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Summary

Klein-Gordon-Schrödinger (KGS) equations describes a system of a conserved

scalar nucleon interacting with a neutral scalar meson coupled through the Yukawa

interaction. It has a wide range of applications, including but not limited to the

study of the dynamics of small but finite amplitude nonlinearly interacting perturba-

tions in many-body physics, nonlinear optics and optical communications, nonlinear

plasmas and complex geophysical flows, as well as the intense laser-plasma interac-

tions.

The purpose of this thesis is to propose and analyze efficient and uniformly

accurate numerical methods for solving the KGS equations in the singular limit

regime, i.e., 0 < ε � 1. We propose two exponential wave integrator methods

and two multiscale methods. Before the analysis of these methods, we apply some

existing numerical methods for solving the KGS equations in the singular limit

regime to acknowledge their limitations. In order to understand how the step size

should be chosen when ε is very small, we pay special attention to studying the error

bound of each method.

This thesis mainly contains two parts. In the first part, some accurate and effi-

cient methods, such as energy conservative finite difference (ECFD) method, semi-

implicit finite difference (SIFD) method and Crank-Nicolson time-splitting Fourier

iv



Summary v

pseudospectral (CNTSFP) method, are proposed and analyzed for solving the KGS

equations with periodic boundary conditions and three types of initial data, i.e.,

the well-prepared, the ill-prepared and the extremely ill-prepared initial data. The

error estimate of ECFD when ε = O(1) is provided, which shows the error bound

and convergence rate of the ECFD from theoretical point of view. Extensive numer-

ical results on the KGS equations with the three types of initial data are reported

to demonstrate the efficiency, accuracy and ε-scalability. Based on the numerical

results, we find that all the methods have uniform accuracy in space for solving

the KGS equations with different types of initial data except for the ECFD and

SIFD methods, which show h2/
√
ε error bound in space for solving the extremely

ill-prepared data problem. All the methods have uniform second-order accuracy in

time only for solving the KGS equations with the well-prepared initial data when

0 < ε � 1. The numerical results also show that ECFD, SIFD and CNTSFP have

asymptotic temporal error bound O(k2/ε2) for solving the ill-prepared initial data

problem and O(k2/ε3) for solving the extremely ill-prepared initial data problem.

In addition, all of the methods have some convergence order reductions or lose the

convergence of temporal error outside the convergence regime, which means that

when ε is very small, these methods are not efficient nor optimal for solving the

KGS equations numerically except for taking k sufficiently small.

The second part tackles the KGS equations with the ill-prepared initial and the

extremely ill-prepared initial data in the singular limit regime, of which the solu-

tions have high oscillation in time with respect to ε. Based on the exponential wave

integrator (EWI) method for solving the second order nonlinear ODEs and time-

splitting algorithm for the Schrödinger equation, we propose two uniformly accurate,

efficient and explicit methods. The two exponential wave integrator time-splitting

Fourier pseudospectral (EWI-TSFP) methods are designed by using a pseudospec-

tral method for spatial derivatives of the Kelin-Gordon equation, and then using

the Gautschi-type exponential wave integrator method for solving the second-order

ODEs, and coupling with the time-splitting Fourier pseudospectral method for the
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NLSE. Numerical studies of these two methods are carried out for the ill-prepared

and extremely ill-prepared problem, which show that these two methods have unifor-

m and optimal spectral accuracy in space. Moreover, the two methods are uniformly

accurate in time and optimally convergent with quadratic rate when 0 < k ≤ ε.

Compared with the results of the classical methods, the new methods offer better

approximations for the KGS equations when 0 < ε� 1. And the new methods can

be easily extended to 2D and 3D problems and are easy to implement. Finally, we

propose the multiscale analysis of the KGS equations to know the main properties

of the solutions to the KGS equations theoretically under the three main types of

initial conditions. Two multiscale methods are proposed with the application of the

two EWI-TSFP methods to the decomposed KGS equations with ill-prepared initial

data. Numerical results show that the multiscale methods have uniform spectral

accuracy in space and uniform second-order accuracy in time. Thus for solving the

KGS equations with ill-prepared initial data, the multiscale methods are the best

with uniform and optimal accuracy compared with the other methods we discussed.
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Chapter 1
Introduction

1.1 Physical background

During the past decades, a wide range of physical phenomena are explained by

the dynamics of nonlinear waves [15]. One of the most challenging and modern appli-

cations of the control of the nonlinear waves is the control of quantum-mechanical

systems [17, 20, 33, 53, 65, 68, 86]. It has become clear that the same equations,

such as the nonlinear Schrödinger (NLS) equation, the Sine-Gordon equation and

Klein-Gordon equation etc., appear in many different physical situations (see, for

example, [66, 72] and the references therein). It makes sense to introduce some ef-

ficient methods for solving the same equations with different restrictive conditions.

Furthermore, for the nonlinear waves describing the phenomena in quantum and

plasma physics, oscillations could occur either in space or in time or in both. For

example, the nonlinear Schrödinger equation in the semiclassical limit regime has

oscillations in both time and space [12], the nonlinear Klein-Gorden equation in

the nonrelativistic limit regime [8] is highly oscillatory in time and so are the Klein-

Gordon-Zarharov system [9] and Zarkharov system [13] in the subsonic limit regime.

Uniformly accurate methods are needed to solve those oscillation problems. Much

research has been done during these two decades. For our interest, we will focus

on the Klein-Gordon-Schrödinger (KGS) equations (system) in the singular limit

1



1.2 The Klein-Gordon-Schrödinger equations 2

regime to find the effective approximations of the system with different kinds of

initial conditions, getting rid of the influence of the oscillation.

As we know, the standard Klein-Gordon-Schrödinger-Yukawa system describes

a classical model of the Yukawa interaction between conservative complex nucleon

field and neutral meson in quantum field theory [91]. The KGS system has wide

application in many physical fields (see [69, 73, 79] and the references therein). For

example, a similar system to these equations may describe the dynamics of coupled

high frequency electron waves and low frequency ion plasma waves in a homoge-

neous magnetic field [30]. In addition, the KGS equations have been widely used to

study the dynamics of small but finite amplitude nonlinearly interacting perturba-

tions in many-body physics [30], nonlinear optics and optical communications [71],

nonlinear plasmas and complex geophysical flows [43], as well as the intense laser-

plasma interactions [72] and nonlinear quantum electrodynamics [66]. As is well

known, many researchers have been working on the solutions for the classical KGS

equations theoretically and numerically and most of them focused on the classical

KGS equations with particular kind of initial data or boundary condition. Here, the

numerical studies for the KGS equations in the singular limit regime are essential

and necessary.

1.2 The Klein-Gordon-Schrödinger equations

The nonlinear Schrödinger equation coupled with a nonlinear Klein-Gordon e-

quation reads

i∂tψ(x, t) + ∆ψ(x, t) + ψ(x, t)φ(x, t) = 0,x ∈ Rd, t > 0, (1.1)

ε2∂ttφ(x, t)−∆φ(x, t) + βφ(x, t)− |ψ(x, t)|2 = 0, x ∈ Rd, t > 0, (1.2)

with the initial conditions

ψ(x, 0) = ψ(0)(x), φ(x, 0) = φ(0)(x), ∂tφ(x, 0) = φ(1)(x), x ∈ Rd. (1.3)
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The system of Eqs. (1.1) and (1.2), which is known as the Klein-Gorden-Schrödinger

equations, is a classical example describing a system of a conserved scalar nucleon

interacting with a neutral scalar meson coupled though the Yukawa interaction [91].

Here, the complex-valued unknown function ψ(x, t) represents a scalar nucleon field,

the real-valued unknown function φ(x, t) represents a scalar meson field, ε > 0 is a

parameter inversely proportional to the speed of light, β is one nonnegative constant.

In fact, when ε = 1 and β = 1, the system (1.1)-(1.2) reduces to the standard KGS

equations [34]. When 0 < ε � 1 and β = O(1), the system (1.1)-(1.2) is called

the KGS equations in the singular limit regime. Here throughout this thesis we

assume that β = 1. It is easy to see that the KGS equations have the following two

important conserved quantities, i.e. the wave energy

D(t) :=

∫
Rd

|ψ(x, t)|2dx =

∫
Rd

|ψ(0)(x)|2dx ≡ D(0), t ≥ 0. (1.4)

and the Hamiltonian

H(t) =

∫
Rd

[
1

2
(φ(x, t)2 + ε2(∂tφ(x, t))2 + (∇φ(x, t))2) + |∇ψ(x, t)|2

− |ψ(x, t)|2φ(x, t)

]
dx ≡ H(0), t ≥ 0.

(1.5)

In the singular limit regime, i.e. ε→ 0, the KGS equations collapse to the nonlinear

Schrödinger-Yukawa (SY) equations:

i∂tψ
0(x, t) + ∆ψ0(x, t) + φ0(x, t)ψ0(x, t) = 0, (1.6)

−∆φ0(x, t) + φ0(x, t)− |ψ0(x, t)|2 = 0, x ∈ Rd, t ≥ 0, (1.7)

with the initial condition

ψ0(x, 0) := ψ0
l (x) = lim

ε→0
ψ(0)(x), x ∈ Rd, (1.8)

where ψ0(x, t) = lim
ε→0

ψ(x, t) and φ0(x, t) = lim
ε→0

φ(x, t). In addition, when t = 0, the

solutions of the SY equations satisfy [10]

φ0
l (x) := φ0(x, 0) = (−∆ + I)−1|ψ0

l |2, (1.9)

φ1
l (x) := ∂tφ

0(x, 0) = −i(−∆ + I)−1∇ · (ψ0
l∇ψ̄0

l − ψ̄0
l∇ψ0

l ). (1.10)
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The corresponding conservation laws hold for the SY equations with the Hamiltonian

H0(t) =

∫
Rd

[
1

2
(φ0(x, t)2 + (∇φ0(x, t))2) + |∇ψ0(x, t)|2

− |ψ0(x, t)|2φ0(x, t)

]
dx ≡ H(0), t ≥ 0.

(1.11)

Here the initial data in (1.3) can be classified into the three types with m ≥ 2 as

follows:

(i) Well-prepared initial data; i.e., there exists one constant ε1 such that for

0 < ε ≤ ε1,

‖ψ(0) − ψ0
l ‖Hm(Rd) + ‖φ(0) − φ0

l ‖Hm(Rd) + ‖ε(φ(1) − φ1
l )‖Hm(Rd) . ε2. (1.12)

(ii) Ill-prepared initial data; i.e., there exists one constant ε2 such that for 0 <

ε ≤ ε2,

‖ψ(0) − ψ0
l ‖Hm(Rd) + ‖φ(0) − φ0

l ‖Hm(Rd) + ‖ε(φ(1) − φ1
l )‖Hm(Rd) . ε. (1.13)

(iii) Extremely ill-prepared initial data; i.e., there exists one constant ε2 such

that for 0 < ε ≤ ε2,

‖ψ(0) − ψ0
l ‖Hm(Rd) . ε, ‖φ(0) − φ0

l ‖Hm(Rd) + ‖ε(φ(1) − φ1
l )‖Hm(Rd) = O(1).

(1.14)

In our studies on the KGS equations in the singular limit regime, we will test our

numerical results of each method with these initial data respectively.

1.3 Contemporary studies

The KGS equations in the classical regime, i.e., ε = O(1), has been studied for

several decades. There are mainly two aspects of their research. One is developed

from the pure mathematics and physics in which the methods are known as the

analytical studies in the literature. The other is from the computational mathe-

matics and physics studies where people developed different numerical methods for
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the KGS equations. On the analytical studies, the first study was done by Fukuda

and Tsutsumi [34]- [36]. By using the Galerkin’s method, they proved the unique

existence of global strong solutions of the initial boundary value problem. Baillon

and Chadam [2] proved the existence of global strong solutions of the initial value

problem of the KGS equations by using Lp−Lq estimates for the elementary solution

of the linear Schrödinger equation. Hayashi and Wahl [44] did some extension and

showed the existence of global strong solutions to the initial boundary value problem

by using estimates of the nonlinearity in fractional order Besov space developed by

Brenner and Wahl [18], nonlinear interpolation theorem obtained by Whal [75]- [77],

the inequality of Brezis and Gallouet [19]. Ozawa and Tsutsumi [63] studied the

asymptotic behavior of solutions for the KGS equations. Later, Guo and Miao [40]

studied asymptotic states; Li and Guo [57] studied the asymptotic smoothing effect

of solutions to weakly dissipative KGS equations. Ohta [62] established the stability

of stationary states and Natali [61] found the stability properties of the periodic

standing waves. Biler [16] studied the attractors of the system and also gave some

estimates on the decay of the homogeneous dissipative system. Lu and Wang [59],

Guo and Li [41] found the global attractors. The solitary wave solutions to Eqs.

(1.1) and (1.2) have been obtained by using the homogeneous balance method [84].

And Zhou and Wang [78] found the periodic wave solutions expressed by various Ja-

cobi elliptic functions of (1.1) and (1.2) by using F-expansion method which can be

thought of as a generalization of Jacobi elliptic function expansion method. Hioe [47]

has obtained the periodic solitary waves for the two coupled nonlinear KGS equa-

tions. Fan et al. [24] have proposed an algebraic method to obtain the explicit exact

solutions for coupled KGS equations. Yomba [90] applied the mapping method to

construct the explicit, rich and new solutions such as Jacobi elliptic function, com-

bined Jacobi elliptic function, rational, triangular function, soliton and combined

soliton solutions. Recently, Hesameddini and Fotros [45] found the solution for the

time-fractional coupled KGS equation by using decomposition method. In addition,

more reference about the plane, global and solitary wave solutions of the standard
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KGS equations, we refer to [1, 24, 28,39,51,84,88] and the reference therein.

Study with regard to numerical approximation is a hot topic for this problem

recently since the numerical methods are important tools for understanding the

physical behavior of the equations. Zhang [93] studied a conservative finite dif-

ference method (C-C) for the standard KGS and provided the detailed error esti-

mates by energy method. Kong et al. [55] paid attention to its structure-preserving

numerical schemes and experimentally discussed it. Then they derived multisym-

plectic midpoint (M-M) scheme. In [54], they also presented the symplecticity for

the KGS and proposed a symplectic structure-preserving integrator for it. Howev-

er, the methods are completely implicit and tedious iterative process is required.

Hong [50] proposed three finite difference schemes, which are called M-C, T-C and

T-T schemes and compared the numerical behavior of the three schemes with those

of the schemes C-C and M-M in the same paper. These finite difference schemes

applied to the KGS equations are implicit and requires huge computation cost for

initial or initial-boundary value problems. Wang and Zhang [80] derived a class of

discrete-time orthogonal spline collocation schemes. Xanthopoul and Zouraris [87]

investigated the KGS equations by using a linearly implicit method. Hong et al. [49]

proposed the explicit multi-symplectic schemes by concatenating suitable symplec-

tic Runge-Kutta-type methods and symplectic Runge-Kutta-Nyström-type methods

for discretizing every partial derivative in each sub-equation. Wang [82] gave the op-

timal point-wise error estimate of a compact difference scheme. In [67], the modified

decomposition method was also proposed to solve the KGS equations.

Due to the high accuracy, spectral methods have been increasingly popular dur-

ing these two decades. Kong et al. [56] proposed an explicit symplectic partitioned

Runge-Kutta Fourier pseudospectral scheme for the KGS equations. They also pre-

sented the symplecticity for the KGS equations and proposed a symplectic structure-

preserving integrator for it. Xiang [89] proposed a conservative spectral method with
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the periodic initial conditions. Bao and Yang [14] suggested two time-splitting pseu-

dospectral methods. In one method, they used Fourier pseudospectral discretiza-

tion for the spatial derivatives and Crank-Nicolson/Leap-Frog schemes for the time

derivatives including time splitting methods for the Schrödinger equation. For an-

other one, they used Fourier pseudospectral discretization for the spatial derivatives

and then solved the ODEs in phase analytically. Cai et al. [21] proposed explic-

it and implicit multisymplectic Fourier pseudospectral schemes for the equations.

Dehghan and Taleei [29] investigated the KGS equations by using Chebyshev pseu-

dospectral collocation method for the approximation in the spatial variable and the

explicit Runge-Kutta method in time discretization for the KGS equations. Very

recently, Liang [58] designed a linearly implicit conservative scheme for long-term

numerical simulation of the KGS equations, which is new charge-preserving and

energy-preserving Fourier pseudospectral algorithm for the KGS equations.

