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Summary

This thesis is concerned with the continuous-time portfolio selection problem of an

investor who faces transaction costs and capital gains taxes. In contrast to the

existing literature, we propose a model taking into account an important market

feature that taxes are only paid at the end of each calendar year. We focus on the

constant absolute risk aversion (CARA) utility, and an extension to the constant

relative risk aversion (CRRA) utility is also provided. We find that the investor is

inclined to defer realization of capital gains until the beginning of the next calendar

year. Moreover, the presence of transaction costs could lead the investor to defer

realization of capital losses to the end of each calendar year.

One economically interesting extension of our model is also discussed in the

thesis. We introduce labor income with no-borrowing constraint against future labor

income. We show that the inability to borrow of a CRRA investor can substantially

reduce consumption and investment in the risky asset, and provide an incentive to

trade more frequently.

Since closed form solutions of the investor’s problem are generally unavailable, we

finally conduct asymptotic analysis in terms of small interest rate and tax rate. We

focus on the case that transaction costs are absent and taxes are paid immediately

xiii



xiv Summary

after sale. Based on the expansion of Chen and Dai (2013a), we propose a more re-

fined expansion, and obtain an explicit strategy. Our numerical results demonstrate

that the explicit strategy is a good approximation of the optimal strategy even for

relatively large interest rate and tax rate.
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Chapter 1
Introduction

In this thesis, we study the continuous-time optimal investment and consumption

problem with transaction costs and capital gains taxes. This problem is a variant

of the classical investment-consumption problem in modern finance.

1.1 Historical Work

The seminal paper “Portfolio Selection” of Markowitz (1952) marks the start of

modern finance. In it Markowitz founds modern portfolio theory with the introduc-

tion of (single-period) mean-variance optimization and efficient frontiers. Merton

(1969, 1971) introduces the time dimension to portfolio theory and lays the theoret-

ical groundwork for intertemporal portfolio selection. In his pioneering work, Mer-

ton formulates and solves the continuous-time optimal investment and consumption

problem of a constant relative risk aversion (CRRA) investor in a perfectly liquid

market. The objective of the investor is to choose how much to consume and how

to allocate his wealth between a risk-free asset and a risky asset so as to maximize

the expected utility from intertemporal consumption over an infinite time horizon.

Provided that the risky asset price follows a geometric Brownian motion, Merton

shows that the optimal strategy is to keep a constant fraction of the total wealth in

the risky asset, and consume at a constant rate which is proportional to the total

1



2 Chapter 1. Introduction

wealth.

Since the seminal work of Merton, there has been extensive literature on the

optimal investment and consumption problem in financial markets subject to im-

perfections. Among them, transaction costs have received considerable attention

from researchers. Merton’s strategy requires the investor to continuously rebalance

the portfolio. In the presence of transaction costs, however, it can be infinitely ex-

pensive. Therefore, Merton’s strategy must be sub-optimal in this case. Magill and

Constantinides (1976) introduce transaction costs to Merton’s model. They provide

a fundamental insight that the optimal trading policy is described by a no-trading

region: within it, the investor does not trade the risky asset at all; out of it, he trades

a minimal amount so that the fraction of wealth invested in the risky asset reaches

the boundary of the no-trading region. From then on, portfolio selection with trans-

action costs has been extensively studied. We refer the reader to Constantinides

(1986), Davis and Norman (1990), Shreve and Soner (1994), Akian, Menaldi, and

Sulem (1996), Liu and Loewenstein (2002), Liu (2004), Kabanov and Klüppelberg

(2004), Dai and Yi (2009), Chen, Dai, and Zhao (2012), Chen and Dai (2013b), and

so forth.

However, very few works have been done on portfolio selection with capital gains

taxes, although capital gains taxes represent a much higher percentage than trans-

action costs in the real market. One can imagine that capital gains taxes must have

an appreciable impact on the investor’s strategy as well. The first relevant work

on capital gains taxes is due to Constantinides (1983). He shows that the optimal

trading policy is to realize capital losses immediately and defer realization of cap-

ital gains indefinitely until the event of a forced liquidation. However, this policy

depends heavily on the assumption of the unrestricted short sales of the risky asset,

which is ideal and not realistic.

In a multiple period context, a capital gain or loss for a particular share sold is

computed by the difference between the sale price and the original purchase price of

this share. Therefore, one needs to keep track of the exact original purchase price
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of each share, known as the exact tax basis, which incurs strong path dependency.

As a consequence, most of the existing literature on capital gains taxes has been

restricted in a discrete-time framework with a very limited number of time steps (e.g.,

Constantinides, 1983, 1984; Dybvig and Koo, 1996; and DeMiguel and Uppal, 2005).

To overcome the challenging difficulties caused by path dependency, Dammon, Spatt,

and Zhang (2001, 2004) approximate the exact tax basis using the average tax basis

which is the weighted average of past purchase prices of the shares held. Their work

makes a great breakthrough because the average tax basis is not only a reasonably

good approximation of the exact tax basis (cf. DeMiguel and Uppal, 2005; and Dai,

Liu, Yang, and Zhong, 2015), but also significantly reduces the path dependency

of the problem. It is worth pointing out that the average tax basis is actually

used in Canada. Ben Tahar, Soner, and Touzi (2007, 2010) further formulate a

continuous-time version of the model proposed by Dammon, Spatt, and Zhang. In

the continuous-time framework, the average taxation rule only introduces one more

variable, the tax basis. This greatly simplifies the calculation.

In the above mentioned papers on capital gains taxes, capital gains and losses

are treated equally, that is, the investor pays taxes immediately for realized capital

gains but receives tax rebates immediately for realized capital losses. In this case,

the above literature shows that the investor may defer realization of capital gains,

but should realize capital losses immediately. However, most tax codes around the

world do not pay tax rebates for realized capital losses, but provide the investor with

a tax loss carry-forward instead. Taking the current U.S. tax law as an example,

up to $3,000 of realized capital losses can apply to offset taxable income each year

with the rest carried forward to the future indefinitely. Recently, there are three

papers investigating the effect of such provision on the investor’s strategy by using

the average tax basis. Ehling, Gallmeyer, Srivastava, Tompaidis, and Yang (2013)

find it does not significantly affect the investor’s strategy if he has large embedded

capital gains. Marekwica (2012) shows that the investor should realize capital losses

immediately provided that capital losses are fully carried forward. These two papers
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are both in a discrete-time framework. In a continuous-time framework, Dai, Liu,

Yang, and Zhong (2015) take into account asymmetric long-term and short-term tax

rates. They find that even if there are large embedded capital losses, the strategy

with full carry-forward is significantly different from the strategy with full tax rebate.

Besides, it is optimal to realize capital losses immediately in symmetric tax rate case

if capital losses are fully carried forward.

So far, transaction costs and capital gains taxes are two distinct issues that

have been separately studied in the existing literature on continuous-time portfolio

selection except Ben Tahar, Soner, and Touzi (2007).1 However, this work does

not explore the impact of transaction costs on a taxable investor’s strategy. The

continuous-time portfolio selection problem with transaction costs or capital gains

taxes gives rise to a Hamilton-Jacobi-Bellman (HJB) equation with free boundaries.

Since its closed form solutions are generally unavailable, it is natural to seek numer-

ical solutions via, for example, the penalty method combined with a finite difference

discretization (cf. Forsyth and Vetzal, 2002; and Dai, Kwok, and You, 2007). To

simplify the problem, a natural approach is to obtain an asymptotic expansion in

terms of small transaction costs or small capital gains taxes, based on that one re-

covers Merton’s problem in the limit case of zero transaction costs or zero capital

gains taxes. Regarding the Merton problem with transaction costs, there is a large

body of literature on its asymptotic expansions. We refer the reader to Constan-

tinides (1986), Shreve and Soner (1994), Bichuch (2012), Gerhold, Muhle-Karbe,

and Schachermayer (2012), Bichuch and Shreve (2013), Soner and Touzi (2013),

and references therein.

Regarding the Merton problem with capital gains taxes, there are two extra d-

ifficulties concerning asymptotic expansions. Firstly, an additional variable, the tax

basis, strongly complicates asymptotic expansions and could make rigorous expan-

sions intractable. Secondly, the tax rate is relatively large, which makes it crucial

1The impact of transaction costs on the optimal trading and pricing of taxable securities is
studied by Dammon and Spatt (1996) via a discrete-time model. They show that the investor
should defer realizing capital losses until tax rebates is much greater than transaction costs.
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to find appropriate perturbation parameters. Interestingly, Ben Tahar, Soner, and

Touzi (2010) show that one recovers a fictitious Merton problem when the interest

rate is zero. In light of this result, Chen and Dai (2013a) conduct formal expansions,

and obtain an explicit strategy that effectively approximates the optimal strategy

for small interest rate and tax rate. However, their approximation may not perform

very well for large interest rate and tax rate.

Most of the papers mentioned above focus on the CRRA utility due to its an-

alytical convenience and support on an empirical basis. Very few assume that the

investor is of constant absolute risk aversion (CARA). In a perfectly liquid market,

Merton (1969, 1971) shows that the optimal strategy of a CARA investor is to keep

a constant dollar amount in the risky asset and consume at a rate that is affine in

the total wealth. In the presence of transaction costs, it is shown that the optimal

trading policy is to keep the dollar amount in the risky asset within the no-trading

region (cf. Liu, 2004; Chen, Dai, and Zhao, 2012; and Chen and Dai, 2013b). To

the best of our knowledge, however, the Merton problem of a CARA investor who

faces capital gains taxes has not yet been studied by researchers. The reason some

researchers are interested in the CARA utility lies in its separability. By virtue of

its separability, the multiple risky-asset problem with transaction costs can be re-

duced to the single risky-asset case provided that the asset returns are uncorrelated

(cf. Liu, 2004). In addition, it is feasible to handle problems arising from utility

indifference pricing. These utility indifference pricing problems are essentially port-

folio selection problems after doing some appropriate transformations. For example,

using the approach developed in Dai and Yi (2009), Yi and Yang (2008) solve a

sub-problem arising from utility indifference pricing with transaction costs which is

studied in Davis, Panas, and Zariphopoulou (1993).
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1.2 Contributions of the Thesis

In this thesis, we study the optimal investment and consumption problem of an

investor who faces both transaction costs and capital gains taxes. Specifically, the

investor under consideration can continuously trade a risk-free asset and a risky

asset so as to maximize his expected utility from intertemporal consumption over an

infinite time horizon. The price of the risky asset is assumed to follow a geometric

Brownian motion. There are constant proportional transaction costs incurred in

buying and selling the risky asset. Capital gains and losses on the risky asset are

taxed at a constant rate. We approximate the exact tax basis by the average tax

basis as in most of the existing literature. We consider both the case where capital

losses are fully rebatable and the case where capital losses are fully carried forward.

We focus on the CARA utility case, and an extension to the CRRA utility case is

also provided.

Our first main contribution in the thesis is to propose a model taking into account

the market feature that taxes are only paid at the end of each calendar year (year-end

taxes). To the best of our knowledge, this is the first work to investigate the effect of

this feature on the investor’s strategy. The existing literature always assumes that

taxes are paid immediately after sale (instant taxes). Under this assumption, we

find that the presence of transaction costs can lead the investor to defer realization

of capital losses. In this thesis, we relax this assumption and assume that taxes are

only paid at the end of each calendar year as in the real market. We show that the

investor tends to avoid realizing capital gains late in this calendar year; moreover,

he is inclined to defer realization of capital gains until the beginning of the next

calendar year. In addition, the presence of transaction costs could lead the investor

to defer realization of capital losses to the end of each calendar year. From the

standpoint of the investor’s expected utility, we find that the investor can be better

off, but not much, by the provision that taxes are paid annually.

In addition, we derive the optimal strategy of a CARA investor facing multiple
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uncorrelated risky assets. We show that the optimal trading boundaries can be

computed separately for each risky asset (up to some constants); and the optimal

consumption rate is a linear combination of the dollar amount invested in the risk-

free asset and (some transformation of) the investor’s value function. A verification

theorem is provided for the full rebate and instant tax case. This result enables us

to break down the multiple risky-asset problem into the single risky-asset problem,

and thus makes it feasible to compute the optimal strategy for a large number of

uncorrelated risky assets. It is worth pointing out that even if the asset returns are

correlated, the strategy for the uncorrelated return case can be used as a benchmark.

Our second main contribution is to derive the optimal strategy of a CRRA in-

vestor who also receives a constant stream of labor income, but is not allowed to

borrow against his future labor income. The no-borrowing constraint destroys the

homogeneity property of the investor’s value function. This increases the dimen-

sionality of the problem and thus strongly complicates the computation. Therefore,

we focus on the no-transaction cost, full rebate, and instant tax case. Our results

show that the no-borrowing constraint significantly reduces the value of labor in-

come. This is mainly reflected in two aspects. On the one hand, the no-borrowing

constraint can greatly decrease consumption and investment in the risky asset, and

provide an incentive to trade more frequently. On the other hand, the no-borrowing

constraint can significantly reduce the investor’s expected utility.

Our third main contribution is to derive a good approximation, in an explicit

form, of the optimal strategy even for relatively large interest rate and tax rate. We

consider only the no-transaction cost, full rebate, and instant tax case. In addition,

we focus on the CARA utility case, and an extension to the CRRA utility case is

also provided. Using the approach developed in Chen and Dai (2013a), we firstly

provide two asymptotic expansions. After that, we further propose a more refined

expansion. Our numerical results show that the explicit strategies implied by these

three expansions effectively approximate the optimal strategy for small interest rate

and tax rate. Moreover, the strategy implied by the refined expansion can effectively
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approximate the optimal strategy even for relatively large interest rate and tax rate.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 reviews the basic

model of portfolio selection with instant taxes, and solve the optimization problem

faced by a CARA investor.

Chapter 3 studies the optimal investment and consumption problem of a CARA

investor who faces both transaction costs and year-end taxes. We formulate the

model and explore the impact of the provision that taxes are paid annually, as well

as the effect of transaction costs, on the investor’s strategy. An extension to the

CRRA utility case is also provided.

Chapter 4 is devoted to an extension for a CRRA investor who also receives

labor income, but is not allowed to borrow against his future labor income. We aim

to explore the impact of the no-borrowing constraint on the investor’s strategy.

Chapter 5 conducts asymptotic expansions on portfolio selection with instant

taxes. We focus on the CARA utility case, and an extension to the CRRA utility

case is also provided. Numerical results are presented to demonstrate our theoretical

analysis.

Concluding remarks and possible directions for future research are offered in the

last chapter.

Appendix A extends our model to include multiple risky assets. We show that

the multiple risky-asset problem of a CARA investor can be reduced to the single

risky-asset case provided that the asset returns are uncorrelated.



Chapter 2
Merton Problem with Instant Taxes

The continuous-time portfolio selection problem for a constant relative risk aversion

(CRRA) investor who faces capital gains taxes is firstly formulated and solved by

Ben Tahar, Soner, and Touzi (2007, 2010), and then further developed by Dai, Liu,

Yang, and Zhong (2015). These works provide a groundwork for future research

studies, including ours. So we devote this chapter to review the tax model, but the

utility function is assumed to exhibit constant absolute risk aversion (CARA).

2.1 The Asset Market

Throughout this thesis, unless otherwise mentioned, we consider a complete fil-

tered probability space (Ω,F , {Ft}t≥0,P), endowed with a one-dimensional stan-

dard Ft−Brownian motion {Bt}t≥0. We consider a financial market consisting of

only two investment assets. The first asset is a risk-free money market account

growing at a constant, continuously compounded interest rate of r > 0.1 The sec-

ond asset is a risky stock whose price process Pt evolves according to a geometric

Brownian motion:

dPt = µPtdt+ σPtdBt, (2.1)

1We restrict r > 0 to prevent a CARA investor from unlimited consumption and unlimited
investment in the risky asset (cf. Merton’s result presented in Theorem 2.1). This restriction can
be relaxed for a CRRA investor.

9
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where µ > r and σ > 0 are constants representing respectively the expected rate of

return and the volatility of the stock. In this thesis, we always assume that short

selling of the stock is prohibited, and that wash sales2 of the stock are allowed.

2.2 Taxation Rules on Capital Gains

We assume that capital gains and losses on the stock are taxed immediately when the

investor sells the stock (instant taxes). The amount of tax to be paid for each sale of

the stock at time t is determined by the difference between the current stock price Pt

and the average tax basis P̄t which is defined as the weighted average purchase price

of the current stock holding. More specifically, if Pt ≥ P̄t, the investor would realize

a capital gain by selling the stock, and pay a tax τ(Pt− P̄t) for each unit of the stock

sold, where τ ∈ [0, 1) is a constant tax rate. In contrast, if Pt ≤ P̄t, the sale of the

stock corresponds to the realization of a capital loss. In this thesis, we investigate

two different ways to deal with realized capital losses. Following Dai, Liu, Yang,

and Zhong (2015), we term the full rebate (FR) case and the full carry-forward (FC)

case throughout:

• In the FR case, capital losses are fully rebatable. The investor can use all

capital losses to offset taxable ordinary income. Specifically, if Pt ≤ P̄t, by

selling one unit of the stock, the investor would receive a tax rebate τ(P̄t−Pt)

which can be immediately reinvested.

• In the FC case, capital losses are fully carried forward. The investor can only

carry forward capital losses to offset future gains.

Because a tax loss carry-forward does not pay any interest and bears the risk of

never being used, we can imagine that the FC case is a less attractive treatment of

capital losses for the investor than the FR case.

2A wash sale is selling the stock at a loss and repurchasing the same or substantially identical
stock shortly (within 30 days under the U.S. tax law).
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Remark 2.1. The current tax law allows to apply up to $3,000 a year in capital

losses to offset taxable ordinary income with the rest carried forward indefinitely to

the future. The FR case is more suitable for low income investors whose capital

losses are likely less than $3,000 per year. The FC case is more suitable for high

income investors whose capital losses are likely much more than $3,000 per year.

2.3 The Investor’s Problem

We denote by xt the dollar amount invested in the money market account, yt the

dollar amount invested in the stock, and kt the total cost basis for the stock holding

which is the position on the stock evaluated at the average tax basis. The transfers

of wealth between the two investment assets are described by two nondecreasing,

right-continuous, and Ft−adapted processes Lt and Mt with L0− = M0− = 0.

On a purchase of the stock, the dollar amount transferred from the money market

account to the stock account is given by dLt. On a sale of the stock, the dollar

amount transferred from the stock account to the money market account is given

by yt−dMt, where dMt ≤ 1 is the proportion of stock shares the investor sells. We

assume that the investor derives his utility from intertemporal consumption. The

consumption rate ct is an Ft−adapted process which is integrable on each finite

time interval, that is,
∫ t

0
|cs|ds < ∞ for any t ≥ 0. Such triple (c, L,M) is called

a consumption-investment strategy of the investor. Then we have the following

dynamics for xt, yt and kt:

dxt = (rxt − ct)dt− dLt + f(0, yt−, kt−; l)dMt, (2.2)

dyt = µyt−dt+ σyt−dBt + dLt − yt−dMt, (2.3)

dkt = dLt − kt−dMt + l(kt− − yt−)+dMt, (2.4)

where

f(x, y, k; l) = x+ y − τ
[
(1− l)(y − k) + l(y − k)+

]
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is the total wealth after liquidation, and l = 0 or 1 corresponds to the FR case or

the FC case.

2.3.1 The CRRA Utility Case

We firstly assume that the investor preferences are characterized by a power utility

function, belonging to the CRRA class, with a constant risk aversion factor p:

U(c) =
c1−p

1− p
, p > 0, p 6= 1.

In this case, we restrict the set of consumption policies to be such that ct ≥ 0 for

any t ≥ 0. In addition, a consumption-investment strategy (c, L,M) is called to be

admissible if the unique solution of (2.2)-(2.4) with (x0, y0, k0) = (x, y, k) satisfies

the solvency constraint

f(xt, yt, kt; l) ≥ 0, yt ≥ 0, kt ≥ 0, ∀t ≥ 0.

Let Ā0(x, y, k) denote the set of admissible strategies. The investor’s problem is

defined by

V (x, y, k) = max
Ā0(x,y,k)

Ex,y,k0

[∫ ∞
0

e−βtU(ct)dt

]
, ∀f(x, y, k; l) ≥ 0, y ≥ 0, k ≥ 0,

where β > 0 is a constant discount factor, and Ex,y,k0 is the conditional expectation at

time t = 0 given that (x0, y0, k0) = (x, y, k). This problem is discussed in Ben Tahar,

Soner, and Touzi (2010) and Dai, Liu, Yang, and Zhong (2015). So we will not go

into the details of this problem here.

