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Summary 
 

During myogenic differentiation, proliferating myoblasts undergo a pre-requisite 

step of irreversible cell cycle exit prior to differentiation to form multinucleated 

myotubes. MyoD, a key regulator of muscle differentiation, mediates cell cycle exit 

as well as expression of differentiation specific genes. Studies from our lab have 

identified that G9a/EHMT2, a lysine methyltransferase, is expressed in skeletal 

myoblasts and inhibits myogenic differentiation. G9a, when overexpressed, 

mediates repressive histone-3 lysine-9-di-methylation (H3K9me2) on myogenin 

promoter. In addition, G9a also methylates MyoD and inhibits its transcriptional 

activity. While G9a overexpression inhibits myogenic differentiation, its role in 

regulating proliferation and cell cycle exit is not clear. Besides, the genome wide 

molecular targets of G9a in muscle cells are unknown. 

In order to identify G9a targets globally, we performed gene expression analysis 

using microarrays. Interestingly, knockdown of G9a in myoblasts altered several 

genes involved in cell cycle control. Hence, we examined if G9a has a role in 

regulating proliferation of cells. Using cultured myoblast lines, as well as primary 

myoblasts from wild type and G9a conditional knockout mice, we found that G9a 

promotes proliferation of cells. G9a knockdown up regulated p21Cip1/Waf1 (p21) and 

Rb1, which are required for cell cycle exit but also led to the down regulation of 

several E2F1 target genes. We therefore hypothesized that G9a may regulate 

myoblast proliferation in two distinct mechanisms: (1) Repression of p21 and Rb1 

to prevent cell cycle exit; and (2) directly activating expression of E2F1 target 

genes.  
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Consistent with its function as a transcriptional repressor, G9a inhibited expression 

of p21 and Rb1 in methyltransferase-dependent manner during differentiation by 

mediating H3K9me2 marks on their promoters. Moreover, G9a mediated inhibition 

of myogenic differentiation was rescued by re-expression of p21 and Rb1.  

To examine whether G9a actively promotes the expression of cyclins and other 

E2F1 target genes, we examined its occupancy on E2F1 target gene promoters. 

Remarkably, unlike p21 and Rb1 promoters, G9a occupancy was not correlated 

with repressive H3K9me2 on E2F1-target genes. Moreover, pharmacological 

inhibition of endogenous G9a methyltransferase activity did not significantly 

change expression of E2F1 target genes. Consistent with this, H3K9me2 on their 

promoters were unaltered. G9a occupancy was associated with H3K9ac instead. 

Furthermore, protein-protein interaction studies indicated that G9a complexes with 

the histone acetyltransferase P/CAF and E2F1 in myoblasts. Consistent with these 

findings, myoblasts isolated from G9a conditional knockout mice displayed 

reduced proliferation. Cell cycle exit genes were up-regulated and E2F1 target 

genes were down regulated validating our in vitro findings.   

Overall our data support a model in which G9a both prevents cell cycle exit and 

promotes proliferation of muscle cells to block differentiation. These studies 

implicate that G9a may be de-regulated in myopathies associated with an imbalance 

of proliferation and differentiation, and suggest that targeting G9a may be a 

promising therapeutic approach 
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1. Introduction 
 

The ability of living organisms to perform any type of body movement is attributed 

to the muscle tissue. Muscle tissue consists of cells arranged into muscle fibers 

which are capable of contracting and relaxing. Muscle tissue is categorized into 

three types – smooth muscle, cardiac muscle and skeletal muscle. Smooth muscles 

are non-striated muscle found intrinsically covering internal organs of the body. 

Cardiac muscles exhibit striations and are found in the heart. Skeletal muscle is also 

striated muscle, but unlike cardiac muscle, it can be voluntarily controlled. It is 

attached to the skeleton and is the most abundant tissue in the vertebrate body, 

accounting for approximately 40 percent of total body mass in adults.  

During embryonic development, skeletal muscle is formed through a process called 

myogenesis (Bentzinger et al., 2012). Myogenesis is achieved through signaling 

molecules from adjacent tissues that specifies myogenic cell fate and requires 

spatial-temporal regulation of proliferation and differentiation of embryonic 

precursor cells (Buckingham, 2001; Zhang et al., 1999). In skeletal muscle cells 

proliferation and differentiation processes are coupled yet mutually exclusive. Cell 

cycle arrest is an essential step during muscle differentiation. Thus skeletal 

myogenesis serves as an exquisite paradigm to understand the cell cycle regulatory 

mechanisms during skeletal muscle differentiation. 
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1.1 Embryonic myogenesis 
 

During gastrulation, the three germ layers ectoderm, endoderm and mesoderm are 

formed from pluripotent epiblast cells at the primitive streak (Beddington and 

Smith, 1993). Expression of key regulatory genes leads to the commitment of cells 

to different lineages. At the anterior part of primitive streak, paraxial mesoderm 

undergo segmentation, leading to the formation of an epithelial ball of cells called 

somites (Tajbakhsh and Cossu, 1997). In mice, somitogenesis begins from 

embryonic day eight (E8) and the newly formed somites mature in a rostro-caudal 

developmental gradient, differentiating to give rise to the dorsal epithelial 

dermomyotome and the ventral mesenchymal sclerotome (Fig 1.1A). Vertebral 

column, cartilage and ribs are formed from the sclerotome whereas skeletal muscles 

of the trunk and limbs are derived from skeletal muscle progenitor cells of the 

dermomyotome. A few cells migrate from the dorsomedial part of the somites under 

the dermomyotome to form the myotome. These cells undergo sequential steps of 

myoblast amplification, cell cycle arrest and differentiation to form the first skeletal 

muscle in the embryo (Buckingham and Rigby, 2014; Tajbakhsh and Cossu, 1997; 

Buckingham, 2001). 
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Figure 1.1A Schematic representation of vertebrate somitogenesis in mouse 
embryo (Buckingham, 2001).  The paraxial mesoderm segments in a rostro-caudal 
gradient on either side of neural tube and notochord to form an epithelial ball of 
cells called somites.  Skeletal muscle is formed from the embryonic progenitor cells 
arising from somites. Several signaling pathways arising from adjacent tissues lead 
to the specification of embryonic precursor cells to myogenic fate, forming 
dermomyotome and sclerotome. A few cells migrate under the dermomyotome to 
form the myotome which later differentiates to form skeletal muscle in the embryo.  

 

The skeletal muscles at different stages - embryo, fetal and postnatal - appear to 

form through a sequence of steps involving embryonic myoblasts, fetal myoblasts 

and postnatal satellite cells (Tajbakhsh, 2003) (Fig 1.1B). Around embryonic day 

11 (E11), the post-mitotic myocytes at the myotome fuse to form multinucleated 

primary myofibers, in the process known as primary or embryonic myogenesis. 

Later around embryonic day E14.5 and E17.5 a second wave of myogenesis called 

secondary myogenesis occurs, involving fusion of fetal myoblasts to form 

secondary myofibers. Each of these myofibers is surrounded by a basal lamina. At 
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this stage, muscle stem cells, or satellite cells, are formed beneath the basal lamina 

and myofiber plasma membrane (Tajbakhsh, 2003; Cossu et al., 1996) (Fig 1.1B).  

 

Figure 1.1B Schematic representation of muscle development from skeletal 
muscle stem cells (Tajbakhsh, 2003). Muscle progenitors at somites disperse as 
embryonic, fetal, and satellite cells leading to the formation of skeletal muscle in 
the body. The primary fibers formed from embryonic myoblasts act as scaffold for 
secondary fibers which arise from fetal myoblasts. These secondary fibers form the 
bulk of skeletal muscle in the postnatal period. Satellite cells are found in adults 
and are crucial for muscle regeneration.   

1.2 Adult myogenesis   
 

In 1961, Alexander Mauro first identified mononucleated cells attached to the basal 

lamina of the myofiber. Based on its anatomical location, sub laminar, these cells 

were named as satellite cells (Mauro, 1961). Satellite cells arise from muscle 

progenitor cells expressing Pax3 and Pax7 at the dermomyotome (Kassar-

Duchossoy et al., 2005). Satellite cells are non-proliferative and quiescent in nature. 

However, emerging evidence indicates that these cells are metabolically and 
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transcriptionally active. The remarkable ability of skeletal muscles to regenerate is 

credited to the presence of satellite cells (Buckingham, 2001; Tajbakhsh, 2003).  

In vivo, upon injury or trauma to the muscle tissue, satellite cells get activated to 

enter into the cell cycle, proliferate and give rise to myoblasts which later exit cell 

cycle irreversibly and fuse to repair the damaged myofiber (Schultz and 

McCormick, 1994) (Fig 1.2). Owing to its stem cell properties, satellite cells have 

the ability to self-renew (Potten and Loeffler, 1990). A few progenitor cells undergo 

reversible cell cycle exit to form new quiescent satellite cells, thus maintaining the 

satellite cell numbers (Dhawan and Rando, 2005). Whereas a few other cells 

undergo irreversible cell cycle exit leading to the activation of differentiation 

specific genes and form new myofibers  

 

Figure 1.2 Schematic representation of muscle regeneration in vivo.  During 
muscle regeneration quiescent satellite cells get activated to enter cell cycle and 
proliferate to form transit amplifying myoblasts.  A few cells undergo reversible 
cell cycle exit and go back into quiescence, forming satellite cells.  Majority of 
cells undergo irreversible exit forming new myofiber.   

Myocytes Myocytes

Satellite 
cells cells

Myoblasts 

Injury 

IIrreversible 

RReversible 
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1.3 Signaling pathways regulating myogenesis  
 

During somitogenesis, fine tuning of mesodermal progenitors to myogenic lineage 

has been attributed mainly to these signaling pathways: Wnt, Shh, Notch and BMP 

(Bentzinger et al., 2012). Wnt and Shh secreted by the dorsal neural tube and 

notochord are known to be involved in positive regulation of muscle differentiation 

and sclerotome formation. Wnt1 and Wnt3a are secreted from dorsal neural tube 

whereas Wnt4, Wnt6 and Wnt7a are secreted from surface ectoderm. Expression 

of Wnt receptors frizzled fzd7 is seen in the hypaxial region of somite whereas 

expression of fzd1 and fzd6 is seen in the epaxial region (Borello et al., 1999).  At 

the myotome, Wnt1 and Wnt3a activate myogenesis through TCF/β-catenin 

pathway and Wnt7a is known to induce myogenesis through β-catenin independent 

signaling pathways (Brunelli et al., 2007; Borello et al., 2006). Wnt1 and Wnt3a 

deficient mice show defect in the formation of the dermomyotome (Ikeya and 

Takada, 1998), and consistent with this, Wnt1 or Wnt3a over expression in chick 

somites activates genes involved in myogenesis (Tajbakhsh et al., 1998). 

Collectively, these studies indicate the importance of Wnt signaling pathway in 

myogenesis.   

Sonic hedgehog (Shh) released from the notochord of the neural tube is also 

involved in positive regulation of skeletal myogenesis. Shh knockout mice show 

defect in formation of distal limb structures and sclerotome formation (Zhang et al., 

2001; Chiang et al., 1996). Wnt and Shh pathway positively regulates myogenesis 

whereas BMP and Notch pathway are known to be involved in negative regulation 

of myogenesis (Bentzinger et al., 2012). Bmp4, which is expressed in the 
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mesoderm, appears to inhibit the expression of myogenic determination genes, 

indicating that BMP signaling is involved in the expansion of progenitor 

population. Correspondingly, expression of BMP antagonist Noggin at the 

dermomyotome initiates the expression of myogenic transcription factors leading 

to formation of myotomal cells (Reshef et al., 1998). Notch signaling has been 

implicated in regulating somitogenesis.  It is required for vertebrate segmentation 

and somite patterning (Lewis et al., 2009).  It has been shown that Notch ligand 

Delta1 mutant embryos show more myoblasts differentiation and have excess 

myofibers (Schuster-Gossler et al., 2007), suggesting that Notch signaling is 

involved in inhibiting the differentiation program. Overall the above studies 

suggest that extrinsic signaling pathways play important roles in specifying 

embryonic precursor cells to myogenic lineage.   

1.4 Transcription factors involved in skeletal myogenesis 
 

1.4.1 Paired homeobox transcription factors (Pax3 and Pax7) 
 

Along with extrinsic signaling pathways from adjacent tissues, several intrinsic 

regulatory factors are involved in specification and differentiation of skeletal 

muscle cells. The process of skeletal myogenesis is coordinated by several 

myogenic transcriptional factors. Pax3 and Pax7 mark progenitor cells in 

dermomyotome, and at embryonic day E9.75, almost all cells are positive for both 

these transcription factors. Higher expression of Pax3 is seen in dorsal and ventral 

dermomyotome lips whereas Pax7 expression is seen in central dermomyotome 

(Kassar-Duchossoy et al., 2005). Pax3 plays a role in progenitor cell formation as 
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well as in migration of cells to limb and other muscle structure in the body 

(Buckingham and Rigby, 2014; Cossu et al., 1996; Messina and Cossu, 2009). The 

mouse mutant Splotch (Pax3 null mice) fail to develop limb muscle indicating the 

importance of Pax3 in migration of progenitor cells (Daston et al., 1996; Strachan 

and Read, 1994). Moreover, ablation of Pax3+ cells led to the loss of all embryonic 

myofibers indicating the importance of Pax3 in embryonic myogenesis (Hutcheson 

et al., 2009). However, Pax7 null mice display normal skeletal muscle 

development, but completely lack satellite cells (Seale et al., 2000). This indicates 

the redundancy in roles played between Pax3 and Pax7 during embryonic 

development. In Pax3 and Pax7 double knockout mice, muscle development is 

arrested and only the early myotome is formed (Relaix et al., 2005).  Pax3+ cells in 

the limb can give rise to both muscle as well as endothelial lineage cells whereas 

Pax7+ cells can give rise to only myogenic cells (Hutcheson et al., 2009). Pax7+ 

cells are derived from Pax3+ cells and loss of Pax3 lineage is embryonically lethal 

whereas loss of Pax7 only leads to smaller muscle formation with fewer myofibers 

at birth (Seale et al., 2000). These studies suggest that Pax3 is critical for embryonic 

muscle formation and Pax7 for specification of myogenic satellite cells. Muscle 

precursor cells arising from dermomyotome express proto-oncogene c-Met which 

helps in cell migration and muscle formation (Cossu et al., 1996). Studies suggest 

that Pax3 regulate c-Met transcription, which is in turn required for cell migration 

of limb precursor cells (Epstein et al., 1996). Myogenic satellite cells are known to 

express c-Met receptors which is involved in hepatocyte growth factor signaling 

and activation of quiescent satellite cells (Allen et al., 1995).   
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1.4.2 Myogenic regulatory factors (MRFs) 
 

Embryonic muscle progenitor cells expressing Pax3 and Pax7 cannot initiate the 

differentiation program, suggesting the involvement of other factors in driving the 

differentiation process. Isolation of myoblast specific cDNAs led to the discovery 

of MyoD1, Myoblasts determination gene number 1 (Davis et al., 1987). MyoD, 

when transfected into the fibroblasts, has the ability to convert them into fusion 

capable myoblasts (Davis et al., 1987). This discovery paved way to understand the 

molecular mechanisms behind myogenic differentiation. Similarly, identification 

of three other factors, namely Myf5, Myogenin and MRF4, helped in better 

understanding of the skeletal muscle differentiation program (Edmondson and 

Olson, 1989; Braun et al., 1989; Braun et al., 1990). All these factors MyoD, Myf5, 

Myogenin and MRF4 are highly conserved and are collectively called as Myogenic 

Regulatory Factors (MRFs). Each MRF, when expressed in fibroblasts, has the 

ability to convert them into myoblasts (Braun et al., 1990). MRFs are basic helix 

loop helix transcription factors which contain a DNA binding domain and a 

dimerization domain. MRFs, through their helix loop helix region, dimerize with 

ubiquitously expressed E proteins such as E47 and E12. Once dimerized, the basic 

region of MRF-E heterodimers binds to the E box elements CANNTG on the 

muscle promoters and drives the muscle differentiation program (Singh and 

Dilworth, 2013; Lassar et al., 1989).   