On the other hand, for the KGS equations (1.1) and (1.2) in the singular limit

regime, i.e., 0 < ε� 1, very few analytical and numerical results are available in the

literature. Only Bao and Yang [14] contributed the time-splitting pseudospectral

methods and studied ε-resolution of the KGS equations with well-prepared initial

data or solitary initial data. And in [10], Bao et al. provided rigorous mathematical

justification for the formal limits of the solution of the KGS equations to the solution

of the SY equation based on the two-scale matched asymptotic expansion. Thus,

more attentions are needed to analyze the solutions and to design efficient and

accurate numerical methods of (1.1)-(1.2) in the singular limit regime. In fact, due to

the two-scale matches asymptotic analysis, there are high oscillations in the solutions

of the KGS equations with the ill-prepared or extremely ill-prepared initial data

when ε → 0. This brings some difficulties in the mathematical analysis and causes

severe burdens in practical computation of the KGS equations in the singular limit

regime, making the analytical and numerical approximations extremely challenging

and costly in the regime of 0 < ε� 1. However, some uniformly accurate numerical

schemes for highly oscillatory Klein-Gordon equation and the nonlinear Schrödinger
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equation have been proposed and analyzed in [7,22] recently. The method in [22] is

based on embedding the problem in a suitable two-scale reformulation by introducing

an additional variable and using the Chapman-Enskog expansion to separate the

fast time scale and the slow one, while this method increases the dimension of the

problem. And the method in [7] is designed by adapting a multiscale decomposition

by frequency (MDF) to the solution at each time step and applying an exponential

wave integrator [37,38] to the nonlinear Schrödinger equation with wave operators.

Therefore, it is desirable and hopeful to design simple and efficient, as well as easy

to implement, uniformly accurate numerical methods for the KGS equations when

ε ∈ (0, 1] with balance between efficiency and accuracy as well as simplicity.

1.4 Purpose and scope of this thesis

The purpose of this study is to propose and analyze efficient and accurate nu-

merical methods for solving the Klein-Gordon-Schrödinger equations in the singular

limit regime. We mainly focus on the following two parts:

• Firstly, to present some existing numerical methods for discretizing the KGS

equations on bounded domains under different initial data to understand nu-

merically how the initial conditions influence the solutions. Meanwhile, we

study ε-scalability of different classical numerical methods and detailed com-

parison of these methods is made.

• Secondly, to propose some simple, uniformly accurate and efficient numerical

methods to solve the KGS equations in the singular limit regime.

The following chapters are organized as follows. Chapter 2 is devoted to studying

some existing numerical methods to the KGS equations with different initial data

and detailed comparison is provided in the last part of this chapter. We paid particu-

lar attention to the resolution of different numerical methods, i.e., meshing strategy

requirement (or ε-scalability) for solving the KGS equations with different initial
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data when 0 < ε � 1. In Chapter 3, we applied the exponential wave integrator

(EWI) with the Gautschi’s quadratue Fourier pseudospectral method to the Klein-

Gordon equation in the KGS system, and coupled with time-splitting method for the

Schrödinger equation to obtain two uniformly accurate schemes for the KGS equa-

tions in the singular limit regime with different initial conditions. The methods are

explicit, efficient, and accurate in practical computation and converge optimally at

quadratic convergence rate in the regimes ε = O(1). Thus the methods in Chapter 3

are very different from those methods in Chapter 2. In fact, similar techniques were

already used for discretizing the Zakharov system [13]. In Chapter 4, we proposed

the multiscale analysis of the KGS equations in order to know the main properties

of the solutions to the KGS equations theoretically under three main types of initial

conditions. Two multiscale methods were proposed with the application of the two

EWI-TSFP methods for the decomposed KGS equations under the ill-prepared ini-

tial conditions. In Chapter 5, we got some conclusions and discussed some possible

future work.



Chapter 2
Standard numerical methods and their

analysis

In this chapter, we are going to apply and study some popular classical numer-

ical methods which are proposed based on directly discretizing the classical KGS

equations. Special efforts are made to study how the error bound of the numerical

method depends on ε, as 0 < ε� 1. Zhang [93] has proposed an energy conservative

finite difference method to solve the KGS equations with ε = 1. A detailed review

and application of this method and a semi-implicit finite difference method for the

KGS equations in the singular limit regime are provided in section 2.1. We also pro-

vide the detailed proof of error estimate when ε = O(1). In section 2.2, we briefly

review one time-splitting method, which is Crank-Nicolson Fourier pseudospectral

discretization, coupled with time-splitting Fourier pseudospectral (TSFP) method

for the NLSE. Extensive numerical results on the three types of initial problems are

reported to demonstrate the efficiency, accuracy and ε-scalability of these methods

in Section 2.3.

10
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2.1 Finite difference methods and their analysis

In this section, we present some numerical methods for the KGS equations with

periodic boundary conditions. For simplicity of notation, we shall introduce the

method in one space dimension (d = 1). Generalizations to d > 1 are straightforward

for the tensor product grids, and the results remain valid without modifications. In

one dimension, the problem collapses to

i∂tψ + ∆ψ + φψ = 0, a < x < b, t > 0, (2.1)

ε2∂ttφ−∆φ+ φ− |ψ|2 = 0, a < x < b, t > 0, (2.2)

ψ(x, 0) = ψ(0)(x), φ(x, 0) = φ(0)(x), ∂tφ(x, 0) = φ(1)(x), a ≤ x ≤ b, (2.3)

ψ(a, t) = ψ(b, t), ∂xψ(a, t) = ∂xψ(b, t), t ≥ 0, (2.4)

φ(a, t) = φ(b, t), ∂xφ(a, t) = ∂xφ(b, t), t ≥ 0. (2.5)

Moreover, we supplement (2.1-2.5) by imposing the compatibility condition

ψ(0)(a) = ψ(0)(b), φ(0)(a) = φ(0)(b), φ(1)(a) = φ(1)(b). (2.6)

We remark here that the boundary conditions considered here are inspired by the

inherent physical nature and they have been widely used in the literature for dealing

with analysis and computation of the KGS equations. As is well known, the above

KGS equations in 1D have the following properties:

D(t) =

∫ b

a

|ψ(x, t)|2dx =

∫ b

a

|ψ(0)(x)|2dx = D(0), t ≥ 0, (2.7)

and the Hamiltonian

H(t) =

∫ b

a

[
1

2
(φ(x, t)2 + ε2(∂tφ(x, t))2 + (∂xφ(x, t))2) + |∂xψ(x, t)|2

− |ψ(x, t)|2φ(x, t)

]
dx = H(0), t ≥ 0.

(2.8)

In some cases, the periodic boundary conditions (2.4) and (2.5) may be replaced by

the homogeneous Dirichlet boundary conditions, i.e.,

ψ(a, t) = ψ(b, t) = 0, φ(a, t) = φ(b, t) = 0, t ≥ 0. (2.9)
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We choose the spatial mesh size h = ∆x > 0 with h = (b− a)/M for M an even

positive integer, the time step k = ∆t > 0, and let the grid points and the time

step be xj := a+ jh, j = 0, 1, · · ·M, tn := nk, n = 0, 1, · · · . Let ψnj and φnj be the

approximations of ψ(xj, tn) and φ(xj, tn) (j = 0, 1, · · ·M n = 0, 1, · · · ) and introduce

the finite difference discretization operator as following, for un = (u0, u1, u2, · · ·uM)

(unj )x =
unj+1 − unj

h
, (unj )x̄ =

unj − unj−1

h
,

(unj )t =
un+1
j − unj
k

, (unj )t̄ =
unj − un−1

j

h
,

(unj )t̂ =
un+1
j − un−1

j

2k
, ‖un‖∞ = sup

1≤j≤M
|unj |,

(un, vn) = h
M−1∑
j=0

unj v̄
n
j , ‖un‖pp = h

M−1∑
j=0

|unj |p,

‖un‖H1 =

√√√√h
M−1∑
j=0

|unj |2 +

√√√√h
M−1∑
j=0

|
unj+1 − unj

h
|2.

Then the energy conservative finite difference (ECFD) method reads:

i
ψn+1
j − ψnj

k
+

1

2
(ψn+1

j + ψnj )xx̄ +
1

4
(ψn+1

j + ψnj )(φn+1
j + φnj ) = 0,

0 ≤ j ≤M − 1, n ≥ 0,

(2.10)

ε2(φnj )tt̄ −
1

2
(φn+1

j + φn−1
j )xx̄ +

1

2
(φn+1

j + φn−1
j )− |ψnj |2 = 0,

0 ≤ j ≤M − 1, n ≥ 1,

(2.11)

ψn0 = ψnM , φ
n
0 = φnM , ψ

n
−1 = ψnM−1, φ

n
−1 = φnM−1, n ≥ 0. (2.12)

The initial conditions (2.3) are discretized as

ψ0
j = ψ(0)(xj), φ

0
j = φ(0)(xj), j = 0, 1, · · ·M, (2.13)

φ1
j = φ0

j + kφ(1)(xj) +
k2

2ε2

(
(∆φ(0))(xj)− φ0

j + |ψ0
j |2
)
, j = 0, 1, · · ·M. (2.14)
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And a semi-implicit finite difference (SIFD) method reads

i
ψn+1
j − ψn−1

j

2k
+

1

2
(ψn+1

j + ψn−1
j )xx̄ + (ψnj φ

n
j ) = 0,

0 ≤ j ≤M − 1, n ≥ 0,

(2.15)

ε2(φnj )tt̄ −
1

2
(φn+1

j + φn−1
j )xx̄ +

1

2
(φn+1

j + φn−1
j )− |ψnj |2 = 0,

0 ≤ j ≤M − 1, n ≥ 1,

(2.16)

ψn0 = ψnM , φ
n
0 = φnM , ψ

n
−1 = ψnM−1, φ

n
−1 = φnM−1, n ≥ 0. (2.17)

And the initial data are the same with those of ECFD. This scheme is easier to

compute than ECFD but does not conserve energy of the KGS equations in the

discrete level.

2.1.1 Energy conservation laws

For the ECFD method, one can easily show that the scheme satisfies the following

conservation laws in discrete level. We can assume that the solutions of the KGS

equations satisfy

φ(x, t) ∈ (C4[a, b];W 1,∞) ∩ (C3[a, b];W 2,∞) ∩ (C2[a, b];W 3,∞) ∩ C[a, b],

ψ(x, t) ∈ (C3[a, b];W 1,∞) ∩ (C2[a, b];W 2∞) ∩ C[a, b].
(A)

Lemma 2.1.1. The ECFD scheme satisfies the following two conservation laws:

En = En−1 = · · · = E0, (2.18)

‖ψn+1‖2
2 = ‖ψn‖2

2 = · · · ‖ψ0‖2
2, (2.19)

where

En = ε2‖φnt ‖2
2 +

1

2
(‖φnx‖2

2 + ‖φn+1
x ‖2) +

1

2
(‖φn‖2

2 + ‖φn+1‖2)

+ 2‖ψn+1
x ‖2

2 − h
M−1∑
j=1

(φnj + φn+1
j )|ψn+1

j |2.
(2.20)
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Proof. Computing the product of discrete KG equation (2.10) with h(ψ̄n+1
j + ψ̄nj ),

summing up with j and taking the imaginary part, we obtain

1

k
(‖ψn+1‖2

2 − ‖ψn‖2
2) = 0. (2.21)

Thus

‖ψn+1‖2
2 = ‖ψn‖2

2 = · · · ‖ψ0‖2
2. (2.22)

Computing the product of discrete KG equation (2.10) with h(ψ̄n+1
j − ψ̄nj ), summing

up with j and taking the real part, we get

‖ψn+1
x ‖2

2 − ‖ψnx‖2
2 −

1

2
h
M−1∑
j=1

(φn+1
j + φnj )(|ψn+1

j |2 − |ψnj |2) = 0. (2.23)

Then, compute the product of the discrete Schrödinger equation (2.11) with h(φn+1
j −

φn−1
j ), summing up with j, we obtain

ε2(‖φnt ‖2
2 − ‖φn−1

t ‖2
2) +

1

2
(‖φn+1

x ‖2
2 − ‖φn−1

x ‖2
2) +

1

2
(‖φn+1‖2

2 − ‖φn−1‖2
2)

− h
M−1∑
j=1

(φn+1
j − φn−1

j )|ψnj |2 = 0.
(2.24)

Combine (2.23) and (2.24), and noticing

h
M−1∑
j=1

(
(φn+1

j + φnj )(|ψn+1
j |2 − |ψnj |2) + (φn+1

j − φn−1
j )|ψnj |2

)
= h

M−1∑
j=1

(
(φn+1

j + φnj )|ψn+1
j |2 − (φnj + φn−1

j )|ψnj |2
)
,

which yields

En = En−1. (2.25)

From these properties, we can get the following lemma:
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Lemma 2.1.2. Suppose that φ(x, t) and ψ(x, t) satisfy the assumption A, there

exists a constant C, and for h enough small, such that ‖φnx‖2 ≤ C, ‖φn‖∞ ≤ C,

‖ψnx‖2 ≤ C, ‖ψn‖∞ ≤ C.

Proof. By using the discrete Gagliado-Nirenberg inequality

‖u‖l4 ≤ C‖u‖
3
4

l2‖ux‖
1
4

l2 , ∀u ∈ H
1, (2.26)

we have

h
M−1∑
j=1

(φn+1
j )|ψn+1

j |2

≤ ‖φn+1|ψn+1|‖2‖ψn+1‖2

≤ ‖φn+1‖4‖ψn+1‖4‖ψn+1‖2

≤ C‖φn+1‖3/4
2 ‖φn+1

x ‖1/4
2 ‖ψn+1

x ‖1/4
2 ‖ψn+1‖7/4

2

≤ 1

2
(‖φn+1‖2

2 + ‖φn+1
x ‖2

2 + ‖ψn+1
x ‖2

2) + C‖ψn+1‖14/3
2 ,

(2.27)

with the help of Young’s inequality.

According to the assumption on the initial data, there exists a constant C > 0,

independent of ε, such that E0 ≤ C, ‖ψ0‖2
2 ≤ C. Since En = E0 and ‖ψn‖2

2 = ‖ψ0‖2
2,

and together with (2.27), we can have

ε2‖φnt ‖2
2 +

1

2
(‖φnx‖2

2 + ‖φn+1
x ‖2

2) +
1

2
(‖φn‖2

2 + ‖φn+1‖2
2)

+ 2‖ψn+1
x ‖2

2 ≤ C1E0 + C2‖ψ0‖2
2 ≤ C,

(2.28)

which implies that ‖φnx‖H1 ≤ C and ‖ψnx‖H1 ≤ C, such that ‖φn‖∞ ≤ C, ‖ψn‖∞ ≤

C.

2.1.2 Convergence analysis when ε = 1

Here we give the convergence results of the ECFD method in the regime: ε =

O(1). Without loss of generality and for the simplicity of notation, we set ε = 1 in

this subsection. Define the grid error function as

enj = ψ(xj, tn)− ψnj , ηnj = φ(xj, tn)− φnj . (2.29)
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For the above conservative scheme (ECFD), we can establish the following error

estimate:

Theorem 2.1.1. Assume k . h and under assumptions (A), there exist constants

k0 > 0 and h0 > 0 sufficiently small such that,when 0 < k ≤ k0 and 0 < h < h0, we

have the following error estimate for the ECFD scheme (2.10-2.14) when ε = 1:

‖en‖H1 . h2 + k2, ‖ηn‖H1 . (h2 + k2), 0 ≤ n ≤ T

k
.

In order to prove Theorem 2.1.1, we first establish the following lemmas. Define

θnj and δnj as the truncation errors of the scheme (2.10)-(2.14), which are written as

follows

θnj = i(ψ(xj, tn))t +
1

2
(ψ(xj, tn+1) + ψ(xj, tn))xx̄

+
1

4
[φ(xj, tn+1) + φ(xj, tn)][ψ(xj, tn+1) + ψ(xj, tn)], 1 ≤ j ≤M − 1,

(2.30)

δnj = ε2φ(xj, tn)tt̄ −
1

2
(φ(xj, tn+1) + φ(xj, tn−1))xx̄

+
1

2
(φ(xj, tn+1) + φ(xj, tn−1))− |ψ(xj, tn)|2, 1 ≤ j ≤M − 1, n ≥ 1,

(2.31)

δ0
j = φ(xj, t0)t − φ(1)(xj)−

k

2ε2
(∂xxφ

(0)(xj)− βφ(0)(xj) + |ψ(0)(xj)|2), (2.32)

ψ(xj, 0) = ψ(0)(xj), φ(xj, 0) = φ(0)(xj), 0 ≤ j ≤M, (2.33)

ψ(a, tn) = ψ(b, tn), φ(a, tn) = φ(b, tn), n ≥ 0. (2.34)

Using the Taylor’s expansion, we can prove the following lemma:

Lemma 2.1.3. (Local truncation error of ECFD) ψ(x, t), φ(x, t) are the solutions

of the KGS equations and satisfy the assumption (A), then the truncation errors of

the ECFD satisfy

‖θn‖2 + ‖θnx‖2 . h2 + k2, n = 0, 1, 2 · · · , (2.35)

‖δn‖2 + ‖δnx‖2 . h2 + k2, n = 1, 2 · · · , (2.36)

‖δ0‖2 + ‖δ0
x‖2 . k2. (2.37)
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Similarly, for the SIFD method, we have the same approximation of the trunca-

tion error, especially when ε = 1.

