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SUMMARY 

 

Neutrophils release chromatin fibres into the extracellular space upon 

activation by certain stimuli via an oxidative process. Structures known as 

neutrophil extracellular traps (NETs) are embedded with histones and other 

neutrophil granule proteins, and can entrap and kill a wide range of micro-

organisms. Since their discovery, NETs have been implicated in various 

conditions including severe influenza pneumonia where NETs are extensively 

induced in the lungs of mice infected with influenza A virus. Murine models were 

employed to analyse the extent of NETs formation (NETosis) during primary 

influenza pneumonia and secondary pneumococcal pneumonia. Compared to 

primary lethal influenza challenge, secondary pneumococcal infection induced 

greater NETosis in murine lungs. Although significantly higher in number, these 

NETs failed to curtail bacterial replication in the lungs. In vitro analyses revealed 

the inability of NETs (formed by stimulation with bronchoalveolar lavage fluid 

from influenza-infected mice) to kill Streptococcus pneumoniae even though 

significant bacterial entrapment dependent on multiplicity of infection was 

observed. Many degraded clusters of NETs were noticed in the lungs of dual-

infected mice, which may be attributed to endonuclease generated by                     

S. pneumoniae. NETs also lacked antibacterial activity against non-nuclease 

producing Klebsiella pneumoniae, thus alluding to other mechanisms of evasion 

such as bacterial capsule production. However, NETs exhibited significant anti-

fungal activity against Candida albicans, thus retaining some anti-microbial 
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defence mechanisms. Further, the differences between certain serotypes of                  

S. pneumoniae in generating NETs were compared in murine models of both 

primary and secondary pneumococcal pneumonia. Serotypes 19F, 3 and 4 were 

compared for their induction of NETosis and severity of pulmonary pathology. 

The role of capsule in the pathogenesis of NETosis was also evaluated using a 

capsule mutant of serotype 4. Clinically invasive strains (i.e. serotypes 3 and 4) 

possessed larger capsules and induced the most abundant NETs, lung pathology 

and inflammatory response compared to less invasive strain 19F. The serotype 4 

capsule mutant failed to replicate in murine lungs, and generated significantly less 

NETs and lower pro-inflammatory cytokine response than its wild-type 

counterpart. These findings highlight the importance of NETs in the overall 

pathogenesis of influenza and pneumococcal pneumonia. 

Obesity in humans confers greater susceptibility to influenza-related 

complications. Hence, the effect of adiposity on NETs formation in the lungs of 

influenza-infected mice was investigated. Mice were fed with high or low fat diets 

for 18 weeks, following which they were infected with a lethal challenge of 

influenza virus. NETs and viral titres were marginally enhanced in obese mice, 

thereby implicating adiposity and excessive dietary fat in influencing oxidative-

inflammatory mechanisms such as NETosis during influenza pneumonia.  

NETosis is an oxidative process, and NETs can inflict damage to 

surrounding tissues. The effects of chemical inhibition of NADPH oxidase on 

lung injury in influenza-infected mice were also studied. Diphenyleneiodonium 

chloride (DPI) inhibits reactive oxygen species (ROS) by acting on flavoenzymes. 
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DPI dissolved in 1% DMSO was administered either daily or on alternate days to 

mice challenged with low and high lethal doses of influenza virus, and their 

disease progression was monitored. Some reduction in the activity of redox 

enzymes such as myeloperoxidase and superoxide dismutase was observed with 

DPI treatment, but was not significant compared with the control group treated 

with 1% DMSO. The concentration of hydrogen peroxide was also similar 

between DPI and DMSO treatment groups which showed ROS reduction. For 

both treatment groups, there was no significant difference in body weight loss, 

survival patterns and lung histopathology of mice, suggesting that ROS reduction 

alone could not positively influence the outcome of influenza pneumonia. 

The findings of these studies highlight the important contributions of 

NETs to host-pathogen interactions during the pathogenesis of influenza and 

pneumococcal pneumonia. 
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CHAPTER ONE 

 INTRODUCTION AND LITERATURE REVIEW 

 

1.1 INFLUENZA – A historical perspective 

Influenza, commonly known as ‘flu’, has been around for many centuries.  

The exact origin of influenza is very hard to trace given the similarity of its 

symptoms to many other diseases like dengue and typhoid fever. It has been 

speculated that influenza has zoonotic origins and it probably jumped species 

when humans started domesticating birds and animals (reviewed in (Hollenbeck, 

2005)). The modern history of influenza begins around the early 20
th

 century with 

the occurrence of the deadly ‘Spanish flu’ during the First World War which 

spearheaded the research in this area. In 1918, J.S. Koen, a veterinarian in the 

United States of America (U.S.A. or U.S.) first observed the occurrence of a 

similar disease in pigs; later believed to be the same as ‘Spanish flu’ (reviewed in 

(Hollenbeck, 2005)).  

Influenza research took a giant leap in 1931 when Richard E. Shope 

successfully demonstrated the transmission of virus between swines by 

inoculating the mucous and lung filtrate of an infected swine into healthy swines 

that reproduced similar symptoms (Shope, 1931). Shope also isolated a bacterium, 

Haemophilus influenzae suis, from most of the cases and successfully 

demonstrated that injecting the virus and bacterium together results in a severe 

infection. This was the first ever demonstration of virus-bacterium co-operation in 



2 
 

a disease. Following Shope’s methodology, Christopher H. Andrewes, Wilson 

Smith and Patrick Laidlaw first isolated the influenza virus from humans in 1933. 

The work, published in The Lancet, used the nasal washings of an influenza-

infected researcher to demonstrate the occurrence of same symptoms in ferrets 

(Smith et al., 1933). These experiments clearly established the causative organism 

to be a virus. It overthrew the earlier belief that influenza is caused by a bacterium 

mostly assumed as ‘Pfeiffer’s bacillus’.  

Later occurrences of influenza pandemics have been sporadic and less severe, 

most likely due to better awareness and technology. The most recent worldwide 

outbreak happened in 2009, also dubbed as ‘Swine flu’. The virus was of the same 

lineage as the ‘Spanish flu’, however it had a lower mortality rate compared to the 

latter (reviewed in (Morens & Taubenberger, 2011; Palese, 2004)).  

1.2 Types of Virus 

Influenza viruses are RNA viruses belonging to three genera of the 

Orthomyxoviridae family (Centers for Disease Control and Prevention (CDC), 

Influenza
1
). The three types differ in the composition of their nucleoproteins (NP) 

and matrix (M1) proteins. Influenza A and B viruses have 8 RNA segments and 

contain at least ten proteins whereas influenza C has 7 RNA segments and 

contains 9 proteins. Another prominent difference is found in the surface 

glycoproteins where types A and B have haemagglutinin (HA) and neuraminidase 

(NA) whereas type C has only haemagglutinin-esterase fusion (HEF) protein 

which has similar function to NA.  
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Influenza A viruses affect humans, mammals like pigs and horses; as well 

as birds. All the known influenza pandemics have been caused by this type. The 

virus is classified into various subtypes based on the HA and NA expressed on its 

surface. There are 18 known HAs and 11 known NAs (CDC, Influenza
1
; Tong et 

al., 2013). The influenza viruses are named according to the virus type, the host of 

origin, geographical origin, strain number, year of isolation and for influenza A 

viruses, their HA and NA antigen description in in parentheses. The detail about 

the host is omitted for human strains, e.g. A/duck/Alberta/35/76 (H1N1) for duck 

origin and A/Puerto Rico (PR)/8/34 (H1N1) for human origin (CDC, Influenza
1
). 

Influenza B viruses are less common than A due to their limited host diversity. 

They infect humans and seals. Due to their limited host diversity and low 

mutation rate (Nobusawa & Sato, 2006), they are not successful in causing 

pandemics. Nevertheless, immunity to influenza B virus can decline over an 

extended period of time when the mutation eventually occurs and hence the 

strains are included in the trivalent and quadrivalent influenza vaccines (CDC, 

Influenza
2
). 

Influenza C viruses are very uncommon among the three types but can cause 

epidemics in humans, pigs and dogs (reviewed in (Muraki & Hongo, 2010)). 

1.3 Pandemics in the history of influenza   

World Health Organization (WHO) describes influenza pandemics on the 

basis of a six-phase criterion (WHO guidelines, 2009, 2013
3,4

). This includes 

phases 1-3 of predominantly animal infections which ranges from no known 
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human infection (phase 1) to known cases of infection in some humans (phase 2) 

and finally if the cases occur in small clusters within one region with no human-

to-human transmission (phase 3). Phase 4 implies increased severity of the 

situation with human-to-human transmission being reported. The danger increases 

dramatically from here with phase 5 implying at least two countries from a single 

WHO region being affected by the same virus and phase 6 implies that the 

infection has spread to more than one continent and might be on its way to 

becoming a ‘global outbreak’.  

Throughout history, the virus has been linked to many outbreaks mostly 

occurring in waves (U.S. Department of Health & Human Services
5
). There are 

no precise data available to attribute influenza as a cause of outbreak prior to the 

1500s; though some historians have speculated influenza to be the cause for many 

outbreaks since 875 CE (reviewed in ((Hollenbeck, 2005)). Scientists believe that 

at least two pandemics occurred near the 16
th

 century between 1485 and 1580 

(reviewed in (Morens & Taubenberger, 2011)). The latter pandemic was the first 

clearly documented pandemic; spreading from Europe to Asia Minor and northern 

Africa. The clinical signs that were taken into consideration were abrupt febrile 

onset, cough and general malaise for at least one week. This also corresponded 

with the European age of exploration that might have resulted in exporting strains 

of the virus to populations with no prior immunity.  

The next two centuries saw the shift of pandemic origin from Europe to Asia. 

In the 18
th

 century, three pandemics occurred from 1729-1730, 1732-1733 and 

1781-1782 (reviewed in (Morens & Taubenberger, 2011)). It followed a 147 year 
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pandemic-free period with no known global spread. The pandemic in 1729 

probably originated in China spreading towards the west through Russia. The 

1781 pandemic was more dramatic and covered both eastern and western 

hemisphere. Most of the affected people were the elderly and pregnant women.  

In the 19
th

 century, two pandemics occurred from 1833-1836 and in 1889, 

both originating in Asia and spreading westwards (reviewed in (Morens & 

Taubenberger, 2011)). From 1889 onwards, incidents of outbreaks have been 

better documented.   

The 20
th

 century saw four pandemics with the first one occurring in 1918 

being the deadliest influenza outbreak in human history (reviewed in (Morens & 

Taubenberger, 2011; Palese, 2004)). No clear origin has been demonstrated 

though the U.S.A., China or France are thought to be potential origins. The 

‘Spanish flu’, caused by a highly virulent H1N1 strain, came in three waves 

during 1918, each time more severe than the previous ones. The unique aspect of 

the ‘Spanish flu’ was that it affected young adults (20-40 years) more compared 

to the elderly (reviewed in (Shanks & Brundage, 2012)). All other pandemics 

mostly affected very young children or older people. It is estimated that some 40-

million deaths could be ascribed to the ‘Spanish flu’. The major cause of mortality 

has been attributed to a cytokine storm which ravaged the host system and to the 

onset of secondary bacterial infections (reviewed in (McAuley et al., 2015; 

Osterholm, 2005; Shanks & Brundage, 2012)). 
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The next pandemic occurred in 1957 originating from Hong Kong (reviewed 

in (Morens & Taubenberger, 2011; Palese, 2004)). Also known as the ‘Asian flu’, 

it was caused by the H2N2 strain of virus and spread across East Asia, the Indian 

subcontinent, the Middle East and eventually to Europe and the U.S.A. An 

estimated one to four million deaths occurred during this pandemic.  

The 1968 ‘Hong Kong flu’ had comparatively lower morbidity and mortality 

(reviewed in (Morens & Taubenberger, 2011; Palese, 2004)). The causative strain 

arose due to an antigenic shift of the 1957 H2N2 virus. The new H3N2 virus 

differed only in the haemagglutinin and PB1 region while the neuraminidase was 

pretty well-conserved (Kawaoka et al., 1989). This may have provided some 

protection to those who were earlier exposed to the H2N2 strain. Nevertheless, it 

still caused about 750,000 deaths worldwide.   

The last pandemic of the 20
th

 century occurred during 1977-78 known as the 

‘Russian flu’; though it was markedly milder. This strain was related to the H1N1 

subtypes and mostly affected people born after 1950 (Greg et al., 1978). Scientists 

believe that people born before 1950 had protective immunity due to exposure to 

the earlier H1N1 strains (reviewed in (Palese, 2004)).   

The most recent pandemic occurred in the 21
st
 century. The 2009 ‘Swine flu’ 

pandemic saw the circulation of a new type of H1N1 strain that resulted from the 

combination of a previous triple reassortment of viruses from human, swine and 

avian lineages with the Eurasian pig influenza (Bastien et al., 2010). The disease 

was first detected in Mexico City in April 2009 and spread worldwide mostly 
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affecting Southeast Asia and Africa. An estimated 201,000 deaths occurred due to 

this strain. As of July 2015, variants of this strain continue to circulate around the 

world (Figure 1.1, WHO
7
). The unique feature of this pandemic is that it was 

evenly spread across all age groups unlike the previous pandemics which mostly 

affected the elderly (Dawood et al., 2012). During this pandemic, obesity emerged 

as an independent risk factor for influenza-related complications and mortality 

throwing light on the influence of underlying chronic metabolic conditions on the 

disease outcome (Louie et al., 2009). 

1.4 Therapy  

Treatment of influenza is usually provided by two classes of drugs – 

neuraminidase inhibitors namely oseltamivir, zanamivir and peramivir, that 

prevent release of viral progeny from the infected host cells and M2 ion channel 

inhibitors, adamantanes namely amantadine and rimantadine, that block proton 

transport into acidic endosomal compartments thereby preventing viral uncoating 

of ribonucleoprotein complex (CDC, Influenza
6
). However, widespread mutations 

at M2 amongst circulating human strains and the resulting drug resistance have 

reduced the reliability of adamantanes in the treatment of influenza (Bright et al., 

2006). 

Vaccinations are prescribed during seasonal influenza epidemics as well as 

during pandemics since they have been shown to reduce mortality during 

epidemics (Rothberg et al., 2008). Due to the high mutation rates of the virus, no 

vaccine is efficient for a prolonged period necessitating annual vaccinations 
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(CDC, Influenza
2
). As of 2015, the quadrivalent vaccine formulation contains 

antigens from two strains each from influenza A viruses - A/California/7/2009 

(H1N1) pdm09-like virus & A/Switzerland/9715293/2013 (H3N2)-like virus; and 

influenza B viruses -B/Phuket/3073/2013-like virus (B/Yamagata lineage) & 

B/Brisbane/60/2008-like virus (B/Victoria lineage) (CDC, Influenza
2
).  
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1.5 Influenza A viruses 

1.5.1 Types of influenza A Viruses 

Influenza A viruses are the frequent cause of epidemics in humans, birds 

(avian influenza), horse (equine influenza), pigs (swine influenza) and dogs 

(canine influenza). The avian influenza is further classified into low or high 

pathogenic avian influenza strains (LPAI or HPAI).   

1.5.2 Influenza A Virus structure  

Influenza A virions are mostly spherical and approximately 100 nm in 

diameter but occasionally may be found in filamentous forms too, although 

remaining compositionally similar. The virion comprises of a core surrounded by 

a lipid bilayer with glycoprotein spikes projecting from the surface (Figure 1.2). 

Haemagglutinin and neuraminidase are the two types of glycoprotein spikes that 

are found on the lipid membrane in varying ratios between strains. M2 ion 

channels traverse the lipid envelope and together with the HA, NA and the lipid 

envelope, it overlays M1 protein matrix that encloses the virion core. Inside the 

core is the ribonucleoprotein (RNP) complex, the nuclear export protein (NEF) 

and RNA-dependent RNA polymerases that comprises two basic subunits, PB1 

and PB2, as well as one acidic subunit, PA. (Reviewed in (Bouvier & Palese, 

2008)).  
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Figure 1.2. The structure of an influenza A virus virion. (Adapted from Ge et al., 2010). 

 

The influenza genome consists of eight negative sense single-stranded RNA 

segments with each segment coding for one or more proteins (Table 1.1). The 

segmentation facilitates exchange of genes between strains leading to ‘antigenic 

shift’ whereby a particular strain acquires a different HA or possibly NA segment 

from another subtype leading to a novel strain to which population immunity is 

naïve. Cells infected with different viruses of human or animal lineages can 

generate virions of mixed lineages. The ends of viral RNA (vRNA) form helical 

hairpin structures that are bound with RNA polymerase and the rest is coated with 

arginine-rich nucleoprotein. The net positive charge binds to the negatively 

charged phosphate backbone of RNA. (Reviewed in (Bouvier & Palese, 2008)).    
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Table 1.1.  Proteins encoded by various RNA segments of influenza A virus 

RNA segments Protein coded 

1 PB2 

2 PB1 

3 PA 

4 HA 

5 NP 

6 NA 

7 M1 and through mRNA splicing M2 

8 NS1 and through mRNA splicing NEP/NS2 

 

 

1.5.3 Influenza A virus life cycle  

The HA of influenza virus recognizes the N-acetylneuraminic (sialic) acid on 

the host cell surface (Couceiro et al., 1993). Sialic acids are nine carbon 

monossacharides that are found on many cell types. The carbon-2 of sialic acid 

either binds to carbon-3 or carbon-6 of galactose making α-2,3 or α-2,6 linkages 

which provide different steric configurations to the sialic acid. α-2,6 linkages are 

commonly found in the human trachea whereas α-2,3 linkages are of avian origin. 

However, a small amount of α-2,3 linkages are also found in the lower respiratory 
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tract of humans like alveoli and bronchioles (Matrosovich et al., 2004). Since the 

virus commonly encounters only the upper respiratory tract, avian influenza 

viruses very rarely cause human infections. But in case they do so, the infection 

spreads rapidly to pneumonia with high mortality rates.  

During replication, the HA is cleaved by serine proteases into HA1 and HA2 

subunits which is necessary for infectivity. HA1 contains the receptor-binding and 

antigenic sites whereas HA2 is involved in the fusion of viral envelope with host 

cell membrane. Antibody against HA can neutralize viral infectivity and hence 

small mutations occur at the antigenic sites of HA. Accumulation of these minor 

changes can cause an ‘antigenic drift’ in the virus which over time renders the HA 

immunity from neutralization by existing antibodies. (Reviewed in (Bouvier & 

Palese, 2008)).  

After the HA attachment to sialic acid, the virus is endocytosed (Figure 1.3). 

The low pH in the endosome causes fusion of viral envelope with endosomal 

membrane that forms a pore through which viral RNPs are released into host cell 

cytoplasm while the M2 channel disrupts internal protein-protein interactions. The 

synthesis of vRNA occurs in the nucleus. The viral RNP is trafficked into the host 

cell nucleus via the viral nuclear localization signals where it either makes genetic 

material for new virions or forms polyadenylated, capped mRNA for host cell 

translation of viral proteins. Since influenza RNA is negative sense, it can only 

make one complimentary copy of its own which much be copied again to get the 

original copy transcribed. Incapable of driving its own viral protein synthesis due  
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Figure 1.3. Life cycle of influenza A virus. Helical hairpins represent RNPs, polymerase 

subunits are coloured in red, brown and green, and NP is represented by blue. After endocytosis, 

the released nucleoproteins are trafficked into the nucleus for viral RNA synthesis which is then 

exported to the cytoplasm for the translation of other viral proteins. (Adapted from Zheng & 

Tao, 2013). 

   

to the absence of capped mRNA, the viral RNP hijacks the host mRNA 

translation system on its way to translate a host protein. The heterotrimeric 

polymerase consists of PA1, PA2 and PB subunits. The PB subunit binds to the 

host’s capped pre-mRNA at 5’ end while the PA subunit possesses an 

endonuclease that cleaves the cap and attaches it to its own vRNA in a process 
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called ‘cap snatching’ (Dias et al., 2008). Once the viral mRNA is capped, it can 

be exported like the host mRNA. The vRNA segments are exported via 

nuceloporins through M1 channel and NEP (Figure 1.3).  

The viral protein translation occurs in the host cell cytoplasm where HA, NA 

and M2 are translated and trafficked from endoplasmic reticulum to Golgi 

apparatus for post-translational modifications and thereafter are packed into the 

new progeny virions through self-sorting signals. The M1 channel brings the 

RNP-NEP complex into close contact with the lipid envelope containing 

glycoproteins, through signaling mechanisms. The new progeny are released in 

the cytoplasm through membrane budding whereby NA cleaves the terminal sialic 

acid to detach the virions from cell surface. (Reviewed in (Bouvier & Palese, 

2008; Zheng & Tao, 2013)). 

 

1.6 Influenza pathophysiology 

The clinical presentation of influenza infection includes abrupt febrile onset, 

cough, headache, malaise and inflammation of upper respiratory tract. The 

infection typically lasts for 7-10 days (reviewed in (Taubenberger & Morens, 

2008)). At histopathological level, the lungs show very minor damage up to 2 

days post-viral encounter with focal inflammation of alveolar septa, mild 

infiltration and septal thickening (Fukushi et al., 2011). The virus is actively 

replicating but undetectable at this stage; a mechanism not yet clearly understood 

but could be due to a NS1-dependent delay of type-I interferon response and the 

subsequent delay in priming of dendritic cells and naïve T-cells leading to a 
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‘stealth phase’ that could help the virus evade host immune system (Moltedo et 

al., 2009). 

At day 3 post-viral encounter, the virus titre in the lungs increases along with 

host cytokine response in the form of a ‘cytokine storm’. Serial histopathologic 

analyses of severe viral pneumonia revealed that the infection affects the entire 

lung parenchyma with multi-focal destruction and desquamation of tracheal and 

bronchial epithelium, oedema, mixed inflammatory cellular infiltration, formation 

of fibrin and pulmonary exudates along with alveolar collapse. The viral 

replication reaches its peak around day 5 or 6 when the entire alveolar structure is 

collapsed along with hyaline membrane formation and vascular thrombosis 

leading to diffused alveolar damage (DAD). Sustained infection together with the 

cytokine storm can further lead to squamous cell metaplasia, pneumocyte 

hyperplasia and interstitial fibrosis. (Fukushi et al., 2011); (reviewed in 

(Damjanovic et al., 2012; Taubenberger & Morens, 2008)).  

1.7 Secondary bacterial infections 

Within the first two weeks of influenza infection, the host is susceptible to 

numerous bacterial superinfections which are the leading cause of influenza-

related morbidity (Morens et al., 2008). Superinfections with bacteria like 

Streptococcus penumoniae can cause massive neutrophil infiltration in the lungs 

leading to suppurative bronchopneumonia (Grabowska et al., 2006; Kadioglu et 

al., 2000). A lot of the influenza-related research has been directed towards 
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understanding the mechanism behind the viral-bacterial synergism in causing 

respiratory distress.    

1.8 Inflammation and cellular infiltration  

Influenza infection often culminates in acute inflammation of the lung 

parenchyma characterized by edema, pulmonary exudates and cellular infiltration 

as discussed earlier in section 1.6.  Mild inflammation is considered beneficial to 

the host as it activates the immune system to bring in regulatory cytokines that 

drive immune cells into the lung and in turn activate the infiltrating cells to 

secrete more cytokines via a positive feedback loop (Tumpey et al., 2005). 

Normally, this mechanism is kept in check by regular clearance of cellular debris 

from the site of infection to avoid hyperactivation. Neutrophils and macrophages 

are the two main type of infiltrating cells along with lymphocytes (reviewed in 

(Damjanovic et al., 2012)). The neutrophils first reach the site of infection and 

stimulate cytokine response to drive macrophages into the lungs. Neutrophils are 

short-lived and undergo apoptosis once they have finished phagocytosing a 

pathogen or secreting cytokines. These apoptotic cells are cleared by the resident 

alveolar macrophages (Savill et al., 1989). However, during fatal influenza 

infections, the system gets overpowered by the hyperstimulation resulting in over-

accumulation of cytokines in the form of a ‘cytokine storm’ (Kobasa et al., 2004; 

Perrone et al., 2008). As a result, the lung gets overburdened with cytotoxic 

leukocyte components and ROS that can lead to acute lung injury (ALI) and acute 

respiratory distress syndrome (ARDS). Cytokine storm has been attributed to be 
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the main cause of death during the lethal 1918 ‘Spanish flu’ (Kobasa et al., 2004; 

Tumpey et al., 2005).   

1.9 Neutrophil 

Neutrophils are the most abundant white blood cells that are grouped under 

granulocytes together with eosinophils and basophils because of their granular 

components. These cells are also known as polymorphonuclear leukocytes (PMN) 

since their nucleus can occur in varying shapes. They are terminally differentiated 

cells that play an active role in the innate immunity along with macrophages. 

They are the first line of defense for the host immune system and are the first to 

reach the site of injury. Once there, they undergo cytokine signaling to bring in 

other immune cells; meanwhile trying to control the invading pathogens. The 

average half-life of neutrophils in circulation is 6.7 hours whereas in tissue, they 

can live upto 1 to 2 days. (Reviewed in (Squier et al., 1995)).  

1.9.1 Neutrophil granules 

Granules are stores of proteins in granulocytes that are responsible for killing 

microbes and digesting tissues. They are formed during the various stages of 

neutrophil maturation from hematopoietic stem cells in bone marrow in varying 

amounts. The primary granules are formed during the promyelocyte stage; the 

secondary granules during the myelocyte stage whereas the tertiary granules are 

formed during the metamyelocyte stage (reviewed in (Borregaard, 2010)).  
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The neutrophil granules are categorized into three groups: 

a) Primary or azurophil granules, e.g. myeloperoxidase (MPO), serine 

proteases like neutrophil elastase (NE), bacterial permeability index 

proteins (BPI), defensins, proteinase 3 and cathepsin G.  

b) Secondary or specific granules, e.g. lactoferrin, NADPH oxidase, 

cathelicidin and lysozyme. 

c) Tertiary granules, e.g. gelatinase and cathepsin B. 

These granules are released dependent on their time of formation, usually 

those that are formed the latest are released first. Tertiary granules are released 

during the transmigration through the endothelium while the primary and 

secondary granules are released at the site of inflammation. Many of these 

granules such as cytotoxic MPO, iron-binding lactoferrin, pore forming BPI and 

cathelicidin possess antimicrobial properties. Tissue degrading proteases like 

gelatinases and collagenases are also abundant e.g. matrix metalloproteinases like 

MMP9. (Reviewed in (Faurschou & Borregaard, 2003)). 

1.9.2 Modes of bacterial killing by neutrophil 

Neutrophils possess a variety of pattern recognition receptors (PRRs) that can 

recognize certain molecular patterns of a pathogen once the pathogen invades a 

tissue. One such example is the Toll-like receptor (TLR) that recognizes pathogen 

associated-molecular patterns (PAMPs) on infectious agents. Once the receptor 

recognizes a pathogen, it leaves the circulation and enters the site of infection via 

a process called ‘chemotaxis’. Through this process, neutrophils are guided by an 
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array of cytokines, such as interleukin 8 (IL-8) and tumour necrosis factor-alpha 

(TNF-α), via cell surface receptor recognition to the site of invasion by a 

pathogen. (Reviewed in (Mantovani et al., 2011)).   

Once neutrophils encounter a pathogen, they employ both oxidative and non-

oxidative mechanisms to kill them. 

1.9.2.1 Phagocytosis 

Neutrophils have the ability to engulf bacteria through amoeba-like 

pseudopods. Neutrophils recognize bacteria through PAMPs or coating with IgG 

antibody or complement C3b for which receptors are present in neutrophils.  

Engulfment of bacteria happens upon binding of the receptors to the pathogen 

after which the pathogen is trapped in a membrane-bound vesicle called 

‘phagosome’. Inside the phagosome, the granule proteins fuse with the bacteria 

and release their cytotoxic contents, a process known as ‘degranulation’.  

Proteases such as NE and cathepsin degrade bacterial proteins thereby killing and 

digesting the bacteria. (Reviewed in (Pruchniak et al., 2013)). 

Neutrophils also use oxidative killing mechanism called ‘the respiratory burst’ 

using molecular oxygen. During the phagosome formation, molecular oxygen gets 

trapped inside. This oxygen is converted through a series of chemical reaction 

into toxic compounds such as hydrogen peroxide (H2O2), which are thought to be 

the main mechanism behind bacterial death. Neutrophils possess NADPH oxidase 

complex, assembled at the phagosome membrane, which generates superoxide 

that can be converted to H2O2 by superoxide dismutases (SODs). The H2O2 is 
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utilized by MPO to generate hypochlorous acid which is a potent bactericidal 

agent. (Reviewed in (Hampton et al., 1998; Mayer-Scholl et al., 2004)).  

1.9.2.2 Extracellular killing of bacteria 

Neutrophils have been shown to trap bacteria and other microbes onto a web-

like DNA structure that brings the pathogen into close contact with cytotoxic 

neutrophil granules and other antimicrobial proteins thereby killing the bacteria 

extracellularly. These DNA traps are called neutrophil extracellular traps 

(Brinkmann et al., 2004). 

1.10 Neutrophil extracellular traps 

Unlike phagocytosis and degranulation, NETs are a relatively recent 

discovery, an alternative mechanism of neutrophil-mediated microbial killing. In 

2004, a chance yet keen observation of neutrophils activated with Shigella 

flexneri by a team of German scientists revealed complex nucleic acid structures 

emanating from lysed neutrophils with entrapped bacilli (Brinkmann et al., 2004). 

This phenomenon was later studied and verified by various laboratories and is 

now known as ‘NETosis’.  Later this phenonmenon was seen in other leuckocytes 

as well like mast cells, eosinophils and macrophages (reviewed in (Brinkmann & 

Zychlinsky, 2007)). 

1.10.1 Components 

The primary components of NETs are DNA and histone proteins along with 

various intracellular proteins attached to the structure. High resolution scanning 
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electron microscopy (SEM) has shown smooth threads of unfolded chromatin of 

about 15 nm diameter released from the dead cells that is studded with globular 

structures of about 30-50 nm diameter (Figure 1.4). The threads can collectively 

form cables of various lengths that appear as webs in 3-dimensional space. NETs 

are degradable by treatment with DNases but not proteases. (Reviewed in 

(Brinkmann & Zychlinsky, 2007)). 

 

Figure 1.4. SEM micrographs showing (a) DNA traps (white arrows) emerging out of 

stimulated neutrophils, scale bar = 10 μm  and (b) NETs trapping Shigella flexneri, scale 

bar = 100 nm. The threads, globular domains and the cables are indicated as T, G and C 

respectively (white arrows). (Adapted from Brinkmann & Zychlinsky, 2007). 

 

1.10.2 Mechanism of NETs formation 

NETs have been shown to be released by activated neutrophils upon 

stimulation with IL-8, lipopolysaccharide (LPS), activated platelets, TLR 

activators, bacteria and other microbes (reviewed in (Brinkmann & Zychlinsky, 

2007)). Many different receptors are believed to be involved in NETs generation 

that basically activate protein kinase C (PKC) initiating a signal transduction 

cascade leading up to NADPH oxidase complex assembly and activation (Gray et 

al., 2013).  
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1.10.2.1 ROS are generally required for NETosis 

ROS are believed to play an important role in NETs formation. Fuchs et al. 

