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ABSTRACT

Recently, electron transport properties of molecular junctions under finite bias
voltages have attracted a lot of attention because of the potential application of mo-
lecular electronic devices. When a molecular junction is under zero bias voltage at
zero temperature, it is in equilibrium ground state and all its properties can be solved
by ground-state density functional theory (GS-DFT) where ground-state electron
density determines everything. Under finite bias voltage, the molecular junction is
in non-equilibrium steady state. According to Hershfield’s non-equilibrium stat-
istics, a system in non-equilibrium steady state corresponds to an effective equilib-
rium system. This correspondence provides the basis for the steady-state density
functional theory (SS-DFT) which will be developed in this thesis. In SS-DFT, we
proved that the total electron density is not enough to determine the properties of
the system in steady state. However, two electron densities, equilibrium electron
density p. and current-carrying electron density p,,, now play the role of basic vari-
ables. Specifically, the ground state energy of the effective equilibrium system is
a functional of p, and p,, ie. Ey = Ej [pe, pn). Furthermore, E, [Pe, pn] is sta-
tionary upon variation of p, and p,, which leads to a dual mean field (DMF) ap-
proach for obtaining the desired steady state. In the DMF approach, current-carrying
electrons experience a different mean field potential from that for the equilibrium
electrons; and two sets of coupled Schrédinger-like mean field equations need to
be solved simultaneously. Before one sets out to solve the mean field equations,
it remains to find the explicit form of the exchange correlation part of E, [Pes Pnls
ie. Epclpe, pn] = Ezlpe, pn] + Ec[pe, pn]. For this purpose, we generalized the

Thomas-Fermi-Dirac model (gTFD) into non-equilibrium situation and derived the

vii



exchange energy density £ of a non-equilibrium uniform free electron gas as a func-
tion of p. and p,,. E(pe, pn) is then used to approximate the general exchange en-
ergy functional E,[pe, pn]. The non-equilibrium correction to the correlation en-
ergy is out of the scope of this thesis. For weakly correlated systems, we simply set
E. to GS-DFT one. In addition, we have implemented SS-DFT in SIESTA pack-
age and simulated several realistic molecular junctions, including a zigzag graphene
nano-ribbon (ZGNR ) junction, a junction consisting of a benzene molecule and car-
bon nano-tube (CNT) leads, and a junction with self-assembled mono-layer (SAM)
of alkanethiolates sandwiched between silver leads. Our calculations for the ZGNR
junction showed that SS-DFT recovers the results obtained from the conventional
DFT+NEGF method (via TranSiesta function) in the limit of zero bias; while at large
biases, SS-DFT produced significantly lower electric current since the exchange po-
tential for current-carrying electrons in SS-DFT is higher than the GS-DFT one. For
the CNT-benzene-CNT junction, SS-DFT bore lower energy than DFT+NEGF at
all biases. In a limit case where the CNT leads were pulled away from the benzene
molecule so that they are decoupled, SS-DFT was able to produce the local equilib-
rium electronic structure of the benzene molecule while DFT+NEGF failed to do so.
Finally, the simulations of the SAM junctions explained the experimentally observed
odd-even effect in the charge mobility. In summary, we have developed a steady state
density functional theory which paves the way to first-principles studies of the elec-

tronic and transport properties of molecular junctions under finite bias.
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If I have seen further, it is by standing on the shoulders of giants.

Isaac Newton

Introduction

Many-body problems can be tackled by density functional theory (DFT) and many-
particle formalism (MPF). MPF is based on second quantization, Green’s functions,
and diagrammatic calculations.”” It provides systematic formulas for calculating elec-
tron density and transport properties. DFT is a mean-field theory to solve many-body
problems efficiently. * It bears the electronic structure of a many-body system. They
can be combined to study the transport properties of open quantum systems in non-
equilibrium steady state.

Ground state density functional theory (GS-DFT) uses ground state electron

density to determine the ground state properties.” Currently, GS-DFT is widely used
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for the study of non-equilibrium steady state for which GS-DFT is actually not valid.
In this thesis, we develop a steady-state density functional theory (SS-DFT) where
two electron densities, equilibrium and current-carrying electron densities, are the
basic variables. SS-DFT is solid specially for steady state. It will be combined with
MPF for studying electron transport through molecular junctions which is the key

problem in molecular electronics.

0.1 MOLECULAR ELECTRONICS

Proposed by Aviram and Ratner in 1974, molecular electronics utilizes molecules as
functional units in a circuit.? It is the eventual successor to micro electronics as the
minimization process of MOSFET continues. At the molecular scale, electrons be-
have as wave, instead of particles, which puts a limit on the size of MOSFET. It was
estimated that the dimension of the smallest MOSFET is of 1.5 nm,’ while sub-5
nm MOSFET has been made in lab.” Thus, the need for greater computation power
and lesser energy consumption in contemporary information era urges the study of
molecular electronic devices. Experimentally, various molecular devices such as di-
odes, switches, and transistors have been demonstrated experimentally " since the
invention of the scanning tunneling microscope (STM) in 1981.

STM enabled us to manipulate materials at the atomic level. A normal STM scan
of some nano particle on a substrate can be viewed as the formation of a molecular
junction. " To fabricate a molecular junction with desired molecules in between, the
STM break junction technique can be employed. *” However, molecular junctions
made by STM usually involve a tip and a surface (substrate). Other configurations of
molecular junctions can be achieved by the techniques of mechanically controllable
break junction (MCB)*° or electromigration break junction (EMB).*~

Since the 1990s, transport properties of molecular junctions have been probed. In

1993, the conductance of an iron atom bridging an STM tip and a metal surface was
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measured by Crommie.” Subsequently, in 1997, Reed formed benzene-1, 4-dithiol
junctions with gold nanowire leads and measured its conductance.** In this experi-
ment, the Au-S bond links benzene to the gold lead stabilizing the molecular junc-
tion. In addition to the Au-S bond, M-N* and M-C*° bonds can also work in a
similar way for other molecular junctions. Here M represents metal. Generally, a
conductance measurement is hard to repeat due to variations in the atomic configur-
ation of the junction.””* Despite the structural uncertainty, Tao et al. successfully
confirmed the conductance of a single molecule junction by repeatedly forming the
junction and analyzing the conductance statistically in 2003. " This study made a great
contribution to the measurement of electron transport through molecular junctions.

In summary, advanced techniques such as STM, MCB and EMB were developed
to fabricate molecular junctions. However, it is still formidable to control the mo-
lecular scale structures precisely. Despite the structural uncertainty, the conductance

of a single molecule junction can be identified by statistical analysis.

0.2 MaNyY-BopYy THEORIES

Theoretically, the goal is to predict the transport properties of an open quantum sys-
tem in non-equilibrium steady state. Two components are needed for achieving this
goal. One is the quantum transport formula and the other is the electronic structure
of the open system.

The transport formula can be obtained from MPF. Based on the concept of wave
scattering, Landauer derived a formula for non-interacting two-terminal junctions in
the 1950s.” Later in 1986, the Landauer formula was generalized to non-interacting
multiple-terminal cases by Biittiker.” The Landauer-Biittiker formalism greatly im-
proved our understanding of quantum electron transport. In 1971, the first rigorous
quantum transport theory was derived by Caroli et al. based on non-equilibrium

Green functions (NEGF) ” for non-interacting systems. ** In these studies, the steady
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state evolves from a non-equilibrium initial condition with the coupling between
a lead and the center region turned on gradually. Alternatively by establishing the
steady state from an equilibrium initial condition, Cini constructed another equival-
ent quantum transport scheme also with NEGF in 1980.” Importantly, Meir and
Wingreen generalized Caroli’s work to interacting cases in 1992.° The Meir-Wingreen
formula provides a general theoretical framework for studying quantum electron
transport. It reduces to the Landauer formula in the non-interacting limit.

The electronic structure of the open quantum system is needed when we apply
a transport formula. To obtain the electronic structure, one is concerned with three
issues: open boundary condition, non-equilibrium effects and electron correlation.
In 1995, Lang used a self-consistent procedure based on GS-DFT to attack the prob-
lem.”* In Lang’s method, GS-DFT includes electron correlation. The electron dens-
ity was calculated by summing up the squares of the occupied scattering states which
were found by solving a Lippmann-Schwinger equation with the open boundary en-
coded. However, as a limitation, the leads were described by the jellium model which
ignores the atomistic structure. In 2001, based on Lang’s method, Guo et al. invented
the DFT+NEGF method which employs NEGF to compute the electron density.
NEGEF takes care of the open boundary condition and the non-equilibrium distribu-
tion. Another improvementby Guo etal. is taking the atomistic structure of the leads
into account. Several implementations of DFT+NEGF have been reported. *°~** Im-
portantly, the DFT+NEGF method enabled efficient simulations of realistic molecu-
lar junctions. It has been extended to tackle spin dependent transport* and include
electron-phonon coupling. *** It usually bears qualitatively correct current-voltage
characteristics for molecular junctions. ***” However, the predicted currents can dif-
fer from the experimental results by several orders of magnitude.** Possible reasons
include the complexity of the molecule-lead contact, the self-interaction error, inac-

curate electron correlation, and lack of dynamic effects.**= In this thesis we would



o. INTRODUCTION

like to address the problem that non-equilibrium effect is absent in GS-DFT and ap-
ply SS-DFT instead to solve the electronic structure of the open quantum system.

In 1993, Hershfield showed that a system in non-equilibrium steady state corres-
ponds to an effective equilibrium system.’* The correspondence provides the basis
for SS-DFT. In SS-DFT, the equilibrium and current-carrying electron densities, p.
and p,,, together determine the properties of the open system in the steady state,
e.g. the energy Ey = Ep[pe, pn). In order to approximate the exchange energy
functional E,[pe, pn|, we generalized the Thomas-Fermi-Dirac (TFD) model to non-
equilibrium cases and derived the exchange energy density £ of a non-equilibrium
uniform non-interacting electron gas as a function of p, and p,,.” In this way, the
non-equilibrium effects are taken into account at the energy functional level expli-
citly. Furthermore, the stationary condition of the effective ground state energy leads
to a dual mean field (DMF) approach for obtaining the steady state.’® In the DMF ap-
proach, equilibrium electrons experience a different mean field from that for current-
carrying electrons. NEGF is also used to take care of the open boundary condition in
the DMF approach. We have implemented SS-DFT in the SIESTA package and sim-
ulated several realistic molecular junctions with our implementation.”” Note that the
correlation energy functional for SS-DFT is still unknown. In our simulations, we
simply set it to the GS-DFT one, which may not be a bad approximation for weakly
correlated systems.

As an overview, Fig. o.1 shows the theoretical framework for studying the trans-
port properties of an open quantum system in steady state. In this framework, NEGF

and SS-DFT are combined to solve the problem.

0.3 PURPOSE AND SCOPE

The purpose of our study is to develop the steady-state density functional theory

for open quantum systems in a non-equilibrium steady state and provide a first-
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EGF

Figure 0.1: The theoretical framework for studying open quantum systems in steady state. The abbreviations:
SQ stands for second quantization; EGF stands for equilibrium Green'’s function; PBT stands for perturbation
theory; NS stands for non-equilibrium statistics; HNS stands for Hershfields’ non-equilibrium statistics; <J>
is the steady electric current. The blue objects pertain to equilibrium ground state. The red objects pertain to
non-equilibrium steady state.
principles method based on SS-DFT for simulating the electronic and transport prop-
erties of molecular junctions.

SS-DFT turther improved our understanding of open quantum systems in steady

state by identifying their basic variables. Our first-principles method based on SS-

DFT will be an efficient theoretical tool for the study of electron transport in mo-

lecular devices.

A concise account of many-particle formalism and density functional theory will
be given in chapter 1. In chapter 2, SS-DFT will be developed in detail. Finally, simu-
lations of several molecular junctions will be presented in chapter 3. Chapters 2 and 3

contain the main results of this thesis. Experimental studies are absent because of the

NEGF

SQ

theoretical nature of this work.

HNS TD-DFT
Pes Pn SS-DFT
GS-DFT




The book of nature is written in the language of mathematics.

Galileo Galilei

Many-Body Theories

In this chapter, we review the many-particle formalism (MPF) and the ground-
state density functional theory (GS-DFT). For MPF, both equilibrium and non-

equilibrium Green’s functions will be covered.

1.1 SECOND QUANTIZATION

In this section, we explore the language of second quantization whose power lies in
operator algebra. Second quantization relies on creation and annihilation operators
which will be introduced gradually in the following.

Let H be the Hilbert space spanned by the eigenstates of a single particle Hamilto-
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nian A

il |Oé> = €a |a> ) (1)

where |) are orthonormal

<O/’ Oé> = 5&0{’- (1.2)

Any vector in H is a linear combination of |a)s. Since a many-body system is a collec-
tion of individual particles, its state can be constructed from single particle states. All
states constructed in this way span a configuration space. For a system of IV particles,

the configuration space Cy is
CN=HOH® - @ H. (13)

Any vector in Cyy is a linear combination of |a1) ® |ag) ® - -+ & |ay)s.
The Hilbert space H y for a system of IV particles, defined in the configuration
space Cy, consists of complex, square integrable functions. |ay, oo, -+ ,ay) =

la1) ® |ag) ® -+ - ® |ay) form the canonical basis for H y. Its completeness reads

S° Jar,az, - saw) (ag, 0z, an = 1. (1.4)

a1, AN

The canonical basis however doesn’t reflect the anti-symmetry of a N-fermion state

YN, namely

¢N(mp1> Lpys e 7pr) - (_1)1)1/}]\[(:1:17 P >mN) (1-5)

with p representing some permutation. In order to find an anti-symmetric basis,

define the symmetrization operator P, for any ¢

R 1
,PwN(wbw%' o 7wN) = MZ(_l)pr(wpuwpla tee 7pr)' (1-6)
T op

8
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Then an anti-symmetric basis can be constructed as
‘0417a2a"' ,OZN) =V N!P’alaa%'“ 7aN)

whose completeness is

1

m Z |Oél,"',OCN><061,052,"',06N‘:1.

a1, AN

Fock space F is defined as
F = @ F,,
n=0

where

F0:|0>,
F,=H,n=123,---

The closure relation for Fock space is

=1
|0><0|+Zﬁ Z |Oé1,062,"',OéN><Oél,Oé2,"',aN|:1.
N=1 1 an

AL,y

In Fock space, the creation operator &; is defined as

’)\,/\1,"' ,)\N> ﬂ)\z :)\,
CALA|/\1,"' ,)\N>E

The annihilation operator @y is defined as the Hermitian adjoint of &ir\

(r10)

(r.1r)

(L12)

(113)
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It has the property

d)\|)\1,... 7)\N>:

(_1>171|/\1,,.. 75\1.’... ) 3N =
(114)