From (2.1)-(2.5) and (2.10)-(2.14), and the definition of truncation errors, we

obtain the following error equations:

i
en+1
j − enj
k

+
1

2
(en+1
j + enj )xx̄ +Gn

j = θnj , 0 ≤ j ≤M − 1, n ≥ 0, (2.38)

ηn+1
j − 2ηnj + ηn−1

j

k2
− 1

2
(ηn+1
j + ηn−1

j )xx̄ +
1

2
(ηn+1
j + ηn−1

j )

− (|ψ(xj, tn)|2 − |ψnj |2) = δnj , 0 ≤ j ≤M − 1, n ≥ 1,

(2.39)

η1
j = kδ0

j , e
0
j = 0, η0

j = 0, 0 ≤ j ≤M, (2.40)

en0 = enM , η
n
0 = ηnM , e

n
−1 = enM−1, η

n
−1 = ηnM−1 n ≥ 0, (2.41)

where

Gn
j =

1

4
(φ(xj, tn+1) + φ(xj, tn))(ψ(xj, tn+1) + ψ(xj, tn))

− 1

4
(φn+1

j ) + φnj )(ψn+1
j + ψnj )

=
1

4
(ηnj + ηn+1

j )(ψ(xj, tn+1) + ψ(xj, tn)) +
1

4
(φn+1

j + φnj )(en+1
j + enj ).

Since the first step calculations are different with the others, we can do the error

estimate at the first step.

Lemma 2.1.4. (Error bounds at n = 1). Assume k . h and under assumptions

(A), there exist constants k0 > 0 and h0 > 0 sufficiently small, such that, when

0 < k ≤ k0 and 0 < h < h0, we have the following error estimate for the ECFD

scheme (2.10) and (2.11) when n = 1:

‖e1‖H1 + ‖η1‖H1 . k2 + h2. (2.42)

Proof. By definition, e0 = 0 ∈ RM+1. When n = 1, from (2.40), we can get the first

step error approximation of η1 from Hölder inequality

‖η1‖2
2 ≤ Ck2(‖δ0‖2

2). (2.43)
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and from (η1
j )x = k(δ0

j )x, we can get

‖η1
x‖2

2 ≤ Ck2(‖δ0
x‖2

2). (2.44)

Next, let n = 0 in (2.38) and multiply h · e1
j on both side of it. Summing up with j,

we have

i

k
‖e1‖2

2 −
1

2
‖e1

x‖2
2 +

h

4

M−1∑
j=1

(φ0
j + φ1

j)|e1
j |2

+
h

4

M−1∑
j=1

(ψ(xj, 0) + ψ(xj, t1))(η1
j ē

1
j) = (θ0, e1).

(2.45)

Taking the imaginary part of (2.45), we have the following estimation:

‖e1‖2
2

k
= Im(θ0, e1)− Im

{
h

4

M−1∑
j=1

(ψ(xj, 0) + ψ(xj, t1))(η1
j ē

1
j)

}

≤ Ck(‖θ0‖2
2 + ‖η1‖0

2) +
1

4k
‖e1‖2

2.

(2.46)

Thus,

‖e1‖2
2 ≤ Ck2(‖θ0‖2

2 + ‖η1‖2
2). (2.47)

Taking the real part of (2.45), we obtain

1

2
‖e1

x‖2
2 −

h

4

M−1∑
j=1

(φ0
j + φ1

j)|e1
j |2 −Re

{
h

4

M−1∑
j=1

(ψ(0)(xj) + ψ(xj, t1))(η1
j ē

1
j)

}

= Re(θ0, e1).

(2.48)

Similarly, we can get

‖e1
x‖2

2 ≤ C(‖θ0‖2
2 + ‖η1‖2

2 + ‖e1‖2
2). (2.49)

Totally, we have the result in the lemma. The proof is complete.

We start the proof of Theorem 2.1.1. This proof is divided into three steps.
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Proof. Step 1. Computing the product of (2.38) with h(ēn+1
j + ēnj ), summing up

with j and taking the imaginary part, one obtains

1

k
(‖en+1‖2

2 − ‖en‖2
2) + Im(Gn, en + en+1) = Im(θn, en + en+1), n ≥ 1. (2.50)

From lemma 2.1.2 and Hölder inequality, we have

|Im(Gn, en + en+1)| ≤ C(‖Gn‖2
2 + ‖en‖2

2 + ‖en+1‖2
2)

≤ (‖en‖2
2 + ‖en+1‖2

2 + ‖ηn‖2
2 + ‖ηn+1‖2

2),
(2.51)

|Im(θn, en + en+1)| ≤ C(‖θn‖2
2 + ‖en‖2

2 + ‖en+1‖2
2). (2.52)

This implies

‖en+1‖2
2 − ‖en‖2

2 ≤ Ck(‖ηn+1‖2
2 + ‖ηn‖2

2 + ‖en+1‖2
2 + ‖en‖2

2 + ‖θn‖2
2). (2.53)

Step 2. Computing the product of (2.38) with −2h(ēn+1
j − ēnj ) and taking the real

part, we obtain

(‖en+1
x ‖2

2 − ‖enx‖2
2) = P n

1 − 2kRe(θn, ent ), (2.54)

where

P n
1 = 2kRe(Gn, ent ). (2.55)

Taking the complex conjugate of (2.38) yields,

(ēn)t = − i
2

(ēn+1
j + ēnj )xx̄ − iḠn

j + iθ̄nj . (2.56)

Taking it into (2.54), we get the following estimation:

‖en+1
x ‖2

2 − ‖enx‖2
2

. k(‖en‖2
2 + ‖en+1‖2

2 + ‖enx‖2
2 + ‖en+1

x ‖2
2 + ‖ηn‖2

2

+ ‖ηn+1‖2
2 + ‖ηnx‖2

2 + ‖ηn+1
x ‖2

2 + ‖θn‖2
2 + ‖θnx‖2

2).

(2.57)

Step 3. Computing the product of (2.39) with h(ηn+1
j −ηn−1

j ) when n ≥ 1, summing

up with j, we have

(‖ηnt ‖2
2 − ‖ηn−1

t ‖2
2) +

1

2
(‖ηn+1

x ‖2
2 − ‖ηn−1

x ‖2
2) +

1

2
(‖ηn+1‖2

2 − ‖ηn−1‖2
2)

= (δn, ηn+1 − ηn−1) + h

M−1∑
j=1

(|ψ(xj, tn)|2 − |ψnj |2)(ηn+1
j − ηn−1

j ), n ≥ 1.
(2.58)
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By Hölder inequality, we obtain

(‖ηnt ‖2
2 − ‖ηn−1

t ‖2
2) +

1

2
(‖ηn+1

x ‖2
2 − ‖ηn−1

x ‖2
2) +

1

2
(‖ηn+1‖2

2 − ‖ηn−1‖2
2)

= (δn, ηn+1 − ηn−1) + h
M−1∑
j=1

(|ψ(xj, tn)|2 − |ψnj |2)(ηn+1
j − ηn−1

j )

≤ Ck(‖δn‖2
2 + ‖ηnt ‖2

2 + ‖ηn−1
t ‖2

2 + ‖en‖2
2).

(2.59)

Define

Sn =‖en+1‖2
2 + ‖en+1

x ‖2
2 + ‖ηnt ‖2

2 +
1

2
(‖ηn+1‖2

2 + ‖ηn‖2
2) +

1

2
(‖ηn+1

x ‖2
2 + ‖ηnx‖2

2).

(2.60)

Together with (2.53), (2.57) and (2.59), we obtain

Sn − Sn−1 ≤ Ck(Sn + Sn−1 + (h2 + k2)2), n ≥ 1. (2.61)

Hence, by Gronwall inequality and Lemma 2.1.4, we have

Sn . (h2 + k2)2, (2.62)

which implies

‖en‖H1 . h2 + k2, ‖ηn‖H1 . (h2 + k2), 0 ≤ n ≤ T

k
. (2.63)

Remark 2.1.1. When 0 < ε � 1, i.e. the singular case, it is very challenging

to establish error estimate because of the coupling of two nonlinear terms in the

KGS equations and the small parameters ε. However, we can show the error bound

numerically.

Remark 2.1.2. The convergence analysis results of SIFD scheme are very similar

to those of ECFD scheme. We leave out the proof for brevity.
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2.2 Crank-Nicolson time-splitting Fourier pseu-

dospectral method

Now, we are going to study one classical numerical method: the time-splitting

method for temporal discretizations, coupled with the Fourier pseudospectral method

for spatial discretizations. This method is widely used to solve the nonlinear Schrödin-

ger equation (NLSE) [3] and semiclassical NLSE [12, 22]. The basic idea of time-

splitting method is splitting the evolution system in a proper way so that the non-

linear subproblem can be integrated exactly in time. Here we shall briefly review

the scheme.

From time t = tn to t = tn+1, the Schrödinger equation (2.1) is solved in two

split steps. First, we solve

i∂tψ + ∂xxψ = 0, (2.64)

for the time step of length k, followed by solving

i∂tψ + φψ = 0 (2.65)

for the same time step. Equation (2.64) will be discretized in space by Fourier

pseudospectral method and integrated in time exactly. Integrating (2.65) from t = tn

to tn+1, and approximating the integral of φ(x, t) on [tn, tn+1] via the trapezoidal

rule, one obtains

ψ(x, tn+1) ≈ e
ik
2

[φ(x,tn)+φ(x,tn+1)]ψ(x, tn), a ≤ x ≤ b. (2.66)

Coupled with different methods to compute the Klein-Gordon equation in the KGS

equations, we shall solve equations (2.1)-(2.5) with different schemes. One way

to discretize the Klein-Gordon equation (2.2) in the KGS equations is by using a

pseudospectral method for spatial derivatives, followed by application of a Crank-

Nicolson method for linear/nonlinear terms for time derivatives to improve the res-

olution capacity of the FD methods [14]. Here we shall briefly review the scheme.
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To do the pseudospectral discretization in space, we furthermore introduce the fol-

lowing notations. Let XM := span
{
eiµl(x−a), µl = 2πl

b−a , l = −M
2
· · · M

2
− 1
}

; YM :=

span {v = (v0, v1, · · · , vM), v0 = vM}. For a general periodic function v(x) on [a, b]

and a vector v ∈ YM , let PM : L2([a, b]) → XM be the standard L2-projection

operator onto XM , IM : YM → XM be the trigonometric interpolation operator:

(PMv)(x) =

M/2−1∑
l=−M/2

v̂le
iµl(x−a), (IMv)(x) =

M/2−1∑
l=−M/2

ṽle
iµl(x−a), a ≤ x ≤ b,

(2.67)

where

v̂l =
1

b− a

∫ b

a

v(x)e−iµl(x−a), ṽl =
1

M

M−1∑
j=0

vje
−iµl(xj−a), (2.68)

with vj interpreted as v(xj) for a function v(x). It is easy to check that PM and IM

are identical operators on XM .

The spectral discretization begins with finding φM(x, t), ψM(x, t) ∈ XM i.e.

φM(x, t) =

M
2
−1∑

l=−M
2

(φ̂)l(t)e
iµl(x−a), ψM(x, t) =

M
2
−1∑

l=−M
2

(ψ̂)l(t)e
iµl(x−a), a ≤ x ≤ b,

(2.69)

such that

ε2∂ttφM(x, t)−∆(φM(x, t)) + φM(x, t)− PM(|ψ(x, t)|2M) = 0. (2.70)

Let (ψM)nj and (φM)nj be the approximations of ψM(xj, tn) and φM(xj, tn) (j =

0, 1, ...M, n = 0, 1, ...), respectively, and (ψ̂n)l, (φ̂n)l be the approximations of

(ψ̂)l(tn), (φ̂)l(tn), respectively. Applying Crank-Nicolson method for time deriva-

tives and then discretizing x axis with mesh size h = (b−a)/M , which we mentioned

in the above section, one ends up with

ε2
(φM)n+1

j − 2(φM)nj + (φM)n−1
j

k2
−Df

xx(
1

2
(φM)n+1 +

1

2
(φM)n−1)x=xj

+
1

2
((φM)n+1

j + (φM)n−1
j )− PM(|ψnj |2M) = 0, 0 ≤ j ≤M, n ≥ 1,

(2.71)
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where

Df
xxv|x = −

M
2
−1∑

l=−M
2

µ2
l v̂le

iµl(x−a), (2.72)

and v̂l is the Fourier coefficient of a periodic function, and

µl =
2πl

b− a
, v̂l =

1

b− a

∫ b

a

v(x)e−iµl(x−a), l = −M
2
· · ·M

2
− 1. (2.73)

Plugging (2.69) into (2.71), and using orthogonality of the Fourier basis, we obtain

ε2 (φ̂n+1)l − 2(φ̂n)l + (φ̂n−1)l
k2

− (|̂ψn|2)l + (µ2
l + 1)

(
1

2
(φ̂n+1)l +

1

2
(φ̂n−1)l

)
= 0.

(2.74)

Solving the equation, we get

(φ̂n+1)l =
4ε2

2ε2 + k2(µ2
l + 1)

(φ̂n)l − (φ̂n−1)l +
2k2

2ε2 + k2(µ2
l + 1)

(|̂ψn|2)l. (2.75)

Combine the splitting steps via the standard strang splitting, then we have the

following discrete schemes:

(φM)n+1
j =

M
2
−1∑

l=−M
2

(φ̂n+1)le
iµl(xj−a), (2.76)

ψ∗j =

M
2
−1∑

l=−M
2

eikµ
2
l /2(ψ̂n)le

iµl(xj−a), (2.77)

ψ∗∗j = eik(φnj +φn+1
j )/2ψ∗j , (2.78)

(ψM)n+1
j =

M
2
−1∑

l=−M
2

e−ikµ
2
l /2(ψ̂∗∗)le

iµl(xj−a), 0 ≤ j ≤M − 1, n ≥ 0, (2.79)

where (φ̂n+1)l is given in (2.75) for n > 0. For n = 0, the initial conditions are

dicretized as

ψ0
M(x) = ψ(0)(x), φ0

M = φ(0)(x),
φ1
M − φ−1

M

2k
(x) = φ(1)(x). (2.80)
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This implies that

(φ̂1)l =
2ε2

2ε2 + k2(µ2
l + 1)

(φ̂(0))l +
k(k2(µ2

l + 1) + 2ε2)

2ε2 + k2(µ2
l + 1)

(φ̂(1))l

+
k2

2ε2 + k2(µ2
l + 1)

(|̂ψ0|2)l, l = −M
2
, · · · , M

2
− 1.

(2.81)

and

(ψ̂1)l = (1− ikµ2
l )(ψ̂

(0)) + ik(ψ̂(0)φ(0)), (2.82)

which is conducted from the original Schrödinger equation.

The above procedure is not suitable in practice due to the difficulty of calculating

the integrals determining the Fourier transform coefficients v̂l defined in (2.68) of

a periodic function v(x). Here, we adopt an efficient implementation by choosing

ψ0
j , φ

0
j and (φt)

0
j as the interpolations of ψ(0)(xj), φ

(0)(xj) and φ(1)(xj) on the grids,

respectively, i.e.,

ψ0
j =

M
2
−1∑

l=−M
2

(ψ̃(0))le
iµl(xj−a), φ0

j =

M
2
−1∑

l=−M
2

(φ̃(0))le
iµl(xj−a),

(∂tφ)0
j =

M
2
−1∑

l=−M
2

(φ̃(1))le
iµl(xj−a).

Let ψnj and φnj be the approximations of ψ(xj, tn) and φ(xj, tn) (j = 0, 1, ...M, n =

0, 1, ...). The Crank-Nicolson time-splitting Fourier pseudospectral method (C-

NTSFP) reads

φn+1
j =

M
2
−1∑

l=−M
2

(φ̃n+1)le
iµl(xj−a), (2.83)

ψ∗j =

M
2
−1∑

l=−M
2

eikµ
2
l /2(ψ̃n)le

iµl(xj−a), (2.84)

ψ∗∗j = eik(φnj +φn+1
j )/2ψ∗j , (2.85)

ψn+1
j =

M
2
−1∑

l=−M
2

e−ikµ
2
l /2(ψ̃∗∗)le

iµl(xj−a), 0 ≤ j ≤M − 1, n ≥ 0, (2.86)

ψnM = ψn0 , φ
n
M = φn0 , n ≥ 0, (2.87)
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where, for n = 0,

(φ̃1)l =
2ε2

2ε2 + k2(µ2
l + 1)

(φ̃(0))l +
k(k2(µ2

l + 1) + 2ε2)

2ε2 + k2(µ2
l + 1)

(φ̃(1))l

+
k2

2ε2 + k2(µ2
l + 1)

(|ψ̃0|2)l, l = −M
2
, · · · , M

2
− 1,

(2.88)

(ψ̃1)l = (1− ikµ2
l )(ψ̃

(0)) + ik(ψ̃(0)φ(0)), (2.89)

and for n ≥ 1,

(φ̃n+1)l =
4ε2

2ε2 + k2(µ2
l + 1)

(φ̃n)l − (φ̃n−1)l +
2k2

2ε2 + k2(µ2
l + 1)

(|̃ψn|2)l. (2.90)

Here ṽl, l = −M/2 · · ·M/2− 1 are the discrete Fourier transform coefficients for a

vector v ∈ YM defined as

ṽl =
1

M

M−1∑
j=0

vje
−iµl(xj−a), l = −M/2 · · ·M/2− 1. (2.91)

The above method is explicit and easy to extend to two and three dimensions.