2.3.2 The CARA Utility Case

In the remaining part of this chapter, we assume that the investor preferences are

characterized by a CARA (exponential) utility function with a constant risk aversion
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factor γ:

u(c) = −e−γc, γ > 0. (2.5)

We denote by R the set of real numbers, R+ the set of nonnegative real numbers,

and

S = { (x, y, k) ∈ R3 | y > 0, k > 0 }. (2.6)

Then, the investor’s problem is defined by

V (x, y, k) = max
(c,L,M)∈A0(x,y,k)

Ex,y,k0

[∫ ∞
0

e−βtu(ct)dt

]
, ∀(x, y, k) ∈ S̄ ,

where S̄ = R × R2
+ is the closure of S , and A0(x, y, k) is the set of admissible

strategies defined by the following constraints (2.7)-(2.9). For any consumption-

investment strategy (c, L,M), we denote by (xt, yt, kt) the unique solution of (2.2)-

(2.4) with (x0, y0, k0) = (x, y, k). The trading in the stock is subject to the no-short-

sale constraint:

(xt, yt, kt) ∈ S̄ , ∀t ≥ 0. (2.7)

Without any constraint other than the no-short-sale constraint on A0(x, y, k), the

optimal strategy is obviously given by: ct =∞ for all t ≥ 0. To prevent the investor

from unlimited consumption, we impose two technical conditions on A0(x, y, k) as

follows:

lim
t→∞

E
[
e−βt−rγWt

]
= 0, (2.8)

E
∫ T

0

∣∣yte−βt−rγWt
∣∣2 dt <∞, ∀T ∈ [0,∞), (2.9)

where Wt = f(xt, yt, kt; l). These two restrictions follow from Lo, Mamaysky, and

Wang (2001) and Liu (2004). The restriction (2.8) rules out strategies that finance

current consumption by running unlimited deficit. The restriction (2.9) is to ensure

that
∫ T

0
yte
−βt−rγWtdBt is a martingale. As implied by the proof of the verification

theorem Lemma A.1, it is necessary for the Merton solution, which is described
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below in Theorem 2.1, to be optimal.3

Remark 2.2. In the literature, there is another way to prevent a CARA investor

from unlimited consumption in the infinite time horizon case. This way is to weaken

the state firstly for the finite time horizon problem, and then let the time horizon

T → ∞ to obtain the “infinite time horizon” problem (cf. Chen and Dai, 2013b).

By this way, the limit of the finite time horizon problem is actually considered.

Remark 2.3. It is natural to impose the no-bankruptcy constraint f(xt, yt, kt; l) ≥ 0

for all t ≥ 0. However, this constraint would destroy the separability property of the

value function for the CARA utility case as shown in Proposition 2.1.

Remark 2.4. The reason we are interested in the CARA utility lies in its separa-

bility. By virtue of its separability, the multiple risky-asset problem can be reduced

to the single risky-asset case provided that the asset returns are uncorrelated (cf.

Proposition A.1). The multiple risky-asset problem is discussed in Appendix A.

2.4 The Case without Taxes

For the purpose of comparison, we present the main results for the case without

capital gains taxes (i.e., τ = 0). In this case, the investor’s problem can be rewritten

as:

V (W ) = max
(y,c)∈Ā0(W )

EW0
[∫ ∞

0

e−βtu(ct)dt

]
,

subject to

dWt =
[
rWt − ct + (µ− r)yt

]
dt+ σytdBt,

where Wt = xt+yt is the total wealth, and Ā0(W ) is the set of admissible strategies

defined by the solvency constraint (2.8)-(2.9). This problem permits explicit forms of

3 The Merton solution allows the investor to incur negative wealth and may require negative
consumption. As the initial wealth increases, it is shown by Cox and Huang (1989) that the optimal
strategies with the nonnegative wealth and nonnegative consumption constraint converge to the
strategies without this constraint. Accordingly, we focus on investors with large initial wealth such
as mutual funds and hedge funds, and thus do not impose the nonnegative constraint.
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the value function and the optimal strategy, which are presented as follows without

proof (cf. Merton, 1969).

Theorem 2.1 (Merton’s Result). In the absence of capital gains taxes, the investor’s

problem allows an explicit expression of the value function:

V (W ) = −1

r
e−rγW−

β−r
r
− (µ−r)2

2rσ2 . (2.10)

In addition, the optimal investment and consumption strategy is:

y∗t =
µ− r
rγσ2

, (2.11)

c∗t = rW ∗
t +

β − r
rγ

+
(µ− r)2

2rγσ2
, (2.12)

where W ∗
t is the optimal wealth derived from the above strategy.

Merton’s result shows that the optimal investment policy requires the investor

to continuously rebalance the portfolio to maintain a constant dollar amount in the

stock, and the optimal consumption rate is an affine function of the total wealth.

Remark 2.5. Merton’s single risky-asset problem is extended to allow for multiple

risky assets later in Section A.2. To verify the optimality of the corresponding closed

form solution, a verification theorem Lemma A.1 is provided there.

2.5 The Case with Taxes

We now focus on the general case with capital gains taxes (i.e., τ > 0). By the

Dynamic Programming Principle, the value function V (x, y, k) satisfies the following

Hamilton-Jacobi-Bellman (HJB) equation4

max
{
L0V, B0V, S0V

}
= 0, (x, y, k) ∈ S , (2.13)

4A heuristic derivation of the HJB equation is provided later in Section 3.1.4.
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where

L0V =
1

2
σ2y2Vyy + µyVy + rxVx − βV + u∗(Vx), (2.14)

B0V = −Vx + Vy + Vk, (2.15)

S0V = f(0, y, k; l)Vx − yVy −
[
k − l(k − y)+

]
Vk, (2.16)

and

u∗(q) = sup
c

{
u(c)− cq

}
= − q

γ
+
q

γ
log

q

γ
. (2.17)

The optimal consumption rate proves to be

c∗ = −1

γ
log

Vx
γ
, (2.18)

and the optimal trading policy is governed by the two free boundaries of the HJB

equation (2.13).

We next present an important property of the value function. It provides a

groundwork to reduce the dimension of the investor’s problem.

Proposition 2.1 (Separability). The value function is separable:

V (x, y, k) = e−rγxV (0, y, k), (x, y, k) ∈ S̄ . (2.19)

Proof. This proposition follows immediately from Proposition 3.1 as well as Propo-

sition 3.2 (see below).

The separability property inspires us to make the following transformation to

reduce the dimension of the problem:

V (x, y, k) = −e−rγ(x+y)−φ(z,b), z = rγy, b =
k

y
, (x, y, k) ∈ S . (2.20)

For expositional convenience, we refer to z as the scaled position on the stock and b

as the basis-price ratio. Since V is the solution of the HJB equation (2.13), we can
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verify that φ(z, b) satisfies:

max
{
L1φ, B1φ, S1φ

}
= 0, z > 0, b > 0, (2.21)

where

L1φ =
1

2
σ2z2(φzz − φ2

z)− σ2zb(φzb − φzφb) +
1

2
σ2b2(φbb − φ2

b) + (µ− σ2z)zφz

+(σ2 + σ2z − µ)bφb − rφ−
1

2
σ2z2 + (µ− r)z + β − r

(
1− log r

)
,

B1φ = zφz + (1− b)φb,

S1φ = zf(−1, 1, b; l)− zφz + l(b− 1)+φb.

In terms of φ, we can rewrite the optimal consumption rate (2.18) as

c∗ =
1

γ

[
φ+ rγ(x+ y)− log r

]
. (2.22)

In contrast to the case without capital gains taxes, the optimal investment s-

trategy can be characterized by three regions: the sell region (SR), the buy region

(BR), and the no-trading region (NTR). They are defined as follows:

SR =
{

(z, b)
∣∣S1φ = 0

}
,

BR =
{

(z, b)
∣∣B1φ = 0

}
,

NTR =
{

(z, b)
∣∣S1φ < 0 and B1φ < 0

}
.

In the remainder of this chapter, we aim at locating these regions.

2.5.1 The FR Case

We firstly focus on the FR case (i.e., l = 0). In this case, the value function has

the following two properties, which are analogous to those obtained by Ben Tahar,

Soner, and Touzi (2010) in the CRRA utility case.
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Proposition 2.2. If l = 0, the value function has lower and upper bounds:

−e−rγW−K ≤ V (x, y, k) ≤ −e−rγW−K̄ , (x, y, k) ∈ S̄ ,

where W = f(x, y, k; 0),

K̄ =
β − r
r

+
(µ− r)2

2rσ2
+ log r, K =

β − r
r

+
((1− τ)µ− r)2

2r(1− τ)2σ2
+ log r. (2.23)

Proof. The upper bound can be derived, in the similar way as the proof of Proposi-

tion 4.1 of Ben Tahar, Soner, and Touzi (2010), by constructing admissible strategies

in the tax-free market. The lower bound can be derived, in the similar way as the

proof of Proposition 4.2 of Ben Tahar, Soner, and Touzi (2010), by constructing a se-

quence of admissible strategies which approximates the value function in a fictitious

tax-free market described below.

The upper bound in Proposition 2.2 is the value function in the tax-free mar-

ket given by (2.10). It indicates that although the investor may benefit from tax

rebates, he cannot perform better than in the tax-free market. The lower bound in

Proposition 2.2 is the value function associated with a sub-optimal strategy

yt =
(1− τ)µ− r
rγ(1− τ)2σ2

,

ct = rWt +
β − r
rγ

+
((1− τ)µ− r)2

2rγ(1− τ)2σ2
,

by which one keeps liquidating the portfolio. It corresponds to the value function

in a fictitious tax-free market with a modified expected rate of return (1− τ)µ and

a modified volatility (1− τ)σ of the stock.

Proposition 2.3 (Optimality of Wash Sales). Assume l = 0. For any (x, y, k) ∈ S̄ ,

whenever k ≥ y,

V (x, y, k) = V (W, 0, 0) = V (W − ỹ, ỹ, ỹ),

where W = f(x, y, k; 0) and ỹ is any positive constant.
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Proof. This property, which holds for any utility function, is a corollary of Proposi-

tion 3.5 of Ben Tahar, Soner, and Touzi (2010).

Proposition 2.3 indicates that whenever the tax basis exceeds the stock price, it

is optimal to realize capital losses, or specifically, to rebalance the entire portfolio as

follows: (xt, yt, kt)→ (Wt, 0, 0)→ (Wt− ỹ∗, ỹ∗, ỹ∗), where ỹ∗ is the optimal position

on the stock after realizing capital losses. This policy is observed in practice and is

known as a wash sale. Accordingly, we can define the wash sale region (WSR) in

z-b plane as

WSR =
{

(z, b)
∣∣z ≥ 0, b ≥ 1

}
.

This enables us to restrict our attention to 0 ≤ b ≤ 1.

Without available analytic solution, we numerically solve the variational equation

(2.21) with l = 0 by the penalty method with a finite difference discretization (cf.

Forsyth and Vetzal, 2002; and Dai, Kwok, and You, 2007). Specifically, the penalty

approximation of (2.21) is

L1φ+KP [B1φ]+ +KP [S1φ]+ = 0, z > 0, b > 0, (2.24)

where (·)+ = max{·, 0} andKP is a positive constant.5 (2.24) is expected to converge

to (2.21) as KP →∞. Since we are most interested in the NTR which is generally

much smaller than the state space (0,∞)×(0,∞), we confine ourselves to a truncated

domain:

[zlow, zup]× [blow, bup], blow = 0, bup > 1. (2.25)

5(2.24) can be derived by (3.16) and (2.20).



20 Chapter 2. Merton Problem with Instant Taxes

The boundary conditions are as follows:

1. at {zlow} × [blow, bup], B1φ = 0;

2. at {zup} × [blow, bup], S1φ = 0;

3. at (zlow, zup)× {bup}, S1φ = 0;

4. at (zlow, zup)× {blow}, use equation (2.24) itself.

(2.26)

Conditions 1 and 2 are financially intuitive because a CARA investor would buy or

sell the stock when the amount invested in the stock is low or high enough. Condition

3 is implied by the optimality of wash sales for b > 1. Condition 4 is natural because

(2.24) is degenerate at b = 0. We apply a finite difference discretization with Newton

iteration for nonlinear terms (cf. Dai and Zhong, 2010) to solve (2.24) subject to

the boundary conditions (2.26). Numerical results are provided in the next section.

Remark 2.6. Our numerical results show that increasing the size of the computation

domain does not affect the solution in areas of interest, and that zlow can be 0. In

addition, b can be 0 (it corresponds to k = 0). Thus we can extend the state space

to R2
+.

Remark 2.7. Standard existence and uniqueness results for the solution cannot be

applied due to the nonlinearity of (2.21). When providing numerical estimates of

the solution, we are implicitly assuming that a solution exists and abstracting from

uniqueness concerns.

Remark 2.8. For the model proposed by Ben Tahar, Soner, and Touzi (2010),

Bian, Chen, and Dai (2015) show that although the associated HJB equation admits

many solutions, the value function corresponds to the minimal viscosity solution of

the HJB equation which can be numerically solved by the penalty method.
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2.5.2 The FC Case

We turn to the FC case (i.e., l = 1). In this case, the two free boundaries of the

reduced HJB equation (2.21) reads:

zφz + (1− b)φb = 0, for b > 1.

This indicates that incessant trading is necessary for b > 1 and that φ can be

rewritten as

ω(η) = φ(z, b), η =
1

1− z(1− b)
∈ [0, 1]. (2.27)

Plugging into (2.21), we have

1

2
σ2(z∗)2η4(ωηη − ω2

η) + z∗[µ+ σ2z∗(η − 1)]η2ωη − rω

−1

2
σ2(z∗)2 + (µ− r)z∗ + β − r

(
1− log r

)
= 0, in η ∈ (0, 1), (2.28)

with

ω(0) = K̄, ω(1) = φ(z, 1),

where K̄ is defined in (2.23), φ(z, 1) is a constant since φz = 0 at b = 1, and

z∗ =
r − µ− µη2ωη

σ2[η4(ωηη − ω2
η) + 2(η − 1)η2ωη − 1]

.

Following the algorithm given by Dai, Liu, Yang, and Zhong (2015), we can

recursively solve (2.21) with l = 1 and (2.28) as follows:

1. Give an initial guess K0. Set j = 1 and constant bup > 1.

2. At the j-th iteration, solve ωj(η) using (2.28) with ωj(0) = K̄, ωj(1) = Kj−1.

3. Solve φj(z, b) using (2.21) with

φj(z, bup) = ωj

(
1

1− z(1− bup)

)
.
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Table 2.1: The Default Values of the Parameters, CARA

This table reports the default values of the parameters.

Variable Symbol Default Value

Interest rate r 0.01

Expected stock return µ 0.05

Stock return volatility σ 0.25

Subjective discount rate β 0.01

Tax rate τ 0.15

4. Set Kj = φj(z, 1). If |Kj − Kj−1| < tolerance, then stop and set φ = φj,

ω = ωj; otherwise, set j = j + 1, and go to Step 2.

In Step 3, we apply the penalty method. The other boundary conditions are similar

to (2.26) in the FR case for computation.

2.6 Numerical Results

In this section, we provide numerical results on the solution of the investor’s prob-

lem. We use the default values of the parameters summarized in Table 2.1. Risk

aversion factor γ is not listed in the table since it does not affect the optimal trading

boundaries in z-b plane.

Optimal Trading Policy

Figure 2.1 plots the optimal buy and sell boundaries with the round dot O repre-

senting the optimal position at b = 1, and produces the expected partition of the

state space into three regions in z-b plane. Panel (a) corresponds to the FR case

while panel (b) corresponds to the FC case.

In the FR case, as indicated by panel (a) of Figure 2.1, when there are capital

gains (i.e., b < 1), the investor adopts the following trading policy:
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Figure 2.1: Trading Boundaries, CARA

This figure shows the optimal trading boundaries. Parameter values: r = 0.01, µ = 0.05, σ = 0.25,

β = 0.01, τ = 0.15.

• If the current scaled position on the stock zt is vertically above the sell bound-

ary, the investor would sell vertically downward to reach the sell boundary.

For example, sell from A1 to A2 in the sub-figure.

• If zt is vertically below the buy boundary, the investor would buy to reach the

buy boundary along the hyperbola

z =
zt(bt − 1)

b− 1
. (2.29)

For example, buy from B1 to B2 in the sub-figure.

• If zt is vertically between the buy and sell boundaries, no position adjustment

happens.

When there are capital losses (i.e., b > 1), the investor would sell all of his stock

holding and then buy back to z = z̃∗ (the round dot O at b = 1 in the sub-figure).

This is supported by Proposition 2.3. We point out that z̃∗ can also be regarded as

the optimal initial scaled position on the stock.

In the FC case, as indicated by panel (b) of Figure 2.1, when there are capital
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gains, the optimal trading policy is similar to that in the FR case. When there are

capital losses, there is an incessant trading line. The investor would keep trading

the stock to stay at the trading line along a hyperbola in the form of (2.29). For

example, sell from C1 to C2 or buy from D1 to D2 in the sub-figure. When the

basis-price ratio b = 1, the optimal position (the round dot O in the sub-figure)

differs from the left limit point of the optimal trading line for b > 1. It suggests

that the optimal position on the stock is discontinuous at b = 1. Comparing panel

(b) with panel (a), we find that the FC case has a wider NTR and a lower initial

position on the stock (the optimal position at b = 1) than the FR case.

The above findings show that the investor may defer realizing capital gains but

would realize losses immediately in both the FR and FC cases. The aim of deferring

the realization of capital gains is to save the time value of capital gains taxes, and

moreover, in the FC case, to make some of future losses rebatable. In the FR case,

the liquidation of the investor’s position in case of a capital loss can be explained

by the purpose of earning interest on tax rebates earlier and reducing the duration

of a sub-optimal position. However, in the FC case, the incessant trading in case of

a capital loss can be explained by the purpose of offsetting some potential capital

gains. When the basis-price ratio b = 1, the investor tends to allocate less money

in the stock if he has capital gains so that he could pay less taxes, but tends to

allocate more money in the stock if he has capital losses so that he can offset more

subsequent capital gains. In addition, since a tax loss carry-forward does not pay

any interest and bears the risk of never being used, the investor tends to hold less

stock and trade less frequently in the FC case than in the FR case.

Sensitivities

Next, we study the effects of perturbed model parameters on the optimal trading

policy.
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Figure 2.2: Trading Boundaries, Various τ , CARA

This figure shows the optimal trading boundaries for various τ . Other parameter values: r = 0.01,

µ = 0.05, σ = 0.25, β = 0.01.

Changes in Tax Rate We firstly investigate the effects of perturbed tax rates.

Figure 2.2 plots the optimal trading boundaries with varying tax rates for both the

FR and FC cases. We can see that the NTR expands at a higher tax rate. It suggests

that an investor who pays taxes at a higher rate has less tendency to transact the

stock than the one who pays taxes at a lower rate. This can be attributed to the

aim of saving tax expenses. Surprisingly, an investor paying taxes at a higher rate

seems to allocate more money in the stock after realizing capital losses in the FR

case. This can be explained by the investor’s expectation of earning more interest on

a larger tax rebate in case of a capital loss. However, we find that this expectation

may diminish when the money market account becomes more valuable. Figure 2.3

plots the optimal initial scaled position on the stock z̃∗ against tax rate for different

levels of interest rate r. It can be seen that when r = 1%, a higher tax rate implies

a larger z̃∗. But when r = 3%, a higher tax rate implies a smaller z̃∗.

Changes in Expected Stock Return Figure 2.4 plots the optimal trading

boundaries with varying expected rates of stock return. As the expected stock

return increases, both of the buy and sell boundaries shift upwards. This is intuitive
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Figure 2.3: Initial Scaled Position on the Stock, FR, CARA

This figure shows the optimal initial scaled position on the stock z̃∗ against τ for different levels

of r in the FR case. Other parameter values: µ = 0.05, σ = 0.25, β = 0.01.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

b

z

 

 
µ = 0.04

µ = 0.05

µ = 0.06

(a) l = 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

b

z

 

 
µ = 0.04

µ = 0.05

µ = 0.06

(b) l = 1

Figure 2.4: Trading Boundaries, Various µ, CARA

This figure shows the optimal trading boundaries for various µ. Other parameter values: τ = 0.15,

r = 0.01, σ = 0.25, β = 0.01.

since the investor has more incentives to allocate more money into a high-return

stock. The figure also shows that the NTR widens as the expected stock return

rises. This is because the investor tends to hold more on a high-return stock, which

may incur a relatively larger amount of taxes.

Changes in Volatility As a measure for variation of stock price, a higher volatil-

ity means that the stock price can potentially be spread out over a larger range
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Figure 2.5: Trading Boundaries, Various σ, CARA

This figure shows the optimal trading boundaries for various σ. Other parameter values: τ = 0.15,

r = 0.01, µ = 0.05, β = 0.01.

of values. As a result, the investor would feel safer to allocate more money into a

low-volatility stock. This is confirmed by Figure 2.5. The figure also shows that as

the volatility increases, the NTR shrinks. It is inconsistent with the intuition that

the investor would have less tendency to trade a high-volatility stock. There can

be two reasons for this counterintuitive finding. Firstly, high volatility represents

opportunities to buy the stock at a much cheaper price and sell the stock at a much

higher price. Secondly, high volatility indicates that the investor would hold less on

the stock and thus pay a relatively smaller amount of taxes.

Certainty Equivalent Wealth Loss

In the FR case, although the investor may benefit from tax rebates, he cannot

perform better than in the tax-free market. In the FC case, we can imagine that

the investor would be even worse off because he no longer qualifies for tax rebates.

To examine it, we compute the certainty equivalent wealth loss (CEWL) of Merton

from capital gains taxes. To gain the same utility as in the taxable market, the

investor in the tax-free market (Merton) can invest less money. The missing money
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Figure 2.6: Scaled CEWL, CARA

This figure shows the scaled CEWL of Merton against τ for different levels of µ in panel (a) and for

different levels of σ in panel (b). Other parameter values: r = 0.01, µ = 0.05, σ = 0.25, β = 0.01.

is the CEWL of Merton, ∆W , which can be computed by

V (W, 0, 0; τ) = V (W −∆W , 0, 0; 0), (2.30)

where W and V (x, y, k; τ) are the initial wealth and the value function of an investor

in a market with tax rate τ . To be consistent with the scaled position on the stock

z = rγy, we report the scaled CEWL of Merton rγ∆W instead.

