
MOBILITY AND INEQUALITY OVER
CYCLICAL ENDOGENOUS GROWTH

MUN LAI YOKE

(B.Sc., B.Sc.(Hons.), M.Tech.(Knowledge Engineering),
M.Sc.(Financial Engineering) & M.Soc.Sc.(Applied Economics),

National University of Singapore;
M.B.A., Heriot-Watt University;

Postgrad.Dip.Ed.(Credit), Nanyang Technological University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ECONOMICS

NATIONAL UNIVERSITY OF SINGAPORE

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48811695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Declaration

I hereby declare that this thesis is my original work and it has been written

by me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Signed:

Mun Lai Yoke

14 August 2015

i



Acknowledgements

First, I would like to thank my supervisor, Prof. Zeng Jinli, for helping me bring

the thesis to fruition. His systematic approach towards research, coupled with

his patience, inspired me to do better. I hope to pay it forward when I teach.

I would also like to thank Prof. Zhang Jie, Dr. Zhu Shenghao, Prof. Liu

Haoming, and Prof. Serene Tan for their constructive comments. In the course

of my study, I have also learned from other faculty members, both directly,

and indirectly at various reading groups. Prof. Aditya Goenka, Prof. Tilak

Abeysinghe, Prof. Duan Jin-Chuan, Prof. Heejoon Han, Dr. Tomoo Kikuchi,

Dr. Lin Liu, Prof. Luo Xiao, Prof. Chen Yichun, Prof. Davin Chor, Prof. Albert

Tsui, Prof. Guillaume Rocheteau, and Prof. Danny Quah, I thank you for your

generosity in sharing your research papers, purpose and passion.

Last but not least, I would like to thank all my coursemates at NUS, among

them: Zhang Shen, Athakrit Thepmongkol, Jiao Qian, Miao Bin, Vu Thanh Hai,

Li Li, Wan Jing, Sreyashi Sen, Jiang Wei, Hong Bei, Zeng Ting, Shao Lei, Liu

Xuyuan, Jiang Yushi, Ding Rong, Shen Bo, Sun Yifei, Cao Qian, Cai Xiqian,

Wang Jianguang, Yang Guangpu, and Liu Bin for the friendship and intellectual

exchanges on economics and beyond, and the Head, Prof. Julian Wright, and

staff at the Economics department for the administrative support.

ii



I am the family face;

Flesh perishes, I live on,

Projecting trait and trace

Through time to times anon,

And leaping from place to place

Over oblivion.

The years-heired feature that can

In curve and voice and eye

Despise the human span

Of durance – that is I;

The eternal thing in man,

That heeds no call to die.

– Thomas Hardy, Heredity
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Summary

In this thesis, the mobility, inequality, labor and growth trajectories in the pres-

ence of idiosyncratic productivity shocks are characterized under a general equi-

librium framework, enabling us to analyze the effects of strength of bequest mo-

tive, envy, taste for leisure, monopoly power and fiscal policies on intergener-

ational mobility and growth-inequality trade-offs. (See Figure 1 on page xii.)

This thesis provides a mechanism and plausible explanations to (i) the dif-

ferences in wealth inequality dynamics across countries and within a country

across time , (ii) the increase in mobility in developed countries with an increase

in innovation subsidies, funded by uniform output tax, and (iii) the increase in

inherited wealth inequality in countries with decreasing inheritance tax.

In the first chapter, I extend Matsuyama (1999) endogenous growth model

by introducing idiosyncratic labor productivity shocks to households with be-

quest motives in the spirit of Bossmann et al. (2007). In Matsuyama (1999),

due to the presence of fixed cost of innovation and monopoly profits, there are

different growth regimes, depending on the capital to variety ratio. Under i.i.d.

shocks, the lineage wealth evolution and cross-sectional wealth distributions for

Solow and Romer steady states, and period-2 cycles are identical, even though

as shown in Matsuyama (1999), the aggregate growth over period-2 cycles are

higher than at either of the steady states. (Under i.i.d. labor productivity shocks,

I have characterized the global mobility evolution and wealth distribution for

the Matsuyama (1999) endogenous growth model, which encompasses growing
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through chaotic intervals as discussed in Gardini et al. (2008).) With lineage-

correlated shocks, the cross-sectional inequality depends on the nature of the

fixed points.

In the second chapter, I introduce "Others regarding behavior" in the form

of "Envy" as in Alvarez-Cuadrado and Long (2012) into the benchmark model

in Chapter 1. This is because empirical data suggests that in addition to absolute

consumption, we are concerned with the relative ranking too, which I shall refer

to as "Status Anxiety"1. This results in bequest being a luxury good. The key

findings in this chapter are: status anxiety reduces the steady state ratio of capi-

tal stock to variety of intermediate goods under both Solow and Romer regimes,

the potential growth rate of the economy, as well as the lineage mobility. More-

over, as in Chapter 1, the higher the price elasticity of the final goods sector’s

demand for each intermediate, the lower the intergenerational lineage mobility.

However, unlike in Chapter 1, with status anxiety, the inequality of inherited

wealth could be higher than the inequality of the wage income under certain

conditions.

In the third chapter, I introduce labor-leisure choice. With endogenous la-

bor, when the preference parameter for leisure increases, the intergenerational

lineage mobility increases, while cross-sectional wealth inequality increases. In

addition, the variation of wage income and leisure over the different regimes

and cycles are characterized. The comparative statics on cross-sectional ratio

1Inspired by De Botton (2008).
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of wages earned to final output are driven by the relative size of the general

equilibrium effect of the wages, the contemporaneous substitution effect of con-

sumption to leisure and the inherited wealth effect, adjusted for quality with the

contemporaneous labor productivity shock, on demand for leisure.

Finally, I examine with the distributive role of fiscal policies in Chapter 4.

Assuming a logarithmic utility function, an increase in inheritance tax decreases

cross-sectional inequality, leveling the playing field, under i.i.d. and correlated

shocks for both growth regimes and period-2 cycles, strengthening the results

from Bossmann et al. (2007), while contrasting with Becker and Tomes (1979),

Atkinson (1980) and Davies (1986). Furthermore, an increase in inheritance tax

also increases intergenerational lineage mobility under i.i.d. shocks. Besides,

the reduction of volatility of growth by fiscal policies such as the innovation sub-

sidy policy rule proposed by Aloi and Lasselle (2007), which stabilizes period-2

cycles, could level the playing field, by decreasing the persistence of inherited

wealth during the transition to the Romer steady state, if funded by a uniform

value-added tax. However, moving from period-2 cycles to the Romer steady

state with the innovation subsidies may change the cross-sectional inequality of

wealth if the idiosyncratic labor productivity shocks are correlated.

Figure 1 depicts the structure and coverage of this thesis.
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Legend
li
t Idiosyncratic labor productivity for an agent from lineage i, born

at time, t.
ci

t Consumption when young for an agent born at time t.
di

t+1 Consumption when old for an agent born at time t.
bi

t Bequest inherited by an agent from lineage i, born at time, t.
β < 1 Subjective discount factor
0≤ µ < 1 Bequest motive.
wi

t = wt li
t Idiosyncratic wage income with inelastic labor.

wt Equilibrium wage rate for each unit of labor productivity.
si
t Amount saved when young of an individual from lineage i, born

at time t.
yi

t Lifetime resource of an individual from lineage i, born at time t.
Rt+1 Equilibrium gross rate of return on capital at time t +1.
Kt−1 Unconsumed final goods in period t−1, available for production

in period t.
Lt Total labor supply at period t.
Yt Final goods production at period t.
Â Total factor productivity.
[0,Nt ] Range of intermediate available at period t.
xt(z) Intermediate input of variety z.
σ > 1 Direct partial elasticity of substitution between each pair of inter-

mediate goods.
F Fixed cost of innovation.
kt =

Kt
θσFNt

Normalized capital, where θ = [1− 1
σ
]1−σ .

kc Critical value of normalized capital, separating the growth
regimes.

ρ[bi
t+1,b

i
t ] Correlation of bequests of lineage i, between generation t and

generation t +1.
CV [bi

t ] Cross-sectional coefficient of variation of bequests at time t.
0≤ γ < 1 Degree of envy when young.
0≤ η < 1 Degree of envy when old,η = ξ γ , where 0≤ ξ < 1.
0≤ λ ,Λi

t < 1 Taste for leisure and fraction of time consumed as leisure when
young by agent of lineage i, born at time t, respectively.

τb Inheritance tax rate levied on the amount bequested.
τt Time dependent uniform tax rate levied on output or value-added

tax.
Tt Tax revenue collected at time t.
κ Proportion of government subsidy.

Table 1: Legend of key variables and parameters used.

xiii



List of Figures

1 Venn diagram - a general equilibrium analysis of mobility and

distribution with fiscal policies. . . . . . . . . . . . . . . . . . . xii

1.1 Timing of the model. . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 The unique steady state (if G < 1: Solow, and if G > 1: Romer). 18

1.3 The existence of period-2 cycles with 1 < G < θ −1. . . . . . . 21

xiv



List of Tables

1 Legend of key variables and parameters used. . . . . . . . . . . xiii

xv



Chapter 1

Mobility and inequality dynamics
with idiosyncratic productivity
shocks

1.1 Introduction

Growth and equity are central tenets in many modern societies. The pursuit of

sustained economic growth has long been enshrined as a high priority mandate

in many public offices, and a central theme in the study of macroeconomics. In

recent years, this mandate has been tampered with words such as "equitable"

and "inclusive". This is evident in the two goals which the World Bank Group1

has set in 2013, for the world to achieve by 2030: (i) "End extreme poverty by

decreasing the percentage of people living on less than $1.25 a day to no more

than 3%", and (ii) "Promote shared prosperity by fostering the income growth of

the bottom 40% for every country". Citing Easterly (2007) and Berg et al. (2012)

respectively, the broadening of the measure of prosperity by World Bank (2013,

1World Bank (2013). Retrieved from http://www.worldbank.org/content/dam/Worldbank/document/WB-
goals2013.pdf, on March 19, 2015.
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pp. 23), from growth of GDP per capita to include distributional dimensions

as a proxy for shared prosperity, arises from concerns that structural inequal-

ity may hamper the magnitude and duration of growth. Most recently, Piketty

(2014) has garnered much attention and provoked discussions from academia2

to mass media3, with his book, a bestseller on Amazon4, documenting the evo-

lution of inequality over the last century. While traditional debates encompass

both the normative and positive roles of inequality on growth and political sta-

bility, Piketty (2014) draws the spotlight on the role of the difference between

returns on capital and growth rate, "r - g", in accentuating the wealth gap. On

the other hand, Acemoglu and Robinson (2014) posit that institutional factors

and their endogenous evolution are more important than the difference between

returns to capital and growth rate, using the economic and political histories

of South Africa and Sweden, and Levy and Temin (2007) do the same for the

United States, attributing the changes in income distribution over time to a set

of economic institutions including the Treaty of Detroit and the Washington

Concensus.

In this chapter, by investigating an endogenous growth model with different

2AEA 2015 Conference: A Discussion of Thomas Piketty’s "Capital in the 21st Century",
and Intergenerational Mobility over Time and Across Locations: Establishing the Facts and Ex-
plaining the Mechanisms.
Retrieved from: https://www.aeaweb.org/aea/2015conference/program/preliminary.php, on Oc-
tober 27, 2014.

3For example, The Guardian (June 17, 2014). Article by Stuart Jeffries, "Piketty mania: how
an economics lecture became the hottest gig in town".
Retrieved from http://www.theguardian.com/books/2014/jun/17/thomas-piketty-lse-capitalism-
talk, on October 27, 2014.

4Amazon Best Sellers of 2014.
Retrieved from http://www.amazon.com/gp/bestsellers/2014/books, on October 27, 2014.
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growth regimes, I hope to shed some light on the role of R and G on wealth

accumulation and inequality. Specifically, an economy can grow via capital

accumulation (neoclassical) or innovation (neo Schumpeterian) or both. The

question of interest is: will different growth regimes, determined endogenously,

lead to different cross-sectional wealth distributions and mobility for a house-

hold lineage under the general equilibrium framework? That is, I explore if

the uni-directional impact of growth on inequality could result in different dy-

namics for inequality and mobility under different growth regimes. I formalize

this idea with a model drawn from three existing literature: endogenous growth

model with fixed innovation cost to generate equilibrium with growth trajecto-

ries arising from accumulation, innovation or both regimes, stochastic idiosyn-

cratic productivity to generate an earnings distribution, and "joy-of-giving" be-

quest motive to propagate the distribution of wealth.

First, from the literature on growth, innovation induced by temporary monopoly

profits mitigates the diminishing returns to scale in neoclassical production, re-

sulting in sustainable growth. Endogenous deterministic cyclical growth, where

the magnitude of economic activity arises from agents’ optimization, may re-

sult from the innovation clustering via quality ladder growth (see Francois and

Lloyd-Ellis (2003)), or via lumpy portfolio choice between capital accumulation

or innovation due to cost of R&D financing (see Bental and Peled (1996), and

Matsuyama (1999, 2001)). In this chapter, I extend Matsuyama (1999) by in-

troducing idiosyncratic labor productivity shocks. This is because, according to

3



Nolan et al. (2014), earnings constituent the largest share of income, and hence

the driver of the income inequality, which leads us to the second strand of the

literature upon which I infer.

The evolution of inequality has been attributed to a myriad of factors rang-

ing from technological changes that result in skills premium, globalization that

leads to liberalization and enhanced mobility of the factor and product markets,

social changes such as assortative marriages and the rise of single-parent house-

holds, as well as changes in fiscal policies such as cuts in marginal tax rates5.

Using data from 30 rich countries over a period of 30 years, Nolan et al. (2014)

found that while there is a prevalent upward trend in income inequality in most

countries, cross country differences in the dynamics in terms of timing and di-

rection exist.

Second, existing literature using uninsurable idiosyncratic risks to gener-

ate heterogeneity among agents includes Quadrini (2000) and Benhabib et al.

(2011, 2014a,b), where uninsurable idiosyncratic income arising from labor

earnings and/or stochastic investment returns, with or without stochastic death

rates, are used to generate wealth distributions exhibiting power laws. A key

purpose of this strand of research is to calibrate income and wealth distributions

to match observed Pareto distributions in available datasets 6. For example,

with stochastic returns and a minimum investment threshold, Levy (2003) gen-

5IMF Staff from Fiscal Affairs Department, supervised by Sanjeev Gupta and Michael Keen
(2014) on Fiscal Policy and Income Inequality, January 23.

6See Sornette (2006) for examples of stochastic difference equations to generate Pareto dis-
tribution.
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erates a wealth distribution that converges to the empirically observed Pareto

distribution. A mechanism to generate the Pareto distribution is by a contin-

uous mixture of exponential distributions with gamma mixing weights (Bean

(2001, pp. 235)), where the exponential distributions arise from the multiplica-

tive changes in idiosyncratic investment returns of every lineage (physical or

human) and the gamma weights from the aggregation across lineages where the

arrival of death or the arrival rate of "creative destruction" is a Poisson process,

as exhibited in Benhabib et al. (2014a) and Jones and Kim (2014) respectively.

Alternatively, to generate heterogeneity: Matsuyama (2004, 2007, 2013) attains

symmetry breaking with endogenous inequality in multiple equilibrium settings

using imperfect credit markets or factor mobility; Lindquist (2004) generates

inequality over business cycles with capital skill complementarity; while Zhang

(2005) obtains a distribution of investment in human capital using bequest and

mean preserving spread.

Third, in this model, the propagation of inequality is explored using "joy-of-

giving" bequest, as well as correlated productivity shocks within a lineage. This

is similar in spirit to De Nardi (2004), where the "joy of giving" bequest mo-

tive together with a stochastic death rate reinforces the wealth concentration, as

well as Bossmann et al. (2007), who examine the role of bequests and taxation

on bequests on the distribution of wealth under neoclassical growth. In models

that use idiosyncratic stochastic capital (sometimes referred to as entrepreneur-

ship or home production) returns, or stochastic bequest motives with jumps, or

5



stochastic death rate to generate the wealth distribution from ex-ante identical

agents, the mobility or correlation across generations is pure luck, and/or all is

fair (lineage mobility is perfectly random), as with Levy (2003). This is one

end of the continuum. However, in this thesis, by using the "joy-of-giving"

bequest motive (here in Chapter 1), "status anxiety"(in Chapter 2), and endoge-

nous labor-leisure choice (in Chapter 3), fiscal policies such as inheritance taxes

and innovation subsidies (in Chapter 4), I study the direct impact of household

optimization on lineage mobility and cross-sectional inequality under different

growth regimes, in a variety of contexts. The focus of this work is thus not on

the top percentiles, but on the mobility and wealth accumulation of the masses

under different growth regimes, to explore the notion of shared prosperity and

its plausibility. Additionally, with the stationarity assumption, the dichotomy of

the cross-sectional inequality of inherited wealth versus the lineage persistence

of inherited wealth under different growth regimes provides some clues to fa-

cilitate our understanding on the taxonomy of mobility and inequality under a

stationary distribution.

Under plausible conditions, stationary distributions over period-2 growth cy-

cles of inherited wealth trajectory with general equilibrium can be established.

To the best of my knowledge, this is novel. The technical difficulty entails find-

ing the conditions for the existence, and stationarity in cross-sectional distribu-

tions, along with non-uniqueness of equilibrium all at once. I sidestep this issue

by making use of the Matsuyama (1999) model, which has proven the existence

6



and non-uniqueness of equilibrium under suitable conditions, and then applying

of time series analysis, via covariance-stationarity (relaxing the strict stationary

assumption) to characterize the cross sectional distributions, using the correct

normalization so that the distributions under both the Solow (accumulation) and

Romer (innovation) regimes can be covariance-stationary and comparable.

Key findings in this chapter, under feasible stationarity conditions, are: in the

absence of capital market frictions (for example investment quantum threshold

and differentiated accessibility to investment), such that the returns on capital

faced by agents are identical, the (i) lineage mobility as well as the (ii) asymp-

totic cross-sectional inequality under both the Solow and Romer steady states

are equivalent; in addition, under i.i.d. idiosyncratic labor productivity shocks,

the (i) lineage mobility and the (ii) asymptotic cross-sectional inequality under

both the Solow and Romer steady states are also equivalent to that under period-

2 cycles. The equivalence result between the two regimes under i.i.d. shocks is

highly instructive for future research, and will be discussed in Section 1.4. With

mean reverting correlated shocks (iii) lineage mobility is lower than that with

i.i.d. shocks under the steady states, and (iv) cross-sectional wealth inequality

is higher than that with i.i.d. shocks under both steady states and period-2 cy-

cles. With lineage-correlated shocks, (v) the cross-sectional inequality depends

on the nature of the fixed points. Relative to the exogenous parameters in the

model, (vi) the higher the bequest motive, the lower the intergenerational mo-

bility and the lower the cross-sectional inequality for both i.i.d. and correlated

7



mean reverting labor productivity shocks at both steady states; (vii) the higher

the elasticity of substitution for intermediate goods in the final sector (equiva-

lently, the higher the capital share, the lower the monopoly margin of innovation

in this model), the lower the intergenerational mobility and the lower the cross

sectional inequality of bequests for i.i.d. shocks.

The rest of the chapter is organized as follows. Section 2 presents basic setup

of the model. Section 3 discusses the aggregate, lineage and cross-sectional be-

quest distributions for the 2 steady states, as well as the period-2 cyclical fixed

points. Section 4 examines the distribution equivalence under the 2 regimes.

Section 5 explores other comparative statics. In particular, how the distribution

of wealth and mobility changes with the bequest motive and price elasticity.

Section 6 demonstrates how correlated productivity shocks may be incorporated

into the basic theoretical framework, and the role of correlation on wealth dis-

tribution and mobility. Section 7 concludes.

1.2 The model

1.2.1 Agents’ optimization

Time is discrete. The economy consists of overlapping generations of agents

who live for 2 periods: the young period, and the old period. In each generation,

there is a continuum of measure 1 of agents. In each family i, old agent gives

birth to 1 child, keeping the population in the economy constant7. When old,

7Population changes can easily be incorporated by changing the measure of agents in each
generation to nt , instead of 1.

8



an agent retires, consumes his savings, and leave a bequest to his child. When

young, an agent works inelastically to earn labor income, consumes, and saves.

Young agents within a given generation, t, are heterogenous in two aspects:

their idiosyncratic productivity, li
t , and the inherited bequest bi

t . I assume that

the labor productivity is drawn from an independent and identical distribution

on a positive support, with an expectation, E[li
t ] = l̄ ≡ 1, and a finite variance,

Var[li
t ] = σ2

l , across agents from the same generation, and for now, independent

across time, that is, independent across generations from the same lineage. We

shall introduce correlations within the same lineage in the later section of this

chapter.

Preference of an agent i born at period t is:

Ut
(
ci

t ,d
i
t+1,b

i
t+1,
)
= lnci

t +β
[
lndi

t+1 +µ lnbi
t+1
]
, (1.1)

where li
t ∼ i.i.d.(1,σ2

l ); ci
t is the consumption when young, and di

t+1 is the con-

sumption when old, respectively, of an agent born at time t; bi
t+1 is the bequest

left by an agent born at time, t, when old, to his immediate offspring; β < 1

is the subjective discount factor; and 0 ≤ µ < 1 is the importance of bequest

motive.

First period budget constraint for agent i is:

ci
t + si

t = bi
t +wi

t ≡ yi
t , (1.2)

where wi
t =wt li

t ; wt is the equilibrium wage rate for each unit of labor productiv-

ity; si
t is the amount saved when young; and yi

t is the lifetime resource of agent

9



i, born at time t.

Second period budget constraint for agent i is:

Rt+1si
t = di

t+1 +bi
t+1, (1.3)

where Rt+1 is the equilibrium gross rate of return on capital at time t +1.

The timing of the model is depicted by Figure 1.1.

Ot+2 Yt+1 Ot 

Yt+2 Ot+1 Yt 

Production 
Sector 

Production 
Sector 

Production 
Sector 

Consumption 

Consumption 

lit 

wtl
i
t 

Rts
i
t-1 

bi
t 

ci
t 

di
t 

di
t+1 ci

t+2 

lit+1 

bi
t+1 

Rt+1si
t 

wt+1lit+1 

bi
t+2 

lit+2 

Rt+2si
t+1 

wt+2lit+2 

ci
t+1 di

t+2 

si
t 

si
t+1 

si
t+2 

Time 

si
t-1 

Figure 1.1: Timing of the model.

Optimal choices of agent i are8,9:

si
t =

β (1+µ)

1+β (1+µ)
yi

t ; (1.4)

ci
t =

1
1+β (1+µ)

yi
t ; (1.5)

8See Appendix A.1 for derivation.
9With log utility or other homothetic preferences, the propensity to save is independent of the

lifetime income resources. This property allows us to aggregate easily the savings functions over
all agents such that the aggregate evolution of the economy does not hinge of the distribution of
wealth, while allowing the aggregate evolution of the economy to affect the wealth distribution
along the transitional path.
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di
t+1 =

Rt+1β

1+β (1+µ)
yi

t ; (1.6)

bi
t+1 =

Rt+1β µ

1+β (1+µ)
yi

t . (1.7)

Using the macron (overbar accent) to represent the average, the optimal

choices of the average agent are10:

st =
β (1+µ)

1+β (1+µ)
yt ≡Ω1yt ; (1.8)

ct =
1

1+β (1+µ)
yt ; (1.9)

dt+1 =
Rt+1β

1+β (1+µ)
yt ; (1.10)

bt+1 =
Rt+1β µ

1+β (1+µ)
yt ≡ Rt+1Ω2yt . (1.11)

1.2.2 Firms’ optimization

To incorporate endogenous growth with both accumulation and innovation regimes,

the production sector is based on Matsuyama (1999). In this economy, there is a

final good (acting as the numeraire), which is produced competitively, using la-

bor and intermediate products that are converted from unconsumed final goods

in the previous period, Kt−1 into a composite via a symmetric CES function.

This composite of intermediates are combined with labor via a Cobb-Douglas

production into the final goods as follows:

Yt = Â(L)
1
σ

{∫ Nt

0
[xt (z) ]

1− 1
σ dz

}
, (1.12)

where Â is the total factor productivity; xt(z) denotes the intermediate input of

variety z in period t; σ ∈ (1,∞) is the direct partial elasticity of substitution
10See Appendix A.1.
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between each pair of intermediate goods; and [0,Nt ] is the range of intermediate

available at period t.

The intermediate sector, at each period t, consist of "old" intermediates in

the range z ∈ [0,Nt−1], with N0 > 0 in period 1, that are available competitively,

and "new" intermediates in the range z ∈ [Nt−1,Nt ], that may be introduced for

exclusive sales due to a 1-period patent protection. To produce a unit of "old"

intermediate, a units of capital is needed. Hence "old" intermediates are priced

at marginal cost: pt(z)≡ pc
t = aRt for z ∈ [0,Nt−1], where Rt is the gross return

on capital at time t. To innovate a "new" variety, a fixed cost, F units of capital

per variety, is incurred. Subsequently, a units of capital is required to produce

each unit of "new" intermediate. With monopolistic competition, no barriers

to entry or exit, 1 period monopolistic rent, and a constant price elasticity σ ,

"new" intermediates, if introduced, will be sold at price pt(z) ≡ pm
t = aσRt

(σ−1)

for z ∈ [Nt−1,Nt ]. Since the final goods sector is perfectly competitive, we can

derive the factor prices by their marginal products.

pc
t =

(
1− 1

σ

)
Â(L)

1
σ (xc

t )
− 1

σ ; (1.13)

pm
t =

(
1− 1

σ

)
Â(L)

1
σ (xm

t )
− 1

σ ; (1.14)

wt =
1
σ

(
Yt

L

)
. (1.15)

From equations (1.13) and (1.14), the relative demand for "old" and "new" in-

termediates can be expressed as:

xc
t

xm
t
=

(
pc

t
pm

t

)−σ

=

(
1− 1

σ

)−σ

. (1.16)

12



Innovation is driven by the existence of 1-period monopoly profits, specifically:

πt = pm
t xm

t −Rt(axm
t +F). (1.17)

Hence one-period monopoly power and free entry implies:

axm
t ≤ (σ −1)F ; Nt ≥ Nt−1; [axm

t − (σ −1)F ](Nt−Nt−1) = 0. (1.18)

As capital is used to produce "old" and/or "new" intermediates, the resource

constraint on capital in period t is:

Kt−1 = Nt−1axc
t +(Nt−Nt−1)(axm

t +F). (1.19)

Combining equations (1.16), (1.18), and (1.19), the allocation of the capital

resource is to the production of each variety of intermediate inputs, "old" and

"new" is:

axc
t = axm

t

(
1− 1

σ

)−σ

= min
{

Kt−1

Nt−1
,θσF

}
; (1.20)

and the dynamics for innovation is:

Nt−Nt−1

Nt−1
= max

{
0,

Kt−1/Nt−1−θσF
σF

}
; (1.21)

where θ ≡
[
1− 1

σ

]1−σ
, θ ∈ [1,e], e = 2.71828... , and θ is increasing with σ .

From equation (1.21), for innovators to break-even and innovation to occur, the

ratio of of available capital to variety, Kt−1/Nt−1 must exceed a threshold level,

θσF .

Equation (1.12) can be written as:

Yt = Â(L)
1
σ

[
Nt−1(xc

t )
1− 1

σ +(Nt−Nt−1)(xm
t )

1− 1
σ

]
. (1.22)
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Substituting the complementary slack condition of innovation arising from the

free entry and monopoly rent, allocation of capital resource to each variety of

intermediate, as well as the dynamics of innovation, i.e. equations (1.18), (1.19),

and (1.21) respectively, the total output is:

Yt =

{
A [θσFNt−1]

1
σ [Kt−1]

1− 1
σ if Kt−1 ≤ θσFNt−1,

AKt−1 if Kt−1 ≥ θσFNt−1,
(1.23)

where A≡ Â
a

[ aL
θσF

] 1
σ . From equation (1.23), the economy operates in a "Solow

regime" when Kt−1/Nt−1 ≤ θσF , where no innovation occurs, and the aggre-

gate production function exhibits diminishing returns to capital as with the stan-

dard neoclassical growth model. On the other hand, the economy operates in a

"Romer regime" when innovation occurs, where the production of final goods

resembles an "AK" growth model as in Rivera-Batiz and Romer (1991).

1.3 Equilibrium steady state and dynamics

1.3.1 Derivation of equilibrium capital stock

By aggregating the inelastic labor from the young, with measure 1 of young

agents and E(li
t) = 1, the labor market clearing condition is:

Lt = L =
∫ 1

0
li
t di = 1. (1.24)

Aggregating the savings from the young, the capital market clearing condition

is:

Kt =
∫ 1

0
si
t di. (1.25)
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From the competitive Cobb-Douglas final goods sector, the wage share of the

economy is:

wtL =
1
σ

Yt , (1.26)

while the capital share of the economy is:

RtKt−1 =

(
1− 1

σ

)
Yt . (1.27)

Since we have measure 1 of agents in each generation, we can obtain an

equivalent expression for the aggregate savings and the aggregate capital stock

of the economy, from the optimization choices of the average agent. Specifi-

cally:

st =
β (1+µ)

1+β (1+µ)
yt

≡Ω1yt

≡Ω1[bt +wt ]

= Ω1wt +Ω1

(
µ

1+µ

)
Rtst−1. (1.28)

The unconsumed final goods at time t, will form the available capital stock

for production at time t + 1. Thus by integrating the savings across all young

agents, the aggregate savings in the economy is:

Kt = St = st = Ω1wtL+Ω1

(
µ

1+µ

)
RtKt−1, (1.29)

and the capital stock as a function of the final output of the economy can be
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derived by substituting out the factor shares, (1.26) and (1.27), as follow:

Kt = Ω1

(
1
σ

)
Yt +Ω1

(
µ

1+µ

)(
1− 1

σ

)
Yt

= Ω1Ω3Yt , (1.30)

where Ω1 ≡ β (1+µ)
1+β (1+µ) and Ω3 ≡ 1+σ µ

σ(1+µ) . That is, this economy saves a constant

fraction of its output for the next period.

From the savings process (1.30), in conjunction with with the dynamics of

innovation (1.21) and the total output (1.23), the unique equilibrium path for

any initial condition, K0 and N0 is pinned down.

Kt

Ω1Ω3
= Yt =

{
A [θσFNt−1]

1
σ [Kt−1]

1− 1
σ if Kt−1 ≤ θσFNt−1,

AKt−1 if Kt−1 ≥ θσFNt−1,
(1.31)

where A≡ Â
a

[ aL
θσF

] 1
σ .

This dynamical system can be normalized by the range of intermediate goods

to a 1-dimensional map. Define Φn (k)≡Φ
(
Φn−1 (k)

)
, Φ1 (k)≡Φ(k), and

kt ≡
Kt

θσFNt
.

Equilibrium path for initial condition k0 is given by the sequence {Φt (k0)}:

kt = Φ(kt−1)≡


G(kt−1)

1− 1
σ if kt−1 ≤ kc = 1,

Gkt−1
1+θ(kt−1−1) if kt−1 ≥ kc = 1,

(1.32)

where:

Φ : R+→ R+
11, kt ≡ Kt

θσFNt
, G ≡ Ω1Ω3A, Ω1 ≡ β (1+µ)

1+β (1+µ) , Ω3 ≡ 1+σ µ

σ(1+µ) , and

A≡ Â
a (

aL
θσF )

1
σ .

11k = 0 is excluded from the domain in the mapping kt =Φ(kt−1), as Φ
′
(0)> 1, making k = 0

a repelling fixed point and hence trivial.
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1.3.2 Steady state

The mapping kt = Φ(kt−1) with domain Φ : R+ → R+ in (1.32) has a unique

steady state where kt ≡ Kt
θσFNt

is constant over time. Denote the fixed point

as k∗ such that k∗ = Φ(k∗) if k∗ < kc ≡ 1 and k∗∗ such that k∗∗ = Φ(k∗∗) if

k∗∗ > kc ≡ 1.

Lemma 1.1. G determines the regime under which the steady state lies, hence

the potential growth of the economy12. See Figure 1.2.

(i) If G < 1, the steady state is in the Solow regime, with kt = k∗ < kc ≡ 1.

(ii) If G > 1, the steady state is in the Romer regime, with kt = k∗∗ > kc ≡ 1.

Proof. From (1.23) (1.30), Kt = Ω1Ω3Yt = Ω1Ω3AKt−1 = GKt−1. Thus, the

growth potential of the economy is determined by the parameter G = Ω1Ω3A.

At steady state:

(i) If kt = k∗ < kc ≡ 1 (Solow regime), using (1.32) and (1.21), Nt = Nt−1 and

Kt = Kt−1. At this steady state, there is no innovation, and all goods are

supplied competitively. The economy does not grow in the long run due to

diminishing returns, as with the neoclassical stationary path. From (1.32),

k∗ = (Ω1Ω3A)σ ≡ Gσ . The condition for the existence of this stationary

path is G≡Ω1Ω3A < (kc)
1
σ ≡ (1)

1
σ = 1.

12See Gardini et al. (2008, pp. 543) for a discussion on border-collision bifurcation, that
results in five different regimes depending on the value of the parameter σ , when G = 1.
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(ii) If kt = k∗∗ > kc ≡ 1, from (1.32), the steady state is k = k∗∗ ≡ 1+ (G−1)
θ

>

kc = 1 (Romer regime). Thus, the condition for the existence of this sta-

tionary path is G ≡ Ω1Ω3A > 1. At this steady state, innovation occurs,

with K and N growing at the same rate G, along a balanced growth path.