In somites, Myf5 is expressed first in muscle progenitor cells followed by MyoD, 

leading to the formation of proliferating myoblasts (Buckingham and Tajbakhsh, 

1993). Subsequently, Myogenin and MRF4 are expressed during terminal 
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differentiation (Cossu et al., 1996; Ott et al., 1991). However, expression of MRF4 

has been observed in three waves during myotomal expansion (My1, My2 and 

My3). My1 begins at embryonic day 8 (E8), My2 at embryonic day 9 (E9) and the 

final one at embryonic day 16 (E16) (Patapoutian et al., 1995). The role of MRFs 

in muscle development has been well characterized. Mice lacking either Myf5 or 

MyoD have normal skeletal muscle development, suggesting the redundancy in 

roles played by these two factors (Braun et al., 1992). However, mice lacking both 

are devoid of skeletal muscle as well as myogenic precursor cells (Rudnicki et al., 

1993). Mice lacking myogenin show normal muscle development at early stages, 

however, during later stages they show impairment in the myofiber formation and 

the mice die perinatally (Hasty et al., 1993; Nabeshima et al., 1993). This is 

highlighted by the fact that myogenin knockout myoblasts are able to undergo cell 

cycle exit, but cannot fuse to form myotubes. MRF4 null mice display multiple rib 

abnormalities with increased myogenin expression. This suggest that myogenin 

may compensate for the loss of MRF4 (Zhang et al., 1995).  

Overall, Pax3 appears to be on top of hierarchy where Pax3 positive cells give rise 

to initial myofibers and Pax7 positive cells contribute to formation of secondary 

myofibers and are involved in adult muscle regeneration through maintenance of 

satellite cell population in adults (Figure 1.1B). Myf5 and MyoD act upstream of 

Myogenin and MRF4, where Myf5 and MyoD are involved in myogenic 

determination while Myogenin, MRF4 are involved in differentiation. However 

recent evidences indicate that sine oculis related homeobox 1 (Six1) and Six4 are 

involved in specifying dermomyotomal cells towards myogenic lineage and are 
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considered to be at the quintessence of this transcriptional regulatory cascade 

(Bentzinger et al., 2012; Kawakami et al., 2000) (Figure 1.4).   

 

 

Figure 1.4 Schematic representation of transcription factors involved in 
myogenic lineage formation (Bentzinger et al., 2012). Myoblasts are formed from 
embryonic progenitor cells. A few progenitors remain as satellite cells in postnatal 
muscle forming adult muscle stem cells required for regeneration. During 
regeneration, some of the activated satellite cells can enter into quiescent state to 
maintain the satellite cell pool.  Pax3, -7 and Six-1, -4 are involved in muscle 
lineage specification and stand at top of the hierarchy. Myf5 and MyoD commit 
cells to muscle differentiation program whereas Myogenin and MRF4 are 
expressed during terminal differentiation during muscle formation.   

 

1.5 In vitro myogenic differentiation  
 

In vitro, myogenic cell lines such as rat L6 and mouse C2C12 cells are commonly 

used to study muscle differentiation. C2C12 myoblasts were originally derived 

from satellite cells of thigh muscle of C3H mouse (Yaffe and Saxel, 1977). Later 

immortal sub-line C2C12 was selected (Blau et al., 1985). C2C12 cells are cultured 
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under high serum condition to maintain them in proliferation state. Upon serum 

withdrawal, myoblasts turn on differentiation specific genes and fuse to form 

multinucleated myotubes. The process of differentiation is orchestrated by the 

sequential expression of myogenic regulatory factors MRFs including MyoD, 

Myf5, Myogenin and MRF4 and MEF2 family of transcription factors which 

includes MEF2-A, -B, -C and -D (Black and Olson, 1998). In addition, it is now 

well established that chromatin regulators associate with MRFs to reprogram 

chromatin at the promoters of muscle specific genes driving the differentiation 

program (Bharathy et al., 2013).   

Under in vitro conditions, proliferating myoblasts express MyoD and Myf5. Upon 

differentiation, myogenin is expressed at early stage, and then during myoblasts 

fusion, MRF4 and other structural proteins such as troponinT and myosin heavy 

chain (MHC) are expressed. MEF2 is expressed at lower levels compared to MRFs 

in proliferating myoblasts and their expression increases during differentiation. 

MEF2D is expressed at higher levels in undifferentiated cells compared to MEF2C. 

Myogenin and MEF2C are known to exist in a positive feedback loop promoting 

their expression and regulating the expression of structural genes required for 

terminal differentiation (Yee and Rigby, 1993). 
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For myogenic differentiation to occur, myoblasts need to exit the cell cycle 

irreversibly and like in most of the cells, proliferation promoting genes have to be 

suppressed. This type of exit is irreversible because the differentiated cells cannot 

re-enter the cell cycle or proliferate (Fig 1.5). Irreversible cell cycle arrest or 

permanent withdrawal from the cell cycle is an important pre-requisite step during 

skeletal muscle differentiation. Myoblasts also have the ability to undergo 

reversible exit leading to quiescence. Upon induction with quiescence signals, 

myoblasts exit the cell cycle reversibly, forming quiescent cells (Sachidanandan et 

al., 2002) (Fig 1.5). Upon addition of proliferation cues quiescent cells can reenter 

cell cycle and proliferate. Quiescent myoblasts mimic the characteristic of muscle 

progenitor cells.  

Figure 1.5 Schematic representation of in vitro myogenic differentiation. 
Proliferating myoblasts express MyoD and Myf5. Upon differentiation, cells 
undergo irreversible cell cycle exit mediated by p21 and Rb1.  Subsequently, 
expression of Myogenin leads to differentiation of cells forming myocytes.  Later 
myocytes fuse to form multinucleated myotubes expressing myosin heavy chain 
and troponin T.  Proliferating myoblasts can also enter into quiescence through 
reversible cell cycle exit. These cells mimic the characteristics of muscle stem cells 
expressing Pax7and p27 that are negative for MyoD. 
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1.6 Mechanisms underlying irreversible cell cycle exit during 
differentiation 

 

Apart from MRFs expression, cell cycle regulation seems to play a major role 

during muscle differentiation. Differentiation of myoblasts to multinucleated 

myotubes is coordinated by cell cycle genes as well as MRFs. Studies suggest that 

the process of cell cycle exit and differentiation are coupled in skeletal muscle cells 

(Nadal-Ginard, 1978). The role of cyclin kinase inhibitors such as p21 and Rb1 has 

been implicated in the process of cell cycle arrest during terminal differentiation 

(Mal et al., 2000). These proteins function by binding to Cyclin-CDK complexes 

and inhibiting their function leading to cell cycle arrest.  

During differentiation RNA and protein levels of p21 is significantly upregulated 

(Parker et al., 1995).  In general, p53 dependent induction of p21 is known to induce 

cell cycle arrest in various tissues. However, in skeletal muscle cells, MyoD 

upregulates p21 leading to the irreversible cell cycle exit. Indeed, over expression 

of MyoD in p53 null fibroblasts activates p21 promoter leading to terminal 

differentiation (Halevy et al., 1995).  Although MyoD mediated activation of  p21 

in skeletal muscle cells is important for cell cycle exit and differentiation, p21 null 

mice develop normally and do not show any skeletal muscle defect, however mice 

lacking both p21 and p57 fail to form skeletal muscle (Deng et al., 1995; Zhang et 

al., 1999). This suggests that both p21 and p57 play redundant role in controlling 

muscle differentiation. High p21 expression in myotubes leads to reduced kinase 

activity and thereby reduces the phosphorylation of Rb1 and in part maintaining the 
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permanent cell cycle arrest (Guo et al., 1995).  Hence, one of the other functions of 

p21 is to render Rb1 in hypo phosphorylated form.   

In general, Rb/E2F1 pathway seems to be the major pathway controlling the G1/S 

transition of cells (Chan et al., 2001). E2F1 transcription factor helps in driving 

G1/S transition during proliferation by activating its target genes such as Cyclin 

D1, Cyclin E as well as genes involved in DNA synthesis such as DHFR (Watanabe 

et al., 1998; Ohtani et al., 1995; Nevins, 1998). During G1/S transition, hyper 

phosphorylation of Rb1 releases E2F1 from the Rb-E2F1 complex, which allows 

E2F1 to drive its target genes (Fig 1.6A).  

 

 

 

 

 

 

Figure 1.6A Schematic representation of role of Rb/E2F1 pathway in 
mammalian cell cycle. Cell cycle can be broadly classified into G1, S and G2/M 
phase.  At late G1, just before restriction point (R) cells can enter into 
differentiation otherwise moves on to S phase.  In G1 phase, cell cycle progression 
is controlled by CyclinD1/CDK4 and CyclinE/CDK2 complex which in turn are 
regulated by Cyclin dependent kinases belonging to INK4 and CIP/KIP family. 
Phosphorylation of Rb by CyclinD1/CDK4, CyclinD1/CDK6 and CyclinE/CDK2 
complex releases E2F1 from Rb/E2F1 complex. Free E2F1 then induces the 
expression of its target genes required for cell cycle progression.  
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Since Rb phosphorylation is important for E2F1 to drive cell cycle, G1 Cyclins 

such as CyclinD1/CDK4, CyclinE/CDK2 complexes appear to play a significant 

role in Rb1 hyper phosphorylation (Mittnacht, 1998). G1 phase Cyclin/CDKs not 

only mediate Rb1 phosphorylation and help in G1/S transition, but they are also 

known to restrain MyoD activity in proliferating myoblasts and thereby avoid 

premature differentiation (Guo and Walsh, 1997). Indeed, forced expression of 

Cyclin D1 in cells has been shown to inhibit MyoD activity (Skapek et al., 1995). 

Therefore CyclinD1/CDK4 complex acts as one of the mechanisms restraining 

MyoD activity in myoblasts.  

In addition to the role of Rb1 in negatively regulating E2F1 target genes, Rb1 has 

been shown to be involved in cell cycle exit as well as activating muscle specific 

genes, suggesting the importance of Rb1 as a key protein regulating cell cycle and 

differentiation (Gu et al., 1993; Novitch et al., 1996). Myogenic regulatory factors 

fail to mediate myogenic conversion and cell cycle exit in Rb null cells, indicating 

the importance of Rb during myogenic differentiation. Rb null mice show normal 

muscle development. However, early lethality in these mice before embryonic day 

E14.5 has restricted our understanding of the role of Rb in secondary myogenesis 

(Clarke et al., 1992).  Rblox mice expressing low levels of Rb driven by Rb mini 

gene can be rescued to birth. The Rb mutant mice fetuses die at birth and show 

defect in skeletal muscle including shorter myotubes, fewer myofibrils, reduced 

myofibers and DNA synthesis in myotube nuclei (Zacksenhaus et al., 1996).   

During differentiation, MyoD is involved in increase of Rb1 gene expression and 

studies also show that Rb interacts with MyoD to help in increasing MEF2 
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transcriptional activity (Gu et al., 1993; Novitch et al., 1999). The levels of hypo 

phosphorylated form of Rb1 increases during differentiation, which helps in 

blocking proliferation of cells. Myotubes derived from Rb-/- mice fail to maintain 

the permanent exit state and display DNA synthesis after re-addition of serum to 

the cultures (Mal et al., 2000). Furthermore, inactivation of p21 and Rb1 by binding 

of E1A adenovirus protein has been shown to induce DNA synthesis in myotubes 

(Mal et al., 2000). Hence both p21 and Rb1 are important for cell cycle exit and 

maintenance of permanent cell cycle arrest in differentiated myotubes.   

To summarize, during the process of differentiation, proliferating myoblasts 

irreversibly exit the cell cycle, undergo permanent arrest and subsequently express 

differentiation specific genes. This indicates that for MyoD mediated 

differentiation, down regulation of E2F1 mediated proliferation genes is necessary. 

E2F1 is generally observed as master regulator for cell cycle control (La Thangue, 

1994). Under growth conditions, E2F1 is active in myoblasts and drives the 

expression of its target genes required for proliferation, while MyoD activity is 

suppressed.  However, upon differentiation cues, MyoD is activated and cell cycle 

arrest is achieved through induction of cell cycle inhibitors p21 and Rb1 while E2F1 

activity is suppressed (Fig 1.6B).  Therefore regulation of MyoD and E2F1 activity 

is required during proliferation and differentiation and epigenetic mechanisms 

appears to play a prominent role in regulating their activities.   
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Figure 1.6B Schematic representation of E2F1 and MyoD function during 
proliferation and differentiation of myoblasts. In proliferating myoblasts, MyoD 
is inactive whereas E2F1 is active in transcribing genes required for proliferation.  
During differentiation, E2F1 is inactive and MyoD is activated to transcribe genes 
required for cell cycle exit and differentiation.  

 

  



19 
 

1.7 Transcriptional control and epigenetic regulation of 
proliferation and differentiation 
 

Although MyoD, the master regulator of differentiation, is expressed in 

proliferating myoblasts, various mechanisms exist to regulate its activity to avoid 

premature differentiation. For instance, MyoD forms heterodimers with E proteins 

(E12 and E47) and bind to E box elements on muscle gene promoters and drives its 

target gene expression (Lassar et al., 1991). However, Id1 (inhibitor of DNA 

binding) proteins, prominently induced in high serum conditions, forms inactive 

heterodimers with E box proteins E12 and E47, thus sequestering the E proteins 

and preventing the formation of the functional MyoD-E heterodimers (Benezra et 

al., 1990). Other b-HLH transcription factors such as Twist are also known to 

inhibit MyoD activity through E protein sequestration as well as inhibiting MEF2 

activity (Spicer et al., 1996).  Similarly MyoR and several other signaling factors 

such as TGFs and FGFs seems to regulate myogenic differentiation (Florini and 

Magri, 1989). Sharp1, a basic helix loop helix transcription factor expressed in 

myoblasts, is also known to inhibit MyoD transcriptional activity through 

recruitment of chromatin modifiers (Azmi et al., 2004; Ling et al., 2012a).  In 

addition, phosphorylation of MyoD by Cyclin kinases at different phases of cell 

cycle appears to negatively regulate the activity of MyoD as well as its turnover 

(Batonnet-Pichon et al., 2006). MyoD expression peaks at G1 as well as during 

early M phase of the cell cycle and myoblasts enter the differentiation program 

during G1 phase. During G1/S transition, MyoD becomes phosphorylated at serine 

residue 200, which signals for ubiquitination of MyoD and its degradation. 
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Similarly, MyoD phosphorylation during G2/M transition leads to its degradation 

(Batonnet-Pichon et al., 2006; Kitzmann et al., 1998).   

At the chromatin level, muscle specific DNA sequences are packaged by histones 

and non-histone proteins to form chromatin. This condensed nucleosomal structure 

at muscle promoters prevents the access to the transcription factors such as MyoD 

resulting in transcriptional repression of muscle specific genes. Therefore dynamic 

changes at chromatin level are required for association or dissociation of 

transcription factors. These modifications are brought about through various post 

translational modifications of histone tails such as acetylation, phosphorylation and 

methylation (Lachner et al., 2003). In general, acetylation of histone tails leads to 

open chromatin conformation and hence is associated with transcriptional 

activation of genes whereas histone methylation is associated with transcriptional 

repression.   

In undifferentiated proliferating myoblasts, various chromatin regulators create a 

repressive environment on muscle promoters, thereby restraining MyoD and MEF2 

transcriptional activity.  However, at the same time, E2F1 is active in driving the 

expression of proliferation genes (De Falco et al., 2006).  Chromatin regulators and 

remodeling complexes such as HDACs, HATs, HMTs and SWI/SNF complexes 

cooperate with MyoD and E2F1 factors to bring changes at the promoters of 

differentiation as well as proliferation specific genes to regulate their expressions 

(Fig 1.7)  
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Figure 1.7 Schematic representation of epigenetic regulation of MyoD and 
E2F1 target genes during proliferation and differentiation. In proliferating 
myoblasts MyoD is associated with co-repressors rendering it transcriptionally 
inactive whereas E2F1 is associated with co-activators leading to the expression of 
its target gene.  During differentiation MyoD associates with co-activators whereas 
E2F1 is inactive due to its association with co-repressors.  