Figure 2.6 plots the scaled CEWL of Merton against tax rate τ for different levels

of expected stock return µ in panel (a) and for different levels of stock return volatil-

ity σ in panel (b). We can observe that the scaled CEWL significantly increases as

the tax rate rises, and the scaled CEWL in the FC case is much lager than that in

the FR case. In the default case with τ = 0.15, µ = 0.05, and σ = 0.25, the scaled

CEWL of Merton is 0.08 for the FR case and 0.18 for the FC case. Compared with

Merton’s optimal scaled position on the stock 0.64, the CEWL-stock ratio is 12.5%

for the FR case and 28.1% for the FC case. These observations demonstrate that

the investor is substantially worse off by capital gains taxes in the FR case and much

worse off in the FC case. Figure 2.6 also shows that a larger expected stock return
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or a smaller stock return volatility corresponds to a larger value of the scaled CEWL

of Merton. This is because in such cases, the investor would allocate more money

in the stock, which can lead to a greater effect of capital gains taxes.





Chapter 3
Merton Problem with Transaction Costs

and Year-End Taxes

The existing literature on portfolio selection with capital gains taxes always assumes

that taxes are paid immediately after sale (instant taxes). However, taxes are actu-

ally only paid at the end of each calendar year (year-end taxes) in the real market.

Besides the presence of capital gains taxes, the presence of transaction costs is an-

other important feature of the real world. The impact of transaction costs on a

taxable investor’s strategy has not yet been explored by researchers in a continuous-

time framework. In this chapter, we study the continuous-time optimal investment

and consumption problem of a CARA investor who faces both transaction costs and

year-end taxes. An extension to the CRRA utility case is also provided.

3.1 The Model

Based on the Merton model with instant taxes in the previous chapter, we will

propose a Merton model with both transaction costs and year-end taxes in this

section. For expositional convenience, we refer to the case where taxes are paid

immediately after sale as the instant tax (IT) case, and refer to the case where

taxes are only paid at the end of each calendar year as the year-end tax (YT) case

31
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throughout this thesis.

3.1.1 The Investor’s Problem

We consider a financial market consisting of only two investment assets: a risk-free

asset (money market account) and a risky asset (stock). As in the previous chapter,

the money market account grows at a constant interest rate of r > 0; the price of

the stock Pt follows a geometric Brownian motion (2.1) with constant drift µ > r

and constant volatility σ > 0. We always assume that short selling of the stock is

prohibited, and that wash sales of the stock are allowed.

The investor can buy the stock at the ask price of (1 + θ)Pt and sell it at the

bid price of (1 − α)Pt, where θ ∈ [0,∞) and α ∈ [0, 1) are constants representing

proportional transaction cost rates for purchasing and selling the stock respectively.

The sales of the stock are subject to taxes on capital gains at a constant tax rate

of τ ∈ [0, 1). The taxation rules in the IT case are presented in Section 2.2. We

focus on the YT case. Before the year-end settlement, the investor keeps records of

realized capital gains and losses. At the end of the fiscal year, the investor pays a

tax on a net realized accumulated capital gain. Our approach to deal with year-end

taxes is to discount the amount of the year-end taxes to be paid as cash-flows at

times when stock shares are sold. Specifically, before the year-end settlement, the

money market account x̂t and the accumulated taxes to be paid ξ̂t are given by:

dx̂t = (rx̂t − ct)dt− (1 + θ)dLt + (1− α)yt−dMt,

dξ̂t = −τ
[
(1− l)((1− α)yt− − kt−) + l((1− α)yt− − kt−)+

]
dMt,

where the triple (c, L,M) is a consumption-investment strategy which remains the

same as described in the first paragraph of Section 2.3, and l = 0 or 1 corresponds

to the FR case or the FC case. Then the discounted after-tax value of the money

market account xt = x̂t + g(t;λ)ξ̂t, the stock account yt, and the total cost basis for
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the stock holding kt evolve according to the following equations:

dxt = (rxt − ct)dt− (1 + θ)dLt + f(t, 0, yt−, kt−; l, λ)dMt, (3.1)

dyt = µyt−dt+ σyt−dBt + dLt − yt−dMt, (3.2)

dkt = (1 + θ)dLt − kt−dMt + l(kt− − (1− α)yt−)+dMt, (3.3)

where

f(t, x, y, k; l, λ) = x+ (1− α)y − g(t;λ)τ
[
(1− l)((1− α)y − k) + l((1− α)y − k)+

]
is the total wealth after liquidation,

g(t;λ) =


1, for λ = 0,

e−r(dte−t), for λ = 1,

(3.4)

λ = 0 or 1 corresponds to the IT case or the YT case, and dte is the ceiling func-

tion which is defined as the smallest integer not less than t.1 For convenience in

exposition, we still refer to xt as the value of the money market account in the YT

case.

A consumption-investment strategy (c, L,M) is admissible for (x, y, k) ∈ S̄

starting from t ≥ 0 if (xs, ys, ks) given by (3.1)-(3.3) satisfies the solvency constraint

(xs, ys, ks) ∈ S̄ , ∀s ≥ t, (3.5)

lim
s→∞

E
[
e−βs−rγWs

]
= 0, (3.6)

E
∫ T

t

∣∣yse−βs−rγWs
∣∣2 ds <∞, ∀T ∈ [t,∞), (3.7)

where S̄ is the closure of S given by (2.6) and Ws = f(s, xs, ys, ks; l, λ). Let

At(x, y, k) denote the set of admissible strategies. We define the value function at

1In Ben Tahar, Soner, and Touzi (2007) with λ = l = 0, f = x + (1 − α)y − τ(1 − α)(y − k),
where capital gains and losses are also subject to transaction costs. In the real-world tax law,
however, transaction costs are one source of capital losses which should be taxed.
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time t to be

V (t, x, y, k) = max
At(x,y,k)

Et
[∫ ∞

t

e−β(s−t)u(cs)ds

]
, ∀t ≥ 0, (x, y, k) ∈ S̄ , (3.8)

where β > 0 is a constant discount factor, u(·) defined in (2.5) is a CARA utility

function with a constant risk aversion factor γ.

3.1.2 Separability and Periodicity

This sub-section provides two elementary properties of the value function: separa-

bility and periodicity.

Proposition 3.1 (Separability). The value function is separable:

V (t, x, y, k) = e−rγxV (t, 0, y, k), t ≥ 0, (x, y, k) ∈ S̄ . (3.9)

Proof. The proof is similar to that in Chen and Dai (2013b). Let (c̃s, L̃s, M̃s) ∈

At(0, y, k) and (x̃s, ỹs, k̃s) be the corresponding solution of (3.1)-(3.3). Consider a

consumption-investment strategy (cs, Ls,Ms) = (c̃s + rx, L̃s, M̃s). We denote by

(xs, ys, ks) the corresponding solution of (3.1)-(3.3) with initial position (x, y, k) at

time t. Clearly, ys = ỹs, ks = k̃s, and x̂s = xs − x̃s is the solution of the following

initial value problem:

dx̂s = r(x̂s − x)ds, x̂t = x.

It has a unique solution x̂s ≡ x. Therefore, (xs, ys, ks) = (x̃s + x, ỹs, k̃s) and it

becomes straightforward to verify the solvency constraint (3.5)-(3.7). It then follows

that (cs, Ls,Ms) ∈ At(x, y, k). Now it is clear that the relation between (c, L,M) ∈

At(x, y, k) and (c̃, L̃, M̃) ∈ At(0, y, k) is one-to-one and onto. Due to the separability

of the exponential utility function, we have

Ex,y,kt

[∫ ∞
t

e−β(s−t)u(cs)ds; (c, L,M)

]
= e−rγxE0,y,k

t

[∫ ∞
t

e−β(s−t)u(c̃s)ds; (c̃, L̃, M̃)

]
.
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Take the supremum over At(x, y, k) on the left-hand side and over At(0, y, k) on the

right-hand side. It yields (3.9).

Proposition 3.2 (Periodicity).

(a) If λ = 0, the value function V is time-independent.

(b) If λ = 1, the value function V is one-year periodic:

V (t, x, y, k) = V (t+ 1, x, y, k), t ≥ 0, (x, y, k) ∈ S̄ . (3.10)

Proof. The proof is similar to the proof of Proposition 3.6.

3.1.3 The HJB Equation

It turns out that the value function is governed by the following HJB equation

max
{
Vt + L0V, B0V, S0V

}
= 0, t ≥ 0, (x, y, k) ∈ S , (3.11)

where L0 is the same as (2.14), and

B0V = −(1 + θ)Vx + Vy + (1 + θ)Vk,

S0V = f(t, 0, y, k; l, λ)Vx − yVy −
[
k − l(k − (1− α)y)+

]
Vk.

A heuristic derivation of (3.11) is provided in the next sub-section.

Due to the separability property, we can make the following transformation to

reduce the dimension:

V (t, x, y, k) = −e−rγ(x+(1−α)y)−φ(t,z,b), z = rγy, b =
k

y
, t ≥ 0, (x, y, k) ∈ S .

Then the HJB equation (3.11) is reduced to

max
{
φt + L1φ, B1φ, S1φ

}
= 0, t ≥ 0, z > 0, b > 0, (3.12)
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where

L1φ =
1

2
σ2z2(φzz − φ2

z)− σ2zb(φzb − φzφb) +
1

2
σ2b2(φbb − φ2

b)

+(µ− (1− α)σ2z)zφz + (σ2 + (1− α)σ2z − µ)bφb − rφ

−1

2
(1− α)2σ2z2 + (1− α)(µ− r)z + β − r

(
1− log r

)
, (3.13)

B1φ = −(θ + α)z + zφz + (1 + θ − b)φb,

S1φ = zf(t,−1 + α, 1, b; l, λ)− zφz + l(b− 1 + α)+φb.

Proposition 3.2 follows that: if λ = 0, φ is time-independent; and if λ = 1, φ is

one-year periodic:

φ(t+ 1, z, b) = φ(t, z, b), t ≥ 0, z > 0, b > 0.

Motivated by this, if λ = 1, we can use the following iterative algorithm to solve

(3.12) in one period t ∈ [0, 1]:

1. Give an initial guess of φ0(0, z, b), and set j = 1.

2. At the j-th iteration, solve for φj(t, z, b) using (3.12), t ∈ [0, 1), with terminal

condition

φj(1, z, b) = φj−1(0, z, b).

3. If |φj(1, z, b)−φj(0, z, b)| < tolerance, then stop and set φ = φj; otherwise, set

j = j + 1, and go to Step 2.

In Step 2 or for the case λ = 0, we apply the penalty method.

Remark 3.1. In the FR case, although transaction costs could inhibit trading, po-

tential tax rebates can be larger relative to even substantial transaction costs as long

as b is large enough, say b = bup. This motivates us to impose similar boundary

conditions as (2.26) for computation.
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Remark 3.2. In the FC case with θ + α = 0,

zφz + (1− b)φb = 0, for b > 1.

In this case, a similar special treatment as in Section 2.5.2 is conducted for λ = 1.

In the FC case with θ + α > 0, we further make a change of variable

ξ =
b

1 + b
. (3.14)

Then (3.12) reads

max
{
φt + L1

1φ, B1
1φ, S1

1φ
}

= 0, t ≥ 0, z > 0, 0 < ξ < 1,

where

L1
1φ =

1

2
σ2z2(φzz − φ2

z)− σ2zξ(1− ξ)(φzξ − φzφξ) +
1

2
σ2ξ2(1− ξ)2(φξξ − φ2

ξ)

+(µ− (1− α)σ2z)zφz + (σ2(1− ξ) + (1− α)σ2z − µ)ξ(1− ξ)φξ − rφ

−1

2
(1− α)2σ2z2 + (1− α)(µ− r)z + β − r

(
1− log r

)
,

B1
1φ = −(θ + α)z + zφz + (1 + θ − (2 + θ)ξ)(1− ξ)φξ,

S1
1φ = −g(t;λ)τz

(1− α− (2− α)ξ)+

1− ξ
− zφz + ((2− α)ξ − 1 + α)+(1− ξ)φξ.

At ξ = 1, the above equation degenerates into the one with only transaction costs.

The other boundary conditions are similar to (2.26) for computation.

3.1.4 Heuristic Derivation of the HJB Equation

This sub-section presents a heuristic derivation of the HJB equation (3.11). Here,

we restrict the original problem (3.8) to a restricted class of admissible strategies in
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which L and M are absolutely continuous with bounded derivatives, i.e.,

Lt =

∫ t

0

l̃sds, Mt =

∫ t

0

m̃sds, 0 ≤ l̃s, m̃s ≤ K.

By the Dynamic Programming Principle, we can rewrite the restricted problem,

denoted by Ṽ (t, x, y, k), in an iterative form:

Ṽ (t, x, y, k) = max
c,l̃,m̃

Et

[∫ t′

t

e−β(s−t)u(cs)ds+ e−β(t′−t)Ṽ (t′, xt′ , yt′ , kt′)

]
. (3.15)

Assuming that Ṽ is smooth enough, we may apply Itô’s formula between t and t′:

e−βt
′
Ṽ (t′, xt′ , yt′ , kt′)− e−βtṼ (t, x, y, k)

=

∫ t′

t

e−βs
(
Ṽt + Lc0Ṽ + l̃B0Ṽ + m̃S0Ṽ

)
(s, xs, ys, ks)ds

+

∫ t′

t

e−βsσysṼy(s, xs, ys, ks)dBs,

where

Lc0Ṽ =
1

2
σ2y2Ṽyy + µyṼy + (rx− c)Ṽx − βṼ .

Taking the limit t′ → t in (3.15), it is easy to verify that Ṽ satisfies the following

Bellman equation:

max
c,l̃,m̃

{
Ṽt + Lc0Ṽ + u(c) + l̃B0Ṽ + m̃S0Ṽ

}
= 0.

The optimal strategy is

c∗ = −1

γ
log

Ṽx
γ
, l̃ =

 K, if B0Ṽ ≥ 0,

0, otherwise,
m̃ =

 K, if S0Ṽ ≥ 0,

0, otherwise.



3.2 Optimal Strategy with Transaction Costs 39

This suggests that transactions either take place at maximum rate or not at all. The

optimal strategy yields that

Ṽt + L0Ṽ +K
[
B0Ṽ

]+

+K
[
S0Ṽ

]+

= 0. (3.16)

This is the penalty approximation of the HJB equation (3.11). Since transactions

take place at maximum rate, i.e., infinite speed, then we have the following inequal-

ities:

Vt + L0V ≤ 0, B0V ≤ 0, S0V ≤ 0,

at least one of the above is zero,

by taking the limit K →∞. We can rewrite the above inequalities in a variational

form:

max
{
Vt + L0V, B0V, S0V

}
= 0, t ≥ 0, (x, y, k) ∈ S ,

which is the same as (3.11).

Remark 3.3. In the heuristic derivation of the HJB equation (3.11), we are im-

plicitly assuming that the restricted problem Ṽ goes to the original problem V as

K → ∞. We point out that the above derivation is firstly proposed by Davis and

Norman (1990) for portfolio selection with transaction costs.

3.2 Optimal Strategy with Transaction Costs

In this section, we provide numerical results to explore the impact of transaction

costs on the investor’s strategy in the IT case. We use the same default parameters

listed in Table 2.1, and moreover, set the default transaction cost rates θ = α = 0.5%.

Figure 3.1 plots the optimal buy and sell boundaries, and produces the expected

partition of the state space into three regions in z-b plane. The transaction direction

is marked in the figure. Panel (a) corresponds to the FR case while panel (b)
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Figure 3.1: Trading Boundaries with Transaction Costs, CARA

This figure shows the optimal trading boundaries with transaction costs. Parameter values: τ =

0.15, r = 0.01, µ = 0.05, σ = 0.25, β = 0.01, θ = α = 0.005.

corresponds to the FC case. In each panel, the round dot O1 represents the optimal

position at b = 1−α after sale, and the round dot O2 represents the optimal position

at b = 1+θ after purchase. We can see that transaction costs can dramatically affect

the optimal trading boundaries.

Specifically, in the FR case, the NTR exists when the basis-price ratio b ≤ bmax,

where bmax > 1 is a constant (e.g., bmax = 2.32 in panel (a) of the figure). In the

FC case, however, the NTR exists for all b ≥ 0. In both the FR and FC cases, if

the current state (zt, bt) lies in the BR, the investor would buy to reach the buy

boundary along the hyperbola

z =
zt(bt − 1− θ)
b− 1− θ

.

For example, buy from C1 to C2 for b < 1 + θ; buy from D1 to D2 or from E1 to

E2 for b > 1 + θ in each panel of the figure. If the current state lies in the SR and

there is a capital gain (b < 1 − α), the investor would sell vertically downward to

reach the sell boundary. However, if the current state lies in the SR and there is a

capital loss (b > 1− α), there are differences between the FR and FC cases:
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• In the FR case, if zt is vertically above the upper part of the sell boundary,

the investor would sell vertically downward to reach the sell boundary. For

example, sell from B1 to B2 in panel (a) of the figure. The remaining part

of the SR consists of two regions: the region below the lower part of the sell

boundary and the region with b > bmax. This part is the WSR where the

investor would sell all of his stock holding and then buy back to O2 in panel

(a) of the figure.

• In the FC case, the investor would sell to the sell boundary along the hyperbola

z =
zt(bt − 1 + α)

b− 1 + α
.

For example, sell from B1 to B2 in panel (b) of the figure. In this sub-

figure, moreover, the round dots O1 and O2 show that the sell boundary is

discontinuous at b = 1− α, but the buy boundary is continuous at b = 1 + θ.

The above findings show that transaction costs can lead the investor to defer

realization of capital losses in both the FR and FC cases. This results from the

trade-off between saving transaction costs and the desire to receive tax rebates in the

FR case or offset future capital gains in the FC case. In the FR case, when available

tax rebates are large enough to compensate for transaction costs, the investor may

sell some portion of the stock. When available tax rebates are much larger, he may

do a wash sale to earn interest earlier on tax rebates (after subtracting transaction

costs). In the FC case, although the investor could offset some future capital gains,

he may still prefer deferring realization of capital losses since tax loss carry-forward

does not pay any interest and bears the risk of never being used.

We next investigate how perturbed transaction cost rates affect the investor’s

trading policy. Figure 3.2 plots the optimal trading boundaries for various transac-

tion cost rates for both the FR and FC cases. The upper panels show that the shape

of the NTR with positive transaction costs is significantly different from that with

zero transaction costs. The lower panels present the optimal trading boundaries for
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Figure 3.2: Trading Boundaries, Various Transaction Cost Rates, CARA

This figure shows the optimal trading boundaries with various transaction cost rates. Other pa-

rameter values: τ = 0.15, r = 0.01, µ = 0.05, σ = 0.25, β = 0.01.
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This figure shows the greatest value of b, bmax, within the NTR in the FR case. Other parameter

values: r = 0.01, µ = 0.05, σ = 0.25, β = 0.01.

quite small transaction cost rates. From it, we can have a clear look at how the

NTR with positive transaction costs converges to that with zero transaction costs.

Note that in the right panels, O is the optimal position at b = 1 for zero transaction

costs, O1 and O2 are the optimal positions at b = 1− α after sale for low and high

transaction cost rates respectively.

It is intuitive that the NTR tends to expand as transaction cost rate increases.

However, Figure 3.2 shows that one part of the NTR with 0.5% transaction costs

is not completely contained in the NTR with 1% in the FR case. In this part, an

investor paying 1% transaction costs would buy the stock but the one paying 0.5%

would not transact. This can happen because the investor paying 1% transaction

costs may pay less transaction costs because he tends to buy a smaller amount of

stock.

Our results show that there is a greatest value of the basis-price ratio, bmax,

within the NTR in the FR case. Figure 3.3 plots bmax as a function of transaction

cost rate for different levels of tax rate. We can observe that bmax is significantly

increased by a higher transaction cost rate or a lower tax rate. This is because a

larger basis-price ratio is needed to generate large enough tax rebates so that the

investor would be willing to do a wash sale.
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Figure 3.4: Scaled CEWL, with Transaction Costs, CARA

This figure shows the scaled CEWL of Merton in the presence of transaction costs. Other parameter

values: r = 0.01, µ = 0.05, σ = 0.25, β = 0.01.

Our previous results as well as the existing literature show that transaction costs

and capital gains taxes separately have a significantly negative effect on the investor’s

expected utility. How will they jointly affect the investor’s expected utility? To

address this, we compute the scaled CEWL of Merton from transaction costs and

capital gains taxes. Figure 3.4 plots it against tax rate in panel (a) and against

transaction cost rate in panel (b). In the presence of transaction costs and capital

gains taxes, we find that the investor would be even worse off by either a higher

tax rate or a higher transaction cost rate. Moreover, this effect can be relatively

weakened a bit in the FC case.

3.3 Optimal Strategy with Year-End Taxes

In this section, we provide numerical results in the YT case to explore the impact

of the provision that taxes are only paid at the end of each calendar year on the

investor’s strategy. The default values of the parameters are as follows: interest rate

r = 0.05, expected stock return µ = 0.09, stock return volatility σ = 0.25, subjective

discount rate β = 0.05, tax rate τ = 0.15, and transaction cost rates θ = α = 0.005.
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Figure 3.5: Trading Boundaries without Transaction Costs, YT, CARA

This figure shows the optimal trading boundaries without transaction costs in the YT case. Pa-

rameter values: r = 0.05, µ = 0.09, σ = 0.25, β = 0.05, τ = 0.15, θ = α = 0.
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Figure 3.6: Trading Boundaries with Transaction Costs, YT, CARA

This figure shows the optimal trading boundaries with transaction costs in the YT case. Parameter

values: r = 0.05, µ = 0.09, σ = 0.25, β = 0.05, τ = 0.15, θ = α = 0.005.
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We remark that a relatively large r is set to distinguish between the YT case and

the IT case, regarding the investor’s expected utility.

Figure 3.5 plots the optimal trading boundaries without transaction costs in

the YT case. The left panels correspond to the FR case while the right panels

correspond to the FC case. In each case, the two upper panels show the optimal

buy and sell boundaries against the basis-price ratio b at time t = 0, 0.9, 0.95, 0.99.