The memory cost is O(M) and computational cost per time step is O(MlnM)

thanks to the fast Fourier transform algorithm. Note that the spatial discretization

error of pseudospectral method is of spectral order accuracy in space and the time

discretization error is demonstrated to be second-order accurate in k. This will be

shown in the numerical results. We also remark that this method shares the same

ε-scalability for temporal step with finite difference methods for the Klein-Gordon

equation in the singular limit regime.

2.3 Numerical results and comparisons

In this section, we present numerical results between the proposed spectral

method CNTSFP and the classical finite difference methods including ECFD and

SIFD. We will compare their accuracy for fixed ε = O(1) and their meshing strategy

in the parameter regime when 0 < ε� 1. Thus, we firstly present numerical results
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of the KGS equations with a solitary wave solution in 1D to compare the accuracy

and stability of the different methods described above. Secondly, we also present

the numerical examples with different initial conditions, such as the ill-prepared and

well-prepared initial data, to demonstrate the accuracy of those methods for solving

the KGS equations for ε ∈ (0, 1], especially when 0 < ε � 1. Note that the initial

conditions for (2.3) are always chosen such that |ψ(0)(x)|, |φ(0)(x)| and |φ(1)(x)| decay

to zero sufficiently fast as |x| → ∞. We always compute on a domain, which is large

enough such that the periodic boundary conditions do not introduce a significant

aliasing error relative to the problem in the whole space.

2.3.1 Accuracy tests

Example 1. The well-known solitary-wave solutions of the KGS equations in this

case are

ψ(x, t) =
3

2
√

1− q2ε2
sech2

(
1

2
√

1− q2ε2
(x− qt)

)
e(iq/2x+Ct), (2.92)

φ(x, t) =
3

2(1− q2ε2)
sech2

(
1

2
√

1− q2ε2
(x− qt)

)
, a < x < b, t ≥ 0, (2.93)

where q is a constant and C = 1
1−q2ε2 −

q2

4
.

The initial conditions are taken as

ψ(0)(x) = ψ(x, 0), φ(0)(x) = φ(x, 0), φ(1)(x) = ∂tφ(x, 0), a < x < b, (2.94)

where ψ(x, 0), φ(x, 0), and ∂tφ(x, 0) are obtained from (2.92) and (2.93) by setting

t=0.

We choose q = 0.5 in (2.92)-(2.93) and fix ε = 1
16

to do the accuracy tests for all

the methods. Here we test the spatial and temporal discretization error and the

stability constraint of different numerical methods. We solve the problem on the

interval [−40, 40], i.e.,a = −40 and b = 40 with periodic boundary conditions. Let

ψh,k and φh,k be the numerical solutions of the system (2.1-2.5) with the initial

conditions (2.94) by using a numerical method with mesh size h and time step k.
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Table 2.1: Spacial error analysis for eh,k of different methods at T = 2 with k =

0.0001 for different h.

eh,k h0 = 1 h0/2 h0/4 h0/8 h0/16

ECFD 8.32E-01 1.73E-1 4.16E-2 1.03E-2 2.57E-3

SIFD 8.32E-01 1.73E-1 4.16E-2 1.03E-2 2.57E-3

CNTSFP 5.54E-03 1.03E-7 1.00E-11 8.64E-12 –

Table 2.2: Temporal error analysis for eh,k of different methods at T = 2 for different

k.

eh,k k0 = 0.2 k0/2 k0/4 k0/8 k0/16 k0/32

ECFD 3.73E-1 9.72E-2 2.69E-2 6.63E-3 1.65E-3 4.12E-4

SIFD 3.56E-1 7.45E-2 1.89E-2 4.60E-3 1.14E-3 2.87E-4

CNTSFP 2.59E-2 6.84E-3 1.69E-3 4.23E-4 1.06E-4 2.64E-5

To quantify the numerical methods, we define the error function as

eh,k = ‖ψ(·, t)− ψh,k(t)‖H1 + ‖φ(·, t)− φh,k(t)‖H1 . (2.95)

Firstly, we test the discretization error in space. In order to do this, we choose a

very small time step, e.g. k = 10−4, such that the error from time discretization is

negligible compared to the spatial discretization error, and solve the KGS equations

with different methods under different mesh size h. Tab. 2.1 lists the numerical error

of eh,k at t = 2.0 with different mesh size h under k = 10−4 for all methods. Secondly,

we test the temporal discretization error. We choose a very small mesh size, e.g.

h = 1/512 for the CNFD and SIFD and h = 1/32 for the spectral method such that

the error from spatial discrezation is negligible compared to time discretization. Tab.

2.2 shows the temporal analysis of eh,k at t = 2.0 under various time steps k for all

methods.

From Tabs. 2.1-2.2, we can know that when ε = O(1) is fixed, the CNFD
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and SIFD are of second order accuracy in space and in time, which verifies our error

estimate in Theorem 2.1.1. The CNTSFP is of spectral-order accuracy in space, and

is of second-order accuracy in time, which indicates that the method convergence

rate is optimal.

2.3.2 Convergence and resolution studies for 0 < ε� 1

We now consider ε ∈ (0, 1] in the KGS equations, in particular, 0 < ε � 1,

i.e. the singular limit regime. We study the temporal and spatial error of the above

methods under different mesh sizes and time steps as ε→ 0. By doing so, we mainly

want to investigate two questions. The first question is how the convergence of the

numerical method is affected by ε when ε decays. The second question is that within

the convergence regime, how the error bound depends on ε. Here, we have three

types of initial examples to test. Suppose the initial data of the KGS equations are

ψ(x, 0) = ψ(0)(x) = sech(x)e−ix, (2.96)

φ(x, 0) = φ(0)(x) = φ0(x, 0) + εαsech(x), (2.97)

∂tφ(x, 0) = φ(1)(x) = ∂tφ0(x, 0) + εβsech(x), (2.98)

where α and β are nonnegative integers; φ0(x, 0) = (−∆+I)−1|ψ(0)|2 and ∂tφ0(x, 0) =

−i(−∆ + I)−1∇ · (ψ(0)∇ψ̄(0) − ψ̄(0)∇ψ(0)), which come from the SY equations (see

[10]). From the introduction part of the classification of initial data, we test the

following three examples.

Example 1. Well-prepared initial data. The following initial data are one exam-

ple of the well-prepared initial data defined in (1.12). Choose (2.3) as

ψ(x, 0) = ψ(0)(x) = sech(x)e−ix, (2.99)

φ(x, 0) = φ(0)(x) = φ0(x, 0) + ε2sech(x), (2.100)

∂tφ(x, 0) = φ(1)(x) = ∂tφ0(x, 0) + εsech(x). (2.101)

We solve the problem on [−80, 80], i.e. a = −80, b = 80. Let ψg and φg be the

‘exact’ solution of (2.1) and (2.2), which are obtained numerically by using different
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methods with a very fine mesh, for example h = 1/512 and a very small time step

k = 10−4 for the CNFD and SIFD, and h = 1/32, k = 10−6 for the CNTSFP. We

use the ψh,k and φh,k to represent the numerical solutions with different methods.

Define the error function as

eh,k = ‖ψg(t)− ψh,k(t)‖2 + ‖φg(t)− φh,k(t)‖2. (2.102)

Here we test the spatial and temporal discretization error and the stability constraint

of different numerical methods. We test the discretization error in time by choosing

a very small mesh size, e.g. h = 1/512 for the CNFD and SIFD and h = 1/32

for the spectral method such that the error from spatial discrezation is negligible

compared to time discretization. Similarly, we test the discretization error in space

by choosing a very small time step, e.g. k = 10−4, such that the error from time

discretization is negligible compared to the spatial discretization error.

As for the spatial error, from our numerical experience and estimates in other

literature, the spatial and temporal errors of ECFD and SIFD are very similar due

to the finite difference discretization, and ECFD is better than SIFD. Thus here

we omit the error test of SIFD for brevity and tabulate the spatial and temporal

errors of ECFD and CNTSFP with different ε. Tabs. 2.3-2.4 show the spatial

errors of ECFD and CNTSFP, respectively, with different ε and time step h at time

t = 2. Tabs. 2.5-2.6 show the temporal errors of ECFD and CNTSFP, respectively,

with different ε and time step k. To study the temporal accuracy of the numerical

methods inside the convergence regime, we plot the temporal discretization errors

of ECFD and CNTSFP as functions of k for some fixed ε in log-scale. The result is

shown in Fig. 2.1.

As is shown in Tabs. 2.3-2.6 and Fig. 2.1, ECFD, SIFD and CNTSFP are uni-

formly accurate in time and space for solving the well-prepared initial data problem.

The ε-scalability of each method is k = O(1) and h = O(1) when 0 < ε� 1. More-

over, all the methods have second order convergence rate in time for all ε. ECFD

and SIFD are of second order accuracy in space and CNTSFP is of spectral order

accuracy in space.
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Table 2.3: Spatial error analysis for eh,k of ECFD at T = 2 with well-prepared initial

data.

ECFD h0 = 0.5 h0/2 h0/4 h0/8 h0/16 h0/32

ε0 = 1 2.61E-1 8.16E-2 2.23E-2 5.68E-3 1.42E-3 3.56E-4

ε0/2 3.84E-1 1.12E-1 3.00E-2 7.61E-3 1.91E-3 4.77E-4

ε0/2
2 4.33E-1 1.21E-1 3.19E-2 8.07E-3 2.02E-3 5.05E-4

ε0/2
3 4.12E-1 1.22E-1 3.27E-2 8.27E-3 2.07E-3 5.18E-4

ε0/2
4 4.11E-1 1.22E-1 3.28E-2 8.30E-3 2.08E-3 5.20E-4

ε0/2
5 4.11E-1 1.22E-1 3.28E-2 8.31E-3 2.08E-3 5.21E-4

ε0/2
6 4.10E-1 1.22E-1 3.28E-2 8.32E-3 2.08E-3 5.21E-4

ε0/2
7 4.10E-1 1.22E-1 3.27E-2 8.31E-3 2.08E-3 5.21E-4

Table 2.4: Spatial error analysis for eh,k of CNTSFP at T = 2 with well-prepared

initial data.

CNTSFP h0 = 1 h0/2 h0/4 h0/8

ε0 = 1 7.06E-2 3.74E-4 2.12E-8 6.56E-12

ε0/2 7.61E-2 4.00E-4 2.25E-8 7.40E-12

ε0/2
2 7.03E-2 4.18E-4 2.33E-8 7.52E-12

ε0/2
3 6.17E-2 4.64E-4 2.37E-8 6.75E-12

ε0/2
4 6.04E-2 4.39E-4 2.39E-8 8.73E-12

ε0/2
5 6.00E-2 4.37E-4 2.42E-8 9.16E-12

ε0/2
6 5.99E-2 4.34E-4 2.41E-8 9.03E-12

ε0/2
7 5.99E-2 4.34E-4 2.41E-8 7.74E-12

ε0/2
8 5.99E-2 4.32E-4 2.39E-8 6.86E-12

ε0/2
9 5.99E-2 4.32E-4 2.39E-8 6.68E-12
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Table 2.5: Temporal error analysis for eh,k of ECFD at T = 2 with well-prepared

initial data.

ECFD k0 = 0.2 k0/2
2 k0/2

4 k0/2
5 k0/2

6 k0/2
7

ε0 = 1 3.48E-1 3.89E-2 2.50E-3 6.25E-4 1.56E-4 3.90E-5

ε0/2 6.11E-1 5.69E-2 4.11E-3 1.04E-3 2.62E-4 6.98E-5

ε0/2
2 7.23E-1 7.19E-2 5.15E-3 1.29E-3 3.26E-4 8.57E-5

ε0/2
3 6.56E-1 6.71E-2 5.53E-3 1.40E-3 3.54E-4 9.25E-5

ε0/2
4 6.35E-1 5.41E-2 5.55E-3 1.51E-3 3.89E-4 1.02E-4

ε0/2
5 6.34E-1 5.19E-2 5.12E-3 1.55E-3 8.11E-4 6.78E-4

ε0/2
6 6.48E-1 5.60E-2 4.85E-3 1.20E-3 5.24E-4 3.69E-4

ε0/2
7 6.52E-1 5.28E-2 3.93E-3 9.83E-4 3.05E-4 1.42E-4

ε0/2
8 6.53E-1 5.35E-2 3.95E-3 9.82E-4 2.53E-4 8.28E-5

ε0/2
9 6.54E-1 5.52E-2 4.10E-3 1.01E-3 2.47E-4 6.62E-5
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Figure 2.1: Dependence of the temporal discretization errors of ECFD (left) and

CNTSFP (right) on k at t = 2 with different ε.
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Table 2.6: Temporal error analysis for eh,k of CNTSFP at T = 2 with well-prepared

initial data.

CNTSFP k0 = 0.2 k0/2
2 k0/2

4 k0/2
6 k0/2

8

ε0 = 1 2.54E-1 1.72E-2 1.08E-3 6.77E-5 4.13E-6

ε0/2 4.73E-1 3.15E-2 1.96E-3 1.22E-4 7.52E-6

ε0/2
2 5.30E-1 4.58E-2 2.87E-3 1.78E-4 1.09E-5

ε0/2
3 4.55E-1 3.93E-2 3.22E-3 2.03E-4 1.25E-5

ε0/2
4 4.52E-1 2.60E-2 3.17E-3 2.35E-4 1.44E-5

ε0/2
5 4.59E-1 2.36E-2 2.70E-3 3.70E-4 2.48E-5

ε0/2
6 4.75E-1 2.72E-2 1.62E-3 4.32E-4 4.25E-5

ε0/2
7 4.80E-1 2.39E-2 1.55E-3 1.54E-4 5.30E-5

ε0/2
8 4.81E-1 2.48E-2 1.57E-3 9.75E-5 2.95E-5

ε0/2
9 4.81E-1 2.65E-2 1.68E-3 9.49E-5 9.35E-6

Example 2. Ill-prepared initial data. The following initial data are one example

of the ill-prepared initial data defined in (1.13). Choose (2.3) as

ψ(x, 0) = ψ(0)(x) = sech(x)e−ix, (2.103)

φ(x, 0) = φ(0)(x) = φ0(x, 0) + εsech(x), (2.104)

∂tφ(x, 0) = φ(1)(x) = ∂tφ0(x, 0) + sech(x). (2.105)

We solve the problem on [−280, 280], i.e. a = −280, b = 280 such that the periodic

boundary conditions do not introduce a significant aliasing error relative to the

problem in the whole space. The spatial error and temporal error here are computed

in a similar way as before. With the ill-prepared initial data, the spatial errors of

SIFD, ECFD and CNTSFP are still uniformly accurate, which are very similar to

the results shown in Example 1, Tabs. 2.3-2.4. Here, we omit them for brevity.

Tabs. 2.7-2.8 show the temporal errors of ECFD and CNTSFP, respectively, under

different ε and time step k. To study the error bounds of the numerical methods,
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Table 2.7: Temporal error analysis for eh,k of ECFD at time T = 2 with ill-prepared

initial data.

ECFD k0 = 0.2 k0/2
2 k0/2

4 k0/2
5 k0/2

6 k0/2
7

ε0 = 1 3.48E-1 3.89E-2 2.50E-3 6.25E-4 1.56E-4 3.90E-5

ε0/2 6.07E-1 5.58E-2 4.00E-3 9.92E-4 2.37E-4 5.37E-5

ε0/2
2 7.66E-1 8.74E-2 6.20E-3 1.54E-3 3.71E-4 8.18E-5

ε0/2
3 6.71E-1 1.57E-1 1.27E-2 3.20E-3 7.91E-4 1.89E-4

ε0/2
4 7.53E-1 2.04E-1 3.74E-2 1.06E-2 2.71E-3 6.73E-4

ε0/2
5 7.11E-1 9.80E-2 7.18E-2 3.28E-2 1.02E-2 2.70E-3

ε0/2
6 6.30E-1 1.21E-1 3.87E-2 2.81E-2 2.84E-2 9.63E-3

ε0/2
7 6.98E-1 2.51E-1 1.81E-2 1.63E-2 1.69E-2 3.81E-2

Table 2.8: Temporal error analysis for eh,k of CNTSFP at time T = 2 with ill-

prepared initial data.