 

During proliferation, Class I and Class II HDACs which are expressed in 

proliferating myoblasts are known to negatively regulate MyoD activity. MyoD 

transcription activity is known to be repressed due to its association with class I 

HDACs in proliferating myoblasts, which leads to MyoD deacetylation as well as 

deacetylation of histone tails at target promoters (Puri et al., 2001; Mal and Harter, 

2003; Mal et al., 2001). In addition, MEF2 associates with class II HDACs (HDAC 

4 and HDAC 5) and thereby MEF2 transcriptional activity is repressed in 

undifferentiated cells (McKinsey et al., 2001). Similarly Class III HDACs (Sir2) 
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are also known to negatively regulate myogenesis by functioning as redox sensor. 

Sir2, when over expressed, associates with P/CAF and MyoD and inhibit muscle 

gene expression (Fulco et al., 2003).  

Furthermore, in addition to HDACs, muscle promoters in proliferating myoblasts 

are repressed by SET domain containing histone methyltransferases (Zhang et al., 

2002). Histone methyl transferases such as Suv39h1 and G9a mediate repressive 

H3K9 methylation on the muscle promoters and thereby represses muscle gene 

expression (Mal, 2006; Ling et al., 2012b). Suv39h1 is known to interact with 

MyoD and repress its activity as well as myogenic differentiation. H3K9 

methylation of the muscle promoters signals the recruitment of HP1 leading to the 

formation of heterochromatic structure which represses muscle gene transcription 

(Mal, 2006).  Recently our lab has found that G9a, a euchromatic HMTase, is 

expressed in undifferentiated myoblasts and its expression declines upon 

differentiation. G9a mediates H3K9me2 on myogenin promoter as well as 

methylates MyoD directly, thereby repressing its transcriptional activity (Ling et 

al., 2012b).   

In contrast to the negative regulation of MyoD activity during proliferation, E2F1 

actively transcribes genes involved in cell cycle progression. E2F1 is found in 

association with transcriptional co-activators such as p300/CBP and P/CAF (De 

Falco et al., 2006; Trouche et al., 1996). p300/CBP and P/CAF are histone 

acetyltransferases known to be involved in mediating acetylation (Ogryzko et al., 

1996). Acetylation of E2F1 by P/CAF and p300 enhances DNA-binding ability of 

E2F1 and its transcriptional activity (Martínez-Balbás et al., 2000).  
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Differentiation requires replacement of all the repressive marks at muscle specific 

genes seen in undifferentiated myoblast with activation marks. Upon differentiation 

cues, the transition of cells from proliferation to differentiation requires permanent 

withdrawal from cell cycle as well as down regulation of inhibitory factors 

controlling MyoD activity. This transition is achieved through down regulation of 

Cyclins and inhibitory factors such as Id, Twist, and MyoR with up regulation of 

cell cycle inhibitors such as p21 and Rb1. MyoD becomes active whereas E2F1 

activity is inhibited. This seems to be achieved by an interplay between the co- 

activator and co-repressor complexes on target promoters. MyoD complexes with 

p300/CBP and P/CAF and drives the muscle gene expression (Puri et al., 1997; 

Sartorelli et al., 1999)  whereas E2F1 is found to be in repressive complex with Rb1 

and HDAC leading to the repression of proliferation genes (Blais et al., 2007; De 

Falco et al., 2006). In addition to HDACs and Rb1, Suv39h1 is shown to be 

involved in silencing S phase genes in differentiated cells (Ait-Si-Ali et al., 2004).  

Collectively, these studies indicate the importance of chromatin modifiers in 

regulating proliferation and differentiation of skeletal myoblasts. Our lab has been 

particularly interested in understanding the role of a chromatin modifier G9a in 

regulating differentiation of myoblasts (Ling et al., 2012a, 2012b) (Fig 1.7). 
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1.8 Mechanisms of repression by G9a, a lysine methyl 
transferase 
 

G9a/EHMT2 belongs to the Su (var) 3-9 family of proteins which includes 

Suv39h1/h2, SETDB1and SETDB2 (Tachibana et al., 2001; Dillon et al., 2005). 

These proteins contain an evolutionarily conserved SET domain required for their 

methyltransferase activity and an ankyrin repeat domain required for protein-

protein interaction (Brown et al., 2001; Milner and Campbell, 1993; Tachibana et 

al., 2001) (Fig 1.8). G9a is known to methylate histone 3 lysine 9 (H3K9me), 

generally associated with repression of gene expression. Endogenously, G9a is 

known to closely associate with GLP/EHMT1 and functions as an heteromeric 

complex (Dillon et al., 2005; Tachibana et al., 2005). G9a transfers a methyl group 

from S-adenosyl-l- methionine to ε- amino group of the substrate lysine residue 

causing mono and di methylation (H3K9me1 and H3K9me2). 

 

Figure 1.8 Schematic representation of domain structure of G9a. Adapted from 
(Shankar et al., 2013).  G9a contains a nuclear localization signal (NLS) and 
cysteine and glutamic acid rich region at N terminus. It has Ankyrin repeat (ANK) 
region involved in protein interactions and catalytic SET domain required for 
methyltransferase activity 
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Apart from histones, G9a is also known to methylate non histone substrates 

including WIZ, ACINUS, HDAC and MYOD. Methylation of these factors by G9a 

generally associates with their transcriptional repression (Rathert et al., 2008; 

Shankar et al., 2013). 

G9a is expressed in most of the tissues including fetal liver, bone marrow, spleen 

and skeletal muscles (Brown et al., 2001; Ling et al., 2012a; Shankar et al., 2013). 

Loss of G9a in mice results in early embryonic lethality between embryonic days 

at E9.5-E12. G9a-/- embryos show severe growth defects and increased apoptotic 

cells. G9a-/- embryonic stem cells display growth defects when induced to 

differentiate indicating the necessity of G9a during development and differentiation 

(Tachibana et al., 2002). More recently using G9a conditional knockout mice, G9a 

was found to inhibit adipogenic differentiation by mediating repressive H3K9me2 

marks on promoters of PPARγ resulting in repression of its expression (Wang et 

al., 2013). G9a does not only mediates H3K9me, but is also capable of bringing 

about DNA methylation through its interaction with DNA methyltransferase 

DNMTs (Chin et al., 2007). For instance, LSH, a chromatin remodeling enzyme, 

recruits G9a to mediate DNA methylation and to silence genes involved in 

commitment and differentiation (Myant et al., 2011).   

Our lab has been interested in understanding the role of G9a during muscle 

differentiation. Studies from our lab have shown that G9a is expressed in skeletal 

muscle and its expression declines during muscle differentiation (Ling et al., 

2012a). G9a, when over expressed in myoblasts, inhibits myogenic differentiation 

through its ability to mediate repressive H3K9me2 on the promoter of myogenin.  
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Additionally G9a methylate MyoD and inhibits its ability to transcribe MyoD target 

genes required for differentiation (Ling et al., 2012b). G9a does not have the ability 

to directly bind to DNA. Sharp1 and MSX1 transcription factors are shown to be 

involved in recruiting G9a to the muscle promoters (Ling et al., 2012a; Wang and 

Abate-Shen, 2012).  

1.9 Activator function of G9a 
 

Although G9a is widely regarded as repressor of transcription, emerging evidence 

suggests a positive role for G9a as activator of gene expression which is 

independent of its methyltransferase activity (Bittencourt et al., 2012; Chaturvedi 

et al., 2009).  It appears that repressor or activator function of G9a depends on its 

association with either repressor or activator complex (Shankar et al., 2013). In 

adult erythroid cells, G9a is shown to suppress the embryonic β globin gene while 

it also functions as an activator for adult β globin gene expression. Association of 

G9a with Jarid1 leads to repression of embryonic globin Ey gene expression 

whereas G9a association with Mediator leads to activation of adult β globin β-maj 

gene (Chaturvedi et al., 2009, 2012). G9a is recruited by ligand activated 

glucocorticoid receptor at the glucocorticoid receptor binding sites and functions as 

activator of gene expression. G9a in cooperation with GRIP1, CARM1 and p300 

acts as a coactivator for nuclear receptors in a methyltransferase independent 

manner (Lee et al., 2006). Runx2 recruits G9a to the promoters of a subset of cancer 

related genes such as MMP9, CSF2 and SDF1 and activate their expression which 

does not require G9a methyltransferase activity (Purcell et al., 2012). From these 

studies it is clear that the role of G9a as co-activator does not require its 
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methyltransferase activity, and the function of G9a as repressor or activator might 

entirely depend upon its interacting partners (Shankar et al., 2013) (Fig 1.9). 

 

Figure 1.9 Schematic representation of G9a functioning as transcriptional 
repressor and activator (Shankar et al., 2013).  G9a associates with co-repressor 
and co-activator complex leading inhibition (p21, Myogenin Embryonic β-globin) 
or activation of gene expression (GR target genes adult β globin).  Repressor 
function of G9a requires SET domain whereas activator function of G9a is 
independent of SET domain.  

 

1.10 Role of G9a in cellular proliferation  
 

Emerging evidence suggest a role for G9a in regulating proliferation of cells. p21, 

a tumor suppressor gene and a cyclin dependent kinase (Cdk) inhibitor, controls the 

Cyclin-CDK complex at G1 phase. It is a key cell cycle checkpoint regulator and 

several studies have demonstrated the role of G9a in regulating p21 expression. 

Several transcriptional factors recruit G9a to regulate p21 gene expression. For 

instance, CDP/cut a transcription factor involved in proliferation, differentiation 

and many cellular processes, is shown to interact with G9a in vivo and in vitro.  p21 

expression is repressed by CDP/cut and this transcriptional repression function of 

CDP/cut is due to its association with G9a and the methyltransferase activity of 
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G9a (Nishio and Walsh, 2004). Similarly UHRF1, (ubiquitin-like containing PHD 

and RING finger domains 1), a protein associated with cell proliferation and 

epigenetic regulation, interacts with G9a and is found to be co-localized in nucleus 

in a cell cycle dependent manner. UHRF1 recruits G9a to the promoter of p21 to 

repress its expression (Kim et al., 2009). Gif1, growth factor dependent 1, a 

transcriptional regulator oncoprotein, is also shown to recruit G9a to modify its 

target genes. Gif1 associates with HDAC1 and G9a on p21 promoter resulting in 

its repression (Duan et al., 2005). Studies have shown that BIX-01294, a potent 

inhibitor of G9a activity, reduces the proliferation in ovine fetal pulmonary arterial 

smooth muscle cells, suggesting the importance of G9a in proliferation. BIX-01294 

treatment did not only induced G1 cell cycle arrest characterized by higher p21 

expression, but also inhibited migration, contractility and altered global 

methylation levels (Yang et al., 2012). 

Several studies have highlighted the role for G9a during replication. Gene 

expression analysis on G9a conditional knockout mouse ESCs found that 

significant numbers of late replicating genes including Magea1 and Dub1a were 

repressed by G9a, and its loss led to reduced H3K9me2 and de-repression of these 

genes that were found at the nuclear periphery. This suggest that G9a might be 

important to create a facultative heterochromatin at the nuclear periphery (Yokochi 

et al., 2009). During replication DNMT1, DNA methyltransferase 1, interacts with 

G9a and is co-localized in nucleus. DNMT1 forms a complex with G9a at 

replication foci, directing DNA and H3K9 methylation during cell division, 
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suggesting that both molecules work together to restore heterochromatin at 

replication fork during S phase (Estève et al., 2006).   

Despite its vital requirement at the early embryonic developmental stages, and for 

proliferation of cells, a few studies have looked into role of G9a in regulating 

quiescence (G0 phase). Quiescence requires active repressive settings at the 

chromatin level to keep a check on proliferation and differentiation specific genes 

to maintain the G0 state.  G9a was shown to be in complex with E2F6 (E2F6.com1) 

and other Polycomb group proteins to form a repressor complex on E2F responsive 

promoters in G0 phase (Ogawa et al., 2002). G9a mediated chromatin silencing has 

also been implicated in establishment of latent HIV 1 provirus. Viral latency 

requires modifications of the integrated viral gene to maintain quiescence.  G9a has 

been shown to repress HIV 1 gene expression and is responsible for transcriptional 

quiescence of latent HIV 1 provirus by mediating H3K9me2 on HIV 1 long 

terminal repeat promoter, which is dependent on the methyltransferase activity of 

G9a (Imai et al., 2010).  
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1.11 Role of G9a in cancer 
 

High G9a expression has been correlated with several cancers including prostate, 

lung and hepatocellular carcinoma (Shankar et al., 2013).  G9a has been shown to 

repress Ep-CAM in lung cancer cells leading to higher migration and invasion 

(Chen et al., 2010) and suppresses Runx3 expression in gastric cancer cells in a 

methyltansferase activity dependent manner (Chen et al., 2006). G9a suppresses 

p53 activity by methylating its lysine residue 373, suggesting another level of 

control over p21 expression by G9a and indicating that G9a could be a potential 

inhibitory target in the treatment for cancer (Huang et al., 2010).   

Overall, the above mentioned studies indicate that G9a has an important role to play 

in oncogenesis. High G9a expression is correlated with cancer progression and poor 

prognosis in cancer patients. G9a has been functionally linked to proliferation, 

cancer invasiveness and cancer progression. However, the mechanisms behind G9a 

regulation of cell cycle and proliferation are not clear.  Although G9a association 

with few cell cycle regulators have been studied, finding the targets of G9a at global 

level is crucial for better understanding of its function. This might provide critical 

information on cell cycle regulation by G9a and also help us to gain more insights 

into various diseases which involve cell cycle deregulation such as cancer. 
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1.12 Rationale and Objectives of the study 
 

1.12.1 Rationale 
 

Myogenic differentiation requires irreversible cell cycle exit. Previous studies from 

our lab have shown that G9a is expressed in proliferating myoblast and its 

expression declines during differentiation. Moreover, over expression of G9a was 

found to inhibit myogenic differentiation (Ling et al., 2012a, 2012b). 

Mechanistically, G9a was found to be complex with MyoD in myoblasts and 

repress its transcriptional activity and consequently expression of its downstream 

targets. However, whether G9a has an impact on proliferation of myoblasts, and 

their ability to irreversibly exit the cell cycle has not been addressed. Moreover, 

genome wide targets of G9a in skeletal muscle cells have not been identified 

1.12.2 Objectives 
 

1. To identify genome wide targets of G9a in skeletal muscle cells 

2. To examine whether G9a has a role in regulating proliferation and cell cycle 

exit during myoblast differentiation 

3. To investigate the mechanisms by which G9a regulates proliferation and 

cell cycle exit 
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1.12.3 Schematic representation of approach towards 
understanding aims 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Identify G9a targets 
 in myoblasts 

targets
asts

Examine role in proliferation and cell cycle 
exit 

Investigate mechanisms by which G9a  
regulates cell cycle genes  

Proliferation Irreversible cell cycle exit 

Repressor Activator 



33 
 

2. Materials and methods 
 

 2.1 Mice 
 

G9afl/fl mice were kindly provided by Alexander Tarakhovsky. G9afl/fl mice were 

crossed with tamoxifen inducible Pax7Cre-ERT2 Cre mice (Jackson Laboratory). All 

mice used for experiments carried the genotype G9afl/fl; Pax7Cre ERT2/+. To induce 

Cre recombinase activity in Pax7+ muscle satellite cells, tamoxifen (1mg/10g body 

weight) was injected intraperitoneally into 1 month old G9afl/fl;Pax7Cre ERT2/+  mice 

for 5 consecutive days. Control mice with same genotype were injected with vehicle 

(corn oil). 10 days after the last injection, mice were euthanized using CO2 

asphyxiation and skeletal muscle from hind limbs were harvested for myoblast 

isolation. Genotyping was done using DNA from tail biopsies. Tail was digested in 

DNA digestion buffer (50 mM Tris-HCl pH 8.0, 100 mM EDTA pH 8.0, 100 mM 

NaCl, 1% SDS) with proteinase K (0.3mg/ml) at 550C overnight. DNA was isolated 

using phenol-chloroform extraction method. Genotype was confirmed by PCR with 

following conditions (940C- 3min, 940C-20sec, 600C-20sec, 720C-30sec, 35 cycles, 

720C-10min). Primers sequences are provided in table III.  All mice were housed 

in sterile well ventilated cages under 12 hour light dark cycle in an animal facility. 