(2007) have demonstrated that physiological levels of H2O2 can stimulate NETs 

generation that can be inhibited by catalase that breaks down H2O2 to water and 

oxygen. NETs were found to be highly inducible with catalase inhibitor, 3-amino-

1,2,4-triazole. NETs generation upon stimulation with PKC activator phorbol 12-

myristate 13-acetate (PMA) could be inhibited by NADPH oxidase inhibitor, DPI. 

Finally, neutrophils from chronic granulomatous disease patients with inactive 

NADPH oxidase failed to generate NETs stressing on the importance of NADPH 

oxidase complex and ROS in NETs generation. However, a Staphylococcus 

aureus-induced model of NETosis was shown to be independent of oxidants 

where neutrophils secrete vesicles filled with DNA and proteases into 

extracellular space (Pilsczek et al., 2011). Moreover, neutrophils from neonates 

were shown to be incapable of generating NETs even though they generate 

sufficient ROS implying that ROS alone may not be sufficient to induce NETs 

(Yost et al., 2009). Nevertheless, most NET-induction models were shown to be 

oxidative in nature (reviewed in (Parker & Winterbourn, 2013)).  

1.10.2.2 NETosis is distinct from apoptosis and necrosis 

Using time-lapse microscopy, Fuchs et al. (2007) have demonstrated that 

NETosis is a cell death process quite distinct from apoptosis and necrosis. Upon 

stimulation of human neutrophils with PMA, the nucleus gradually starts losing 

its lobular structure and the chromatin undergoes decondensation segregating into 
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transcriptionally active euchromatin and inactive heterochromatin, thus forming 

an amorphous chromatin. Later, the membranes of the nuclear envelope separate 

and eventually disintegrate bringing the chromatin in close contact with 

cytoplasm wherein the granules start to dissolve (Figure 1.5 a-c).  

 

Figure 1.5. Confocal microscopy images of neutrophils that are (a) unstimulated for 180 min 

showing clearly lobulated nuclei of neutrophils with granules forming a patchy configuration 

close to the nucleus; or stimulated with 20 nm PMA for (b) 60 min when granules become 

distinct from the nucleus (c) 120 min when the granules co-localise with the chromatin and 

(d) 180 min when some some neutrophils have already released NETs. Red indicates histone-

DNA complex and green indicates neutrophil elastase. Scale bar = 10 μm. (Adapted from Fuchs et 

al., 2007). 

 

Roughly about 3 to 4 hours from initial stimulation, all the cellular contents 

mix and NETs are released (Figure 1.5 d). However, the process has been shown 

to occur much earlier, starting from 5 minutes upon stimulation, by stimulants 

such as Staphylococcus aureus and LPS-stimulated platelets (Clark et al., 2007; 

Pilsczek et al., 2011). 

In contrast to the systematic release of NETs from activated neutrophils 

(Figures 1.5 and 1.6 c), necrosis involves rapid disintegration of nuclear lobules 

without any clear distinction between eu- and hetero-chromatin while the nuclear 

envelope and proteins remain intact (Figure 1.6 b). Stimulation with pore-forming 

toxins of S.aureus led to necrosis in 15 minutes but not NETosis even after 
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prolonged incubation. The cells stained TUNEL-negative ruling out apoptosis as 

well. On the other hand, apoptotic neutrophils undergo DNA fragmentation while 

the membrane and organelles remains intact (Figure 1.6 a). Treatment with anti-

Fas antibody for 18 hours led to apoptosis but not necrosis or NETosis as revealed 

by TUNEL analysis and extracellular DNA concentration (Brinkmann et al., 

2004; Fuchs et al., 2007). These studies have confirmed that NETosis is a distinct 

cell death event along with apoptosis and necrosis. However, NETs have also 

been demonstrated to be generated by granulocyte-macrophage colony 

stimulating factor (GM-CSF)-primed live neutrophils in a ROS-dependent manner 

upon stimulation with LPS and complement factor C5a. Moreover, the DNA was 

found to be mitochondrial in origin in contrast to the genomic DNA released by 

dying neutrophils which is the case with most stimulants of NETosis (Yousefi et 

al., 2009).  

 

  

Figure 1.6. Transmission electron micrographs of neutrophils (a) treated with 20 ng/ml 

anti-Fas antibodies for 18 h to induce apoptosis showing nuclear condensation, 

fragmentation, cytoplasmic vacuolisation and other characteristic apoptotic morphology 

(b) incubated with 25 μg/ml of S. aureus pore-forming toxin for 15 minutes to  induce 

necrosis showing loss of segregation into eu- and heterochromatin while the nuclear 

envelope and granules remain intact (c) stimulated with 10 nM PMA for 4 h to induce 

NETs that show clear fragmentation of nuclear membrane allowing direct mixing of 

nuclear, cytoplasmic and granular components as the granules too dissolve. Scale bar = 2 

μm. (Adapted from Fuchs et al., 2007).    
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1.10.2.3 Histone hypercitrullination mediates chromatin 

decondensation and NETosis 

Histone citrullination or deimination is the conversion of amino acid arginine 

into amino acid citrulline as part of post-translational modification of proteins. 

The replacement of positively charged arginine to neutral citrulline under neutral 

pH conditions increases hydrophobicity of proteins thereby affecting protein 

folding. Citrullination is known to be mediated by a group of enzymes called 

peptidyl argininedeiminases (PADs), namely PAD4 which specifically deiminates 

the argininine residues at R2, R8, R17 and R26 positions on histone H3 tail 

(Cuthbert et al., 2004). Various studies have reported the PAD4-mediated 

citrullination of histones H3 and H4 during NETosis albeit not necessary for the 

process as such (Neeli et al., 2008; Wang et al., 2009). Specific isoforms of PKC 

were shown to influence PAD4-mediated NETosis (Neeli & Radic, 2013). 

Different stimuli activated different PKC for instance, calcium ionophore-

mediated stimulation which is common in bacterial and fungal infection activated 

PKC-zeta (PKC-ζ), an inducer of PAD4 while PMA stimulation activates PKC-

alpha (PKC-α), an inhibitor of PAD4. This suggests differential regulation of 

PAD4 activation by PKC that controls the extent of NETosis as well as affects the 

basic characteristics of NETs dependent on the stimulant. This study establishes 

NETosis as a highly evolved mechanism that depends on critical balancing of 

histone citrullination. Mice deficient in PAD4 have shown remarkable reduction 

of NETs generation however, their involvement in disease pathogenesis is not yet 

clearly defined. In a viral infection model of influenza, PAD4-mediated NETs did 
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not affect the outcome of disease in vivo while in a bacterial infection model of   

S. flexneri and necrotizing fasciitis, PAD4-mediated NETs played a crucial role in 

the bactericidal activity (Hemmers et al., 2011; Li et al., 2010). 

1.10.2.4 MPO and NE synergistically enhance chromatin 

decondensation  

Papayannopoulos et al. (2010) have shown that neutrophil granules like NE 

and MPO are crucial for the formation of NETs. NE knock-out mice were found 

to be deficient in pulmonary NETs generation. Neutrophils from MPO-deficient 

human donors failed to generate NETs (Metzler et al., 2011). MPO synergizes 

with NE in a ROS-dependent manner that allows NE translocation into nucleus 

and subsequent degradation of histones to cause chromatin decondensation 

(Figure 1.7) (Papayannopoulos et al., 2010).  

 

Figure 1.7. Model of MPO and NE synergism during NETs formation. NE and MPO are 

stored in the azurophilic granules in resting neutrophils. Upon activation and ROS production, 

NE translocates to the nucleus from granules where it cleaves histones and promotes chromatin 

decondensation. At later stages, MPO binds to the chromatin as well; further enhancing the 

decondensation synergistically with NE that eventually leads to cell rupture and NET release. 

(Adapted from Papayannopoulos et al., 2010). 
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Upon oxidative burst in a Candida albicans model of NETosis, H2O2 caused 

dissociation of NE into cytosol in a MPO-dependent manner (Metzler et al., 

2014). The NE forms a complex called azurosome together with cathepsin G and 

azurocidin that can localize on the granule membrane. Only a subset of 

azurophilic granules has the ability to localize on the membrane. The azurosome 

dissociates along with MPO, lactotransferrrin, proteinase 3 and lysozyme to 

cytosol. Once in cytosol, the enzymatic activity of NE is activated in a MPO-

dependent manner. The NE binds to and degrades F-actin to arrest actin dynamics 

which promotes the proteases to enter nucleus and thus, the NE translocates to 

nucleus. The mechanism by which ROS causes dissociation of NE and by which 

MPO regulates the process is not clear yet. In another Candida model of 

stimulation, phagocytosis was shown to adversely affect NETosis in a NE-

dependent way (Branzk et al., 2014). Phagocytic neutrophils sense microbial size 

via a dectin-1 mediated process that prevents NETs release by downregulating NE 

translocation to nucleus. These experiments prove the importance of MPO and 

NE in the formation of NETs.  

1.10.2.5 Other pathways involved in NETosis 

Recent studies using human neutrophils have identified the involvement of 

cell signalling pathways like p38 MAP kinase and Raf-MEK-ERK pathways that 

are oxygen-dependent. Using a chemical genetic screen, the involvement of some 

proteins from the Raf-MEK-ERK were elucidated that induce the expression anti-

apoptotic proteins suggesting that neutrophils might block apoptosis to allow 
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NETosis (Behnen et al., 2014; Hakkim et al., 2011; Keshari et al., 2013). Such 

preference may or may not be stimuli-dependent and needs further investigation. 

1.10.3 Antimicrobial function of NETs 

Neutrophils carry various proteins that are antimicrobial in nature. They 

possess antimicrobial peptides (AMPs) like LL-37 and defensins while other 

proteins like MPO, NE, proteinase 3, BPI, S100s, lactotransferrin, pentraxin 3 as 

well as histones are known to possess antimicrobial properties (reviewed in 

(Rogan et al., 2006; Wiesner & Vilcinskas, 2010)). The presence of these proteins 

in extracellular space along with improved contact with pathogens is thought to 

play a key role in NETs-mediated microbial killing. Histones contribute to the 

major part of antimicrobial action of NETs (Saffarzadeh et al., 2012).  

1.10.3.1 Bacterial infections 

Several bacteria have been shown to bind to NETs but not all of them were 

killed by such interactions. It is not clear why microbes bind to NETs but 

electrostatic interactions between cationic components of NETs and anionic 

surface components of microbes are thought to play a role (reviewed in 

(Brinkmann & Zychlinsky, 2007)). Shigella flexneri, Salmonella typhimurium and 

suspension cultures of Pseudomonas aeruginosa were shown to be killed by 

NETs (Brinkmann et al., 2004; Young et al., 2011). However, others such as 

Streptococcus pneumoniae, Group A Streptococcus (GAS) and Staphylococcus 

aureus were shown to evade NETs-mediated killing by secreting DNases (Beiter 

et al., 2006; Berrends et al., 2010; Buchanan et al., 2006).                 
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Mycobacterium tuberculosis, Haemophilus influenzae also bind to NETs but do 

not get killed (Juneau et al., 2011; Ramos-Kichik et al., 2009). 

Probably as an evolutionary response to massive threat from host immune 

system, bacteria employ several tactics to evade killing by NETs. A few 

mechanisms have been characterised by which bacteria evade NETs-mediated 

killing.  

1.10.3.1.1 Secretion of nucleases 

DNA being the backbone of NETs is the most important component that is 

involved in disseminating AMPs to a larger surface area and trapping bacteria to 

bring them in closer contact with the AMPs.  

Many bacteria have been shown to secrete nucleases which could degrade  

NET strands and help the bacteria escape entrapment and subsequent killing. A 

surface endonuclease endcoded by endA gene helps S. pneumoniae in escaping 

entrapment by NETs (Beiter et al., 2006). Though endA mutant of TIGR serotype 

was as equally efficient as wild type TIGR in colonizing the upper respiratory 

tract, it failed to cause invasive infection in lower respiratory tract and diffusion in 

blood when compared to the wild type. In a murine model of necrotizing fasciitis, 

a potent DNase, sda1, was shown to be crucial for resistance towards neutrophil-

mediated killing of GAS (Buchanan et al., 2006). Similarly, nuclease secretion 

was shown to be associated with delayed bacterial clearance and increased 

mortality in murine model of S. aureus infection (Berrends et al., 2010). The 

nuclease deficient bacteria were unable to escape NETs-mediated killing. 
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Furthermore, S. aureus was shown to convert NETs to deoxyadenosine via 

nucleases and adenosine synthase that triggers the caspase-3 mediated immune 

cell death (Thammavongsa et al., 2013). For years, scientists have wondered why 

certain bacteria express nucleases on their surface; since the discovery of 

NETosis, the underlying reason and its importance in the pathogenesis of bacteria 

are now comprehensible.   

1.10.3.1.2 Expression of capsules 

Polysaccharide capsules have been shown to be crucial for pathogenesis of 

many bacteria. Capsules have been used for serotyping pathogenic bacteria like  

S. pneumoniae of which 94 capsular types have been described so far (reviewed in 

(Song et al., 2013)). Even the pneumococcal vaccines are raised against the 

capsular antigens of 23 selected serotypes (Cox & Link-Gelles, CDC
8
). Using 

capsular mutants for comparison, wild type S. pneumoniae were shown to evade 

entrapment by NETs but were not protected from NET-mediated killing (Wartha 

et al., 2007). Nevertheless, capsule mutants have been shown to be severely 

impaired in causing lethal infections in murine models of S. pneumoniae and      

K. pneumoniae where capsule has been shown to promote anti-inflammatory 

responses in the host to facilitate better bacterial survival (Lawlor et al., 2006; 

Morona et al., 2004; Yoshida et al., 2001). 

1.10.3.1.3 Inhibition/Repulsion of AMPs   

NETs provide high local concentration of AMPs to enhance microbicidal 

action of these peptides. Certain bacteria like GAS contain M1 protein that is 
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directly involved in higher virulence of the bacteria. M1 protein has been shown 

to induce NETosis while at the same time protecting the bacteria from NET-

killing through inhibition of LL-37 (cathelicidin), an important AMP of 

extracellular traps (Lauth et al., 2009). In the same study, strains isolated from 

patients with invasive necrotizing fasciitis were found to be highly resistant to 

LL-37. On the other hand, certain strains of S. aureus possessed modified anionic 

lipid membranes through inclusion of L-lysine via MprF gene that facilitates 

repulsion of AMPS such as defensins and cationic AMPs (CAMPs) (Kristian et 

al., 2003). Similarly, D-alanylation of lipoteichoic acid via dltA operon creates a 

positive surface charge on S. pneumoniae which helps in evading NETs- and 

AMP-mediated killing (Wartha et al., 2007). Mice infected with dltA mutant 

showed enhanced survival and decreased bacterial load in lungs and blood.  

1.10.3.2 Fungal and parasitic infections 

Even though NETs were first identified as antibacterial entities, they were 

later implicated in many non-bacterial infections as well. Urban et al. (2009) 

identified calprotectin, a dimer between S100A8 and S100A9, as a key antifungal 

secretion of neutrophils via NETosis. Candida albicans is an opportunistic 

microbe that can cause highly invasive disease with colossal inflammation and 

tissue damage. Calprotectin chelates Mn
2+

 and Zn
2+

 which are required for          

C. albicans growth. Calprotectin-deficient neutrophils were unable to kill the 

fungus. In vivo murine infections also revealed that calprotectin-deficient mice 

have difficulty in clearing fungal load from their system. Similar effect was 

observed with Aspergillus nidulans that showed high susceptibitly to calprotectin 
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via Zn
2+

 chelation (Bianchi et al., 2011). However, conidia were less susceptible 

to killing by NETs than hyphal forms of fungus since the conidia promoted 

phagocytosis. This was the case too with the highly invasive fungus,     

Aspergillus fumigatus. Bruns et al. (2010) demonstrated that a hydrophobic 

protein, RodA makes the conidia immunologically inert and hence less prone to 

NETs-mediated killing.  

NETs were also shown to be effectively induced by parasites such as 

Toxoplasma gondii, Leishmania species and Plasmodium falciparum. It is not 

very clear how extracellular traps can contain intracellular parasitic infections but 

the proposed hypothesis is that ETs entrap the emerging parasites from lysed cells 

before they could infect other cells (reviewed in (Abi Abdallah & Denkers, 

2012)). T. gondii-induced NETs were shown to be dependent of extracellular 

signal regulated kinases (ERK) pathway through inhibition studies (Abi Abdallah 

et al., 2012). Intranasal infection with T. gondii tachyzoites released NETs in the 

lungs of infected mice. P. falciparum induced NETs were measured as circulating 

dsDNA in the blood of infected children in Nigeria (Baker et al., 2008). Like 

bacteria, parasites also seem to be evolving in NETs evasion by mechanisms such 

as secretion of nuclease by Leishmania infantum. Nuclease-deficient 

promastigotes were easily killed by NETs via a lipophosphoglycan-dependent 

mechanism (Guimarães-Costa et al., 2014). Moreover, Leishmania promastigotes 

and amastigotes have been shown to be susceptible to histone proteins H2A and 

H2B, key microbicidal proteins of NETs (Wang et al., 2011).   
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1.10.3.3 Viral infections 

Viruses are generally not known to infect neutrophils although they can 

stimulate the cells by eliciting higher pro-inflammatory cytokine response via 

oxidative signaling from infected cells. However, neutrophils infected with H3N2 

influenza virus exhibited ealy cell death and upregulated Type I interferon 

signalling (Ivan et al., 2013). A few viruses, both DNA- and RNA-based, have 

been associated with NETs. Human immunodeficiency virus (HIV)-1 has been 

shown to be entrapped and neutralized by NETs in TLR7- and TLR8-dependent 

manner (Saitoh et al., 2012). MPO and α-defensins were identified as key 

viricidal components of NETs. In addition, HIV-1 was shown to engage CD209 

on dendritic cells with envelope protein gp120 that enhances IL-10, an anti-

inflammatory cytokine thereby reducing NETs. Similarly another single stranded-

retrovirus, feline leukemia virus (FeLV), was shown to regulate NETs in a feline 

infection model (Wardini et al., 2010). FeLV inhibits neutrophil activation by 

inhibition of PKC activation to reduce ROS production. Neutrophils from chronic 

FeLV-infected felines show reduced responsiveness to secondary stimulation with 

Leishmania promastigotes. This alludes to another regulatory mechanism of NETs 

by viruses. Intravenous challenge of mice with double-stranded DNA Myxoma 

virus and its analogs led to excessive NETs generation which were entangled with 

circulating platelets. Here, the platelets were shown to enhance activation of 

neutrophils during adhesion (Jenne et al., 2013).  
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Figure 1.8. Haematoxylin and eosin stained-lung sections showing NETs present on day 10 

post-infection in macrophage-depleted mice infected with influenza A virus. (a) Alveolar 

spaces show proteinaceous exudates (asterix) indicating diffused alveolar damage together with 

interstitial thickening. (b) Extensive NETs formation at the terminal bronchioles opening into 

alveoli (white arrows). (c) Bundles of NETs were observed in the large blood vessels showing 

endothelial damage (asterix). Magnification a=200x, b and c=1000x. (Adapted from Narasaraju 

et al., 2011). 

 

NETs have also been described during influenza A infection. Excessive 

neutrophil accumulation and NETosis during acute influenza infection were 

shown to cause lung injury (Narasaraju et al., 2011). Bundles of NETs were seen 

near the terminal bronchioles and large blood vessels (Figure 1.8). Though the 

virus itself could not generate enough NETs, virus-infected alveolar epithelial 

cells could generate significant NETs. Hemmers et al. (2011) demonstrated that 

PAD4-deficient mice had impaired NETs generation but this did not affect the 

outcome of the disease thereby making PAD4-mediated NETs dispensable in 

influenza infection. Another study by Garcia et al. (2013) demonstrated that 

NETs could be inhibited by blocking C5a activation using chemical inhibitors.  

Using Omcl, a lipocalin protein from the salivary glands of the tick   

Ornithodoros moubata, C5a activation was blocked that reduced overall 

neutrophil accumulation and NETs generation in mice infected with influenza A 

virus. 
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1.10.4 NETs and tissue injury  

NETs like ROS are non-specific in causing cell death. The cytotoxic 

components of NETs which have microbicidal properties could also be toxic to 

the host cells in the surrounding tissue. Their non-specific nature could be 

implicated in various non-infectious conditions like pre-ecclampsia, deep vein 

thrombosis and systemic lupus erythematosus (SLE) ((reviewed in (Brinkmann & 

Zychlinsky, 2007)); (Fuchs et al., 2010; Leffler et al., 2012). Excessive NETosis 

have been shown to be associated with ALI during influenza A infection 

(Narasaraju et al., 2011). NETs can induce endothelial and epithelial cell damage 

in vitro mainly mediated by histones and MPO (Saffarzadeh et al., 2012). 

Histones have been implicated in many models of tissue injury like sepsis where 

antibodies to histones or activated protein C abrogate septic death (Xu et al., 

2012). During deep vein thrombosis in mice, citrullinated H3 were found to be in 

close association with von Willebrand factor, a platelet adhesion molecule crucial 

for thrombus development. Treatment with DNase I protected the mice from 

thrombosis (Brill et al., 2012). In SLE, the complement C1q was shown to inhibit 

NET degradation by inhibiting DNase I in serum and these undegraded NETs led 

to enhanced complement activation thereby exacerbating tissue injury (Leffler et 

al., 2012). Liu et al. (2012) found acetyl-modified H2B as a key post-translational 

histone modification during SLE but could not induce sufficient immune response 

by passive transfer of NETs in mice. A low-density granulocyte subset was 

identified in SLE patients which had enhanced propensity to generate NETs and 
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thus could cause increased endothelial damage and tissue infiltration (Villanueva 

et al., 2011).  

Other NETs proteins like MPO and MMPs have also been implicated in tissue 

damage. MPO was shown to induce DNA strand breakage and increased levels of 

haemoxygenase-1 in alveolar and bronchial epithelial cells in vitro (Haegens et 

al., 2008). It was also found to be directly cytotoxic to endothelial cells 

(Saffarzadeh et al., 2012). Ng et al. (2012), have shown the importance of 

gelatinases like MMPs in causing lung tissue damage by using doxycycline to 

inhibit MMPs in mice infected with influenza virus. MMP2 and MMP9 were 

found to be associated with elevated levels by T1-α and thrombomodulin, 

indicators of epithelial and endothelial cell damage.   

Due to the extracellular nature of NET components, they are bound to activate 

host immune response against themselves. Circulating anti-neutrophil cytoplasmic 

antibodies (ANCA) and anti-nuclear antibodies (ANA) as well as ribonucleic 

acids have been measured in various models of tissue injury like rheumatoid 

arthritis (RA) and SLE (Nakazawa et al., 2014; Pratesi et al., 2013). ANCA can 

be generated against either MPO or proteinase-3 though MPO-ANCA are the 

most-studied ones during NETs generation. In conditions like RA, the 

extracellular ANA against histones were used as diagnostic markers (Pratesi et al., 

2013). ANA were also observed in blood of children infected with      

Plasmodium falciparum (Baker et al., 2008). Type I interferons have been shown 

to prime neutrophils to respond to autoimmune complexes formed by NETs 

(Garcia-Romo et al., 2011). Thus, NETs-mediated ANA and ANCA contribute to 
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heightened immune response which is detrimental to the host. Circulating free 

double-stranded DNA (cf-ds DNA) has been suggested as an important prognostic 

marker for sepsis and other autoimmune disorders (Margraf et al., 2008).  

Since NETosis is an oxidative process, it is dependent on ROS released from 

neutrophils which by itself can cause tissue injury. Activated neutrophils undergo 

respiratory burst which releases reactive oxygen radicals in the surrounding tissue 

that can cause DNA, protein or lipid damage (reviewed in (Almyroudis et al., 

2013)). In addition, radicals like hypochlorous acid generated by MPO are also 

extremely cytotoxic. Inhibition of ROS generation by blocking NADPH oxidase 

acitivity has been shown to be beneficial in some conditions (Vlahos et al., 2011; 

Wang et al., 1994).  

1.10.5 Techniques used for studying NETs  

Due to a lack of reliable assay markers for detection of NETs in live subjects, 

NETs are mostly studied morphologically on autopsy samples and in animal 

models or in vitro using neutrophils isolated from blood or bone marrow (Ermert 

et al., 2009). However in recent times, citrullinated histone 3 detection by ELISA 

has been employed as a surrogate for NETs (Hirose et al., 2014). For laboratory 

experiments, extracellular DNA quantification using Sytox dye or picogreen 

dsDNA quantification reagent is being employed but microscopic detection of 

NETs by immunolabelling remains the gold standard (Berends et al., 2010; 

Saffarzadeh et al., 2012). However, there is a dire need for development of better 

assay techniques for rapid and reliable detection of NETs in clinical environment. 
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1.11 Aims and objectives 

NETosis is an oxygen-dependent process that depending on the circumstances 

is either a beneficial antimicrobial phenomenon or it can cause injury to 

surrounding tissues (Brinkmann et al., 2004; Narasaraju et al., 2011). The 

outcome of influenza infection is often complicated by comorbidities such as 

secondary bacterial infections and underlying chronic disorders like obesity (risk 

factor during 2009 pandemic influenza) as discussed in the previous sections.  

So far, most studies on NETs have concentrated on the induction of NETs 

induced using primary stimuli. Alluding to the importance of bacterial 

superinfections in worsening influenza outcome, this project aims to characterise 

and evaluate the role of NETs generated during secondary pneumococcal 

infection with S. pneumoniae which has not been done so far.  

Furthermore, only few studies have tried to observe NETosis from the host’s 

point of view such as in the context of complement-activation and toll-like 

receptor stimulation (Brinkmann et al., 2004; Leffler et al., 2012). Even though 

obesity is known to influence the outcome of influenza infection, no study has 

been done till now on the effect of high adiposity on NETs generated during 

influenza infection.  

Hence, this project aims at studying NETs induction from a combination of 

microbial and host factors both with primary and secondary microbial stimuli.  
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The main objectives of the thesis are, 

a) To evaluate the generation of NETs in the lungs during secondary 

pneumococcal infection after influenza infection [Chapter 3].  

b) To compare different serotypes of S. pneumoniae with respect to their 

ability to induce NETs and to assess the role of the pneumococcal 

capsule in pulmonary NETosis [Chapter 4]. 

c) To assess the impact of high fat diet-induced adiposity on pulmonary 

NETosis after influenza infection [Chapter 5].  

d) To evaluate the effect of chemical inhibition of oxidants namely 

NADPH oxidase on influenza-induced lung injury [Chapter 6]. 
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CHAPTER TWO 

MATERIALS AND METHODS 

 

2.1 Propagation of influenza virus [Chapters 3-6] 

Influenza virus A/Puerto Rico/8/34 (H1N1) or PR8 obtained from the 

American Type Culture Collection (ATCC; VA, U.S.A.) was propagated in 

embryonated eggs at 37°C for 72 hours, and the allantoic fluid was harvested and 

stored at -80
o
C. Viral titres (Plaque forming units, PFU) were determined by 

plaque assay (Section 2.5.4.1). For experimental usage, the virus stock was 

freshly diluted to desired concentration in 1x PBS (1
st
 Base). 

 

2.2 Propagation of bacteria and fungi  

2.2.1 Streptococcus pneumoniae [Chapters 3 and 4] 

S. pneumoniae serotype 19F (clinical isolate), serotype 3 (Xen 10; Perkin 

Elmer, MA, U.S.A.), serotype 4 (TIGR; a gift from Professor Andrew Camilli, 

Tufts University, U.S.A.) and serotype 4cps4D- capsule mutant strain 

(TIGRcps4D-; a gift from Professor Hiroshi Watanabe, Kurume University, 

Japan) were grown in brain heart infusion (BHI; Fluka, Buchs, Switzerland) broth 

supplemented with 5% foetal bovine serum (FBS; Biowest, France) until mid-

logarithmic phase (O.D.600nm = 0.4-0.6) at 37°C with 5% CO2. The culture was 

then pelleted, centrifuged at 5,000 rpm for 5 minutes, washed twice with 1x PBS 
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and re-suspended with 1x PBS to desired volume. Serial dilutions were made 

from the stock to desired concentration and samples were plated (spread plate or 

Miles & Misra techniques) on 5% sheep blood agar plates (Becton Dickinson, NJ, 

U.S.A.) to determine the number of colony forming units (CFU). 

2.2.2 Klebsiella pneumoniae [Chapter 3] 

K. pneumoniae serotype 15 (K15; clinical isolate) was grown in Luria-Bertani 

(LB; Sigma, MO, U.S.A.) broth until mid-logarithmic phase at 37°C. The culture 

was then washed twice with 1x PBS and re-suspended with 1x PBS to the desired 

volume. Serial dilutions were plated on LB agar plates (1.5% agar-agar; Oxoid, 

Hampshire, U.K.) for CFU determination. 

2.2.3 Candida albicans [Chapter 3] 

C. albicans (clinical isolate) was grown on Sabouraud dextrose agar (SDA; 

Oxoid, Hampshire, U.K.) slants supplemented with 1.5% agar-agar at 28°C (yeast 

growth) overnight. Colonies were scraped and re-suspended with 1x PBS, washed 

twice and re-suspended again in 1x PBS to desired volume. Serial dilutions were 

plated on SDA plates and incubated at 37°C (hyphal growth) for CFU 

determination. 

2.2.4 Estimation of CFU/ml in a culture sample [Chapters 3 and 4] 

Bacteria were grown from a single colony overnight, diluted 1:100 with fresh 

broth and re-grown for 5-7 hours (Neat). C. albicans was cultured on SDA slants 

overnight and colonies were scraped and re-suspended in 1x PBS (Neat). 2-fold 
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and 10-fold serial dilutions from ‘Neat’ were made with 1x PBS after washing the 

pellets. Optical density (O.D.) at 600 nm was recorded (Beckman Coulter, CA, 

U.S.A.) for the 2-fold dilutions while the 10-fold dilutions were plated and 

incubated overnight to determine the colony count. Based on the colony count of 

‘Neat’, the CFU/ml was calculated for the 2-fold dilutions. A graph was plotted 

with O.D. on the x-axis and CFU/ml on the y-axis and the slope was obtained 

which would predict the value of ‘y’ (CFU/ml) based on ‘x’ (O.D.). An R
2
 value 

between 0.97 and 1.0 was considered ideal. The growth curve equation was 

verified at least three independent times by diluting an unknown sample based on 

the equation and verifying the colony count. 