We can observe that given t, the trading boundaries have similar shapes as those

in the IT case. Besides, the sell boundary for b < 1 rises dramatically as time

goes by, especially near the end of the fiscal year. In particular, the sell boundary

for b = 0 can go to infinity as t → 1. This is easy to verify by using the free

boundary condition on the sell boundary of (3.12) as well as the periodicity of the

value function. To have a clear look at changes of the sell boundary for b < 1 over

time, in panel (e), we plot the optimal sell boundary against both b and t in the

FR case. However, other parts of the trading boundaries vary extremely slightly or

even do not vary against t, for example, the optimal trading line for b > 1 in the

FC case as shown in panel (f). These observations indicate that when possible, the

investor tends to avoid realizing capital gains late in this calendar year; moreover,

he is inclined to defer realization of capital gains until the beginning of the next

calendar year. In this way, the investor can put off the tax liability.

In the presence of transaction costs, the optimal trading boundaries in the YT

case are plotted in Figure 3.6. It can be seen that in the FR case, the NTR for

b > 1 shrinks and the greatest value of b within the NTR declines as time goes on.

This observation suggests that the investor has an incentive to realize capital losses

at the end of each calendar year. This is because only at this moment he can receive

tax rebates. However, the figure also shows that this incentive disappears in the FC

case. The reason is that the investor no longer qualifies for tax rebates.

To explore the effect of the provision that taxes are paid annually on the investor’s

expected utility, we finally compute the scaled CEWL of Merton from transaction

costs and capital gains taxes. Figure 3.7 plots it against tax rate for different levels
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Figure 3.7: Scaled CEWL, YT, CARA

This figure shows the scaled CEWL of Merton in the YT Case. Other parameter values: r = 0.05,

µ = 0.09, σ = 0.25, β = 0.05.

of transaction cost rate. For the purpose of comparison, results for the IT case are

also presented. We can see that the scaled CEWL in the YT case is lower than that

in the IT case and the difference between them is widening as tax rate increases.

But the difference is not large. With the parameters we use in the figure, the scaled

CEWL is decreased by at most 4.8% for the YT case relative to the IT case. This

shows that an investor in the YT case can perform better, but not much, than the

one in the IT case.

3.4 The CRRA Utility Case

The most widely used utility function in the financial literature exhibits CRRA due

to its analytical convenience and support on an empirical basis. In this section, we

provide an extension to the CRRA utility.
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3.4.1 Problem Formulation

In this section, we assume that the investor preferences are characterized by a CRRA

utility function with a constant risk aversion factor γ:

U(c) =
c1−γ

1− γ
, γ > 0, γ 6= 1,

In this case, we restrict the set of consumption policies to be such that ct ≥ 0 for

any t ≥ 0.

Different from the CARA utility case, we assume that the money market account

is also subject to taxes on capital gains at a constant rate of τi ∈ [0, 1). These taxes

are also only paid at the end of each calendar year in the YT case.2 Then, the

money market account xt, the stock account yt, and the total cost basis for the

stock holding kt are governed by the following equations:

dxt =
[
(1− τig(t;λ))rxt − ct

]
dt− (1 + θ)dLt + f(t, 0, yt−, kt−; l, λ)dMt, (3.17)

dyt = µyt−dt+ σyt−dBt + dLt − yt−dMt, (3.18)

dkt = (1 + θ)dLt − kt−dMt + l(kt− − (1− α)yt−)+dMt, (3.19)

where

f(t, x, y, k; l, λ) = x+ (1− α)y − g(t;λ)τ
[
(1− l)((1− α)y − k) + l((1− α)y − k)+

]
is the total wealth after liquidation,

g(t;λ) =


1, for λ = 0,

1
τi+(1−τi)er(dte−t)

, for λ = 1.

2 This can affect the separability of the value function in the CARA utility case.
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We define the solvency region to be

St =
{

(x, y, k) ∈ R3
∣∣y > 0, k > 0, f(t, x, y, k; l, λ) > 0

}
,

and the value function at time t to be

V (t, x, y, k) = max
At(x,y,k)

Ex,y,kt

[∫ ∞
t

e−β(s−t)U(cs)ds

]
, ∀(x, y, k) ∈ S̄t, t ≥ 0, (3.20)

where S̄t is the closure of St, β > 0 is a constant discount factor, and At(x, y, k)

is the set of admissible strategies (c, L,M) such that the unique solution of (3.17)-

(3.19) with initial endowment (x, y, k) satisfies (xs, ys, ks) ∈ S̄s for all s ≥ t. Then

the value function is governed by the following HJB equation

max
{
Vt + L̄0V, B̄0V, S̄0V

}
= 0, t ≥ 0, (x, y, k) ∈ St, (3.21)

where

L̄0V =
1

2
σ2y2Vyy + µyVy + (1− τig(t;λ))rxVx − βV + U∗(Vx), (3.22)

B̄0V = −(1 + θ)Vx + Vy + (1 + θ)Vk, (3.23)

S̄0V = f(t, 0, y, k; l, λ)Vx − yVy −
[
k − l(k − (1− α)y)+

]
Vk, (3.24)

and

U∗(q) = sup
c>0

{
U(c)− cq

}
=

γ

1− γ
q1−1/γ.

The optimal consumption rate proves to be

c∗ = (Vx)
−1/γ . (3.25)

By the homogeneity property of the value function Proposition 3.3, we can reduce
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the dimensionality of the problem:

V (t, x, y, k) = y1−γΦ(t, Z, b), Z =
x

y
, b =

k

y
, ∀t ≥ 0, (x, y, k) ∈ St, (3.26)

It can be verified that Φ(t, Z, b) satisfies

max
{

Φt + L̄1Φ, B̄1Φ, S̄1Φ
}

= 0, t ≥ 0, f(t, Z, 1, b; l, λ) > 0, b > 0,

where

L̄1Φ =
1

2
σ2Z2ΦZZ +

1

2
σ2b2Φbb + σ2ZbΦZb −

[
µ− (1− τig(t;λ))r − γσ2

]
ZΦZ

−(µ− γσ2)bΦb +

[
(1− γ)

(
µ− 1

2
γσ2

)
− β

]
Φ + U∗(ΦZ),

B̄1Φ = (1− γ)Φ− (1 + θ + Z)ΦZ + (1 + θ − b)Φb,

S̄1Φ = −(1− γ)Φ + f(t, Z, 1, b; l, λ)ΦZ + l(b− 1 + α)+Φb.

We point out that a further transformation like (5.34) should be made to solve the

above equation. Numerical methods are similar to those in the CARA utility case.

3.4.2 Theoretical Results

This sub-section provides some theoretical results that facilitates our subsequent

analysis.

Proposition 3.3 (Homogeneity). The value function V has the homogeneity prop-

erty:

V (t, px, py, pk) = p1−γV (t, x, y, k), t ≥ 0, (x, y, k) ∈ S̄t,

for any positive constant p.

Proof. This property follows immediately from the fact that (C,L,M) ∈ At(x, y, k)

if and only if (pC, pL,M) ∈ At(px, py, pk).

Proposition 3.4. Assume l = λ = 0 and θ = α = 0. Denote W = x+ y− τ(y−k).
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(a) The value function has lower and upper bounds:

K−γ0

1− γ
W 1−γ ≤ V (x, y, k) ≤ K̄−γ1

1− γ
W 1−γ,

where

K̄1 =
β

γ
− 1− γ

γ

[
(1− τi)r +

(µ− (1− τi)r)2

2γσ2

]
, (3.27)

K0 =
β

γ
− 1− γ

γ

[
(1− τi)r +

((1− τ)µ− (1− τi)r)2

2γ(1− τ)2σ2

]
. (3.28)

(b) If r = 0, then K̄1 = K0 and

V (x, y, k) =
K̄−γ1

1− γ
W 1−γ.

(c) Whenever k ≥ y, it is optimal to do a wash sale, and

V (x, y, k) = V (W, 0, 0) = V ((1− π̃)W, π̃W, π̃W ),

where π̃ is any positive constant.

Proof. The proof is provided in Ben Tahar, Soner, and Touzi (2010).

In part (a) of Proposition 3.4, the upper bound is the value function in a tax-free

market with a modified interest rate (1− τi)r; the lower bound is the value function

in a tax-free market with a modified interest rate (1−τi)r, a modified expected stock

return (1 − τ)µ, and a modified stock return volatility (1 − τ)σ. Proposition 3.4

facilitates asymptotic analysis in Chapter 5.

Proposition 3.5. If r = 0 and l = 0, the investor’s problem reduces to a tax-free

problem with the same transaction cost parameter (θ, α). Moreover, if (ĉ∗, L̂∗, M̂∗)

is the optimal strategy of the tax-free problem, then the strategy (c∗, L∗,M∗) =

(ĉ∗, L̂∗/(1− τ), M̂∗) is optimal for the original taxable problem.
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Proof. If r = 0 and l = 0, set x̂t = xt + τkt and ŷt = (1− τ)yt. Then it follows from

(3.17)-(3.19) that

dx̂t = −ctdt− (1 + θ)dL̂t + (1− α)ŷt−dMt,

dŷt = µŷt−dt+ σŷt−dBt + dL̂t − ŷt−dMt,

where L̂ = (1− τ)L. Besides, the no-bankruptcy constraint translates into x̂t + (1−

α)ŷt ≥ 0. Therefore, the investor’s problem, in terms of new variables, reduces to a

tax-free problem with transaction costs.

Proposition 3.6 (Periodicity).

(a) If λ = 0, the value function V is time-independent.

(b) If λ = 1, the value function V is one-year periodic:

V (t, x, y, k) = V (t+ 1, x, y, k), ∀ t ≥ 0, (x, y, k) ∈ S̄t.

Proof. (a) Assume λ = 0. It is sufficient to prove

V (t, x, y, k) = V (0, x, y, k), ∀ t ≥ 0, (x, y, k) ∈ S̄t.

Its proof is similar to the proof of the case λ = 1 in part (b).

(b) Assume λ = 1. Clearly, S̄t = S̄t+1. Starting from s = t+ 1, given (cs, Ls,Ms) ∈

At+1(x, y, k), we denote by (xs, ys, ks) the solution of (3.17)-(3.19). Then we have

V (t+ 1, x, y, k) = max
(cs,Ls,Ms)∈At+1(x,y,k)

Ex,y,kt+1

[∫ ∞
t+1

e−β(s−t−1)U(cs)ds

]
= max

(c̃v ,L̃v ,M̃v)∈At(x,y,k)
Ex,y,kt

[∫ ∞
t

e−β(v−t)U(c̃v)dv

]
= V (t, x, y, k).

The second equality follows from a change of variable v = s − 1, and the time

translation (c̃v, L̃v, M̃v) = (cv+1, Lv+1,Mv+1), (x̃v, ỹv, k̃v) = (xv+1, yv+1, kv+1).
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Table 3.1: The Default Values of the Parameters, CRRA

This table reports the default values of the parameters.

Variable Symbol Default Value

Interest rate r 0.01 (IT), 0.05 (YT)

Expected stock return µ 0.07 (IT), 0.11 (YT)

Stock return volatility σ 0.25

Subjective discount rate β 0.01 (IT), 0.05 (YT)

Risk aversion factor γ 3

Tax rate for interest τi 0.35

Tax rate for capital gains from stock τ 0.15

Proportional transaction cost for purchase θ 0.005

Proportional transaction cost for sale α 0.005

3.4.3 Numerical Results

In this sub-section, we provide numerical results to characterize the optimal trading

strategy. The default values of the parameters are reported in Table 3.1.

We firstly focus on the IT case. Figure 3.8 plots the optimal trading boundaries

against the basis-price ratio b. The vertical axis denotes the amount invested in the

stock as a fraction of the total wealth after liquidation, i.e., π = y
f(t,x,y,k;l,λ)

. The

upper panels correspond to zero transaction costs, the middle panels correspond

to positive transaction costs, and the lower panels correspond to different levels of

transaction cost rate. The left panels correspond to the FR case while the right

panels correspond to the FC case. Comparing with Figure 2.1, Figure 3.1, and

Figure 3.2, we find that the corresponding figures between the CRRA and CARA

utility cases have similar shapes (the vertical axis represents different variables).

Thus, a CRRA investor adopts a similar trading policy. The differences are:

• If the current state (πt, bt) lies in the BR, the investor would buy to reach the

buy boundary along the hyperbola

π =
m

1 + θ − b−m(θ − f(t,−1, 1, b; l, λ))
,
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Figure 3.8: Trading Boundaries, IT, CRRA

This figure shows the optimal trading boundaries in the IT case. The vertical axis denotes the

amount invested in the stock as a fraction of the liquidated wealth. Other parameter values:

r = 0.01, µ = 0.07, σ = 0.25, β = 0.01, γ = 3, τi = 0.35, τ = 0.15.
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Figure 3.9: Prop. CEWL, IT, CRRA

This figure shows the proportional (prop.) CEWL of Merton in the IT case. Other parameter

values: r = 0.01, µ = 0.07, σ = 0.25, β = 0.01, γ = 3, τi = 0.35.

where

m =
πt(1 + θ − bt)

1 + πt(θ − f(t,−1, 1, bt; l, λ))
.

• In the FC case, if (πt, bt) lies in the SR and there is a capital loss (b > 1−α),

the investor would sell to reach the sell boundary along the hyperbola

π =
πt(1− α− bt)

1− α− b
.

To investigate the joint effect of transaction costs and capital gains taxes on

the investor’s expected utility, we plot the proportional CEWL, as a fraction of

the initial wealth, of Merton from transaction costs and capital gains taxes against

tax rate on the stock in panel (a) and against transaction cost rate in panel (b) of

Figure 3.9. Comparing with Figure 3.4, we have similar findings as in the CARA

utility case except that: when the transaction cost rate and the tax rate on the

stock are both zero, the proportional CEWL is still positive. This missing amount

of Merton is due to taxes on the money market account.

We now turn to the YT case. We plot the optimal trading boundaries for the case

with zero transaction costs in Figure 3.10 and for the case with positive transaction
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Figure 3.10: Trading Boundaries without Transaction Costs, YT, CRRA

This figure shows the optimal trading boundaries without transaction costs in the YT case. The

vertical axis denotes the amount invested in the stock as a fraction of the liquidated wealth.

Parameter values: r = 0.05, µ = 0.11, σ = 0.25, β = 0.05, γ = 3, τi = 0.35, τ = 0.15, θ = α = 0.
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(d) Sell boundary, t ∈ [0, 1)
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Figure 3.11: Trading Boundaries with Transaction Costs, YT, CRRA

This figure shows the optimal trading boundaries with transaction costs in the YT case. The

vertical axis denotes the amount invested in the stock as a fraction of the liquidated wealth.

Parameter values: r = 0.05, µ = 0.11, σ = 0.25, β = 0.05, γ = 3, τi = 0.35, τ = 0.15, θ = α =

0.005.
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Figure 3.12: Prop. CEWL, YT, CRRA

This figure shows the proportional (prop.) CEWL of Merton in the YT Case. Other parameter

values: r = 0.05, µ = 0.11, σ = 0.25, β = 0.05, γ = 3, τi = 0.35.

costs in Figure 3.11 respectively. These figures have similar shapes as Figure 3.5

and Figure 3.6. Therefore, the effect of the provision that taxes are paid annually

on the optimal trading policy is similar to that in the CARA utility case.

Figure 3.12 plots the proportional CEWL of Merton from transaction costs and

capital gains taxes against tax rate on the stock for different levels of transaction

cost rate. The figure shows that an investor in the YT case is better off than the

one in the IT case. In addition, the difference of the proportional CEWL between

the YT and IT cases mainly comes from taxes on the money market account. To

eliminate the effect of taxes on the money market account, we plot the proportional

CEWL of the YT case from the IT case in Figure 3.13. We can observe that the

proportional CEWL is less than 1% with the parameters we use in the figure. It

suggests that an investor in the YT case is better off, but not much, than the one

in the IT case. This finding is similar to that in the CARA utility case.
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Figure 3.13: Prop. CEWL of the YT Case from the IT Case, CRRA

This figure shows the proportional (prop.) CEWL of the YT case from the IT case. Other

parameter values: r = 0.05, µ = 0.11, σ = 0.25, β = 0.05, γ = 3, τi = 0.35.



Chapter 4
Labor Income and Borrowing Constraints

In addition to financial income received from the portfolio, the investor can also

receive labor income in the real market. In a perfectly liquid market, Merton (1971)

provides an extension in which the investor has a deterministic stream of labor

income. He shows that the investor adopts the optimal strategy as if he has no

labor income but instead capitalizes the lifetime labor income flow at the risk-free

interest rate to his wealth. In this case, the wealth may go below zero (cf. He and

Pages, 1993). In the real world, however, it may be not possible for the investor to

borrow against future labor income. As a consequence, the investor can only choose

an investment and consumption strategy such that the wealth is nonnegative. In this

chapter, we extend our model to incorporate a constant stream of labor income. Our

aim is to explore the impact of the no-borrowing constraint on the investor’s strategy.

Since negative wealth is permitted with CARA utility, we focus on the CRRA utility,

under which the total wealth is restricted by the no-bankruptcy constraint.

4.1 Problem Formulation

The portfolio selection problem without labor income is presented in Section 3.4. In

this chapter, we assume that the investor receives labor income at a constant rate

of I > 0. Other settings and symbols, unless otherwise mentioned, remain the same

61
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as in Section 3.4. Then the money market account xt, the stock account yt, and the

total cost basis for the stock holding kt are given by:

dxt =
[
(1− τig(t;λ))rxt − ct + I

]
dt− (1 + θ)dLt + f(t, 0, yt−, kt−; l, λ)dMt, (4.1)

dyt = µyt−dt+ σyt−dBt + dLt − yt−dMt, (4.2)

dkt = (1 + θ)dLt − kt−dMt + l(kt− − (1− α)yt−)+dMt. (4.3)

We assume that the investor is not allowed to borrow against his future labor

income, that is, the total wealth after liquidation is restricted by the no-bankruptcy

constraint, i.e.,

Wt = f(t, xt, yt, kt; l, λ) ≥ 0, for all t ≥ 0.

Then we define the solvency region as

St =
{

(x, y, k) ∈ R3
∣∣y > 0, k > 0, f(t, x, y, k; l, λ) > 0

}
.

For any (x, y, k) ∈ S̄t, the investor’s value function at time t is defined as

V (t, x, y, k) = max
At(x,y,k)

Ex,y,kt

[∫ ∞
t

e−β(s−t)U(cs)ds

]
,

where At(x, y, k) is the set of admissible strategies (c, L,M) such that the unique so-

lution of (4.1)-(4.3) (xs, ys, ks) ∈ S̄s for all s ≥ t. It turns out that V is characterized

by

max
{
Vt + L̄0V + IVx, B̄0V, S̄0V

}
= 0, t ≥ 0, (x, y, k) ∈ St, (4.4)

where the operators L̄0, B̄0, and S̄0 are defined in (3.22)-(3.24).

4.2 The Case with Only Labor Income and Taxes

The no-borrowing constraint destroys the homogeneity property of the value function

(cf. Proposition 3.3). As a consequence, the 3-dimensional (time-dependent) HJB
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equation (4.4) cannot be reduced, and thus the computational demand increases

substantially. To get some idea about the impact of the no-borrowing constraint on

the investor’s strategy, we focus on the no-transaction cost, FR and IT case (i.e.,

l = λ = 0, θ = α = 0). In this case, it is easy to verify that the value function V

is time-independent (cf. Proposition 3.6). So we abbreviate V (t, x, y, k) and write

V (x, y, k).

To eliminate the non-homogeneous term IVx in (4.4), we make a change of vari-

able

x̄ = x+
I

(1− τi)r
.

Then the value function V (x̄, y, k) satisfies

max
{
L̄0V (x̄, y, k), B̄0V (x̄, y, k), S̄0V (x̄, y, k)

}
= 0, (4.5)

in the domain

y > 0, k > 0, W̄ = x̄+ y − τ(y − k) >
I

(1− τi)r
.

This HJB equation has the same form as the one without labor income but with a

different solution domain. We remark that if the investor is free to borrow against

future labor income, i.e., W̄t ≥ 0, the HJB equation (4.5) is the same as the one

without labor income but in terms of (x̄, y, k). It suggests that the investor adopts

the optimal strategy as if he has no labor income but instead capitalizes the labor

income flow at the after-tax interest rate to his wealth.

We futher make a change of variables

V (x̄, y, k) =
K̄−γ1

1− γ
W̄ 1−γe(1−γ)Ψ(z̄,b,ξ), (4.6)

z̄ =
(1− τ)y

W̄
, b =

k

y
, ξ =

W̄

1 + W̄
. (4.7)
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where K̄1 is a constant defined in (3.27). It can be verified that Ψ(z̄, b, ξ) satisfies

max
{
LIΨ, BIΨ, SIΨ

}
= 0, z̄ > 0, b > 0, ξ ∈

(
I

I + (1− τi)r
, 1

)
, (4.8)

where

LIΨ =
1

2
σ2z̄2(1− z̄)2

[
Ψz̄z̄ + (1− γ)Ψ2

z̄

]
− σ2z̄(1− z̄)b

[
Ψz̄b + (1− γ)Ψz̄Ψb

]
+

1

2
σ2b2

[
Ψbb + (1− γ)Ψ2

b

]
+ σ2z̄2(1− z̄)ξ(1− ξ)

[
Ψz̄ξ + (1− γ)Ψz̄Ψξ

]
+

1

2
σ2z̄2ξ2(1− ξ)2

[
Ψξξ + (1− γ)Ψ2

ξ

]
− σ2bz̄ξ(1− ξ)

[
Ψbξ + (1− γ)ΨbΨξ

]
+

[(
µ− r̄ − γσ2z̄

)
(1− z̄) +

r̄τ bz̄

(1− τ)

]
z̄Ψz̄ +

[
σ2 − µ− (1− γ)σ2z̄

]
bΨb

+

[
r̄ + (µ− r̄)z̄ + σ2z̄2(1− γ − ξ)− r̄τ bz̄

(1− τ)

]
ξ(1− ξ)Ψξ

−1

2
γσ2z̄2 + (µ− r̄)z̄ + r̄ − β

1− γ
− r̄τ bz̄

(1− τ)

+K̄1U
∗ (eΨ(1− z̄Ψz̄ + ξ(1− ξ)Ψξ)

)
, r̄ = (1− τi)r,

BIΨ = z̄Ψz̄ + (1− b)Ψb,

SIΨ = −Ψz̄.