All mice experiments were performed in accordance to protocols approved by 

Institutional Animal Care and Use Committee (IACUC), National University of 

Singapore. 
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2.2 Primary myoblast isolation and culture 
 

Primary myoblasts were isolated from hind limb muscles both from control and 

tamoxifen injected mice. In addition, for knockdown studies, primary myoblasts 

were isolated from hind limb muscle from wild type C57BL/6 mice. Mice were 

euthanized using carbon dioxide asphyxiation.  Limbs were disinfected with 70% 

alcohol and using sterile scissors and forceps, outer skin was removed.  Quadriceps 

and tibialis anterior (TA) muscle were dissected away from bone and was collected 

in sterile PBS with 1X penicillin-streptomycin. All procedures were carried out in 

sterile conditions in a tissue culture hood. Muscle tissue was minced to slurry with 

blade in a petri dish. 500ul of collagenase solution containing 1.5U/ml collagenase 

(Sigma), 2.5U/ml dispase (Roche) and 2.5mM CaCl2 was added on to the slurry 

and minced for few minutes. Tissue slurry was pipetted out into falcon tube and 

incubated at 370C for 15 - 20 minutes. Every 5 min the tissue slurry was triturated 

with pipette to break the clumps. Slurry was diluted with plain F10 media (Gibco) 

and filtered through the 100um cell strainer. Next, the slurry in media was 

centrifuged at 1,200rpm for 5 min to pellet the cells. The pellet was suspended in 

F10 media supplemented with 20% FBS and 5ng/ml basic fibroblast growth factor 

(bFGF), and plated on to collagen coated petri dishes (tissue culture petri dishes 

were coated with 0.01% collagen from calf skin (Sigma) overnight and dried). Cells 

were incubated at 370C with 5% CO2 and media was changed after 48hr. For 

myoblast enrichment, heterogeneous population of cells were trypsinized and pre-

plated onto culture dish for 15-30 minutes to remove strongly adherent fibroblasts. 

Unattached floating cells were collected and plated onto new collagen coated dish. 
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Pure myoblast population was confirmed by staining cells with Pax7. More than 

95% of cells stained positive for Pax7 and were used for further experiments.    

2.3 Cell lines and culture conditions 
 

2.3.1 C2C12 (mouse myoblast cell line)  
 

C2C12 mouse myoblast cells were cultured in growth medium comprising of 

Dulbecco’s Modified Eagle Medium (DMEM) high glucose (Sigma) supplemented 

with 20% fetal bovine serum (FBS) (Hyclone) and 1X penicillin-streptomycin 

(Gibco). For proliferation assays, C2C12 cells were cultured at 70% confluence and 

for differentiation assay, 80-90% confluent cells were provided with DMEM high 

glucose supplemented with 2% horse serum (Gibco) for different time points of 12, 

24 and 36 hrs. Differentiation medium was changed every day. 

2.3.2 Phoenix cells 
 

Phoenix cells were cultured in DMEM high glucose supplemented with 10% FBS 

with penicillin-streptomycin (1X). Growth medium was changed every alternate 

day. All the cells were incubated at 370C with 5% CO2 in a humidified incubator. 

2.3.3 Cryopreservation of cells 
 

Cells were trypsinized and pelleted using centrifugation. Pelleted cells were 

suspended in freezing medium (90% FBS with 10% dimethylsulfoxide (DMSO). 

Freezing mixture was aliquoted into cryovials and stored at -800C in an insulated 

box. After 24hrs, vials were transferred to liquid nitrogen for long term storage.  
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2.4 G0 synchronization (quiescence)  
 

Quiescence was induced in C2C12 cells using suspension culture method 

(Milasincic et al., 1996). Adherent proliferating C2C12 cells were washed with 

PBS, trypsinized and cell count was performed. Cell suspension was prepared with 

1X105 cells per ml along with 1.4% (final) methylcellulose (Sigma) medium 

containing 20% FBS, 10mM HEPES pH 7.4 (Sigma), 1X penicillin-streptomycin. 

Cell suspension was cultured in 50ml polypropylene falcon tubes with loosened cap 

and was incubated at 370C for 48hrs.  Cells were harvested by diluting the cell 

suspension with PBS, washing it 3 times. Pelleted cells were then suspended in 

C2C12 growth medium and plated on to petri dish or were taken for further 

analysis. 

2.5 Plasmids   
 

pBabe and pBabe-G9a retroviral vectors, Flag-G9a (1,001aa), EGFP-G9a were 

kindly provided by Dr. Martin J Walsh (Mt Sinai School of Medicine New York 

NY 10029). Flag-P/CAF was provided by Dr. Yoshihiro Nakatani (NIH, USA). For 

luciferase reporter assay, a firefly luciferase reporter construct pD1luc containing 

E2F1 binding site in CyclinD1 promoter was provided by Dr. Michael Strauss.  

Site directed mutagenesis: The E2F1 binding site in pD1luc was mutated 

(TTTGGCGC to TTTGGATGC) using the QuickChangeTM site-directed 

mutagenesis kit (Agilent). The mutants were generated from pD1luc using the 

primers listed in the table III. The cDNA was sequenced to confirm the presence of 

directed mutations. Flag-p21 and Flag-Rb1 was constructed as below.  
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2.5.1 Cloning and transformation 
 

Mouse p21 and Rb1 cDNA was separately cloned into pCMV 3X Flag (10) vector 

flanking restriction sites HindIII and BamHI. Ligation was carried out using T4 

DNA ligase (Thermo scientific) and transformation was carried out using 

competent cells DH5α. Ligated DNA and competent cells were mixed and 

incubated on ice for 30min. Cells were subjected to heat shock at 420C for 90 

seconds and cooled on ice for 5 minutes. Cells were recovered in 1ml broth at 370 

C for 1hr. Cells were pelleted by centrifugation at 6,000rpm for 5 min and then 

inoculated on to the bacterial culture plates with ampicillin overnight at 370C.  

Single clones were isolated and inoculated into 10ml of broth and incubated 

overnight. Plasmid extraction was carried out using Promega Miniprep kit as per 

manufacturer’s protocol. 

Plasmid midi preparation was carried out using Qiagen kit. In brief, 10ul of 

bacterial glycerol stock was inoculated into 2ml broth as starter culture for 

overnight with suitable antibiotics. Next day morning, culture were stored at 40C, 

later in the evening again 1ml of the culture was inoculated into 200ml broth 

containing antibiotics. Flasks were incubated at 370C for overnight in an orbital 

shaker. Bacterial cells were pelleted at 6,000rpm for 15 min, resuspended in P1 

buffer, lysed in P2 buffer and mixed with P3 buffer. Bacterial lysate clearing step 

was carried out by centrifuging cells at 20,000g for 30 min at 40C. Plasmid was 

washed, eluted using Qiagen tip columns as per the manufacturer’s instructions.  

DNA was quantified using Nanodrop.  
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2.6 DNA Transfections 
 

2.6.1 Retroviral transduction 
 

Phoenix packaging cells were used to produce retroviral supernatant. Briefly, 1.5 

million cells were seeded in a 10cm dish. Next day, transfection was carried out 

with 30ug of pBabe and pBabe-G9a plasmid separately using CaPO4 transfection 

kit (Invitrogen) according to manufacturer’s instructions. Briefly, 40ul of 2M CaCl2 

was mixed with 30ug of DNA in an Eppendorf tube. The volume was adjusted to 

300ul with sterile water. While vortexing, 300ul of 2X HBS was added slowly, 

bubbling air through to the DNA mixture. The resulting DNA complex was 

incubated for 15min at room temperature. The precipitate was added onto the 

Phoenix cells with 10ml of media and incubated for 24hrs. Later, culture medium 

was changed to C2C12 growth medium for virus collection from the transfected 

Phoenix cells. Every 24hrs, media containing virus was collected and filtered using 

0.45um syringe filter and stored at -800C.  

 G9a over expressing C2C12 stable cell line was generated by transducing C2C12 

cells with virus generated from pBabe vector alone or pBabe-G9a. Infection was 

carried out using C2C12 growth medium containing the virus, for which 8ug/ml 

polybrene (Sigma) was added and incubated for 8hrs at 370C. Media was changed 

with normal C2C12 growth media after 8hrs of infection. Cells were allowed to 

grow for another 24hrs before selecting with 2ug/ml puromycin (Sigma) for 48hrs.   
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2.6.2 Transient transfections 
 

Transient transfections were carried out using Lipofectamine and Plus reagent 

(Invitrogen). A day before transfection, cells were trypsinized and plated at desired 

density so that on the day of the transfection, the cells would reach 40% confluence.  

Briefly, DNA (for instance 2ug for a 10cm dish) was mixed with 250ul of DMEM 

without FBS and antibiotics in a 1.5ml Eppendorf tube. 2ul Plus reagent/µg of DNA 

was added to the DNA mix and incubated for 5 min. In a separate tube, 

Lipofectamine (3ul of Lipofectamine for 1µg DNA) was mixed with 250ul plain 

DMEM and incubated for 5 minutes.  DMEM-Lipofectamine mixture was added 

to the mixture containing the DNA-Plus complex to a final volume of 500ul and 

incubated for 20 minutes at room temperature. DNA-Lipofectamine transfection 

mixture was added on to the cells for which medium had been changed to DMEM, 

and incubated for 3-4hrs at 370C in CO2 incubator. After 4hrs, transfection media 

was removed and cells were fed with growth media.   

2.6.3 siRNA transfection  
 

Knockdown experiments were performed using 100nm scrambled siRNA (on-

target plus control pool) or siRNA specific for G9a (siG9a; on-target plus smart 

pool, Mouse BAT8; accession number: NM_147151; NM_145830) from 

Dharmacon using Lipofectamine RNAiMax (Invitrogen) according to 

manufacturer’s instruction. Sequences for siRNA are provided in the table (Table 

I). 5μl (100nm) of each siRNA was mixed separately with 100μl plain DMEM 

medium. 3.5μl of RNAiMax Lipofectamine was added to DMEM in a separate tube 
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and incubated for 5 min. Both siRNA mix and RNAiMax were mixed and incubated 

for 20 minutes and later, the complex was added to the cells in DMEM. Transfection 

was carried out for 3-4hrs and later cells were fed with growth medium. For C2C12, 

cells were taken for experiments after 48hrs knockdown. For primary myoblasts, 

cells were taken for analysis after 72hr of knockdown.  

 

Table I: siRNA sequences  
 

Smart pool siRNA Sequences 

Non-targeting siRNA -1 UGGUUUACAUGUCGACUAA 

Non-targeting siRNA -2 
 

UGGUUUACAUGUUGUGUGA 

Non-targeting siRNA -3  
 

UGGUUUACAUGUUUUCUGA  
 

Non-targeting siRNA -4  
 

UGGUUUACAUGUUUUCCUA  
 

siG9a-1  
 

UAACAAGGAUGGCGAGGUU  
 

siG9a-2  
 

CCAUGAACAUCGACCGCAA  
 

siG9a-3  
 

CAGGACAGGUGGACGUCAA  
 

siG9a-4  
 

CCAAGAAGAAAUGGCGGAA  
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2.7 Luciferase reporter assay 
 

Luciferase reporter assay was performed using the Dual Luciferase Reporter 

System (Promega). pBabe and pBabe-G9a cells were transfected with 200ng of 

cyclinD1 reporter construct in a 24-well plate. Transfection was carried out in 

triplicates with Lipofectamine Plus. 2ng of Renilla reporter construct was also 

transfected as a normalization control. 24hrs after transfection, cells were lysed for 

30 min using 1X passive lysis buffer provided in the kit. 100 μl of LAR II enzyme 

was added to 20μl of protein in a 96 well plate to measure the firefly luciferase 

signal and later, 100μl of stop and glow buffer was added to measure the Renilla 

activity. Luminescence reading was carried out using Varioskan plate reader using 

SkanIt software.   

2.8 RNA isolation and Microarray 
  
Total RNA was extracted from proliferating C2C12 cells (Day0) and differentiated 

(Day1) cells transfected with scrambled siRNA or siG9a. Briefly, cells were lysed 

in 500ul Trizol (Invitrogen) per million cells in 1.5ml Eppendorf tubes and 

vortexed. Chloroform was added to separate the phases and RNA was precipitated 

from the aqueous phase using isopropanol. RNA pellet was washed using 70% 

alcohol, and pellet was air dried and dissolved in nuclease free water. RNA was 

cleaned up using RNeasy MiniElute Cleanup Kit (Qiagen), was then quantified 

using Nanodrop. For microarray analysis, RNA quality was checked using 

Bioanalyzer (Agilent technologies).   
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Microarray was performed with RNA from two biological replicates. RNA was 

reverse transcribed and cRNA was synthesized using Total prep RNA amplification 

kit (Amibion). cRNA was labelled and subsequently hybridized to Illumina mouse 

WG-6 v2.0 array (Illumina). Partek Genomics Suite version 6.5 0 (Partek Inc., MO, 

USA) was used to perform gene expression analysis. Analysis of Variance 

(ANOVA) was applied on the data set from two samples and differentially 

expressed gene list was generated using p value < 0.05 with 1.3 fold change cut off. 

2.9 Quantitative real time PCR (q-RTPCR) 
 

To validate the results from the microarray analysis, quantitative real time PCR was 

performed on a few selected genes. Briefly, 1 µg of RNA was used to convert into 

cDNA using first strand cDNA synthesis kit (Invitrogen). cDNA was prepared 

according the manufacturer’s protocol. Quantitative real time PCR was carried out 

using Light cycler 480 SYBR green I master (Roche).  Reactions were done in 

triplicates, loaded onto the 384 well plate and PCR was performed in the Light 

cycler 480 II machine (Roche). ΔCT and 2^-ΔCT method was used to analyze the 

relative expression from the CT values.  Primers used in the study are mentioned in 

the table (Table III)   
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2.10 Chromatin immunoprecipitation (ChIP) 
 

Chromatin immunoprecipitation was carried out using Millipore ChIP kit. 

Chromatin was cross-linked to protein by adding formaldehyde (Sigma) (1% final 

concentration in media) for 10 min at 370C.  Media was removed and cells were 

washed twice with cold 1X PBS buffer. Cells were removed/scraped out into a 

conical tube and centrifuged for 5 minutes at 2,000rpm, 40C. 

Cells were lysed with 200µl SDS lysis buffer (with Protease Inhibitors) per 1X106 

cells.  Lysate was incubated on ice for 10–30 min (depending on cell type) - for 

myoblasts, 10 min on ice, for day 1 myocytes, 20 min on ice. Cell lysate was 

sonicated using Bioruptor (Diagenode) with the below settings. 1X106 cells per 

200ul lysis buffer was maintained and samples were kept on ice throughout.  

For day 0 myoblasts the following setting was used: Bioruptor power setting HIGH; 

30s ON / 30s OFF; 10 cycles. For day 1 myocytes: power setting HIGH; 30s ON/ 

30 s OFF; 12 cycles. For day 2 myotubes: power setting HIGH; 30s ON/ 30 s OFF; 

14 cycles. Sonicated samples were centrifuged at 40C for 10 minutes and 

supernatant was collected.   

ChIP was carried out according to kit protocol (Millipore) using antibodies 

mentioned in the table (Table II). Beads washing was carried out using wash buffers 

as per kit protocol. Reverse cross linking was performed at 650C overnight with 5M 

NaCl.  Phenol-chloroform isolation method was used to extract DNA.   
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qRT-PCR was performed as explained previously.  DNA isolated from 10% input 

was used as control.  Relative enrichment was calculated using 2^-ΔCT method.  

