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Abstract

Recently, electron transport properties of molecular junctions under finite bias

voltages have attracted a lot of attention because of the potential application of mo-

lecular electronic devices. When a molecular junction is under zero bias voltage at

zero temperature, it is in equilibrium ground state and all its properties can be solved

by ground-state density functional theory (GS-DFT) where ground-state electron

density determines everything. Under finite bias voltage, the molecular junction is

in non-equilibrium steady state. According to Hershfield’s non-equilibrium stat-

istics, a system in non-equilibrium steady state corresponds to an effective equilib-

rium system. This correspondence provides the basis for the steady-state density

functional theory (SS-DFT) which will be developed in this thesis. In SS-DFT, we

proved that the total electron density is not enough to determine the properties of

the system in steady state. However, two electron densities, equilibrium electron

density ρe and current-carrying electron density ρn, now play the role of basic vari-

ables. Specifically, the ground state energy of the effective equilibrium system is

a functional of ρe and ρn, i.e. Ẽ0 = Ẽ0[ρe, ρn]. Furthermore, Ẽ0[ρe, ρn] is sta-

tionary upon variation of ρe and ρn, which leads to a dual mean field (DMF) ap-

proach for obtaining the desired steady state. In theDMF approach, current-carrying

electrons experience a different mean field potential from that for the equilibrium

electrons; and two sets of coupled Schrödinger-like mean field equations need to

be solved simultaneously. Before one sets out to solve the mean field equations,

it remains to find the explicit form of the exchange correlation part of Ẽ0[ρe, ρn],

i.e. Exc[ρe, ρn] = Ex[ρe, ρn] + Ec[ρe, ρn]. For this purpose, we generalized the

Thomas-Fermi-Dirac model (gTFD) into non-equilibrium situation and derived the
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exchange energy density En
x of a non-equilibrium uniform free electron gas as a func-

tion of ρe and ρn. En
x (ρe, ρn) is then used to approximate the general exchange en-

ergy functional Ex[ρe, ρn]. The non-equilibrium correction to the correlation en-

ergy is out of the scope of this thesis. For weakly correlated systems, we simply set

Ec to GS-DFT one. In addition, we have implemented SS-DFT in SIESTA pack-

age and simulated several realistic molecular junctions, including a zigzag graphene

nano-ribbon (ZGNR) junction, a junction consisting of a benzene molecule and car-

bon nano-tube (CNT) leads, and a junction with self-assembled mono-layer (SAM)

of alkanethiolates sandwiched between silver leads. Our calculations for the ZGNR

junction showed that SS-DFT recovers the results obtained from the conventional

DFT+NEGFmethod (via TranSiesta function) in the limit of zero bias; while at large

biases, SS-DFT produced significantly lower electric current since the exchange po-

tential for current-carrying electrons in SS-DFT is higher than the GS-DFT one. For

the CNT-benzene-CNT junction, SS-DFT bore lower energy than DFT+NEGF at

all biases. In a limit case where the CNT leads were pulled away from the benzene

molecule so that they are decoupled, SS-DFT was able to produce the local equilib-

rium electronic structure of the benzene molecule while DFT+NEGF failed to do so.

Finally, the simulations of the SAM junctions explained the experimentally observed

odd-even effect in the charge mobility. In summary, we have developed a steady state

density functional theory which paves the way to first-principles studies of the elec-

tronic and transport properties of molecular junctions under finite bias.

viii



List of Tables

1.1 Examples of analytic continuation. . . . . . . . . . . . . . . . . . 31

3.1 Binding energy Eb per alkanethiolate molecule between the SAM

and the top electrode for 7 ≤ n ≤ 16. In each odd-even pair, the

binding energy for the odd is always less than its even partner. . . . . 84

ix



List of Figures

0.1 The theoretical framework for studying open quantum systems in

steady state. The abbreviations: SQ stands for second quantization;

EGF stands for equilibrium Green’s function; PBT stands for per-

turbation theory; NS stands for non-equilibrium statistics; HNS

stands for Hershfields’ non-equilibrium statistics; ⟨Ĵ⟩ is the steady
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If I have seen further, it is by standing on the shoulders of giants.

Isaac Newton

0
Introduction

Many-body problems can be tackled by density functional theory (DFT) and many-

particle formalism (MPF). MPF is based on second quantization, Green’s functions,

and diagrammatic calculations. 1–3 It provides systematic formulas for calculating elec-

trondensity and transport properties. DFT is amean-field theory to solvemany-body

problems efficiently.4,5 It bears the electronic structure of a many-body system. They

can be combined to study the transport properties of open quantum systems in non-

equilibrium steady state.6

Ground state density functional theory (GS-DFT) uses ground state electron

density to determine the ground state properties.7 Currently, GS-DFT is widely used

1



0. INTRODUCTION

for the study of non-equilibrium steady state for which GS-DFT is actually not valid.

In this thesis, we develop a steady-state density functional theory (SS-DFT) where

two electron densities, equilibrium and current-carrying electron densities, are the

basic variables. SS-DFT is solid specially for steady state. It will be combined with

MPF for studying electron transport through molecular junctions which is the key

problem in molecular electronics. 8

0.1 Molecular Electronics

Proposed by Aviram and Ratner in 1974, molecular electronics utilizes molecules as

functional units in a circuit.9 It is the eventual successor to micro electronics as the

minimization process of MOSFET continues. At the molecular scale, electrons be-

have as wave, instead of particles, which puts a limit on the size of MOSFET. It was

estimated that the dimension of the smallest MOSFET is of 1.5 nm, 10 while sub-5

nmMOSFET has beenmade in lab. 11 Thus, the need for greater computation power

and lesser energy consumption in contemporary information era urges the study of

molecular electronic devices. Experimentally, various molecular devices such as di-

odes, switches, and transistors have been demonstrated experimentally 12,13 since the

invention of the scanning tunneling microscope (STM) in 1981. 14

STM enabled us to manipulate materials at the atomic level. A normal STM scan

of some nano particle on a substrate can be viewed as the formation of a molecular

junction. 15–17To fabricate amolecular junctionwith desiredmolecules in between, the

STM break junction technique can be employed. 18,19 However, molecular junctions

made by STMusually involve a tip and a surface (substrate). Other configurations of

molecular junctions can be achieved by the techniques of mechanically controllable

break junction (MCB) 20 or electromigration break junction (EMB). 21–23

Since the 1990s, transport properties of molecular junctions have been probed. In

1993, the conductance of an iron atom bridging an STM tip and a metal surface was

2



0. INTRODUCTION

measured by Crommie. 15 Subsequently, in 1997, Reed formed benzene-1, 4-dithiol

junctions with gold nanowire leads and measured its conductance. 24 In this experi-

ment, the Au-S bond links benzene to the gold lead stabilizing the molecular junc-

tion. In addition to the Au-S bond, M-N 25 and M-C 26 bonds can also work in a

similar way for other molecular junctions. Here M represents metal. Generally, a

conductance measurement is hard to repeat due to variations in the atomic configur-

ation of the junction. 27–30 Despite the structural uncertainty, Tao et al. successfully

confirmed the conductance of a single molecule junction by repeatedly forming the

junction and analyzing the conductance statistically in 2003. 18This studymade a great

contribution to the measurement of electron transport throughmolecular junctions.

In summary, advanced techniques such as STM, MCB and EMB were developed

to fabricate molecular junctions. However, it is still formidable to control the mo-

lecular scale structures precisely. Despite the structural uncertainty, the conductance

of a single molecule junction can be identified by statistical analysis.

0.2 Many-Body Theories

Theoretically, the goal is to predict the transport properties of an open quantum sys-

tem in non-equilibrium steady state. Two components are needed for achieving this

goal. One is the quantum transport formula and the other is the electronic structure

of the open system.

The transport formula can be obtained fromMPF. Based on the concept of wave

scattering, Landauer derived a formula for non-interacting two-terminal junctions in

the 1950s. 31 Later in 1986, the Landauer formula was generalized to non-interacting

multiple-terminal cases by Büttiker. 32 The Landauer-Büttiker formalism greatly im-

proved our understanding of quantum electron transport. In 1971, the first rigorous

quantum transport theory was derived by Caroli et al. based on non-equilibrium

Green functions (NEGF) 33 fornon-interacting systems. 34,35 In these studies, the steady

3



0. INTRODUCTION

state evolves from a non-equilibrium initial condition with the coupling between

a lead and the center region turned on gradually. Alternatively by establishing the

steady state from an equilibrium initial condition, Cini constructed another equival-

ent quantum transport scheme also with NEGF in 1980. 36 Importantly, Meir and

Wingreen generalized Caroli’s work to interacting cases in 1992. 8 TheMeir-Wingreen

formula provides a general theoretical framework for studying quantum electron

transport. It reduces to the Landauer formula in the non-interacting limit.

The electronic structure of the open quantum system is needed when we apply

a transport formula. To obtain the electronic structure, one is concerned with three

issues: open boundary condition, non-equilibrium effects and electron correlation.

In 1995, Lang used a self-consistent procedure based on GS-DFT to attack the prob-

lem. 37,38 In Lang’s method, GS-DFT includes electron correlation. The electron dens-

ity was calculated by summing up the squares of the occupied scattering states which

were found by solving a Lippmann-Schwinger equation with the open boundary en-

coded. However, as a limitation, the leads were described by the jelliummodel which

ignores the atomistic structure. In 2001, based on Lang’smethod, Guo et al. invented

the DFT+NEGF method which employs NEGF to compute the electron density. 39

NEGF takes care of the open boundary condition and the non-equilibrium distribu-

tion. Another improvement byGuo et al. is taking the atomistic structure of the leads

into account. Several implementations of DFT+NEGF have been reported.40–42 Im-

portantly, the DFT+NEGFmethod enabled efficient simulations of realistic molecu-

lar junctions. It has been extended to tackle spin dependent transport43 and include

electron-phonon coupling.44,45 It usually bears qualitatively correct current-voltage

characteristics for molecular junctions.46,47 However, the predicted currents can dif-

fer from the experimental results by several orders of magnitude.48 Possible reasons

include the complexity of the molecule-lead contact, the self-interaction error, inac-

curate electron correlation, and lack of dynamic effects.49–53 In this thesis we would

4



0. INTRODUCTION

like to address the problem that non-equilibrium effect is absent in GS-DFT and ap-

ply SS-DFT instead to solve the electronic structure of the open quantum system.

In 1993, Hershfield showed that a system in non-equilibrium steady state corres-

ponds to an effective equilibrium system. 54 The correspondence provides the basis

for SS-DFT. In SS-DFT, the equilibrium and current-carrying electron densities, ρe

and ρn, together determine the properties of the open system in the steady state,

e.g. the energy E0 = E0[ρe, ρn]. In order to approximate the exchange energy

functionalEx[ρe, ρn], we generalized the Thomas-Fermi-Dirac (TFD)model to non-

equilibrium cases and derived the exchange energy density En
x of a non-equilibrium

uniform non-interacting electron gas as a function of ρe and ρn. 55 In this way, the

non-equilibrium effects are taken into account at the energy functional level expli-

citly. Furthermore, the stationary condition of the effective ground state energy leads

to a dualmean field (DMF) approach for obtaining the steady state. 56 In theDMF ap-

proach, equilibrium electrons experience a different mean field from that for current-

carrying electrons. NEGF is also used to take care of the open boundary condition in

the DMF approach. We have implemented SS-DFT in the SIESTA package and sim-

ulated several realistic molecular junctions with our implementation. 57 Note that the

correlation energy functional for SS-DFT is still unknown. In our simulations, we

simply set it to the GS-DFT one, which may not be a bad approximation for weakly

correlated systems.

As an overview, Fig. 0.1 shows the theoretical framework for studying the trans-

port properties of an open quantum system in steady state. In this framework,NEGF

and SS-DFT are combined to solve the problem.

0.3 Purpose and Scope

The purpose of our study is to develop the steady-state density functional theory

for open quantum systems in a non-equilibrium steady state and provide a first-

5



0. INTRODUCTION

MPF

SQ

EGF NEGF

PBT

NS

HNS

ρe, ρn

⟨Ĵ⟩

DFT

GS-DFT

SS-DFT

TD-DFT

Figure 0.1: The theoretical framework for studying open quantum systems in steady state. The abbreviations:

SQ stands for second quantization; EGF stands for equilibriumGreen’s function; PBT stands for perturbation

theory; NS stands for non-equilibrium statistics; HNS stands for Hershfields’ non-equilibrium statistics; ⟨Ĵ⟩
is the steady electric current. The blue objects pertain to equilibrium ground state. The red objects pertain to

non-equilibrium steady state.

principlesmethod based on SS-DFT for simulating the electronic and transport prop-

erties of molecular junctions.

SS-DFT further improved our understanding of open quantum systems in steady

state by identifying their basic variables. Our first-principles method based on SS-

DFT will be an efficient theoretical tool for the study of electron transport in mo-

lecular devices.

A concise account of many-particle formalism and density functional theory will

be given in chapter 1. In chapter 2, SS-DFT will be developed in detail. Finally, simu-

lations of several molecular junctions will be presented in chapter 3. Chapters 2 and 3

contain the main results of this thesis. Experimental studies are absent because of the

theoretical nature of this work.
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The book of nature is written in the language of mathematics.

Galileo Galilei

1
Many-Body Theories

In this chapter, we review the many-particle formalism (MPF) and the ground-

state density functional theory (GS-DFT). For MPF, both equilibrium and non-

equilibrium Green’s functions will be covered.

1.1 SecondQuantization

In this section, we explore the language of second quantization whose power lies in

operator algebra. Second quantization relies on creation and annihilation operators

which will be introduced gradually in the following.

LetH be theHilbert space spanned by the eigenstates of a single particleHamilto-

7



1.1. SECONDQUANTIZATION

nian ĥ

ĥ |α⟩ = ϵα |α⟩ , (1.1)

where |α⟩ are orthonormal

⟨α′| α⟩ = δαα′ . (1.2)

Any vector inH is a linear combination of |α⟩s. Since a many-body system is a collec-

tion of individual particles, its state can be constructed from single particle states. All

states constructed in this way span a configuration space. For a system ofN particles,

the configuration space CN is

CN ≡ H⊗H⊗ · · · ⊗ H. (1.3)

Any vector in CN is a linear combination of |α1⟩ ⊗ |α2⟩ ⊗ · · · ⊗ |αN⟩s.

The Hilbert space HN for a system of N particles, defined in the configuration

space CN , consists of complex, square integrable functions. |α1, α2, · · · , αN) =

|α1⟩ ⊗ |α2⟩ ⊗ · · · ⊗ |αN⟩ form the canonical basis forHN . Its completeness reads

∑
α1,··· ,αN

|α1, α2, · · · , αN) (α1, α2, · · · , αN | = 1. (1.4)

The canonical basis however doesn’t reflect the anti-symmetry of aN -fermion state

ψN , namely

ψN(xp1 ,xp1 , · · · ,xpN ) = (−1)pψN(x1,x2, · · · ,xN) (1.5)

with p representing some permutation. In order to find an anti-symmetric basis,

define the symmetrization operator P̂ , for any ψN

P̂ψN(x1,x2, · · · ,xN) ≡
1

N !

∑
p

(−1)pψN(xp1 ,xp1 , · · · ,xpN ). (1.6)

8



1.1. SECONDQUANTIZATION

Then an anti-symmetric basis can be constructed as

|α1, α2, · · · , αN⟩ ≡
√
N !P̂ |α1, α2, · · · , αN) (1.7)

whose completeness is

1

N !

∑
α1,··· ,αN

|α1, · · · , αN⟩ ⟨α1, α2, · · · , αN | = 1. (1.8)

Fock spaceF is defined as

F ≡
∞⊕
n=0

Fn, (1.9)

where
F0 = |0⟩ ,

Fn = Hn, n = 1, 2, 3, · · ·
(1.10)

The closure relation for Fock space is

|0⟩ ⟨0|+
∞∑

N=1

1

N !

∑
α1,··· ,αN

|α1, α2, · · · , αN⟩ ⟨α1, α2, · · · , αN | = 1. (1.11)

In Fock space, the creation operator â†λ is defined as

â†λ |λ1, · · · , λN⟩ ≡

{
|λ, λ1, · · · , λN⟩ @λi = λ,

0 ∃λi = λ.

(1.12)

The annihilation operator âλ is defined as the Hermitian adjoint of â†λ

âλ ≡ (â†λ)
†. (1.13)

9



1.1. SECONDQUANTIZATION

It has the property

âλ |λ1, · · · , λN⟩ =

{
(−1)i−1|λ1, · · · , λ̂i, · · · , λN⟩ ∃λi = λ,

0 @λi = λ.

(1.14)

where λ̂imeans eliminate thisλi. Particularly âλ |0⟩ = 0. According to thedefinition

of creation operator {
â†µ, â

†
ν

}
= â†µâ

†
ν + â†ν â

†
µ = 0. (1.15)

The Hermitian adjoint is

{âµ, âν} = 0. (1.16)

Due to the anti-symmetry of the basis upon which creation and annihilation operat-

ors are defined {
âµ, â

†
ν

}
= δµν . (1.17)

Next, we will express observables in term of creation and annihilation operators.

Define the number operator

n̂λ ≡ â†λâλ. (1.18)

It has the property

n̂λ |λ1, λ2, · · · , λN⟩ =

{
|λ1, λ2, · · · , λN⟩ ∃λi = λ,

0 @λi = λ.

(1.19)

Define the total number operator

N̂ ≡
∑
λ

n̂λ. (1.20)
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It has the property

N̂ |ψN⟩ = N |ψN⟩ , (1.21)

where N is the total number of electrons in the system of state |ψN⟩. Any single

particle operator Û =
∑

i ûi can be expressed in terms of number operators

Û =
∑
α

uαn̂α, (1.22)

where α is the diagonal representation of ûwith

û |α⟩ = uα |α⟩ ,

⟨β| α⟩ = δαβ.