�
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kt kt 
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Figure 1.2: The unique steady state (if G < 1: Solow, and if G > 1: Romer).

1.3.3 Aggregate dynamics

For clarity and completeness, I restate 2 propositions from Matsuyama (1999)

on aggregate dynamics in this section. The focus of this thesis remains the char-

acterization of the lineage and cross-sectional wealth distributions that evolve
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jointly with the aggregate dynamics; and how these distributions may change

with the structure of productivity shocks, bequest motives, status anxiety, elas-

tic labor, inheritance tax, or innovation subsidies.

Proposition 1.1. Matsuyama (1999, pp. 343, Proposition 1)13.

(i) If G < 1, then for any k0 ∈ R+, kt < kc for all t, and limt→∞ kt = k∗.

The economy converges to a neoclassical stationary path. (Solow regime)

(ii) If G > θ −1, then for any k0 ∈R+, there exists a t ′ such that {kt ; t ≥ t ′} ⊂

[kc,Φ(kc)] and limt→∞ kt = k∗∗.

The economy oscillates around and eventually converges to a balanced

growth path. (Romer regime)

(iii) If 1 < G < θ−1, there are period-2 cycles14; kt fluctuates forever between

Solow and Romer regimes for almost all initial conditions, that is for k0 ∈

R+\D, where D is at most countable subset of R+.

Proof. See Matsuyama (1999, pp. 344).

I shall provide a sketch of the proof by graphical analysis here.

(i) With k∗ < kc ≡ 1 (Solow regime), the slope of the mapping, kt = Φ(kt−1),

is Φ
′
(kt) = (1− 1

σ
)G(kt−1)

− 1
σ > 0. As kt−1 → 0, Φ

′
(kt) > 1, and in the

steady state, k∗ = Gσ , Φ
′
(kt) = (1− 1

σ
)< 1 because σ > 1. Consequently,

13See Matsuyama (1999, pp. 344–345) and Gardini et al. (2008) for a discussion on other
possible trajectories. In particular, Gardini et al. (2008) proved that while chaotic regimes may
exist, only a fixed point or a cycle of period 2 are possible for stable cycles.

14Matsuyama (1999, pp. 346) suggests plausible empirical specification of parameters for
cycles to occur.
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k∗is a globally stable steady state, and for any k0 > 0, the sequence {kt}∞
t=0

converges towards k∗.

(ii) k∗∗ > kc ≡ 1 (Romer regime), the slope of the mapping, kt = Φ(kt−1),

is Φ
′
(kt) =

G[1+θ(kt−1−1)]−Gkt−1θ

[1+θ(kt−1−1)]2
= G(1−θ)

[1+θ(kt−1−1)]2 . At the steady state, by

substituting kt = k∗∗ ≡ 1+ (G−1)
θ

> kc = 1, we have Φ
′
(k∗∗) = (1−θ)

G <

0. Since θ varies from 1 to e = 2.71828..., as σ varies from 1 to ∞, if

G > θ − 1, then −1 < Φ
′
(k∗∗) < 0. Then, if G > θ −1 and kc < Φ2(kc),

the steady state is globally stable. For any initial state (even in the Solow

regime), the economy will propagate to the Romer regime, remain there,

and converge with oscillation towards the steady state (balanced growth

path).

(iii) If 1 < G < θ − 1, then Φ
′
(k∗∗) < −1, and k∗∗ is locally unstable. It can

be shown that 1 < G < θ − 1 is equivalent to Φ2(kc) < kc < Φ(kc); thus

[Φ2(kc),Φ(kc)] represents the trapping region, which includes both the

Solow and Romer regimes, and eventually, the economy grows through

cycling back and forth between the 2 regimes. See Figure 1.3.

�

Proposition 1.2. Matsuyama (1999, pp. 346, Proposition 2). Let gx be the gross

growth rate of variable X. Along period-2 cyles:

(i) gN = 1 < G < G(kL)−
1
σ = gK = gY in the Solow regime;
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Figure 1.3: The existence of period-2 cycles with 1 < G < θ −1.

(ii) gN = 1+θ(kH−1)> G = gK = gY in the Romer regime;

(iii) gN = gK = gY = (1+θ(kH−1))
1
2 = G(kL)−

1
2σ > G over the cycles.

where kH = Φ(kL) = G(kL)1− 1
σ , and kL = Φ(kH) = GkH

1+θ(kH−1) .

Proof. As stated in Matsuyama (1999), by substituting the iterated fixed points

of the period-2 cycles: kt−2 = kH , kt−1 = kL and kt = kH into the variety ex-

pansion and total output equations, (1.21) and (1.32), where kH = Φ(kL) =

G(kL)1− 1
σ , and kL = Φ(kH) = GkH

1+θ(kH−1) .
Nt

Nt−1
= 1; Nt+1

Nt
= 1+θ(kH−1);

Yt
Yt−1

= Kt
Kt−1

=
(

kH

kL

)(
Nt

Nt−1

)
= kH

kL ;

Yt+1
Yt

= Kt+1
Kt

=
(

kL

kH

)(
Nt+1
Nt

)
=
(

kL

kH

)
[1+θ(kH−1)]. �

Two features of this endogenous cyclical growth model are worth noting.
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First, from the perspective of the production function, the cycle length of this

model corresponds to the duration of innovation rent. In practice, depending on

the nature of the type of intellectual property (e.g. patents, industrial designs,

geographical indications or trademarks), the duration of innovation protection

varies. For example, the available term of patent protection for inventions must

be available for a minimum of 20 years from the date of filing the patent appli-

cation under the TRIPS Agreement, administered by the WTO15. On the other

hand, from the perspective of utility maximizing agents, the length of a period

in a 2-period OLG model of life-cycle savings is typically 30 years or longer16.

Hence, there is a drawback of using a 2-period life cycle preference for analyti-

cal tractability as the period length may be incongruent with the patent length or

period of monopoly rent in Matsuyama (1999)’s model. Although Matsuyama

extended his model, Matsuyama (1999), to an infinite horizon representative

agent economy in Matsuyama (2001), the infinite horizon representation is not

adopted here as I am keen to study intergenerational mobility, and due to the

finiteness of a human life, the rate of convergence matters to each realizable path

of a human life. Furthermore, modeling with infinitely-lived households implies

that parents value their children’s utility and vice-versa, with perfect 2-way al-

truism and risk-sharing, unless wedges (frictions) are introduced; for example,

15WTO - TRIPS Agreement (Article 33).
Retrieved from https://www.wto.org/english/tratop_e/trips_e/intel2_e.htm#patents, on Novem-
ber 8, 2014.

16For example, in Jouvet et al. (2010), the length of a full period of their 2-period OLG model
is 40 years.
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enforcing agents to make their inter-temporal consumption versus savings de-

cision before knowing the realization of their labor productivity shocks in each

period. With the warm-glow ("joy-of-giving") bequest motive, parents value be-

quest itself (as a reduced form representation), and risk-sharing is unilateral and

imperfect. In Chapter 2, with the presence of "Status Anxiety", the "conflicts

and solidarity across generations"17, absent in the infinite horizon models, are

further highlighted using OLG models. Thus, bringing the model to data, to

match the patent length, one might have to fine-tune the number of periods each

agent lives 18. In any case, this model explains mid-term economic fluctuations,

not to the short-term business cycle volatility.

Second, growth and innovation are not synchronized19. From Proposition

1.2 part (i) and (ii), for period-2 cycles, capital accumulation and total output

growth are higher under the Solow regime compared to the Romer regime. This

is because the economy reaps the rewards of innovation only after the innovation

ends, when the market becomes competitive. Yet, to avoid fate of diminishing

returns, we need innovation of new goods, so that the economy can experience

17Phrase quoted from David de la Croix’s website.
Retrieved from http://perso.uclouvain.be/david.delacroix/olg.html, on October 22, 2015.

18Examples include: Bouzahzah et al. (2002, pp. 2096), "Agents are homogenous within
generations and live for six periods of life(i.e. from age 18 to age 78), each of them representing
10 years."; and Jouvet et al. (2010, pp. 14), "In our model economy agents live for 9 periods.
Therefore we interpret one model period to last 6 years."

19In Wälde (2005), both capital accumulation and R&D occur simultaneously, where indi-
viduals allocate resources between capital accumulation and R&D as a portfolio. Then, using
the amount of resources allocated for R&D to drive the arrival rate of a Poisson process that
determines the success rate of innovation in the economy as whole, he generates endogenous
stochastic cycles where innovation is procyclical in contrast with Matsuyama (1999) endoge-
nous deterministic cycles where innovation is countercyclical.
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indefinite growth. Thus from Proposition 1.2 part (iii), even though cycles in-

duce volatility into the economy, they augment growth over the cycle compared

to the balanced growth path.

Proposition 1.3. An economy with a higher bequest motive, µ , has a higher

growth potential.

Proof. Market clearing (equations (1.26), (1.27) and (1.29)), and the consumer

optimization (equation (1.30)) imply St = Kt = Ω1Ω3Yt . Together with the final

output function (1.23),

Yt =

{
A [θσFNt−1]

1
σ [Kt−1]

1− 1
σ if Kt−1 ≤ θσFNt−1

AKt−1 if Kt−1 ≥ θσFNt−1,

along the balanced growth path, Kt = Ω1Ω3Yt = Ω1Ω3AKt−1 = GKt−1, where

G≡ gross growth rate.

∂G
∂ µ

= A
[

Ω3
∂Ω1

∂ µ
+Ω1

∂Ω3

∂ µ

]
> 0, (1.33)

where Ω1 =
β (1+µ)

1+β (1+µ) , Ω3 =
1+σ µ

σ(1+µ) ,
∂Ω1
∂ µ

= β

[1+β (1+µ)]2
> 0, and ∂Ω3

∂ µ
= σ−1

σ(1+µ)2 >

0. �

In this model, to perpetuate growth indefinitely, the innovation of new inter-

mediate goods is necessary to circumvent the diminishing returns resulting from

growth via factor accumulation à la Neoclassical models. As accumulated cap-

ital from previous period is used to produce "old" and/or "new" intermediates

in equation (1.19), an increase in the bequest motive would result in a higher
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aggregate savings rate, hence a higher rate of capital accumulation that relaxes

the resource constraint governing the innovation process.

Proposition 1.4. The normalized steady-state capital stock to variety ratio, kt ,

is increasing in the degree of bequest motive µ , in both regimes.

Proof. From equation (1.32):

when G < 1, k∗ = (Ω1Ω3A)σ ≡ Gσ ;

when G > 1, k = k∗∗ ≡ 1+ (G−1)
θ

.

∂k∗

∂ µ
=

∂k∗

∂G
× ∂G

∂ µ
= (σGσ−1)A

[
Ω3

∂Ω1

∂ µ
+Ω1

∂Ω3

∂ µ

]
> 0. (1.34)

∂k∗∗

∂ µ
=

∂k∗∗

∂G
× ∂G

∂ µ
=

1
θ

A
[

Ω3
∂Ω1

∂ µ
+Ω1

∂Ω3

∂ µ

]
> 0. (1.35)

�

The higher the bequest motive, the higher the marginal utility from savings

for each agent. Therefore the higher the aggregate wealth accumulation. Thus,

in the presence of endogenous growth, this increase in bequest motive can in-

crease the growth potential of the economy.

1.3.4 Lineage bequest evolution at Solow steady state

Moving on, from the aggregate dynamics of the economy, the lineage bequest

evolution of agents from family i, across time can be tracked. This is an ad-

vantage of using the time series analysis approach to characterize a stationary

distribution if variances of the shocks are finite. We can track or forecast the
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intergenerational impact of a specific productivity shock through the lineage us-

ing the impulse-response function. To do so, the law of motion of bequest for

the lineage is derived, then inverted, as shown below.

Let the single asterisk superscript represents the Solow steady state. At the

Solow steady state, k∗ = Gσ < 1. Let Yt+1 = Yt ≡ Y ∗, Rt+1 = Rt ≡ R∗, and

Kt+1 = Kt ≡ K∗. From (1.31), in the Solow regime,

Rt =
∂Yt

∂Kt−1
=

(
1− 1

σ

)
A(θσFNt−1)

1
σ (Kt−1)

− 1
σ =

(
1− 1

σ

)
A(kt−1)

− 1
σ ,

(1.36)

where kt =
Kt

θσFNt
. At Solow steady state, R∗ =

(
1− 1

σ

)
A(k∗)−

1
σ . From equa-

tion (1.32),

k∗ = G(k∗)
σ−1

σ ⇒ k∗σ

k∗σ
=

G(k∗)σ−1

k∗σ
⇒ 1 = Gσ (k∗)−1⇒ k∗ = Gσ = (Ω1Ω3A)σ .

(1.37)

R∗ =
(

1− 1
σ

)
A(k∗)−

1
σ =

(
1− 1

σ

)
A(Ω1Ω3A)−1 =

(
1− 1

σ

)
Ω1Ω3

. (1.38)

At Solow steady state, the gross rate of return on capital, R∗, is the ratio of

capital share of the economy,
(
1− 1

σ

)
, to the fraction of lifetime resources saved

by the young, Ω1Ω3. Using the bequest of an agent of lineage i, equation (1.7),

as well as the capital and labor shares, equations (1.26) and (1.27), we derive

the law of motion of the bequests for an agent of lineage i.

bi
t+1 =

Rt+1β µ

1+β (1+µ)
(yi

t)

=
Rt+1β µ

1+β (1+µ)
(bi

t + li
t wt)

=
Rt+1β µ

1+β (1+µ)
(bi

t + li
t

1
σ

Yt). (1.39)
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At Solow steady state, normalizing20 by the total output, Yt+1 and rearrang-

ing,

bi
t+1

Yt+1
− R∗β µ

1+β (1+µ)

bi
t

Yt
− R∗β µ

σ [1+β (1+µ)]
=

R∗β µ

1+β (1+µ)

1
σ
[li

t − lt ], (1.40)

⇒
bi

t+1

Yt+1
−

(1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)]

bi
t

Yt
−

(1− 1
σ
)β µ

Ω1Ω3σ [1+β (1+µ)]

=
(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)]

1
σ
[li

t − lt ] (1.41)

The ratio of bequest to total output inherited by a young agent from lineage i at

any time t, follows a first order non-homogenous difference equation.

Following, to facilitate the discussion on the law of motion of bequests for

any lineage, I shall introduce 2 basic concepts that are used in time series anal-

ysis. (The standard notations used in time series analysis literature such as ρ

for autocorrelations, γ for autocovariances, φ for the coeffcients for AR (auto-

regressive) processes, and θ for the coefficients for MA (moving average) pro-

cesses are used here21.)

Definition 1.1. A time series process, Yt is said to be covariance-stationary or

weakly stationary if neither the mean µt , nor the autocovariances γ jt depend on

20While not necessary for the characterization of the law of motion for bequests under the
Solow steady state, normalization is needed for the characterization of the Romer steady state,
the period-2 cycles, as the total output is growing under the latter 2 trajectories. Normalization
applies along the transition to the fixed point(s) as well.

21However, to minimize confusion, E[li
t ] = l̄ = 1 and σl , with the subscript l, are used to

represent the mean and standard deviation of the idiosyncratic labor productivity draws respec-
tively, as µ is used to denote the bequest motive of agents’ preference, and σ is used to denote
the final goods sector’s demand for each intermediate in the production function.
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the date t22. That is,

E[Yt ] = E[Y ] for all t
E[(Yt−E[Y ])

(
Yt− j−E[Y ]

)
] = γ j for all t and any j.

(1.42)

If a process is covariance-stationary, the covariance between Yt and Yt− j is

dependent only on the length of time separating the observations, and is inde-

pendent of t, the date of the observation. Furthermore,

γ j = γ− j for all integers j. (1.43)

Definition 1.2. A time series process, Yt is said to be strictly stationary if, for

any values of j1, j2, ..... jn, the joint density of (Yt ,Yt+ j1,Yt+ j2, ....,Yt+ jn) depends

only on the intervals separating the dates ( j1, j2, ..... jn) and not the date itself

(t)23.

If a process is strictly stationary with finite second moments, then it must

be covariance-stationary. However, a covariance-stationary process need not be

strictly stationary24, e.g. when higher moments such as E(Y 3
t ) are a function of

time. In addition, there are strictly stationary processes that are not covariance

stationary. For example, a sequence of i.i.d. Cauchy random variables, while

strictly stationary, is not covariance stationary since no joint moments exist.

Now define

z∗it+1 =
1

Ω4

bi
t+1

Yt+1
−

1
Ω4

δ1

1−φ∗1
, (1.44)

22See Hamilton (1994, pp. 45).
23See Hamilton (1994, pp. 46).
24See Wei (2006, pp. 9 ) for an instructive example, that resembles the trajectory of a period-2

cycle in this thesis.
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where Ω4 =
(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)]
1
σ
= δ1, and φ∗1 =

(1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)] . Substituting (1.44)

into equation (1.40), we get a first order homogenous difference equation for

z∗it+1 . That is,

z∗it+1−φ
∗
1 z∗it = [li

t − lt ]≡ ui
t+1 ∼ i.i.d.(0,σ2

l ). (1.45)

Following Conlisk (1974) and Bossmann et al. (2007), I use the correlation of

parent-child inherited wealth within a lineage as a measure of the degree of

social immobility, and coefficient of variation as a measure of cross-sectional

inequality respectively.

Proposition 1.5. Since |φ∗1 | ≡
∣∣∣∣ (1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)]

∣∣∣∣< 1, z∗it+1 is a covariance-stationary

AR(1) process25.

(i) The expected bequest inherited by a young agent of lineage i, as a ratio of

the total output, at time, t +1, is:

E

[
bi

t+1

Yt+1

]
=

δ1

1−φ∗1
=

1
σ

φ∗1
1−φ∗1

. (1.46)

(ii) The variance of bequest inherited by a young agent of lineage i, as a ratio

of the total output, at time, t +1, is:

Var

[
bi

t+1

Yt+1

]
=

σ2
l Ω2

4

1−φ∗21
=

σ2
l

1−φ∗21

(
1
σ

φ
∗
1

)2

. (1.47)

(iii) The intergenerational mobility can be measured by the covariance or the

correlation coefficient, to gauge the extent of intergenerational transmis-
25The distribution of z∗it+1 given z∗it ,z

∗i
t−1,z

∗i
t−2, ... is identical to the distribution of z∗it+1 given

z∗it . That is, the AR(1) process is a Markov process.
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sion of inequality. They are respectively:

Cov

[
bi

t+1

Yt+1
,
bi

t
Yt

]
= Ω

2
4

σ2
l φ∗1

1−φ∗21
=

σ2
l φ∗1

1−φ∗21

(
1
σ

φ
∗
1

)2

. (1.48)

ρ

[
bi

t+1

Yt+1
,
bi

t
Yt

]
= ρ1 = φ

∗
1 =

R∗β µ

1+β (1+µ)
=

(1− 1
σ )

Ω1Ω3
β µ

1+β (1+µ)
=

(σ −1)µ
1+σ µ

.

(1.49)

In general, for AR(1) processes,

Cov

[
bi

t+k

Yt+k
,
bi

t
Yt

]
= φ

∗Cov

[
bi

t+k−1

Yt+k−1
,
bi

t
Yt

]
=

σ2
l φ∗k1

1−φ∗21

(
1
σ

φ
∗
1

)2

∀k ≥ 1.

(1.50)

ρ

[
bi

t+k

Yt+k
,
bi

t
Yt

]
= ρk = φ

∗
1 ρk−1 =

(
(σ −1)µ
1+σ µ

)k

∀k ≥ 1. (1.51)

Proof. See Hamilton (1994, Appendix 3.A. pp. 69) for conditions for covariance-

stationarity for AR(1)26. In essence, equation (1.45) can be expressed as (1−

φ∗1 L)z∗it+1 = ui
t+1, where L is the lag operator, and for z∗it+1 to be stationary, the

root of the characteristic equation, (1−φ∗1 L)= 0, must lie outside the unit circle,

hence |φ∗1 |< 1.

φ
∗
1 =

R∗β µ

1+β (1+µ)
=

(1− 1
σ )

Ω1Ω3
β µ

1+β (1+µ)

=
(σ −1)(1+µ)β µ

Ω1(1+σ µ)[1+β (1+µ)]

=
[1+β (1+µ)] (σ −1)(1+µ)β µ

β (1+µ)(1+σ µ)[1+β (1+µ)]

0≤ φ
∗
1 =

(σ −1)µ
1+σ µ

< 1. (1.52)

26Although Hamilton (1994, Appendix 3.A. pp. 69) proves the convergence for the MA(∞)
process, an AR(1) process can be viewed as an MA(∞) process (Hamilton (1994, pp. 53)).
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The moments for this AR(1) process can be calculated from the difference

equation (1.44) directly, assuming covariance stationarity (Hamilton (1994, pp.

53–56)), or by applying the generalized autocovariance generating function for

autoregressive moving average, ARMA, processes, together with some alge-

braic manipulations (Hamilton (1994, pp. 61–63)). That is, for the AR(1) pro-

cess in equation (1.45), E
[
z∗it+1

]
= 0, Var

[
z∗it+1

]
= γ0 = σ2

l , Cov
[
z∗it+ j,z

∗i
t

]
=

γ j = φ
∗ j
1 γ0 =

φ∗ jσ2
l

1−φ∗21
, and ρ j =

γ j
γ0
=

φ
∗ j
1 γ0
γ0

= φ
∗ j
1 . �

The general condition for covariance stationarity for an AR(1) process, |φ∗1 |<

1 implies that Rt+1β µ

Gt+1[1+β (1+µ)] < 1 in this model, where Gt+1 denotes the gross

growth rate of final output. While shown on the preceding proof that this

condition is not binding in the current model, it is worth discussing what this

covariance-stationarity condition means from the point of view of agents’ opti-

mization and the production structure, both under the Solow regime and Romer

regime. From equation (1.7) the coefficient of the AR(1) corresponds to the

fraction of lifetime resource (the agent gets from wages and from inheritance

when young) that is bequested to the next generation. Thus, for a covariance-

stationary bequest distribution to exist under the Solow steady state, agents in

the economy should not pass on more wealth than the sum of wealth they have

inherited and wage income they have earned when they are young, as in the style
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of Bill Gates27. That is, from the perspective of agents’ optimization,

bi
t+1 =

Rt+1β µ

1+β (1+µ)
yi

t ,

|φ∗1 |=
∣∣∣∣ R∗β µ

1+β (1+µ)

∣∣∣∣< 1⇒ bi
t+1 < yi

t . (1.53)

From the economy’s perspective, the condition |φ∗1 |< 1 implies that agents’

subjective discount rate for the future is large (β is small) relative to the gross

return on capital, which is endogenously determined. That is:

R∗ <
1+β (1+µ)

β µ
,

⇒

capital share︷ ︸︸ ︷
(1− 1

σ
)

Ω1Ω3︸ ︷︷ ︸
savings rate out of lifetime resource of young

<
1+β (1+µ)

β µ
.

In Bossmann et al. (2007), the mobility, proxied by the correlation of parent-

child inherited wealth, depends on time along the equilibrium path to the long-

run steady-state’s correlation value. In this chapter, by normalizing the inherited

wealth to the total output, the intergenerational mobility ρ1, determined by the

autoregressive coefficient φ∗1 , is constant throughout the equilibrium path to the

steady-state. Wan and Zhu (2012) do not characterize the intergenerational mo-

bility as they generalize Bossmann et al. (2007) by relaxing the assumption of

finite variance of the labor productivity shocks; thereupon they are silent on the

lineage bequest evolution.
27See Daily Mail (June 9, 2011). Interview with Bill Gates by Caroline Graham, "This is not

the way I’d imagined Bill Gates... A rare and remarkable interview with the world’s second
richest man."
Retrieved from http://www.dailymail.co.uk/home/moslive/article-2001697/Microsofts-Bill-
Gates-A-rare-remarkable-interview-worlds-second-richest-man.html, on November 14, 2014.
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1.3.5 Cross-sectional distributions at Solow steady state

Proposition 1.6. Since |φ∗1 |< 1, the cross-sectional inequality of bequests, mea-

sured by the coefficient of variation, σl

√
1−φ∗1
1+φ∗1

, which is less than the cross sec-

tional inequality of wages, σl . The higher the standard deviation of the idiosyn-

cratic productivity shocks or cross sectional inequality of wages, σl , the higher

the cross sectional inequality.

Proof. From the asymptotic distribution for a covariance-stationary process28,

the inequality of labor income and bequests in the asymptotic cross-sectional

distribution using coefficient of variation29 are:

CV
[
wi]=CV

[
wi

t
]
=

√
Var

[
wi

t
]

E
[
wi

t
] =

σlwt

wt
= σl. (1.54)

CV
[
bi]=CV

[
bi

Y ∗

]
=CV

[
bi

t+1

Y ∗

]
=

√
Var

[
bi

t+1
Y ∗

]
E
[

bi
t+1
Y ∗

] =
σl

√
1

1−φ∗21
1

(1−φ∗1 )

=σl

√
1−φ∗1
1+φ∗1

.

(1.55)

�

The implications of Proposition 1.6 is that, if the wealth inheritance is a

covariance-stationary process, and in the absence of heterogenous capital re-

turns, and stochastic mortality (hence stochastic bequests), the intergenerational

transfers serve the purpose of private insurance or risk pooling across gener-

ations within the same lineage for idiosyncratic labor productivity shocks, to
28See Hamilton (1994, pp. 186–195: Section 7.2. Limit Theorems for Serially Dependent

Observations).
29The coefficient of variation, as a measure of inequality, is scale invariant.
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equalise the lifetime resource, yi
t = bi

t +wi
t . This result concurs with Bossmann

et al. (2007) and Wan and Zhu (2012) as expected, where only the neoclas-

sical growth model is analysed. To establish this stationary asymptotic cross-

sectional distribution of wealth inherited to total output, I use the covariance-

stationarity assumption and associated properties of the time series; whereas

Bossmann et al. (2007) use 2-series theorem, and Wan and Zhu (2012) use The-

orem 1 of Brandt (1986), Lorenz dominance and convex order. In subsequent

sections, we shall extend the results of Bossmann et al. (2007) to cover the case

of endogenous growth with innovation in the style of Romer.

Furthermore, from Proposition 1.6, an exogenous increase in σl will lead

to an increase in cross-sectional inequality of bequest to output ratio. Thus,

any change in labor force demographics, distribution of human capital, labor-

augmenting technology, or degree of openness of an economy that may increase

the spread of idiosyncratic productivity of the labor force, will henceforth result

in a higher cross-sectional inequality of bequest to output. Examples of changes

in spread of productivity or human capital brought about by education, technol-

ogy or globalized production chains include Davies et al. (2005), Acemoglu and

Autor (2012) and Costinot et al. (2012) respectively. A time trend in the wage

dispersion is also reported in a study by Krueger et al. (2010). They find a keen

and sustained sharp increase in cross-sectional wage dispersion during the last

thirty years for Canada, UK and the US, with the variance of male log wages

increasing by about 40%. However, according to them, observable characteris-
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tics such as experience and education, only partially account for this increase,

and they attribute this increase in wage dispersion as largely residual in its na-

ture. In any case, an exogenous increase in labor productivity dispersion will

correspondingly lead to an increase in wage dispersion and an increase cross-

sectional inequality of wealth in this chapter, hence a plausible driver for the

increase in income inequality in the United States over the last thirty years, as

depicted by Piketty (2014, pp. 24, Figure I.1).

1.3.6 Lineage bequest evolution at Romer steady state

Let the double-asterisk superscript represents the Romer steady state. At the

Romer steady state, k∗∗ ≡ 1+ (G−1)
θ

> 1. Let Yt+1 = GYt , Kt+1 = GKt , and

Rt+1 = Rt ≡ R∗∗. At the Romer regime, from the capital share at equilibrium,

(1.27), and final output production, (1.23), gross return on capital at the Romer

regime is:

Rt =
(1− 1

σ
)Yt

Kt−1
=

(1− 1
σ
)AKt−1

Kt−1
=

(
1− 1

σ

)
A. (1.56)

At Romer steady state, substituting R∗∗= (1− 1
σ
)A into the law of motion of the

bequests for an agent of lineage i (1.39), normalizing by the total output, Yt+1,

where the output growth G is Ω1Ω3A, and rearranging,

bi
t+1

Yt+1
− R∗∗β µ

1+β (1+µ)

bi
t

GYt
− R∗∗β µ

σG[1+β (1+µ)]
=

R∗∗β µ

1+β (1+µ)

1
σG

[li
t − lt ],

(1.57)
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⇒
bi

t+1

Yt+1
−

(1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)]

bi
t

Yt
−

(1− 1
σ
)β µ

Ω1Ω3σ [1+β (1+µ)]

=
(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)]

1
σ
[li

t − lt ].

At the Romer steady state, the ratio of bequest to total output inherited by a

young agent from lineage i at any time t, is a first order non-homogenous equa-

tion. Note that the law of motion of lineage bequest normalized by output is

identical to that in the Solow regime, as stated in equation (1.40).

Proposition 1.7. The dynamics of lineage bequest normalized by the final out-

put, and hence the asymptotic cross-sectional distributions are identical under

both the Solow and Romer steady states.

Proof. As shown in equations (1.40) and (1.57). �

While the dynamics are identical, a subtle difference exists in terms of inter-

pretation for the agents’ optimization for stationarity. Arising from the condi-

tion for the existence of covariance stationarity, unlike in the Solow steady state,

agents under the Romer regime can pass on more wealth than the sum of wealth

they have inherited and wage income they have earned when young to their next

generation, provided that is less than the gross growth of the economy. That is,

from the agent’s perspective,

bi
t+1 =

Rt+1β µ

1+β (1+µ)
yi

t , and |φ∗1 |=
∣∣∣∣ R∗∗β µ

G[1+β (1+µ)]

∣∣∣∣< 1,

⇒ bi
t+1 < Gyi

t .
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From the economy’s perspective, φ∗1 = R∗∗β µ

G[1+β (1+µ)] =
(1− 1

σ
)Aβ µ

AΩ1Ω2[1+β (1+µ)] < 1, im-

plies that agents subjective discount rate for the future is large relative to the

ratio of gross return on capital to gross output growth, R∗∗
G or equivalently rela-

tive to the ratio of capital share to savings rate. That is:

R∗∗

G
<

[1+β (1+µ)]

β µ
⇒

capital share︷ ︸︸ ︷
1− 1

σ

Ω1Ω3︸ ︷︷ ︸
savings rate out of lifetime resource of young

<
1+β (1+µ)

β µ

That is, for models with constant capital share and homothetic preference such

that agents save a constant fraction of income, it is the interplay between the

capital share to savings rate relative to the discount rate and bequest motive

that determines the stationarity of the bequest distribution, and not the moot

point on capital returns to growth ratio, R/G alone. The right hand side of the

inequality represents the preference primitives, while the left hand side embeds

the institutional structure as elucidated by Acemoglu and Robinson (2014).

In the current model, this covariance stationary condition is slack and not

binding, as the AR(1) coefficient which dependent only on the elasticity of sub-

stitution (or monopoly power ) and the strength of the bequest motive, σ and µ

respectively, is always less than 1.

1.3.7 Cross-sectional distributions at Romer steady state

Proposition 1.8.

(i) The gross growth rate of cross-sectional expected value of bequests in the
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Romer steady state is (Ω1Ω3A)> 1, while that equals 1 in the Solow steady

state.

(ii) The gross growth rate of cross-sectional variance of bequests in the Romer

steady state is (Ω1Ω3A)2 > 1, while that equals 1 in the Solow steady state.

(iii) However, using CV as a measure of inequality, the cross sectional inequal-

ity of bequests to total income under the Romer and Solow steady states

are equivalent, if the stationarity assumption for the law of motion holds

in both steady states.

Proof. Unlike the Solow steady state where, Yt+1 =Yt =Y ∗, in the Romer steady

state, Y ∗∗ is growing, that is, Yt+1 = Ω1Ω3AYt . E
[
bi

t+1
]
= (Ω1Ω3A)E

[
bi

t
]
, and

Var
[
bi

t+1
]
= (Ω1Ω3A)2Var

[
bi

t
]
. But, CV as an inequality measure is invari-

ant to scale changes. Thus with covariance-stationarity, |φ∗1 | < 1, CV
[

bi

Y ∗∗

]
=

CV
[

bi

Y ∗

]
=CV

[
bi]. �

While Wolff (1992) finds that the Great Depression has a considerable effect

on the inequality of wealth, Krueger et al. (2010) do not find such a link between

wealth inequality and recessions, citing the recessions in Sweden and Italy in

the 1990s as examples, as those recessions were not associated with significant

changes in asset prices. Thus, changes in growth rate alone, although an easy

suspect, is not a sufficient factor driving changes in wealth inequality.
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1.3.8 Lineage bequest evolution and cross-sectional distribu-
tions for period-2 cycles

Having done the groundwork to characterize the dynamics of the bequest dis-

tributions for both the Solow and Romer steady states, the derivation of lineage

bequest evolution for period-2 cycle follows. Note that for period-2 cycles, out-

put growth occurs at both the Solow and Romer regimes. Let the superscripts

L and H denote the fixed points with the lower and higher normalized capital

respectively. Let RL be the gross return on capital for the fixed point, kL; RH be

the gross return on capital for the fixed point, kH ; and GL be the gross growth

rate of output for the period-2 fixed point in the Solow regime, and G, as stated

earlier, is the gross growth rate along the balanced growth path in the Romer

regime.

