alternative is not the doctor recommended 
alternative 

Most common choice 

 
No information on the most common choice 
An alternative is the most common choice 
An alternative is not the most common choice 
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Figure 8. Sample DCE choice questions 
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5.3.1.1 Attributes development based on literature and in-depth interview  

The determinants of genetic testing decisions identified based on the Health 

Belief Model and supported by empirical literature and in-depth interview in the 

previous chapter formed the initial pool of attributes: 

Test feature attributes: 

• Risk of developing SJS (with test-guided treatment) 

• Cost of test 

• Cost of long-term gout treatment 

Choice context attributes: 

• Doctor’s recommendation 

• Most common choice 

5.3.1.2 Attribute level development and testing through cognitive interview 

Determine Attribute levels 

Once attributes were determined, the next step was to select levels for each 

attribute. Levels were quantified or unambiguously defined to avoid confusion and 

minimize variations in interpretation. Four criteria were considered for attributes level 

selection. Firstly, the observed or most realistic levels were included, in order to make 

predictions about real life behaviors. Secondly, policy relevant levels, or levels that 

would become realistic in the future were included, to improve the predictive power of 

the study to forecast impact of policies and future changes. Thirdly, a broad range of 

levels were included to explore the switching point, at which respondents may switch 

choices. When all levels of an attribute are considered very low or very high to a 

respondent, this attribute may dominate other attributes, or may be neglected, both of 

which are inefficient in collecting preference information. Including appropriate range of 

levels ensures that respondents actively evaluate the different attribute levels, and 

made trade-offs between attributes. Fourthly, the number of levels was set at 4 for risk 

and cost attributes, and 3 for doctor recommendation and most common choice 
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attributes. With more levels included, the more information regarding preferences for 

that attribute can be captured. However design size and cognitive burden will increase 

with number of levels.50  

The attribute level extremes identified above were systematically tested in 

cognitive interviews to 1) fine-tune the attribute levels, especially the extreme ranges, 

so that respondents feel the presented attribute levels are relevant, and may change 

their decisions based on the different levels, and 2) to explore respondents’ willingness 

to make trade-off between different attributes. In a cognitive interview, each participant 

was asked to answer specially constructed DCE questions, and “think aloud” to 

describe their decision making process and rationale to the interviewer.176 The 

interviewer also directed questions to better understand the responses. Each specially 

constructed DCE choice set includes 2 hypothetical test alternatives, where two 

attributes were varied at one time, while fixing the other attributes at the middle levels, 

in order to examine the trade-offs made between any two attributes. The best level of 

an attribute was combined with the worst level of another attribute in one of the 

profiles, and vice versa for the other profile. (See Table 10 for the design of DCE 

choice sets for cognitive interview). A no test alternative was then added to each 

choice set as a fixed comparator. 
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Table 10. Cognitive interview DCE choice sets template to identify extreme ranges of attributes. 
 Q1 Q2 Q3 
 Test A Test B No test Test A Test B No test Test A Test B No test 
Risk of developing SJS Best level Worst level  Best level Worst level  Middle level Middle level  
Cost of test Worst level Best level Fixed Middle level Middle level Fixed Best level Worst level Fixed 
Cost of long-term gout treatment Middle level Middle level  Worst level Best level  Worst level Best level  
Doctor’s recommendation Middle level Middle level  Middle level Middle level  Middle level Middle level  
Most common choice Middle level Middle level  Middle level Middle level  Middle level Middle level  
   
 Q4 Q5 Q6 

 Test A Test B No test Test A Test B No test Test A Test B No test 
Risk of developing SJS Best level Worst level  Best level Worst level  Middle level Middle level  
Cost of test Middle level Middle level Fixed Middle level Middle level Fixed Best level Worst level Fixed 
Cost of long-term gout treatment Middle level Middle level  Middle level Middle level  Middle level Middle level  
Doctor’s recommendation Worst level Best level  Middle level Middle level  Worst level Best level  
Most common choice Middle level Middle level  Worst level Best level  Middle level Middle level  

   
 Q7 Q8 Q9 
 Test A Test B No test Test A Test B No test Test A Test B No test 
Risk of developing SJS Middle level Middle level  Middle level Middle level  Middle level Middle level  
Cost of test Best level Worst level Fixed Middle level Middle level Fixed Middle level Middle level Fixed 
Cost of long-term gout treatment Middle level Middle level  Best level Worst level  Best level Worst level  
Doctor’s recommendation Middle level Middle level  Worst level Best level  Middle level Middle level  
Most common choice Worst level Best level  Middle level Middle level  Worst level Best level  

   
 Q10  
 Test A Test B No test 
Risk of developing SJS Middle level Middle level  
Cost of test Middle level Middle level Fixed 
Cost of long-term gout treatment Middle level Middle level  
Doctor’s recommendation Best level Worst level  
Most common choice Worst level Best level  

*In each choice set, only two attributes were varied, while all other attributes were fixed at the middle level. The two attributes varied were underlined.  
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A total of 50 diabetes patients were recruited from Singapore General Hospital 

(SGH) Diabetes Centre and the National University Hospital (NUH) Diabetes Clinic for 

cognitive interviews. Several rounds of cognitive interviews were conducted, with the 

attribute level extremes adjusted based on respondents’ choices in the previous round 

of cognitive interview. For instance, when no respondent chose the no test alternative, 

it suggested that the highest risk of developing SJS associated with test alternatives 

should be increased to encourage trade-offs. If respondents always chose the lower 

risk alternative, regardless of cost, the highest cost level should be increased in order 

to identify the maximum willingness-to-pay. In the last round of cognitive interviews, 

tradeoffs were observed. Among respondents, very few made their responses always 

consistent with the better available level of one attribute (dominating on an attribute), 

indicating that with the current attribute level extremes, all attributes are important so 

that they make trade-offs between different attributes instead of only considering one 

attribute.  

Determine the attribute level display format 

In the cognitive interviews, the best framing and presentation format of attribute levels 

were also explored.  

The risk of developing SJS is 0.2% without testing, and further reduced to almost 0 

with testing-guided treatment. Such small probabilities that people do not often 

encounter in daily life are difficult to make sense of by respondents. In the literature, it 

is found that people are not good at understanding probability expressions, especially 

small probabilities.169,173,209-211 Some common graphic displays tools such as grid, and 

dots do not work well for very small probabilities. We tested three possible formats of 

presenting the risk of SJS including the use of percentage, the use of frequency, and a 

graphic display with a Pailing scale (Table 11).209,210  The frequency format (1 out of 

xxx patients) was found easy to understand and quantify, and was used in the final 

survey. Respondents reported that percentage expressions were not easy to imagine, 

and some respondents considered all levels to be very low when presented in 
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percentages. The Pailing perspective scale is a method to display the probability of an 

event relative to the probability of other events which people are more familiar with 

(such as the risk of dying off cancer, the chance of winning TOTO lottery, the chance 

of getting HIV infection from transfusion).  In cognitive interviews, this was found to be 

time-consuming, and incurring significant cognitive burden to respondents.  

 
Table 11. The risk display format tested in cognitive interviews 

Display 
format 

Percentage 
format 

Frequency 
format 
(preferred) 

Pailing perspective scale 

Risk of 
getting 
SJS 

0.2% of 
patients  

1 out of 
500 
patients 

1 in 500 

 

 

The cost of long-term gout treatment is an attribute with an uncertainty 

component. As genetic test results can aid the selection of drugs, the long-term gout 

treatment cost depends on the test results. We therefore displayed the gout treatment 

costs associated with positive and negative test results, as well the chance of testing 

positive. The gout treatment cost associated with negative test results (S$200 over 2 

years) and the chance of test positive (20%) are fixed across different levels, and only 

the cost associated with positive test results was varied (S$250, S$400, S$1,500,and 

S$4,000). In the pre-testing, respondents could understand that gout treatment cost 

was uncertain at the time of making testing decisions, and the actual cost would 

depend on test results. We provided the cost of gout treatment in 2 years, as gout is a 

chronic condition with one episode of treatment lasting for over 2 years. 
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The display of doctor’s recommendation was explored in the cognitive 

interviews. In real life scenarios, doctors often recommend one treatment from the 

available alternatives. In other cases, doctors may provide information on the treatment 

alternatives but make no clear recommendation, and encourage patients to make a 

decision based on his/her own preference. We therefore imposed the restriction that 

only one alternative can be recommended by doctor in each choice set, or no 

information on doctor’s recommendation is provided. The doctor’s recommendation 

attribute was framed as the information on doctor’s recommendation. It differs from a 

real recommendation delivered by a doctor personally during a face-to-face 

consultation. The physical presence of doctor and the interactive nature of the 

recommendation will make an actual recommendation more salient and effective than 

providing information on doctor’s recommendation in a survey questionnaire. To 

improve the saliency of the doctor’s recommendation attribute, a flag shape label was 

used to indicate doctor’s recommendation (Figure 8). A graphic display not only 

attracts respondents’ attention, but also makes it easier to understand the 

recommendation. 

To test for the presence of herd behavior, the choice of the herd can be 

described in quantitative or qualitative ways. Showing the percentage of respondents 

choosing each alternative gives precise information, however multiple levels may be 

required in the design to identify the percentage at which respondents will follow the 

herd. In addition, as several alternatives were offered in each choice set, respondents 

may undertake calculations with percentages, and confusion may arise if all 

percentages do not sum up to 100%. To simplify this attribute and avoid confusion, the 

levels were described qualitatively. An alternative can be “the most common choice” or 

“not the most common choice”. In some choice sets, this attribute has the level “no 

information”. A visual display was used, with the most common choice indicated by a 

tick mark (Figure 8).  
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Given the above considerations and findings, the final set of attributes and 

levels are shown in Table 9. The initial set of attributes and levels formulated without 

testing or revision are shown in Table 12.  Comparing the two sets, significant changes 

in attribute framing and attribute levels were made to improve the survey.  

 

Table 12. Initial set of attributes and levels before cognitive interview 
Attributes  Levels 

Your cost for the test Free 
S$50 
S$200 
S$500  

Your chance of 
developing SJS 

0 (no chance) 
1 SJS case in 50,000 users of allopurinol 
1 SJS case in 5,000 users of allopurinol 

Gout treatment costs  2 every 10 people will test positive. If you are one of these people, you 
will have to take a drug that will cost you SGD500 a year. If you do not 
test positive, you can safely use allopurinol   
2 every 10 people will test positive. If you are one of these people, you 
will have to take a drug that will cost you SGD1,000 a year. If you do 
not test positive, you can safely use allopurinol     
2 every 10 people will test positive. If you are one of these people, you 
will have to take a drug that will cost you SGD2,000 a year. If you do 
not test positive, you can safely use allopurinol                                                                                  

Your doctor’s 
recommendation 

You receive a doctor’s recommendation on the genetic test 
You receive no recommendation on the genetic test 

Herd behaviour 10% of people in your situation take the genetic test 
90% of people in your situation take the genetic test 

 

5.3.1.1 Determine DCE question format and test via cognitive interview  

Besides fine-tuning the attributes and levels, there are several other objectives 

of cognitive interviews: 1) to explore the ability of respondents to understand the 

attributes and DCE questions, and determine the appropriate format of DCE question, 

2) to understand the cognitive burden and difficulty level of the survey in the study 

population, and 3) to test and improve the wording of survey instrument.  
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Inclusion of an opt-out option in the choice set 

DCE question aims to elicit a response on the preferred alternative within each 

choice set. However, it is possible that none of the test alternatives is preferred, even 

though one test is perceived better than the others. It is important to capture this type 

of non-demander preference when trying to make predictions about real life 

behaviors.212 This is particularly relevant for this study as we sort to understand 

whether or not individual patients are willing to take a genetic test, in addition to 

estimating the preferences for test features. Without an opt-out option, the test uptake 

rate may be overestimated.213 Three types of modifications can accommodate the non-

demander behaviors: 1) having a no test alternative with all features displayed, 2) 

including  “none” as an option in the response, or 3) adding a follow-up question after 

the preference question to verify whether the preferred option will be implemented 

when offered. After testing in cognitive interviews, the no test alternative was chosen. 

Display of all attributes levels for the no test alternative allows respondents to compare 

the cost and consequences of testing and no testing, and minimizes the discrepancies 

in individual beliefs about no test. To make the questions realistic, we constructed the 

no test alternative using the realistic attribute levels, and kept the risk and cost 

attributes of this alternative fixed in all DCE choice sets.  

Number of alternatives in a choice set 

Having more profiles in a question will increase the amount of information 

obtained from each question, however may increase the complexity of questions and 

the cognitive burden to respondents. Most DCE studies in health care include 2 or 3 

alternatives in each choice set. In the cognitive interviews, both numbers were tested, 

and respondents had no difficulty in handling three alternatives. Furthermore, having 3 

alternatives (2 test alternatives + 1 no test alternative) has advantages over 2 

alternatives (1 test alternative+ 1 no test alternative) in reducing the labeling effect of 

testing. With only one test alternative and one no test alternative, respondents may 
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take the mental shortcut to always choose test or no test based on their prior belief 

about genetic testing instead of looking at the attribute levels. 

Labeled vs. unlabeled alternatives 

In addition to the attributes and levels, the label of alternatives also significantly 

influences the responses. In an unlabeled design, the alternatives are given generic 

names such “Alternative A”, “Alternative B” or “Treatment A” and “Treatment B”. In a 

labeled design, the name of alternative confers some information about the alternative, 

such as “Genetic test A”, “Genetic test B” and “No test”. Assigning informative labels to 

the profile will make it more realistic to respondents, which is likely to improve the 

power of DCE to predict real behaviors. However, the label has been shown to 

influence individual choices and reduce the attention respondents give to the 

attributes.214 Both labeled and unlabeled designs were tested in the cognitive 

interviews.    

When the three profiles were labeled as “Genetic test A”, “Genetic test B”, and 

“No test”, respondents were less likely to indicate the no test alternative as the most 

preferred, compared to the unlabeled design, where the alternatives were labeled 

“Alternative A”, “Alternative B” and “Alternative C”. This may be reasonable as the 

genetic test label confers information, and patients may have intrinsic preferences for 

taking a genetic test to reduce risk of life-threatening ADRs, regardless of the attribute 

levels. However, a small number of respondents mistakenly understood the no test 

alternative as having no gout treatment. In order to minimize the potential 

misunderstanding, the labels were revised to be “Treatment A” “Treatment B” and 

“Treatment C” to reassure respondents that gout treatment will be given in all three 

alternatives, with the difference being the involvement or absence of genetic testing 

prior to treatment. An additional attribute was introduced to indicate whether a 

treatment involves genetic testing to capture respondents’ intrinsic preferences for the 

label of genetic test. 
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Type of preference-eliciting questions  

The most common type of preference-eliciting question requires respondents to 

indicate the most preferred alternative. Newer DCE studies has explored different 

types of questions, such as the best-worst type, which require respondents to report 

both the most preferred (best) and least preferred (worst) alternatives.215 In a DCE 

study with 3 alternatives in each choice set, the best-worst type questions provide the 

complete preference ranking of an individual over different alternatives. The coefficient 

estimates using both the best and worst response have smaller standard errors than 

models estimated using responses on the best alternative only, demonstrating gains in 

statistical efficiency from the additional preference information gathered.215,216 However, 

the cognitive processes and certainty of responses to the best and worst question are 

different, and there are controversies on the appropriate weights assigned to the best 

and worst questions.215,217 In addition, there are concerns on the cognitive burden of 

asking 2 follow-up questions in each choice set. In pre-testing, best and worst types of 

questions were tested, and some confusion was observed, especially among those 

with lower education level. The switch between best and worst questions appeared to 

require a switch in the decision making pathway, and increased the cognitive burden. 

There is also trade-off between the number of follow-up questions in each choice set 

and the number of choice sets respondents can go through in a given amount of time. 

Therefore, respondents were only asked to choose the most preferred alternative in 

the final survey. 

Number of DCE choice sets in the survey 

In the DCE literature, a wide range of choice set numbers have been used. The 

optimal number of questions depends on the complexity of DCE questions, and the 

cognitive power of respondents.  A study that compares a design of 5, 9, and 17 choice 

sets found that respondents exposed to 17 choice sets had higher response variance, 

suggesting a large number choice sets may increase cognitive burden.218 Cognitive 

burden may leads to inattentive or inconsistent responses. Cognitive interviews reveal 
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that respondents can answer 10 questions with reasonably good attention and 

certainty. Even though a small number of respondents started to fatigue after 4-6 

questions mainly because all DCE questions looked similar, they could re-gain focus 

with the encouragement of interviewers. 10 trade-off questions were included in the 

final survey.  