 

2.3 Bacterial assays 

2.3.1 PCR amplification of cps4D gene to confirm deletion [Chapter 4] 

Five colonies of S. pneumoniae serotype 4 wild type and cps4D- mutant were 

re-suspended with 50 μl nuclease-free water and boiled at 95°C for 5 minutes to 

extract DNA. 2 μl of lysate was mixed with 23 μl PCR master mix comprising 1x 

GoTaq
®
 green buffer in H2O, 10 mM dNTP, 1.25 U GoTaq

®
 Polymerase, 10 μM 

primers and 25 mM MgCl2 (Promega, WI, U.S.A.). The mixture was then 

subjected to PCR amplification in the Mastercycler Personal (Eppendorf, 

Germany) under the following conditions - denaturation at 95°C for 1 min, 

followed by 35 cycles of denaturation at 95°C for 20 sec, annealing at 55°C for 20 

sec, extension at 72°C for 20 sec, and a final extension at 72°C for 10 min.  
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The primers (IDT, U.S.A.) used were - forward primer sequence 5’-ATA 

ACC GGA CCT TCTGAA TC-3’ and reverse primer sequence 5’-GAA TAT 

ACG AGT ACC ACG CGA-3’. To visualise the product of amplification (1728 

bp), the samples were subjected to 1.2% agarose gel electrophoresis and stained 

with ethidium bromide. Absence of amplification product was considered as 

confirmation of gene deletion. 

2.3.2 FITC-Dextran exclusion assay to measure capsule thickness [Chapter 4] 

S. pneumoniae were grown to mid-logarithmic phase and 500 μl of the 

cultures were aliquoted and washed with 1x PBS. 10 μl of the bacteria was mixed 

with 2 μl of 2000 kDa FITC-Dextran (10 mg/ml in d.H2O; Sigma, MO, U.S.A.) 

on a glass slide. A coverslip was mounted and the preparations were visualised 

using a confocal microscope (Olympus IX81, Japan) equipped with FV-10 ASW 

3.0 viewer under 1000x magnification. Images were captured with FITC channel 

and DIC at 3000x magnification using a built-in zoom option. The FITC images 

were exported to greyscale in JPEG format and analysed using ImageJ software 

(U.S.A.) – Set scale << ’2 μm’ << Image << Adjust << Threshold << ‘Set 

threshold/cover cell area’ << Analyze << Tools << ROI manager << ‘Click’ 

Magic Wand << ‘Choose cells to analyse’ << Add in ROI manager << ‘Select the 

cells in ROI manager’ << Measure area. 

The area of 100 bacterial cells were measured based on the zone of exclusion 

under the FITC channel and mean area (μm
2
) was calculated to represent capsule 

thickness. 
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2.3.3 DNase activity assay [Chapter 3] 

Supernatant and cell pellet of S. pneumoniae 19F and K. pneumoniae K15 

cultures were collected. 2 μg of Salmon sperm DNA (Invitrogen, MA, U.S.A.) 

was treated with either the bacterial pellet (10
7
 cells) or double-filtered 

supernatant (3 μl) at 37
o
C for 1 hour in a DNase buffer (10 mM Tris, 3 mM 

MgCl2, 5 mM CaCl2, pH 7.4). Salmon sperm DNA with 10 U recombinant    

DNase I (Roche, Basel, Switzerland) and buffers alone served as controls. The 

reaction was stopped with 0.5 M EDTA (Biological industries, Israel) and the 

samples were then subjected to 1% agarose gel electrophoresis. Smearing in place 

of intact DNA bands or absence of any DNA indicated DNase activity. 

 

2.4 In vitro assays using murine neutrophils 

2.4.1 Isolation and purification of bone marrow-derived neutrophils 

[Chapters 3 and 4] 

Mature neutrophils were isolated from bone marrow of healthy mice by 

density gradient separation method using a previously established protocol 

(Ermert et al., 2009). Bone-marrow was collected from the tibia and femur of 6-

10 weeks old female BALB/c mice by flushing the bones with 1x Dulbecco’s 

PBS without Ca
2+

/Mg
2+

 (Biowest, France) until they turn white. The bone marrow 

was then homogenised using a 22G needle and passed through a 70 μm cell 

strainer (Thermo Fisher Scientific, U.K.) to obtain a single cell suspension. The 

cell suspension was centrifuged at 500 g for 10 minutes, re-suspended in 2 ml 1x 
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Dulbecco’s PBS and then layered on the top 52% layer of a discontinuous 

Percoll
TM

 gradient (GE Healthcare, Amersham, U.K.) – from bottom, 2 ml of 

78%, 69% and 52% v/v Percoll in Dulbecco’s PBS. The gradient was centrifuged 

for 30 minutes at 1,500 g without breaks. Mature neutrophils were recovered from 

the interphase between 69% and 78% Percoll after washing the cells thrice with 

Dulbecco’s PBS. The cell numbers and viability were determined using a 

Neubauer chamber and trypan blue staining. The purity of mature neutrophils was 

morphologically assessed by modified Giemsa staining (Sigma, MO, U.S.A.) and 

was found to be more than 85%. 

2.4.2 Stimulation of neutrophils to induce NETs [Chapters 3 and 4] 

Neutrophils were re-suspended in RPMI-1640 medium without HEPES 

(ATCC, VA, U.S.A.) and serum. 1-2 x 10
5
 cells were seeded onto poly-L-Lysine 

(Sigma, MO, U.S.A.) coated 8-well chamber slides (Lab-tek
TM

, Thermoscientific, 

U.S.A. and SPL Lifesciences, Korea) and incubated at 37
o
C for 30 minutes in a 

CO2 incubator. Stimulants were added at the desired concentration in 100-200 μl 

volume per well and incubated for various time-points as mentioned in the 

figures. For stimulation with influenza virus, cells were incubated with 

bronchoalveolar lavage fluid (FLU-BALF) from mice infected with 500 PFU PR8 

virus or as mentioned in the figures. BALF from uninfected animals (CON-

BALF) or just RPMI-1640 medium were used as controls. 10 μM H2O2 (Sigma, 

MO U.S.A.) has been used in some experiments as positive control. For 

representing secondary bacterial stimulation, neutrophils were first incubated with 

FLU-BALF for 2-2.5 hours and then bacteria at the desired multiplicity of 
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infection (MOI) were added and incubated for 2 hours. In other experiments, 

capsule polysaccharide from S. pneumoniae serotype 4 (ATCC, VA U.S.A.) was 

diluted to desired concentration with RPMI-1640 medium and incubated for 2 

hours.  

2.4.3 Visualisation of NETs and scoring [Chapters 3 and 4] 

Immunostaining of NETs was performed for morphological identification. 

After the desired stimulation and incubation period, supernatant from the wells 

were gently removed and the cells were fixed with 4% (w/v) paraformaldehyde in 

PBS (PFA; Sigma, MO, U.S.A.) for 30 minutes. The PFA was then discarded and 

the cells were washed 2-3 times with 1x PBS. The chambers were removed and 

the cells were permeabilised with 0.5% TritonX-100 (Sigma, MO, U.S.A.) in 1x 

TBS (Section 2.8.1) for 5 minutes and then blocked with bovine serum albumin 

(BSA; Santa Cruz biotechnology, TX, U.S.A.) in 1x TBS for 1-2 hours. Mouse 

monoclonal anti-histone2B and rabbit polyclonal anti-myeloperoxidase antibodies 

(Abcam, Cambridge, U.K.) were diluted 1:500 with 1x TBS and incubated for 1 

hour at room temperature. 1:250 dilutions of anti-mouse Alexafluor 488 and anti-

rabbit Alexafluor 555 (Molecular Probes, U.S.A.) were used as secondary 

antibodies along with 300 nM DAPI (Life technologies, U.S.A.) for 45 minutes at 

room temperature in dark. The slides were mounted with slow-fade mounting 

medium (Life technologies, U.S.A.) and observed under Olympus IX81 

microscope or BX60 microscopes (Japan) under 4000x magnification. At least 10 

fields were captured and NETs were represented as percentage NETs over total 

number of cells. 
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2.4.4 Effect of inhibition of redox enzymes on NETs [Chapter 3] 

Neutrophils were pre-incubated with 10 μM Diphenelyneiodonium chloride 

(DPI; Sigma, MO, U.S.A.), 100 μM 4-amino benzoic acid hydrazide (ABAH; 

Sigma, MO, U.S.A.) and 100 μM Diethyldithiocarbamate (DETC; Sigma, MO, 

U.S.A.) for 15 minutes prior to stimulation with FLU-BALF or CON-BALF to 

inhibit NADPH oxidase, MPO and SOD activity respectively. After 2 hours, 

NETs were stained and percentage NETs was determined as mentioned in section 

2.4.3. DPI and ABAH were dissolved in 1% DMSO (MP Biomedicals, CA, 

U.S.A.) while DETC was dissolved in RPMI-1640 medium. 

2.4.5 mRNA gene expression of bactericidal proteins during NETs generation 

[Chapter 3] 

1.5 x 10
6
 neutrophils were incubated with 150 μl of FLU-BALF or CON-

BALF in several wells for 15 or 30 minutes, 1, 1.5 or 2 hours. The samples were 

later pooled for each time point and RNA was extracted using the RNeasy RNA 

purification kit (Qiagen, Netherlands) according to the manufacturer’s 

instructions. The RNA was eluted in 30 μl RNase-free water. The RNA 

concentrations were determined using Nanodrop ND-1000 (Thermo Fisher 

Scientific, U.K.). 1 μg RNA in H2O was heated at 70
o
C for 5 minutes and later 

was reverse-transcribed with M-MLV reverse transcriptase (RT) reaction mix (1x 

M-MLV reaction buffer in H2O, 10 mM dNTPs, 25 U recombinant RNasin
®
 

ribonuclease inhibitor, 200 U M-MLV RT and 10 μM random primers) under the 
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following conditions – 37
o
C for 1 hour, 70

o
C for 15 min and finally at 4

o
C. The 

cDNA were stored at -20°C until use. 

The cDNA was then utilised for real-time PCR analysis using Light Cycler 

SYBR
®
 Green PCR mix and lightcycler system (Roche, Basel, Switzerland). 1 μl 

of cDNA and 0.5 μl of primer mixture for relevant genes were used according to 

the manufacturer’s protocol under the following conditions - 95
o
C for 10 minutes 

followed by 45 cycles of 95
o
C for 10 sec, 55-58

o
C for 5 sec, 72

o
C for 15 sec and 

finally 65
o
C for 1 minute. The primers used in the experiment are listed under 

table 2.1. Relative gene expression levels were calculated using 2
-∆∆Ct

 method 

(Livak & Schmittgen, 2001). Specificity of amplification reactions was confirmed 

by melting curve analysis to check the specificity of primer pairs. 

2.4.6 Estimation of bacterial entrapment by NETs [Chapter 3] 

For evaluating the entrapment of S. pneumoniae by NETs, bacteria were 

incubated with NETs generated from FLU-BALF at MOI of 0.01, 0.1, 1, 10 and 

100 for 2 hours. NETs were fixed and then stained with mouse monoclonal 

antibody against H2B (1:500, Abcam, Cambridge, U.K.) and rabbit antisera 

against S. pneumoniae serotype 19F (1:200, Statens serum institute, Denmark) 

and were detected using Alexafluor 488 and 555 secondary antibodies (Molecular 

Probes, U.S.A.) with DAPI (Life technologies, U.S.A.). To assess the bacterial 

entrapment of NETs, percentage of total NETs showing entrapment in an average 

of 10 fields were calculated.  
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2.4.7 Antimicrobial activity assay using NETs generated during influenza 

infection [Chapter 3] 

5 x 10
6
 neutrophils were stimulated using 150 μl of FLU- and CON-BALF for 

1 or 2.5 hours and S. pneumoniae 19F and K. pneumoniae K15 were added at the 

MOI of 0.2, 0.1 or 0.01 for 120, 30 or 90 minutes respectively. Cytochalasin B 

(10 μg/ml; Sigma, MO, U.S.A.) was added 15 minutes prior to addition of 

bacteria to inhibit phagocytosis. For C. albicans, 0.1% gelatin-coated (Sigma, 

MO, U.S.A.) wells were used and the fungus was added at MOI 0.1 and incubated 

overnight at 37
o
C. After incubation, the contents of the wells were scraped 

thoroughly and serial dilutions were plated on blood agar (S. pneumoniae), LB 

agar (K. pneumoniae) and SDA (C. albicans) for colony counts. 

2.4.8 Surface killing assay [Chapter 4]  

Surface killing assay was modified from a previously published protocol 

(Weinberger et al., 2009). Mid-logarithmic S. pneumoniae cultures were adjusted 

to 4 x 10
3
 CFU/ml in RPMI-1640 medium and 10 μl of the culture were spotted 

onto the blood agar plates and allowed to dry. At least 4-6 spots were placed per 

plate. 20 μl of neutrophils (2 x 10
6
 cells/ml) were overlaid on each spot and 

allowed to dry. To inhibit phagocytosis, 10 μg/ml of cytochalasin B was 

incubated with neutrophils 30 minutes prior to use. The assays were done with 

replicates for each condition. The plates were then incubated overnight at 37
o
C 

under anaerobic conditions. The average number of colonies per condition was 

calculated and expressed as percentage phagocytic and non-phagocytic killing 
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over total killing. Neutrophils + Bacteria = Total killing, Neutrophils + 

Cytochalasin B + Bacteria = Non-phagocytic killing and Total killing - Non-

phagocytic killing = Phagocytic killing. 

 

2.5 Animal experiments  

2.5.1 Intratracheal instillation of pathogens [Chapters 3-6] 

All animal experiments were performed according to the regulations of the 

Institutional Animal Care and Use Committee, National University of Singapore 

(protocol numbers 050/11 and 117/10). 6-8 weeks female BALB/c mice were 

used for all in vivo experiments except otherwise stated. Mice were anaesthetised 

using 75 mg/Kg ketamine and 1 mg/Kg medetomidine (0.1 ml/10 g body weight). 

Infectious agents in 50 μl 1x PBS were gently forced down the trachea after 

pulling the tongue aside. The anaesthesia was reversed using Atipamezole 

hydrochloride (5 mg/ml, 0.1 ml/10 g) and the mice were monitored until they 

wake up. Mouse lethal dose (MLD50) was determined by using different titres of 

influenza virus for infection. Mice were monitored for 14 days (or otherwise 

stated) or 30% loss in initial body weight whichever is earlier. Clinical features of 

influenza and pneumococcal infections include breathlessness, hunched back, 

ruffled fur and shivering. Mice were euthanized if any signs of discomfort were 

found like lethargy, reduced food intake, acute breathlessness and morbidity. 
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2.5.2 Harvesting and processing of tissues [Chapters 3-6] 

At the end of experiment or at specific time points, the mice were sacrificed 

and cardiac puncture was performed to collect blood. Lungs were excised and the 

left lobes were immersed in 4% buffered-PFA while the right lobes were cut into 

pieces and frozen in liquid nitrogen for later assays. Depending on the 

experiment, other organs like brain, kidneys, heart, liver and spleen were 

collected. 

2.5.3 Harvesting and processing of blood and bronchoalveolar lavage fluid 

[Chapters 3 and 4] 

Blood was allowed to clot at room temperature for 30 minutes and serum was 

collected by centrifuging at 10,000 rpm for 15 minutes at 4
o
C. The serum was 

collected as supernatant and stored at -20
o
C or -80

o
C until use. BALF was 

collected by inserting a 23G blunt-end needle through a hole into the trachea 

(after exposing it by removing the attached skin) and washing the lungs with 0.5 

ml of 1x PBS four times through the needle to collect the lavage. The fluid was 

then pooled together and centrifuged at 400 g for 10 minutes at 4
o
C; aliquots of 

the cell-free supernatants were stored at -80
o
C until use. 

2.5.4 Homogenisation of frozen lung tissues for microbial load and other 

assays [Chapters 3-6] 

Frozen lung tissues were homogenised in M tubes using GentleMACS 

homogenizer (Miltenyi Biotec, Germany). For influenza infection studies, 

approximately 10% of right lobe was homogenised in 800 μl 1x PBS under        
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in-built RNA02 setting for 80 sec and then centrifuged at 10,000 rpm for 10 

minutes to collect the supernatant which was aliquoted and stored at -80
o
C.  

For pneumococcal infection studies, the whole of right lobe barring a 10% 

section for RNA extraction, was homogenised in 3 ml 1x PBS under RNA01 

setting for 20 sec and serial dilutions of homogenate were plated on blood agar for 

colony counting. Aliquots of homogenate were stored in 40% glycerol stock for 

later CFU assays. The remaining fluid were re-homogenised at RNA02 to collect 

supernatant for other assays. 

2.5.4.1 Plaque assay [Chapters 5 and 6] 

Madin-Darby canine kidney (MDCK) cell line (ATCC, U.S.A.) were 

trypsinised (0.25% Trypsin-EDTA, GE Healthcare, Amersham, U.K.) and 2 x 10
5
 

cells were seeded in 24-wells plates and grown overnight at 37
o
C with 5% CO2 in 

EMEM medium (ATCC, U.S.A.) supplemented with 10% FBS. After the cells 

reached 90% confluency, virus or lung homogenates were serially diluted in 

EMEM with 1 μg/ml TPCK-Trypsin (Tosyl phenylalanyl chloromethyl ketone, 

Sigma, MO, U.S.A.). The monolayers were then washed twice with 1x PBS and 

infected with 100 μl of serially-diluted virus and incubated at 35
o
C for 1 hour 

with intermittent shaking after which the inoculum was removed and 1 ml of 

overlay medium (Section 2.8.2) was added to all wells and incubated at 35
o
C. 

After 72 hours, the overlay medium was discarded and the cells were fixed with 

4% PFA and stained with 1% crystal violet solution (Section 2.8.3) to observe 
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plaques. The plaques were counted and expressed as PFU/ml or normalised with 

protein content as PFU/mg.  

2.5.4.2 Amplex red hydrogen peroxide assay [Chapters 4-6] 

Fresh aliquots of lung homogenates were used to estimate the concentration of 

H2O2. Amplex red hydrogen peroxide/peroxidase assay kit (Invitrogen A22188, 

MA, U.S.A.) was used according to the manufacturer’s instructions. The values 

were normalised to lung protein content. 

2.5.4.3 Myeloperoxidase activity [Chapters 4-6] 

Freshly thawed lung homogenates were assayed for MPO activity by a 

modification of the method established by Klebanoff et al. (1984). The assay 

solution was freshly prepared as follows: 26.9 ml d.H2O, 2.0 ml 0.1 M sodium 

phosphate buffer (pH 7.0, Section 2.8.4), 0.1 ml 0.1 M H2O2 and 0.048 ml 

Guaiacol (Sigma, MO, U.S.A.), and kept at room temperature. 10 μl of lung 

homogenate was mixed with 190 μl of assay solution and the absorbance was read 

immediately at 470 nm for 1 minute using Infinite
®
 M200 multimode reader 

(Tecan, Maennedorf, Switzerland). Samples were assayed in triplicates and the 

units were calculated as: 

Units/ml = (∆O.D. x Vt x 4) / (E x ∆t x Vs) x 2 

where, Vt = total volume (ml), Vs = sample volume (ml), ∆O.D. = density 

change, ∆t = time of measurement (minutes) and 2 is the conversion factor to       

1 cm light path-length.  
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Four moles of H2O2 are required to produce 1 mole of tetraguaiacol product 

which has the extinction coefficient (E) of 26.6 mM
-1

cm
-1

 at 470 nm. The values 

were normalised to lung protein content. 

2.5.4.4 Superoxide dismutase activity [Chapter 6] 

SOD determination kit (Sigma 19160, MO, U.S.A.) was used according to the 

manufacturer’s instructions. The values were normalised to lung protein content. 

2.5.4.5 Protein concentration [Chapters 3-6] 

Protein content in the lung homogenates were determined by modified 

Bradford method using Protein assay kit (Bio-rad, CA, U.S.A.) according to the 

manufacturer’s instructions.  

2.5.5 Extraction of RNA from lung tissues [Chapters 3 and 6] 

Lungs were homogenised in 350 μl RNA lysis buffer (Qiagen, Netherlands) 

using GentleMACS homogenizer under RNA02 similar to section 2.5.4. RNA 

was extracted, converted to cDNA and subjected to real-time PCR analyses 

similar to section 2.4.5 using primers lister under table 2.1. 

2.5.6 Paraffin-embedding of tissues and Haematoxylin & Eosin staining 

[Chapters 3-6] 

Lungs were fixed in 4% (w/v) PFA for less than 48 hours and transferred into 

histology cassettes (SPL Lifesciences, Korea) and dehydrated in a tissue 

processor (Leica Biosystems, IL, U.S.A.) according to the manufacturer’s 

instructions. The dehydrated tissues were embedded in paraffin and 5 μm sections 
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were cut using a microtome (Leica Biosystems, IL, U.S.A.) and mounted on pre-

coated glass slides (Menzel-Gläser, Germany). 

The sections were re-hydrated through a series of xylene (2 changes, 5 min 

each), 100% ethanol (2 changes, 30 sec each), 90% ethanol (30 sec), 70% ethanol 

(30 sec), 50% ethanol (30 sec) and finally 3 changes in d.H2O.  

Haematoxylin and Eosin staining was performed by immersing the rehydrated 

sections in Shandon’s concentrated haematoxylin for 5 minutes, then 

differentiating for 30 sec and counter-staining with alcoholic Eosin (Section 

2.8.5). The slides were mounted with Permount
TM

 mounting medium (Thermo 

Fisher Scientific, U.K.). 

2.5.7 Immunohistochemistry of lung sections and NETs scoring        

[Chapters 3-5] 

The lung sections were rehydrated and subjected to heat-mediated antigen 

retrieval in sodium citrate buffer (Section 2.8.6) for 20 minutes. The sections were 

permeabilised with 0.025% TritonX-100 in 1x TBS for 10 minutes and then 

blocked with 3% BSA in 1x TBS for 2 hours. Mouse monoclonal anti-H2B and 

rabbit polyclonal anti-MPO antibodies (Abcam, Cambridge, U.K.) were diluted 

1:1000 (confocal microscopy) or 1:250 with 1x TBS and incubated overnight at 

4
o
C. 1:250 dilutions of anti-mouse Alexafluor 488 and anti-rabbit Alexafluor 555 

(Molecular Probes, U.S.A.) were used as secondary antibodies along with 300 nM 

DAPI (Life technologies, U.S.A.) for 1 hour at room temperature in dark. The 

slides were mounted with slow-fade mounting medium (Life technologies, 
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U.S.A.) and observed under Olympus IX81 microscope or scanned with a high 

resolution MIRAX MIDI system (Carl Zeiss, Germany). At least 20 fields from 

the whole section were captured using Pannoramic viewer and NETs were scored 

using a newly devised scoring system based on their morphological appearance as 

individual strands or clusters (Refer Figure 3.5 B and C, and Tables 3.1 and 3.2). 

The areas of the clusters were measured using ImageJ software (U.S.A.). 

2.5.8 Analyses used for secondary pneumococcal study [Chapter 4] 

2.5.8.1 RNA extraction and real-time PCR analyses 

RNA from the tissues was extracted using TRIzol
®
 (Invitrogen, U.S.A.). 

Hydrophobic and aqueous phase were separated by adding 200 µl of chloroform 

(Sigma, MO, U.S.A.) per 1ml of TRIzol
®
 to the samples and centrifuging at 

13,200 rpm for 15 minutes at 4
o
C. 500 µl of isopropanol (Sigma, MO, U.S.A.) 

was added to the aqueous phase to precipitate the RNA and the samples were 

centrifuged again at 13,200 rpm for 10 minutes at 4
o
C. The RNA pellet was 

washed with 750 µl of cold 75% ethanol (Sigma, MO, U.S.A.) and centrifuged at 

13,200 rpm for 5 minutes at 4
o
C. The RNA pellet was re-suspended in 20 µl of 

DEPC-treated water (Invitrogen, U.S.A.) and the concentration of RNA samples 

were measured by BioTek
®
 Microplate Reader (VT, U.S.A.). 

1 μg of RNA diluted in 4 μl DEPC-treated H2O was added to 1 μl of 

Oligo(dT)15 Primer (Promega, WI, U.S.A.), and the mixture was incubated first 

at 70°C for 5 minutes and then at 4°C for 5 minutes using the T100
TM

 Thermo 

Cycler (Bio-Rad, CA, U.S.A.). The sample mixture was subsequently added to a 
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reaction mixture consisting of 4.2 μl of H2O, 4 μl of ImProm-II
TM

 5X reaction 

buffer, 4.8 μl of MgCl2, 1 μl of dNTP mix, and 1 μl of ImProm-II
TM

 Reverse 

Transcriptase to form a total of 20 μl solution. The solution was then subjected to 

the following cycling conditions using T100
TM

 Thermal Cycler (Bio-Rad, CA, 

U.S.A.) - 25°C for 5 min, 42°C for 1 hour, 70°C for 15 min and then hold at 4°C. 

The cDNA were stored at -20°C until use. 

The cDNA were subjected to further analyses in a CFX Connect
TM

 Real-time 

PCR detection system (Bio-Rad, CA, U.S.A.). SYBR
®
 Green PCR master mix 

(Bio-Rad, CA, U.S.A.), 1 μl of cDNA and 1 μl of primer mixture for relevant 

genes were used according to the manufacturer’s protocol. The PCR conditions 

are as follows - 95
o
C for 3 minutes followed by 40 cycles of 95

o
C for 10 sec and 

60
o
C for 30 sec and finally at 65

o
C for 5 seconds. The primers used in the 

experiment are listed under table 2.1. Relative gene expression levels were 

calculated as mentioned in section 2.4.5.   

2.5.8.2 Enzyme-linked immunosorbant assay  

Sandwich ELISA using 96-well MicroWell™ MaxiSorp™ flat bottom plates 

(Nunc, U.S.A.) was performed to determine the concentrations of TNF-α, IL-6, 

IL-10 and IL-17. 100 µl of 1µg/ml (diluted in PBS) capture antibodies (BD 

Pharmingen, U.S.A.) was coated on to the wells at 4
o
C overnight. After washing 

once with 0.05% Tween-20 in PBS solution (Sigma, MO, U.S.A.), the wells were 

blocked using 5% BSA (PAA, Austria) in PBS) at 37
o
C for 1 hour. The wells 

were washed again once and 100 µl of standards and samples diluted in 5% BSA 
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were added to each well and incubated at 37
o
C for 3 hours. The wells were 

washed three times and then, 100 µl of 1µg/ml biotinylated detection antibodies 

(BD Pharmingen, U.S.A.) diluted in 5% BSA were added to each well and 

incubated at room temperature for 1 hour. After three washes, 100 µl of 1µg/ml 

streptavidin-HRP (Biolegend, U.S.A.) was added to each well and incubated at 

room temperature for 1 hour. Thereafter, the plates were washed 6 times. O-

phenylenediamine dihydrochloride (OPD) (Sigma, MO, U.S.A.) was dissolved in 

d.H2O and added as substrate to the plate and incubated at room temperature for 

15 minutes. 4.5 N H2SO4 (Merck, Germany) was added to stop the reaction and 

the absorbance was read at 490 nm with BioTek
®
 Synergy H1 Hybrid Multi-

Mode Microplate Reader to determine the concentration of the cytokines.  

IL-1β concentration was measured using specific ELISA kit (R&D systems, 

MN, U.S.A.) according to the manufacturer’s protocol. The concentration was 

determined by measuring the absorbance at 450 nm with BioTek
®
 Microplate 

Reader.  

The concentration of cytokines were determined using the standard curve and 

were normalised to total protein concentration. 

 

2.5.9 Special diet course [Chapter 5] 

Four weeks old male BALB/c mice were acclimatised for 1 week with 

standard chow at the animal facility before beginning an 18 weeks schedule on 

defined diet. Special diets comprising 10% and 45% kcal from fat (Research diets, 
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NJ, U.S.A.) were provided to the mice categorised as low fat (LFD) and high fat 

(HFD) groups.   

2.5.9.1 Body weight and BMI  

Body weight (in g) and nose to anus length (in cm) were measured every 

week. BMI was calculated as weight (g)/[nose to anus length (mm)]
2
. 

2.5.9.2 Food and calorie intake 

Weekly food consumption was monitored by subtracting the food remaining 

(g) from the food consumed (g). Calorie intake was calculated by adjusting for 

calories gained from fat – 1 g of LFD = 3.85 kcal and 1 g of HFD = 4.73 kcal. 

2.5.9.3 Blood glucose level 

Glucose levels in the blood were measured by tail vein puncture using    

Accu-Check
®

 Performa glucometer (Roche, Basel, Switzerland) according to the 

manufacturer’s instructions. 

2.5.9.4 Harvesting organs and tissues 

Infection with influenza virus was done as described in the section 2.5.1. 

Apart from lungs, other organs like brain, kidneys, heart, liver, spleen and white 

adipose tissues from gonadal, perirenal and interscapular (iBAT, brown adipose 

tissue) regions were harvested. 
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2.6 Statistical analyses [Chapters 3-6] 

The statistical analyses were performed using SPSS version 22 (IBM, U.S.A.). 

Student’s t-test was used for pairwise comparison, ANOVA with Tukey post-hoc 

correction (parametric data) and Kruskal-Wallis test with post-hoc Mann-Whitney 

pairwise comparison and Bonferroni correction (non-parametric data) were used 

for comparison of more than two groups. P values less than 0.05, 0.01, 0.001 and 

0.0001 were considered significant as shown in the figures. 

 

2.7 Histopathology scoring systems 

All histopathology scoring were done in a blinded manner. Multiple fields 

were examined under 400x magnification and scores were assigned to specific 

criteria, weighted according to their relative importance. The individual scores 

were then added to generate the final lung injury score. 

2.7.1 Comparison of influenza with secondary pneumococcal pneumonia 

[Chapter 3] 

Modified from Matute-Bello et al., 2001 

Total score = 1 × (alveolar hemorrhage, 0-3) + 2 × (alveolar infiltrate, 0-3) + 3 

× (fibrin, 0-3) + 1 × (alveolar septal congestion, 0-3) 

where, 0-3 refers to 0 = Absent, 1 = Mild, 2 = Moderate and 3 = Severe. 

Highest possible score = 21. 
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2.7.2 Comparison of different pneumococcal serotypes [Chapter 4] 

Modified from McAuley et al., 2007 

Total score = Cellular infiltration (0-3) + Necrosis (0-3) + Pleuritis (0-3) + 

Fibrin (0-3) + Percentage lung involvement (0-3) 

where, 0-3 refers to 0 = Absent, 1 = Mild & <10% lung involved, 2 = Moderate & 

10-30% lung involved, 3 = Severe & >30% lung involved. 

Highest possible score = 15. 

 

2.7.3 Influenza infection [Chapters 5 and 6] 

Modified from Matute-Bello et al., 2001 

Total score = 1 × (alveolar hemorrhage, 0-3) + 2 × (alveolar infiltrate, 0-3) + 2 

× (bronchiolar infiltrate, 0-3) + 2 × (fibrin, 0-3) + 1 × (alveolar septal 

congestion, 0-3) 

where, 0-3 refers to 0 = Absent, 1 = Mild, 2 = Moderate and 3 = Severe. 