From the capital share at equilibrium, equation (1.27), the savings rate, equa-

tion(1.30), and the gross growth rate of variables along period-2 cycles in Propo-

sition 1.2, we get:

Rt =
(1− 1

σ
)Yt

Kt−1
=

(1− 1
σ
)

Kt−1

Kt

Ω1Ω3
,

RL

GL =

(1− 1
σ
)

Ω1Ω3
KL

KH

Y L

Y H

=
(1− 1

σ
)

Ω1Ω3
=

RH

G
. (1.58)

Using the iterated fixed points of the period-2 cycles: kt+1 = kH , kt = kL,

kt−1 = kH , and kt−2 = kL, by recursive substitution into the law of motion of

bequest, equation (1.39), and normalizing using the final output, we get,
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at Romer fixed point:

bi
t+1

Yt+1
−φ

R

[
φ

S bi
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Yt−1
+

φ S
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φ S

σ
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R
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− φ Rφ S

σ

[
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1
φ S

]
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φ R

σ
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φ Rφ S

σ
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t , (1.59)

at Solow fixed point:

bi
t

Yt
−φ

S

[
φ

R bi
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Yt−2
+

φ R

σ
+

φ R

σ
ui

t−1

]
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=
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Yt−1

−φ S
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σ
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t ,
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t

Yt
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− φ Rφ S

σ

[
1+

1
φ R

]
=

φ S

σ
ui

t +
φ Rφ S

σ
ui

t−1, (1.60)

where φ R ≡ RHβ µ

G[1+β (1+µ)] = φ S ≡ RLβ µ

GL[1+β (1+µ)]
= φ∗1 ≡

(1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)] . (The ex-

tra notations are introduced to facilitate the exposition, even though the param-

eter values are the same.)

To characterize the Romer fixed point, let zHi
t+1 = 1

Ω4

bi
t+1

Yt+1
−

1
Ω4

δ2

1−φ Rφ S , where

Ω4 =
φ R

σ
, δ2 =

φ Rφ S

σ
[1+ 1

φ S ], and φ H
2 = φ Rφ S, such that:

zHi
t+1−φ

H
2 zHi

t−1 = [li
t − lt ]+φ

S[li
t−1− lt−1]≡ ui

t+1 +φ
Sui

t , (1.61)

where ui
t+1 and ui

t ∼ i.i.d.(0,σ2
l ).

To characterize the Solow fixed point, let zLi
t = 1

Ω4

bi
t

Yt
−

1
Ω4

δ2

1−φ Rφ S , where Ω4 =

φ S

σ
, δ2 =

φ Rφ S

σ
[1+ 1

φ R ], and φ L
2 = φ Rφ S, such that:

zLi
t −φ

L
2 zLi

t−2 = [li
t−1− lt−1]+φ

R[li
t−2− lt−2]≡ ui

t +φ
Rui

t−1, (1.62)

where ui
t and ui

t−1 ∼ i.i.d.(0,σ2
l ).
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Proposition 1.9. Since
∣∣φ H

2

∣∣= ∣∣φ L
2

∣∣= ∣∣(φ∗1 )2
∣∣< 1, then zHi

t+1 and zLi
t are covari-

ance stationary ARMA(2,1) processes, with

E

[
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t+1

Yt+1

]
= E
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bLi

t
Yt

]
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δ2

1−φ Rφ S =

φ Rφ S

σ
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φ S ]

1−φ Rφ S =
1
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; (1.63)
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(1.67)

ρ

[
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,
bi

t
Yt

]
= ρ1 =

Cov
[

bt+1
Yt+1

,
bt
Yt

]
√
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Yt+1

]
Var
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∗
1 ; (1.68)

ρ

[
bi

t+k

Yt+k
,
bi

t
Yt

]
= ρk = φ

R
φ

S
ρk−2 =

(
(σ −1)µ
1+σ µ

)k

∀k ≥ 2. (1.69)

Proof. Equations (1.61) and (1.62) can be expressed as (1− φ2L2)zH or L,i
t+1 =

ui
t+1 + φ∗1 ui

t , where L is the lag operator, and for zH or L,i
t+1 to be stationary, the

roots of the characteristic equations, (1− φ2L2) = 0, must lie outside the unit

circle, hence |φ2|< 1, or equivalently, |φ∗21 |< 1. From (1.52), 0≤ φ∗1 < 1, thus∣∣φ H
2

∣∣ = ∣∣φ L
2

∣∣ = ∣∣(φ∗1 )2
∣∣ < 1, and the conditions for covariance-stationarity for

the ARMA(2,1) process are met30. To compute the moments, the notation is

simplified by dropping the superscripts, resulting in the following ARMA(2,1)

30See Hamilton (1994).
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process:

zt = φ2zt−2 +ut +φ1ut−1

= φ
∗2
1 zt−2 +ut +φ

∗
1 ut−1 (1.70)

where ut and ut−1 ∼ i.i.d.(0,σ2
l ).

γ(0) = E[ztzt ] = φ
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2
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∗
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= φ
∗2
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∗
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∗
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∗
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∗
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2
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=
φ∗1 σ2

l

(1−φ∗21 )
. (1.72)

γ(2) = E[zt−2zt ] = φ
∗2
1 E[zt−2zt−2]+E[zt−2ut ]+φ

∗
1 E[zt−2ut−1]

= φ
∗2
1 γ(0)+E[(φ∗21 zt−4+ui

t−2+φ
∗
1 ui

t−3)ut ]+φ
∗
1 E[(φ∗21 zt−4+ui

t−2+φ
∗
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γ(2) = φ
∗2
1 γ(0). (1.73)

Substituting γ(2) from (1.73) into γ(0) from (1.71), we get:

γ(0) = φ
∗4
1 γ(0)+σ

2
l +φ

∗2
1 σ

2
l

= σ
2
l
(1+φ∗21 )

(1−φ∗41 )
=

σ2
l

(1−φ∗21 )
. (1.74)
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γ(k) = E[zt−kzt ] = φ
∗2
1 E[zt−kzt−2]+E[zt−kut ]+φ

∗
1 E[zt−kut−1] ∀k ≥ 2

= φ
∗2
1 E[zt−kzt−2] = φ

∗2
1 γ(k−1) ∀k ≥ 2. (1.75)

�

Proposition 1.10. With i.i.d. labor productivity shocks, for period-2 cycles, the

mean and variances of the bequest to output ratio as well as the intergenera-

tional mobilities are the same for both the Solow and Romer fixed points, and

they are also identical to those under the Solow or Romer steady states.

Proof. By inspection of the moments in Proposition 1.9. �

1.4 Comments on the distribution equivalence be-
tween Solow and Romer regimes

1.4.1 Implications for generating evolving inequality of wealth
over time

For linear models, in the absence of financial frictions, there is no distinction

on whether the lifetime resource at young is obtained through earned wages or

through bequest as long as they are indistinguishable when invested. Whether

the real wages are stagnant or growing is immaterial; as long as the labor share

to output ratio is a constant, both the Solow and Romer regimes yield equivalent

dynamics and distributions after normalising for growth.

Thus, a way to generate an evolving cross-sectional inequality of inherited

wealth over time is via an exogenous change in the primitive parameters in

the model such as the spread of the idiosyncratic productivity shocks, as dis-
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cussed in Proposition 1.6. Other factors include exogenous fiscal shocks, such

as changes in inheritance tax or innovation subsidies. This approach is adopted

by Piketty (2011), where to match the long-run evolution of inheritance from

1820, as well as for projection into 2050, he simulated the data with exogenous

changes in the differentiated savings rates, bequest ratios, and capital taxes, as

well as exogenous capital losses due to destruction shocks, for different time

segments.

Yet another alternative is the introduction of financial frictions (e.g. credit

constraints or indivisible lumpy investment), or differentiated capital embedded

in endogenous growth such that the rich can have favorable access to profitable

investment projects during regimes when returns on capital are higher; or finally,

a production mechanism, where capital share is not a constant fraction of final

output. Particularly, to obtain cyclical inequality dynamics over different growth

regimes, the key is to generate heterogenous returns on wealth (via heterogenous

capital returns or human capital returns) both across agents within the same

cohort and across the different regimes. In this model, while the returns on

capital are different across the 2 regimes, the capital share are unchanged over

the 2 regimes, and all agents have equal access to the capital markets with their

wealth, without any distinction between wealth earned through labor income or

inherited, resulting in equivalence across the 2 different regimes.

For future research, extensions with models of innovation satisfying both

conditions will be looked into using this covariance-stationary technique to
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study cyclical evolution of inequality. For this thesis, in Chapter 4, as with

existing literature, I shall fall back on using exogenous changes to explain the

evolving inequality across time. These exogenous fiscal policy changes are tax

rate on bequest and innovation subsidies, and they are empirically motivated.

While the impact of bequest has been explored under neoclassical growth by

Bossmann et al. (2007) and Wan and Zhu (2012), and the impact of invest-

ment subsidy by García-Peñalosa and Turnovsky (2007), I hope to complement

the existing research by providing a tractable analytical characterization of im-

pact of these fiscal policies on the transition and lineage bequest evolution of

inequality (i.e. intergenerational mobility), beyond the cross-sectional distribu-

tion consequences at steady states, for growth under both regimes and cycles,

without using numerical simulations.

1.4.2 Implications for policy makers

Further, for pedagogical purposes, the distributional equivalence under different

growth regimes is informative in defining desideratum in the economy’s fiscal

policies. Unlike Piketty (2011, 2014), the difference between the gross return

on capital and the gross growth rate of an economy, consequently r− g, does

not drive the cross-sectional inequality of inherited wealth in this model. Serv-

ing as the pivotal points to this result here are (i) the constant labor to output

share in the long run (allowing for exogenous occasional changes in the labor

shares via changes in the price elasticity of final sector’s demand during transi-
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tion to the stationary distribution), and (ii) the absence of financial frictions in

the economy. The degree of validity of these pivots are empirically falsifiable,

by bringing closer together macro-data such as national accounts and micro-

data on household labor and finances. Schneider (2011) provides a survey on

the labor share literature, both theoretical and empirical.

The second pivotal point: access to the capital markets by agents, rich or

poor, merits discussion. The lynchpin in Piketty (2011, 2014) is the "class sav-

ing" model, where the savings rate out of labor and capital income are exoge-

nously differentiated. In the benchmark case (Piketty (2011, pp.1107)), agents

consume 100% of their labor income by assumption, thus all savings in the

economy come only from the returns to inherited wealth. In addition, Piketty

(2011, pp. 1105) assumes growth to be exogenous, driven by changes in produc-

tivity, within a Cobb-Douglas production function, with 2 factors of production:

non-human capital Kt , and human capital Ht = Ltegt , where Lt is the labor sup-

ply and g is the exogenous rate of productivity growth. With this set-up, Piketty

(2011, pp. 1112–1113) posits that even if workers save out of their labor income,

the steady-state inheritance converges quickly to the benchmark "class savings"

model when the growth rate approaches 0 (e.g. in the region of 1 to 2%). Piketty

(2011, pp. 1115) also explores a finite-horizon wealth-in-utility saving model,

with the same production function, arriving at the same steady-state conver-

gence with the "class-savings" model, for agents with identical preference, but

ex-ante heterogenous endowments of wealth.
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Thus, implicit in Piketty (2011, pp.1074) "r > g logic": if rate of returns

to private wealth exceeds rate of growth of the economy, inequality is exacer-

bated, is the limited ability for the workers without inheritance to participate in

the capital market, hence its dividends from economic growth. Based on his

"r > g logic", Piketty (2011, 2014) postulates an increase in taxes on capital to

regulate the size of the steady-state inheritance flows to curb the rising inequal-

ity of wealth, without impinging upon the exogenously driven growth rate of

the economy. Note that the mobility in his "class saving" model is zero, with

permanent stratification of the society, except when taxes and redistribution are

taken to the extreme of ex-post equality for all.

In contrast, the "r > g logic" does not apply in this model of endogenous

growth with innovation, since the wealth distributions under Solow and Romer

regimes are equivalent, if all agents, regardless of their wealth, are able to op-

timise their savings and consumption decisions, and participate in capital mar-

kets with homogenous returns. While the preference in this model with bequest

motive is similar to the reduced form of the finite-horizon wealth-in-utility sav-

ings model used by Piketty (2011, pp. 1115), with idiosyncratic labor pro-

ductivity draws, I manage to avoid the social stratification that results in his

model with labor income mobility via productivity draws, while achieving a

non-degenerate distribution of inherited wealth, regardless whether agents were

ex-ante homogenous or heterogenous in terms of their wealth. Moreover, unlike

Piketty (2011), with the production function used in this model, both the savings
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rate and growth rate are endogenously determined. Thus, I posit that improving

access to capital markets (both physical and human) and the reduction of fric-

tions (such as investment quantum through vehicles such as investment trusts,

and quality public schools), and informational disadvantage (through improved

reporting standards and investment literacy programmes) may be helpful to pro-

mote mobility, and to cap inequality arising from capital market inaccessibility

(and hence the inability to partake in the growth dividends of the economy).

1.4.3 Technical implications

With the distributional equivalence of the inherited wealth to output ratio under

i.i.d. productivity shocks, I have effectively characterized the global lineage evo-

lution of inherited wealth to output ratio, as well as the long-run cross-sectional

distribution of inherited wealth to output ratio. This has novel implications when

combined with the results from Gardini et al. (2008) and Mitra (2001). Mitra

(2001) presents a sufficient condition for topological chaos for unimodal maps

that do not satisfy the Li-Yorke condition. Gardini et al. (2008) have character-

ized the global aggregate dynamics of the Matsuyama (1999) model, and shown

that the economy can grow via an attracting chaotic interval, 2-cyclical chaotic

intervals, 4-cyclical chaotic intervals, attracting period-2 cycles, attracting fixed

point in Romer regime, or converge to an attracting fixed point in the Solow

regime, depending on the parameter values of σ and G in the Matsuyama (1999)

model, as it is topologically equivalent to a skewed tent map.
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Furthermore, I can subsequently relax the finite variance assumption of the

idiosyncratic shocks. If the idiosyncratic shocks, lt is stationary and ergodic,

with a finite mean, I can proceed to characterize the cross-sectional wealth dis-

tribution and compare the inequality using convex order and Lorenz dominance

as in Zhu (2013a) and Wan and Zhu (2012). By relaxing the finite variance as-

sumption, I can then bring the model to the wealth data that displays fat-tails

(e.g. in Piketty (2011) and Piketty (2014)), where the right-tail cannot be cap-

tured with the finite variance assumption.

As noted by Stachurski (2009), for stable invariant distribution to exist, there

is positive probability of moving between any 2 points of space within a fi-

nite time, to ensure distribution is ergodic. Thus, by incorporating bequest mo-

tive and i.i.d. idiosyncratic productivity shocks into the Matsuyama (1999), the

economy is never stratified globally, since the global wealth distribution is stable

and invariant, even though the aggregate growth dynamics can be chaotic.

1.5 Comparative statics

1.5.1 Impact of an increase in bequest motive, µ , on lineage
and cross-sectional distribution

Proposition 1.11. Without bequests, correlation in wealth is 0. That is, wealth

is determined by own i.i.d. labor income, and there is perfect mobility. In the

presence of a bequest motive, the higher the bequest motive, µ , the higher the

correlation of the ratio of bequests to total output across generations from the
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same dynasty, the lower the intergenerational mobility.

Proof. From the correlation equation (1.49),

ρ1 = φ
∗
1 =

(σ −1)µ
1+σ µ

,

if µ > 0,

∂ρ∗1
∂ µ

=
σ −1

(1+σ µ)2 > 0. (1.76)

�

Proposition 1.12. The higher the bequest motive, µ , the lower the asymptotic

cross-sectional spread of bequests, the lower the cross-sectional bequest in-

equality in both regimes.

Proof. From (1.55),
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≥0 from (1.76)

≤ 0.

(1.77)

�

With the "joy-of-giving" bequest motive, an increase in bequest motive re-

duces both intergenerational mobility and cross-sectional inequality of inherited
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wealth under i.i.d. labor productivity shocks. That is, bequest functions as an

intergenerational risk pooling device for idiosyncratic labor productivity shocks.

This extends the robustness of role of bequest in intergenerational risk sharing

by Becker and Tomes (1979) and Bossmann et al. (2007) to a model of en-

dogenous growth (with innovation and cycles). This result contrasts with Zhu

(2014), where investment risk is introduced into Becker and Tomes (1979). The

difference in the resulting wealth inequality in relations to the strength of the

bequest motive highlight the need to read beyond the headlines (R versus G),

to identify the fundamental driver(s) of inequality (e.g. heterogeneous returns

on capital or investment versus heterogeneous returns on labor), with bequest

acting merely as a vehicle to propagate the heterogeneity. In this model, the re-

turns on capital are homogeneous, so too the strength of the bequest motive (see

Charles and Hurst (2002) for models with varying bequest motives in agents’

preferences), thus bequest itself is rank preserving, mitigating the productivity

risks of subsequent generations within a lineage.

1.5.2 Impact of an increase in price elasticity, σ , on lineage
and cross-sectional distribution

Proposition 1.13. The higher the price elasticity of the final sector’s demand for

each intermediate, σ (and correspondingly, higher capital share, lower wage

share, as well as lower monopoly margin for innovation), the higher the corre-

lation of the ratio of bequests to total output across generations from the same

dynasty, the lower the intergenerational mobility.

51



Proof.

∂ρ1

∂σ
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1
(1+σ µ)2
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≥ 0. (1.78)

�

Proposition 1.14. The higher the price elasticity of the final sector’s demand for

each intermediate, σ (and correspondingly, higher capital share, lower wage

share, as well as lower monopoly margin for innovation), the lower the asymp-

totic cross-sectional spread of bequests, the lower the cross-sectional bequest

inequality in both regimes.

Proof.
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�

The impact of price elasticity of the final sector’s demand for each interme-

diate, hence the monopoly margin for innovation is absent in Becker and Tomes

(1979); Charles and Hurst (2002); Bossmann et al. (2007); García-Peñalosa and

Turnovsky (2007) and García-Peñalosa and Turnovsky (2011). In Becker and
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Tomes (1979) and Charles and Hurst (2002), production is not explicitly mod-

elled, and changes in the endowment generating process is used to study the

distribution of income or wealth and the intergenerational mobility. The papers

by Bossmann et al. (2007) and García-Peñalosa and Turnovsky (2011) use the

Neoclassical growth model, where the former has inelastic labor, and the latter,

elastic labor with agents holding different initial capital endowments. García-

Peñalosa and Turnovsky (2007) use an endogenous growth model with elastic

labor, but no innovation.

Piketty and Zucman (2014) discuss the role of capital share on the wealth to

income ratio arising from changes in technology, with a 2-factor CES production

function. If the capital-labor elasticity of substitution is larger than 1, capital

share in the national income increases as wealth to income ratio increases (due to

the changes in the relative prices of the factors of production), and an exogenous

decrease in growth rate (due to a decrease in population or productivity growth)

results in a higher wealth-income ratio in the long run.

In this model, the returns on capital across all agents who saved are homoge-

nous and thus rank preserving, although it can vary across time. Thus mobility is

driven by the idiosyncratic labor productivity shocks. A decrease in wage share

will decrease intergenerational mobility and decrease cross-sectional wealth in-

equality. Thus, the higher the price elasticity of the final sector’s demand for

each intermediate, the lower the monopoly margin for innovation, the lower the

wage share (since labor is used only in the production of the final good via
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a Cobb-Douglas production), the lower the intergenerational mobility, and the

lower the cross-sectional bequest inequality. As a result of the Cobb-Douglas

production function in the final good sector, with labor and intermediates as fac-

tor inputs, unlike the CES used in Piketty and Zucman (2014), the capital share

in this thesis is constant regardless of the growth regimes, and the endogenous

growth rate is a function of the price elasticity of the final sector’s demand for

each intermediate good.

Financial frictions such as credit constraints, indivisible investment quan-

tum, and differential access to the capital markets (e.g. closed-end funds and

exclusive contracts by venture capitalists in start-ups), or stochastic idiosyn-

cratic capital returns with lineage correlation, if present, will further stratify the

mobility structure by introducing heterogeneity in the capital returns faced by

agents.

1.6 Correlated productivity shocks

1.6.1 Characterization of lineage bequest evolution with cor-
related productivity shocks at the Solow and Romer steady
states

Empirical estimates of the elasticity of son’s earnings with respect to father’s

earnings from different data sources and countries range from 0.11 to 0.57, sug-

gesting that presence of intergenerational correlation of income. (See Mazumder

(2005); Solon (2004, 2002, 1992); Zimmerman (1992)). By using 2 intergenera-

tional links via parent’s bequest motives and productivity inheritance, De Nardi
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(2004) finds that voluntary bequest motive (also known as "warm-glow" bequest

by Andreoni (1989)) explains the existence of large inheritance, while earnings

persistence further concentrates the cross-sectional distribution of inheritance,

when calibrated against both the US and Swedish data. Thus, in this section,

we study the impact of correlated productivity (alternative reduced-form inter-

pretations include correlated genes, health, human or social capital) that affects

idiosyncratic labor efficiency. As with Davies and Kuhn (1991), Bossmann et al.

(2007) and Wan and Zhu (2012), adopting a mean-reverting correlated idiosyn-

cratic labor productivity process, let:

li
t = lt +ν(li

t−1− lt−1)+ ε
i
t , (1.80)

where lt = lt−1 = l = 1, 0 < v < 1, and ε i
t ∼ i.i.d.

(
0,σ2

l

)
, such that σ2

l is finite,

and that the i.i.d. shocks represented by ε i
t has a lower bound sufficient to keep

li
t > 0. The process is initiated by li

0 = l + ε i
0. For illustration, the following

exposition on correlated shocks is based on either one of the steady states, e.g.

Solow. From equation (1.41),

1
Ω4

bi
t+1

Yt+1
− 1

Ω4
φ
∗
1

bi
t

Yt
− δ1

Ω4
= [li

t − lt ] (1.81)

where Ω4 =
(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)]
1
σ
= δ1, and φ∗1 =

(1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)] . Thus, the mean

reverting correlated idiosyncratic labor productivity shocks implies:

(
li
t − lt

)
−ν(li

t−1− lt−1) = ε
i
t ∼ i.i.d.(0,σ2

l ), (1.82)
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⇒

(
1

Ω4

bi
t+1

Yt+1
− 1

Ω4
φ
∗
1

bi
t

Yt
− δ1

Ω4

)
−ν

(
1

Ω4

bi
t

Yt
− 1

Ω4
φ
∗
1

bi
t−1

Yt−1
− δ1

Ω4

)
= ε

i
t ∼ i.i.d.(0,σ2

l )

⇒ 1
Ω4

bi
t+1

Yt+1
− 1

Ω4
(φ∗1 +ν)

bi
t

Yt
− 1

Ω4
(−φ

∗
1 ν)

bi
t−1

Yt−1
− δ1

Ω4
(1−ν)

= ε
i
t ∼ i.i.d.(0,σ2

l ).
(1.83)

With mean reverting correlated shocks as specified in (1.80), the ratio of

bequest to total output inherited by a young agent from lineage i at any time t,

is a second order non-homogenous difference equation.

Let the superscript m denotes the mean-reverting correlated labor productiv-

ity draw. Define zmi
t+1 =

1
Ω4

bi
t+1

Yt+1
− (1−ν)

(
1

Ω4
δ1

1−φ m
1 −φ m

2

)
. Lineage dynamics from

(1.83) can be expressed as follows:

zmi
t+1 − φ

m
1 zmi

t − φ
m
2 zmi

t−1 =
[
li
t − lt

]
− ν

[
li
t−1− lt−1

]
≡ ε

i
t ∼ i.i.d. (0,σ2

l ),
(1.84)

where φ m
1 = (φ∗1 +ν), φ m

2 = (−φ∗1 ν), δ m
z = (1−ν)(

1
Ω4

δ1

1−φ m
1 −φ m

2
), and

φ∗1 = Rt+1β µ

Gt+1[1+β (1+µ)] =
(1− 1

σ)
β µ

Ω1Ω3[1+β (1+µ)] , and Ω4 =
(1− 1

σ
)β µ

σΩ1Ω3[1+β (1+µ)] = δ1.

Expanding, we get an AR(2) process for the dynamics of zmi
t+1 and corre-

spondingly the dynamics of bi
t+1

Yt+1
from equations (1.84) and (1.83). This is equiv-

alent to the mixing of 2 ARMA processes, that is, for equation (1.82), the sum

of 2 AR(1) processes is an AR(2) process.

Proposition 1.15. Since |φ m
2 |< 1 and |φ m

1 |< 2, zmi
t+1 is a covariance stationary

AR(2) process.

E

[
bi

t+1

Yt+1

]
=

δ1

1−φ∗1
. (1.85)
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Var

[
bi

t+1

Yt+1

]
=

σ2
l Ω2

4
(1−φ m

2 −φ m
1 )(1−φ m

2 +φ m
1 )

(
1−φ m

2
1+φ m

2

)
=

σ2
l φ∗21

σ2(1−φ∗21 )(1−ν2)

(
1+φ∗1 ν

1−φ∗1 ν

)
. (1.86)

Cov

[
bi

t+1

Yt+1
,
bi

t
Yt

]
=

σ2
l Ω2

4
(1−φ m

2 )(1−φ m
2 −φ m

1 )(1−φ m
2 +φ m

1 )

(
1−φ m

2
1+φ m

2

)
=

σ2
l φ∗21

σ2(1−φ∗21 )(1−ν2)(1−φ∗1 ν)
. (1.87)

Cov

[
bi

t+2

Yt+2
,
bi

t
Yt

]
= φ

m
1 Cov

[
bi

t+1

Yt+1
,
bi

t
Yt

]
+φ

m
2 Cov

[
bi

t
Yt
,
bi

t
Yt

]

= (φ∗1 +ν)Cov

[
bi

t+1

Yt+1
,
bi

t
Yt

]
+(−φ

∗
1 ν)Var

[
bi

t+1

Yt+1

]
. (1.88)

ρ

[
bi

t+1

Yt+1
,
bi

t
Yt

]
= ρ1 =

φ m
1

1−φ m
2

=
φ∗1 +ν

1+φ∗1 ν
. (1.89)

ρ

[
bi

t+2

Yt+2
,
bi

t
Yt

]
= ρ2 =

φ m2
1

1−φ m
2
+φ

m
2 =

φ∗21 +2φ∗1 ν +ν2

1+φ∗1 ν
−φ

∗
1 ν . (1.90)

Cov

[
bi

t+k

Yt+k
,
bi

t
Yt

]
= φ

m
1 Cov

[
bi

t+k−1

Yt+k−1
,
bi

t
Yt

]
+φ

m
2 Cov

[
bi

t+k−2

Yt+k−2
,
bi

t
Yt

]
∀k ≥ 1

= (φ∗1 +ν)Cov

[
bi

t+k−1

Yt+k−1
,
bi

t
Yt

]
+(−φ

∗
1 ν)Cov

[
bi

t+k−2

Yt+k−2
,
bi

t
Yt

]
∀k ≥ 1.

(1.91)

ρk = φ
m
1 ρk−1 +φ

m
2 ρk−2 ∀k ≥ 1

= (φ∗1 +ν)ρk−1 +(−φ
∗
1 ν)ρk−2 ∀k ≥ 1. (1.92)

Proof. See Hamilton (1994) for conditions for covariance-stationarity for AR(2).

Essentially, the equation (1.84) can be expressed as (1−φ m
1 L−φ m

2 L2)z∗it+1 = ε i
t ,
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where L is the lag operator, and for zmi
t+1 to be stationary, the roots of the char-

acteristic equation, (1− φ m
1 L − φ m

2 L2) = 0, must lie outside the unit circle.

Let the roots be Li where i = 1 & 2. For |Li| > 1,
∣∣∣ 1

Li

∣∣∣ < 1, which implies∣∣∣ 1
L1
· 1

L2

∣∣∣= ∣∣φ m
2

∣∣< 1, and
∣∣∣ 1

L1
+ 1

L2

∣∣∣= ∣∣φ m
1

∣∣< 2.

|φ m
1 |= |φ∗1 +ν |=

∣∣∣∣∣∣∣∣∣
(σ −1)µ
1+σ µ︸ ︷︷ ︸

<1 from (1.52)

+ ν︸︷︷︸
<1 by assumption

∣∣∣∣∣∣∣∣∣< 2 (1.93)

|φ m
2 |= |−φ

∗
1 ν |=

∣∣∣∣∣∣∣∣∣
(σ −1)µ
1+σ µ︸ ︷︷ ︸

<1 from (1.52)

× ν︸︷︷︸
<1 by assumption

∣∣∣∣∣∣∣∣∣< 1 (1.94)

The moments for this AR(2) process can be calculated from the difference equa-

tion (1.84) directly, assuming covariance stationarity. To simplify notation, su-

perscripts are dropped, and the time index on the moving average innovations

are rescaled, by defining ui
t ≡ ε i

t−1.

zt = φ1zt−1 +φ2zt−2 +ut , (1.95)

γ(0) = E[ztzt ] = φ1E[ztzt−1]+φ2E[ztzt−2]+E[ztut ]

= φ1γ(1)+φ2γ(2)+σ
2
l , (1.96)

γ(k) = E[zt−kzt ] = φ1E[zt−kzt−1]+φ2E[zt−kzt−2]+E[zt−kut ]

= φ1γ(k−1)+φ2γ(k−2)+0 ∀k ≥ 1. (1.97)

From the variance(1.96) and covariances (1.97) respectively,

ρk = φ1ρk−1 +φ2ρk−2 ∀k ≥ 1. (1.98)
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�

The introduction of mean reverting idiosyncratic productivity shocks that

are correlated across generations of the same lineage, but i.i.d. across agents

from the cohort does not change the expected ratio of bequest to final output.

However, the variance and covariances are modified, hence affecting the lineage

mobility and cross-sectional inequality.

Proposition 1.16. In the presence of autocorrelated productivity shocks, the

correlation of the ratio of bequests to total output across generations from the

same dynasty is higher; hence the intergenerational inherited wealth mobility is

lower. The higher the autocorrelation of intergenerational productivity shocks,

ν , the higher the correlation of bequest to output ratio across generations, the

lower the intergenerational mobility at the steady states.

Proof.

ρ1 = ρ

[
bi

t+1
Yt+1

,
bi

t
Yt

]
with 0 < ν < 1

ρ1 = ρ

[
bi

t+1
Yt+1

, bi
t

Yt

]
with ν = 0

=

φ∗1+ν

1+φ∗1 ν

φ∗1
=

1+ ν

φ∗1

1+φ∗1 ν
> 1 if 0 < µ < 1.

(1.99)

ρ2 = ρ

[
bi

t+2

Yt+2
,
bi

t
Yt

]
with 0 < ν < 1 =

φ∗21 +ν2 +φ∗1 ν(1−φ∗1 ν)

1+φ∗1 ν

> 0 = ρ2 with ν = 0. (1.100)

∂ρ1

∂ν
=

1
(1+φ∗1 ν)2 · [1+φ

∗
1 ν− (φ∗1 +ν)φ∗1 ]

=
(1−φ∗21 )

(1+φ∗1 ν)2 ≥ 0. (1.101)
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∂ρ2

∂ν
=

1
(1+φ∗1 ν)2 ·

[
(2ν +φ

∗
1 −2φ

∗2
1 ν)(1+φ

∗
1 ν)−

[
φ
∗2
1 +ν

2 +φ
∗
1 ν(1−φ

∗
1 ν)
]

φ
∗
1
]

=
(2ν +φ∗1 −2φ∗21 ν)(1−φ∗21 )

(1+φ∗1 ν)2 ≥ 0. (1.102)

�

While intuitive, the impact of correlated productivity shocks (or "correlation

of abilities" by Bossmann et al. (2007)) on the lineage mobility is not discussed

in both Wan and Zhu (2012) and Bossmann et al. (2007). This is because to

characterize the lineage mobility, I invoke the covariance-stationarity property

of the time series not used by Bossmann et al. (2007). This property is not avail-

able in Wan and Zhu (2012) as they seek to generalize Bossmann et al. (2007)

by relaxing the finite variance assumption of the labor productivity shocks.

1.6.2 Impact on cross-sectional distribution at steady states
with correlated productivity shocks

Proposition 1.17. In the presence of correlated productivity shocks, the cross

sectional inequality of the ratio of bequests to total output is more than the

economy with i.i.d. productivity shocks. The higher the autocorrelation of in-

tergenerational productivity shocks, ν , the higher the asymptotic cross-sectional

spread of bequests, the higher the cross-sectional bequest inequality at the steady

states.

Proof. Since the expected value of the bequest to output ratio are identical under

both i.i.d. shocks and mean reverting correlated shocks as specified, the ratio of
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the asymptotic coefficients of variation of bequest are:(
CV
[

bi
t+1

Yt+1

])2

with 0 < ν < 1(
CV
[

bi
t+1

Yt+1

])2

with ν = 0

=

Var
[

bi
t+1

Yt+1

]
with 0 < ν < 1

Var
[

bi
t+1

Yt+1

]
with ν = 0

=

1
(1−φ m

2 −φ m
1 )(1−φ m

2 +φ m
1 )

(
1−φ m

2
1+φ m

2

)
1

1−φ∗1

=

(
1+φ∗1 ν

1−φ∗1 ν

)(
1

1−ν2

)
> 1. (1.103)

sign
∂CV

[
bi

t+1
Yt+1

]
∂ν

= sign
∂

{
CV
[

bi
t+1

Yt+1

]}2

∂ν

= sign
∂

∂ν

[
σ

2
l

(
1+φ∗1 ν

1−φ∗1 ν

)
(1−φ∗1 )

2

(1−φ∗21 )(1−ν2)

]
= sign σ

2
l

(
1−φ∗1
1+φ∗1

)[
1

(1−ν2)
·

2φ∗1
(1+φ∗1 ν)2 +

(
1+φ∗1 ν

1−φ∗1 ν

)
· 2ν

(1−ν2)2

]
≥ 0.

