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Summary

Resistance spot welding is one of the most important and widely used

metal joining techniques in industry. Among different researches in spot

welding, the research on quality evaluation stands out as one of the

most important aspects. Traditional quality testing of spot welding is

destructive, time-consuming, and expensive. In existing literature, many

online non-destructive test schemes have been proposed using neural

networks (NN), linear vector quantization, SVM methods, finite element

modeling, etc. However, the proposed online monitoring methods require

measurements of physical parameters such as electrical signal, electrode

displacement, electrode force, etc., and are vulnerable to changes in

experiment conditions. In general, the proposed methods either involve

complicated physical models which require much computing power or suffer

from the black-box drawbacks of NN.

The aim of this thesis was to find out a fast, convenient, and cheap

online monitoring method. For this reason, only the easily obtainable
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electrical signals were made use of. In this thesis, a quality classification

scheme and quality estimation scheme were proposed. For the proposed

quality classification scheme, windowed feature extraction was firstly

applied to reduce the dimension of raw data and computational load. The

features extracted were RMS voltage, RMS current, and dynamic resistance

calculated from RMS current and voltage. A modified SOM was then used

to classify the samples into no weld, good weld, and weld with expulsion.

The classification was fast and accurate for stainless steel. However, the

classification cannot handle the changes in experiment conditions such as

welding time variations. As such, for the proposed quality estimation

scheme, variation of welding time was introduced and more aspects of

quality were considered. The heat affected zone (HAZ) size and nugget

size were checked. As boundary of weld nugget was very blurred, the HAZ

was chosen as the indicator of quality.

In the feature extraction part, a modified recurrent neural network

(RNN) was utilized to extract the peak values of dynamic power. The

method can extract all the peaks and has good tolerance to welding time

variations. The features used in this part were the peak dynamic power and

dynamic resistance at the instant of peak power. After feature extraction,

a sliding window RNN was implimented to estimate the HAZ size of welds.

To speed up the training process, a modified back-propagation algorithm

vi



was proposed. The accuracy of the proposed method was higher than the

multi-layer NN and was able to estimate the HAZ growth curve. This

showed great potential to deal with the problem of welding time variation.

Next, a SOM-type classifier was used to classify samples into weld with and

without expulsion. The accuracy of this method could reach up to 93.3%.

In summary, the proposed method only used the easily obtainable and

cheap electrical signals and was able to classify the expulsion conditions of

the samples and estimate the HAZ size. The proposed methods also showed

good tolerance to changes in experimental condition such as welding time

variations.
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Chapter 1

Introduction

1.1 Introduction to Spot Welding

Resistance spot welding was firstly invented in 1877. Nowadays, due to

its advantages of fast speed, low cost and flexibility, it has become one of

the most important welding technique and is widely used in manufacturing

industry [1]. Taking automotive industry as an example, a car can have

thousands of welds [2].

Resistance spot welding is usually used to join metal sheets. In welding,

two tongs of electrodes are pressed to clamp the welded metals together.

A high current is then directed through the metals. As the resistance in

the faying surface is higher than the resistance in the surface between the
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electrodes and metal, more heat will be generated in the faying surface that

the welded metals will be joined together.

1.2 Introduction to Spot Welding Quality

Monitoring

Quality examination is one of the most important aspects of spot

welding. Traditionally, destructive tests were commonly used as the quality

examination method. To performance a destructive test in a manufacturing

factory, the assembly lines should be suspended. Samples of welds were

then picked up randomly and sent through various testing devices or

methods such as peel tests, chisel tests, tensile tests, or instrumented tests,

etc. [2]. Using the destructive test, weld nugget size, heat affected zone

(HAZ) width, penetration depth or mechanical strength can be obtained

and the quality of the welded sample can be assessed [3]. In general, the

destructive test is easy and flexible. However, it is very time-consuming

and expensive.

To overcome these weaknesses, many online non-destructive test

schemes have been proposed [3]. The principle of the non-destructive

test schemes is to firstly monitor the signals such as electrical signals,

electrode displacement signals, electrode force signals or ultrasound wave
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signals during the welding without any disturbance to the welding process.

The signals are then processed to infer the quality. This way of quality

evaluation is very fast and convenient and the quality of each samples

can be determined right after they are welded. Due to the strengths

in pattern recognition and nonlinear fitting, artificial intelligence was

frequently applied for non-destructive quality testing. In 1991, an on-

line monitoring model using a multi-layer neural network (NN) as a self-

organisational structure was proposed [4]. The application of Hopfield

NN was introduced in [6] to classify the weld quality based on dynamic

resistance. The authors in [7] employed LVQ and used the dynamic

resistance profile to perform nugget quality classification.

Even though the proposed methods all achieved satisfactory accuracies,

their shortcomings are obvious. The most obvious is the requirement

of measurements of many physical parameters such as electrical signals,

electrode displacement signals, and electrode force signals. The

requirement of many sensors can incur remarkable expenses. Furthermore,

the traditional online test schemes were vulnerable to changes in experiment

conditions because of negligence of dynamic welding process. In particular,

welding process involves interaction of many physical parameters such as

dynamic resistance, electrode pressure, and dynamic energy, but traditional

methods ignored these effects with the direct application of NN. The

3



consequence is that the scheme may not work when the experimental

conditions such as welding time and welding machine are changed.

1.3 Objectives of the Project

Due to the limitation of the existing methods, the following objectives are

expected to be achieved in this thesis.

• To make use of only the electrical signals. The sensors should be

cheap and flexible.

• To classify the general weld quality with the input electrical signal.

• To estimate the size of HAZ through the input signals with high

accuracy. Both the classification and estimation should be able to

deal with varying welding times.

In summary, the aim is to minimize the monitoring cost and develop the

most efficient feature extraction and analysis methods. As a consequence,

more aspects of weld quality can be determined. The quality evaluation

can be more accurate and reliable. In additional, the dynamic property

of welding process should also be used such that when the welding time is

changed, the proposed scheme is still effective.

4



1.4 Scope of Proposed Methods

In this thesis, the voltage signal was measured simply by connecting

two tongs of the welding machine to the data acquisition system. The

current was measured by a Rogowski coil. The measurement setup can be

conveniently implemented on the welding equipment without any influence

to the primary circuit of the welding equipment.

The obtained raw data was usually very large which caused great

difficulty in data processing. For that reason, feature extraction was very

necessary to reduce the dimension of input data. For feature extraction,

the priority was to find out all the peak positions since the features used

in this thesis required the determination of each half cycle. Two peak

extraction methods were explored. The first method extracted the crest and

trough in each period iteratively using a moving window of predetermined

length. The second method applied a feed-forward recurrent neural network

(RNN). With the second method, all the peak positions can be determined

simultaneously. It is also able to extract the peaks from signal of varying

period.

Using the extracted features, various NN models were explored for

quality classification. A classification method using fast Self-Organizing

Map (SOM) was proposed and was capable of classifying the samples

into no weld, good weld, and weld with expulsion rapidly and accurately.
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However, this method was not able to deal with problems of welding time

variation. As such, a sliding window RNN was designed. The NN can

slide along the time series and estimate the HAZ size of each moment.

In the meantime, a SOM-type classifier was applied to the times series to

check the expulsion condition at each instant. The SOM-type classifier

can recognize the possible expulsion features by comparing the similarities

and differences between the samples with and without expulsion. With

the help of the sliding window RNN and the SOM-type classifier, both the

HAZ size and the expulsion condition can be determined even when the

welding time is varied. Besides, the HAZ size growth curves of each sample

were estimated and corresponded well to the results reported in existing

literature.

To verify the performance of the proposed schemes, welding experiments

were conducted. The details will be shown in Chapter 3 and Chapter 4.

1.5 Organization

The thesis consisted of five chapters. The first chapter was the introduction.

In the second chapter, a literature review discussing welding quality

standards, formation of weld nugget, effects of welding current and welding

time on quality, signals and features, and the artificial intelligence models

used for quality classification was provided. In Chapter 3, the scheme of

6



windowed feature extraction and SOM-based classification was proposed.

The welding experiments to varify the proposed scheme was described in

detail with the results and discussion. In Chapter 4, an improved scheme

was proposed using RNN-based feature extraction and sliding window RNN

and SOM-type classifier based quality estimation. The experiment setup

as well as results and discussions were discussed in detail to varify the

improved scheme. The last chapter was the conclusion and future work.

7



Chapter 2

Literature Review

In this chapter, an introduction was given to welding quality standards.

Nugget formation during welding was then discussed. Following the

discussion of nugget formation, the effects of welding current and welding

time on quality, and the signals and features by other researchers were

then presented. In the last part, the already-existing artificial intelligence

models were elaborated in detail.

2.1 Welding Quality

Welding quality evaluation is one of the most important aspects in research

on spot welding. In general, the quality of welding can be categorized into

no weld, under-sized weld, good weld, and expulsion [11]. When the current

is not sufficient, no weld and under sized weld may occur resulting in small

8



or even no nugget. On the contrary, if excessive input energy is supplied to

the welded pieces, melted metal may be expelled from the weld pool by the

heat which leads to expulsion phenomenon. Expulsion is a very common

fault during spot welding. It can occur both at the electrode-sheet interface

and the faying surface. Many problems can be associated with expulsion

such as porosity in the nugget, contaminant on the faying surface, small

nugget size, wastage of energy, etc. [12].

In addition, a more direct and convenient way of indicating the quality

of the weld through the nugget size is preferred in existing literature.

According to the relevant British Standard recommends, the minimum

nugget size is considered as equation d = 5
√
t where t is the sheet thickness

in mm and d is the weld nugget diameter [13]. Nugget size can be affected

by many factors, such as welding time, current, pressing force, surface

condition, etc.

Finite element modeling is very powerful used in predicting the nugget

formation. It is also able to predict the nugget growth as well as

the effects of various factors to the nugget size [20, 21, 22]. However,

due to the complexity of the welding process, this method requires the

determination of many physical parameters and the computation load is

usually time consuming. Another very important alternative method is the

artificial NN. Compared with finite element modeling, it is more simple

9



and straightforward. Complex modeling is avoided with the black box

and universal approximation properties of NN. However, any information

of the welding process is completely neglected which makes this method

vulnerable to changes in experiment conditions.

2.2 Welding Nugget

In spot welding, nugget formation is very important in the welding process.

It directly determines the mechanical property of the welded pieces such

as tensile strength and shear strength. Furthermore, the forming of nugget

also affects the porosity condition of the welded pieces. A nugget is formed

in the faying surface when enough heat is generated. For nugget formation,

the melting of metal firstly happens in some spots on the faying surface [23].