0 BN =\

where \; means eliminate this \;. Particularly @ [0) = 0. According to the definition

of creation operator

T
L= 0. (r1s)

The Hermitian adjoint is

{au,a,} = 0. (1.16)

Due to the anti-symmetry of the basis upon which creation and annihilation operat-

ors are defined

{dﬂ, dl} = Opw- (r17)

Next, we will express observables in term of creation and annihilation operators.
Define the number operator

alay. (1.18)

(5

It has the property

ﬁ)\‘)\h)\%"' 7)\N> =

Define the total number operator

N = Zﬁ,\. (120)

10
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It has the property

N [Wn) = N [Yn), (r.21)

where N is the total number of electrons in the system of state [¢y). Any single

particle operator U = ) . 1; can be expressed in terms of number operators

U= Z (T (1.22)

where o is the diagonal representation of @ with

ila) = uq ),

(1.23)
<B| Oé> = 5a6-
Define the pair counting operator
Pog = figMg — Oapita. (L24)
It has the property
~ |)‘1a)‘2a"'7>\N> ElZ,j,)\Z:Oé,Ajzﬁ,
Paﬁ’)\h)\%”' a)\N> = (1-2'5)
0 otherwise.
In another form
Pap = },a050q. (1.26)

Any two particle operator V' =}, . 9;; can be expressed in terms of pair counting

operator

1 |
V=23 > vapPap = 3 > vapdlabagio, (127)

afs af

II



1. SECOND QUANTIZATION

where o3 is the diagonal representation of © with

v |Oéﬁ) = Vagp |O.//3) )

(B aff) = daardpa-

(1.28)

Between two different representations av and 3

o) =Y (8l a)|B). (1.29)

B

The creation operators a], and d} can be transformed as follows

al, =Y (Bl o) al,. (130)
B
Correspondingly
o =Y (a| B)as. (1.31)
B
For a single particle operator
U= Zua&Lda = Z“Bﬂ’dgdﬁ’- (1.32)
o BB’
For a two particle operator
y_1 tatn oo L ot ot
V= ) Z Vao/ QO Qo G = 9 Z UB18283B81 A3, A3, A3, A3 - (133)
aa’ B1P283B4

In spin spacetime representation, let € = (r, ). The anti-commutation relations

are

{d(@). (")} = d(z —2),

{#1(@), (")} = {d(2), ()} = 0. (134)

I2



1.2. EQUILIBRIUM GREEN’S FUNCTION

We have the transformation to o representation

i) => (] x)al = Z¢
“ (135)

$(e) =3 (el ah o = 1 tule)

[0}

12 EQuIiLiBRIUM GREEN’s FUNCTION

In the language of second quantization, the equilibrium Green’s function will be
defined and explored in the section. As a prerequisite, we first introduce pictures

of quantum mechanics.

1.2.1  PICTURES

Let A(t) be a general time-dependent unitary operator

~ A

ATBA@M) =1 = A(t)AT(¢). (1.36)
Define a wavefunction and a operator in A picture as

[ () = A(t) [¥)

R . (137)
O(t)a= At)OAT(t)
The expectation value of Oin picture A is
<¢’O|¢> = <¢A‘OA|¢A>~ (1.38)

A(t) = 1 defines the Schrodinger picture. In the Schrédinger peiture, the time-

13



1.2. EQUILIBRIUM GREEN’S FUNCTION

evolution operator U (t, ty) is defined by

W(1))g = Ult,to)s [T(to)) - (139)
It satisfies

9. .

ZEU(L to)s = HSU(t, to)g (1.40)

with U (to,t0)s = 1. Note that Hartree atomic units are adopted so that £, equal
to 1, is dropped in the above equation. If the Hamiltonian H s is explicitly time-

independent, the above equation has a solution
Ul(t,to)s = exp | —iHs(t —to)] - (1.41)

In general

Ut(t,t)s = Ut to)s = Ulto, t)s. (1.42)

A(t) = U'(t, 1) s defines the Heisenberg picture. In the Heisenberg picture, we

have the Heisenberg equation of motion

da o [0
000 = On il +1 | | (49
where
00s] _ ~:(30s\ -
[WL,: S(W)Us‘ (1-44)

Let H, be the easy part (time-independent and non-interacting) of the whole
Hamiltonian Hs = Hy + Vs, then A(t) = exp (iI:IOt) defines the interaction

picture. In the interaction picture, an operator evolves according to

i—é(t)[ = [OA],[:IO} —I—Z{%} , (1.45)
I

14



1.2. EQUILIBRIUM GREEN’S FUNCTION

where
{%} ) = exp (iI:IOt) <%) exp ( — i]:[()t). (1.46)
A wavefunction evolves according to
0 A
o (), = V(0 20, (.47

Define a time-evolution operator U (t, ') by

(U(t)), = Ut ) [W(1)), (1.48)
It satisfies
i%ﬁ(t,t’)l =V(t),U(t,t);. (1.49)

A formal solution to the above equation is

(150)

where the time-ordering operator T is defined by

o At)B(ty) ifty > to,
T[A(tl)B(tQ)} = { ) A (L.s51)
Bt)A(t)) ifts > t1.

The transformation of the time-evolution operator between the Schrédinger pic-

ture and the interaction picture follows

Ut t), = exp (iﬁot)U(t, t)sexp (— if:fot/). (1.52)
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The transformation of operators between the interacting picture and the Heisenberg

picture follows

A

O(t)y = U(0,4);0(t)1U(t,0);. (153)

Both the creation and annihilation operators in the interaction picture differ from

those in the Schrédinger picture by just a phase factor

&i(t)r = e "ite;,
A (154)
cl(t); = etel.

1.2.2 DEFINITION AND PROPERTIES

Define the time-ordered product of two creation and annihilation operators by

(rs5)

A

{ At)B(t) ift >t
—B(t)A(t) ift >t

Let |W) be the ground state for some Hamiltonian H. The Green’s function in a

general \ representation is defined by

. 1\ — a T o U
ZG()\t7 Nt ) = <\IJO’ \Ifo> <\IJU|T[C)\<t>HC)\’ (t )H” 0>' (156)
In the spin spacetime representation
. I 1 7 147
iG(xt, x't) = ——— (V| Tt (xt) goT ('t ]| o), (1.57)
(Wo| Wo)

or with the spin indices explicitly

1

iGaﬁ(rt,T/t/) = <\I]0|—\IJO>

(Wo| T oo (rt) b (r't ) ][ Vo). (158)

16



1.2. EQUILIBRIUM GREEN’S FUNCTION

In the Spil’l momentum representation

iGap(kt, k') = m(\lloﬁ[cka(t)[{cjc, () u][ o). (1.59)

If the Hamiltonian is explicitly time-independent, the Green’s function depends

only on the time-difference (¢ — t')
H+#H(t) = GOLN) =GN, t—1). (1.60)
If the Hamiltonian commutes with the total-momentum operator P

P=3" [ ardlm)(-iV)ia(r). (161

the Green’s function only depends on the difference between the space coordinates

(r—1)

[H,P]| =0 = Gup(rt,r't") = Gop(r — ', t,1'). (1.62)

Then we have the Fourier transform
G, t,8) / d(r — ) ® TG (rt r'E), (1.63)

and the inverse transformation

dk ik-(r—r’
Gop(rt,v't') = / Wek( )Gos(k,t,t). (1.64)
Furthermore
[H,P] =0 = Gop(kt,k't") = 01y Gk, t, 1), (1.65)

17



1.3. PERTURBATION THEORY

where G,s(kt, k't') is the momentum Green’s function defined in Eqn. 1.59 and
Gop(k,t,t') is the Fourier transform of the space Green’s function. If the Hamilto-
nian both commutes with the total momentum and is explicitly time-independent,

the Green’s function writes
Gop(rt,r't') = Gopg(r — v’ t — ). (1.66)
In this case, the Fourier transform is
Goslk,w) = / d(r — r')d(t — t)e * e OG S(rt, r't).  (167)
The inverse transformation is

Gop(rt,r't') =

@) / dkdwe® ==t o (k, w). (1.68)
m

Given the Green’s function, the following quantities can be calculated. 1) The
ground-state expectation value of any single-particle operator. 2) The ground-state

energy of the system. 3) The excitation energies of the system.

1.3 PERTURBATION THEORY

In this section, we explore the perturbation theory which relates the full Green’s func-

tion (with interaction) to the free ones (without interaction).

1.3.1 PERTURBATION EXPANSION

Assume a2 Hamiltonian

]fls(t)s = Hy + ey (1.69)

18



1.3. PERTURBATION THEORY

with e > 0and Hj being the easy part. Let |®) be the ground state for Hy. Let
|Wy) be the ground state for H --0(0)s. Att = 0, the Schrédinger, Heisenberg and

interaction pictures coincide. Let

[W.(0)) = [.(0)); = U.(0, —00)1 | Py) (1.70)

Gell-Mann-Low theorem states that if the vector |£) = lim._,o % exists to

all orders in perturbation theory, then |€) is an exact eigen function of H._,((0)s.

Hopefully

W) — lim [2.(0)). (70
Using Eqn. 1.50, 1.53, and 1.71, we have

(Wo| Tex(t) e, (¢) ]| Wo)

iGN =

(Wo| Wo)
. L -~ ()" /°° /°°
= lim - dty - -- dt, (r72)
=0 [{@p|Ue (00, —00)1|Po) ; nl ) —o0

x e~ B+l (1T (5(2:) s - - - D(E ) s (£) 60, (#) 7| |Da) |
0 1)1 n)ICA\U)ICy I 0

3.2 WICK’S THEOREM

As an operator equality, Wick’s theorem expresses a product of creation and annihila-
tion operators as a sum of the products of contractions and normal ordered products.

Let @} and b! (@; and b;) be the creation (annihilation) operators for particles and
holes respectively. For a product of creation and annihilation operators, define the
normal order operator N which brings the annihilation operators to the right, and

multiplies the product with the sign of the permutations applied. For example

N{bi(t1) 16} (82) 1D} (t) 1] = (—1)%al (£2) 1] (3) bi(t1) 1. (1.73)



1.3. PERTURBATION THEORY

Let AB - - - Z be some creation and annihilation operators. Define the paring of two

operators by

/IAl_IB = AB — N(AB) (1.74)

For example,
ai(t)ral(t')r =05,
— 3 - (1.75)
bi (t)[b] (t,)[ =e' (¢t )5” .
All other pairings vanish. Thus any pairing is a c-number. Since (@ ]N (1213 ) | Do) =
0,

~

(@0l AB| Do) = (®0| N (AB) + AB|@o) = AB. (1.76)
Define the normal ordering for a product with pairings

N(ABCDE---XYZ) = (-1)"ADCYN(BE --

1DCY -XZ). (1.77)

Here ¢ is the number of commutations needed to bring the paired operators to the

left of the product. The Wick’s theorem for normal products states that

~ A

Avdy- Ay =N (A, A)

+ - - - all other one pairing terms

CR (A Ay) (178)

L1

+ - - - all other two pairing terms-+

~+all completely paired terms.
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1.3. PERTURBATION THEORY

For time ordered products, define the contraction by

1

A)B()

~

The contraction is related to the pairing by

— A)B(t) ift >t
AW B() = { —
—B(tYA(t) ift' >t.

Therefore, contractions are c-numbers, so that
—

(®o|T(A)B(t))|20) = A(t) B(t).

According to the properties of pairings

—H ] o

AAAAA ~ A A

N(ABCDE---XYZ) = (-1)P"ADCY N (BE - --

The Wick’s theorem for time-ordered products states that

~ ~ A A ~

T(AAy--- Ay) =N (A - A,)

]

~

T(A@M)B(t)) — N(A(t)B(t)).

(1.79)

(1.80)

(1.81)

CN (A dgdy - Ay) + N(Adydy - A,)

+ - - - all other one contraction terms

~ A oA~ 1L
+N (A4, - A,)

-+ -+ - all other two contraction terms-+

~+all completely contracted terms.

Ky . . . . . A N, . Ky
If Hy is explicitly time-independent, ¢;(t);¢;(t')s is the Ho-propagator (free
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1.3. PERTURBATION THEORY

Green’s function)

iG(it, jt') :<(I> T[él-(t)Hc HCI)O>
=(®o|T'[¢;(t); | ‘(I)o>
—
=Ci()165(t')1
While other contractions are zero

Similarly for field operators
—

Dlat) ) (@'t = iGO(xt, 2't)),

and
— —

Ylat)h(a't); = 0 = i (wt) bt (2t

1.3.3 DIAGRAMMATIC CALCULATIONS

(1.86)

The Green’s function in \ representation is given in Eqn. 1.72. We set A\ = 7 to be

discrete in the following. The Green’s function in the spin spacetime representation

writes

iGop(rt,r't') =

lim / dt / dt,
e—0 <CI>[)’U (OO OO ‘(I)O Z TL' —oo ' —0o0

n=0

x el Flinl) (| T [f’(tl)l E @(tn)lﬁ(ﬁ)llﬁ(r't/ﬁ] |@0>}

(1.87)
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Let

3(t); = %Z<¢j|v|kz>e}<t)la;(t),el(t),ek(m (1.88)

ijkl

for a discrete representation and

o(t); = % / da / da'v(z, )" (@t) 0 (2't) 10 (2't) 1 () (1.89)

for the spin spacetime representation. Apply Wick’s theorem to Eqn. 1.72 and Eqn.

1.87, the nth order term becomes

(_‘?n x {E”“m }/d”te_5(|t1-~)
nln

Jday [ day - (1.90)
X () ) (v) (G°) -+ (iG°).
nf;crtors (2n+f)'factors

Eqn. 1.90 can be evaluated in a diagrammatic way invented by Feynman.” The

recipe for translating the above equation to a diagram is as follows.
1. Imagine a time-axis with time increasing from below to above.
g g

2. The Hy-propagator G°(\t, N't') is represented by a continuous line from
(N't') to (At). An arrow is drawn on the line pointing from the second to the
firstargument. The endpoints are ordered in time; the length, curvature or tilt

of the lines do not matter. The diagram for G°(\¢, \'t’) is shown in Fig. 1.1.

3. The matrix elements of the interaction are represented by a wiggly line with
the endpoints labeled according to Fig. 1.2. The points where the interaction

lines are connected to propagators are called internal vertices.

4. Green’s functions with equal time-arguments shall be interpreted as G°(A¢, N't™).
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1.3. PERTURBATION THEORY

M Nt
/b\. )\/t/
Nt At or
by
Nt At
for t > ¢/ for t' >t fort/' =t

Figure 1.1: Diagrams for the H-propagator GO(/\t, Nt).

Figure 1.2: Diagram for the interaction matrix element (i5|0|kl).

5. All indexes for an internal vertex shall be summed or integrated over. The

—elt]

factor e shall be added to the integrals over time.

