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Summary  

 Cardiovascular diseases are the leading cause of death globally account for 

∼ 7.5 million deaths every year. Anticoagulants are a preferred choice of 

therapeutics for the prevention and control for a number of cardiovascular 

diseases. Because of the several limitations of the currently available 

anticoagulants, novel and superior anticoagulants with greater benefits are being 

sought.  

 Tick are haematophagous arthropods that rely exclusively on the 

host blood for their survival. In order to overcome the host defense response and 

to obtain a bloodmeal, ticks infuse a potent salivary cocktail at the site of feeding. 

This cocktail is a mixture of vasodilators, antiplatelets, anticoagulants, and 

immunomodulaors, that together disarm the host defense mechanisms. We have 

adapted different strategies for the identificaton of novel anticoagulants from the 

salivary glands of ticks. We have developed a a high throughput platform for the 

identification of molecules that target thrombin and FXa, the two major enzymes 

of the blood coagulation cascade. In this on-line post-separation bioassay complex 

mixtures can be separated, individual molecules can be separated, identified for 

their functional activity and their exact masses can be determined in tandem. 

Briefly, in this approach, a nano-HPLC is coupled to a microfluidic chip based 

bioassay system and a mass spectrometer. The instrumentation is designed in such 

a way that eluate from the nano-HPLC is split into two equal parts wherein one 

part is fed into a mass spectrometer (which identifies exact mass) and another part 

is fed into a microfluidic chip where the enzyme assay takes place (which 
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determines the functional activity of the molecule). This nano-HPLC coupled to a 

microfluidic bioassay system operates at submicrolitre flow rates, consumes very 

little starting material and can successfully potent functionally active compounds 

from mixtures that are available in limited amounts.  

Hard ticks are long term feeders that remain attached to the host and feed 

on the host blood for periods as long as 9-12 days. Although both male and 

female ticks feed on blood, stark differences in the feeding behaviours between 

male and female ticks of the same species are observed. For example, the female 

ticks feed and increase in size by about 100 times of the unfed body weight, while 

the male ticks grow barely about 2 times their body weight after feeding.  

Tick feeding triggers new protein synthesis in the saliva, and these newly 

synthesized proteins are the players which disarm the host defense mechanisms 

enabling prolonged tick feeding. In order to identify sex specific and feeding 

stage specific proteins, we have carried out quantitative transriptomic (Illumina) 

and proteomic (iTRAQ) profiling of the tick salivary gland extract of an ixodid 

tick, Dermacentor reticulatus. We have identified more than 30,000 transcripts in 

the transcriptome, and over 400 proteins in the proteome of the male and female 

ticks. We have proven that feeding stage specific expression takes place in tick 

saliva, and the alteration in the levels of these proteins is what mediates prolonged 

tick feeding. These proteins are mainly anticoagulants, antiplatelets and immune 

suppressors and represent a library of novel families of proteins with immense 

diversity, and could be developed further as potent therapeutics. 
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DTIs and direct FXa inhibitors have been the most preferred 

anticoagulants for the prevention and control of cardiovascular disorders. Despite 

being the most sought after options, these anticoagulants are fraught with 

limitations and do not present a good safety-efficacy balance. In our quest for 

better and safer anticoagulants, we have identified and characterized a novel 

thrombin inhibitor-avathrin from the salivary glands Ambylomma variegatum. We 

have solved the 3D-crystal structure of avathrin in complex with thrombin to 

study detailed structure activity relationships. We have successfully demonstrated 

the activities of avathrin using in vitro assays and in vivo animal models. Taking 

this molecule further, we have identified similar sequences from other tick species 

and demonstrated the presence of a family of thrombin inhibitors in ixodid ticks. 