The number and location of spots are determined by the surface condition,

input current, and pressing pressure. The spots then expand and merge

together. Interestingly, the spots and melting of metal all appear in the

peripheral rather than in the center of the contact zone.

The nugget grows very quickly in the first few cycles but the growth

slows down in the subsequent cycles. A cavity can form after the

solidification of the nugget due to bubbles trapped in the nugget or rapid

shrinkage of the nugget during cooling [23].

10



The actual nugget growing process can be different for various welding

materials. For galvanized steel, a zinc coating on the steel substrate can

make the welding process more complicated. Because the melting point of

zinc coating is 30% lower than the steel substrate and the boiling point

is 60% lower than the melting point of steel substrate [24], the melting of

zinc will occur first. After the complete melting of zinc, the melted zinc

will be extruded from the centre accompanied by the melting of the steel

substrate. Some zinc may remain trapped in the nugget region. According

to [25], the whole welding process can be divided into eight regions.

In [25], an initial steep fall can be observed due to the break of

insulting film and surface asperity covering the substraction in Region 1.

The melting of insulting film and surface asperity can increase the contact

area significantly. In Region 2, a short rise of dynamic resistance follows

due to the heating of zinc Fe-Zn alloy on the electrode substrate interface

and faying interface. The heat will raise the dynamic resistance but is not

high enough to melt the alloy. In Region 3, the melting of zinc coating

on both interface causes the dynamic resistance to fall again. In Region

4, the bulk heating of substrate will dominate the effect of melting of zinc

coating and cause the dynamic resistance to increase. In Region 5, a short

fall will appear again because of the formation of seal on both surfaces.

The seal can continue increasing the contact area. In Region 6, the rise

11



of dynamic resistance is almost linear which is caused by the heating of

bulk material and iron-to-iron interface. In Region 7, due to the melting

and softening of the material, the welded pieces will be pushed closer and

with broader contact area. As such, the increase of dynamic resistance

due to the heating of bulk material will be gradually overridden. The

dynamic resistance will reach a maximum and start to fall gradually. In

Region 8, if melted material is expelled from the nugget abruptly, a sharp

drop of dynamic resistance will appear in the dynamic resistance curve.

The generalized dynamic resistance curve of galvanized steel is shown in

Figure 2.1.

Figure 2.1: Generalized dynamic resistance curve of galvanized steel [25].

Around the nugget, there is an area in the welded pieces where the

microstructure is altered by the fast heating and cooling [26]. The area is

known as the heat affected zone (HAZ). The metal in that area has not

12



been melted due to less heat generated. In general, the welded area consists

of three distinct microstructural zones known as the fusion zone (nugget),

the HAZ, and the base material as shown in Figure 2.2.

Figure 2.2: The three microstructural zones of of welded low carbon steel
piece [26].

2.3 Effects of Welding Current and Welding

Time on Quality

The effects of various parameters such as welding current or welding time

have been studied extensively. The study showed that the parameters had

a great influence on the weld quality [27, 28, 29]. Taking the study of AISI

316L Austenitic Stainless Steel as an example, the following subsections

show the effects of welding current and welding time on nugget size,

13



penetrations depth, HAZ, electrode indentation depth and mechanical

performances [29].

2.3.1 Weld Nugget Size

In general, according to

Q = I2Rt, (2.1)

where Q is the heat input, I is the current, and R is the dynamic resistance,

longer welding time t or larger welding current I leads to higher heat

input resulting in larger weld nugget. The effects of welding current and

welding time on weld nugget size are shown respectively in Figure 2.3a and

Figure 2.3b.

From Figure 2.3, it is shown that the nugget size increases with increase

of welding current or welding time but the rate of increase keeps declining

due to the reduction of electrical resistance [30]. The declining increase

rate may also be due to an expulsion resulting in increase of heat loss to

the environment.

2.3.2 Weld Penetration Depth

The effects of welding current and welding time to the weld penetration

depth are shown in Figure 2.5a and Figure 2.5b. From Figure 2.5a and

Figure 2.5b, it can be observed that the penetration depth increased with
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(a)

(b)

Figure 2.3: Effects of (a) welding current and (b) welding time to weld
nugget size [29].
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longer welding time. However for welding current, the penetration depth

experienced a sharp drop for 9 kA. The drop of penetration depth for

excessive current was caused by the expelling of melted metal by expulsion.

(a)

(b)

Figure 2.4: Effects of (a) welding current and (b) welding time to weld
penetration [29].
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2.3.3 Heat Affected Zone

The heat affected zone (HAZ) is a region around the weld nugget induced

by the passage of current and heat dissipation from the weld nugget. The

microstructure in HAZ is altered by the heat but the heat is not sufficient

to melt the metal. Similar to the weld nugget, the HAZ width increases

with increase of welding current and welding time as shown in Figure 2.6a

and Figure 2.5b.

(a)

(b)

Figure 2.5: Effects of (a) welding current and (b) welding time to HAZ
width [29].
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2.3.4 Electrode Indentation Depth

The weld indentation depth is determined by the the electrode pressure and

state of the welded pieces. The input heat in the electrode-sheet interface

can induce softening of the HAZ and melting of the metal in the fusion

zone. With an increase of the input heat, the degree of plastic deformation

in the electrode-sheet interface can be increased under electrode pressure.

For that reason, the increase of welding current and welding time can lead

to increase of indentation depth as shown in Figure 2.6a and Figure 2.6b.

(a)

(b)

Figure 2.6: Effects of (a) welding current and (b) welding time to
indentation depth [29].
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2.3.5 Mechanical Performances

The mechanical performance of the welded pieces are influenced by many

parameters such as nugget size, weld penetration, ductility of welded region,

and internal discontinuity [29]. Among all the parameters, the nugget

size is considered as the dominant parameter by many researchers. For

example, the peak load is strongly correlated to the nugget size. As shown

in Figure 2.7a and Figure 2.7b, the relationships between the peak payload

and the welding current and time are very similar to the relationships

between the nugget size and welding current and time. The peak payload

increases with the increase of welding current and time. However, for a

welding current of 9 kA, the peak payload has a sudden decline because of

expulsion.

Besides the peak load, the failure mode is also affected by the welding

current. The failure modes of the welds of equal four cycle welding time

with welding current ranging from 4 kA to 9 kA are shown in Figure 2.8.

The failure mode ranges from solely interfacial fracture mode for 4 kA to

completely tearing around the welded nugget and the HAZ for 9 kA. The

various failure mode with their corresponding welding current are shown

in Figure 2.8.

As shown in Figure 2.8, when the current was in range of 4 kA to 5 kA,

the fracture of the weld by tensile test happened in the interface leaving
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(a)

(b)

Figure 2.7: Effects of (a) welding current and (b) welding time to peak
payload [29].
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Figure 2.8: Various failure modes and their corresponding current. (a)
Welding current of 4 kA; (b) Welding current of 5 kA; (c) Welding current
of 6 kA; (d) Welding current of 7 kA; (e) Welding current of 8 kA; (f)
Welding current of 9 kA [29].

half of the nugget in one sheet and the other half in the other sheet. The

tensile-shear force increased with larger weld nugget but the tensile-shear

force was not high enough to be accepted as a good weld. When the current

was increased to 6 kA, the separation happened both through the welded

nugget and HAZ. With the current in range of 7 kA to 8 kA, the tear took

place through both the HAZ and base metal around the welded nugget.

The weld nugget was completely torn from one of the sheets. This failure

mode was called button pull out [31, 32, 33]. With a current of 9 kA, the

weld failed only in the HAZ due to excessive grain growth and softening of

HAZ by excessive heat input resulting in reduced textile-shear force [32].
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For welding current larger than 6 kA, the weld was considered as good

quality using the tensile-shear force.

2.4 Signals and Features for Weld Quality

Monitoring

In order to monitor the quality of spot welding online, signals during

the welding process are required. Current, voltage, dynamic resistance,

electrode displacement, electrode force and optical image are commonly

used signals [34]. Different ways of combination of signals have been

explored to classify the quality of welded pieces. Among the various signals,

the electrode force and electrode displacement, and dynamic resistance were

found to provide the most significant piece of information pertaining to the

nugget formation. For electrode force and electrode displacement, they are

very useful in expulsion detection. During experiments, a clear variation

can be observed at the moment of expulsion. As for the dynamic resistance,

it is not only useful in expulsion detection but also helpful in estimation of

nugget size.
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2.4.1 Electrode Displacement and Force

Electrode displacement and force are very useful mechanical signals for

quality monitoring, especially for expulsion detection [11, 37]. The

electrode displacement refers to the relative movement of electrode tip

and electrical force refers to the the force between the electrode tips and

the work piece. They are both excellent reflections of thermal expansion

of welding process. In addition, the displacement and force signals are

sensitive to expulsion. It has been reported that in the case of expulsion,

the expelling of melted metal will cause the work pieces to be forced closer

to each other. As such, a sharp decrease of displacement and force can be

induced and strong variation of both signals can be detected. However, the

degree of change can vary with different materials.

The electrode displacement and electrode force signals are usually

measured by fiber-optic sensors or piezoelectric sensors, respectively [38].

To avoid disturbance from environment and ensure accurate measurements,

the sensors are required to be placed as close as possible to the electrodes.

Typical examples of electrode displacement and electrode force signals are

shown in Figure 2.15a and Figure 2.15b.

Compared to the dynamic resistance, the electrode displacement signal

and electrode force signal characterize the expulsion phenomenon better.
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(a)

(b)

Figure 2.9: Typical examples of (a) electrode displacement and (b)
electrode force signals [37].
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However, it has a strict demand for stable working condition and the cost

of the sensors are also higher.

2.4.2 Dynamic Resistance Signal and Features

Dynamic resistance is a very important indicator of the welding process.

The resistance will change with the welding process and is affected by many

factors, e.g., contact distance, contact area, temperature of the material

and the phase of the material. The total resistance consists of the resistance

in the faying surface Rf , the resistance between the welded piece and the

electrodes Rew, and the bulk resistance of the metal Rb by [39]

R = Rf + 2Rew + 2Rb. (2.2)

Usually, the resistance of the faying surface is the dominant one while the

other components of resistance can be neglected. As a consequence, the

resistance can be easily calculated from the voltage and current data.