(1.23)

Define the pair counting operator

P̂αβ ≡ n̂αn̂β − δαβn̂α. (1.24)

It has the property

P̂αβ |λ1, λ2, · · · , λN⟩ =

{
|λ1, λ2, · · · , λN⟩ ∃i, j;λi = α, λj = β,

0 otherwise.
(1.25)

In another form

P̂αβ = â†αâ
†
βâβâα. (1.26)

Any two particle operator V̂ =
∑

i̸=j v̂ij can be expressed in terms of pair counting

operator

V̂ =
1

2

∑
αβ

vαβP̂αβ =
1

2

∑
αβ

vαβâ
†
αâ

†
βâβâα, (1.27)

11



1.1. SECONDQUANTIZATION

where αβ is the diagonal representation of v̂ with

v̂ |αβ) = vαβ |αβ) ,

(α′β′| αβ) = δαα′δββ′ .

(1.28)

Between two different representations α and β

|α⟩ =
∑
β

⟨β| α⟩ |β⟩ . (1.29)

The creation operators â†α and â
†
β can be transformed as follows

â†α =
∑
β

⟨β| α⟩ â†β. (1.30)

Correspondingly

âα =
∑
β

⟨α| β⟩ âβ. (1.31)

For a single particle operator

Û =
∑
α

uαâ
†
αâα =

∑
ββ′

uββ′ â†βâβ′ . (1.32)

For a two particle operator

V̂ =
1

2

∑
αα′

vαα′ â†αâ
†
α′ âα′ âα =

1

2

∑
β1β2β3β4

vβ1β2β3β4 â
†
β1
â†β2

âβ4 âβ3 . (1.33)

In spin spacetime representation, let x = (r, σ). The anti-commutation relations

are

{
ψ̂(x), ψ̂†(x′)

}
= δ(x− x′),{

ψ̂†(x), ψ̂†(x′)
}
=
{
ψ̂(x), ψ̂(x′)

}
= 0. (1.34)
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1.2. EQUILIBRIUMGREEN’S FUNCTION

We have the transformation to α representation

ψ̂†(x) =
∑
α

⟨α| x⟩ â†α =
∑
α

ϕ∗
α(x)â

†
α,

ψ̂(x) =
∑
α

⟨x| α⟩ âα =
∑
α

ϕα(x)âα.

(1.35)

1.2 EquilibriumGreen’s Function

In the language of second quantization, the equilibrium Green’s function will be

defined and explored in the section. As a prerequisite, we first introduce pictures

of quantummechanics.

1.2.1 Pictures

Let Â(t) be a general time-dependent unitary operator

Â†(t)Â(t) = 1 = Â(t)Â†(t). (1.36)

Define a wavefunction and a operator inA picture as

|ψ(t)⟩A ≡ Â(t) |ψ⟩

Ô(t)A ≡ Â(t)ÔÂ†(t)

(1.37)

The expectation value of Ô in pictureA is

⟨ψ|Ô|ϕ⟩ = ⟨ψA|ÔA|ϕA⟩. (1.38)

Â(t) ≡ 1 defines the Schrödinger picture. In the Schrödinger pciture, the time-

13



1.2. EQUILIBRIUMGREEN’S FUNCTION

evolution operator Û(t, t0)S is defined by

|Ψ(t)⟩S ≡ Û(t, t0)S |Ψ(t0)⟩ . (1.39)

It satisfies

i
∂

∂t
Û(t, t0)S = ĤSÛ(t, t0)S (1.40)

with Û(t0, t0)S = 1. Note that Hartree atomic units are adopted so that ~, equal

to 1, is dropped in the above equation. If the Hamiltonian ĤS is explicitly time-

independent, the above equation has a solution

Û(t, t0)S = exp
[
−iĤS(t− t0)

]
. (1.41)

In general

Û †(t, t0)S = Û−1(t, t0)S = Û(t0, t)S. (1.42)

Â(t) ≡ Û †(t, t0)S defines the Heisenberg picture. In the Heisenberg picture, we

have the Heisenberg equation of motion

i
d
dt
Ô(t)H = [ÔH , ĤH ] + i

[
∂ÔS

∂t

]
H

, (1.43)

where [
∂ÔS

∂t

]
H

≡ Û †
S

(
∂ÔS

∂t

)
ÛS. (1.44)

Let Ĥ0 be the easy part (time-independent and non-interacting) of the whole

Hamiltonian ĤS = Ĥ0 + V̂S , then Â(t) ≡ exp
(
iĤ0t

)
defines the interaction

picture. In the interaction picture, an operator evolves according to

i
d
dt
Ô(t)I =

[
ÔI , Ĥ0

]
+ i

[
∂ÔS

∂t

]
I

, (1.45)
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where [
∂ÔS

∂t

]
I

≡ exp
(
iĤ0t

)(∂ÔS

∂t

)
exp
(
− iĤ0t

)
. (1.46)

A wavefunction evolves according to

i
∂

∂t
|Ψ(t)⟩I = V̂ (t)I |Ψ(t)⟩I . (1.47)

Define a time-evolution operator Û(t, t′)I by

|Ψ(t)⟩I = Û(t, t′)I |Ψ(t′)⟩I . (1.48)

It satisfies

i
∂

∂t
Û(t, t′)I = V̂ (t)IÛ(t, t

′)I . (1.49)

A formal solution to the above equation is

Û(t, t′)I =T̂
∞∑
n=0

(−i)n

n!

∫ t

t′
dt1 · · ·

∫ t

t′
dtnV̂ (t1)I · · · V̂ (tn)I

=T̂ exp
[
− i

∫ t

t′
dτ V̂ (τ)I

]
,

(1.50)

where the time-ordering operator T̂ is defined by

T̂
[
Â(t1)B̂(t2)

]
≡

{
Â(t1)B̂(t2) if t1 > t2,

B̂(t2)Â(t1) if t2 > t1.

(1.51)

The transformation of the time-evolution operator between the Schrödinger pic-

ture and the interaction picture follows

Û(t, t′)I = exp
(
iĤ0t

)
Û(t, t′)S exp

(
− iĤ0t

′). (1.52)
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1.2. EQUILIBRIUMGREEN’S FUNCTION

The transformation of operators between the interacting picture and theHeisenberg

picture follows

Ô(t)H = Û(0, t)IÔ(t)IÛ(t, 0)I . (1.53)

Both the creation and annihilation operators in the interaction picture differ from

those in the Schrödinger picture by just a phase factor

ĉi(t)I = e−iϵitĉi,

ĉ†i (t)I = eiϵitĉ†i .

(1.54)

1.2.2 Definition and Properties

Define the time-ordered product of two creation and annihilation operators by

T̂
[
Â(t)B̂(t′)

]
≡

{
Â(t)B̂(t′) if t > t′,

−B̂(t′)Â(t) if t′ > t.

(1.55)

Let |Ψ0⟩ be the ground state for some Hamiltonian H . The Green’s function in a

general λ representation is defined by

iG(λt, λ′t′) ≡ 1

⟨Ψ0| Ψ0⟩
⟨Ψ0|T̂ [cλ(t)Hc†λ′(t

′)H ]|Ψ0⟩. (1.56)

In the spin spacetime representation

iG(xt,x′t′) ≡ 1

⟨Ψ0| Ψ0⟩
⟨Ψ0|T̂ [ψ(xt)Hψ†(x′t′)H ]|Ψ0⟩, (1.57)

or with the spin indices explicitly

iGαβ(rt, r
′t′) ≡ 1

⟨Ψ0| Ψ0⟩
⟨Ψ0|T̂ [ψα(rt)Hψ

†
β(r

′t′)H ]|Ψ0⟩. (1.58)
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1.2. EQUILIBRIUMGREEN’S FUNCTION

In the spin momentum representation

iGαβ(kt,k
′t′) ≡ 1

⟨Ψ0| Ψ0⟩
⟨Ψ0|T̂ [ckα(t)Hc†k′β

(t′)H ]|Ψ0⟩. (1.59)

If the Hamiltonian is explicitly time-independent, the Green’s function depends

only on the time-difference (t− t′)

Ĥ ̸= Ĥ(t) =⇒ G(λt, λ′t′) = G(λ, λ′, t− t′). (1.60)

If the Hamiltonian commutes with the total-momentum operator P̂

P̂ =
∑
α

∫
drψ̂†

α(r)(−i∇)ψ̂α(r), (1.61)

the Green’s function only depends on the difference between the space coordinates

(r − r′)

[Ĥ, P̂ ] = 0 =⇒ Gαβ(rt, r
′t′) = Gαβ(r − r′, t, t′). (1.62)

Then we have the Fourier transform

Gαβ(k, t, t
′) =

∫
d(r − r′)e−ik·(r−r′)Gαβ(rt, r

′t′), (1.63)

and the inverse transformation

Gαβ(rt, r
′t′) =

∫
dk

(2π)3
eik·(r−r′)Gαβ(k, t, t

′). (1.64)

Furthermore

[Ĥ, P̂ ] = 0 =⇒ Gαβ(kt,k
′t′) = δkk′Gαβ(k, t, t

′), (1.65)
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where Gαβ(kt,k
′t′) is the momentum Green’s function defined in Eqn. 1.59 and

Gαβ(k, t, t
′) is the Fourier transform of the space Green’s function. If the Hamilto-

nian both commutes with the total momentum and is explicitly time-independent,

the Green’s function writes

Gαβ(rt, r
′t′) = Gαβ(r − r′, t− t′). (1.66)

In this case, the Fourier transform is

Gαβ(k, ω) =

∫
d(r − r′)d(t− t′)e−ik·(r−r′)eiω(t−t′)Gαβ(rt, r

′t′). (1.67)

The inverse transformation is

Gαβ(rt, r
′t′) =

1

(2π)4

∫
dkdωeik·(r−r′)e−iω(t−t′)Gαβ(k, ω). (1.68)

Given the Green’s function, the following quantities can be calculated. 1) The

ground-state expectation value of any single-particle operator. 2) The ground-state

energy of the system. 3) The excitation energies of the system.

1.3 Perturbation Theory

In this section, we explore the perturbation theorywhich relates the full Green’s func-

tion (with interaction) to the free ones (without interaction).

1.3.1 Perturbation Expansion

Assume a Hamiltonian

Ĥε(t)S ≡ Ĥ0 + e−ε|t|v̂ (1.69)
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with ε > 0 and H0 being the easy part. Let |Φ0⟩ be the ground state for Ĥ0. Let

|Ψ0⟩ be the ground state for Ĥε→0(0)S . At t = 0, the Schrödinger, Heisenberg and

interaction pictures coincide. Let

|Ψε(0)⟩ ≡ |Ψε(0)⟩I = Ûε(0,−∞)I |Φ0⟩ . (1.70)

Gell-Mann–Low theorem states that if the vector |ξ⟩ = limε→0
|Ψε(0)⟩

⟨Φ0|Ψε(0)⟩ exists to

all orders in perturbation theory, then |ξ⟩ is an exact eigen function of Ĥε→0(0)S . 58

Hopefully

|Ψ0⟩ = lim
ε→0

|Ψε(0)⟩ . (1.71)

Using Eqn. 1.50, 1.53, and 1.71, we have

iG(λt, λ′t′) =
⟨Ψ0|T̂ [ĉλ(t)H ĉ†λ′(t′)H ]|Ψ0⟩

⟨Ψ0| Ψ0⟩

= lim
ε→0

[
1

⟨Φ0|Ûε(∞,−∞)I |Φ0⟩

∞∑
n=0

(−i)n

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn

× e−ε(|t1|+···+|tn|) ⟨Φ0| T̂
[
v̂(t1)I · · · v̂(tn)I ĉλ(t)I ĉ†λ′(t

′)I

]
|Φ0⟩

]
.

(1.72)

1.3.2 Wick’s Theorem

As an operator equality, Wick’s theorem expresses a product of creation and annihila-

tion operators as a sum of the products of contractions and normal ordered products.

Let â†i and b̂
†
i (âi and b̂i) be the creation (annihilation) operators for particles and

holes respectively. For a product of creation and annihilation operators, define the

normal order operator N̂ which brings the annihilation operators to the right, and

multiplies the product with the sign of the permutations applied. For example

N̂ [b̂i(t1)I â
†
j(t2)I b̂

†
k(t3)I ] = (−1)2â†j(t2)I b̂

†
k(t3)I b̂i(t1)I . (1.73)
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Let ÂB̂ · · · Ẑ be some creation and annihilation operators. Define the paring of two

operators by

ÂB̂ ≡ ÂB̂ − N̂
(
ÂB̂
)

(1.74)

For example,

âi(t)I â
†
j(t

′)I =e
iϵj(t

′−t)δij,

b̂i(t)I b̂
†
j(t

′)I =e
iϵj(t−t′)δij.

(1.75)

All other pairings vanish. Thus any pairing is a c-number. Since ⟨Φ0|N̂
(
ÂB̂
)
|Φ0⟩ =

0,

⟨Φ0|ÂB̂|Φ0⟩ = ⟨Φ0|N̂
(
ÂB̂
)
+ ÂB̂|Φ0⟩ = ÂB̂. (1.76)

Define the normal ordering for a product with pairings

N̂
(
ÂB̂ĈD̂Ê · · · X̂Ŷ Ẑ

)
≡ (−1)qÂD̂ĈŶ N̂

(
B̂Ê · · · X̂Ẑ

)
. (1.77)

Here q is the number of commutations needed to bring the paired operators to the

left of the product. TheWick’s theorem for normal products states that

Â1Â2 · · · Ân =N̂
(
Â1 · · · Ân

)
+N̂

(
Â1Â2Â3 · · · Ân

)
+ N̂

(
Â1Â2Â3 · · · Ân

)
+ · · · all other one pairing terms

+N̂
(
Â1Â2 · · · Ân

)
(1.78)

+ · · · all other two pairing terms+
...

+all completely paired terms.
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For time ordered products, define the contraction by

Â(t)B̂(t′) ≡ T̂
(
Â(t)B̂(t′)

)
− N̂

(
Â(t)B̂(t′)

)
. (1.79)

The contraction is related to the pairing by

Â(t)B̂(t′) =

{
Â(t)B̂(t′) if t > t′,

−B̂(t′)Â(t) if t′ > t.

(1.80)

Therefore, contractions are c-numbers, so that

⟨
Φ0

∣∣T̂(Â(t)B̂(t′)
)∣∣Φ0

⟩
= Â(t)B̂(t′). (1.81)

According to the properties of pairings

N̂
(
ÂB̂ĈD̂Ê · · · X̂Ŷ Ẑ

)
≡ (−1)qÂD̂ĈŶ N̂

(
B̂Ê · · · X̂Ẑ

)
. (1.82)

TheWick’s theorem for time-ordered products states that 59

T̂
(
Â1Â2 · · · Ân

)
=N̂

(
Â1 · · · Ân

)
+N̂

(
Â1Â2Â3 · · · Ân

)
+ N̂

(
Â1Â2Â3 · · · Ân

)
+ · · · all other one contraction terms

+N̂
(
Â1Â2 · · · Ân

)
(1.83)

+ · · · all other two contraction terms+
...

+all completely contracted terms.

If Ĥ0 is explicitly time-independent, ĉi(t)I ĉ†j(t′)I is the Ĥ0-propagator (free
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Green’s function)

iG0(it, jt′) =
⟨
Φ0

∣∣T̂ [ĉi(t)H ĉ†j(t′)H]∣∣Φ0

⟩
=
⟨
Φ0

∣∣T̂ [ĉi(t)I ĉ†j(t′)I]∣∣Φ0

⟩
=ĉi(t)I ĉ

†
j(t

′)I .

While other contractions are zero

ĉi(t)I ĉj(t
′)I = 0 = ĉ†i (t)I ĉ

†
j(t

′)I . (1.84)

Similarly for field operators

ψ̂(xt)Iψ̂
†(x′t′)I = iG0(xt,x′t′), (1.85)

and

ψ̂(xt)Iψ̂(x
′t′)I = 0 = ψ̂†(xt)Iψ̂

†(x′t′)I . (1.86)

1.3.3 Diagrammatic Calculations

The Green’s function in λ representation is given in Eqn. 1.72. We set λ = i to be

discrete in the following. The Green’s function in the spin spacetime representation

writes

iGαβ(rt, r
′t′) =

lim
ε→0

[
1

⟨Φ0|Ûε(∞,−∞)I |Φ0⟩

∞∑
n=0

(−i)n

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn (1.87)

× e−ε(|t1|+···+|tn|) ⟨Φ0| T̂
[
v̂(t1)I · · · v̂(tn)Iψ̂(rt)Iψ̂†(r′t′)I

]
|Φ0⟩

]
.
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Let

v̂(t)I =
1

2

∑
ijkl

⟨ij|v|kl⟩ĉ†i (t)I ĉ
†
j(t)I ĉl(t)I ĉk(t)I (1.88)

for a discrete representation and

v̂(t)I =
1

2

∫
dx
∫

dx′v(x,x′)ψ̂†(xt)Iψ̂
†(x′t)Iψ̂(x

′t)Iψ̂(xt)I (1.89)

for the spin spacetime representation. Apply Wick’s theorem to Eqn. 1.72 and Eqn.

1.87, the nth order term becomes

(−i)n

n!2n
×

{∑
ijkl · · ·∫
dx1

∫
dx′

1 · · ·

}∫
dnte−ε(|t1|··· )

×
∑

(±) ⟨v⟩ · · · ⟨v⟩︸ ︷︷ ︸
n factors

(iG0) · · · (iG0)︸ ︷︷ ︸
(2n+1) factors

.

(1.90)

Eqn. 1.90 can be evaluated in a diagrammatic way invented by Feynman.60 The

recipe for translating the above equation to a diagram is as follows.