The transformation (4.6)-(4.7) is inspired by the transformation (5.33)-(5.34) for

the case without labor income. We apply the penalty method to solve the above

equation. Two of the boundary conditions are: at ξ = 1, the above reduced HJB

equation degenerates to the one in the free borrowing case; at ξ = I
I+(1−τi)r , use

SIΨ = 0. The latter boundary condition, corresponding to zero wealth, is natural

since the investor cannot borrow against future labor income. The other boundary

conditions are similar to (2.26) for computation.
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4.3 The Case with Only Labor Income

For the purpose of comparison, we also investigate the simple case with only labor

income. Then the evolution of the wealth process Wt = xt + yt is described by

dWt =
[
rWt + (µ− r)yt − ct + I

]
dt+ σytdBt.

The value function

V (W ) = max
yt,ct

EW0
[∫ ∞

0

e−βtU(ct)dt

]
satisfies the following HJB equation

max
y,c

{
1

2
σ2y2VWW + [rW + (µ− r)y − c+ I]VW − βV + U(c)

}
= 0, W > 0.

After letting W̄ = W + I
r

and using similar transformation as (4.6)-(4.7), we can

use a numerical method to solve the resulting equation. Here we present a different

method, a dual approach, to derive a closed form of the optimal strategy.1

The dual of the value function is

φ(ζ) = sup
W>0

[V (W )−Wζ] := I1−γψ(η), η = Iγζ.

We can verify that

ζ = VW , φζ = −W, φζζ = − 1

VWW

,

W = −Iψη, V = I1−γ(ψ − ηψη).

Then ψ(η) satisfies

1

2
β3η

2ψηη − (β1 − β2)ηψη − β2ψ + U∗(η) + η = 0, η ∈ (0, η̄),

1The investor’s problem here is a special case in Dybvig and Liu (2011). Refer to it for more
details.
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with boundary condition

ψη(η̄) = 0, ψηη(η̄) = 0,

where

β1 = r, β2 = β, β3 =
(µ− r)2

σ2
.

Note that η̄ corresponds to W = 0. The above equation has a closed form of solution

ψ(η) = A+η
α− + A−η

α+ +
1

K̄2

U∗(η) +
1

β1

η

where

K̄2 =
β

γ
− 1− γ

γ

[
r +

(µ− r)2

2γσ2

]
,

α± =
β1 − β2 + 1

2
β3 ±

√
(β1 − β2 + 1

2
β3)2 + 2β2β3

β3

,

A− =
1

K̄2

γ−1
γ
− α−

α+(α+ − α−)
η̄
γ−1
γ
−α+ − 1

β1

1− α−
α+(α+ − α−)

η̄1−α+ ,

A+ =
1

K̄2

α+ − γ−1
γ

α−(α+ − α−)
η̄
γ−1
γ
−α− − 1

β1

α+ − 1

α−(α+ − α−)
η̄1−α− = 0,

η̄ =

(
1

K̄2

β1

α+ − γ−1
γ

α+ − 1

)γ

.

Besides, the optimal strategy is

y∗ =
µ− r
σ2

Iηψηη, c∗ = Iη−
1
γ .
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4.4 The Case with Only Labor Income and Trans-

action Costs

We also consider the case with only labor income and transaction costs. In this case,

the value function V (x, y) is associated with the following HJB equation

max
{
L̄0V + IVx, −(1 + θ)Vx + Vy, (1−α)Vx− Vy

}
= 0, x+ (1−α)y > 0, (4.9)

where L̄0 is the same as (3.22), and θ and α are proportional transaction cost

rates for buying and selling the stock. After letting x̄ = x + I
r

and using similar

transformation as (4.6)-(4.7), we can use the penalty method to solve the resulting

equation.

4.5 Numerical Results

In this section, we present numerical results to explore the impact of the no-borrowing

constraint on the investor’s optimal strategy. The values of the parameters are

copied from Table 3.1. Since tax rate for interest τi just reduces interest rate by

factor (1 − τi), we set τi = 0. In addition, we set the labor income rate I = 0.03.

Hence, ξ varies from 0.75 to 1.

Figure 4.1 shows the optimal trading line and consumption rate in the case with

only labor income. Panel (a) and panel (b) respectively plot the amount invested in

the stock and the consumption rate as a fraction of the liquidated wealth plus the

capitalized value of labor income (W̄ ) against ξ. We can observe that they are both

increasing functions of ξ, and go to those of the free borrowing case as ξ → 1 . It

suggests that the inability to borrow can substantially make the investor consume

at a lower rate and invest less in the stock, especially when the ratio of labor income

to the total wealth is high. In the extreme case of ξ = 0.75 or the liquidated wealth

W = 0, the investor would sell all of his stock holding. In addition, we find that the
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Figure 4.1: Optimal Strategy with Only Labor Income

This figure shows the optimal trading line and consumption rate for the case with only labor

income. Parameter values: r = 0.01, µ = 0.07, σ = 0.25, β = 0.01, γ = 3, I = 0.03, τ = τi = 0,

θ = α = 0.
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Figure 4.2: Trading Boundaries with Labor Income and Transaction Costs

This figure shows the optimal trading boundaries for the case with only labor income and transac-

tion costs. Parameter values: r = 0.01, µ = 0.07, σ = 0.25, β = 0.01, γ = 3, I = 0.03, τ = τi = 0,

θ = α = 0.005.

optimal consumption rate is smaller than the labor income rate. It suggests that the

investor would consume a part of his current income if the liquidated wealth is zero.

To compare with the zero labor income case, we plot the amount invested in the

stock or the consumption rate as a fraction of the liquidated wealth (W ) in panel

(c) or (d) of the figure. We find that labor income can dramatically increase the

investor’s holding of the stock and consumption rate even for the no-borrowing case.

Moreover, after relaxing the no-borrowing constraint, the investor would consume

much more and allocate much more wealth into the stock.

In a perfectly liquid market, the investor would keep trading to stay at the

trading line. In the presence of transaction costs, however, there is a NTR as

shown by Figure 4.2. Within the NTR, the investor allows the fraction of the stock

to fluctuate. In addition, as ξ rises, the buy and sell boundaries both increase, and

the NTR widens.

In the presence of capital gains taxes, we plot the optimal trading boundaries in

Figure 4.3. Panel (a) or (b) shows the buy boundary or the sell boundary against

b and ξ. Panels (c)-(e) show the trading boundaries against b for ξ = 0.75, 0.85, 1

respectively. Panel (f) corresponds to the free borrowing case. It can be seen that

given ξ, the trading boundaries have similar shapes as those of the case without
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Figure 4.3: Trading Boundaries with Labor Income and Taxes

This figure shows the optimal trading boundaries for the case with only labor income and capital

gains taxes. Parameter values: r = 0.01, µ = 0.07, σ = 0.25, β = 0.01, γ = 3, I = 0.03, τ = 0.15,

τi = 0, θ = α = 0.
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Figure 4.4: Prop. CEWL, with Labor Income

This figure shows the proportional (prop.) CEWL of Merton in the presence of labor income.

Other parameter values: r = 0.01, µ = 0.07, σ = 0.25, β = 0.01, γ = 3, I = 0.03, τi = 0.

labor income (the vertical axis represents different variables). The region for b > 1

is still the WSR. Hence, the investor would adopt a similar trading policy as if he

has no labor income. In addition, both of the buy and sell boundaries increase and

the NTR widens as ξ rises.

The above findings show that if the investor is not allowed to borrow against

his future labor income, the value of labor income would be significantly reduced.

This is mainly reflected in two aspects. On the one side, the investor tends to

consume much less and allocate much less into the stock. On the other side, he has

an incentive to trade more frequently, which can incur a relatively large amount of

transaction costs and taxes.

Lastly, we examine the effect of the no-borrowing constraint on the investor’s

expected utility. Figure 4.4 shows the proportional CEWL, as a fraction of the

initial wealth (W ), of Merton from labor income, capital gains taxes and transaction

costs as a function of ξ. Panel (a) corresponds to the case with transaction costs but
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Figure 4.5: Prop. CEWL of Free Borrowing from No-Borrowing

This figure shows the proportional (prop.) CEWL, as a fraction of W̄ , of the free borrowing case

from the no-borrowing case in the presence of labor income. Other parameter values: r = 0.01,

µ = 0.07, σ = 0.25, β = 0.01, γ = 3, I = 0.03, τi = 0.

without capitals gains taxes while panel (b) corresponds to the opposite case. We can

see that the proportional CEWL of Merton reduces dramatically and even becomes

negative as ξ decreases. It suggests that labor income can have a significant positive

effect on the investor’s expected utility. Moreover, the investor can be better off than

Merton as long as labor income can compensate for expenses from transactions costs

and capital gains taxes. The figure also shows that the no-borrowing constraint could

lessen the effect of labor income.

To have a better look at the effect of the no-borrowing constraint on the investor’s

expected utility, the proportional CEWL, as a fraction of the initial wealth plus

capitalized value of labor income (W̄ ), of the free borrowing case from the no-

borrowing case is plotted in Figure 4.5. We find that the proportional CEWL is a

decreasing function of ξ. This suggests that the larger the ratio of labor income to the

total wealth is, the stronger is the negative effect of the no-borrowing constraint on

the investor’s expected utility. In the extreme case of zero wealth, the proportional

CEWL can be more than 40% with default parameters.



Chapter 5
Asymptotic Analysis for Merton Problem

with Instant Taxes

Since closed form solutions are generally unavailable, Chen and Dai (2013a) provide

asymptotic expansions for portfolio selction with (instant) capital gains taxes and

CRRA utility. They obtain an explicit strategy that effectively approximates the

optimal strategy for small interest rate and tax rate. Based on their work, in this

chapter, we propose a more refined expansion for the Merton problem with instant

taxes and CARA utility. The aim is to find an explicit strategy that can effectively

approximate the optimal strategy even for relatively large interest rate and tax rate.

An extension to the CRRA utility case is also provided.

5.1 Model Restatement

The Merton problem with instant taxes is presented in Chapter 2. We consider only

the FR case. Instead of (2.20), we make the following transformation:

V (x, y, k) = −e−rγ[x+y−τ(y−k)]−K−ψ(z,b), z = rγy, b =
k

y
,

73
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where K is defined in (2.23). Then the HJB equation (2.13) with l = 0 becomes

max
{
L̃ψ + f̃ , zψz + (1− b)ψb, −ψz

}
= 0, z ≥ 0, b ≥ 0, (5.1)

where

L̃ψ = z2ψzz − 2zbψzb + b2ψbb + azψz + (2− a)bψb −
2r

σ2
ψ,

a = −zψz + bψb − 2(1− τ)z +
2µ

σ2
,

f̃ = −(1− τ)2(z − z∗)2 +
2rτ

σ2
(1− b)z, z∗ =

(1− τ)µ− r
(1− τ)2σ2

.

The two free boundaries of the above equation follows that ψz = 0 at b = 1. By the

optimality of wash sales as shown in Proposition 2.3, we have

ψ(z, b) = ψ(z, 1) ≡ constant, for all z ≥ 0, b ≥ 1.

This enables us to restrict our attention to 0 ≤ b ≤ 1. In addition, by Proposi-

tion 2.2, we have

0 ≤ ψ(z, b) ≤ K̄ −K =
(µ− r)2 −

(
µ− r

1−τ

)2

2rσ2
≤ rτ

1− τ
µ− r
rσ2

. (5.2)

5.2 The Free Boundary Conditions

We assume that ψ ∈ C1(R2
+). We also assume that there exist two functions z±(·) ∈

C1([0, 1)) ∩ C([0, 1]) such that:

z−(b) < z+(b), for all 0 ≤ b < 1,

z−(1) = z+(1),
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and the trading or no-trading regions in b < 1 can be written as

SR =
{

(z, b)
∣∣z ≥ z+(b), 0 ≤ b < 1

}
,

BR =
{

(z, b)
∣∣z ≤ z−(b), 0 ≤ b < 1

}
,

NTR =
{

(z, b)
∣∣z−(b) < z < z+(b), 0 ≤ b < 1

}
.

In other words, z±(b) are the optimal buy and sell boundaries in b ≤ 1. The main

purpose of this chapter is to find a good approximation of z±(b). Before that, we

derive free boundary conditions at z±(b). In the remainder of this chapter, the

operator L̃ in (5.1) is treated as linear.

5.2.1 Free Boundary Conditions on the Sell Boundary

In SR, ψz = 0. It follows that there exists a function g of one variable such that

ψ(z, b) = g(b) and

0 ≥ L̃ψ + f̃ = L̃g + f̃ , ∀ z > z+(b),

where L̃g is a linear function of z:

L̃g = b2g′′(b) +
[
2− bg′(b) + 2(1− τ)z − 2µ

σ2

]
bg′(b)− 2r

σ2
g(b).

Set ψ1(z, b) = ψ(z, b)−g(b). Then ψ1 ≡ 0 in SR, and ψ1 ≤ 0 in the whole space since

ψ1
z = ψz ≥ 0. Hence, at (z+(b), b), ψ1 attains its global maximum; and moreover,

ψ1 = 0, ψ1
z = ψ1

b = 0, and L̃ψ1 ≤ 0 (in certain weak sense). So, at (z+(b)− 0, b),

0 = L̃ψ + f̃ = L̃ψ1 + L̃g + f̃ ≤ L̃g + f̃ .

Thus, L̃g + f̃ = 0 and L̃ψ1 = 0 at (z+(b), b). Therefore,

ψ(z, b) = g(b), L̃g + f̃ ≤ 0, if z ≥ z+(b),

ψz = 0, L̃ψ = L̃g, L̃g + f̃ = 0, if z = z+(b).
(5.3)
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5.2.2 Free Boundary Conditions on the Buy Boundary

In BR, zψz + (1 − b)ψb = 0. Assume (b − 1)z−(b) is monotone in b ∈ [0, 1]. Then

there exists a function h of one variable such that ψ(z, b) = h((b− 1)z) and

0 ≥ L̃ψ + f̃ = L̃h+ f̃ , ∀ 0 ≤ z < z−(b),

where

L̃h = z2h′′(η)−
[
zh′(η)− 2(1− τ)z +

2µ

σ2

]
zh′(η)− 2r

σ2
h(η)

∣∣∣∣
η=(b−1)z

.

Set ψ2(z, b) = ψ(z, b)− h((b− 1)z). Then ψ2 ≡ 0 in BR, and ψ2 ≤ 0 in the whole

space since zψ2
z + (1− b)ψ2

b ≤ 0. Hence, at (z−(b), b), ψ2 attains its local maximum;

and moreover, ψ2 = 0, ψ2
z = ψ2

b = 0, and L̃ψ2 ≤ 0 (in certain weak sense). So, at

(z−(b) + 0, b),

0 = L̃ψ + f̃ = L̃ψ2 + L̃h+ f̃ ≤ L̃h+ f̃ .

Thus, L̃h+ f̃ = 0 and L̃ψ2 = 0 at (z−(b), b). Therefore,

ψ(z, b) = h((b− 1)z), L̃h+ f̃ ≤ 0, if z ∈ [0, z−(b)],

zψz + (1− b)ψb = 0, L̃ψ = L̃h, L̃h+ f̃ = 0, if z = z−(b).
(5.4)

5.3 The Main Theoretical Results

In this section, we present the main theoretical results derived from asymptotic

analysis on (5.1) in terms of small interest rate and tax rate. We restrict attention

to τ < 1− r
µ

such that z∗ > 0.

Proposition 5.1. We denote

ε =

√
2rτz∗

(1− τ)2σ2
, A =

4

3z∗
, z1(b) = z∗ +

ε2(1− b)
2z∗

. (5.5)
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We have the following approximations to the reduced value function ψ(z, b) and the

optimal trading boundaries z±(b) in b ∈ [0, 1]:

(a) leading order expansion ψ(z, b) = (1− τ)2ε8/3A2/3 σ2

2r
m0 + o(ε8/3)

z±(b) ≈ z1(b)± ε
√

1− b
, (5.6)

(b) first order tip expansion
ψ(z, b) = (1− τ)2ε8/3A2/3 σ2

2r
m0 + o(ε8/3)

z±(b) ≈ z1(b)± ε
√

1− b
(
g′0√
p

)1/3 ∣∣∣
p= 1−b

δ

, (5.7)

(c) second order tip expansion
ψ(z, b) = (1− τ)2ε8/3A2/3 σ2

2r
(m0 +m1δ) + o(ε10/3)

z±(b) ≈ z1(b) + ε
√

1− b
(
g′0√
p

)1/3

χ±(p)
∣∣∣
p= 1−b

δ

, (5.8)

where δ = (Aε)2/3,

χ±(p) = ±1± δ

3

g′1
g′0
− δ

(
1

2
− 1

4
δp

)
pg′′0 + g′0
(pg′0)2/3

,

m0 and g0 are determined by (1− δp)2g′′0(p) = m0 − p+ (pg′0(p))2/3, p ∈ [0, 1
δ
],

g0(0) = 0, g′0(0) = 0,
(5.9)

m1 and g1 are determined by


(1− δp)2g′′1(p) = 2

3

(
p2

g′0

)1/3

g′1(p)− (1− 1
2
δp)(pg′′0 + g′0)

+ĉ(1− δp)g′0 +m1, p ∈ [0, 1
δ
],

g1(0) = 0, g′1(0) = 0,

(5.10)
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and ĉ = 2 + 2(1− τ)z∗ − 2µ/σ2.

In addition, for each of the above expansions, we denote by ψ̄(z, b) the approx-

imated reduced value function. Then we have the following approximation for the

optimal consumption:

c∗ ≈ ψ̄ + rγW +K − log r

γ
, (5.11)

where W = x+ y − τ(y − k) is the liquidated wealth and K is defined in (2.23).

We remark that the unknown m0 is determined by δ only. Via a shooting method,

we can obtain m0 as a function of δ. The result is shown in Figure 5.1. As implied

by our numerical results, we will approximate g′0(p) by a quadratic function:1

g′0(p) ≈ η01p+ η02p
2. (5.12)

Panel (a) of Figure 5.2 shows a numerical example of m0 and g′0(p), which is a numer-

ical evidence for the uniqueness of m0 (on the condition that the limit limp→ 1
δ
g′(p)

exists). Therefore, we can obtain an explicit approximation of the optimal trading

boundaries for the first order tip expansion:

z±(b) ≈ z1(b)± ε(1− b)2/3δ−1/6(η01 + η02p)
1/3
∣∣∣
p= 1−b

δ

. (5.13)

We also remark that the unknown m1 is determined by δ and ĉ as well as g′0(p).

As a first order linear ordinary differential equation of the function g′1(p), (5.10) has

a unique solution

g′1(p) = eĀ(p)

∫ p

0

e−Ā(p̃)H̄(p̃)dp̃,

1A higher order approximation would complicate the computation enormously for the second
order tip expansion.
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Figure 5.1: Constant m0 in (5.9)

This figure shows the constant m0 in (5.9) as a function of δ.

where

Ā(p) =

∫ p

0

2

3

( p̃2

g′0(p̃)

)1/3 1

(1− δp̃)2
dp̃,

H̄(p) =
−(1− 1

2
δp)(pg′′0(p) + g′0(p)) + ĉ(1− δp)g′0(p) +m1

(1− δp)2
.

Set ∫ 1/δ

0

e−Ā(p)H̄(p)dp = 0.

Then we have

m1 = −
∫ 1/δ

0
e−Ā(p)−(1− 1

2
δp)(pg′′0 (p)+g′0(p))+ĉ(1−δp)g′0(p)

(1−δp)2 dp∫ 1/δ

0
e−Ā(p) 1

(1−δp)2dp
. (5.14)

If we approximate g′0(p) by (5.12), by directly computation, we have

Ā(p) =


1
2
η
−1/3
01 p4/3, if δ = η0 = 0,

2η
−1/3
01 (η0 + δ)−4/3

[
F

((
(η0+δ)p
1+η0p

)1/3
)
− F (0)

]
otherwise,

(5.15)
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Figure 5.2: Numerical Example for m0 and g′0(p), m1 and g′1(p)

This figure shows a numerical example for m0 and g′0(p), m1 and g′1(p). Parameter values: r = 0.01,

µ = 0.05, σ = 0.25, β = 0.01, τ = 0.15.

where η0 = η02
η01

and

F (p) = − log(p2 + p+ 1)

18
− 3−3/2 arctan

(
2p+ 1√

3

)
+

log |p− 1|
9

− 1

3

p

p3 − 1
.

In this case, we can numerically compute m1 by evaluating the relative integrals,

and then derive the solution of g′1(p). As implied by our numerical results, we will

approximate g′1(p) by a quadratic function:

g′1(p) ≈ η11p+ η12p
2. (5.16)

A numerical example of m1 and g′1(p) is shown in panel (b) of Figure 5.2. As

a consequence, we can obtain an explicit approximation of the optimal trading

boundaries for the second order tip expansion:

z±(b) ≈ z1(b) + ε(1− b)2/3δ−1/6(η01 + η02p)
1/3

[
±1± δ

3

η11 + η12p

η01 + η02p

]
−ε(1− b)1/3δ7/6

(
1

2
− 1

4
δp

)
2η01 + 3η02p

(η01 + η02p)1/3

∣∣∣∣∣
p= 1−b

δ

. (5.17)
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Proof of Proposition 5.1. By (5.5), f̃ in (5.1) can be rewritten as

f̃(z, b) = (1− τ)2

[
− (z − z1(b))2 + ε2(1− b) +

ε4(1− b)2

4z2
∗

]
.