6. The sign of any term is (—1)" where [ is the number of closed loops formed by

GP-lines.
7. The prefactor of each term of nth order is

Z”I’L

nl2n’

(1.91)

The above rules are also valid for the vacuum amplitude. For example, the diagram

in Fig. 1.3 represents the term

i . . i
(1515 3 3 [ dtr [ dtae D ) )

pqrs jkmn

X GO (mty, pta) GO (sta, jt1)GO(nt1, qta) GO (rts, kty). (r.92)
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1.3. PERTURBATION THEORY

Figure 1.3: A second order vacuum amplitude diagram.

For the vacuum amplitude, the Linked-Cluster theorem by Goldstone states that
<®0’UI|<I>O> = exp [<CD0‘UI‘(I)O>L} (1.93)

Here <<I>0 } U; ‘ <I>0> ;, means thatonly connected diagrams are included in the sum. For
the Green’s function, all terms of the numerator are obtained from the product of all
connected diagrams which connect the two external endpoints with all diagrams of
the vacuum amplitude. Thus the denominator cancels.

For any graph in the expansion of the Green’s function, the remaining part after
excluding the connections to the external end points is a self-energy insertion. The

sum of all self-energy insertions is the self-energy M which is illustrated in Fig. 1.4. A

At At At
)\1151
= + +— Self-energy M (At , Njt})
A t)
Nt/ N Nt/

Figure 1.4: Diagrammatic representation of the self-energy M The thick line represents the full Green’s
function.

self-energy insertion is called reducible if it can be partitioned into a lower-order self-
energy insertion by cutting a single GP-line. The sum of all irreducible self-energy
insertions is called proper self-energy M. The self-energy can be obtained from the

proper self-energy, as shown in Fig. 1.5. The Green’s function is related to the proper
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v (1
At At @
101 101 )\th
M= = + + @ e
ath
it it @
w g
Figure 1.5: The self-energy M expressed in terms of the proper self-energy M.
selt-energy by Dyson’s equation as shown in Eqn. 1.94 and illustrated in Fig. 1.6.

G\, N1 = GO0, Nt)+

ZZ/dtl/dt’lGO()\t,/\1t1)M(/\1t1,Xlt’l)G(Xlt’l,Xt’).
YR

(1.94)

Mt At M
)\1 tl
= +
A1t
Nt Ve Nt

Figure 1.6: Diagramatic representation of Dyson’s equation. The thick line represents the full Green’s function.
M is the proper self-energy.

1.4 NON-EQUILIBRIUM GREEN’s FUNCTION

A system out of equilibrium may not go back to its ground state at ¢ — oo. In
this case Gell-Mann-Low theorem doesn’t apply for 0 < ¢ < oo. However a sys-
tematic theoretical framework for obtaining non-equilibrium properties can still be
established with the aid of a contour ordered integral. The non-equilibrium many-
particle formalism is structurally parallel to the equilibrium one. In this section, we

will focus on the non-equilibrium Green’s function.
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1.4.1 DEFINITION AND PROPERTIES

Consider the Hamiltonian
H:ﬁ0+Hi+ﬁ/(t): (r.95)

where Hy is the easy part (time-independent and non-interacting), H; contains many-
body interaction, and H’(t) is time dependent. H’(t) drives the system to non-
equilibrium. To approach non-equilibrium properties, assume the system is in equi-
librium at the beginning and the non-equilibrium part is turned on att = t,,. Before

to, the system is described by the equilibrium density matrix

(1.96)

ﬁ(il) — exp(—ﬁﬁ)
Tr [exp(—ﬂiz)] ,

where h = Hy+ H;. After the non-equilibrium partis turned on, assume the thermal

dynamics is still governed by ,6(?1) Then the task is to calculate
(O(1)) = Tr | p(R)On(t)] (197)

The expectation of an operator O(t) can be expressed in terms of contour-ordered

Green’s functions G(1, 1') defined by
iG(1,1) = (Telu (D)9} (1)), (.98)

where (1) = (2,t,) and the contour ordering operator T¢; brings the later (on the
contour C) field operator to the left. C'is a time contour and illustrated in Fig. 1.7.

The contour-ordered Green’s function in Eqn. 1.98 contains four different cases:
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Gy
b T

tt\_/ﬁ

Cs

Figure 1.7: Contour C.

G(j(l, 1,) ti,t1 € (&
G~ (1,1") t; € Cyty €C
G(1,1) = ) 1 2, b1 1 .
(L1) G<(1,1) t €ty € Cy (x99)
Ga(l, 1) ty,t1 € Cy
In detail, the Causal or time-ordered Green’s function G
Ge(1,1) = —i{Te[bu (1)) (1))
(r.100)
= —i0(t; — 751')<1/1H(1WL(1,)> +i0(ty — tl)(d’}{(l/)@DH(l»a
the greater Green’s function G~
G”(1,1) = —i(¥u (19} (1), (L.101)
the lesser Green’s function G<
G<(1,1') = +i(W}h(1)r(1)), (L102)
and the antitime-ordered Green’s function G'&
Ge(1,1) = —i(Telbu (1)} (1)
A A (r.103)
= —if(ty — t1) (Y ()} (1)) +i0(ts — tv) (b5 (1) da(1)).
The above four Green’s functions are linearly dependent, i.e.
Goe+Gs=G~+G". (r104)
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1.4. NON-EQUILIBRIUM GREEN’S FUNCTION

Furthermore, the advanced Green’s function is defined as

G*(1,1') =if(ty — t2)({du (1), ¥} (1)})
=0t — t)[G=(1,1") = G7(1,1)], (1.105)

and the retarded Green’s function is defined as

G'(1,1) = —ib(ty — tr)({hu (1), O} (1)})
—0(t;, — £,)[G7(1,1') — G<(1,1)]. (1.106)

Thus we have G — G* = G~ — G~.
The contour-ordered Green’s function can be transformed into a form for which

Wick’s theorem can be applied. Let

H,(t) = exp[iﬁ(t — 1) H'(t) exp[—ih(t — to)], (r.107)
and
on(t,to) =T {exp {—2/ dt'ﬁfﬁ(t/)} } . (1.108)
Then
i (t) = 0} (t, to)bn(t)in(t, to).- (1109)
Using Eqn. 1.109, we have
iG(1,1') = (To[SEdn (1)} (1)), (1.110)
where
SH — exp {—i/CdTﬁ,'L(T)} : (r.1m)
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Replacing the h-dependence by Hy-dependence, we have

Te { oo 5%, St (Ditly, (1]}

iG(1,1") = —— ) (rr2)
Tr[poTec,(SE,5¢)]
where the density matrix
—BH,
Do = exp( B 9> , (r1m3)
Trlexp(—/SHy)]
and
St = exp [—z/ dTﬁ}JO(T)] :
¢ (r114)

S’icv = exp [—z/ dTH;er(T)} :
Cy
The contour C, isillustrated in Fig. 1.8. After Eqn. 1.112.is expanded into perturbation

series, Wick’s theorem and diagrammatic analyses can be applied.

y——f

th

to —if

Figure 1.8: Contour C),.

Parallel to the equilibrium theory, we have Dyson’s equation for non-equilibrium

cases

G, 1) :Go(l,l’)+/dw2/ draGo(1,2)U(2)G(2, 1)
e (r.11s)
+/dm2/dm3/ dTg/ dT3G0(1,2)2(2,3)G(3,1,),

where U is the non-equilibrium term of Eqn. 1.95 in mean field approximation. In
order to make the calculations feasible, Langreth theorem can be applied to relate a

contour integral to a real axis integral.”* For example

C<(t1,t1/):/dTA(tl,T)B(T,tll)
C
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Contour Real axis
= / AB o< = / [A7B< + A<BY
C t
cr = / AT
t
D= / ABC D= = /[ATBTC’< + A"B<(C° + A<B“C'a]
C t

D" = [ ATB"C"
C(r,7) = A(r,7)B(r,7") C° (t,t’t) = AS(t,t)B=(t,t)
C"(t,t') =A<(t,t)B"(t,t') + A"(t,t')B<(t,t)
A" (t,t)B"(t,t)
D(r,7") = A(r,7)B(r',7) D<(t,t') = AS(t,t)B”(¢,t)
Dr(ta t,) = A~ (t7 t/)Ba(t/> t) + Ar(ta t/)B<(t/> t)

Table 1.1: Examples of analytic continuation.

_ / T AT (1, DB 1) + A< (11, )B4 1), (1.116)

—00

More examples are given in Tab. 1.1. Applying Langreth theorem to Dyson’s equation

with the non-equilibrium term absorbed in the free Green’s function, we have

G< =G5 + GpX'G< + GiX<G* + Gy G*. (r117)
Infinite iterations lead to

G- =(14GY)Gs(1+XG") + GEG". (r.u8)
After Fourier transforming time into frequency, Eqn. 1.118 becomes

G< =G'X<G". (r.119)
By writing so, we have used (1 + G"X")Gy = 0in the limit ) — 07 with
Go(w) = [w — e +in]
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G"(w) = [Gh(w) ™! — 2" (w)] 7, (r120)

G5 (w) = 2mif(er)d(erx — w).

1.4.2 LANDAUER FOrRMULA

The Landauer formula expresses current as an integral of transmission over energy. It
deals with non-interacting electrons and treats their transport as wave scattering. Bey-
ond mean field, a general formula for electric current through an interacting region
was derived by Wingreen et al. in 1992. Wingreen’s formula falls back to the Landauer
formula in the non-interacting limit. In this section, we will present Wingreen and
Landauer’s results.

Consider a tunnel junction consisting of left lead, interacting center region, and

rightlead asillustrated in Fig. 1.9. When left and right chemical potentials, 17, and pig,

143
KR

L R

Figure 1.9: Atunnel junction with interacting scattering region.

are different, electric current / flows through the junction. The model Hamiltonian

for the system in Fig. 1.9 is

H = Z ekaé};aéka + ﬁmt(c@:, cZn) + Z <Uka,né};adn + h.c.) , (r121)

k,a k,a,n

where v € L(R) runs over the quantum numbers belonging to the left (right) lead;
]:Imt describes the many-body interaction in the scattering region; the last term is
the coupling between the left (right) lead and the center region. Assume the tun-
neling term is turned on gradually and the desired steady state will be established

at certain time, then we have a time dependent process for which non-equilibrium
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1.4. NON-EQUILIBRIUM GREEN’S FUNCTION

many-particle formalism can be applied. Let left-going electric current direction be

positive. Then the electric current operator is

:—._[NMH} (r122)

. . & oA
where e > 0 is the unit charge and Nj, = > k.ocl ChaCka 18 the number operator of

the left lead. Apply the thermal average of Eqn. 1.97, we have

I =(I)
% [Uka7n<éLaCZn> — c.c.} (r.123)
k aGL
:—Re[ > thanGialti1)].

k aGL

where the lesser Green’s function G}, ., is defined by
n, ka(t t - Z<ck CZ ( >> (1'12'4)

In order to simplify Eqn. 1.124, consider contour-ordered Green’s functions for which

we have

Gn,ka(Ta T/) = Z / dTlGn,m(Ta Tl)vlta,mgka(Tla T/)a (I'IZS)

where G, 1, and g aer(r) are the Green’s functions for the central region and the
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1.4. NON-EQUILIBRIUM GREEN’S FUNCTION

lead L(R) respectively. Its analytic continuation leads to

nka t_t Z/dtlvkzam ( )gka(t - t/)]+

(1.126)
G< ( )gka(t _t/)

After Fourier transform from time to energy, the lesser Green’s function reads

n ka Z Vka m gka( ) + Grf,m(e)gl(z:a(e)]‘ (1'12‘7)

Thus the electric current in Eqn. 1.123 becomes

de . "
I = E Re{ ge:L VianViian [Groniia + Critial |- (1128)

Define a level-width function

[T (k)] 1 = 27 D Pl €r)Van(€8) 05 1 (€k), (L129)

a€el

where p,, (€, is the density of states in channel . Eqn. 1.128 then becomes

=" e (a0 + 1@[@ @ - ¢0)}). (o)

A

where f,(€) is the distribution function in the left lead. Starting from I = e(Ng),

one ends up with

ie de

In=—"% [ 5oTr (I‘R( ){G<(e) + fa()[GT(e) — G*(6)] }) (L131)
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1.5. GROUND STATE DENSITY FUNCTIONAL THEORY

Combine Eqn. 1.130 and 1.131, we have the general expression for the electric current

I :(]L +Ip)/2

_e E Te { [TH(e) - TR(O] G<(0)+ (1132)

[F(OT(0) — fa(OTH (O] [G"(6) — G*(9)] 1

For the non-interacting case, one has Dyson’s equations for the Green’s functions

in the center region which enables us to rewrite Eqn. r.132 as

e [ de a .
I=— / —[fr(e) = fr(e)] TH{GTEG'T*}. (1.133)
h ) 27
In terms of the transmission coefficient from left to right
toar = 27 Z P00 G et m (r.134)
witha € Rand o/ € L, the electric current in Eqn. 1.133 becomes

e de
I=4 [ 5olfele) = falo) Te{et! o)), (1139
T
which is the usual Landauer formula.

L5 GROUND STATE DENsSITY FUNCTIONAL THEORY

In this subsection, we review the ground-state density functional theory (GS-DFT)
which is an alternative to MPF for solving ground-state properties. GS-DFT is based
on two Hohenberg-Kohn (HK) theorems.” The first HK theorem states that any ob-
servable is a functional of the ground-state electron density p, e.g. the ground-state
energy Ey = Ey[p]. The second HK theorem states that £ |p] is stationary about the

ground-state electron density. To solve 65y = 0, Kohn and Sham (KS) developed
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1.5. GROUND STATE DENSITY FUNCTIONAL THEORY

a mean field scheme by introducing a non-interacting reference system.“* The exact

Eo[p] is still unknown but can be well approximated.

5.1 HK THEOREMS

The proof of HK theorem one is based on the minimum-energy principle. Let p(r)
be the ground-state electron density for some non-degenerate N -electron system gov-

erned by the Hamiltonian

~ ~ ~

H=T+ /dr,o(r)vext('r) + Vee. (1.136)

Assume p(r) is also the ground-state electron density for another N-electron

Hamiltonian

H =T+ /d’rp(’r)’uéxt(r) + Ve, (r.137)

!/
where v,

for H and H' respectively. Since | W) # |0),

(r) is locally different from vey (7). Let |¥) and |U’) be the ground states

Ey < (V|H|V) = (V|H'|¥") + (V'|H - H'|V)
(.138)
=B+ [ drplr) [valr) — v (7]
Similarly,
By < ([ Aw) = (w|Aw) — (w|fr — A'|w)
(1.139)
=By~ [ drpr)[oua(r) — tty(r)].
Combine Eqn. 1.138 and .39, we get
Ey + E|, < E} + Ej, (r.140)
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1.5. GROUND STATE DENSITY FUNCTIONAL THEORY

which cannot be true. Thus Ve (7) and v

ext

(r) cannot be locally different. When
they are different by only a global constant, H and H' have common ground state
thus the same ground-state electron density. Therefore, the ground-state electron
density p(r) determines the external potential vy () up to a global additive constant.
Consequently, the ground state can be determined by p(r) and the expectation value
of any observable O is a functional of p(r), such as the kinetic energy T'[p(r)] and
the potential energy Ve.[p(7)]. In V..[p(T)], the classical component is the Hartree
energy E[p(r)] = [ drdr'p(r)p(r’)/|r — 7).