5.3.2 Experimental design 

Experimental design is the process of systematically generating a sample of 

choice sets which constitutes choice alternatives that are specific combinations of 

attributes and levels.208 Experimental design should be tailored based on the research 

objective, specifications of attributes and levels, choice question format, as well as the 

analysis requirements.208  According to the ISPOR Task Force on Conjoint Analysis, 

the good practice of experimental design requires researchers to evaluate alternative 

design approaches and justify the approach chosen.207 In order to select and evaluate 

various design approaches, four aspects were considered. Johnson et al. highlighted 

two general objectives in experimental design: model identification and efficiency.208 

Louviere et al. discussed two additional design objectives: reduce cognitive complexity 

and market realism.52 Model identification means independent and unbiased estimation 

of the desired form of effect parameters from the survey data, and is the most 

important design consideration. Efficiency refers to the statistical power of the design 

to estimate the effect parameters precisely with relatively small sample size. Reducing 

cognitive complexity requires researchers not to incur excessive cognitive burden on 

respondents, as cognitive burden may threaten the consistency and validity of 

responses. Market realism influences the power of the study to explain or predict real 

life behaviors. A perfect design may not exist. Often, the importance of the four 

objectives needs to be weighed and compromised to achieve a good balance. 

5.3.2.1 Experimental design theories and approaches—a literature review 
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To generate an experimental design, several approaches are commonly used 

in the DCE literature.208 Different approaches have different underlying algorithms and 

properties. In general, there are two classes of designs: full factorial design and 

fractional factorial design.50,51,219 Full factorial design generates all possible 

combinations of levels from each attribute, and the main effects and interaction effects 

of all attribute levels can be estimated independently. However, full factorial design 

requires large number of questions if the study involves many attributes and levels, 

which are usually impractical. In this study, there are three attributes with four levels 

each, and two attributes with three levels each (denoted as 4332). A full factorial design 

would generate 4x4x4x3x3=576 different combinations. In contrast, fractional factorial 

designs select only a small fraction of possible combinations while ensuring the effects 

of interest can be estimated.  Different approaches are used to select a fraction of 

combinations. Designs can be obtained from catalogues, software, or generated by 

hand.51,208  The generated designs may differ in three key properties: orthogonality, 

statistical efficiency and response efficiency.  

Orthogonality is a constraint that all attributes be statistically independent of 

each other (though conceptually attributes may be related), and zero correlations 

between attributes.50 Orthogonality relates to the design objective of unbiased 

identification of parameters in statistical analysis. For example, in a study to 

understand patients’ preferences for treatment effectiveness and adverse drug 

reactions, if the treatment that is more effective always results in lower rate of adverse 

drug reactions, researchers will not be able to distinguish the independent effect of 

effectiveness and adverse drug reactions on patients’ preferences. Balance is a related 

property that requires each level of an attribute to appear equal number of times, and 

is a necessary condition for strict orthogonality. The designs that emphasize on 

orthogonality are referred to as orthogonal or near-orthogonal fractional factorial 

designs. These include orthogonal arrays (which can be obtained from manual 

catalogue), orthogonal main-effects plan (OMEP), and OMEP-based designs such as 
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the fold-over design, and designs generated by Sawtooth software.208,220-222 These 

designs require zero or near zero correlation between attributes, and therefore 

guarantees the identification of main effects and sometimes interaction effects. 

However, small size orthogonal arrays may not be available for some number of 

attributes and levels. Moreover, orthogonal designs cannot incorporate constraints on 

dominance or implausible combinations. For instance, some random combinations 

may be implausible or dominated (where all levels of one alternative are 

unambiguously better than the levels of another alternative). This is likely to occur 

when the attribute levels are naturally ordered.208 This type of combinations does not 

reveal information on preferences as the better choice is obvious regardless of 

preference if people are rational. Imposing restrictions to avoid implausible 

combinations may improve statistical efficiency and reduce potential confusion among 

respondents.  

Statistical efficiency refers to the minimization of confidence intervals around 

parameter estimates in a choice model for a given sample size.208 A statistically less 

efficient design may be compensated by a large sample size to obtain rather small 

confidence intervals.208 However, when the intended sample size is small, statistical 

efficiency is crucial. Optimal fractional factorial designs emphasize on statistical 

efficiency at the expense of orthogonality. D-efficiency and D-optimality are commonly 

used efficiency criteria to measure, generate and compare the efficiency of designs.186 

Design approaches that focus on efficiency include the SAS macros using D-efficiency, 

Street and Burgess’ cyclic design, Sandor and Wedel’s Bayesian design, and Bliemer’s 

design.216,219,223,224  

Besides statistical efficiency, there is another type of efficiency referred to as 

response efficiency, which is about the measurement errors resulting from poor quality 

response. This property relates to the objective of minimizing cognitive burden. When 

DCE questions are complex or ambiguous, or when a large number of DCE questions 

are included, respondents may fatigue and pay less attention to the questions, or even 
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take mental shortcuts that deviate from utility maximization. The inconsistency in 

responses may result in bigger variance in estimates. Louviere et al. demonstrated that 

an increase in statistical efficiency was always associated with a decrease in response 

consistency.225 

A good design requires a balance of orthogonality, statistical efficiency and 

response efficiency. In practice, there are trade-offs that researchers have to make 

between these three considerations. Statistical efficiency can be increased by asking a 

large number of difficult trade-off questions with no implausible combinations, and no 

level overlaps. However these will violate strict orthogonality by imposing correlations, 

and incur significant cognitive burden which will threaten response efficiency. 

Empirically some design properties such as D-efficiency, correlation, balance, and 

overlap can be indicators of orthogonality and efficiency, and should be checked after 

design is generated. 

5.3.2.2 Generate experimental design using D-efficiency criteria in SAS 

In this study, the D-efficiency measure was used to generate a fractional 

factorial design. D-efficiency minimizes the joint confidence sphere around the 

complete set of estimated model parameters, that is, maximizes the statistical 

efficiency.208 The advantage of D-efficiency approach is the flexibility to incorporate 

restrictions while maximizing statistical efficiency. D-efficiency design was generated in 

SAS software based on the algorithm described by Kuhfeld.219 After the design was 

generated, properties including orthogonality, balance and overlap were checked to 

ensure sufficient identification of parameters. Pre-testing was conducted to ensure 

response efficiency. A flow chart illustrates the process of experimental design in SAS 

(Figure 9). 
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Figure 9. Process of experimental design in SAS 

 
 
Determine minimal degree of freedom required  

The first step of design is to determine the minimum design size or the degree 

of freedom required based on the analysis plan. We want to estimate the main effect of 

each attribute. Cost of test will be estimated as a linear variable, and the linearity of 

utility in this attribute was tested. All other variables will be treated as categorical and 

the effect of each level will be estimated separately. The presence of no test option 

requires one more degree of freedom to estimate the alternative-specific constant for 

no test. In addition, two more degrees of freedom are required to differentiate the effect 

of doctor recommendation and herd information on test alternative and no test 

alternative. In total, 14 parameters need to be estimated, which implies that the most 

parsimonious design needs to contain 14 DCE choice sets to ensure model 

identification (Table 13).  

  

Examine design properties

Split design into smaller blocks

Generate candidate design

Generate candidate profiles

Identify optimal design size

Set specific design restrictions

Determine minimum degree of freedom based on analysis 
requirement
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Table 13. Minimum degree of freedom required for analysis 

Attribute Number of 
levels 

Parameters to be 
estimated/degree of 

freedom required 
Cost of test 4 1 

Risk of SJS 4 3 

Cost of gout treatment 4 3 

Alternative specific constant for no test 1 1 

Doctor’s recommendation (main effect+ 
interaction with no test) 

3 2+1=3 

Most common choice (main effect+ 
interaction with no test) 

3 2+1=3 

 Total  14 

 

 

Special design considerations for doctor’s recommendation and the most common 
choice 

To make the choice questions realistic, correlations between alternatives were 

imposed on doctor’s recommendation and most common choice attributes, so that 

within any choice set, at most one alternative can be labeled “doctor recommended” or 

“most common choice”.  That means, when one of the three alternatives is the doctor 

recommended, the other two were not recommended by definition. As a result, doctor’s 

recommendation and most common choice attributes do not vary freely across 

alternatives within the same choice set, and are specific to each choice set to form a 

choice context.  Standard DCE designs do not easily accommodate the within-choice 

set correlations in attribute levels.  

 Three possible design solutions were considered. The first solution is to 

include only one test alternative in a choice set, and treat choice context attribute as a 

normal attribute. However, it will reduce the amount of information obtained from each 

question, and may require a larger number of questions. The second solution is to 

have multiple versions of questionnaires that contain the same set of DCE questions 

that only differ in the choice  context.226 This again requires larger sample sizes. We 
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adopted a third solution, in which we designed the level of doctor’s recommendation 

and most common choice attributes for the two test alternatives and allow the levels to 

vary independently across alternatives. The level for the no test alternative was 

inferred and displayed based on the correlation. See Figure 10 for an illustration of the 

design output and level modifications. In brief, when there are 2 levels of doctor’s 

recommendation (doctor recommended, not the recommended), there are 4 possible 

scenarios in a 2-alternative choice set: 1) A is recommended, 2) B is recommended, 3) 

A and B are both recommended, and 4) neither A nor B is recommended. For scenario 

1, 2 and 4, the level for the no test alternative can be easily imputed based on the 

restriction that at only one alternative can be recommended. For scenario 3, it violates 

our restriction, and the levels can be replaced by “no information” in all alternatives. 

SAS algorithm minimizes level overlap, which is the chance of the two alternatives 

sharing the same level (scenario 3, and 4) is low. To ensure the four scenarios occur in 

equal frequencies, the two levels were duplicated, and 4 levels (doctor recommended, 

not the recommended, doctor recommended, not the recommended) were used in 

design. The most common choice attribute was designed in the same way. Notably, 

modifying the levels after the generation of design may alter the design properties. So 

some important properties (such as efficiency, orthogonality, balance, and overlap) of 

the final design were evaluated subsequently.  
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Figure 10. Possible design scenarios and level modifications 
 
 

5.3.2.3 Generate experimental design in SAS  

The above design considerations require a design for 5 attributes with 4 levels 

each. Interaction term was specified between the doctor’s recommendation and most 

common choice attributes.  Among the design sizes suggested by SAS, 32 was 

chosen as the final design size. All attributes have 4 levels, and the interaction term 

has 16 levels. 32 is dividable by both 4 and 16, and therefore are likely to results in 

good level balance, which is necessary for orthogonality and efficiency. The design 

was generated using the %mktex, %choiceff, and %mktblock autocall SAS macros. In 

brief, 20,000 alternatives were constructed using the attribute levels. 32 choice sets 

with 2 alternatives in each choice set were then generated using the 20,000 

alternatives based on D-efficiency criteria, with restrictions to exclude dominant-pair 

choice sets where one alternative unambiguously dominate the other. The 32 choice 

sets were partitioned into 4 blocks of 8 questions, so that each respondent does not 

need to answer all questions. The levels for doctor’s recommendation and most 

common choice attributes were manipulated as described previously to form the final 

design. Final design was included in Appendix B. 

Design Manipulate the levels 
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5.3.2.4 Examine design properties 

The final design was examined in terms of correlations (orthogonality), level 

balance, cross-level balance, and overlap, all of which are important for parameter 

identification and design efficiency. In brief, no serious correlations between different 

attributes and attribute levels were detected. Attribute levels were roughly balanced, 

that is, different levels of the same attribute appeared roughly equal number of times. 

The frequency of level combinations between any 2 levels of different attributes were 

roughly balanced (cross-level balance). The frequency of overlap where two 

alternatives within the same choice set share the same level for a certain attribute was 

low.  

5.3.2.5 Survey validity test 

To assess the reliability of responses, we incorporated two internal validity 

questions to examine respondents’ attention and understanding.(see Figure 11) Based 

on cognitive interview feedback, some respondents had difficulty quantifying the small 

probabilities in the risk attribute. Therefore the first validity test was placed before DCE 

questions, and required respondents to identify the scenario indicating higher risk. 

Respondents who failed to identify the higher risk scenario was given additional 

explanations on probability expressions before moving on to DCE choice questions. 

The second test was a “dominant-pair” test in DCE format, in which the two test 

alternatives share the same level for all attributes, except for the risk attribute where 

one alternative results in lower risk than the other. In this test, utility maximizers should 

always prefer the lower risk alternative, regardless of preferences. Respondents who 

prefer the high risk alternative are likely to be inattentive or misunderstand the risk 

attribute.  
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Figure 11. Validity test questions 
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5.3.3 Survey design 

The survey questionnaire can be found in Appendix C. Questionnaire starts with 

two screener questions to verify the eligibility of respondents. An introduction section 

then briefly educates respondents on gout, side effect of gout treatment and genetic 

testing, so that respondents have the essential knowledge to answer choice questions, 

even if they do not have prior knowledge on the topic. The third section defines the 

attributes and possible levels that respondents will see in the DCE questions. Before 

introducing the cost attributes, a budget reminder is included to remind respondents to 

think about the impact of a certain amount of money on their daily life. There is a 

literature on the hypothetical bias of the DCE approach, which is mainly due to the fact 

that respondents only state their preference, without actually paying to receive the 

preferred service or product. The willingness-to-pay estimated from DCE may be 

higher than that in real life. A budget reminder in cheap-talk format may encourage 

respondents to think about cost carefully, which will improve the predictive power of 

DCE.176 After introducing each attribute, one to two warm-up questions are included to 

understand respondents’ perceptions and attitude towards the attribute levels and to 

encourage active thinking. Another purpose of the warm-up question is to provide a 

check point and attract respondents’ attention to each attribute, as it was observed in 

cognitive interviews that respondents had the tendency to focus on questions and skip 

trunks of reading. The DCE section then starts with short instructions and precautions 

on common mistakes that respondents should avoid. An example DCE question is 

provided with explanations on how respondents should interpret the question. Nine 

DCE questions follows, with the first one being validity test question, and 8 questions 

from the experimental design. The survey questionnaire ends with questions on 

respondents’ background, including demographics, medical history related to gout, and 

socio-economic status. 
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The survey was pre-tested (n=10) to ensure that respondents have no difficulty 

answering questions, and the questionnaire doesn’t incur too much cognitive burden. 

Based on pre-testing the survey was revised and simplified. For instance, some 

technical jargons such as “HLA-B*5801 testing”, “adverse drug reactions”, which 

respondents have difficulty understanding are replaced with simple language such as 

“genetic testing”, and “side effects of medicines”. 

A proportion of Singaporean do not speak or read English, the majority of which 

can speak and read Mandarin. To also gauge the preference of this group, the survey 

questionnaire and informed consent were translated into Mandarin, and accuracy was 

verified via a back translation by a different researcher. 

5.3.4 Sample size calculation 

Orme’s rule of thumb was used to determine the minimum acceptable sample 

size for DCE53  

𝑛𝑛𝑛𝑛𝑛𝑛
𝑐𝑐

≥ 500 

where n is the minimum sample size, t is the number of DCE tasks, a is the number of 

choice alternatives per task, and c is the maximum number of attribute levels. In our 

study, t=8, a=3, c=4. The minimum sample size required is therefore 84. The actual 

sample size was set at 200, which allows accurate estimation of all attribute levels, and 

additional analyses.  

5.3.5 Sampling and survey fielding 

Gout and diabetes are recognized features of metabolic syndrome.227,228 Gout 

is a risk factor for diabetes,229 and diabetes patients have higher risk for gout.230 

Diabetes patients therefore have higher chance of requiring chronic gout treatment 

with allopurinol, and facing the genetic testing decision in the future. We surveyed a 

convenient sample of 200 diabetes patients from the Singapore General Hospital 

(SGH) Diabetes Centre and the National University Hospital (NUH) Diabetes Clinic, 
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which are the specialist diabetes clinics in two of the largest government’s restructured 

general hospitals in Singapore. The inclusion criteria include being a Singapore citizen 

or permanent resident, having a diagnosis of diabetes, between the ages of 21 and 80 

years. Those who have a diagnosis of gout and have been treated with urate-lowering 

therapy, and those with limited mental capacity were excluded from study.  