The result for the optimal consumption is clear. We next prove three expansions.

(a) Proof for leading order expansion. Let

ζ =
z − z1(b)

ε
,

then

f̃ = (1− τ)2ε2
[
− ζ2 + 1− b+

ε2

4z2
∗
(1− b)2

]
.

Away from the tip (z±(1), 1), we can express the solution as:2

ψ(z, b) = (1− τ)2
[
ε8/3mε + ε3gε(b) + ε4vε(ζ, b)

]
, for b ∈ [0, 1], (5.18)

where mε is a constant to be determined, and

vε(ζ, b) = 0, if ζ ≥ z+(b)− z1(b)

ε
,

gε(1) = 0.

Using (5.18), by direct computation, we have

L̃ψ + f̃

(1− τ)2ε2
= z2

∗v
ε
ζζ − ζ2 + 1− b− 2r

σ2
ε2/3mε +O(ε),

zψz + (1− b)ψb
(1− τ)2ε3

= z∗v
ε
ζ + (1− b)g′ε(b) +O(ε),

−ψz
(1− τ)2ε3

= −vεζ .

2The first term follows from (5.20) in part (b). The second term is implied by (5.3). The
order of ψ is at least O(ε2) by (5.2). The specified orders of the second and the third terms are
determined in the following computation.



82 Chapter 5. Asymptotic Analysis for Merton Problem with Instant Taxes

Thus, the reduced HJB equation (5.1) becomes

max
{
z2
∗v

ε
ζζ − ζ2 + 1− b+O(ε2/3), z∗v

ε
ζ + (1− b)g′ε(b) +O(ε), −vεζ

}
= 0.

Sending ε ↓ 0, then V̄ = limε↓0 v
ε, Ḡ = limε↓0 gε solves

max
{
z2
∗ V̄ζζ − ζ2 + 1− b, z∗V̄ζ + (1− b)Ḡ′(b), −V̄ζ

}
= 0, (ζ, b) ∈ R× [0, 1],

V̄ (∞, b) = 0, Ḡ(1) = 0.

This equation has the same form as the corresponding one in Chen and Dai (2013a).

It has a unique solution

V̄ (ζ, b) =


0, if ζ ≥

√
1− b,

1
12z2∗

[
ζ −
√

1− b
]4

+
√

1−b
3z2∗

[
ζ −
√

1− b
]3
, if |ζ| ≤

√
1− b,

4
3z2∗

(1− b)3/2ζ, if ζ ≤ −
√

1− b,

Ḡ(b) =
2A

3
(1− b)3/2,

with the buy and sell boundaries

ζ+(b) = inf{ζ|V̄ζ = 0} =
√

1− b,

ζ−(b) = sup{ζ|z∗V̄ζ + (1− b)Ḡ′(b) = 0} = −
√

1− b.

Therefore, we have the expansion (5.6) with m0 to be determined later by the first

order tip expansion.

(b) Proof for first order tip expansion. In part (a), Ḡ(b) = 2A
3

(1− b)3/2 is not in

C2. It indicates that a tip expansion is needed near b = 1. Near the tip (z±(1), 1),

we use the stretched variable

q =
z − z1(b)

δ2
, p =

1− b
δ

.
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Then

f̃ = (1− τ)2ε2δ
[
− q2A2 + p+

p2

4z2
∗A

2
δ4
]
. (5.19)

Near the tip (z±(1), 1), similar to (5.18), we can express the solution as:3

ψ(z, b) = (1− τ)2ε2
[
δσ2

2r
mδ + δ3gδ(p) + δ5vδ(p, q)

]
, (5.20)

where mδ is a positive constant to be determined, and

vδ(p, q) = 0, if q ≥ z+(b)− z1(b)

δ2
,

gδ(0) = 0, g′δ(0) = 0.

Using (5.20), by direct computation, we have

L̃ψ + f̃

(1− τ)2ε2δ
= z2

∗v
δ
qq + 2z∗(1− δp)δvδpq + (1− δp)2g′′δ

−ĉ(1− δp)δg′δ −mδ − q2A2 + p+O(δ2), (5.21)

zψz + (1− b)ψb
(1− τ)2ε2δ3

= z∗v
δ
q − pg′δ − pδ2vδp +O(δ2), (5.22)

−ψz
(1− τ)2ε2δ3

= −vδq . (5.23)

Expand the solution and the optimal trading boundaries in the first order as

mδ = m0 +O(δ), gδ = g0 +O(δ), vδ = v0 +O(δ),

q±(p) :=
z±(b)− z1(b)

δ2

∣∣∣∣
b=1−pδ

= q±0 (p) +O(δ).

Sending δ ↓ 0, then (m0, g0, v
0) solves

max
{
z2
∗v

0
qq + (1− δp)2g′′0 −m0 − q2A2 + p, z∗v

0
q − pg′0, −v0

q

}
= 0,

v0(p,∞) = 0, g0(0) = 0, g′0(0) = 0,

3The first term of (5.20) is implied by (5.19).
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in (p, q) ∈ [0, 1
δ
]× R. This equation has the same form as the corresponding one in

Chen and Dai (2013a). It has a unique solution

v0 =


0, if q ≥ q+

0 (p),

A2

z2∗

[
q4−q+0 (p)4

12
− q+0 (p)3

3
(q − q+

0 (p))− q+0 (p)2

2
(q − q+

0 (p))2
]
, if q ∈ [q−0 (p), q+

0 (p)],

1
z∗
pg′0(p)(q + q+

0 (p))− 4A2

3z2∗
q+

0 (p)4, if q ≤ q−0 (p),

m0 and g0 are determined by (5.9), and the expansion is given by (5.7).

(c) Proof for second order tip expansion. Following the proof of (b), expand the

solution and the optimal trading boundaries in the second order as

mδ = m0 +m1δ +O(δ2), gδ = g0 + g1δ +O(δ2), vδ = v0 + v1δ +O(δ2),

q±(p) :=
z±(b)− z1(b)

δ2

∣∣∣∣
b=1−pδ

= q±0 (p) + q±1 (p)δ +O(δ2).

Hence, function (5.21) can be written as

z2
∗v

0
qq + (1− δp)2g′′0 −m0 − q2A2 + p

+ δ
[
z2
∗v

1
qq + (1− δp)2g′′1 −m1 + 2z∗(1− δp)v0

pq − ĉ(1− δp)g′0
]

+O(δ2), (5.24)

where

v0
pq(p, q) =


0, if q ≥ q+

0 (p),

−2A
2

z2∗
q+

0 (p)q+′

0 (p)(q − q+
0 (p)), if q ∈ [q−0 (p), q+

0 (p)],

1
z∗

(g′0(p) + pg′′0(p)), if q ≤ q−0 (p),

and

q±0 (p) = ± 1

A

(
pg′0(p)

)1/3

. (5.25)

Since

z2
∗v

0
qq + (1− δp)2g′′0 −m0 − q2A2 + p = 0, q ∈ [q−0 (p), q+

0 (p)],
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we have

z2
∗v

1
qq+(1−δp)2g′′1−m1+2z∗(1−δp)v0

pq−ĉ(1−δp)g′0 = 0, q ∈ [q−0 (p), q+
0 (p)]. (5.26)

At the sell boundary q = q+
0 + δq+

1 + O(δ2), on the one side, function (5.23) is

equal to 0. Expand it in the second order

v0
q (p, q

+
0 ) + v0

qq(p, q
+
0 )q+

1 δ + δv1
q (p, q

+
0 ) +O(δ2) = 0,

which yields

v1
q (p, q

+
0 ) = −v0

qq(p, q
+
0 )q+

1 = 0.

On the other side, function (5.21) or (5.24) is equal to 0. Substituting q = q+
0 +

δq+
1 +O(δ2) into (5.24), one can get

− 2A2q+
0 q

+
1 + (1− δp)2g′′1 −m1 − ĉ(1− δp)g′0 = 0. (5.27)

So (5.26) can be rewritten as

z2
∗v

1
qq + 2z∗(1− δp)v0

pq + 2A2q+
0 q

+
1 = 0, q ∈ [q−0 (p), q+

0 (p)]. (5.28)

Integrating it with respect to q,

v1
q = 2

A2

z3
∗

(1− δp)q+
0 q

+′

0 (q − q+
0 )2 − 2

A2

z2
∗
q+

0 q
+
1 (q − q+

0 ), q ∈ [q−0 (p), q+
0 (p)]. (5.29)

Similarly, at the buy boundary q = q−0 + δq−1 +O(δ2), function (5.22) is equal to

0. Expanding it in the second order, one gets

pg′1(p) = z∗v
0
qq(p, q

−
0 )q−1 + z∗v

1
q (p, q

−
0 )− pδv0

p(p, q
−
0 )

= 4
A2

z2
∗

(2− δp)q+
0 (p)3q+′

0 (p) + 4
A2

z∗
q+

0 (p)2q+
1 (p).
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Thus,

q+
1 (p) =

pg′1(p)− 4A
2

z2∗
(2− δp)q+

0 (p)3q+′

0 (p)

4A
2

z∗
q+

0 (p)2
. (5.30)

Meanwhile, at q = q−0 + δq−1 +O(δ2), (5.21) or (5.24) is equal to 0. One can get

− 2A2q−0 q
−
1 + (1− δp)2g′′1 −m1 + (2− δp)(g′0 + pg′′0)− ĉ(1− δp)g′0 = 0. (5.31)

Equations (5.27) and (5.31) with q−0 = −q+
0 imply

q−1 (p) = −q+
1 (p)− (2− δp)pg

′′
0(p) + g′0(p)

2A2q+
0 (p)

. (5.32)

Substituting (5.30) and (5.25) into (5.27), we have g1(p) satisfies (5.10). In

addition, (5.20), (5.30) and (5.32) imply that the expansion is given by (5.8).

5.4 Numerical Results

In this section, we present numerical results to justify our asymptotic analysis. For

comparison, we always employ the penalty method combined with a finite difference

scheme to solve (5.1), so as to generate benchmark values (marked with “True” in

the tables and figures of this section).

In Figure 5.3, we examine the accuracy of the approximated trading boundaries

implied by three expansions (5.6), (5.13) and (5.17). Panel (a) shows the approxi-

mated trading boundaries for a relative large ε. Panel (b) corresponds to a relative

small ε. Panel (c) shows the approximated trading boundaries at b = 0.5 against

ε. We can see that all of the three approximations perform very well for small ε.

But the one implied by the leading order expansion and the one implied by the first

order tip expansion do not perform very well for large ε. We can also observe that

for the second order tip expansion, its sell boundary closely matches the optimal

sell boundary, and its buy boundary is reasonably good even for large ε.
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(c) At b = 0.5, τ varies from 0.01 to 0.35

Figure 5.3: Approximations to Trading Boundaries, CARA

This figure shows approximations to the optimal trading boundaries in the CARA utility case.

The “True”, “Leading”, “Tip 1”, and “Tip 2” correspond to the benchmark, the leading order

expansion, the first order tip expansion, and the second order tip expansion respectively. Other

parameter values: r = 0.01, µ = 0.05, σ = 0.25, β = 0.01.



88 Chapter 5. Asymptotic Analysis for Merton Problem with Instant Taxes

Table 5.1: Scaled CEWL for Approximated Strategies, CARA

This table reports the scaled CEWL of Merton for approximated strategies with varying τ in the

CARA utility case. The “Upper”, “True”, “Leading”, “Tip 1”, and “Tip 2” correspond to the

upper bound, the benchmark, the leading order expansion, the first order tip expansion, and the

second order tip expansion respectively. Other parameter values: r = 0.01, µ = 0.05, σ = 0.25,

β = 0.01.

τ ε Upper True Leading Tip 1 Tip 2

35% 0.475 0.3214 0.2093 0.2311 0.2190 0.2105

30% 0.400 0.2596 0.1731 0.1891 0.1799 0.1738

25% 0.334 0.2044 0.1398 0.1511 0.1444 0.1402

20% 0.274 0.1550 0.1090 0.1164 0.1119 0.1092

15% 0.219 0.1104 0.0801 0.0845 0.0817 0.0802

10% 0.165 0.0701 0.0528 0.0550 0.0536 0.0529

5% 0.109 0.0335 0.0266 0.0273 0.0268 0.0266

1% 0.046 0.0065 0.0056 0.0057 0.0056 0.0056

In Table 5.1, we examine the effects of the approximated investment and con-

sumption strategies on the investor’s expected utility. Given an explicit strategy, we

can compute the corresponding value function,4 and the corresponding scaled CEWL

of Merton from capital gains taxes. In Table 5.1, we report the scaled CEWL with

different levels of tax rate. The upper bound of the scaled CEWL (i.e., K̄ − K,

as suggested by (5.2)) is also reported. The table shows that the approximated

strategies do not significantly affect the investor’s expected utility especially when

ε is small. In addition, the approximated strategy implied by the second order tip

4 Substitute the approximated consumption (5.11) into the original HJB equation (2.13). The
operator L̃ψ + f̃ in (5.1) can be approximated by

L̄ψ + f̃ = z2ψzz − 2zbψzb + b2ψbb + azψz + (2− a)bψb −
2r

σ2
ψ̄ + f̃ +

2r

σ2
− 2r

σ2
eψ−ψ̄.

The approximated buy region and sell region, denoted by BR and SR, are implied by the explicit
strategy (5.6), (5.13) or (5.17). Then, we can compute the corresponding value function of an
investor who adopts the above explicit strategy by solving the following penalty approximation

−L̄ψ − f̃ = KP [zψz + (1− b)ψb]1BR +KP [−ψz]1SR,

where KP is the penalty parameter, and 1{·} is the indicator function.
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Figure 5.4: Order of Approximations to the Value Function, CARA

This figure shows the order of approximations to the reduced value function with varying τ from

0.001% to 35%. Other parameter values: r = 0.01, µ = 0.05, σ = 0.25, β = 0.01.

expansion is superior to the one implied by the first order tip expansion. In partic-

ular, when the tax rate is 35%, compared with the benchmark, the scaled CEWL is

increased by 4.6% for the first order tip expansion but is only increased by 0.57%

for the second order tip expansion.

Finally, we examine the order of approximations to the reduced value function

ψ(z, 1).5 The left panel of Figure 5.4 plots

log(ε) 7→ ∆1 = log

(
ψ(z, 1)

(1− τ)2A2/3 σ2

2r
m0

)
.

The first order tip expansion (5.7) implies that it should be close to the straight

line log(ε) 7→ 8
3

log(ε). The sub-figure shows a good fit for that the first order tip

expansion is of order O(ε8/3). The right panel of Figure 5.4 plots

log(ε) 7→ ∆2 = log

(
ψ(z, 1)− (1− τ)2ε8/3A2/3 σ2

2r
m0

(1− τ)2A4/3 σ2

2r
m1

)
.

By the second order tip expansion (5.8), it should be close to the straight line

log(ε) 7→ 10
3

log(ε). However, the sub-figure does not show a good fit for that the

5ψ(z, 1) can be regarded as the scaled deferral value, which is the scaled certainly equivalent
wealth gain of the case where the investor cannot defer realizing any capital gain or loss.
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second order tip expansion is of order O(ε10/3). The reason is that when we compute

m1 via (5.14), we use a quadratic function to approximate g′0. It may not be a good

enough approximation to g′0. We emphasize that conducting the second order tip

expansion is mainly for the theoretical interest and the purpose of finding a more

refined approximation of the optimal strategy.

5.5 The CRRA Utility Case

In this section, we present an extension to the CRRA utility. The mathematical

formulation of the investor’s problem is presented in Section 3.4.1. We consider

only the zero transaction cost, FR and IT case (i.e., l = λ = 0, θ = α = 0). As in

Chen and Dai (2013a), we assume that the tax rate for interest is the same as the tax

rate on the stock (i.e., τi = τ). Then the investor’s value function V (x, y, k) satisfies

the HJB equation (3.21) with l = λ = 0, θ = α = 0, and τi = τ . Following Chen

and Dai (2013a), we make the following transformation to reduce the dimension:

K0 =
β

γ
− 1− γ

γ

[
(1− τ)r +

(µ− r)2

2σ2γ

]
, W = x+ y − τ(y − k), (5.33)

V (x, y, k) =
K−γ0

1− γ
W 1−γe(1−γ)w(ξ,b), ξ =

(1− τ)y

W
, b =

k

y
. (5.34)

It follows that6

max
{
L1w + f1, ξwξ + (1− b)wb, −wξ

}
= 0, ξ ≥ 0, b ≥ 0, (5.35)

6This reduced HJB equation remains valid for the logarithmic utility function U(c) = log(c)
with γ = 1. In this case, in the HJB equation (3.21), U∗(q) = −1 − log(q). In addition, the
dimensional reduction transformation is

V (x, y, k) =
1

β

[
w(ξ, b) + log(W ) + log(β) +

(µ− r)2

2σ2β
− β − (1− τ)r

β

]
.
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where

L1w = ξ2(1− ξ)2wξξ − 2ξ(1− ξ)bwξb + b2wbb +K1ξwξ +K2bwb −K3w,

f1 = −γ(ξ − ξ∗)2 +
2rτ

σ2
ξ(1− b), ξ∗ =

µ− r
γσ2

,

K1 =
[
−2γ(ξ − ξ∗) + (1− γ)

(
ξ(1− ξ)wξ − bwb

)]
(1− ξ) +

2rτ [1 + (b− 1)ξ]

σ2
+K4,

K2 = 2
(

1− µ

σ2

)
+ (1− γ) [−2ξ − ξ(1− ξ)wξ + bwb] ,

K3 = −K̂ U∗(q)− U∗(1)

q − 1

∣∣∣∣
q=ew(1−ξwξ)

ew − 1

w
, K̂ =

2K0

σ2
,

K4 = −K̂ U∗(q)− U∗(1)

q − 1

∣∣∣∣
q=ew(1−ξwξ)

ew.

5.5.1 The Main Theoretical Results

In this sub-section, we present the main theoretical results derived from asymptotic

analysis on (5.35). The operator L1 in (5.35) is degenerate at ξ = 1. It would lead

to different expansions for ξ∗ = 1 and ξ∗ 6= 1. Here, we only study the case ξ∗ 6= 1

that is of primary interest. Refer to Chen and Dai (2013a) for the case ξ∗ = 1.

Proposition 5.2. Assume ξ∗ 6= 1. Let

ε =

√
2rτξ∗
γσ2

, A =
4

3ξ∗(1− ξ∗)2
, ξ1(b) = ξ∗ +

ε2(1− b)
2ξ∗

. (5.36)

We have the following approximations to the reduced value function w(ξ, b) and the

optimal trading boundaries ξ±(b) in b ∈ [0, 1]:

(a) leading order expansion w(ξ, b) = γA2/3ε8/3m0

K̂
+ o(ε8/3)

ξ±(b) ≈ ξ1(b)± ε
√

1− b
, (5.37)
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(b) first order tip expansion
w(ξ, b) = γA2/3ε8/3m0

K̂
+ o(ε8/3)

ξ±(b) ≈ ξ1(b)± ε
√

1− b
(
g′0√
p

)1/3 ∣∣∣
p= 1−b

δ

, (5.38)

(c) second order tip expansion
w(ξ, b) = γA2/3ε8/3m0+m1δ

K̂
+ o(ε10/3)

ξ±(b) ≈ ξ1(b) + ε
√

1− b
(
g′0√
p

)1/3

χ±(p)
∣∣∣
p= 1−b

δ

, (5.39)

where δ = (Aε)2/3,

χ±(p) = ±1± δ

3

g′1
g′0
− δ

(
(1− ξ∗)(1− δp)

2
+

δp

3ξ∗A

)
pg′′0 + g′0
(pg′0)2/3

,

m0 and g0 are determined by (1− δp)2g′′0(p) = m0 − p+ (pg′0(p))2/3, p ∈ [0, 1
δ
],

g0(0) = 0, g′0(0) = 0,
(5.40)

m1 and g1 are determined by


(1− δp)2g′′1(p) = 2

3

(
p2

g′0

)1/3

g′1(p)−
[
1− ξ∗ − 1

2
(1− ξ2

∗)δp
]

(pg′′0 + g′0)

+ĉ(1− δp)g′0 +m1, p ∈ [0, 1
δ
],

g1(0) = 0, g′1(0) = 0,

(5.41)

and ĉ = 2− 2µ/σ2 − 2(1− γ)ξ∗.