These peptides are short simple sequences with a unique mechanism of inhibiting 

thrombin active site and exosite with affinities in the picomolar to femtomolar 

range. We have also conceived and synthesized structure based variants of these 

peptides with better potencies and different mode of inhibition than the native 

peptides. We are currently evaluating the safety-efficacy balance and 

pharmacokinetics-pharmacodynamics of some of these peptides in animal models 

to prove that these peptides hit the sweet spot and fulfil an unmet need in the 

current day anticoagulant market.  
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1.1. Haemostasis 

 Blood circulates and transports nutrients, oxygen and other important 

nutrients to, and removes waste products from all parts of the body. In vertebrates, 

the blood circulatory system is a closed and a high-pressured system. Haemostasis 

enables organisms not only to maintain blood in a fluid state, but also seals any 

breach caused due to vascular injury and removes blood clots following 

restoration of vascular integrity (Versteeg et al., 2013). This crucial haemostatic 

system which is highly conserved from zebrafish to human involves a complex 

interplay of vasoconstriction, platelet aggregation, blood coagulation and 

fibrinolysis (Gonias and Pizzo, 1986; Jagadeeswaran, 2005). These systems 

involve specific proteinases, protein cofactors and highly specialized cell surfaces 

of platelets and endothelium. 

1.1.1. Vasoconstriction 

 Vasoconstriction is an early response to a vascular injury and this response 

of the haemostatic system reduces blood flow through affected blood vessels and 

limits extravasation of the vascular components. The vascular endothelium, 

which, under normal conditions sustains blood vessels in a vasodilatory state by 

producing vasodilators, is also responsible for vasocontriction, in the event of a 

vascular injury (Wakefield et al., 2008). Any physical (trauma) or functional 

(sepsis) disturbance to the endothelium triggers the production and release of 

vasoconstrictors like endothelin, ADP, serotonin and thromboxane which act on 

the vascular smooth muscle cells to induce a localized vasoconstriction. In 

addition, the local concentration of vasodilators like nitric oxide, adenosine and 
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prostacyclins is reduced (Heindl and Kupatt, 2000). Vasoconstriction is usually 

followed by prothrombotic events which begin with the adherence of platelets to 

the subendothelial tissue (Gonias and Pizzo, 1986). 

1.1.2. Platelet aggregation 

 Platelet activation and aggregation is an important part of the haemostatic 

system. In the event of a vascular injury, the platelets within circulation are 

exposed to the components of the subendothelial extracellular matrix like 

collagen, von Willebrand factor (vWF) and fibronectin, and this triggers the 

adherence of platelets to the site of injury (Kroll et al., 1991). Collagen binds to 

the glycoprotein (GP) VI and GPIa receptors on platelets, while the multivalent 

vWF bridges components of the subendothelium like collagen to the GPIb/V/IX  

receptor on the platelet surface (Clemetson, 1999; Jennings, 2009). This initial 

adhesion causes the platelets to roll, adhere and spread on the collagen matrix 

leading to the formation of an activated platelet monolayer at the site of the 

vascular injury. This is also termed as the collagen pathway of platelet activation. 

In addition, the activated endothelial cells resulting from a disrupted endothelium 

express elevated levels of cell surface adhesion molecules such as P-selectin and 

E-selectin promoting an increased adhesion of platelets to the site of injury 

(Roche et al., 1993; Wakefield et al., 2008). The initial platelet adhesion events 

bring resting platelets which are not normally in contact with each other, to 

develop local contacts between themselves. These cross-talks between adhered 

platelets trigger several signaling pathways and lead to the production and release 

of molecules that amplify platelet aggregation.  
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 In the tissue factor-dependent pathway, platelet activation is mainly 

initiated by thrombin cleavage of protease activated receptors (PARs) on the 

surface of platelets.  

Thrombin is generated from the tissue factor pathway through the classical blood 

coagulation cascade (described in 1.1.3.2). Thrombin also binds GPIb, and this 

binding strengthens its interaction with PARs. Both pathways finally result in 

platelet activation and aggregation at the site of injury, but which of the two 

pathways predominate to bring about the initiation of platelet aggregation depends 

on the injury. Activated platelets release molecules like ADP, serotonin, 

thromboxane, calcium, and various procoagulant molecules, stored within 

granules inside the platelets into the surrounding plasma (Reed, 2004). These 

bound platelet secretion products along with local prothrombotic factors (like 

tissue factor) lead to the generation of a platelet plug (Brass, 2003). Binding of 

fibrinogen, a plasma protein involved in the blood-coagulation cascade to the 

αIIbβ3 on the platelet surface further crosslinks activated platelets, strengthening 

the platelet plug (Mans and Neitz, 2004). 