Let Ey[p(r)] be the ground-state energy functional for some N-electron system
with a certain external potential. The second HK theorem reads: For a trial density

¢/ (r), such that p/'(r) > 0and [drp/(r) = N,
Eo < Eylp'(r)] (r141)
where £ is the ground-state energy.

5.2 KS ScHEME

In order to obtain the ground state properties from 6 Ey[p] = 0, Kohn and Sham

introduced a non-interacting reference system governed by the Hamiltonian

L N N
o 2
H, = —3 g Vi+ E vs(7;). (r142)

The reference system has the following ground state

1
vV N!

U, = det[th14)g - - - ]
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1.5. GROUND STATE DENSITY FUNCTIONAL THEORY

¢1(7°1,S1) ¢1(7°2732) 7>01(7“N,8N)

1| Walrys) a(ryse) oo Ya(ra, sw) (113
NG 5 5 5 1.143

Yn(r,s1) ¥n(re,s2) -0 Un(TN, SN)

where the 9); are the IV lowest eigenstates of the one-electron Hamiltonian

A~

1
hs = —§V2 + vg(T). (r144)

W, is assumed to bear the same electron density as the real one in the interacting sys-

tem, namely
N

Prea = D > _|thi(r, 8)]”. (r.145)

%

In the reference system, the kinetic energy is

1 N N

T,= (W= 3 Y VIR = Sl - 5 V) (aeo)

i i

Define the exchange correlation energy functional
Eqelpl = Tlp] — Ts[p] + Veelp] — Valp)- (1147)
Then Ej[p] can be rewritten as
Ealp) = Tlpl + [ drpta+ Valp) + Exlpl (1143)

The minimum of Ej[p| can be searched by varying the single particle states )

with constraints

/ daz)? ()1 () = 03, (1.149)
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1.5. GROUND STATE DENSITY FUNCTIONAL THEORY

which guarantees f drp = N. Following the method of Lagrange multipliers, define
the functional €2 of the IV orbitals

Q)] = ZZ% / di? () (). (t150)

Then €2 = 0 leads to the KS equations

- 1
heWi - [__V2 + Ueff Z %%7 (I'ISI)
where
!
() = veu(r) + [ AT ), (1152)

with v,e(1) = 0E,.[p]/dp(r). Since heg is Hermitian, (¢€i;) is a Hermitian matrix
and can be diagonalized by a unitary transformation. After the unitary transforma-

tion, the KS equations take their canonical form

1
[_§V2 + Vet = €. (r153)

Once the Eqn. 1.153 is solved, the ground-state energy can be evaluated via Eqn. 1.148

or from the formula
L p(r)p(r)
Ly = z; G~ 5 /d’rdr W + Ey.[p] — /drp('r)vxc('r). (L.154)

L5.3 APPROXIMATING F .

Since the exact Ey[p] is still unknown, E,.[p] needs to be approximated in practice.

Under local density approximation (LDA),

B 5] = / drp(r)ese(p), (1155)
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1.5. GROUND STATE DENSITY FUNCTIONAL THEORY

where €,.(p) is the exchange and correlation energy per particle of a uniform electron

gas of density p. £4.(p) can be divided into exchange and correlation parts

5:cc<p> = 5z(p> + 50(0)' (1156)

The exchange part is already known from the TFD model and takes the form

(r157)

with C, = (3/4)(3/7)Y3. Accurate values of ¢.(p) have been obtained by the
quantum Monte Carlo calculations of Ceperley and Alder.*® These values have been
interpolated to provide an analytic form for .(p).

In the presence of a magnetic field B(r), spin up electron density p® and spin
down electron density p play the role of basic variables. “>** In this case, the exchange
correlation energy can be approximated by local spin density approximation (LSDA).

Define the spin polarization parameter by

a _ B a _ B
(= Pr=—r _ pa '05_ (r.158)
P petp
The exchange energy under LSDA then takes the form
EXPAp, pf] = / drpe,(p, ), (1.159)

where £,(p, ¢) = €%(p) + [eL(p) — €%(p)]f(¢) with €2(p) = €.(p,0) = Cpp*/3,
el(p) = eu(p,1) = 2Y3C,p" 3 and f(¢) = 123 = 1)L+ O3 + (1 -

¢)*3 — 2]. The correlation part formally writes
ES ) = [ drped(p.0) (1160)
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1.5. GROUND STATE DENSITY FUNCTIONAL THEORY

It can be evaluated numerically within random phase approximation.”
Beyond LSDA, non-local correction can be included by generalized gradient ap-

proximation (GGA) which takes the general form

Bl = [ drea()anc(p. ). (1161
where
V 2
£E= W (r.162)

The E,.[p] proposed by Perdew, Burke, and Ernzerhof is widely applied.

GS-DFT has become a powerful tool for electronic structure analysis for both mo-
lecules and solids. In principle, it also applies for a molecular junction under zero bias
voltage. However GS-DFT doesn’t apply for the molecular junction under finite bias.
In this case, we will show in next chapter that a steady state density functional theory
(SS-DFT) can be developed and applied. As a remark, time dependent density func-
tional theory (TD-DFT) applies for time dependent processes and uses the time de-
pendent electron density as basic variable.” In order to approach the steady state with
TD-DFT, one needs to solve the time evolution of system state from the beginning to
long time limit which is not necessary when only the steady state is concerned.”* On
the other hand, without solving the transient state, one can obtain the steady state
self-consistently under adiabatic local density approximation (ALDA), which how-

ever loses non-equilibrium effects.

41



1t takes two of us to discover truth: one to utter it and one to under-

stand it.

Kahlil Gibran

Steady-State Density Functional Theory

In this chapter, we will first present the basis of the steady-state density functional
theory (SS-DFT) for open quantum systems. Second, we will introduce a dual mean
field (DMF) approach to solve the electronic structure of an open quantum system
in steady state. Third, we will derive the exchange energy functional explicitly for a
non-equilibrium uniform non-interacting electron gas. Finally, we will discuss the

implementation of SS-DFT in the SIESTA package.
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2.1. BASIS OF THE THEORY

2.1 Basis oF THE THEORY

In this section, we will present two steady-state density functional theorems for open
quantum systems in steady state. They are analogous to the Hohenberg-Kohn the-
orems for a quantum system in ground state.” The steady-state density functional
theorems are proved based on Hershfield’s non-equilibrium statistics with the aid of
an effective ground state. The correspondence between the effective ground state and

the desired steady state will also be investigated.

211 DENSITY FUNCTIONAL THEOREMS

In this subsection, we prove the steady-state density functional theorems.” Consider
an open quantum system consisting of left reservoir, center region, and right reservoir
as shown in Fig. 2.1. The left (right) reservoir is connected to the cathode (anode) of
a battery. In this case, the left chemical potential 11, is greater than the right chemical
potential ;1. The difference between the two chemical potentials determines the bias

voltage by eV}, = 11, — pur where e is the unit charge. The model Hamiltonian for

Center Region

Source

K He

........ 1 cm—nad
'
Figure 2.1: Model of an open quantum system under finite bias. The system consists of left reservoir, center

region, and right reservoir. The two reservoirs are connected to a battery. The chemical potential for the left
(right) reservoiris p11, (L R).

the system illustrated in Fig. 2.11s H = Hyp + He + Hy with

~ _ At A
Hlead - E : Ek:aa’k:aa’k:a’
ka

He = Hun({el}. {&;}), (2.1)
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2.1. BASIS OF THE THEORY

Hy = (Vi slihot; + He).
kai
In Eqn. 2.1;, @« € L(R) runs over the quantum indexes belonging to the left (right)
reservoir; &L , with @ € L(R) creates a Bloch state in the left (right) reservoir; All éj
generate a complete basis for the center region; Hy is the coupling term between the
reservoirs and the center region; H.c. is the Hermitian conjugate of the first term in
H . Note that many-body interaction is only included in the center region.

For the open system in steady state shown in Fig. 2.1, Hershfield showed that the
expectation value of any observable A can be evaluated by a non-equilibrium density
matrix, namely
Tr [efﬁ(ﬁ*’?)fl]

Tr [e—ﬂ(ﬁ—i/)] 7

(A) =

where

Y = ML Z i;[ca'lﬁka + KR Z dl]::a’l;ka (23)

k,acL k,a€R
accounts for the non-equilibrium distribution.” In Eqn. 2.3, 9} with a € L(R)
creates a scattering state incident from lead L (R); and k. > 0 (< 0) when o €
L(R). Importantly, Hershfield’s results provide the basis for the steady-state density
functional theorems which will be proved in the following.
First, Hershfield’s results imply that the steady state corresponds to an effective
ground state. To see the correspondence, let’s define the particle number operators

NL = Z &Loﬂzkon

k,a€L

Ne= ) Dbl

k,0€R

* . .
Assume there are no bound states in the center region.
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2.1. BASIS OF THE THEORY

and
N:NL+NRa
o ) (2:5)
N, , =N — Ng

Ny, Ng,and N,, count the number of electrons incident from left, electrons incident
from right, and non-equilibrium electrons respectively while V is the total number
operator. With the particle number operators N and [V,,, the non-equilibrium dens-

ity matrix in Eqn. 2.2 can be rewritten as

—p(a—v) _ —B(H-aN)

p=e e , (2.6)
where
x N Vi o~
H—H— %Nn, (2.7)
O el 1))
p=—0 (2.8)

Eqn. 2.2 and 2.6 together show that a system in non-equilibrium steady state corres-
ponds to a system in effective equilibrium.
Second, let’s define total electron and current-carrying electron density operators,

p¢(r) and p, (7). Note that the real space representation of Ny, in Eqn. 2.4 writes

K= 3 Ot

k,a€L
= Z /drdr' (r| ka) (ka| ") &z(r)qﬁL(r’)
k,a€L
= [ arar'ste = )i ryinte) @s)

= [ ariir)inir)

z/wmm.
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Similarly
Ngp = /dmﬁk(r)z/}}g(r) = /dr,ﬁR(T). (2.10)
Therefore, the real space representation of Eqn. 2.5 writes
N = drﬁt(’r)?
(2.11)
N, = / drp,(r),
with
pu(r) =pL(r) + pr(T),
(2.12)
pu(T) =pL(T) — pr(T)

Third, we prove the steady-state density functional theorem one based on the min-

imum property of the effective ground state energy. Assume the effective Hamiltoni-

ans 5 V
[j[ :T + /drptﬁext + ‘A/ee - 2 drﬁna
~ R R %4 (2.3)
=t [drpil V=5 [ v,

bear the same p; and N, with ¥, (x) beinglocally different from 9,4 () or V) being

different from V4. The effective ground state energy F can be evaluated as follows

ﬂkﬂ%ﬁmﬁ%>

g ]
" Tr )
:<¢0|H_H,+H,|¢O> (2.14)

>Ej + (ol H — H'|t)o)
2Byt [anpVi = Vi) - 2 [y,
Similarly,
o /
Vi) + M /drpn. (2.15)

E(/) > EO — /drpt(‘/e:rt —
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Combining Eq. 2.14 and 2.15, we get

EO + E(/) > E(l) + EQ, (2.16)

which cannot be true. On the one hand, p; and p,, remain the same when 0, is ar-
bitrarily shifted globally. Furthermore, p. and p,, are equivalent to p; and p,, due to
Pt = pe + pn. Thus p. and p,, determine ¥eyy and Vj, within an additive global con-
stant to Ueqe. This completes the proof for the steady-state density functional theorem
one which indicates that the effective ground state energy is a functional of p. and py,

namely

Eo = Eo [pev Pn]~ (2.17)

Fourth, the minimum property of the effective ground state energy can be re-
phrased as the steady-state density functional theorem two: For trial densities p.,(r),

Pi(r), such that pi (1) > 0, pf(r) > 0,and [ dr[p;(r) + p(r)] = N,

Ey < Eolp,, p) (2.18)

where Eqy[pl,, p!,] is the energy functional in Eqn. 2.1r7. The theorem two forms a
starting point for searching the desired steady state.

Asafinal remark, according to Eqn. 2.12, electron densities py, and pp are also equi-
valent to p; and py,. Therefore, the two steady-state density functional theorems can

be stated in terms of pr, and pg. This is useful for developing mean field approaches.

2.1.2 FROM STEADY STATE TO EFFECTIVE GROUND STATE

In this subsection, we will investigate the correspondence between the steady state

and the effective ground state by evaluating the total number of particles (N ) and

~

the effective energy (H).
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For simplicity, we ignore the many-body interaction and write the Hamiltonian

as

H=""epliy, (2.19)
i
and the effective Hamiltonian as

H=1f— 6—VbN Z bl (2.20)

In Eqn. 2.19 and 2.20, the index 7 stands for kq; €; is defined to be

€ —1)%eV}/2 (2.21)

61‘262‘—(

with§; = Ofora € Land§; = 1fora € R. Eqn. 2.19 and 2.20 imply that a state of

energy €; in the true system corresponds to a state of energy €; in the effective system

Now let’s turn to the evaluations of (N) and (H). First, the non-equilibrium

density operator p in Hershfield’s formalism writes
ﬁ:exp[—ﬁ(]:[—y —exp BZ (2.22)

where the effective chemical potential /i is given in Eqn. 2.8 and 7, is the particle

number operator, i.e. 7; = wj ;. Thus the partition function is

Tr[j)

nfent sl

— ) |- (2.23)
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zl_: 21_: HCXP B (& — i) ni
[0

where \; = exp [— (& — [1)]. In step 2, the commutation relation [7;, ;] = 0 was

applied. Second, the total number of particles is

1 R .
=7 ; Z <“’"i"‘|pzi:”i""”i”'>

ol 2=,
1 1 1 00 00
“rg 2, 2 I
1 1 00 e oo
_ U Y 2\ h) A\ ;
Ty [1:12 LERNITE ;n]
00 1 00 )
. MJO+2)+0+a) ) - HAS“Z } (2.24)
Tr[p] i=2 no=0 J=2
1 o o
T Tr[p)] ZIJ]ZJl: (o)
00 )\l
:;HAZ
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= 1A {A11H(1+)\ + (14 M) Z HA’“Z”- } (2.25)
Tl‘[p] i=2 no=0 =2 7j=2
1 o0 o
- & T (5, + A
=\
:;1+)\i
€;

M

— 1+exp[-B(&— Q)]

(2

Eqn. 2.24 and 2.25 imply that the effective system is in equilibrium.