Due to the advantages of the dynamic resistance, dynamic resistance

is considered by many researchers as an important feature to predict

the quality of the welds. Dynamic resistance is calculated from the

current and voltage signals. The current signal is usually measured by

Rogowski coil due to its advantages of fast response to changing current,

high accuracy, low cost, endurance of large overloads, wide range of

25



current measurement, flexibility, nonintrusive property, wide bandwidth,

and safety. The Rogowski coil was invented by Walter Rogowski. A

typical Rogowski coil is made of long helical wire bent into circle and

the wire is returned from the center axis of the toroid to the starting

point. It is powerful in measurement of alternating current and high speed

current pulses because of its fast responses to the changing current with

high accuracies [8]. During measurement, the coil is placed encircling the

wire. The voltage that is induced is proportional to the rate of change of

measured current according to Faraday’s law and Ampere’s law [9]. The

Rogowski coil is always accompanied by an integrator. A simple example

of RC integrator is shown in Figure 2.10 [10].

us(t)
C

R

u(t)

L

Figure 2.10: Circuit of a simple RC integrator.

In Figure 2.10, L, R, and C are the self-inductance, resistor, and

capacitor of the integrator, respectively. The output of the integrator is
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proportional to the current at low frequencies following

us(t) = µ
NA

Sm

1

RC
I(t), (2.3)

where µ is a constant, us(t) is the output of the integrator, N is the number

of turns of the coil, A is the area of the cross-section of the coil, Sm is the

mean length of the coil, R is the resistance, C is the capacitance, and I(t)

is the current.

In addition, other designs such as using microprocessor-based device

and operational amplifier have been explored to extend the application of

the Rogowski coil.

In the welding process, due to the inductance from the circuit, there is

always some phase difference between the current and voltage which makes

the calculation of dynamic resistance difficult. The actual current I and

voltage V are related by

V (t) = L
dI(t)

dt
+RI(t), (2.4)

where L is the inductance and R is the resistance. There are mainly four

ways of calculating dynamic resistance [40].

1. Voltage (peak)/Current(peak)
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The dynamic resistance is calculated by dividing the voltage by the

current both at the peak current position. It is the easiest and most

convenient way of calculating the dynamic resistance.

2. Vrms/Irms

The second way is to calculate the dynamic resistance by dividing

the root mean square (RMS) voltage Vrms by the RMS current Irms

within a certain period. Many researchers chose to use half a cycle to

compute the RMS values and selected the dynamic resistance of each

half cycles as the features for processing. The RMS voltage and RMS

current are calculated by

√
1
T

t0+T∫
t0

f 2(t)dt, where f(t) represents the

collected signals.

3. Least-square method

The third way is based on the equation V (t) = LdI(t)
dt

+ RI(t). The

equation can be arranged into matrix form as

V (t) =

[
dI(t)
dt

I(t)

]L
R

 . (2.5)

As such, it becomes a least-square problem where the second entry

of the solution gives the unbiased estimation of dynamic resistance.
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The solution is given by

([
dI(t)
dt

I(t)

]T [
dI(t)
dt

I(t)

])−1 [
dI(t)
dt

I(t)

]T
V. (2.6)

For the estimation of dynamic resistance, a moving window can be

applied to the data set without overlapping. Using the least-square

method, the dynamic resistance within each frame can be computed

and used as the features for the following processing.

4. Recursive least-squares

Given equation V (t) =

[
dI(t)
dt

I(t)

]L
R

, another powerful tool

other than least-square method is the recursive least-squares method.

It has the ability to track the time-varied dynamic resistance and

mutual inductance along the time series with very high accuracies. In

general, based on the recursive least squares algorithm, the tracking

uses (2.5)–(2.8) [34, 35].

Φ(t) =

[
dI(t)
dt

I(t)

]
, (2.7)

Θ(t) =

L(t)

R(t)

 , (2.8)
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e(t) = V (t)− Φ(t)Θ(t), (2.9)

P (t+ 1) =
1

f
(P (t)− P (t)Φ′(t)Φ(t)P (t)

f + ΦP (t)Φ′(t)
), (2.10)

Θ(t+ 1) = Θ(t) + P (t+ 1)Φ(t)e(t), (2.11)

where f is the forgetting factor, V is the voltage, I(t) is the current

data at moment t, R(t) is the resistance, and L(t) is the mutual

inductance. In this thesis, the Θ is initialized by least-square

algorithm using first three hundred data. By using recursive least-

squares, the dynamic resistance of each moment can be accurately

estimated.

2.5 Artificial Intelligence Models for Welding

Quality Classification

Many online non-destructive schemes have been proposed. Neural networks

were frequently used because of its strength in feature recognition and non-

linear curve fitting [41]. In this section, different kinds of neural networks

were discussed in detail.

30



2.5.1 Multi-Layer Perceptron

One of the simplest and most direct method is by using the multi-layer

perceptron. Due to its simplicity, it is very popular and appears in various

forms in different research papers.

Using [42] as an example, electrical signals were monitored and acquired

as the input and the output layers returned nugget size and nugget height.

Only one hidden layer was involved in their design. The testing process

showed an average percentage error of nugget diameter and height of less

than 5% and 8% and highest percentage error of 10.22% and 16.15%.

Recently, a similar algorithm was applied in [43]. However, different

from [42], the input signals were chosen to be current, force, resistance

while the output was shear strength. 75% of the 243 experimental results

were selected to train the NN with back-propagation algorithm. 25% of

the 243 experimental results were selected randomly for testing. The NN

used in their report was a multi-layer NN with three layers as shown in

Figure 2.11, one input layer, one hidden layer and one output layer. After

training, the mean squared error (MSE) of all the testing samples were

0.047896 kN and the overall accuracy reached 95%. Their schemes were

simply, accurate and showed great usefulness in robot welding. However,

their scheme was vulnerable to changes in experiment conditions.
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Figure 2.11: The design of multi-layer perceptron.

2.5.2 Neural Networks as a Self-Organisational

Structure

Besides the most frequently used standard structure of the multi-layer NN,

modification of the multi-layer NN was also explored. The authors in [4]

used a NN as a self- organisational structure as shown in Figure 2.12.
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Figure 2.12: The design of the NN as a self-organisational structure.
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The NN designed had five layers. There were three hidden layers and

the hidden layer in the middle had only two neurons which worked to reduce

the dimension of the input set. According to their algorithm, the training

process involved only the fifty good welds with resistance data as input.

The output was constrained to be the same as the input and therefore the

supervision of a teacher can be avoided. In the testing part, five satisfactory

and five unsatisfactory welds were used. The classification of all the results

are shown in Figure 2.13.

Figure 2.13: Clustering of results [4].

From Figure 2.13, it can be concluded that the fifty-five satisfactory

welds formed a cluster and five unsatisfactory welds formed a separate

cluster clearly. The quality can be distinguished by checking whether
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the difference between input and output layer is in the good cluster.

In summary, the auto-associative design simplify the training process.

However, the accuracy of this method is not high enough for real

application.

2.5.3 Linear Vector Quantization (LVQ) Network

Linear vector quantization (LVQ) network was also applied to classify

the quality of spot welding. The work was done in [11] in 2003. LVQ

was a precursor of Self-Organizing Maps (SOM) which also applied the

winner-take-all approach. The standard structure contains an input layer,

a competitive layer, and a linear layer. In the competitive layer each

neurons is assigned by a prototype vector which will compete to have a

winner that is the closest to the input vector. The linear layer works to

associate the winner with the corresponding class. In each iteration, the

winner will update its prototype vector to be closer to the input vector

if the classification is correct or to be farther away if the classification is

wrong.

In their paper, welding voltage, welding current, electrode displacement,

and welding force were monitored as candidate features for characterizing

expulsion. However, only the amplitude of welding force variation signal

was selected due to its effectiveness in identifying expulsion.
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The design of the LVQ network is shown in Figure 2.14. In Figure 2.14,

N

W1

n1

S2

p

C W2

n2

S1

a1
a2

Figure 2.14: The design of LVQ network.

N was the size of the input vector, p was the input vector, W i was the

weight matrix for the i-th layer, Si was the number of the neurons in

the i-th layer, ni was the net input vector of the i-th layer, and ai was

the output of the i-th layer. There are three neurons in the competitive

layer corresponding to three subclasses and two neurons in the linear layer

corresponding to two quality conditions (normal and expulsion). Each

input vector was constructed by a certain value and its preceding value

along the time series of input signal. The network was firstly trained by

the input vectors from four measurements with expulsion using one hundred

epochs with the basic LVQ learning rule [5]. It was then trained by another

one hundred epochs with the LVQ2 learning rule which involved the update

of both winner neuron and the next-to-nearest neuron if the input vector

p(i) was classified incorrectly.
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After the training, signals from another set of thirty measurements

were used to test the network. The results showed that all the thirty

measurements were classified correctly. Their scheme was accurate and

efficient. However, their scheme was restricted by the requirement that

the exact expulsion point should be detected accurately along the time

series. Furthermore, the sole use of welding force variation signal may not

be sufficient for accurate prediction for other materials. The high cost of

accurate weld force measurement may also be a problem.

2.5.4 Hopfield Neural Network

A Hopfield NN was applied in [6] for quality estimation. Hopfield neural

network was invented by John Hopfield in 1982 as a completely recurrent

neural network (RNN) [6]. It showed great usefulness in associative memory

and optimization problems.

For the work in [6], the main idea was to recognize and classify different

dynamic resistance patterns with the aid of Hopfield network and used the

patterns to classify weld quality. Specifically, the dynamic resistance curve

was chosen as the input signal. First of all, the dynamic resistance was

normalized to between 0 to 1. After that, the dynamic resistance curve

was mapped into a two dimensional 6× 10 element bipolarized vector with
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a default value of -1. An example of the dynamic resistance curve and the

mapped vector were shown in Figure 2.15.

(a)

(b)

(c)

Figure 2.15: An example of dynamic resistance curve, the mapped vector
and graphical pattern [6].

The Hopfield network he applied was a single layer feedback NN with

symmetric weights. The number of neurons was set to be the same as the
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number of mapped elements. In each iteration, the output of each neuron

was updated according to

yk+1
i = sgn(

n∑
j=1,j 6=i

wi,jy
k
j − θi), (2.12)

where k represents the number of iterations, wi,j is the weight of the j-th

neuron to the i-th neuron, θi is the threshold and sgn(f) is represented by

sgn(f) =



1 if f > 1,

f if − 1 ≤ f ≤ 1,

−1 if f < −1.