1. Imagine a time-axis with time increasing from below to above.

2. The H0-propagator G0(λt, λ′t′) is represented by a continuous line from

(λ′t′) to (λt). An arrow is drawn on the line pointing from the second to the

first argument. The endpoints are ordered in time; the length, curvature or tilt

of the lines do not matter. The diagram forG0(λt, λ′t′) is shown in Fig. 1.1.

3. The matrix elements of the interaction are represented by a wiggly line with

the endpoints labeled according to Fig. 1.2. The points where the interaction

lines are connected to propagators are called internal vertices.

4. Green’s functionswith equal time-arguments shall be interpreted asG0(λt, λ′t+).
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for t > t′

λ′t′

λt

for t′ > t

λ′t′

λt

λ′t′ λt
λ′t′

λt
or

for t′ = t

H

Figure 1.1: Diagrams for theH0-propagatorG
0(λt, λ′t′).

i

k

j

l

Figure 1.2: Diagram for the interactionmatrix element ⟨ij|v̂|kl⟩.

5. All indexes for an internal vertex shall be summed or integrated over. The

factor e−ε|t| shall be added to the integrals over time.

6. The sign of any term is (−1)l where l is the number of closed loops formed by

G0-lines.

7. The prefactor of each term of nth order is

in

n!2n
. (1.91)

The above rules are also valid for the vacuum amplitude. For example, the diagram

in Fig. 1.3 represents the term

(−1)1
i2

2!22

∑
pqrs

∑
jkmn

∫
dt1
∫

dt2e−ε(|t1|+|t2|)⟨pq|v̂|rs⟩⟨jk|v̂|mn⟩

×G0(mt1, pt2)G
0(st2, jt1)G

0(nt1, qt2)G
0(rt2, kt1). (1.92)
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nkjm

qsrp

t1

t2

Figure 1.3: A second order vacuum amplitude diagram.

For the vacuumamplitude, theLinked-Cluster theorembyGoldstone states that61

⟨
Φ0

∣∣ÛI

∣∣Φ0

⟩
= exp

[⟨
Φ0

∣∣ÛI

∣∣Φ0

⟩
L

]
. (1.93)

Here
⟨
Φ0

∣∣ÛI

∣∣Φ0

⟩
L
means that only connected diagrams are included in the sum. For

the Green’s function, all terms of the numerator are obtained from the product of all

connected diagrams which connect the two external endpoints with all diagrams of

the vacuum amplitude. Thus the denominator cancels.

For any graph in the expansion of the Green’s function, the remaining part after

excluding the connections to the external end points is a self-energy insertion. The

sum of all self-energy insertions is the self-energy M̃ which is illustrated in Fig. 1.4. A

= + ←− Self-energy M̃(λ1t1 , λ
′
1t

′
1)

λ′t′

λt

λ′t′

λt

λ′t′

λ′1t
′
1

λ1t1

λt

Figure 1.4: Diagrammatic representation of the self-energy M̃ . The thick line represents the full Green’s

function.

self-energy insertion is called reducible if it can be partitioned into a lower-order self-

energy insertion by cutting a single G0-line. The sum of all irreducible self-energy

insertions is called proper self-energyM . The self-energy can be obtained from the

proper self-energy, as shown in Fig. 1.5. The Green’s function is related to the proper
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M

M

M

M

M

M

M̃ = = + + + · · ·

λ′1t
′
1

λ1t1

λ′1t
′
1

λ1t1

λ′1t
′
1

λ′2t
′
2

λ2t2

λ1t1

Figure 1.5: The self-energy M̃ expressed in terms of the proper self-energyM .

self-energy byDyson’s equation as shown in Eqn. 1.94 and illustrated in Fig. 1.6.

G(λt, λ′t′) = G0(λt, λ′t′)+∑
λ1

∑
λ′
1

∫
dt1
∫

dt′1G
0(λt, λ1t1)M(λ1t1, λ

′
1t

′
1)G(λ

′
1t

′
1, λ

′t′).
(1.94)

M= +

λ′t′

λt

λ′t′

λt

λ′t′

λ′1t
′
1

λ1t1

λt

Figure 1.6: Diagramatic representation of Dyson’s equation. The thick line represents the full Green’s function.

M is the proper self-energy.

1.4 Non-equilibriumGreen’s Function

A system out of equilibrium may not go back to its ground state at t → ∞. In

this case Gell-Mann–Low theorem doesn’t apply for 0 ≤ t < ∞. However a sys-

tematic theoretical framework for obtaining non-equilibrium properties can still be

established with the aid of a contour ordered integral. The non-equilibrium many-

particle formalism is structurally parallel to the equilibrium one. In this section, we

will focus on the non-equilibrium Green’s function.
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1.4.1 Definition and Properties

Consider the Hamiltonian

Ĥ = Ĥ0 + Ĥi + Ĥ ′(t), (1.95)

where Ĥ0 is the easy part (time-independent and non-interacting), Ĥi containsmany-

body interaction, and Ĥ ′(t) is time dependent. Ĥ ′(t) drives the system to non-

equilibrium. To approach non-equilibrium properties, assume the system is in equi-

librium at the beginning and the non-equilibrium part is turned on at t = t0. Before

t0, the system is described by the equilibrium density matrix

ρ̂(ĥ) =
exp(−βĥ)

Tr
[
exp(−βĥ)

] , (1.96)

where ĥ = Ĥ0+Ĥi. After the non-equilibriumpart is turned on, assume the thermal

dynamics is still governed by ρ̂(ĥ). Then the task is to calculate

⟨Ô(t)⟩ = Tr
[
ρ̂(ĥ)ÔH(t)

]
. (1.97)

The expectation of an operator Ô(t) can be expressed in terms of contour-ordered

Green’s functionsG(1, 1′) defined by

iG(1, 1′) ≡ ⟨T̂C [ψ̂H(1)ψ̂
†
H(1

′)]⟩, (1.98)

where (1) ≡ (x1t1) and the contour ordering operator T̂C brings the later (on the

contour C) field operator to the left. C is a time contour and illustrated in Fig. 1.7.

The contour-ordered Green’s function in Eqn. 1.98 contains four different cases:
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t0

t1

t′1

C1

C2

Figure 1.7: ContourC .

G(1, 1′) =

︷︸
︸︷ GC(1, 1

′) t1, t1′ ∈ C1

G>(1, 1′) t1 ∈ C2, t1′ ∈ C1

G<(1, 1′) t1 ∈ C1, t1′ ∈ C2

GC̃(1, 1
′) t1, t1′ ∈ C2

(1.99)

In detail, the Causal or time-ordered Green’s functionGC

GC(1, 1
′) = −i⟨T̂C [ψ̂H(1)ψ̂

†
H(1

′)]⟩

= −iθ(t1 − t1′)⟨ψ̂H(1)ψ̂
†
H(1

′)⟩+ iθ(t1′ − t1)⟨ψ̂†
H(1

′)ψ̂H(1)⟩,
(1.100)

the greater Green’s functionG>

G>(1, 1′) = −i⟨ψ̂H(1)ψ̂
†
H(1

′)⟩, (1.101)

the lesser Green’s functionG<

G<(1, 1′) = +i⟨ψ̂†
H(1

′)ψ̂H(1)⟩, (1.102)

and the antitime-ordered Green’s functionGC̃

GC̃(1, 1
′) = −i⟨ ˜̂TC [ψ̂H(1)ψ̂

†
H(1

′)]⟩

= −iθ(t1′ − t1)⟨ψ̂H(1)ψ̂
†
H(1

′)⟩+ iθ(t1 − t1′)⟨ψ̂†
H(1

′)ψ̂H(1)⟩.
(1.103)

The above four Green’s functions are linearly dependent, i.e.

GC +GC̃ = G< +G>. (1.104)
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Furthermore, the advanced Green’s function is defined as

Ga(1, 1′) ≡iθ(t1′ − t1)⟨{ψ̂H(1), ψ̂
†
H(1

′)}⟩

=θ(t1′ − t1)[G
<(1, 1′)−G>(1, 1′)], (1.105)

and the retarded Green’s function is defined as

Gr(1, 1′) ≡− iθ(t1 − t1′)⟨{ψ̂H(1), ψ̂
†
H(1

′)}⟩

=θ(t1 − t1′)[G
>(1, 1′)−G<(1, 1′)]. (1.106)

Thus we haveGr −Ga = G> −G<.

The contour-ordered Green’s function can be transformed into a form for which

Wick’s theorem can be applied. Let

Ĥ ′
h(t) = exp[iĥ(t− t0)]Ĥ

′(t) exp[−iĥ(t− t0)], (1.107)

and

v̂h(t, t0) = T̂

{
exp
[
−i
∫ t

t0

dt′Ĥ ′
h(t

′)

]}
. (1.108)

Then

ψ̂H(t) = v̂†h(t, t0)ψ̂h(t)v̂h(t, t0). (1.109)

Using Eqn. 1.109, we have

iG(1, 1′) = ⟨T̂C [ŜH
C ψ̂h(1)ψ̂

†
h(1

′)]⟩, (1.110)

where

ŜH
C = exp

[
−i
∫
C

dτĤ ′
h(τ)

]
. (1.111)
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Replacing the h-dependence byH0-dependence, we have62

iG(1, 1′) =
Tr
{
ρ̂0T̂Cv [Ŝ

i
Cv
Ŝ ′
CψH0(1)ψ

†
H0
(1′)]

}
Tr[ρ0T̂Cv(Ŝ

i
Cv
Ŝ ′
C)]

, (1.112)

where the density matrix

ρ̂0 =
exp(−βĤ0)

Tr[exp(−βĤ0)]
, (1.113)

and
Ŝ ′
C = exp

[
−i
∫
C

dτĤ ′
H0
(τ)

]
,

Ŝi
Cv

= exp
[
−i
∫
Cv

dτĤ i
H0
(τ)

]
.

(1.114)

The contourCv is illustrated inFig. 1.8. After Eqn. 1.112 is expanded intoperturbation

series, Wick’s theorem and diagrammatic analyses can be applied.

t0 t1

t′1

t0 − iβ

Figure 1.8: ContourCv .

Parallel to the equilibrium theory, we have Dyson’s equation for non-equilibrium

cases

G(1, 1′) = G0(1, 1
′) +

∫
dx2

∫
Cv

dτ2G0(1, 2)U(2)G(2, 1
′)

+

∫
dx2

∫
dx3

∫
Cv

dτ2
∫
Cv

dτ3G0(1, 2)Σ(2, 3)G(3, 1
′),

(1.115)

where U is the non-equilibrium term of Eqn. 1.95 in mean field approximation. In

order to make the calculations feasible, Langreth theorem can be applied to relate a

contour integral to a real axis integral.63 For example

C<(t1, t1′) =

∫
C

dτA(t1, τ)B(τ, t1′)
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Contour Real axis

C =

∫
C
AB C< =

∫
t
[ArB< +A<Ba]

Cr =

∫
t
ArBr

D =

∫
C
ABC D< =

∫
t
[ArBrC< +ArB<Ca +A<BaCa]

Dr =

∫
t
ArBrCr

C(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) C<(t, t′) = A<(t, t′)B<(t, t′)

Cr(t, t′) =A<(t, t′)Br(t, t′) +Ar(t, t′)B<(t, t′)

Ar(t, t′)Br(t, t′)
D(τ, τ ′) = A(τ, τ ′)B(τ ′, τ) D<(t, t′) = A<(t, t′)B>(t′, t)

Dr(t, t′) = A<(t, t′)Ba(t′, t) +Ar(t, t′)B<(t′, t)

Table 1.1: Examples of analytic continuation.

=

∫ ∞

−∞
dt[Ar(t1, t)B

<(t, t1′) + A<(t1, t)B
a(t, t1′)]. (1.116)

More examples are given inTab. 1.1. ApplyingLangreth theorem toDyson’s equation

with the non-equilibrium term absorbed in the free Green’s function, we have

G< = G<
0 +Gr

0Σ
rG< +Gr

0Σ
<Ga +G<

0 Σ
aGa. (1.117)

Infinite iterations lead to

G< = (1 +GrΣr)G<
0 (1 + ΣaGa) +GrΣ<Ga. (1.118)

After Fourier transforming time into frequency, Eqn. 1.118 becomes

G< = GrΣ<Ga. (1.119)

By writing so, we have used (1 +GrΣr)G<
0 = 0 in the limit η → 0+ with

Gr
0(ω) = [ω − ϵk + iη]−1,
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Gr(ω) = [Gr
0(ω)

−1 − Σr(ω)]−1, (1.120)

G<
0 (ω) = 2πif(ϵk)δ(ϵk − ω).

1.4.2 Landauer Formula

The Landauer formula expresses current as an integral of transmission over energy. It

deals with non-interacting electrons and treats their transport as wave scattering. Bey-

ond mean field, a general formula for electric current through an interacting region

was derived byWingreen et al. in 1992. Wingreen’s formula falls back to the Landauer

formula in the non-interacting limit. In this section, we will present Wingreen and

Landauer’s results.

Consider a tunnel junction consisting of left lead, interacting center region, and

right lead as illustrated in Fig. 1.9. When left and right chemical potentials,µL andµR,

I
L R

µL

µR

Figure 1.9: A tunnel junction with interacting scattering region.

are different, electric current I flows through the junction. The model Hamiltonian

for the system in Fig. 1.9 is

Ĥ =
∑
k,α

ϵkαĉ
†
kαĉkα + Ĥint(d̂

†
n, d̂n) +

∑
k,α,n

(
vkα,nĉ

†
kαd̂n + h.c.

)
, (1.121)

where α ∈ L(R) runs over the quantum numbers belonging to the left (right) lead;

Ĥint describes the many-body interaction in the scattering region; the last term is

the coupling between the left (right) lead and the center region. Assume the tun-

neling term is turned on gradually and the desired steady state will be established

at certain time, then we have a time dependent process for which non-equilibrium
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many-particle formalism can be applied. Let left-going electric current direction be

positive. Then the electric current operator is

Î =− e
dN̂L

dt

=− e

i~
[
N̂L, Ĥ

]
(1.122)

=− e

i~
∑
k,α∈L

n

[
vkα,nĉ

†
kαd̂n − v∗kα,nd̂

†
nĉkα

]
,

where e > 0 is the unit charge and N̂L =
∑

k,α∈L ĉ
†
kαĉkα is the number operator of

the left lead. Apply the thermal average of Eqn. 1.97, we have

I =⟨Î⟩

=
ie

~
∑
k,α∈L

n

[
vkα,n

⟨
ĉ†kαd̂n

⟩
− c.c.

]
(1.123)

=
2e

~
Re
[ ∑
k,α∈L

n

vkα,nG
<
n,kα(t, t)

]
,

where the lesser Green’s functionG<
n,kα is defined by

G<
n,kα(t, t

′) ≡ i
⟨
ĉ†kα(t

′)d̂n(t)
⟩
. (1.124)

In order to simplify Eqn. 1.124, consider contour-orderedGreen’s functions forwhich

we have

Gn,kα(τ, τ
′) =

∑
m

∫
dτ1Gn,m(τ, τ1)v

∗
kα,mgkα(τ1, τ

′), (1.125)

where Gn,m and gk,α∈L(R) are the Green’s functions for the central region and the
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leadL(R) respectively. Its analytic continuation leads to

G<
n,kα(t− t′) =

∑
m

∫
dt1V ∗

kα,m[G
r
n,m(t− t1)g

<
kα(t1 − t′)]+

G<
n,m(t− t1)g

a
kα(t1 − t′).

(1.126)

After Fourier transform from time to energy, the lesser Green’s function reads

G<
n,kα(ϵ) =

∑
m

V ∗
kα,m[G

r
n,m(ϵ)g

<
kα(ϵ) +G<

n,m(ϵ)g
a
kα(ϵ)]. (1.127)

Thus the electric current in Eqn. 1.123 becomes

IL =
2e

~

∫
dϵ
2π

Re
{ ∑

k,α∈L
n,m

Vkα,nV
∗
kα,m

[
Gr

n,mg
<
kα +G<

n,mg
a
kα

]}
. (1.128)

Define a level-width function

[
ΓL(ϵk)

]
m,n

= 2π
∑
α∈L

ρα(ϵk)vα,n(ϵk)v
∗
α,m(ϵk), (1.129)

where ρα(ϵk) is the density of states in channel α. Eqn. 1.128 then becomes

IL =
ie

~

∫
dϵ
2π

Tr
(
ΓL(ϵ)

{
G<(ϵ) + fL(ϵ)

[
Gr(ϵ)−Ga(ϵ)

]})
, (1.130)

where fL(ϵ) is the distribution function in the left lead. Starting from I = e⟨ ˙̂
NR⟩,

one ends up with

IR = −ie
~

∫
dϵ
2π

Tr
(
ΓR(ϵ)

{
G<(ϵ) + fR(ϵ)

[
Gr(ϵ)−Ga(ϵ)

]})
. (1.131)
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Combine Eqn. 1.130 and 1.131, we have the general expression for the electric current

I =(IL + IR)/2

=
ie

2~

∫
dϵ
2π

Tr
{[

ΓL(ϵ)− ΓR(ϵ)
]
G<(ϵ)+[

fL(ϵ)Γ
L(ϵ)− fR(ϵ)Γ

R(ϵ)
][
Gr(ϵ)−Ga(ϵ)

]}
.

(1.132)

For the non-interacting case, one has Dyson’s equations for the Green’s functions

in the center region which enables us to rewrite Eqn. 1.132 as 34

I =
e

~

∫
dϵ
2π

[fL(ϵ)− fR(ϵ)]Tr{GaΓRGrΓL}. (1.133)

In terms of the transmission coefficient from left to right

tαα′ ≡ 2π
∑
n,m

ρ1/2α ρ
1/2
α′ v

∗
α,nG

r
n,mvα′,m (1.134)

with α ∈ R and α′ ∈ L, the electric current in Eqn. 1.133 becomes

I =
e

~

∫
dϵ
2π

[fL(ϵ)− fR(ϵ)]Tr{tt†(ϵ)}, (1.135)

which is the usual Landauer formula.