1.1.3. Blood coagulation 

 Blood coagulation is an important part of haemostasis in which circulating 

zymogens are activated by limited proteolysis in a sequential manner and these 

events result in the formation of a fibrin clot. Formation of the fibrin clot occurs 

concurrent with the platelet plug formation and both events together lead to the 

generation of a stable haemostatic clot (Furie and Furie, 2007). Blood coagulation 

which is also triggered in response to rupture of the endothelium comprises of 
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three main phases, initiation, amplification and propagation (Dahlbäck, 2000; 

Monroe and Hoffman, 2006).  

1.1.3.1. Initiation  

 The initiation phase, also known as the extrinsic pathway of blood 

coagulation, is triggered on the surface of extravascular cells by the exposure of 

tissue factor (TF) to blood. Extravascular subendothelial cells like smooth muscle 

cells and fibroblasts constitutively express TF on their membranes. A rupture to 

the vascular endothelial cells exposes components of the bloodstream to the TF. 

TF binds both zymogen and activated form of the coagulation factor VII (FVII 

and FVIIa). A fraction of activated FVII (FVIIa) circulates in the blood and 

binding of this form to TF, forms the TF-FVIIa complex (the extrinsic tenase 

complex) which can activate blood coagulation FIX and FX to form FIXa and 

FXa, respectively (Dahlbäck, 2000). FIXa along with the cofactor FVIIIa, 

activates FX to FXa from FX. This FXa associates with cofactor FVa to form the 

prothrombinase complex on the surface of TF expressing cells, which then 

activates prothrombin to the active enzyme thrombin. The locally generated 

thrombin carries out further reactions leading to the amplification phase of blood 

coagulation (Maynard et al., 1975).  

1.1.3.2. Amplification 

 Most of the thrombin generation takes place in the amplification phase, 

after the initial fibrin clot is generated.  
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Figure 1.1.  Blood coagulation cascade – initiation and amplification phase.  
FVIIa and tissue factor, form the extrinsic tenase complex and initiate the 
cascade. This complex activates FX to form FXa, which associates with FVa to 
produce thrombin. Thrombin then leads to the production of fibrin monomers. 
Generation of small amount of thrombin also results in a feedback which leads to 
a burst of thrombin in the amplification phase (Adapted from (Furie and Furie, 
2008))  
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The small amount of thrombin generated on the surface of TF-expressing cells 

plays multiple roles which result in the amplification of its own production. A 

major procoagulant function of thrombin in the amplification phase is the 

cleavage and activation of the two cofactors, FV and FVIII to their activated 

forms, FVa and FVIIIa, respectively, both of which result in an amplified 

prothrombinase activity.  Thrombin also activates FXI on the platelet surface to 

form FXIa. Alternatively, FXIa is also formed following the activation of FXII to 

FXIIa on a negatively charged surface by a process called contact activation 

(Gailani and Renné, 2007; Renné and Gailani, 2007).  FXIa formed by these 

reactions converts FIX to FIXa, which together with the cofactor FVIIIa forms the 

intrinsic tenase complex, which subsequently activates FX to FXa, hence 

amplifying the thrombin generation in the next phase, the propagation phase 

(described in 1.1.3.3). This set of reactions that constitute the contact pathway, is 

also called the 'intrinsic pathway', because this property is intrinsic to the 

components of the plasma, where coagulation is initiated by constituents within 

the vascular system independent of the extravascular tissue factor.  

 Another crucial prothrombotic role that thrombin plays in the 

amplification phase is platelet activation by cleavage of the PARs, which are 

members of the superfamily, G-protein coupled receptors. Thrombin cleaves 

PAR1, PAR3 and PAR4, which are expressed on the platelet cell surface, at their 

extracellular N-termini and this cleavage exposes a new N-terminal domain (Di 

Cera, 2008). The peptide cleaved from the N-terminal of the PARs binds 

intramolecularly to the newly exposed N-terminal domain thereby signaling the 
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further downstream events of platelet aggregation (Jennings, 2009). By the end of 

the amplification phase, the stage is set for a full fledged propagation phase in 

which a burst of thrombin generation takes place. 