Table II: Antibodies used for ChIP 
 

ANTIBODY COMPANY DILUTION 

Anti H3K9me2 Millipore 2ug 

Anti-G9a Abcam 8ul 

Anti-E2F1 Abcam 2ug 

Anti H3K9ac Millipore 2ug 

Anti P/CAF Abcam 2ug 
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Table III: Primers used in this study 
 

Primers for 
qRT- PCR 

Sequence 5’ to 3’ Annealing 
temperature 

Mouse Gapdh F- ATCAACCGGGAAGCCCATCAC 

R -CCTTTTGGCTCCACCCTTCA 

60 

Mouse Cyclin E F-TGTCCTCGCTGCTTCTGCTTTGTATCAT 

R -GGCTTTCTTTGCTTGGGCTTTGTCC 

60 

Mouse Cyclin D1 F-AAGTGCGTGCAGAAGGAGATTGTG 

R -TCGGGCCGGATAGAGTTGTCAGT 

60 

Mouse p21 F-GCAGCCGAGAGGTGTGAGC 

R-ACGGGACCGAAGAGACAACG 

60 

Mouse G9a F-TCGGGCAATCAGTCAGACAG 

R-TGAGGAACCCACACCATTCAC 

60 

Mouse Dhfr 

 

F-GGTAGGAAAACCTGGTTCTC 

R-CAGAACTGCCTCCGACTATC 

60 

Mouse Rb1 F-ACGCTGCCCAGGAGACCTTT 

R-AGGGCTTCGAGGAATGTGAGGT 

60 

Primers for ChIP qRT-PCR 

Mouse Cyclin D1 F-GAGAGCTTAGGGCTCGTCTG 

R-TGGGTGCGTTTCCGAGTAC 

60 

Mouse p21 F-CCCCGCATGCCCAGTTTATGG 

R-GGTCTGTCCCTGACCAACTGTG 

60 

Mouse Rb1 F-AGCCCAGGCTTGCAACCTACCC 

R-CCGCGTCACATAGCAGGTCCC 

60 

Mouse Dhfr F-GCCTAAGCTGCGCAAGTGGT 

R-GTCTCCGTTCTTGCCAATCC 

60 

Mouse Cyclin E2 F-GAGCCGAACCGTAGCCTGA 

R-CTCCTGGACCGTGCTCCTC 

60 
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Primers for cloning 

p21 F-CCCAAGCTTATGTCCAATCCTGGTG 

R-CGGGATCCTCAGGGTTTTCTCTTGC 

 

Rb1 F-CCAAGCTTATGCCGCCCAAAGCC 

R-CGCGGATCCTCACTTTTCCTCCTT 

 

pD1luc 

Pd1luc E2F1 
mutant 

F-CTCCCGGCGTTTGATGCCCGCGCC 

R-GGCGCGGGCATCAAACGCCGGGAG 

 

Primers for mice genotyping  

G9a-F1 

G9a-F2 

G9a-R 

Pax7cre F 

Pax7cre  WT R 

Pax7cre Mut R 

F1- CACGCTGCCTAGATGGAGCATGCC 

F2-AGGCTATGAGAATGTACCCATCCCCTG 

R-GTGTGAGCCTGTGTTCTGGGGATTA 

F-TACCAGAGGCAACAAACAGG 

R-TTGATGAAGACCCCACCAAG 

R-CAAAGGTGGCTAAGGTGGAG 

 

 

60 

 
2.11 G9a methyltransferase activity inhibition  
 

G9a methyltransferase activity was blocked using UNC0638 compound (Sigma) 

known to selectively inhibit G9a methyltransferase activity (Vedadi et al., 2011). 

UNC0638 effect on myoblasts differentiation was checked using different 

concentrations and a concentration of 0.25µM was found to be optimal. As a 

control, cells were treated with DMSO. Treatment was carried out for at least 36hr 

before harvesting the cells for further analysis. For differentiation assay, cells were 

pretreated for 24hrs in growth medium and then treatment was continued in the 

differentiation medium containing UNC0638 as well.   
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2.12 BrdU incorporation assay 
 

Proliferation of cells was measured by pulsing cells with 10mM BrdU for 30 

minutes. Cells were fixed with 70% alcohol with 50mM glycine at -200C for 20 

minutes. BrdU staining was carried out using BrdU staining kit according to 

manufacturer’s protocol (Roche). Cells were incubated for 1hr at room temperature 

with anti-BrdU antibody (1:100) diluted in incubation buffer provided in the kit. 

After 3 washes with PBS, secondary antibody (1:100) labelled with FITC was 

added for 1hr at room temperature. Cells were again rinsed with PBS 3 times, nuclei 

was counter stained with DAPI and cells were mounted with mounting agent 

(Vectashield) and visualized using Olympus microscope (DP72). BrdU positive 

cells were quantified by ratio of BrdU positive cells to the total number of DAPI 

positive cells.  At least 500 BrdU positive cells were counted from different fields.  
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2.13 Flow cytometry analysis 
 

Cells were trypsinized and collected by centrifugation. Cell pellet was washed once 

using PBS and centrifuged again at 1,200rpm for 3 minutes.  Cells were fixed with 

70% alcohol while vortexing to avoid clumping of cells. Cells with alcohol was 

stored at -200C for at least 24hr. Later, cells were washed with PBS and centrifuged 

at 1,200rpm for 5 min. Cells were stained with 300µl propidium iodide (Sigma) 

mix (10µg/ml propidium iodide solution with RNAase A) for at least 30 minutes at 

room temperature. Cells were strained using 40um filters to avoid clumps and run 

through BD FACS machine.  At least 10,000 cells were acquired during the run.  

2.14 Immunofluorescence imaging 
 

Cells were cultured on sterile cover slips placed in 6-well dishes. Cells were fixed 

with 4% paraformaldehyde (Sigma) for 20 minutes at room temperature. Cells were 

gently rinsed with PBS for 3 times. Fixed cells were blocked and permeabilized 

using PBS containing 10% horse serum (Gibco) and 0.1% tritonX 100 (Biorad) for 

1hr at room temperature. Cells were then incubated with antibody in the blocking 

solution (PBS with 10% horse serum) at desired concentration at 40C for overnight. 

Next day, cells were gently rinsed 3 times with PBS, and incubated with secondary 

antibody tagged with fluorophore (Alexa fluor 488 or Alexa fluor 565) at 1:250 

dilution. Cells were incubated for 1hr at room temperature. Later, cells were again 

rinsed with PBS and DNA was counter stained with DAPI, and mounted using 

mounting agent (Vectashield). Images were obtained using Olympus microscope 

(DP72).  
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Table IV: Antibodies used for Immunofluorescence staining 
 

ANTIBODY COMPANY DILUTION 

Anti- Myosin heavy 
chain (My32) 

Sigma 1:300 

PAX7 DSHB 1:10 

Alexa fluor 488 goat 
anti rabbit 

Invitrogen 1:250 

Alexa fluor 568 goat 
anti mouse 

Invitrogen 1:250 

 

For staining with anti-myosin heavy chain antibody (MY32; Sigma), incubation 

were done for 1hr at room temperature, after which nucleus was counterstained 

with mounting agent containing DAPI (Vectashield). Myogenic index was 

calculated by quantifying the ratio of total nuclei within myotubes to total nuclei. 

At least 500 nuclei was counted.   

2.15 SDS PAGE and Western blotting 
 

Cells were lysed in NP40 buffer (50mM Tris-HCl pH 7.4, 150mM NaCl, 5mM 

EDTA, 15mM MgCl2, 1% NP-40, 0.75% Sodium deoxycholate, 1mM DTT) with 

1X protease inhibitor (Roche). Protein quantification was carried out using 

Bradford reagent (Biorad). 1 part of 5X Bradford reagent was diluted with 4 parts 

of MilliQ water to get 1X reagent. 1µl of protein was added to Bradford reagent in 

a cuvette and mixed, incubated for 3-5 min before taking the absorbance at 595nm 

using spectrophotometer. Quantified protein was denatured using SDS loading dye 

at 980C for 5 minutes.  Protein was run on SDS polyacrylamide gels at 90 Volts.  
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Protein was transferred (wet transfer at 100V for 2hr) onto nitrocellulose membrane 

(Amershan hybond ECL). Transfer was carried out in cold conditions using ice 

packets.  

Membrane was blocked with 5% skimmed milk (blotto, Santa Cruz) in 0.1% Tween 

in PBS (PBST) for 1hr. Primary antibodies were diluted in 5% milk and incubated 

either 1hr room temperature or overnight at 40C depending on the antibody. 

Membrane was washed 3 times with PBST 5 minutes each to remove the unbound 

antibody. Blots were incubated with horse radish peroxidase conjugated secondary 

antibody for 1hr at room temperature and again washed 3 times with PBST. Bands 

were visualized either using detection reagents from Amershan ECL detection 

system or West Dura from thermos scientific.  
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Table V: Antibodies used for western blotting 
 

ANTIBODY COMPANY DILUTION 

Rabbit polyclonal anti-G9a Cell signaling 1:300 

Rabbit polyclonal anti-p21 Santa Cruz 1:500 

Mouse monoclonal anti-Rb1 BD bioscience 1:500 

Mouse monoclonal anti-Rb1 Santa Cruz 1:500 

Rabbit polyclonal anti-MyoD 
(M-318) 

Santa Cruz 

 

1:500 

Rabbit polyclonal anti-myogenin Santa Cruz 1:500 

Rabbit polyclonal anti-Cyclin A Santa Cruz 1:100 

Rabbit polyclonal anti-CyclinD1 Santa Cruz 1:500 

Anti-troponin-T Sigma 1:1000 

Anti-βactin Sigma 1:10000 

Anti-Flag Sigma 1:1000 

 

2.16 Co-immunoprecipitation (Co-IP) 
 

For endogenous Co-IP, nuclear extracts were prepared from proliferating C2C12 

myoblasts by following modified Dignam’s protocol. Briefly, 100 million cells 

were trypsinized and washed twice with ice cold PBS. Cell pellet was incubated 

not more than 2 minutes by resuspending gently in 10ml of ice cold homogenization 

buffer with DTT and protease inhibitors (For the buffers recipe, see below). Cell 

suspension was slowly layered onto cold sucrose pad (8-10ml). Cells were 

centrifuged at 900rpm for 10 minutes at 40 C with no brakes. Supernatant was 

aspirated and nuclei at the bottom were washed with wash buffer (10ml) before 
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centrifugation at 14,000 rpm at 40C for 45 minutes to get rid of all cytoplasmic 

residues. Intact nuclei were observed under microscope with trypan blue. Nuclei 

pellet was resuspended in 1 packed volume of cold buffer C 0mM.  Next, 2 packed 

volume of cold buffer C 840mM was added drop by drop while vortexing slowly. 

Every 5 drops, nuclei was incubated on ice. Nuclei were further lysed by 15 strokes 

with dounce homogenizer (Pestle B). Lysed nuclei were observed with trypan blue 

under microscope. The homogenate was gently stirred with a magnetic bar for half 

an hour at 40C and then centrifuged at 14,000rpm for 30 minutes at 40C. 

Supernatant was carefully recovered and diluted in 2 volumes of buffer D (for e.g. 

for 1ml supernatant 2ml buffer D).  Pellet containing DNA and histone were left 

behind.   

For endogenous co-immunoprecipitation, at least 1mg of protein was used to pull 

down with desired antibody.  Protein lysate was pre-cleared using 30ul of protein 

A/G agarose beads (Santa Cruz) for 45minutes. Lysate was incubated with desired 

antibodies for overnight at 40C under rotation. Protein A/G agarose beads was then 

added (30ul) the following morning to the lysate for 2hr and kept for rotation at 

40C. Beads were pelleted by centrifugation at low speed (2,000rpm) at 40C and 

washed with NP40 buffer with protease inhibitors for 3 washes lasting 5 minutes 

each. After final wash, sample loading dye (10ul) was added to the beads, heated 

at 980C for 8 minutes, and loaded on to the gel for SDS-PAGE. 
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Table VI: Antibodies used for Co-IP 
 

ANTIBODY COMPANY CONCENTRATION 

Anti-MyoD Santa Cruz 2ug 

Anti-G9a Abcam 8ul 

Anti-E2F1 Abcam 2ug 

Anti-Flag beads Sigma 20ul 

Normal rabbit IgG Santa Cruz 2ug 

 

2.16.1 Solutions for nuclear extract 
 

Salt stock (100ml):  10ml 1M Tris-HCl, pH 7.5, 3ml 5M NaCl, 60ml 1M KCl, top 

up with water to 100ml and store at RT.  

Homogenization buffer (50ml): 5ml salt stock, 7.35ml 1M (34%) sucrose, 250ul 

20% NP40, 100ul 0.5M EDTA, 10ul 0.5M EGTA, 32.3ml water.  (Prior to use, add 

to per ml of buffer: 0.5ul 1M DTT, 1X PI)  

Sucrose pad (10ml): 1ml salt stock, 2.94ml 1ml sucrose, 5.06ml water. (Prior to 

use, add to per ml of buffer: 0.5ul 1M DTT, 1X PI) 

Wash buffer (50ml): 5ml salt stock, 100ul 0.5M EDTA, 10ul 0.5M EGTA, 40ml 

water. (Prior to use, add to per ml of buffer: 0.5ul 1M DTT, 1X PI) 
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Buffer C 0mM (9ml): 5ml 20mM HEPES pH 7.9, 25% glycerol, 0.2mM EDTA , 

1.5mM MgCl2. (Prior to use, add to per ml of buffer: 0.5ul 1M DTT, 1X PI) 

Buffer C 840mM : 20mM HEPES, pH 7.9, 25% glycerol, 0.2mM EDTA, 1.5mM 

MgCl2, 840mM KCL.  (Prior to use, add to per ml of buffer: 0.5ul 1M DTT, 1X 

PI) 

Buffer D: 20mM HEPES, pH 7.9, 20% glycerol, 0.2mM EDTA, 0.3% triton X 

100. (Prior to use, add to per ml of buffer: 0.5ul 1M DTT, 1X PI)   

 

2.17 Statistical analysis 
 

Error bars represent mean standard deviation (SD). Significance was calculated 

using student t test (two tailed paired unless specified others) with p value <0.05 

was considered to be statistically significant.  (*p<0.05 **p<0.01 ***p<0.001). 
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3. Results  
 

3.1 G9a expression correlates with proliferation of myoblasts 
 

In order to find out if G9a has a role in proliferation and cell cycle exit of myoblasts, 

we examined its expression in different cellular states – proliferation, irreversible 

cell cycle exit (differentiation); and reversible cell cycle exit (quiescence). RNA 

and protein was extracted from proliferating C2C12 myoblasts, differentiated 

myocytes (Day 1) and quiescent myoblasts. G9a mRNA and protein expression was 

analyzed by quantitative real time PCR and western blot respectively. G9a mRNA 

level was higher in proliferating cells compared to cell cycle exit states (Fig 

3.1A&B). Similarly, G9a protein expression was also high in myoblasts and 

declined upon differentiation and quiescence (Fig 3.1C&D). Thus G9a is expressed 

at higher levels in proliferating cells compared to cell cycle exit states, and suggest 

that a decline in G9a expression may be required for the cells to exit the cell cycle.   
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Figure 3.1. G9a expression decreases during myoblast cell cycle exit. (A & B) 
Relative quantification of G9a expression in proliferating myoblasts (D0), 
differentiated (Day 1) myocytes and quiescent C2C12 myoblasts (Quiescent 
progenitors) by qRT PCR. Gapdh was used to normalize the expression. (C & D) 
G9a protein level was analyzed in myoblasts (D0), differentiating myocytes (D1 & 
D2) and quiescent cells S48 (myoblasts cultured in suspension medium for 48hr) 
using western blot. β-actin was used as loading control. Error bars indicate mean ± 
SD. * indicates p-value <0.05. 
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3.2 Identification of genome wide targets of G9a  
 

3.2.1 Gene expression studies using microarray 
 

Previous studies from our lab have shown that G9a methylates MyoD in myoblasts 

to inhibit MyoD function. This is correlated with H3K9me2 repression marks at the 

myogenin promoter indicating that G9a functions as a negative regulator of 

myogenic differentiation (Ling et al., 2012b). While these studies established a role 

for G9a in myogenic differentiation, genome-wide targets of G9a in myoblasts have 

not been identified. 