�

This result is consistent with the results from Bossmann et al. (2007) and

Wan and Zhu (2012), derived using different assumptions and methods, as stated

in Section 1.3.5.

From Propositions 1.16 and 1.17, persistence in the labor productivity shocks

within a lineage is thus undesirable from the Rawlsian’s "veil of ignorance" per-

spective (Rawls (2009)) and instructive for policy makers.
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1.6.3 Role of bequest motive on lineage bequest evolution and
cross-sectional distribution at steady states with corre-
lated shocks

Proposition 1.18. In the presence of correlated productivity shocks, the higher

the bequest motive, µ , the higher the correlation of the ratio of bequests to total

output across generations from the same dynasty, the lower the intergenera-

tional mobility at the steady states.

Proof. If 0 < ν < 1,

∂ρ1

∂φ∗1
=

1
(1+φ∗1 ν)2 · [1+φ

∗
1 ν− (φ∗1 +ν)ν ]

=
(1−ν2)

(1+φ∗1 ν)2 ≥ 0. (1.104)

∂ρ1

∂ µ
=

∂ρ1

∂φ∗1
·

∂φ∗1
∂ µ

=
(1−ν2)

(1+φ∗1 ν)2
σ −1

(1+σ µ)2 > 0. (1.105)

∂ρ2

∂φ∗1
=

(2φ∗1 +ν−2ν2φ∗1 )(1−ν2)

(1+φ∗1 ν)2 ≥ 0.

∂ρ2

∂ µ
=

∂ρ2

∂φ∗1
·

∂φ∗1
∂ µ

=
(2φ∗1 +ν−2ν2φ∗1 )(1−ν2)

(1+φ∗1 ν)2
σ −1

(1+σ µ)2 > 0. (1.106)

�

Proposition 1.19. In the presence of correlated productivity shocks, an increase

in bequest motive decreases cross sectional inequality of the ratio of bequest to

total output at the steady states.
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Proof. If 0 < ν < 1,

sign
∂CV

[
bi

t+1
Yt+1

]
∂ µ

= sign
∂

(
CV
[

bi
t+1

Yt+1

])2

∂ µ
= sign

∂

(
CV
[

bi
t+1

Yt+1

])2

∂φ∗1

∂φ∗1
∂ µ

= sign
∂

∂φ∗1

[
σ2

l
(1−ν2)

(
1+φ∗1 ν

1−φ∗1 ν

)(
1−φ∗1
1+φ∗1

)]
∂φ∗1
∂ µ

= sign
σ2

l
(1−ν2)

[(
1−φ∗1
1+φ∗1

)
2ν

(1−φ∗1 ν)2 +

(
1+φ∗1 ν

1−φ∗1 ν

)
−2

(1+φ∗1 )
2

]
∂φ∗1
∂ µ

= sign
σ2

l
(1−ν2)

[
2ν(1−φ∗21 )−2(1−φ∗21 ν2)

(1+φ∗1 )
2(1−φ∗1 ν)2

]
︸ ︷︷ ︸

<0, if 0<ν<1.

σ −1
(1+σ µ)2︸ ︷︷ ︸

≥0

≤ 0. (1.107)

�

That is, at steady states, bequest remains an intergenerational risk pooling

device, even with intergenerational mean reverting correlated shocks, reducing

the cross-sectional inequality of wealth at the steady states. However, with cor-

related shocks, we have introduced persistence to the outcome of wealth within

a lineage, by slowing the exponential decay property of a covariance-stationary

AR process, and increasing the "memory" of both good and bad draws of labor

productivity shocks, thus lowering the intergenerational mobility.

1.6.4 Characterization of lineage bequest evolution and cross-
sectional distributions for period-2 cycle with correlated
shocks

Similarly via the mixing of ARMA processes, with correlated productivity shocks,

the lineage bequest evolution for the period-2 cycle follows an ARMA(4,2) pro-

cess.
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From equation (1.41),

1
Ω4

bi
t+1

Yt+1
− 1

Ω4
φ
∗
1

bi
t

Yt
− δ1

Ω4
= [li

t − lt ] (1.108)

where Ω4 =
(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)]
1
σ
= δ1, and φ∗1 =

(1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)] . From the mean

reverting shocks,

(
li
t − lt

)
−ν(li

t−1− lt−1) = ε
i
t , and (1.109)

ν
(
li
t−1− lt−1

)
−ν

2(li
t−2− lt−2) = νε

i
t−1, we get:

(1.110)(
li
t − lt

)
−ν(li

t−1− lt−1)+ν
(
li
t−1− lt−1

)
−ν

2(li
t−2− lt−2) = ε

i
t +νε

i
t−1.

(1.111)

Substituting (1.108) into (1.111),(
1

Ω4

bi
t+1

Yt+1
− 1

Ω4
φ
∗
1

bi
t

Yt
− δ1

Ω4

)
−ν

2

(
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Ω4
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− 1
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φ
∗
1

bi
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− δ1

Ω4

)
= ε
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t +νε

i
t−1

1
Ω4

bi
t+1
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− ν2

Ω4

bi
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Yt−1
= φ

∗
1

(
1

Ω4

bi
t

Yt
− ν2

Ω4

bi
t−2

Yt−2

)
+

δ1

Ω4
− ν2δ1

Ω4
+ ε

i
t +νε

i
t−1

(1.112)

By iterative substitution, we get an ARMA(4,2) process for each of the fixed

point in period 2 cycle:

1
Ω4

bi
t+1

Yt+1
− ν2

Ω4

bi
t−1

Yt−1

−φ
∗
1

[
φ
∗
1

(
1

Ω4
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t−1
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Ω4
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t−3

Yt−3

)
+
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− δ1

Ω4
+

ν2δ1

Ω4
= ε

i
t +νε

i
t−1 (1.113)
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φ
∗2
1 +ν

2) 1
Ω4

bi
t−1
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−
(
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∗2
1 ν

2) 1
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bi
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Yt−3
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∗
1 )

(
δ1

Ω4
− ν2δ1

Ω4

)
= ε

i
t +(φ∗1 +ν)ε

i
t−1 +φ

∗
1 νε

i
t−2 (1.114)
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Let the superscript cm represents the period-2 cycle with mean reverting shocks.

Define zcmi
t+1 = 1

Ω4

bi
t+1

Yt+1
− (1+φ∗1 )(1− ν2)

(
1

Ω4
δ1

1−φ cm
2 −φ cm

4

)
. Lineage dynamics of

period-2 cycles with mean reverting productivity shocks from (1.114) can be

expressed as follows:
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t+1−φ
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2 zcmi

t−1−φ
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4 zcmi

t−3 =
[
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]
−ν

2 [li
t−2− lt−2

]
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i
t +θ1ε

i
t−1+θ2ε
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(1.115)

where φ cm
2 =

(
φ∗21 +ν2), φ cm

4 =
(
−φ∗21 ν2), θ1 = (φ∗1 +ν), θ2 = (φ∗1 ν), δ cm

z =

(1+φ∗1 )(1− ν2)

(
1

Ω4
δ1

1−φ cm
2 −φ cm

4

)
, φ∗1 = Rt+1β µ

Gt+1[1+β (1+µ)] =
(1− 1

σ)
β µ

Ω1Ω3[1+β (1+µ)] , Ω4 =

(1− 1
σ
)β µ

σΩ1Ω3[1+β (1+µ)] = δ1, and ε i
t ,ε

i
t−1, ε i

t−2 ∼ i.i.d.(0,σ2
l ).

For each of the fixed points, the asymptotic cross-sectional distribution can

be derived from the lineage bequest evolution,

zcmi
t+1−φ

cm
2 zcmi

t−1−φ
cm
4 zcmi

t−3 = ε
i
t +θ1ε

i
t−1 +θ2ε

i
t−2. (1.116)

Proposition 1.20. Since
∣∣φ cm

4

∣∣< 1, and
∣∣φ cm

2

∣∣< 2, zcmi
t+1 is a covariance station-

ary ARMA(4,2) process.
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. (1.117)
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,
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2
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ρ
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,
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]
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2−φ
∗2
1 ν
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ρ
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,
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∗2
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2
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(1.128)

Proof. Essentially, the equation (1.116) can be expressed as:

(1−φ
cm
2 L2−φ

cm
4 L4)zcmi

t+1 = ε
i
t +θ1ε

i
t−1 +θ2ε

i
t−2, (1.129)

where L is the lag operator, and for zcmi
t+1 to be stationary, the roots of the char-

acteristic equation, (1− φ cm
2 L2− φ cm

4 L4) = 0, must lie outside the unit circle.

Let the roots be Li where i = 1,2,3 and 4. (1−φ cm
2 L2−φ cm

4 L4) is a biquadratic

equation. Let B= L2, and B1 and B2 be the roots of (1−φ cm
2 B−φ cm

4 B2) = 0. Let

L1 and L2 be the positive and negative square root of B1, and L3 and L4 be the

positive and negative square root of B2. For |Li|> 1 or
∣∣∣ 1

Li

∣∣∣< 1, the following 2

conditions have to be met:
∣∣∣ 1

B1
· 1

B2

∣∣∣= ∣∣φ cm
4

∣∣< 1, and
∣∣∣ 1

B1
+ 1

B2

∣∣∣= ∣∣φ cm
2

∣∣< 2.

|φ cm
2 |= |φ∗21 +ν

2|

=

∣∣∣∣∣∣∣∣∣∣

 (σ −1)µ
1+σ µ︸ ︷︷ ︸

between 0 and 1from (1.52)


2

+

 ν︸︷︷︸
between 0 and 1 by assumption

2

∣∣∣∣∣∣∣∣∣∣
< 2,

(1.130)
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|φ cm
4 |=

∣∣−φ
∗2
1 ν

2∣∣= ∣∣∣∣∣−
[
(σ −1)µ
1+σ µ

]2

[ν ]2

∣∣∣∣∣< 1. (1.131)

With covariance-stationarity, we can compute the covariances and correla-

tions of the lineage bequest evolution. The algebraic manipulations are shown

in Appendix A.3. �

By comparing Propositions 1.15 and 1.20, it can be seen that the equiv-

alance of asymptotic cross-sectional distribution between the steady states and

period-2 cycles in Proposition 1.10 no longer holds if the idiosyncratic produc-

tivity shocks are correlated. Unlike the steady states where the growth rates

are identical for every generation, under period-2 cycles, the growth rates of

faced by alternating generations are different. If productivity shocks are i.i.d.

across each generation, the difference in the growth rates between the Solow

and Romer regime will be immaterial once the inherited wealth is normalized

by the total output, to keep the scale constant for comparison. However, if the

productivity shocks are correlated across generations within a lineage, the good

or bad luck is propagated via both the bequests as well as the next generation’s

productivity draw, hence differences in the growth rates between the Solow and

Romer regimes will be accumulated over the cycle, resulting in a difference in

the variance of the asymptotic cross-sectional distributions between the steady

states and the period-2 cycles for correlated labor productivity shocks as stated

in the following proposition.

Proposition 1.21. In the presence of correlated productivity shocks, the cross-
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sectional inequality of the ratio of bequests to total output under period-2 cycles

is greater (less) than that under steady states if the correlation of mean reverting

productivity shocks, ν ≥ (<) [φ∗31 +ν2(φ∗1 +φ∗51 )+ν4(φ∗31 )].

Proof. By taking a simple difference of the variances of the cross-sectional

distributions between the steady states and the period-2 cycles with correlated

shocks. �

The threshold compares ν on the left against a polynomial of ν with coeffi-

cients that are functions of φ∗1 , and implicitly the bequest motive µ , on the right.

This is because inheritance via bequest narrows the cross-sectional wealth in-

equality through risk sharing across generations of the same lineage as the rate

of returns on capital, while different across generations of the same lineage in

a period-2 cycle, is the same for each cohort. However, inheritance via ability

through the correlated productivity shocks increases the cross-sectional wealth

as the good or bad productivity draws across generations of the same lineage

persist in a period-2 cycle, and are different across agents of the same cohort.

1.6.5 Impact on cross-sectional distributions under period-2
cycles with correlated productivity shocks

Proposition 1.22. The higher the autocorrelation of intergenerational produc-

tivity shocks, ν , the higher the asymptotic cross-sectional spread of bequests, the

higher the cross-sectional bequest inequality at the fixed points of the period-2

cycles.
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Proof.

sign
∂CV

[
bi

t+1
Yt+1

]
∂ν

= sign
∂

{
CV
[

bi
t+1

Yt+1

]}2

∂ν

= sign (1−φ
∗
1 )

2 ∂γ(0)
∂ν

≥ 0. (1.132)

�

Just like the steady states, for period-2 cycle, cross-sectional inequality in-

creases with the persistence of inherited ability. The impact of correlation of

labor productivity on lineage mobility less clear.

∂ρ1

∂ν
=

1
[γ(0)]2

γ(0)
∂γ(1)

∂ν︸ ︷︷ ︸
≥0

−γ(1)
∂γ(0)

∂ν︸ ︷︷ ︸
≥0

R 0. (1.133)

1.6.6 Role of bequest motive on lineage bequest evolution and
cross-sectional distributions under period-2 cycles with
correlated shocks

Under period-2 cycles, with correlated productivity shocks, the role of bequests

on lineage and cross-sectional inequality depends on the interaction of the be-

quest motive and the magnitude of the correlation of the mean reverting shocks.

This is due to the interaction between the magnitude of the "ability inheri-

tance" with the autoregressive coefficient in the absence of correlated shocks,

φ∗1 = (σ−1)µ
1+σ µ

, arising from the bequest motive, resulting in the comparative stat-

ics for lineage mobility and the cross-sectional inequality with respect to bequest

motive being ambiguous, unlike the steady state cases in Propositions 1.18 and

1.19.
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If 0 < ν < 1,

∂ρ1

∂φ∗1
=

1
[γ(0)]2

γ(0)
∂γ(1)
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≥0

−γ(1)
∂γ(0)
∂φ∗1︸ ︷︷ ︸
≥0

R 0, (1.134)

⇒ ∂ρ1

∂ µ
=

∂ρ1

∂φ∗1

∂φ∗1
∂ µ
R 0. (1.135)
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(1.136)

= sign
∂

∂φ∗1

[
(1−φ

∗
1 )

2 · γ(0)
] ∂φ∗1

∂ µ
(1.137)

= sign
[

γ(0)2(1−φ
∗
1 )(−1)+(1−φ

∗
1 )

2 ∂γ(0)
∂φ∗1

]
∂φ∗1
∂ µ

(1.138)

= sign

γ(0)2(1−φ
∗
1 )(−1)︸ ︷︷ ︸

≤0

+(1−φ
∗
1 )

2 ∂γ(0)
∂φ∗1︸ ︷︷ ︸

≥0

 σ −1
(1+σ µ)2︸ ︷︷ ︸

≥0

R 0.

(1.139)

1.7 Conclusion

Using covariance-stationarity, and normalizing the inherited wealth with total

output, it can be seen that intergenerational mobility and cross-sectional inequal-

ity at either Solow or Romer steady states are identical for both idiosyncratic and

mean reverting correlated shocks. The existence of a covariance-stationary dis-

tributions over period-2 cycles with fixed points on Solow and Romer growth

regimes is proven and characterized. While Matsuyama (1999) has shown that
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the aggregate growth over period-2 cycles are higher than at either of the steady

states, we extend that result by showing that wealth inequality over period-2

cycles, measured in terms of coefficient of variation, are identical to the steady

states under i.i.d. idiosyncratic productivity shocks.

More explicitly, under i.i.d. idiosyncratic productivity shocks, for all fixed

points, at steady states or period-2 cycles, the cross-sectional inequality of wealth

are identical, even though the growth rates differ. Thus, from this chapter, it can

be seen that differences in the rate of returns on capital versus the output growth

could just be a red herring to the evolution of wealth inequality in the last cen-

tury. The crux may lie with the confluence of the exogenous and endogenous in-

stitutional structures related to fiscal policies (Benabou (2000); García-Peñalosa

and Turnovsky (2007, 2011), education and technology (Davies et al. (2005);

Acemoglu and Autor (2012), and trade and industrial relations (Garicano and

Rossi-Hansberg (2006); Costinot et al. (2012, 2013)). In the following chapters,

I shall explore the role of consumption externality, elastic labor, and the role of

inheritance tax and innovation subsidies under specific context.

In addition, under i.i.d. idiosyncratic productivity shocks, the higher price

elasticity of the final sector’s demand for each intermediate brought about by

exogenous changes in production technology or contracting, (and correspond-

ingly, higher capital share as well as lower monopoly margin for innovation),

the lower the intergenerational mobility, and the lower the asymptotic cross-

sectional spread of bequests. This is because mobility is driven by the idiosyn-
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cratic labor productivity shocks, and a decrease in wage share will lower in-

tergenerational mobility as capital returns are homogeneous and thus wealth

inherited are rank preserving.

With correlated productivity shocks, intergenerational mobility is lower than

that with i.i.d. shocks for the steady states. The higher the correlation in the

mean reverting shocks, the higher the cross-sectional inequality for both the

steady states and period-2 cycles. This means that any structural or institutional

changes in educational policy or credit policy that can exogenously increase the

correlation of labor productivity within a lineage will increase cross-sectional

inequality.

Finally, with the "joy-of-giving" bequest motive, an increase in bequest mo-

tive reduces intergenerational mobility and cross-sectional inequality of inher-

ited wealth under both Solow and Romer steady states for both i.i.d. productiv-

ity shocks and mean reverting correlated shocks, and for period-2 cycles under

i.i.d. shocks. That is, bequest can act as intergenerational risk pooling mecha-

nism within a lineage, but across lineages, bequest is a stratifying mechanism.
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Chapter 2

Status anxiety and its impact on
mobility, inequality and growth
trajectories

2.1 Introduction

"Social status is a ranking of individuals (or groups of individ-

uals) in a given society, based on their traits, assets and actions.

[. . . ] the interest in social status as a factor in explaining behavior

stems from empirical observation that there is a substantial agree-

ment among different members of society about the relative position

of a given individual (or social position). It is this concordance of

ranking which gives social status its force as an incentive mecha-

nism. [. . . ] Because of these social rewards, each individual seeks

to increase his social status through group affiliation, investments

in assets (including human and social capital) and the appropriate

choice of actions," Weiss and Fershtman (1998, pp 802).
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Like a good that is fixed in supply, even for a growing economy, it is interest-

ing to examine how social comparison may affect the individual and aggregate

consumption and saving patterns, and the growth of an economy. Veblen (1899)

argues that wealthy individuals consume conspicuous goods and services to sig-

nal their wealth levels in order to gain self esteem. Consequently, if everyone

does that, all may end up with similar relative consumption levels, but lower

savings, hence lowering aggregate investment and growth. However, the rela-

tive consumption preferences may not negatively affect savings and growth if

individuals are willing to trade current consumption for their future status. The

hypothesis in this chapter is that status anxiety, as reflected by a relative con-

sumption preference, could affect (i) the normalized steady state capital stock in

both Solow and Romer growth regimes, (ii) the growth potential of an economy,

and hence (iii) the evolution of mobility and inequality of an economy. This

is because, as observed by De Nardi (2015), the inequality of cross-sectional

wealth distribution is higher than the inequality of cross-sectional labor earn-

ings and income. Thus, in this chapter, I explore the impact of envy, through

the introduction of consumption externality, to raise the savings rate of the rich,

hence wealth concentration, as observed in the data.

The incorporation of status anxiety, as envy, into the preference as relative

consumption is empirically motivated. Di Tella and MacCulloch (2006) observe

that since World War II in the United States, happiness responses are flat in the

face of considerable increases in average income. They propose two explana-
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tions for the paradox that have a stronger empirical basis: that happiness is based

on relative rather than absolute income and that happiness adapts to changes in

the level of income. Neumark and Postlewaite (1998) find that married women

are more likely to work outside the home if their sisters’ husband earn more

than their own husbands, supporting the importance of preference interdepen-

dence. Relative utility is supported from the panel data for the Netherlands in

a model estimated by Van de Stadt et al. (1985), where both one’s past con-

sumption and consumption of others influence utility. Using CEX data, Charles

et al. (2007) show that accounting for differences in income characteristics of a

reference group explains most of the racial differences in visible consumption.

In addition, they find that the relative importance of interpersonal comparisons

decreases with age. Experimental research also supports the importance of rela-

tive consumption. Alpizar et al. (2005) find that most individuals are concerned

with both relative income and relative consumption of particular goods. The

degree of concern varies in the expected direction depending on the properties

of the good.

Related literature can be classified along three dimensions: (i) the use of

status in utility, (ii) the existence of heterogeneous consumption and compar-

ison utility, and (iii) the generation of earnings and wealth distribution from

idiosyncratic risks and symmetry breaking as discussed in Chapter 1. There are

existing theoretical models that incorporate status directly into the utility func-

tion. Becker et al. (2005) introduce status as a complement to other consumption
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goods that can be bought directly in a market. Moldovanu et al. (2007) use the

relative positions in utility to study the optimal allocation of prizes in contests.

Most recently, Rayo (2013) incorporates public perceptions of one’s type into

the utility and apply that to monopolistic design and pricing of positional goods

that consumers use to signal their types.

Similar in spirit, models with heterogeneous consumption and comparison

utility are well-entrenched and driven by empirics. Carroll and Weil (1994)

and Carroll et al. (2000) suggest that habit formation may be needed to explain

time series features of consumption data. Campbell and Cochrane (1995) use a

model where individual compare their own consumption to a habit stock based

on past aggregate consumption to explain aggregate stock prices. In Constan-

tinides (1990)’s asset pricing model, individuals care about how their current

consumption compares to their own consumption in the recent past, while Abel

(1990) uses of both past aggregate comparison and past individual comparison.

Bakshi and Chen (1996) find that by incorporating "catching up with the Jone-

ses" type of status concerns into investors’ preference, the standard deviation

of the implied intertemporal marginal rate of substitution (stochastic discount

factor) can better match the Hansen-Jagannathan volatility bounds using data

from NYSE value-weighted index and long-term government bonds. Parallel to

this study, Turnovsky and Monteiro (2007) examine the impact of consumption

externalities on efficient capital accumulation with a Cobb-Douglas production

technology. This chapter differs from theirs in two aspects: the functional form
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for the consumption externality, and more importantly, the production function

with innovation and cyclical endogenous growth. As a result, consumption ex-

ternality alone results in long-run distortionary effects in Turnovsky and Mon-

teiro (2007) if and only if labor is elastically supplied; whilst in this chapter,

even with inelastic labor, consumption externality will distort long-run growth

potential.

The closest paper that studies the impact of envy on both the growth and

inequality evolution dynamics is Gershman (2014). I shall briefly discuss the

modelling similarities and differences here, and consequently some differences

in the results arise. There are two types of externalities in Gershman (2014),

namely: negative consumption externality (envy); and positive intergenerational

production externality through learning-by-doing knowledge spillover (where

all agents output are perfect substitutes). In this chapter, like Gershman (2014),

there is negative consumption externality, but a threshold technological external-

ity, generated via threshold capital to variety ratio for innovative growth through

fixed cost and monopoly rent, hence driving the results that inequality may af-

fect growth through the threshold quantum of accumulated capital (not present

in another paper on envy by Alvarez-Cuadrado and Long (2012) with neoclas-

sical growth). There are several key modelling differences. First, in Gershman

(2014), to generate asymmetry, there are two groups of agents with initially dif-

ferent endowments of capital to start with, whilst I utilise a continuum of agents

with ex-ante identical draw of labor productivities. (Agents can have ex-ante
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identical capital resources.) Second, in Gershman (2014), agents can engage in

destructive behavior with their labor hours. In my model, with property rights

well-enforced, it is equivalent to having the destruction side eliminated, result-

ing in only the "Keeping Up with Jones" behavior and equilibrium in Gershman

(2014). Third, the endogenous growth is achieved through individuals’ learning-

by-doing that generates externality via the future productivity (based on a lin-

ear (perfect substitutes) combination of both agents output). Using Matsuyama

(1999) framework for production, in this chapter, endogenous growth is attained

through innovation by variety expansion with fixed cost, where agents affect the

growth through the accumulation of capital through savings and bequest ver-

sus consumption when young and old. Among the findings from Gershman

(2014), for the long run "Keeping up with the Jones" equilibrium, which occurs

if initial inequality is low, and/or tolerance for inequality is high, agents become

identical, with no more envy driving future generations, otherwise agents are

stratified in the other possible equilibria, with zero mobility. Either way, there is

no chance for any agent to leapfrog the initial rich. In this model, distribution is

sustained by both the idiosyncratic labor productivity shocks and bequest to the

next generation. That is, there is an element of luck that may help push an agent

from a poor lineage out of poverty. That is, there is mobility in my model, and

one advantage of using covariance-stationarity for the distributional equilibrium

concept, is that the intergenerational mobility can be tracked explicitly through

the stationary covariances, and forecast with mean square error specifications
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can be made for future generations for any lineage of interest.

Key questions to be addressed are: (i) how envy may influence the growth

potential of an economy, (ii) how envy may affect aggregate saving and steady

state aggregate capital under the different growth regimes, (iii) how envy may

impact individual savings and bequest rates, such that they may vary across

the income distribution, and (iv) how envy affects the cross sectional wealth in-

equality and inter-generational social mobility under the different growth regimes.

This complements the work by Alvarez-Cuadrado and Long (2012), where they

address whether bequests will result in a concentration of wealth in the presence

of envy, and how a central planner can implement a progressive consumption tax

so that agents can internalise the consumption externality introduced through

envy.

This chapter is organized as follows. In Section 2, the model is set-up. In

Section 3, the aggregate equilibrium is characterized. In Section 4, the impact

of envy on lineage and cross-sectional dynamics are explored using the Solow

steady state for exposition purposes, and Section 5 concludes.

2.2 The model

The basic model combines the household problem in Alvarez-Cuadrado and

Long (2012) with the firms’ problem in Matsuyama (1999). The household

problem is analogous to Bossmann et al. (2007) where the latter abstracts from

social comparison.

80



2.2.1 Agents’ optimization

The set-up of the agent’s problem is similar to that in Chapter 1, Section 1.2.1.

However, unlike the agents in Chapter 1, agents in this chapter are concerned

about both their absolute as well as the relative consumption among agents in

the same generation. This difference is reflected in the agents’ preference in the

form of an additive specification1 of relative consumption as in Ljungqvist and

Uhlig (2000) and Alvarez-Cuadrado and Long (2012). The choice and implica-

tion of this additive utility form will be discussed later in this chapter.

The preference of an agent i born in period t is:

Ut

(
ĉi

t , d̂
i
t+1,b

i
t+1,

)
= ln(ci

t− γct)+β
[
ln(di

t+1−ηdt+1)+µ ln(bi
t+1)

]
, (2.1)

where γ,η and ξ are parameters of envy, with 0≤ γ,η ,ξ < 1,η = ξ γ .

First period budget constraint for an agent i is:

ci
t + si

t = bi
t +wi

t ≡ yi
t . (2.2)

Second period budget constraint for an agent i is:

Rt+1si
t = di

t+1 +bi
t+1. (2.3)

Optimal choices of the average agent are2:

st =
β [1+µ(1−ξ γ)](1− γ)

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
yt ≡Ω1yt ; (2.4)

1Carroll et al. (2000) explore the use of multiplicative consumption externalities cast within
a CRRA utility, while Arrow and Dasgupta (2009) investigate the existence of economic distor-
tion due to consumption externality using various structural forms of felicity functions such as
multiplicative consumption externality with elastic labor for infinitely lived agents.

2See Appendix B.1.
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ct =
(1−ξ γ)

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
yt ; (2.5)

dt+1 =
Rt+1β (1− γ)

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
yt ; (2.6)

bt+1 =
Rt+1β µ(1− γ)(1−ξ γ)

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
yt ≡ Rt+1Ω2yt . (2.7)

Optimal choices of an agent i are3:

si
t =

β (1+µ)

1+β (1+µ)

[
yi

t−φsyt
]

; (2.8)

ci
t =

1
1+β (1+µ)

[
yi

t +φcyt
]

; (2.9)

di
t+1 =

Rt+1β

1+β (1+µ)

[
yi

t +φdyt
]

; (2.10)

bi
t+1 =

Rt+1β µ

1+β (1+µ)

[
yi

t−φbyt
]

; (2.11)

where

φs =
(1+µ)(1−ξ γ)γ−ξ γ(1− γ)

(1+µ){(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]}
; (2.12)

φc =
β [(1+µ)(1−ξ γ)γ−ξ γ(1− γ)]

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
; (2.13)

φd =
ξ γµ (1− γ)β +ξ γ(1− γ)− (1−ξ γ)γ

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
; (2.14)

φb =
(1−ξ γ)γ +ξ γ (1− γ)β

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
. (2.15)

As stated in Alvarez-Caudrado and Long (2012) Proposition 1, the income

elasticities for consumption when young, consumption when old and bequests

3See Appendix B.1.
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for each individual are correspondingly:

ε
yi

ci ≡
[

1+φc(
yt

yi
t
)

]−1

< ε
yi

di ≡
[

1+φd(
yt

yi
t
)

]−1

< 1

< ε
yi

bi ≡
[

1−φd(
yt

yi
t
)

]−1

. (2.16)

Thus, this specification of envy in the utility generates different elasticities for

consumption when young, consumption when old and bequests for each indi-

vidual such that bequest is a luxury good. In addition, as stated in Alvarez-

Caudrado and Long (2012) Proposition 2, the change of income elasticities of

savings and bequests with respect to a change in income are respectively:

∂
si
t

yi
t

∂yi
t
=

φcyt

[1+β (1+µ)](yi
t)

2 > 0; (2.17)

∂
bi

t+1
yi

t

∂yi
t

=
Rt+1β µφbyt

[1+β (1+µ)](yi
t)

2 > 0. (2.18)

Thus, this specification of envy in the utility generates income elasticity of sav-

ings and bequests that are dependent on one’s income. This implies that a non-

degenerate distribution of bequest can be obtained even with inelastic labor, and

ex-ante identical agents. Hence, the 2 reasons for adopting this additive con-

sumption externality structure rather than the multiplicative form. Empirically,

using data from PSID, SCF and CES, Dynan et al. (2004) find that savings rate,

as well as the marginal propensity to save are positively related to lifetime in-

come.
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2.2.2 Firms’ optimization

The production sector is identical to that described in Chapter 1, Section 1.2.2.

2.3 Equilibrium steady state and dynamics

2.3.1 Derivation of equilibrium capital stock

The market clearing conditions are:

Lt = L =
∫ 1

0
li
t di = 1; (2.19)

Kt =
∫ 1

0
si
t di = st ≡ St . (2.20)

Given the competitive Cobb-Douglas final goods sector, factor shares of the

economy are:

wtL =
1
σ

Yt ; (2.21)

RtKt−1 =

(
1− 1

σ

)
Yt . (2.22)

From the optimization decision of the average agent, and by substituting

the lifetime resource (B.11), bequest (B.13), and wage (2.21) of the average

agent into his savings, we can obtain an equivalent expression for the aggregate

savings, and the aggregate capital stock of the economy, since we have measure

1 of agents in each generation. Specifically,

st =
β [1+µ(1−ξ γ)](1− γ)

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
yt

≡ Ω̃1[bt +wt ]

= Ω̃1wt + Ω̃1

[
µ(1−ξ γ)

1+µ(1−ξ γ)

]
Rtst−1. (2.23)
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The unconsumed final goods at time t, will form the available capital stock

for production at time t + 1. Thus by integrating the savings across all young

agents, the aggregate savings in the economy is:

Kt = St = st = Ω̃1wtL+ Ω̃1

[
µ(1−ξ γ)

1+µ(1−ξ γ)

]
RtKt−1, (2.24)

and the capital stock as a function of the final output of the economy can be

derived by substituting out the factor shares, (2.21) and (2.22), as follow:

Kt = Ω̃1

(
1
σ

)
Yt + Ω̃1

[
µ(1−ξ γ)

1+µ(1−ξ γ)

](
1− 1

σ

)
Yt

= Ω̃1Ω̃3Yt , (2.25)

where Ω̃1 ≡ β [1+µ(1−ξ γ)](1−γ)
(1−ξ γ)+(1−γ)β [1+µ(1−ξ γ)]

and Ω̃3 ≡ 1+σ µ(1−ξ γ)
σ [1+µ(1−ξ γ)]

. That is, this econ-

omy saves a constant fraction of its output for the next period.

From the savings accumulation process (2.25), in conjunction with the dy-

namics of innovation (1.21) and the total output (1.23), the unique equilibrium

path for any initial condition, K0 and N0 is pinned down.

Kt

Ω̃1Ω̃3
= Yt =

{
A [θσFNt−1]

1
σ [Kt−1]

1− 1
σ if Kt−1 ≤ θσFNt−1,

AKt−1 if Kt−1 ≥ θσFNt−1,
(2.26)

where A≡ Â
a

[ aL
θσF

] 1
σ .