We sampled diabetes patients instead of gout patients for two reasons. Firstly, 

the genetic testing decision is only relevant for those patients who require chronic gout 

treatment with allopurinol, but have not initiated allopurinol. Based on current 

knowledge patients who have taken allopurinol but did not develop SJS within the first 

two months are unlikely to develop SJS in the future, and do not require genetic 

testing.120 Therefore, a significant proportion of chronic gout patients are not eligible for 

our study. Secondly, most gout patients are managed in the primary care setting by 

general practitioners (GPs) and family physicians in the government’s polyclinics and 

private clinics. GPs usually initiate allopurinol for gout patients and manage the 

symptoms, and only refer complex cases such as non-response and severe adverse 

reactions to rheumatologists in the specialist clinics in hospitals. There are eighteen 

government’s polyclinics, and over 2,000 GPs in private clinics. Gout patients therefore 

seek care in diverse locations. The number of gout patients treated by each doctor and 

clinic is small, making it operationally challenging to sample.  

To recruit respondents, trained interviewers approached patients in the waiting 

room of the diabetes clinic, verified their eligibility using the inclusion and exclusion 

criteria, and asked for their willingness to proceed with the survey after reading the 

information sheet. Informed consent was obtained from each respondent. The study 

received ethical approval from the National Healthcare Group’s Domain Specific 

Review Board (DSRB), and Singhealth Centralised Institutional Review Board (CIRB).  

Each respondent was asked to complete a paper version of the survey 

instrument, with the help an interviewer to explain the information on the survey 

instrument and clarify doubts. There were four equivalent versions of survey 
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instruments each contain one of the four blocks of DCE questions. To minimize version 

effect and ensure balanced number of each version, we used a block randomization 

method to randomly assign a survey version to each respondent. Respondents were 

allocated to blocks of 8, and within each block, two copies of each version of 

questionnaires were answered. Five interviewers conducted the survey interviews. 

Interviewers were trained to facilitate the interview and clarify doubts based on a 

standardized script. Interviewers were also instructed to be neutral and not to express 

their own opinions on the topic. The presence of potential interviewer effect was tested 

in data analysis. In addition to respondents’ responses to questions, comments from 

respondents were also documented by interviewers.  

5.3.6 Data analysis 

5.3.6.1 Analysis of dominance preferences 

In discrete choice experiments, respondents are encouraged to make trade-offs 

between attributes. However, respondents may be unwilling to trade (non-

compensatory decision making) and have strong preferences that deviate from this 

assumption. Lancaster defined a scenario “dominance” as “A characteristic is dominant 

within some group of characteristics, in some set of situations, if the consumer always 

prefers a collection with more of the dominant characteristic, whatever the amounts of 

the other characteristics.”231 Empirically, if a respondent chose the alternative with the 

best available level of an attribute in all choice sets, the respondent was considered to 

have a dominant preference for that attribute.232 Dominant preferences for each 

attribute including the test label were analyzed. The proportion of respondents with 

dominance preferences was calculated. Socio-demographic predictors of dominant 

preference for each specific attribute were also analyzed using logistic regressions. 

DCE analysis models  
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Random utility model framework 

The theoretical framework of analyzing choices is McFadden’s random utility 

model (RUM).233,234 Each respondent faces a choice among j alternatives, repeated 

under s scenarios or choice situations. The utility that individual n derives from 

alternative j in scenario s can be decomposed into a systematic component 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 and a 

stochastic component 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛 : 

𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛       (1) 

The analyst do not observe 𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛, but may observe some characteristics of the 

alternatives 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 and characteristics of decision maker Zn, which determine the 

representative utility 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛: 

𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛=𝑉𝑉(𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛,𝑍𝑍𝑛𝑛)      (2) 

Analyst assumes decision makers to be utility maximizers, and only chooses 

alternative i when 𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛 > 𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛  ∀𝑗𝑗 ≠ 𝑖𝑖. After assigning a joint density of the random 

component 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛, the choice probability that decision maker n chooses alternative i in 

scenario s can be expressed as: 

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛 > 𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛  ∀𝑗𝑗 ≠ 𝑖𝑖�                                   

= 𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏�𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛 > 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛  ∀𝑗𝑗 ≠ 𝑖𝑖� 

= 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛 <  𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 −  𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 ∀𝑗𝑗 ≠ 𝑖𝑖�       (3) 

Depending on the specification of the density of 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛, equation (3) may or may 

not have a closed form. A logistic specification will give closed form solutions. Several 

commonly used logistic model include conditional logit model (CLM), mixed logit (MXL) 

model, and latent class logit model (LCM).235,236 
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Conditional logit model (CLM)1  

𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 can be specified as the following: 

𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛=𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛′ 𝛽𝛽 + 𝑍𝑍𝑛𝑛′ 𝛾𝛾         (4) 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 is a matrix of alternative characteristics, 𝑍𝑍𝑛𝑛is a vector of decision maker 

characteristics, and  𝛽𝛽 and 𝛾𝛾 are vectors of coefficients. 

Assuming 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛to be identically and independently distributed (IID) as extreme 

value, this results in the conditional logit specification.237 The choice probability is the 

integral of 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛|𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛 over all values of 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛. The solution to this integral is the probability 

of individual i choosing alternative j in scenario s: 

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 =
exp (𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛

′ 𝛽𝛽+𝑍𝑍𝑛𝑛′ 𝛾𝛾)

∑ exp (𝑋𝑋𝑛𝑛𝑛𝑛ℎ
′ 𝛽𝛽+𝑍𝑍𝑛𝑛′ 𝛾𝛾)J

j=1
    (5) 

This model is easy to estimate using maximum likelihood method.237 However, 

one limitation of this model is that it cannot account for preference heterogeneity 

among different individuals.  

Mixed logit model (MXL)2  

Heterogeneity among individuals is usually expected due to differences in 

tastes and decision making processes. Therefore different individuals may value and 

weight attributes and levels differently. Mixed logit model is a more general 

specification that allows the coefficients to differ across individuals.  

𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛=𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛′ 𝛽𝛽𝑛𝑛 + 𝑍𝑍𝑛𝑛′ 𝛾𝛾         (6) 

𝛽𝛽𝑛𝑛 is a Kx1 vector of coefficients for attribute levels for individual n, and 𝛽𝛽𝑛𝑛~𝑁𝑁𝐾𝐾(𝛽̅𝛽, V) 

ie. 𝛽𝛽𝑛𝑛1,𝛽𝛽𝑛𝑛2,…,𝛽𝛽𝑛𝑛𝑛𝑛, follow a multivariate normal distribution. Now each coefficient 𝛽𝛽𝑛𝑛𝑛𝑛 

1 Conditional logit model for discrete choice analysis is also referred to as multinomial logit (MNL) model, 
or mix conditional logit model in the literature.  
2 Mixed logit model is also referred to as random parameter logit model or random effect logit model. 
Mixed logit model are abbreviated as MXL or MLM. 
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follows a distribution, with the mean 𝛽̅𝛽𝑘𝑘 representing the mean parameter for the 

population. 

The mixed logit choice probability is given by: 

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 = ∫
exp (𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛

′ 𝛽𝛽+𝑍𝑍𝑛𝑛′ 𝛾𝛾)

∑ exp (𝑋𝑋𝑛𝑛𝑛𝑛ℎ
′ 𝛽𝛽+𝑍𝑍𝑛𝑛′ 𝛾𝛾)J

j=1
 f(β|θ)dβ   (7) 

Where f(β|θ) is the density function of β. 

Mixed logit model can be estimated using maximum simulated likelihood (MSL) 

method.238,239  

Latent class logit model (LCM) 

In the mixed logit model, the distributions of coefficients are continuous. A 

discrete distribution of coefficients will lead to a latent class model. Latent class model 

assumes that individual behaviors depend on observable attributes and latent 

heterogeneity which are unobservable. In latent class models, individuals are implicitly 

sorted into different classes, however analyst does not know which class a particular 

individual belongs to.236  A latent class model estimates a different set of coefficients 

for each class. The probability of individual n, whose is a member of class q, choosing 

alternative j in choice set s is given by: 

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛|𝑞𝑞 =
exp (𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛

′ 𝛽𝛽𝑞𝑞)

∑ exp (𝑋𝑋𝑛𝑛𝑛𝑛ℎ
′ 𝛽𝛽𝑞𝑞)J

j=1
      (8) 

𝛽𝛽𝑞𝑞 is a vector of coefficient for class q. The probability of individual n being in 

class q can be specified as: 

𝐻𝐻𝑛𝑛𝑛𝑛 = exp (𝑍𝑍𝑛𝑛′ 𝛾𝛾𝑞𝑞)

∑ exp (𝑍𝑍𝑛𝑛′ 𝛾𝛾𝑞𝑞)Q
q=1

              (9) 

where 𝛾𝛾𝑞𝑞 is a vector of coefficient for class q.  

Latent class model can be estimated using maximum likelihood method, and 

the optimal number of classes can be selected based on AIC, BIC criteria.236 
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A summary of the three models 

Under the framework of random utility model, various logit models are 

commonly used to analyze DCE data. The choice of model depends on the data 

characteristics. CLM which is the most basic model for DCE analysis was used to 

analyze the data, and the observed characteristics that influence choice probabilities 

were also identified. However, unobserved heterogeneity was not accounted for in 

CLM.  To account for unobserved heterogeneity or other sources of unobserved 

variability, MXL and LCM were used to obtain more accurate estimates, and make 

predictions. The difference in MXL and LCM lies in the assumption of underlying 

distribution. In MXL model, respondents were assumed to come from the same 

underlying distribution, whereas in LCM, there were distinct distributions of 

preferences, and preferences for each class were estimated.  

5.3.6.2 Variable specification and coding 

The commonly used coding approaches for attribute levels in DCE are linear, 

dummy, and effect codes. For attribute levels that are categorical, dummy and effect 

codes both allows the estimation for each attribute level separately. While dummy 

coding uses only 0 and 1, effect coding uses 0, 1, and -1. See Table 14 for the effect 

coding template. The advantage of effect coding is that none of the levels has a coding 

of all 0’s, as a result, none of the levels will be confounded with the grand mean (ie. the 

constant term in utility function). 
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Table 14. Effect coding template for categorical variables with 2 to 5 levels 
 Coding 

Variable 1 
Coding 

Variable 2 
Coding 

Variable 3 
Coding 

Variable 4 
Level 1  1    
Level 2 -1    
     
Level 1 1 0   
Level 2 0 1   
Level 3 -1 -1   
     
Level 1 1 0 0  
Level 2 0 1 0  
Level 3 0 0 1  
Level 4 -1 -1 -1  
     
Level 1 1 0 0 0 
Level 2 0 1 0 0 
Level 3 0 0 1 0 
Level 4 0 0 0 1 
Level 5 -1 -1 -1 -1 
 

 

Variable specification and coding used in analysis are shown in Table 15. Cost 

of test variable was assumed to be linear in utility function, for simplicity in willingness-

to-pay estimates. It was also treated as categorical variable and effect coded to 

explore the linearity of this cost variable. Risk of developing SJS and cost of gout 

treatment were effect coded, as they were not expected to be linear. Doctor’s 

recommendation was coded using two dummy variables, one indicating whether 

information on doctor’s recommendation was available in a choice set, the other 

indicating whether an alternative was recommended by doctor. Most common choice 

was coded in a similar way using two dummy variables. All socio-demographic 

variables were coded using dummy variables. For categorical socio-demographic 

variables with more than two categories, some categories were combined, and 

collapsed into two categories for regression analyses (Table 16).  
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Table 15. Variable specification and coding type 
Attributes  Levels Variable in 

analysis 
Variable 
coding type 

Alternative type 
Whether genetic testing is 
involved 

No 
Yes 

Dnotest Dummy-
coded 

Alternative specific attributes (Specific to each test alternative) 

Cost of test 0                                   
20                                     
200 
400 
1000  

cost Linear 

Risk of adverse side effect 0                                        
1 in 50,000                        
1 in 5,000  
1 in 1,000  

risk0 
risk1 
risk2 
(omitted) 

Effect-coded 
 

Cost of gout treatment 400                                    
1000 
2000 
4000  

Drug1 
Drug2 
Drug3 
(Omitted) 

Effect-coded 
  

General/Context attributes (Specific to both test alternatives in a choice set) 

Doctor’s recommendation No information on doctor’s 
recommendation 
Doctor recommended 
Not the doctor recommended 

 
noinforec 
drrec 
(omitted) 
 

Dummy-
coded 

Herd behavior No information on herd behavior 
Most common choice 
Not the most common choice 

noinfoherd 
herd 
(Omitted) 

Dummy-
coded 

 

 

Table 16. Decision maker characteristics and coding 
Continuous variables 

Age=age in years 
Income, linear=Monthly household income (in $1,000)a 

Dummy variables 
Gender, female=1 if female 
Ethnicity, minority=1 if non-Chinese 
Gout, hadgout=1 if had a diagnosis of gout 
Hypertension, hypertension=1 if had hypertension 
Self-reported health, healthy=1 if health status is quite good or very good 
Housing type, housingbig=1 if HDB 5 room or private housing 
Education level, eduhigh=1 if JC/Poly or above  
Working status, working=1 if full-time/part-time/self-employed 

a Household income was measured as categorical, and linearized assuming the average income of each 
category equaled the mean of the upper and lower bound of that category. 
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5.3.6.3 Utility function 

There are four types of explanatory variables in the utility function: 1) 

alternative specific constant that accounts for the type of alternative (test involved vs. 

no test involved); 2) test feature attributes (cost of test, risk, cost of gout treatment) that 

vary across test alternatives; 3) context attributes (doctor’s recommendation, and 

information on the most common choice), which vary across different choice sets; and 

4) socio-demographic variables that may influence individual taste, and decision 

making process. The specification of these four types of variables in the utility function 

is as following. 

The test alternative and no test alternative each gives some intrinsic utility 

associated with these two types of alternatives. As only the difference in utility from 

various alternatives matters for a decision, the intrinsic utility associated with test 

alternatives is normalized to 0, and the intrinsic utility associated with no test 

alternative is represented by an alternative specific constant (𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴). Three attributes 

(cost of test, risk and cost of gout treatment) always have fixed levels in the no test 

alternative throughout the survey, and the effect of them will be accounted for by 𝛽𝛽𝐴𝐴𝐿𝐿𝑆𝑆. 

There are several related assumptions. 1) The utility associated with the risk and costs 

of the no test option do not vary across choice sets, even though the contrast of risk 

and cost levels between testing options and no test option vary across choice sets. 

This is likely to hold, and is a common practice when including a fixed comparator 

(such as none option or status quo) in the choices sets. 2) Decision maker 

characteristics influence the testing decision by influencing the intrinsic utility 

associated with no test alternative, and therefore the tendency of an individual to 

choose no test alternative. The effect of socio-demographic variables is estimated as 

an interaction term with the dummy variable for no test alternative.  

Utility derived from a no test alternative is: 
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𝑈𝑈𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛽𝛽1 + 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛽𝛽2 + 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝛽𝛽3 +

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽4 + 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽5 + 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽6 + (𝑍𝑍 ∗ 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)′𝛾𝛾 + 𝜀𝜀                (10) 

 

where 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a dummy variable for no test alternative, 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴 being the alternative 

specific constant for no test, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is a dummy for being the doctor recommended 

alternative, and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  is the dummy for having no information on doctor’s 

recommendation. herd is a dummy for being the most common choice, and noinforherd 

is a dummy if there is no information on the most common choice. Z represents 

decision maker characteristics. 𝛽𝛽1  𝑡𝑡𝑡𝑡 𝛽𝛽6 are the utility weights of corresponding 

attribute levels, and 𝛾𝛾 reflects the impact of decision maker characteristics on utility. 𝜀𝜀 

is the random error term. 

Utility of a test alternative 

Utility of a test alternative is specified as the following: 

𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟1𝛽𝛽2 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2𝛽𝛽3 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟3𝛽𝛽4 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1𝛽𝛽5 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2𝛽𝛽6 +

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3𝛽𝛽7 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛽𝛽8 + ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽9 + 𝜀𝜀                (11) 

where cost, risk1, risk2, risk3, drug1, drug2, drug3, drrec, herd describe test 

characteristics as specified in Table 15, and 𝜀𝜀 is the random error term. 