To identify G9a target genes, we performed gene expression analysis using 

microarray with G9a knock-down myoblasts. Endogenous G9a knockdown was 

performed using siRNA specific for G9a (siG9a cells). Control cells were 

transfected with scrambled siRNA (siRNA cells). G9a knockdown was confirmed 

48hr post-transfection at protein level by western blot (Fig 3.2.1A). RNA was 

isolated from proliferating day 0 (Day 0) and differentiated day 1 (Day 1) from 

siG9a cells and siRNA cells. Two independent knockdown experiments were 

performed on two different days to achieve better reproducibility. RNA from both 

sets was reverse transcribed, labelled and hybridized to mouse WG6v2.0 array from 

Illumina.  

From the microarray analysis, we identified 311 unique genes which were 

differentially regulated by 1.3 fold with p-value <0.05. 173 genes were up regulated 

whereas 138 genes were down regulated. G9a knockdown significantly altered 
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genes involved in different cellular pathways among which cell cycle control and 

muscle differentiation pathway genes were highly enriched (Fig 3.2.1B).  

Figure 3.2.1A,B&C. Gene expression studies using microarray. (A) G9a protein 
expression was analyzed in siRNA and siG9a cells by western blot. β-actin was 
used as loading control. (B) List of G9a target genes involved in differentiation and 
cell cycle control in proliferating (Day 0) and differentiated (Day 1) cells with 
corresponding p-value.  Green indicates down regulation and red indicates up 
regulation of gene expression. (C) Activity of transcription factors altered in siG9a 
cells. (Bioinformatics for microarrays was done by Jayapal Manikandan).   
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Consistent with our previous findings which showed that G9a inhibits myogenic 

differentiation (Ling et al., 2012b), MyoD dependent genes involved in 

differentiation such myogenin were up regulated in siG9a cells.  Interestingly, in 

addition to differentiation related genes, the expression of many genes involved in 

cell cycle regulation was differentially altered. For instance, the expression of p21 

and Rb1 genes which are involved in irreversible cell cycle exit during 

differentiation was up regulated. On the other hand, E2F1 target genes involved in 

cell cycle control such as CyclinD1, CyclinE and Thymidine Kinase were down 

regulated.  

Ingenuity pathway analysis showed that the activities of MyoD and E2F1 

transcription factors were altered in G9a knockdown cells (Fig 3.2.1C). This 

indicated that G9a in addition to its impact on myogenic differentiation through 

regulation of MyoD activity, G9a may control proliferation through its association 

E2F1.  

Gene Ontology (GO) analysis for top canonical pathways and top biological 

functions showed that cell cycle regulation was altered upon G9a knockdown (Fig 

3.2.1D&E). A set of genes from gene ontology was used to create a biological 

network. The biological network indicated that cell cycle progression and muscle 

differentiation was affected in siG9a cells (Fig 3.2.1F). This suggested that G9a has 

a major impact on the cell cycle control in addition to differentiation.  
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Figure 3.2.1D&E. Gene expression studies using microarray. Ingenuity 
pathway analysis. (D) Bar chart indicating top functions altered in siG9a myoblasts. 
Cell cycle control was found to be one among the top functions altered in siG9a 
cells. (E) Bar chart indicating top canonical pathways altered in siG9a myoblasts. 
Apart from calcium signaling, Cyclins and cell cycle regulation was found to be 
top canonical pathway altered upon G9a knockdown.   
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Figure 3.2.1F Gene expression studies using microarray. To understand the 
biological significance of G9a target genes, Gene ontologies were used to create 
the network - Molecular function ontology (indicates function of gene at molecular 
level) and Cellular component ontology (refers to the place where gene product is 
found). (F) Biological interaction network identifying possible interactions 
between G9a target genes related to cell cycle control and differentiation. Orange 
line indicates direct interaction. Dotted line indicates indirect interaction. Grey line 
indicates function altered by the genes.  
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Overall, results from the global gene expression analysis indicated that G9a targets 

both MyoD and E2F1 responsive genes in myoblasts. Since G9a knockdown up 

regulated MyoD target genes, it indicated that these may be direct transcriptional 

targets of G9a. On the other hand, since E2F1 targets were down regulated, G9a 

could be directly or indirectly involved in promoting expression of these genes. 

 
3.2.2 Validation of microarray results 
 

To validate the microarray results, we performed qRT-PCR on a few selected G9a 

target genes. RNA was isolated from control and siG9a cells and converted to 

cDNA and qRT-PCR was performed. Consistent with the microarray results, siG9a 

cells showed significant up regulation of MyoD target genes p21 and Rb1 whereas 

expression of E2F1 target genes such as Cyclin D1 and Cyclin E was down 

regulated (Fig 3.2.2 A&B), highlighting the reliability of the microarray results. 
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Figure 3.2.2 Validation of microarray results. G9a targets such as (A & B) p21, 
Rb1, (C & D) CyclinD1 and CyclinE expression were analyzed by qRT-PCR in 
control and siG9a C2C12 cells. Error bars indicate mean ± SD. * indicates p-value 
<0.05 **p-value <0.01. 
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3.3 G9a regulates differentiation and proliferation genes in mouse 
primary myoblasts 
 

Next, we went on to validate if G9a regulates MyoD and E2F1 target genes in 

mouse primary myoblasts. Myoblasts were isolated and cultured from hind limbs 

of wild type mice. G9a knockdown was performed using siG9a for 72hr. Scrambled 

siRNA was used as control. RNA was isolated from the cells, cDNA was 

synthesized and qRT-PCR was performed to check the G9a knockdown efficiency 

(Fig 3.3A). Consistent with the microarray data, G9a knockdown cells showed 

significant up regulation of MyoD target genes p21 and Rb1 (Fig 3.3B&C) whereas 

E2F1 target genes CyclinD1, DHFR and CyclinE were significantly down 

regulated (Fig 3.3 D, E & F).  Results from the microarray, C2C12 cells and primary 

myoblasts indicated that G9a regulate genes involved in cell cycle control and 

therefore it could be involved in regulating proliferation of cells.  
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Figure 3.3 G9a regulates MyoD and E2F1 target genes in primary myoblasts. 
(A) G9a knockdown was analyzed by qRT-PCR in siG9a primary myoblasts. (B & 
C) p21, Rb1, (D, E & F) CyclinD1, DHFR and CyclinE expressions were analyzed 
by qRT-PCR in control and siG9a mouse primary myoblasts. Error bars indicate 
mean ± SD. *** indicates p-value <0.001, ** indicates p-value <0.01, * indicates 
p-value <0.05 
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3.4 Role of G9a in proliferation  
 

3.4.1 G9a knockdown reduces proliferation of C2C12 cells  
 

To examine if G9a indeed has any role in regulating proliferation of cells, we 

performed loss of function studies by carrying out G9a knockdown in C2C12 cells 

(siG9a cells) (Fig 3.4.1A). Both control and G9a knockdown cells were pulsed with 

BrdU for 30min, fixed and stained with anti-BrdU antibody. siG9a cells showed 

significantly lesser BrdU incorporation compared to control cells. This indicated 

that G9a knockdown led to reduced proliferation of cells (Fig 3.4.1B & C).  

3.4.2 G9a knockdown reduces proliferation of primary myoblasts 
 

Next, we confirmed the above results in siG9a mouse primary myoblasts. 

Knockdown of G9a was performed in primary myoblasts and confirmed by 

qRTPCR (Fig 3.4.2A). Both control and G9a knockdown cells were pulsed with 

BrdU for 30min, fixed and stained with anti-BrdU antibody. BrdU incorporation in 

siG9a cells was lesser compared to controls, indicating reduced proliferation in 

siG9a cells (Fig 3.4.2 B&C). Further, we also performed propidium iodide staining 

and analyzed cell cycle profiles by flow cytometry. Consistent with above results, 

siG9a cells showed lesser S phase cells compared to controls (Fig 3.4.2 D&E) and 

an arrest in the G1 phase of the cell cycle. Overall, our results suggested that G9a 

knockdown reduces proliferation of cells.   
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Figure 3.4.2 D,E&F. G9a knockdown reduces proliferation of primary 
myoblasts. (D & E) Flow cytometry analysis of PI stained control and siG9a 
primary myoblasts. (F) Graph indicating percentage population in S phase in 
control and siG9a cells. siG9a primary myoblasts had less S phase cells compared 
to control cells.     
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3.4.3 Inhibition of G9a methyltransferase activity reduces proliferation of 
cells 
 

Since G9a knockdown led to decreased proliferation of cells, we went on to check 

if methyltransferase activity of G9a is required for its effect on proliferation. We 

treated both C2C12 cells and primary myoblasts with UNC0638 (a selective 

inhibitor of G9a methyltransferase activity) and as a control, cells were treated with 

DMSO (vehicle). Both control and UNC0638 treated cells were pulsed with BrdU 

for 30min, fixed and stained with anti-BrdU antibody. UNC0638 treated cells 

incorporated lesser BrdU compared to control, both in C2C12 cells (Fig 3.4.3A) 

and primary myoblasts (Fig 3.4.3B&C). This indicated that inhibition of G9a 

methyltransferase activity reduces proliferation of cells and G9a effect on 

proliferation is partially dependent on its enzymatic activity.  
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3.4.4 G9a over expression increases proliferation of myoblasts 
 

Next, we performed gain of function studies to examine the role of G9a in 

proliferation. Stable G9a over expression was done in C2C12 cells using a retroviral 

vector (pBabe-G9a cells) and over expression was confirmed by western blot (Fig 

3.4.4A). To check the effect of G9a over expression on proliferation of cells, we 

performed immunofluorescence on BrdU pulsed control (pBabe) and pBabe-G9a 

cells. Both pBabe and pBabe-G9a cells were pulsed with BrdU for 30min, fixed 

and stained with BrdU antibody. G9a over expressing cells displayed higher BrdU 

positivity compared to control cells, indicating higher proliferation of pBabe-G9a 

cells (Fig 3.4.4A).  Further, we performed propidium iodide staining and subjected 

the cells to flow cytometry analysis. Consistent with the above results, we found 

higher S phase cells in pBabe-G9a cells compared to controls (Fig3.4.4B & C).     
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3.5 Role of G9a in regulating cell cycle exit during differentiation  
 

Since G9a knockdown reduced proliferation of cells we questioned whether it 

altered cell cycle exit process during differentiation. Among the G9a target genes 

involved in cell cycle control from the array, we found a cluster of genes that were 

up regulated in siG9a cells. Interestingly, MyoD target genes p21 and Rb1, which 

are involved in irreversible cell cycle exit during differentiation were among these 

genes (Fig 3.5A).  Therefore, we looked into the role of G9a in regulating cell cycle 

exit of myoblasts during differentiation.   

 

 

Figure 3.5 Role of G9a in regulating cell cycle exit during differentiation. (A) 
List of G9a target genes involved in differentiation and cell cycle control. 
Highlighted box indicates up regulated cell cycle genes.  

 

  

A 
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3.5.1 G9a inhibits p21 and Rb1 expression during myoblasts differentiation  
 

Since p21 and Rb1 which are required for irreversible cell cycle exit of myoblast 

are upregulated in siG9a cells, we examined if G9a alters cell cycle exit during 

differentiation. pBabe and pBabe-G9a cells were differentiated for indicated time 

points and p21 and Rb1 expression was analyzed at RNA and protein level by qRT-

PCR and western blotting. G9a over expressing cells showed reduced p21 and Rb1 

mRNA levels during differentiation (Fig 3.5.1A&C). Similarly, p21 and Rb1 

protein levels were also reduced in G9a over expressing cells during differentiation. 

Reduced p21 and Rb1 expression could result in inhibition of myoblast 

differentiation as evidenced by decreased troponin-T expression (Fig 3.5.1B&D). 

These results suggested that G9a may be involved in regulating irreversible cell 

cycle exit required for differentiation.   
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Figure 3.5.1 A&B.  G9a inhibits p21 and Rb1 expression during 
differentiation. (A) p21 mRNA expression was analyzed in control and pBabe-
G9a cells during proliferation (D0) and day 1 differentiation (D1) condition. (B) 
pBabe and pBabe-G9a cells were differentiated for 0 to 36hrs and analyzed for p21 
and troponin-T expression by western blot. β-actin was used as internal control. 
Error bars indicate mean ± SD. ** indicates p-value <0.01, * indicates p-value 
<0.05 
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Figure 3.5.1 C&D. G9a inhibits p21 and Rb1 expression during differentiation. 
(C) Rb1 mRNA expression was analyzed in control and pBabe-G9a cells during 
proliferation (D0) and day 1 differentiation (D1) condition. (D) pBabe and pBabe-
G9a cells were differentiated for 0 to 36hrs and analyzed for Rb1 and troponin-T 
expression by western blot. β-actin was used as internal control. Error bars indicate 
mean ± SD. * indicates p-value <0.05  
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3.5.2 G9a inhibition of p21 and Rb1 is dependent on its methyltransferase 
activity 
 

To confirm if G9a methyltransferase activity is required for cell cycle exit, we 

blocked endogenous methyltransferase activity of G9a by treating cells with 

UNC0638. Control cells were treated with DMSO (vehicle). Cells were 

differentiated for indicated time points. Western blot analysis showed increased 

p21 and Rb1 expression in UNC0638 treated cells with increased differentiation as 

evidenced by higher troponin-T expression (Fig 3.5.2 A&B). This indicated that 

G9a regulation of cell cycle exit is dependent on its methyltransferase activity.  

 

Figure 3.5.2 G9a inhibition of p21 and Rb1 is dependent on its 
methyltransferase activity. Control (DMSO treated) and UNC0638 treated 
(0.25uM) C2C12 cells were differentiated for 0 to 36hrs and protein lysates was 
analyzed for (A) p21, troponin-T or (B) Rb1 and troponin-T by western blot. β-
actin was used as internal control. (Data provided by Shilpa Rani Shankar) 

 

A

B



79 
 

3.6 G9a mediates repressive H3K9me2 on MyoD target genes 
 

G9a is generally known to function as a repressor by mediating repressive 

H3K9me2 on its target genes. Since over-expression of G9a inhibited p21 and Rb1 

expression during differentiation, we checked if G9a mediates repression on both 

these promoters. Chromatin immunoprecipitation assay was performed with pBabe 

and pBabe-G9a cells under both proliferation (D0) and differentiation (D1) 

conditions.  Cells were fixed using formaldehyde and lysed using SDS buffer.  

Lysates were subjected to chromatin immunoprecipitation assay using anti-

H3K9me2 antibody. A higher level of H3K9me2 enrichment on p21 and Rb1 

promoters was seen in pBabe-G9a cells compared to control cells (Fig 3.6.A & B). 

This result confirms that G9a mediates repressive marks on p21 and Rb1 promoters 

and inhibits their expression during cell cycle exit.    
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Figure 3.6 G9a mediates repressive H3K9me2 on p21 and Rb1 promoters. (A 
& B) ChIP assay was performed in pBabe and pBabe-G9a cells under proliferation 
day 0 (D0) and differentiation day 1 (D1) conditions. H3K9me2 enrichment was 
analyzed at the p21 and Rb1 promoters. Error bars indicate mean ± SD. ** indicates 
p-value <0.01, * indicates p-value <0.05 
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3.7 p21 and Rb1 rescue differentiation inhibition in G9a over 
expressing cells 
 

Since G9a over expression inhibited both p21 and Rb1 required for cell cycle exit, 

we questioned if over expression of p21 or Rb1 could rescue the differentiation 

defect imposed by G9a. To this end, we performed a rescue experiment by 

transfecting p21 and Rb1 expression vector in control and pBabe-G9a cells (Fig 

3.7A).  Cells were differentiated for indicated time points and protein lysate was 

analyzed by western blot.  Consistent with our previous results (Ling et al., 2012b), 

G9a over expression inhibited differentiation.  p21 and Rb1 over expressing cells 

showed increased expression of differentiation markers compared to pBabe-G9a 

cells as evidenced by higher myogenin and troponin-T expression (Fig 3.7B).  

 We also performed immunofluorescence assay with MHC antibody which is 

expressed in differentiated myotubes. Consistent with the above results we found 

higher MHC positive myotubes in p21 and Rb1 transfected cells compared to 

pBabe-G9a cells (Fig 3.7C). Further, myogenic index was higher in p21 and Rb1 

transfected cells compared to pBabe-G9a cells (Fig 3.7D).   