(2.13)

The energy function of the network was shown to be

E = −1

2

n∑
i=1

n∑
j=1

wi,jyiyj +
n∑
i=1

θiyi. (2.14)

In the training process, five typical dynamic resistance curves of different

welding current ranging from 5 kA to 11 kA were selected as the prototype

patterns as shown in Figure 2.16. The weights of the NN were adjusted

such that the energy function reached its minimum for all the five patterns.

The tensile strength of each pattern were measured representing the quality

standard for each pattern. In the quality evaluation part, the input pattern
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from a weld was presented to the NN. It was then classified to a certain

stored prototype pattern based on the likelihood to each pattern and thus

the quality was determined. Ten dynamic resistance patterns of random

currents between 6.5 kA and 8 kA were used to test the performance of

their network and the result showed an accuracy of about 80%.

Figure 2.16: The five prototype vectors from welds of different current [6].

2.5.5 Time Series Prediction Using NN

Besides the NN models discussed in the previous sections, various NN

models were designed for time series problem. Although these NN models

are usually applied in other fields such as financial prediction or climate

forecasting [14, 15, 16], they are also very useful for spot welding.

The standard NN method for time series is called the focused time delay

NN as shown in Figure 2.17 [17, 18]. It can be considered as an extension of

auto-regressive time series modeling. The principle of the NN is to collect
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the past time series values and use the value to predict the new value. The

training method is standard using the back-propagation algorithm.

An upgrade of the previous method is called the nonlinear autoregressive

z-τ

z-τ

z-τ

.

.

.

x(n-1)

x(n)

x(n-2)

x(n-dy)

y(n+1)=x(n+1)

Figure 2.17: The architecture of the focused time delay NN.

models with exogenous input (NARX) RNN [16, 19]. The model involves

the previous states as well as inputs. As compared to the time-delayed NN

with state function y(n + 1) = F (x(n), x(n − 1)...), the state function for

NARX RNN can be expressed as y(n+1) = F (y(n), y(n−1)...;u(n), u(n−

1)...). The network is reported to be very efficient for modeling a non-linear

dynamic system [19].

2.6 Summary

In this chapter, the concepts of welding quality, nugget formation, effects

of welding current and welding time on quality, signals and features, and
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Figure 2.18: The architecture of the NARX RNN.
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artificial intelligence models were introduced. Many artificial intelligence

models such as multi-layer NN and Hopfield network were discussed.

However, they have relatively high computational costs and are vulnerable

to changes in experimental conditions.
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Chapter 3

Windowed Feature Extraction

and SOM-Based Quality

Classification

In the previous chapter, signals, features and various artificial intelligence

models were reviewed. The already-existing schemes were limited by the

shortcoming of the direct use of neural network (NN) and were vulnerable

to changes in experimental conditions such as change of welding times. To

solve the problem, two schemes were proposed in the thesis. The details

will be discussed in the following two chapters.

The first scheme used dynamic resistance calculated by root mean

square (RMS) current and voltage of each half cycles as well as the RMS
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current and RMS voltage as features. To determine each half cycles, a

moving window was used. After that, a self-organizing map was applied to

classify the qualities of the welds. The general flow is shown in Figure 3.1.

Figure 3.1: Flow chart of the proposed quality classification scheme.

3.1 Welding Quality Classification Framework

In this section, the complete framework of the proposed quality

classification scheme is presented. The details of windowed feature

extraction and the design of SOM are elaborated.
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3.1.1 Signal Pre-Processing

Electrical signals are strongly correlated with nugget formation and can be

easily captured. For that reason, many monitoring systems utilize electrical

signals for indication of nugget quality. Current and voltage signals were

used in this thesis. In particular, dynamic resistance and dynamic power

were calculated from the current and voltage signals and used to estimate

the quality of welding.

For the proposed quality classification scheme, the current was

measured via a Rogowski coil without an integrator. The sampling rate

was 106 Hz. Due to the high sampling rate and large transient in the

circuit, strong noise was observed in the voltage signal. For that reason,

the integration and noise attenuation should be done to the raw data before

feature extraction.

Raw Data

The measured current and voltage signals were shown in Figure 3.2. The

current signal was computed by integrating the voltage signal from the

Rogowski coil in Matlab. A linear downward drift of current was observed

and solved by drift compensation. From Figure 3.2, it can be seen that the

current tends to increase with cycles and voltage tends to decrease with

cycles.
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Figure 3.2: An example of current and voltage signals from the experiments.

Noise Attenuation

Due to the high sampling rate and the large transient in the circuit, there

was noise observed in the welding signals, especially the experimental

voltage signals. In order to suppress the effects of noise on classication, a

second order low pass digital Butterworth filter from Matlab toolbox with

a 5000 Hz cut-off frequency was used to attenuate the noise in voltage. It

allows low frequency signals to pass and attenuates signals with frequencies

higher than the cut-off frequency. The gain |H(jω)| of the second-order

Butterworth low pass filter is expressed in terms of the transfer function

H(s) as shown in

|H(jω)| = H0√
1 +

(
ω
ωc

)4 , (3.1)
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where ωc is the cutoff frequency and H0 is the gain at zero frequency.

Example of original voltage signal and the filtered voltage signal are

shown in Figure 3.3 and it is indicated that the huge noise of the voltage

signal is attenuated efficiently with the low pass filter.
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Figure 3.3: Comparison between the (a) original voltage signal and the (b)
filtered voltage signal.
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3.1.2 Windowed Feature Extraction

Feature extraction is a very popular and powerful mathematical approach

toin time domain signal processing. Usually, the raw data is so huge

which makes the interpretation very difficult. However, the important

information can be extracted and transformed into lower dimensional

space. By using feature extraction, the signal dimension can be effectively

reduced, retaining the key information [49]. It relieves much of the

burdens of computation. There are mainly five categories of feature

extraction methods. They are data descriptive statistics, data descriptive

models, time-independent transforms, time series transforms, and domain

dependent feature extraction [49]. In this thesis, feature extraction method

from data descriptive statistics was used.

For the proposed quality classification scheme, dynamic resistance

calculated from RMS current and RMS voltage as well as RMS current and

RMS voltage were chosen as the key features. In order to determine the

half cycles, the extraction of crests and troughs from current and voltage

signals was the primary task. From Figure 3.4, it can be observed that

current in the first cycle is severely distorted. The distortion is possibly

caused by the large transients in the initial state. Besides, the period of

each half cycles as well as the crest values of each half cycles also vary

which increases the difficulty of peak extraction. As such, a sliding window
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of predetermined length was applied in the proposed quality classification

scheme to extract crests and troughs of the signals.
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Figure 3.4: An example of half cycles of a signal and signal distortion.

Extraction of Crests and Troughs

For the proposed quality classification scheme, dynamic resistance was

calculated by dividing the RMS voltage by the corresponding RMS current.

From the signals, it can be observed that the current and voltage were

almost in phase. As such, the calculation of the RMS value of the current

and voltage in their corresponding half cycles did not incur much error.

Even though the periods varied with each half cycle, the periods of half

cycles only varied in a small range between 0.009 s to 0.0102 s. For that
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reason, a sliding window with length of 0.02 s( which was almost the period

of a full cycle) was used to extract the crests and troughs. This method

required a pre-estimation about the total number of cycles. The algorithm

was represented by the flow chart shown in Figure 3.5.

The first trough was set to be the minimum point within the first 0.018 s.

The first crest was set to be the maximum point within the first 0.018 s. In

the subsequent steps, the search for crest started from the previous trough

position with a length of 0.02 s. Likewise, the search for trough started from

the previous crest position with a length of 0.02 s. The process continued

iteratively until all the crests and troughs were determined.

The crest C(n) and trough T (n) can be extracted using


C(n) = arg maxt∈[T (n−1),T (n−1)+0.02] I(t)

T (n) = arg mint∈[C(n−1),C(n−1)+0.02] I(t)

(3.2)

where I(t) is the current signal, C(n) is the n-th crest and T (n) is the n-th

trough.

This method is very fast and efficient. The extracted crest and trough

positions are accurate. However, it has several drawbacks. First of all, if

the distortion in the first cycle is too severe, the wrong choice of starting

point can ruin the following extraction process. Due to the variation of

welding time, the total number of crests and troughs may not be the same.
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Figure 3.5: (a) The flow chart representing the sliding window-based crest
and trough extraction and (b) a simple example.
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As a result, it is likely that the crest or trough in the last cycle may be

missed. In addition, this method requires a high consistency in period of

half cycles.

Extracted Features

The features employed for the proposed quality classification scheme were

the dynamic resistance calculated from RMS current and RMS voltage

within a half cycle as well as the RMS current and RMS voltage. A half

cycle was determined to be the period between the crest and the adjacent

trough position and vice versa as shown in Figure 3.6. The RMS value of

both current and voltage in the same half cycles were computed separately.

The dynamic resistance was then calculated by dividing the RMS voltage

by the corresponding RMS current. The dynamic resistance, the RMS

current, and the RMS voltage were then combined to form input vectors

for the training and testing of the NN. The input vectors shall be normalized

to between 0 and 1 before being fed into NN.

The normalized RMS current, RMS voltage, and dynamic resistance of

all the samples from experiments are shown in Figure 3.7. The welding

material used in the experiments was stainless steel. From Figure 3.7, it

can be interpreted that the dynamic resistance of stainless steel decreased

almost monotonously during the whole welding process.
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Figure 3.6: Examples of (a) current and voltage signals and (b) half cycles
for feature extraction.
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Figure 3.7: (a) RMS voltage, (b) RMS current, (c) Dynamic resistance
curves of all the samples.
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3.1.3 SOM for Weld Quality Classification

Self-organizing map is a very useful unsupervised NN proposed by

Kohonen [55]. It classifies inputs according to their likelihood through

competition process and is very powerful in feature recognition. It possesses

both high accuracy and high speed.

The SOM used in the proposed quality classification scheme consisted

of four hundreds neurons arranged into 20 × 20 two-dimensional grid.

In the training process, each neuron was assigned a random vector of

weight with the same length as the input vector. The input vectors were

normalized before fed into the SOM. In each iteration, an input vector was

chosen randomly and presented to the NN. The neuron with the smallest

Euclidean distance was selected as the winner. The winner together with

the neighborhood neurons updated their vectors to be more like the input

vector through

w(k + 1) = w(k) + α(k) Ω(k)(x− w(k)), (3.3)

where k is the number of iterations, α is the learning rate with expression

α(k) = α0e
− k
T , and T is set to be one thousand [45, 46]. The learning rate is

set in this way that it will shrink with iterations to ensure the convergence

of the training process. Ω is the neighborhood function which determines
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to what extent the vector of the neuron will move towards the input vector.