In summary, single-particle states incident from left (right) are pulled down (lifted
up) by eV},/2 when a many-body steady state is mapped onto an effective ground
state. Asa result, the effective system has a common Fermi energy fi = (1, + pir)/2,

as illustrated in Fig. 2.2.

() (b)

K

KR

€

Figure 2.2: Correspondence between a non-equilibrium steady state (a) and an effective equilibrium ground
state (b). The red (blue) wiggly arrow indicates an electron incident from left (right). The states incident from
left (right) are pulled down (lifted up) by eV})/2. The effective Fermi energy [i = (ML + ,uR)/Z

2.2 Dualr MEAN FIELD APPROACH

In this section, we will present the dual mean field (DMF) approach for solving
the electronic structure of an open quantum system in steady state.” The DMF ap-
proach is based on the stationary condition of the effective ground state energy. As
mentioned in section 2.1.1, the effective ground state energy can be written as either
E, [Pe, pn] or E, [pL, pr). When the former expression is used, SE, [Pe, pn] = Oleads

to the EN representation of the DMF approach. When the latter expression is used,
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2.2. DUAL MEAN FIELD APPROACH

§Eolpr, pr] = 0leads to the LR representation. In either representation, the open
system is described by two mean fields instead of one. In the EN representation, one
mean field is for equilibrium electrons and the other is for current-carrying electrons.
In the LR representation, one mean field is for electrons incident from left and the

other is for electrons incident from right.

2.2.1 LR REPRESENTATION

In this subsection, we will present the LR representation of the DMF approach. First,
we introduce a non-interacting ground-state reference system. In the reference sys-

tem, the real electron densities py, and pp are calculated from single particle orbitals

by
pr(r) = Z fep(€ra — [1)|Gra(T) ],
k.oel (2.26)
pr(r) = Y frp(Eka — B)dra(r).
k,a€ER

In Eqn. 2.26, ¢pq describes an electron incident from left (right) for a € L (o € R);
frp is the Fermi-Dirac distribution; and it = (uur, + pr)/2.

Second, we pose the variational problem with constraints in terms of the single
particle orbitals in the reference system. When a variation is applied to either a left- or

right-going state ¢(r)
o(r) = ¢(r) + hé(r), heR, (2.27)

itis subjected to certain constraints. On the one hand, the number of electrons within
the center region is conserved due to the screening effect towards the metal leads. This

is reflected in the normalization of single particle orbitals, namely
/ dro*(r)o(r) = 1. (2.28)
Q¢
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2.2. DUAL MEAN FIELD APPROACH

On the other hand, assuming the wavefunction in both reservoirs is known, we have

the constraints

S(T)’aﬂc =0,

Vf(")’aﬂc =0,

(2.29)

due to the continuity of the wavefunction. Upon the above constrained variation,

the effective ground state energy Ej is stationary, i.e.

Ey[¢+ he] > By [9)]. (2.30)

This constrained variational problem can be solved with the aid of the technique of

Lagrange multiplier. Define
FMz&W—Z%Jm%mw (231
k,a

Then the stationary condition becomes

OF [¢ + hé]

o (0) = 0. (2.32)

Third, we will derive the mean field equations based on Eqn. 2.32. Under LDA,

the effective ground state energy reads

~ 1
EO [¢ka] = _5 Z/dT¢ZaV2¢ka + /drptvext+
k,«

1 e (T T’ eV,
—/drdr M —I—/drexc(pL,pR) - —b/dr(pL —pr)-  (2.33)
2 |r — /| 2

Let p be the electron density, either pr, or pg, that has been varied upon the variation

in Eqn. 2.27. The first order deviation of p regarding his §p = h(¢*& + £*¢). The
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2.2. DUAL MEAN FIELD APPROACH

first order deviation in the kinetic energy is

oT

/lgl\,,
=
=
=

>

dr (£°V?¢ + ¢* V)

Q

dr [EV?¢ + (V29" + V - (¢"VE — £V Y] (2.34)

>

I
|

N = N = N = DN =
>

dr (£'V?¢ + EV29Y)

h / dr (£ V29 + £V26*)
Q¢

where we have used the boundary conditionsin Eqn. 2.29 so that || Qe drV-(¢*VE—
Vo) = |, 90 - (¢*VE =€V ¢*) = 0. The first order deviation in the external

potential energy is

0FEcn = 5/ drpVess = h/ dr (0" + £ 0) Ve (2.35)
fe'e) Qo

The first order deviation in the Hartree energy is

0FEy

:51/ drpvy

e /dr/ g PAT)P(T)
!""—"“’\

0pe(r)pe(r') + pi(1)dpi (1)
/ d’r/ dr P (2.36)
,5,0t )
/ dr/ dr |r—r’|
= [ darspryvatr)
=h /Qc dr(¢* + & d)vn
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2.2. DUAL MEAN FIELD APPROACH
The first order deviation in the exchange correlation energy is

ey
dp

5B, — 6 / drese(pr, pr) = h /Q i (e ). ()

The first order deviation in the non-equilibrium correction term is

eVy eV,

-5 [ar—p =55 [ e, e

where the minus (plus) sign is for the variation of ¢r acr (Pk,acr). The first order

deviation in the multiplier term is

5(—2% / drcbza%) = —he /Q dr(¢"E+€9).  (239)

k,«

In summary, the stationary condition Eqn. 2.32 becomes

Oege €V}

1
/ dré* ( == V2 + Ve + vl + F——€)p+cc.=0. (2.40)
Qc 2 dp 2

Since the variation £ can take different forms, we have mean field equations

1 Oe,. €Vy -
(—§V2 + Vegt +vg + 8pL - Tb)(lﬁka :Gka(bk:au
e Vi (2.41)
=+ 7)%5 =€r3PKs,

1
—=V + Vet + vy +
( 5 Vext + Vi oo

where @ € Land 8 € R. When the exchange correlation energy is approximated
under GGA with E,. = f dre..(pr, pr, Vi), the mean field Hamiltonians in

Eqn. 2.41 take a different form as shown below

x 1 0y 0y Vi

hL:——V2+Uext+UH+ ¢ —8Z‘ ¢ —2,
2 dpr, 00;py 2

hg =— =V + Vg + v + Cac _ g, Llae  O0
T2 “ dpr ' 00ip, 2
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Eqn. 2.41and 2.42 indicate that left- and right-going electrons experience different
mean field potentials when the open system is in non-equilibrium steady state. Fur-
thermore, the —eV},/2 and €V} /2 terms are the downward and upward shifts to /1,
and R respectively. Here, h 7, and h r are the mean field Hamiltonians for the steady-
state reference system. Therefore, the correspondence between the real system and
the effective system in the LR representation matches very well with the correspond-

ence discussed in section 2.1.2..

2.2.2 EN REPRESENTATION

In the LR representation of the DMF approach, the electron densities py, and pg
are hard to compute. As a result, it is formidable to solve Eqn. 2.41. In seeking for
practically solvable mean field equations, we will present the EN representation in
this subsection.

For the real open system in steady state, it is clear that the electrons below ji, con-
tribute to the equilibrium electron density p. while those between f1, and j1; contrib-
ute to the current-carrying electron density p,,. Therefore we introduce a steady-state
reference system where the real electron densities p, and p,, are calculated from single

particle orbitals by

pe(T) = Y fro(exa — 1) ora(r)’,

k,ace

pn(T) = Z [frp(€ka — pir) — frp(€ka — #R)”ﬁbka("“”g‘

k,a€n

(2.43)

In Eqn. 2.43, frp is the Fermi-Dirac distribution; frp(€éxa — ptr) and frp(€xa —
pr) — fro(€ka — pr)} together define the non-equilibrium distribution.

In the EN representation, the effective ground state energy functional under LDA
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reads

~ 1
EU [¢ka] = _5 Z/dr¢zav2¢ka + /dTptvext+
k,a

1 /
E/drdr'w+/drem(pe,pn) — e—vb/drpn.

lr — /| 2

(2.44)

The stationary condition of the effective ground state energy leads to the following

mean field equations

a xc ~
;pe )¢ka =€ka¢ka7

(2.45)
1 Oey. €Vy .
(=5 V° + Vet + 0 + 9 Tb)ﬁbkﬁ =€kpPrs;

1
(—§V2 + Vext + VH +

where @ € eand 3 € n. When the exchange correlation energy is approximated in

GGA with E,. = [ drege(pe, pn, Vi), the mean field Hamiltonians become

s ]‘ 8 xc a xc
he:__v2+vemt+UH+ © _az ¢ )
2 8pe aazpt
- 0 dese eV (2.46)
Iy = — =V 4 vy + ogg + o289, PCze ETh
" 2 ex Opn 00 py 2

Note that the mean field Hamiltonians in Eqn. 2.45 and 2.46 are for the ground-
state reference system. In order to calculate electron densities by Eqn. 2.43, we need
the Hamiltonians for the steady-state reference system. In other words, it remains to
specify the correspondence between the real non-equilibrium system and the effective

equilibrium system in the EN representation. As discussed in section 2.2.1, in the LR

representation,
N x eV
hr, =hy + Tb,
B (2.47)
hr =hgr — 5

which is a result of the term —eV, N, /2 in the effective ground state energy. Differ-

ently, in the EN representation, the term —eV;, N, /2 affects h,, but has no contribu-
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tion to h.. Itindicates that the correspondence in the EN representation is

~ e‘/b (2.48)

The mean field Hamiltonians 716 and fALn in Eqn. 2.48 govern the following eigenvalue

equations

ile (bk:a =€ka (bkoz )
(2.49)

ha®rs =€rs0ks,
where o € eand § € n.
Eqn. 2.49 and Eqn. 2.43 need to be satisfied simultaneously. They can be solved
self-consistently with the aid of the Green’s function expressions for the electron dens-
ities. As a final remark, we need the concrete form of the exchange correlation poten-

tials before solving the mean field equations.

2.3 GENERALIZED THOMAS-FERMI-DIRAC MODEL

In this section, we will generalize the TFD model to non-equilibrium cases and derive
the exchange and kinetic energies analytically for a biased non-interacting uniform
electron gas.” In the generalized TFD (gTFD) model, the equilibrium and current-
carrying electron densities indeed determine the exchange and kinetic energies. From
the exchange energy functional obtained in the gTFD model, we will also derive the

exchange potentials which are ready to be applied in the DMF approach.
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2.3.1 NON-EQUILIBRIUM NON-INTERACTING FREE ELECTRON Gas

Consider some non-interacting free electron gas in a box of dimensions L x L x L

with periodic boundary conditions, the electrons are described by the Hamiltonian

)

. P

H = — 4 const. (2.50)
2m

The eigenvalue equation for the above Hamiltonian

I:I(bkg(r, s) = E¢gy (T, 5) (2.51)
bears the solution
1 e
Dro(r, 5) = T Xo(s): (252)
InEqn. 2.52,k = %n withn; = 0,+1, 42, - - - is the wavevector; o = —1, 1 is the

spin index; x,(s) = lif s = 0 and x,(s) = 0if s # 0. X, (s) satisfies

D Xo ()Xo (5) = G0 (253)

The eigenstates in Eqn. 2.52 are normalized in the following way

! ! 1 i(k—k')r
W'l ko) = 3 [ dr e ns) = B )

In the TFD model, the electron gas is in equilibrium ground state thus all single
particle states below Fermi energy e = k‘% /2 are occupied.” Here kp is the Fermi
wavevector. The occupied single particle states form a sphere of radius kp in mo-
mentum space as shown in Fig. 2.3.

In order to drive the electron gas in the TFD model into non-equilibrium, we

sandwich it between two reservoirs of non-interacting and free electron gas as depic-
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Figure 2.3: Occupation of states in k space for the TFD model. The occupation forms a sphere with radius of
k i (the Fermi wavevector).

ted in Fig. 2.4. Moreover, the reservoirs are connected to a battery. When a positive

Non-interacting Free

Right Reservoir
Electrons

Left Reservoir

Mo Hr

i
il
Figure 2.4: Model setup for the gTFD model. A box of non-interacting free electron gas is sandwiched between

two reservoirs which are connected to a battery. Electrons in both reservoirs are also free and non-interacting.
The difference between left and right chemical potentials determines the bias voltage by eV}, = iy, — pip.

bias voltage is applied, the left chemical potential /1, = k7 /2 is higher than the right
one ur = k%/2. Asaresult, the occupation of states in k space becomes Fig. 2.5
where one beholds two hemispheres with different radii, the right half with radius
kr, (the Fermi wavevector for the left reservoir) and the left half with radius kg (the

Fermi wavevector for the right reservoir).

2.3.2 EXCHANGE ENERGY DENSITY

In this subsection, we will derive the exchange energy density £ of the non-
equilibrium electron gas in the gTFD model. We will first express £ in terms of the
Fermi wavevectors. Then, after change of variables, we will express it as a function of

the electron densities.
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kL

Figure 2.5: Occupation of states in k space for the gTFD model under finite bias. The occupation forms two
hemispheres, one with radius k g (the Fermi wavevector for the right reservoir) and the other with radius k7,
(the Fermi wavevector for the left reservoir).

Let ® gp be a single Slater determinant of the occupied eigenstates

q)SD = det(¢k101> ¢k2027 T 7¢kNO’N)' (2‘55)

The Coulomb interaction between electrons writes

A 1
W=>) — (2.56)
= i — ]

Then the exchange energy density for the gTFD model is

& = : ((‘I)SD!W@SD) — Ex [P])

=— [¢k/a/¢ka

W‘ ¢ko¢k’a’]

k !
1 i(k—k')-(r1—72)
———— 3 [ dkdk/dridr,©

U’Sl o\S
(o

71 — 7o
ei(kfk’)-r

(9(1“17 ’T'Q)

6i(k—k')~(1‘1—r2)
=— /dkdk/d’rld’rg—
/dkdk,d’rds

7|

1% o(r,s)
i(k—k')r
__ 1 /dkdk’dre—-l/ds
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- % /dkdk’drw
(27) 7|
i(k—k')r

1
S lim ——— / dkdk'dre
(27)

p—0+ 7|

1 €i|k—k/|rcos6‘
= lim — /dkdk'-r%in@drd@dcpe"“—

p—0t (2#)6 r

= lim —( /dkdk' - 2mrdrd (—cosh) e~ Hrgilk—kK'[rcosd

ok gy €D lnmi
/ Lemer ik — K|

1 1
12 . 1 / p—ilk—k|  prilk—k|
= lim — dkdk’ - 2

o / -y

4m 1
= - dledk/——— .
(2r)° / k— K|’ 57)

In the step s, we changed variables from (71, 73) to (r, ) by r = r1—ryand s = r,.