1.5 Ground State Density Functional Theory

In this subsection, we review the ground-state density functional theory (GS-DFT)

which is an alternative toMPF for solving ground-state properties. GS-DFT is based

on twoHohenberg-Kohn (HK) theorems.7 The first HK theorem states that any ob-

servable is a functional of the ground-state electron density ρ, e.g. the ground-state

energyE0 = E0[ρ]. The secondHK theorem states thatE0[ρ] is stationary about the

ground-state electron density. To solve δE0 = 0, Kohn and Sham (KS) developed

35



1.5. GROUND STATEDENSITY FUNCTIONAL THEORY

a mean field scheme by introducing a non-interacting reference system.64 The exact

E0[ρ] is still unknown but can be well approximated.

1.5.1 HK Theorems

The proof of HK theorem one is based on the minimum-energy principle. Let ρ(r)

be the ground-state electron density for some non-degenerateN -electron system gov-

erned by the Hamiltonian

Ĥ = T̂ +

∫
drρ(r)vext(r) + V̂ee. (1.136)

Assume ρ(r) is also the ground-state electron density for another N -electron

Hamiltonian

Ĥ ′ = T̂ +

∫
drρ(r)v′ext(r) + V̂ee, (1.137)

where v′ext(r) is locally different from vext(r). Let |Ψ⟩ and |Ψ′⟩ be the ground states

for Ĥ and Ĥ ′ respectively. Since |Ψ⟩ ̸≡ |Ψ′⟩,

E0 <
⟨
Ψ′∣∣Ĥ∣∣Ψ′⟩ = ⟨Ψ′∣∣Ĥ ′∣∣Ψ′⟩+ ⟨Ψ′∣∣Ĥ − Ĥ ′∣∣Ψ′⟩
= E ′

0 +

∫
drρ(r)

[
vext(r)− v′ext(r)

]
.

(1.138)

Similarly,

E ′
0 <

⟨
Ψ
∣∣Ĥ ′∣∣Ψ⟩ = ⟨Ψ∣∣Ĥ∣∣Ψ⟩− ⟨Ψ∣∣Ĥ − Ĥ ′∣∣Ψ⟩

= E0 −
∫

drρ(r)
[
vext(r)− v′ext(r)

]
.

(1.139)

Combine Eqn. 1.138 and 1.139, we get

E0 + E ′
0 < E ′

0 + E0, (1.140)
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which cannot be true. Thus vext(r) and v′ext(r) cannot be locally different. When

they are different by only a global constant, Ĥ and Ĥ ′ have common ground state

thus the same ground-state electron density. Therefore, the ground-state electron

densityρ(r)determines the external potential vext(r)up to a global additive constant.

Consequently, the ground state can be determined by ρ(r) and the expectation value

of any observable Ô is a functional of ρ(r), such as the kinetic energy T [ρ(r)] and

the potential energy Vee[ρ(r)]. In Vee[ρ(r)], the classical component is the Hartree

energyEH [ρ(r)] =
∫
drdr′ρ(r)ρ(r′)/|r − r′|.

Let E0[ρ(r)] be the ground-state energy functional for some N -electron system

with a certain external potential. The second HK theorem reads: For a trial density

ρ′(r), such that ρ′(r) ≥ 0 and
∫
drρ′(r) = N ,

E0 ≤ E0[ρ
′(r)] (1.141)

whereE0 is the ground-state energy.

1.5.2 KS Scheme

In order to obtain the ground state properties from δE0[ρ] = 0, Kohn and Sham

introduced a non-interacting reference system governed by the Hamiltonian

Ĥs = −1

2

N∑
i

∇2
i +

N∑
i

vs(ri). (1.142)

The reference system has the following ground state

Ψs =
1√
N !

det[ψ1ψ2 · · ·ψN ]
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≡ 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1, s1) ψ1(r2, s2) · · · ψ1(rN , sN)

ψ2(r1, s1) ψ2(r2, s2) · · · ψ2(rN , sN)

...
... . . . ...

ψN(r1, s1) ψN(r2, s2) · · · ψN(rN , sN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.143)

where the ψi are theN lowest eigenstates of the one-electron Hamiltonian

ĥs = −1

2
∇2 + vs(r). (1.144)

Ψs is assumed to bear the same electron density as the real one in the interacting sys-

tem, namely

ρreal =
N∑
i

∑
s

|ψi(r, s)|2. (1.145)

In the reference system, the kinetic energy is

Ts = ⟨Ψs| −
1

2

N∑
i

∇2
i |Ψs⟩ =

N∑
i

⟨ψi| −
1

2
∇2

i |ψi⟩. (1.146)

Define the exchange correlation energy functional

Exc[ρ] ≡ T [ρ]− Ts[ρ] + Vee[ρ]− VH [ρ]. (1.147)

ThenE0[ρ] can be rewritten as

E0[ρ] = Ts[ρ] +

∫
drρvext + VH [ρ] + Exc[ρ]. (1.148)

The minimum of E0[ρ] can be searched by varying the single particle states ψi

with constraints ∫
dxψ∗

i (x)ψj(x) = δij, (1.149)
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1.5. GROUND STATEDENSITY FUNCTIONAL THEORY

which guarantees
∫
drρ = N . Following themethod of Lagrangemultipliers, define

the functionalΩ of theN orbitals

Ω[{ψi}] = E0[ρ]−
N∑
i

N∑
j

εij

∫
dxψ∗

i (x)ψj(x). (1.150)

Then δΩ = 0 leads to the KS equations

ĥeffψi = [−1

2
∇2 + veff]ψi =

N∑
j

εijψj, (1.151)

where

veff(r) = vext(r) +

∫
dr′ ρ(r

′)

|r − r′|
+ vxc(r), (1.152)

with vxc(r) = δExc[ρ]/δρ(r). Since ĥeff is Hermitian, (εij) is a Hermitian matrix

and can be diagonalized by a unitary transformation. After the unitary transforma-

tion, the KS equations take their canonical form

[−1

2
∇2 + veff]ψi = ϵiψi. (1.153)

Once the Eqn. 1.153 is solved, the ground-state energy can be evaluated via Eqn. 1.148

or from the formula

E0 =
N∑
i

ϵi −
1

2

∫
drdr′ρ(r)ρ(r

′)

|r − r′|
+ Exc[ρ]−

∫
drρ(r)vxc(r). (1.154)

1.5.3 ApproximatingExc

Since the exact E0[ρ] is still unknown, Exc[ρ] needs to be approximated in practice.

Under local density approximation (LDA),

ELDA
xc [ρ] =

∫
drρ(r)εxc(ρ), (1.155)

39



1.5. GROUND STATEDENSITY FUNCTIONAL THEORY

where εxc(ρ) is the exchange and correlation energy per particle of a uniform electron

gas of density ρ. εxc(ρ) can be divided into exchange and correlation parts

εxc(ρ) = εx(ρ) + εc(ρ). (1.156)

The exchange part is already known from the TFDmodel and takes the form65

εx(ρ) = −Cxρ
1/3 (1.157)

with Cx = (3/4)(3/π)1/3. Accurate values of εc(ρ) have been obtained by the

quantumMonte Carlo calculations of Ceperley and Alder.66 These values have been

interpolated to provide an analytic form for εc(ρ).67

In the presence of a magnetic field B(r), spin up electron density ρα and spin

down electron density ρβ play the role of basic variables.68,69 In this case, the exchange

correlation energy can be approximated by local spin density approximation (LSDA).

Define the spin polarization parameter ζ by

ζ =
ρα − ρβ

ρ
=
ρα − ρβ

ρα + ρβ
. (1.158)

The exchange energy under LSDA then takes the form

ELSDA
x [ρα, ρβ] =

∫
drρεx(ρ, ζ), (1.159)

where εx(ρ, ζ) = ε0x(ρ) + [ε1x(ρ) − ε0x(ρ)]f(ζ) with ε0x(ρ) = εx(ρ, 0) = Cxρ
1/3,

ε1x(ρ) = εx(ρ, 1) = 21/3Cxρ
1/3, and f(ζ) = 1

2
(21/3 − 1)−1[(1 + ζ)4/3 + (1 −

ζ)4/3 − 2]. The correlation part formally writes

ELSDA
c [ρα, ρβ] =

∫
drρεc(ρ, ζ). (1.160)
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1.5. GROUND STATEDENSITY FUNCTIONAL THEORY

It can be evaluated numerically within random phase approximation.70,71

Beyond LSDA, non-local correction can be included by generalized gradient ap-

proximation (GGA) which takes the general form

Exc[ρ] =

∫
drϵx(ρ)ξgxc(ρ, ξ), (1.161)

where

ξ =
(∇ρ)2

4(3π2ρ)2/3ρ2
. (1.162)

TheExc[ρ] proposed by Perdew, Burke, and Ernzerhof is widely applied.72

GS-DFThas become a powerful tool for electronic structure analysis for bothmo-

lecules and solids. In principle, it also applies for amolecular junction under zero bias

voltage. HoweverGS-DFTdoesn’t apply for themolecular junction under finite bias.

In this case, we will show in next chapter that a steady state density functional theory

(SS-DFT) can be developed and applied. As a remark, time dependent density func-

tional theory (TD-DFT) applies for time dependent processes and uses the time de-

pendent electron density as basic variable.73 In order to approach the steady statewith

TD-DFT, one needs to solve the time evolution of system state from the beginning to

long time limit which is not necessary when only the steady state is concerned.74 On

the other hand, without solving the transient state, one can obtain the steady state

self-consistently under adiabatic local density approximation (ALDA), which how-

ever loses non-equilibrium effects.75
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It takes two of us to discover truth: one to utter it and one to under-

stand it.

Kahlil Gibran

2
Steady-State Density Functional Theory

In this chapter, we will first present the basis of the steady-state density functional

theory (SS-DFT) for open quantum systems. Second, we will introduce a dual mean

field (DMF) approach to solve the electronic structure of an open quantum system

in steady state. Third, we will derive the exchange energy functional explicitly for a

non-equilibrium uniform non-interacting electron gas. Finally, we will discuss the

implementation of SS-DFT in the SIESTA package.
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2.1. BASIS OF THE THEORY

2.1 Basis of the Theory

In this section, we will present two steady-state density functional theorems for open

quantum systems in steady state. They are analogous to the Hohenberg-Kohn the-

orems for a quantum system in ground state.7 The steady-state density functional

theorems are proved based on Hershfield’s non-equilibrium statistics with the aid of

an effective ground state. The correspondence between the effective ground state and

the desired steady state will also be investigated.

2.1.1 Density Functional Theorems

In this subsection, we prove the steady-state density functional theorems.76 Consider

an open quantum system consisting of left reservoir, center region, and right reservoir

as shown in Fig. 2.1. The left (right) reservoir is connected to the cathode (anode) of

a battery. In this case, the left chemical potential µL is greater than the right chemical

potentialµR. The difference between the two chemical potentials determines the bias

voltage by eVb = µL − µR where e is the unit charge. The model Hamiltonian for

Center Region

μl

Source

μr

Drain

Figure 2.1: Model of an open quantum system under finite bias. The system consists of left reservoir, center

region, and right reservoir. The two reservoirs are connected to a battery. The chemical potential for the left

(right) reservoir isµL (µR).

the system illustrated in Fig. 2.1 is Ĥ = Ĥlead + ĤC + ĤT with

Ĥlead =
∑
kα

ϵkαâ
†
kαâkα,

ĤC = Ĥint({ĉ†i}, {ĉi}), (2.1)
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2.1. BASIS OF THE THEORY

ĤT =
∑
kα,i

(Vkα,iâ
†
kαĉi +H.c.).

In Eqn. 2.1, α ∈ L(R) runs over the quantum indexes belonging to the left (right)

reservoir; â†kα with α ∈ L(R) creates a Bloch state in the left (right) reservoir; All ĉ†i

generate a complete basis for the center region;HT is the coupling term between the

reservoirs and the center region; H.c. is the Hermitian conjugate of the first term in

ĤT. Note that many-body interaction is only included in the center region.

For the open system in steady state shown in Fig. 2.1, Hershfield showed that the

expectation value of any observable Â can be evaluated by a non-equilibrium density

matrix, namely 54

⟨Â⟩ =
Tr
[
e−β(Ĥ−Ŷ )Â

]
Tr
[
e−β(Ĥ−Ŷ )

] , (2.2)

where

Ŷ = µL

∑
k,α∈L

ψ̂†
kαψ̂kα + µR

∑
k,α∈R

ψ̂†
kαψ̂kα (2.3)

accounts for the non-equilibrium distribution.* In Eqn. 2.3, ψ̂†
kα with α ∈ L(R)

creates a scattering state incident from lead L (R); and kz > 0 (< 0) when α ∈

L(R). Importantly, Hershfield’s results provide the basis for the steady-state density

functional theorems which will be proved in the following.

First, Hershfield’s results imply that the steady state corresponds to an effective

ground state. To see the correspondence, let’s define the particle number operators

N̂L =
∑
k,α∈L

ψ̂†
kαψ̂kα,

N̂R =
∑
k,α∈R

ψ̂†
kαψ̂kα,

(2.4)

*Assume there are no bound states in the center region.
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2.1. BASIS OF THE THEORY

and
N̂ =N̂L + N̂R,

N̂n =N̂L − N̂R.

(2.5)

N̂L, N̂R, and N̂n count the number of electrons incident from left, electrons incident

from right, and non-equilibrium electrons respectively while N̂ is the total number

operator. With the particle number operators N̂ and N̂n, the non-equilibrium dens-

ity matrix in Eqn. 2.2 can be rewritten as

ρ̂ = e−β(Ĥ−Ŷ ) = e
−β

(
˜̂
H−µ̃N̂

)
, (2.6)

where

˜̂
H =Ĥ − eVb

2
N̂n, (2.7)

µ̃ =
µL + µR

2
. (2.8)

Eqn. 2.2 and 2.6 together show that a system in non-equilibrium steady state corres-

ponds to a system in effective equilibrium.

Second, let’s define total electron and current-carrying electron density operators,

ρ̂t(r) and ρ̂n(r). Note that the real space representation of N̂L in Eqn. 2.4 writes

N̂L =
∑
k,α∈L

ψ̂†
kαψ̂kα

=
∑
k,α∈L

∫
drdr′ ⟨r| kα⟩ ⟨kα| r′⟩ ψ̂†

L(r)ψ̂L(r
′)

=

∫
drdr′δ(r − r′)ψ̂†

L(r)ψ̂L(r
′)

=

∫
drψ̂†

L(r)ψ̂L(r)

≡
∫

drρ̂L(r).

(2.9)
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2.1. BASIS OF THE THEORY

Similarly

N̂R =

∫
drψ̂†

R(r)ψ̂R(r) ≡
∫

drρ̂R(r). (2.10)

Therefore, the real space representation of Eqn. 2.5 writes

N̂ =

∫
drρ̂t(r),

N̂n =

∫
drρ̂n(r),

(2.11)

with
ρ̂t(r) ≡ρ̂L(r) + ρ̂R(r),

ρ̂n(r) ≡ρ̂L(r)− ρ̂R(r).

(2.12)

Third, weprove the steady-state density functional theoremonebased on themin-

imum property of the effective ground state energy. Assume the effective Hamiltoni-

ans
˜̂
H =T̂ +

∫
drρtv̂ext + V̂ee −

eVb
2

∫
drρ̂n,

˜̂
H ′ =T̂ +

∫
drρtv̂′ext + V̂ee −

eV ′
b

2

∫
drρ̂n,

(2.13)

bear the sameρt andNnwith v̂′ext(x)being locally different from v̂ext(x)orV ′
b being

different from Vb. The effective ground state energy Ẽ0 can be evaluated as follows

Ẽ0 =
Tr
[
ρ̂
˜̂
H
]

Tr [ρ̂]
T→0
= ⟨ψ̃0| ˜̂H|ψ̃0⟩

=⟨ψ̃0| ˜̂H − ˜̂
H ′ +

˜̂
H ′|ψ̃0⟩

>Ẽ ′
0 + ⟨ψ̃0| ˜̂H − ˜̂

H ′|ψ̃0⟩

>Ẽ ′
0 +

∫
drρt(Vext − V ′

ext)−
e(Vb − V ′

b )

2

∫
drρn.

(2.14)

Similarly,

Ẽ ′
0 > Ẽ0 −

∫
drρt(Vext − V ′

ext) +
e(Vb − V ′

b )

2

∫
drρn. (2.15)
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Combining Eq. 2.14 and 2.15, we get

Ẽ0 + Ẽ ′
0 > Ẽ ′

0 + Ẽ0, (2.16)

which cannot be true. On the one hand, ρt and ρn remain the same when v̂ext is ar-

bitrarily shifted globally. Furthermore, ρe and ρn are equivalent to ρt and ρn due to

ρt ≡ ρe + ρn. Thus ρe and ρn determine v̂ext and Vb within an additive global con-

stant to v̂ext. This completes the proof for the steady-state density functional theorem

onewhich indicates that the effective ground state energy is a functional of ρe and ρn,

namely

Ẽ0 = Ẽ0[ρe, ρn]. (2.17)

Fourth, the minimum property of the effective ground state energy can be re-

phrased as the steady-state density functional theorem two: For trial densities ρ′e(r),

ρ′n(r), such that ρ′e(r) ≥ 0, ρ′n(r) ≥ 0, and
∫
dr[ρ′e(r) + ρ′n(r)] = N ,

Ẽ0 ≤ Ẽ0[ρ
′
e, ρ

′
n] (2.18)

where Ẽ0[ρ
′
e, ρ

′
n] is the energy functional in Eqn. 2.17. The theorem two forms a

starting point for searching the desired steady state.