The neighborhood function is Gaussian function related to the Euclidean

distance dx,y to the winner via

Ω(k) = e
−

d2x,y

2σ(k)2 , (3.4)

where σ is the topological neighborhood width. To speed up the computing,

only neurons within the neighborhood width will update their vectors.

The neighborhood width will cover all the neurons initially, and it keeps

decreasing exponentially until only immediate neighbors are affected after

T iterations. The expression for neighborhood width is shown as

σ(k) = σ0e
− k
T . (3.5)

To speed up the training [47, 48], the learning rate can be adjusted as

α(k) = α0(1−
k

T
). (3.6)

At the end of the training process, all neurons will be labeled based

on the label of the closest input vectors. In this chapter, for the proposed

quality classification scheme, the samples were categorized to no welds,

good welds, and welds with expulsion. As such, after the training, all the
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neurons were labeled “no welds,” “good welds,” or “welds with expulsion.”

In the testing part, the trained map were used to classify the quality of the

testing samples by labeling samples with the labels of the neurons with the

closest distance to their input vectors.

3.2 Experiment and Results

The previous section demonstrates the signal processing and artificial

intelligence models which are necessary to non-destructive quality

evaluation. Experiments were conducted to test the performance of the

proposed two schemes. This section will cover the experiments to verify

the proposed quality classification scheme.

3.2.1 Experiment Setup and Procedure

To verify the proposed quality classification scheme, twenty welds were

conducted. The welding machine used in the experiments was miller

LMSW series portable welding machine as shown in Figure 3.8. The

portable welding machine is light-weight and easy to be operated. However,

the electrode lacks the water cooling system and thus the heating of the

electrodes has remarkable effects to the welding. For the welding machine,

the current and voltage of the welding system cannot be varied. The only

parameter that can be changed is the welding time. In addition, the welding
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is handled manually. The pressure on the specimen may not be consistent

as compared with the huge automotive welding machine applied in industry.

Figure 3.8: A picture of welding machine.

The experiment setup for the proposed quality classification scheme

included a welding machine, a voltage and a current sensor, Picoscope

and a PC as shown in Figure 3.9. The sampling rate of the Picoscope

was 106 Hz. The current was measured by Rogowski coil without the

integrator and the integration was done by PC. A linear downward drift

of current was observed which was resolved by drift compensation. The

voltage was measured by connecting the two electrodes to the Picoscope.

The measurement setup is shown in Figure 3.10.

The welded samples were chosen to be 3 mm thick stainless steel plates

which was 2.5 cm wide and long as shown in Figure 3.11. Twenty welds
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Figure 3.9: Experimental setup for the proposed quality classification
scheme.

Figure 3.10: An illustration of measurement setup.
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were conducted. The welding time for all the welds was chosen to be 0.3 s.

After the welds, the qualities of the samples were examined by destructive

tests according to their expulsion conditions. The samples were classified

into no weld, good weld, and weld with expulsion.

Figure 3.11: A picture of the samples.

3.2.2 Results and Discussion

The quality categories of each sample after the destructive tests are shown

in Table 3.1. Among them, two samples with no weld (Samples 1 and 2),

two samples with good quality (Samples 3 and 6) and two samples with

expulsion (Samples 10 and 18) were used for training while the rest of the

samples were used for testing. The features used in the proposed quality

classification scheme were the RMS voltage, RMS current and dynamic

60



resistance calculated from the RMS voltage and current of each half cycles.

Table 3.1: Quality of samples. Label 0: Sample with good quality. Label
1: Sample with expulsion. Label -1: Sample with no weld (current passing
through the corners)

Sample No. Label Sample No. Label

1 -1 11 -1

2 -1 12 -1

3 0 13 -1

4 -1 14 0

5 -1 15 0

6 0 16 -1

7 -1 17 -1

8 -1 18 1

9 -1 19 1

10 1 20 1

In the proposed quality classification scheme, the SOM was chosen for

classification. The training process took approximately 17.8 s which was

very fast. The classification results were shown in Table 3.2.

From Table 3.2, it can be observed that only Sample 17 was misclassified

into good weld. All the samples with expulsion were classified correctly.

The overall accuracy was 92.9%. The results showed that SOM not only

maintained fast speed, but also sustained high accuracy in classifying no

weld, good weld, and weld with expulsion. However, this way of treatment

is vulnerable to the changes in experiment conditions such as change of
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Table 3.2: Quality classification results by SOM

Sample No. Estimated Quality Real Quality

4 -1 -1

5 -1 -1

7 -1 -1

8 -1 -1

9 -1 -1

11 -1 -1

12 -1 -1

13 -1 -1

14 0 0

15 0 0

16 -1 -1

17 0 -1

19 1 1

20 1 1
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welding time. For the other working pieces made of galvanized steel or

mild steel involving more complex welding processes, this accuracy may

not be guaranteed.

3.3 Summary

This chapter described the proposed quality classification scheme.

The proposed quality classification scheme mainly consisted of signal

preprocessing, windowed feature extraction, and SOM-based quality

classification. The signal preprocessing included integration of Rogowski

coil voltage, noise attenuation, and feature extraction. For the feature

extraction, the features were selected as RMS current, RMS voltage and

dynamic resistance calculated from RMS current and voltage. Half cycles

were determined with the help of crest and trough extraction using a sliding

window of predetermined length. The SOM was then applied to classify

the samples into no weld, good weld, and weld with expulsion. Following

the developed models, the experiment setup, the procedure and the results

of experiments were described in detail. The results showed that the SOM

was fast and the overall accuracy reached 92.9%. However, this method

was still unable to deal with the problem of changes in welding time.
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Chapter 4

RNN-Based Feature

Extraction and Sliding

Window NN-Based Quality

Estimation

In this chapter, an improved scheme is proposed for quality estimation. For

the proposed quality estimation scheme, in general, the peaks of dynamic

power and the dynamic resistance at the instant of maxima were selected

as the features. The peak powers were extracted with the help of recurrent

neural network (RNN). After feature extraction, a sliding window RNN was

applied to estimate the heat affected zone (HAZ) size, and the SOM-type

64



classifier was applied to classify the expulsion condition. The general flow

is shown in Figure 4.1.

Feature extraction

HAZ size

Data acquisition

Feature extraction

Data acquisition

Offline training  Online monitoring

Moving window 
partially recurrent 

neural network 
(4.4)-(4.9)

Expulsion 
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(4.10)
Moving window 

partially recurrent 
neural network 

(4.4)-(4.9)

SOM-type 
classifier

(4.10)

(4.2)-(4.3)
(4.2)-(4.3)

Figure 4.1: Flow chart of the proposed quality estimation scheme.

4.1 Welding Quality Estimation Framework

In this section, the complete framework of the proposed quality estimation

scheme is presented. The details of the modified RNN based feature

extraction, the sliding window RNN, and the SOM-type classifier are

elaborated.
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4.1.1 Signal Preprocessing

For the proposed quality estimation scheme, an integrator was implemented

in the welding system for measurement of current. Accompanying the

integrator, a welding scanner was installed replacing the Picoscope and

PC resulting in reduction of the sampling rate. However, the new setup

showed very little noise. With the aid of the new setup, the current and

voltage data were captured directly. The new setup simplified the signal

acquisition and signal preprocessing significantly.

Typical examples of current and voltage signals from the experiments

are shown in Figure 4.2. By comparing the current and voltage signals,

it can be found that the phase difference between the current and voltage

was maximum for the crossing of zero points and minimum for crest and

trough positions. However, the phase differences at certain peak positions

still existed. The phase difference complicated both the dynamic resistance

calculation and the determination of peak position.

4.1.2 RNN-Based Feature Extraction

The features used in the proposed quality estimation scheme were peak

dynamic power and dynamic resistance at the instant of peak dynamic

power. Due to the phase difference at certain peak positions, the peaks in

current did not correspond exactly to the peaks in voltage. This caused
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Figure 4.2: An example of current and voltage signals from the experiments.

difficulty both to the determination of peak position of dynamic power

and to the calculation of dynamic resistance at that instant. To deal with

this problem, the dynamic resistance was calculated firstly by recursive

least-square method and the dynamic power was calculated simply by

multiplying the current with the voltage as shown in

P (t) = I(t)V (t), (4.1)

where P (t) is the power. The peak positions of the power were then

extracted from the power data, and the corresponding dynamic resistance

was chosen for the following processing.

In the field of quality examination of spot welding, dynamic resistance

is one of the most commonly used indicators. However, the sole usage of
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dynamic resistance may not be sufficient. During the welding, the current

and voltage change according to the change of resistance of the work piece

and the internal control of the welding system. The welding process involves

the interaction of the input power to the material and the property changes

of the material.

Peak Extraction by RNN

For the proposed quality estimation scheme, a feed-forward RNN was

applied for peak extraction. The peak extraction was done to the dynamic

power data rather than the current and voltage. The total number of

neurons was set to be equal to the total number of power data. Each

neurons were mapped to the power data at each instant as shown in

Figure 4.3. The distance between the adjacent neurons was set to one.

Each neuron has suppressing effects to the nearby twenty five neurons in

the form of synaptic weights. The range of suppressing effect shall be set

to be more than a quarter of cycle and less than a half cycle. The synaptic

weight of each neuron to the neighboring neurons follows

wi,j = −e−
di,j
15 , (4.2)

where di,j is the distance between neuron i and neuron j. The output of

each neuron is updated through
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Figure 4.3: The implementation of feed-forward RNN for peak extraction
of power data.


duj(t)

dt
= δ

1+exp(−(xj+
∑
i
wi,ju(i)−θ)) , if xj +

∑
i

wi,ju(i)− θ ≥ 0,

du(j)
dt

= −δu(j) if xj +
∑
i

wi,ju(i)− θ < 0,

(4.3)

where x is the normalized power data corresponding to each neuron and

θ is the threshold of each neuron with value of 0.5 [44]. The consequence

of the NN is that only the neurons corresponding to peak power will be

activated and the rest of neurons are totally deactivated. An example of the

neurons’ activity after one thousand iterations is shown in Figure 4.4. It

can be seen that the peak positions match well with the activated neurons’

positions. However, the situation that both two adjacent neurons were

activated might occur as shown in Figure 4.5. This was because both of
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Figure 4.4: The peak extraction results by the feed-forward NN.

the points were too close to the exact peak point, and thus the values of

both points were very close to each other. To handle this problem, the

first point was chosen as the peak point in peak extraction. With the help

80 90 100 110 120 130 140

0.325

0.33

0.335

0.34

0.345

0.35

0.355

No. of neurons

N
eu

ro
ns

’ a
ct

iv
ity

Figure 4.5: An example of the activation of two adjacent neurons.
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of RNN for peak extraction, all the peaks can be extracted at one time.