In the step 8, we multiplied a factor of e to the integrand with y© — 0F. In the
step 12, we took the limit of L — oo. Next we split the integral in Eqn. 2.57 into

three parts

[)[2:/(21/§21+2/Q2/Ql+/92/92511+[2+[3 (2.58)

where (0 = ; + (5 as shown in Fig. 2.6. The first integral is

a)/l_\ b)
Q
kr kr

( )

0,0,0

Figure 2.6: Division of the occupation of states €2 (a) into {21 and {23 (b).

47 1

I = — dk | K?sin0'dk'd0'dy’
e /Q /Q o PR T K2~ 2k cost)

61



2.3. GENERALIZED THOMAS-FERMI-DIRAC MODEL

k‘R /

_ dke [ AT [k K — (k- K] (as9)

2 o k

1 kr ]CR
S dk/ QKR [In(k + k) — Inlk — I

273 0
_ 1 4
S

The second integral is tackled similarly bearing the result

1 2 22 kL - k 4
L=—103 [(kL — k%) ln( P kL) +2(kbkr, + krki — QkR)]. (2.60)

The third integral is a bit complex and can be tackled as follows

A ko ko % % 2m 2
13:——6/ dk/ dk’/ de/ de'/ do [ dyf
(27T) k1 k1 0 0 0 0

k2k"%sinfsint’

k2+k’2 2kk' [sinfsind'cos (¢ — ¢’ —1—00500056’]
k2
=— —3 kdk/ kdk’/ dcosﬁ/ dcost’
87T Ky

\/00829 + c0s20" 4+ Ccoslcostd’ + }102 —1
ko k k’/

= kdk K k:’ —2n( —2
167r3/ d /k d "( +k’+k>

2Kk
- l”[/# + Kt — (K24 k%) k2 — k:’2|] }
1

= — o5 | = (6 — KR (ks — ki) + (k} — 2K3KS )ik

1
+ kpln(kg) + kp — khkr, — 51@%16% — kpk? + gki]

(2.61)

In Eqn. 2.61, C = —(k* + k'*)/kk’ < —2when k # K" Finally, summing up 7,

I5, and I3, we get the exchange energy density as a function of the Fermi wavevectors

1
1673

T I3 can be checked by Mathematica with the codes listed in Appendix A.

EMky, kr) = — [ — (K2 = k3) In (kn + ki) + (kb — 2k%k2) In (kp)
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4 4 3 1 2 1.2 3 3 4
hfin (k) + K+ Kk = SRRk + ke + 5@] . (2.62)

Now we change variables from the Fermi wavevectors to the electron densities for
the exchange energy density. In the gTFD model, the total electron density p; and
current-carrying electron density p,, are

3, 1.3
(K + k) .

1
Pt ~ o2

1 (2.63)

Define a non-equilibrium index = p,,/p; which measures the local degree of non-

equilibrium. In terms of p; and ), we rewrite the exchange energy density as

Exprm) =7 (4™ [ = (L= ) In (14 7) + 7't ()

W

(2.64)

. 1. .3
+n4+n3—§n2+n+§}5§(pt)-

InEqn. 2.64,£2(p) = —(3m2p;)*/? /47> is the exchange energy density for the TFD
model; 77 = [(1—7n)/(1+n)]*/3; and the prefactor f(n) = " /EY contains the non-
equilibrium correction. As shown in Fig. 2.7, whenn — 0, f — 1. Therefore, the
gTFD exchange energy density falls back to the TFD result under zero bias which is
expected. As 1) increases, f monotonically decreases thus the non-equilibrium cor-
rection becomes larger. Whenn — 1, f — 0.9449. Therefore, the highest non-
equilibrium correction to the exchange energy density is about 5.5%. Since £2 < 0

and 0 < f < 1, £ is always greater than the TFD result £2.

2.3.3 KiINETIC ENERGY DENSITY

In this subsection, we derive the kinetic energy density 7" of the non-equilibrium
electron gas in the gTFD model. We first divide the integral region €2 into {23 and {24

as shown in Fig. 2.8. Then the calculation follows
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0.99

0.98

£ /€,

= % 0.97

0.96

1 1 1 1
0 02 04 06 08 1
Non-equilibrium Index 1M

Figure 2.7: Non-equilibrium correction factor f(n) = £ /EY versus the non-equilibrium index 7). £7 and
82 are the exchange energy densities for the gTFD and TFD models respectively.

Q4
(0,0,0)

Figure 2.8: Division of the occupation of states {2 (a) into {23 and €4 (b).

N
Tn = <‘I)5D‘ Z£Z|®SD>

k,o k,o
1 1
=V / 27T/L =50 (kg + k7) (2.65)
oho
5 [+ @) T

In Eqn. 2.65, T°(p:) = (37%p;)>/3/107? is the TFD kinetic energy density; 7 is
the previously defined non-equilibrium index; and the prefactor g(n) = 7" /T
contains the non-equilibrium correction. As shown in Fig. 2.9, whenn — 0,9 —
1. Therefore, the gTFD kinetic energy density falls back to the TFD result under
zero bias which is expected. As 7 increases, ¢ monotonically increases thus the non-

equilibrium correction becomes larger. Whenn — 1, g — 1.5874. Therefore, the
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highest non-equilibrium correction to the kinetic energy density is about 58.74%.
Since 7° > 0and g > 1, the gTFD kinetic energy density 7" is always greater than
the TED result 7°.

1 1 1 1 1
0 02 04 06 08 1
Non-equilibrium Index M

Figure 2.9: Non-equilibrium correction factor g(1) = Tn/TO versus the non-equilibrium index 7. 7™ and
T0 are the kinetic energy densities for the gTFD and TFD models respectively.

Similar to GS-DFT, the kinetic energy functional for the non-equilibrium non-
interacting free electron gas derived here may be a bad approximation to the exact
one for general cases. Actually in the DMF approach, the kinetic energy is calculated

from single particle orbitals in the non-interacting reference system instead of 7.

2.3.4 EXCHANGE POTENTIALS FROM THE GTFD MODEL

In this subsection, we will derive the exchange potentials for equilibrium and current-
carrying electrons based on the gTFD exchange energy density £ in Eqn. 2.64.
When the exchange energy density is approximated by LDA with e, =

E(pe, pn), the exchange potentials v§ = e, / ape‘p and v} = Oe,/ apn‘p are

o 1 _ 5
In(147) + flng — =72 + 27 + —] v,

e 1 s =77)(1—7)
UIZZ(H”)/[ 7 2 2

1
o — Z<1 )3 [ —2(1 — P)In(1 +7) — 7 + 277 + 3] V). (2.66)
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In Eqn. 2.66, 10 = d€%/dp; = —(3p;/7)*/3 is the exchange potential for the TFD
model; the prefactors p(n) = v¢/v? and q(n) = v /v2 contain the non-equilibrium
correction. As shown in Fig. 2.10a, whenn — 0, p — 1. Therefore the exchange
potential for the equilibrium electrons falls back to the TFD result under zero bias. As
7 increases, p increases monotonically thus the non-equilibrium correction becomes
larger. Whenn — 1, p — 1.102. Therefore, the highest non-equilibrium correction
to v is about 10.2%. However, the non-equilibrium correction to v¢ is smaller than
2% whenn < 0.9. Sincev? < 0and p > 1, the non-equilibrium correction tends to
decrease the exchange potential for the equilibrium electrons. As shown in Fig. 2.10b,
when 7 — 0, ¢ — 1. Therefore the exchange potential for the non-equilibrium
electrons also falls back to the TFD result under zero bias. As 7 increases, ¢ decreases
monotonically thus the non-equilibrium correction becomes larger. When n — 1,
q — 0.9449. Therefore, the highest non-equilibrium correction to v is about 5.5%.
Since v < 0and 0 < ¢ < 1, the non-equilibrium correction tends to increase the

exchange potential for the non-equilibrium electrons.

1.12 1
(a) (b)
1.1t . 0.99} E
1.08 0.98} .
o>>< o>><
o 1.06F =3 097 .
> >
1.04 0.96} .
1.02 0.95} .
002 04 06 08 1 094002 04 06 08 1
Non-equilibrium Index M Non-equilibrium Index 1

Figure 2.10: Non-equilibrium correction factors p(1) = v</v2 (a)and ¢(1) = v2 /v? (b) versus the non-
equilibrium index 7). 112 is the exchange potential for the TFD model. U; (U;L) is the exchange potential for the
equilibrium ( current-carrying) electrons in the gTFD model.

When the exchange energy density is approximated by GGA with e, =
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EM(pes pn) F (pr, V pr), the exchange potentials are

de Oe oE™ oF oF
V=" — Oy = — L+ E9— — (&N ,
Ope 00ipy  Ope Ipy ( aaipt) (2.67)
Un_aex_a Oe, _88§F+5n8_F_a(gn 8F) .67
* apn laaipt apn v apt o aa@pt 7

where OE!" /0p. and OE! / Dp,, are given in Eqn. 2.66. Note that the explicit form of
the exchange potentials in Eqn. 2.67 depends on the gradient correction F'(p;, V p;)

which varies among different flavors of GGA.

2.4 IMPLEMENTATION IN SIESTA

In this section, we will present the implementation of SS-DFT in SIESTA.** The goal
is to devise a self-consistent procedure to solve the coupled mean field equations in
the EN representation of the DMF approach. Especially, the gTFD exchange energy
density £ will be used to include non-equilibrium effects in the energy functional
level. For clarity, we will first review the Green’s function expression of the electron

densities and the formalism in the representation with localized basis functions.

2.4.1 ForMULA FOR THE ELECTRON DENSITIES

In this subsection, we review the Green’s function expression of the electron densities

pe and p,,. In general, the lesser Green’s function is defined as

G<(rt,7't") = i (r't) ) (rt)). (2.68)

The total electron density p; can be expressed in terms of the lesser Green’s function,
namely

pe(r,t) = —iG<(rt,rth). (2.69)
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For a molecular junction in steady state, the Green’s function only depends on the

time difference A = ¢ — t'. Thus Fourier transform can be applied

1
pt(,r> = _% deG= (’T‘, 6)7 (2"70)
with
G<(r¢) = / dAeAG<(r A). (2.71)

Then we split the integral in Eqn. 2.70 into two parts and get the equilibrium electron

density p. and current-carrying electron density py,,

1 MR
per) =~ o [ a0,
2 J_ o
(1= [ 4G (r.0 o
pn(r) =—— eG=(r,e€).
2 KR

2.4.2 LCAO REPRESENTATION

In this subsection, we review the formalism for obtaining the electron densities p.
and p,, in the representation with localized basis functions.

SIESTA employs numerical linear combination of atomic orbitals (LCAO) basis
set to represent mean field equations. Fig. 2.1x illustrates an abstract molecular junc-
tion which consists of an inhomogeneous center region and periodic left and right

leads. The two leads can be different. With a localized basis set, the Hamiltonian for

L c R

Figure 2.11: An abstract molecular junction. L(R) is the periodic left (right) lead. C'is the inhomogeneous
center region.
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the molecular junction shown in Fig. 2.11 writes

hiooc hiy1 O 0 0
hyyi-i hy he O 0
0 hc,l hc,c hc,r 0 : (2’73)

0 0 hnc h’r,r h'r,?"—i—l

0 0 0 hr,rfl hr,oo

In Eqn. 2.73, h. . is the Hamiltonian for the center region; while h; o, and h, o are

the Hamiltonians for the left and right leads respectively

0
hl,oo = 0 hl,l—l hu hl,l+1 ) (2'74)
0 0 hya hy

and

hr,r hr,r-‘,—l 0 0
hiow=| hrpy Ry hep 0 |- (2.75)

In order to calculate the lesser Green’s function, define the surface Green’s func-
tions g; o, = [(€ + iN)Si00 — Moo ' and g, = [(€ + i)Sroo — Pro] s
where 8; o and 8, o, are the overlapping matrices; define the self energies Efl =
hi; 1910(c —2,¢=2)hj; , and S =R, 1g,.(c+2,c+2)h;, | where

h{; = (€ +1in)si; — h j; define the lesser self energy

X5[fr, fr] = =20 Im(fL2]; + frE]), (2.76)

where f, and fg are the equilibrium distributions for the left and right leads f1 (¢) =

frp(e — up) and fr(€) = frp(e — pgr). Then the lesser Green’s function can be
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calculated by
G= = G"X|f1, frlG™. (277)

In Eqn. 2.77, the advanced Green’s function G* = (G™) and the retarded Green’s

function G for the center region can be calculated by

—1
hi, =%, hi. 0
G" = ¢ he, ke, : (2.78)

c,l

€ € r
0 h’r,c h’r,r - Ev',r

When f(¢) = fr(€) = 1, thelesser Green’s function reduces to the retarded Green’s
function Im[G<(¢)] = —2frp(€) Im[G"(¢)]. Then the equilibrium and current-

carrying electron densities in Eqn. 2.72 can be rewritten as

po=—tim| [T aecro),

™ 00
7 Ky d G<
Pn = _% " € (6) (2'79)

Note that, in the DMF approach, the junction is described by two mean field
Hamiltonians %, and h,,. Thus the equilibrium electron density p. should be cal-
culated from h, via G% while the current-carrying electron density p,, should be cal-

culated from h,, via G

2.4.3 SELF-CONSISTENT PROCEDURE

In this section, we present the self-consistent (SC) procedure for solving the dual
mean field equations in Eqn. 2.45. Our implementation is modified from the Tran-
SIESTA subroutines in the SIESTA package. *>

The SC procedure is shown in Fig. 2.12. Given the initial equilibrium and current-

carrying electron densities, p. and py,, the mean field Hamiltonians for equilibrium
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)
A
=

—{

/ /
Pe Pn
no

5Q <g>
yes
- dpe; 6p>

yes
l stop l

Figure 2.12: Self-consistent procedure for solving the DMF equations.

and current-carrying electrons, ;le and ;Ln, are constructed. With the initial effective
chemical potential /i, the new electron densities p/, and p/, are computed via the lesser
Green’s functions G5 and Gi;. If the difference between the old and new number of
electrons in the center region, (), is greater than a small real number €1, the charge is
not conserved and fi will be tuned until §Q) < € is satisfied. After the charge is con-
served, we compare the old and new electron densities. If their differences, dp. and
0 pn, are smaller than a small real number €5, the electron densities are considered con-
verged and the SC procedure will stop. Otherwise, the new electron densities will be
taken as inputs and the SC procedure will continue until the convergence is achieved.