This dynamical system can be normalized by the range of intermediate goods

to a 1-dimensional map. Define Φn (k)≡Φ
(
Φn−1 (k)

)
, Φ1 (k)≡Φ(k), and

kt ≡
Kt

θσFNt
.
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Equilibrium path for initial condition k0 is given by the sequence {Φt (k0)}:

kt = Φ(kt−1)≡


G̃(kt−1)

1− 1
σ if kt−1 ≤ kc = 1,

G̃kt−1
1+θ(kt−1−1) if kt−1 ≥ kc = 1,

(2.27)

where

Φ : R+→ R+
4, kt ≡ Kt

θσFNt
, G̃≡ Ω̃1Ω̃3A, Ω̃1 ≡ β (1+µ(1−ξ γ))(1−γ)

(1−ξ γ)+(1−γ)β [1+µ(1−ξ γ)]
,

Ω̃3 ≡ 1+σ µ(1−ξ γ)
σ [1+µ(1−ξ γ)]

, and A≡ Â
a (

aL
θσF )

1
σ .

The mapping kt = Φ(kt−1) with domain Φ : R+ → R+ in (2.27) is simi-

lar to equation (1.32) in Chapter 1, with changes in the parameter value of G̃.

That is, status anxiety in the form suggested by Alvarez-Cuadrado and Long

(2012), when incorporated into Matsuyama (1999) with idiosyncratic produc-

tivity shocks and bequest motives, results in corresponding topology and dy-

namics as in Chapter 1. From here, I shall highlight the differences that status

anxiety may bring to the economy compared to the results in Chapter 1, as a

consequence of the change in G̃. Furthermore, compared to Alvarez-Cuadrado

and Long (2012) where the production function is homogenous of degree one

to capital and labor, the results in this chapter include their results for the case

when G̃ < 1, where the economy converges to the Solow steady state. When

G̃ > 1, new insights arising from status anxiety will be discussed.

4k = 0 is excluded from the domain in the mapping kt =Φ(kt−1), as Φ
′
(0)> 1, making k = 0

a repelling fixed point and hence trivial.
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2.3.2 Aggregate steady state and dynamics

Proposition 2.1. The growth potential of the economy is decreasing in the de-

gree of envy γ . However, in the absence of a bequest motive, but the presence of

envy, the growth potential of the economy is increasing in the degree of relative

envy when old, ξ .

Proof. Market clearing (equations (2.21), (2.22) and (2.24)), and the consumer

optimization (equation (2.25)) imply St = Kt = Ω̃1Ω̃3Yt . Together with the final

output function (1.23),

Yt =

{
A [θσFNt−1]

1
σ [Kt−1]

1− 1
σ if Kt−1 ≤ θσFNt−1

AKt−1 if Kt−1 ≥ θσFNt−1,

along the balanced growth path, Kt = Ω̃1Ω̃3Yt = Ω̃1Ω̃3AKt−1 = G̃Kt−1, where

G̃≡ gross growth rate.

∂ G̃
∂γ

= A

[
Ω̃3

∂ Ω̃1

∂γ
+ Ω̃1

∂ Ω̃3

∂γ

]
≤ 0. (2.28)

∂ G̃
∂ξ

= A

[
Ω̃3

∂ Ω̃1

∂ξ
+ Ω̃1

∂ Ω̃3

∂ξ

]
> or≤ 0. If µ = 0,

∂ G̃
∂ξ
≥ 0. (2.29)

The algebraic manipulations to sign ∂ Ω̃1
∂γ

, ∂ Ω̃1
∂ξ

, ∂ Ω̃3
∂γ

, and ∂ Ω̃3
∂ξ

are shown in Ap-

pendix B.2. �

Proposition 2.2. The normalized steady-state capital stock to variety ratio, kt , is

decreasing in the degree of envy γ , in both the regimes. However, in the absence

of a bequest motive, but the presence of envy, the normalized steady-state capital

stock to variety ratio, kt , is increasing in the degree of relative envy when old, ξ .
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Proof. From equation (2.27):

when G̃ < 1, k∗ = (Ω̃1Ω̃3A)σ ≡ G̃σ ;

when G̃ > 1, k = k∗∗ ≡ 1+ (G̃−1)
θ

.

∂k∗

∂γ
=

∂k∗

∂ G̃
× ∂ G̃

∂γ
= (σG̃σ−1)A

[
Ω̃3

∂ Ω̃1

∂γ
+ Ω̃1

∂ Ω̃3

∂γ

]
≤ 0. (2.30)

∂k∗∗

∂γ
=

∂k∗∗

∂ G̃
× ∂ G̃

∂γ
=

1
θ

A

[
Ω̃3

∂ Ω̃1

∂γ
+ Ω̃1

∂ Ω̃3

∂γ

]
≤ 0. (2.31)

∂k∗

∂ξ
=

∂k∗

∂ G̃
× ∂ G̃

∂ξ
= (σG̃σ−1)A

[
Ω̃3

∂ Ω̃1

∂ξ
+ Ω̃1

∂ Ω̃3

∂ξ

]
> or≤ 0,

≥ 0 if µ = 0. (2.32)

∂k∗∗

∂ξ
=

∂k∗∗

∂ G̃
× ∂ G̃

∂ξ
=

1
θ

A

[
Ω̃3

∂ Ω̃1

∂ξ
+ Ω̃1

∂ Ω̃3

∂ξ

]
> or≤ 0,

≥ 0 if µ = 0. (2.33)

The algebraic manipulations to sign ∂ Ω̃1
∂γ

, ∂ Ω̃1
∂ξ

, ∂ Ω̃3
∂γ

, and ∂ Ω̃3
∂ξ

are shown in Ap-

pendix B.2. �

Comparing with Gershman (2014, Proposition 2), where an increase in envy

increases the aggregate final output in the "Keeping up with the Jones" equilib-

rium, (where τ = 0, that is no destruction of private capital), the results from

Proposition 2.1 and 2.2 differ in that with bequest, growth potential is decreas-

ing with envy, γ; without bequest, growth potential increasing with envy in the

old age, ξ .

In this model, agents save to finance consumption when old (positional), and

for bequest to their immediate offspring (non-positional). An increase in envy,
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denoted by γ , will cause the agents to allocate more of their lifetime resources

to positional goods (consumption when young and old), hence lowering savings

and available aggregate capital stock for innovation.

The savings impact of an increase in the relative importance of envy when

old, ξ , in the presence of bequests, is ambiguous, as positional and non-positional

motives for savings compete. Without bequests, the ambiguity is removed.

The results extend the Proposition 3 from Alvarez-Cuadrado and Long (2012,

pp. 960) to endogenous growth model. Envy not only affects the steady state

normalized capital stock in both Solow and Romer regime, it also determines

on the growth potential of an economy with endogenous growth. Contrastingly,

in Turnovsky and Monteiro (2007) where labor is also inelastic, and in Alonso-

Carrera et al. (2008), with pure altruism, where consumption externality extends

beyond agents from the same generation, the steady state capital stock is not af-

fected by consumption externality. Furthermore, in Alvarez-Cuadrado and Long

(2012), there is no long run growth as a consequence of the neoclassical growth

framework.

2.4 Impact of envy on lineage bequest evolution and
distribution

In the following section, I shall highlight the differences that envy might bring

to the evolution of mobility and inequality, as well as a result that is robust

to envy. While I develop the exposition using the case of Solow steady state,
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the following Propositions (2.4, 2.5, 2.6 and 2.7) hold correspondingly when

applied to the Romer steady state or the period-2 cycles, given the distributional

equivalence under i.i.d. shocks, as infered from Proposition 1.10, compared to

their respective benchmarks in Chapter 1, without envy, by setting γ = 0.

2.4.1 Lineage bequest evolution
At Solow steady state

At the Solow steady state, k̃∗ = G̃σ < 1. Let Yt+1 = Yt ≡ Ỹ ∗, Rt+1 = Rt ≡ R̃∗,

and Kt+1 = Kt ≡ K̃∗. From (2.26), in the Solow regime,

Rt =
∂Yt

∂Kt
=

(
1− 1

σ

)
A(θσFNt−1)

1
σ (Kt−1)

− 1
σ =

(
1− 1

σ

)
A(kt−1)

− 1
σ ,

(2.34)

where kt =
Kt

θσFNt
. At Solow steady state, R̃∗ =

(
1− 1

σ

)
A
(

k̃∗
)− 1

σ . From equa-

tion (2.27),

k̃∗ = G̃(k̃∗)
σ−1

σ ⇒ k̃∗σ

k̃∗σ
=

G̃(k̃∗)σ−1

k̃∗σ
⇒ 1 = G̃σ (k̃∗)−1⇒ k̃∗ = G̃σ = (Ω̃1Ω̃3A)σ .

(2.35)

R̃∗ =
(

1− 1
σ

)
A
(

k̃∗
)− 1

σ

=

(
1− 1

σ

)
A
(

Ω̃1Ω̃3A
)−1

=

(
1− 1

σ

)
Ω̃1Ω̃3

. (2.36)

Using the bequest of an agent of lineage i, equation (2.11), the savings of the

average agent, equation (2.4), as a function of the average lifetime resources, as

well as the capital and labor shares, equations (2.21) and (2.22), we derive the
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law of motion of the bequests for an agent of lineage i.

bi
t+1 =

Rt+1β µ

1+β (1+µ)
(yi

t−φbyt)

=
Rt+1β µ

1+β (1+µ)
(yi

t−φb
st

Ω̃1
)

=
Rt+1β µ

1+β (1+µ)
(yi

t−φb
Ω̃1Ω̃3Yt

Ω̃1
)

=
Rt+1β µ

1+β (1+µ)
(bi

t + li
t wt−φbΩ̃3Yt)

=
Rt+1β µ

1+β (1+µ)
(bi

t + li
t

1
σ

Yt−φbΩ̃3Yt), (2.37)

where φb ≡ (1−ξ γ)γ+ξ γ(1−γ)β
(1−ξ γ)+(1−γ)β [1+µ(1−ξ γ)]

.

At the Solow steady state, normalizing5 by the total output, Yt+1 and rearrang-

ing,

bi
t+1

Yt+1
− R̃∗β µ

1+β (1+µ)

bi
t

Yt
− R̃∗β µ

σ [1+β (1+µ)]

[
1−σφbΩ̃3

]
=

R̃∗β µ

1+β (1+µ)

1
σ
[li

t − lt ]. (2.38)

The ratio of bequest to total output inherited by a young agent from lineage i at

any time t, is an autoregressive AR(1) process with a deterministic drift (time

trend). In the presence of envy, value of the AR(1) coefficient as well as the drift

changes.

Define

z̃∗it+1 =
1

Ω̃4

bi
t+1

Yt+1
−

1
Ω̃4

δ̃1

1− φ̃∗1
, (2.39)

where Ω̃4 = R̃∗β µ

1+β (1+µ)
1
σ

, δ̃1 = R̃∗β µ

σ(1+β (1+µ)) [1− σφbΩ̃3], and φ̃∗1 = R̃∗β µ

1+β (1+µ) .

5While not necessary for the characterization of the law of motion for bequests under the
Solow steady state, normalization is needed for the characterization of the Romer steady state
and the period-2 cycles as the total output is growing under the latter 2 trajectories.
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Substituting (2.39) into equation (2.38), we get a detrended autoregressive pro-

cess of order 1, AR(1), for z∗it . That is,

z̃∗it+1− φ̃
∗
1 z̃∗it = [li

t − lt ]≡ ui
t+1 ∼ i.i.d.(0,σ2

l ). (2.40)

Proposition 2.3. Since |φ̃∗1 | ≡ |
R̃∗β µ

1+β (1+µ) |< 1, z̃∗it+1 is a covariance-stationary6

AR(1) process.

(i) The expected bequest inherited by a young agent of lineage i, as a ratio of

the total output, at time, t +1, is:

E

[
bi

t+1

Yt+1

]
=

δ̃1

1− φ̃∗1
. (2.41)

(ii) The variance of bequest inherited by a young agent of lineage i, as a ratio

of the total output, at time, t +1, is:

Var

[
bi

t+1

Yt+1

]
=

σ2
l Ω̃2

4

1− φ̃∗21

. (2.42)

(iii) The intergenerational mobility can be measured by the covariance or the

correlation coefficient, to gauge the extent of intergenerational transmis-

sion of inequality. They are respectively:

Cov

[
bi

t+1

Yt+1
,
bi

t
Yt

]
= Ω̃

2
4

φ̃∗1 σ2
l

1− φ̃∗21

. (2.43)

ρ

[
bi

t+1

Yt+1
,
bi

t
Yt

]
= ρ̃1 = φ̃

∗
1 =

R̃∗β µ

1+β (1+µ)
=

(1− 1
σ )

Ω̃1Ω̃3
β µ

1+β (1+µ)
. (2.44)

6See Chapter 1 Definitions 1.1 and 1.2, or Hamilton (1994, pp.45–46) for the definition of
stationarity, strict stationarity and covariance (weak) stationarity.
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Proof. As in Chapter 1, Proposition 1.5. �

Proposition 2.4. The higher the envy, γ , the higher the correlation of the ratio

of bequests to total output across generations from the same dynasty, the lower

the intergenerational mobility.

Proof. From the correlation equation of Proposition 2.3,

∂ ρ̃1

∂γ
=

(
1− 1

σ

)
β µ

1+β (1+µ)

∂
1

Ω̃1Ω̃3

∂γ


=

(
1− 1

σ

)
β µ

1+β (1+µ)

[
−1

(Ω̃1Ω̃3)2

](
∂ Ω̃1Ω̃3

∂γ

)

=

(
1− 1

σ

)
β µ

1+β (1+µ)︸ ︷︷ ︸
≥0

[
−1

(Ω̃1Ω̃3)2

]
︸ ︷︷ ︸

≤0

[
Ω̃3

∂ Ω̃1

∂γ
+ Ω̃1

∂ Ω̃3

∂γ

]
︸ ︷︷ ︸

≤0

≥ 0. (2.45)

The algebraic manipulations to sign ∂ Ω̃1
∂γ

, and ∂ Ω̃3
∂γ

are shown in Appendix B.2.

�

Although Alvarez-Cuadrado and Long (2012) derived the the intergenera-

tional correlation in terms of the returns of capital and bequest motives, this

comparative statics, absent in Alvarez-Cuadrado and Long (2012), adds a new

dimension to the intergenerational mobility results discussed in Chapter 1. Specif-

ically, the higher the envy, the lower the intergenerational mobility. The intro-

duction of envy creates a distribution in agents’ propensity to save, with the

poorer agents spending a greater fraction of their lifetime resources on posi-

tional goods, hence reducing the mobility of their lineage.
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Proposition 2.5. The higher the price elasticity of the final goods sector’s de-

mand for each intermediate, σ (and correspondingly, higher capital share, lower

wage share, as well as lower monopoly margin for innovation), the higher the

correlation of the ratio of bequests to total output across generations from the

same dynasty, the lower the intergenerational mobility.

Proof. From the correlation equation of Proposition 2.3,

ρ̃1 = φ̃
∗
1 =

R̃∗β µ

1+β (1+µ)
=

(1− 1
σ )

Ω̃1Ω̃3
β µ

1+β (1+µ)

=
(σ −1)β µ[1+µ(1−ξ γ)]

Ω̃1[1+β (1+µ)][1+σ µ(1−ξ γ)]

=
{(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]}µ

(1− γ)}[1+β (1+µ)]︸ ︷︷ ︸
≡D≥0

(σ −1)
[1+σ µ(1−ξ γ)]

, (2.46)

as Ω̃1 ≡ β [1+µ(1−ξ γ)](1−γ)
(1−ξ γ)+(1−γ)β [1+µ(1−ξ γ)]

, and Ω̃3 ≡ 1+σ µ(1−ξ γ)
σ [1+µ(1−ξ γ)]

.

∂ ρ̃1

∂σ
= D

∂
(σ−1)

[1+σ µ(1−ξ γ)]

∂σ

= D
1

[1+σ µ(1−ξ γ)]2

σ [1−µ(1−ξ γ)]︸ ︷︷ ︸
≥0

+µ(1−ξ γ)(σ2 +1)]︸ ︷︷ ︸
≥0


≥ 0. (2.47)

�

Thus, the increase intergenerational mobility as a result of an increase in

wage share, as in Chapter 1, is robust to the envy specification here. Again, this

result is new relative to Alvarez-Cuadrado and Long (2012).
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2.4.2 Cross-sectional distributions
At Solow steady state

Proposition 2.6. Assuming |φ̃∗1 | < 1 and σφbΩ̃3 < 1, the cross sectional in-

equality of the ratio of bequests to total output is more than (less than) the cross

sectional inequality of wages if 1−φ̃∗1
1+φ̃∗1

> (<)(1−σφbΩ̃3)
2. In the absence of

envy, that is, γ = 0, the cross sectional inequality the ratio of bequests to total

output is less than the cross sectional inequality of wages.

Proof. From the asymptotic distribution for a covariance-stationary process, the

inequality of bequests and labor income in the asymptotic cross sectional distri-

bution using coefficient of variation7 are:

CV
[
wi]=CV

[
wi

t
]
=

√
Var

[
wi

t
]

E
[
wi

t
] =

σlwt

wt
= σl. (2.48)

CV
[
bi]=CV

[
bi

Y ∗

]
=CV

[
bi

t+1

Y ∗

]
=

√
Var

[
bi

t+1
Y ∗

]
E
[

bi
t+1
Y ∗

] =
σl

√
1

1−φ̃∗21

(1−σφbΩ̃3)

(1−φ̃∗1 )

=
σl

(1−σφbΩ̃3)

√√√√1− φ̃∗1
1+ φ̃∗1

. (2.49)

�

Unlike in Chapter 1, in the presence of envy, bequests can become a source

of wealth concentration. The risk pooling effect of intergenerational transfers is

diminished with positional concerns, as the rich has a higher propensity to save.

7The coefficient of variation, as a measure of inequality, is scale invariant.
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Thus, in contrast to Chapter 1, the inequality of inherited wealth could be higher

than the inequality of the wage income with status anxiety.

Proposition 2.7.

(i) If envy γ > 0, the relative inequality of bequest, capital holdings, consump-

tion when old and young are:

CV [bi
t+1]>CV [si

t ]>CV [di
t+1]>CV [ci

t ]. (2.50)

(ii) The differences in relative inequality of bequest, capital holdings, con-

sumption when old and young are identical under both the Solow regime

and the Romer regime.

(iii) In the absence of envy, that is, if envy γ = 0, the relative inequality of

bequest, capital holdings, consumption when old and young are:

CV [bi
t+1] =CV [si

t ] =CV [di
t+1] =CV [ci

t ], (2.51)

where at steady state, CV [wi]≥CV [bi] =CV [si] =CV [di] =CV [ci] (from

Proposition 1.6).

Proof. Using the optimization equations of agent i, (2.8), (2.9), (2.10), (2.11),

the first period budget constraint (B.7), and the assumption of Cov[wi
t ,b

i
t ] = 0 by

construction, we have:

ci
t + si

t = bi
t +wi

t ≡ yi
t .

96



Taking variance and expectations on the first period budget constraint,

Var
[
yi

t
]
=Var

[
bi

t
]
+Var

[
wi

t
]
+ 2Cov

[
bi

t ,w
i
t
]︸ ︷︷ ︸

=0 (by construction)

=Var
[
bi

t
]
+Var

[
wi

t
]

; (2.52)

E
[
yi

t
]
= E

[
bi

t
]
+E

[
wi

t
]
= b

i
t +wi

t ; (2.53)

E
[
si
t
]
=

β (1+µ)

1+β (1+µ)
(1−φs)

[
b

i
t +wi

t

]
; (2.54)

Var
[
si
t
]
=

(
β (1+µ)

1+β (1+µ)

)2

Var
[
yi

t
]

; (2.55)

E
[
ci

t
]
=

1
1+β (1+µ)

(1+φc)
[
b

i
t +wi

t

]
; (2.56)

Var
[
ci

t
]
=

(
1

1+β (1+µ)

)2

Var
[
yi

t
]

; (2.57)

E
[
di

t+1
]
=

Rt+1β

1+β (1+µ)
(1+φd)

[
b

i
t +wi

t

]
; (2.58)

Var
[
di

t+1
]
=

(
Rt+1β

1+β (1+µ)

)2

Var
[
yi

t
]

; (2.59)

E
[
bi

t+1
]
=

Rt+1β µ

1+β (1+µ)
(1−φb)

[
b

i
t +wi

t

]
; (2.60)

Var
[
bi

t+1
]
=

(
Rt+1β µ

1+β (1+µ)

)2

Var
[
yi

t
]

; (2.61)

CV [bi
t+1] =

√
Var

[
bi

t+1
]

E
[
bi

t+1
] =

√
Var

[
yi

t+1
]

(1−φb)
[
b

i
t +wi

t

] ; (2.62)

CV [si
t ] =

√
Var

[
si
t
]

E
[
si
t
] =

√
Var

[
yi

t+1
]

(1−φs)
[
b

i
t +wi

t

] ; (2.63)

CV [di
t+1] =

√
Var

[
di

t+1
]

E
[
di

t+1
] =

√
Var

[
yi

t+1
]

(1+φd)
[
b

i
t +wi

t

] ; (2.64)

CV [ci
t ] =

√
Var

[
ci

t
]

E
[
ci

t
] =

√
Var

[
yi

t+1
]

(1+φc)
[
b

i
t +wi

t

] . (2.65)
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Since

φs =
(1+µ)(1−ξ γ)γ−ξ γ(1− γ)

(1+µ){(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]}

≤ φb =
(1−ξ γ)γ +ξ γ (1− γ)β

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
× 1+µ

1+µ

⇒ (1−φb)≥ (1−φs). (2.66)

φc =
β [(1+µ)(1−ξ γ)γ−ξ γ(1− γ)]

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]

≥ φd =
ξ γµ (1− γ)β +ξ γ(1− γ)− (1−ξ γ)γ

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]

≥ 0⇒ (1+φc)≥ (1+φd)≥ (1−φs)≥ (1−φb). (2.67)

Part (ii) follows from Proposition 1.8. �

This strengthens the applicability of the "stable steady state" results from

Alvarez-Cuadrado and Long (2012, pp. 962–964) on the relative inequality of

bequest, capital holdings, consumption when old and young, in which there is

no long-run growth under the neoclassical framework, to include Matsuyama

(1999)’s production function with endogenous growth through innovation and

cycles, where the fixed points are not unique. Specifically, even though as shown

in Matsuyama (1999), the aggregate growth over period-2 cycles are higher than

at either of the steady states, with i.i.d. shocks, the lineage wealth dynamics

and cross-sectional wealth distributions for Solow and Romer steady states, and

period-2 cycles are identical as in Chapter 1, despite the presence of "Status

Anxiety". As discussed in Section 1.4.3, under i.i.d. productivity shocks, the
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global lineage evolution of inherited wealth to output ratio, as well as the long-

run cross-sectional distribution of inherited wealth to output ratio in the presence

of "Status Anxiety" have been characterized in this thesis, including chaotic tra-

jectories, not just at the steady state(s). Compared to Alvarez-Cuadrado and

Long (2012), besides introducing long-run growth through innovation, incorpo-

rating the production function of Matsuyama (1999) enables one to study the

effect of price elasticity of the final goods sector’s demand for each intermedi-

ate on intergenerational lineage mobility. As in Chapter 1, the higher the price

elasticity of the final goods sector’s demand for each intermediate, the lower the

intergenerational lineage mobility as shown in Proposition 2.5.

2.5 Conclusion

This chapter shows that status anxiety can affect both the aggregate bequest

and lineage bequest evolution of an economy. Status anxiety can decrease the

steady state ratio of capital stock to variety of intermediate goods in an endoge-

nous growth model with innovation and fixed cost of innovation. Furthermore,

status anxiety can affect the nature of the steady state (Solow or Romer) of the

economy, and hence its growth potential.

On the distributional front, an increase in status anxiety decreases intergen-

erational mobility as agents shift resources to positional goods, reducing the

allocation to non-positional goods such as bequest. On a cross-sectional front,

the presence of status anxiety can result in the inequality of wealth being more
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than or less than that of wage. This contrasts with Chapter 1, where in the ab-

sence of status anxiety, the cross-sectional inequality of wealth is always less

than that of wages.

Thus, envy is not only a factor that reduces the intergenerational risk pool-

ing through bequest, resulting in a higher concentration of inherited wealth; it

is also a factor that drives the relative distributions of household consumption

when young and old, savings and bequests through the nature of the expendi-

ture: positional (conspicuous) or non-positional, leading to the immiseration of

the poor.
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Chapter 3

Endogenous labor supply and its
impact on mobility, inequality and
growth trajectories

3.1 Introduction

Theoretically, inheritance creates a disincentive to labor due to the marginal

utility of wealth, with leisure being a normal good. The magnitude of this dis-

incentive affects the relative importance of inheritance and life-cycle savings on

total wealth of a country, as well as the evolution of relative inequality between

inheritance and lifetime income (from earnings and inheritance). Using EITM

(Estate-Income Tax Match) and PSID (Panel Study of Income Dynamics) data

respectively, Holtz-Eakin et al. (1993) and Joulfaian and Wilhelm (1994) find a

negative relationship between labor force participation and size of inheritance

for the US. In addition, Joulfaian and Wilhelm (1994) also find that the impact

of inheritance on hours worked from prime-age worker is statistically signifi-

cant, but small. This concurs with the findings of Halvorsen et al. (2012), using

a panel data that covers all registered inheritances in Norway, with women be-

101



ing more responsive than men. Moreover, Halvorsen et al. (2012) also note

that young inheritors respond via the intensive margin more than the extensive

margin, while older inheritors do the reverse.

In this chapter, I explore the aggregate and distributional implications of

endogenous labor supply, in the presence of bequests and idiosyncratic labor

productivity shocks, within an endogenous growth framework. This is related

to the literature of incomplete markets by Aiyagari (1994) and Huggett (1997),

where infinitely-lived agents, with inelastic labor, are subjected to idiosyncratic

labor productivity shocks, with limited ability to insure against the income risk.

This financial friction results in an increase demand for savings for precaution-

ary motive, and consequently, capital and output are higher. By introducing en-

dogenous labor-leisure choice into an incomplete market model with infinitely

lived agents, Marcet et al. (2007) study the capital accumulation with 2-state

Markov chain in labor productivity, and show that ex post wealth effect reduces

labor supply, offsetting the effects of precautionary savings. Zhu (2013b) gen-

eralize that result to cover multiple-state Markov chain as well as more general

utility functions. Using a simple OLG model with "warm glow" bequest motive

and a log-linear preference for leisure, I study the wealth effect on aggregate

labor supply in the presence of uninsurable labor-income risk, and the general

equilibrium effect on wage per unit efficient labor analytically. One can interpret

the idiosyncratic productivity risk as any inputs that complements with capital,

such as heterogenous technology adoption, entrepreneurship or human capital.
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The analytical simplification is done by abstracting away the intertemporal ef-

fect of consumption-savings choice, retaining only the intratemporal effect, by

using the log-linear assumption for the preference of leisure in conjunction with

2-period lived agents in an OLG structure: to link labor effort to contemporane-

ous average wage, contemporaneous idiosyncratic productivity, and contempo-

raneous idiosyncratic inherited wealth.

By using a production function with innovation and fixed cost (Matsuyama

(1999)) instead of the neoclassical production used in the previous literature,

there are a few new findings at the aggregate level. In addition, by using covariance-

stationarity, I characterize the changes in lineage mobility and cross-sectional

inequality of wealth that result from elastic labor over different growth regimes

including period-2 cycles. For the aggregate supply of labor, the higher the price

elasticity of the final goods sector’s demand for each intermediate (and corre-

spondingly, the higher the capital share, the lower the wage share, as well as

lower monopoly margin for innovator), the lower the aggregate labor supply at

equilibrium. Furthermore, if the labor share is relatively small, an increase in

bequest motive will reduce the aggregate labor (wealth effect dominates), which

is consistent with Marcet et al. (2007) and Zhu (2013b). However, if the labor

share is relatively large, an increase in the bequest motive will result in a higher

aggregate labor supply (precautionary savings for uninsurable labor risk domi-

nates), as with Aiyagari (1994). Still on the aggregate front, the growth potential

of the economy, and steady state normalized capital stock is decreasing with the
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preference for leisure. On the lineage bequest evolution, the higher the pref-

erence for leisure, the higher the intergenerational mobility as the elastic labor

provides a channel to level the playing field of the asset-poor via the disincentive

to work among the asset-rich. On the cross-sectional distribution, the higher the

preference for leisure, the higher the cross-sectional inequality of bequest. Un-

der period-2 growth cycles, the inequality of leisure consumed at both period-2

fixed points are identical, but are higher compared to the steady state inequality

of leisure consumption, as the alternating growth regimes induce correlations

with endogenous labor-leisure choice. Finally, the higher the price elasticity of

the final goods sector’s demand for each intermediate (and correspondingly, the

higher the capital share, the lower the wage share, as well as lower monopoly

margin for innovator), the higher the cross-sectional inequality of the ratio of

wage income earned to total output.

This work complements a related thread of literature, where unlike the agents

in this chapter, in García-Peñalosa and Turnovsky (2007) and García-Peñalosa

and Turnovsky (2011), the infinitely-lived agents have identical labor produc-

tivity, but ex-ante heterogeneous endowments of physical capital. In García-

Peñalosa and Turnovsky (2007), economy-wide capital stock exerts an external-

ity such that the aggregate output is essentially AK in form, and each agent’s

labor supply is linear in his capital endowment. Hence income inequality is

determined by the initial distribution of capital among the agents and the ag-

gregate labor supply at equilibrium. There is no income dynamics, and faster
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growth results in more unequal income distribution. In García-Peñalosa and

Turnovsky (2011), with a neoclassical growth model, the wealth distribution

dynamics are similar under both elastic and inelastic labor, while the income

distribution varies as poorer agents supply more labor.

This chapter is organized as follows. Section 2 formalizes the model. Sec-

tion 3 characterizes the aggregate equilibrium, and studies the impact of model’s

primitive on aggregate labor supply. Section 4 analyzes the impact of elastic la-

bor on lineage bequest evolution and cross-sectional distributions, and Section

5 concludes.

3.2 The model

3.2.1 Agents’ optimization

Time is discrete. The economy consists of overlapping generations of agents

who live for 2 periods: the young period, and the old period. In each generation,

there is a continuum of measure 1 of agents. In each family i, old agent gives

birth to 1 child, keeping the population in the economy constant1. When old,

agents retire, consume their savings, and leave a bequest to their child. When

young, agents choose the proportion of time endowment spent between work

and leisure; consume, and save.

Young agents within a given generation, t, are heterogenous in 2 aspects:

their idiosyncratic productivity, li
t , and the inherited bequest bi

t . I assume that

1Population changes can easily be incorporated by changing the measure of agents in each
generation to nt , instead of 1.
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the labor productivity is drawn from an independent and identical distribution

on a positive support, with an expectation, E[li
t ] = l̄ ≡ 1, and a finite variance,

Var[li
t ] = σ2

l , across agents from the same generation, and independent across

time, that is, independent across generations from the same lineage. The prob-

lem of an agent i born at time t is:

Max
ci

t , di
t+1, Λi

t
Ut
(
ci

t ,d
i
t+1,b

i
t+1,
)
≡ lnci

t +λ lnΛ
i
t +β

[
lndi

t+1 +µ lnbi
t+1
]

(3.1)

subject to: ci
t + si

t = bi
t +wt li

t [1−Λ
i
t ]≡ yi

t , (3.2)

and Rt+1si
t = di

t+1 +bi
t+1. (3.3)

where ci
t is the consumption when young, and di

t+1 is the consumption when

old, respectively, of an agent born at time t; bi
t+1 is the bequest left by an agent

born at time, t, when old, to his immediate offspring born at time t; β < 1 is

the subjective discount factor; 0 ≤ µ,λ < 1 are the importance of bequest and

leisure motives respectively; Λi
t is the fraction of time spend on leisure by young;

li
t ∼ i.i.d.(1,σ2

l ); wi
t = wt li

t ; wt is the equilibrium wage rate for each unit of labor

productivity; si
t is the amount saved when young; yi

t is the lifetime resource of

an individual i for agent i, born at time t; and Rt+1 is the equilibrium gross rate

of return on capital at time t +1.

At time t +1, an old agent maximizes his second period utility, defined as:

V ≡ lndi
t+1 +µ lnbi

t+1, (3.4)

by choosing his second period consumption and bequest for his immediate off-

spring, given his second period budget constraint. Substituting (3.3) into (3.4),
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and differentiating the latter with respect to di
t+1 for the first order condition, the

optimal choices for an old agent are:

di
t+1 =

1
1+µ

(Rt+1si
t); (3.5)

bi
t+1 =

µ

1+µ
(Rt+1si

t). (3.6)

By substituting these choices, rewrite the second period value function as:

V
(
Rt+1si

t
)
≡ (1+µ) ln(Rt+1)+(1+µ) ln

(
si
t
)
+ ln

(
1

1+µ

)
+µ ln

(
µ

1+µ

)
.