1.1.3.3. Propagation 

 This final step of blood coagulation takes place on the surface of activated 

platelets which contains procoagulant phospholipids. FIXa produced by the 

intrinsic pathway quickly associates with the platelet surface bound FVIIIa, 

activating FX to FXa, which in turn associates with the platelet surface bound 

FVa, forming the prothrombinase complex and produces large amounts of 

thrombin required for the conversion of soluble fibrinogen to insoluble fibrin, 

which is crosslinked to form a fibrin mesh. Thrombin is also responsible for the 

activation of the transglutaminase, FXIII to FXIIIa, which covalently cross links 

the fibrin clot (Versteeg et al., 2013). In addition, thrombin activates thrombin 

activatable fibrinolysis inhibitor (TAFI), a carboxypeptidase that protects fibrin 

from the fibrinolytic attack (Dahlbäck, 2000; Monroe and Hoffman, 2006).  

 The increase in the amounts of phosphatidylserine on the outer leaflet of 

the activated platelets, makes the platelet cell surface a very highly specialized 

platform on which the tenase and prothrombinase complexes can be assembled, 

hence making the platelet surface an exclusive location for the propagation phase 

(Monroe et al., 2002). The phosphatidylserine on the platelet surface is important 

because it binds to the γ-carboxyglutamic acid of the coagulation proteins in a 

calcium dependent fashion, hence tethering the coagulation factors in close 

vicinity of each other to successfully assemble the tenase and prothrombinase 
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complexes (Lentz, 2003). Therefore, this stepwise activation of zymogens of the 

blood coagulation cascade culminates in the generation of sufficient amounts of 

fibrin which is crosslinked to efficiently seal the breached vascular barrier.  

1.1.4. Fibrinolysis 

 The fibrinolytic system is responsible for clearing clots from the sites of 

injury following the regeneration and repair of damaged vascular structures. 

Plasmin is the most important enzyme of the fibrinolytic system, which degrades 

fibrin into soluble products and dissolves the fibrin clot. The zymogen - 

plasminogen is converted to the active enzyme, plasmin by the action of two 

enzymes, tissue type plasminogen activator (t-PA), produced by the endothelial 

cells, or the trypsin-like serine protease - urokinase (Draxler and Medcalf, 2014; 

Okafor and Gorog, 2015). 

1.1.5. Regulation of coagulation by anticoagulant pathways 

 Haemostasis, if allowed to proceed in an uncontrolled manner can develop 

into pathologic thrombosis. Therefore blood coagulation is regulated at different 

stages by inhibition of coagulation factors or modulation of activity of the 

cofactors. TFPI almost always inhibits the interaction between TF and the small 

amounts of circulating FVIIa. Most coagulation factors in plasma including 

thrombin, FIXa, FXa and FXIa are inhibited by the serine protease inhibitor,- 

antithrombin (Lane et al., 2005). Circulating coagulation factors are almost 

instantaneously inhibited by antithrombin, while those coagulation factors that are 

produced and assembled on the procogulant cell surfaces such as components of 

the tenase or prothrombinase complexes are less accessible to antithrombin, and 
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hence remain active. Antithrombin itself is an inefficient serine protease inhibitor, 

but heparin, which is present on the cell surfaces of endothelial cells enhances 

antithrombin's inhibitory activity (Dahlbäck, 2000). This limits blood coagulation 

to occur only at sites of vascular injury. 

 The central enzyme thrombin plays paradoxical roles as both a 

procoagulant and an anticoagulant factor under different conditions. In contrast to 

its procoagulant roles (described in 1.1.3), thrombin when bound to 

thrombomodulin activates Protein C. The anticoagulant- Activated protein C, in 

presence of protein S proteolytically inactivates the cofactors, FVIIIa and FVa 

thus down regulating the activities of the tenase and prothrombinase complexes 

(Sadler et al., 1993). Thus, although at sites of vascular disruption, the 

procoagulant activities of thrombin are well pronounced, in an intact vascular 

system, thrombin acts as an anticoagulant preventing the development of 

unwanted clots.  
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1.2. Thrombosis 

 Subtle changes in the activities of the components of the delicate 

haemostatic balance can lead to life threatening complications. While the 

physiological formation of clots (thrombus) is critical for haemostasis and 

preservation of blood volume; abnormal thrombosis is related to pathologic 

conditions in which occlusive unwanted clots develop in circulation (Borissoff et 

al., 2009). Unwanted clots which can develop due to different reasons in the 

circulation, and lead to the development of dreaded disorders. Cardiovascular 

disorders are the single largest killer worldwide and account for about 25% of the 

deaths worldwide claiming more than 7.5 million lives each year and is estimated 

to reach about 25 million by 2030 (Chaudhari et al., 2014). 