CNTSFP k0 = 0.2 k0/2
2 k0/2

4 k0/2
6 k0/2

8 k0/2
9

ε0 = 1 2.54E-1 1.72E-2 1.08E-3 6.77E-5 4.13E-6 9.53E-7

ε0/2 5.05E-1 3.49E-2 2.19E-3 1.37E-4 8.41E-6 2.00E-6

ε0/2
2 6.13E-1 6.58E-2 4.29E-3 2.68E-4 1.65E-5 3.92E-6

ε0/2
3 4.51E-1 1.29E-1 1.04E-2 6.64E-4 4.09E-5 9.73E-6

ε0/2
4 5.66E-1 1.76E-1 3.50E-2 2.57E-3 1.59E-4 3.79E-5

ε0/2
5 5.43E-1 6.89E-2 6.94E-2 1.00E-2 6.65E-4 1.58E-4

ε0/2
6 5.33E-1 9.21E-2 3.63E-2 2.83E-2 2.65E-3 6.45E-4

ε0/2
7 7.77E-1 2.23E-1 1.57E-2 1.68E-2 8.26E-3 2.42E-3

ε0/2
8 1.37E+0 1.98E-1 1.81E-2 7.58E-3 6.67E-3 7.15E-3

we plot the dependence of temporal discretization errors of ECFD and CNTSFP on

ε for some fixed k in log-scale. The result is shown in Fig. 2.2.
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Figure 2.2: Dependence of the temporal discretization errors of ECFD and CNTSFP

on ε at t = 2 under k = 1/6400.

From Tabs. 2.7-2.8 and Fig. 2.2, we can draw the following observations:

1. ECFD, SIFD and CNTSFP have uniformly accuracy in space for all ε (cf.

similar to the corresponding columns in Tabs. 2.3, 2.4). The spatial discretization

errors are totally independent of ε and the spatial resolution is h = O(1), 0 < ε� 1.

2. ECFD and SIFD are of second order accuracy in space; CNTSFP is of spectral

accuracy in space, and the computation cost is much smaller than ECFD and SIFD

since it is explicit.

3. When k is sufficiently small, i.e., within the convergence regime k . ε, ECFD,

SIFD and CNTSFP are second order accurate in time (cf. the upper diagonal parts

in Tabs. 2.7, 2.8). All of them have some convergence order reductions or lose the

convergence outside the convergence regime (cf. the lower diagonal parts in Tabs.

2.7, 2.8).

4. The temporal discretization error bounds of ECFD, SIFD and CNTSFP

within the convergence regime are like O(ε−2k2) (cf. Fig. 2.2) and the ε-scalability

is k = O(ε).

Example 3. Extremely ill-prepared initial data. The following initial data are
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one example of the extremely ill-prepared initial data defined in (1.14). Choose (2.3)

as

ψ(x, 0) = ψ(0)(x) = sech(x)e−ix, (2.106)

φ(x, 0) = φ(0)(x) = φ0(x, 0) + sech(x), (2.107)

∂tφ(x, 0) = φ(1)(x) = ∂tφ0(x, 0) + sech(x). (2.108)

We solve the problem on [−600, 600], i.e. a = −600, b = 600 such that the periodic

boundary conditions do not introduce a significant aliasing error relative to the

problem in the whole space. Again, the spatial error and temporal error here are

computed in a similar way as before. Tabs. 2.9-2.10 show the temporal errors of

ECFD and CNTSFP, respectively, under different ε and time step k. Again, to

study the error bounds of the numerical methods inside the convergence regime, we

plot the dependence of temporal discretization errors of ECFD and CNTSFP on ε

for some fixed k in log-scale. The result is shown in Fig. 2.3. Tab. 2.11-2.12 show

the spatial errors of ECFD and CNTSFP for this example. Since the spacial error

of ECFD has a small increase when ε decays, we plot the dependence of the spacial

error of ECFD on ε under different h in Fig. 2.4.

Again, from Tabs. 2.9-2.12 and Figs. 2.3-2.4, we can draw the following conclu-

sions:

1. CNTSFP still has uniformly spectral accuracy in space for all ε (cf. each

column in Tab. 2.12). The spatial discretization errors are totally independent of ε

and the spatial resolution is h = O(1), 0 < ε� 1.

2. ECFD and SIFD have second-order accuracy spacial error for all ε and the

dependence of spatial error on ε is like 1/
√
ε. Thus the spatial resolution is h =

O(ε1/4), for 0 < ε� 1 (cf. Tab. 2.11 and Fig. 2.4).

3. When k is sufficiently small, i.e., within the convergence regime k . ε1.5,

ECFD, SIFD and CNTSFP are second order accurate in time (cf. the upper diagonal

parts in Tabs. 2.9, 2.10). All of them have some convergence order reductions or

lose the convergence outside the convergence regime (cf. the lower diagonal parts



2.3 Numerical results and comparisons 36

Table 2.9: Temporal error analysis for eh,k of CNTSFP at T = 2 with extremely

ill-prepared initial data.

CNTSFP k0 = 0.2 k0/2
2 k0/2

4 k0/2
6 k0/2

8 k0/2
10

ε0 = 1 2.54E-1 1.72E-2 1.08E-3 6.77E-5 4.13E-6 1.65E-7

ε0/2 5.50E-1 4.07E-2 2.59E-3 1.62E-4 9.97E-6 4.74E-7

ε0/2
2 1.27E+0 1.50E-1 1.02E-2 6.43E-4 3.96E-5 1.86E-6

ε0/2
3 2.40E+0 7.52E-1 7.12E-2 4.58E-3 2.82E-4 1.32E-5

ε0/2
4 8.53E+0 1.73E+0 4.77E-1 3.68E-2 2.28E-3 1.07E-4

ε0/2
5 1.56E+1 1.75E+0 1.69E+0 2.72E-1 1.84E-2 8.64E-4

ε0/2
6 1.64E+1 6.61E+0 1.62E+0 1.33E+0 1.38E-1 6.74E-3

ε0/2
7 1.70E+1 3.47E+1 2.05E+0 1.65E+0 8.36E-1 5.43E-2

ε0/2
8 1.68E+1 5.69E+1 7.06E+0 1.36E+0 1.46E+0 3.74E-1

Table 2.10: Temporal error analysis for eh,k of ECFD at T = 2 with extremely

ill-prepared initial data.

ECFD k0/2
2 k0/2

3 k0/2
4 k0/2

5 k0/2
6 k0/2

7

ε0 = 1 3.89E-2 9.93E-3 2.50E-3 6.25E-4 1.56E-4 3.90E-5

ε0/2 1.90E-1 4.89E-2 1.24E-2 3.10E-3 7.76E-4 1.93E-4

ε0/2
2 1.05E+0 2.83E-1 7.27E-2 1.83E-2 4.60E-3 1.15E-3

ε0/2
3 3.72E+0 1.38E+0 3.89E-1 1.00E-1 2.53E-2 6.34E-3

ε0/2
4 4.48E+0 4.58E+0 2.46E+0 7.63E-1 1.98E-1 5.00E-2

ε0/2
5 8.36E+0 3.09E+0 3.02E+0 3.92E+0 1.55E+0 4.10E-1

ε0/2
6 1.70E+1 3.45E+1 2.06E+0 1.44E+0 1.65E+0 1.78E+0

ε0/2
7 1.69E+1 5.67E+1 7.06E+0 2.10E+0 1.36E+0 1.56E+0

in Tabs. 2.9, 2.10). And when ε is very small, ECFD, SIFD and CNTSFP are not

efficient for solving the KGS equations numerically.
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Figure 2.3: Dependence of the temporal discretization errors of ECFD and CNTSFP

on ε at t = 2 under k = 1/6400.

Table 2.11: Spatial error analysis for eh,k of ECFD at T = 2 with extremely ill-

prepared initial data.

ECFD h0 = 1/4 h0/2 h0/4 h0/8 h0/16

ε0 = 1 8.16E-2 2.23E-2 5.68E-3 1.42E-3 3.56E-4

ε0/2 1.10E-1 2.89E-2 7.30E-3 1.83E-3 4.57E-4

ε0/2
2 1.46E-1 3.73E-2 9.37E-3 2.34E-3 5.86E-4

ε0/2
3 1.54E-1 4.23E-2 1.07E-2 2.69E-3 6.73E-4

ε0/2
4 1.87E-1 5.12E-2 1.30E-2 3.26E-3 8.14E-4

ε0/2
5 2.47E-1 7.18E-2 1.85E-2 4.63E-3 1.16E-3

ε0/2
6 3.34E-1 1.09E-1 2.95E-2 7.43E-3 1.86E-3

ε0/2
7 4.45E-1 1.70E-1 5.04E-2 1.30E-2 3.26E-3

4. The temporal discretization error bounds of ECFD, SIFD and CNTSFP with-

in the convergence regime behave like O(ε−3k2) (cf. Fig.2.2) and the ε-scalability is

k = O(ε1.5).
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Figure 2.4: Dependence of the spacial discretization error of ECFD on ε at t = 2

with different h.

Table 2.12: Spatial error analysis for eh,k of CNTSFP at T = 2 with extremely

ill-prepared initial data.

CNTSFP h0 = 1 h0/2 h0/4 h0/8

ε0 = 1 7.06E-2 3.74E-4 2.12E-8 7.14E-12

ε0/2 8.82E-2 3.61E-4 2.10E-8 1.05E-11

ε0/2
2 1.02E-1 3.93E-4 2.19E-8 6.46E-12

ε0/2
3 7.45E-2 6.35E-4 2.38E-8 8.07E-12

ε0/2
4 7.77E-2 5.49E-4 3.07E-8 3.97E-11

ε0/2
5 7.02E-2 5.76E-4 3.14E-8 1.99E-11

ε0/2
6 7.56E-2 5.00E-4 2.61E-8 9.81E-12

ε0/2
7 7.53E-2 5.37E-4 3.03E-8 7.57E-12

ε0/2
8 7.52E-2 5.15E-4 2.98E-8 9.12E-12

From the numerical tests with three examples, we mainly draw the following

conclusions:
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• All the methods are uniformly accurate in space with different types of initial

data except for the ECFD and SIFD methods, which show h2/
√
ε error bound

in space for solving extremely ill-prepared data problem. SIFD and ECFD are

all of second-order accuracy and CNTSFP is of spectral accuracy.

• All the methods shown in this chapter are efficient for solving the KGS equa-

tions in time with well-prepared type initial data for all ε ∈ (0, 1], especially

when 0 < ε � 1, which indicates that the solutions to the KGS equations

have no oscillation with respect to ε.

• ECFD, SIFD and CNTSFP are efficient and of second-order accuracy in time

for solving the KGS equations in the classical regime, i.e., ε = O(1), with

different types of initial data, which are shown in the upper few rows in each

table. However, these methods have some convergence order reductions or lose

the convergence outside the convergence regime for solving the ill-prepared or

extremely ill-prepared problem which are shown from the very lower trigonal

parts of temporal analysis tables. These indicate that when ε is very small,

these methods are not efficient nor optimal for solving the KGS equations

numerically except for taking k sufficiently small.

• The temporal discretization error bounds of ECFD, SIFD and CNTSFP are

like O(ε−2k2) and O(ε−3k2) approximately for solving the KGS equations with

ill-prepared and extremely ill-prepared initial data, respectively. The solutions

with these two types of initial data are highly oscillatory with respect to ε. The

temporal ε-scalability is k = O(ε) when the initial data are ill-prepared and

k = O(ε1.5) when the initial data are extremely ill-prepared, indicating that

the existing numerical methods are not efficient for solving the KGS equations

in the singular limit regime with ill-prepared or extremely ill-prepared initial

data.



Chapter 3
Uniformly accurate numerical methods

In this chapter, we will propose two uniformly accurate, efficient and explicit

methods for the KGS equations in the singular limit regime based on the exponen-

tial wave integrator method for solving second order nonlinear ODEs. According to

the recent work in [8], a Gautschi-type exponential wave integrator (EWI) [42, 46]

was used to solve the Klein-Gordon equation in the nonrelativistic limit regime.

Gautschi-type exponential integrator methods are widely used for solving wave e-

quations [37] and high oscillation problems [38]. In section 3.1, we are going to

propose EWI method to solve the KG equation, coupled with time-splitting Fourier

pseudospectral (TSFP) method for solving the Schrödinger equation to solve the

KGS equations in the singular limit regime efficiently. Another very similar method

is given in section 3.2, which is also an exponential wave integrator Fourier pseu-

dospectral method. Numerical results on two examples are shown in Section 3.3,

which shows that the two methods are uniformly accurate for all ε ∈ (0, 1].

40
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3.1 Exponential wave integrator (EWI) pseudospec-

tral method

As for the problem (2.1-2.5) in Chapter 2, we already showed some methods

which are not uniformly accurate for solving the problem with ill-prepared or ex-

tremely ill-prepared initial data, even more, the methods are not efficient when ε is

very small. We already stated that we can find some efficient methods for solving

the Klein-Gordon equation, and then coupled it with time-splitting method for the

Schrödinger equation to solve the KGS equations. Now, we are going to study one

method to discretize the Klein-Gordon equation (2.2), which is designed by using

the pseudospectral method for spatial derivatives and the Gautschi-type exponential

wave integrator method (EWI) for solving the second-order ODEs.

The spectral discretization also begins with finding φM(x, t), ψM(x, t) ∈ XM i.e.

φM(x, t) =

M/2−1∑
l=−M/2

φ̂l(t)e
iµl(x−a), ψM(x, t) =

M/2−1∑
l=−M/2

ψ̂l(t)e
iµl(x−a), (3.1)

such that

ε2∂ttφM(x, t)−∆(φM(x, t)) + φM(x, t)− PM(|ψ(x, t)|2M) = 0. (3.2)

Plugging (3.1) into (3.2), noticing the orthogonality of the Fourier functions, we get

the the ODEs:

ε2 d
2

dt2
φ̂l(t) + (µ2

l + 1)φ̂l(t)− |ψ̂|2l (t) = 0, l = −M
2
, · · · , M

2
− 1. (3.3)

Then a numerical method can be designed by properly treating the above second

order ODEs. For each l, around time tn = nk (n ≥ 0), we reformulate the above

ODEs as

ε2 d
2

dt2
φ̂l(tn + s) + (µ2

l + 1)φ̂l(tn + s)− |ψ̂|2l (tn + s) = 0. (3.4)

Denote

βl =

√
µ2
l + 1

ε
, f̂nl (s) = ̂|ψ(tn + s)|2. (3.5)
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Using variation-of-constant, then the general solution of the above second-order

ODEs (3.4) can be written as

φ̂l(tn + s) = cnl cos(βls) + dnl
sin(βls)

βl
+

1

ε2βl

∫ s

0

f̂nl (ω) sin(βl(s− ω))dω, (3.6)

where cnl , dnl are two constants to be determined.

When n = 0 and s = 0, we plug the initial (2.3) into (3.6), and get the two constants

c0
l = φ̂

(0)
l d0

l =
d

dt
φ̂0
l . (3.7)

Thus, when n = 0, we get

φ̂l(s) = (φ̂(0))l cos(βls) + (φ̂(1))l
sin(βls)

βl
+

1

ε2βl

∫ s

0

f̂nl (ω) sin(βl(s− ω))dω.

(3.8)

When n > 0, consider the solution in (3.6) for s ∈ [−k, k] and require the solution

to be continuous at t = tn and t = tn−1. Plugging s = 0 and s = −k into (3.6) to

determine the constants cnl , dnl , and then letting s = k, we have

φ̂l(tn+1) = 2φ̂l(tn) cos(βlk)− φ̂l(tn−1)

+
1

ε2βl

∫ k

0

(f̂nl (ω) + ̂fnl (−ω)) sin(βl(k − ω))dω.
(3.9)

We adopt the following Gautschi’s type quadrature to approximate the integrals in

(3.8) and (3.9)∫ k

0

(f̂nl (ω) + ̂fnl (−ω)) sin(βl(k − ω))dω ≈ 2f̂nl (0)

βl
(1− cos(βlk)), (3.10)

∫ s

0

f̂ 0
l (ω) sin(βl(s− ω)dω ≈ f̂ 0

l (0)(1− cos(βlk))

βl
+
k(βl − sin(βlk))

β2
l

(f̂ 0
l (0))

′
,

(3.11)

where (f 0(0))
′

= (|ψ(0)|2)
′

= i(∂xxψ
(0)ψ̄(0) − ∂xxψ̄

(0)ψ(0)) deducted from the exact

Schrödinger equation.