It is also capable to deal with signals with variations of periods and peak

values.

Extracted Features

For the proposed quality estimation scheme, the features used were peak

power and dynamic resistance at the instant of peak power. The dynamic

resistance was calculated firstly using the standard RLS algorithm [34, 35].

The comparison between various methods is shown in Figure 4.6. It is

shown that RLS algorithm possesses high accuracy and thus the dynamic

resistance calculated can be used for training the neural networks.
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Figure 4.6: Comparison of different methods of resistance calculation.
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The dynamic resistance curves of all the samples from the experiments

are shown in Figure 4.7. Compared to the dynamic resistance curves from

the proposed quality classification scheme presented in previous chapter,

the dynamic resistance curves appeared to be more complicated. Typically,

in the very beginning of the welding process, dynamic resistance of most

samples experienced a sharp drop. A hump of dynamic resistance was

then observed within time interval from 0.05 s to 0.12 s. However, the

exact dynamic curves varied with samples. From Figure 4.7 it can also

be interpreted that the signals of samples with and without expulsion

were very similar. It was extremely hard to distinguish the two quality

conditions.
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Figure 4.7: Dynamic resistance curves of all the samples for the proposed
quality estimation scheme.
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Following the peak extraction of power data presented in the peak

extraction section, the dynamic resistance at peak power positions was

identified. The extracted dynamic resistance and peak power time series

data were normalized to between 0 and 1 and presented to the artificial

intelligence neural networks as inputs in the following section.

Examples of extracted dynamic resistance curve and peak power curve

are shown in Figure 4.8. The general dynamic resistance curves obtained

were different from [25]. Recalling the generalized dynamic resistance curve

of galvanized steel as shown in Figure 2.1 in Chapter 2, the whole welding

process were divided into eight regions. However, these eight regions

can not be identified clearly in the dynamic resistance curve from our

experiments.

4.1.3 Sliding Window RNN for HAZ Size Estimation

In general, a common way is to feed all the time series data into the NN

and train the NN according to the squared error between the outputs of

the NN with the desired results. This way of treatment is convenient and

straight forward. However, due to the direct use of the NN, the information

of the dynamic interaction among various parameters along the time series

is totally neglected. The traditional method is too direct forward and it
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Figure 4.8: An example of (a) extracted dynamic resistance and (b) peak
power points.
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may encounter severe problems when dealing with time series problem of

varying time lengths.

In order to solve time series problem of varying time lengths, it is

intuitive is to make use of a sliding window. As such, a sliding window RNN

was proposed. In the process of welding, the dynamic resistance represents

the property of the welded piece while the dynamic power reflects the

input power from the welding machine to the welded piece. The dynamic

resistance and power interact with each other dynamically and mutually

determine the nugget growth. Due to the complexity of the welding process,

it is very difficult to come up with an exact physical model to formulate the

whole interaction. For that reason, NN’s black box property and universal

approximation capability show great usefulness in this part. In summary,

for the design of the NN, the following features are expected to be achieved.

They include a sliding window, capability of representing the interaction

relationship between the resistance, power, and nugget size, and simple

modeling.

The general idea of the sliding window RNN is shown in Figure 4.9.

The window covered five adjacent normalized resistance data and power

data obtained in the feature extraction part. There was another input

called HAZ size. In this chapter, the HAZ was applied instead of nugget

size as from the measurement of nugget size, the boundary of HAZ was
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Figure 4.9: The design of sliding window RNN.

much clearer than the nugget zone. The HAZ also had strong correlation

to nugget size. The output of the NN was the increment of the HAZ size.

The output increment of the HAZ size was added directly to the HAZ size

generating the new HAZ size for the next iteration. The HAZ sizes of

all the samples were normalized to between 0 and 1. The sliding window

RNN achieved the purpose of both representing the dynamic process and

avoidance of the complex modeling of their interaction.

In the training process, the times series from training set were presented

to the NN in random sequence. The NN slid through the time series and

the HAZ sizes at the last moment were compared with the real normalized

HAZ sizes for tuning of the weights of the NN. The training was done in
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batches. The error function E was the weighted sum of the squared error

of all the training samples as shown in

E =
n∑
i=1

1

N(i)
(H(i)− Ĥ(i))2, (4.4)

where n is the total number of training samples, H is the HAZ size, Ĥ

is the estimated HAZ size by the network, and N(i) is the total number

of data points of sample i. The reason of the weighted sum is that the

training samples have different number of data points and weight factors

are needed to avoid bias to the training. As such, the weight factor for

each sample was set to be the inverse of the total number of data points.

The training was stopped when the error function was less than 0.001.

Traditionally, back-propagation algorithm was commonly used in

training. However, it has severe drawback of slow convergence which makes

the training very time-consuming [51, 52]. The speed of convergence drops

exponentially as the error function becomes smaller. The training usually

takes more than half an hour to tune the error function less than 0.001.

It is worth mentioning that momentum can be implemented to save the

time [53].

To speed up the training process, a modified gradient descent method

was proposed in this chapter. Rather than updating the weight directly by
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the gradient, speed was introduced and the gradient descent behaved like

an attractive force. The new update law is shown as

w(k + 1) = w(k) + v, (4.5)

v = v − αηdE
dw

, (4.6)

η =
1.7/160

E + 1/160
+ 0.3, (4.7)

where v is the speed, E is the error function, and η is a variable which

controls the influence degree of attractive force to the speed. It is designed

that when E = 1, η ≈ 0.3, and when E decreases, η → 0.4. The learning

rate α was also modified such that it kept changing according to the change

of error function. If the error function became smaller by the adjustment,

the learning rate would be increased according to

α =


α(1 + ε) if α < 2,

2 if α ≥ 2,

(4.8)

where ε ∼ U(0,0.1). If E became larger, the learning rate would be

decreased by [54].

α = α(1− ε). (4.9)

78



To avoid the problem of overshooting which is the major concern of this

method, a rule is set that the moment the error function becomes larger,

the speed is reset to zero. Furthermore, if the error function starts from

a huge value, e.g., one thousand, the speed will become so fast that the

error function may not converge to the global minimum. To solve this,

the traditional back-propagation algorithm is applied for error function

larger than ten. In very rare cases, the training may be stuck in the local

minimum. Re-initialization of the NN and its speed can be done to deal

with this situation.

The comparison of the error function curves between the two algorithm

is presented in Figure 4.10a and Figure 4.10b. It is shown that when the

error function was smaller than 0.1, for the back propagation algorithm,

the decrease of error function slowed down exponentially. However, for the

proposed algorithm, on the contrary, the decrease of error function can

still speed up in the area where the error function is already very small.

Although there existed some bounce-backs of the error function, the error

function returned back to its decreasing mode very quickly.

The comparison showed that time consumption of the traditional back

propagation algorithm was far more than 10000 iterations while the number

of the proposed algorithm was less than 400. This is 25 times faster than

the traditional method.
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Figure 4.10: Comparison of the error function curves between the (a)
traditional back propagation algorithm and (b) modified back propagation
algorithm.
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4.1.4 SOM-Type Classifier for Classification of

Expulsion Condition

The SOM-type classifier was employed in the proposed quality estimation

scheme for expulsion checking. The common way of quality checking uses

the whole time series into a certain type of NN, such as multi-layer NN,

LVQ or SOM, and then train the NN to assess the expulsion condition.

However, this treatment may result in low accuracy due to the following

reasons. In the welding process, the expulsion may occur at only a certain

point in time. For that reason, most of the curves will appear “normal.”

A sharp drop of dynamic resistance could be observed in situation of

expulsion [11]. However, in our experiment, due to manual operation

of the welding machine and the absence of cooling system, the profile

of dynamic resistance was significantly affected by various disturbanceS,

and the resistance drop related to the expulsion was not identified from

the signal. In light of the arguments presented above, the idea of sliding

window was used again to identify features which could be related to the

expulsion. The principle of the proposed SOM-type classifier is to make

guesses of the features based on similarities and differences between the

samples with and without expulsion.

Before the detailed description of the SOM-type classifier, we consider

a simple case where for each time frame, only one neuron is assigned to
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classify the expulsion condition. Each time frame has length of three and

moves along the time series with overlapping. The adjacent three resistance

data and three power data together construct the vectors for each time

frame. The neurons have weight vectors of the same length as the vectors

in each time frame. The purpose of the neurons is to find out the features

that may be related to expulsion.

For samples without expulsion, each time interval along the time series

was normal. As such, all the vectors can be considered as vectors unrelated

to expulsion. Before the training process, all the vectors and their positions

along their time series from the training samples with no expulsion were

extracted and kept in a “good set”.

In the training part, the weight vectors of neurons were initialized to be

the mean positions of the vectors at the corresponding positions from the

samples with expulsion in training set. In each iteration, a random sample

with expulsion was chosen as the input. At each time frame, the Euclidean

distance between the input vector and the vectors in the corresponding

nearby positions from “good set” were compared. The minimum distance

was considered as the distance of the input vector to the “good set”

represented by D. The corresponding nearby positions also included the

time frame ahead of the corresponding position and the time frame after the

corresponding position. This was because for different welds, the welding
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process might not be coherent. A simple example of D in two dimensions

is shown in Figure 4.11.

x

D

y

Figure 4.11: A simple example of the distance in two dimensions.

For each input sample, if at least one vector has a distance to the

neurons 0.8 times shorter than to its corresponding D, the sample will be

classified as a sample with expulsion. Otherwise, if none of the vectors

appears to be nearer to the neurons, the sample is considered to have no

expulsion and the classification is wrong. Adjustments are then required to

be done to the neurons. Accordingly, all the neurons will be moved towards

the vectors of the sample by
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w(k + 1) = (1−D2)w(k) +D2x, (4.10)

where x represents the input vector. The movement is designed to be

proportional to D2 which means that the farther the input vector is from

the good set, the more likely the neuron will trend to move towards the

input vector. The learning rate is not involved in 4.10 because the values

of D are all very small and they can work as learning rate. The training

will continue until all the training samples with expulsion are classified

correctly. After that, the trained neurons and good set are applied to the

testing set to check the expulsion condition.