(3.7)

At time t, subject to the first period budget constraint, the young agent chooses

consumption and savings to maximize his utility:

ln(ci
t)+λ lnΛ

i
t +βV

(
Rt+1si

t
)
. (3.8)

Substituting (3.2) and (3.7) into (3.8), and differentiating the latter with respect

to si
t for the first order condition:

1
bi

t +wt li
t [1−Λi

t ]− si
t
=

β (1+µ)

si
t

, (3.9)

which implies that the optimal savings for agent i as a function of his lifetime

resource is a constant fraction, as with Bossmann et al. (2007).

si
t =

β (1+µ){bi
t +wt li

t [1−Λi
t ]}

1+β (1+µ)
=

β (1+µ)

1+β (1+µ)
yi

t . (3.10)

Substituting (3.2) and (3.7) into (3.8), and differentiating the latter with re-

spect to Λi
t for the first order condition:
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wt li
t

bi
t +wt li

t [1−Λi
t ]− si

t
=

λ

Λi
t
, (3.11)

The right hand side of (3.11) is the marginal benefit of leisure, while the left

hand side is the quality(wealth) adjusted marginal cost of leisure. Substituting

the optimal savings equation (3.10) into (3.11), we get the optimal amount of

leisure for an agent i:

Λ
i
t =

λ

1+β (1+µ)+λ

(
bi

t

wt li
t
+1
)
. (3.12)

That is, the optimal amount of leisure to consume for an individual of lineage

i is directly proportional to the size of the inherited wealth, but inversely pro-

portional to the idiosyncratic labor productivity draw and the wage rate per unit

productivity (i.e. the opportunity costs of leisure). This helps to explain why

even for the very rich, such as Bill Gates and Warren Buffet2, they may continue

to work despite their wealth and age, as their labor productivities are uttermost.

From equation (3.12), each agent’s sensitivity of individual labor supply to

relative wealth differs, by virtue of the idiosyncratic labor productivity draws,

unlike in García-Peñalosa and Turnovsky (2011), where the sensitivity of indi-

vidual labor supply to relative capital, which depends on the aggregate leisure, is

thus identical for all agents. This is because in García-Peñalosa and Turnovsky

(2011), agents are endowed with only heterogenous capital ex-ante, but the op-

2Ranked by Forbes (2015, March 2) as the World’s richest person for the past 21 years and
World’s third richest respectively.
Retrieved from http://www.forbes.com/sites/chasewithorn/2015/03/02/forbes-billionaires-full-
list-of-the-500-richest-people-in-the-world-2015/, on May 1, 2015.
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portunity cost per unit of leisure are identical with no idiosyncratic labor produc-

tivity shocks. As a result, each infinitely-lived agent operating in the neoclassi-

cal growth model in García-Peñalosa and Turnovsky (2011) will have a steady-

state relative wealth, and the higher the steady state relative wealth, the more

leisure he consumes, equalizing the impact of wealth inequality on the distribu-

tion of income. Contrastingly, in this chapter, there is no steady-state relative

wealth for the OLG agents of each lineage i, as a result of the idiosyncratic labor

productivity draws, but there exists a law of motion of inherited wealth to total

output of the economy to characterize the wealth dynamics of the lineage. Addi-

tionally, the evolution of the distribution of inherited wealth and the distribution

of maximum idiosyncratic labor income that could be earned by an agent of lin-

eage i, drive the distribution of leisure together. Besides, with the possibility of

different growth regimes, as well as period-2 cycles, as a result of the production

function with innovation and fixed cost introduced by Matsuyama (1999), dif-

ferent aggregate wage rate per efficient labor can be generated, which introduces

differences in the asymptotic cross-sectional distribution of wealth between the

steady-states and the fixed points of period-2 cycles, as will be shown in Section

3.4.2.

Note that with the choice of log preference for leisure for analytical tractabil-

ity, this model can only be used to analyze the intensive margin of labor supply,

and is silent on the extensive margin and related issues such as unemployment

and retirement decisions.
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Substituting (3.10) into (3.5), (3.6), and (3.2), the optimal choices of an

agent i are:

si
t =

β (1+µ)

1+β (1+µ)
yi

t ; (3.13)

ci
t =

1
1+β (1+µ)

yi
t ; (3.14)

di
t+1 =

Rt+1β

1+β (1+µ)
yi

t ; (3.15)

bi
t+1 =

Rt+1β µ

1+β (1+µ)
yi

t ; (3.16)

and the optimal choices of the average agent are:

Λt =
λ

1+β (1+µ)+λ

(
bt

wt lt
+1
)

; (3.17)

st =
β (1+µ)

1+β (1+µ)
yt ≡Ω1yt ; (3.18)

ct =
1

1+β (1+µ)
yt ; (3.19)

dt+1 =
Rt+1β

1+β (1+µ)
yt ; (3.20)

bt+1 =
Rt+1β µ

1+β (1+µ)
yt ≡ Rt+1Ω2yt . (3.21)

With the log-linear preference for leisure and the 2-period OLG structure, it

does not change the intertemporal optimization, thus the optimal choices of an

agent i correspond to those in Chapter 1 with inelastic labor, as agents continue

to save the same fixed proportion of their lifetime resources for consumption at

old age and bequest. By eliminating the intertemporal substitution effect, the

labor effort is driven by the wealth effect relative to the idiosyncratic produc-

tivity shocks. This chapter thus focuses on the idiosyncratic change in labor

effort arising from the contemporaneous heterogeneous productivity shocks and
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the heterogenous wealth endowment, that accumulates from the transmission

of past idiosyncratic productivity shocks and labor choices from agents of the

same lineage. Overall, the endogenous labor-leisure choice has a scaling effect

by changing the quantum of lifetime resources available for the young. Further-

more, it changes the coefficient and drift in the first order difference equation

governing the accumulation of intergenerational transfer of wealth through be-

quest as will be discussed in the subsequent section.

3.2.2 Firms’ optimization

The production sector is similar to that described in Chapter 1, Section 1.2.2,

except that aggregate labor, L, is replaced by an elastic aggregate labor supply

Lt , where Lt =
∫ 1

0 [1−Λi
t ]l

i
t di. The final goods production function is thus:

Yt = Â(Lt)
1
σ

{∫ Nt

0
[xt (z) ]

1− 1
σ dz

}
. (3.22)

3.3 Equilibrium steady state and dynamics

3.3.1 Derivation of equilibrium capital stock

The market clearing conditions are:

Lt =
∫ 1

0
[1−Λ

i
t ]l

i
t di; (3.23)

Kt =
∫ 1

0
si
t di = st ≡ St . (3.24)

Given the competitive Cobb-Douglas final goods sector, capital share of the

economy is:

RtKt−1 =

(
1− 1

σ

)
Yt , (3.25)
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and the wage share of the economy is:

1
σ

Yt = wtLt (3.26)

= wt

∫ 1

0
li
t di−wt

∫ 1

0
Λ

i
t li

t di

= wt

[
1− λ

1+β (1+µ)+λ

∫ 1

0

(
bi

t
wt

+ li
t

)
di
]

[

= wt

[
1− λ

1+β (1+µ)+λ
− λ

1+β (1+µ)+λ

(
b

i
t

wt

)]
;

⇒ Lt =

1− λ

1+β (1+µ)+λ︸ ︷︷ ︸
disutility from working

− λ

[1+β (1+µ)+λ ]

(
b

i
t

wt

)
︸ ︷︷ ︸

disutility from working with increase in bequest

 .
(3.27)

Combining the average inheritance and savings equations, (3.21) and (3.18),

with the capital market share (3.25), we get:

bt =
µ

1+µ
Rtst−1 =

µ

1+µ

(
1− 1

σ

)
Yt . (3.28)

Substituting the wage share (3.26) and the average inheritance (3.21), in the

aggregate effective labor supply (3.27), we get:

Lt = 1− λ

1+β (1+µ)+λ

(
1+

b
i
t

wt

)

= 1− λ

1+β (1+µ)+λ

(
1+

µ

1+µ

(
1− 1

σ

)
Yt

1
σLt

Yt

)

⇒ Lt =
[1+β (1+µ)](1+µ)

[1+β (1+µ)+λ ](1+µ)+λ µ(σ −1)

L≡ Lt =
1+µ +β (1+µ)2

1+µ +β (1+µ)2 +λ +λ µσ
≤ 1. (3.29)

Due to the log-linear formulation of the preference for leisure and OLG

framework, the aggregate labor and leisure are constant. Since we have measure
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1 of agents in each generation, we can obtain an equivalent expression for the

aggregate savings, and the aggregate capital stock, of the economy from the

optimization choices of the average agent. Specifically:

st =
β (1+µ)

1+β (1+µ)
yt

≡Ω1yt

≡Ω1[bt +wtL]

= Ω1wtL+Ω1

(
µ

1+µ

)
Rtst−1. (3.30)

The unconsumed final goods at time t, will form the available capital stock

for production at time t + 1. Thus by integrating the savings across all young

agents, the aggregate savings in the economy is:

Kt = St = st = Ω1wtL+Ω1

(
µ

1+µ

)
RtKt−1, (3.31)

and the capital stock as a function of the final output of the economy can be

derived by substituting out the factor shares, (3.25) and (3.26), as follow:

Kt = Ω1

(
1
σ

)
Yt +Ω1

(
µ

1+µ

)(
1− 1

σ

)
Yt

= Ω1Ω3Yt , (3.32)

where Ω1 ≡ β (1+µ)
1+β (1+µ) and Ω3 ≡ 1+σ µ

σ(1+µ) . That is, this economy saves a constant

fraction of its output for the next period.

From the savings accumulation process (3.32), in conjunction with the dy-

namics of innovation (1.21) and the total output (1.23) (in Chapter 1, replacing
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the L with the elastic labor supply L, the unique equilibrium path for any initial

condition, K0 and N0 is pinned down.

Kt

Ω1Ω3
= Yt =

{
A [θσFNt−1]

1
σ [Kt−1]

1− 1
σ if Kt−1 ≤ θσFNt−1,

AKt−1 if Kt−1 ≥ θσFNt−1,
(3.33)

where A≡ Â
a

[
aL

θσF

] 1
σ .

This dynamical system can be normalized by the range of intermediate goods

to a 1-dimensional map. Define Φn (k)≡Φ
(
Φn−1 (k)

)
, Φ1 (k)≡Φ(k), and

kt ≡
Kt

θσFNt
.

Equilibrium path for initial condition k0 is given by the sequence {Φt (k0)}:

kt = Φ(kt−1)≡


G(kt−1)

1− 1
σ if kt−1 ≤ kc = 1,

Gkt−1
1+θ(kt−1−1) if kt−1 ≥ kc = 1,

(3.34)

where:

Φ : R+→ R+
3, kt ≡ Kt

θσFNt
, G ≡ Ω1Ω3A, Ω1 ≡ β (1+µ)

1+β (1+µ) , Ω3 ≡ 1+σ µ

σ(1+µ) , and

A ≡ Â
a (

aL
θσF )

1
σ . The aggregate dynamics is thus similar to Chapter 1, except

for the scaling of the output due to the introduction of a log-linear leisure-labor

choice, where L≤ 1.

The mapping kt = Φ(kt−1) with domain Φ : R+→R+ in (3.34) has a unique

steady state where kt ≡ Kt
θσFNt

is constant over time. Denote the fixed point as k∗

such that k∗=Φ(k∗) if k∗< kc≡ 1 and k∗∗ such that k∗∗=Φ(k∗∗) if k∗∗> kc≡ 1.

3k = 0 is excluded from the domain in the mapping kt =Φ(kt−1), as Φ
′
(0)> 1, making k = 0

a repelling fixed point and hence trivial.
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3.3.2 Comparative statics of equilibrium aggregate labor sup-
ply

As labor enters into the final goods production in the form of a Cobb-Douglas

technology in equation (3.22), the higher the aggregate labor supply, the lower

the equilibrium wage per unit of effective labor, keeping the factor share con-

stant. Furthermore, from equation (3.32), it can be seen that the higher the

aggregate labor supply, the higher the labor augmented total productivity factor,

A≡ Â
a

[
aL

θσF

] 1
σ .

Proposition 3.1. The equilibrium aggregate labor supply, L, is constant, and it

is determined by the primitives of the model as follows:

(i) The higher the taste for leisure, λ , the lower the aggregate labor supply at

equilibrium, L.

(ii) The higher the price elasticity of the final goods sector’s demand for each

intermediate, σ (and correspondingly, higher capital share, lower wage

share, as well as lower monopoly margin of innovator), lower the aggre-

gate labor supply at equilibrium, L.

(iii) The higher subjective discount factor, β , the higher the aggregate labor

supply at equilibrium, L.

(iv) If σ ≤ (>)1+2β (1+µ)
1+β (1−µ) , the higher the bequest motive, µ , the higher (lower)

the aggregate labor supply at equilibrium, L.
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Proof. From (3.29):

L≡ Lt =
1+µ +β (1+µ)2

1+µ +β (1+µ)2 +λ +λ µσ
≤ 1.

(i)

∂L
∂λ

=−
(1+µσ)

[
1+µ +β (1+µ)2]

[1+λ +µ +λ µσ +β (1+µ)2]
2 ≤ 0. (3.35)

(ii)

∂L
∂σ

=−
λσ
[
1+µ +β (1+µ)2]

[1+λ +µ +λ µσ +β (1+µ)2]
2 ≤ 0. (3.36)

(iii)

∂L
∂β

=
(1+µ)2

[1+λ +µ +λ µσ +β (1+µ)2]
2×{[

1+λ +µ +λ µσ +β (1+µ)2]
−
[
1+µ +β (1+µ)2]

}
,

⇒ ∂L
∂β

=
(1+µ)2(λ +λσ µ)

[1+λ +µ +λ µσ +β (1+µ)2]
2 ≥ 0. (3.37)

(iv)

∂L
∂ µ

=
1

[1+λ +µ +λ µσ +β (1+µ)2]
2×{

[1+2β (1+µ)]
[
1+λ +µ +λ µσ +β (1+µ)2]

−
[
1+µ +β (1+µ)2 [1+2β (1+µ)+λσ ]

}
=

1

[1+λ +µ +λ µσ +β (1+µ)2]
2×{λ [1−σ +β (1+µ) [2+(µ−1)σ ]]}Q 0,

⇒ If σ ≤ (>)
1+2β (1+µ)

1+β (1−µ)
,

∂L
∂ µ
≥ (<)0. (3.38)
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The results from Proposition 3.1(i) and (iii) follow from the log-linear pref-

erence for leisure and OLG structure assumed.

From Proposition 3.1(ii), the higher the price elasticity of the final goods

sector’s demand for each intermediate (and correspondingly, the higher the cap-

ital share, the lower the wage share, as well as lower monopoly margin for

innovator), the lower the aggregate labor supply at equilibrium. The driver of

this result is the Cobb-Douglas assumption of the final good sector, where labor

and intermediate goods are the factor inputs.

From Proposition 3.1(iv), it can be seen that the wealth effect of bequest on

aggregate labor supply is related to the price elasticity, σ (and correspondingly,

capital share, as well as the monopoly margin of innovator). If the capital share

is small enough relative to the labor share, an increase in bequest motive will

encourage the agent with average wealth to work more, since he gets a relatively

bigger slice from the output gains due to his diligence, and a higher aggregate la-

bor supply results (precautionary savings for uninsurable labor risk dominates),

as with Aiyagari (1994). Conversely, if the labor share is relatively small, an

increase in bequest motive will reduce the aggregate labor (wealth effect domi-

nates), which is consistent with Marcet et al. (2007) and Zhu (2013b).
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3.3.3 Aggregate steady state and dynamics

Proposition 3.2. The growth potential of the economy is decreasing in the de-

gree of leisure, λ .

Proof. Market clearing (equations (3.26), (3.25), and the consumer optimiza-

tion (equation (3.32)) imply St = Kt = Ω̃1Ω̃3Yt . Together with the final output

function (3.33),

Yt =

{
A [θσFNt−1]

1
σ [Kt−1]

1− 1
σ if Kt−1 ≤ θσFNt−1

AKt−1 if Kt−1 ≥ θσFNt−1,

along the balanced growth path, Kt = Ω1Ω3Yt = Ω1Ω3AKt−1 = GKt−1, where

G≡ gross growth rate.

∂G
∂λ

= Ω1Ω3
∂A
∂λ

= Ω1Ω3
Â
a

( a
θσF

) 1
σ · 1

σ
L(

1
σ
−1)︸ ︷︷ ︸

≥0

· ∂L
∂λ︸︷︷︸
≤0

≤ 0. (3.39)

�

Proposition 3.3. The normalized steady-state capital stock to variety ratio, kt ,

is decreasing in the preference for leisure, λ , in both the regimes.

Proof. From equation (3.34):

when G < 1, k∗ = (Ω1Ω2A)σ ≡ Gσ ;

when G > 1, k = k∗∗ ≡ 1+ (G−1)
θ

.

∂k∗

∂λ
=

∂k∗

∂G
× ∂G

∂λ
= (σGσ−1

)

(
Ω1Ω3

∂A
∂λ

)
≤ 0. (3.40)

118



∂k∗∗

∂λ
=

∂k∗∗

∂G
× ∂G

∂λ
=

1
θ

(
Ω1Ω3

∂A
∂λ

)
≤ 0. (3.41)

�

In this model, agents work to finance consumption when young and old,

and for bequest to their immediate offspring. An increase in the preference for

leisure, denoted by λ , will cause the agents to allocate less of their time on work,

hence lowering savings and available aggregate capital stock for innovation.

Thus, unlike neoclassical growth models, both the normalized steady state

capital stock and growth potential of the economy are affected by the preference

for leisure, creating greater leeway for policy engagement through labor income

tax or subsidies. The results extend the findings from Bossmann et al. (2007,

Appendix B.2. pp. 1268-1269) to endogenous growth models.

3.4 Impact of leisure on lineage bequest evolution
and distribution

In the following section, I shall highlight the differences that the endogenous

labor-leisure choice might bring to the evolution of mobility and inequality,

compared to their respective benchmarks in Chapter 1, with inelastic labor, by

setting λ = 0.

While I develop the following exposition using the steady states, the results

are applicable to the fixed points of period-2 cycles, given the distributional

equivalence under i.i.d. shocks, as infered from Proposition 1.10.
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3.4.1 Lineage bequest evolution

From the capital share at equilibrium, equation (3.25), the savings rate, equation

(3.32), and from total output equation (3.33) , we get:

Rt

Gt
=

(1− 1
σ
)Yt/Kt−1

Yt/Yt−1
=

(1− 1
σ
)
(

1
Ω1Ω3

)
Kt/Kt−1

Yt/Yt−1
=

1− 1
σ

Ω1Ω3
, (3.42)

where Gt denotes the gross output growth rate at time t. Using the bequest of

an agent of lineage i, equation (3.16), as well as the capital and labor shares,

equations (3.25) and (3.26), and aggregate labor, equation (3.29), we derive the

law of motion of the bequests for an agent of lineage i.

bi
t+1 =

Rt+1β µ

1+β (1+µ)
(yi

t)

=
Rt+1β µ

1+β (1+µ)

[
bi

t +wt li
t(1−Λ

i
t)
]

=
Rt+1β µ

1+β (1+µ)

{
bi

t +wt li
t

[
1− λ

1+β (1+µ)+λ

(
bi

t

wt li
t
+1
)]}

(3.43)

Normalizing4 by the total output and rearranging,

bi
t+1

Yt+1
=

Rt+1β µ

Yt+1[1+β (1+µ)]

[
1− λ

1+β (1+µ)+λ

]
bi

t

+
Yt

Yt+1σL
Rt+1β µ

1+β (1+µ)

[
1− λ

1+β (1+µ)+λ

]
li
t ,

⇒
bi

t+1

Yt+1
− Rt+1β µ

Gt+1[1+β (1+µ)]

[
1+β (1+µ)

1+β (1+µ)+λ

]
bi

t
Yt

− 1
σL

Rt+1β µ

Gt+1[1+β (1+µ)]

[
1+β (1+µ)

1+β (1+µ)+λ

]
=

1
σL

Rt+1β µ

Gt+1[1+β (1+µ)]

[
1+β (1+µ)

1+β (1+µ)+λ

]
[li

t − lt ],

4While not necessary for the characterization of the law of motion for bequests under the
Solow steady state, normalization is needed for the characterization of the Romer steady state
and the period-2 cycles as the total output is growing under the latter 2 trajectories. Normaliza-
tion applies along the transition to the fixed point(s) as well.
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⇒
bi

t+1

Yt+1
−

(1− 1
σ
)β µ

Ω1Ω3

[
1

1+β (1+µ)+λ

]
bi

t
Yt

− 1
σL

(1− 1
σ
)β µ

Ω1Ω3

[
1

1+β (1+µ)+λ

]
=

1
σL

(1− 1
σ
)β µ

Ω1Ω3

[
1

1+β (1+µ)+λ

]
[li

t − lt ]. (3.44)

The ratio of bequest to total output inherited by a young agent from lineage

i at any time t, with elastic labor, is a first order non-homogenous difference

equation.

Let the supercript E denotes elastic labor. Define

zEi
t+1 =

1
Ω5

bi
t+1

Yt+1
−

1
Ω5

δ3

1−φ E
1
, (3.45)

where Ω5 =
1

σL
(1− 1

σ
)β µ

Ω1Ω3

[
1

1+β (1+µ)+λ

]
, δ3 =

1
σL

(1− 1
σ
)β µ

Ω1Ω3

[
1

1+β (1+µ)+λ

]
, and φ E

1 =

(1− 1
σ
)β µ

Ω1Ω3

[
1

1+β (1+µ)+λ

]
. Substituting (3.45) into equation (3.44), we get a first

order homogenous difference equation for zEi
t+1 . That is,

zEi
t+1−φ

E
1 zEi

t = [li
t − lt ]≡ ui

t+1 ∼ i.i.d.(0,σ2
l ). (3.46)

Proposition 3.4. Since
∣∣φ E

1

∣∣≡ ∣∣∣∣ (1− 1
σ
)β µ

Ω1Ω3

[
1

1+β (1+µ)+λ

]∣∣∣∣< 1, zEi
t+1 is a covariance-

stationary AR(1) process.

(i) The expected bequest inherited by a young agent of lineage i, as a ratio of

the total output, at time, t +1, is:

E

[
bi

t+1

Yt+1

]
=

δ3

1−φ E
1
=

1
σLφ E

1

1−φ E
1
. (3.47)

(ii) The variance of bequest inherited by a young agent of lineage i, as a ratio
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of the total output, at time, t +1, is:

Var

[
bi

t+1

Yt+1

]
=

σ2
l Ω2

5

1−φ E2
1

=
σ2

l

1−φ E2
1

(
1

σL
φ

E
1

)2

. (3.48)

(iii) The intergenerational mobility can be measured by the covariance or the

correlation coefficient, to gauge the extent of intergenerational transmis-

sion of inequality. They are respectively:

Cov

[
bi

t+1

Yt+1
,
bi

t
Yt

]
= Ω

2
5

σ2
l φ E

1

1−φ E2
1

=
σ2

l φ E
1

1−φ E2
1

(
1

σL
φ

E
1

)2

. (3.49)

ρ

[
bi

t+1

Yt+1
,
bi

t
Yt

]
= ρ1 = φ

E
1 =

(1− 1
σ
)β µ

Ω1Ω3

[
1

1+β (1+µ)+λ

]
. (3.50)

Proof. As in Chapter 1, Proposition 1.5.

φ
E
1 ≡

(1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)]

[
1+β (1+µ)

1+β (1+µ)+λ

]
=

(σ −1)µ
1+σ µ

[
1+β (1+µ)

1+β (1+µ)+λ

]
< 1. (3.51)

For the AR(1) process in equation (3.46), E
[
zEi
t+1
]
= 0, Var

[
zEi
t+1
]
= γ0 = σ2

l ,

Cov
[
zEi
t+ j,z

Ei
t

]
= γ j = φ

E j
1 γ0 =

φ E jσ2
l

1−φ E2
1

, and ρ j =
γ j
γ0
=

φ
E j
1 γ0
γ0

= φ
E j
1 . �

Proposition 3.5. The higher the preference for leisure, λ , the lower the corre-

lation of the ratio of bequests to total output across generations from the same

dynasty, the higher the intergenerational mobility.

Proof. From the correlation equation of Proposition 3.50,

∂φ E
1

∂λ
=

(σ −1)µ[1+β (1+µ)]

1+σ µ

∂

[
1

1+β (1+µ)+λ

]
∂λ

=
(σ −1)µ[1+β (1+µ)]

1+σ µ︸ ︷︷ ︸
≥0

−1
[1+β (1+µ)+λ ]2︸ ︷︷ ︸

≤0

≤ 0. (3.52)
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The higher the preference for leisure, the higher the intergenerational mobil-

ity as the elastic labor provides a channel to level the playing field of the asset-

poor via the disincentive to work among the asset-rich. That is, with endogenous

labor, wealth effect from inheritance discourages labor. Hence bequest has an

indirect effect on mobility via the marginal value of hours worked, besides the

direct effect via intergenerational risk pooling. This impact of leisure on lineage

mobility heterogenous wealth has not been discussed in the existing heteroge-

neous agent literature because the models do not cover elastic labor (as with

Wan and Zhu (2012)), and/or because the models do not explicitly characterize

the lineage bequest evolution with elastic labor, (as with Bossmann et al. (2007),

Zhu (2013b), and Marcet et al. (2007)).

Proposition 3.6. With endogenous labor, the higher the price elasticity of the

final sector’s demand for each intermediate, σ (and correspondingly, higher

capital share, lower wage share, as well as lower monopoly margin for innova-

tion), the higher the correlation of the ratio of bequests to total output across

generations from the same dynasty, the lower the intergenerational mobility.

Proof.

∂φ E
1

∂σ
=

1+β (1+µ)

1+β (1+µ)+λ
·

∂
(σ−1)µ
1+σ µ

∂σ

=

[
1+β (1+µ)

1+β (1+µ)+λ

]
· 1
(1+σ µ)2

[
σ(1−µ)+µ(σ2 +1)

]
≥ 0, (3.53)

�
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Proposition 3.7. With endogenous labor, the higher the bequest motive, µ , the

higher the correlation of the ratio of bequests to total output across generations

from the same dynasty, the lower the intergenerational mobility.

Proof.

∂φ E
1

∂ µ
=

[
(σ −1)µ
1+σ µ

][
βλ

[1+β (1+µ)+λ ]2

]
+

[
1+β (1+µ)

1+β (1+µ)+λ

][
σ −1

[1+σ µ]2

]
≥ 0, (3.54)

�

It can be seen from Propositions 3.6 and 3.7 that the results relating to com-

parative statics of the lineage bequest evolution in Chapter 1 (Propositions 1.78

and 1.76) are robust to the introduction of endogenous labor-leisure choice. In

this model, the returns on capital across all agents who saved are homogenous

and thus rank preserving, although it can vary across time. Thus mobility is

driven by the idiosyncratic labor productivity shocks. A decrease in wage share

will decrease intergenerational mobility. With the "joy-of-giving" bequest mo-

tive, an increase in bequest motive reduces intergenerational mobility under i.i.d.

labor productivity shocks. That is, bequest functions as an intergenerational risk

pooling device for idiosyncratic labor productivity shocks within a lineage, off-

setting the intragenerational mobility arising from the idiosyncratic labor pro-

ductivity draws.
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3.4.2 Cross-sectional distributions
Cross-sectional distribution of bequest

Proposition 3.8. The cross -sectional inequality of bequest with elastic labor is

higher than that with inelastic labor. The higher the preference for leisure, the

higher the cross-sectional inequality of bequest.

Proof. Note that φ E
1 = (σ−1)µ

1+σ µ

[
1+β (1+µ)

1+β (1+µ)+λ

]
≤ (σ−1)µ

1+σ µ
= φ∗1 < 1. From the

asymptotic distribution for a covariance-stationary process5, the inequality of

bequests and labor income in the asymptotic cross-sectional distribution using

coefficient of variation6 are:

CV
[
bi] with elastic labor =CV

[
bi

Y E

]
=CV

[
bi

t+1

Y E
t+1

]

=

√
Var

[
bi

t+1
Y E

t+1

]
E
[

bi
t+1

Y E
t+1

] =
σl

√
1

1−φ E2
1

1
(1−φ E

1 )

= σl

√
1−φ E

1
1+φ E

1
.

(3.55)CV [
bi

t+1
Y E

t+1
] with 0 < λ < 1

CV [
bi

t+1
Yt+1

] with λ = 0


2

=
1−φ E

1
1−φ∗1

·
1+φ∗1
1+φ E

1
> 1. (3.56)

5See Hamilton (1994, pp. 186–195: Section 7.2. Limit Theorems for Serially Dependent
Observations).

6The coefficient of variation, as a measure of inequality, is scale invariant.

125



If 0 < λ < 1,

sign
∂CV

[
bi

t+1
Y E

t+1

]
∂λ

= sign
∂

(
CV
[

bi
t+1

Y E
t+1

])2

∂λ

= sign
∂

(
CV
[

bi
t+1

Y E
t+1

])2

∂φ E
1

∂φ E
1

∂λ

= sign σ
2
l

{
−2(

1+φ E
1
)2

}
︸ ︷︷ ︸

<0

∂ρ1

∂λ︸︷︷︸
≤0 from (3.52)

≥ 0. (3.57)

�

With endogenous labor, cross-sectional variation of inherited wealth gener-

ates cross-sectional variation of labor-leisure choice, in addition to the baseline

idiosyncratic variation of labor productivity. Hence bequest has an indirect ef-

fect on cross-sectional inequality via the marginal value of work arising from

wealth effect.

Proposition 3.9. With endogenous labor, as with inelastic labor, the higher

price elasticity of the final goods sector’s demand for each intermediate, σ ,

(and correspondingly, an increase in capital share, a decrease in wage share,

as well as a decrease in monopoly margin for innovation), the higher the cross-

sectional inequality of the ratio of inherited wealth to total output.
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Proof.

sign
∂CV

[
bi

t+1
Y E

t+1

]
∂σ

= sign
∂

(
CV
[

bi
t+1

Y E
t+1

])2

∂σ

= sign
∂

(
CV
[

bi
t+1

Y E
t+1

])2

∂φ E
1

∂φ E
1

∂σ

= sign σ
2
l

{
−2(

1+φ E
1
)2

}
︸ ︷︷ ︸

<0

∂ρ1

∂σ︸︷︷︸
≥0 from (3.53)

≤ 0. (3.58)

�

Proposition 3.10. With endogenous labor, as with inelastic labor, the higher the

bequest motive, the lower the cross-sectional inequality of bequest.

Proof.

sign
∂CV

[
bi

t+1
Y E

t+1

]
∂ µ

= sign
∂

(
CV
[

bi
t+1

Y E
t+1

])2

∂ µ

= sign
∂

(
CV
[

bi
t+1

Y E
t+1

])2

∂φ E
1

∂φ E
1

∂ µ

= sign σ
2
l

{
−2(

1+φ E
1
)2

}
︸ ︷︷ ︸

<0

∂ρ1

∂ µ︸︷︷︸
≥0 from (3.54)

≤ 0. (3.59)

�

It can be seen from Propositions 3.9 and 3.10 that the results relating to com-

parative statics of the cross-sectional wealth inequality in Chapter 1 (Proposi-

tions 1.78 and 1.76) are robust to the introduction of endogenous labor-leisure

choice. In this model, the returns on capital across all agents who saved are
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homogenous and thus rank preserving, although it can vary across time. As a

result of the Cobb-Douglas production function in the final good sector, a de-

crease in wage share will decrease cross-sectional wealth inequality. Thus the

higher the price elasticity of the final sector’s demand for each intermediate, the

lower the monopoly margin for innovation, the lower the wage share, the lower

the cross-sectional bequest inequality. With the "joy-of-giving" bequest motive,

an increase in bequest motive reduces the cross-sectional inequality of inher-

ited wealth under i.i.d. labor productivity shocks. That is, bequest functions

as a intergenerational risk pooling device for idiosyncratic labor productivity

shocks. This extends the robustness of role of bequest in intergenerational risk

sharing by Becker and Tomes (1979) and Bossmann et al. (2007) to a model of

endogenous growth (with innovation and cycles) with inelastic and elastic labor,

in Chapter 1 and 3 respectively.

Cross-sectional distribution of leisure and wage income earned

From equation (3.12), the expectation and variance of leisure consumed for an

agent i are:

E
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i
t
]
=

λ
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b
i
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=

λ +λ µσ
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Leisure consumed by an agent i, being a ratio of 2 random variables: contempo-

raneous idiosyncratic inherited wealth, bi
t , and idiosyncratic labor productivity

shock, li
t , which can be approximated by a Taylor expansion since both bi

t and li
t

have distributions with support [0,∞) (see Stuart and Ord (1994, pp. 351)).

Proposition 3.11.

(i) If G = Ω1Ω3A < 1 or G = Ω1Ω3A > θ − 1, for i.i.d. labor productivity

shocks, the inequality of leisure consumed, measured by the coefficient of

variation, are identical under either the Solow or Romer steady state.

(ii) If 1<G=Ω1Ω3A< θ−1, under period-2 cycles exists, and the inequality

of leisure consumed at both period-2 fixed points are identical, but are

higher compared to the steady states inequality of leisure consumption in

part (i).

Proof. By applying Propositions 1.1 and 1.10 to the moments of Λi
t in equations

(3.60) and (3.61). �

From equation (3.12), each agent’s sensitivity of individual labor supply to

relative wealth differs, due to the idiosyncratic labor productivity draws. The
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distribution of hours worked is determined by the joint evolution of the distri-

bution of inherited wealth and the distribution of maximum idiosyncratic labor

income that could be earned by an agent of lineage i. Different aggregate wage

rate per efficient labor over the different steady states and the fixed points of

the period-2 cycles are generated. Therefore, under period-2 growth cycles, the

inequality of leisure consumed at both period-2 fixed points are identical, but

are higher compared to the steady state inequality of leisure consumption, as

the alternating aggregate wage rate per efficient labor over growth regimes in-

creases the variability of the cross-sectional distribution of leisure consumed.