In addition, for each of the above expansions, we denote by w̄(ξ, b) the approx-

imated reduced value function. Then we have the following approximation for the

optimal consumption: ( c

W

)∗
≈ K0e

γ−1
γ
w̄. (5.42)

We remark that (5.40) is the same as (5.9). We still approximate g′0(p) by a
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quadratic function in the form of (5.12). Then, we can obtain an explicit approxi-

mation of the optimal trading boundaries for the first order tip expansion:

ξ±(b) ≈ ξ1(b)± ε(1− b)2/3δ−1/6(η01 + η02p)
1/3
∣∣∣
p= 1−b

δ

. (5.43)

We also remark that (5.41) has the same form as (5.10). Similarly, we have

m1 = −
∫ 1/δ

0
e−Ā(p)−[1−ξ∗− 1

2
(1−ξ2∗)δp](pg′′0 (p)+g′0(p))+ĉ(1−δp)g′0(p)

(1−δp)2 dp∫ 1/δ

0
e−Ā(p) 1

(1−δp)2dp
,

where Ā(p) is the same as the one in (5.14). If we approximate g′0(p) by (5.12), we

can numerically compute m1 via evaluating the relative integrals, and then derive

the solution of g′1(p). We still approximate g′1(p) by a quadratic function in the form

of (5.16). Then, we can obtain an explicit approximation of the optimal trading

boundaries for the second order tip expansion:

ξ±(b) ≈ ξ1(b) + ε(1− b)2/3δ−1/6(η01 + η02p)
1/3

[
±1± δ

3

η11 + η12p

η01 + η02p

]
−ε(1− b)1/3δ7/6

(
(1− ξ∗)(1− δp)

2
+

δp

3ξ∗A

)
2η01 + 3η02p

(η01 + η02p)1/3

∣∣∣∣∣
p= 1−b

δ

(5.44)

Proof of Proposition 5.2. The proofs for (a) leading order expansion and (b)

first order tip expansion are provided in Chen and Dai (2013a). We only prove (c)

second order tip expansion. Near the tip (ξ±(1), 1), we use the stretched variable:

q =
ξ − ξ1(b)

δ2
, p =

1− b
δ

.

Then, we can rewrite the optimal trading boundaries as

q±(p) :=
ξ±(b)− ξ1(b)

δ2

∣∣∣∣
b=1−pδ

.
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We can also rewrite the reduced value function as

w = γε2

[
δ

K̂
mδ + δ3gδ(p) + δ5vδ(p, q)

]
, (5.45)

where mδ is a positive constant to be determined, and

vδ(p, q) = 0, if q ≥ q+(p),

gδ(0) = 0, g′δ(0) = 0.

It follows that

L1w + f1

γε2δ
= avδqq + 2δ(1− δp)ξ∗(1− ξ∗)vδpq + (1− δp)2g′′δ

−ĉδ(1− δp)g′δ −mδ − q2A2 + p+O(δ2),

ξwξ + (1− b)wb
γε2δ3

= ξ∗v
δ
q − pg′δ − pδ2vδp +O(δ2),

−wξ
γε2δ3

= −vδq ,

where a = [ξ∗(1− ξ∗)]2. These approximated operators have similar forms of (5.21)-

(5.23) in the CARA utility case. So the subsequent proof for the second order tip

expansion is similar. The result for the optimal consumption is straightforward.

5.5.2 Numerical Results

We finally present numerical results to justify the efficiency of our asymptotic anal-

ysis. Figure 5.5 shows approximations to the optimal trading boundaries. Table 5.2

reports the proportional CEWL of Merton from capital gains taxes for problems

adopting the approximated strategies. Figure 5.6 examines the order of approxima-

tions to the reduced value function w(ξ, 1). The left and right panels respectively
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(c) At b = 0.5, r varies from 0.01% to 3%

Figure 5.5: Approximations to Trading Boundaries, CRRA

This figure shows approximations to the optimal trading boundaries in the CRRA utility case.

The “True”, “Leading”, “Tip 1”, and “Tip 2” correspond to the benchmark, the leading order

expansion, the first order tip expansion, and the second order tip expansion respectively. Other

parameter values: τ = 0.15, µ = 0.07, σ = 0.25, β = 0.01, γ = 4.
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Table 5.2: Prop. CEWL for Approximated Strategies, CRRA

This table reports the proportional (prop.) CEWL of Merton for approximated strategies with

varying r in the CRRA utility case. The “Upper”, “True”, “Leading”, “Tip 1”, and “Tip 2”

correspond to the upper bound, the benchmark, the leading order expansion, the first order tip

expansion, and the second order tip expansion respectively. Other parameter values: τ = 0.15,

µ = 0.07, σ = 0.25, β = 0.01, γ = 4.

r ε Upper True Leading Tip 1 Tip 2

3.00% 0.076 17.5264% 16.2350% 16.5206% 16.3393% 16.2409%

2.00% 0.069 14.9224% 13.7262% 13.9591% 13.8068% 13.7292%

1.00% 0.054 10.1144% 9.3239% 9.4462% 9.3611% 9.3247%

0.50% 0.039 6.0955% 5.6683% 5.7210% 5.6820% 5.6686%

0.10% 0.018 1.4514% 1.3805% 1.3860% 1.3814% 1.3805%

0.05% 0.013 0.7431% 0.7128% 0.7147% 0.7131% 0.7128%

0.01% 0.006 0.1515% 0.1476% 0.1478% 0.1476% 0.1476%

plot

log(ε) 7→ ∆1 = log

(
w(ξ, 1)

γA2/3m0

K̂

)
≈ 8

3
log(ε),

log(ε) 7→ ∆2 = log

(
w(ξ, 1)− γε8/3A2/3m0

K̂

γA4/3m1

K̂

)
≈ 10

3
log(ε).

According to these figures, we have similar findings as in the CARA utility case.
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Figure 5.6: Order of Approximations to the Value Function, CRRA

This figure shows the order of approximations to the reduced value function with varying r from

0.00001% to 3%. Other parameter values: τ = 0.15, µ = 0.07, σ = 0.25, β = 0.01, γ = 4.





Chapter 6
Conclusion and Future Work

This thesis contributes to the literature on continuous-time portfolio selection with

transaction costs and capital gains taxes. The existing literature always assumes

that taxes are paid immediately after sale (instant taxes). In contrast to the existing

literature, we propose a model which considers the market feature that taxes are

only paid at the end of each calendar year (year-end taxes). We consider both the

case where capital losses are fully rebatable and the case where capital losses are

fully carried forward. We focus on the constant absolute risk aversion (CARA)

utility, and an extension to the constant relative risk aversion (CRRA) utility is also

provided. It turns out that the investor tends to avoid realizing capital gains late in

this calendar year. Moreover, he is inclined to defer realization of capital gains until

the beginning of the next calendar year. In addition, the presence of transaction

costs could lead the investor to defer realization of capital losses to the end of each

calendar year.

After that, we extend our model to incorporate a constant stream of labor in-

come with no-borrowing constraint against future labor income. We show that the

inability to borrow of a CRRA investor can significantly decrease consumption and

investment in the risky asset, and provide an incentive to trade more frequently. S-

ince the no-borrowing constraint destroys the homogeneity property of the investor’s

value function, here we focus on the no-transaction cost, full rebate, and instant tax

99



100 Chapter 6. Conclusion and Future Work

case. More general cases are left as a future research topic.

Since closed form solutions are generally unavailable, we finally conduct asymp-

totic analysis in terms of small interest rate and tax rate. Based on the expansion

of Chen and Dai (2013a), we propose a more refined expansion as well as an explic-

it strategy. The explicit strategy can effectively approximate the optimal strategy

even for relatively large interest rate and tax rate by our numerical results. Here

we consider only the no-transaction cost, full rebate, and instant tax case. More

general cases are left for future work.

Finally, our study can be further extended to incorporate more realistic market

features such as multiple correlated risky assets, stochastic labor income, portfolio

constraints, and the provision that up to $3,000 of realized capital losses can apply

to offset taxable income each year. Such extensions are economically interesting but

mathematically challenging.



Appendix A
The Multiple Risky-Asset Problem

The existing literature on continuous-time portfolio selection with capital gains tax-

es is restricted to single risky asset. In this appendix, we study the continuous-time

optimal investment and consumption problem of an investor who has access to mul-

tiple risky assets subject to transaction costs and capital gains taxes. We consider

only the CARA utility. By virtue of its separability, we show that the multiple

risky-asset problem can be reduced to the single risky-asset case provided that the

asset returns are uncorrelated.

A.1 Problem Formulation

We consider a financial market consisting of one risk-free asset and n risky assets.

The risk-free asset is a money market account growing at a constant interest rate of

r > 0. The ith risky asset, i = 1, 2, . . . , n, is a stock whose price process Pit satisfies

a geometric Brownian motion

dPit = µiPitdt+ σiPitdBit,

where µi > r and σi > 0 are constants representing respectively the expected rate

of return and the volatility of the ith stock. The processes {Bit}t≥0 are standard

101
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Brownian motions on a complete filtered probability space (Ω,F , {Ft}t≥0,P) with

constant coefficients of correlation ρij, namely, E(dBidBj) = ρijdt. We assume that

short selling of any stock is prohibited and that wash sales of any stock are allowed.

The investor can buy the ith stock at the ask price of (1 + θi)Pit and sell it at

the bid price of (1 − αi)Pit. The constants θi ∈ [0,∞) and αi ∈ [0, 1) account for

proportional transaction costs incurred in buying and selling the ith stock.

The sales of the ith stock are subject to taxes on capital gains and losses at a

constant rate of τi ∈ [0, 1). The average tax basis is used for each stock. We consider

only the FR and IT case.

We denote by xt the dollar amount invested in the money market account, yit

the dollar amount invested in the ith stock, y = (y1, y2, . . . , yn), kit the total cost

basis for the holding of the ith stock, and k = (k1, k2, . . . , kn). An investment policy

(L,M) with L = (L1, L2, . . . , Ln) and M = (M1,M2, . . . ,Mn) is defined as follows:

Lit and Mit are nondecreasing, right-continuous, and Ft−adapted processes with

Li,0− = Mi,0− = 0; the dollar amount transferred from the money market account to

the ith stock account when buying the ith stock is given by dLit; the dollar amount

transferred from the ith stock account to the money market account when selling

the ith stock is given by yi,t−dMit, where dMit ≤ 1 is the proportion of the ith stock

shares the investor sells. A consumption policy c is an Ft−adapted process which

is integrable on each finite time interval, that is,
∫ t

0
|cs|ds <∞ for any t ≥ 0. Then

we have the following dynamics for xt, yit and kit:

dxt = (rxt − ct)dt−
n∑
i=1

(1 + θi)dLit +
n∑
i=1

fi(0, yi,t−, ki,t−)dMit, (A.1)

dyit = µiyi,t−dt+ σiyi,t−dBit + dLit − yi,t−dMit, (A.2)

dkit = (1 + θi)dLit − ki,t−dMit, (A.3)

where

fi(x, yi, ki) = x+ (1− αi)yi − τi((1− αi)yi − ki).
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We denote by A0(x, y, k) the set of admissible strategies (c, L,M) such that the

implied (xt, yt, kt) from (A.1)-(A.3) with (x0, y0, k0) = (x, y, k) satisfies the solvency

constraint

yit ≥ 0, kit ≥ 0, ∀t ≥ 0, i = 1, 2, . . . , n, (A.4)

lim
t→∞

E
[
e−βt−rγWt

]
= 0, (A.5)

E
∫ T

0

∣∣yte−βt−rγWt
∣∣2 dt <∞, ∀T ∈ [0,∞), (A.6)

where Wt = xt +
∑n

i=1 fi(0, yit, kit) is the liquidated wealth at time t, and | · | is the

Euclidean norm. Then, the investor’s problem is to choose an admissible strategy

so as to maximize the expected utility of intertemporal consumption:

V (x, y, k) = max
A0(x,y,k)

E0

[∫ ∞
0

e−βtu(ct)dt

]
, ∀(x, y, k) ∈ R× Rn

+ × Rn
+, (A.7)

where β > 0 is a constant discount factor, and u(·) defined in (2.5) is a CARA utility

function with a constant risk aversion factor γ > 0.

A.2 The Case without Transaction Costs and Tax-

es

In the absence of both transaction costs and capital gains taxes, the investor’s

problem can be rewritten as

V (W ) = max
(y,c)∈Ā0(W )

E0

[∫ ∞
0

e−βtu(ct)dt

]
, (A.8)

subject to

dWt =

[
rWt − ct +

n∑
i=1

(µi − r)yit

]
dt+

n∑
i=1

σiyitdBit,
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where Wt = xt +
∑n

i=1 yit is the total wealth, and Ā0(W ) is the set of admissible

strategies defined by the solvency constraint (A.5)-(A.6). This problem permits

explicit forms of the value function and the optimal strategy, which are presented

in the following theorem.

Theorem A.1 (Merton’s Result with Multiple Risky Assets). In the absence of both

transaction costs and capital gains taxes (i.e., θi = αi = τi = 0, i = 1, 2, . . . , n), the

investor’s problem allows an explicit expression of the value function:

V (W ) = −1

r
e−rγW−an , (A.9)

where the scalar

an =
β − r
r

+
(µ− r)ς−1(µ− r)′

2r
,

the vector µ = (µ1, µ2, . . . , µn), and the matrix ς = (ρijσiσj).1 In addition, the

optimal investment and consumption strategy is:

y∗t =
µ− r
rγ

ς−1, (A.10)

c∗t = rW ∗
t +

an
γ
, (A.11)

where W ∗
t is the optimal wealth derived from the above strategy.

Proof. It can be verified that the value function satisfies

max
yi,c

{[
1

2

n∑
i,j=1

ρijσiσjyiyj

]
VWW +

[
rW − c+

n∑
i=1

(µi − r)yi

]
VW − βV + u(c)

}
= 0.

In matrix form, it can be rewritten as

max
y,c

{
1

2
(yςy′)VWW + [rW − c+ (µ− r)y′]VW − βV + u(c)

}
= 0. (A.12)

1ς is known as the variance-covariance matrix of the stocks. It is symmetric and positive definite.
ς−1 denotes the inverse of ς. For any vector or matrix Q, Q′ denotes the transpose of Q.
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The first order condition follows that the optimal (y∗, c∗) is given by

y∗ = −(µ− r)ς−1 VW
VWW

, c∗ = −1

γ
log

VW
γ
.

We conjecture that the value function is of the form (A.9). The above equations

imply that the optimal strategy is given by (A.10)-(A.11). Substituting (A.9)-(A.11)

into (A.12), we can derive the value of an. The proof is completed based on the

following lemma.

The solution (A.9)-(A.11) of (A.12) specified in Theorem A.1 is a candidate for

the optimal strategy and the value function of the optimal control problem (A.8).

In the following lemma, we verify that this solution is indeed optimal.

Lemma A.1 (Verification Theorem for Merton’s Result). The strategy (A.10)-

(A.11) and the function (A.9) specified in Theorem A.1 are the optimal strategy

and the value function of the optimal control problem (A.8).

Proof. (a) We firstly show that the strategy (A.10)-(A.11) is admissible. By this

strategy, we have

rγW ∗
t = rγW − (β − r)t+

1

2

n∑
i=1

(µi − r)zit+
n∑
i=1

σiziBit, ∀t ≥ 0,

and
n∑

i,j=1

ρijσiσjzizj =
n∑
i=1

(µi − r)zi, (A.13)

where zi = rγy∗i are constants, i = 1, 2, . . . , n. It follows that

e−βt−rγW
∗
t = e−rt−rγWN0(t),

where

N0(t) = exp

{
−1

2

n∑
i=1

(µi − r)zit−
n∑
i=1

σiziBit

}
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is a martingale by (A.13). Then it is straightforward to check that (y∗t ,W
∗
t ) is subject

to the solvency constraint (A.5)-(A.6).

(b) For any (yt, ct) ∈ Ā0(W ), we denote by Wt the resulting total wealth and

V (W ; y, c) = E
[∫ ∞

0

e−βtu(ct)dt

]

the resulting value function. We next prove that

V (W ) ≥ V (W ; y, c), ∀(y, c) ∈ Ā0(W ), (A.14)

where V (W ) is the claimed optimal value function (A.9). Applying Itô’s formula on

V (W ), we have

e−βtV (Wt) = V (W ) +

∫ t

0

e−βsLc0V (Ws)ds+
n∑
i=1

∫ t

0

e−βsσiyisVW (Ws)dBis

≤ V (W )−
∫ t

0

e−βsu(cs)ds+
n∑
i=1

∫ t

0

e−βsσiyisVW (Ws)dBis,

where the inequality follows from that V is the solution of (A.12), and

Lc0V =
1

2
(yςy′)VWW + [rW − c+ (µ− r)y′]VW − βV.

Taking the expectation,

V (W ) ≥ E
[
e−βtV (Wt)

]
+ E

[∫ t

0

e−βsu(cs)ds

]
− E

[
n∑
i=1

∫ t

0

e−βsσiyisVW (Ws)dBis

]
.

In the right-hand side of the above inequality, by (A.5), the first term goes to 0 as

t→∞; and by (A.6), the third term is 0 for any fix t. Taking the limit t→∞ and

using the monotone convergence theorem, we have

V (W ) ≥ E
[∫ ∞

0

e−βsu(cs)ds

]
.
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This proves (A.14) by the arbitrariness of (y, c) ∈ Ā0(W ).

(c) Choosing the strategy (y∗, c∗) given by (A.10)-(A.11), we have equality in all

inequalities of part (b). Therefore,

V (W ) ≥ max
(y,c)∈Ā0(W )

V (W ; y, c) ≥ V (W ; y∗, c∗) = V (W ).

This completes the proof.

A.3 The Case with Transaction Costs and Taxes

We turn to the general case with transaction costs and capital gains taxes. It turns

out that the value function satisfies the following HJB equation:

max
{
L̄V, max

1≤i≤n
B̄iV, max

1≤i≤n
S̄iV

}
= 0, yi > 0, ki > 0, (A.15)

where

L̄V =
1

2

n∑
i,j=1

ρijσiσjyiyjVyiyj +
n∑
i=1

µiyiVyi + rxVx − βV + u∗(Vx), (A.16)

B̄iV = −(1 + θi)Vx + Vyi + (1 + θi)Vki ,

S̄iV = fi(0, yi, ki)Vx − yiVyi − kiVki ,

and u∗ is the same as (2.17). The optimal consumption proves to be

c∗ = −1

γ
log

Vx
γ
.

The value function has the separability property:

V (x, y, k) = e−rγxV (0, y, k), (x, y, k) ∈ R× Rn
+ × Rn

+. (A.17)

The proof is only a slight variation of the proof of Proposition 3.1, and is thus
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omitted here. Due to the separability property, we can make the transformation:

V (x, y, k) = −e−rγx−ϕ(z,b)−log r, yi > 0, ki > 0,

zi = rγyi, bi =
ki
yi
, z = (z1, z2, . . . , zn), b = (b1, b2, . . . , bn).

Then the HJB equation (A.15) can be reduced to

max
{
Lϕ, max

1≤i≤n
Biϕ, max

1≤i≤n
Siϕ
}

= 0, zi > 0, bi > 0, (A.18)

where

Lϕ =
1

2

n∑
i,j=1

ρijσiσjzizj
(
ϕzizj − ϕziϕzj

)
− 1

2

n∑
i,j=1

ρijσiσjzibj
(
ϕzibj − ϕziϕbj

)
−1

2

n∑
i,j=1

ρijσiσjzjbi
(
ϕzjbi − ϕzjϕbi

)
+

1

2

n∑
i,j=1

ρijσiσjbibj
(
ϕbibj − ϕbiϕbj

)
+

n∑
i=1

µiziϕzi +
n∑
i=1

(
σ2
i − µi

)
biϕbi − rϕ+ β − r, (A.19)

Biϕ = −(1 + θi)zi + ziϕzi + (1 + θi − bi)ϕbi ,

Siϕ = fi(0, 1, bi)− ϕzi .

The above equation is a 2n-dimensional HJB equation with 2n free boundaries.

In the simplest case n = 2, it is a 4-dimensional variational inequality, which is

difficult to solve even numerically. Interestingly, if the asset returns are uncorrelated,

we can compute the optimal strategy separately for each stock. This uncorrelated

return case is discussed in the next section. For the correlated return case, we leave it

to future work. It is worth pointing out that even if the asset returns are correlated,

the strategy of the uncorrelated return case can be used as a benchmark.
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A.4 The Uncorrelated Return Case

In this section, we assume that the asset returns are uncorrelated, i.e., (ρij) is an

n× n identity matrix. Then the operator (A.19) becomes

Lϕ =
n∑
i=1

[
1

2
σ2
i z

2
i

(
ϕzizi − ϕ2

zi

)
− σ2

i zibi
(
ϕzibi − ϕziϕbi

)
+

1

2
σ2
i b

2
i

(
ϕbibi − ϕ2

bi

)
+µiziϕzi +

(
σ2
i − µi

)
biϕbi +

β − r
n

]
− rϕ.

We conjecture that the reduced value function can be decomposed to

ϕ(z, b) =
n∑
i=1

ϕi(zi, bi).

Then the operator above can be rewritten as

Lϕ(z, b) =
n∑
i=1

Liϕi(zi, bi),

where

Liϕi =
1

2
σ2
i z

2
i

(
ϕizizi − (ϕizi)

2
)
− σ2

i zibi
(
ϕizibi − ϕ

i
zi
ϕibi
)

+
1

2
σ2
i b

2
i

(
ϕibibi − (ϕibi)

2
)

+µiziϕ
i
zi

+
(
σ2
i − µi

)
biϕ

i
bi
− rϕi +

β − r
n

. (A.20)

Within the NTR where none of the stocks is traded, Lϕ = 0. Then the n partial

differential equations (PDEs)

Liϕi − εi = 0, i = 1, 2, . . . , n, (A.21)

should be satisfied for some constants εi such that
∑n

i=1 εi = 0. In the trading region

BRi where the ith stock is purchased, Biϕ = 0. Then

Biϕi = −(1 + θi)zi + ziϕ
i
zi

+ (1 + θi − bi)ϕibi = 0 (A.22)
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should be satisfied. In the trading region SRi where the ith stock is sold, Siϕ = 0.

Then

Siϕi = fi(0, 1, bi)− ϕizi = 0 (A.23)

should be satisfied.

It can be observed that the PDE system (A.21) and boundary conditions (A.22)-

(A.23) are completely separable in (zi, bi). This suggests that the optimal investment

policy in the ith stock depends only on (zi, bi). Therefore, we can compute the

optimal trading boundaries separately for each stock provided that εi = 0 for all

i = 1, 2, . . . , n. Next, we show that εi = 0 for all i = 1, 2, . . . , n.