Utility of any alternative is: 

Based on equation (10) (11), the general utility function used in estimation can 

be written as: 

𝑈𝑈 = 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟1𝛽𝛽2 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2𝛽𝛽3 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟3𝛽𝛽4 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1𝛽𝛽5 +

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2𝛽𝛽6 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3𝛽𝛽7 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛽𝛽8 + 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛽𝛽9 + 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝛽𝛽10 +

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽11 + 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽12 + 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽13 + (𝑍𝑍 ∗ 𝐷𝐷𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)′𝛾𝛾 + 𝜀𝜀                

(12) 

 

5.3.6.4 Model estimation  
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Five models were used in the analyses: 

1) CLM1: Conditional logistic regression without control variables 

2) CLM2: Conditional logistic regression with control variables 

3) MXL1: Mixed logistic regression without control variables, and all 

attributes except test cost were set random 

4) MXL2: Mixed logistic regression with control variables, all attributes 

except test cost were set random 

5) LCM1: latent class model 

Conditional logit model, mixed logit model and latent class models were 

conducted using Stata version MP11, with and without controlling for decision maker 

characteristics.   

Conditional logit model was estimated using the clogit function. The user written 

mixlogit function was used to estimate the mixed logit model, with all attributes except 

cost of test specified as random. Cost of test is assumed to be fixed a priori, as is the 

common practice in mixed logit estimates 240,241. Specifying prices to be random will 

give rise to problems in willingness-to-pay estimation due to scale heterogeneity. 

mixlogit fits the model based on maximum simulated likelihood.242 Latent class model 

was fitted using the user-written commands lclogit and lclogitml. lclogit uses an 

expectation-maximization algorithm for estimation.243,244 Two latent classes were 

specified, and control variables that were significant in the conditional logit model were 

included in the fractional multinomial logit model of class membership. The optimal 

number of latent classes were determined based on the best model fit. The model with 

2 latent classes was found superior to the simpler one-class model according to the 

AIC and BIC goodness-of-fit statistics. Models with more than 2 latent classes failed to 

converge due to the high number of parameters to estimate relative to the sample size. 

5.3.6.5 Preference weights and attribute importance  
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Coefficients of categorical variables from three regression models were plotted 

to illustrate the relative importance of attributes and attribute levels, or preference 

weights of each attribute level. Attribute levels with larger preference weights were 

preferred to those with smaller preference weights. A greater distance between the 

best and worst level of an attribute indicates higher importance of the attribute.  

5.3.6.6 WTP estimates 

As the primary motivation to take genetic test is to reduce the risk of developing 

SJS, an indicator of interest is the willingness-to-pay for various levels of risk reduction. 

Assuming the cost of test to be linear, willingness-to-pay for risk reduction (K2 to K1) 

can be calculated using the following formula: 

𝑊𝑊𝑊𝑊𝑊𝑊 = −
(𝛽𝛽𝐾𝐾1 − 𝛽𝛽𝐾𝐾2)

𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

where 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the coefficient of test cost attribute, 𝛽𝛽𝐾𝐾1 and 𝛽𝛽𝐾𝐾2 are the coefficient of risk 

level K1 and K2.  

The marginal willingness-to-pay for an alternative when it is doctor 

recommended was calculated as: 

 

𝑊𝑊𝑊𝑊𝑊𝑊 = −
𝛽𝛽𝐾𝐾
𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

 

Where 𝛽𝛽𝐾𝐾 is the coefficient of the attribute level “doctor recommended”. 

Similarly, the marginal willingness-to-pay for an alternative when it is the most 

common choice was calculated.  

5.3.6.7 Uptake rate prediction 

At the system level, uptake rate can help to visualize the effect of policies or 

changes in test features. Hypothetical choice sets with one test alternative and one no 
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test alternative was constructed, and the uptake rate of the test was predicted for 

different scenarios.  

Using utility weights estimated from the models, utility scores associated with 

different alternatives can be calculated from the utility function, which can be used to 

predict the uptake probability for any hypothetical test and scenarios. For instance, in a 

hypothetical choice set with a test alternative (T) and a no test alternative (N), the 

uptake probability of the test alternative is  

𝑃𝑃(𝑇𝑇) =
exp (𝑉𝑉(𝑇𝑇))

exp�𝑉𝑉(𝑇𝑇)� + exp (𝑉𝑉(𝑁𝑁))
 

5.4 Results 

5.4.1 Sample characteristics 

A total of 205 Singaporean diabetes patients were recruited, among whom 199 

completed the survey questionnaire. 10 respondents were excluded from analysis due 

to prior long-term gout treatment with allopurinol. 189 respondents were included in the 

final analysis. Respondents’ characteristics are summarized in Table 17. The average 

age was 57.1 years (95% CI: 55.3 to 59.0). Respondent were mostly male (65.6%), 

Chinese (61.4%), and currently working (55%). 35.4% had completed Junior College 

(JC)/diploma or university education, and 51.9% stayed in HDB 5 room or private 

properties. A small percentage (5.8%) of respondents had gout or hyperuricemia, but 

did not receive urate-lowering therapy.  A significant percentage of respondents had 

experiences with serious adverse drug reactions (13.8%).  
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Table 17. Characteristics of 189 respondents 
Variables N (%) 
Age 57  
Male 124 (66%) 
Had Gout or hyperuricemia 11 (6%) 
Ethnicity  
 Chinese 116 (61%) 
 Malay 19 (10%) 
 Indian 50 (27) 
 Other 4 (2%) 
Hypertension 111 (59%) 
Highest education attained  
 No formal education 3 (2%) 
 Primary 22 (12%) 
 Secondary 97 (51%) 
 JC/polytechnic/diploma 36 (19%) 
 University and above 31 (16%) 
Housing type  
 HDB (1-2 room) 19 (10%) 
 HDB (3 room) 23 (12%) 
 HDB (4 room) 48 (25%) 
 HDB (5 room and above) 58 (31%) 
 Condominium/Private flat 20 (11%) 
 Bungalow/semi-detached/terrace house 20 (11%) 
Self-rated health status  
 Very good 6 (3%) 
 Quite good 75 (30%) 
 Neither good nor poor 77 (41%) 
 Quite poor 29 (15%) 
 Very poor 2 (1%) 
Experiences of severe adverse drug reaction  26 (14%) 
Employment status  
 Full-time employed 91 (48%) 
 Part-time employed 13 (7%) 
 Self-employed 12 (6%) 
 Homemaker 7 (4%) 
 Retired 55 (29%) 
 Unemployed 11 (6%) 
Household income  
 S$0-1,500 34 (18%) 
 S$1,500-3,000 50 (27%) 
 S$3,000-5,000 30 (16%) 
 S$5,000-8,000 25 (14%) 
 S$8,000-10,000 18 (10%) 
 Above S$10,000 28 (15%) 
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5.4.2 Analysis of warm-up questions 

Attitudes towards SJS risk, cost of test, and cost of long-term gout treatment 

When the risk of developing severe adverse drug reaction was fixed at 1 in 500 

(0.2%), 55% of respondents felt at risk, and the rest were not worried about it. If a 

hypothetical test could reduce risk of SJS, but cost S$400, 52% of respondents 

expressed willingness to take the test (definitely would or probably would). When told 

that the long-term gout treatment cost for positive test result (2 in 10 chance) was 

S$2,000 in two years, 57% of respondents expressed willingness to take the test and 

receive test-guided treatment (definitely would or probably would). 

Attitudes towards doctor’s recommendation and most common choice 

Most respondents reported doctor’s recommendation to be influential on their 

decision making. 51 % of respondents definitely would consider doctor’s 

recommendation, and 33% probably would consider. On the other hand, 15% of 

respondents probably or definitely would not consider doctor’s recommendation, and 

preferred to make independent decisions. 49 % of respondents considered information 

on the most common choice to be influential on their decision, whereas 51% of 

respondents would not consider this piece of information. 

5.4.3 Validity test  

In the first validity test, 89.4% of respondent managed to identify that “1 out 500 

patients gets the severe side effect” indicated higher risk than “1 out of 1,000 patients 

gets the severe side effect” at the first attempt, and another 6.9% answered it correctly 

in the second attempt, both of which were considered to have good understanding of 

probabilities. In the second validity test, which was a “dominant-pair” test DCE 

question, 13.2% preferred the higher risk test alternative in the first attempt, but 

corrected the answer in the second attempt. Another 2.1% of respondents indicated 

preference for the higher risk test alternative more than once, indicating confusion or 

lack of understanding of the probability or the DCE question.  
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Failure of validity tests was defined as giving the wrong answer more than once 

in both validity test questions, and 0.5% of respondents failed the validity tests. These 

respondents were not excluded from final analysis because 1) excluding these 

respondents did not significantly change the regression results; and 2) respondents 

who failed initially may understand questions correctly in later parts of DCE, as they 

learned more about the survey questions. 

5.4.4 Non-demanders for genetic testing 

Non-demanders refer to those respondents who prefer not to receive test 

services when offered, regardless of attribute levels.213 Among 189 respondents, 16 

(9%) chose the no test alternative in all choice sets, referred to as non-demanders. 

Note that no test always resulted in lowest costs; therefore these non-demanders may 

have strong preferences for low cost, or for the no test label. 91 (48%) respondents 

chose no test in at least one choice sets. Out of 1,512 choice observations (8 from 

each respondent), no test was preferred in 317 (21%) observations, On the other hand, 

98 (52%) never preferred the no test alternative.  

Logistic regression analyses showed that respondents of older age were more 

likely to always prefer no test, whereas being non-Chinese ethnicity, with JC/poly or 

above education, currently working were less likely to be non-demanders for genetic 

test (p<0.05 for all factors mentioned above). 

5.4.5 Dominant Preferences 

22 (12%) respondents were dominant on the risk of developing SJS, and 

always preferred the alternative with lower risk of SJS, regardless of costs, doctor’s 

recommendation or most common choice. Those experienced serious adverse drug 

reactions, with JC/poly or above education, were more likely to dominant on the risk of 

getting SJS (p<0.1 for all factors mentioned above). Dominance on costs is not 

discussed here, as it cannot be disentangled from the preference for no test label.  

121 

 



 

21 (11%) of respondents were dominant on doctor’s recommendation, and 

always chose the doctor recommended alternative when information was available.  

Malay or Indian ethnicity was a predictor of this dominance preference (p<0.05). In 

contrast, only 3 (2%) of respondents were dominant on most common choice, and 

always chose the alternative that was labeled the most common choice.  

Both non-demanders and dominant preferences deviate from standard 

assumption that individual make tradeoffs between different attributes in discrete 

choice experiments. The non-tradeoff may confound the estimated preference weights 

estimates. However, the percentage of non-demanders and dominant preferences was 

relatively low in the sample (34% in total), and was therefore not a major concern. 

5.4.6 Results from logit models 

5.4.6.1 Model fits 

Table 18 compares the goodness-of-fit of different logit models. MXL and LCM 

models which allow for unobserved preference heterogeneity, significantly improved 

the fit compared to CLM, as indicated by the increase in log-likelihood, and decrease in 

AIC and BIC. Controlling for decision maker characteristics in both CLM and MXL 

improved the fit of models, even though more parameters need to be estimated.  

However these metrics cannot be used to compare MXL and LCM, as the models were 

not nested, and the base model was different.236  
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Table 18. Goodness-of-fit of models 
 CLM1 CLM2 MXL1 MXL2 LCM 

Model Type 
Conditional logit Conditional logit Mixed logit Mixed logit 

Latent class 

(2 classes) 

Decision maker 

characteristics 
- Controlled - Controlled Controlled 

Log-likelihood -1391 -1307 -1035 -1002 -1144 

Pseudo R2  a 0.16 0.21 - - - 

AICb 2811 2662 2124 2073 2360 

BICc 2901 2816 2297 2291 2592 
aPseudo R2 is defined as 1-LL/LL0, where LL is the simulated log-likelihood function evaluated at the 

estimated parameters, while LL0 is the value of a log-likelihood function for a base model that only contains 

a non-random alternative-specific constant. 
bAIC=-2(LL-M) where M is the number of parameters 
cBIC=-2LL+MlnN where N is the number of observations. 

 

 

 

5.4.6.2 Model estimates from CLM and MXL models 

Estimates from CLM, MXL, and LCM are shown in Table 19. Note that the 

estimates from different models are not directly comparable due to scale 

differences52.166,236 In MXL, the estimates are normalized relative to the extreme value 

part of the error term, which is the net of the error components introduced by the 

random coefficients. In CLM, the error term captures both sources of error, and 

therefore it will have a larger variance. Therefore estimates from CLM are expected to 

be smaller than those in MXL, which is consistent with our observation that in Table 19, 

coefficients from MXL are larger in magnitude than CLM coefficients. Nevertheless, 

signs from the models can be compared.  
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Table 19. Estimates from CLM and MXL models 

 
Conditional logit  Mixed logit, all coefficients random except cost 

of test 
  CLM1  CLM2  MXL1  MXL2 
  Mean  Mean  Mean SD  Mean SD 
ALSnotest -0.70**   0.50   -2.77** 4.88**   -0.75 4.79** 
                    
Cost of test (in $1,000) -0.46**   -0.49**   -0.83**     -0.90**   
                    
Risk of SJS: 1 in one million 0.45**   0.47**   0.77** 1.19**   0.87** 1.24** 
Risk of SJS: 1 in 5,000 0.23**   0.23**   0.35** 0.19   0.31** 0.13 
Risk of SJS: 1 in 1,000 -0.15*   -0.16*   -0.22* 0.12   -0.21** 0.12 
Risk of SJS: 1 in 600 -0.54**   -0.55**   -0.90** 1.26**   -0.97** 1.26** 
                   
Cost of treatment: $250 0.37**   0.38**   0.68** 0.72**   0.75** 0.69** 
Cost of treatment: $400 0.41**   0.43**   0.65** 0.58**   0.55** 0.82** 
Cost of treatment: $1,500 -0.03   -0.04   -0.11 0.07   -0.08 0.04 
Cost of treatment: $4,000 -0.75**   -0.76**   -1.22** 1.23**   -1.22** 1.47** 
                   
Doctor recommended 0.80**   0.81**   1.23** 1.6**   1.3** 1.53** 
Doctor recommended*notest -0.04   0.12   0.99* 1.22*   1.37** 1.83** 
No recommendation available  0.09   0.09**   0.22 0.18   0.39 0.14 
                    
Most common choice 0.31**   0.30**   0.52** 0.56**   0.50** 0.74** 
Most common choice * notest -0.16   -0.09   0.45 0.36   0.70 0.38 
No Most common choice info 
available 0.14   0.14   -0.09 0.04   -0.06 0.12 
                    
Control variables * no test                    

Female gender     0.07             
Age     0.00             
Ethnic minority     -0.82**         -0.46   
Big housing     -0.50**         -3.59**   
High education level     -0.66**         -0.67   
Household income (in 

$1,000)     0.04*         0.23**   
Currently working     -1.32**         -3.98**   
Had diagnosis of gout     0.62*         1.24   
Had severe ADRs     -0.76**         -1.24*   
Self-reported to be healthy     0.02             

** p<0.01, *p<0.05 
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Intrinsic preferences for no test 

The negative alternative-specific intercept ALSnotest in Model CLM1 and MXL1 implies 

that no test resulted in disutility, and patients had intrinsic preferences for taking a test to 

reduce risk of severe adverse drug reactions. However, there is considerable heterogeneity 

in the preference for no test in the sample, evidenced by the significance and big magnitude 

of standard deviation estimate in mixed logit model MXL1. ALSnotest from model CLM2 and 

MXL2 cannot be interpreted alone, as all decision maker characteristics were estimated as 

interaction terms with no test alternative, and assumed to influence the utility individuals 

derived from the no test alternative. Model MXL2 shows that respondents staying in big or 

private housing, currently working, or had experienced severe ADRs had higher disutility 

from no test, and therefore are more likely to take the genetic test. Unexpectedly, 

respondents with higher household income were more likely to choose no test. Yet this 

finding could be confounded by housing type and working status. 

Preferences towards test features 

Consistent with hypotheses, respondents were more likely to test when the test cost 

was lower, when the test-guided treatment results in lower risk of developing SJS, and when 

long-term gout treatment cost was lower. SD estimates from MXL models revealed 

significant diversity in the way people value these attribute levels.  

The effect of information on doctor’s recommendation and most common choice 

Doctor’s recommendation on a test alternative significantly improved the likelihood of 

that alternative being chosen. Interestingly, the interaction term of doctor’s recommendation 

with no test alternative was significant and had a positive sign, suggesting that when the no 

test alternative was recommended by doctor, the increase in likelihood of it being chosen 

was even more than when a test alternative was recommended. The significance of 

standard deviation estimates suggested considerable individual differences in the valuing of 

doctor’s recommendation in the sample. On the other hand, as expected, when no 

recommendation was available, there was no impact on respondents’ choices.  
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Information on the most common choice also had positive impact on the likelihood of 

an alternative being chosen, even though the effect was much smaller than that of doctor’s 

recommendation. The effect did not seem to be different for test and no test alternatives. 