Highest possible score = 24.  
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Table 2.1. List of primers used for real time PCR (1
st
 Base, Singapore and 

IDT, U.S.A.) 

Gene Primers Sequence (5’ – 3’) Usage 

NP  

(H1N1 PR8) 

Forward GGGTGAGAATGGACGAAAAA Chapter 3 

 Reverse TCCATCATTGCTTTTTGTGC Chapter 3 

Actb Forward GGCTGTATTCCCCTCCATCG Chapter 3 for H1N1 NP 

 Reverse CCAGTTGGTAACAATGCCATGT Chapter 3 for H1N1 NP 

S100a8 Forward AAATCACCATGCCCTCTACAAG Chapter 3 

 Reverse CCCACTTTTATCACCATCGCAA Chapter 3 

S100a9 Forward GCACAGTTGGCAACCTTTATG Chapter 3 

 Reverse TGATTGTCCTGGTTTGTGTCC Chapter 3 

Ptx3 Forward CGCAGGTTGTGAAACAGCAAT Chapter 3 

 Reverse ATGCACGCTTCCAAAAATCTTC Chapter 3 

Ltf Forward CCGCTCAGTTGTGTCAAGAAA Chapter 3 

 Reverse CATGGCATCAGCTCTGTTTGT Chapter 3 

Mmp9 Forward GCAGAGGCATACTTGTACCG Chapter 3 

 Reverse TGATGTTATGATGGTCCCACTTG Chapter 3 

Camp Forward GGCTGTGGCGGTCACTATC Chapter 3 

 Reverse GTCTAGGGACTGCTGGTTGAA Chapter 3 

Gapdh Forward CTTCATTGACCTCAACTACA Chapter 3,6 

 Reverse ATATTTCTCGTGGTTCACAC Chapter 3,6 

Ifnb Forward CCCTATGGAGATGACGGAGA Chapter 4 

 Reverse CTGTCTGCTGGTGGAGTTCA Chapter 4 

Il1b Forward CAACCAACAAGTGATATTCTCCATG Chapter 4 

 Reverse ATCCACACTCTCCAGCTGCA Chapter 4 
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Ccl5 Forward ATATGGCTCGGACACCA Chapter 4 

 Reverse ACACACTTGGCGGTTCCT Chapter 4 

Mkp2 Forward TCTAAAACCAAGGCCCTGGC Chapter 4 

 Reverse GCCTCCTCCAGCCTCACCCG Chapter 4 

Mkp3 Forward GAGCTGGGCAACGAACGGCT Chapter 4 

 Reverse ACCGGGAAGGAAGGCTGGCT Chapter 4 

Mkp5 Forward GCTGTCCACATTAACTGTGCCG Chapter 4 

 Reverse TGGGCGTTAGCTCTGCGTTCTC Chapter 4 

Gapdh Forward GACAACTTTGGCATTGTGG Chapter 4 

 Reverse ATGCAGGGATGATGTTCTG Chapter 4 

Nox2 Forward AGTGCGTGTTGCTCGACAA Chapter 6 

 Reverse GCGGTGTGCAGTGCTATCAT Chapter 6 

Mpo Forward GCTGGAGAGTCGTGTTGGAA Chapter 6 

 Reverse GAGCAGGCAAATCCAGTCCT Chapter 6 

Sod3 Forward CCTTCTTGTTCTACGGCTTGC Chapter 6 

 Reverse TCGCCTATCTTCTCAACCAGG Chapter 6 
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2.8 Buffer and media preparations 

2.8.1 10x Tris-buffered saline (TBS) 

Tris base                24.23 g 

NaCl                      80.06 g 

d. H2O                   800 ml 

The contents were mixed well and the pH was adjusted to 7.6 with 6 N HCl 

and made up to 1 L. 

 

2.8.2 Overlay medium (1.2% Avicel in 1x MEM) for plaque assay 

Avicel (FMC Biopolymer, PA, U.S.A.): 6g in 250 ml d.H2O. Autoclaved for 15 

min and stored at 4
o
C until use. 

2x MEM (Life technologies, U.S.A.): 1 pack MEM powder in 500 ml of d.H2O 

with 2% HEPES buffer and 1.5% sodium bicarbonate.  Filter-sterilised and stored 

at 4
o
C until use. 

 Avicel and 2x MEM were mixed in equal volumes prior to use. 

2.8.3 1% crystal violet solution 

Crystal Violet dye    1 g 

Ethanol                     20 ml 

d.H2O                       80 ml 
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2.8.4 1M Sodium phosphate buffer, pH 7.0 

1M Dibasic Na2HPO4 (100 ml) 

Na2HPO4                  14.2 g 

d.H2O                       100 ml 

 

1M Monobasic NaH2PO4 (100 ml) 

NaH2PO4                        13.8 g 

d.H2O                       100 ml 

 

1M Sodium phosphate buffer, pH 7.0 

Na2HPO4                          57.7 ml 

NaH2PO4                          42.3 ml 

 

The pH was adjusted with NaH2PO4 (decreases pH) and Na2HPO4 (increases 

pH). The stock was autoclaved and stored at room temperature. 
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2.8.5 Haematoxylin and Eosin staining reagents 

Shandon’s Haematoxylin (Thermoscientific, U.S.A.) 

 

Differentiation fluid:  

HCl                           250 μl  

70% ethanol              100 ml 

 

Eosin Y Stock Solution (1%): 

Eosin Y                      10 g 

(Sigma, MO, U.S.A.) 

d. H2O                       200 ml 

95% Ethanol              800 ml 

Dissolved and stored at room temperature. 

 

Eosin Y series:  

95% Ethanol: Alcoholic Eosin: 95% Ethanol: 100% Ethanol (3 changes): 

Clearene (3 Changes). 

Clearene (Leica Biosystems, IL, U.S.A.)  
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2.8.6 10x Sodium Citrate Buffer, pH 6.0 (1x, 10mM Sodium Citrate, 0.05% 

Tween-20) 

Tri-sodium Citrate (dehydrate)     29.4 g 

d.H2O                                            1000 ml 

The powder was dissolved in water and the pH was adjusted to 6.0 with 2 N 

HCl. 0.25 ml of Tween20 was added to 500 ml of 1x buffer and mixed well 

before use. 
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CHAPTER THREE 

 SECONDARY PNEUMOCOCCAL INFECTION AFTER                

INFLUENZA INFECTION LEADS TO HIGHER GENERATION OF                     

NEUTROPHIL EXTRACELLULAR TRAPS IN MURINE LUNGS  

 

3.1 Background 

3.1.1 Epidemiology 

Most complications of influenza infection arise not from the viral infection by 

itself but due to the onset of bacterial superinfections (Morens et al., 2008). 

Secondary bacterial infections can either occur as co-infections which involve the 

interaction between the virus and bacteria together with the host or they can occur 

after primary viral infections exploiting the virus-induced impaired host defences 

(Figure 3.1) (reviewed in (van der Sluijs et al., 2010)). 

 

 

Figure 3.1. Complexity of combined viral/bacterial and post-influenza pneumonia. There 

is a multi-factorial interaction between the virus, the bacteria and the host during combined 

viral/bacterial infection whereas in post-influenza bacterial pneumonia, the virus-induced 

changes to the host affect the course of bacterial infection. (Adapted from van der Sluijs et al., 

2010). 
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Histopathological and bacteriological analyses of 1918 ‘Spanish flu’ and 1957 

‘Asian flu’ have indicated the presence of bacterial infections in severely lethal 

cases (Hers et al., 1958; Morens et al., 2008). Bacterial co-infection accounted for 

nearly 30 percent of cases studied during the ‘Asian flu’ (Hers et al., 1958).   

The bacteria that are commonly associated with secondary infections are 

Staphylocccus aureus, Streptococcus pneumoniae, Streptococcus pyogenes and 

Haemophilus influenzae. Among these, Streptococcus pneumoniae has been the 

focus of much research as it has been implicated in many cases of severe invasive 

pneumonia post-influenza infections including the ‘Spanish flu’ (Grabowska et 

al., 2006; Walters et al., 2015).  

3.1.2 Pneumococcal respiratory infection and pneumonia 

Streptococcus pneumoniae or pneumococcus (S. pneumoniae or SP) is a Gram 

positive, alpha-haemolytic, facultative anaerobic coccoid bacterium that occurs as 

diplococci (Figure 3.2 A) when grown in liquid media (WHO, April 2012
9
). First 

isolated in 1881 by Louis Pasteur and George Steinberg independently (Austrian, 

1999), it has undergone nomenclature change from Diplococcus pneumoniae in 

1920 to Streptococcus pneumoniae in 1974. S. pneumoniae is commonly found in 

the nasopharynx of healthy individuals where it remains asymptomatic. However, 

in immunocompromised individuals like HIV patients as well as individuals with 

lower immunity due to age and predisposing conditions like viral infections, it can 

turn pathogenic (Siemieniuk et al., 2011). It can cause infection in many parts of 

the body namely middle ear (Otitis media), respiratory tract (acute sinusitis, 
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bronchitis and pneumonia) or blood (bacteraemia). Once in blood, it can spread to 

other parts like bones (osteomyelitis), joints (septic arthritis), brain (meningitis) 

etc. Severe infections involving bacteraemia, meningitis or bacteraemic 

pneumonia are known as invasive pneumococcal disease (IPD) (WHO, April 

2012
9
).  

 

Figure 3.2. S. pneumoniae and virulence factors. (A) Gram stained-sputum film from a 

case of lobar pneumonia showing the presence of S. pneumoniae (encircled). (Adapted from 

Todar’s online Textbook of bacteriology
10

) (B) Virulence factors of S. pneumoniae. 

Abbreviations: Psp – pneumococcal surface proteins, Hyl - hyaluronate lyase, PavA - 

pneumococcal adhesion and virulence A, Eno – enolase, LytA - autolysin A, Psa A - 

pneumococcal surface antigen A, PiaA - pneumococcal iron acquisition A and PiuA - 

pneumococcal iron uptake A. (Adapted from Kadioglu et al., 2008). 

 

S. pneumoniae possesses various virulence factors that help in infecting host 

cells and evading host defences. Some of the important virulence factors are (i) 

the polysaccharide capsule (PS) that inhibits C3b opsonisation of bacteria thus 

preventing phagocytosis, (ii) pneumolysin (Ply), a pore-forming 53 kDa protein, 

(iii) autolysin (LytA) that lyses bacterial cells to release the toxic components like 
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pneumolysin, (iv) pili that helps in colonization and (v) H2O2 that is cytotoxic to 

the cells (Figure 3.2 B) (reviewed in (Mitchell AM & Mitchell TJ, 2010)).  

Clinical onset of pneumococcal infection is characterised by sudden fever and 

chills. Chest pain may follow. Infection usually starts with the nasopharynx and 

spreads to lungs via bronchial infection. Most of the pneumococcal infections are 

characterised by lobar infection which develops in the distal airways and spreads 

to the adjacent lungs creating a homogenous pattern of consolidation. The lungs 

show progressive oedema and hepatisation of tissue (a liver-like appearance due 

to infiltration by blood cells from capillaries into lung tissues). Intense 

inflammatory response follows, predominated by neutrophils, leading to intra-

alveolar haemorrhage. The bacterial growth is initially stable till about 4 hours 

after which it drastically multiplies by 60 hours. Death usually occurs by 72 hours 

in lethal cases if left untreated. During the final stages of IPD, the bacteria enter 

the blood stream causing bacteraemia which may progress to sepsis (Bergeron et 

al., 1998; Kadioglu et al., 2002); (reviewed in (Chiavolini et al., 2008; Reynolds 

et al., 2010)). 

3.1.3 Secondary pneumococcal infection post-influenza infection 

While the combined bacterial-influenza infection makes the virus compete 

with the bacteria to colonise the host and face a stronger host immune response 

due to simultaneous bacteria-induced inflammation; secondary bacterial infection 

after influenza infection allows the virus to exploit the lung environment first and 

thereby, making later bacterial propagation in the lungs conducive. By the time 
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the bacteria efficiently multiply in the lung, the virus is almost cleared out of the 

system. Combined viral-bacterial infection is indistinguishable from bacterial 

pneumonia by radiology alone and hence is very difficult to diagnose. However, 

the secondary bacterial infections are easier to diagnose due to clear demarcation 

of timeline between onsets of the two infections. (Reviewed in (van der Sluijs et 

al., 2010)).  

There exists a lethal synergism between viral and pneumococcal infections 

during secondary infection (McCullers & Rehg, 2002; Smith et al., 2013). The 

viral load is mostly unaffected by the bacterial multiplication in the lungs, 

however some researchers have noticed initial rebounding of viral titres soon after 

bacterial infection due to increased virus release from infected cells (Smith et al., 

2013). The pneumococci multiply very fast and remain elevated until the end of 

the infection period if left unchecked. The bacterial colony forming units required 

to kill mice in experimental secondary infection with pneumococcus was found to 

be significantly lower when compared to primary infection by bacteria alone 

(McCullers & Rehg, 2002). It has also been shown that influenza NA mediates 

increased adherence of pneumococci to lung epithelium by sialidase activity 

thereby reducing mucocilliary clearance of pneumococci (Peltola & McCullers, 

2004). Pneumococci also possess two types of NA, NanA and NanB, which helps 

in pneumococcal adherence to lung epithelial cells. Prior influenza infection 

provides an already cleaved platform for the bacteria and hence aids in enhanced 

adhesion (Peltola & McCullers, 2004). The correlation between influenza virus-

mediated upregulation of platelet-activating factor receptor (PAFr) and 



74 
 

pneumococcal adhesion has also been studied as the bacteria possesses a PAF 

ligand, phosphorylcholine. Mice deficient in PAFr show better survival due to 

reduced lung bacterial burden and dissemination of infection (van der Sluijs et al., 

2006). Blocking of PAFr however did not affect pneumococcal infection 

highlighting the complexity of infection dynamics (McCullers & Rehg, 2002). 

Several studies have reported immune system desensitisation and suppression 

during secondary pneumococcal infection (Kash et al., 2011; McNamee & 

Harmsen, 2006; Smith et al., 2013). Impaired lung responses and PMN 

dysfunction have been observed in mice infected with pneumococci post-

influenza infection. While neutrophil accumulation and pro-inflammatory 

cytokines increase in the lung environment, the neutrophils are unable to clear 

bacteria from the lungs due to initial increase in bacterial phagocytosis that forces 

the neutrophils to undergo enhanced respiratory burst and apoptosis and apoptotic 

clearance by macrophages (Engelich et al., 2001; Speshock et al., 2007). Increases 

in both type I and II interferon levels supresses phagocytic activity and leads to 

impaired clearance of the bacteria (Sun & Metzger, 2008; Shahangian 2009). 

Enhanced levels of anti-inflammatory cytokine, IL-10 during secondary infection 

also contributes to neutrophil dysfunction highlighting the importance of co-

ordination between pro-and anti-inflammatory responses in the host (van der 

Sluijs et al., 2004). 

3.1.4 Treatment available 

Treatment of secondary infection lies in the effective and timely treatment of 

primary influenza infection to prevent the occurrence of secondary bacterial 
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infections. Hence, vaccinations and anti-virals play a major role in averting lethal 

bacterial infections. Moreover, pneumococcus has also been shown to be partly 

dependent on NA activity for adhesion and hence neuraminidase inhibitors like 

oseltamivir and zanamivir may help in treating secondary bacterial infections 

(reviewed in (van der Sluijs et al., 2010)). In an experimental model of secondary 

pneumococcal infection, even delayed oseltamivir treatment was shown to be 

effective in reducing the severity of pneumococcal infection though it may not 

reduce the mortality by 100 percent unless captured within the crucial active viral 

replication phase (Peltola & McCullers, 2004). Antibiotics such as 

fluoroquinolones and macrolides help in treating mild cases. Capsular PS-based 

vaccinations may prevent secondary infection with some of the S. pneumoniae 

serotypes (WHO, April 2012
9
).  

3.1.5 Streptococcus pneumoniae and NETs 

Various studies have shown that S. pneumoniae is susceptible to many 

neutrophil granular proteins like MMP 2 and 9, Leukotriene B4 and serine 

proteases (Hong et al., 2011; Mancuso et al., 2010; Standish et al., 2009). Yet, 

virulent serotypes of S. pneumoniae are successful in causing invasive infections. 

Studies have shown that S. pneumoniae can outcompete other respiratory bacteria 

including common pathogens like H. influenzae and Neisseria meningitidis, by 

secreting H2O2 thereby making the shared lung microenvironment toxic for these 

bacteria to proliferate (Pericone et al., 2000). After overtaking the lung 

colonisation, S. pneumoniae deals with the host immune system by using its 

capsule to prevent phagocytosis. In fact, all the S. pneumoniae serotypes are 
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characterised by their pathogenicity based on the presence of surface capsule. 

Thus, an important defence mechanism of neutrophils to tackle pathogens is 

compromised by S. pneumoniae (Hyams et al., 2010).  

In the absence of phagocytic killing, NETosis forms a crucial back-up 

defensive action by the host. Though α-enolase produced by S. pneumoniae has 

been shown to induce NETs in vitro, the bacteria have found ways to escape them 

(Beiter et al., 2006; Mori et al., 2012; Wartha et al., 2007). Wartha et al. have 

shown that capsule and D-alanylation of lipoteichoic acid (LTA) in conjunction 

with each other help in reducing bacterial entrapment on NETs but capsules as 

such do not provide resistance to NETs-mediated killing. D-alanylation of LTAs, 

polymers that are anchored to the cytoplasmic membrane via glycolipids, 

introduces a positive charge that requires a D-alanine-activating enzyme and a D-

alanine-D-alanyl carrier protein ligase; both encoded on the dlt operon. Deletion 

of dltA gene rendered non-capsulated strains sensitive to killing by cationic AMPs 

while there was no effect on the capsulated strains. However, the dltA mutant of 

an encapsulated strain got easily outcompeted by the wild type which spread to 

the lungs and bloodstream in a murine model of pneumococcal pneumonia. Thus, 

the authors concluded that D-alanylation of LTA may play an important role in 

the early stages of pneumococcal invasion when the capsule expression is 

supposed to be low.  

Another important study by Beiter et al. (2006) showed that pneumococci bear 

surface endonucleases, encoded by endA gene that can cleave NET DNA 

structures thus helping the trapped bacterium to avoid close contact with the 
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AMPs. EndA is a Mn
2+

/Mg
2+

-dependent membrane-bound DNA-entry nuclease 

that functions by introducing single-stranded nicks on the extracellular DNA 

which is followed by a second nick in the opposite direction that initiates DNA 

entry (Smith et al., 1985). However, recent studies have shown that EndA can be 

secreted by pneumococci under certain growth conditions, which may have far-

reaching impact than just being restricted to local DNA traps (Zhu et al., 2013).    

3.2 Specific objectives of the study 

Current research has focused on the generation of NETs during primary 

influenza and primary pneumococcal infections but their significance during 

bacterial superinfections has not been considered yet. Moreover, there is a lack of 

quantitative studies on NETs in vivo and hence their real importance during an 

infection is very difficult to enunciate. Based on the current knowledge, we are 

unable to clearly articulate whether NETs generated during primary influenza 

infection are further enhanced during secondary bacterial infections in vivo and 

whether they provide any beneficial bactericidal protection against pneumococci. 

Hence, our study focusses on assessing the generation and importance of NETs 

during secondary pneumococcal infection after primary influenza infection. 

The specific objectives of the study are, 

a) To evaluate the pathology of secondary pneumococcal infection in a 

murine model and study the generation of NETs in the lungs of infected 

mice. 
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b) To develop a semi-quantitative scoring methodology to analyse NETs     

in vivo. 

c) To assess whether NETs play a harmful role inside the host or whether 

they provide some beneficial protection against the bacteria.  

d) To study NETs generated by influenza virus and pneumococci in an         

in vitro NETs generation model that mimics primary influenza infection 

and secondary pneumococcal infections. 

 

3.3 Results and Discussion 

3.3.1 Lethal synergism between primary influenza infection and secondary 

pneumococcal infection leads to increased bacterial persistence in lungs and 

higher lung pathology 

To determine if there exists any lethal synergism between primary influenza 

infection and secondary pneumococcal infection, mice were challenged with sub-

lethal doses of first influenza infection followed by S. pneumoniae 19F at day 7 

post-infection and the microbial replication in the lungs were analysed.   

The lung viral titres remained mostly unaltered until day 5 post-secondary 

pneumococcal infection when the viral NP RNA levels significantly declined 

when compared to influenza alone infection (Figure 3.3 A). On the contrary, the 

bacterial load in the lungs remained persistent post-secondary infection when 

compared to bacteria alone infection (Figure 3.3 B) indicating that the bacteria 

was able to exploit the already influenza-damaged lung environment for its 
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efficient replication. This corresponds to other related studies which showed that 

secondary infection does not alter viral replication but positively affects bacterial 

replication probably due to enhanced bacterial adherence to cell membrane (Kash 

et al. 2011; Peltola & McCullers, 2004).  

 

Figure 3.3. Microbial replication in the lungs of dually infected mice. C57BL/6 mice were 

infected with sub-lethal dose (30 PFU) of influenza PR8 virus (FLU) or mock-infected with 

PBS (control). Seven days after influenza infection, mice were challenged with sub-lethal 

doses of S. pneumoniae 19F (10
5
 CFU) for bacterial infection alone (SP) and dual infection 

(FLU + SP) experiments. (A) Real-time PCR analysis was performed to detect the expression 

of the viral nucleoprotein gene until 5 days post-secondary infection. (B) Lung bacterial load 

was estimated by colony count method in the tissue homogenates of mice with bacteria only 

and dual infection until 48 hours post-secondary infection. Values represent the means ± SE of 

3 animals per group (Single experiment). ∗ represents P value < 0.05, Student’s t-test. 

 

 To compare NETs at similar severity of infections, mice were 

challenged with lethal dose of influenza virus followed by sub-lethal challenge 

with S. pneumoniae 19F and monitored until 30% loss from initial body weight. 

Histopathological analyses revealed severe diffused pulmonary damage in mice 

infected with virus alone and virus-bacteria dual infection. The lung samples from  
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Figure 3.4. Histopathological analyses of lung sections. C57BL/6 mice were infected with lethal 

doses of influenza virus (250 PFU) or mock-infected with PBS (Mock). Seven days after influenza 

infection, mice were challenged with sub-lethal doses of S. pneumoniae 19F (10
5
 CFU) for 

bacterial infection alone (SP) and dual infection (FLU+SP) experiments. (A) Histopathologic 

analyses of lung sections reveal alveolar-septal congestion and inflammation in the influenza-

infected mice, while infection with bacteria alone for 48h did not cause severe pathology with 

inflammation mainly concentrated in the blood vessels (BV). Dual infection culminated in 

extensive pulmonary damage and severe pneumonia with inflammation in the alveoli (AV). Mock-

infected animals showed normal alveolar architecture. Magnification of images: 100x (main 

panels) and 400x (inserts). (B) Flu alone and Flu+SP showed similar trend in body weight loss 

post-infection while the bacteria alone group lost very little weight. *** indicates P value < 0.001. 

(C) Histopathologic scores of lungs were comparable between influenza alone and dual infection 

groups. P value not significant. Values represent the means ± SE of 6 animals per group (2 

independent experiments), Student’s t-test.  

 

these groups showed severe pulmonary consolidation, septal congestion, fibrin 

deposition and cellular infiltration in the alveoli and large air spaces as well as in 

blood vessels. Though the dual infection group was almost indistinguishable from 

the virus alone group based on lung histology and clinical signs like body weight 
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loss, pockets of proteinaceous exudates and neutrophil infiltration were more 

pronounced in the former possibly due to enhanced cytokine levels from primary 

influenza infection that may have gone awry after bacterial infection. In 

comparison, the bacteria alone group showed focal inflammation with infiltration 

concentrated more in the small blood vessels and capillaries (Figure 3.4 A and B). 

The histology scores did not show any significant difference between the three 

groups though the bacteria alone group had the lowest scores (Figure 3.4 C).   

3.3.2 Secondary bacterial infection with pneumococcus leads to enhanced 

NETs formation in the lungs 

To assess the extent of NETs generation in the lungs of infected mice, a 

scoring system was devised based on immunostaining of NET components. DNA, 

histone and MPO were detected using antibodies and fluorochromes to locate 

NETs in the lung sections (Figure 3.5 A). NETs were classified based on their 

appearance and size (Figure 3.5 B and C) and scores were assigned based on the 

area occupied with the single strands getting lower scores (1-2) while the clusters 

were ranked higher (2-10) (Tables 3.1 and 3.2). Based on this scoring system, 

NETs were found to be highest in the dual infected mice group while being the 

lowest in the influenza alone infection group. Interestingly, the bacteria alone 

infection group received an intermediate score higher than influenza alone group 

despite having the lowest histology score (Figure 3.5 D). The comparatively 

higher score of NETs after pneumococcal infection could have been due to 

neutrophil-predominant infiltration with the presence of large NET clusters as 

opposed to single strands and smaller clusters after only influenza infection. 
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Hence, it can be said that pneumococcal infection influences NETs formation in 

the lungs of influenza-infected mice. Neutrophils and other phagocytes recognise 

different pathogens through different receptor e.g., TLR2 to detect LPS and 

TLR7/8 to detect influenza virus (reviewed in (Brinkmann & Zychlinsky, 2007)); 

(Lee  et al., 2014; Wang et al., 2008). Hence, the activation pattern of neutrophils 

is highly dependent on the stimulant. Further studies need to be done based on the 

receptors engaged by pneumococcus and influenza virus in influencing NETosis. 

As NETosis involves various receptors, different mechanisms of activation may 

occur based on the pathogen involved. 

 

 

Table 3.1. Semi-quantitative scoring system for the evaluation of NETs in the lungs of 

infected mice. Total score = Sum of scores in 20 fields under 400x magnification. Areas of 

NET clusters were delineated and calculated using the ImageJ software.  N.A. = Not 

available.   
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Table 3.2. Attributes and corresponding weightage used for NETs scoring. (1) Attributes of 

NETs were defined based on the appearance and (2) weightage was assigned to each attribute 

according to the area occupied by the NET structures in the lung tissue. (3) Scores were given to 

each attribute according to the weightage after sampling multiple sections with varying levels of 

tissue damage and cellular infiltration (data not shown). Finally, (4) a minimum quantifiable 

number of fields were selected for total NETs calculaton. 
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Figure 3.5. Immunofluorescence detection and quantification of NETs in the lungs of 

infected mice.  (A) NETs were identified in 5 μm thin lung tissue sections from mice infected 

with a lethal dose of influenza virus followed by S. pneumoniae, using immunostaining with DAPI 

(blue) and antibodies for Histone2B (green) & MPO (red). (B) NETs were detected using 

immunofluorescence technique and categorised as single strands or small to large clusters based 

on their morphological appearance. Scale bar = 50 μm. (C) An illustrative image of a NET cluster 

with area demarcated for measurement using imageJ software.  (D) A total of 20 fields per lung 

section were assessed and scores were assigned based on Table 3.1. The total NETs score were 

estimated as the sum of all 20 fields per section. Values represent the means ± SE of 6 animals per 

group (2 independent experiments). * indicates P value < 0.05; N.S. = Not significant, Student’s  

t-test.  
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3.3.3   NETs induced in vitro representing primary influenza-secondary 

pneumococcal stimulation are influenced by redox enzymes  

To assess NETs generation in vitro, neutrophils were extracted from bone 

marrow of healthy donor mice and incubated with various stimulants to mimic 

primary influenza condition. For the virus-mediated NETs generation, neutrophils 

were incubated either with virus at MOI 1 or BAL fluid of mice infected with 50 

PFU or 500 PFU virus (50 or 500 PFU BALF). The use of BALF represents the 

lung microenvironment after low and very high lethal doses of virus on day 5 

post-infection. Day 5 was chosen as it represents the highest viral replication-

active infiltration phase in lungs of lethally infected mice (Fukushi et al., 2011). 

As controls, neutrophils were incubated with BALF of mice treated with just PBS 

under the same conditions. 10 μM H2O2 served as positive control while the 

resting neutrophils were incubated with just PBS. After 2 hours, the cells were 

fixed, immunostained and NETs were counted (Figure 3.6 A and D). The 

neutrophils incubated with 500 PFU BALF generated the highest NETs when 

compared to virus alone or 50 PFU BALF. Both H2O2 positive control and 500 

PFU-BALF generated significantly higher NETs when compared to uninfected 

and 50 PFU BALF groups (Figure 3.6 A). This shows that the lung 

microenvironment after viral infection has potential stimulants for inducing NETs 

in neutrophils recruited to lungs and the lethality of infection due to initial 

infectious dose of virus can affect the extent of NETosis.        

When neutrophils were incubated with 500 PFU BALF (FLU-BALF) along 

with control uninfected BALF (CON-BALF) for various time points, NETs could 
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be induced as early as 30 minutes with 500 PFU BALF signifying NETosis as an 

early event in influenza infection (Figure 3.6 B). It has been reported that the 

cytokines and redox state of host microenvironment can influence NETs 

generation. Neutrophils incubated with various inhibitors of redox enzymes failed 

to generate significant NETs upon incubation with influenza virus-infected 

epithelial cells (Narasaraju et al., 2011). Indeed, when we incubated neutrophils 

with inhibitors of NADPH oxidase, MPO and SOD, NETs were significantly 

reduced upon inhibition of NADPH oxidase and MPO but not SOD (Figure 3.6 

C). This confirms that the redox state of the lung microenvironment influences 

NETs generation perhaps because NETosis is mostly an oxidative process. 
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Figure 3.6. Induction of NETs ex vivo mimicking primary influenza stimulation. (A) Mature 

neutrophils from bone-marrow of healthy donor mice were incubated for 2 hours with 10 μM 

H2O2 or influenza A PR8 virus at MOI 1 or BALF from mice instilled with PBS (CON-BALF) or 

infected with 50 PFU or 500 PFU PR8 virus on day 5 post infection. Highest NETs were 

generated with 10 μM H2O2 and 500 PFU BALF (FLU-BALF) stimulation. *  indicates P value 

< 0.05, Student’s t-test. (B) Neutrophils stimulated with FLU-BALF produced high amounts of 

NETs as early as 30 minutes when compared to stimulation with uninfected mice BALF (CON-

BALF). P value not significant, ANOVA with tukey post-hoc correction. (C) NETs formation 

after 2 hours incubation was significantly reduced upon treatment with inhibitors of redox 

enzymes NADPH oxidase (10 μM DPI) and MPO (100 μM ABAH) whereas SOD inhibition 

(100 μM DETC) increased NETs generation. * denotes P<0.05 vs control (FLU-BALF 

incubation), Kruskal-Wallis test with Mann-Whitney pairwise comparison and Bonferroni 

correction. (D) Representative immune-labelled images (DAPI-H2B-MPO as blue-green-red) of 

resting and FLU-BALF-stimulated neutrophils. Magnification of 600x (top panel) and 1200x 

(bottom panel). Values represent means ± SE of at least three independent experiments.  
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To assess whether NETs generated during influenza infection are influenced 

by secondary bacterial infections in vitro, NETs were generated by incubating 

neutrophils with lethal FLU-BALF (500 PFU) for 2 hours and then incubated for 

2 hours with S. pneumoniae serotype 19F at different MOIs. The entrapment of 

bacteria on NETs increased proportionately to the amount of bacteria added 

(Figures 3.7 A and B).    