Let ψnM(xj), φ
n
M(xj), (φt)

n
M(xj) as the approximations of ψM(xj, tn), φM(xj, tn)

and ∂tφM(xj, tn), respectively; and ψ̂nl , φ̂
n
l as the approximation of ψ̂l(tn), φ̂l(tn),
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respectively. Combine the split steps via the standard strang splitting, then we have

the following discrete scheme:

(φM)n+1(xj) =

M
2
−1∑

l=−M
2

φ̂n+1
l eiµl(xj−a), (3.12)

ψ∗(xj) =

M
2
−1∑

l=−M
2

eikµ
2
l /2ψ̂nl e

iµl(xj−a), (3.13)

ψ∗∗(xj) = eik(φnj +φn+1
j )/2ψ∗j , (3.14)

(ψM)n+1(xj) =

M
2
−1∑

l=−M
2

e−ikµ
2
l /2ψ̂∗∗l e

iµl(xj−a), 0 ≤ j ≤M − 1, n ≥ 0, (3.15)

where

φ̂1
l = (φ̂(0))l cos(βlk) +

(φ̂(1))l
βl

sin(βlk) +
(1− cos(βlk))

ε2β2
l

|ψ̂(0)|
2

l

+ (
βlk − k sin(βlk)

β2
l

)(|̂ψ0|2l )
′
,

(3.16)

φ̂n+1
l = 2φ̂nl cos(βlk)− φ̂n−1

l +
2(1− cos(βlk))

ε2β2
l

|ψ̂n|
2

l , n ≥ 1. (3.17)

Here, we have the same problem with that in CNTSFP method, that is, it is dif-

ficult to compute the integrals defining the Fourier transform coefficients. Thus, we

adopt an efficient implementation by choosing ψ0
j , φ

0
j and (φt)

0
j as the interpolations

of ψ(0)(xj), φ
(0)(xj) and φ(1)(xj) on the grids, respectively, i.e.,

ψ0
j =

M
2
−1∑

l=−M
2

(ψ̃(0))le
iµl(xj−a), φ0

j =

M
2
−1∑

l=−M
2

(φ̃(0))le
iµl(xj−a),

(∂tφ)0
j =

M
2
−1∑

l=−M
2

(φ̃(1))le
iµl(xj−a).

Let ψnj and φnj be the approximations of ψ(xj, tn) and φ(xj, tn) (j = 0, 1, ...M, n =

0, 1, ...). Then the EWI time-splitting Fourier pseudospectral method (EWI-TSFP)
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reads

φn+1
j =

M
2
−1∑

l=−M
2

(φ̃n+1)le
iµl(xj−a), (3.18)

ψ∗j =

M
2
−1∑

l=−M
2

eikµ
2
l /2(ψ̃n)le

iµl(xj−a), (3.19)

ψ∗∗j = eik(φnj +φn+1
j )/2ψ∗j , (3.20)

ψn+1
j =

M
2
−1∑

l=−M
2

e−ikµ
2
l /2(ψ̃∗∗)le

iµl(xj−a), 0 ≤ j ≤M − 1, n ≥ 0, (3.21)

ψnM = ψn0 , φ
n
M = φn0 , n ≥ 0. (3.22)

where

(φ̃1)l = (φ̃(0))l cos(βlk) +
(φ̃(1))l
βl

sin(βlk) +
(1− cos(βlk))

ε2β2
l

(|ψ̃(0)|)2
l

+ (
βlk − k sin(βlk)

β2
l

)(|̃ψ(0)|2)
′

l,

(3.23)

(φ̃n+1)l = 2(φ̃n)l cos(βlk)− (φ̃n−1)l +
2(1− cos(βlk))

ε2β2
l

(|ψ̃n|
2
)l, n ≥ 1. (3.24)

The above EWI-TSFP method for the KGS equations is explicit, uniformly accurate,

efficient and can be easily extended to two and three dimensions. The memory cost

is O(M) and computational cost is O(MlnM) due to FFT. The numerical results

are shown in Section 3.3. We remark here that the EWI method for solving second

order wave-type ODEs has been widely used in the literature and it can be tracked

back to Gautschi. As is demonstrated in the literature, it gave exact solutions to

linear second-order ODEs and showed favorable properties on solving the oscillatory

second-order ODEs compared to standard finite difference time discretization. Thus

this method will be favorable over ECFD and CNTSFP method for solving the KGS

equations in the singular limit regime.
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3.2 Another EWI pseudospectral method

Here, we discuss an alternative approach to solving the KG equation efficient-

ly and accurately by using the EWI in temporal discretization and Fourier pseu-

dospectral discretization in space. Similar as EWI method to (2.2), we need to find

φM(x, t), ψM(x, t) such that

ε2∂ttφM(x, t)−∆(φM(x, t)) + φM(x, t)− PM(|ψ(x, t)|2M) = 0. (3.25)

Noticing the orthogonality of the Fourier functions, we get the same ODEs with

(3.4):

ε2 d
2

dt2
φ̂l(t) + (µ2

l + 1)φ̂l(t)− (|ψ̂|2)l(t) = 0,

tn ≤ t ≤ tn+1, n ≥ 0, l = −M
2
, · · · , M

2
− 1.

(3.26)

And the general solution for the second-order equation reads

φ̂l(tn + s) = φ̂l(tn) cos(βls) + φ̂
′
l(tn)

sin(βls)

βl
+

1

ε2βl

∫ s

0

f̂nl (ω) sin(βl(s− ω)dω,

(3.27)

where f̂nl (ω) = ̂|ψ(tn + ω)|2l. Differentiating (3.27) with respect to s, we obtain

φ̂
′
l(tn + s) = −βl sin(βls)φ̂l(tn) + cos(βls)φ̂

′
l(tn) +

1

ε2

∫ s

0

f̂nl (ω) cos(βl(s− ω)dω.

(3.28)

Thus, when n = 0 and s = k, from (3.27) and (3.28), we have

φ̂l(t1) = (φ̂(0))l cos(βlk) + (φ̂(1))l
sin(βlk)

βl
+

1

ε2βl

∫ k

0

f̂nl (ω) sin(βl(k − ω))dω,

(3.29)

φ̂
′
l(t1) = −βl sin(βlk)(φ̂(0))l + cos(βlk)(φ̂(1))l +

1

ε2

∫ k

0

f̂nl (ω) cos(βl(k − ω)dω.

(3.30)
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When n > 0, setting s = k in (3.27) and (3.28), we get

φ̂l(tn+1) = φ̂l(tn) cos(βlk) + φ̂′ l(tn)
sin(βlk)

βl
+

1

ε2βl

∫ k

0

f̂nl (ω) sin(βl(k − ω))dω,

(3.31)

φ̂
′
l(tn+1) = −βl sin(βlk)φ̂l(tn) + cos(βlk)φ̂′ l(tn) +

1

ε2

∫ k

0

f̂nl (ω) cos(βl(k − ω)dω.

(3.32)

For the integrations in (3.29)-(3.32), we approximate them as following∫ k

0

f̂nl (ω) sin(βl(k − ω))dω =

∫ k

0

(f̂nl (0) + ω(f̂nl )
′
(0)) sin(βl(k − ω))

≈ 1− cos(βlk)

βl
(|̂ψ|2)l(tn) +

βlk − k sin(βlk)

β2
l

(|̂ψ|2)
′

l(tn),

(3.33)

∫ k

0

f̂nl (ω) cos(βl(k − ω)dω =

∫ k

0

(f̂nl (0) + ω(f̂nl )
′
(0)) cos(βl(k − ω))

≈ sin(βlk)

βl
(|̂ψ|2)l(tn) +

1− cos(βlk)

β2
l

(|̂ψ|2)
′

l(tn),

(3.34)

where (|̂ψ|2)
′

l(tn) ≈ ((|̂ψ|2)l(tn) − (|̂ψ|2)l(tn−1))/k when n ≥ 1 and (|̂ψ|2)
′

l(t0) =

̂(|ψ(0)|2)′ l, with (|ψ(0)|2)
′
= i(∂xxψ

(0)ψ̄(0)−∂xxψ̄(0)ψ(0)) thanks to the exact Schrödinger

equation.

In practice, we also need to replace the above Fourier spectral approximations by

pseudospectral discretization for computational convenience. Choose ψ0
M(x), (φ0

M)(x)

and (φt)
0
M(x) as the interpolations of ψ(0), φ(0) and φ(1) on the grids, respectively.

Let ψnj , φ
n
j and (φt)

n
j be the approximations of ψ(xj, tn), φ(xj, tn) and ∂tφ(xj, tn).

Denote ψ̃l(tn), φ̃l(tn) and (̃φt)l(tn) as (ψ̃n)l, (φ̃n)l and (̃φt)
n

l which are the discrete

pseudospectral coefficients. Combining the split steps via the standard strang split-

ting, we have the following EWI-TSFP2 scheme:
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φn+1
j =

M
2
−1∑

l=−M
2

(φ̃n+1)le
iµl(xj−a), (φt)

n+1
j =

M
2
−1∑

l=−M
2

(̃φt)
n+1

l eiµl(xj−a), (3.35)

ψ∗j =

M
2
−1∑

l=−M
2

eikµ
2
l /2(ψ̃n)le

iµl(xj−a), (3.36)

ψ∗∗j = eik(φnj +φn+1
j )/2ψ∗j , (3.37)

ψn+1
j =

M
2
−1∑

l=−M
2

e−ikµ
2
l /2(ψ̃∗∗)le

iµl(xj−a), 0 ≤ j ≤M − 1, n ≥ 0, (3.38)

ψnM = ψn0 , φ
n
M = φn0 , n ≥ 0, (3.39)

where, for n = 0,

φ̃1
l = (φ̃(0))l cos(βlk) + (φ̃(1))l

sin(βlk)

βl
+

1− cos(βlk)

ε2β2
l

|̃ψ(0)|2l + αl(g̃)l, (3.40)

(̃φt)
1

l = −βl sin(βlk)(φ̃(0))l + cos(βlk)(φ̃(1))l +
sin(βlk)

ε2βl
|̃ψ(0)|2l +

1− cos(βlk)

ε2β2
l

(g̃)l,

(3.41)

and for n ≥ 1,

(φ̃n+1)l = (φ̃n)l cos(βlk) + (̃φt)nl
sin(βlk)

βl
+

1− cos(βlk)

ε2β2
l

|̃ψn|2l + αl(ξ̃n)l, (3.42)

˜(φt)n+1
l = −βl sin(βlk)(φ̃n)l + cos(βl)(̃φt)nl +

sin(βlk)

ε2βl
|̃ψn|2l +

1− cos(βlk)

ε2β2
l

(ξ̃n)l,

(3.43)

with αl = βlk−k sin(βlk)

ε2β3
l

, g = i(∂xxψ
(0)ψ̄(0) − ∂xxψ̄(0)ψ(0)), ξn = |ψn|2−|ψn−1|2

k
and (ξ̃n)l

are the discrete Fourier pseudospectral coefficients of ξn defined as

(ξ̃n)l =
1

M

M−1∑
j=0

ξnj e
−iµl(xj−a), l = −M/2 · · ·M/2− 1. (3.44)

The initial conditions are discretized as

ψ0
j =

M/2−1∑
l=−M/2

(ψ̃(0))le
iµl(xj−a), φ0

j =

M/2−1∑
l=−M/2

(φ̃(0))le
iµl(xj−a),

(∂tφ)0
j =

M/2−1∑
l=−M/2

(φ̃(1))le
iµl(xj−a).
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We remark here the above EWI-TSFP2 for solving the KGS equations is very effi-

cient, uniformly accurate and can be easily extended to two and three dimensions.

The memory cost is O(M) and computational cost is O(MlnM) due to FFT. The

numerical results with the ill-prepared and extremely ill-prepared initial data are

given in Section 3.3, which indicates that this method is uniformly accurate.

3.3 Numerical results

In this section, we present the numerical results of the above two EWI-TSFP

methods for solving the KGS equations (2.1-2.5) with ill-prepared and extremely ill-

prepared initial data. We will show their accuracies for fixed ε and their ε-scalability

in the parameter regime when 0 < ε � 1. The initial data in Example 2 and 3 in

the last chapter will be used since finite difference methods and CNTSFP method

are not uniformly accurate for these two initial data problems.

Continuing with Example 2 and 3, the initial data in (2.3) are given by (2.103)

and (2.106) respectively. The spatial error and temporal error here are computed in

a similar way as before. With ill-prepared and extremely ill-prepared initial data, the

spatial errors of EWI-TSFP and EWI-TSFP2 are still uniformly accurate. Tabs. 3.1

and 3.2 show the spatial errors of EWI-TSFP and EWI-TSFP2 with the extremely

ill-prepared initial data as example, which are uniformly accurate. We omit the

spatial error analysis for them with ill-prepared initial data which are very similar

with those in Tab. 3.1 and Tab. 3.2.

Tabs. 3.3-3.6 show the temporal errors of EWI-TSFP and EWI-TSFP2 for solv-

ing the ill-prepared and extremely ill-prepared initial problem, respectively, under

different ε and time step k. Fig. 3.1 and Fig. 3.2 show the temporal error conver-

gence rate, respectively.

From Tabs. 3.1-3.6, we can draw the conclusions (i) EWI-TSFP and EWI-

TSFP2 have uniform spectral accuracy in space for all ε (cf. each column in Tabs.

3.1-3.2). The spatial discretization errors are totally independent of ε and the spatial
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Table 3.1: Spatial error analysis for eh,k of EWI-TSFP at T = 2 with extremely

ill-prepared initial data.

EWI-TSFP h0 = 1 h0/2 h0/4 h0/8

ε0 = 1 7.06E-2 3.74E-4 2.12E-8 7.06E-12

ε0/2 8.82E-2 3.61E-4 2.10E-8 7.93E-12

ε0/2
2 1.02E-1 3.93E-4 2.19E-8 7.72E-12

ε0/2
4 7.45E-2 6.35E-4 2.38E-8 6.97E-12

ε0/2
6 7.03E-2 5.74E-4 2.98E-8 1.54E-11

ε0/2
8 7.30E-2 5.76E-4 2.93E-8 7.50E-12

ε0/2
10 7.28E-2 5.15E-4 2.52E-8 1.17E-11

Table 3.2: Spatial error analysis for eh,k of EWI-TSFP2 at T = 2 with extremely

ill-prepared initial data.

EWI-TSFP2 h0 = 1 h0/2 h0/4 h0/8

ε0 = 1 7.06E-2 3.74E-4 2.12E-8 5.32E-12

ε0/2
2 1.02E-1 3.93E-4 2.19E-8 6.59E-12

ε0/2
4 7.77E-2 5.49E-4 3.08E-8 1.39E-11

ε0/2
6 7.59E-2 5.33E-4 3.14E-8 9.08E-12

ε0/2
8 7.49E-2 4.81E-4 3.16E-8 8.98E-12

ε0/2
10 7.28E-2 5.15E-4 2.52E-8 1.44E-11

resolution is h = O(1), 0 < ε � 1. (ii) The most important properties of EWI-

TSFP and EWI-TSFP2 are that the temporal errors of them are also uniformly

accurate for 0 < ε � 1 with any initial data, which means that the temporal error

is totally independent of ε and time resolution is k = O(1). These reach to our main

purpose of this thesis. (iii) EWI-TSFP and EWI-TSFP2 have some convergence

order reductions or lose the convergence outside the convergence regime (cf. the
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Table 3.3: Temporal error analysis for eh,k of EWI-TSFP at T = 2 with ill-prepared

initial data.

EWI-TSFP k0 = 0.2 k0/2
2 k0/2

4 k0/2
6 k0/2

8 k0/2
9

ε0 = 1 1.71E-2 1.06E-3 6.62E-5 4.13E-6 2.54E-7 6.22E-8

ε0/2 2.55E-2 1.57E-3 9.82E-5 6.13E-6 3.78E-7 9.00E-8

ε0/2
2 4.20E-2 1.40E-3 8.67E-5 5.41E-6 3.33E-7 7.91E-8

ε0/2
3 5.86E-2 1.01E-3 6.15E-5 3.84E-6 2.36E-7 5.61E-8

ε0/2
4 3.52E-1 1.30E-3 5.16E-5 3.21E-6 1.98E-7 4.70E-8

ε0/2
5 3.39E-1 8.93E-3 5.27E-5 3.26E-6 2.00E-7 4.76E-8

ε0/2
6 4.42E-1 1.55E-1 6.25E-5 3.18E-6 1.95E-7 4.63E-8

ε0/2
7 5.33E-1 1.11E-1 4.11E-3 2.94E-6 1.79E-7 4.25E-8

ε0/2
8 6.64E-1 1.86E-1 1.53E-1 4.44E-6 1.93E-7 4.58E-8

ε0/2
9 4.99E-1 2.48E-1 1.36E-1 8.67E-4 1.84E-7 4.34E-8

ε0/2
10 4.57E-1 2.97E-1 8.06E-2 7.88E-2 8.77E-7 4.49E-8

very lower diagonal parts in Tabs. 3.3-3.6). However, Fig. 3.1 and Fig. 3.2 show

that EWI-TSFP2 has better temporal convergence order than that of EWI-TSFP

and thus EWI-TSFP2 is better than EWI-TSFP when 0 < ε � 1 and EWI-TSFP

needs to be improved for optimal convergence.
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Table 3.4: Temporal error analysis for eh,k of EWI-TSFP2 at T = 2 with ill-prepared

initial data.