The method can be improved by assigning more neurons to each time

frame, e.g., five neurons. Correspondingly, the weight vectors for the

neurons are initialized to be a random variation from the mean positions of

the vectors at the corresponding positions from the training samples with

expulsion. In each iteration, the neurons will compete with each other and

the neuron with the smallest Euclidean distance to the input vectors of

each time frame are chosen as the winner. Only winners will be updated

in each iteration. Other than that, the training process is almost the same

with (4.10). After the training part, the neurons that once were winners

are chosen for the classification of the testing set.
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This method can automatically “guess” the most possible features

relating to expulsion according to the differences and similarities between

the samples with expulsion and samples without expulsion. After that, the

features are applied to classify samples based on their expulsion condition.

This method is useful when strong noise corrupts the signals and the exact

features relating to expulsion are unknown.

4.2 Experiment and Results

In this section, the design of the experiments to verify the proposed quality

estimation scheme was discussed. The experimental setup and the quality

evaluation parts were improved. As a result, the data acquisition was faster

and more convenient. More aspects of quality were considered.

4.2.1 Experiment Setup and Procedure

To verify the effectiveness of proposed quality estimation scheme, thirty

welds were conducted. The experimental setup was upgraded. The new

setup is illustrated in Figure 4.12. A weld scanner was employed to replace

the PC. An integrator called process sensor P100K was implemented

so that the current signal can be integrated directly from the voltage

signal measured by Rogowski coil. The current and voltage signals were

connected to the process sensor P100K for preprocessing and the filtered
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signals were directed to the weld scanner for recording and display. The

implementations of weld scanner reduced the sampling rate resulting a

sampling rate to around 3000 Hz.

Weld 

scanner

Welding 

machine

Rogowski 

Coil

Process sensor P100 K

Figure 4.12: Experimental setup for the proposed quality estimation
scheme.

The work pieces for the experiments were 1.2 mm and 2 mm thick

galvanized steels of one inch wide and long. Thirty welds were conducted

with ten welds of welding time 0.18 s, ten welds of 0.27 s, and ten welds of

0.44 s.

After welding, the quality of all the samples were examined carefully.

More aspects of the quality of the samples were checked other than the

expulsion condition using the nugget size the hte HAZ size. The detailed

quality measurement procedure are shown in the following sections.

In order to check the various aspects of the qualities of the welded

piece such as nugget size, HAZ size, and expulsion condition, the samples
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were required to be open up to expose its cross sections as well as the

faying surface. In general, the destructive process consists of five steps,

photographing of indentation, cutting, curing, grinding and etching.

Photographing

First of all, the indentations of the samples were photographed and archived

using a low magnification optical microscope. The image of indentation is

shown in Figure 4.13. For convenience, the thin plate side is called the

“surface” side, while the thick plate side is called the “bottom” side.

Figure 4.13: A picture of indentation.

From the images, it can be indicated that there are mainly three regions

on the indentation. The white and shining region is the base material.

Its property is unaffected by the welding process. The center circle area
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appearing to be black with a shining ring is the mainly welding area. It is

the resultant of the pressure of electrode and the melting of the surface

material by the heat. The area around it has darker colors than the

surrounding base material and is the HAZ. This is due to the change of

microstructure by the heat passing by. The indentations on the surface side

and bottom side happened to be of different sizes due to the difference of

the thickness. For most of the samples, the main welding region and HAZ

were not perfectly circular and expelling of metal was very common.

Cutting

In the second step, the samples were cut right at the edge of the nugget as

illustrated in Figure 4.14.

Figure 4.14: Examples of how the samples were cut.
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The remainding part was sent for curing and grinding to expose the

cross-section right in the center of the nugget. The expulsion condition was

indicated from the abandoned part. The comparison between the expulsion

sample and non-expulsion sample from the abandoned part are shown in

Figure 4.15.

Figure 4.15: Examples of sample with expulsion and sample without
expulsion.

Curing

Curing was in the third step. The reminding part was mounted in a mould

as shown in Figure 4.16. Epoxy hardener and Epoxy resins as shown in

Figure 4.16 were mixed and poured into the mould. The curing took eight

hours. After that, glass like finish was achieved for convenient grinding.
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(a)

(b)

Figure 4.16: An illustration of (a) how the reminding part was mounted
and (b) the chemicals for curing.

90



Grinding

In the fourth step, the samples were grinded by the grinding machine. A

picture of the grinding machine was shown in Figure 4.17a. The roughest

grinding paper disc was used firstly. The finer grinding papers were applied

in sequence to finer grind the nugget until the center of the nugget was

exposed. Polishing was done in the last part of grinding with the aid of the

oil-based polishing solution as shown in Figure 4.17b.

After the grinding procedure, a mirror like cross section could be

achieved. However, none of the fusion zone or the HAZ zone could be

identified from the cross section. As such, etching was used to visualize

various area.

Etching

The last step was etching. Natal (5%) (solution of alcohol and nitric acid)

was applied to etch the cross section. The etching should be conducted in

a fuming cupboard. In etching, one drop of Natal acid should be dropped

onto the cross section. Next, the sample should be dipped into water

very quickly to stop the reaction the moment a very slight color change

appeared on cross section. Dipping the sample into the water too early or

too late would result in under-etching or over-etching, respectively, leading

to difficulty in spotting various regions clearly.
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(a)

(b)

Figure 4.17: Pictures of (a) grinding machine and (b) the oil-based
polishing solution.
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After the etching, the fusion zone and HAZ could be visualized clearly

under the low magnification optical microscope. An example of the cross

section was shown in Figure 4.18. From Figure 4.18 it can be seen that

the cross section was mainly composed of three zones, the fusion zone, the

HAZ zone, and the base material. However, the boundary between the HAZ

and the base material was still blurred. Moreover, the boundary between

the fusion zone and the HAZ was even more blurred. This caused great

difficulty in the measurement of nugget size and HAZ size. As compared

to the nugget size, the HAZ is easier for measuring as the HAZ around the

indentation had very clear boundary. Furthermore, it was obvious that the

nugget size and HAZ size had strong positive correlation with each other.

In order to enhance the precision, the HAZ size was measured and utilized

as the main indicator of the quality of the welded pieces instead of using the

nugget size. Considering the non-circular shape of HAZ zone around the

indentation and the size difference between the face and bottom, the HAZ

size for each sample was calculated as the average of all two perpendicular

measurements of the diameters of HAZ on both the surface side and the

bottom side. The expulsion condition and HAZ size of all the samples will

be presented in the next section.

93



Figure 4.18: An example of the cross section.

4.2.2 Results and Discussion

In this section, the proposed quality estimation scheme was applied to

estimate the HAZ size and expulsion condition of the welded samples. The

performance of the proposed scheme was discussed and compared with the

traditional multi-layer NN.

Estimation of HAZ Size

The HAZ sizes of all the samples from the experiments are shown in

Table 4.1. The measured HAZ sizes of all the thirty samples are shown

in Figure 4.19a. In general, it can be interpreted from Figure 4.19b

that the HAZ became larger with longer welding time. The relationship

between the welding time and HAZ size can be indicated by Figure 4.18.
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The relationship was almost linear. However, the fluctuation of HAZ was

notable which meant that other than the welding time, other parameters

also had a marked influence on the HAZ size.

Table 4.1: The HAZ size of all the samples

Sample No. HAZ size (mm) Sample No. HAZ size (mm)

1 6.3385 16 7.1533

2 6.4763 17 7.2637

3 6.4629 18 7.4674

4 6.4711 19 7.1718

5 6.0467 20 7.3370

6 6.1474 21 8.8908

7 6.2578 22 9.0516

8 6.4059 23 9.0604

9 5.9607 24 9.0039

10 5.8763 25 9.2417

11 7.3666 26 8.9269

12 7.4978 27 9.2007

13 7.2000 28 9.0936

14 7.1622 29 9.0107

15 7.4518 30 9.0497

To verify the performance of the proposed sliding window RNN in the

estimation of HAZ size, a training set was created by randomly choosing

five samples of welding time 0.18 s, five samples of welding time 0.27 s, and

five samples of welding time 0.44 s. The rest of the samples constructed

the testing set. The features selected in the proposed quality estimation
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Figure 4.19: (a) The HAZ size of all the thirty samples; (b) The relationship
between the HAZ size and welding time.
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scheme were the peak powers and dynamic resistances at the instants of

peak powers.

The proposed sliding window RNN was then applied. The NN had one

hidden layers of twenty-four neurons. In the training process, the training

set was fed into the sliding window RNN in random sequence for avoidance

of bias. The training was stopped when the sum of squared error was below

0.001. The whole training process took around four hundred iterations and

200 s. In the testing process, the trained NN was applied to the testing set

to estimate the HAZ size.

The comparison between the actual HAZ size and estimated HAZ size of

both the training set and testing set was shown in Table 4.2 and Table 4.3.

The results showed that the percentage error for most of the training

samples were around 1%. The maximum percentage error was 2.05%. For

testing samples, the percentage error fluctuated around 3% with maximum

percentage error of 6.76%. The accuracy of estimation was satisfactory.

For comparison purpose, a simple multi-layer NN was used. The

NN had only one hidden layer of twenty-four neurons. The whole time

series of normalized dynamic power and normalized dynamic resistance

were combined as the input vector. Due to the welding time difference,

the dynamic power and dynamic resistance may have different length

for different samples. To solve the problem, the vectors for powers and
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Table 4.2: Comparison between the actual HAZ size and estimated HAZ
size of the training set

Sample No. Actual size(mm) Estimated size (mm) Percentage error
2 6.4763 6.4751 0.02%
3 6.4629 6.5225 0.92%
5 6.0467 6.0378 0.15%
9 5.9607 5.8238 2.3%
10 5.8763 5.8617 0.25%
11 7.3666 7.4325 0.89%
16 7.1533 7.2987 2.03%
18 7.4674 7.4769 0.13%
19 7.1718 7.2789 1.62%
20 7.3370 7.3682 0.67%
22 9.0516 8.9999 0.61%
26 8.9269 8.7979 1.3%
28 9.0936 9.1599 0.51%
29 9.0107 8.9905 0.51%
30 9.0497 9.0063 0.22%

Table 4.3: Comparison between the actual HAZ size and estimated HAZ
size of the testing set

Sample No. Actual size (mm) Estimated size (mm) Percentage error
1 6.3385 6.3398 0.02%
4 6.4711 6.5301 0.91%
6 6.1474 6.0375 1.79%
7 6.2578 6.6217 5.81%
8 6.4059 6.3189 1.36%
12 7.4978 7.0081 6.53%
13 7.2000 7.4233 3.1%
14 7.1622 7.3664 2.85%
15 7.4518 7.3748 1.03%
17 7.2637 7.7550 6.76%
21 8.8908 8.4910 4.5%
23 9.0604 8.7840 3.05%
24 9.0039 8.6972 3.41%
25 9.2417 8.8786 3.93%
27 9.2007 9.1959 0.05%
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resistances were initialized separately to the maximum lengths among all

the samples. For each sample, the missing points were set to zero. The

power and resistance vectors were then combined in sequence as the input

to the NN as

xn =

[
Pn(1) Pn(2) Pn(3) ... Pn(42) rn(1) rn(2) rn(3) ... rn(42)

]
,

(4.11)

where n is the sample number. The accuracies for both training set and

testing set were shown in Table 4.4 and Table 4.5. It was shown that the

accuracy of estimation by simple multi-layer NN was much lower. The

proposed sliding window RNN is more efficient and accurate in dealing

with HAZ size of varying welding time. It also represents great usefulness

of embedding NN into model of dynamic process.