 

Figure 3.7. Pneumococcal entrapment on NETs released during influenza stimulation. 
NETs were induced using influenza-infected BALF for 2 hours after which S. pneumoniae 

19F were added. (A-B) S. pneumoniae 19F (red) were found entrapped within the NET fibers 

(DNA-blue and H2B-green). Bacterial entrapment on NETs progressively increased with 

increasing multiplicity of infection with higher MOI of 100 displaying greater accumulation 

and entrapment of bacteria near NETs compared to lower MOI of 0.1. * denotes P value<0.05 

versus MOI of 0.01. (C) Infection with different MOI of bacteria resulted in variation of total 

NETs implying degradation of NETs by S. pneumoniae. P value not significant versus 

PMN+BALF group. Values represent the means ± SE of at least 3 independent experiments, 

Student’s t-test. 
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3.3.4 NETs are partially degraded in the presence of S. pneumoniae  

As mentioned in section 3.3.2, NETs were seen mainly as clusters in the lungs 

of dually infected mice. Apart from intact clusters, some apparent degradation of 

NETs after pneumococcal infection was also noticed (Figure 3.8 A and B). Upon 

staining for DNA-H2B-MPO complex, the NETs in the lungs of dually infected 

mice showed scattered staining for histone and MPO surrounding the DNA 

strands or clusters whereas in the lungs of mice with influenza virus alone 

infection, the NET strands were found to be intact (Figure 3.8 C and D). 

Pneumococci generate endonucleases that are known to degrade NETs and DNA 

in vitro (Beiter et al., 2006 and Figure 3.10 D). Due to lack of an effective 

antibody to detect pneumococcus in tissue samples, this phenomenon could not be 

confirmed by locating pneumococcus concentrated around the degraded clusters. 

Nevertheless, the presence of degraded NET clusters could indicate higher 

possibility of lung damage as cytotoxic proteins scattered from the degraded 

NETs can spread to nearby tissues or leak into bloodstream. Indeed, NETs have 

been implicated in deep vein thrombosis in rodents and humans (Fuchs et al., 

2010). 

However, when pneumococci were incubated at different MOIs with NETs 

formed by lethal BALF of influenza-infected mice, the final amount of NETs in 

the samples varied giving inconclusive trend (Figure 3.7 C). Again, due to the 

lack of a sensitive assay to quantify varying levels of endonuclease activity in 

smaller bacterial numbers, this observation could not be directly correlated to 

endonuclease activity of pneumococci.  
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Figure 3.8. Partial degradation of NETs in the lungs of dually infected mice. (A-B) 
Haematoxylin and eosin stained-image of lung sections from mice with dual viral and 

bacterial infection that show both (A) large intact clusters as well as (B) degraded NETs. 

Scale bar = 50 μm. (C-D) Immuno-labelled images (DAPI-H2B-MPO as blue-green-red) of 

lungs sections from influenza alone infection groups revealed intact extracellular NET strands 

(C, Flu) whereas dual infection group (D, Flu+SP) showed large clusters of NETs often filled 

with degraded DNA and surrounded by dispersed MPO and histone 2B. Arrows indicate 

intact NET structures while asterix indicate degraded NETs. Scale bar = 20 μm. 

 

 

3.3.5 NETs do not show antibacterial activity but possess antifungal activity 

To assess the expression of antibacterial genes during NETs generation, 

neutrophils were incubated with FLU-BALF for different time points; after which 

RNA was extracted for real time PCR analyses. Six antimicrobial proteins were 

identified from gene expression in the lungs of lethal influenza-infected mice by 

DNA microarray (data not shown). These were calprotectin dimer-forming S100 

proteins A8 and A9, pentraxin 3, lactotransferrin, cathelicidin and MMP9. Real 
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time PCR analyses of all six genes did not show any significant gene expression 

up to 2 hours post-incubation (Figure 3.9).  

 

 

Figure 3.9. Gene expression analyses of antibacterial proteins during NETs release. Real-

time PCR analyses for gene expression of selected proteins (including S100A8, S100A9, 

lactotransferrin, cathelicidin , pentraxin-3 and matrix metalloproteinase-9) in the neutrophils 

incubated with FLU-BALF for up to 2 hours. Values represent the means ± SE of two independent 

kinetics. P value = not significant, Student’s t-test. 
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Nevertheless, the antibacterial activity was tested to determine if the NETs 

formed during influenza infection could kill bacteria during secondary bacterial 

infection. Upon incubation of NETs with S. pneumoniae 19F or K. pneumoniae 

K15, no bactericidal activity could be seen. Cytochalasin B was used to inhibit 

actin polymerisation to prevent phagocytosis in non-NETting neutrophils. 

Interestingly, even phagocytic activity was not seen under the conditions tested 

(Figure 3.10 A and B). On the other hand, significant antifungal activity was seen 

against C. albicans when compared to controls without neutrophils. Even though 

fungal infections are not very common after influenza infection, the moderate 

gene expression of antifungal calprotectin dimer-forming S100 proteins (Figure 

3.9) prompted an inquiry into the antifungal nature of NETs. Moreover, the 

susceptibility of C. albicans to killing by NETs has been shown thus, making it a 

good positive control for the antimicrobial assay (Urban et al., 2009). The total 

killing did not vary much when phagocytosis was inhibited indicating mostly 

NETs-mediated antifungal activity. However, the killing was not very different 

between neutrophils incubated with BALF from uninfected (CON-BAL) and 

lethally infected mice (FLU-BAL) implying that NETs formed during primary 

influenza infection do not provide any additional protection against secondary 

fungal infections (Figure 3.10 C). The role of endonuclease in the absence of 

antibacterial activity against S. pneumoniae was suspected. Indeed, both              

S. pneumoniae pellets and double-filtered bacteria-free culture supernatant 

showed endonuclease activity (Figure 3.10 D, lanes 5 and 6). Even though the 

endonuclease was previously thought to be membrane-bound, recent evidence has  
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Figure 3.10. Microbicidal activity of NETs generated by influenza stimulation. Neutrophils 

(PMN) were incubated with influenza-infected (FLU-BAL) or uninfected control (CON-BAL) 

BALF for 2 hours post which they were incubated with (A) S. pneumoniae 19F (SP), (B) K. 

pneumoniae K15 (KP), and (C) C. albicans (CA). (A-B) After incubation for 2.5 hours, the 

contents in the wells were scraped and serial dilutions were plated on sheep blood agar or Luria-

Bertani agar, and colonies were counted 24 hours later. (C) C. albicans were incubated overnight 

incubation with neutrophils and serial dilutions were plated on Sabouraud dextrose agar for colony 

counts. 10 μg/ml cytochalasin B (CyB) was used to inhibit phagocytosis. Values represent the 

means ± SE of at least three independent experiments. * denotes P value < 0.05 versus untreated 

fungus only control, Student’s t-test. (D) DNase activity in bacterial pellets (10
7
 cells) and double-

filtered supernatants of S. pneumoniae and K. pneumoniae were analysed by incubating with 

salmon sperm DNA (2 μg) for 1 hour at 37
o
C.  The reaction was stopped using 0.5 M EDTA and 

the DNA in the samples were visualised with 1% agarose gel electrophoresis. Lanes: (1) DNA 

ladder. Salmon sperm DNA was incubated with (2) DNase buffer; (3) DNA alone; (4) BHI broth; 

(5) S. pneumoniae pellet; (6) S. pneumoniae supernatant; (7) LB broth; (8) K. pneumoniae pellet; 

and (9) K. pneumoniae supernatant. The DNA smearing below 500 bp in lanes 5 and 6 revealed 

that salmon sperm DNA was digested by both pellet and supernatant of S. pneumoniae, indicating 

both cell-bound and secreted DNase activity. However, K. pneumoniae did not digest the DNA as 

shown by relatively intact salmon sperm DNAs.  
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shown that it could be secreted as well thus potentially damaging NETs away 

from point of contact with bacteria (Zhu et al., 2013). However, the same could 

not be applied to the absence of antibacterial activity against K. pneumoniae as 

the Gram-negative bacterium does not produce DNase (Figure 3.10 D, lanes 8 and 

9) insinuating other modes of NETs evasion such as capsules that pneumococci 

possess as well (Lawlor et al., 2006; Yoshida et al., 2001).   

3.4 Conclusion 

Secondary bacterial infections are the most common complications of 

influenza infections and are quite frequent during pandemics like the 2009 H1N1 

pandemic (Lucas, 2010); (reviewed in (Metersky et al., 2012)). The lethal 

synergism between the influenza virus and S. pneumoniae has been attributed 

with the causation of severe pathology during secondary pneumococcal infections 

(McCullers & Rehg, 2002). Indeed, extensive neutrophil infiltration in the 

airways and blood vessels along with severe lung consolidation, fibrin deposition 

and epithelial cell necrosis were noticed during the secondary pneumococcal 

infection in the murine model. Though the viral titre remained largely unaffected, 

the bacterial load remained persistent up to 48 hours post-bacterial infection 

indicating failure of clearance of bacteria by host immune system or increased 

bacterial replication due to increased PAFr-mediated adherence to epithelial 

basement membrane (McCullers & Rehg, 2002) (Figures 3.3 and 3.4). 

Due to the lack of a quantitative assessment of NETs in vivo, not many studies 

report the extent of NETosis inside a host (Bruns et al., 2010; Villanueva et al., 
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2011). To address this issue, a semi-quantitiative scoring system to quantify NETs 

in lung sections was formulated to assess whether NETosis is diffenrently 

influenced during secondary pneumococcal infections (Figure 3.5 and Tables 3.1 

and 3.2). NETs were found to be significantly enhanced after secondary infection 

when compared to primary influenza infection alluding to a possible role in the 

worsening of lung pathology. Even though the histopathology with the bacteria 

alone infection was not very significant, NETs were higher than the influenza 

alone infection. Several possibilities could be explained for the difference in 

NETosis between S. pneumoniae and influenza virus. One possibility could be 

that the H2O2 generated by S. pneumoniae may take part in inducing NETs. Low 

amounts of H2O2 can induce NETs (Figure 3.6 A). The generation of H2O2 by     

S. pneumoniae is shown to negatively affect other respiratory pathogens (Pericone 

et al., 2000). Increased NETs-inducing ability may be another mode of virulence 

exerted by H2O2 which is a known and important virulence factor of                      

S. pneumoniae (Rai et al., 2015).   

Partially degraded NETs were observed that could be due to degradation by 

pneumococcal endonuclease or could be necrotic cellular debris (Figure 3.8). A 

good antibody for detecting pneumococcus in lungs would help in confirming the 

association of bacteria with NET degradation. The antisera (Statens serum 

institute) used in this study, did not stain S. pneumoniae in the lung sections. 

Considering that NETs were found to be partially degraded when incubated with 

S. pneumoniae in vitro (Figure 3.7 C), the occurrence of such events inside a host 

becomes more likely. Degradation of NETs could mean that components of NETs 
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get scattered to a larger surface area in the lungs, some of which like histones are 

extremely cytotoxic (Kessenbrock et al., 2009; Saffarzadeh et al., 2012; Xu et al., 

2009). Histones and other neutrophil proteins like proteinase 3 are frequently used 

as biomarkers of autoimmune disease (Baker et al., 2008; Nakazawa et al., 2014; 

Pratesi et al., 2013). This warrants further investigation into the role of NET 

degradation and NET components in the immunopathology of ALI. 

NETs were shown to be induced in vitro by incubating neutrophils with BALF 

from mice lethally challenged with influenza virus (Figure 3.6). Lethally 

challenged mice possess very high amounts of pro-inflammatory cytokines and 

chemokines in the lungs like IL-8, TNF-α etc., which have been shown to induce 

NETs (reviewed in (Brinkmann & Zychlinsky, 2007)). Redox enzymes play a 

crucial role in regulating these cytokines into the lungs and some of them have 

been shown to affect NETosis (Gray et al., 2013; Narasaraju et al., 2011). Indeed, 

NETs were significantly reduced when incubated with inhibitors of NADPH 

oxidase and MPO; highlighting the oxidative nature of NETosis and the 

importance of MPO in the whole process as previously reported (Saffarzadeh et 

al., 2012). 

NETs induced during influenza infection did not show any significant 

antibacterial gene expression in vitro (Figure 3.9). Corresponding to the gene 

expression, NETs generated by lethal BALF incubation did not kill                             

S. pneumoniae and K. pneumoniae in vitro possibly due to endonuclease activity 

or capsule expression (Figure 3.10). Even though NETs were first reported as an 

antibacterial defence system, some later reports have suggested otherwise 
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(Brinkmann et al., 2004; Menegazzi et al., 2012; Nazareth et al., 2007). In the 

absence of a common pathway of NETs induction, it becomes extremely difficult 

to identify a cause and effect mechanism. NETs induced by different stimuli 

could undergo different pathways at early stages of stimulation which may have 

impact at the final properties of NETs generated by that stimulant. This area 

commands a huge focus to ascertain whether there could be a common event 

occurring in all types of NETosis which would greatly help in studying the 

phenomenon as it would be possible to control NETs at will and observe its 

effects in a systematic manner. Nevertheless, further studies could be done using 

other respiratory pathogens such as Pseudomonas aeruginosa in a secondary 

infection model after influenza infection.  

In conclusion, this study for the first time demonstrates that secondary 

pneumococcal infection after primary influenza infection greatly enhances NETs 

generation in the lungs of infected mice but these NETs do not participate in the 

killing of pneumococci. Moreover, partial degradation of NETs by S. pneumoniae 

could play a possible role in the deterioration of lung pathology during secondary 

infection. 
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CHAPTER FOUR 

CAPSULE PLAYS AN IMPORTANT ROLE IN THE                    

VARIABILITY AMONGST PNEUMOCOCCI IN INDUCING                                   

NEUTROPHIL EXTRACELLULAR TRAPS AND LUNG PATHOLOGY 

DURING MURINE PNEUMONIA 

 

4.1 Background 

4.1.1 Clinical prevalence of pneumococcal serotypes 

The severity of pneumococcal infection depends on the virulence factors of 

the bacteria and the health and socio-economic status of the host (Alanee et al., 

2007; Sjöström et al., 2006). S. pneumoniae IPD-causing strains have been 

characterised into 94 clinical isolate serotypes based on capsule-specific Quellung 

reactions (reviewed in (Song et al., 2013)). Globally, there are different 

circulating strains with varying levels of virulence (Figure 4.1).  

In a study involving meta-analysis of several independent clinical studies, the 

risk of death arising due to IPD was found to be positively associated with 

serotype variation (Weinberger et al., 2010). Inverse correlation has been found 

between the carriage prevalence and invasiveness of a serotype meaning that the 

most commonly carried serotypes do no cause invasive infection and vice versa 

(Brueggemann et al., 2004; Weinberger et al., 2010). Introduction of 

immunisation schemes at schools and in the elderly age group has decreased the 
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circulation of some of the previously prevalent strains in countries like the U.S.A., 

the U.K. and those in South-East Asia (Grijalva et al., 2007; Jauneikaite et al., 

2012; Melegaro et al., 2010). The pneumococcal vaccines currently available in 

the market are based on the immunogenicity of the polysaccharide capsule. The 

first formulation known as the pneumococcal polysaccharide vaccine (PPV) 23 

has been available since 1983 and consists of polysaccharide components from 23 

clinical serotypes. Later formulations during the 2000s were called the 

pneumococcal conjugate vaccine (PCV). PCV-7 and PCV-13 cover serotypes 4, 

6B, 9V, 14, 18, 19F, 23F and serotypes 1, 3, 5, 6A, 7F, 19A. (Cox& Link-Gelles, 

CDC
8
). 

 

Figure 4.1. World-wide type distributation (WHO multi-center database, 1970-1983) of       

S. pneumoniae strains isolated from invasive clinical cases. (Adapted from Kalin, 1998).  
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4.1.2 Pneumococcal capsule biosynthesis 

Most of the pneumococcal serotypes produce capsule through a wzy-

dependent mechanism except serotypes 3 and 37 (Figure 4.2). The capsule (cps) 

locus falls between the genes dexB and aliA (Geno et al., 2015). For most of the 

seroytpes, the cps locus of the S. pneumoniae genome consists of four conserved 

genes wzg, wzh, wzd and wze, also known as cpsA, cpsB, cpsC and cpsD (Morona 

et al., 2000, 2004). While CpsA has been associated with the transcriptional 

regulation of the cps gene expression levels, CpsB-D take part in the 

encapsulation and regulation of PS production. CpsB is a manganese-dependent 

phosphotyrosine-protein phosphatase that regulates the dephosphorylation of 

CpsD (Morona et al., 2002). CpsC is a membrane protein associated with the PS 

co-polymerase and hence regulates the PS chain length and export to surface in 

conjunction with CpsD (Morona et al., 2006). CpsD is an autophosphorylating 

protein-tyrosine kinase that serves as a negative regulator of PS production as 

dephosphorylation of CpsD by CpsB is essential for PS production (Morona et al., 

2003). However, favourable changes in the atmospheric oxygen has been shown 

to guide the phenotype change of S. pneumoniae colonies from transparent to 

opaque with the opaque phenotype showing higher PS production and CpsD 

phosphorylation (Weiser et al., 2001). The contradicting roles of CpsD in PS 

production have not been clearly addressed yet. An additional role for CpsC in the 

attachment of PS to the bacterial cell wall and its importance in the progression of 

pneumonia to bacteraemia has also been described (Morona et al., 2006).  
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Phosphoglucomutase (Pgm) and glucose-1-phosphate uridyl transferase 

(GalU) together lead to the formation of uridine diphosphate glucose (UDP-Glc) 

which a precursor sugar for all pneumococcal serotype capsules as well as 

teichoic acid (Hardy et al., 2000); (reviewed in (Kadioglu et al., 2008)).  

 

Figure 4.2. Illustration of the Wzx/Wzy-dependent pathway for the biosynthesis of CPS 

9A.  (Adapted from Bentley et al., 2006).  Oligosaccharide repeat units are synthesised through 

the sequential addition of sugars to a membrane-associated lipid carrier on the inner layer of the 

cell membrane. (1) Biosynthesis of activated sugar precursors. A glycosyltransferase (WchA for 

Cps9A) initialises the assembly of the PS (2) by linking the initial sugar as a sugar phosphate 

(Glc-P) to an undecaprenyl phosphate acceptor. Other glycosyltransferases then sequentially 

link further sugars to generate repeat units (3) which gets transported across the cytoplasmic 

membrane to the external face by a flippase (Wzx, 4). A polymerase (Wzy) adds the growing 

polymer chain to new repeat units forming high molecular weight PS (5). Wzd/Wze 

(CpsC/CpsD) complex then tranlocates the mature PS to the cell surface and attaches to the cell 

wall peptidoglycan (6). The final lipid link to the cell wall is poorly understood but role of CpsC 
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has been suggested (Aanensen et al., 2007; Bentley et al., 2006; Morona  et al., 2006); 

(reviewed in (Geno et al., 2015; Kadioglu et al., 2008)).  

 

Biosynthesis of serotype 3 PS happens via a much simpler mechanism. In a 

synthase-dependent process, a single enzyme transfers a sugar to a lipid 

acceptor thereby initiating the PS synthesis and thereafter keeps on adding to 

the chain whereas in other serotypes separate glycosyltransferases are needed 

for this purpose (Geno et al., 2015). The cps locus of serotype 3 consists of 4 

genes – cps3S, cps3D, cps3M and cps3U of which cps3M and cps3U are not 

essential for the PS biosynthesis (Cartee et al., 2005). 

The type 3 synthase encoded by cps3S initialises the PS synthesis by adding 

glucose (Glc) and glycosaminoglycan (GlcUA) on the non-reducing end of the 

PS chain which during extension remains tightly associated with the 

carbohydrate-binding site on the synthase. The UDP-Glc dehydrogenase 

encoded by cps3D oxidises UDP-Glc to form uridine diphosphoglucuronic acid 

(UDP-GlcUA) which is the second substrate for the type 3 PS formation. A 

phosphotidylglycerol serves as an anchor on the cell wall for the type 3 PS as 

the PS does not get covalently bonded to the cell wall. (Cartee et al., 2000, 

2005; Dillard et al., 1995).  

In the case of serotype 37, only one gene, tts, encoding a putative 

glycosyltransferase is required for PS synthesis that lies outside the dexB/aliA 

locus. Tts shows very high sequence similarity to other glycosyltransferases and 

cellulose synthases of many bacteria and higher plants. Cps37 is a 
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homopolysaccharide consisting of repeating units of monosaccharide chains of 

β-D-Glc (Llull et al., 2001).  

4.1.3 Capsule and pneumococcal virulence  

S. pneumoniae capsule has been strongly associated with the 

nasopharyngeal carriage prevalence. While thicker capsule increases the 

carriage prevalence, the biochemistry of the capsule such as energy spent on 

capsule biosynthesis can negatively influence the prevalence since the bacteria 

would find it harder to survive under unfavourable conditions while maintaining 

their energy-demanding capsules (Hathaway et al., 2012; Weinberger et al., 

2009, 2010). Due to the last aspect, S. pneumoniae need to lose some of their 

capsular material to be able to survive inside the host. In a study with a murine 

model, non-encapsulated pneumococci reached the lungs from the nasopharynx 

in more numbers even though the capsulated strains colonised the nasopharynx 

more efficiently (Küng et al., 2014). 

Loss of PS has been shown to increase the bacterial adherence levels to the 

lung epithelial cells. The capsule was found to elicit an anti-inflammatory 

response from the epithelial cells whereas the pneumolysin elicited strong pro-

inflammatory responses (Hammerschmidt et al., 2005). Since high cellular 

infiltration and inflammation is seen in the lung after virulent pneumococcal 

infection, it can be inferred that while the capsule helps in evading clearance by 

host-mediated complement and phagocytic activity in the nasopharynx, its 

subsequent migration into the lower respiratory tract and the resultant pathology 
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is due to its pro-inflammatory virulence factors like Ply along with the loss of 

capsule.   

The association of capsule with virulence has been known since 1950 

(MacLeod & Kraus, 1950). Since then, several studies have independently 

confirmed this association (Briles et al., 1992; Hyams et al., 2010; Magee & 

Yother, 2001; Morona et al., 2004; Melin et al., 2010; Shainheit et al., 2014; 

Sjöström et al., 2006). Morona et al. (2004) showed that deletion of cpsA gene 

does not have any effect on the virulence whereas deletion of cpsB or cpsD 

attenuates the bacterial virulence. Cross-expression of the capsule changes the 

virulence of a strain (Melin et al., 2010). Differing levels of PS have different 

effect on the virulence of the bacteria as a minimum amount of PS is needed for 

the mice to succumb to infection meaning that not all of the polysaccharide may 

be lost during invasion of the epithelial cells (Magee & Yother, 2001). In a 

murine study using human isolates, Briles et al. (1992) found that capsular type of 

pneumococcal strains defined their virulence. Almost all the strains of type 4 were 

found to be virulent whereas only 40% of type 3 were virulent and all strains from 

the group 19 were avirulent in mice. The current study uses these strains - type 3, 

4 and 19F (Figure 4.3) and it would be interesting to see its correlation with the 

earlier study.  
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4.1.4 Capsule and NETs 

Pneumococcal capsule is known to direct strong anti-inflammatory cytokine 

response like IL-10 while supressing the pro-inflammatory cytokines like IL-6 

and impairing recognition of TLR ligands and thus impeding the MyD88-

mediated bacterial defence (Hyams et al., 2010; de Vos  et al.,  2015; van der Poll 

et al., 1996, 1997). Capsule is known to influence immune cells like neutrophils 

by encouraging the production of IL-10 (Lawlor et al., 2006; Yoshida et al., 

2001). However, studies connecting capsule with NETosis are extremely limited. 

Wartha et al. (2007) for the first time demonstrated that capsule is essential for the 

evasion of S. pneumoniae from neutrophils but not for escaping the killing by 

NETs and that the structural biochemistry of cell membrane is important to 

determine the survival of bacteria inside the host. In the same study, few 

serotypes of S. pneumoniae were compared along with their capsule mutants in 

their susceptibility to NETs mediated-killing in vitro. In both the wild types and 

the capsule mutants, phagocytic killing predominated leading to the conclusion 

that capsules do not help in evading NETs-mediated killing.  

In recent studies, capsule mutants of C. albicans and                     

Burkholderia pseudomallei were shown to induce higher NETs compared to wild 

types supposedly due to increased oxidative burst in the neutrophils (Riyapa et al., 

2012; Rocha et al., 2015). In the study involving C. albicans, the wild type and 

the major PS, glucuronoxylomanan were shown to inhibit NETs induction 

whereas the acapsular variant and a minor PS, glucuronoxylomannogalactan 

induced NETs (Rocha et al., 2015).   
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4.2 Specific objectives of the study 

Serotype of a pneumococcus influences its virulence through the capsular 

polysaccharide. Deletion of capsule can have profound impact on the invasiveness 

of the bacterium. Very few studies have been done to associate the capsule of 

pneumococci with NETs. There are no hitherto reports on the serotype-specific 

variations in NETs induction and the role of pneumococcal capsule in it during 

secondary pneumococcal infection after influenza infection. Since pneumococci 

were found to induce more NETs during secondary infection (chapter 3), the 

comparison of pneumococcal serotypes with respect to NETosis was the next 

step.  

The specific objectives of the study are, 

a) To evaluate the induction of NETs using purified pneumococcal capsule 

polysaccharide. 

b) To compare NETs induction by different serotypes of S. pneumoniae in 

both primary and secondary (after influenza) murine infection models. 

c) To assess the effect of capsule deletion on the NETs induction capability 

of S. pneumoniae. 

d) To evaluate the overall serotype-specific variation in the pathogenesis of 

S. pneumoniae. 
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4.3 Results and discussion 

4.3.1 Purified pneumococcal capsular polysaccharide induces NETs in a 

dose-dependent manner 

To determine if capsulated bacterial polysaccharide by itself can induce 

NETs, bone-marrow derived neutrophils were incubated with purified capsule PS 

of serotype 4 (ATCC). NETs were induced by PS in a concentration-dependent 

manner with 10 µg/ml inducing 3-fold greater NETs than control (Figure 4.4). 

This indicates that the capsule quantity of S. pneumoniae can influence the degree 

of NETs generation. Previously, LPS has been shown to induce extensive NETs 

in the presence of certain cytokines (Brinkmann et al., 2004). This study shows 

the direct role of capsule PS of a bacterium in inducing NETs thereby 

emphasising its importance in gauging host immune response to bacteria which 

leads to more potential areas of research, especially in murine models to observe 

similar effects in vivo. 

 



109 
 

 

Figure 4.4. Pneumococcal capsular polysaccharide induces NETs in a dose-dependent 

manner. Bone marrow-derived neutrophils were stimulated for 2 hours with various 

concentrations of purified capsule polysaccharide from serotype 4 (x-axis). Values represent the 

means ± SE of at least three independent experiments. * indicates P value < 0.05, Student’s t-test. 

 

4.3.2 Capsule thickness of pneumococci influences their susceptibility to 

neutrophil-mediated surface killing   

Three clinically prevalent strains of S. pneumoniae, serotypes 19F, 3 and 4, 

were used in the study along with a capsule mutant of serotype 4 (type cps4D-) 

that lacks the cps4D gene required for PS export to bacterial cell surface (Figure 

4.5 A). FITC-dextran exclusion assay was performed to assess the capsule 

thickness. As the presence of capsule would block the diffusion of dextran 

molecules through the cell wall, capsulated bacteria would appear as a clear zone 

(zone of exclusion) against a dark background. Serotype 3 possessed the largest 

capsule as measured by the zone of exclusion followed by serotype 4 and finally 

by serotype 19F and type cps4D- (Figure 4.5 B and C). All strains of                   

S. pneumoniae were compared in their vulnerability towards surface killing by 
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neutrophils. It is believed that neutrophils show better phagocytic activity on 

tissue surfaces when compared to conventional in vitro assays. This concept has 

been previously applied to pneumococcal studies as pneumococci show low 

phagocytic susceptibility in vitro (Weinberger et al. 2009). Serotypes 3 and 4 

showed no or little susceptibility to killing while serotype 19F was killed in very 

high numbers (Figure 4.5 D). 

Correlation of capsule size with the surface killing assay results showed high 

association between the thickness of capsule and the susceptibility of                           

S. pneumoniae towards neutrophil-mediated killing. The serotype with the largest 

capsule, type 3, was not at all killed by neutrophils whereas serotype 19F was 

killed with high efficiency. Serotype 4 was an intermediate in both capsule 

thickness and susceptibility to killing. Moreover, the capsule mutant of serotype 

4, type 4cps4D-, displayed very high susceptibility towards killing while having 

only about 30% of capsule thickness of wild type (Figure 4.5 B-D). This 

demonstrates the importance of capsule in evading immune cell-mediated killing. 

Indeed, the role of PS content of capsule in pneumococcal virulence was first 

highlighted as early as 1950 (MacLeod & Kraus, 1950). Subsequently many 

studies have linked capsule to higher virulence and carriage prevalence of                  

S. pneumoniae (Hathaway et al., 2012; Morona et al., 2004; Weinberger et al., 

2009). An important observation from the surface killing assay is that in all wild 

type serotypes except serotype 3 which did not get killed, non-phagocytic killing 

including those by NETs predominated over phagocytic killing (Figure 4.5 D). 

Phagocytosis was inhibited using cytochalasin B that restricts actin 
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polymerisation in neutrophils without affecting other functions. Non-phagocytic 

killing was calculated as the difference between total killing without cytochalasin 

B and killing with cytochalasin B. Previous studies have reported phagocytosis to 

be the dominant mode of killing (Genschmer et al., 2013; Wartha et al., 2007). 