Significant individual heterogeneity was evidenced by the big standard deviation estimates. 

5.4.6.3 Attribute importance based on MXL model 

The relative importance of various attributes can be inferred from the estimated 

coefficients. For dummy attributes, larger magnitude of the coefficient indicates the 

importance of the attribute. ALSnotest was largest in magnitude among all coefficients, 

suggesting respondents had very strong preferences to avoid no test alternative in general. 

Doctor’s recommendation also had big coefficient, suggesting it was very influential on 

respondents’ preferences. On the other hand, information on most common choice was less 

influential. For effect-coded attributes, a greater difference between coefficients of the best 

and worst level of attribute indicates a greater significance of that attribute in influencing 

decisions, within the range provided in this study. To compare the relative importance of 

three test feature attributes, another mixed logit model (referred to as MXL1c) which is a 

modification of model MXL1 in which the cost of test was also specified as categorical. The 

preference weights of three test feature attributes were plotted in Figure 12 to better 

compare the relative importance of these attributes. From Figure 12, long-term gout 

treatment cost and the risk of developing SJS in test-guided treatment were more important 

than the cost of test. Respondents were not sensitive about the cost of test within the range 

of $200 to $400. Similarly, respondents were not sensitive to the drug cost for test positive 

individuals as long as it was lower than $400. However when the cost was increased to 

$4,000 in two years, it significantly discouraged testing. The four risk levels are well 

segregated, and resulted in a wide range of preference weights, indicating respondents were 

risk-conscious. A 1 in 1 million chance of developing SJS in test-guided treatment (ie. a very 

accurate test) results in the highest probability of test uptake, increase in risk (due to 

reduced accuracy of test) reduces probability of test uptake.  
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Figure 12. Preference weights of various test feature attributes. Error bars 
indicate 95% confidence intervals. 
 

The linearity of test cost attribute was also explored using estimates from mixed logit 

model MXL1c. As shown in Figure 13, preference weights were roughly linear in test cost, 

though not perfect.  

 

 

5.4.6.4 Model estimates from LCM models 
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Figure 13. Preference weights for cost of test. 
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Latent class model with 2 classes are shown in Table 20. The optimal number of 

classes was selected based on AIC BIC criteria. The 3-class model failed to converge, likely 

because the sample size did not have sufficient power for 3 classes.  

 

Table 20. Estimates from CLM and MXL models 
 Latent class 1  Latent class 2 

(cost conscious) 
37% 

 (risk averse) 
63% 

ALSnotest 1.04**  -4.95** 
     
Cost of test (in $1,000) -1.26**  -0.37** 
     
Risk of SJS: 1 in one million -0.29  0.75** 
Risk of SJS: 1 in 5,000 0.09  0.24** 
Risk of SJS: 1 in 1,000 0.03  -0.22** 
Risk of SJS: 1 in 600 0.17  -0.77** 
    
Cost of treatment: $250 0.26  0.44** 
Cost of treatment: $400 0.67**  0.46** 
Cost of treatment: $1,500 -0.13  -0.10 
Cost of treatment: $4,000 -0.79**  -0.80** 
     
Doctor recommended 1.30**  0.69** 
Doctor recommended*notest 0.07  1.01 
No recommendation available 0.18  0.50 
     
Most common choice 0.81**  0.28** 
Most common choice * notest -1.02*  2.21** 
No Most common choice info available -0.47  0.18 
** p<0.01, *p<0.05 

 

The two classes generated from the latent class model are named as “risk averse” 

class, and “cost conscious” class based on their preference weights for different attributes 

(Figure 14 and Table 20). 37% of respondents fall in the “cost conscious” class, whereas the 

rest 63% belong to the “risk averse” class. The “risk averse” class has a big negative 

ALSnotest, indicating the disutility results from not testing. The range of preference weights for 

risk of SJS is wider than that of test cost, implying that this group is more concerned about 

the risk of developing SJS, and cost has relatively small impact. On the contrary, the “cost 

conscious” class had a wide range of preference weights for cost of test, implying their 
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decision is sensitive to test cost. Though no test gave disutility, the magnitude of disutility is 

moderate. In this class, none of the risk levels turned out to be significant, implying that this 

class was more averse to high cost than risk of developing SJS. Both groups considered 

cost of long-term gout treatment important, and high treatment cost reduces the probability 

of test in both classes. Doctor’s recommendation and most common choice affect both 

classes of respondents. 

 

 

Figure 14. Preference weights in latent class model 
 

The association of class membership and individual characteristics are shown in 

Table 21. Most factors did not appear to determine class membership, except that 

individuals who were working were less likely to be in the cost conscious class (p<0.1).  
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Table 21. Class membership and individual characteristics 
 Coefficient P value 

Stay in big housing -0.36 0.30 

Ethnic minority -0.28 0.43 

Severe ADR -0.36 0.46 

Currently working -0.65 0.06 

High education level -0.55 0.16 

Monthly household income 0.02 0.66 

Had diagnosis of gout 0.74 0.26 

 

5.4.6.5 WTP estimates from MXL and LCM models 

Though coefficients from different models are not directly comparable, the 

willingness-to-pay estimates are.  The willingness-to-pay for various attribute level 

improvements is listed in Table 22.  

The current HLA-B*5801 test can reduce the risk of developing SJS from 1 out of 500 

to below 1 out of 1 million. MXL model predicts that on average, respondents were willing to 

pay close to $2,000 more to do this genetic test compared to a test that can only reduce the 

risk to 1 in 600. The presence of information on doctor’s recommendation and most common 

choice influenced individual’s willingness-to-pay for genetic test. When a test was 

recommended by the doctor, on average respondents were willing to pay S$1,474 more for 

the test (95% CI: 817, 2,131), compared to when the test was not the doctor recommended 

option. Similarly, when a test was labeled the most common choice, respondents were 

willing to pay S$623 more for the test (95% CI: 249, 997), compare to when it was not the 

most common choice.  

 Estimates from LCM shows distinct preferences across the two classes. In class 1 

(cost-conscious class), the WTP for risk reduction was negative and statistically not 

significant (from zero). In class 2 (risk-averse class), on average, respondents would be 

willing to pay S$1,215 to reduce the risk of developing SJS to 1 out of a million from 1 out of 
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500. Both classes had high WTP for testing when test was recommended by doctor 

(S$1,032 and S$548 for class 1 and class 2), or if it is the most common choice (S$647 and 

S$219 for class 1 and class 2).  Class1 had higher WTP than class 2, indicating the 

information was more influential among class1 members. WTP estimates from LCM are 

lower than in MXL, especially in the cost-conscious class. Considering the non-demanders 

observed in the sample, the WTPs estimated using LCM were more realistic. 
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Table 22. Willingness-to-pay for attribute improvements (in S$) 
 WTP (95%CI) 

MXL1 CLM- cost conscious 
class 

CLM- risk averse 
class 

Risk reduction 1 out of 600  1 out of 1,000 818 (351, 1284) -109 (-491,274)NS 438 (161, 716) 

1 out of 600  1 out of 5,000 1,504 (835, 2173) -62 (-406, 280)NS 809 (415, 1,202) 

1 out of 600  1 out of 1 million 1,999 (1,153, 2,846) -368 (-808,73)NS 1,215 (662, 1,768) 

Information on 
doctor’s 
recommendation 
and herd 
behavior 

Not the recommendedDoctor 

recommended 

1,474 (817, 2,131) 1,032 (535, 1,530) 548 (265, 830) 

Not the most common 

choicemost common choice 

623 (249, 997) 647 (211, 1,081) 219 (34, 405) 

NS Not significantly different from 0. 

 

 

 

 

 

 

 

 

 

 



 

5.4.6.1 Test uptake rate estimates from MXL and LCM models 

The uptake rate was forecasted for eight clinically relevant or policy relevant 

scenarios. This provides insights on the impact of various policies or clinical practices on 

uptake rate. When only one test alternative and one no test alternative was offered, the 

predicted uptake rates were shown in Table 23.  

The uptake rate predicted from mixed logit model are high in all scenarios, and the 

change in uptake rate across different scenarios were small.  The overall uptake rate 

predicted by latent class model are lower than that predicted by mixed logit model in all 

scenarios. Given the non-demander behaviors observed, the uptake rate predicted by latent 

class model may be more realistic. The uptake rate in class 2 were above 95% in all 

scenarios, and the changes in uptake were small when test features or information changed; 

whereas in class 1, uptake rate differed significantly across scenarios. When the long-term 

cost of gout treatment was reduced from $4,000 to $400, uptake rate was significantly 

increased in class 1 (29.4% vs 8.8%, p=0.0001), suggesting that the use of cheaper generic 

drugs for those who test positive can significantly increase the uptake of the test. On the 

other hand, when the cost of test was subsidized by 75%, the uptake rate improved, but the 

effect was small (12.3% vs 8.8%, p=0.0162). For patients who are more cost-conscious, one 

alternative may be a less accurate but cheaper test. When available, the cheaper alternative 

is more preferred by class 1 (16.2% vs 8.8%,p=0.0409). Compared to the small effect of cost 

strategies on test uptake, information strategies had bigger impacts on the uptake rate in 

class 1. When the current test is recommended by doctor, the predicted uptake rate 

increases to 29.7% from 8.8% (p<0.0001). When the current test is the most common 

choice, the uptake rate was predicted to increase by 3%. When the test was recommended 

by doctor and was the most common choice, the uptake rate was 37.3%, suggesting a 

synergistic effect of the information. When the test is recommended by the doctor, but the 

most common choice is not to test, the uptake is still higher than without information (24.5% 
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vs 8.8%, p=0.0157), suggesting the impact of doctor’s recommendation is much bigger than 

that of herd behavior. 
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Table 23. Test uptake rate in various hypothetical scenarios 

Hypothetical scenarios 

A B C D E F G H 

A realistic 
test 

(base 
case) 

Cheaper 
alternative 

drug 

75% 
subsidy 
on test 

cost 

A less 
accurate 
test, that 
is 75% 

cheaper  

A clinical 
guideline that 

requires 
doctors to 

recommend 
test 

Provide 
information 
that test is 

most 
common 
choice 

Provide 
information that 

test is doctor 
recommended 
and the most 

common choice 

Provide 
information that 

doctor recommend 
test, but test is not 
the most common 

choice 

Attribute 
levels 

Chance of getting 
the severe side 
effect (with test-
guided treatment) 

1 out of 1 
million 

patients 

1 out of 1 
million 

patients 

1 out of 1 
million 

patients 

1 out of 
1,000 

patients 

1 out of 1 
million patients 

1 out of 1 
million 

patients 

1 out of 1 million 
patients 

1 out of 1 million 
patients 

Cost of one-test 
genetic test S$400 S$400 S$100 S$100 S$400 S$400 S$400 S$400 

Cost of gout 
medicines (over 2 
years) 

S$4,000 S$400 S$4,000 S$4,000 S$4,000 S$4,000 S$4,000 S$4,000 

Your doctor’s 
recommendation 

No 
information 

No 
information 

No 
information 

No 
information Test No 

information Test Test 

Most common 
choice 

No 
information 

No 
information 

No 
information 

No 
information No information Test Test No test 

Test 
uptake 

rate 

Test uptake rate 
(MXL estimates) 86.4% 97.6% 89.1% 75.3% 96.4% 90.7% 97.7% 90.4% 

Test uptake rate 
(LCM overall 
estimates)a 

65.10% 73.49% 66.52% 66.46% 73.60% 66.62% 76.55% 68.84% 

Test uptake rate 
(LCM class 1 
estimates) 

8.8% 29.4% 12.3% 16.2% 29.7% 11.9% 37.3% 24.5% 

Test uptake rate 
(LCM class 2 
estimates) 

98.3% 99.5% 98.5% 96.1% 99.5% 98.9% 99.7% 95.0% 

aOverall test uptake rate was calculated as uptake in class1 * class 1 share+ uptake in class2 * class 2 share 

 

 



 

5.5 Discussions 

5.5.1 Patients’ attitude towards pharmacogenetic testing to reduce 

risk of severe ADR 

This is the first study to use a discrete choice experiment to quantify patients’ 

preferences for using pharmacogenetic testing to reduce severe ADRs. Our study 

revealed that the majority of patients were willing to adopt risk-mitigation strategies 

such as genetic testing. Our uptake rate prediction shows that given the current 

available test and treatment (test cost=S$400, SJS risk=1 out of 1 million, gout 

treatment cost=S$4,000 in two years, no information on doctor’s recommendation and 

most common choice), 65% of the eligible patients were willing to test and receive test-

guided treatment (Table 16). When attribute levels were varied to form hypothetical 

tests, 92% of respondents preferred test to no test in at least one of the 8 scenarios 

offered. 52% always preferred testing to no testing in all 8 scenarios.  

In the research and development of diagnostic tools, test sensitivity, specificity, 

false negative, false positive are the most important features researchers consider. 

Clinicians and researchers are usually concerned about high false negative or false 

positive rates, as these false results may lead to inadequate or redundant treatment, 

both may have adverse consequences. The current available HLA-B*5801 test can 

reduces risk to below one in one million, however, it has high false positive rate, 

specifically, 20% of patients may test positive and require more expensive gout 

treatment, when in fact over 95% of test positive patients would not develop SJS even 

if taking allopurinol. Cost-effectiveness analysis showed that the extra cost due to the 

high false negative rate of test compromised the test to be non-cost-effective at the 

population level. However, we showed here, 65% of all respondents are willing to take 

the test to reduce risk of severe ADR, even though high cost may be incurred.  

In fact, qualitative remarks from patients showed that the genetic test might 

have positive “value of information”, regardless of test results. A positive test results 
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may help to reduce the risk of SJS, whereas a negative result gives the confidence and 

assurance that the patient will not develop SJS. Patients may take the test for the 

peace of mind, and derive utility from both positive and negative test results. The same 

may be true for physicians. Allopurinol ADR has led some physicians to reduce 

allopurinol prescription and switch to the safer but more expensive new drug 

febuxostat. Genetic testing may lead to more confident use of allopurinol, which may 

result in cost-saving for the health system. 

5.5.2 Tradeoffs between test features and heterogeneity in 

preferences 

     Advancement of technologies may alter test characteristics in the near 

future. For instance, advancement in genetic testing technology may improve the 

accuracy and predictive power of testing, while reducing the testing cost. Low cost 

alternative risk mitigation strategies may be developed. The cost of long-term gout 

treatment may be lower when the drug patent expires. It is useful to understand how 

potential changes influence patients’ testing decisions. We investigated the tradeoffs 

patients made between various test features (cost of test, cost of long-term gout 

treatment, and the SJS risk associated with test-guided treatment), estimated the 

willingness-to-pay for risk reduction, and predicted the stated uptake rate.  

Latent class analyses revealed two distinct classes of decision makers that 

assign different preference weights to various features. One class considered cost of 

test and long-term treatment more important than the level of risk, so this class was 

described as the cost-conscious class. The other class had high preference weights for 

risk level, and relatively small weights for the cost of test. This class was named the 

risk-averse class. Consistently, the risk averse class derived disutility from no test, and 

therefore more likely to test, whereas the cost-conscious class derive positive utility 

from no test, likely due to the fact that no test incurs the lowest costs in the short term 

and in the long term. As expected, the risk averse class has higher uptake rate than 
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the cost-conscious class, when offered the same test (98% vs 65%, p<0.01). The 

uptake rate and willingness to pay among risk averse patients depends heavily on risk 

level. Contrarily, no significance was detected for the cost-conscious group. These 

implies that the risk averse class are willing to take a more expensive test that is more 

accurate, and the cost conscious class may be willing to adopt a cheaper and less 

accurate risk mitigation strategy. A feasible alternative strategy to genetic testing is a 

safety monitoring program that aims to identify early signs of SJS and reduce the 

severity and mortality associated with SJS. This cheaper alternative strategy is more 

preferred to testing among the cost conscious group. Interestingly, the class 

membership was not significantly correlated with socio-demographic factors, 

suggesting the belief may not be determined by their ability to pay. 