 Typically, arterial thrombi are described to develop as a result of 

underlying plaques (atherosclerosis or vasculitis), a dysfunctional endothelium, 

and high shear stress; where platelet activation plays a crucial role forming the 

platelet rich 'white thrombi' which are characteristic of an arterial thrombosis 

event (Badimon and Vilahur, 2007). Occlusion of the coronary arteries leads to 

coronary syndromes or myocardial infarction, while obstructive thrombi that 

develop in cerebral arteries lead to thrombotic stroke, and occlusion of peripheral 

arteries results in peripheral arterial disease and gangrene (Kottke-marchant, 

2010). 

 In contrast, venous thrombi are typically reported to develop at sites where 

the vein wall is undamaged, and shear stress is low, and thrombus formation 

occurs mainly due to the congenital dysfunction of coagulation proteins or 



12 
 

physiologic anticoagulants, giving rise to the red cell rich 'red thrombi' 

(Rosendaal, 1999). In the pathologic condition known as deep vein thrombosis 

(DVT), clots most often develop in the deep veins of the leg or pelvis. When these 

clots or small parts of the clot break off from the site of formation, and travel 

through the circulatory system, an embolism occurs. When this clot lodges in the 

lung, the condition then known as pulmonary embolism (PE), is a life-threatening 

disease (Lijfering et al., 2011).  

 Due to these differences in the underlying mechanisms of development of 

arterial and venous thrombosis different antithrombotic agents are used for 

different indications. Antiplatelets, and to a lesser extent anticoagulants, are used 

for the treatment of arterial thrombosis, whereas, anticoagulants are preferred for 

the control of venous thrombi (Wu and Matijevic-Aleksic, 2005).  
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1.3 Current antithrombotics 

 Antiplatelets, anticoagulants and fibrinolytics are the three major classes 

of currently available antithrombotic drugs in the market.  

1.3.1. Antiplatelets  

 The interesting property of platelets to instantaneously adhere at sites of 

vascular injury implicates their crucial role in the development of highly cohesive, 

platelet rich arterial thrombi. This important role of platelets in arterial thrombosis 

has been extensively studied for indications such as unstable angina, as well as 

mycardial infarction and stroke (Vyasa et al., 2011). Platelet aggregation 

inhibitors prevent blood clots by blocking one of the receptors on the platelet 

surface. The currently available antiplatelet therapies include aspirin, clopidogrel, 

ticlopidine and dipyridamole. Out of these options, aspirin which is relatively safe 

and inexpensive has remained as the mainstay for treatment of several types of 

arterial thrombotic indications (Phillips et al., 2005).  Due to the limitations of 

antiplatelet monotherapy, a combination therapy of antithrombotics (e.g. aspirin-

plus-clopidogrel or aspirin-plus-anticoagulant) has been preferred for the 

management of certain indications (Curiale et al., 2011; Hong, 2014).  

1.3.2. Fibrinolytics 

 Fibrinolytic agents allow reperfusion by converting plasminogen to 

plasmin, which can then dissolve the fibrin clot. Tissue plasminogen activator 

(tPA), streptokinase and urokinase are the three classes of fibrinolytic agents 

which, by different mechanisms, convert plasminogen to plasmin, thereby 

activating the fibrinolytic pathway. Since these type of drugs thrombolyse already 
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formed clots, they are most effective when they are administered within 4-6 hours 

following a cardiovascular event (Chaudhari et al., 2014; Piccolo et al., 2015).  

1.3.3. Anticoagulants 

 Anticoagulants are used as both short- and long-term options for the 

management of arterial as well as venous thrombi. Heparins, Vitamin K-

antagonists, direct thrombin inhibitors (DTIs) and direct FXa inhibitors comprise 

the four major classes of anticoagulants currently available in the market. 