However, those experiments were performed using human neutrophils while the 

current study used murine ones. The exact effect of different sources of neutrophil 

on killing efficiency is not clear and is an important area that needs more 

attention. Interestingly, type 4cps4D- showed a relatively higher tendency 

towards phagocytic killing when compared to the wild type showing an almost 

two-fold increase in phagocytic death. Again, this indicates the importance of 

capsule in determining the fate of bacteria inside the host wherein capsule helps 

the bacteria in evading phagocytosis by neutrophils and as a result, neutrophils are 

forced to try other modes of killing like NETosis. Thus, NETs emerge as 

important defence mechanisms inside the host against some of the virulent 

serotypes of S. pneumoniae and possibly other capsulated bacteria.  
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Figure 4.5. Thicker capsule protects pneumococci from neutrophil-mediated surface killing. 
(A) PCR amplification of cps4D gene showed the absence of the gene in the mutant of serotype 4, 

type 4cps4D-. (B, C) FITC-dextran (2000 kDa) exclusion assay was performed on serotypes 19F, 

3 and 4 as well as the capsule mutant type 4cps4D- to estimate the capsule thickness. Type 3 had 

the largest capsule while type 4cps4D- had significantly smaller capsule than type 4. Values 

represent mean area ± SE of 100 bacterial cells. (B) Representative images from dextran-FITC 

exclusion assay, scale bars = 2 μm. (D) Surface killing assay was performed on all four strains. 10 

μg/ml cytochalasin B (CyB) was used to inhibit phagocytosis. For all strains, non-phagocytic 

killing predominated over phagocytic killing. Type 19F and type 4cps4D- were found to be very 

susceptible to neutrophil-mediated killing. Values represent the means ± SE of at least three 

independent experiments. * indicates P value < 0.05 ** P value < 0.01,*** P value < 0.001,**** 

P value < 0.0001, ANOVA with Tukey post-hoc correction. 
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4.3.3 Capsule thickness correlates with overall pathogenesis and pulmonary 

NETosis during primary pneumococcal pneumonia 

Mice were infected with a high dose (10
7
 CFU) of the four bacterial strains 

and were sacrificed on three consecutive days. All wild type strains caused illness 

in the mice as seen by body weight trend while the capsule mutant did not cause 

any noticeable change (Figure 4.6 A). This is consistent with earlier reports which 

show that loss of capsular genes or locus affects colonisation and invasion by 

pneumococcus in mice (Magee & Yother, 2001; Melin et al., 2010; Shainheit et 

al., 2014). Mice infected with serotypes 3 and 4 presented severe clinical features 

such as drastic body weight loss, breathlessness, morbidity and even death by day 

3 whereas mice infected with serotype 19F showed recovery on day 3. Among the 

wild types, mice infected with type 3 showed the highest mortality however, 

infection with type 4 caused similar morbidity by day 3 thus resulting in the end 

of experiment (Figure 4.6 B). The high virulence of serotype 3 could be attributed 

to the high bacterial load in the lungs of infected mice (Figure 4.6 C) which 

corresponds well with the resistance of serotype 3 to surface killing (Figure 4.5 D) 

suggesting uninhibited replication. Likewise, serotype 4 also flourished well in 

the lungs albeit two-logs lesser than serotype 3. Serotypes 19F and the capsule 

mutant serotype 4cps4D- could not be recovered from lungs implying either very 

low replication rate or clearance by immune cells.  
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Figure 4.6. Primary infection with serotypes 19F, 3, 4 and 4cps4D-. BALB/c mice were 

intratracheally infected with 10
7
 CFU of serotypes 19F, 3 and 4 as well as a capsule mutant of type 

4 (cps4D-). Lungs were harvested on three consecutive days post-infection. (A) Both type 3 and 

type 4 caused significant body weight loss in mice until day 3 while mice infected with type 19F 

recovered by day 3 and type 4cps4D- failed to cause any clinical symptoms. (B) Both type 3 and 

type 4 induced 100% morbidity with type 3 causing more actual deaths. Type 19F and type 

4cps4D- did not cause any morbidity. (C) Type 3 replicated very efficiently in the lungs of 

infected mice with type 4 coming a distant second. (D) Histopathology scores showed that type 3 

caused the progressively worst lung pathology while type 19F, type 4 and type 4cps4D- induced 

lesser infiltration by day 3. (E) Haematoxylin and eosin staining of lung sections revealed very 

high neutrophil infiltration (arrows) in the alveolar spaces (AV) from infection with serotypes 3, 4 

and 19F while infection with type 4cps4D- showed a relatively lower neutrophil presence in the 

lungs. Magnification of images: 100x for top panels; 1000x for lower panels. Values represent the 
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means ± SE of 8 animals per group (2 independent experiments). * indicates P value < 0.05 ** P 

value < 0.01,*** P value < 0.001, ANOVA with Tukey post-hoc correction. 

 

Histopathologically, serotypes 3 and 4 took the lead again in causing severe 

necrosis, oedema and cellular infiltration in infected lungs. However, there was 

some difference in the pattern of pathological scores. While initially only mice 

infected with serotypes 3 and 4 presented high cellular infiltration, by day 2 all 

wild type groups showed comparable levels of pathology while type 4cps4D- 

groups showed decrease in lung score. By day 3, only mice infected with serotype 

3 showed progressively worse pathology while infection with serotypes 4 and 19F 

led to decreased pathological scores. On all days, infection with the capsule 

mutant presented significantly lower pathological scores than the wild type. While 

all wild types induced very high neutrophil infiltration in lungs the capsule mutant 

induced a mixed cellular response on day 1 and thereafter caused very minimal 

infiltration (Figure 4.6 D and E).   

Lung hydrogen peroxide has the potential to mediate oxidative damage to 

tissues. Infection with serotype 4 induced greater levels of H2O2 in the lungs 

followed by serotype 3 infection. Serotype 19F and type 4cps4D- groups had 

comparatively lower H2O2 (Figure 4.7 A). In an in vitro study, researchers have 

shown that serotype 4 generates higher H2O2 than serotype 3 under aerobic 

conditions that may potentially cause more double-stranded breaks in the DNA in 

lungs (Rai et al., 2015). This could in fact be the reason behind higher H2O2 

concentration in mice infected with serotype 4 as the bacteria by itself contributes 

to high amounts of H2O2.  
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While MPO activity which acts as a surrogate for neutrophil activity did not 

show any serotype-specific trend, the activities in lung were generally elevated 

after infection with wild types whereas infection with capsule mutant led to lower 

MPO activity when compared to the wild type (Figure 4.7 B).  

 

Figure 4.7. NETs and neutrophil activity in lungs after primary pneumococcal infection. (A) 
Mice infected with type 4 showed the highest H2O2 concentration. (B) Infection with all wild types 

led to higher MPO activity in the lungs. (C, D) Type 3 induced the highest pulmonary NETs (D, 

white arrows; blue=DAPI, green=H2B and red=MPO). Infection with type 4cps4D- presented 

significantly lower values in all parameters than wild type. Values represent the means ± SE of 6-8 

animals per group (2 independent experiments). * indicates P value < 0.05 ** P value < 0.01,*** 

P value < 0.001, ANOVA with Tukey post-hoc correction. 
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NETs correlated well with clinical presentation, lung bacterial burden and 

pathology (Figure 4.7 C). Serotype 3 being able to replicate the highest in lungs, 

caused the highest pathology and NETs generation (Figures 4.6 B-D and 4.7 C-

D). Serotypes 4 and 19F which came next in pathology induced NETs at similar 

levels except on day 1. This suggests some histopathological relevance of NETs 

in infection. Similar association between NETs and severe pathology was made 

earlier with influenza virus (Narasaraju et al., 2011). Capsule mutant of serotype 4 

was significantly lower than its wild type in both MPO activity and NETs score. 

4.3.4 Capsule thickness along with other virulence factors influences the 

virulence and NETs-inducing ability of S. pneumoniae during secondary lung 

infection following influenza infection  

Virulence and NETs-inducing ability of serotypes 19F, 3 and 4 as well the 

capsule mutant type 4cps4D- were assessed in a secondary pneumococcal 

infection model. BALB/c mice were first infected with 5 PFU sublethal dose of 

influenza A/H1N1/PR8 virus followed by 100 CFU sublethal doses of the four 

bacterial strains and were sacrificed at 24 and 48 hours after pneumococcal 

infection to harvest lungs. All the influenza-infected mice including those dually 

infected with S. pneumoniae showed similar trend in body weight loss (Figure 4.8 

A). However, the mice dually infected with serotypes 3 and 4 showed severe 

clinical manifestations such as laboured breathing, hunched back and reduced 

intake of food culminating in the experimental end-point by day 9 (48 hours post-

secondary infection). This was evident in a separate experiment done for survival 

analysis after secondary infection (Figure 4.8 B). Mice challenged with serotypes 
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3 and 4 after influenza infection showed mortality beginning from day 9 and by 

day 10, all surviving mice had become moribund. All other groups including 

those dually infected with serotype 19F survived until the experimental end-point 

of day 13 and had already started recovering from the illness.  
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Figure 4.8. Secondary infection with serotypes 19F, 3, 4 and 4cps4D-. BALB/c mice were first 

intratracheally infected with 5 PFU PR8 virus followed by 100 CFU S. pneumoniae on day 7. 

Mice were monitored daily until they lose 30% of initial body weight or were sacrificed at specific 

time points. Lungs were harvested at 24 and 48 hours after secondary infection. (A) All the 

influenza infected mice suffered similar body weight loss. P value <0.05 between infected and 

uninfected groups. Values represent the means ± SE of 6 animals per group (2 independent 

experiments). (B) Secondary infection with both type 3 and type 4 led to 100% morbidity by day 

10 while mice infected with types 19F and cps4D- lived until the experimental end point on day 

13. The Kaplan-Meier survival analysis revealed the survival of Flu + type 3 and Flu + type 4 

groups to be statistically lower than Flu alone, Flu + type 19F and Flu + type 4cps4D-,  P < 0.05, 

Kaplan-Meier survival analysis. Animals/group=3 (Single experiment).   
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Secondary infection with serotype 3 as expected caused the highest lung 

bacterial load while bacterial load after serotype 4 infection came a close second, 

different from the primary pneumococcal infection (Figure 4.9 A). Serotype 19F 

showed a comparatively lower replication in lungs after secondary infection. In all 

the wild type groups, secondary dual infection greatly enhanced the replicative 

efficiency of S. pneumoniae in lungs, consistent with the previously established 

studies (McNamee & Harmsen, 2006; Smith et al., 2013; Figure 3.2 B). 

Interestingly, the capsule mutant type 4cps4D- was again not detected in the lungs 

implying susceptibility to host immune system or inefficient replication.   

Upon histopathological analysis, all influenza and dual-infected groups seem 

to have higher histology scores when compared to bacteria alone or mock 

infections (Figure 4.9 B and C). Secondary infection with serotypes 3 and 4 

showed the worst pathology. Surprisingly this time, infection with serotype 4 

showed higher pathological features such as cellular infiltration, necrosis and 

pleuritis when compared to serotype 3 despite the latter being at least ten times 

higher in lung bacterial burden by 48 hours. This indicates the presence of other 

factors apart from capsule size that may govern the virulence of a serotype during 

secondary infection.  
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Figure 4.9. Histopathology and lung bacterial load after secondary infection. (A) Secondary 

pneumococcal infection after influenza infection makes pneumococcal replication in lungs very 

conducive. All the serotypes replicated efficiently in the lungs after secondary infection 

(Flu+bacteria) compared to bacteria alone infection. Type 3 followed by type 4 replicated with 

most efficiency in the lungs of  influenza-infected mice. The capsule mutant of type 4, cps4D- was 

not detected in the lungs. (B, C) Secondary infection with type 4 caused the worst lung pathology 

followed by type 3. Values represent the means ± SE of 6 animals per group (2 independent 

experiments). * indicates P value < 0.05 ** P value < 0.01,*** P value < 0.001, ANOVA with 

Tukey post-hoc correction. (C) Haematoxylin and eosin staining of lung sections revealed very high 

neutrophil infiltration (arrows) in the alveolar spaces (AV) of dual infected groups of types 3, 4 
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and 19F while type 4cps4D- groups showed more lymphocyte infiltration (asterix) in lungs. 

Magnification of images: 100x for top two panels; 1000x for bottommost panel. 

 

As the airways are already damaged due to influenza infection, bacteria can 

easily exploit the situation and multiply in high numbers. However, each serotype 

may have its own unique mechanism to utilise the available space, as is evident 

from the pathological differences between serotypes 19F, 3 and 4 infection 

groups. Serotype 4 is known to produce the highest hydrogen peroxide levels 

among the three serotypes and thus can cause the highest DNA damage in the 

lungs (Rai et al., 2015). Another possibility is the uptake of pneumococci assisted 

by PAFr receptor as the receptor undergoes rapid internalisation upon binding to a 

ligand. This property is dependent on the virulence of S. pneumoniae as avirulent 

strains do not adhere efficiently using this mechanism (Cundell et al., 1995). 

Despite contradictory reports on the efficacy of PAFr-neutralisation approaches in 

reducing bacterial dissemination in the host, it may still be worthwhile to study 

the correlation of virulence of a serotype with PAFr binding (McCullers & Rehg, 

2002; van der Sluijs et al., 2006). 

Further strain dependent variance has been seen with pneumolysin (Ply) 

which can differ in its cytolytic potential. Both cytolytic and non-cytolytic Ply 

have been associated with invasive disease however, only the cytolytic Ply-

possessing strains can trigger TLR4-mediated activation of NOD-like receptor 

family, NLRP3 inflammasome that activates IL-1β secretion from macrophages. 

Some cytolytic strains stimulate GM-CSF and IFN-β secretion which again can 

invoke strong immune response. Yet some strains like serotypes 1, 8 and 7F are 
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not recognised by NLRP3 mechanism and hence can evade clearance by immune 

system (Harvey et al., 2014; Witzenrath et al., 2011). Thus, virulence factor 

diversity can potentially influence the invasiveness of S. pneumoniae strains. 

Furthermore, capsule mutant type 4cps4D- also caused significantly higher 

pathology compared to influenza alone infection, despite being undetectable in 

the lungs indicating that unencapsulated strains can also prove perilous during 

secondary infection. A notable feature of strain-dependent variation is the type 

distribution of infiltrating cells (Figure 4.9 C). While all wild types showed very 

high neutrophil infiltration in the lungs, the capsule mutant showed high number 

of lymphocytes infiltrating the lungs. Pneumococcal capsule is known to 

influence cytokine response in the host immune cells shifting from pro- to anti- 

inflammatory action (de Vos et al., 2015; van der Poll et al., 1996, 1997). Studies 

have shown that capsular PS can influence Th1/Th2 cytokine response based on 

the serotype (Mawas et al., 2000). It is not very clear whether and how capsule 

can dictate myeloid/lymphoid cell activation by manipulating cytokine signalling 

and how it ties up with secondary infection after influenza as primary infection 

with the capsule mutant did not display such strong predilection for lymphocytes. 

Nevertheless, this observation strengthens the widely held notion that the 

presence of capsule in S. pneumoniae determines the immune response of the 

host. The ROS content in the lungs of infected mice in the form of H2O2 was 

measured and was found to lack any clear pattern amongst the tested groups 

(Figure 4.10 A). This could arguably be an effect of intratracheal procedures that 

was done twice on these mice for secondary infection but one would expect a 
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clear difference between infected and mock infected groups in any case. Further 

analysis is required to elucidate the cause of such discrepancies.  

MPO activity on the other hand, showed a very clear trend similar to the 

histopathology (Figure 4.10 B). Groups dually infected with serotype 4 showed 

the highest MPO activity followed by dually infected serotype 3 groups. Dual 

infection with serotype 19F led to similar levels of MPO activity to mock and 

other groups apart from a mild increase at 24 hours post-secondary infection. The 

MPO activity was lower in the mice infected with capsule mutant following 

secondary infection when compared to wild type.  

NETs formation reflected the trend of MPO activity and histopathology after 

secondary infection with serotype 4 that showed the highest NETs formation in 

lungs while infection with serotype 3 came second (Figure 4.10 C). Both 

serotypes 4 and 3 induced higher NETs formation when compared to serotype 

19F in dual infection. The capsule mutant again did not induce NETs as high as 

its wild type thereby re-stressing on the importance of capsule in inciting efficient 

host response.  
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Figure 4.10. NETs and neutrophil activity in lungs after secondary pneumococcal infection. 

(A) Influenza infection by itself induces high concentrations of H2O2. (B) Mice infected with type 

4 after influenza infection showed highest MPO activity in lungs followed by serotype 3 infection. 

(C) Dual infection with type 4 induced the highest NETs followed by type 3. The capsule mutant 

induced significantly lower NETs than wild type following secondary infection. Values represent 

the means ± SE of 6 animals per group (2 independent experiment). * indicates P value < 0.05 ** 

P value < 0.01, ANOVA with Tukey post-hoc correction. 

 

mRNA expression of some pro-inflammatory cytokines and cytokine-

regulatory factors showed mixed serotype-specific patterns (Figure 4.11 A). 

While interferon-beta (IFN-β) and IL-1β were expressed highly in mice infected 

with serotype 3 after influenza infection compared serotype 4 infection, the latter 

group showed higher expression of RANTES. Increased expression of RANTES 



126 
 

and IL-1β was seen in all influenza-infected groups indicating their importance in 

host response to influenza virus. Mice infected with capsule mutant of serotype 4 

had lower expression profiles than those infected with wild type for all three 

cytokines. Protein concentrations were much more conclusive (Figure 4.11 B). 

Levels of IL-6, IL-1β, TNF-α, IL-17 and IL-10 were measured by ELISA and 

showed high concentration in the dually infected serotype 4 groups followed by 

serotype 3 groups. IL-10 was only increased in type 4 dual infection groups and 

the capsule mutant induced lower levels of all four cytokines than the wild type. 

IL-17 was not detectable in all samples. 

MAP kinase phosphatases (MKPs) are negative regulators of cytokine 

expression and have profound impact on innate immunity especially after 

influenza infection (James et al., 2015; Jiao et al., 2015; McCoy et al., 2008). 

MKP 5 gene expression was shown to increase during influenza infection and 

MKP 5 deficient mice were resistant to influenza infection (James et al., 2015). In 

this study, while mRNA expression of MKP 2 and 3 were more or less enhanced 

after influenza infection, no such change was seen with MKP 5 (Figure 4.11 A). It 

is possible that a low sublethal dose of virus (5 PFU) does not invoke a high 

expression of MKP 5 in mice since the previous studies had used higher viral 

doses. Interestingly, MKP 3 expression was lower at 48 hours after dual infection 

with serotypes 3 and 4 indicating disruption of cytokine regulation by virulent 

pneumococci infection (Figure 4.11 A). Considering that dysregulation related-

cytokine storm has been implied in severe epidemics of influenza virus such as 

the 1918 ‘Spanish flu’ (Osterholm, 2005), this finding can have a significant 
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bearing on the outcome of secondary infection. Although not statistically 

significant, the lower MKP 3 gene expression does correlate to statistically 

significant increase in the protein content of pro-inflammatory cytokines in the 

serotypes 3 and 4 dual infection groups (Figures 4.11 A and B). Capsule mutant 

as expected was lower in both mRNA expression and protein concentration of 

pro-inflammatory cytokines when compared to the wild type. In MKP gene 

expression, the capsule mutant does not show significant dysregulation like wild 

type for MKP 3 at 48 hours. However, the MKP 5 gene expression is lower at 48 

hours as an exception.       
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Figure 4.11. (A) mRNA expression of pro-inflammatory cytokines and cytokine-regulatory 

proteins. Values represent the means ± SE of 4 animals per group (2 independent experiments). * 

indicates P value < 0.05 over Mock, # indicates P value < 0.05 over Flu+serotype 19F, ANOVA 

with Tukey post-hoc correction. 
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Figure 4.11. (B) Protein levels of pro- and anti-inflammatory cytokines. IL-17 was not 

detectable in the lung homogenates. Values represent the means ± SE of 4 animals per group (2 

independent experiments). * indicates P value < 0.05 ** P value < 0.01,*** P value < 0.001, 

ANOVA with Tukey post-hoc correction. 

 

4.3.5 NETs induction in bone marrow-derived neutrophils by pneumococci 

does not reflect in vivo patterns of NETosis  

Stimulation of bone-marrow derived neutrophils in vitro using S. pneumoniae 

serotypes resulted in a pattern of NETs induction different from the in vivo 
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observations (Figure 4.12 A and B). Neutrophils incubated with serotype 4 

generated the lowest NETs compared to stimulation with all other strains most 

notably lower than the capsule mutant cps4D-. Serotype 3 induced the highest 

though not significant NETs generation followed very closely by serotype 19F. 

Finally, neutrophils were stimulated in vitro first with BALF from influenza-

infected mice and then with S. pneumoniae strains to mimic secondary infection. 

While all infectious environment including BALF alone (Flu) induced higher 

amount of NETs than unstimulated neutrophils in media (control), the pattern of 

NETs formation again did not reflect the in vivo findings (Figure 4.12 B). Flu-

BALF with Serotypes 19F and 4 induced the highest NETs while the capsule 

mutant was slightly lower than the type 4 wild type. However, serotype 3 induced 

lowest NETs amongst all the strains very close to that of flu alone stimulation.  

Although it is very hard to speculate the reason behind such discrepancies, the 

limited bacteria-neutrophil interaction under laboratory conditions could have 

played some role in it. In an in vivo model, neutrophils and bacteria interact in the 

presence of various overlapping factors such as chemokines and ROS. Both 

chemokines and ROS are known to be involved in NETosis (Brinkmann et al., 

2004; Gray et al., 2013; Figure 3.6 C). During infection, such pro-inflammatory 

chemokines and ROS are upregulated in lungs which may have provided 

additional stimulation to the neutrophils as NETosis can occur due to stimulation 

of different receptors. It is also possible that the neutrophils recruited into the 

lungs as a result of cell signalling may already have been predestined to form 

NETs in the peripheral bloodstream itself. The limitation of poor neutrophil yield 
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from peripheral blood of mice necessitates the use of bone marrow-derived 

mature neutrophils that may be missing in certain activation features. Use of 

human peripheral blood neutrophils may address these issues, yet this area 

warrants more research as most studies on NETs rely solely on in vitro 

examination which may not accurately reflect the in vivo scenario.   

 

 

Figure 4.12. Induction of NETs in vitro using S. pneumoniae do reflect the in vivo trend in 

primary and secondary infection model. Bone marrow-derived neutrophils were stimulated in 

vitro to induce NETs. (A) Neutrophils were incubated with pneumococci. At MOI of 1, type 3 

induced highest NETs, type 4cps4D- induced more NETs than wild type. (B) Neutrophils were 

stimulated for 2 hours using BALF from influenza-infected animals to induce NETs.                    

S. pneumoniae were then added at MOI of 1 and incubated for 2 hours. Flu + type 19F,  Flu + type 

4 and Flu + type 4cps4D- induced significantly high NETs when compared to Flu alone 

stimulation. Values represent the means ± SE of at least three independent experiments. * 

indicates P value < 0.05 ** P value < 0.01, Anova with Tukey post-hoc correction. 
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4.4 Conclusion 

The global circulation of infectious strains puts enormous adaptive pressure 

on the microbes to evolve into more robust beings. Tissue microenvironments can 

differ from host to host creating ample scope for pathogens like S. pneumoniae to 

re-organise their genome. Sometimes this could lead to enhanced expression of 

virulence factors that can subdue host immune responses thus leading to invasive 

disease; at other times the pathogen may downregulate these factors to improve 

survival under harsh conditions. Thus, various strains of the same pathogen 

emerge contemporarily and diverge over time from the parent strain with each 

strain invoking differential immune response from the host they infect.  

A total of 94 clinical serotypes of S. pneumoniae have been identified so far 

based on their capsular material (reviewed in (Song et al., 2013)). The 

pneumococcal conjugate vaccination utilises the immunogenic property of the 

capsule that is encoded by the cps loci of the pneumococcal genome (Melegaro et 

al., 2010). Variations in the PS composition lead to differences in immunogenicity 

between serotypes. While serotype 19F represents the most common type of PS 

structure among S. pneumoniae serotypes, serotype 3 has a shorter mechanism of 

PS biosynthesis which leads to copious amount of PS production. This feature 

was validated by FITC-dextran exclusion assay which showed serotype 3 to 

possess the largest capsule when compared to serotypes 19F and 4 (Figure 4.5 B 

and C). Capsule can negatively affect opsonisation and phagocytosis of bacteria 

by neutrophils and other phagocytes (Hyams et al., 2010). It can also help the 

bacteria to evade entrapment by NETs although this aspect was not found to be 
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very crucial for the virulence of pneumococcus as the diplococci can anyway 

break the NET structures using DNase (Beiter et al., 2006; Wartha et al., 2007). 

Though an earlier report on C. albicans showed capsular polysaccharide of wild 

type strains inhibiting NETs (Rocha et al., 2015), the current study for the first 

time demonstrates that a bacterial capsule polysaccharide by itself can induce 

NETs. The reason behind the contradiction in findings is not clear at this stage.   

In vitro experiments with isolated neutrophils showed that the PS could induce 

NETs in a dose-dependent manner (Figure 4.4). Additionally, molecular reduction 

of PS favoured phagocytosis against NETosis in serotype 4 indicating the 

manipulative influence of capsule on neutrophil function. NETs apart from 

antimicrobial action can also cause tissue injury (Narasaraju et al., 2011; 

Saffarzadeh et al., 2012). While acting as a stimulant for NETs formation, capsule 

concurrently helps pneumococcus in evading NETs with the help of DNase 

thereby giving rise to a large number of functionally redundant NET structures in 

the lung that might lead to higher lung injury. 

Serotypes with thicker capsules like type 3 and 4 showed lower susceptibility 

to neutrophil-mediated killing especially NETs when compared to type 19F 

(Figure 4.5 D). Upon the development of primary pneumococcal pneumonia in 

murine lungs, this difference plays a very essential role as the progression of 

pneumococcal disease along with pulmonary NETs formation correlates with the 

thickness of the bacterial capsules (Figures 4.6 and 4.7). However, these 

correlations did not materialise during secondary pneumococcal infection after 

influenza infection as serotype 4 showed the highest virulence and NETs 
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induction more than serotype 3 (Figures 4.8, 4.9, 4.10 and 4.11B). This shift in 

virulence could be attributed to many things as discussed earlier; most notably to 

the H2O2 production and genotoxicity caused by serotype 4 (Rai et al., 2015). 

While a robust host immune response may permit only those serotypes that can 

survive in high numbers in the lung to cause invasive disease, during secondary 

infection such requirements could be relaxed due to the compromised lung 

environment arising from influenza infection selecting for serotypes that can 

cause maximum damage with their virulence components without needing to be 

high in numbers. However, no clear trend in H2O2 levels in lungs could be 

established in this study alluding to other virulence mechanisms such as 

pneumolysin. 

Nevertheless, capsule is still very crucial in maintaining the disease-causing 

ability of pneumococcus. A capsule mutant of serotype 4 producing lesser PS was 

used to study the immediate effect of loss of capsule PS on lung pathology and 

NETs during primary and secondary pneumonia. In both cases, the mutant 

bacteria failed to cause any clinical manifestation of pneumococcal disease while 

the wild type did (Figures 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11B). With respect to 

NETosis, the capsule mutant did not induce as much NETs as the wild type         

in vivo. Hence, it can be concluded that while capsule plays a crucial role in the 

virulence of S. pneumoniae in causing pneumonia-associated lung injury and 

NETosis during primary infection, capsule along with other pneumococcal 

virulence factors play an important role in the pathogenesis of secondary 

pneumococcal infections.  
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CHAPTER FIVE 

 HIGH FAT DIET-FED MICE SHOW A MARGINAL INCREASE                       

IN THE FORMATION OF NEUTROPHIL EXTRACELLULAR TRAPS   

IN LUNGS IN RESPONSE TO INFLUENZA INFECTION  

 

5.1. Background 

5.1.1 Epidemiology of obesity - impact of a high fat diet (HFD) 

Obesity is a growing worldwide epidemic which is a particular cause of 

concern for developing nations that have to simultaneously deal with high under-

nutrition in its poorer sections as well as increasing obesity in the burgeoning 

middle and upper class. Clinically, obesity is defined as abnormal accumulation 

of adipose tissues or fat in the body that may impair health. WHO defines a body 

mass index (BMI, weight in kilograms divided by square of height in metres) of 

more than 25 as overweight and more than 30 as obese (WHO Fact sheet, January 

2015
11

). Consumption of high calorie food like fast food, trans-fatty acids and 

fructose together with a sedentary lifestyle has been identified as the main cause 

of increasing obesity rates (reviewed in (Hurt et al., 2010)). The prevalence of 

obesity has doubled since 1980 and in 2013, about 42 million children under the 

age of five were found to be overweight or obese (WHO Fact sheet, January 

2015
11

, Flegal et al., 2005). Obesity has been associated with cardiovascular 

diseases like heart disease or stroke, diabetes, osteoarthritis, hypertension, certain 

cancers like that of breast or colon and even psychological conditions (WHO Fact 
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sheet, January 2015
11

). Fears are rampant about the possibility that obesity and 

related diseases might soon overtake smoking as the leading cause of preventable 

death in the United States of America (Office of Surgeon General, US, 2001
12

). 

Similar concerns have been raised in other parts of the world as well. 

5.1.2 Inflammation and oxidative stress during obesity 

Obesity has been associated with chronic low grade inflammation 

(Hotamisligil et al., 1993). Adipose tissue possesses a mix of adipocytes, 

preadipocytes, immune cells and endothelium. Alterations in nutrient excess can 

lead to adipocyte hypertrophy and hyperplasia that can restrict blood supply to 

adipocytes leading to hypoxia (reviewed in (Trayhurn & Wood, 2004; Wellen & 

Hotamisligil, 2005)). Hypoxia can incite necrosis and macrophage infiltration of 

adipose tissue which in turn leads to over secretion of pro-inflammatory 

cytokines. Adipocytes are similar to macrophages and express receptor of 

macrophage proteins like TNF-α, IL-6 and MMPs. Furthermore, lipids themselves 

can induce inflammation. Macrophages can absorb the excess lipids and store 

them to become atherosclerotic foam cells. Thus, the localised inflammation of 

adipose tissue can promulgate systemic inflammation that may lead to the 

development of obesity-related comorbidities (reviewed in (Trayhurn & Wood, 

2004; Wellen & Hotamisligil, 2005)). Among the adipokines secreted during 

obesity, TNF-α, IL-6 and adiponectin have been found to be of most significance 

(Hotamisligil et al., 1993; Stenlöf et al., 2003); (reviewed in (Liu & Liu, 2009)). 

Both TNF-α and IL-6 are pro-inflammatory cytokines that elicit higher 

recruitment of immune cells into the adipose tissues and are upregulated during 
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obesity. It is suggested that TNF-α inhibits insulin receptor signalling pathway 

and thus promotes insulin resistance (Hotamisligil et al., 1993, 1996). IL-6 is 

involved in regulation of inflammation and its receptor is expressed in the regions 

of brain like hypothalamus that controls appetite (Stenlöf et al., 2003). 

Adiponectin, on the other hand, is downregulated during obesity and is linked to 

regulation of glucose and lipid metabolism, food intake and body weight and it 

also protects against chronic inflammation (reviewed in (Liu & Liu, 2009)). 

Another crucial adipokine is leptin, a polypeptide hormone that helps to 

regulate appetite and also functions as immune modulator. It gets elevated during 

obesity due to over secretion by adipocytes which may lead to leptin-resistance as 

seen in type II diabetes patients. In addition, it also induces the T-lymphocytes 

and monocytes to produce proinflammatory cytokines like TNF-α, IL-6 and IL-1β 

as well as ROS. Leptin also protects the T-lymphocytes from apoptosis and 

regulates T-cell proliferation and activation. Leptin has a structural similarity to 

other cytokines, such as IL-6, which is known to serve a pro-inflammatory role.  