    The long-term treatment cost attribute has an uncertainty component as 

treatment is selected based on test results. To shed some lights on individual’s 

interpretation about this attribute, the estimated willingness-to-pay was compared to 

the expected value of treatment cost. When the treatment cost for test positive 

individuals was reduced from S$4,000 to S$400, the expected payment decreased 

from by $720 (from $960 to $240). However, WTP analysis shows that in both classes, 

the WTP in one-time test cost increased more than the decrease in expected value 

($1,166, and $3,380 respectively for the two classes). This implies respondents do not 

do expected value calculation. Rather, they were willing to pay extra to avoid the risk of 

extremely high cost. Even though each individual has a small chance (20%) of 

requiring the expensive treatment, a high long-term treatment cost significantly 

discourages testing.  

5.5.3 Impact of doctor and herd  

Genetic testing decision in real clinical settings not only depends on the 

features of testing. The choice context in which the test options are offered, and the 

way testing information is delivered also matters. We found physician recommendation 
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to be very important in decision making. 8% of respondents always preferred the 

doctor recommended option, even when the recommended option had high risk, or 

was expensive. This is consistent with other studies that found strong impact of 

doctor’s recommendation on patient choices.166,182-187 Random information on doctor’s 

recommendation appears to be influential in both cost-conscious class and risk-averse 

class. When a test was recommended by doctor, respondents were willing to pay more 

for the test compared to when the test was not recommended. This suggests 

respondents infer about the quality and value of test based on doctor’s 

recommendation. The uptake rate prediction showed consistent results. Doctor’s 

recommendation appeared to be more influential on ethnic minorities. Compare to 

doctor’s recommendation, herd behavior had smaller impact on patients’ testing 

decisions. Our findings confirmed the presence of herd behavior in patients’ genetic 

testing decisions, even though small in magnitude. Our findings are consistent with the 

limited literature in medical decision making. In an online survey on women’s breast 

cancer treatment choices, when information on social norm suggested chemotherapy 

to be popular, women showed higher interest in chemotherapy.245  Hall et al. found 

small but significant impact of information that “80% of people like you have been 

tested for Tay Sachs Disease (TSD)” on the stated uptake of TSD screening test.166 

Yang et al. studied prescription of antipsychotic drugs by physicians, and found that 

the prescription could be influenced by their colleagues in the same hospital. Though 

the peer effect was small, it was more influential on the prescription of new drugs.204 

To many patients, recommendation by physicians or being the most common 

choice indicates the quality of a treatment option.195 Following doctor’s 

recommendation or the most common choice may therefore be a decision heuristics 

that allows easy and fast decision making.193,194 Some decision making theories 

suggests the objective of decision making is not to maximize utility, but to simplify 

decision making.169,246 Though these decision heuristics may deviate from the “rational” 

decision making pathway based on logic and calculation, some empirical findings and 
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economic theories have recognized the ecological rationality and advantage of 

decision heuristics.193-195 For instance, Banerjee argues that in a sequential decision 

model, it is rational for decision makers to look at the decisions made by the previous 

decision makers, as other decision makers may have information that is important. 

Furthermore, he demonstrated that the optimizing strategy is to do what other people 

do, rather than using their information.195 

5.5.4 Implication on genetic testing practices and policies in 

Singapore 

This study provides timely information for various stakeholders such as test 

providers, physicians, and regulators. We observed a demand for routine screening in 

primary care and hospital settings. Alternative risk-mitigation tools that are cheaper but 

less accurate (such as a less accurate test or a safety monitoring program) may also 

be desirable to some patients. Our study also highlighted three important aspects of 

physician practices regarding genetic testing. First, information on ADR risk and 

genetic tests is perceived important by patients, so it’s desirable for doctors to educate 

and effectively communicate with patients on ADR risk, potential risk-mitigation 

strategies, as well as cost and long-term consequences of genetic testing. Secondly, 

doctor’s opinion and recommendation play a very important role in shaping patient’s 

decision. So it is important for doctors to consider patient preferences, and recognize 

the heterogeneity in patients preferences when making recommendations, in addition 

to professional judgment of the risk and benefit profile. Third, some patients had 

preferences for cheaper long-term gout treatment, and are willing to bear with higher 

risk of SJS for lower treatment cost, which implies bypassing allopurinol and switching 

to febuxostat for risk considerations may not be desirable. From the regulator 

perspective, the value of genetic test was recognized by patients, however, a mandate 

is not justifiable as a significant proportion of patients prefer not to test, and the test 

cost is currently paid out of pocket. Subsidizing may be a feasible way to improve 
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uptake, however a group of price elastic individuals should be targeted, instead of the 

whole population. Cost-effectiveness and equity are also important considerations 

when determining subsidies.  

5.5.5 Implication on health promotion strategies in Singapore 

Various types of policy tools are commonly used for health promotion, including 

education campaigns and information provision, making guidelines and mandates, and 

financial incentives. Evaluating policy impact in real life settings require considerable 

effort and resources, and may be subject to confounding. A comparison of various 

policy tools in the same setting is even more difficult. Moreover, it is desirable to have 

information on the policy effects ex ante. This study demonstrates a feasible and less 

resource demanding way to evaluate and compare various policy effects. Moreover, 

the latent class analysis suggests there may not be a one size fits all policy strategy. 

Different subgroups may require different policy solutions to achieve the most impact. It 

is therefore important to understand heterogeneity in target population behaviors and 

preferences before designing and implementing a health promotion policy. 

Providing detailed information on the benefits and costs of genetic testing in 

comparison to no test result in significant rate of stated test uptake compared to no 

detailed information. This suggests that for services individuals are not familiar with, 

information provision may increase uptake.  

Based on stated preferences in this study, providing information on physician’s 

recommendation is likely to be an effective and low-cost health promotion strategy. 

Efforts to alter physician behaviors such as recommendation by regulators or clinical 

practice guideline may achieve even stronger effects, as the physical presence of 

physician to deliver the recommendation achieves extra persuasive power than 

information on physician’s recommendation. Providing information on the most 

common practice may nudge individuals towards following the herd. Even though less 

effective than physician’s recommendation, it is a low-cost information strategy. Both 
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types of information strategies appeared to influence most individuals. In our study, 

providing information on doctor’s recommendation and herd behavior increased the 

stated uptake rate more than a 75% price subsidy, suggesting behavior economics 

strategies may be more effective and less costly than financial strategies, and deserve 

more consideration in health promotion policies.  

In contrast, financial incentives may not have intended effectiveness, especially 

among price-inelastic individuals. In our study, 62.9% of respondents are classified as 

risk averse, among which the test uptake rate was over 95% even without financial 

incentives. Additional subsidies in test cost did not significantly increase the uptake. On 

the other hand, 37.1% of respondents were cost-conscious, and a 75% subsidy on test 

cost would increase the uptake from 8.8% to 12.3%, whereas a 90% decrease in long-

term gout treatment cost would improve uptake to 29.4%. Comparing the magnitude of 

effects, financial incentives were not as effective as physician’s recommendation.  

5.5.6 Comparing econometric models for DCE data 

When comparing econometric models for choice analysis, different domains 

need to be considered. Statistical measures of model fit, such as likelihood ratio, 

pseudo R2 are useful, but these values cannot be used to compare MXL and LCM 

models if the two models are not nested.236 The estimates from different models are 

not directly comparable due to scale differences, but behavioral outputs such as WTP 

estimates and choice probability prediction (stated uptake rate) are useful indicators of 

model appropriateness, as some information or prior knowledge on behaviors are 

available.  

All evidence suggests heterogeneity in preferences for genetic testing services. 

In analysis of non-demanders, 8.5% of respondents always preferred not to test. On 

the contrary, 51.85% always preferred to test. These groups were making different 

tradeoffs. MXL model shows the estimates had big standard deviation, suggestion 

large variations across individuals. A latent class analysis identified two classes with 
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distinct choice patterns and preferences weights. Based on the findings, among the 

three models used, those account for heterogeneity are more appropriate than CLM.  

Mixed logit models allow parameters to be random and follow a continuous 

distribution, and provide information on the population average parameter. Latent class 

models accounts for heterogeneity by allowing parameters to follow discrete 

distributions.  Both models provide insights on preferences heterogeneity. When 

predicting the uptake rate, LCM appeared to give more reasonable predictions than 

MXL. MXL predicts higher uptake rates (ranges from 75.3% to 97.7%) than LCM 

(ranges from 65.1% to 73.6%) for all scenarios. Analysis of non-demanders showed 

that 8.5% of respondents always preferred not to test in all DCE questions, regardless 

of attribute levels. Analyses of warm-up questions also revealed the proportion of 

respondent willing to consider genetic testing was between 50% to 60%, when each 

attribute was considered separately. Even though various preference-eliciting methods 

may yield different responses, LCM predictions were more consistent with other 

findings. The inflated prediction from MXL could arise for two reasons: 1) The 

coefficient estimates were population averages, and extreme preferences were not 

well accounted for; and 2) for those who dominated on a certain attribute, no tradeoffs 

were made between different attributes, which may confound the model estimates.  

5.5.7 Strengths of study 

The study has many strengths. First, we included context variables in the DCE, 

which is closer to the real clinical setting, and the predictive value of model is better. 

Secondly, a no test option was included to allow for opting out, which is more realistic. 

In addition, the features of no test alternative were displayed. The precise definition of 

no test minimized the prior individual beliefs or knowledge about the no test. Thirdly, 

we used mixed logit and latent class models in analyses, which allow the analysis of 

heterogeneity in preferences. Fourthly, simulation of policy effects was conducted, 

which provide forecasts on the possible policy impact. Fifthly, we used a budget 
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reminder to minimize hypothetical bias. Choosing a test does not require respondents 

to pay, and it is possible that decision may change when individuals need to make real 

payment. The fact that the DCE is hypothetical scenarios and choices can potentially 

lead to bias, such as over estimation of willingness to pay. To minimize hypothetical 

bias, a budget reminder was incorporated to remind respondents to think carefully 

about the opportunity of the test cost and the impact of test cost on their budget. 

Sixthly, various validity tests were included to test respondents’ attention and 

understanding of DCE questions.  

 

5.5.8 Limitations of study 

The study has several limitations. Firstly, DCE as a stated preference method 

has intrinsic limitations that people’s stated preferences may differ from actual 

behaviors. However, several studies evaluating the external validity of DCE has found 

consistency in DCE results and actual behavior.247,248 The DCE questions have been 

made as realistic as possible in this study by including choice context variables and 

budget reminder. More research are required to further examine the external validity of 

DCE, in relation to actual behavior, and other stated preference methods. Secondly, 

due to practical considerations, the study was conducted among diabetes patients who 

were at higher risk of gout than the general public. Patients’ preferences may change 

with time and disease experiences. However, as comprehensive background 

information provided, and the socio-demographic features were similar, we do not 

expect differences in preferences between diabetes and gout patients. Thirdly, 

willingness-to-pay for risk reduction may be related to the ability to pay, or wealth. 

However, wealth is difficult to measure. We used controlled for household income and 

housing type as proxies for wealth in the analysis to account for potential effect of 

ability to pay on preferences. Fourthly, respondents were recruited using a 

convenience sampling method, and may be subject to selection bias. For instance, 
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patients with no interest in ADRs or genetic testing, and those with low cognitive 

capacity may refuse to participate in the study. Nonetheless, we compared the sample 

characteristics with the population demographics, and did not detect significant 

differences that will threaten the generalizability of our study.  

 

5.6 Conclusions 

Using a discrete choice experiment, this study quantified patients’ preferences 

for using pharmacogenetic testing to reduce severe ADRs. The study identified 

substantial heterogeneity across individuals. Most patients are risk averse, and had 

higher preference weights for level of risk reduction than for cost of test. This group of 

patients have higher willingness-to-pay for genetic testing. Other patients are more 

cost conscious, and considered cost of test and long-term treatment more important 

than the level of risk reduction.   Overall, our results predicted the test uptake rate to be 

65% in Singapore.  The study also revealed the strong impact of doctor’s 

recommendation and moderate effect of herd behavior in shaping individuals’ test 

decisions.  These information strategies can be effective and inexpensive health 

promotion tools.
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Chapter 6 Conclusions and future directions 

6.1 Conclusions 

In this thesis, I introduced the challenges in the adoption of pharmacogenetic 

testing in clinical practice to reduce risk of life-threatening adverse drug reaction, and 

described two economic evaluation methods that can inform the decision making at 

health system level and individual level on whether genetic testing should be done. 

In chapter 2, I presented a cost-effectiveness analysis of HLA-B*1502 genetic 

testing prior to carbamazepine treatment in epilepsy treatment. Results suggest that 

in a life time, testing is highly cost-effective for Singaporean Chinese, Malays, but not 

for the Indians. As there are several effective alternative anti-epileptic drugs, avoiding 

carbamazepine in HLA-B*1502 patients can reduce risk of SJS and associated 

mortality and morbidities, but will not worsen seizure control. In addition, our model 

implies that HLA-B*1502 testing is more likely to be cost-effective in populations with 

high HLA-B*1502 frequency and high incidence of CBZ/PHT-induced SJS/TEN, such 

as various southern eastern Asian countries. From a policy perspective, our results 

imply that HLA-B*1502 is a high value service in Singapore. Following this study, 

genetic testing for HLA-B*1502 prior to carbamazepine treatment has been 

recommended in Singapore, and testing services were made available in several 

tertiary hospitals. The reduction in SJS case reports has demonstrated the 

effectiveness of HLA-B*1502 testing.  

In chapter 3, I described a cost-effectiveness analysis of HLA-B*5801 genetic 

testing prior to allopurinol treatment in chronic gout management. When evaluated 

over a life time, genetic testing and avoiding allopurinol in testing positive patients is 

not cost-effective. In fact, it reduced the total QALYs, while incurring higher cost. This 

is because test positive patients (18.5%) would have fewer alternative treatment 

options, and thus worse gout outcomes, while SJS/TEN would be avoided in only 

1.5% of patients. This shows that genetic testing does not necessarily improve 
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QALYs at population level, though risk of SJS is lowered, especially when the choice 

of alternative drugs are limited. Instead, a strategy that combines genetic testing and 

safety monitoring may become cost-effective under certain circumstances, and 

achieves a balance between risk mitigation and gout management outcomes. From a 

policy perspective, mandating HLA-B*5801 testing is not desirable.  

In chapter 4, I reviewed the factors determining patients’ preferences for 

taking genetic test to reduce risk of life-threatening adverse drug reactions. 

Determinants of patients’ testing decision include test features (including cost of test, 

risk of SJS, and cost of long-term gout treatment) and decision context information 

(including information on doctor’s recommendation, and the most common choice 

made by others). The impact of these factors were systematically tested and 

quantified in a discrete choice experiment descried in Chapter 5. Though HLA-

B*5801 genetic testing is not cost-effective as shown in chapter 3, my results from 

discrete choice experiment shows that a significant proportion of patients are willing 

to test to reduce the risk of SJS. This group of patients are less sensitive to test cost 

and treatment costs, and have high willingness-to-pay for risk reduction. On the 

contrary, the other patients are more cost-conscious and only willing to test when the 

test can significantly reduce risk of SJS, or when the treatment cost is low. Given the 

current available test, the predicted test uptake rate is 65.1% among Singaporean 

patients. The effect of choice context factors on patient’s decision making was also 

explored. Doctor’s recommendation is the single most effective factor in improving 

test uptake rate (by 8.5%). On the other hand, labelling test as the most common 

choice slightly increased the uptake rate of test, suggesting herd behaviour is not as 

strong as doctor’s recommendation. From a service provision perspective, the study 

results suggest there is a strong demand for genetic testing. From a policy 

perspective, mandating testing is likely to induce a welfare loss among those who 

prefer not to test. From a health promotion perspective, the study identified doctor’s 
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recommendation and information on other people’s choice to be effective and low-

cost strategies to encourage healthy behaviours. 

In conclusion, the thesis has demonstrated how economic evaluations can 

inform the decision on genetic testing adoption at the health system level and 

individual patient level. Understanding the economic value of health services, and 

patient’s preferences may improve the cost-effectiveness and efficiency of health 

service delivery. 

 

6.2 Future directions 

6.2.1 Cost-effectiveness analysis 

Cost-effectiveness models are static, and analyze the most likely scenario at 

the time of study. Cost-effectiveness results will change when input parameters are 

altered, such as the discovery of a new drug, the changes in drug prices related to 

patent or demand factors. It is worthwhile to re-evaluate the cost-effectiveness 

results when the context significantly changes.   