Overall, all these results confirm the role of G9a in regulating irreversible cell cycle 

exit during myogenic differentiation. G9a inhibits p21 and Rb1 expression required 

for cell cycle exit and thus G9a acts as a master regulator of muscle differentiation 

program by exerting an additional layer of control over myoblast differentiation 

through regulation of cell cycle exit.     

 

 



82 
 

 
 

 
 
 
 
Figure 3.7 A&B p21 and Rb1 rescue differentiation inhibition in G9a over 
expressing cells (A) Flag-p21 and Flag-Rb1 over expression in control and G9a 
over expressing cells was checked using western blot. (B) pBabe and pBabe-G9a 
cells were differentiated for 0 to 24hrs and lysates were analyzed for myogenin and 
troponin-T by western blot.  β-actin was used as internal control.     
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Figure 3.7 C&D p21 and Rb1 rescue differentiation inhibition in G9a 
overexpressing cells (C) pBabe, pBabe-G9a and pBabe-G9a cells transfected with 
p21 and Rb1 were differentiated for 0-36hrs and immunostained with myosin heavy 
chain antibody. (D) Reduction in myogenic index was observed in G9a over 
expressing cells whereas myogenic differentiation rescue was observed in cells 
transfected with p21 and Rb1. Error bars indicate mean ± SD. * indicates p-value 
<0.05  
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3.8 Role of G9a in activating E2F1 target gene expression  
 

From the microarray results, we also found a cluster of cell cycle genes that were 

significantly down regulated upon G9a knockdown (Fig 3.8). Interestingly, most of 

these genes are E2F1 targets that are required for proliferation of cells. Although 

G9a is widely regarded as repressor of gene expression, emerging evidence 

suggests that G9a could act as an activator of gene expression as well. However, 

activator function of G9a is known to be independent of its methyltransferase 

activity (Bittencourt et al., 2012).  Since G9a promotes proliferation of cells, we 

determined whether G9a directly activates expression of these E2F1 target genes, 

or indirectly regulates their expression.  

 

Figure 3.8 Role of G9a in activating E2F1 target gene expression. (A) List of 
G9a target genes involved in differentiation and cell cycle control. Highlighted box 
indicates down regulated cell cycle genes. 
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3.8.1 G9a promotes E2F1 target gene expression  
 

pBabe and pBabe-G9a cells were differentiated for indicated time points and 

protein lysates were analyzed by western blot for E2F1 target gene expression. We 

found that the expression of Cyclins such as CyclinD1 and CyclinE were higher in 

G9a over expressing cells and sustained during differentiation (Fig 3.8.1A&B). 

Moreover, Rb1 was hyper phosphorylated in G9a over expressing cells which could 

in turn free E2F1. Thus in G9a over expressing cells, E2F1 would be free to 

transcribe its target genes such as cyclins required for cell proliferation. This 

suggested a positive role for G9a in promoting their expression 

 

Figure 3.8.1 G9a promote E2F1 target gene expression. (A) G9a over expression 
shown in C2C12 cells by western blot. (B) Control and G9a over expressing cells 
were differentiated for 0 to 36hr and protein lysate was analyzed to check Cyclin-
D,-E,-A, Rb1 and Troponin-T by western blot. β-actin was used as internal control. 
(Data provided by Shilpa Rani Shankar) 
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3.8.2 G9a regulation of E2F1 target genes is independent of its 
methyltransferase activity 
 

Several studies suggest that activator function of G9a is independent of its 

methyltransferase activity. Therefore, we inhibited endogenous methyltransferase 

activity of G9a and checked its effect on E2F1 target gene expression. RNA was 

isolated from mouse primary myoblasts treated with UNC0638 or DMSO, and was 

analyzed for E2F1 target gene expression. Interestingly, we found no significant 

change in the expression of E2F1 target genes upon UNC0638 treatment (Fig 

3.8.2A). However, unlike its effect on E2F1 target genes, the expression of MyoD 

target genes, p21 and Rb1, were upregulated in UNC0638 treated cells (Fig 3.8.2 

B).   

Next, we checked effect of UNC0638 treatment on CyclinD1 protein expression. 

C2C12 cells were differentiated with or without UNC0638 for indicated time points 

and protein lysates were analyzed for CyclinD1 expression. Consistent with the 

mRNA results, no change in the expression of CyclinD1 upon UNC0638 treatment 

(Fig 3.8.2C). During proliferation, hyper phosphorylated Rb1 levels remained 

unchanged, whereas consistent with earlier results, the hypo phosphorylated form 

of Rb1 increased during differentiation. These results suggest that G9a regulation 

of E2F1 target genes is independent of its methyltransferase activity.  
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Figure 3.8.2 G9a regulation of E2F1 target genes is independent of its 
methyltransferase activity (A) CyclinD1,DHFR and CyclinE mRNA expression 
was analyzed by qRT-PCR in control and UNC0638 treated primary myoblasts. (B) 
p21 and Rb1 expression analyzed by qRT-PCR (C) C2C12 cells were treated with 
either DMSO or UNC0638 (0.25um) and differentiated for 0-36hrs.  Protein lysate 
was analyzed for CyclinD1, pRb S780, total Rb and Troponin-T by western blot. β-
actin was used as internal control. Error bars indicate mean ± SD. *** indicates p-
value <0.001, * indicates p-value <0.05 
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3.9 G9a does not mediate H3K9me2 on E2F1 target genes  
 

Since the activator function of G9a does not involve its methyltransferase activity 

and also the fact that inhibition of G9a activity did not affect E2F1 target gene 

expression, we looked at the H3K9me2 levels at the promoters of E2F1 target genes 

in G9a over expressing cells. We performed chromatin immunoprecipitation with 

pBabe and pBabe-G9a cells and looked at G9a occupancy as well as repressive 

H3K9me2 on the promoter of CyclinD1, CyclinE (involved in cell cycle control) 

and DHFR (involved in DNA synthesis). If G9a activates E2F1 target gene 

expression, we would expect G9a occupancy on these promoters with no 

corresponding repressive H3K9me2. If G9a indirectly regulates E2F1 target genes, 

then we do not expect to see G9a occupancy on their promoters.  As expected, 

increased G9a occupancy on E2F1 target gene promoters was seen in pBabe-G9a 

cells compared to control cells. However, there was no corresponding increase in 

H3K9me2 enrichment (Fig 3.9A, B & C). In contrast, G9a occupancy was 

correlated with increased H3K9me2 enrichment on MyoD target gene promoters 

(Fig 3.9 D & E).  These results indicate that G9a may actively promote E2F1 target 

genes by acting as an activator of gene expression. 
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Figure 3.9 G9a does not mediate repressive H3K9me2 on E2F1 target gene 
promoters. ChIP assay was performed in pBabe and pBabe-G9a cells with G9a 
and H3K9me2 antibody. (A,B & C) G9a occupancy and corresponding H3K9me2 
enrichment was analyzed at the CyclinD1, CyclinE and DHFR promoters, and (D 
& E) at p21 and Rb1 promoters. Error bars indicate mean ± SD. ** indicates p-
value <0.01, * indicates p-value <0.05 

 

  



91 
 

3.10 Inhibition of G9a methyltransferase activity does not alter H3K9me2 on 
E2F1 target promoters 
 

To further test the methyltransferase independent role of G9a in activating E2F1 

target genes, we performed ChIP assays with cells treated with either DMSO or 

UNC0638 to block endogenous methyltransferase activity of G9a. If G9a functions 

in a methyltransferase independent manner, we would expect no change in 

H3K9me2 levels on E2F1 target gene promoters in UNC0638 treated cells, whereas 

a reduction in repression should be apparent on MyoD target gene promoters.  

Consistent with our hypothesis, UNC0638 treatment did not significantly alter 

H3K9me2 levels on CyclinD1 and DHFR promoters (Fig 3.10A & B).  However 

G9a repression on MyoD target genes p21 and Rb1 was significantly reduced upon 

UNC0638. This result indicates that G9a functions in methyltransferase 

independent manner while regulating E2F1 target genes.  
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Figure 3.10 Inhibition of G9a methyltransferase activity does not alter 
H3K9me2 on E2F1 target promoters. ChIP assays were performed in C2C12 
cells treated with either DMSO or UNC0638 with H3K9me2 antibody. (A & B) No 
significant changes in H3K9me2 enrichment on CyclinD1 and DHFR promoters (C 
& D) Significant down regulation of H3K9me2 on both the p21 and Rb1 promoters.  
Error bars indicate mean ± SD. * indicates p-value <0.05 (Data provided by Ow Jin 
Rong)  
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3.11 G9a occupancy along with E2F1 and P/CAF correlated with increased 
H3K9ac on E2F1 target promoters 
 

Next, we examined if G9a occupancy on E2F1 target promoters is associated with 

H3K9ac (activation mark). To this end, we performed chromatin 

immunoprecipitation assay with G9a, E2F1 and P/CAF antibodies in pBabe and 

pBabe-G9a cells. Consistent with our earlier results we found G9a occupancy on 

E2F1 target genes. Furthermore, E2F1 and P/CAF occupancy was also evident on 

E2F1 target genes (Fig 3.11 A&B). Interestingly, G9a occupancy along with P/CAF 

correlated with acetylation status of E2F1 target genes. We found higher H3K9 

acetylation, a mark of transcriptional activation, on E2F1 target promoters in G9a 

over expressing cells compared to control cells. Therefore, our results suggested 

that in myoblasts, G9a could be in complex with P/CAF on E2F1 target genes and 

help in promoting their expression 
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Figure 3.11 G9a occupancy along with E2F1 correlated with increased 
H3K9ac on E2F1 target promoters. ChIP assay was performed in control and 
G9a over expressing cells with anti G9a, anti E2F1, anti P/CAF and anti H3K9ac 
antibodies. (A & B) H3K9ac enrichment was apparent along with G9a, E2F1 and 
P/CAF occupancy on both CyclinD1 and DHFR promoters. Error bars indicate 
mean ± SD. * indicates p-value <0.05 



96 
 

3.12 G9a interacting partners in myoblasts 
 

In myoblasts, MyoD dependent genes are silenced whereas E2F1 dependent genes 

are activated. MyoD is known to be in association with repressor complex including 

Suv39h1, HDAC1 and G9a on muscle promoters leading to the block in 

differentiation. In contrast, E2F1 is associated with activator complex including 

p300 and PCAF on cell cycle gene promoters (Fig 1.7). 

3.12.1 G9a complexes with E2F1 and P/CAF in myoblasts  
 

Since we found G9a occupancy on E2F1 target gene promoters, we would expect 

G9a to be in complex along with E2F1 and P/CAF in proliferating myoblasts. To 

examine this, we performed endogenous co-immunoprecipitation assay using 

nuclear extracts from proliferating myoblasts. Co-immunoprecipitation was 

performed using anti-G9a antibody to check for its interaction with E2F1 and 

P/CAF. Rabbit IgG pulldown was used as negative control. We found G9a 

interaction with E2F1 and P/CAF (Fig 3.12.1A).  Alternatively, we over expressed 

Flag-G9a in C2C12 cells and performed Co-IP with anti-Flag antibody.  From the 

western blot analysis, we found G9a interaction with E2F1 and P/CAF (Fig 

3.12.1B).  Similarly, we also checked if G9a is present in a repressor complex with 

MyoD. We performed endogenous Co-IP with MyoD antibody. Consistent with the 

earlier studies, we found MyoD interaction with G9a and HDAC (Fig 3.12.1C).   

Taken together our results suggest that G9a is in distinct complex with E2F1 and 

MyoD in myoblasts and this could potentially explain G9a role as both an activator 

and repressor of gene expression.   
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Figure 3.12.1 G9a complex with E2F1 and P/CAF in myoblasts (A) G9a 
pulldown performed with anti-G9a antibody in C2C12 nuclear extracts. IgG pull 
down was performed as control. Interaction with E2F1 and P/CAF was confirmed 
by western blot. (B) Pull down was performed with Flag beads using lysate from 
Flag-G9a over expressed C2C12 cells and interaction with E2F1 and P/CAF was 
checked by western blot. (C) Endogenous MyoD pull down was performed and 
interaction with HDAC and G9a was checked using western blot.  
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3.13 G9a over expressing cells display higher CyclinD1 promoter activity 
 

We found G9a in complex with E2F1 and P/CAF and could possibly act as activator 

of E2F1 target genes. Moreover, from our earlier results G9a overexpressing cells 

displayed hyper phosphorylated Rb1, which results in free E2F1. Therefore, we 

questioned if G9a over expressing cells display enhanced E2F1 activity. To test 

this, we performed luciferase reporter assay with cyclinD1 reporter construct. We 

transfected cyclinD1 luciferase reporter construct into control pBabe and pBabe-

G9a cells. We found that pBabe-G9a cells displayed higher cyclinD1 promoter 

activity compared to control cells (Fig 3.13A). This indicated that G9a over 

expressing cells display higher E2F1 activity. 

 

Figure 3.13A G9a overexpressing cells display higher cyclinD1 promoter 
activity and is E2F1 dependent. (A) Control pBabe and pBabe-G9a cells were 
transfected with pD1luc reporter construct. Luciferase activity was measured using 
dual luciferase reporter system. (Data provided by Ow Jin Rong)    
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 Next, in order to find out if the higher cyclinD1 promoter activity in pBabe-G9a 

cells is E2F1 dependent, we transfected control and G9a over expressing cells with 

either WT cyclinD1 reporter or with point mutation at E2F1 binding site (Fig 

3.13B). Interestingly, we found no significant changes in the activity of mutant 

cyclinD1 reporter (Fig 3.13B). However, consistent with our earlier results WT 

CyclinD1 promoter activity was higher in pBabe-G9a cells.  This confirms that G9a 

over expressing cells display higher E2F1 activity and this is due to free E2F1 in 

pBabe-G9a cells.    

 

 

Figure 3.13B G9a overexpressing cells display higher cyclinD1 promoter 
activity and is E2F1 dependent (B) Sequencing result from wild type pD1luc and 
point mutant at E2F1 binding site constructs.  E2F1 binding site is shown in box 
with mutation. (Point mutant construct was generated by Wang Yaju) 

 

B 
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Figure 3.13C G9a overexpressing cells display higher cyclinD1 promoter 
activity and is E2F1 dependent (C) Control pBabe and pBabe-G9a cells were 
transfected with either WT or point mutant (at E2F1 binding site) pD1luc reporter 
construct. Luciferase activity was measured using dual luciferase reporter system. 
(Data provided by Ow Jin Rong) 

 

  

C 
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3.14 Myoblasts from G9a knockout mice display reduced proliferation and 
decreased expression of proliferation genes 

 

Finally, to validate the physiological in vivo relevance of our findings, we isolated 

myoblasts from G9a knockout mice. Since G9a knockout is embryonically lethal 

(Tachibana et al., 2002), G9a was knocked out specifically in muscle satellite cells 

of G9afl/fl Pax7Cre ERT2 /+ mice using tamoxifen.  As a control same genotype mice 

were injected with corn oil (vehicle). Primary myoblasts was isolated and cultured 

from control (vehicle) and tamoxifen treated mice (Fig 3.14A). Pure myoblasts 

population were obtained by pre-plating technique and verified using PAX7 

staining.  Almost 97% of cells were positive for PAX7 (Fig 3.14B).  Next, G9a 

knockout was confirmed by performing real time PCR using RNA isolated from 

control and G9a null myoblasts (Fig 3.14C). These cells were used for further 

experiments. It is important to note that significant amount of cell death was 

observed in G9a null myoblasts. This observation is consistent with the other 

reports indicating apoptosis in G9a-/- embryonic stem cells (Tachibana et al., 2002) 
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Figure 3.14A Myoblasts from G9a knockout mice display reduced proliferation and 
decreased expression of proliferation genes (A) Schematic showing tamoxifen 
injection regime. Mice with genotypes G9afl/fl; Pax7Cre ERT2/+ were injected with 
tamoxifen (1mg/10g of mice) for 5 consecutive days and muscles were harvested 
on 15th day.  Control (ct) mice with vehicle control (corn oil). Myoblasts were 
isolated from both control and tamoxifen injected mice.  Below panel shows 
genotype PCR results for G9a conditional knockout mice. Mice (Test mice N=1) 
with genotype G9afl/fl Pax7cre/+were taken for the experiments. First 3 lanes are 
positive controls are shown for G9afl/fl and fifth lane for Pax7Cre are shown.   