In endothelial cells, leptin induces oxidative stress and upregulation of adhesion 

molecules. (Reviewed in (Fantuzzi, 2005; McCallister et al., 2009)).  

5.1.3 Obesity and neutrophils 

Increases in peripheral neutrophil activity have been reported in healthy obese 

subjects (Brotfain et al., 2015; Trellakis et al., 2012). Along with increased 

superoxide generation in response to various stimuli, comparatively lower levels 

of adiponectin were found in obese subjects when compared to lean subjects. 
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These increases in neutrophil activity are believed to be due to the production of 

pro-inflammatory cytokines like IL-8 from the adipocytes (Trellakis et al., 2012). 

Increased superoxide production is also reported to be due to leptin receptors 

present on neutrophils which behave like pro-inflammatory cytokines and 

augment the respiratory burst (Caldefie-Chezet et al., 2001). Acute neutrophil 

infiltration has been known to precede macrophage infiltration in tissues where 

they may initiate the inflammatory signalling cascade leading to chronic 

macrophage infiltration (Strissel et al., 2007). In a diet-induced obesity (DIO) 

model, researchers found increased neutrophil recruitment into the intra-

abdominal adipocytes peaking at day 3-7 since the start of HFD and declining 

thereafter (Elgazar-Carmon et al., 2008). The neutrophils from HFD-fed mice also 

demonstrated increased adherence to adipocytes upon stimulation with PMA that 

was mediated by protein complex formation between CD11b of neutrophils and 

intercellular adhesion molecule (ICAM) 1 of adipocytes. Ligation of ICAM-1 by 

itself is known to provide pro-inflammatory effects which can lead to increase in 

the infiltration of adipose tissues.  

5.1.4 Obesity and respiratory health 

Obesity has been shown to affect pulmonary competence due to excessive fat 

deposition in the chest wall, increased pulmonary blood volume and extrinsic 

mechanical pressure on the thoracic cavity by compression from the excess soft 

tissue. This alters the lung mechanics by affecting gas exchange and respiratory 

muscle control (reviewed in (McCallister et al., 2009)). In a cross sectional study, 

researchers found high correlation of lower circulating levels of lung-derived 
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innate immune protein, surfactant protein D (SP-D) with obesity and type II 

diabetes (Fernández-Real et al., 2010). Obesity can lead to increased dyspnoea 

thereby reducing exercise capacity and also augments respiratory resistance 

(reviewed in (Falaglas & Kompoti, 2006; McCallister et al., 2009)).  

Abdominal obesity is associated with gastro-oesophageal reflux due to 

increased gastric volumes and gastric pressure from visceral fat tissues that affect 

the lower oesophageal sphincter closure. In such cases, the gastric fluid may get 

aspirated into the respiratory tract causing aspiration pneumonia (reviewed in 

(Mancuso, 2013)). Additionally, obesity can also predispose one to increased 

risks of community-acquired respiratory tract infections. In a large population 

study of over 26,000 men aged 44-79 years and 78,000 women aged 27-44 years 

in the U.S.A., significant weight gain during adulthood and high BMI were shown 

to correlate with higher risks of community-acquired pneumonia (CAP) in women 

and to a smaller extent in men (Baik et al., 2000). Other respiratory conditions 

shown to be influenced by obesity are asthma, chronic bronchitis and chronic 

obstructive pulmonary disorder (Akerman et al., 2004; Guerra et al., 2002; Schols 

et al., 2005). 

5.1.5 Obesity and influenza 

During the 2009 H1N1 pandemic, obesity was for the first time established as 

an independent risk factor for severe influenza cases (Louie et al., 2009, 2011). 

Reports suggested that morbidly obese patients i.e. those having BMI more than 

40 were more likely to be hospitalised due to influenza-related complications. The 



140 
 

situation gets worse with the presence of comorbidities like type II diabetes, 

coronary heart conditions and hypertension. Later these findings were extended to 

increased admission to intensive care units, morbidity and death (reviewed in 

(Mancuso, 2013)).  

Even before the 2009 pandemic, obesity was suspected to be a cause behind 

acute influenza pneumonitis in many instances. In 2007, Smith et al. (2007) had 

observed a correlation of severe influenza infection with increased fat mass in a 

DIO model. Lean and obese mice infected with influenza A/PR8/34 virus showed 

higher mortality rate and lung pathology in the DIO group. Several cytokines 

were found dysregulated in the DIO model like delayed but higher expression of 

pro-inflammatory TNF-α and IL-6, decreased expression of MCP-1 and RANTES 

as well as reduced expression of interferons-α and β. NK cell cytotoxicity was 

also found to be reduced in the DIO group.  

Subsequent studies found impaired T-cell responses to influenza infection in 

the DIO mice. Mice sequentially infected with two different strains of the virus – 

H3N2 and H1N1/PR8 showed increased mortality rates, lung pathology and lung 

viral titres along with reduced pro-inflammatory and antiviral cytokines most 

notably IFN-γ in the obese groups when compared to the lean groups. The 

memory CD8
+
 T-cells of obese group failed to elicit a strong immune response 

during secondary viral infection (Karlsson et al., 2010). Similar trend was seen in 

another DIO study using H1N1/PR8 virus for primary infection and pandemic 

H1N1 virus for secondary infection. Again, there was a reduced cross-protection 

in the obese group along with higher clinical manifestations. The researchers 
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found higher regulatory T-cells (Tregs) in the obese mice but the Tregs were 40% 

less suppressive than those of the lean mice (Milner et al., 2013). These findings 

indicate a possible reduction in the efficiency of influenza vaccines in protecting 

obese patients due to weakened T-cell response. Indeed, a 2012 clinical study 

found that BMI has a negative correlation with vaccine efficiency. A year after 

receiving trivalent influenza vaccine, obese individuals showed greater decline of 

antibody titres and decreased ex vivo CD8
+
 T-cell activation (Sheridan et al., 

2012).   

5.2 Specific objectives of the study 

Ever since obesity was found to be an independent risk factor for morbidity 

during influenza infection, a lot of research has been directed towards finding the 

underlying cause and pathological implications in obese individuals. We now 

know that the immune system of obese individuals is dysfunctional which causes 

them to succumb faster or with higher severity to respiratory infections. There are 

no hitherto reports on the extent of NETs generated in the lungs of these 

individuals during or after an infection. Hence, this study focuses on analysing 

NETosis in the lungs of influenza-infected mice fed with HFD.  

The specific objective of this study is to evaluate the effect of consumption of 

high fat diet on NETosis in the lungs of infected host animals.  
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5.3 Results and Discussion 

5.3.1 Prolonged consumption of HFD leads to increased adiposity in mice 

 

Figure 5.1. Time course for mice on low and high fat diets. 

Mice were randomly grouped at 5 weeks of age into two groups and each 

group was fed with either low fat diet (LFD, 10% kcal from dietary fat) or high 

fat diet (HFD, 45% kcal from dietary fat) for a period of 18 weeks (Figure 5.1). 

The weights were comparable between the two groups at the start of the diet 

(Figure 5.2 A). 

Due to higher amount of fat in HFD, the calories consumed are higher when 

compared to LFD. 1g of LFD amounts to 3.85 kcal while 1g of HFD has 4.73 

kcal. Due to this difference, the HFD mice ended-up consuming more calories 

than the LFD which reflects on their body weight and BMI patterns (Figure 5.2 

A-D). The blood glucose levels did not show any significant difference (Figure 

5.2 E). Due to randomisation, initial blood glucose levels could not be matched 
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and hence, the average blood glucose level of HFD group was slightly lower than 

that of LFD group at the start of the experiments. 

 

Figure 5.2. HFD mice show higher body weight gain and body mass index compared to LFD 

mice. After 18 weeks on the respective diets, HFD mice showed significantly higher (A) weight gain  

and (B) BMI. Even though the (C) weekly consumption of food per mice was comparable between the 

two groups, the (D) actual calories consumed were different due to higher dietary fat content. (E) Blood 

glucose levels were not significantly different between the two groups. Values represent the means ± 

SE of 15 mice per diet group (3 independent batches), Student’s t-test. 
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However after 18 weeks on diet plan, the HFD mice showed slightly higher 

glucose levels than LFD mice. Whether this later difference would have been 

more prominent if the initial levels were comparable is not clear.  

 

Figure 5.3. HFD mice show increased adiposity compared to LFD mice. (A) After 18 weeks 

on diet, the HFD mice showed greater accumulation of abdominal fat (white circle) than the LFD 

mice. (B) Gross anatomy of white (WAT) and brown adipose tissues (BAT) from LFD and HFD 

mice. The fat pads especially gonadal look larger in the HFD group. (C) Haematoxylin and eosin-

stained sections of WAT and iBAT did not show any significant difference in morphology.  

 

The HFD mice also showed higher accumulation of WAT in the gonadal and 

perirenal fat pads near the abdomen when compared to LFD (Figure 5.3 A and B). 

Organs like heart and kidneys along with fat pads also showed increased weights 

while spleen and lungs showed decreased weights in the HFD mice. The weights 
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of liver and brain were comparable between the two groups (Table 5.1). The 

adipose tissue sections were analysed by experienced pathologists and it was 

found that the increase in fat did not lead to any structural difference of the 

adipose tissue between the groups (Figure 5.3 C).  

 

Table 5.1. Weights of different organs and fat pads of LFD and HFD mice after 18 weeks on 

diet. Values represent the means ± SE of 3 mice per diet group (Single batch). P value = not 

significant, Student’s t-test. 

 

5.3.2 HFD and LFD mice show similar disease progression upon influenza A 

infection  

After 18 weeks on selected diet, the mice were infected with a lethal dose of 

influenza A virus. Upon infection with influenza A virus, both the LFD and HFD 

mice showed similar body weight loss (Figure 5.4 A). Histopathological analyses 

also showed no significant difference however, there was a non-significant 
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decrease of overall score in the HFD mice on day 6 post-infection which becomes 

comparable with the LFD group by day 10 (Figure 5.4 B and D). This  

 

Figure 5.4.  HFD and LFD mice show similar body weight loss patterns and histopathology 

upon lethal influenza A infection. (A) Both HFD and LFD mice showed similar levels of body 

weight loss upon infection with lethal dose of influenza A virus. (B, D) Histopathological 

differences among the groups were not significant as revealed by histology score and 

haemotoxylin and eosin staining. AV- alveoli. (C) The viral titre was marginally higher in the 

HFD group on day 6 post-infection but is non-significant. No virus was detected on day 10. 

Values represent the means ± SE of 5 mice per diet group (2 independent experiments). * indicates 

P value < 0.05 ** P value < 0.01, ANOVA with Tukey post-hoc correction. 

 

could perhaps indicate either some level of protection offered by increased fat 

deposits in HFD mice, which might keep the mice warm during the course of 
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infection or a more robust immune response in LFD mice. Both groups of mice 

showed thickening of alveolar septae, increased cellular infiltration in the alveolar 

and bronchiolar space and by day 10, increased alveolar fibrin deposition. The 

viral titres were not significantly different between both groups; however the 

titres tend to be higher in the HFD group. Further studies are required to 

determine if HFD modulates virus replication and/clearance over the course of 

influenza infection (Figure 5.4 C). Smith et al. (2007) also found similar but non-

significant increase in the virus titre in a DIO study with influenza virus showing 

that obesity exerts only marginal influence on the viral replication inside host.  

5.3.3 HFD mice show marginal increase in NETs formation despite lower 

MPO activity  

The H2O2 concentration and MPO activity of both LFD and HFD groups were 

not significantly different. However, the H2O2 concentration in lungs was slightly 

higher in the HFD mice on day 6 indicating slight increase in oxidative stress in 

the lungs compared to LFD group. The levels of H2O2 were similar in both groups 

by day 10 as both groups reached their end-point of 30% loss in initial body 

weight (Figure 5.5 A). Previous reports have indicated increased PMN activity in 

obese individuals and murine DIO models (Brotfain et al., 2015; Elgazar-Carman 

et al., 2008; Trellakis et al., 2012). Surprisingly, our results showed that the MPO 

activity is lower albeit not significant in the HFD mice when compared to the 

LFD mice despite relatively higher H2O2 in lungs (Figure 5.5 B). However, this 

corresponds well with the histology scores where we saw slightly lower score in 

the HFD group on day 6. This implies a more functionally robust neutrophil 
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response in the lean mice (LFD). However, more research needs to be done 

regarding this as the observed differences were statistically insignificant. 

 

Figure 5.5. Marginal increase in ROS and decrease in MPO activity in the lungs of infected 

HFD mice. (A) The concentration of hydrogen peroxide in the lungs of infected HFD mice (HFD-

INF) was comparatively higher on day 6 but non-significant. By day 10, the H2O2 concentrations 

in both the groups were similar in levels. (B) The MPO activity in the lungs of infected LFD mice 

(LFD-INF) was slightly higher on day 6 but non-significant. By day 10, the activity went down in 

both LFD and HFD infected groups but the LFD-INF mice still showed slight increase in activity. 

Values represent the means ± SE of 5 mice per diet group (2 independent experiments). * indicates 

P value < 0.05, ANOVA with Tukey post-hoc correction. 
 

 

The NETs showed a tendency to be increased, although not significant, in 

lungs on both days in the HFD mice despite lower MPO activity (Figure 5.6). 

This indicates a possible role of non-viral factors like higher cytokine response in 

inducing NETs and oxidative stress in the lungs of HFD mice. Again, further 

research is required to validate the effect of HFD on neutrophil activation and 

NETosis. 
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Figure 5.6. Infected HFD mice have marginally higher NETs formation in the lungs. The 

lungs of HFD-INF mice showed slight increase in NETs formation compared to LFD-INF mice on 

both day 6 and day 10 post-infection. Values represent the means ± SE of 5 mice per diet group (2 

independent experiments). * indicates P value < 0.05, **  P value < 0.01, ANOVA with Tukey 

post-hoc correction. 

 

5.4 Conclusion 

The widespread prevalence of obesity is a cause of concern for health 

authorities across the globe. With processed high fat-high sugar ‘fast’ food 

costing cheaper than healthy options, this epidemic is here to stay for quite some 

time. Apart from leading to a number of metabolic conditions like type II 

diabetes, atherosclerosis etc., obesity is known to have implications on respiratory 

health as well (reviewed in (McCallister et al., 2009)). Obesity increases 

susceptibility to influenza-related complications and CAP (Baik et al., 2000; 

Louie et al., 2009). Some researchers recommend obese individuals to be given 

priority for vaccinations against seasonal influenza to minimize fatalities in case 

of an epidemic thus, emphasising on the need to recognise obesity as a chronic 

medical condition by public health officials (reviewed in (Mancuso, 2013)).  



150 
 

While earlier studies on DIO and influenza infection concentrated mostly on 

the function of immune cells like T-cells, macrophages and neutrophils, there are 

no reports on the extent of NETs generated in obese subjects. Since NETs have 

been implicated in many pathological conditions, their importance in obesity 

especially during influenza infection commands more research into this area 

(Leffler et al., 2012; Narasaraju et al., 2011).  

Due to difficulty in studying NETs in human subjects, animal models make an 

excellent alternative to help us elucidate the possible implications of NETs in 

disease pathogenesis. Hence, a high fat diet was used to increase adiposity in 

BALB/c mice. Though these mice are not considered obese in a strict sense, there 

is sufficient difference in the amount of adipose tissue to create significant 

difference in BMI and body weights (Figure 5.2 A and B) which are the factors 

employed during clinical studies in humans (Louie et al., 2009, 2011). 

The data in this study reveal that even if both high and low fat diet-fed mice 

look clinically similar after influenza infection, there may be subtle non-

significant differences in the lung physiology and immune response. Generally, 

there was a tendency to observe higher viral titre, ROS concentration and NETs 

score in HFD mice post-influenza infection when compared to LFD mice 

indicating the subtle influence exerted by higher adiposity on these pathological 

factors (Figures 5.4 - 5.6). One odd factor was the MPO activity which was 

expected to be higher as well in HFD mice but was found to be lower (Brotfain et 

al., 2015; Elgazar-Carman et al., 2008; Trellakis et al., 2012). Similarly, the 

histology scores were also slightly lower in HFD mice earlier in the infection 
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course. It is possible that the higher neutrophil activity and inflammation in 

general help in controlling the viral infection resulting in lower viral titre in the 

LFD mice. Similar results with increased titre in the HFD group were found 

during pH1N1 infection in a DIO model which was associated with high leptin 

levels in HFD mice that got abrogated by an anti-leptin antibody (Zhang et al., 

2013). However, it is to be noted that the differences in H2O2, MPO activity and 

NETs between LFD and HFD were not statistically significant. Mouse strains 

show varying levels of obesity when fed with HFD (Montgomery et al., 2013). 

BALB/c mice are known to be resistant to DIO. There are other mouse strains like 

C57BL/6 that gain weight more rapidly when fed with HFD and become morbidly 

obese in 17-20 weeks. Even using transgenic mice such as ob/ob mice which have 

leptin deficiency that contributes to increased appetite may make these differences 

more pronounced. Nevertheless, there was indeed some degree of higher NETs 

and H2O2 concentration in the HFD fed-BALB/c mice in this study.  

This study shows that increased adiposity due to prolonged consumption of 

HFD may lead to marginal increase in the formation of NETs in murine lungs in 

the absence of genetic factors such as leptin deficiency. This suggests that in 

morbidly obese individuals, NETs may form significantly in the lungs in response 

of influenza infection that might contribute to increased lung injury and 

complications of influenza.  
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CHAPTER SIX 

 CHEMICAL INHIBITION OF NADPH OXIDASE DOES NOT PREVENT 

INFLUENZA-INDUCED LUNG INJURY IN MICE 

6.1 Background 

6.1.1 Reactive oxygen species and oxidative stress 

Reactive oxygen species or ROS are by-products of various cellular metabolic 

processes. Small amounts of ROS can be beneficial during cell signalling, 

cytokine and hormone regulation as well as in immunomodulation (reviewed in 

(Dupré-Crochet et al., 2013; Hildeman, 2004; Lander, 1997; Ray et al., 2012)). In 

addition, ROS is generated by phagocytes such as neutrophils and macrophages 

that are toxic for microbes and viruses (Fang, 2011). Natural antioxidants like 

SOD, catalase and glutathione peroxidase (GPx) help to convert ROS into less 

toxic compounds which can be removed by the host system (Dringen & 

Hamprecht, 1997). Oxidative stress occurs in case of any imbalance in this 

process leading up to build-up of toxic radicals that can cause tissue damage 

(reviewed in (Reshi et al., 2014)).  

6.1.2 ROS from neutrophils and other phagocytes 

Phagocytes upon activation by appropriate stimuli undergo respiratory burst 

releasing free radicals in the surrounding environment (Baldridge & Gerard, 

1932). Both phagocytosis and ETosis involve respiratory burst that occurs 

through the activation of nicotinamide adenine dinucleotide phosphate-oxidase 
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(NADPH oxidase or Nox) complex (Brinkmann et al., 2004; Fang, 2011). The 

NADPH oxidase is a membrane-bound enzyme complex that transports electrons 

across biological membranes. It occurs in various isoforms from Nox 1-5 and 

Duox 1-2. In neutrophils, the complex (Nox2) remains inactive and upon 

activation assembles to release superoxide (Figure 6.1) (reviewed in (Bedard & 

Krause, 2007)).  

 

 

Figure 6.1. Assembly of NADPH complex upon activation. The NADPH oxidase complex 

comprises 6 subunits – Nox2/gp91-phox (Neutrophil oxidase, Cytochrome b245-α). p22phox 

(Cytochrome b245-β), p40phox (Neutrophil cytosolic factor, Ncf4), p47phox (Neutrophil 

cytosolic factor, Ncf1), p67phox (Neutrophil cytosolic factor, Ncf2) and Rho guanosine 

triphosphatases (GTPase) Rac1/Rac2. Nox2 and p22phox are found in the intracellular vesicle 

membrane under resting conditions. Activation is initiated at Rac by GDP to GTP exchange. The 

cytosolic p47phox subunit undergoes phosphorylation and interacts with p22phox along with 

p67phox and p40phox to form an active Nox2 enzyme complex. The Nox2-containing vesicle 

fuses with the phagosomal membrane helping the Nox2 to transport electrons from cytoplasmic 

NADPH to phagosomal oxygen to generate superoxide. (Adapted from Bedard & Krause, 2007).  
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Several micro-organism including viruses stimulate ROS generation from 

phagocytes (Kim et al., 2013; Peterhans et al., 1987); (reviewed in (Jones et al., 

2012; Peterhans, 1997)). Neutrophils via Nox2 activation generate unstable 

superoxide (O2
-
) that undergoes spontaneous or SOD-mediated reduction into less 

toxic H2O2 which in turn gets converted into water by catalase (Figure 6.2). The 

H2O2 thus produced can interact with other neutrophil components and radicals 

such as MPO and reactive nitrogen species (RNS) (reviewed in (Tkaczyk & Vízek 

2007)). MPO is another crucial radical-forming component of neutrophil as it 

generates hypochlorous acid (HOCl) upon interation with H2O2. HOCl can further 

react with H2O2 to generate singlet oxygen and other ROS (Held et al., 1978); 

(reviewed in (Arnhold, 2004)).  

 

Figure 6.2. Generation of reactive oxygen-nitrogen species by activated neutrophils. 
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6.1.3 ROS and tissue injury 

Free oxygen radicals have been shown to help in clearing pathogens. 

Neutrophils deficient or defective in active Nox2 were unable to clear fungal 

infections in patients with chronic granulomatous disease (Urban et al., 2009); 

(reviewed in (Segal, 1996)). Similarly MPO-deficient patients and transgenic 

mice were very susceptible to C. albicans infection (Kutter et al., 2000); 

(reviewed in (Klebanoff et al., 2013)). H2O2 and HOCl can cause polyunsaturated 

lipid peroxidation at cell membranes and also react with sulphur-containing amino 

acids. H2O2 especially can cross membranes and thus, is the most available and 

cytotoxic radical inside the phagocytes. O2
-
 undergoes self-reduction to form 

H2O2. H2O2 along with O2
-
 react with nitrogen compounds to release RNS. The 

HOCl reacts with other proteases inside neutrophils to form chloramines which 

are also cytotoxic. Extracellular H2O2 is generated when the pathogens are too 

large to be handled and during NETosis (Chapman et al., 2002; Fang, 2011; 

Parker et al., 2012); (reviewed in (Dupré-Crochet et al., 2013; Klebanoff et al., 

2013; Reshi et al., 2014)).  
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Figure 6.3. Effects of ROS on host. Adapted from (Matés & Sánchez-Jiménez, 1999).  

 

Despite their beneficial actions, oxygen radicals can also cause grave injury to 

the host. Due to their non-specificity, ROS target both the pathogens and host 

cells. Many infectious and non-infectious pathological conditions have been 

attributed to ROS-induced damage (Hurtado-Nedelec et al., 2013; Tsukimori et 

al., 2005); (reviewed in (Pace & Leaf, 1995; Paracha et al., 2013)). Of these, 

phagocytic contribution of ROS during inflammation has also been observed 

(Carp & Janoff, 1980; van Berlo et al., 2010; Vlessis et al., 1995). ROS-induced 

host damage include cellular apoptosis and necrosis, lipid peroxidation, DNA 

damage, oxidative damage to amino acids and proteins (Figure 6.3) (reviewed in 

(Matés & Sánchez-Jiménez, 1999)).  
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6.1.4 Influenza-induced oxidative stress in lungs and antioxidant-based 

therapeutic approaches 

Oxidative stress has been implicated in influenza pathogenesis (Buffinton et 

al., 1992); (reviewed in (Reshi et al., 2014)). When influenza virus infects the 

host, the lung epithelial cells and alveolar macrophages generate ROS via 

Nox2&4 and Duox 1&2 activation to start signalling cascade (Amatore et al., 

2015); (reviewed in (Bedard & Krause, 2007; Fidone & Kennedy, 2003)). ROS 

have also been believed to possess anti-influenza activity thereby controlling viral 

burden in the lungs but no conclusive evidence has been reported so far (reviewed 

in (Reshi et al., 2014)). In fact, contradictory reports claim that ROS actually 

increases viral titre in the lungs (Hennet et al., 1992); (reviewed in (Peterhans, 

1997)). For the influenza virus to be infectious, the initial HA needs to be cleaved 

into HA1 and HA2 which are done by cellular proteases in the lungs. Lung 

surfactant proteins help in inhibiting these proteolytic activities thereby reducing 

the viral titre. However, ROS damages the surfactant proteins and reduces their 

numbers thereby letting the virus replicate uncontrollably. In another study, 

incubation of activated neutrophils with human BALF during the culture of 

influenza virus increased the clearance of the virus possibly via ROS activity 

whereas pre-incubation led to depletion of SP-D from BALF and hence the 

antiviral activity also reduced (White et al., 2007). The last study explains the 

contradictory findings related to antiviral activity of ROS. 

Severe inflammation in the lung epithelium following influenza infection 

indicates possible ROS-induced tissue damage and oxidative stress. Indeed, 
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influenza infection causes reduction of lung antioxidant expressions like catalase 

while certain antioxidants like MnSOD and GPx increased in expression probably 

as compensatory mechanisms (Jacoby & Choi, 1994; Yamada et al., 2012). 

Increases in neutrophil-induced Nox2 and xanthine oxidase (XO) activities in the 

lungs have been reported after influenza infection. The mechanism of XO 

activation in lung epithelial cells involves neutrophil elastase which mediates the 

conversion of xanthine dehydrogenase to XO (Akaike et al., 1990; Phan et al., 

1992); (reviewed in (Vlahos et al., 2012)). In one study, absence of ROS mainly 

Nox2 led to improved resolution of influenza lung injury (Snelgrove et al., 2006). 

Due to several independent studies associating ROS with worsened influenza 

pathology and oxidative damage, antioxidant therapies have been a favourite topic 

of research in the past few decades. Strategies include inhibition of oxidants or 

oxidant-generating mechanisms, increasing the expression or instillation of lung 

antioxidants as well as other chemical antioxidants therapies either alone or in 

combination with known antiviral agents (Garozzo et al., 2007; Geiler et al., 

2010; Ling et al., 2012); (reviewed in (Uchide & Toyoda, 2011; Vlahos et al., 

2012)). Increased expression of extracellular SOD in transgenic mice and 

treatment with pyran polymer-conjugated Cu/ZnSOD or recombinant MnSOD 

ameliorated influenza induced-lung injury (Oda et al., 1989; Sidwell et al., 1996; 

Suliman et al., 2001). Pharmacological inhibition of Nox2 using apocynin 

improved influenza-induced lung pathology (Vlahos et al., 2011; Ye et al., 2014). 

Despite many promising reports, antioxidant therapy has not been very 

successful (Kamgar et al., 2009; Siriwardena et al., 2012); (reviewed in (Sgarbanti 
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et al., 2014)). As antioxidants are generally non-specific, they can affect some 

crucial cellular metabolisms and hence can be detrimental to the host (reviewed in 

(Selemidis et al., 2008; Vlahos & Selemidis, 2014)). Thus, any interference with 

oxidative mechanisms in the host requires extensive study and careful 

deliberation. 

6.1.5 Inhibitors of redox enzymes used in the study 

Diphenelyene iodonium chloride (DPI) is a non-specific inhibitor of NADPH 

oxidase. It inhibits Nox by accepting an electron from flavin adenine dinucleotide 

(FAD) to form phenyl radicals. These radicals then attach to the flavin group by 

covalent bonding leading to irreversible phenylation of FAD (O'Donnell et al., 

1993, 1994). Though Nox-inhibitory effect of DPI has been known since 1986, it 

has not been extensively studied in vivo possibly due to its toxic nature (LD50 

approx. 6-8 mg/kg in rodents) (Cross & Jones, 1986); (reviewed in (Selemidis et 

al., 2008)). A few studies have used a lower dose (0.05–5 mg/kg) with positive 

results for conditions such as hypoglycaemia, arthritis and subarachnoid 

haemorrhage (reviewed in (Selemidis et al., 2008)). 

4-amino benzoic acid hydrazide (ABAH) is a powerful inhibitor of MPO that 

functions as a suicide substrate for the enzyme. MPO oxidizes it to free radical 

intermediates that reduce ferric MPO to the ferrous enzyme. In the presence of 

H2O2 and oxidised ABAH, the haeme groups of MPO are destroyed whereas in 

the presence of oxygen, the ferrous enzyme is converted to oxymyeloperoxidase 

or compound III and thus is protected from inactivation. Additionally ABAH also 
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inhibits MPO activation product, HOCl, by competitive binding. Thus, ABAH 

inhibits both MPO activity and oxidant generated by MPO (Kettle et al., 1995, 

1997). ABAH has been used previously in murine models of stroke (Forghani et 

al., 2015). 

Diethyldithiocarbamate (DETC) is a copper-chelating chemical that causes 

reversible inactivation of SOD and is used in studies involving SOD activity 

(Cocco et al., 1981; Makino et al., 2003; Misra, 1979; Nemec et al., 2009). DETC 

has been tested as a therapeutic for certain intracellular microorganisms to 

increase oxidative killing (Khouri et al., 2010). 

6.2 Specific objectives of the study 

ROS can be both beneficial and harmful in infection and inflammation. 

Several strategies to control ROS have been tested with mixed results. In case of 

influenza infection, inhibition of oxidant-producing enzyme as well as therapy 

with antioxidants has been tested. The present study analyses the effect of 

different redox enzymes particularly the inhibition of NADPH oxidase on lung 

pathology arising from lethal influenza infection. Inhibitors of NADPH oxidase, 

MPO and SOD that govern most of the oxygen radical formation by neutrophils 

(Figure 6.2, highlighted in blue) were tested. These inhibitors (mentioned in 

section 6.1.5) have not been tested as treatment to reduce lung injury during 

influenza infection. 
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The specific objectives of the study are, 

a) To assess the ROS and redox enzyme fluctuations during lethal influenza 

infection. 

b) To evaluate the effect of inhibition of NADPH oxidase, MPO and SOD on 

influenza-induced lung injury. 

c) To evaluate the efficacy of DPI in alleviating influenza-induced lung 

injury. 

6.3 Results and discussion 

6.3.1 High cellular infiltration phase after influenza infection correlates with 

increased oxidative activities in the lungs 

6 weeks old BALB/c mice were infected with a lethal dose of influenza virus 

(100 PFU, approx. 6.7 x MLD50) and sacrificed at various time points to assess 

the expression and generation of ROS and the regulatory enzymatic activities and 

their relevance with the histopathological progression of the disease. Serial 

histopathological analyses revealed minimal morphological changes in the lungs 

until day 2 followed by a phase of high cellular infiltration into the alveoli and 

bronchioles as well as large air spaces. By day 5, high cellular necrosis could be 

seen in the bronchioles signifying the end of infiltration phase. By day 7, 

infiltrating cells have been reduced to the minimum and haemorrhagic patches 

were seen near alveoli (Figure 6.4 A). Correlating with this trend, the mRNA 

expression of oxidative enzyme, Nox2 went up at day 3 and lasted until day 5-7 

covering the infiltration phase, after which the expression levels came down. The 
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expression of extracellular SOD3 gene also followed the same pattern but was not 

significant, similar to MPO gene expression (Figure 6.4 B). Amongst the lung 

enzymatic activity levels, MPO activity peaked around day 5 and reduced by day 

7 while the SOD activity decreased at day 4 and started regaining during day 5-7 

indicating resumption of antioxidant generation in the lungs (Figure 6.4 C).  