It should pointed out that, without the charge conservation loop, the absolute
deviation in the number of electrons is usually in the order of 107!, Our simulations
showed that such deviations are not important for non-magnetic systems. However,

for magnetic systems, the charge conservation may be crucial.
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Applications of Steady-State DFT

In this chapter, we will present the simulation results for several realistic molecular
junctions. By these calculations, we show the features, the validity and the usefulness
of §S-DFT. Specifically, we consider three molecular junctions which are ) a graphene
nanoribbon (GNR) junction, 2) a junction consisting of carbon nanotube (CNT)
leads and a benzene molecule, and 3) a junction with silver leads and self-assembled
monolayer (SAM) of alkanethiolate molecules sandwiched between. In the follows,
the DFT+NEGF simulations are performed via TranSIESTA; and the SS-DFT simu-

lations are done without charge conservation.
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3.1 GRAPHENE NANORIBBON JUNCTION

In this section, we present simulation results for the GNR junction by which we
show the non-equilibrium effects of SS-DFT exchange energy as mentioned in sec-
tion 2.3. In addition, we will also analyze the local extent of non-equilibrium by the
non-equilibrium index 7(r) in SS-DFT.

With tunable electronic structure, GNRs are promising building blocks for elec-
tronic devices.”””* Two types of GNRs with zero chiral angle exist, namely armchair
GNR (AGNR) and zigzag GNR (ZGNR). It was found that ZGNRs are metalic
and, for ZGNR based junctions under low biases, the current flows through edge
states.””””” For one-dimensional systems under a finite temperature, long-range mag-
netic order may not be stable.*” Thus we follow previous studies and set the total spin
of our GNR junction to be zero in this work.

The simulation details are as follows. We relaxed the atomic structure of the GNR
junction using SIESTA package and performed finite bias calculations using both
SS-DFT and DFT+NEGF methods. In all calculations, we adopted non-relativistic
norm-conserving pseudopotential without core correction, single-( basis set and
1 x 1 x 30 Monkhorst_Pack k grid.** For the relaxation calculations, PBE GGA
exchange correlation energy functional,” 200 Ry mesh cutoft and 0.04 eV/A force
tolerance were used. For the transport calculations, CA LDA exchange correlation
energy functional,”® and 100 Ry mesh cutoft were applied.

The GNR junction under study is formed by joining a 5-ZGNR with a 3-ZGNR
where n-ZGNR denotes a ZGNR with n zigzag lines of carbon atoms. The relaxed
atomic structure of the GNR junction is shown in Fig. 3.1 where the dash lines mark
the boundary of the center region. The interface between 5-ZGNR and 3-ZGNR
works as a scatterer. To meet the requirements for finite bias simulation we choose

the following settings. 1) The center region is made of three unit cells of 5-ZGNR
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and three unit cells of 3-ZGNR so that the distortion of electron density caused by
electron scattering happens only within the center region; 2) Two unit cells of ZGNR
are used for both left and right leads so that the initial electron density on the left-

center and right-center boundaries recover the bulk electron density.

Figure 3.1: Relaxed structure of the GNR junction. L = 2.53A W = 8.80A W5 = 4.41 A.

In Fig. 3.2, both IV curves from SS-DFT and DFT+NEGF calculations for the
GNR junction are presented. When bias voltage is small (< 0.1 V), SS-DFT essen-
tially reproduces DFT+NEGEF results. Starting from 0.1 V, significant deviations
between the two calculations occur. As shown in the figure, the current from SS-
DEFT is always lower than that obtained from DFT+NEGF. To understand this differ-
ence, we plot in the inset of Fig. 3.2 the iso-surface of the difference between SS-DFT
non-equilibrium exchange potential (v7) and the exchange potential calculated from
DFT+NEGE. The iso-surface value is 15 meV. This plot shows that the exchange po-
tential increases significantly at edges where the current flows through. However for
other parts of the system, the non-equilibrium correction to the potential is insigni-
ficant. The increase of the exchange potential leads to a higher scattering barrier in
the scattering region, and in turn, decreases the current as we see in Fig. 3.2.

In Fig. 3.3, we plot the color map of 77(7) in the scattering region of the GNR
junction under 0.2 V. The plot provides detailed spacial information for the non-
equilibrium degree of the system. As seen from the figure, the extent of non-
equilibrium at different places in the scattering region is quite different: Edges are

far away from equilibrium while the middle part of the GNR is still approximately
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Figure 3.2: 1I-V curves for the GNR junction calculated from both SS-DFT and DFT+NEGF. The inset shows the
iso-surface of the difference between SS-DFT non-equilibrium exchange potential and the exchange potential
calculated from DFT+NEGF.

in local equilibrium.

Figure 3.3: Color map of the non-equilibrium index 77(1“) in the scattering region of the GNR junction. The
plotting plane is 2.2 A above the GNR. The degree of non-equilibrium becomes higher when the color changes
fromred to blue.

In conclusion, we have presented the simulation results for a GNR junction by
both SS-DFT and DFT+NEGF methods. In comparison, SS-DFT leads to signific-
antly lower electric current than DFT+NEGEF for the GNR junction due to the non-
equilibrium correction to the exchange energy. In addition, the non-equilibrium in-
dex () provides detailed spacial information for the extent of the non-equilibrium

in the scattering region, which improves our understanding of properties of molecu-

lar junctions under a finite bias.

3.2 CNT-BENzENE-CNT JuNcCTION

In this section, we will present the simulation results for the CNT-Benzene-CNT

junction and its decoupled twin. The energetics, I-V characteristics, and elec-
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3.2. CNT-BENZENE-CNT JUNCTION

tronic structure calculated from SS-DFT will be compared to those calculated from
DFT+NEGEF. Particularly, we show that SS-DFT is able to predict the local equilib-
rium for the decoupled junction under finite bias.

CNTs have fantastic one-dimensional characteristics*** and tunable electronic
properties. “~* They are promising building blocks in future nano-electronic devices. **~
The benzene molecule, on the other hand, has been extensively used as a molecu-
lar center in various kinds of junctions in both experimental and theoretical stud-
ies.”>?>” Combining the two, we use a CN'T-benzene-CNT junction as an example
to demonstrate SS-DFT.

We relaxed the atomic structure of the junction by SIESTA with the following
parameters: PBE GGA exchange correlation energy functional,”” 200 Ry mesh cutoft,
1 x 107* €V for the energy tolerance, and 0.04 eV/A for the force tolerance. For
finite bias calculations, we used CA LDA exchange-correlation energy functional
and 120 Ry mesh cutoff. Non-equilibrium exchange energy functional was adopted
in SS-DFT calculations.” In addition, 1 x 1 x 30 k-point mesh was employed for
the separate lead calculations. Through all calculations, single-( basis set and non-
relativistic norm-conserving pseudopotential without core correction were applied.

The atomic structure of CNT and the distance between two leads were optim-
ized in sequence. To relax the distance between two leads, we first made a series of
CNT-benzene-CNT junctions with different separations. Then we relax the center
region with the two leads fixed for each junction. Finally, the relaxed junction with
lowest energy has optimal atomic configuration. A plot of the energy versus the dis-
tance between two leads is shown in Fig. 3.4. The optimized CNT-benzene-CNT
molecular junction is shown in Fig. 3.5. As can be seen, the junction consists of two
semi-infinite metallic (5, 5) CNTs and a benzene molecule in between. Both CN'Ts
are closed at one end with a C_; cap. In order to form good contacts, two H atoms

in the benzene molecule are taken away. In addition, the two vertical lines across the
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Figure 3.4: The energy of the CNT-Benzene-CNT junctions versus the distance between the left and right leads.
The configuration with lowest energy is optimal.

junction mark the boundary between the leads and the contact region.

Figure 3.5: Relaxed atomic structure of the CNT-Benzene-CNT junction. Color scheme: C, grey; H, white.

At finite bias, we calculated the energy of the CNT-Benzene-CNT junction by
both SS-DFT and DFT+NEGF. The energy difference between the two methods
is shown Fig. 3.6 where £/ and E are the ensemble averages of the Hamiltonian H
and the effective Hamiltonian ﬁ = H — ¢V, /2 respectively. Clearly, SS-DFT bears
lower energies at all bias voltages, which is expected since SS-DFT searches the lowest-
energy steady state with one more degree of freedom than DFT+NEGF, namely the
current-carrying electron density. At zero bias, the junction is in equilibrium and SS-
DEFT reduces to GS-DFT. Consequently, the energy difference between SS-DFT and
DFT+NEGF vanishes at zero bias.

Fig. 3.7 plots the I-V curves for the junction calculated from both SS-DFT and

DFT+NEGEF. The two methods predict similar electric current for biases between 0.2
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Figure 3.6: The energy differences between SS-DFT and DFT+NEGF, i.e. 0F = Essorr — Eprrenegr. Both
the energy 0 I and the effective energy  E are presented.

and 0.8 V and a prominent negative-differential-resistance (NDR) peak at around

0.05 V. However, the NDR peak predicted by SS-DFT occurs slightly earlier. To

0.5 DFT+NEGF —&— |
0.4t SS-DFT —&— |

0.3f
0.2r
0.1f

Current (uA)

00 01 02 03 04 05 06 07 0.2-3
Bias Voltage (V)

Figure 3.7: The |-V characteristics of the CNT-Benzene-CNT junction calculated from both SS-DFT and
DFT+NEGF.

understand the reason, we plot the projected density of states (PDOS) for the benzene
molecule in Fig. 3.8a and the transmission function of the junction in Fig. 3.8b. As
shown in Fig. 3.8a, there are two degenerate states when the bias voltage is small; they
split and become non-degenerate at large bias voltages. Fig. 3.8b shows that the state
with lower energy is not conductive while the one with higher energy is conductive.
Furthermore, the conductive state calculated from SS-DFT enters (and also exits) the
bias window earlier than the one calculated from DFT+NEGF. As a result, the NDR
peak for SS-DFT occurs earlier. Due to the relative shift of the NDR peaks, SS-DFT
predicts significantly lower current than DFT+NEGF between the bias voltages 0.05

and 0.2'V.

A feature in the PDOS plotted in Fig. 3.8a is that the state with lower energy
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Figure 3.8: (a) PDOS for the benzene molecule within the CNT-benzene-CNT junction. (b) Transmission func-
tion of the CNT-benzene-CNT junction.

shifts with the right chemical potential y, while the one with higher energy shifts
with the left chemical potential £;. This is because the state with lower (higher) en-
ergy is coupled with the right (left) lead which can be seen from the local density of
states (LDOS) plotted in Fig. 3.9. Due to the coupling, when the right (left) chemical

potential zt, (11;) becomes lower (higher), the energy of the state with lower (higher)

energy decreases (increases).

Lower B
Higher -&-

Averaged LDOS

Layer Index

Figure 3.9: Averaged LDOS for the CNT-benzene-CNT junction under 0.08 V. The layer indexes 1-6 are illus-
trated in the inset. Each layer contains one or more carbon atoms. The averaged LDOS for a layer is defined

as the PDOS to this layer divided by the number of atoms within the same layer. Larger LDOS means stronger
coupling.

Now we decouple the CNT leads and the benzene molecule by pulling them
apart. The resultant atomic structure is shown in Fig. 3.10. In this case, the ben-

zene molecule in the center is known to be in local equilibrium even under finite bias
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voltage. We simulated the decoupled CNT-Benzene-CNT junction under 0.5 V of

Figure 3.10: The atomic structure of the decoupled CNT-Benzene-CNT junction where the distance between
the center molecule and either lead is more than 6.5 A. In this case, the center molecule is essentially isolated.

bias voltage using both SS-DFT and DFT+NEGF. For comparison, we also did GS-
DEFT calculation for the decoupled junction under zero bias. From the self-consistent
fields calculated from all these three methods, we obtained the PDOS of the benzene
molecule and plotted them in Fig. 3.11. As shown in Fig. 3.11, SS-DFT agrees with GS-

DFT very well, while DFT+NEGF bears different electronic structures. To further il-

N
1 O
! GS-DFT — a
HPMO i\\ DFT+NEGF —
! SS-DFT ——
-0.5 0.0 0.5 1.0 1.5
E-E; (eV)

Figure 3.11: PDOS of the benzene molecule calculated from three different methods, GS-DFT for the de-
coupled CNT-Benzene-CNT junction under zero bias, DFT+NEGF and SS-DFT for the decoupled junction under
0.5V of bias voltage. The Fermi energy for GS-DFT and the effective Fermi energies for DFT+NEGF and SS-
DFT are set to zero. The HOMO and LUMO are plotted aside the corresponding PDOS peaks with the positive
(negative) phase in red (blue).

lustrate the difference between different methods, we plot the difference between the
total electron densities around the center molecule dp1 = pgs-prr) — P(DFTenEGE IN
Fig. 3.12a,and dp» = p(ss-prr) — Porranecr) in Fig. 3.12b. Clearly, DFT+NEGEF yields
quite different total electron density from the other two methods, and the densities
from GS-DFT and SS-DFT are similar. Furthermore, the asymmetrical distribution
of dp; in Fig. 3.12a is casued by the absence of external electric field in the GS-DFT
calculation. To illustrate the polarization effect of the external field, we perform a

GS-DFT calculation for solely an benzene molecule (without 1, 4 hydrogen atoms)

under an external electric field of strength 0.014 V/A which equals 0.5 V divided by
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Figure 3.12: The difference in the total electron densities calculated from different methods: 5;)1 = PoFn) —
PoFt+necr) in panel (a) and §p2 = Piss.orr) — PorFT+necr) i panel (b). The isosurface value is 5 X 1075 Bohr—3
for both plots. The positive (negative) is in red (blue).

the distance between left and right leads of the decoupled CNT-benzene-CNT junc-
tion. This GS-DFT calculation bears the electron density pEGS_DFT). Then we plot the

electron density difference dp3 = pEGS_DFT) — porrnecr) in Fig. 3.13b which clearly

shows the d p3 becomes symmetrical.
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Figure 3.13: (a) A benzene molecule (without 1,4 hydrogen atoms) under an external electric field. Its electron
density calculated from GS-DFT is denoted as p(’GS_DFT). (b) Total electron density difference (5p3 = p(GS-DFT) —
PorT+necr) around the benzene molecule. The iso-valueis 1.5 X 10~* Bohr—3. The positive (negative) is in
red (blue).

In conclusion, we have simulated a CNT-benzene-CNT junction and its de-
coupled twin. For the coupled junction, both SS-DFT and DFT+NEGF captures
a significant NDR; however SS-DFT always bears a steady state with lower energy
compared with DFT+NEGF. Furthermore for the decoupled junction, SS-DFT is

able to predict the correct local equilibrium electronic structure.

3.3 SAM OF ALKANETHIOLATES

In this section we apply SS-DFT to a molecular junction involving self-assembled
monolayer (SAM) of alkanethiolate molecules.”* Especially, the experimentally ob-

served odd-even effects in the charge mobility of the alkanethiolate SAM junction
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will be explained.
The self-assembled monolayer (SAM) of molecules is a promising building block
for future molecular electronics. ”»?* The most extensively studied SAM is made of al-

kanethiolate molecules, e.g. CH,(CH,),,SH which contains n methylene groups.

nor
Experimentally the SAM of alkanethiolates shows odd—even effects in its charge mo-
bility, namely 1) the SAM with even n has higher charge mobility than the odd, and
2) the length dependence of the electric current is significantly different between the
odd and even SAMs.