As a final remark, according toEqn. 2.12, electrondensitiesρL andρR are also equi-

valent to ρt and ρn. Therefore, the two steady-state density functional theorems can

be stated in terms of ρL and ρR. This is useful for developing mean field approaches.

2.1.2 From Steady State to Effective Ground State

In this subsection, we will investigate the correspondence between the steady state

and the effective ground state by evaluating the total number of particles ⟨N̂⟩ and

the effective energy ⟨ ˜̂H⟩.
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For simplicity, we ignore the many-body interaction and write the Hamiltonian

as

Ĥ =
∑
i

ϵiψ̂
†
i ψ̂i, (2.19)

and the effective Hamiltonian as

˜̂
H = Ĥ − eVb

2
N̂n =

∑
i

ϵ̃iψ̂
†
i ψ̂i. (2.20)

In Eqn. 2.19 and 2.20, the index i stands for kα; ϵ̃i is defined to be

ϵ̃i = ϵi − (−1)ξi eVb/2 (2.21)

with ξi = 0 forα ∈ L and ξi = 1 forα ∈ R. Eqn. 2.19 and 2.20 imply that a state of

energy ϵi in the true system corresponds to a state of energy ϵ̃i in the effective system.

Now let’s turn to the evaluations of ⟨N̂⟩ and ⟨ ˜̂H⟩. First, the non-equilibrium

density operator ρ̂ in Hershfield’s formalism writes

ρ̂ = exp
[
− β(Ĥ − Ŷ )

]
= exp

[
− β

∑
i

(ϵ̃i − µ̃)n̂i

]
, (2.22)

where the effective chemical potential µ̃ is given in Eqn. 2.8 and n̂i is the particle

number operator, i.e. n̂i = ψ̂†
i ψ̂i. Thus the partition function is

Tr[ρ̂]

=Tr
{
exp
[
− β

∑
i

(ϵ̃i − µ̃) n̂i

]}
2
=Tr

{∏
i

exp
[
− β (ϵ̃i − µ̃) n̂i

]}
=
∑

{···ni··· }

⟨· · ·ni · · · |
∏
i

exp [−β (ϵ̃i − µ̃) n̂i] | · · ·ni · · ·⟩ (2.23)
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=
1∑

n1=0

1∑
n2=0

· · ·
∏
i

exp [−β (ϵ̃i − µ̃)ni]

=
∏
i

(1 + λi) ,

where λi ≡ exp [−β (ϵ̃i − µ̃)]. In step 2, the commutation relation [n̂i, n̂j] = 0was

applied. Second, the total number of particles is

⟨N̂⟩ = Tr
[
ρ̂N̂
]
/Tr

[
ρ̂
]

=
1

Tr [ρ̂]

∑
{···ni··· }

⟨· · ·ni · · · |ρ̂
∑
i

n̂i| · · ·ni · · ·⟩

=
1

Tr [ρ̂]

1∑
n1=0

1∑
n2=0

· · ·
∞∏
i=1

λni
i

∞∑
j=1

nj

=
1

Tr [ρ̂]

1∑
n2=0

· · ·
[
λ1

∞∏
i=2

λni
i + (1 + λ1)

∞∏
i=2

λni
i

∞∑
j=2

nj

]

=
1

Tr [ρ̂]

[
λ1

∞∏
i=2

(1 + λi) + (1 + λ1)
1∑

n2=0

· · ·
∞∏
i=2

λni
i

∞∑
j=2

nj

]
(2.24)

=
1

Tr [ρ̂]

∞∑
i=1

∞∏
j=1

(
δ̄ij + λj

)
=

∞∑
i=1

λi
1 + λi

=
∞∑
i=1

1

1 + exp [−β (ϵ̃i − µ̃)]
,

where δ̄ij = 0 if i = j and δ̄ij = 1 if i ̸= j. Third, the effective energy is

⟨ ˜̂H⟩ = Tr
[
ρ̂
˜̂
H
]
/Tr

[
ρ̂
]

=
1

Tr [ρ̂]
Tr
{
ρ̂
∑
i

ϵ̃in̂i

}

=
1

Tr [ρ̂]

1∑
n1=0

1∑
n2=0

· · ·
∞∏
i=1

λni
i

∞∑
j=1

ϵ̃jnj
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=
1

Tr [ρ̂]

[
λ1ϵ̃1

∞∏
i=2

(1 + λi) + (1 + λ1)
1∑

n2=0

· · ·
∞∏
i=2

λni
i

∞∑
j=2

ϵ̃jnj

]
(2.25)

=
1

Tr [ρ̂]

∞∑
i=1

ϵ̃i

∞∏
j=1

(
δ̄ij + λj

)
=

∞∑
i=1

λiϵ̃i
1 + λi

=
∞∑
i=1

ϵ̃i
1 + exp [−β (ϵ̃i − µ̃)]

.

Eqn. 2.24 and 2.25 imply that the effective system is in equilibrium.

In summary, single-particle states incident from left (right) are pulled down (lifted

up) by eVb/2 when a many-body steady state is mapped onto an effective ground

state. As a result, the effective system has a common Fermi energy µ̃ = (µL+µR)/2,

as illustrated in Fig. 2.2.

µL

µR

µ̃

ϵi
ϵ̃i

(a) (b)

Figure 2.2: Correspondence between a non-equilibrium steady state (a) and an effective equilibrium ground

state (b). The red (blue) wiggly arrow indicates an electron incident from left (right). The states incident from

left (right) are pulled down (lifted up) by eVb/2. The effective Fermi energy µ̃ = (µL + µR)/2.

2.2 DualMean Field Approach

In this section, we will present the dual mean field (DMF) approach for solving

the electronic structure of an open quantum system in steady state. 56 The DMF ap-

proach is based on the stationary condition of the effective ground state energy. As

mentioned in section 2.1.1, the effective ground state energy can be written as either

Ẽ0[ρe, ρn] or Ẽ0[ρL, ρR]. When the former expression is used, δẼ0[ρe, ρn] = 0 leads

to the EN representation of the DMF approach. When the latter expression is used,
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2.2. DUALMEAN FIELDAPPROACH

δẼ0[ρL, ρR] = 0 leads to the LR representation. In either representation, the open

system is described by two mean fields instead of one. In the EN representation, one

mean field is for equilibrium electrons and the other is for current-carrying electrons.

In the LR representation, one mean field is for electrons incident from left and the

other is for electrons incident from right.

2.2.1 LR Representation

In this subsection, wewill present the LR representation of theDMFapproach. First,

we introduce a non-interacting ground-state reference system. In the reference sys-

tem, the real electron densities ρL and ρR are calculated from single particle orbitals

by

ρL(r) =
∑
k,α∈L

fFD(ϵ̃kα − µ̃)|ϕkα(r)|2,

ρR(r) =
∑
k,α∈R

fFD(ϵ̃kα − µ̃)|ϕkα(r)|2.
(2.26)

In Eqn. 2.26, ϕkα describes an electron incident from left (right) for α ∈ L (α ∈ R);

fFD is the Fermi-Dirac distribution; and µ̃ = (µL + µR)/2.

Second, we pose the variational problem with constraints in terms of the single

particle orbitals in the reference system. When a variation is applied to either a left- or

right-going state ϕ(r)

ϕ(r) → ϕ(r) + hξ(r), h ∈ R, (2.27)

it is subjected to certain constraints. On the one hand, the number of electronswithin

the center region is conserved due to the screening effect towards themetal leads. This

is reflected in the normalization of single particle orbitals, namely

∫
ΩC

drϕ∗(r)ϕ(r) = 1. (2.28)

51



2.2. DUALMEAN FIELDAPPROACH

On the other hand, assuming the wavefunction in both reservoirs is known, we have

the constraints
ξ(r)|∂ΩC

= 0,

∇ξ(r)|∂ΩC
= 0,

(2.29)

due to the continuity of the wavefunction. Upon the above constrained variation,

the effective ground state energy Ẽ0 is stationary, i.e.

Ẽ0 [ϕ+ hξ] ≥ Ẽ0 [ϕ] . (2.30)

This constrained variational problem can be solved with the aid of the technique of

Lagrange multiplier. Define

F [ϕ] ≡ Ẽ0 [ϕ]−
∑
k,α

ϵ̃kα

∫
drϕ∗

kαϕkα. (2.31)

Then the stationary condition becomes

∂F [ϕ+ hξ]

∂h
(0) = 0. (2.32)

Third, we will derive the mean field equations based on Eqn. 2.32. Under LDA,

the effective ground state energy reads

Ẽ0 [ϕkα] = −1

2

∑
k,α

∫
drϕ∗

kα∇2ϕkα +

∫
drρtvext+

1

2

∫
drdr′ρt (r) ρt (r

′)

|r − r′|
+

∫
drexc(ρL, ρR)−

eVb
2

∫
dr(ρL − ρR). (2.33)

Let ρ be the electron density, either ρL or ρR, that has been varied upon the variation

in Eqn. 2.27. The first order deviation of ρ regarding h is δρ = h(ϕ∗ξ + ξ∗ϕ). The
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first order deviation in the kinetic energy is

δT

=δ⟨ψ|T̂ |ψ⟩

=− 1

2
h

∫
ΩC

dr
(
ξ∗∇2ϕ+ ϕ∗∇2ξ

)
=− 1

2
h

∫
ΩC

dr
[
ξ∗∇2ϕ+ ξ∇2ϕ∗ +∇ · (ϕ∗∇ξ − ξ∇ϕ∗)

]
(2.34)

=− 1

2
h

∫
ΩC

dr
(
ξ∗∇2ϕ+ ξ∇2ϕ∗)

=− 1

2
h

∫
ΩC

dr
(
ξ∗∇2ϕ+ ξ∇2ϕ∗) ,

wherewehaveused theboundary conditions inEqn. 2.29 so that
∫
ΩC

dr∇·(ϕ∗∇ξ−

ξ∇ϕ∗) =
∫
∂ΩC

ds · (ϕ∗∇ξ− ξ∇ϕ∗) = 0. The first order deviation in the external

potential energy is

δEext = δ

∫
∞
drρtvext = h

∫
ΩC

dr (ϕ∗ξ + ξ∗ϕ) vext. (2.35)

The first order deviation in the Hartree energy is

δEH

=δ
1

2

∫
∞
drρtvH

=δ
1

2

∫
∞
dr
∫
∞
dr′ρt(r)ρt(r

′)

|r − r′|

=
1

2

∫
∞
dr
∫
∞
dr′ δρt(r)ρt(r

′) + ρt(r)δρt(r
′)

|r − r′|
(2.36)

=

∫
∞
dr
∫
∞
dr′ δρt(r)ρt(r

′)

|r − r′|

=

∫
∞
drδρt(r)vH(r)

=h

∫
ΩC

dr(ϕ∗ξ + ξ∗ϕ)vH .
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The first order deviation in the exchange correlation energy is

δExc = δ

∫
∞
drexc(ρL, ρR) = h

∫
ΩC

dr
∂exc
∂ρ

(ϕ∗ξ + ξ∗ϕ) . (2.37)

The first order deviation in the non-equilibrium correction term is

− eVb
2
δ

∫
∞
dr(ρL − ρR) = ∓eVb

2
h

∫
ΩC

dr(ϕ∗ξ + ξ∗ϕ), (2.38)

where the minus (plus) sign is for the variation of ϕk,α∈L (ϕk,α∈R). The first order

deviation in the multiplier term is

δ

(
−
∑
k,α

ϵ̃kα

∫
∞
drϕ∗

kαϕkα

)
= −hϵ̃

∫
ΩC

dr(ϕ∗ξ + ξ∗ϕ). (2.39)

In summary, the stationary condition Eqn. 2.32 becomes

∫
ΩC

drξ∗
(
−1

2
∇2 + vext + vH +

∂exc
∂ρ

∓ eVb
2

− ϵ̃

)
ϕ+ c.c. = 0. (2.40)

Since the variation ξ can take different forms, we have mean field equations

(−1

2
∇2 + vext + vH +

∂exc
∂ρL

− eVb
2

)ϕkα =ϵ̃kαϕkα,

(−1

2
∇2 + vext + vH +

∂exc
∂ρR

+
eVb
2

)ϕkβ =ϵ̃kβϕkβ,

(2.41)

where α ∈ L and β ∈ R. When the exchange correlation energy is approximated

under GGA with Exc =
∫
drexc(ρL, ρR,∇ρt), the mean field Hamiltonians in

Eqn. 2.41 take a different form as shown below

˜̂
hL =− 1

2
∇2 + vext + vH +

∂exc
∂ρL

− ∂i
∂exc
∂∂iρt

− eVb
2
,

˜̂
hR =− 1

2
∇2 + vext + vH +

∂exc
∂ρR

− ∂i
∂exc
∂∂iρt

+
eVb
2
.

(2.42)
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Eqn. 2.41 and 2.42 indicate that left- and right-going electrons experience different

mean field potentials when the open system is in non-equilibrium steady state. Fur-

thermore, the−eVb/2 and eVb/2 terms are the downward and upward shifts to ĥL

and ĥR respectively. Here, ĥL and ĥR are themean fieldHamiltonians for the steady-

state reference system. Therefore, the correspondence between the real system and

the effective system in the LR representation matches very well with the correspond-

ence discussed in section 2.1.2.

2.2.2 EN Representation

In the LR representation of the DMF approach, the electron densities ρL and ρR

are hard to compute. As a result, it is formidable to solve Eqn. 2.41. In seeking for

practically solvable mean field equations, we will present the EN representation in

this subsection.

For the real open system in steady state, it is clear that the electrons below µr con-

tribute to the equilibrium electron density ρe while those betweenµr and µl contrib-

ute to the current-carrying electron density ρn. Therefore we introduce a steady-state

reference systemwhere the real electron densities ρe and ρn are calculated from single

particle orbitals by

ρe(r) =
∑
k,α∈e

fFD(ϵkα − µR)|ϕkα(r)|2,

ρn(r) =
∑
k,α∈n

[fFD(ϵkα − µL)− fFD(ϵkα − µR)]|ϕkα(r)|2.
(2.43)

In Eqn. 2.43, fFD is the Fermi-Dirac distribution; fFD(ϵkα − µR) and fFD(ϵkα −

µL)− fFD(ϵkα − µR)} together define the non-equilibrium distribution.

In the EN representation, the effective ground state energy functional under LDA

55



2.2. DUALMEAN FIELDAPPROACH

reads

Ẽ0 [ϕkα] = −1

2

∑
k,α

∫
drϕ∗

kα∇2ϕkα +

∫
drρtvext+

1

2

∫
drdr′ρt (r) ρt (r

′)

|r − r′|
+

∫
drexc(ρe, ρn)−

eVb
2

∫
drρn.

(2.44)

The stationary condition of the effective ground state energy leads to the following

mean field equations

(−1

2
∇2 + vext + vH +

∂exc
∂ρe

)ϕkα =ϵ̃kαϕkα,

(−1

2
∇2 + vext + vH +

∂exc
∂ρn

− eVb
2

)ϕkβ =ϵ̃kβϕkβ,

(2.45)

where α ∈ e and β ∈ n. When the exchange correlation energy is approximated in

GGAwithExc =
∫
drexc(ρe, ρn,∇ρt), the mean field Hamiltonians become

˜̂
he =− 1

2
∇2 + vext + vH +

∂exc
∂ρe

− ∂i
∂exc
∂∂iρt

,

˜̂
hn =− 1

2
∇2 + vext + vH +

∂exc
∂ρn

− ∂i
∂exc
∂∂iρt

− eVb
2
.

(2.46)

Note that the mean field Hamiltonians in Eqn. 2.45 and 2.46 are for the ground-

state reference system. In order to calculate electron densities by Eqn. 2.43, we need

the Hamiltonians for the steady-state reference system. In other words, it remains to

specify the correspondence between the real non-equilibrium systemand the effective

equilibrium system in the EN representation. As discussed in section 2.2.1, in the LR

representation,

ĥL =
˜̂
hL +

eVb
2
,

ĥR =
˜̂
hR − eVb

2
,

(2.47)

which is a result of the term−eVbNn/2 in the effective ground state energy. Differ-

ently, in the EN representation, the term−eVbNn/2 affects
˜̂
hn but has no contribu-
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tion to ˜̂he. It indicates that the correspondence in the EN representation is

ĥe =
˜̂
he,

ĥn =
˜̂
hn +

eVb
2
.

(2.48)

Themean fieldHamiltonians ĥe and ĥn in Eqn. 2.48 govern the following eigenvalue

equations

ĥeϕkα =ϵkαϕkα,

ĥnϕkβ =ϵkβϕkβ,

(2.49)

where α ∈ e and β ∈ n.

Eqn. 2.49 and Eqn. 2.43 need to be satisfied simultaneously. They can be solved

self-consistentlywith the aid of theGreen’s function expressions for the electron dens-

ities. As a final remark, we need the concrete form of the exchange correlation poten-

tials before solving the mean field equations.