Controls CT 
Test mice 

N=1 
Test mice 

N=1 
DNA ladder 
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Figure 3.14 B&C. Myoblasts from G9a knockout mice display reduced proliferation 
and decreased expression of proliferation genes (B) Pax7 staining for primary 
myoblasts isolated from G9a fl/fl; Pax7 Cre ERT2/+ mice.  (C) G9a mRNA levels 
in control (Ct) and G9a null myoblasts (G9a-/-) by real time PCR.  

 

To validate G9a role in proliferation, BrdU incorporation assay was performed with 

BrdU pulsed control and G9a null myoblasts. Consistent with our knockdown 

results, G9a null myoblasts displayed reduced proliferation as evidenced by lesser 

BrdU incorporating cells (Fig 3.14D).   

Further, control and G9a null myoblasts were analyzed for the expression of 

proliferation and differentiation genes. We found up regulation of p21 and Rb1 

while cyclinD1, DHFR and CyclinE expression was down regulated (Fig 3.14E). 

These results recapitulate the findings from the G9a knockdown studies indicating 

the importance of G9a for proliferation and cell cycle exit of myoblasts.  However, 

since these results are from single mice (N=1), these experiments have to be 

validated with G9a null myoblasts isolated from a few more G9a conditional 

knockout mice.  
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Figure 3.14 D&E. Myoblasts from G9a knockout mice display reduced proliferation 
and decreased expression of proliferation genes (D) BrdU positive cells were 
counted in control (Ct) and G9a null myoblasts (G9a-/-) (N=1). Atleast 500 cells 
were counted.  BrdU and DAPI staining of cells from control and G9a-/- myoblasts.  
(E) mRNA levels of p21, Rb1, CyclinD1, DHFR and CyclinE were analyzed using 
real time PCR.   
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4 Discussion 
 

Previous studies from our lab have identified a role for G9a in negatively regulating 

myogenic differentiation (Ling et al., 2012a, 2012b). To further understand the 

mechanisms by which G9a regulates muscle differentiation, in the present thesis 

work, we first aimed to identify the genome wide targets of G9a in skeletal muscle 

cells. To this end, we performed global gene expression analysis using microarray. 

Interestingly, we found that several cell cycle control genes were de-regulated in 

G9a knockdown cells (Fig 3.2.1). This prompted us to find out if G9a plays a role 

in proliferation of cells. Using gain-of-function and loss-of-function studies G9a 

was found to promote proliferation of cells (Fig 3.4.1 - 3.4.4).  Among the cell cycle 

target genes that we identified from the microarray, MyoD target genes (p21 and 

RB1) required for cell cycle exit were up regulated suggesting that G9a represses 

their expression. On the other hand, E2F1 target genes (cyclins, DHFR, TK) 

required for proliferation were significantly down regulated indicating that G9a 

may directly or indirectly regulate their expression. We therefore examined the 

mechanisms by which G9a differentially regulates their expression. G9a mediated 

repressive H3K9me2 on both p21 and Rb1 promoters in a methyltransferase-

dependent manner (Fig 3.6). More importantly, G9a-mediated inhibition of 

differentiation was rescued by re-expression of p21 and Rb1 indicating that 

repression of cell cycle exit contributes to myogenic differentiation defect imposed 

by G9a (Fig 3.7). 
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Next, we examined if G9a actively promotes the expression of E2F1 target genes 

that are important for cell cycle progression. G9a overexpression increased the 

expression of E2F1 target genes (Fig 3.8.1). Interestingly, G9a occupancy was not 

correlated with repressive histone methylation marks on E2F1-target genes unlike 

on p21 and Rb1 promoters (Fig 3.9). Interestingly, G9a occupancy was associated 

with H3K9ac marks instead (Fig 3.11). Furthermore, protein-protein interaction 

studies indicated that G9a is in complex with P/CAF and E2F1 in myoblasts, which 

could possibly explain G9a association with H3K9ac marks on E2F1 target 

promoters (Fig 3.12.1). Consistently, we also found that G9a overexpressing cells 

displayed higher E2F1-dependent CyclinD1 promoter activity than control cells 

(Fig 3.13). Finally, experiments with G9a null myoblasts isolated from G9a 

conditional knockout mice recapitulated our findings ex vivo (Fig 3.14). G9a null 

myoblasts displayed reduced proliferation. Cell cycle exit genes were upregulated 

and E2F1 target genes were down regulated validating our in vitro findings. 

Overall, our data support a model in which G9a both promotes proliferation and 

prevents cell cycle exit of muscle cells to block differentiation.  

4.1 G9a orchestration of myoblast cell cycle 
 

Our results demonstrate that knockdown of G9a reduced proliferation whereas it’s 

over expression increased proliferation of cells. This finding is consistent with the 

published studies which suggest that inhibition of G9a activity reduces proliferation 

of smooth muscle cells (Yang et al., 2012). siG9a cells up regulated p21 and Rb1 

expression required for cell cycle exit while down regulated E2F1 target genes 

required for proliferation. Hence we went on to examine the possibilities of G9a 
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regulation of muscle cell cycle through a) indirectly promoting proliferation by 

repressing the repressors p21 and Rb1 thus avoiding cell cycle exit or b) directly 

promoting the expression on E2F1 target genes required for proliferation.   

4.1.1 G9a regulation of cell cycle exit genes  
 

Several chromatin modifiers are shown to inhibit myogenic differentiation. For 

instance Suv39h1 and EZH2 are known to mediate repressive marks on early and 

late muscle gene promoters respectively and inhibit their expression (Caretti et al., 

2004; Mal, 2006).  However, G9a not only mediates repressive marks on myogenin 

promoter but also methylates MyoD and inhibits its transcriptional activity (Ling 

et al., 2012b). Cell cycle exit is a pre-requisite step during myogenic differentiation. 

In this study we provide evidence for a role of G9a in inhibiting MyoD mediated 

irreversible cell cycle exit. G9a mediates H3K9me2 on p21 and Rb1 promoters. 

This finding is consistent with the studies in other cell lines indicating the of 

involvement of G9a in suppressing p21 expression (Kim et al., 2009; Nishio and 

Walsh, 2004). In our ChIP assays although we amplified the MyoD binding regions 

on both p21 and Rb1 promoters, it would be meaningful to observe MyoD binding 

on their promoters upon G9a over expression.  

Up regulation of p21 during differentiation also help to reduce kinase activity of 

Cyclins/CDK complexes and as a consequence, Rb1 is hypo phosphorylated 

leading to the inhibition of cell cycle progression (Guo et al., 1995). p21 and hypo 

phosphorylated Rb1 are not only required to block proliferation, but both these 

proteins play an important role in maintaining the permanent cell cycle arrest of 

myotubes. In other words, p21 and Rb1 are involved in maintenance of post mitotic 
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state of myotubes (Mal et al., 2000). Unlike quiescent cells, differentiated myotubes 

neither can enter cell cycle nor initiate DNA synthesis upon growth factor 

stimulation. This is achieved by high expression of p21 and hypo phosphorylated 

Rb1. Although Rb1 null myoblasts differentiate, they cannot maintain permanent 

exit state. Higher frequency of apoptosis has been observed in Rb1 null myotubes 

due to endoreduplication (Zacksenhaus et al., 1996).  Absence of both p21 and Rb1 

has been shown to be capable of initiating DNA synthesis in myotubes (Andrés and 

Walsh, 1996). Indeed inactivation of p21 and Rb1 by E1A proteins leads to 

synthesis of DNA and restoration of Cyclin kinases activity in myotubes (Mal et 

al., 2000). Moreover, Suv39h1 is shown to be involved in permanent silencing 

E2F1 target genes in differentiated myoblasts (Ait-Si-Ali et al., 2004). 

Differentiated cells express low levels CyclinD1, CyclinA and DHFR. Given the 

low expression of G9a during differentiation it is unlikely that G9a is involved in 

suppressing the expression of proliferation genes. Our findings demonstrate that 

G9a overexpression promotes expression of E2F1 target genes. However, the 

possibility of G9a over expressing myotubes re-synthesizing DNA upon addition 

of growth media needs to be checked. It could be possible that G9a over expressing 

cells may not be able to maintain the post mitotic arrest. 

It is well established that, in skeletal muscle cells, p21 up regulation is dependent 

on MyoD rather than p53 (Halevy et al., 1995). Since p21 expression is MyoD 

dependent and the fact that G9a restrains MyoD activity (Ling et al., 2012b), it is 

possible that reduced p21 expression in G9a over expressing cells might be a result 

of reduced MyoD activity. Luciferase reporter experiments involving mutant 
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MyoD (K104R) which is resistant to MyoD methylation and p21 reporter construct 

would help to us in better understanding the underlying mechanisms.  Overall, we 

conclude that G9a acts as a master regulator controlling myogenic differentiation 

program by controlling proliferation and cell cycle exit of myoblasts in addition to 

its role in suppressing muscle specific genes.  

 4.1.2 G9a regulation of E2F1 target genes    

In order to find out if G9a actively promotes the expression of proliferation genes, 

we examined G9a occupancy on E2F1 target gene promoters. Remarkably, unlike 

p21 and Rb1 promoters, G9a occupancy was not correlated with repressive 

H3K9me2 marks on E2F1-target genes. These findings were particularly 

interesting because G9a is widely regarded as a repressor, nonetheless in this case 

its binding was not associated with repression. These results are consistent with the 

observation from other groups that H3K9me2 mediated by Suv39h1 was apparent 

on Rb/E2F1 target promoters in differentiating cells but not in proliferating cells 

(Ait-Si-Ali et al., 2004). Therefore, our findings prompted us to investigate if G9a 

could function as an activator of gene expression.  

Increasing number of evidences suggest G9a can act as an activator of gene 

expression and this is independent of its SET domain activity (Bittencourt et al., 

2012). Therefore, to substantiate this possibility, we pharmacologically blocked 

endogenous methyltransferase activity of G9a and examined the expression of 

E2F1 target genes. Since activator function of G9a is independent of 

methyltransferase activity, we expected no changes in the expression of 

proliferation genes. Consistent with our hypothesis we found no apparent changes 
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in the mRNA levels of E2F1 target genes. In addition, unlike on p21 and Rb1 

promoters, H3K9me2 on E2F1 target promoters were unaltered upon inhibition of 

G9a activity. Intriguingly, G9a occupancy was associated with H3K9ac marks, 

which are generally associated with activation of gene expression. A recent study 

indicated that G9a can interact with acetyl-transferase P/CAF (Oh et al., 2014). 

Therefore, we looked into the possibility of G9a interaction with activators.   

From our Co-IP interaction studies it appears that G9a is in complex with P/CAF 

and E2F1 in myoblasts and this could possibly explain G9a association with 

H3K9ac marks on E2F1 target promoters. Our results indicate that G9a is in 

complex with P/CAF, however the possibility of other co-activators such as p300 

and CARM1 needs to be investigated. Further ChIP experiments testing the 

occupancy of co-activators in the absence of G9a (siG9a cells) would give more 

insights on the involvement of G9a in recruiting co-activators to the target gene 

promoters.  

 In addition, from luciferase experiments we found that G9a overexpressing cells 

displayed higher activity of CyclinD1 promoter and this is E2F1 dependent. 

Additional luciferase experiments involving other target genes promoters such as 

DHFR and CyclinE will help substantiate the G9a role as an activator of E2F1 

target genes.    
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4.2 G9a promotes proliferation and inhibits cell cycle exit of myoblasts: 
implications in rhabdomyosarcoma   
 

Given its role in proliferation of cells, it is not surprising to find several publications 

reporting G9a over expression in various cancers (Chen et al., 2010). 

Rhabdomyosarcoma is a common pediatric sarcoma arising due to unlimited 

proliferation of myogenic precursor cells which fail to undergo cell cycle exit 

required for myogenic differentiation (Keller and Guttridge, 2013). Data from our 

studies indicate that G9a over expression increased proliferation of cells and 

inhibited p21 and Rb1 expression required for cell cycle exit. Therefore, it is 

tempting to speculate the involvement of G9a in conditions such as 

rhabdomyosarcoma where cell cycle is de-regulated. It will be meaningful to test if 

G9a is indeed deregulated in rhabdomyosarcoma and whether it can be targeted as 

an advanced therapeutic molecule to treat these cancers.   
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4.3 Future studies and conclusion 
 

Skeletal muscle has a remarkable ability to regenerate. During muscle regeneration 

the quiescent satellite cells are activated forming proliferating myoblasts which 

subsequently exit cell cycle and fuses to repair the injured myofibers. Our in vitro 

findings established a role for G9a in proliferation and cell cycle exit, therefore it 

is sensible to explore its role in skeletal muscle regeneration in vivo. We predict a 

possible role for G9a during muscle regeneration. Since we have G9a conditional 

knockout mice, it would be meaningful to test if G9a null satellite cells are able to 

activate and proliferate during muscle regeneration. It is noteworthy that G9a is 

found as a hetero-dimer with another lysine methyltransferase GLP, yet they are 

also known to play different roles in a number of tissue types. Either G9a/GLP both 

work together to regulate the same target genes, or they may have different cellular 

targets thus play non-overlapping cellular functions. It is possible that GLP may 

compensate for the loss of G9a in G9a conditional knockout mice. Further work 

needs to be done to understand the role of GLP in regulating muscle differentiation.  

Along similar lines, it will be interesting to explore if G9a has a role in muscle 

pathologies such as Duchene muscular dystrophy (DMD) and its mice model mdx 

where muscle is undergoing constant regeneration and degeneration process. 

Muscle integrity is compromised in muscular dystrophies due to loss of several 

genes involved in formation of sarcomere structure and maintenance of structural 

integrity. From our microarray results Myozenin (Myoz2), Myomesin (Myom3) 

and Sarcoglycans (Sgc-α,-β,-γ) genes which are involved in muscle structural 

integrity maintenance were found to be direct targets of G9a. It is well established 
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that most of these genes are driven by MEF2 transcription factors and de-regulation 

of their expression is implicated in DMD. Hence G9a could be involved in 

repression of their expression in case of muscular dystrophies.  It is also possible 

that G9a regulates MEF2 dependent transcription of these genes. Indeed, recent 

evidence suggest that G9a methylates MEF2 and regulates its activity (Choi et al., 

2014).  

Furthermore, from the microarray results calcium signaling was found to be one of 

the top pathways altered upon G9a knockdown. Calcium binding protein 

Calcequestrin 2 (Casq2), calcium release channel Ryanodine receptor1 (Ryr1) and 

calcium transporting ATPase (Atp2a1) which are involved in maintaining calcium 

homeostasis in muscle cells were found to be significantly upregulated in siG9a 

cells. Altered expression of these genes is associated with muscle pathologies 

including DMD, where intracellular calcium is overloaded in the muscle (Kunert-

Keil et al., 2014). Taken together our findings implicate a potential role of G9a in 

muscle pathologies where calcium signaling and muscle integrity is affected. 
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4.4 Conclusion 
 

Figure 4.4 Schematic model summarizing the mechanisms by which G9a 
regulates proliferation and cell cycle exit. G9a is present in activator complex 
and promotes proliferation of cells and also inhibits cell cycle exit by repressing 
p21 and Rb1.  

 

My thesis work provides evidence for a role of G9a in promoting proliferation of 

cells and inhibiting cells from exiting the cell cycle (Fig 4.4). Apart from G9a, other 

epigenetic modifiers could also be involved in regulating cell cycle in myoblasts. 

In the future, it will be interesting to examine by ChiP-Seq global binding of G9a; 

as well as identification of its interacting partners in myoblasts by mass 

spectrometry. Our findings indicate that G9a exists in activator complex as well as 

repressor complex in myoblasts, however, more work needs to be done to 

completely understand G9a functioning as an activator driving E2F1 target gene 

expression. Also, increasing evidence suggest possible role of epigenetic modifiers 

in pathologies involving deregulation of cell cycle such as cancer. I believe that my 

work sheds new light and identified mechanisms by which G9a regulates the cell 

cycle in muscle cells. These studies raise the possibility that its expression may be 

altered in myopathies associated with an imbalance of proliferation and 

differentiation of muscle precursor cells.   
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