EWI-TSFP2 k0 = 0.2 k0/2
2 k0/2

4 k0/2
6 k0/2

8 k0/2
9

ε0 = 1 4.32E-2 2.71E-3 1.69E-4 1.06E-5 6.50E-7 1.54E-7

ε0/2 9.55E-2 6.54E-3 4.16E-4 2.61E-5 1.60E-6 3.81E-7

ε0/2
2 6.21E-2 5.05E-3 3.30E-4 2.08E-5 1.28E-6 3.04E-7

ε0/2
3 6.38E-2 4.92E-3 3.21E-4 2.01E-5 1.24E-6 2.93E-7

ε0/2
4 2.00E-1 3.63E-3 2.67E-4 1.69E-5 1.04E-6 2.47E-7

ε0/2
5 1.62E-1 4.80E-3 2.52E-4 1.64E-5 1.01E-6 2.40E-7

ε0/2
6 2.14E-1 2.86E-2 2.21E-4 1.61E-5 1.00E-6 2.38E-7

ε0/2
7 2.34E-1 2.12E-2 4.88E-4 1.56E-5 1.00E-6 2.38E-7

ε0/2
8 2.46E-1 3.51E-2 3.13E-3 1.28E-5 9.78E-7 2.39E-7

ε0/2
9 2.16E-1 2.75E-2 1.52E-3 4.82E-5 9.28E-7 2.27E-7

ε0/2
10 2.33E-1 3.60E-2 1.74E-3 3.43E-4 8.73E-7 2.42E-7
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Figure 3.1: Dependence of the temporal errors of EWI-TSFP and EWI-TSFP2 on

k at t = 2 with difference ε for the ill-prepared initial problem.
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Table 3.5: Temporal error analysis for eh,k of EWI-TSFP at T = 2 with extremely

ill-prepared initial data.

EWI-TSFP k0 = 0.2 k0/4 k0/2
4 k0/2

6 k0/2
8 k0/2

9

ε0 = 1 1.71E-2 1.06E-3 6.62E-05 4.13E-6 2.54E-7 6.22E-8

ε0/2 3.06E-2 1.90E-3 1.18E-4 7.39E-6 4.56E-7 1.09E-7

ε0/2
2 5.21E-2 2.44E-3 1.53E-4 9.54E-6 5.87E-7 1.40E-7

ε0/2
3 5.75E-2 1.53E-3 9.51E-5 5.94E-6 3.65E-7 8.68E-8

ε0/2
4 3.62E-1 2.13E-3 1.12E-4 7.00E-6 4.31E-7 1.02E-7

ε0/2
5 6.93E-1 1.03E-2 1.47E-4 9.14E-6 5.62E-7 1.33E-7

ε0/2
6 4.99E-1 1.60E-1 9.46E-5 5.47E-6 3.37E-7 8.00E-8

ε0/2
7 5.55E-1 1.29E-1 4.22E-3 9.63E-6 5.90E-7 1.40E-7

ε0/2
8 6.16E-1 1.98E-1 7.49E-2 1.53E-5 6.78E-7 1.61E-7

ε0/2
9 6.45E-1 2.56E-1 5.57E-2 2.04E-3 1.02E-6 2.41E-7
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Figure 3.2: Dependence of the temporal errors of EWI-TSFP and EWI-TSFP2 on

k at t = 2 with difference ε for the extremely ill-prepared initial problem.
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Table 3.6: Temporal error analysis for eh,k of EWI-TSFP2 at T = 2 with extremely

ill-prepared initial data.

EWI-TSFP2 k0 = 0.2 k0/4 k0/2
4 k0/2

6 k0/2
8 k0/2

9

ε0 = 1 4.32E-2 2.71E-3 1.69E-4 1.06E-5 6.50E-7 1.54E-7

ε0/2 1.03E-1 7.20E-3 4.59E-4 2.88E-5 1.77E-6 4.21E-7

ε0/2
2 6.91E-2 5.99E-3 3.92E-4 2.47E-5 1.52E-6 3.61E-7

ε0/2
3 5.86E-2 4.11E-3 2.79E-4 1.77E-5 1.09E-6 2.59E-7

ε0/2
4 2.02E-1 3.05E-3 2.33E-4 1.50E-5 9.25E-7 2.20E-7

ε0/2
5 1.66E-1 4.75E-3 2.22E-4 1.48E-5 9.20E-7 2.19E-7

ε0/2
6 2.18E-1 2.89E-2 1.92E-4 1.45E-5 9.14E-7 2.18E-7

ε0/2
7 2.39E-1 2.16E-2 4.87E-4 1.38E-5 9.07E-7 2.17E-7

ε0/2
8 2.43E-1 2.93E-2 3.69E-3 1.20E-5 8.91E-7 2.15E-7

ε0/2
9 2.44E-1 3.19E-2 2.70E-3 5.80E-5 8.50E-7 2.12E-7



Chapter 4
Uniform and optimal numerical methods

In this chapter, we are going to propose two multiscale methods based on the

multiscale analysis of the KGS equations. Multiscale analysis is widely used to con-

struct uniformly valid approximations to the solutions of perturbation problems, for

small values of the parameter involved in the problem. It is done by introducing

fast-scale and slow-scale variables for an independent variable, and subsequently

treating these variables, fast and slow, as if they are independent [48]. We propose

the multiscale analysis of the KGS equations in order to know the osscillation prop-

erties of the solutions to the KGS equations theoretically under three main types

of initial conditions. Two multiscale methods are designed with the application of

EWI-TSFP and EWI-TSFP2 methods for the decomposed KGS equations.

4.1 Multiscale analysis

In this section, we will apply the multiscale method to generalized KGS equations

(2.1)-(2.3) in singular limit regime. Let τ = t/ε be the fast time variable, and here we

present two-scale matched asymptotic expansion. Using the standard perturbations

54
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analysis, we extend ψ(x, t) and φ(x, t) as

ψ(x, t) = ψ0(x, t) + εψf1 (x, τ) + εψ1(x, t) + · · · , (4.1)

φ(x, t) = φ0(x, t) + φf0(x, τ) + εφ1(x, t) + εφf1(x, τ) + · · · . (4.2)

Plugging the (4.1) and (4.2) into the generalized KGS equations (2.1), (2.2) and the

initial conditions (2.3), we can get

[i∂tψ0 + ∆ψ0 + φ0ψ0](x, t) + [i∂τψ
f
1 + ψ0φ

f
0 ](x, τ)

+ ε[i∂tψ1 + ∆ψ1 + ψ0φ1 + ψ1φ0] + · · · = 0,
(4.3)

[−∆φ0 + φ0 − |ψ0|2] + [∂ττφ
f
0 −∆φf0 + φf0 ]

+ ε[−∆φ1 + φ1 − (ψ1(x, t)ψ̄0(x, t) + ψ0(x, t)ψ̄1(x, t))]

+ ε[∂ττφ
f
1 −∆φf1 + φf1 − 2Re(ψ0(x, t)ψ̄f1 )(x, τ)] + · · · = 0,

(4.4)

with the initial conditions

ψ(x, 0) = ψ0(x, 0) + εψf1 (x, 0) + εψ1(x, 0) + · · · ,

φ(x, 0) = φ0(x, 0) + φf0(x, 0) + εφ1(x, 0) + εφf1(x, 0) + · · · ,

∂tφ(x, 0) = ∂tφ0(x, 0) +
1

ε
∂τφ

f
0(x, 0) + ε∂tφ1(x, 0) + ∂τφ

f
1(x, 0) + · · · .

(4.5)

By the asymptotic analysis principles, the form of the solutions ψ(x, t) and φ(x, t)

depend on different initial conditions. Suppose that the initial data are

ψ(x, 0) = ψ(0)(x), (4.6)

φ(x, 0) = φ(0)(x) = φ0(x, 0) + εαw1(x), (4.7)

∂tφ(x, 0) = φ(1)(x) = ∂tφ0(x, 0) + εβw2(x), (4.8)

where φ0(x, 0) = (−∆ + I)−1|ψ(0)|2 and ∂tφ0(x, 0) = −i(−∆ + I)−1∇ · (ψ(0)∇ψ̄(0) −

ψ̄(0)∇ψ(0)); α and β are nonnegative integers; w1(x) and w2(x) are uniformly bound-

ed in H2 w.r.t. ε. Assuming ψ(0)(x) is the initial of the SY equations, then φ0(x, 0)
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and ∂tφ0(x, 0) are deducted from the SY equations:

i∂tψ0(x, t) + ∆ψ0(x, t) + φ0(x, t)ψ0(x, t) = 0, (4.9)

−∆φ0(x, t) + φ0(x, t)− |ψ0(x, t)|2 = 0, (4.10)

ψ0(x, 0) = ψ(0)(x). (4.11)

Here we mainly state three cases.

Case 1. When α ≥ 2 and β ≥ 1, the initial data are the so-called well-prepared

initial data and we can derive from the system (4.3)-(4.5) to get

ψ(x, t) = ψ0(x, t) + εψ1(x, t) + ε3ψf3 (x, τ) + · · · , (4.12)

φ(x, t) = φ0(x, t) + εφ1(x, t) + ε2φf2(x, τ) + · · · , (4.13)

where ψ0(x, t) and φ0(x, t) satisfies the SY equations (4.9)-(4.11); ψ1(x, t) and φ1(x, t)

satisfy

i∂tψ1(x, t) + ∆ψ1(x, t) + φ0(x, t)ψ1(x, t) + φ1(x, t)ψ0(x, t) = 0, (4.14)

−∆φ1(x, t) + φ1(x, t)−Re(ψ1(x, t)ψ̄0(x, t) + ψ0(x, t)ψ̄1(x, t)) = 0, (4.15)

ψ1(x, 0) = 0. (4.16)

Case 2. When α ≥ 1 and β = 0, we have φf0(x, τ) = 0 and the asymptotic

expansions are in the form of

ψ(x, t) = ψ0(x, t) + εψ1(x, t) + ε2ψf2 (x, τ) + · · · , (4.17)

φ(x, t) = φ0(x, t) + εφ1(x, t) + εφf1(x, τ) + · · · . (4.18)

where ψ0(x, t) and φ0(x, t) satisfy the SY equations (4.9)-(4.11); ψ1(x, t) and φ1(x, t)

also satisfy (4.14)-(4.16); φf1(x, τ) and ψf2 (x, τ) satisfy

i∂τψ
f
2 (x, τ) + ψ0(x, t)φf1(x, τ) = 0, (4.19)

ψf2 (x, 0) = 0, (4.20)
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∂ττφ
f
1(x, τ)−∆φf1(x, τ) + φf1(x, τ) = 0,

φf1(x, 0) = w1(x)(e.g. α = 1) or φf1(x, 0) = 0 (e.g. α > 1), ∂τφ
f
1 = w2(x).

(4.21)

and φf1 can be solved exactly.

Case 3. When α = 0 and β ≥ 0, i.e., the extremely ill-prepared initial data, the

asymptotic solutions are give by (4.1) and (4.2), in which ψ0(x, t), φ0(x, t), ψ1(x, t)

and φ1(x, t) satisfy (4.9)-(4.11) and (4.14)-(4.16) respectively; ψf1 (x, τ) and φf0(x, τ)

satisfy

i∂τψ
f
1 (x, τ) + ψ0(x, t)φf0(x, τ) = 0, (4.22)

ψf1 (x, 0) = 0, (4.23)

and

∂ττφ
f
0(x, τ)−∆φf0(x, τ) + φf0(x, τ) = 0, (4.24)

φf0(x, 0) = w1(x), φf0(x, 0) = 0. (4.25)

It is easy to know that φf0(x, τ) can be solved out exactly. What’s more, φf1(x, τ)

satisfies

∂ττφ
f
1(x, τ)−∆φf1(x, τ) + φf1(x, τ)− 2Re(ψ0(x, t)ψ̄f1 (x, τ)) = 0, (4.26)

φf1(x, 0) = −φ1(x, 0), ∂τφ
f
1 = w2(x), (e.g.β = 0) or ∂τφ

f
1 = 0. (4.27)

4.2 Multiscale methods

We firstly focus on Case 2 as an example. The main oscillatory term of the

solution φ(x, t) which contains the fast variable is φf1(x, τ). It satisfies the linear

Klein-Gordon equation (4.21). By using Fourier spectral method, we can get the

exact solution to φf1 with proper initial data, which is our starting point of designing

new methods. Again, denote XM := span
{
eiµl(x−a), µl = 2πl

b−a , l = −M
2
· · · M

2
− 1
}

,

YM := span {v = (v0, v1, · · · , vM), v0 = vM}. For a general periodic function v(x)
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on [a, b] and a vector a vector v ∈ YM , let PM : L2([a, b]) → XM be the standard

L2-projection operator onto XM , IM : YM → XM be the trigonometric interpolation

operator:

(PMv)(x) =

M/2−1∑
l=−M/2

v̂le
iµl(x−a), (IMv)(x) =

M/2−1∑
l=−M/2

ṽle
iµl(x−a), a ≤ x ≤ b,

(4.28)

where

v̂l =
1

b− a

∫ b

a

v(x)e−iµl(x−a), ṽl =
1

M

M−1∑
j=0

vje
−iµl(xj−a), (4.29)

with vj interpreted as v(xj) for a function v(x).

Let us continue with the KGS equations (2.1)-(2.5) with the following initial

conditions as example

ψ(x, 0) = ψ(0)(x), (4.30)

φ(x, 0) = φ(0)(x) = φ0(x) + εw1(x), (4.31)

∂tφ(x, 0) = φ(1)(x) = φ1(x) + w2(x), (4.32)

where φ0(x) = (−∆ + I)−1|ψ(0)|2 and φ1(x) = −i(−∆ + I)−1∇ · (ψ(0)∇ψ̄(0) −

ψ̄(0)∇ψ(0)); w1(x) and w2(x) are uniformly bounded in H2 w.r.t. ε. Based on

the multiscale analysis, let φ(x, t) = φε(x, t) + εφf1(x, τ) and we can get φε(x, t) and

φf (x, τ) are satisfying

ε2∂ttφ
ε −∆φε + φε − |ψ|2 = 0, a < x < b, t > 0,

φε(x, 0) = φ0(x), ∂tφ
ε = φ1(x),

(4.33)

∂ττφ
f
1(x, τ)−∆φf1(x, τ) + φf1(x, τ) = 0, a < x < b, τ > 0,

φf1(x, 0) = w1(x), ∂τφ
f
1 = w2(x),

(4.34)

where the equation in (4.33) is the Klein-Gordon equation which can be solved by

the EWI method with periodic boundaries shown in the beginning of Section 3.1.

And the equation in (4.34) can be solve exactly as the following:
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Applying PM on the equation (4.34), and noticing the orthogonality of the Fouri-

er functions, we get the the ODEs:

ε2 d
2

dτ 2
(̂φf1)l(τ) + (µ2

l + 1)(̂φf1)l(τ) = 0. (4.35)

It is easy to get the solution to this ODEs with proper initial data. Thus

φf1(x, τ) =

M/2−1∑
l=−M/2

(φ̂f1)le
iµl(x−a)

=

M/2−1∑
l=−M/2

(
(ŵ1)l cos(γlτ) + (ŵ2)l

sin(γlτ)

γl

)
eiµl(x−a),

(4.36)

where γl =
√
µ2
l + 1/2 and τ = t/ε. Then the integration of φf1(x, τ) with respect

to t from tn to tn+1 is given by∫ tn+1

tn

φf1(x, t/ε)dt =

M/2−1∑
l=−M/2

[
ε

γl

(
sin
(γltn+1

ε

)
− sin

(γltn
ε

))
(ŵ1)le

iµl(x−a)

− ε

γ2
l

(
cos
(γltn+1

ε

)
− cos

(γltn
ε

))
(ŵ2)le

iµl(x−a)

]
.

(4.37)

Then we can improve the time-splitting method for solving the NLSE in the KGS

equations with separation of φ(x, t) with high perturbation term and slow pertur-

bation term.

From time t = tn to t = tn+1, the Schrödinger equation (2.1) is solved in two

splitting steps which we stated in Chapter 2. For the second step, we can rewrite

the equation as

i∂tψ + φεψ + εφf1ψ = 0, tn ≤ t ≤ tn+1. (4.38)

Integrating (4.38) from t = tn to tn+1, and approximating the integral of slow

perturbation term φε(x, t) = φ(x, t) − εφf1(x, τ) on [tn, tn+1] via the trapezoidal

rule, one obtains

ψ(x, tn+1) ≈ e
ik
2

[φε(x,tn)+φε(x,tn+1)]e
∫ tn+1
tn

εφf1 (x,t/ε)dtψ(x, tn), a ≤ x ≤ b. (4.39)
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where e
∫ tn+1
tn

εφf1 (x,t/ε)dt can be given exactly.