2.3 Generalized Thomas-Fermi-DiracModel

In this section, wewill generalize theTFDmodel to non-equilibrium cases and derive

the exchange and kinetic energies analytically for a biased non-interacting uniform

electron gas. 55 In the generalized TFD (gTFD) model, the equilibrium and current-

carrying electron densities indeed determine the exchange and kinetic energies. From

the exchange energy functional obtained in the gTFDmodel, we will also derive the

exchange potentials which are ready to be applied in the DMF approach.
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2.3.1 Non-equilibriumNon-interacting Free Electron Gas

Consider some non-interacting free electron gas in a box of dimensions L × L × L

with periodic boundary conditions, the electrons are described by the Hamiltonian

Ĥ =
P̂

2

2m
+ const. (2.50)

The eigenvalue equation for the above Hamiltonian

Ĥϕkσ(r, s) = Eϕkσ(r, s) (2.51)

bears the solution

ϕkσ(r, s) =
1

L3/2
eik·rχσ(s). (2.52)

In Eqn. 2.52, k = 2π
L
nwith ni = 0,±1,±2, · · · is the wavevector; σ = −1, 1 is the

spin index; χσ(s) = 1 if s = σ and χσ(s) = 0 if s ̸= σ. χσ(s) satisfies

∑
s

χσ(s)χσ′(s) = δσσ′ . (2.53)

The eigenstates in Eqn. 2.52 are normalized in the following way

⟨k′σ′| kσ⟩ =
∑
s

∫
dr

1

L3
ei(k−k′)·rχσ′(s)χσ(s) = δkk′δσσ′ . (2.54)

In the TFD model, the electron gas is in equilibrium ground state thus all single

particle states below Fermi energy ϵF = k2F/2 are occupied.65 Here kF is the Fermi

wavevector. The occupied single particle states form a sphere of radius kF in mo-

mentum space as shown in Fig. 2.3.

In order to drive the electron gas in the TFD model into non-equilibrium, we

sandwich it between two reservoirs of non-interacting and free electron gas as depic-
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O

ky

kz
kF

Figure 2.3: Occupation of states ink space for the TFDmodel. The occupation forms a sphere with radius of

kF (the Fermi wavevector).

ted in Fig. 2.4. Moreover, the reservoirs are connected to a battery. When a positive

Left Reservoir Right ReservoirNon-interacting Free
Electrons

μRμL

Figure 2.4: Model setup for the gTFDmodel. A box of non-interacting free electron gas is sandwiched between

two reservoirs which are connected to a battery. Electrons in both reservoirs are also free and non-interacting.

The difference between left and right chemical potentials determines the bias voltage by eVb = µL − µR .

bias voltage is applied, the left chemical potential µL = k2L/2 is higher than the right

one µR = k2R/2. As a result, the occupation of states in k space becomes Fig. 2.5

where one beholds two hemispheres with different radii, the right half with radius

kL (the Fermi wavevector for the left reservoir) and the left half with radius kR (the

Fermi wavevector for the right reservoir).

2.3.2 Exchange Energy Density

In this subsection, we will derive the exchange energy density En
x of the non-

equilibrium electron gas in the gTFDmodel. We will first express En
x in terms of the

Fermi wavevectors. Then, after change of variables, we will express it as a function of

the electron densities.
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O

ky

kz
kLkR

Figure 2.5: Occupation of states ink space for the gTFDmodel under finite bias. The occupation forms two

hemispheres, one with radiuskR (the Fermi wavevector for the right reservoir) and the other with radiuskL
(the Fermi wavevector for the left reservoir).

LetΦSD be a single Slater determinant of the occupied eigenstates

ΦSD = det(ϕk1σ1 , ϕk2σ2 , · · · , ϕkNσN
). (2.55)

The Coulomb interaction between electrons writes

Ŵ =
∑
i̸=j

1

|ri − rj|
. (2.56)

Then the exchange energy density for the gTFDmodel is

En
x ≡ 1

V

(
⟨ΦSD| Ŵ |ΦSD⟩ − EH [ρ]

)
=− 1

2V

∑
k,σ,k′,σ′

[
ϕk′σ′ϕkσ

∣∣∣Ŵ ∣∣∣ϕkσϕk′σ′

]
=− 1

2V (2π)6

∑
σ,σ′,s,s′

∫
dkdk′dr1dr2

ei(k−k′)·(r1−r2)

|r1 − r2|
χσ′(s′)χσ(s)

=− 1

(2π)6 V

∫
dkdk′dr1dr2

ei(k−k′)·(r1−r2)

|r1 − r2|

5
=− 1

(2π)6 V

∫
dkdk′drds

∣∣∣∣∂(r1, r2)

∂(r, s)

∣∣∣∣ ei(k−k′)·r

|r|

=− 1

(2π)6

∫
dkdk′dr

ei(k−k′)·r

|r|
· 1
V

∫
ds
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=− 1

(2π)6

∫
dkdk′dr

ei(k−k′)·r

|r|

8
= lim

µ→0+
− 1

(2π)6

∫
dkdk′dre−µr e

i(k−k′)·r

|r|

= lim
µ→0+

− 1

(2π)6

∫
dkdk′ · r2sinθdrdθdφe−µr e

i|k−k′|rcosθ

r

= lim
µ→0+

− 1

(2π)6

∫
dkdk′ · 2πrdrd (−cosθ) e−µrei|k−k′|rcosθ

= lim
µ→0+

− 1

(2π)6

∫
dkdk′ · 2πdre

(−µ+i|k−k′|)r − e(−µ−i|k−k′|)r

i |k − k′|

12
= lim

µ→0+
− 1

(2π)6

∫
dkdk′ · 2π

1
µ−i|k−k′| −

1
µ+i|k−k′|

i |k − k′|

=− 4π

(2π)6

∫
dkdk′ 1

|k − k′|2
(2.57)

In the step 5, we changed variables from (r1, r2) to (r, s)byr = r1−r2 ands = r2.

In the step 8, we multiplied a factor of e−µr to the integrand with µ → 0+. In the

step 12, we took the limit of L → ∞. Next we split the integral in Eqn. 2.57 into

three parts

∫
Ω

∫
Ω

=

∫
Ω1

∫
Ω1

+2

∫
Ω2

∫
Ω1

+

∫
Ω2

∫
Ω2

≡ I1 + I2 + I3 (2.58)

whereΩ = Ω1 + Ω2 as shown in Fig. 2.6. The first integral is

a)

kR kL

(0, 0, 0)

Ω

b)

Ω1 Ω2

Figure 2.6: Division of the occupation of statesΩ (a) intoΩ1 andΩ2 (b).

I1 =− 4π

(2π)6

∫
Ω1

dk
∫
Ω1

k′
2
sinθ′dk′dθ′dφ′ 1

k2 + k′2 − 2kk′cosθ′
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=− 4π

(2π)6

∫
Ω1

dk
∫ kR

0

dk′π
k′

k

[
ln(k + k′)2 − ln(k − k′)2

]
(2.59)

=− 1

2π3

∫ kR

0

dk
∫ kR

0

dk′kk′ [ln(k + k′)− ln|k − k′|]

=− 1

4π3
k4R

The second integral is tackled similarly bearing the result

I2 = − 1

16π3

[
(k2L − k2R)

2ln
(kL − kR
kR + kL

)
+ 2(k3RkL + kRk

3
L − 2k4R)

]
. (2.60)

The third integral is a bit complex and can be tackled as follows

I3 =− 4π

(2π)6

∫ k2

k1

dk
∫ k2

k1

dk′
∫ π

2

0

dθ
∫ π

2

0

dθ′
∫ 2π

0

dφ
∫ 2π

0

dφ′

k2k′2sinθsinθ′

k2 + k′2 − 2kk′ [sinθsinθ′cos (φ− φ′) + cosθcosθ′]

=− 1

8π3

∫ k2

k1

kdk
∫ k2

k1

k′dk′
∫ π

2

0

dcosθ
∫ π

2

0

dcosθ′

1√
cos2θ + cos2θ′ + Ccosθcosθ′ + 1

4
C2 − 1

(2.61)

=− 1

16π3

∫ k2

k1

kdk
∫ k2

k1

k′dk′
{
− 2ln

(
− 2 +

k

k′
+
k′

k

)
+ ln

[ 2k2k′2

k4 + k′4 −
(
k2 + k′2

)
|k2 − k′2|

]}
=− 1

16π3

[
− (k2L − k2R)

2ln(kL − kR) + (k4L − 2k2Rk
2
L)ln(kL)

+ k4Rln(kR) + k4R − k3RkL − 1

2
k2Rk

2
L − kRk

3
L +

3

2
k4L

]
.

In Eqn. 2.61, C = −(k2 + k′2)/kk′ < −2 when k ̸= k′.† Finally, summing up I1,

I2, and I3, we get the exchange energy density as a function of the Fermi wavevectors

En
x (kL, kR) = − 1

16π3

[
−
(
k2L − k2R

)2
ln (kR + kL) +

(
k4L − 2k2Rk

2
L

)
ln (kL)

†I3 can be checked byMathematicawith the codes listed in Appendix A.
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+k4Rln (kR) + k4R + k3RkL − 1

2
k2Rk

2
L + kRk

3
L +

3

2
k4L

]
. (2.62)

Nowwe change variables from the Fermi wavevectors to the electron densities for

the exchange energy density. In the gTFD model, the total electron density ρt and

current-carrying electron density ρn are

ρt =
1

6π2

(
k3L + k3R

)
,

ρn =
1

6π2

(
k3L − k3R

)
.

(2.63)

Define a non-equilibrium index η ≡ ρn/ρt which measures the local degree of non-

equilibrium. In terms of ρt and η, we rewrite the exchange energy density as

En
x (ρt, η) =

1

4
(1 + η)

4/3
[
−
(
1− η̃2

)2
ln (1 + η̃) + η̃4ln (η̃)

+ η̃4 + η̃3 − 1

2
η̃2 + η̃ +

3

2

]
E0
x(ρt).

(2.64)

InEqn. 2.64,E0
x(ρt) = −(3π2ρt)

4/3/4π3 is the exchange energy density for theTFD

model; η̃ = [(1−η)/(1+η)]1/3; and the prefactor f(η) = En
x /E0

x contains the non-

equilibrium correction. As shown in Fig. 2.7, when η → 0, f → 1. Therefore, the

gTFD exchange energy density falls back to the TFD result under zero bias which is

expected. As η increases, f monotonically decreases thus the non-equilibrium cor-

rection becomes larger. When η → 1, f → 0.9449. Therefore, the highest non-

equilibrium correction to the exchange energy density is about 5.5%. Since E0
x < 0

and 0 < f ≤ 1, En
x is always greater than the TFD result E0

x .

2.3.3 Kinetic Energy Density

In this subsection, we derive the kinetic energy density T n of the non-equilibrium

electron gas in the gTFDmodel. We first divide the integral regionΩ intoΩ3 andΩ4

as shown in Fig. 2.8. Then the calculation follows
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�
x/
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Non-equilibrium Index η

n
Figure 2.7: Non-equilibrium correction factor f(η) = En

x /E0
x versus the non-equilibrium index η. En

x and

E0
x are the exchange energy densities for the gTFD and TFDmodels respectively.

a)

kR kL

(0, 0, 0)

Ω

b)

Ω3 Ω4

Figure 2.8: Division of the occupation of statesΩ (a) intoΩ3 andΩ4 (b).

T n ≡ ⟨ΦSD|
N∑
i=1

t̂i|ΦSD⟩

=
1

V

∑
k,σ

⟨kσ|t̂|kσ⟩ = 1

V

∑
k,σ

k2

2
=

1

V

∑
k

k2

=
1

V

∫
Ω3+Ω4

dk
(2π/L)3

k2 =
1

20π2
(k5R + k5L) (2.65)

=
1

2

[
(1− η)

5/3 + (1 + η)
5/3
]
T 0(ρt).

In Eqn. 2.65, T 0(ρt) = (3π2ρt)
5/3/10π2 is the TFD kinetic energy density; η is

the previously defined non-equilibrium index; and the prefactor g(η) = T n/T 0

contains the non-equilibrium correction. As shown in Fig. 2.9, when η → 0, g →

1. Therefore, the gTFD kinetic energy density falls back to the TFD result under

zero bias which is expected. As η increases, g monotonically increases thus the non-

equilibrium correction becomes larger. When η → 1, g → 1.5874. Therefore, the
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highest non-equilibrium correction to the kinetic energy density is about 58.74%.

Since T 0 > 0 and g ≥ 1, the gTFD kinetic energy density T n is always greater than

the TFD result T 0.

1.6

1.5

1.4

1.3

1.2

1.1

1
0 0.2 0.4 0.6 0.8 1

�
/�

0
n

Non-equilibrium Index η

Figure 2.9: Non-equilibrium correction factor g(η) = T n/T 0 versus the non-equilibrium index η. T n and

T 0 are the kinetic energy densities for the gTFD and TFDmodels respectively.

Similar to GS-DFT, the kinetic energy functional for the non-equilibrium non-

interacting free electron gas derived here may be a bad approximation to the exact

one for general cases. Actually in the DMF approach, the kinetic energy is calculated

from single particle orbitals in the non-interacting reference system instead of T n.

2.3.4 Exchange Potentials from the gTFDModel

In this subsection, wewill derive the exchange potentials for equilibrium and current-

carrying electrons based on the gTFD exchange energy density En
x in Eqn. 2.64.

When the exchange energy density is approximated by LDA with ex =

En
x (ρe, ρn), the exchange potentials vex = ∂ex/∂ρe

∣∣
ρn

and vnx = ∂ex/∂ρn
∣∣
ρe
are

vex =
1

4
(1 + η)1/3

[(1− η̃2)(1− η̃)

η̃
ln(1 + η̃) + η̃lnη̃ − 1

2
η̃2 + 2η̃ +

5

2

]
v0x,

vnx =
1

4
(1 + η)1/3

[
− 2(1− η̃2)ln(1 + η̃)− η̃2 + 2η̃ + 3

]
v0x. (2.66)
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In Eqn. 2.66, v0x = dE0
x/dρt = −(3ρt/π)

1/3 is the exchange potential for the TFD

model; the prefactors p(η) = vex/v
0
x and q(η) = vnx/v

0
x contain the non-equilibrium

correction. As shown in Fig. 2.10a, when η → 0, p → 1. Therefore the exchange

potential for the equilibriumelectrons falls back to theTFDresult under zerobias. As

η increases, p increases monotonically thus the non-equilibrium correction becomes

larger. When η → 1, p→ 1.102. Therefore, the highest non-equilibrium correction

to vex is about 10.2%. However, the non-equilibrium correction to vex is smaller than

2%when η < 0.9. Since v0x < 0 and p > 1, the non-equilibrium correction tends to

decrease the exchange potential for the equilibrium electrons. As shown in Fig. 2.10b,

when η → 0, q → 1. Therefore the exchange potential for the non-equilibrium

electrons also falls back to the TFD result under zero bias. As η increases, q decreases

monotonically thus the non-equilibrium correction becomes larger. When η → 1,

q → 0.9449. Therefore, the highest non-equilibrium correction to vnx is about 5.5%.

Since v0x < 0 and 0 < q < 1, the non-equilibrium correction tends to increase the

exchange potential for the non-equilibrium electrons.
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Figure 2.10: Non-equilibrium correction factors p(η) = vex/v
0
x (a) and q(η) = vnx/v

0
x (b) versus the non-

equilibrium index η. v0x is the exchange potential for the TFDmodel. vex (vnx ) is the exchange potential for the
equilibrium ( current-carrying) electrons in the gTFDmodel.

When the exchange energy density is approximated by GGA with ex =
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En
x (ρe, ρn)F (ρt,∇ρt), the exchange potentials are

vex =
∂ex
∂ρe

− ∂i
∂ex
∂∂iρt

=
∂En

x

∂ρe
F + Eg

x

∂F

∂ρt
− ∂i(En

x

∂F

∂∂iρt
),

vnx =
∂ex
∂ρn

− ∂i
∂ex
∂∂iρt

=
∂En

x

∂ρn
F + En

x

∂F

∂ρt
− ∂i(En

x

∂F

∂∂iρt
),

(2.67)

where ∂En
x /∂ρe and ∂En

x /∂ρn are given in Eqn. 2.66. Note that the explicit form of

the exchange potentials in Eqn. 2.67 depends on the gradient correction F (ρt,∇ρt)

which varies among different flavors of GGA.

2.4 Implementation in SIESTA

In this section, wewill present the implementation of SS-DFT in SIESTA. 56 The goal

is to devise a self-consistent procedure to solve the coupled mean field equations in

the EN representation of the DMF approach. Especially, the gTFD exchange energy

density En
x will be used to include non-equilibrium effects in the energy functional

level. For clarity, we will first review the Green’s function expression of the electron

densities and the formalism in the representation with localized basis functions.

2.4.1 Formula for the ElectronDensities

In this subsection, we review theGreen’s function expression of the electron densities

ρe and ρn. In general, the lesser Green’s function is defined as

G<(rt, r′t′) = i⟨ψ̂†(r′t′)ψ̂(rt)⟩. (2.68)

The total electron density ρt can be expressed in terms of the lesser Green’s function,

namely

ρt(r, t) = −iG<(rt, rt+). (2.69)
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For a molecular junction in steady state, the Green’s function only depends on the

time difference∆ = t− t′. Thus Fourier transform can be applied

ρt(r) = − i

2π

∫
dϵG<(r, ϵ), (2.70)

with

G<(r, ϵ) =

∫
d∆e−iϵ∆G<(r,∆). (2.71)

Thenwe split the integral in Eqn. 2.70 into twoparts and get the equilibriumelectron

density ρe and current-carrying electron density ρn,

ρe(r) =− i

2π

∫ µR

−∞
dϵG<(r, ϵ),

ρn(r) =− i

2π

∫ µL

µR

dϵG<(r, ϵ).