Thus, extending the prior studies on the distributional implications of endoge-

nous labor-leisure choice, this chapter covers both the AK growth model (as

in García-Peñalosa and Turnovsky (2007)) and the neoclassical growth model

(as in García-Peñalosa and Turnovsky (2011)), as well as period-2 cycle, which

is novel. However, diverging from García-Peñalosa and Turnovsky (2007) and

García-Peñalosa and Turnovsky (2011) where agents are endowed with ex-ante

heterogenous amount of capital, agents in this chapter can be ex-ante identical

in wealth. The lineage bequest evolution and mobility, as well as the cross-

sectional inequality of the distributions of wealth, leisure consumed and wage-

income are engendered by the idiosyncratic labor productivity shocks (absent in

the other two papers) and the magnitude of the motives for bequest and leisure.
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From equation (3.12), the ratio of wage income earned to the total output is:
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(3.63)

The cross-sectional expectation and variance of wages earned of an agent i from

generation t, normalized by the final output at time t, are respectively:
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Thus, the inequality of the cross-sectional wages earned to final output is:
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Proposition 3.12. With endogenous labor, the cross-sectional inequality of the

ratio of wage income earned to total output may be increasing or decreasing

with an increase in the preference for leisure, λ .

Proof.
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�

With an increase in the preference for leisure, the general equilibrium wage

share effect (price effect from equilibrium wages) on the cross-sectional inequal-

ity of labor earnings is positive, but the substitution and wealth effects (quantity

effect from hours worked) on the cross-sectional inequality of labor earnings are

negative.

Proposition 3.13. With endogenous labor, the higher price elasticity of the fi-

nal goods sector’s demand for each intermediate, σ , (and correspondingly, an

increase in capital share, a decrease in wage share, as well as a decrease in

monopoly margin for innovation), the higher the the cross-sectional inequality

of the ratio of wage income earned to total output.
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Proof.
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�

From equation (3.74) and (3.77), when the price elasticity increases, the

wealth effect will lead to an increase in the inequality of wage income earned
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due to the increase in cross-sectional inequality from inherited wealth; further-

more, from equation (3.74) and (3.76), there is a general equilibrium effect that

increases the wage share, through the increase in the value of per unit effective

labor intensifying the inequality of labor productivity endowment. Thus, the

inequality of wage income to output ratio increases with an increase in price

elasticity, σ (and correspondingly, an increase in capital share, a decrease in

wage share, as well as a decrease in monopoly margin for innovation), in the

presence of elastic labor.

Proposition 3.14. With endogenous labor, the cross-sectional inequality of the

ratio of wage income earned to total output may be increasing or decreasing

with an increase in the bequest motive, µ .

Proof.
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�

As stated in Proposition 3.1(iv), the wealth effect of bequest on aggregate

labor supply is related to the price elasticity, σ (and correspondingly, capital

share, as well as the monopoly margin of innovator). If the capital share is

small enough relative to the labor share, an increase in bequest motive will lead

to a higher aggregate labor supply results (precautionary savings for uninsur-

able labor risk dominates), as with Aiyagari (1994), therefore a negative general
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equilibrium wage effect (price effect) on the cross-sectional inequality of wage

income. Conversely, if the labor share is relatively small, an increase in bequest

motive will reduce the aggregate labor (wealth effect dominates), which is con-

sistent with Marcet et al. (2007) and Zhu (2013b). The substitution effect of an

increase in bequest motive on the cross-sectional inequality of wage income is

positive due to an increase in the hours worked (quantity effect) for all agents

(converging to the inelastic labor case). However, the wealth effect of an in-

crease in bequest motive on the cross-sectional inequality of wage income is

ambiguous as impact on the hours worked (quantity effect) is unclear, due to the

heterogeneity of the wealth inherited and the heterogeneity of the indiosyncratic

labor productivity draw. If the preference for leisure, λ , is sufficiently low, and

the wage share, 1
σ

, is sufficiently high, an increase in the bequest motive could

increase the cross-sectional inequality of wage income to output ratio, in the

presence of elastic labor.

3.5 Conclusion

In the presence of bequest motive, the wealth effect of inheritance brings about

greater heterogeneity in the endogenous consumption of leisure, especially over

endogenous growth cycles, when measured in terms of coefficient of variation.

The comparative statics of the lineage mobility and cross-sectional inequality of

the ratio of inherited wealth to output for inelastic labor under i.i.d. idiosyncratic

shocks to changes in the bequest motive and price elasticity of the final sector’s
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demand for each intermediate (and correspondingly, higher capital share, lower

wage share, as well as lower monopoly margin for innovation), remain robust

even when labor-leisure choice is made endogenously. This extends the robust-

ness of role of bequest in intergenerational risk sharing by Becker and Tomes

(1979) and Bossmann et al. (2007) to a model of endogenous growth (with in-

novation and cycles) with both inelastic and elastic labor.

However, with elastic labor, in the presence of a bequest motive, the cross-

sectional inequality of the ratio of wages earned to final output is no longer iden-

tical to the inequality of the idiosyncratic labor productivity shocks as in Chap-

ters 1 and 2. The comparative statics on cross-sectional ratio of wages earned to

final output are driven by the relative size of the general equilibrium effect of the

wages, the contemporaneous substitution effect of consumption to leisure and

the inherited wealth effect, adjusted for quality with the contemporaneous labor

productivity shock, on demand for leisure. Further theoretical research could

be informed and directed by empirical evidence, through the merging of micro-

datasets individual consumption, labor, savings and inheritances registered.
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Chapter 4

Fiscal policies and their impact on
mobility, inequality and growth
trajectories

4.1 Introduction

In this chapter, I consider the impact of fiscal policies on inequality and mobility.

With logarithmic utility, a decrease in inheritance tax increases cross-sectional

inequality, tilting the playing field, under i.i.d. and correlated labor productivity

shocks, for both Solow and Romer regimes as well as for period-2 cycles, thus

strengthening the results from Bossmann et al. (2007), while contrasting with

Becker and Tomes (1979), Atkinson (1980) and Davies (1986). Furthermore,

an increase in inheritance tax also increases intergenerational lineage mobility

under i.i.d. shocks. On the other hand, the reduction of volatility of growth by

fiscal policies such as the innovation subsidy policy rule proposed by Aloi and

Lasselle (2007), which stabilizes period 2 cycles, could level the playing field,

by decreasing the persistence of inherited wealth during the transition to the

Romer steady state, if funded by a uniform value-added tax. However, moving

139



from period-2 cycles to the Romer steady state with the innovation subsidies

may change the cross-sectional inequality of wealth if the idiosyncratic labor

productivity shocks are correlated.

Section 2 motivates and investigates the impact of changes in inheritance

tax rate in the case of logarithmic preference, while Section 3 motivates and

examines the impact of innovation subsidies, funded by uniform tax, on the

growth and distribution dynamics. The results in this chapter can be extended to

include the case with status anxiety (consumption externality) in the logarithmic

preference, discussed in Chapter 2. Section 4 concludes.

4.2 The impact of inheritance tax

4.2.1 Motivation for exploring changes in inheritance tax rate

As highlighted by Piketty (2014, pp. 503, Figure 14.2), during the last century,

there are significant changes in the top marginal tax rate of the inheritance tax;

particularly for the United States and the United Kingdom, from the onset of the

70’s, these top marginal tax rates have fallen significantly, from more than 70%

to 40% or less. In this section, while I am cognizant of the possible endogeneity

of inheritance tax rate and income distribution, I shall abstract the political econ-

omy aspect from the following analysis. I refer interested readers to the papers

by Benabou (2000) and Acemoglu and Robinson (2001) for related theoretical

treatment, and Banerjee and Duflo (2003) for empirical literature. I adopt the

same approach as Bossmann et al. (2007), Wan and Zhu (2012) and Zhu (2013a)
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by looking at the comparative statics of an exogenous change in the inheritance

tax rate, but applied to a different production function, hence extending the ap-

plicability of their results to endogenous growth models with innovation, and

different growth regimes, including periodic cycles.

4.2.2 Impact of exogenous changes in inheritance tax rate
The government’s budget constraint

Suppose the government now levies an inheritance tax at a flat rate τb on all

inheritance, to fund lumpsum transfers to the young, as a new redistributive pol-

icy. All young agents receives the same lumpsum subsidy, gt . The government

runs a balanced budget at all times.

gt = τb

∫ 1

0
bi

t di = τbbt . (4.1)

Agent’s optimization

The first period budget constraint for individual from lineage i at time t is:

ci
t + si

t = bi
t +wi

t +gt ≡ yi
t , (4.2)

where bi
t is now interpreted as the after-tax bequest. Parents, mindful of the

inheritance tax, will face a new second period budget constraint:

Rt+1si
t = di

t+1 +(1+ τb)bi
t+1. (4.3)

From the second period budget constraint, we get:

bi
t+1 =

Rt+1si
t−di

t+1

1+ τb
. (4.4)
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Substituting the new budget constraints into the household optimization as shown

in Appendix C.1, we get the optimal choice of bequest left by an old agent to

his immediate offspring to be:

bi
t+1 =

µ

(1+µ)(1+ τb)
Rt+1si

t . (4.5)

Note that in this model with logarithmic utility and "joy-of-giving", taxing

bequests with transfers does not affect the aggregate capital stock, as individ-

uals save a constant fraction out of their own disposable income when young,

and consume a constant fraction out of their own disposable income when old,

independent of the tax rate, as implied by (4.2), (C.12) and (C.14):

si
t =

β (1+µ)

1+β (1+µ)
yi

t ;

di
t+1 =

Rt+1β

1+β (1+µ)
yi

t .

General equilibrium

Applying the market clearing conditions and working through as in previous

section, we get the difference equation governing the law of motion of lineage

bequest:

bi
t+1 =

Rt+1β µ

[1+β (1+µ)](1+ τb)

[
yi

t
]

=
Rt+1β µ

[1+β (1+µ)](1+ τb)

[
bi

t + li
t wt +gt

]
=

Rt+1β µ

[1+β (1+µ)](1+ τb)

[
bi

t + li
t

1
σ

Yt +gt

]
. (4.6)
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From the balanced budget of the government (4.1), capital share (1.27) at equi-

librium, capital market clearing (1.30), and the bequest and savings of the aver-

age agent, (4.5) and(1.8) respectively, we get:

gt = τbbt = τb
Rtβ µ

[1+β (1+µ)](1+ τb)
yt (4.7)

= τb
Rtst−1β µ

Ω1[1+β (1+µ)](1+ τb)
= τb

Ω1Ω3Ytβ µ

Ω1[1+β (1+µ)](1+ τb)
. (4.8)

Normalizing by the final output,

bi
t+1

Yt+1
− Rt+1β µ

Gt+1(1+ τb)[1+β (1+µ)]

bi
t

Yt
−

Rt+1β µ

[
1+ τb

(1+τb)

[
β µ

1+β (1+µ)

]
σΩ3

]
Gt+1σ(1+ τb)[1+β (1+µ)]

=
Rt+1β µ

Gt+1σ(1+ τb)[1+β (1+µ)]
[li

t − lt ], (4.9)

⇒
bi

t+1

Yt+1
−

(1− 1
σ
)β µ

Ω1Ω3(1+ τb)[1+β (1+µ)]

bi
t

Yt
−
(1− 1

σ
)β µ

[
1+ τb

(1+τb)

[
β µ

1+β (1+µ)

]
σΩ3

]
Ω1Ω3σ(1+ τb)[1+β (1+µ)]

=
(1− 1

σ
)β µ

Ω1Ω3(1+ τb)[1+β (1+µ)]

1
σ
[li

t − lt ]. (4.10)

The ratio of bequest to total output inherited by a young agent from lineage i at

any time t, is a first order non-homogenous difference equation.

Let the superscript τb denotes the case with inheritance tax rate. Define

zτbi
t+1 =

1
Ω5

bi
t+1

Yt+1
−

1
Ω5

δ4

1−φ
τb
1
, (4.11)

where Ω5 =
(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)](1+τb)σ
, δ4 =

(1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)](1+τb)σ

[
1+ τb

(1+τb)
β µ

1+β (1+µ)σΩ3

]
,

φ
τb
1 =

φ∗1
1+τb

and φ∗1 =
(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)] . Substituting (4.11) into equation (4.10),

we get a first order homogenous difference equation for zτbi
t+1 . That is,

zτbi
t+1−φ

τb
1 zτbi

t = [li
t − lt ]≡ ui

t+1 ∼ i.i.d.(0,σ2
l ). (4.12)
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Proposition 4.1. Since
∣∣φ τb

1

∣∣≡ ∣∣∣∣ (1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)](1+τb)

∣∣∣∣< 1, zτbi
t+1 is a covariance-

stationary AR(1) process.

(i) The expected after-tax bequest inherited by a young agent of lineage i, as

a ratio of the total output, at time, t +1, is:

E

[
bi

t+1

Yt+1

]
=

δ4

1−φ
τb
1

=

1
σ

φ∗1

[
1+ τbσΩ3β µ

[1+β (1+µ)](1+τb)

]
1+ τb−φ∗1

. (4.13)

(ii) The variance of after-tax bequest inherited by a young agent of lineage i,

as a ratio of the total output, at time, t +1, is:

Var

[
bi

t+1

Yt+1

]
=

σ2
l Ω2

5

1− (φ τb
1 )2

=
σ2

l

(
φ∗1
σ

)2

(1+ τb)2−φ∗21
. (4.14)

(iii) The intergenerational mobility can be measured by the covariance or the

correlation coefficient, to gauge the extent of intergenerational transmis-

sion of inequality. They are respectively:

Cov

[
bi

t+1

Yt+1
,
bi

t
Yt

]
= σ

2
l

Ω2
5φ

τb
1

1− (φ τb
1 )2

= σ
2
l

φ∗1
1+τb

(1+ τb)2−φ∗21

(
1
σ

φ
∗
1

)2

; (4.15)

ρ

[
bi

t+1

Yt+1
,
bi

t
Yt

]
= ρ

τb
1 = φ

τb
1 =

φ∗1
1+ τb

=
(σ −1)µ

(1+σ µ)(1+ τb)
. (4.16)

Proof. As with proof for Proposition 1.5.

φ
τb
1 =

φ∗1
1+ τb

=
(σ −1)µ

(1+σ µ)(1+ τb)
< 1. (4.17)

Proposition 4.2. For an economy with i.i.d. productivity shocks, the higher the

inheritance tax, the lower the correlation of intergenerational bequest in the
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same dynasty, the higher the intergenerational mobility;

furthermore, the cross sectional inequality of after-tax inherited wealth plus

government transfer is lower the higher the inheritance tax.

Proof. Since ρ
τb
1 = φ

τb
1 = (σ−1)µ

(1+σ µ)(1+τb)
,

∂ρ
τb
1

∂τb
=

(σ −1)µ(−1)
(1+σ µ)(1+ τb)2 ≤ 0. (4.18)

With no population growth, at the fixed points, the average capital stock for

each time period must be equals to the expected wealth holdings of a family of

lineage i for each time period. From equations (C.12), (C.14), (4.5) and (4.1),

the expected after-tax bequest plus government transfers for an agent of lineage

i is constant and independent of the tax-rate.

sign
∂CV

[
bi

t+1
Yt+1

+ gt+1
Yt+1

]
∂τb

= sign
∂Var

[
bi

t+1
Yt+1

]
∂τb

= signσ
2
l

φ∗21
σ2

(−2)(1+ τb)[
(1+ τb)2−φ∗21

]2 ≤ 0. (4.19)

�

This extends Bossmann et al. (2007) findings that redistribution via estate

taxes can reduce intragenerational after-tax wealth inequality with transfers, and

increases intergenerational mobility beyond the neoclassical framework to cover

endogenous growth with Solow, Romer, or Period-2 growth regimes. Further-

more, with finite variance of labor productivity draws, I can utilise the time

series properties to explore the intergenerational mobility, via the covariance or

correlations, that is absent in Wan and Zhu (2012).
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As noted by Bossmann et al. (2007), this result depends on the assumption

of the utility functions. With logarithmic preferences and "warm-glow" bequest

motive used in this Chapter and by Bossmann et al. (2007) and Wan and Zhu

(2012) in their discussion of estate taxes, the inheritance taxes do not affect the

aggregate macroeconomic variables as the aggregate savings, hence aggregate

wealth, remains unchanged. Thus, this result does not apply to CES utility func-

tions when the constant elasticity of substitution is > 1, as in García-Peñalosa

and Turnovsky (2007) or García-Peñalosa and Turnovsky (2011), or Appendix

B.1. of Bossmann et al. (2007). Similarly, this result does not apply when sav-

ings decisions are optimized on the combined family income across two or more

generations (e.g. Becker and Tomes (1979) and Davies and Kuhn (1991)), or on

life-cycle income with mortality influence (e.g. Atkinson (1980)).

4.2.3 Impact of inheritance tax rate in the presence of corre-
lated productivity shocks

Let li
t = lt +ν(li

t−1− lt−1)+ ε i
t , as in Chapter 1 and Bossmann et al. (2007).

Lineage bequest evolution with correlated shocks at Solow or Romer steady
states

Corresponding to equation (1.83) of Chapter 1,

1
Ω5

bi
t+1

Yt+1
− 1

Ω5

(
φ

τb
1 +ν

) bi
t

Yt
− 1

Ω5

(
−φ

τb
1 ν
) bi

t−1

Yt−1
− δ4

Ω5
(1−ν)

= ε
i
t ∼ i.i.d.(0,σ2

l ).
(4.20)
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where Ω5 =
(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)](1+τb)σ
, δ4 =

(1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)](1+τb)σ

[
1+ τb

(1+τb)
β µ

1+β (1+µ)σΩ3

]
,

φ
τb
1 =

φ∗1
1+τb

and φ∗1 =
(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)] . We can infer from Proposition 1.15 that:

Var

[
bi

t+1

Yt+1

]
=

σ2
l φ

τb2
1

σ2(1−φ
τb2
1 )(1−ν2)

(
1+φ

τb
1 ν

1−φ
τb
1 ν

)
; (4.21)

ρ

[
bi

t+1

Yt+1
,
bi

t
Yt

]
= ρ1 =

φ
τb
1 +ν

1+φ
τb
1 ν

. (4.22)

Proposition 4.3. For an economy with mean reverting correlated productivity

shocks, at either Solow or Romer steady states, the higher the inheritance tax,

the lower the correlation of intergenerational bequest in the same dynasty, the

higher the intergenerational mobility;

furthermore, the cross sectional inequality of after-tax inherited wealth plus

government transfer is lower the higher the inheritance tax.

Proof.

∂ρ
τb
1

∂τb
=

∂ρ
τb
1

∂φ
τb
1

∂φ
τb
1

∂τb

=
1−ν2

(1+φ
τb
1 ν)2︸ ︷︷ ︸

>0

×
φ∗1 (−1)
(1+ τb)2︸ ︷︷ ︸
≤0

≤ 0. (4.23)

sign
∂CV

[
bi

t+1
Yt+1

+ gt+1
Yt+1

]
∂τb

= sign
∂Var

[
bi

t+1
Yt+1

]
∂τb

= sign
∂Var

[
bi

t+1
Yt+1

]
∂φ

τb
1︸ ︷︷ ︸
≥0

∂φ
τb
1

∂τb︸ ︷︷ ︸
≤0

≤ 0. (4.24)

�
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Lineage bequest evolution with correlated shocks for period-2 cycles

Corresponding to equation (1.114) of Chapter 1,

1
Ω5

bi
t+1

Yt+1
−
(

φ
τb2
1 +ν

2
) 1

Ω5

bi
t−1

Yt−1
−
(
−φ

τb2
1 ν

2
) 1

Ω5

bi
t−3

Yt−3

−
(
1+φ

τb
1
)( δ4

Ω5
− ν2δ4

Ω5

)
= ε

i
t +
(
φ

τb
1 +ν

)
ε

i
t−1 +φ

τb
1 νε

i
t−2 (4.25)

where Ω5 =
(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)](1+τb)σ
, δ4 =

(1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)](1+τb)σ

[
1+ τb

(1+τb)
β µ

1+β (1+µ)σΩ3

]
,

φ
τb
1 =

φ∗1
1+τb

and φ∗1 =
(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)] . We can infer from Proposition 1.20 that:

Var

[
bi

t+1

Yt+1

]
= σ

2
l

(
φ

τb
1
σ

)2[
1

(1−ν4)(1−ν2φ
τb2
1 )(1−φ

τb4
1 )

]
× [1+φ

τb2
1 +ν(2φ

∗
1 +φ

τb3
1 )+ν

2(1+2φ
τb2
1 +φ

∗4
1 ) . . .

+ν
3(φ τb

1 +2φ
τb3
1 −φ

τb5
1 )+ν

4(φ τb2
1 +φ

τb4
1 )+ν

5(−φ
τb3
1 )]. (4.26)

Proposition 4.4. For an economy with mean reverting correlated productivity

shocks, over period-2 cycles, the cross sectional inequality of after-tax inherited

wealth plus government transfer is lower the higher the inheritance tax.

Proof.

sign
∂CV

[
bi

t+1
Yt+1

+ gt+1
Yt+1

]
∂τb

= sign
∂Var

[
bi

t+1
Yt+1

]
∂τb

= sign
∂Var

[
bi

t+1
Yt+1

]
∂φ

τb
1︸ ︷︷ ︸
≥0

∂φ
τb
1

∂τb︸ ︷︷ ︸
≤0

≤ 0. (4.27)

�

However, with correlated shocks and period-2 cycles, the impact of taxes on

lineage mobility is less clear. From equations (A.34) and (A.39) in Chapter 1,
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we can infer that with inheritance tax:

γ(1) = σ
2
l

(
φ

τb
1 +ν

)
(1−ν2)(1−φ

τb2
1 )(1−νφ

τb
1 )

; (4.28)

γ(0) = σ
2
l

[
1

(1−ν4)(1−ν2φ
τb2
1 )(1−φ

τb4
1 )

]
×
[
1+φ

τb2
1 +ν(2φ

τb
1 +φ

τb3
1 )+ν

2(1+2φ
τb2
1 +φ

τ4
1 ) . . .

+ν
3(φ τb

1 +2φ
τb3
1 −φ

τb5
1 )+ν

4(φ τb2
1 +φ

τb4
1 )+ν

5(−φ
τb3
1 ). (4.29)

As with (1.134), if 0 < ν < 1,

∂ρ
τb
1

∂φ
τb
1

=
1

[γ(0)]2

γ(0)
∂γ(1)
∂φ

τb
1︸ ︷︷ ︸

≥0

−γ(1)
∂γ(0)
∂φ

τb
1︸ ︷︷ ︸

≥0

R 0, (4.30)

⇒
∂ρ

τb
1

∂τb
=

∂ρ
τb
1

∂φ
τb
1︸ ︷︷ ︸
R0

∂φ
τb
1

∂τb︸ ︷︷ ︸
≤0

R 0. (4.31)

In summary, with logarithmic preference and "joy of giving", redistribution

via estate taxes reduces cross-sectional inequality in the presence of both i.i.d.

and mean-reverting correlated productivity shocks, for both Solow and Romer

steady states and period-2 growth cycles. Under neoclassical framework, Wan

and Zhu (2012) show this result for the case of i.i.d. shocks, while Bossmann

et al. (2007) derive the result for both i.i.d. shocks and mean-reverting correlated

shocks. In addition, redistribution via estate taxes can also increase intergener-

ational mobility under i.i.d. shocks for both Solow and Romer steady states

and period-2 growth cycles, hence extending the coverage of the mobility result
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from Bossmann et al. (2007). Wan and Zhu (2012) do not discuss intergenera-

tionl lineage mobility as they relax the finite variance assumption of the labor

productivity shocks, which consequently restricts their results to cross-sectional

intra-generational inequality comparisons.

4.3 The impact of innovation subsidies

4.3.1 Motivation for exploring changes in innovation subsi-
dies

Data sourced from OECD (2011, pp. 29, Figure 3)1 and National Science Foun-

dation, National Center for Science and Engineering Statistics (2013, Table 2,

in 2005 constant USD)2 suggest a trend-growth in Research and Development

expenditure from both the public and private sectors. The empirics are comple-

mented by theoretical developments of R&D-based growth models in the last 2

decades, led by Romer (1990) and Aghion and Howitt (1992). In these mod-

els, innovations incur a fixed cost. To promote growth and reduce aggregate

economic fluctuations arising from cycles, the role of innovation subsidies in

Matsuyama (1999) has been studied by Aloi and Lasselle (2007) and Li and

Zhang (2014). Aloi and Lasselle (2007) explore a lump-sum fixed cost subsi-

dies with lumpsum tax on the young, without bequest or envy motive, by relax-

1OECD (2011).
Retrieved from: http://www.oecd.org/els/soc/49499779.pdf, on November 9, 2014.

2National Science Foundation, National Center for Science and Engineering Statistics
(2013).
Retrieved from: http://www.nsf.gov/statistics/nsf14304/, on July 1, 2014.
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ing current period capital constraint3. On the other hand, Li and Zhang (2014)

consider a proportional innovation cost and intermediate goods’ price subsidies

with consumption tax, without bequest or envy motive, while maintaining the

current period capital constraint, respecting the "time to build" spirit. In this

chapter, I consider imposing a lump-sum fixed cost subsidies, with relaxation of

the current period capital constraint as in Aloi and Lasselle (2007), but with the

added bequest motive to study how innovation subsidies can have distributional

effects. The advantage of this approach is the existence of an exit strategy with

the subsidies as the economy approaches the Romer steady state. However, un-

like Li and Zhang (2014), this approach has a disadvantage as it does not address

the static inefficiency of the monopoly pricing of newly innovated intermediate

goods. To avoid other distortionary distributional effect, I shall fund this inno-

vation subsidy by a uniform output or value added tax, instead of a lump-sum

tax on the young as in Aloi and Lasselle (2007). This helps to isolate effect of

fiscal policy from bequest and envy (for extensions of Chapter 2) motives, and

to maintain tractability for distribution analysis across regimes.

3By relaxing the capital constraint on innovation using the current tax revenue directly in
Aloi and Lasselle (2007), effectively, it leads to a qualified recovery of the Romer (1990) model,
where the final goods are used for intermediate production and innovation, resulting in no tran-
sitional dynamics and cycles. This is a deviation from Matsuyama (1999), where accumulated
capital instead of final goods is used for the production of intermediate goods and innovation,
providing the channel for growth through cycles.
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4.3.2 Impact of innovation subsidies
Agent’s optimization

Suppose the government now levies a uniform tax at a flat rate τt on both labor

income and capital income (akin to a value-added tax instead of a lumpsum

tax on young as in Aloi and Lasselle (2007)), to promote innovations under an

otherwise Solow regime over period-2 cycles. The first period budget constraint

for individual from lineage i at time t is:

ci
t + si

t = bi
t +(1− τt)wi

t ≡ yi
t . (4.32)

The second period budget constraint changes to:

(1− τt+1)Rt+1si
t = di

t+1 +bi
t+1. (4.33)

Substituting the new budget constraints into the household optimization, and

working through as with Appendix C.1, we get the optimal choices of an agent

of lineage i:

bi
t+1 =

β µ(1− τt+1)

1+β (1+µ)
Rt+1yi

t ; (4.34)

di
t+1 =

(1− τt+1)

1+β (1+µ)
Rt+1yi

t ; (4.35)

si
t =

β (1+µ)

1+β (1+µ)
yi

t ; (4.36)

ci
t =

1
1+β (1+µ)

yi
t . (4.37)
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Production with fixed cost subsidies as suggested by Aloi and Lasselle (2007)

The production sector is based on Matsuyama (1999). The production function

of the final goods is unchanged from Chapter 1:

Yt = Â(L)
1
σ

{∫ Nt

0
[xt (z) ]

1− 1
σ dz

}
, (4.38)

where Â is the total factor productivity; xt(z) denotes the intermediate input of

variety z in period t; σ ∈ (1,∞) is the direct partial elasticity of substitution

between each pair of intermediate goods; and [0,Nt ] is the range of intermediate

available at period t. Since the final goods sector is perfectly competitive, we

can derive the factor prices by their marginal products.

pc
t =

(
1− 1

σ

)
Â(L)

1
σ (xc

t )
− 1

σ ; (4.39)

pm
t =

(
1− 1

σ

)
Â(L)

1
σ (xm

t )
− 1

σ ; (4.40)

wt =
1
σ

(
Yt

L

)
. (4.41)

From equations (4.39) and (4.40), the relative demand for "old" and "new" in-

termediates can be expressed as:

xc
t

xm
t
=

(
pc

t
pm

t

)−σ

=

(
1− 1

σ

)−σ

. (4.42)

Innovation of new intermediates is driven by the existence of 1-period monopoly

profits, specifically:

πt = pm
t xm

t −Rt(axm
t +F +Tt−1), (4.43)
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where Tt−1 < 0 is a lumpsum innovation subsidy set by the government at the

end of period t−1. With one-period monopoly power and free entry, the demand

for each intermediate input are:

xc
t =

1
a

θσF
(

1+
Tt−1

F

)
; (4.44)

xm
t =

1
a
(σ −1)F

(
1+

Tt−1

F

)
. (4.45)

The resource constraint on capital in period t is:

Kt−1 = Nt−1axc
t +(Nt−Nt−1)(axm

t +F +Tt−1). (4.46)

From the relative prices of intermediate inputs (4.42), demand for the inter-

mediates (4.44) and (4.45), and the resource constraint on capital (4.46), work-

ing through as in Chapter 1, the dynamics for innovation is:

Nt−Nt−1

Nt−1
= max

{
0,θ

(
kt−1

1+ Tt−1
F

−1

)}
; (4.47)

where kt ≡ Kt
θσFNt

, θ ≡
[
1− 1

σ

]1−σ
, θ ∈ [1,e], e = 2.71828... , and θ is increas-

ing with σ . The critical point for profitable innovation is kcr ≡ 1+ Tt−1
F .

Equation (4.38) can be written as:

Yt = Â(L)
1
σ

[
Nt−1(xc

t )
1− 1

σ +(Nt−Nt−1)(xm
t )

1− 1
σ

]
. (4.48)

Substituting the dynamics of innovation (4.47) into (4.48), the total output

is:

Yt =

 Ãt−1

[
1+ Tt−1

F

] 1
σ

[kt−1]
− 1

σ Kt−1 if kt−1 ≤ 1+ Tt−1
F ≡ kcr

Ãt−1Kt−1 if kt−1 ≥ kcr

(4.49)

where Ãt−1 ≡ Â
a

[ aL
θσF

] 1
σ

[
1+ Tt−1

F

]− 1
σ and kcr ≡ 1+ Tt−1

F .

154



The government’s budget constraint

I assume that the policy makers follow the simple stabilization principle as sug-

gested by Aloi and Lasselle (2007):

Tt−1 = κ(k∗∗− kt−1) if kt−1 ≤ k∗∗, (4.50)

where κ ≤ 0, whose magnitude represents the size of government intervention,

and k∗∗ represents the Romer steady state. This intervention will promote the

innovation of new intermediate products, to bring the aggregate economy to-

wards the Romer steady state in the long-run. The government runs a balanced

budget at all times, with:

τtYt ≡ τt (Lwt +RtKt−1) =−(Nt−Nt−1)Tt−1. (4.51)

General equilibrium

From aggregate savings equation by integrating individual agent’s savings (4.36),

budget balanced (4.51), together with market clearing conditions - (1.24), (1.25),

(1.26) and (1.27) :

St = Kt = Ω1Ω3Yt−Ω1Ω3τtYt

= Ω1Ω3Yt−Ω1Ω3[−(Nt−Nt−1)Tt−1], (4.52)
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where Ω1 ≡ β (1+µ)
1+β (1+µ) and Ω3 ≡ 1+σ µ

σ(1+µ) . Substituting (4.47) and (4.49) into

(4.52), the law of motion of capital is:

Kt = Ω1Ω3Ãt−1max

[(
1+

Tt−1

F

) 1
σ

k
1
σ

t−1,1

]
Kt−1+

Ω1Ω3Tt−1max

[
0,θNt−1

(
kt−1

1+ Tt−1
F

−1

)]
, (4.53)

Kt =

 Ω1Ω3Ãt−1

[
1+ Tt−1

F

] 1
σ

[kt−1]
− 1

σ Kt−1 if kt−1 ≤ 1+ Tt−1
F ≡ kcr

Ω1Ω3Ãt−1Kt−1 if kt−1 ≥ kcr,

(4.54)

where Ãt−1 ≡ Â
a

[ aL
θσF

] 1
σ

[
1+ Tt−1

F

]− 1
σ and kcr ≡ 1+ Tt−1

F . Dividing both sides

by θσFNt , the aggregate dynamics of the system can be characterized by the

equilibrium path for kt :

kt =



G(kt−1)
1− 1

σ if kt−1 ≤ kcr,

G
(

1+
Tt−1

F

)− 1
σ kt−1

1+θ

(
kt−1

1+
Tt−1

F

−1

) + Ω1Ω3Tt−1
θσF

1− 1

1+θ

(
kt−1

1+
Tt−1

F

−1

)
 if kt−1 ≥ kcr,

(4.55)

where G≡Ω1Ω3A, Ω1 ≡ β (1+µ)
1+β (1+µ) , Ω3 ≡ 1+σ µ

σ(1+µ) , and A≡ Â
a (

aL
θσF )

1
σ .