Note that the error in the numerical integration via the trapezoidal rule depends

on the second order partial derivatives of φε(x, t) w.r.t. t, which is uniformly bounded

to ε. From this point of view, we can improve the time-splitting method for solving

the Schrödinger equation. By coupling it with the EWI method for solving the

Klein-Gordon equation (4.33) and the Fourier spectral exact solution (4.36), we can

get the multiscale methods.

Again, due to the difficulty in calculations of the integrals defining the Fourier

transform coefficients, we adopt an efficient implementation by choosing ψ0(x), (φ0)(x)

and (φt)
0(x) as the interpolations of ψ(0), φ(0) and φ(1) on the grids, respectively.

Let ψnj and φnj be the approximations of ψ(xj, tn) and φ(xj, tn). (φf1)nj is interpreted

as (φf1)(xj,
tn
ε

). Then the multiscale EWI-TSFP method reads

φn+1
j = (φε)n+1

j + ε(φf1)n+1
j , (4.40)

(φε)n+1
j =

M
2
−1∑

l=−M
2

(φ̃n+1
ε )le

iµl(xj−a), (4.41)

(φf1)n+1
j =

M/2−1∑
l=−M/2

(
(w̃1)l cos(γltn+1/ε) + (w̃2)l

sin(γltn+1/ε)

γl

)
eiµl(xj−a), (4.42)

ψ∗j =

M
2
−1∑

l=−M
2

eikµ
2
l /2(ψ̃n)le

iµl(xj−a), (4.43)

ψ∗∗j = eik((φε)nj +(φε)n+1
j )/2En

j ψ
∗
j , (4.44)

ψn+1
j =

M
2
−1∑

l=−M
2

e−ikµ
2
l /2(ψ̃∗∗)le

iµl(xj−a), 0 ≤ j ≤M − 1, (4.45)

ψnM = ψn0 , φ
n
M = φn0 , n ≥ 0, (4.46)
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where

(φ̃1
ε)l = (φ̃0)l cos(βlk) +

(φ̃1)l
βl

sin(βlk) +
(1− cos(βlk))

ε2β2
l

(|̃ψ(0)|2)l

+ (
βlk − k sin(βlk)

ε2β3
l

)g̃l,

(4.47)

(φ̃n+1
ε )l = 2(φ̃nε )l cos(βlk)− (φ̃n−1

ε )l +
2(1− cos(βlk))

ε2β2
l

(|ψ̃n|2)l, n ≥ 1, (4.48)

with g = i(∂xxψ
(0)ψ̄(0) − ∂xxψ̄(0)ψ(0)), and

En
j = ef

n
j , (4.49)

with

fnj = ε

M/2−1∑
l=−M/2

[
ε

γl

(
sin
(γltn+1

ε

)
− sin

(γltn
ε

))
(ŵ1)le

iµl(xj−a)

− ε

γ2
l

(
cos
(γltn+1

ε

)
− cos

(γltn
ε

))
(ŵ2)le

iµl(xj−a)

]
.

(4.50)

The initial conditions are discretized as

ψ0
j =

M/2−1∑
l=−M/2

(ψ̃(0))le
iµl(xj−a), (φε)0

j =

M/2−1∑
l=−M/2

(φ̃0)le
iµl(xj−a),

(∂tφ
ε)0
j =

M/2−1∑
l=−M/2

(φ̃1)le
iµl(xj−a), (φf1)0

j =

M/2−1∑
l=−M/2

(w̃1)le
iµl(xj−a),

(∂τφ
f
1)0
j =

M/2−1∑
l=−M/2

(w̃2)le
iµl(xj−a),

where (ṽ)l (l = −M/2 · · ·M/2 − 1) are the discrete Fourier pseudospectral coeffi-

cients of the vector v = (v0, v1, · · · vM) ∈ YM defined as

(ṽ)l =
1

M

M−1∑
j=0

vje
−iµl(xj−a), l = −M/2 · · ·M/2− 1. (4.51)

This multiscale EWI-TSFP method is explicit, uniformly accurate, easy to imple-

ment and very efficient due to the fast Fourier transform (FFT), and its memory

cost is O(M) and the computational cost per time step is O(MlnM).
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Similarly, we can propose the multiscale EWI-TSFP2 scheme as following:

φn+1
j = (φε)n+1

j + ε(φf1)n+1
j , (4.52)

(φε)n+1
j =

M
2
−1∑

l=−M
2

(φ̃n+1
ε )le

iµl(xj−a), (φεt)
n+1
j =

M
2
−1∑

l=−M
2

(̃φεt)
n+1

l eiµl(xj−a), (4.53)

(φf1)nj =

M/2−1∑
l=−M/2

(
(w̃1)l cos(γltn/ε) + (w̃2)l

sin(γltn/ε)

γl

)
eiµl(xj−a), (4.54)

ψ∗j =

M
2
−1∑

l=−M
2

eikµ
2
l /2(ψ̃n)le

iµl(xj−a), (4.55)

ψ∗∗j = eik(φnj +φn+1
j )/2ψ∗j , (4.56)

ψn+1
j =

M
2
−1∑

l=−M
2

e−ikµ
2
l /2(ψ̃∗∗)le

iµl(xj−a), 0 ≤ j ≤M − 1, n ≥ 0, (4.57)

ψnM = ψn0 , φ
n
M = φn0 , n ≥ 0, (4.58)

where, En
j is given in (4.49); for n = 0,

(φ̃1
ε)l = (φ̃0)l cos(βlk) + (φ̃1)l

sin(βlk)

βl
+

1− cos(βlk)

ε2β2
l

|̃ψ(0)|2l + αlg̃l, (4.59)

(̃φεt)
1

l = −βl sin(βlk)(φ̃0)l + cos(βlk)(φ̃1)l +
sin(βlk)

ε2βl
|̃ψ(0)|2l +

1− cos(βlk)

ε2β2
l

g̃l,

(4.60)

and for n ≥ 1,

(φ̃n+1
ε )l = (φ̃nε )l cos(βlk) + (̃φεt)

n
l

sin(βlk)

βl
+

1− cos(βlk)

ε2β2
l

|̃ψn|2l + αlξ̃nl , (4.61)

˜(φεt)n+1
l = −βl sin(βlk)(φ̃nε )l + cos(βl)(̃φεt)

n
l +

sin(βlk)

ε2βl
|̃ψn|2l +

1− cos(βlk)

ε2β2
l

ξ̃nl ,

(4.62)

with αl = βlk−k sin(βlk)

ε2β3
l

, g = i(∂xxψ
(0)ψ̄(0) − ∂xxψ̄(0)ψ(0)), ξn = |ψn|2−|ψn−1|2

k
and ξ̃nl are

the discrete Fourier pseudospectral coefficients of ξn defined as

ξ̃nl =
1

M

M−1∑
j=0

ξnj e
−iµl(xj−a), l = −M/2 · · ·M/2− 1. (4.63)
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Remark 4.2.1. These multiscale methods are only suitable for solving the KGS

equations with certain kind of initial data. Once the type of the initial condition is

changed to other types, the multiscale asymptotic decomposition will be changed.

Remark 4.2.2. The numerical methods for solving KGS with extremely ill-prepared

initial data shown in Case 3 can be solved with the similar skills. For example, let

φ(x, t) = φε(x, t) + φf0(x, τ) + εφf1(x, τ), where φε(x, t) satisfies (4.33) and φf0(x, τ),

φf1(x, τ) can be solved exactly with proper initial data, we can proposed the multiscale

methods similarly.

4.3 Numerical results

In this section, we continue with example 2, an example of ill-prepared data in

Section 2.3. We will show their accuracy for fixed ε and their ε-scalability in the

parameter regime when 0 < ε � 1. With the definition of error in (2.102), the

spatial and temporal error analysis here are computed in a similar way as before.

Tabs. 4.1-4.2 show the temporal error analysis of these two multiscale methods with

example 2. Tab. 4.3 shows the spatial error of MEWI-TSFP method with different

ε and k, which indicates that MEWI-TSFP for solving ill-prepared initial problem

has uniform and optimal spectral accuracy. The MEWI-TSFP2 shows very similar

spatial errors with those of MEWI-TSFP, thus we omit them for brevity. In order to

know the temporal error convergence order, we plot the dependence of the temporal

errors on k under different ε in Fig. 4.1.

From Tabs. 4.1-4.3, we can draw the conclusion that the multiscale methods

designed specially for ill-prepared initial problem have uniformly spectral accuracy

in space and uniform accuracy in time. The ε-scalability is h = O(1) and k = O(1)

for all 0 < ε ≤ 1. Fig. 4.1 shows these two methods have almost second-order

accuracy in time. Compared with the numerical results of EWI-TSFP method in

Tab. 3.3, Tab. 4.1 shows that the multiscale EWI-TSFP method has much improved

on the temporal accuracy when ε is sufficiently small.
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Table 4.1: Temporal error analysis for eh,k of MEWI-TSFP at T = 2 with ill-

prepared initial data.

MEWI-TSFP k0 = 0.2 k0/4 k0/2
4 k0/2

6 k0/2
8 k0/2

9

ε0 = 1 2.83E-1 1.96E-2 1.25E-3 7.85E-5 4.84E-6 1.15E-6

ε0/2 1.43E-1 9.83E-3 6.27E-4 3.93E-5 2.42E-6 5.75E-7

ε0/2
2 1.24E-1 8.13E-3 5.09E-4 3.18E-5 1.95E-6 4.64E-7

ε0/2
3 1.09E-1 1.04E-2 6.72E-4 4.20E-5 2.59E-6 6.14E-7

ε0/2
4 1.46E-1 1.19E-2 7.41E-4 4.50E-5 2.74E-6 6.51E-7

ε0/2
5 1.26E-1 1.33E-2 7.54E-4 4.34E-5 2.62E-6 6.21E-7

ε0/2
6 1.51E-1 1.82E-2 8.23E-4 6.48E-5 4.16E-6 9.95E-7

ε0/2
7 1.65E-1 1.32E-2 1.14E-3 5.91E-5 3.73E-06 8.95E-7

ε0/2
8 1.76E-1 2.12E-2 1.85E-3 9.83E-5 6.76E-6 1.61E-6

ε0/2
9 1.56E-1 1.70E-2 9.45E-4 9.09E-5 8.53E-6 2.13E-6

ε0/2
10 1.66E-1 2.32E-2 1.05E-3 2.19E-4 1.31E-5 3.37E-6
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Figure 4.1: Dependence of the temporal errors of EWI-TSFP and EWI-TSFP2 on

k at t = 2 with different ε for the ill-prepared initial problem.
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Table 4.2: Temporal error analysis for eh,k of MEWI-TSFP2 at T = 2 with ill-

prepared initial data.

MEWI-TSFP2 k0 = 0.2 k0/4 k0/2
4 k0/2

6 k0/2
8 k0/2

9

ε0 = 1 2.12E-1 1.42E-2 8.99E-4 5.63E-5 3.47E-6 8.24E-7

ε0/2 2.01E-1 1.35E-2 8.56E-4 5.36E-5 3.30E-6 7.84E-7

ε0/2
2 1.83E-1 1.18E-2 7.37E-4 4.60E-5 2.83E-6 6.72E-7

ε0/2
3 1.86E-1 1.85E-2 1.19E-3 7.41E-5 4.56E-6 1.08E-6

ε0/2
4 2.22E-1 2.14E-2 1.33E-3 8.10E-5 4.94E-6 1.17E-6

ε0/2
5 1.65E-1 2.41E-2 1.37E-3 7.80E-5 4.71E-6 1.11E-6

ε0/2
6 2.14E-1 3.15E-2 1.50E-3 1.20E-4 7.76E-6 1.85E-6

ε0/2
7 2.34E-1 2.14E-2 2.13E-3 1.09E-4 6.87E-6 1.65E-6

ε0/2
8 2.46E-1 3.51E-2 3.31E-3 1.87E-4 1.29E-5 3.08E-6

ε0/2
9 2.16E-1 2.75E-2 1.54E-3 1.72E-4 1.65E-5 4.11E-6

ε0/2
10 2.33E-1 3.60E-2 1.74E-3 3.85E-4 2.57E-5 6.60E-6
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Table 4.3: Spatial error analysis for eh,k of MIT-TSFP at T = 2 with extremely

ill-prepared initial data.

MIT-TSFP h0 = 1 h0/2 h0/4 h0/8

ε0 = 1 2.06E-1 6.28E-4 2.86E-8 2.51E-11

ε0/2 1.13E-1 5.27E-4 2.64E-8 1.18E-11

ε0/2
2 9.25E-2 4.90E-4 2.53E-8 7.06E-12

ε0/2
3 6.24E-2 5.28E-4 2.47E-8 7.12E-12

ε0/2
4 6.05E-2 4.39E-4 2.49E-8 1.38E-11

ε0/2
5 6.00E-2 4.37E-4 2.42E-8 1.39E-11

ε0/2
6 5.99E-2 4.34E-4 2.42E-8 9.08E-12

ε0/2
7 5.99E-2 4.34E-4 2.41E-8 6.80E-12

ε0/2
8 5.99E-2 4.34E-4 2.41E-8 1.39E-11

ε0/2
9 5.99E-2 4.34E-4 2.40E-8 1.39E-11

ε0/2
10 5.99E-2 4.34E-4 2.40E-8 1.39E-11



Chapter 5
Conclusion remarks and future work

This thesis is devoted to studying the efficient and accurate numerical method-

s for solving the Klein-Gordon-Schrödinger (KGS) equations in the singular limit

regime, i.e. 0 < ε � 1. In the first part, energy conservative finite difference

(ECFD) method, semi-implicit finite difference (SIFD) method and Crank-Nicoson

time-splitting Fourier pseudospectral (CNTSFP) method were reviewed as well as

compared with each other for solving the KGS equations in the singular limit regime

under three types of initial data. The error estimate of ECFD when ε = O(1) was

provided in Chapter 2, which showed the error bound and convergence rate of ECFD

from theoretical point of view. Extensive numerical results on the KGS equation-

s with the three types of initial data were reported to demonstrate the efficiency,

accuracy and ε-scalability of these methods. Based on the numerical results, we

found that all the methods have uniform accuracy in space for solving the differ-

ent types of initial problems except for the ECFD and SIFD methods, which have

h2/
√
ε error bound in space for solving the extremely ill-prepared data problem. All

the methods have uniform second-order accuracy in time only for solving the KGS

equations with well-prepared initial data when 0 < ε � 1. The numerical results

also show that ECFD, SIFD and CNTSFP have asymptotic temporal error bound

O(k2/ε2) for solving the ill-prepared initial data problem and O(k2/ε3) for solving

the extremely ill-prepared initial data problem. In addition, all of the methods have

67
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some convergence order reductions or lose the convergence of temporal error outside

the convergence regime, which means when ε is very small, these methods are not

efficient nor optimal for solving the KGS equations numerically except for taking k

sufficiently small.

In the second part of this thesis, we focused on the KGS equations with the

ill-prepared and extremely ill-prepared initial data in the singular limit regime, of

which the solutions have high oscillation in time with respect to ε. Based on the

exponential wave integrator (EWI) method for solving the second order nonlinear

ODEs and time-splitting algorithm for the Schrödinger equation, we proposed two

uniformly accurate, efficient and explicit methods (EWI-TSFP) for the KGS equa-

tions. Numerical studies of these two methods were carried out for the ill-prepared

initial and extremely ill-prepared problem, which showed that these two methods

have uniform and optimal spectral accuracy in space and they are uniformly accu-

rate in time with quadratic convergence rate when 0 < k ≤ ε. Compared with the

results of the classical methods, the new methods offer better approximations for

the KGS equations when 0 < ε� 1. Two multiscale methods were proposed based

on the multiscale analysis of the KGS equations and the applications of EWI-TSFP

and EWI-TSFP2 methods for the decomposed KGS with ill-prepared initial data.

Numerical results showed that the multiscale methods have uniform spectral accu-

racy in space and uniform second-order accuracy in time. Thus for solving the KGS

equations with the ill-prepared initial data, the multiscale methods are the best

with uniform and optimal accuracy compared with other methods we discussed.

The limitation of the two multiscale methods is that they can only solve the KGS

equations in the singular limit regime with the ill-prepared initial data. Once the

type of the initial conditions is changed to other types, new multiscale schemes need

to be designed.

To our knowledge, the error estimate of the numerical methods are very difficult

to establish because of the two coupling terms in the KGS equations and one small

parameter ε. Even for the finite difference method, it has not been done. In the
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future work, we will focus on general error estimates for finite difference methods

and CNTSFP when 0 < ε � 1. In addition, we will try to further improve the

performance of the uniformly accurate multiscale methods for solving the KGS e-

quations with extremely ill-prepared initial data and establish the theoretical error

estimate for the EWI-TSFP method.
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geni n Banachräumen, Nachr. Akad. Wiss. Göttingen II : Math.-Phys. Kl.,

(1979), pp. 153- 200.

[76] W. von Wahl, Nichtlineare Evolutionsgleichungen, Teubner Texte zur Math.,

50 (1983), pp. 294-302.
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