While reduced SOD activity should imply lower conversion of superoxide to 

H2O2, the H2O2 concentration actually increased by day 5. As low levels of SOD 

activity is enough to catalyse the peroxidase reaction, it is still possible to 

generate H2O2 with reduction of SOD activity in lungs, and moreover H2O2 by 

itself can negatively regulate SOD activity thus increasing oxidative stress 

(Gardner et al., 2002; Gottfredsen et al., 2013).  

 Cellular infiltration is known to peak around day 4-6 after influenza infection 

(Fukushi et al., 2011); (reviewed in (Taunbenberger et al., 2008)). It is preceded 

by an asymptomatic phase and runs concurrently with an active viral replication 

phase (days 3-5). Since phagocytes particularly neutrophils are known to 

contribute oxidants upon activation, acute infiltration by these cells can possibly 

affect the redox balance of a host system (Vlessis et al., 1995); (reviewed in 

(Ward, 2010)). As expected, some of the redox enzymes underwent changes in 

gene expression and activity levels after influenza infection that correlated with 

the increase in cellular infiltration (Figure 6.4). Increased H2O2 and MPO activity-

induced HOCl can contribute greatly to oxidative stress in the lung 

microenvironment and is possibly why intraalveolar haemorrhage and fibrin 

deposits are seen at the end of infiltration phase (day 7). 
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Figure 6.4. Serial histopathology and redox mechanisms after lethal challenge with influenza 

A virus. BALB/c mice were infected with 100 PFU of influenza A H1N1/PR8 virus and were 

sacrificed at various time points starting from 6 hours after challenge up to day 7. (A) 

Haematoxylin and Eosin staining showed changes in histopathology as the infection progressed. 

Day 3-5 marked the cellular infiltration phase while by day 7, haemorrhagic lesions appeared in 

small clusters even as the infiltrates slowly disappeared. AV – alveoli, BR – bronchioles. (B) 

mRNA expression of redox enzymes NADPH oxidase (Nox 2), Myeloperoxidase (MPO) and 

Superoxide dismutase, extracellular (SOD3) in lung homogenate showed increasing trend of 

oxidative mechanisms via nox2 activity. (C) Lung homogenate levels of hydrogen peroxide 

(H2O2), MPO activity and SOD activity showed increases in ROS mechanisms (H2O2 & MPO 

activity) in the lung while antioxidant activity (SOD) dropped as the disease progressed. Values 

represent the average fold change ± SE over respective mock-infected groups of 3 mice per time 

point (Single experiment). * indicates P value < 0.05, ** P value < 0.01 and *** P value < 0.001, 

Student’s t-test. 

 

A peculiar occurring is that before the beginning of infiltration at day 3, the 

oxidant levels dip and then recover the very next day. While the gene expressions 

of Nox2 and MPO plunged and SOD3 stagnated on day2, the actual MPO activity 

and H2O2 declined on day 1 while the SOD activity increased on day 2. There is 
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not much information in the current literature that explains this observation 

however, the asymptomatic phase (time of infection to day 2) is also the 

preparatory phase for viral replication and it is possible that influenza virus could 

manipulate the oxidative machinery to facilitate its replication as ROS can hinder 

the process. More research is required to find a promising explanation in this 

regard.  

6.3.2 Mild improvement in the appearance of lung consolidation was 

observed with the inhibition of NADPH oxidase  

Mice were infected with 100 PFU virus and later were treated with inhibitors of 

NADPH oxidase, MPO and SOD namely DPI, ABAH and DETC via the 

intraperitoneal route starting on day 3 and every 48 hours thereafter. A few doses 

of DPI, DETC and ABAH with therapy beginning either at day 1 or 3 were tested 

of which the only best data have been represented in figure 6.5. There was no 

significant difference in the survival and body weight patterns between all 

infected and treated animals. However, slightly higher numbers of deaths were 

observed upon SOD inhibition with DETC. The groups with inhibition of 

NADPH oxidase and MPO were similar to the infection alone group in all 

parameters (Figure 6.5 A and B). Histopathological analyses showed slightly 

lesser pulmonary consolidation in DPI-treated animals while others remained 

similar to infection alone group (Figure 6.5 C). Although there was no significant 

improvement in the survival of the mice after any of the treatments, a slightly 

better lung architechture with reduced consolidation after DPI treatment prompted 

further study with modifications in the treatment approach. 
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Figure 6.5. Inhibition of NADPH oxidase, MPO and SOD in lungs of infected mice. Mice 

were infected with 100 PFU of influenza virus and from day 3, inhibitors of redox enzymes were 

given intra-peritoneally every 48 hours- 1 mg/kg Diphenelyneiodonium chloride, DPI (NADPH 

oxidase), 5 mg/kg 4-amino benzoic acid hydrazide, ABAH (MPO) and 50 mg/kg 

Diethyldithiocarbamate, DETC (SOD). DPI and ABAH were dissolved in 1% DMSO which was 

included as a control (INF-DMSO) (A) All the infected mice showed similar body weight loss and 

reached the end point of 30% on day 8. ** represents P value < 0.01, ANOVA with Tukey post-hoc 

correction. (B) Kaplan-Meier survival analyses showed no significant difference until 8 days post-

infection (d.p.i.) in survival even though deaths were seen only in the DETC and DMSO treated 

groups. P value not significant, Kaplan-Meier survival analysis. (C) Haematoxylin and Eosin 

staining revealed lesser consolidation in the lungs after DPI treatment  while all other ABAH- and 

DETC-treated groups showed similar levels of lung pathology to untreated group (INF). All 

infected mice had moderate levels of cellular infiltrates and septal thicknening. Magnification of 

images: 10X. Values represent the means ± SE of 3 mice (Single experiment).  
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6.3.3 Inhibition of NADPH oxidase by flavin-binding DPI does not improve 

lung pathology after lethal influenza challenge. 

To improve the efficacy of DPI in alleviating lung injury, increased 

frequency of treatment was assessed. After the lethal challenge of animals with 

100 PFU virus, DPI treatment (1 mg/kg) was given intra-peritoneally either every 

24 hours or 48 hours starting from day 3. Again, there was no significant 

difference in the body weights and histopathology of treated and untreated mice 

(Figures 6.6 A, C and D). The viral titres were also unaffected by DPI treatment 

(Figure 6.6 B).  

There was some significant reduction in lung H2O2 levels and MPO activity 

with treatment given respectively at every 48 hours and 24 hours (Figure 6.7 A 

and B). SOD activity also showed decrease (not significant) after DPI treatment 

with both treatment regimens (Figure 6.7 C). However, these effects were seen 

even with DMSO treatment which was used as a vehicle control since DPI was 

dissolved in 1% DMSO suggesting that the effects seen are due to DMSO rather 

than DPI. Only MPO activity was lower in DPI-treated group than DMSO-treated 

group implying that a possible additional action by DPI on NADPH oxidase 

suppression can control phagocyte activation in vivo. 

Dimethyl sulfoxide or DMSO is an organosulfur by-product of the paper 

pulp industry which is known to possess antioxidant property. Its efficacy as 

antioxidant has been shown in inflammatory genito-urinary disorders and hence, 

its use as antioxidant or drug solvent has been suggested with caution (Sanmartin- 
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Figure 6.6. DPI treatment of mice infected with 100 PFU influenza virus. Mice were infected 

with 100 PFU of influenza virus and DPI treatment was given intra-peritoneally every 24 or 48 

hours starting from day 3. Lungs were harvested at day 7 post-infection. DPI-treated groups (both 

24h and 48h) showed no difference in (A) body weight loss. ** represents P value < 0.01, 

ANOVA with Tukey post-hoc correction, (B) lung viral titre. (P value not significant, ANOVA with 

Tukey post-hoc correction) and (C) Histology scores when compared to untreated (INF) group.. 

(D) Haematoxylin and Eosin staining revealed moderate infiltration in the alveolar space and 

septal thickening in all infected mice. Asterix indicates neutrophils, arrow indicates lymphocytes. 

Magnification of images: 100x (main panels) and 1000x (inserts). Values represent the means ± 

SE of 3-5 animals per group (Single experiment).  
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Suárez et al., 2011; Shirley et al., 1978). Since DPI was dissolved in 1% DMSO, 

the latter might have influenced the outcome due to its antioxidant property and 

hence, both the DMSO- and DPI(+DMSO)-treated groups showed decrease in 

H2O2 and SOD activity. 

 

Figure 6.7. Redox enzyme activities in the lungs after DPI treatment of lethally challenged 

mice. Lungs were homogenised in PBS and assayed for enzymatic activities and ROS 

concentration. (A) DPI-treated groups showed reduced H2O2 concentration in the lungs with both 

24 and 48 hours schedule compared to untreated (INF) group; however DMSO control group also 

showed decreased H2O2 at 48 hours. (B) DPI-treated groups showed reduced MPO activity in the 

lungs with both 24 and 48 hours schedule compared to INF and INF-DMSO groups. (C) DPI-

treated groups showed reduced (but non-significant) SOD activity in the lungs with both 24 and 48 

hours schedule compared to INF group; however DMSO control group also showed decreased 

SOD activity at 48 hours. Values represent the means ± SE of 3-5 animals per group (Single 

experiment). * indicates P value < 0.05 ** P value < 0.01, ANOVA with Tukey post-hoc 

correction. 
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6.3.4 Inhibition of NADPH oxidase does not improve lung pathology even 

with lower dose of influenza challenge. 

To assess if the effect of DPI treatment could be made better and clear, the 

challenge dose of influenza virus was lowered to 20 PFU (approx. 1.3 x MLD50). 

At this dose, the virus induces mortality around day 10 after infection which gives 

a longer time period for treatment and lesser pathological effect of virus-induced 

lung damage. The mice were infected with 20 PFU virus and the DPI treatment  

(1 mg/kg) was commenced on day 3 and continued every day till end-point of 

30% weight loss. The mice were either sacrificed on day 6 or at reaching the 

endpoint defined as time of death (TOD) as some animals died before reaching 

the experimental end-point. Again, there was no difference in body weight loss 

between DPI-treated and untreated mice (Figure 6.8 A). The DPI-treated animals 

showed slightly higher survival until day 10 after which all the infected animals 

reached the experimental end-point; however the difference was not significant 

(Figure 6.8 B).  

The viral titres were unaffected by the DPI treatment (Figure 6.9 A). 

However, at the experimental end-point (TOD), slightly lower titres were 

observed (not significant) in the group after DPI treatment compared to infection 

alone group. Further studies are required to validate this observation. Some 

studies have suggested compensatory action by non-oxidative antiviral 

mechanisms in the host (Droebner et al., 2011; Li et al., 2013). Histology scores 

were also not different in DPI- and DMSO-treated animals thus confirming the 

previous observation in figure 6.6 C. Acute infiltration by neutrophils, 
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macrophages and lymphocytes were seen in the alveoli and bronchioles leading to 

intra-alveolar haemorrhage and fibrin deposition in all the infected animals 

(Figure 6.9 B and C).  

 

Figure 6.8. DPI treatment of mice infected with 20 PFU influenza virus. Mice were infected 

with a low lethal dose (20 PFU) of influenza virus and DPI treatment was given intra-peritoneally 

every 24 hours starting from day 3. (A) No difference in weight loss was seen between DPI-

treated group and untreated group. All the infected mice reached the end-point of 30% weight loss 

by day 9-10. ** represents P value < 0.01, ANOVA with Tukey post-hoc correction. (B). DPI-

treated group had a slightly higher but not significant survival rate on day 10 relative to INF and 

INF-DMSO groups, Kaplan-Meier survival analysis. Values represent the means ± SE of 5 

animals per group (Single experiment).  
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Figure 6.9. Viral titre and histopathology after DPI treatment of mice infected with low 

lethal dose of influenza virus. Lungs were harvested either at day 6 post-infection or at the time 

of death (TOD). DPI-treated groups showed no difference in (A) lung viral titre. P value not 

significant, ANOVA with Tukey post-hoc correction and (B) Histology scores. P value not 

significant, ANOVA with Tukey post-hoc correction. (C) Haematoxylin and Eosin staining 

revealed mild to moderate infiltration (asterix) in the alveolar and bronchiolar space as well as 

mild septal thickening in all infected mice. Magnification of images: 100x (main panels) and 

1000x (inserts). Values represent the means ± SE of 3-5 animals per group (Single experiment).  

 

Enzymatic activities of MPO and SOD dropped to comparable levels in both 

DPI- and DMSO-treated groups relative to infection alone but were not 

significant (Figure 6.10 B and C). The same was observed with H2O2 

concentration in lungs (Figure 6.10 A). Thus, it was concluded that reduction in 



172 
 

enzymatic activities after DPI treatment could be attributed to the antioxidant 

property of its solvent i.e. DMSO. In either case, the reduction of lung ROS and 

redox activity did not reflect in the lung histopathology or significant clinical 

survival. 

 

 

Figure 6.10. Redox enzyme activities in the lungs after low lethal challenge and DPI 

treatment. Lungs were homogenised in PBS and assayed for enzymatic activities and ROS 

concentration. (A) H2O2 concentrations in the lungs were comparable in all infected groups on day 

6 after infection. (B) DPI-treated groups showed reduced MPO activity in the lungs in general 

compared to infection alone group. However, even INF-DMSO showed reduced MPO activity. 

(C) SOD activity is slightly reduced (not significant) with both DPI and DMSO treatment. Values 

represent the means ± SE of 3-5 animals per group (Single experiment). * indicates                       

P value < 0.05, ANOVA with Tukey post-hoc correction. 
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6.4 Conclusion 

ROS have been attributed in many pathological conditions (reviewed in 

(Johnson & Koval, 2009; MacNee & Rahman, 1995)). Free oxygen radicals can 

be produced from host cells, but most of the ROS comes from phagocytes such as 

neutrophils that are laden with volatile proteases that can contribute to lung injury 

by degranulation or NETosis (Vlessis et al., 1995); (reviewed in (Parker & 

Winterbourn, 2013)). Free oxygen radicals can cause tissue damage by inducing 

lipid peroxidation, DNA damage and chemical changes to protein (reviewed in 

(Matés & Sánchez-Jiménez, 1999)).  

Antioxidants therapies have been tested for many years for various 

conditions like cardiac surgery-related complications and renal conditions with 

mixed results (Castillo et al., 2011; Kamgar et al., 2009); (reviewed in (Kinnula et 

al., 2005)). Overexpression of antioxidants like SOD or use of mimetics has been 

shown to work in certain cases of tissue injury (Hassett et al., 2011; Laukkanen et 

al., 2001). Overexpression of extracellular SOD has been shown to prevent 

influenza-induced lung injury (Sidwell et al., 1996; Suliman et al., 2001). 

However, the issue of chemical and pharmacokinetic stability as well as target 

accessibility has limited research on SOD therapy. On the other hand, suppression 

of oxidants has also yielded promising results. MPO inhibition has been shown to 

improve cigarette smoke-induced lung injury (Thatcher et al., 2013). Inhibition of 

NADPH oxidase using apocynin has been advocated for influenza therapy 

(reviewed in (Vlahos et al., 2012)). While apocynin showed both antiviral and 

oxidant-suppressing properties, the NADPH oxidase inhibitor used in this study is 
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not known to have any antiviral actions thereby allowing the examination of 

ROS-suppression property alone. 

Since NETosis is an oxidative process, it can contribute to the oxidative 

stress-mediated lung injury. In the present study, chemical inhibitors of three 

redox enzymes – NADPH oxidase, MPO and SOD were first analysed for their 

efficacy in reducing lung injury. These enzymes are part of the neutrophil-

mediated ROS production (Figure 6.2). The baseline levels of these enzymes 

underwent changes after influenza infection inclining towards an oxidative 

environment which would support pro-inflammatory reactions (Figure 6.4 C). 

While suppression of NADPH oxidase caused some improvement in pulmonary 

consolidation, suppression of MPO and SOD had no apparent effect on the lungs 

(Figure 6.5). Thus, inhibitor of NADPH oxidase (DPI) was used for further 

analysis.  

Upon further analysis with high and low lethal doses of influenza virus, it 

was found that some of the effects of DPI on the enzymatic activities in the lungs 

could also be seen in the DMSO controls thereby casting shadow on the reliability 

of DPI for treatment of lung injury (Figure 6.6 - 6.10). Furthermore, no 

differences were observed in the clinical body weight loss, survival, 

histopathology and viral titres after DPI treatment.   

Intraperitoneal route of treatment was preferred as it has been used 

previously to deliver DPI in mouse models (Hecker et al., 2009; Pazhanisamy et 

al., 2011) and is a preferred mode of treatment even in patients with certain 
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conditions (reviewed in (Chaudhary et al., 2010)). However, other routes such as 

intravenous could also be used in future. Moreover, these experiments need to be 

repeated with more mice number for statistical significance. Before that, more 

optimisations are required to find the best timeframe and dose regimen for DPI 

treatment during influenza infection.  

Iodonium compounds such as DPI are very potent inhibitors of NADPH 

oxidase that act by binding to the flavin redox centre (O’Donnell et al., 1993). 

DPI has been shown to prevent tissue injury caused by bleomycin and irradiation 

(Hecker et al., 2009; Pazhanisamy et al., 2011). However, it is also known to 

render neutrophil defective in microbial killing efficiency thereby hindering the 

immune-mediated clearance of pathogens from the host (Ellis et al., 1988).  

Walking a fine line, suppression of NADPH oxidase activity by DPI after 

influenza infection could potentially go either way. Indeed, DPI treatment was 

found to be ineffective in preventing lung injury or reducing oxidant activity 

significantly even as most of its effect was attributed to its diluent (DMSO). Thus, 

it can be concluded that chemical suppression of NADPH oxidase activity by DPI 

in mice is not enough to prevent lung injury after influenza infection. 
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CHAPTER SEVEN 

CONCLUDING REMARKS AND FUTURE SCOPE 

 

Often complications due to influenza infection come from comorbidities like 

secondary bacterial infections or weakened host immune system due to obesity, 

chronic lung and coronary disorders or similar conditions (Louie et al., 2011; 

Smith et al., 2013). Oxidative stress and cytokine storm are characteristic features 

of lethal influenza infection leading to ALI and ARDS as observed during the 

1918 ‘Spanish flu’ pandemic (Kobasa et al., 2004; Osterholm, 2005). However, 

the unusually high mortality rate in the young adult age group during the 1918 

pandemic casts doubt over the causal attribution to oxidative stress and cytokine 

storm alone (reviewed in (Palese, 2004)). Hence, other mechanisms of morbidity 

need to be investigated. Despite the reservations, complications arising out of 

seasonal and recent pandemic influenza have largely been attributed to host-

related factors (Le et al., 2012). 

Unrestricted inflammation during influenza infection causes lung tissue 

injury (Buffinton et al., 1992). Although inflammation helps to prime the immune 

cells to fight against invading pathogens, certain non-specific consequences can 

arise of which neutrophil-induced tissue injury could be a possibility. Several 

studies have confirmed neutrophil’s role in worsening the host system either 

directly by releasing cytotoxic proteases or by contributing to oxidative stress 

(Muruve et al., 1999; Ng et al., 2012; Perrone et al., 2008; Vlahos et al., 2011). 
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NETs engender both means of injury in that the DNA fibres carry toxic neutrophil 

proteins like NE, MPO and histones as well as the mechanism of NETosis involve 

extensive oxidant generation (Kessenbrock et al., 2009; Narasaraju et al., 2011; 

Saffarzadeh et al., 2012; Xu et al., 2012). 

7.1 NETs and secondary pneumococcal pneumonia after influenza infection 

Since their discovery, much of the research on NETs has focused on 

elucidating the mechanism of NETosis and identifying NETs generation with 

various infectious and non-infectious stimuli. Few studies have highlighted the 

role that NETs play inside the host and how they interact with pre-existing 

conditions inside the host. One part of the current project tried to assess NETs 

generation upon secondary infection with S. pneumoniae after influenza infection 

and how the two stimuli contribute to overall NETosis and pathogenesis of the 

disease. Next, it was seen how various strains of S. pneumoniae can differently 

influence NETosis and how much say does a bacterial virulence factor like 

capsule has in the entire process. These two studies highlight the importance of 

pathogen-based factors in determining immune cell response to infection in the 

form of NETs. 

The key findings of these studies are: 

a) NETs are induced in significantly higher numbers in murine lungs during 

secondary pneumococcal infection after primary influenza infection. 

b) NETs produced during influenza infection do not help in clearing bacteria 

both in vivo and in vitro but possess potent antifungal activity. The lack of 
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antibacterial activity may partly be attributed to minimal alteration in the 

gene expression of bactericidal proteins after influenza infection. 

c) NETs generated in vitro by influenza stimulation are strongly influenced 

by redox enzymes like NADPH oxidase, MPO and SOD. Blocking of 

these enzymatic activities in the cell culture system reduced NETs release 

from stimulated neutrophils. 

d) Secondary pneumococcal infection leads to the presence of many clusters 

of degraded NET structures in the lungs, possibly due to the bacterial 

endonuclease activity, that may take part in causing tissue damage. 

e) Serotype of pneumococcus determines the extent of NETs generation and 

the pathological implications in the lungs of infected mice.  

f) Capsule of S. pneumoniae plays a crucial role in determining NETs 

induction. The capsule polysaccharide by itself can induce NETs potently. 

g) Pathogenicity and NETs-inducing ability of S. pneumoniae is serotype-

specific in part due to the degree of capsule thickness during primary 

infection. 

h) Capsule-based serotype specificity is not the sole determinant of extensive 

NETosis as there is a pattern shift from primary to secondary infection by 

pneumococci. During secondary infection after influenza infection, other 

bacterial virulence factors may also exert influence on the disease 

outcome, inflammatory response and NETs. 

The above findings establish the stimuli-specific mechanism of NETs 

induction. NETs induction can occur due to stimulation of various different 
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receptors (Parker et al., 2012). The way a virus would stimulate neutrophils may 

differ from that of a bacteria depending on the receptor involved. Most bacteria 

interact with neutrophils through the cell’s toll-like receptors like TLR2 and 

TLR4 (Clark et al., 2007; Yipp et al., 2012); (reviewed in (Brinkmann & 

Zychlinsky, 2007)). LPS is known to stimulate NETs induction through TLR2 

(reviewed in (Brinkmann & Zychlinsky, 2007)) while influenza virus mainly 

stimulates via TLR7/8 & 10 (Lee  et al., 2014; Wang et al., 2008). Some recent 

evidence shows the involvement of p38 MAP kinase and Raf-MEK-ERK 

pathways in NETosis (Hakkim et al., 2011; Keshari et al., 2013). In this study, the 

capsule polysaccharide was able to induce NETs by itself. It would thus be 

interesting to study the mechanism of such induction. Similar to LPS, capsule PS 

can stimulate neutrophils through the TLRs that might affect downstream 

processes like complement activation and cytokine release. However, a recent 

report suggests that the pneumococcal capsule impairs recognition of TLR ligands 

of S. pneumoniae by neutrophils and thereby moderately hampers MyD88-

mediated immunity during pneumonia in mice (de Vos et al., 2015).  

Apart from receptors, intra-species difference in NETs induction could arise 

due to different biochemistry of the bacterial capsule. Positive charge provided by 

D-alanylated LTA on S. pneumoniae helps in evading NETs but does not protect 

from AMP-mediated killing (Wartha et al., 2007). Another study with                     

C. albicans, found that the Candida PS composition plays a crucial role in 

determining the induction of NETs where the major PS found on invasive strains 

actually inhibited NETosis while a minor PS probably found in avirulent strains 
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could induce NETs (Rocha et al., 2015). Finally, the capsule PS itself could be 

instilled inside the lungs of a host animal to see if NETs could be induced in vivo 

at certain PS concentration that matches the actual bacterial-induced NETs.  

The next area of interest could be NET-induced lung injury in pneumococcal 

primary and secondary infection models. As degraded clusters of NETs were 

seen, the possibilities of injury to surrounding tissues arise. The role of some of 

the NETs components in tissue injury could be studied. Although some in vitro 

research has been done in this regard (Saffarzadeh et al., 2012), not many studies 

are done to clearly establish the effect in vivo. Histones and MPO were found to 

be the main cytotoxic agents while NE did not have any role to play in causing 

injury to endothelial cells. Xu et al. (2012) have demonstrated that extracellular 

histones can mediate death during sepsis. Likewise HOCl generated from MPO 

enzymatic activity is also shown to cause tissue injury (Wahn & Hammerschmidt, 

1998). However, NE has also been implicated in tissue injury emphasising the 

importance of in vivo studies (reviewed in (Chua & Laurent, 2006)). To link 

pneumococcus with degradation of NETs, further experiments are needed. One 

such technique is the immunostaining of lung sections to locate pneumococci near 

the degraded clusters. However, this may not still be very conclusive and only be 

a qualitative assay. During the present study, an antisera for serotype 19F (Statens 

serum institute) was used to stain the bacteria in in vitro samples but pneumococci 

could not be stained in formalin-fixed lungs. In one study, NET structures were 

identified in the plasma of mice during deep vein thrombosis (Fuchs et al., 2010). 

Such techniques could also be applied to study digested NETs that may enter 
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blood stream during endothelial injury caused by pneumococci especially when 

the bacteria also enters the bloodstream during bacteraemia. Alternatively, ANA 

or ANCA detection can be used to evaluate the immune reaction to circulating 

NETs components. These kinds of study may give us more insight on host tissue 

injury caused by pathogen-induced NETs.  

7.2 High fat diet, NETs and influenza infection 

The other parts of the dissertation focus on the host factors. Host adiposity 

and dietary fat composition can play a huge role in the way the host responds to a 

pathogen. HFD- and LFD-fed mice were compared to assess NETs formation in 

the lungs after influenza infection. The following are the key findings of the 

study,  

a) High fat diet has a tendency to to predispose mice to higher NETosis in 

lungs when compared to low fat diet although further experiments are 

required to confirm this observation.  

b) HFD-fed mice also show a tendency to support higher levels of lung viral 

replication and to exhibit higher ROS levels in the lungs while MPO 

activity is somewhat lower suggesting inefficient leukocyte response that 

leads to increased oxidative burst without offering any protective benefits. 

The above data were mostly not significant owing to the lower degree of 

adiposity in BALB/c mice (Montgomery et al., 2013). This is different from other 

DIO models of influenza infections (Easterbrook et al., 2011; Karlsson et al., 

2010; Smith et al., 2007; Zhang et al., 2013) where significant differences in 
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mortality were observed between high and low fat diet groups. Further studies 

could be done using the C57BL/6 mice similar to the above studies as they show 

signs of clinical obesity when fed with HFD. Nevertheless, there indeed was a 

marginal albeit non-significant increase in NETs in the HFD mice during 

influenza infection.  

This study was based on a HFD model which would apply to subjects with 

bad dietary habits. However, some individuals are genetically susceptible to gain 

weight and succumb faster to influenza infection. To address this issue, leptin-

deficient knock-out (ob/ob) mice could be used to study the effect of obesity and 

leptin on NETs generated during influenza infection. Leptin is a negative 

regulator of appetite and a deficiency in leptin may help us to understand the 

hormone’s association with neutrophils since leptin receptor is present in 

neutrophils (Caldefie-Chezet et al., 2001). Extending the present study further, 

NETosis could be correlated to cytokine dysregulation in HFD mice as a general 

dysregulation has been found in the ob/ob mice (reviewed in (Moreno-Navarrete 

& Fernández-Real, 2011)). Isolation of neutrophils from HFD mice may reveal 

mechanistic changes inside neutrophils during NETosis which may shed some 

light on the differential activation of neutrophils during influenza infection in 

obese individuals.  

7.3 Neutrophil NADPH oxidase and influenza-induced oxidative stress 

Infections induce oxidative imbalance inside the host that may be reflected in 

the way the illness takes shape. ROS are crucial immune defence factors, 
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however, if they remain uncontrolled they can cause havoc to the system. Hence, 

inhibition of excess oxidant generation has been the focus of many of the current 

pharmaceutical and therapeutic research. 

The key findings from this study are,  

a) Lethal influenza challenge causes variation in the expression of redox 

enzymes. While oxidants levels are increased after infection, the 

expression and activity of anti-oxidant goes down almost concurrently. 

b) Inhibition of key neutrophil redox enzymes, NADPH oxidase, MPO and 

SOD, has very mild impact on the lung injury of which blocking of 

NADPH oxidase suggests a modest but not significant improvement in 

lung pathology. 

c) At the concentrations and inoculation regimens used in this study, the 

NADPH oxidase inhibitor, DPI, does not alleviate lung injury. In fact, its 

carrier DMSO reproduces similar results to that of DPI. 

The above study was done with one set of mice for each treatment regimen 

and infection dose. Since no difference was observed after DPI treatment in terms 

of lung improvement, the treatment methodology was changed for every 

experiment. More repeats are needed with consistently similar results to confirm 

the above mentioned observations. 

Even though DPI at the tested regimens and doses failed to reduce lung injury, 

there could be other specific inhibitors of NADPH oxidase that may hold promise 

(reviewed in (Kim et al., 2011)). Chemicals like apocynin and some others have 
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shown promise either alone or in combination with antivirals (reviewed in 

(Selemidis et al., 2008)). In fact, apocynin itself showed some effect on the viral 

burden in the lungs of treated mice indicating dual properties as an antioxidant 

and an antiviral (Vlahos et al., 2011). Novel chemicals targeting the redox 

enzymes may offer more potential probably in combination with antivirals 

(reviewed in (Vlahos et al., 2012; Vlahos & Selemidis, 2014)).  

Moreover, this study was mostly done with single experiments, changing 

certain parameters each time to improve the efficacy of DPI treatment. More 

experimental repeats with a wider range of treatment doses and time periods 

during infection are required. Other routes of injection such as intravenous 

treatment can also be tested especially in combination with an antiviral. 

7.4 Conclusion 

The above results demonstrate how various factors from both host and 

pathogen affect NETs generation after influenza infection (Figure 7.1). This 

places NETs at the intersection of host-pathogen interactions and more research is 

warranted to further enhance the knowledge in this area especially the clinical 

application of the findings. More research is needed for the diagnostic detection 

of NETs in live subjects as the correlation between NETs and severity of disease 

has not been clearly established until now. NETs have been detected in the 

sputum of patients suffering from acute respiratory infections as well as from 

bloodstream of critically-ill patients (Hirose et al., 2012, 2014). Also, individuals 
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may vary in their immune response to a stimulus and hence, more focus should be 

directed towards finding a common factor that occurs in all cases of NETosis.  

In conclusion, these studies help us understand the complex interactions of 

host, viral and bacterial systems in the process leading up to neutrophil oxidative 

burst and NETosis inside lungs as summarised in the figure 7.1.  
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