The simulation details are given below. We used SIESTA to optimize the geometry
of the molecular junction. The energy and force tolerances were set to 1 X 10* €V and
0.01 eV/A respectively. In all calculations, PBE GGA exchange correlation energy
functional ”*, single-( polarized basis set, 100 Ry mesh cutoff, and 3 x 3 x 1k point
sampling in the Brillouin zone were applied.

To get the optimized atomic structure, we first investigate the binding sites for the
S atoms on the Ag [111] substrate which contains five Ag layers. It turned out that
the preferred binding site is between the bridge and hollow sites. Next we relaxed
the alkanethiolate SAM on the substrate without the top lead. Then we optimized
the distance between the top lead and the SAM during which all atoms except for
the two outermost layers of Ag are fully relaxed. Some optimization procedures are
shown in Fig. 3.14 as examples. The relaxed atomic structures of the alkanethiolate
SAM, with n = 11 and 12, on the Ag substrate are shown in Fig. 3.15a. Fig. 3.15b
shows the structure of the top lead which consists of a GaO monolayer on the Ag
[111] surface. The transport direction is perpendicular to the Ag surface which is
along the z axis and the molecular junction is periodic in xy plane. As shown in Fig.
3.15¢, there are four alkanethiolate molecules in each unit cell. According to previous
studies, the alkanethiolate molecules exhibit a tilt angle relative to z axis and a twist

angle relative to each other which are illustrated in Fig. 3.15d and 3.15¢ respectively.
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Figure 3.14: Procedures for optimizing the distance between the alkanethiolate SAM and the top Ag probe for
n =9,10, 11, 12. The optimized distance is typically around 3 A.

From our geometry optimization, the tilt angle is about 13° and the twist angle is
about 50° in agreement with experimental observations. Furthermore, it was found
that a change of 3°in the tilt angle leads to at least 0.5 €V of energy increase indicating

that the SAM layer is stable at room temperature.

(d) side view

tilt | o
angle

Figure 3.15: (a) Side view of alkanethiolates for n = 11 and 12. The S atom at the bottom end of the molecule
is adsorbed on the Ag[111] substrate. Note the difference in the tip structures of odd and even alkanethiolates.
(b) Side view of the top electrode which consists of a GaO monolayer on Ag[111] surface. (c) Top view of the
SAM on the Ag[111] surface. (d,e) Definitions of tilt and twist angles. [Color scheme: C, black; H, white; S,
yellow; Ag, gray; O, red; Ga, blue.]

Let n be an odd integer, define (n,n + 1) as a pair of the SAM junctions while
(n — 1,n) is not. In the same pair, the binding strength for the even junction is

stronger than the odd one. This can be seen from Tab. 3.1 which shows the bind-
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ing energies (between the SAM and the top lead) for various junctions with different
molecular length n. The difference in the binding energies of the junctions in an
even-odd pair originates from the geometry of the SAMs. Due to the presence of the
tilt angle, the H atoms in the methyl group of the even SAM are closer to the top
lead than those of the even SAM in the same pair as shown in Fig. 3.15a. Therefore,
the even junction has more molecular orbital overlap between the SAM and the top
lead thus stronger interaction. As a consequence of the stronger interaction, the even
SAM is more distorted than the odd one which is particularly noticeable for n > 8

since longer SAMs are more flexible.

n 7 8 9 10 11 12 13 14 15 16

Ey(ev) -0.13 -1.07 -0.20 -0.31 -0.11 -0.48 -0.12 —-0.47 —-0.84 -—1.11

Table 3.1: Binding energy F}, per alkanethiolate molecule between the SAM and the top electrode for 7 <
n < 16. In each odd-even pair, the binding energy for the odd is always less than its even partner.

Furthermore, the difference in the binding strengths leads to the odd-even effects
in the charge mobility. Fig. 3.16 shows the dependence of the electric current on the
SAM length n for the SAM junctions under 0.2 V. When n < 9, the odd-even effects
are absent and the current follows the Simmons law J = Jye #".° When n > 10,
the odd-even effects become significant with Joqq = 3.5 X 10721147 for the odd
junctionsand Jeyen = 1.1x 107%™ 1" for the even ones. The pair (9, 10) appears as
atransition state from the homogeneous Simmons law to the separate odd-even series.
The exponential decay constant 3 = 1.14 is the same for both odd and even SAM
junctions under biases between —0.6 and 0.6 V. This predicted decay constant s equi-
valentto f = 0.74A"" which is comparable to experimental values 0.6 < 3 < 1.0
c -1

A .75°7 Tr is worth mentioning that the odd-even effects would disappear if the

tilt angle between the alkanethiolate molecules is gone according to our calculations.

In order to better understand the odd-even effects, in Fig. 3.17, we plot the trans-
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Figure 3.16: Odd-even effects at bias voltage 0.2 V. The current .J versus 1 follows exponential decay. The
lines represent fits to the simplified form of the Simmons equation, J = Joe_*B".

mission function averaged over k, and k, for the SAM junctions under 0.2 V of bias
voltage. As shown in the figure, the transmission decreases as n increases before the
odd-even effects occur (n < 10). After the odd-even effects occur (n > 10), the

transmission profiles for the SAM junctions in a pair become almost identical.
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Figure 3.17: Average transmission for the SAM junctions under 0.2 V of bias voltage forn < 10 (a) and for
n > 10 (b). The transmission is averaged over k and k.

Fig. 3.18 shows the I-V curves for various alkanethiolate SAM junctions. The elec-
tric current is symmetric about the zero bias voltage for each junction. Fig. 3.18b
shows that the I-V curves for the SAM junctions in an odd-even pair are nearly
identical when n > 10. The odd-even difference in the tip structure remains for the

pair (17,18), therefore the odd-even effects in charge mobility are expected. How-
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ever, we didn’t simulate the transport properties for SAM junctions with n > 16
because the electric current for long molecules is very low (107! A), whose compu-
tation requires high accuracy in the non-equilibrium contour integral and this is bey-
ond our computation ability. In addition, the odd-even effects may disappear for
n > 18 due to flexural distortions and excessive twisting in the alkanethiolate mo-

lecules.
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Figure 3.18: I-V curves for the SAM junctions with different 1. (a) For n. < 10, the current does not show
odd-even effects. The currentforn = 10is larger thanthat forn = 9, indicating a transitional region. (b)
Forn > 10, the odd-even effects occur and the electric currents for the SAM junctions in an odd-even pair are
almost identical.

To see how the tip geometry affects the electron transport, we plot the zy-plane
averaged mean field potential for current-carrying electrons in Fig. 3.19. It is obvious
that there is no difference in the potential along the odd and even SAMs except at
the top contact between the methyl group and the GaO monolayer. As shown in
Fig. 3.19a, for the pair (7, 8), the height and width of potential barriers across the top
contact are similar, indicating that the electric current is governed by the length of
molecule n for n < 9. However, for the pair (11, 12), as shown in Fig. 3.19b, the
tunneling barrier across the top contact for the even junction is much lower (1.34
¢V) than that for the odd one due to the stronger binding between the SAM and the
top electrode. As a consequence, it is easier for electrons to tunnel through the top
contact of the even junction (n = 12) and the reduction of the tunneling barrier
compensates the longer tunneling length, leading to a similar electric current with

the odd junction (n = 11). Our calculations clearly suggest that, for the Simmons
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law J = Joe P", 1) the prefactor Jj is determined by the electron tunneling through
the potential barrier across the top contact for the SAM junctions under study; 2) the
parameter 3 describes the dependence on the molecular length 7 and f3 is the same

for odd and even cases.

©
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Figure 3.19: Plane averaged mean-field potential for the current-carrying electrons in the SAM junctions with
n = 7,8()andn = 11,12 (b). The SAMs span from 14 Ato41,43,50,and 52 Aforn = 7,8,11,12
respectively. In panel (a), the heights of the tunnel barriers across the top contact are approximately the same,
while in panel (b) the barrier for the even 1. is lower by 1.34 eV.

The transmission eigenchannel analysis is helpful in understanding how electrons
propagate through thejunction. In Fig. 3.20a, we plot the isosurfaces of the dominant
transmission eigenchannels for several SAM junctions under 0.2 V of bias voltage.
For comparison, in Fig. 3.20b, we plot the isosurface of the partial electron density
for the highest valence band (0) of an infinite alkane chain. The plots in Fig. 3.20a
and 3.20b resemble each other, suggesting that electrons tunnel through the SAM via
the o, orbital of the alkane chain. Further analysis shows that the eigenchannels are
made of 80% C pz and some minor s and d orbitals.

Let v, and v, be the mean field potentials for the equilibrium and current-carrying
electrons respectively. Define dv = v,, — v, as the non-equilibrium correction to the
mean-field potential. In Fig. 3.21, we plot the isosurface of dv for n = 7 and show

that the non-equilibrium correction happens mainly at the contact between the SAM
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Figure 3.20: (a) Isosurfaces of transmission eigenchannelsforn = 7,8, 11, and 12 under 0.2 V bias voltage.
(b) DOS and the highest valence band (o ) of an infinite alkane. The green dashed line marks the Fermi level.

and the top lead. Such an observation is valid for both odd and even SAM junctions.

Figure 3.21: Isosurface of non-equilibrium correction to the mean field potential v = v,, — v.forn = 7
under 0.2 V bias voltage.

In conclusion, we have explained the experimentally observed odd-even effects in
alkanethilate SAM junctions by first-principles calculations based on SS-DFT. The
conformation of the SAMs was found to be crucial for the odd-even effects. Asa final
remark, the upper Ag-GaO probe used in this study is different from any experiment
to our knowledge, yet the odd-even effect was clearly demonstrated and our predicted

3 value is comparable to experimental ones.
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Conclusion

In conclusion, we proposed the steady-state density functional theory for calculating
the electronic structure of open quantum systems in steady state. We proved that two
electron densities, the equilibrium electron density p. and the current-carrying elec-
tron density p,,, together determine the properties of an open system in steady state.
This is different from the ground-state density functional theory where total elec-
tron density alone determines ground-state properties. By generalizing the Thomas-
Fermi-Dirac model to non-equilibrium cases, we derived the exchange energy as a
functional of p. and p, for a non-equilibrium uniform non-interacting electron

gas. This result enables us to encode the non-equilibrium effects in the energy func-
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tional level explicitly. In addition, we also showed that the desired steady state can
be obtained from the stationary condition of the effective ground state energy, i.e.
§Eo[pe, pn] = 0. As a consequence, two sets of coupled mean field equations have
to be solved. These equations indicate that the current-carrying electrons experience
one mean field and the remaining electrons experience another one. This is different
from the DFT+NEGF method where all electrons experience the same mean field.
Notably, our results may serve as the basis for first-principles studies of the electronic
and transport properties of molecular junctions under a finite bias.

After establishing the theory, we have implemented SS-DFT in SIESTA package
and used it to study several molecular junctions. In the first study, we focused on a
conductive ZGNR junction and showed that the exchange potential v, increased in
the device region. As a result, electric current decreased by around 10% for both low
and high biases. It implies that non-equilibrium corrections generally decrease the
electric current for metallic systems. By analyzing the non-equilibrium index 7(7), we
found that the edges of the ZGNR junction are in a higher degree of non-equilibrium
than the middle region. This s the first analysis of the local degree of non-equilibrium
in a molecular junction. In the second study, we considered a CNT-benzene-CNT
junction for which SS-DFT bore lower energy than the DFT+NEGF method at all
biases. This is not surprising because SS-DFT searches for the minimum energy in
a larger Hilbert space. To test the validity of SS-DFT, we decoupled the center ben-
zene molecule from the CNT leads. In this limiting case, SS-DFT produced the cor-
rect local equilibrium state for the benzene molecule while DFT+NEGF didn’t. Fi-
nally, we simulated a alkanethilate SAM junction and explained the experimentally
observed odd-even effect in the conductivity. According to our simulaltions, the odd-
even effect originates from different binding strengths between the SAM and the top
electrode. An even SAM is better bound to the top electrode than an odd SAM due

to different conformations of the SAM tips.

90



However, it should be pointed out that SS-DFT applies only when the temper-
ature approaches zero. In the case of finite temperature, the two electron densities,
pe and py,, are not basic variables any more and SS-DFT should be treated as an ap-
proximation. Another limitation of SS-DFT is that the correlation energy functional
is still unknown. Incorporating the correlation effects into SS-DFT is an important
direction for future studies, which probably can be done by combining SS-DFT with
Gutzwiller DFT." In addition, we hope to report the spin dependent SS-DFT, which
is under study at the moment, in the near future. A disadvantage of our implement-
ation is that the computational cost for conserving the number of electrons in the
device region is high. This is however unavoidable as long as significant tuning of the
effective chemical potential is required. Another problem is that the electron densit-
ies in the leads are fixed to be the ground state ones. This is actually inconsistent with
the scattering boundary conditions at finite biases. It remains challenging to consider

non-equilibrium effects in the leads.
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Yin Shui Si Yuan.

Yu Xin

Mathematica Codes

Mathematica codes for checking the integral in Eqn. 2.61

4 1
[3 - — 7T6/ dk/ dk/—/Q
(27T) 92 Q2 |k —k |

In[1]: Integrate[1/(a * Cos[z] + 1), {z, 0,2 * Pi}, Assumptions — x €
Reals&&a € Reals&&a > —1&&a < 1]

27
Out[1]: ConditionalExpression | ——,a # 0
[1] p { G 7 }
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In[2]:

Out[2]:

In[3]:

Out[3]:

Simplify[2 * Pi * Pi % x1 * x2 * Integrate[1/Sqrt[x * = + y * y+
cxxxy+cxc/d—1],{x,0,1},{y,0,1}, Assumptions — = €
Reals&&y € Reals&&e € Reals&&ee < —2]/.c — (—(x1 % x1+
x2 % x2) /(x1 % x2)), Assumptions — x1 € Reals&&x2 € Reals&&

x1 > 0&&xz2 > 0&&x1 # x2

9 X1 X2
moxix2 | — 2Log [—2 + — + —] +

X2 XI

2x1%x22
Log
xit + x2t — (x12 + x22) Abs [x1? — x2?]
Simplify[Integrate[%, {x1, ki, ko }, {x2, ki, ko }, Assumptions — x1
€ Reals&&x2 € Reals& &k € Reals&&ka € Reals&&ckr > 0&&
ki < ka], Assumptions — k1 € Reals&&ka € Reals&&ki > 0&&

ki < ka]

1
57# (2k14 — 9%kr’ka — ki*k2? — 2kik2® + 3k2* — 4k2*ArcTanh

k1 k1 ki
4ki’ka*Log |1 — — | + 2ki*Log | ————
{kI—ka} e Og{ kz] e Og[—khukzD
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