Genetic testing technology is rapidly evolving. In the near future, it may 

become possible to conveniently test thousands of genes or the whole genome at 

relatively low costs. If true, genes that can predict individual’s drug responses may be 

tested all together at birth, or at the first time a drug with known genetic risk factor is 

prescribed. The genetic profiles could even be incorporated into individual’s 

electronic medical records. These will completely change the marginal cost and 

marginal benefit of genetic testing. Future studies could explore the costs and 

effectiveness of a combined testing of all the genes known to associate with adverse 

drug reactions, or all drug-related genes.  

6.2.2 Discrete choice experiments 
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Discrete choice experiments as a useful tool to quantify patients’ preferences, 

has increasing been used in health care. However, the external validity of DCEs in 

health care are rarely tested. Often times, it is empirically unclear how well the 

predicted behaviors are consistent with real behaviors. In fact, for most DCEs, a 

market to test the external validity does not exist at the time of study. It is important to 

find opportunities to compare the DCE with actual choices. For instance, when HLA-

B*5801 becomes available in Singapore in the future, individual patients choices and 

the overall test uptake rate could be compared with the predictions. Nevertheless, 

any discrepancies should be interpreted with caution, as the context of DCE may be 

different from real life in many ways.  

Our study suggests providing information on doctor’s recommendation and 

herd behavior may be as effective as or more effective than traditional policy 

intervention strategies, such as cost subsidies. Further studies should be conducted 

to systematically evaluate the impact of various forms and strengths of doctor’s 

recommendations, and herd information in nudging patients’ choices.  
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Appendix A. In-depth interview guide  

In-depth Interview Guide 
Key questions to be asked during the interview 
Understand the awareness 
 

Section Topic Time 
(minutes) 

1 Introduction 10 
2 Preferences for genetic testing 15 
3 Role of doctor’s recommendation 10 
4 Role of majority choice 10 
5 Service delivery 5 
6 Interview experience and suggestions 5 
   
Total time  55 

 
Part 1: Introduction 

Duration Discussion 
5 mins Approach potential participant 

Self introduction (Hi, My name is Dong Di, I am a PhD student at the 
National University of Singapore, Graduate Medical School [show student 
card]. As part of my PhD research, I am conducting a survey to understand 
Singaporean’s preferences for genetic testing; hoping that doctors and 
policy makers better understand the preferences of the general public, and 
hope future medical services and policies can be consistent with people’s 
preferences. I wonder whether you can spare 10-20 minutes time to 
answer some questions and share your view on genetic testing with me? 
We will have 20 dollar NTUC voucher as token of appreciation)  
[eg of questions: Whether people know it, do they think it beneficial, why 
and why not take it? how much people are willing to pay?] 
[If participant do not know genetic testing: It’s ok, actually a lot of people 
do not know it, some heard of it but do not know the details, I will 
introduce the details] 
[If participant no time for today: Do you think another time works for you? 
If so, I can schedule an appointment in my school] 
 

1 mins Ask for permission to record (Do you think it ok if I audio record our 
conversation, so I won’t miss the points we discussed. Information is 
confidential, I will not release to someone outside our study team. There is 
no right or wrong answers, be open minded.) 

*If environment crowded and noisy, do not record, just take note. 
Find a place if necessary  

 Moderator to greet and welcome participant (Thanks for agreeing to do 
this interview) 

2 mins Introduce genetic testing 
(Before we get start, I’d like to ask you whether you have heard of/done 
genetic testing. 
Basically, it’s done like this. (Draw some blood, and analyze your genes in 
the laboratory) 
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Introduce the type of genetic testing in this study (There are many uses of 
genetic testing, for instance prenatal genetic screen for genetic 
abnormalities, cancer marker screening, genetic screening to optimize drug 
dosing. The one we will focus on today is to use genetic testing to prevent 
life-threatening adverse drug reactions.   
 

 
 
10 mins 

Gout (痛风) is a common chronic rheumatic disease in Singapore that 
affects 4% of elderly people in Singapore. Patients have severe pain on 
their hot and swollen toes and joints. It’s painful that patients can’t stand. 
 
ASK Do you know someone who got this? 
 
Patients with recurrent gout are usually treated with a medicine called 
allopurinol, which they take every day. However, a small number of people 
will have life-threatening drug allergy ith allopurinol.  
 
Ask Do you know drug allergy? 
 
Stevens Johnson Syndrome (SJS) is a life-threatening drug allergy. Patients 
with SJS will have severe rash all over the body, the skin may detach. Eyes 
and mucosa may get severe inflammation. It’s extremely painful, 
comparable to a severe burn. It costs $5000 to $20000 to treat, and 20% 
patients may die.  
 
Genetic test (HLA-B*5801) can identify those people with high risk for 
allopurinol allergy, and doctor can prescribe another medicine without risk, 
but more expensive.  
 
Ask What do you think of this genetic test? 

 
Part 2: Preferences for genetic testing  

Duration Discussion 
15mins Topic: How do you decide whether or not to do a genetic test before 

initiating allopurinol if you need allopurinol? 

Hypothetical scenario: Suppose you are in the clinic where your doctor 
says you need to take allopurinol to manage your chronic gout. The doctor 
tells you that this drug is generally well tolerated, and effective. However 
there is a small chance of life-threatening adverse drug reaction. There is a 
genetic test that can tell you whether you are at risk of this adverse 
reaction, though the test is not 100% accurate.  You need to pay some 
amount for the test, and you may need to take more expensive medicines 
if the test says you are at risk. Now you need to make a decision on 
whether or not you want to do the test. 

1. What do you think of the genetic test? 
Worth doing? Why? 

2.  What factors will you consider when you make this decision? 
Probe question: Is cost/likelihood of adverse 
reaction/accuracy/drug cost/how your sample is collected and 
handled important? 
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3.  What other information would you like to know besides the 
information given above? 

4.  What do you think is the most important factor? 
5. How much are you willing to pay for such a test (without 

considering whether it’s feasible)? 
6. What’s the highest amount you can accept? 
7. What’s the maximum risk level that you can tolerate? 
8. Will changes in test features increase your likelihood of taking the 

test? 
 
Part 3: Role of doctor’s recommendation 

Duration Discussion 
10mins Topic: How is doctor recommendation influencing your decision? 

9. Is doctor’s recommendation important for testing decision? 

10. Suppose a doctor gives you information on the test features, and 
his recommendation, are you going to follow his recommendation 
straight away or consider the test features and the 
recommendation at the same time? 

11. If a doctor’s recommendation is different from your judgments, 
what are you going to do? 

12. Why or why not do you follow the doctor’s recommendation? 

13. Does a specialist or a GP matter? Does public or private hospital 
matter? 

14. What if a doctor recommend against a test? 

 
Part 4: Role of majority choice 

Duration Discussion 
10mins Topic: How is majority choice influencing your decision? 

1. Is what other people do important for your testing decision? 

2. Suppose you receive some information that 70% of people in your 
situation choose to do the test, are you going to follow them 
straight away or balance the test features and other people’s 
choice? 

3. If the majority choice is different from your judgments, what are 
you going to do? 

4. Why or why not do you follow the majority choice? 

5. What if the doctor recommendation is against the majority choice?  

6. Now, considering all test features, doctor recommendation and 
information on what other people do, what is the most important 
factor in your decision? 

 
Part 5: Service delivery 

Duration Discussion 

165 

 



 

5mins Topic: How do you prefer genetic testing services to be offered in 
Singapore? 

1. Do you prefer the above genetic test for allopurinol to be available 
in Singapore? 

2. Do you want it to be offered in hospitals or clinics? 

3. What’s the most acceptable way of collecting your sample? 

4. Do you want the test results to be included in your medical record 
so that other doctors can see it in the future? 

5. What do you think of genotyping for many diseases related genes 
at the same time and include in your medical record?  

6. Are you concerned about genetic test? 

 
Part 6: Interview experience and suggestions 

Duration Discussion 
5mins Topic: How do you think of the interview experience, and how can it be 

improved? 
1. Do you have problem understanding the information given at the 

beginning of the interview? 
2. Can you make sense of the probabilities given? 

3. Will the following make it easier to understand probability? 
Graphic representation 
Example of real life probabilities 

4. Do you have difficulties calculating the cost presented above? 

5. Do you have other comments or suggestions regarding the 
interview and the study?  
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Appendix B. Final experimental design 

Block 
Choice 

Set Alternative Risk 
Test 
cost 

Gout 
treatment 

cost 
Doctor 

recommended 
Most common 

choice 
1 2 1 1 in 600 400 250 No no info 
1 2 2 1 in 5,000 20 1,500 Yes no info 
1 2 3 1 in 500 0 200 No no info 
1 3 1 1 in 1 million 20 4,000 No No 
1 3 2 1 in 600 400 1,500 No Yes 
1 3 3 1 in 500 0 200 Yes No 
1 4 1 1 in 5,000 20 400 no info Yes 
1 4 2 1 in 1,000 1,000 250 no info No 
1 4 3 1 in 500 0 200 no info No 
1 5 1 1 in 1,000 20 250 Yes Yes 
1 5 2 1 in 5,000 400 4,000 No No 
1 5 3 1 in 500 0 200 No No 
1 6 1 1 in 600 1,000 400 no info No 
1 6 2 1 in 1,000 200 4,000 no info No 
1 6 3 1 in 500 0 200 no info Yes 
1 7 1 1 in 1 million 200 250 No no info 
1 7 2 1 in 600 20 4,000 No no info 
1 7 3 1 in 500 0 200 Yes no info 
1 8 1 1 in 1,000 1,000 250 No No 
1 8 2 1 in 1 million 400 400 Yes Yes 
1 8 3 1 in 500 0 200 No No 
1 9 1 1 in 5,000 200 400 No Yes 
1 9 2 1 in 600 20 1,500 Yes No 
1 9 3 1 in 500 0 200 No No 
2 2 1 1 in 1,000 200 4,000 No Yes 
2 2 2 1 in 1 million 1,000 400 Yes No 
2 2 3 1 in 500 0 200 No No 
2 3 1 1 in 1,000 400 400 No No 
2 3 2 1 in 600 200 250 No No 
2 3 3 1 in 500 0 200 Yes Yes 
2 4 1 1 in 1 million 1,000 1,500 No Yes 
2 4 2 1 in 1,000 200 250 Yes No 
2 4 3 1 in 500 0 200 No No 
2 5 1 1 in 5,000 400 250 Yes no info 
2 5 2 1 in 1,000 20 400 No no info 
2 5 3 1 in 500 0 200 No no info 
2 6 1 1 in 1 million 1,000 250 no info No 
2 6 2 1 in 600 400 1,500 no info Yes 
2 6 3 1 in 500 0 200 no info No 
2 7 1 1 in 600 20 4,000 No Yes 
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2 7 2 1 in 5,000 200 1,500 Yes No 
2 7 3 1 in 500 0 200 No No 
2 8 1 1 in 600 1,000 250 no info Yes 
2 8 2 1 in 5,000 20 400 no info No 
2 8 3 1 in 500 0 200 no info No 
2 9 1 1 in 5,000 20 400 No No 
2 9 2 1 in 1 million 400 4,000 Yes Yes 
2 9 3 1 in 500 0 200 No No 
3 2 1 1 in 1,000 1,000 4,000 Yes Yes 
3 2 2 1 in 600 20 1,500 No No 
3 2 3 1 in 500 0 200 No No 
3 3 1 1 in 1 million 400 250 No Yes 
3 3 2 1 in 600 200 1,500 Yes No 
3 3 3 1 in 500 0 200 No No 
3 4 1 1 in 600 20 4,000 Yes No 
3 4 2 1 in 5,000 400 1,500 No No 
3 4 3 1 in 500 0 200 No Yes 
3 5 1 1 in 5,000 1,000 4,000 No Yes 
3 5 2 1 in 600 400 1,500 Yes No 
3 5 3 1 in 500 0 200 No No 
3 6 1 1 in 1 million 200 400 No no info 
3 6 2 1 in 5,000 20 250 Yes no info 
3 6 3 1 in 500 0 200 No no info 
3 7 1 1 in 1 million 200 1,500 No No 
3 7 2 1 in 1,000 1,000 400 No No 
3 7 3 1 in 500 0 200 Yes Yes 
3 8 1 1 in 600 200 1,500 No Yes 
3 8 2 1 in 1 million 400 250 No No 
3 8 3 1 in 500 0 200 Yes No 
3 9 1 1 in 5,000 1,000 4,000 no info No 
3 9 2 1 in 1,000 200 400 no info Yes 
3 9 3 1 in 500 0 200 no info No 
4 2 1 1 in 600 20 250 No no info 
4 2 2 1 in 1,000 1,000 1,500 No no info 
4 2 3 1 in 500 0 200 Yes no info 
4 3 1 1 in 5,000 1,000 250 No Yes 
4 3 2 1 in 1,000 400 4,000 No No 
4 3 3 1 in 500 0 200 Yes No 
4 4 1 1 in 1 million 200 4,000 Yes Yes 
4 4 2 1 in 1,000 400 250 No No 
4 4 3 1 in 500 0 200 No No 
4 5 1 1 in 5,000 200 4,000 No no info 
4 5 2 1 in 1 million 1,000 400 Yes no info 
4 5 3 1 in 500 0 200 No no info 
4 6 1 1 in 1 million 20 1,500 No No 
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4 6 2 1 in 600 1,000 400 Yes No 
4 6 3 1 in 500 0 200 No Yes 
4 7 1 1 in 5,000 400 4,000 Yes Yes 
4 7 2 1 in 1 million 1,000 1,500 No No 
4 7 3 1 in 500 0 200 No No 
4 8 1 1 in 1 million 200 4,000 No No 
4 8 2 1 in 5,000 20 250 Yes Yes 
4 8 3 1 in 500 0 200 No No 
4 9 1 1 in 1,000 20 1,500 no info Yes 
4 9 2 1 in 600 200 400 no info No 
4 9 3 1 in 500 0 200 no info No 
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Appendix C. Survey instrument 
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A survey on the preferences for genetic testing to prevent severe 
side effects of medicines 

 
 

For interviewer use only: 

Fill in the spaces that you can at the beginning of the interview, and then 

enter Time Ended and Total Interview Time after completing the survey. 

INTERVIEWER NAME: _________ 
CASE NO.: _________ 

DATE OF SURVEY (DD/MM/YYYY): _______/_______/2014 
VENUE OF INTERVIEW: 

Hospital:      SGH                            NUH 

 

Location:      Waiting room               Private room/office________ 

TIME STARTED:_______________ 

TIME ENDED:_______________ 
TOTAL INTERVIEW TIME:_________MINUTES 
VERSION: V19_block1 
 

---------------------------------------------------   SURVEY STARTS HERE --------------------------------------------

----------- 

INTRODUCTION  

 
Hello！I am a Doctoral student from the National University of Singapore (NUS). 

We are conducting a survey to look at patient’s preferences for taking a genetic test to 
minimize severe side effects of some commonly used medicines. I would appreciate if you 
could spare 15 to 20 minutes to help answer some questions.  A $5 NTUC voucher will be 
given to you at the end as a token of appreciation.  

 
Please feel free to call the study coordinator Di Dong, at Tel: 8298 5633 if you need 

any clarification on this survey. 
 
[Obtain respondent's signed consent before proceeding] 
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SECTION S: SCREENING QUESTIONS   

Question S1       
 

Are you a Singaporean or PR?     

     YES [PROCEED TO SURVEY]                    

      NO [THANKS & TERMINATE]    

Question S2       
 

Have you been diagnosed with diabetes?        

     YES [PROCEED TO SURVEY]                    

      NO [THANKS & TERMINATE] 
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SECTION A: BACKGROUND INFORMATION ON GOUT TREATMENT 

Life-threatening side effect of gout medicines 

• Gout is a common form of arthritis that can cause severe pain and swelling in the joints (see 
picture below), often in the fingers and toes. Men and those with diabetes have higher risk of 
developing gout. 

 

 

 
• For chronic gout patients, the standard treatment uses a medicine called allopurinol. It is very 

effective to treat chronic gout, but can in rare cases cause a severe side effect called Stevens-
Johnson syndrome (shown in the picture below). This side effect can lead to death.  

 
 

 

 

 

 

Different gout treatments (with and without genetic testing) 

• This life-threatening side effect is related to the genetics of individuals. A genetic test can be 
done via a blood test to identify whether or not an individual is more likely to have the side 
effect. 

 Test positive means you may have the severe side effect if you take the 
standard medicine. 

 Test negative means you will not have the severe side effect with the 
standard medicine. 
 