The proposed sliding window RNN was also able to plot HAZ growth

curve other than estimation of the final HAZ size. The HAZ curves of

all the training samples are shown in Figure 4.20a. From Figure 4.20a,

it can be easily noticed that the HAZ size increases very rapidly in the

beginning. As time goes on, the increase will gradually slow down. The

results corresponds well with the experimental results for nugget growth in

[50] as shown in Figure 4.20b.
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Table 4.4: Comparison between the actual HAZ size and estimated HAZ
size of the training set

Sample No. Actual size (mm) Estimated size (mm) Percentage error
2 6.4763 6.4708 0.09%
3 6.4629 6.4658 0.04%
5 6.0467 6.0383 0.14%
9 5.9607 5.9598 0.02%
10 5.8763 5.8838 0.13%
11 7.3666 7.3003 0.9%
16 7.1533 7.1601 0.09%
18 7.4674 7.5018 0.46%
19 7.1718 7.3191 2.05%
20 7.3370 7.2719 0.89%
22 9.0516 9.0646 0.14%
26 8.9269 8.8818 0.51%
28 9.0936 8.8849 2.29%
29 9.0107 9.0932 0.91%
30 9.0497 9.0793 0.33%

Table 4.5: Comparison between the actual HAZ size and estimated HAZ
size of the testing set

Sample No. Actual size (mm) Estimated size (mm) Percentage error
1 6.3385 7.3498 15.95%
4 6.4711 5.6958 11.98%
6 6.1474 5.2258 14.99%
7 6.2578 8.5173 36.11%
8 6.4059 7.3704 15.06%
12 7.4978 7.2236 3.66%
13 7.2000 7.4224 3.09%
14 7.1622 7.5281 5.11%
15 7.4518 8.056 8.11%
17 7.2637 7.9471 9.41%
21 8.8908 8.9450 0.61%
23 9.0604 9.0853 0.27%
24 9.0039 8.3445 7.32%
25 9.2417 9.0596 1.97%
27 9.2007 8.9388 2.85%
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Figure 4.20: (a) The nugget growth curve estimated; (b) Nugget growth
curve measured by experiment [50].
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Classification of Expulsion Condition

The expulsion conditions of all the samples from the experiments are shown

in Table 4.6. In summary, there were twelve samples with expulsion.

In Figure 4.21, the signals from samples with and without expulsion are

compared. It is shown that because of the fierce disturbance from the

environment, it was very difficult to figure out a clear feature that could

distinguish the two conditions. For that reason, the proposed SOM-type

classifier was applied to learn from the similarity and difference of two

categories of samples and classify the expulsion condition.
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Figure 4.21: Comparison of dynamic resistance curves between sample with
expulsion and sample without expulsion.

In the beginning, the performance of one neuron per time frame was

tested. In the training part, nine samples without expulsion and six samples

with expulsion were selected randomly for the training of the network. The
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Table 4.6: Expulsion conditions of all the samples. Label 0: Sample
without expulsion. Label 1: Sample with expulsion

Sample No. Label Sample No. Label

1 0 16 0

2 0 17 0

3 1 18 1

4 1 19 0

5 0 20 0

6 1 21 1

7 0 22 1

8 0 23 0

9 0 24 0

10 0 25 1

11 1 26 0

12 0 27 1

13 0 28 1

14 1 29 1

15 0 30 0
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Table 4.7: Comparison between the actual expulsion condition and
estimated expulsion condition by SOM-type classifier with one neuron per
time frame. Label 0: Sample without expulsion. Label 1: Sample with
expulsion

Sample No. Actual Label Estimated Label
1 0 0
4 1 0
6 1 0
7 0 0
8 0 0
12 0 0
13 0 0
14 1 1
15 0 0
17 0 0
21 1 0
23 0 0
24 0 0
25 1 1
27 1 1

training was stopped when all the samples with expulsion were classified

correctly. The test set was then fed in to evaluate the performance. The

classification results were shown in Table 4.7.

From Table 4.7, it can be seen that Samples 4, 6, and 21 were wrongly

classified as samples without expulsion. The overall accuracy reached 80%.

Next, five neurons per time frame were used. The testing results are shown

in Table 4.8. It is shown that only Sample 4 was misclassified and 14 out

of 15 samples were classified correctly. The accuracy achieved was 93.33%.

For comparison, a simple multi-layer NN was also applied to check

the expulsion condition. The NN had only one hidden layer of twenty-four
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Table 4.8: Comparison between the actual expulsion condition and
estimated expulsion condition by SOM-type classifier with five neurons
per time frame. Label 0: Sample without expulsion. Label 1: Sample with
expulsion

Sample No. Actual Label Estimated Label
1 0 0
4 1 0
6 1 1
7 0 0
8 0 0
12 0 0
13 0 0
14 1 1
15 0 0
17 0 0
21 1 1
23 0 0
24 0 0
25 1 1
27 1 1
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Table 4.9: Comparison between the actual expulsion condition and
estimated expulsion condition by multi-layer NN. Label 0: Sample without
expulsion. Label 1: Sample with expulsion

Sample No. Actual Label Estimated Label
1 0 0
4 1 0
6 1 0
7 0 0
8 0 0
12 0 0
13 0 1
14 1 0
15 0 1
17 0 1
21 1 0
23 0 0
24 0 0
25 1 1
27 1 1

neurons. The input vector was formed by the dynamic power and resistance

in the same way as the previous section. The classification results were

shown in Table 4.9.

In Table 4.9, it is shown that seven samples were classified wrongly and

the accuracy was only 53.33%. The accuracy was far below the classification

using the SOM-type classifier. These results suggested that the SOM-type

classifier was able to classify the expulsion condition with high accuracy in

case that the dynamic resistance signals were severely corrupted by noise

and no obvious features could be spotted.
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4.3 Summary

In this chapter, the signal processing and artificial intelligence model for

weld quality estimation, and the experiments were presented in detail.

The proposed quality estimation scheme estimated HAZ size of welds of

varying welding time with percentage error around 3% which surpassed

the performance of traditional multi-layer NN. By using the SOM-type

classifier, the expulsion conditions of the samples were classified with

accuracy of up to 93.33%, while the traditional multi-layer NN only

achieved 53.33%. In summary, the accuracy of the proposed scheme was

much higher than the multi-layer NN method. Furthermore, by using the

sliding window RNN, the HAZ growth curve was estimated and the trend

corresponded well with the existing literature. For both methods, they

show the capability to deal with welding of varying welding times.
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Chapter 5

Conclusion and Future Work

Robust quality monitoring schemes of low costs and high accuracy are

strongly needed in today’s industry. This thesis proposed two schemes

for the quality monitoring using advance feature extraction and artificial

intelligence models. In view of experiments results, the following objectives

have been achieved.

1. Only the easily obtainable electrical signals were used to classify the

quality of spot welding. The current was measured by a Rogowski

coil and the voltage was measured by connecting the two tongs of the

welding machine to the data acquisition system. The method was

very convenient, cheap, and flexible.

2. A fast and easy scheme using windowed feature extraction and SOM-

based quality classification was proposed. The RMS current, RMS
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voltage and dynamic resistance calculated using the RMS current

and voltage were extracted from the captured electrical signals by

sliding window-based feature extraction. Next, a SOM was applied

to classify the quality of the samples using the extracted features.

The scheme can classify the samples into no weld, good weld and

weld with expulsion with fast speed and high accuracy. The training

process took about 17.8 s and the overall accuracy reached 92.9%.

3. An improved scheme was proposed. The scheme used a sliding

window RNN for estimation of HAZ size and a SOM-type classifier

for expulsion checking. The estimation of the HAZ size achieved

higher accuracy than a simple multi-layer neural network (NN).

Meanwhile, the SOM-type classified the samples into samples with

and without expulsion with an accuracy of up to 93.33%. In summary,

the proposed schemes show great potential to cope with welds with

varying welding time based only on electrical signals. Furthermore,

the sliding window RNN presented the efficiency of using the NN

in dealing with dynamic process. As for the proposed SOM-type

classifier, it showed great usefulness in expulsion classification for

signals severely corrupted by noise.
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However, the proposed schemes should be further improved to enhance

the robustness. In view of the results obtained, the following works should

be emphasized in future research:

1. Improve robustness of SOM-type classifier:

The accuracy of SOM-type classifier was highly dependent on

initialization of neurons. With different initial values, the accuracy

can vary in a very large range. As such, further modification of the

SOM-type classifier is needed to stabilize the accuracy and make it

more robust. Specific considerations on infinite horizon and mean

position may be explored.

2. Generalize the sliding window RNN:

Currently, only the change of welding time was covered in training the

NN. In the future work, the situation of change of welding machine or

change of welding material can be introduced to test the robustness

of the NN under changes of experimental conditions. With more

situations covered in training process, the trained NN can be used in

more applications.

3. Verify the HAZ growth curve predicted by sliding window recurrent

neural network (RNN) via experiments:

The proposed sliding window RNN shows great potential in

estimating the nugget growth curve. The estimated growth curve has
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the same trend as the measured growth curve in existing literature.

However, more experiments are required to be conducted to measure

the nugget size during the welding experiments to verify if the

estimation by proposed scheme is effective.

4. Introduce instrumental testing methods to quality estimation:

In this thesis, the nugget size and the HAZ size were used as quality

indicators. However, by using instrumental testing methods, the

shear and tensile strengths can be measured and are more direct

in showing the quality of welds in real application. The proposed

schemes can also been used to estimated the shear and tensile

strengths.
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