(2.72)

2.4.2 LCAORepresentation

In this subsection, we review the formalism for obtaining the electron densities ρe

and ρn in the representation with localized basis functions.40

SIESTA employs numerical linear combination of atomic orbitals (LCAO) basis

set to represent mean field equations. Fig. 2.11 illustrates an abstract molecular junc-

tion which consists of an inhomogeneous center region and periodic left and right

leads. The two leads can be different. With a localized basis set, the Hamiltonian for

L C R

Figure 2.11: An abstract molecular junction.L(R) is the periodic left (right) lead.C is the inhomogeneous

center region.
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the molecular junction shown in Fig. 2.11 writes



hl,∞ hl,l+1 0 0 0

hl,l−1 hl,l hl,c 0 0

0 hc,l hc,c hc,r 0

0 0 hr,c hr,r hr,r+1

0 0 0 hr,r−1 hr,∞


. (2.73)

In Eqn. 2.73, hc,c is the Hamiltonian for the center region; while hl,∞ and hr,∞ are

the Hamiltonians for the left and right leads respectively

hl,∞ ≡


. . . . . . . . . 0

0 hl,l−1 hl,l hl,l+1

0 0 hl,l−1 hl,l

 , (2.74)

and

hr,∞ ≡


hr,r hr,r+1 0 0

hr,r−1 hr,r hr,r+1 0

0
. . . . . . . . .

 . (2.75)

In order to calculate the lesser Green’s function, define the surface Green’s func-

tions gl,∞ ≡ [(ϵ + iη)sl,∞ − hl,∞]−1 and gr,∞ ≡ [(ϵ + iη)sr,∞ − hr,∞]−1,

where sl,∞ and sr,∞ are the overlapping matrices; define the self energies ΣL
l,l ≡

hϵ
l,l−1gl,∞(c − 2, c − 2)hϵ

l,l+1 andΣ
R
r,r ≡ hϵ

r,r−1gr,∞(c + 2, c + 2)hϵ
r,r+1 where

hϵ
i,j = (ϵ+ iη)si,j − hi,j ; define the lesser self energy

Σ<[fL, fR] = −2i Im(fLΣ
L
l,l + fRΣ

R
r,r), (2.76)

where fL and fR are the equilibriumdistributions for the left and right leads fL(ϵ) =

fFD(ϵ − µL) and fR(ϵ) = fFD(ϵ − µR). Then the lesser Green’s function can be
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calculated by

G< = GRΣ<[fL, fR]G
A. (2.77)

In Eqn. 2.77, the advanced Green’s functionGA = (GR)† and the retarded Green’s

functionGR for the center region can be calculated by

GR =


hϵ

l,l −Σl
l,l hϵ

l,c 0

hϵ
c,l hϵ

c,c hϵ
c,r

0 hϵ
r,c hϵ

r,r −Σr
r,r


−1

. (2.78)

WhenfL(ϵ) = fR(ϵ) = 1, the lesserGreen’s function reduces to the retardedGreen’s

function Im[G<(ϵ)] = −2fFD(ϵ) Im[GR(ϵ)]. Then the equilibrium and current-

carrying electron densities in Eqn. 2.72 can be rewritten as

ρe = − 1

π
Im
[∫ µr

∞
dϵGR(ϵ)

]
,

ρn = − i

2π

∫ µl

µr

dϵG<(ϵ). (2.79)

Note that, in the DMF approach, the junction is described by two mean field

Hamiltonians ĥe and ĥn. Thus the equilibrium electron density ρe should be cal-

culated from ĥe viaGR
e while the current-carrying electron density ρn should be cal-

culated from ĥn viaG<
n .

2.4.3 Self-consistent Procedure

In this section, we present the self-consistent (SC) procedure for solving the dual

mean field equations in Eqn. 2.45. Our implementation is modified from the Tran-

SIESTA subroutines in the SIESTA package.42,57

The SC procedure is shown in Fig. 2.12. Given the initial equilibrium and current-

carrying electron densities, ρe and ρn, the mean field Hamiltonians for equilibrium
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ρe, ρn

µ̃

δQ < ε1

δρe, δρn < ε2

stop

ĥe ĥn

ρ′e ρ′n

G<
e G<

n

no

yes

yes

no

Figure 2.12: Self-consistent procedure for solving the DMF equations.

and current-carrying electrons, ĥe and ĥn, are constructed. With the initial effective

chemical potential µ̃, the new electron densities ρ′e and ρ′n are computed via the lesser

Green’s functionsG<
e andG<

n . If the difference between the old and new number of

electrons in the center region, δQ, is greater than a small real number ε1, the charge is

not conserved and µ̃ will be tuned until δQ < ε1 is satisfied. After the charge is con-

served, we compare the old and new electron densities. If their differences, δρe and

δρn, are smaller than a small real number ε2, the electron densities are considered con-

verged and the SC procedure will stop. Otherwise, the new electron densities will be

taken as inputs and the SC procedure will continue until the convergence is achieved.

It should pointed out that, without the charge conservation loop, the absolute

deviation in the number of electrons is usually in the order of 10−1. Our simulations

showed that such deviations are not important for non-magnetic systems. However,

for magnetic systems, the charge conservation may be crucial.
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3
Applications of Steady-State DFT

In this chapter, we will present the simulation results for several realistic molecular

junctions. By these calculations, we show the features, the validity and the usefulness

of SS-DFT. Specifically, we consider threemolecular junctionswhich are 1) a graphene

nanoribbon (GNR) junction, 2) a junction consisting of carbon nanotube (CNT)

leads and a benzene molecule, and 3) a junction with silver leads and self-assembled

monolayer (SAM) of alkanethiolate molecules sandwiched between. In the follows,

the DFT+NEGF simulations are performed via TranSIESTA; and the SS-DFT simu-

lations are done without charge conservation.
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3.1. GRAPHENENANORIBBON JUNCTION

3.1 Graphene Nanoribbon Junction

In this section, we present simulation results for the GNR junction by which we

show the non-equilibrium effects of SS-DFT exchange energy as mentioned in sec-

tion 2.3. In addition, we will also analyze the local extent of non-equilibrium by the

non-equilibrium index η(r) in SS-DFT.

With tunable electronic structure, GNRs are promising building blocks for elec-

tronic devices.77,78 Two types of GNRs with zero chiral angle exist, namely armchair

GNR (AGNR) and zigzag GNR (ZGNR). It was found that ZGNRs are metalic

and, for ZGNR based junctions under low biases, the current flows through edge

states.77,79 For one-dimensional systems under a finite temperature, long-range mag-

netic ordermay not be stable. 80 Thuswe followprevious studies and set the total spin

of our GNR junction to be zero in this work. 81

The simulation details are as follows. We relaxed the atomic structure of theGNR

junction using SIESTA package and performed finite bias calculations using both

SS-DFT and DFT+NEGF methods. In all calculations, we adopted non-relativistic

norm-conserving pseudopotential without core correction, single-ζ basis set and

1 × 1 × 30 Monkhorst_Pack k grid. 82 For the relaxation calculations, PBE GGA

exchange correlation energy functional,72 200 Ry mesh cutoff and 0.04 eV/Å force

tolerance were used. For the transport calculations, CA LDA exchange correlation

energy functional,66 and 100Rymesh cutoff were applied.

The GNR junction under study is formed by joining a 5-ZGNRwith a 3-ZGNR

where n-ZGNR denotes a ZGNR with n zigzag lines of carbon atoms. The relaxed

atomic structure of the GNR junction is shown in Fig. 3.1 where the dash lines mark

the boundary of the center region. The interface between 5-ZGNR and 3-ZGNR

works as a scatterer. To meet the requirements for finite bias simulation we choose

the following settings. 1) The center region is made of three unit cells of 5-ZGNR
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3.1. GRAPHENENANORIBBON JUNCTION

and three unit cells of 3-ZGNR so that the distortion of electron density caused by

electron scattering happens onlywithin the center region; 2) Twounit cells of ZGNR

are used for both left and right leads so that the initial electron density on the left-

center and right-center boundaries recover the bulk electron density.

w1

w2

L

Figure 3.1: Relaxed structure of the GNR junction.L = 2.53Å,W1 = 8.80Å,W2 = 4.41Å.

In Fig. 3.2, both I-V curves from SS-DFT and DFT+NEGF calculations for the

GNR junction are presented. When bias voltage is small (< 0.1 V), SS-DFT essen-

tially reproduces DFT+NEGF results. Starting from 0.1 V, significant deviations

between the two calculations occur. As shown in the figure, the current from SS-

DFT is always lower than that obtained fromDFT+NEGF.Tounderstand this differ-

ence, we plot in the inset of Fig. 3.2 the iso-surface of the difference between SS-DFT

non-equilibrium exchange potential (vnx ) and the exchange potential calculated from

DFT+NEGF. The iso-surface value is 15meV. This plot shows that the exchange po-

tential increases significantly at edges where the current flows through. However for

other parts of the system, the non-equilibrium correction to the potential is insigni-

ficant. The increase of the exchange potential leads to a higher scattering barrier in

the scattering region, and in turn, decreases the current as we see in Fig. 3.2.

In Fig. 3.3, we plot the color map of η(r) in the scattering region of the GNR

junction under 0.2 V. The plot provides detailed spacial information for the non-

equilibrium degree of the system. As seen from the figure, the extent of non-

equilibrium at different places in the scattering region is quite different: Edges are

far away from equilibrium while the middle part of the GNR is still approximately
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Figure 3.2: I-V curves for the GNR junction calculated from both SS-DFT andDFT+NEGF. The inset shows the

iso-surface of the difference between SS-DFT non-equilibrium exchange potential and the exchange potential

calculated fromDFT+NEGF.

in local equilibrium.

η=0

0.1

Figure 3.3: Color map of the non-equilibrium index η(r) in the scattering region of the GNR junction. The

plotting plane is 2.2Å above the GNR. The degree of non-equilibrium becomes higher when the color changes

from red to blue.

In conclusion, we have presented the simulation results for a GNR junction by

both SS-DFT and DFT+NEGF methods. In comparison, SS-DFT leads to signific-

antly lower electric current than DFT+NEGF for the GNR junction due to the non-

equilibrium correction to the exchange energy. In addition, the non-equilibrium in-

dex η(r) provides detailed spacial information for the extent of the non-equilibrium

in the scattering region, which improves our understanding of properties of molecu-

lar junctions under a finite bias.

3.2 CNT-Benzene-CNT Junction

In this section, we will present the simulation results for the CNT-Benzene-CNT

junction and its decoupled twin. The energetics, I-V characteristics, and elec-
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tronic structure calculated from SS-DFT will be compared to those calculated from

DFT+NEGF. Particularly, we show that SS-DFT is able to predict the local equilib-

rium for the decoupled junction under finite bias.

CNTs have fantastic one-dimensional characteristics 83,84 and tunable electronic

properties. 85–87They arepromisingbuildingblocks in futurenano-electronic devices. 88–91

The benzene molecule, on the other hand, has been extensively used as a molecu-

lar center in various kinds of junctions in both experimental and theoretical stud-

ies.90,92,93 Combining the two, we use a CNT-benzene-CNT junction as an example

to demonstrate SS-DFT.

We relaxed the atomic structure of the junction by SIESTA with the following

parameters: PBEGGAexchange correlation energy functional,72 200Rymesh cutoff,

1 × 10−4 eV for the energy tolerance, and 0.04 eV/Å for the force tolerance. For

finite bias calculations, we used CA LDA exchange-correlation energy functional66

and 120Rymesh cutoff. Non-equilibrium exchange energy functional was adopted

in SS-DFT calculations. 55 In addition, 1 × 1 × 30 k-point mesh was employed for

the separate lead calculations. Through all calculations, single-ζ basis set and non-

relativistic norm-conserving pseudopotential without core correction were applied.

The atomic structure of CNT and the distance between two leads were optim-

ized in sequence. To relax the distance between two leads, we first made a series of

CNT-benzene-CNT junctions with different separations. Then we relax the center

region with the two leads fixed for each junction. Finally, the relaxed junction with

lowest energy has optimal atomic configuration. A plot of the energy versus the dis-

tance between two leads is shown in Fig. 3.4. The optimized CNT-benzene-CNT

molecular junction is shown in Fig. 3.5. As can be seen, the junction consists of two

semi-infinite metallic (5, 5) CNTs and a benzene molecule in between. Both CNTs

are closed at one end with a C30 cap. In order to form good contacts, two H atoms

in the benzene molecule are taken away. In addition, the two vertical lines across the

76



3.2. CNT-BENZENE-CNT JUNCTION

2 4 . 8 2 4 . 9 2 5 . 0 2 5 . 1 2 5 . 2
- 0 . 9 4

- 0 . 9 2

- 0 . 9

- 0 . 8 8

- 0 . 8 6

- 0 . 8 4

Re
lat

ive
 En

erg
y (

eV
)

D i s t a n c e  ( Å )

Figure 3.4: The energy of the CNT-Benzene-CNT junctions versus the distance between the left and right leads.

The configuration with lowest energy is optimal.

junction mark the boundary between the leads and the contact region.

Figure 3.5: Relaxed atomic structure of the CNT-Benzene-CNT junction. Color scheme: C, grey; H, white.

At finite bias, we calculated the energy of the CNT-Benzene-CNT junction by

both SS-DFT and DFT+NEGF. The energy difference between the two methods

is shown Fig. 3.6 where E and Ẽ are the ensemble averages of the Hamiltonian Ĥ

and the effective Hamiltonian ˆ̃H = Ĥ − eVb/2 respectively. Clearly, SS-DFT bears

lower energies at all bias voltages, which is expected since SS-DFT searches the lowest-

energy steady state with one more degree of freedom than DFT+NEGF, namely the

current-carrying electron density. At zero bias, the junction is in equilibrium and SS-

DFT reduces to GS-DFT. Consequently, the energy difference between SS-DFT and

DFT+NEGF vanishes at zero bias.

Fig. 3.7 plots the I-V curves for the junction calculated from both SS-DFT and

DFT+NEGF.The twomethods predict similar electric current for biases between0.2
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Figure 3.6: The energy differences between SS-DFT andDFT+NEGF, i.e. δE = ESS-DFT − EDFT+NEGF . Both

the energy δE and the effective energy δẼ are presented.

and 0.8 V and a prominent negative-differential-resistance (NDR) peak at around

0.05 V. However, the NDR peak predicted by SS-DFT occurs slightly earlier. To
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Figure 3.7: The I-V characteristics of the CNT-Benzene-CNT junction calculated from both SS-DFT and

DFT+NEGF.

understand the reason,weplot the projecteddensity of states (PDOS) for the benzene

molecule in Fig. 3.8a and the transmission function of the junction in Fig. 3.8b. As

shown in Fig. 3.8a, there are two degenerate states when the bias voltage is small; they

split and become non-degenerate at large bias voltages. Fig. 3.8b shows that the state

with lower energy is not conductive while the one with higher energy is conductive.

Furthermore, the conductive state calculated from SS-DFT enters (and also exits) the

bias window earlier than the one calculated fromDFT+NEGF. As a result, theNDR

peak for SS-DFT occurs earlier. Due to the relative shift of the NDR peaks, SS-DFT

predicts significantly lower current thanDFT+NEGF between the bias voltages 0.05

and 0.2V.

A feature in the PDOS plotted in Fig. 3.8a is that the state with lower energy
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Figure 3.8: (a) PDOS for the benzenemolecule within the CNT-benzene-CNT junction. (b) Transmission func-

tion of the CNT-benzene-CNT junction.

shifts with the right chemical potential µr while the one with higher energy shifts

with the left chemical potential µl. This is because the state with lower (higher) en-

ergy is coupled with the right (left) lead which can be seen from the local density of

states (LDOS) plotted in Fig. 3.9. Due to the coupling, when the right (left) chemical

potential µr (µl) becomes lower (higher), the energy of the state with lower (higher)

energy decreases (increases).
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Figure 3.9: Averaged LDOS for the CNT-benzene-CNT junction under 0.08V. The layer indexes 1-6 are illus-

trated in the inset. Each layer contains one ormore carbon atoms. The averaged LDOS for a layer is defined

as the PDOS to this layer divided by the number of atomswithin the same layer. Larger LDOSmeans stronger

coupling.

Now we decouple the CNT leads and the benzene molecule by pulling them

apart. The resultant atomic structure is shown in Fig. 3.10. In this case, the ben-

zene molecule in the center is known to be in local equilibrium even under finite bias
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voltage. We simulated the decoupled CNT-Benzene-CNT junction under 0.5 V of

6.86 Å 6.96 Å

Figure 3.10: The atomic structure of the decoupled CNT-Benzene-CNT junction where the distance between

the center molecule and either lead is more than 6.5Å. In this case, the center molecule is essentially isolated.

bias voltage using both SS-DFT and DFT+NEGF. For comparison, we also did GS-

DFT calculation for the decoupled junction under zero bias. From the self-consistent

fields calculated from all these three methods, we obtained the PDOS of the benzene

molecule and plotted them in Fig. 3.11. As shown in Fig. 3.11, SS-DFT agrees withGS-

DFT very well, while DFT+NEGF bears different electronic structures. To further il-

DFT+NEGF
SS-DFT

P
D
O
S

E-EF (eV)
-0.5 0.0 0.5 1.0 1.5
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DFT+NEGF
SS-DFT

GS-DFT

Figure 3.11: PDOS of the benzenemolecule calculated from three different methods, GS-DFT for the de-

coupled CNT-Benzene-CNT junction under zero bias, DFT+NEGF and SS-DFT for the decoupled junction under

0.5V of bias voltage. The Fermi energy for GS-DFT and the effective Fermi energies for DFT+NEGF and SS-

DFT are set to zero. The HOMOand LUMOare plotted aside the corresponding PDOS peaks with the positive

(negative) phase in red (blue).

lustrate the difference between different methods, we plot the difference between the

total electron densities around the center molecule δρ1 = ρ(GS-DFT) − ρ(DFT+NEGF) in

Fig. 3.12a, and δρ2 = ρ(SS-DFT)−ρ(DFT+NEGF) in Fig. 3.12b. Clearly, DFT+NEGF yields

quite different total electron density from the other two methods, and the densities

from GS-DFT and SS-DFT are similar. Furthermore, the asymmetrical distribution

of δρ1 in Fig. 3.12a is casued by the absence of external electric field in the GS-DFT

calculation. To illustrate the polarization effect of the external field, we perform a

GS-DFT calculation for solely an benzene molecule (without 1, 4 hydrogen atoms)

under an external electric field of strength 0.014 V/Å which equals 0.5 V divided by
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(DFT) - (DFT+NEGF) (SS-DFT) - (DFT+NEGF)

(a) (b)
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Figure 3.12: The difference in the total electron densities calculated from different methods: δρ1 = ρ(DFT) −
ρ(DFT+NEGF) in panel (a) and δρ2 = ρ(SS-DFT)−ρ(DFT+NEGF) in panel (b). The isosurface value is 5×10−5 Bohr−3

for both plots. The positive (negative) is in red (blue).

the distance between left and right leads of the decoupled CNT-benzene-CNT junc-

tion. This GS-DFT calculation bears the electron density ρ′(GS-DFT). Then we plot the

electron density difference δρ3 = ρ′(GS-DFT) − ρ(DFT+NEGF) in Fig. 3.13b which clearly

shows the δρ3 becomes symmetrical.