Suppose ϕi(zi, bi) is the solution of

max
{
Liϕi − εi, Biϕi, Siϕi

}
= 0.

Consider a variation of it:

max
{
Liϕi − εi − η̄i, Biϕi, Siϕi

}
= 0,

where η̄i is a constant. Then ϕ̄i(zi, bi) = ϕi(zi, bi)− η̄i/r is the solution of the vari-

ation. We can see that the undetermined εi does not affect the optimal trading

boundaries. In addition, since
∑n

i=1 εi = 0, ϕ(z, b) =
∑n

i=1 ϕ
i(zi, bi) is also indepen-

dent of εi. Without loss of generality, we can set εi = 0 for all i = 1, 2, . . . , n.

Lastly, we provide a verification theorem which shows the validity of the above

conjectured separate policy and the form of the value function.

Proposition A.1. Assume that the asset returns are uncorrelated. For all i =

1, 2, . . . , n, let ϕi(zi, bi) be the solution of

max
{
Liϕi, Biϕi, Siϕi

}
= 0, zi > 0, bi > 0,
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satisfying certain regularity conditions,2 where the operators Li, Bi and Si are defined

in (A.20), (A.22) and (A.23). Define the BRi, SRi and NTRi as follows:

BRi =
{

(zi, bi)
∣∣Biϕi = 0

}
,

SRi =
{

(zi, bi)
∣∣Siϕi = 0

}
,

NTRi =
{

(zi, bi)
∣∣Siϕi < 0 and Biϕi < 0

}
.

Then the investor’s optimal trading policy for the ith stock follows from the BRi,

SRi and NTRi. In addition, the optimal consumption policy is

c∗t = rx∗t +
1

γ

n∑
i=1

ϕi
(
rγy∗it,

k∗it
y∗it

)
, (A.24)

where x∗t , y
∗
it and k∗it are the implied processes by the above strategy. Moreover, the

value function is

V (x, y, k) = − exp

{
−rγx−

n∑
i=1

ϕi
(
rγyi,

ki
yi

)
− log r

}
.

Proposition A.1 shows that when there are multiple uncorrelated risky assets

subject to transaction costs and capital gains taxes, we can compute the optimal

trading boundaries separately for each risky asset (up to some constants). In ad-

dition, the optimal consumption rate is a linear combination of the dollar amount

invested in the risk-free asset and the reduced value function. This result greatly

reduces the dimensionality of the computation and makes it feasible to compute the

optimal strategy for a large number of uncorrelated risky assets.

The rest of this appendix is devoted to the proof of Proposition A.1. The in-

vestor’s problem belongs to the class of combined stochastic control as studied by

Brekke and Øksendal (1998), Korn (1997, 1998), and Liu (2004). In particular, Liu

2By Lemma A.2 and the proof of Lemma A.3, (1) ϕi is required to satisfy Itô’s formula in a
generalised sense, (2) the NTRi is required to be bounded, and (3) in its closure, ϕi, ϕizi and ϕibi
are required to be bounded. The condition (2) would be satisfied by our numerical results for the
single risky-asset case.
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(2004) provides a proof for the case with only transaction costs. Our proof is a

variation of the proofs in the above papers. We begin with some terminology and

notation, then provide the verification theorem, and finally show that the conditions

of Proposition A.1 satisfy all of the conditions of the verification theorem.

An impulse control χ = (Tj, ζ
j)j=0,1,2,··· is a sequence of trading times Tj, and

trading amounts or proportions ζj = (dLTj ,−dMTj) ∈ Q such that

0 ≤ Tj ≤ Tj+1 a.s., ∀j, (A.25)

Tj is a stopping time and ζj is FTj−measurable, ∀j, (A.26)

P
(

lim
j→∞

Tj ≤ A

)
= 0, ∀A ≥ 0, (A.27)

where Q = Rn
+ × [−1, 0]n and (L,M) is an investment policy. Given an impulse

control χ and a consumption policy c, the pair η = (χ, c) is called a combined

stochastic control. It is admissible if (c, L,M) is an admissible strategy as defined

in Section A.1; that is, the implied (xt, yt, kt) from (A.1)-(A.3) satisfies (A.4)-(A.6).

We denote by W the set of admissible combined stochastic controls.

Let H be the space of all measurable functions h : R2n+1 → R. LetM : H → H

be the maximum operator

Mh(x, y, k) = sup
ζ∈Q\{0}

h
(
x̃(ζ), ỹ(ζ), k̃(ζ)

)
, (A.28)

and ζ̂h(x, y, k) be such that

Mh(x, y, k) = h
(
x̃(ζ̂h(x, y, k)), ỹ(ζ̂h(x, y, k)), k̃(ζ̂h(x, y, k))

)
, (A.29)
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where

x̃(ζ) = x−
n∑
i=1

[
(1 + θi)ζ

+
i − fi(0, yi, ki)ζ−i+n

]
,

ỹi(ζ) = yi + ζ+
i − yiζ−i+n,

k̃i(ζ) = ki + (1 + θi)ζ
+
i − kiζ−i+n,

ζi and ζi+n are the ith and (i+ n)th elements of ζ.

For a given consumption policy c, define the operator Lc as follows:

LcJ(x, y, k) =
n∑
i=1

[
1

2
σ2
i y

2
i Jyiyi + µiyiJyi

]
+ rxJx − βJ − cJx,

for any function J whose derivatives involved exist.

We now provide the verification theorem in the following lemma. It gives suffi-

cient conditions under which an admissible combined stochastic control solves the

investor’s problem.

Lemma A.2 (Verification Theorem).

(a) Suppose there exists a sufficiently regular function v(x, y, k) satisfying the fol-

lowing conditions:3

1. Lcv(x, y, k) + u(c) ≤ 0, for every consumption policy c,

2. v(x, y, k) ≥Mv(x, y, k),

3. the following two equations

∀T ∈ [0,∞), E
∫ T

0

∣∣e−βtytvy(xt, yt, kt)∣∣2 dt <∞, (A.30)

lim
T→∞

E[e−βTv(xT , yT , kT )] = 0, (A.31)

hold for any (xt, yt, kt) following from an admissible combined stochastic

3In the proof, v is only required to satisfy Itô’s formula in a generalised sense.
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control with (x0, y0, k0) = (x, y, k), where vy = diag{vy1 , vy2 , . . . , vyn} is a

diagonal matrix,

4. {e−βtv(xt, yt, kt)}t≥0 is uniformly integrable.

Then

v(x, y, k) ≥ V η(x, y, k), ∀η ∈ W ,

where V η(x, y, k) is the total expected utility obtained when applying the com-

bined stochastic control η.

(b) Define

NT = {(x, y, k) : v(x, y, k) >Mv(x, y, k)}.

Suppose the conditions in part (a) hold and there exists a function ĉ(x, y, k) :

NT → R such that

Lĉ(x,y,k)v(x, y, k) + u(ĉ(x, y, k)) = 0 (A.32)

for all (x, y, k) ∈ NT . Define the impulse control χ̂ = (T̂j, ζ̂
j)j=1,2,··· inductively

as follows: T̂0 = 0 and for j = 0, 1, 2, . . . ,

T̂j+1 = inf{t > T̂j : (x
(j)
t , y

(j)
t , k

(j)
t ) /∈ NT},

ζ̂j+1 = ζ̂v(x
(j)
t , y

(j)
t , k

(j)
t ),

where (x
(j)
t , y

(j)
t , k

(j)
t ) is the result of applying the combined stochastic control

η̂j = ((T̂m, ζ̂
m)m=1,2,··· ,j, ĉ), and ζ̂v is as defined in (A.29). If the combined

stochastic control η̂ = (χ̂, ĉ) is admissible, then

v(x, y, k) = V (x, y, k),

and η∗ = η̂ is optimal, where V (x, y, k) is the value function defined in (A.7).

Proof. (a) Let T ∈ [0,∞) be fixed, and η = (χ, c) ∈ W with χ = (Tj, ζ
j)j=1,2,··· be
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any admissible combined stochastic control. For all m = 0, 1, 2, · · · , define δm =

Tm ∧ T with T0 = 0. Let (xt, yt, kt) follow from η with (x0, y0, k0) = (x, y, k). For

every m, we can write

e−βδmv(xδm , yδm , kδm)− v(x, y, k)

=
m∑
i=1

[
e−βδiv(xδ−i , yδ

−
i
, kδ−i )− e−βδi−1v(xδi−1

, yδi−1
, kδi−1

)
]

+
m∑
i=1

1{Ti<T}e
−βδi

[
v(xδi , yδi , kδi)− v(xδ−i , yδ

−
i
, kδ−i )

]
.

By Itô’s formula,

e−βδiv(xδ−i , yδ
−
i
, kδ−i )− e−βδi−1v(xδi−1

, yδi−1
, kδi−1

)

=

∫ δi

δi−1

e−βsLcv(xs, ys, ks)ds+

∫ δi

δi−1

e−βsysvy(xs, ys, ks)σdBs

≤ −
∫ δi

δi−1

e−βsu(cs)ds+

∫ δi

δi−1

e−βsysvy(xs, ys, ks)σdBs (A.33)

where the inequality follows from condition 1, σ = diag{σ1, σ2, · · · , σn} and B =

(B1, B2, · · · , Bn)′. Condition 2 implies that

v(xδi , yδi , kδi)− v(xδ−i , yδ
−
i
, kδ−i ) ≤ 0. (A.34)

After combining the above equations, we have

v(x, y, k) ≥ E
[
e−βδmv(xδm , yδm , kδm) +

m∑
i=1

∫ δi

δi−1

e−βsu(cs)ds

−
m∑
i=1

∫ δi

δi−1

e−βsysvy(xs, ys, ks)σdBs

]
. (A.35)

By (A.30), for any fixed m,

E
[ ∫ δm

0

e−βsysvy(xs, ys, ks)σdBs

]
= 0.
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By (A.27) and condition 4,

lim
m→∞

E
[
e−βδmv(xδm , yδm , kδm)

]
= E

[
e−βTv(xT , yT , kT )

]
.

Let m→∞ in (A.35) and use the monotone convergence theorem. We have

v(x, y, k) ≥ E
[
e−βTv(xT , yT , kT )

]
+ E

[∫ T

0

e−βsu(cs)ds

]
.

Letting T →∞, by (A.31) and the monotone convergence theorem, we have

v(x, y, k) ≥ E
[∫ ∞

0

e−βsu(cs)ds

]
.

Therefore, v(x, y, k) ≥ V η(x, y, k) for all η ∈ W .

(b) Given η̂ = (χ̂, ĉ) satisfying the conditions of part (b), we have equality in

(A.33) and (A.34). Combining this with the result in part (a), we have

v(x, y, k) ≥ sup
η∈W

V η(x, y, k) ≥ V η̂(x, y, k) = v(x, y, k).

This completes the proof.

In the above verification theorem, it is required that the combined stochastic

control η̂ is admissible. Next, we show that the strategy specified in Proposition A.1

forms an admissible combined stochastic control.

Lemma A.3. The strategy specified in Proposition A.1 forms an admissible com-

bined stochastic control.

Proof. Let η̂ = (χ̂, ĉ) with χ̂ = (Tj, ζ̂
j)j=0,1,2,··· be the strategy specified in Proposi-

tion A.1, where Tj is the time when the investor trades and ζ̂j is the trading amount

or proportion. Let (xt, yt, kt) follow from η̂ with (x0, y0, k0) = (x, y, k), zit = rγyit

and bit = kit
yit

. Since the prescribed trading policy is to trade the ith stock whenever

(zit, bit) is outside the NTRi, clearly Tj is a stopping time with 0 ≤ Tj ≤ Tj+1 a.s.
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and ζ̂j is FTj−measurable. For all t ∈ (0,∞), we have P{(zit, bit) ∈ NTRi} = 1,

and the boundary of the NTRi can be reached in finite expected time as implied by

the propositions in Section 5.5 of Karatzas and Shreve (1988). This implies (A.27).

Thus, χ̂ is an impulse control. Clearly (A.4) holds. To complete the proof, we only

need to prove (A.5)-(A.6).

For all t ∈ (0,∞) and m = 0, 1, 2, · · · , by (A.1) and (A.24),

rγxt∧Tm = rγx−
n∑
i=1

∫ t∧Tm

0

rϕi(zis, bis)ds

+
n∑
i=1

m∑
j=0

1{Tj<t}

[
−(1 + θi)rγζ̂

j+
i + fi(0, 1, bi,Tj−)zi,Tj−ζ̂

j−
i+n

]
.

In BRi, −(1 + θi)zi + ziϕ
i
zi

+ (1 + θi − bi)ϕibi = 0. It implies there exists a function

hi such that

ϕi(zis, bis) = hi(zis(bis − 1− θi)) + (1 + θi)zis.

In SRi, fi(0, 1, bi)− ϕizi = 0. It implies there exists a function gi such that

ϕi(zis, bis) = gi(bis) + fi(0, 1, bis)zis. (A.36)

Since zi(bi − 1 − θi) or bi does not change when the investor buys or sells the ith

stock, we have

−(1 + θi)rγζ̂
j+
i + fi(0, 1, bi,Tj−)zi,Tj−ζ̂

j−
i+n = ϕi(ziTj−, biTj−)− ϕi(ziTj , biTj).

We then write

m∑
j=0

1{Tj<t}
[
ϕi(ziTj−, biTj−)− ϕi(ziTj , biTj)

]
= ϕi(zi, bi)− ϕi(zi,t∧Tm , bi,t∧Tm)

+
m∑
j=1

[
ϕi(zi,t∧Tj−, bi,t∧Tj−)− ϕi(zi,t∧Tj−1

, bi,t∧Tj−1
)
]
.
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By Itô’s formula, we further write

ϕi(zi,t∧Tj−, bi,t∧Tj−)− ϕi(zi,t∧Tj−1
, bi,t∧Tj−1

)

=

∫ t∧Tj−

t∧Tj−1

[(1

2
σ2
i z

2
is

(
ϕizizi − (ϕizi)

2
)
− σ2

i zisbis
(
ϕizibi − ϕ

i
zi
ϕibi
)

+
1

2
σ2
i b

2
is

(
ϕibibi − (ϕibi)

2
)

+ µizisϕ
i
zi

+
(
σ2
i − µi

)
bisϕ

i
bi

)
ds

+
1

2
σ2
i

(
zisϕ

i
zi
− bisϕibi

)2

ds+ σi

(
zisϕ

i
zi
− bisϕibi

)
dBis

]
=

∫ t∧Tj−

t∧Tj−1

[(
rϕi(zis, bis)−

β − r
n

)
ds

+
1

2
σ2
i

(
zisϕ

i
zi
− bisϕibi

)2

ds+ σi

(
zisϕ

i
zi
− bisϕibi

)
dBis

]
,

where the second equality follows from that Liϕi = 0 in the NTRi. Therefore,

rγxt∧Tm = rγx− (β − r)(t ∧ Tm) +
n∑
i=1

[
ϕi(zi, bi)− ϕi(zi,t∧Tm , bi,t∧Tm)

]
+

n∑
i=1

∫ t∧Tm

0

[
1

2
σ2
i

(
zisϕ

i
zi
− bisϕibi

)2

ds+ σi

(
zisϕ

i
zi
− bisϕibi

)
dBis

]
.

By (A.27), as m→∞,

rγxt = rγx− (β − r)t+
n∑
i=1

[
ϕi(zi, bi)− ϕi(zit, bit)

]
+

n∑
i=1

∫ t

0

[
1

2
σ2
i

(
zisϕ

i
zi
− bisϕibi

)2

ds+ σi

(
zisϕ

i
zi
− bisϕibi

)
dBis

]
.

Since Wt = xt +
∑n

i=1 fi(0, yit, kit), we have

e−βt−rγWt = e−rt−rγx−
∑n
i=1[fi(0,1,bit)zit+ϕi(zi,bi)−ϕi(zit,bit)]N(t),

where

N(t) = exp

{
−

n∑
i=1

∫ t

0

[
1

2
σ2
i

(
zisϕ

i
zi
− bisϕibi

)2

ds+ σi

(
zisϕ

i
zi
− bisϕibi

)
dBis

]}
.
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Since for all t ∈ [0,∞), zit, bit, ϕ
i(zit, bit), ϕ

i
zi

(zit, bit) and ϕibi(zit, bit) are all bounded

and E[N(t)] = 1, we have

0 ≤ lim
t→∞

E
[
e−βt−rγWt

]
≤ lim

t→∞

[
K3e

−rtE(N(t))
]

= 0,

where K3 is some finite constant. This proves (A.5). In addition,

e−2βt−2rγWt ≤ K4e
−2rtN(t)2,

E[N(t)2] ≤ eK5t,

for some finite constants K4 and K5. Thus, for all T ∈ [0,∞) and i = 1, 2, · · · , n,

E
∫ T

0

|yite−βt−rγWt|2dt =
1

r2γ2
E
∫ T

0

|zite−βt−rγWt |2dt <∞.

This proves (A.6).

Proof of Proposition A.1. We are now ready to prove Proposition A.1. We only

need to prove that all conditions of the verification theorem Lemma A.2 are satisfied.

Lemma A.3 shows that the strategy specified in Proposition A.1 forms an admissible

combined stochastic control. We now show that conditions 3 and 4 of part (a) are

satisfied. Let

v(x, y, k) = −1

r
e−rγx−

∑n
i=1 ϕ

i(zi,bi)

be the proposed value function. We have

lim
T→∞

E[e−βTv(xT , yT , kT )] = −1

r
lim
T→∞

E[e−βT−rγxT−
∑n
i=1 ϕ

i(ziT ,biT )] = 0, (A.37)

where the last equality can be proved in a similar way as the proof of (A.5) in

Lemma A.3. The above equation implies that for any fixed t ≥ 0,

E[|e−βtv(xt, yt, kt)|] <∞.
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Then, e−βtv(xt, yt, kt) is in L1 (Lebesgue space) and converges to 0 in L1. Thus,

condition 4 holds by Theorem 13.7 in Williams (1991). It is straightforward to

check that

zivyi(x, y, k) = γ
(
ziϕ

i
zi
− biϕibi

)
e−rγx−

∑n
i=1 ϕ

i(zi,bi).

So for all T ∈ [0,∞),

E
∫ T

0

∣∣e−βtytvy(xt, yt, kt)∣∣2 dt = E
∫ T

0

[
e−2βt

n∑
i=1

(
zitϕ

i
zi
− bitϕibi

)2
v2(xt, yt, kt)

]
dt

≤ E
∫ T

0

K6

[
e−βtv(xt, yt, kt)

]2
dt

= E
∫ T

0

K6

[
1

r
e−βt−rγxt−

∑n
i=1 ϕ

i(zit,bit)

]2

dt

< ∞, (A.38)

where K6 is some finite constant. The first inequality holds because for all t ∈ [0,∞),

zit, bit, ϕ
i
zi

(zit, bit) and ϕibi(zit, bit) are all bounded. The last inequality can be proved

in a similar way as the proof of (A.6) in Lemma A.3. By (A.37) and (A.38), condition

3 also holds.

Next, we show condition 2 of part (a) holds. By the definition (A.28), we have

Mv(x, y, k) = −1

r
e−rγx−

∑n
i=1 ψ

i(zi,bi),

where

ψi (zi, bi) = sup
(ζi,ζi+n)

{
ϕi
(
z̃i(ζi, ζi+n), b̃i(ζi, ζi+n)

)
− (1 + θi)rγζ

+
i + fi(0, 1, bi)ziζ

−
i+n

}
,

(ζi, ζi+n) ∈ R+ × [−1, 0], (ζi, ζi+n) 6= 0 for at least one i,

z̃i(ζi, ζi+n) = zi + rγζ+
i − ziζ−i+n,
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and b̃i(ζi, ζi+n) satisfies

z̃i(ζi, ζi+n)(b̃i(ζi, ζi+n)− 1− θi) = zi(bi − 1− θi), if ζi > 0,

b̃i(ζi, ζi+n) = bi, if ζi+n < 0.

We denote by

ωi(ζi, ζi+n) = ϕi
(
z̃i(ζi, ζi+n), b̃i(ζi, ζi+n)

)
− (1 + θi)rγζ

+
i + fi(0, 1, bi)ziζ

−
i+n.

In NTRi, since Siϕi < 0, it is straightforward to check that ωiζi+n > 0 in ζi+n < 0.

So ωi(ζi, ζi+n) < ωi(ζi, 0) for any ζi+n < 0. Similarly, since Biϕi < 0 in NTRi,

we have ωiζi < 0 in ζi > 0. So ωi(ζi, ζi+n) < ωi(0, ζi+n) for any ζi > 0. Thus,

ωi(ζi, ζi+n) < ωi(0, 0) for any (ζi, ζi+n) 6= 0. It follows that

Mv(x, y, k) < v(x, y, k), in NTRi.

In a similar way, we have

Mv(x, y, k) = v(x, y, k), in SRi and BRi.

Therefore, condition 2 holds. In addition, NT is the NTR where none of the stocks

is traded.

Finally, we write

L̄v(x, y, k) =
n∑
i=1

[
1

2
σ2
i y

2
i vyiyi + µiyivyi

]
+ rxvx − βv + u∗(vx)

= |v(x, y, k)|
n∑
i=1

Liϕi(zi, bi),

where L̄ is defined in (A.16). Then it is easy to verify that for any consumption
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policy c,

Lcv(x, y, k) +u(c) ≤ max
c

{
Lcv(x, y, k) +u(c)

}
= Lc∗v(x, y, k) +u(c∗) = L̄v(x, y, k),

where c∗ is defined in (A.24). Since L̄v(x, y, k) = 0 in NT , (A.32) is satisfied in NT

with ĉ = c∗. Since L̄v(x, y, k) ≤ 0 in the whole region, condition 1 also holds. Then

the proof is completed.
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