• Now, we have different treatments for gout:  
-Genetic-testing guided treatment  

-Standard allopurinol treatment without testing  

• Note that the test is not 100% accurate, so genetic test-guided treatment can not completely 
prevent the risk of severe side effect. It only reduces the risk. 

 

• 10% chance of death 

• Extreme pain for 2 weeks 

• High medical cost (S$5,000-S$20,000) 

• May have long-term complications 
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SECTION B: FEATURES OF GOUT TREATMENTS 

 
[Hypothetical scenario] Suppose you developed gout and had to decide which treatment to 

choose. Some factors one might consider in making this decision are listed below.  
 
 
Factor 1: Whether genetic testing is involved 
There are two possibilities: 

• Test   (genetic test-guided treatment) 

• No  test   (no genetic test involved) 

 
 

Factor 2: The chance of getting the severe side effect 
 
These different treatments are equally effective in treating gout, but differ in the chance of 

getting the severe side effect. Remember that genetic-test guided treatments also have risk of the 
severe side effect. 

 
The chance of getting the severe side effect may be: 

• 1 out of 500 patients 

• 1 out of 600 patients 

• 1 out of 1,000 patients 

• 1 out of 5,000 patients 

• 1 out of one million patients 

 
 
 
 
 
 
 

Question B1 Among 500 patients who take a medicine, 1 will have a severe side effect.  

How would you feel about this risk?  

 I would feel at risk. 

 I would not worry about it. 

Question B2 Comparing the two scenarios below, which indicates higher risk? 

  1 out of 500 patients get the severe side effect 

  1 out of 1,000 patients get the severe side effect 
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Factor 3: Cost of the test 
 
Assume the test must be paid out of pocket. You cannot use health insurance or 

Medisave. Please think carefully about how the cost of the genetic test would influence your 
budget (e.g., for food and clothing) before making a decision. The 4 possible test costs are:   

• S$20 

• S$200 

• S$400 

• S$1,000 

 

Question B3 If a genetic test costs S$400, would you consider taking the test to reduce 
the chance of the severe side effect?    

 Definitely would 

 Probably would  

 Probably would not  

 Definitely would not 
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Factor 4: Cost of gout medicines  (over 2 years)  

 
As gout medicines should be taken daily for at least 2 years, costs over 2 years are shown here. 

Assume all treatment costs must be paid out of pocket. You cannot use Medisave or insurance. 

 

If you choose standard allopurinol treatment without genetic testing, the cost is:  

• S$200 over two years 

 

If you choose genetic test-guided treatment, treatment cost will depend on your test results. 

Those who test positive (assumed to be 20% of individuals or 2 in every 10 who take the test) need to 

take a more expensive alternative medicine, whereas individuals who test negative (8 in 10) can take 

the standard medicine allopurinol at a cost of $200 over two years. . The four possible costs of the 

genetic test-guided treatment for those who test positive are: 

• S$250    if test positive (2 in 10 chance)  
• S$400    if test positive (2 in 10 chance)  
• S$1,500 if test positive (2 in 10 chance)  
• S$4,000 if test positive (2 in 10 chance)  

 

 

Question B4 If the alternative gout medicine costs S$2,000 over two years, and you need 
to take this medicine if you have test positive (2 in 10 chance) would you 
consider choosing the genetic test-guided treatment?    

 Definitely would 

 Probably would  

 Probably would not  

 Definitely would not 
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Factor 5: Your doctor’s recommendation 

 

When you make a decision, you may or may not receive advice from your doctor.  

Question B5 Would your doctor’s recommendation influence your decision? 

 Definitely would  

 Probably would    

 Probably would not 

 Definitely would not 

 

 

 

 

 

 

 

 

 

Factor 6: Most common choice 

 

When given several options to choose from, some people are interested to know how other people 

choose in the same situation. The most common choice here is defined as the option chosen by 80% of 

people in the same situation.   

Question B6 Would knowing what the most common choice is influence your decision? 

 Definitely would  

 Probably would    

 Probably would not 

 Definitely would not 
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SECTION C: TRADE-OFF QUESTIONS 

 

• Suppose you developed gout and were asked to choose your preferred treatment option 

among several different scenarios.  

 

• Please answer the 10 questions I am going to show you. They may look similar but all 
differ. In each question, you need to think about the pros and cons of each option.  

 

• When making decisions we ask what you would prefer for yourself, not what you think would be 
best for your friends or other people. 

 

• Remember, assume that costs must be paid out of pocket; you cannot use Medisave or 

health insurance.  
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Example Question: If you had to choose one of the treatment strategies below, which 
would you choose? 

 
 Treatment 

A  Treatment 
B  Treatment 

C 
Whether genetic testing 
is involved  

 
Test  Test  No Test 

The chance of getting 
the  severe side effect 

 1 out of one million 
patients  1 out of 600 

patients   1 out of 500 
patients  

Cost of the one-time 
genetic test 

 
S$200  S$20  $0 

Cost of gout medicines 
(over two years) 
 

 
S$1,500 if test positive 

(2 in 10 chance);  
 

S$200 if test negative 
(8 in 10 chance) 

 

 

S$400 if test positive 
(2 in 10 chance); 

 
S$200 if test 

negative   (8 in 10 
chance) 

 

 S$200  
over two years 

Your doctor’s 
recommendation 

 

 

 

 
 

 

Most common choice 
 

No information 
 

No information 
 

No information 

 
Question: If these were the 
only 3 options available, 
which ONE would you 
choose?  (Please tick  √  ) 

 
 
 

 
 

 
 

 
 
 
 

 
Explanation of the above scenario: 

• If you chose treatment A, you take a genetic test, which costs S$200. Your chance of 
getting severe side effect is 1 in one million. If you test positive (2 in 10 chance), you pay S$1,500 
over two years for the more expensive gout medicine. If you test negative, you pay $200 over two 
years for the standard gout medicine.  
• If you chose treatment B, you take a genetic test, which costs S$20. Your chance of 
getting severe side effect is 1 in 600. If you test positive (2 in 10 chance), you will need to pay 
S$400 over two years for the more expensive gout medicine. If you test negative, you pay $200 
over two years for the standard gout medicine.  
• If you choose treatment C, you don’t need to test, but your chance of getting severe side 
effect is 1 in 500. The gout medicine costs you S$200 over 2 years.  
• In this scenario, treatment B is the doctor recommended option, and you have no 
information on what the most common choice is. 

 
 
 
 
 
 
 
 
 
 
 

Doctor 
recommended 

179 

 



 

Question 1: If you had to choose one of the treatment strategies below, which would 
you choose? 
 

 
 Treatment 

A  Treatment 
B  Treatment 

C 

Whether genetic 
testing is involved 

 
Test 

 
Test 

 
No Test 

The chance of getting 
the  severe side effect 

 
1 out of one million 

patients  

 
1 out of 600 

patients 

 
1 out of 500 

patients  

Cost of the one-time 
genetic test 

 
S$200 

 
S$200 

 
$0 

Cost of gout 
medicines (over two 
years) 
 

 
S$400 if test positive  

(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 
S$400 if test positive  

(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 

S$200  
over two years 

Your doctor’s 
recommendation 

 

No information  No information  No information 

Most common choice 

 

No information  No information  No information 

 
Question: If these were the 
only 3 options available, 
which ONE would you 
choose?  (Please tick  √  ) 
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Question 2: If you had to choose one of the treatment strategies below, which would 
you choose? 
 

 
 Treatment 

A  Treatment 
B  Treatment 

C 

Whether genetic testing 
is involved 

 
Test 

 
Test 

 
No Test 

The chance of getting 
the  severe side effect 

 
1 out of 600  

patients  

 
1 out of 5,000 

patients  

 
1 out of 500 

patients  

Cost of the one-time 
genetic test 

 
S$400 

 
S$20 

 
$0 

Cost of gout 
medicines (over two 
years) 

 

 S$250 if test positive  
(2 in 10 chance);   

S$200 if test negative 
(8 in 10 chance) 

 

 
S$1,500 if test 

positive (2 in 10 
chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 

S$200  
over two years 

Your doctor’s 
recommendation 

 

 

   

 

Most common choice 

 

No information 

 

No information 

 

No information 

 
Question: If these were the 
only 3 options available, 
which ONE would you 
choose?  (Please tick  √  ) 

 
 
 

 
 

 
 

 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Doctor 
recommended 
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Question 3: If you had to choose one of the treatment strategies below, which would 
you choose? 
 

 
 Treatment 

A  Treatment 
B  Treatment 

C 

Whether genetic 
testing is involved 

 
Test 

 
Test 

 
No Test 

The chance of getting 
the  severe side effect 

 1 out of one million 
patients  

 1 out of 600  
patients  

 1 out of 500 
patients  

Cost of the one-time 
genetic test 

 
S$20 

 
S$400 

 
$0 

Cost of gout 
medicines (over two 
years) 
 

 
S$4,000 if test 

positive (2 in 10 
chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 
S$1,500 if test positive 

(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 

S$200  
over two years 

Your doctor’s 
recommendation 

 

 

 

 

 

 

Most common choice 

 

 

 

   
 

 

 

 
Question: If these were the 
only 3 options available, 
which ONE would you 
choose?  (Please tick  √  ) 

 
 
 

 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Doctor 
recommended 
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Question 4: If you had to choose one of the treatment strategies below, which would 
you choose? 
 

 
 Treatment 

A  Treatment 
B  Treatment 

C 

Whether genetic 
testing is involved 

 
Test 

 
Test 

 
No Test 

The chance of getting 
the  severe side effect 

 1 out of 5,000  
patients  

 1 out of 1,000 
patients  

 1 out of 500 
patients  

Cost of the one-time 
genetic test 

 
S$20 

 
S$1000 

 
$0 

Cost of gout 
medicines (over two 
years) 
 

 
S$400 if test positive     

(2 in 10 chance);  

S$200 if test negative   
(8 in 10 chance) 

 

 
S$250 if test positive 

(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 

S$200  
over two years 

Your doctor’s 
recommendation 

 

No information 

 

No information 

 

No information 

Most common choice 

  

 
 

 

 

 

 

 
Question: If these were the 
only 3 options available, 
which ONE would you 
choose?  (Please tick  √  ) 
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Question 5: If you had to choose one of the treatment strategies below, which would 
you choose? 
 

 
 Treatment 

A  Treatment 
B  Treatment 

C 

Whether genetic 
testing is involved 

 
Test 

 
Test 

 
No Test 

The chance of getting 
the  severe side effect 

 1 out of 1,000  
patients  

 1 out of 5,000 
patients  

 1 out of 500 
patients  

Cost of the one-time 
genetic test 

 
S$20 

 
S$400 

 
$0 

Cost of gout 
medicines (over two 
years) 
 

 
S$250 if test positive  

(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 

S$4,000 if test 
positive (2 in 10 

chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 

S$200  
over two years 

Your doctor’s 
recommendation 

   

 

 

 

Most common choice 

 
 

 

 

 

 

 

 
Question: If these were the 
only 3 options available, 
which ONE would you 
choose?  (Please tick  √  ) 

 
 
 

 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Doctor 
recommended 
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Question 6: If you had to choose one of the treatment strategies below, which would 
you choose? 
 

 
 Treatment 

A  Treatment 
B  Treatment 

C 

Whether genetic 
testing is involved 

 
Test 

 
Test 

 
No Test 

The chance of getting 
the  severe side effect 

 1 out of 600  
patients  

 1 out of 1,000 
patients  

 1 out of 500 
patients  

Cost of the one-time 
genetic test 

 
S$1,000 

 
S$200 

 
$0 

Cost of gout 
medicines (over two 
years) 
 

 
S$400 if test positive  

(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 
S$4,000 if test positive 

(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 

S$200  
over two years 

Your doctor’s 
recommendation 

 

No information 

 

No information 

 

No information 

Most common choice 

 

 

 

 

  

 
 

 
Question: If these were the 
only 3 options available, 
which ONE would you 
choose?  (Please tick  √  ) 
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Question 7: If you had to choose one of the treatment strategies below, which would 
you choose? 
 

 
 Treatment 

A  Treatment 
B  Treatment 

C 

Whether genetic 
testing is involved 

 
Test 

 
Test 

 
No Test 

The chance of getting 
the  severe side effect 

 
1 out of one million 

patients  

 
1 out of 600  

patients  

 
1 out of 500 

patients  

Cost of the one-time 
genetic test 

 
S$200 

 
S$20 

 
$0 

Cost of gout 
medicines (over two 
years) 
 

 

S$250 if test positive  
(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 

S$4,000 if test positive 
(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 

S$200  
over two years 

Your doctor’s 
recommendation 

 

 

 

 

  

Most common choice 

 

No information 

 

No information 

 

No information 

 
Question: If these were the 
only 3 options available, 
which ONE would you 
choose?  (Please tick  √  ) 
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Question 8: If you had to choose one of the treatment strategies below, which would 
you choose? 
 

 
 

Treatment 
A  Treatment 

B  Treatment 
C 

Whether genetic 
testing is involved 

 
Test 

 
Test 

 
No Test 

The chance of getting 
the  severe side effect 

 
1 out of 1,000 

patients  

 
1 out of one million 

patients  

 
1 out of 500 

patients  

Cost of the one-time 
genetic test 

 
S$1,000 

 
S$400 

 
$0 

Cost of gout 
medicines (over two 
years) 
 

 
S$250 if test positive  

(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 
S$400 if test positive  

(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 

S$200  
over two years 

Your doctor’s 
recommendation 

 

 

   

 

Most common choice 

 

 

  

 
 

 

 

 
Question: If these were the 
only 3 options available, 
which ONE would you 
choose?  (Please tick  √  ) 
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Question 9: If you had to choose one of the treatment strategies below, which would 
you choose? 
 

 
 Treatment 

A  Treatment 
B  Treatment 

C 

Whether genetic 
testing is involved 

 
Test 

 
Test 

 
No Test 

The chance of getting 
the  severe side effect 

 
1 out of 5,000 

patients  

 
1 out of 600  

patients  

 
1 out of 500 

patients  

Cost of the one-time 
genetic test 

 
S$200 

 
S$20 

 
$0 

Cost of gout 
medicines (over two 
years) 
 

 
S$400 if test positive  

(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 
S$1,500 if test positive  

(2 in 10 chance);  

S$200 if test negative 
(8 in 10 chance) 

 

 

S$200  
over two years 

Your doctor’s 
recommendation 

 

 

   

 

Most common choice 

  

 
 

 

 

 

 

 
Question: If these were the 
only 3 options available, 
which ONE would you 
choose?  (Please tick  √  ) 
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SECTION D: BACKGROUND QUESTIONS 

Question D1 In which year were you born?_____________ 

Question D2 
Have you ever been diagnosed with gout, or hyperuricemia (excess uric acid in the 
blood)? 

 Yes 

 No 

If YES, have you ever taken long-term gout treatment (ie. take medicine daily even when 
you don’t feel the pain)? 

 Yes 

 No 

Question D3 Have you ever been diagnosed with hypertension (high blood pressure)? 

 Yes 

 No 

Question D4 How would you rate your general health status? 

 Very good  

 Quite good 

 Neither good nor poor 

 Quite poor 

 Very poor 

Question D5 Have you ever had severe side effects from medicines (such as serious drug allergy)? 
 Yes 

 No 
Question D6 Record the gender 

 Male 

 Female 
Question D7 Which ethnic group do you belong to? 

 Chinese 

 Malay 

 Indian 

 Other (Please specify:________________) 
Question D8 What type of housing do you live in? 

 HDB flat (1-2 room) 

 HDB flat (3 room) 

 HDB flat (4 room) 

 HDB flat (5 room and above/HUDC/EC) 

 Condominium/Private flat 

 Bungalow/ semi-detached/ terrace house/shop house 

 
Question D9 
 

How many people are there in your household?_______________________ 

Question D10 What is the total monthly income of your household (from all sources includes drawing 
down from savings)? 

 S$0-1,500 
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 S$1,500-3,000 

 S$3,000-5,000 

 S$5,000-8,000 

 S$8,000-10,000 

 Above 10,000 
Question D11 What is your highest educational level completed? 

 No formal education 

 Primary 

 Secondary  

 Junior college/ Polytechnic/ Diploma 

 University and above  

Question D12 What is your current employment status? 

 Full-time employment 

 Part-time employment 

 Self-employed 

 Homemaker 

 Retired 

 Unemployed 
 

 

 

 

 

------------------------------------------------------Thank you very much!---------------------------------------------------- 
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