From agent’s optimal bequest (4.34), budget balanced (4.51), together with

market clearing conditions - (1.24), (1.25), (1.26) and (1.27), the law of motion
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of bequest for a lineage i is:

bi
t+1 =

(1− τt+1)Rt+1β µ

[1+β (1+µ)]

[
yi

t
]

=
(1− τt+1)Rt+1β µ

[1+β (1+µ)]

[
bi

t +(1− τt)li
t wt
]

=
(1− τt+1)Rt+1β µ

[1+β (1+µ)]

[
bi

t +(1− τt)li
t

1
σ

Yt

]
. (4.56)

Normalizing by the final output,

bi
t+1

Yt+1
− (1− τt+1)Rt+1β µ

Gt+1[1+β (1+µ)]

bi
t

Yt
− (1− τt+1)(1− τt)Rt+1β µ

Gt+1σ [1+β (1+µ)]

=
(1− τt+1)(1− τt)Rt+1β µ

Gt+1σ [1+β (1+µ)]
[li

t − lt ], (4.57)

⇒
bi

t+1

Yt+1
−

(1− τt+1)(1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)]

bi
t

Yt
−

(1− τt+1)(1− τt)(1− 1
σ
)β µ

Ω1Ω3σ(1+ τb)[1+β (1+µ)]

=
(1− τt+1)(1− τt)(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)]

1
σ
[li

t − lt ]. (4.58)

Proposition 4.5. From period-2 cycles without innovation subsidies, by shifting

to the Romer steady state, using the policy rule (4.50):

(i) lineage mobility is unchanged when comparing the Romer steady state to

the onset, as the mobility only increases during transition;

(ii) inequality of inherited wealth is unchanged if shocks are i.i.d., but if shocks

are correlated, cross-sectional inequality of the ratio of bequests to total

output under period-2 cycles is greater (less) that under steady states if the

correlation of mean reverting productivity shocks, ν ≥ (<) [φ∗31 +ν2(φ∗1 +

φ∗51 )+ν4(φ∗31 )].4

4See Aloi and Lasselle (2007) for a discussion on the aggregate welfare treatment. Here,
the transitional impact on mobility and distributional impact on cross-sectional inequality are
highlighted.
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Proof. First, by inspecting the AR(1) coefficient of (4.58), the lineage mobility

when transitioning to the Romer steady state is higher if the innovation subsidy

is funded by a uniform output tax. Second, from chapter 1, Propositions 1.10

and 1.21, a cross-sectional wealth inequality comparison can be made, in the

presence of innovation subsidy policy (4.50) that stablizes period-2 cycles by

moving the economy towards the Romer steady state. �

In summary, pro-growth stabilization and welfare innovation subsidies as

suggested by Aloi and Lasselle (2007) do not have long-run impact on mobility

or inequality if the labor productivity shocks are i.i.d. in nature. In this chapter,

by funding this fixed cost innovation subsidies with a value-added tax (instead

of a lumpsum tax on young as in Aloi and Lasselle (2007)) , this policy has an

added advantage of enhancing the lineage mobility by reducing the persistence

(autocorrelation coefficient) of the law of motion of bequest during the transition

to the Romer steady state. However, if the labor productivity shocks are corre-

lated, there is a long-run impact on cross-sectional inequality as the economy

moves from a period-2 cycle to the Romer steady state, and the impact depends

on the relative magnitude of the propagation via the autoregressive coefficient

of the law of motion of bequest and the magnitude of the labor productivity

correlation.
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4.4 Conclusion - impact of fiscal policies on mobil-
ity and inequality

In this chapter, an increase in inheritance tax decreases cross-sectional inequal-

ity, under i.i.d. and correlated shocks for both growth regimes and period-2

cycles, strengthening the results from Bossmann et al. (2007). Furthermore,

an increase in inheritance tax also increases intergenerational lineage mobility

under i.i.d. shocks. In addition, the use of innovation subsidy policy rule pro-

posed by Aloi and Lasselle (2007), which stabilizes period 2 cycles, could level

the playing field, by decreasing the persistence of inherited wealth during the

transition to the Romer steady state, if funded by a uniform value-added tax.

However, when stabilising the peiod-2 cycles with innovation subsidy, there can

be a long-run impact on the cross-sectional wealth inequality if the labor pro-

ductivity shocks are correlated.

It is also clear we need a combination of fiscal policies to meet the multi-

dimensional goals of growth, mobility and inequality, and consumption exter-

nality. The potential tradeoffs between mobility, cross sectional inequality and

growth are highlighted by this OLG model. Mobility-inequality tradeoffs are

often hidden in infinitely lived or 2-way altruistic models, where policies that

improve cross-sectional inequality distributions tend to imply that all agents in

the economy will benefit. When agents have a finite life, the timing, duration,

and nature of fiscal policy matters.

Finally, one should also bear in mind the political economy aspects of fiscal
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policies. There exist distinct differences in the normative recommendations de-

pending on one’s philosophical stance, as illustrated by the following two quotes

from Rawls (2009) and Hayek (1976) respectively:

"...no one knows his place in society, his class position or social status; nor

does he know his fortune in the distribution of natural assets and abilities, his

intelligence and strength, and the like." Rawls (2009, pp. 118);

"For in such a system in which each is allowed to use his knowledge for

his own purposes the concept of ’social justice’ is necessarily empty and mean-

ingless, because in it nobody’s will can determine the relative incomes of the

different people, or prevent that they be partly dependent on accident. ’Social

justice’ can be given a meaning only in a directed or ’command’ economy (such

as an army) in which the individuals are ordered what to do; and any particular

conception of ’social justice’ could be realized only in such a centrally directed

system. It presupposes that people are guided by specific directions and not by

rules of just individual conduct. Indeed, no system of rules of just individual

conduct, and therefore no free action of the individuals, could produce results

satisfying any principle of distributive justice." Hayek (1976, pp. 330).
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Appendix A

Proofs of chapter 1

A.1 Solutions to agents’ optimization

The problem of agent i born at time t is:

Max
ci

t , di
t+1

Ut
(
ci

t ,d
i
t+1,b

i
t+1,
)
≡ lnci

t +β
[
lndi

t+1 +µ lnbi
t+1
]

(A.1)

subject to: ci
t + si

t = bi
t +wi

t ≡ yi
t ,

and Rt+1si
t = di

t+1 +bi
t+1.

At time t +1, an old agent maximizes his second period utility, defined as:

V ≡ lndi
t+1 +µ lnbi

t+1, (A.2)

by choosing his second period consumption and bequest for his immediate off-

spring, given his second period budget constraint. The second period budget

constraint for individual i is:

Rt+1si
t = di

t+1 +bi
t+1, (A.3)

where Rt+1 is the equilibrium gross rate of return on capital at time t +1. Sub-

stituting (A.3) into (A.2), and differentiating the latter with respect to di
t+1 for
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the first order condition, the optimal choices for an old agent are:

di
t+1 =

1
1+µ

(Rt+1si
t); (A.4)

bi
t+1 =

µ

1+µ
(Rt+1si

t). (A.5)

By substituting these choices, rewrite the second period value function as:

V
(
Rt+1si

t
)
≡ (1+µ) ln(Rt+1)+(1+µ) ln

(
si
t
)
+ ln

(
1

1+µ

)
+µ ln

(
µ

1+µ

)
.

(A.6)

At time t, subject to the first period budget constraint, the young agent chooses

consumption and savings to maximize his utility:

ln(ci
t)+βV

(
Rt+1si

t
)
. (A.7)

The first period budget constraint for individual i is:

ci
t + si

t = bi
t +wi

t ≡ yi
t , (A.8)

where wi
t = wt li

t ; wt is the equilibrium wage rate for each unit of labor produc-

tivity; si
t is the amount saved when young; and yi

t is the lifetime resource of an

individual i for agent i, born at time t. Substituting (A.8) and (A.6) into (A.7),

and differentiating the latter with respect to si
t for the first order condition:

1
bi

t +wt li
t − si

t
=

β (1+µ)

si
t

, (A.9)

which implies that the optimal savings for agent i as a function of his lifetime

resource is:

si
t =

β (1+µ)

1+β (1+µ)
yi

t . (A.10)

162



Substituting (A.10) into (A.4), (A.5), and (A.8), the optimal choices of an agent

i are:

si
t =

β (1+µ)

1+β (1+µ)
yi

t ; (A.11)

ci
t =

1
1+β (1+µ)

yi
t ; (A.12)

di
t+1 =

Rt+1β

1+β (1+µ)
yi

t ; (A.13)

bi
t+1 =

Rt+1β µ

1+β (1+µ)
yi

t ; (A.14)

and the optimal choices of the average agent are:

st =
β (1+µ)

1+β (1+µ)
yt ≡Ω1yt ; (A.15)

ct =
1

1+β (1+µ)
yt ; (A.16)

dt+1 =
Rt+1β

1+β (1+µ)
yt ; (A.17)

bt+1 =
Rt+1β µ

1+β (1+µ)
yt ≡ Rt+1Ω2yt . (A.18)

A.2 Derivation of law of motion for period-2 cycle
with correlated shocks

Let li
t = lt + ν(li

t−1− lt−1) + ε i
t , as with Davies and Kuhn (1991), Bossmann

et al. (2007) and Wan and Zhu (2012), where lt1 = lt−1 = 1, 0 < v < 1,and ε i
t ∼

i.i.d. (0,σ2
l ). (

li
t − lt

)
= ν(li

t−1− lt−1)+ ε
i
t . (A.19)

From equation (1.41),

1
Ω4

bi
t+1

Yt+1
− 1

Ω4
φ
∗
1

bi
t

Yt
− δ1

Ω4
= [li

t − lt ], (A.20)

163



where Ω4 =
(1− 1

σ
)β µ

Ω1Ω3[1+β (1+µ)]
1
σ
= δ1, and φ∗1 =

(1− 1
σ
)β µ

Ω1Ω3[1+β (1+µ)] . From the mean

reverting shocks,

(
li
t − lt

)
−ν(li

t−1− lt−1) = ε
i
t ,and (A.21)

ν
(
li
t−1− lt−1

)
−ν

2(li
t−2− lt−2) = νε

i
t−1, (A.22)(

li
t − lt

)
−ν(li

t−1− lt−1)+ν
(
li
t−1− lt−1

)
−ν

2(li
t−2− lt−2) = ε

i
t +νε

i
t−1.

(A.23)

Substituting (A.20) into (A.23), we get:(
1

Ω4

bi
t+1

Yt+1
− 1

Ω4
φ
∗
1

bi
t

Yt
− δ1

Ω4

)
−ν

2

(
1

Ω4

bi
t−1

Yt−1
− 1

Ω4
φ
∗
1

bi
t−2

Yt−2
− δ1

Ω4

)
= ε

i
t +νε

i
t−1

1
Ω4

bi
t+1

Yt+1
− ν2

Ω4

bi
t−1

Yt−1
= φ

∗
1

(
1

Ω4

bi
t

Yt
− ν2

Ω4

bi
t−2

Yt−2

)
+

δ1

Ω4
− ν2δ1

Ω4
+ ε

i
t +νε

i
t−1

(A.24)

By iterative substitution, we get an ARMA(4,2) process for each of the fixed

point in period 2 cycle:

1
Ω4

bi
t+1

Yt+1
− ν2

Ω4

bi
t−1

Yt−1

−φ
∗
1

[
φ
∗
1

(
1

Ω4

bi
t−1

Yt−1
− ν2

Ω4

bi
t−3

Yt−3

)
+

δ1

Ω4
− ν2δ1

Ω4
+ ε

i
t−1 +νε

i
t−2

]

− δ1

Ω4
+

ν2δ1

Ω4
= ε

i
t +νε

i
t−1 (A.25)

1
Ω4

bi
t+1

Yt+1
−
(
φ
∗2
1 +ν

2) 1
Ω4

bi
t−1

Yt−1
−
(
−φ
∗2
1 ν

2) 1
Ω4

bi
t−3

Yt−3

− (1+φ
∗
1 )

(
δ1

Ω4
− ν2δ1

Ω4

)
= ε

i
t +(φ∗1 +ν)ε

i
t−1 +φ

∗
1 νε

i
t−2 (A.26)

Define zcmi
t+1 = 1

Ω4

bi
t+1

Yt+1
− (1+φ∗1 )(1− ν2)

(
1

Ω4
δ1

1−φ cm
2 −φ cm

4

)
. Lineage dynamics of

period-2 cycles with mean reverting productivity shocks from (A.26) can be
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expressed as follows:

zcmi
t+1−φ

cm
2 zcmi

t−1−φ
cm
4 zcmi

t−3 =
[
li
t − lt

]
−ν

2 [li
t−2− lt−2

]
= ε

i
t +(φ∗1 +ν)ε

i
t−1 +φ

∗
1 νε

i
t−2 (A.27)

where φ cm
2 =

(
φ∗21 +ν2), φ cm

4 =
(
−φ∗21 ν2), δ cm

z =(1+φ∗1 )(1−ν2)

(
1

Ω4
δ1

1−φ cm
2 −φ cm

4

)
,

φ∗1 = Rt+1β µ

Gt+1[1+β (1+µ)] =
(1− 1

σ)
β µ

Ω1Ω3[1+β (1+µ)] , Ω4 =
(1− 1

σ
)β µ

σΩ1Ω3[1+β (1+µ)] = δ1, and ε i
t ,ε

i
t−1,ε

i
t−2

∼ i.i.d.(0,σ2
l ).

If the economy is at Romer regime at time t +1 and t−1, and Solow regime

at time t and t − 2, for each of the fixed point, the asymptotic cross-sectional

distribution can be derived from the lineage bequest evolution.

A.3 Addendum to proof of proposition 1.20

With covariance-stationarity, we can compute the covariances and correlations

of the lineage bequest evolution. To simplify notation, superscripts are dropped,

and the time index on the moving average innovations are rescaled, by defining

ui
t ≡ ε i

t−1.

zt = φ2zt−2 +φ4zt−4 +ut +θ1ut−1 +θ2ut−2. (A.28)

γ(0)=E[ztzt ] = φ2E[ztzt−2]+φ4E[ztzt−4]+E[ztut ]+θ1E[ztut−1]+θ2E[ztut−2]

= φ2γ(2)+φ4γ(4)+σ
2
l

+θ1E[(φ2zt−2 +φ4zt−4 +ut +θ1ut−1 +θ2ut−2)ut−1]

+θ2E[(φ2zt−2 +φ4zt−4 +ut +θ1ut−1 +θ2ut−2)ut−2]
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γ(0) = φ2γ(2)+φ4γ(4)+σ
2
l +θ

2
1 σ

2
l +θ

2
2 σ

2
l . (A.29)

γ(1) = E[zt−1zt ] = φ2E[zt−1zt−2]+φ4E[zt−1zt−4]+E[zt−1ut ]

+θ1E[zt−1ut−1]+θ2E[zt−1ut−2]

= φ2γ(1)+φ4γ(3)

+E[(φ2zt−3 +φ4zt−5 +ut−1 +θ1ut−2 +θ2ut−3)ut ]

+θ1E[(φ2zt−3 +φ4zt−5 +ut−1 +θ1ut−2 +θ2ut−3)ut−1]

+θ2E[(φ2zt−3 +φ4zt−5 +ut−1 +θ1ut−2 +θ2ut−3)ut−2]

γ(1) = φ2γ(1)+φ4γ(3)+0+θ1σ
2
l +θ1θ2σ

2
l . (A.30)

γ(2) = E[zt−2zt ] = φ2E[zt−2zt−2]+φ4E[zt−2zt−4]+E[zt−2ut ]

+θ1E[zt−2ut−1]+θ2E[zt−2ut−2]

= φ2γ(0)+φ4γ(2)

+E[(φ2zt−4 +φ4zt−4 +ut−2 +θ1ut−3 +θ2ut−4)ut ]

+θ1E[(φ2zt−4 +φ4zt−6 +ut−2 +θ1ut−3 +θ2ut−4)ut−1]

+θ2E[(φ2zt−4 +φ4zt−6 +ut−2 +θ1ut−3 +θ2ut−4)ut−2]

γ(2) = φ2γ(0)+φ4γ(2)+0+0+θ2σ
2
l . (A.31)
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γ(3) = E[zt−3zt ] = φ2E[zt−3zt−2]+φ4E[zt−3zt−4]+E[zt−3ut ]

+θ1E[zt−3ut−1]+θ2E[zt−3ut−2]

= φ2γ(1)+φ4γ(1)

+E[(φ2zt−5 +φ4zt−7 +ut−3 +θ1ut−4 +θ2ut−5)ut ]

+θ1E[(φ2zt−5 +φ4zt−7 +ut−3 +θ1ut−4 +θ2ut−5)ut−1]

+θ2E[(φ2zt−5 +φ4zt−7 +ut−3 +θ1ut−4 +θ2ut−5)ut−2]

γ(3) = φ2γ(1)+φ4γ(1)+0+0+0. (A.32)

γ(4) = E[zt−4zt ] = φ2E[zt−4zt−2]+φ4E[zt−4zt−4]+E[zt−4ut ]

+θ1E[zt−4ut−1]+θ2E[zt−4ut−2]

= φ2γ(2)+φ4γ(0)

+E[(φ2zt−6 +φ4zt−8 +ut−4 +θ1ut−5 +θ2ut−6)ut ]

+θ1E[(φ2zt−6 +φ4zt−8 +ut−4 +θ1ut−5 +θ2ut−6)ut−1]

+θ2E[(φ2zt−6 +φ4zt−8 +ut−4 +θ1ut−5 +θ2ut−6)ut−2]

γ(4) = φ2γ(2)+φ4γ(0)+0+0+0. (A.33)

Substituting γ(3) from (A.32) into γ(1) from (A.30), we get:

γ(1) = φ2γ(1)+φ4 [φ2γ(1)+φ4γ(1)]+θ1σ
2
l +θ1θ2σ

2
l

= σ
2
l

θ1 +θ1θ2

1−φ2−φ2φ4−φ 2
4
= σ

2
l

θ1 +θ1θ2

(1−φ2−φ4)(1+φ4)

= σ
2
l

(φ∗1 +ν)(1+φ∗1 ν)

[1−
(
φ∗21 +ν2

)
−
(
−φ∗21 ν2

)
](1−φ∗21 ν2)

= σ
2
l

(φ∗1 +ν)

(1−ν2)(1−φ∗21 )(1−νφ∗1 )
, (A.34)
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γ(3) = (φ2 +φ4)γ(1) = σ
2
l
(φ∗1 +ν)(φ∗21 +ν2−φ∗21 ν2)

(1−ν2)(1−νφ∗1 )(1−φ∗21 )
. (A.35)

From (A.31) and (A.33), we get:

γ(2) =
φ2γ(0)+θ2σ2

l
1−φ4

, (A.36)

γ(4) =
φ 2

2 γ(0)+φ2θ2σ2
l

1−φ4
+φ4γ(0). (A.37)

Substituting (A.36) and (A.37) into (A.29), we get:

γ(0)=
φ 2

2 γ(0)+φ2θ2σ2
l

1−φ4
+

φ4φ 2
2 γ(0)+φ4φ2θ2σ2

l
1−φ4

+φ
2
4 γ(0)+σ

2
l +θ

2
1 σ

2
l +θ

2
2 σ

2
l ,

⇒ (1−φ4)γ(0) = φ
2
2 γ(0)+φ4φ

2
2 γ(0)+(1−φ4)φ

2
4 γ(0)

+φ2θ2σ
2
l +φ4φ2θ2σ

2
l +(1−φ4)

(
σ

2
l +θ

2
1 σ

2
l +θ

2
2 σ

2
l
)
.

γ(0) = σ
2
l

φ2θ2(1+φ4)+(1−φ4)
(
1+θ 2

1 +θ 2
2
)

(1−φ4)−φ 2
2 (1+φ4)− (1−φ4)φ

2
4

= σ
2
l

φ2θ2(1+φ4)+(1−φ4)
(
1+θ 2

1 +θ 2
2
)

(1+φ4)(1−φ4−φ2)(1−φ4 +φ2)

= σ
2
l

(
1+θ 2

1 +θ 2
2 +φ2θ2

)
−φ4

(
1+θ 2

1 +θ 2
2 −φ2θ2

)
(1+φ4)(1−φ4−φ2)(1−φ4 +φ2)

.

(A.38)

γ(0) = σ
2
l

[
1

(1−ν4)(1−ν2φ∗21 )(1−φ∗41 )

]
× [1+φ

∗2
1 +ν(2φ

∗
1 +φ

∗3
1 )+ν

2(1+2φ
∗2
1 +φ

∗4
1 )

+ν
3(φ∗1 +2φ

∗3
1 −φ

∗5
1 )+ν

4(φ∗21 +φ
∗4
1 )+ν

5(−φ
∗3
1 )]. (A.39)
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γ(k) = E[zt−kzt ] = φ2E[zt−kzt−2]+φ4E[zt−kzt−4]+E[zt−kut ]

+θ1E[zt−kut−1]+θ2E[zt−kut−2] ∀k ≥ 3

= φ2γ(k−2)+φ4γ(k−4)=
(
φ
∗2
1 +ν

2)
γ(k−2)+

(
−φ∗21 ν2)γ(k−4) ∀k≥ 3.

(A.40)

From the covariances, we can obtain the autocorrelations, hence the lineage

mobility, using ρk =
γ(k)
γ(0) ∀k.
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Appendix B

Proofs of chapter 2

B.1 Solutions to agents’ optimization

As proved in Alvarez-Cuadrado and Long (2012). The optimization behavior

of the average agent, as well as agent of lineage i, are restated here, with some

changes to accommodate the continuum of agents of measure 1, for complete-

ness.

At time t +1, an old agent maximizes his second period utility, defined as:

V ≡ ln(di
t+1−ξ γdt+1)+µ ln(bi

t+1), (B.1)

by choosing his second period consumption and bequest for his immediate off-

spring, given his second period budget constraint. The second period budget

constraint for individual i is:

Rt+1si
t = di

t+1 +bi
t+1, (B.2)

where Rt+1 is the equilibrium gross rate of return on capital at time t +1.

Substituting (B.2) into (B.1), and differentiating the latter with respect to
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di
t+1 for the first order condition, the optimal choices for an old agent are:

di
t+1 =

1
1+µ

(Rt+1si
t +µξ γdt+1); (B.3)

bi
t+1 =

µ

1+µ
(Rt+1si

t−ξ γdt+1). (B.4)

By substituting these choices, rewrite the second period value function as:

V
(
Rt+1si

t
)
≡ (1+µ) ln

(
Rt+1si

t−ξ γdt+1
)
+ ln

(
1

1+µ

)
+µ ln

(
µ

1+µ

)
.

(B.5)

At time t, subject to the first period budget constraint, the young agent

chooses consumption and savings to maximize his utility:

ln(ci
t− γct)+βV

(
Rt+1si

t
)
. (B.6)

The first period budget constraint for individual i is:

ci
t + si

t = bi
t +wi

t ≡ yi
t , (B.7)

where wi
t = wt li

t ; wt is the equilibrium wage rate for each unit of labor produc-

tivity; si
t is the amount saved when young; and yi

t is the lifetime resource of an

individual i for agent i, born at time t.

Substituting (B.7) into (B.6), and differentiating the latter with respect to ci
t

for the first order condition:

1
ci

t− γct
=

βRt+1 (1+µ)

Rt+1si
t−ξ γdt+1

, (B.8)

which implies the optimal choices for a young agent are:

ci
t =

1
βRt+1 (1+µ)

(
Rt+1si

t−ξ γdt+1
)
+ γct ; (B.9)
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si
t =

β (1+µ)
(
yi

t− γct
)
+ξ γ

dt+1
Rt+1

[1+β (1+µ)]
. (B.10)

B.1.1 Optimal behavior of the average agent

For the average agent, his lifetime budget constraint is given by:

yt =
∫ 1

0
bi

t di+
∫ 1

0
wi

t di = bt +wt . (B.11)

From the second period budget constraint (B.2), and the optimal choices of an

old agent i, given by (B.3) and (B.4), the optimal second period choices for the

average agent are:

dt+1 =
1

1+µ(1−ξ γ)
Rt+1st ; (B.12)

bt+1 =
µ(1−ξ γ)

1+µ(1−ξ γ)
Rt+1st . (B.13)

Substituting the optimal savings of a young agent i into the first order condition

(B.8), the consumption when young of the average agent is given by:

ct =

(
1−ξ γ

1− γ

)
1

β [1+µ(1−ξ γ)]
st . (B.14)

To obtain the optimal choices of the average agent as a function of his life-

time resources, we use the second period budget constraint (B.2), and the opti-

mal choices of an old agent, (B.3) and (B.4). Thus, the optimal choices of the

average agent are:

st =
β [1+µ(1−ξ γ)](1− γ)

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
yt ≡Ω1yt ; (B.15)

ct =
(1−ξ γ)

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
yt ; (B.16)
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dt+1 =
Rt+1β (1− γ)

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
yt ; (B.17)

bt+1 =
Rt+1β µ(1− γ)(1−ξ γ)

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
yt ≡ Rt+1Ω2yt . (B.18)

B.1.2 Optimal behavior of an agent from lineage i

With the optimal choices of the average agent as the reference, using (B.10), for

the i−th agent of the same generation,

si
t [1+β (1+µ)] = β (1+µ)yi

t−
(1+µ)(1−ξ γ)γ−ξ γ(1− γ)

(1−ξ γ)
βct . (B.19)

Substituting (B.16) into (B.19), the optimal saving decision is:

si
t =

β (1+µ)

1+β (1+µ)

[
yi

t−
(1+µ)(1−ξ γ)γ−ξ γ(1− γ)

(1+µ){(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]}
yt

]
.

(B.20)

From (B.3), (B.4), (B.8), (B.16) and (B.17), the optimal choices of an agent i

are:

si
t =

β (1+µ)

1+β (1+µ)

[
yi

t−φsyt
]

; (B.21)

ci
t =

1
1+β (1+µ)

[
yi

t +φcyt
]

; (B.22)

di
t+1 =

Rt+1β

1+β (1+µ)

[
yi

t +φdyt
]

; (B.23)

bi
t+1 =

Rt+1β µ

1+β (1+µ)

[
yi

t−φbyt
]

; (B.24)

where

φs =
(1+µ)(1−ξ γ)γ−ξ γ(1− γ)

(1+µ){(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]}
; (B.25)
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φc =
β [(1+µ)(1−ξ γ)γ−ξ γ(1− γ)]

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
; (B.26)

φd =
ξ γµ (1− γ)β +ξ γ(1− γ)− (1−ξ γ)γ

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
; (B.27)

φb =
(1−ξ γ)γ +ξ γ (1− γ)β

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
. (B.28)

B.2 Addendum to proof of propositions 2.1 & 2.2

Since

Ω̃1 ≡
β [1+µ(1−ξ γ)](1− γ)

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
,

∂ Ω̃1

∂γ
=

≥0︷ ︸︸ ︷
β

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
×{

(1− γ)[1+µ(1−ξ γ)][ξ +βξ (1− γ)µ +β [1+µ(1−ξ γ)]

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
−ξ (1− γ)µ− [1+µ(1−ξ γ)]

}
.

(B.29)

If

RHS≥ LHS, then
∂ Ω̃1

∂γ
≤ 0,

where:

LHS≡ (1− γ)[1+µ(1−ξ γ)][ξ +βξ (1− γ)µ +β [1+µ(1−ξ γ)] (B.30)

RHS≡ ξ (1− γ)µ +[1+µ(1−ξ γ)]×{(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]} .

(B.31)

174



Solving,

RHS−LHS = 1+µ +ξ
2
γ

2
µ−ξ −2ξ γµ

= 1+µ(1+ξ
2
γ

2−2ξ γ)−ξ

= 1−ξ︸ ︷︷ ︸
≥0

+µ(1−ξ γ)2︸ ︷︷ ︸
≥0

≥ 0⇒ ∂ Ω̃1

∂γ
≤ 0. (B.32)

∂ Ω̃1

∂ξ
=

β (1− γ)

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]︸ ︷︷ ︸
≥0

{
[1+µ(1−ξ γ)][γ +β (1− γ)µγ]

(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)]
− γµ

}
︸ ︷︷ ︸

≥0

.

Since,

[1+µ(1−ξ γ)][γ +β (1− γ)µγ]− γµ {(1−ξ γ)+(1− γ)β [1+µ(1−ξ γ)}

= γ +β (1− γ)γµ + γµ(1−ξ γ)+β (1− γ)(1−ξ γ)γµ
2 . . .

−γµ + γ
2
µξ −β (1− γ)γµ−β (1− γ)(1−ξ γ)γµ

2

= γ ≥ 0⇒ ∂ Ω̃1

∂ξ
≤ 0.

(B.33)

Recall,

Ω̃3 ≡
1+σ µ(1−ξ γ)

σ [1+µ(1−ξ γ)]
, (B.34)

∂ Ω̃3

∂γ
=

−σ µξ

σ [1+µ(1−ξ γ)]
+ [1+σ µ(1−ξ γ)]

σ µξ

σ [1+µ(1−ξ γ)]2

=
σ µξ

σ [1+µ(1−ξ γ)]

[
−σ −σ µ +σ µξ γ +1+σ µ−σ µξ γ)

σ [1+µ(1−ξ γ)]

]

=

≥0︷︸︸︷
σ µξ

≤0︷ ︸︸ ︷
(1−σ)

σ [1+µ(1−ξ γ)]2︸ ︷︷ ︸
≥0

≤ 0 since σ ≥ 1. (B.35)
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By symmetry,

∂ Ω̃3

∂ξ
=

≥0︷︸︸︷
σ µγ

≤0︷ ︸︸ ︷
(1−σ)

σ [1+µ(1−ξ γ)]2︸ ︷︷ ︸
≥0

≤ 0 since σ ≥ 1. (B.36)
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Appendix C

Proofs of chapter 4

C.1 Solutions to agents’ optimization with inheri-
tance tax

The government’s budget constraint

Suppose the government now levies an inheritance tax at a flat rate τb on all

inheritance, to fund lumpsum transfers to the young, as a new redistributive pol-

icy. All young agents receives the same lumpsum subsidy, gt . The government

runs a balanced budget at all times.

gt = τb

∫ 1

0
bi

t di = τbbt . (C.1)

Agent’s optimization

The problem of agent i born at time t is:

Max
ci

t , di
t+1

Ut
(
ci

t ,d
i
t+1,b

i
t+1,
)
≡ lnci

t +β
[
lndi

t+1 +µ lnbi
t+1
]

(C.2)

subject to: ci
t + si

t = bi
t +wi

t +gt ≡ yi
t ,

and Rt+1si
t = di

t+1 +(1+ τb)bi
t+1.
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At time t +1, an old agent maximizes his second period utility, defined as:

V ≡ lndi
t+1 +µ lnbi

t+1, (C.3)

by choosing his second period consumption and bequest for his immediate off-

spring, given his second period budget constraint. The second period budget

constraint for individual i is:

Rt+1si
t = di

t+1 +(1+ τb)bi
t+1, (C.4)

where Rt+1 is the equilibrium gross rate of return on capital at time t +1. Sub-

stituting (C.4) into (C.3), and differentiating the latter with respect to bi
t+1 for

the first order condition, the optimal choices for an old agent are:

di
t+1 =

1
1+µ

(Rt+1si
t); (C.5)

bi
t+1 =

µ

(1+µ)(1+ τb)
(Rt+1si

t). (C.6)

By substituting these choices, rewrite the second period value function as:

V
(
Rt+1si

t
)
≡ (1+µ) ln(Rt+1)+(1+µ) ln

(
si
t
)
+ln

(
1

1+µ

)
+µ ln

(
µ

(1+µ)(1+ τb)

)
.

(C.7)

At time t, subject to the first period budget constraint, the young agent chooses

consumption and savings to maximize his utility:

ln(ci
t)+βV

(
Rt+1si

t
)
. (C.8)

The first period budget constraint for individual i is:

ci
t + si

t = bi
t +wi

t +gt ≡ yi
t , (C.9)
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where wi
t =wt li

t ; wt is the equilibrium wage rate for each unit of labor productiv-

ity; si
t is the amount saved when young; gt is the flat amount of redistributed tax

from the government; and yi
t is the lifetime resource of an individual i for agent

i, born at time t. Substituting (C.9) and (C.7) into (C.8), and differentiating the

latter with respect to si
t for the first order condition:

1
bi

t +wt li
t +gt− si

t
=

β (1+µ)

si
t

, (C.10)

which implies that the optimal savings for agent i as a function of his lifetime

resource is:

si
t =

β (1+µ)

1+β (1+µ)
yi

t . (C.11)

Substituting (C.11) into (C.5), (C.6), and (C.9), the optimal choices of an agent

i are:

si
t =

β (1+µ)

1+β (1+µ)
yi

t ; (C.12)

ci
t =

1
1+β (1+µ)

yi
t ; (C.13)

di
t+1 =

Rt+1β

1+β (1+µ)
yi

t ; (C.14)

bi
t+1 =

Rt+1β µ

[1+β (1+µ)](1+ τb)
yi

t ; (C.15)

and the optimal choices of the average agent are:

st =
β (1+µ)

1+β (1+µ)
yt ≡Ω1yt ; (C.16)

ct =
1

1+β (1+µ)
yt ; (C.17)

dt+1 =
Rt+1β

1+β (1+µ)
yt ; (C.18)

bt+1 =
Rt+1β µ

[1+β (1+µ)](1+ τb)
yt ≡ Rt+1Ω2yt . (C.19)
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