(a) (b)

ρ(GS-DFT) - ρ(DFT+NEGF)

Figure 3.13: (a) A benzenemolecule (without 1,4 hydrogen atoms) under an external electric field. Its electron

density calculated fromGS-DFT is denoted asρ′(GS-DFT). (b) Total electron density difference δρ3 = ρ′(GS-DFT) −
ρ(DFT+NEGF) around the benzenemolecule. The iso-value is 1.5 × 10−4 Bohr−3. The positive (negative) is in

red (blue).

In conclusion, we have simulated a CNT-benzene-CNT junction and its de-

coupled twin. For the coupled junction, both SS-DFT and DFT+NEGF captures

a significant NDR; however SS-DFT always bears a steady state with lower energy

compared with DFT+NEGF. Furthermore for the decoupled junction, SS-DFT is

able to predict the correct local equilibrium electronic structure.

3.3 SAMof Alkanethiolates

In this section we apply SS-DFT to a molecular junction involving self-assembled

monolayer (SAM) of alkanethiolate molecules.94 Especially, the experimentally ob-

served odd-even effects in the charge mobility of the alkanethiolate SAM junction
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will be explained.

The self-assembled monolayer (SAM) of molecules is a promising building block

for futuremolecular electronics.95,96 Themost extensively studied SAM ismade of al-

kanethiolate molecules, e.g. CH3(CH2)n�1SH which contains nmethylene groups.97

Experimentally the SAM of alkanethiolates shows odd−even effects in its charge mo-

bility, namely 1) the SAM with even n has higher charge mobility than the odd, and

2) the length dependence of the electric current is significantly different between the

odd and even SAMs.98

The simulationdetails are givenbelow. Weused SIESTAtooptimize the geometry

of themolecular junction. The energy and force tolerances were set to 1×104 eV and

0.01 eV/Å respectively. In all calculations, PBE GGA exchange correlation energy

functional72, single-ζ polarized basis set, 100 Ry mesh cutoff, and 3× 3× 1 k point

sampling in the Brillouin zone were applied.

To get the optimized atomic structure, we first investigate the binding sites for the

S atoms on the Ag [111] substrate which contains five Ag layers. It turned out that

the preferred binding site is between the bridge and hollow sites. Next we relaxed

the alkanethiolate SAM on the substrate without the top lead. Then we optimized

the distance between the top lead and the SAM during which all atoms except for

the two outermost layers of Ag are fully relaxed. Some optimization procedures are

shown in Fig. 3.14 as examples. The relaxed atomic structures of the alkanethiolate

SAM, with n = 11 and 12, on the Ag substrate are shown in Fig. 3.15a. Fig. 3.15b

shows the structure of the top lead which consists of a GaO monolayer on the Ag

[111] surface. The transport direction is perpendicular to the Ag surface which is

along the z axis and the molecular junction is periodic in xy plane. As shown in Fig.

3.15c, there are four alkanethiolate molecules in each unit cell. According to previous

studies, the alkanethiolate molecules exhibit a tilt angle relative to z axis and a twist

angle relative to each other which are illustrated in Fig. 3.15d and 3.15e respectively.
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Figure 3.14: Procedures for optimizing the distance between the alkanethiolate SAM and the top Ag probe for

n = 9, 10, 11, 12. The optimized distance is typically around 3 Å.

From our geometry optimization, the tilt angle is about 13° and the twist angle is

about 50° in agreement with experimental observations. Furthermore, it was found

that a change of 3°in the tilt angle leads to at least 0.5 eV of energy increase indicating

that the SAM layer is stable at room temperature.

(c)

(b)(a)

(d) side view (e) top view

angle
twist

tilt
angle

n=11 n=12

Figure 3.15: (a) Side view of alkanethiolates forn = 11 and 12. The S atom at the bottom end of themolecule

is adsorbed on the Ag [111] substrate. Note the difference in the tip structures of odd and even alkanethiolates.
(b) Side view of the top electrodewhich consists of a GaOmonolayer on Ag [111] surface. (c) Top view of the

SAMon the Ag [111] surface. (d,e) Definitions of tilt and twist angles. [Color scheme: C, black; H, white; S,

yellow; Ag, gray; O, red; Ga, blue.]

Let n be an odd integer, define (n, n + 1) as a pair of the SAM junctions while

(n − 1, n) is not. In the same pair, the binding strength for the even junction is

stronger than the odd one. This can be seen from Tab. 3.1 which shows the bind-
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ing energies (between the SAM and the top lead) for various junctions with different

molecular length n. The difference in the binding energies of the junctions in an

even-odd pair originates from the geometry of the SAMs. Due to the presence of the

tilt angle, the H atoms in the methyl group of the even SAM are closer to the top

lead than those of the even SAM in the same pair as shown in Fig. 3.15a. Therefore,

the even junction has more molecular orbital overlap between the SAM and the top

lead thus stronger interaction. As a consequence of the stronger interaction, the even

SAM is more distorted than the odd one which is particularly noticeable for n > 8

since longer SAMs are more flexible.

n 7 8 9 10 11 12 13 14 15 16

Eb (eV) −0.13 −1.07 −0.20 −0.31 −0.11 −0.48 −0.12 −0.47 −0.84 −1.11

Table 3.1: Binding energyEb per alkanethiolate molecule between the SAM and the top electrode for 7 ≤
n ≤ 16. In each odd-even pair, the binding energy for the odd is always less than its even partner.

Furthermore, the difference in the binding strengths leads to the odd-even effects

in the charge mobility. Fig. 3.16 shows the dependence of the electric current on the

SAM lengthn for the SAM junctions under 0.2V.Whenn < 9, the odd-even effects

are absent and the current follows the Simmons law J = J0e
−βn.99 When n > 10,

the odd-even effects become significant with Jodd = 3.5 × 10−5e−1.14n for the odd

junctions andJeven = 1.1×10−4e−1.14n for the evenones. Thepair (9, 10) appears as

a transition state from the homogeneous Simmons law to the separate odd-even series.

The exponential decay constant β = 1.14 is the same for both odd and even SAM

junctions under biases between−0.6 and0.6V.This predicted decay constant is equi-

valent to β = 0.74Å−1 which is comparable to experimental values 0.6 < β < 1.0

Å−1.98,100–102 It is worth mentioning that the odd-even effects would disappear if the

tilt angle between the alkanethiolate molecules is gone according to our calculations.

In order to better understand the odd-even effects, in Fig. 3.17, we plot the trans-
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Figure 3.16: Odd−even effects at bias voltage 0.2 V. The currentJ versusn follows exponential decay. The

lines represent fits to the simplified form of the Simmons equation,J = J0e
−βn .

mission function averaged over kx and ky for the SAM junctions under 0.2V of bias

voltage. As shown in the figure, the transmission decreases as n increases before the

odd-even effects occur (n ≤ 10). After the odd-even effects occur (n > 10), the

transmission profiles for the SAM junctions in a pair become almost identical.
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Figure 3.17: Average transmission for the SAM junctions under 0.2 V of bias voltage forn ≤ 10 (a) and for

n > 10 (b). The transmission is averaged overkx andky .

Fig. 3.18 shows the I-V curves for various alkanethiolate SAM junctions. The elec-

tric current is symmetric about the zero bias voltage for each junction. Fig. 3.18b

shows that the I-V curves for the SAM junctions in an odd-even pair are nearly

identical when n > 10. The odd-even difference in the tip structure remains for the

pair (17, 18), therefore the odd-even effects in charge mobility are expected. How-

85



3.3. SAMOF ALKANETHIOLATES

ever, we didn’t simulate the transport properties for SAM junctions with n > 16

because the electric current for long molecules is very low (10−12 A), whose compu-

tation requires high accuracy in the non-equilibrium contour integral and this is bey-

ond our computation ability. In addition, the odd-even effects may disappear for

n > 18 due to flexural distortions and excessive twisting in the alkanethiolate mo-

lecules.
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Figure 3.18: I-V curves for the SAM junctions with differentn. (a) Forn ≤ 10, the current does not show
odd-even effects. The current forn = 10 is larger than that forn = 9, indicating a transitional region. (b)
Forn > 10, the odd-even effects occur and the electric currents for the SAM junctions in an odd-even pair are

almost identical.

To see how the tip geometry affects the electron transport, we plot the xy-plane

averaged mean field potential for current-carrying electrons in Fig. 3.19. It is obvious

that there is no difference in the potential along the odd and even SAMs except at

the top contact between the methyl group and the GaO monolayer. As shown in

Fig. 3.19a, for the pair (7, 8), the height and width of potential barriers across the top

contact are similar, indicating that the electric current is governed by the length of

molecule n for n < 9. However, for the pair (11, 12), as shown in Fig. 3.19b, the

tunneling barrier across the top contact for the even junction is much lower (1.34

eV) than that for the odd one due to the stronger binding between the SAM and the

top electrode. As a consequence, it is easier for electrons to tunnel through the top

contact of the even junction (n = 12) and the reduction of the tunneling barrier

compensates the longer tunneling length, leading to a similar electric current with

the odd junction (n = 11). Our calculations clearly suggest that, for the Simmons
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law J = J0e
−βn, 1) the prefactor J0 is determined by the electron tunneling through

the potential barrier across the top contact for the SAM junctions under study; 2) the

parameter β describes the dependence on the molecular length n and β is the same

for odd and even cases.
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Figure 3.19: Plane averagedmean-field potential for the current-carrying electrons in the SAM junctions with

n = 7, 8 (a) andn = 11, 12 (b). The SAMs span from 14Å to 41, 43, 50, and 52Å forn = 7, 8, 11, 12
respectively. In panel (a), the heights of the tunnel barriers across the top contact are approximately the same,

while in panel (b) the barrier for the evenn is lower by 1.34 eV.

The transmission eigenchannel analysis is helpful in understanding how electrons

propagate through the junction. InFig. 3.20a,weplot the isosurfaces of the dominant

transmission eigenchannels for several SAM junctions under 0.2 V of bias voltage.

For comparison, in Fig. 3.20b, we plot the isosurface of the partial electron density

for the highest valence band (σz) of an infinite alkane chain. The plots in Fig. 3.20a

and 3.20b resemble each other, suggesting that electrons tunnel through the SAMvia

the σz orbital of the alkane chain. Further analysis shows that the eigenchannels are

made of 80% C pz and some minor s and d orbitals.

Letve andvn be themean field potentials for the equilibriumand current-carrying

electrons respectively. Define δv = vn − ve as the non-equilibrium correction to the

mean-field potential. In Fig. 3.21, we plot the isosurface of δv for n = 7 and show

that the non-equilibrium correction happensmainly at the contact between the SAM
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Figure 3.20: (a) Isosurfaces of transmission eigenchannels forn = 7, 8, 11, and 12 under 0.2V bias voltage.

(b) DOS and the highest valence band (σz ) of an infinite alkane. The green dashed linemarks the Fermi level.

and the top lead. Such an observation is valid for both odd and even SAM junctions.

Figure 3.21: Isosurface of non-equilibrium correction to themean field potential δv = vn − ve forn = 7
under 0.2V bias voltage.

In conclusion, we have explained the experimentally observed odd-even effects in

alkanethilate SAM junctions by first-principles calculations based on SS-DFT. The

conformation of the SAMswas found to be crucial for the odd-even effects. As a final

remark, the upper Ag-GaO probe used in this study is different from any experiment

to our knowledge, yet the odd-even effect was clearly demonstrated and our predicted

β value is comparable to experimental ones.
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Knowledge is in the end based on acknowledgement.

LudwigWittgenstein

4
Conclusion

In conclusion, we proposed the steady-state density functional theory for calculating

the electronic structure of open quantum systems in steady state. We proved that two

electron densities, the equilibrium electron density ρe and the current-carrying elec-

tron density ρn, together determine the properties of an open system in steady state.

This is different from the ground-state density functional theory where total elec-

tron density alone determines ground-state properties. By generalizing the Thomas-

Fermi-Dirac model to non-equilibrium cases, we derived the exchange energy as a

functional of ρe and ρn for a non-equilibrium uniform non-interacting electron

gas. This result enables us to encode the non-equilibrium effects in the energy func-
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tional level explicitly. In addition, we also showed that the desired steady state can

be obtained from the stationary condition of the effective ground state energy, i.e.

δẼ0[ρe, ρn] = 0. As a consequence, two sets of coupled mean field equations have

to be solved. These equations indicate that the current-carrying electrons experience

one mean field and the remaining electrons experience another one. This is different

from the DFT+NEGF method where all electrons experience the same mean field.

Notably, our results may serve as the basis for first-principles studies of the electronic

and transport properties of molecular junctions under a finite bias.

After establishing the theory, we have implemented SS-DFT in SIESTA package

and used it to study several molecular junctions. In the first study, we focused on a

conductive ZGNR junction and showed that the exchange potential vx increased in

the device region. As a result, electric current decreased by around 10% for both low

and high biases. It implies that non-equilibrium corrections generally decrease the

electric current formetallic systems. By analyzing thenon-equilibrium indexη(r), we

found that the edges of the ZGNR junction are in a higher degree of non-equilibrium

than themiddle region. This is the first analysis of the local degree of non-equilibrium

in a molecular junction. In the second study, we considered a CNT-benzene-CNT

junction for which SS-DFT bore lower energy than the DFT+NEGF method at all

biases. This is not surprising because SS-DFT searches for the minimum energy in

a larger Hilbert space. To test the validity of SS-DFT, we decoupled the center ben-

zene molecule from the CNT leads. In this limiting case, SS-DFT produced the cor-

rect local equilibrium state for the benzene molecule while DFT+NEGF didn’t. Fi-

nally, we simulated a alkanethilate SAM junction and explained the experimentally

observed odd-even effect in the conductivity. According to our simulaltions, the odd-

even effect originates from different binding strengths between the SAM and the top

electrode. An even SAM is better bound to the top electrode than an odd SAM due

to different conformations of the SAM tips.
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However, it should be pointed out that SS-DFT applies only when the temper-

ature approaches zero. In the case of finite temperature, the two electron densities,

ρe and ρn, are not basic variables any more and SS-DFT should be treated as an ap-

proximation. Another limitation of SS-DFT is that the correlation energy functional

is still unknown. Incorporating the correlation effects into SS-DFT is an important

direction for future studies, which probably can be done by combining SS-DFTwith

GutzwillerDFT. 103 In addition,wehope to report the spindependent SS-DFT,which

is under study at the moment, in the near future. A disadvantage of our implement-

ation is that the computational cost for conserving the number of electrons in the

device region is high. This is however unavoidable as long as significant tuning of the

effective chemical potential is required. Another problem is that the electron densit-

ies in the leads are fixed to be the ground state ones. This is actually inconsistent with

the scattering boundary conditions at finite biases. It remains challenging to consider

non-equilibrium effects in the leads.
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Yin Shui Si Yuan.

Yu Xin

A
Mathematica Codes

Mathematica codes for checking the integral in Eqn. 2.61

I3 = − 4π

(2π)6

∫
Ω2

dk
∫
Ω2

dk′ 1

|k − k′|2
.

In[1]: Integrate[1/(a ∗ Cos[x] + 1), {x, 0, 2 ∗ Pi},Assumptions → x ∈

Reals&&a ∈ Reals&&a > −1&&a < 1]

Out[1]: ConditionalExpression
[

2π√
1− a2

, a ̸= 0

]
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In[2]: Simplify[2 ∗ Pi ∗ Pi ∗ x1 ∗ x2 ∗ Integrate[1/Sqrt[x ∗ x+ y ∗ y+

c ∗ x ∗ y + c ∗ c/4− 1], {x, 0, 1}, {y, 0, 1},Assumptions → x ∈

Reals&&y ∈ Reals&&c ∈ Reals&&c < −2]/.c→ (−(x1 ∗ x1+

x2 ∗ x2)/(x1 ∗ x2)),Assumptions → x1 ∈ Reals&&x2 ∈ Reals&&

x1 > 0&&x2 > 0&&x1 ̸= x2]

Out[2]: π2x1x2
(
− 2Log

[
−2 +

x1
x2

+
x2
x1

]
+

Log
[

2x12x22

x14 + x24 − (x12 + x22)Abs [x12 − x22]

])
In[3]: Simplify[Integrate[%, {x1, k1, k2}, {x2, k1, k2},Assumptions → x1

∈ Reals&&x2 ∈ Reals&&k1 ∈ Reals&&k2 ∈ Reals&&k1 > 0&&

k1 < k2],Assumptions → k1 ∈ Reals&&k2 ∈ Reals&&k1 > 0&&

k1 < k2]

Out[3]:
1

2
π2

(
2k14 − 2k13k2− k12k22 − 2k1k23 + 3k24 − 4k24ArcTanh[
k1

k1− 2k2

]
+ 4k12k22Log

[
1− k1

k2

]
+ 2k14Log

[
k1

−k1+ k2

])
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