Anticoagulants are the main focus of this thesis and are discussed in detail in this 

section. 

1.3.3.1 Heparin 

 Heparin, the polysaccharide based anticoagulant, has been administered in 

several forms, for different indications such as haemodialysis, DVT, renal 

impairment, pulmonary embolism, venous thromboembolism (VTE), and angina 

blood vessel complications. There are three different forms of heparin: 

unfractionated heparin (UFH, a heterogeneous mixture of polysaccharide chains 

of molecular sizes in the range 3 to 50 kDa), low molecular weight heparin 

(LWMH, polysaccharides of the molecular size ~ 6 kDa) and ultra low molecular 

weight heparin (ULMWH, polysaccharides of molecular size < 2 kDa). Out of the 

three forms, UFH which is the most widely used form of heparin is a century old 

drug, and has remained as the preferred anticoagulant despite its various 

limitations (Linhardt and Liu, 2012).  
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 The molecular mechanism of the anticoagulant action of heparin lies in its 

ability to bind to and enhance the inhibitory effect of the plasma serine protease 

inhibitor- antithrombin. Heparin bound antithrombin can effectively inhibit the 

enzymatic actions of thrombin and FXa, the two most crucial serine proteases of 

the blood coagulation cascade. In addition, heparin can also activate other serpins 

like heparin cofactor-II (HCII) and protein C inhibitor (PCI), which through 

different mechanisms bring about the anticoagulant action of heparin (Hoffman et 

al, 2012).  

 UFH shows a number of limitations, such as binding to other plasma 

proteins, which gives rise to variable pharmacokinetics, and it induces an immune 

response called heparin-induced thrombocytopenia (HIT). These limitations of 

UFH have triggered the introduction of LWMH products as agents for the 

management of different indications. LWMH also have the advantage of being 

subcutaneously bioavailable, and have a longer half-life than UFH. Despite these 

advantages, the lack of a readily available reversal agent for LWMH increases 

severe bleeding risks, and hence restricts the use of LWMH in clinical settings 

(Linhardt and Liu, 2012). 

1.3.3.2. Vitamin K antagonists 

 Vitamin K antagonists (VKAs), of which warfarin is the most common 

example, exert their anticoagulant activity in an indirect manner. VKAs 

competitively inhibit vitamin K epoxide reductase, the enzyme which brings 

about the γ-carboxylation of prothrombin, FVII, FIX, FX (procoagulants), protein 

C and protein S (anticoagulants), impairing their activity. Despite being popular, 
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this class of anticoagulants suffers from serious side effects like food drug 

interactions, narrow therapeutic window, highly variable therapeutic dosages, and 

requires close monitoring of drug levels in the plasma (Marder et al., 2004). All 

these side effects increase the healthcare costs and require rigorous patient 

compliance, limiting the use of VKAs as anticoagulant drugs. 

 

Figure 1.2. Targets of current anticoagulants. Warfarin and coumarins (vitamin 
K antagonists) inhibit the synthesis of blood coagulation zymogens (factors II, 
VII, IX and X). Antithrombin inhibits thrombin and FXa. LMWH, fondaparinux 
and UFH inhibit thrombin and FXa in an antithrombin dependent manner. 
Hirudin, argatroban and ximelagatran are DTIs. (Adapted from (Wu and 
Matijevic-Aleksic, 2005))  

 

1.3.3.3. Direct thrombin inhibitors (DTIs) and direct FXa inhibitors 

 Designed to overcome the limitations of VKAs, DTIs and direct FXa 

inhibitors are becoming the most popular choice of anticoagulants for the 

prevention and treatment of venous and arterial thromboembolism. Unlike 
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warfarin, these agents directly and specifically bind to and inhibit thrombin and 

FXa - the most important serine proteases of the blood coagulation cascade. DTIs 

and direct FXa inhibitors have been studied extensively and have gained 

increasing popularity (Yeh et al., 2015). DTIs such as hirudin, bivalirudin, 

dabigatran and argatroban, and direct FXa inhibitors, such as rivaroxaban, 

apixaban and endoxaban are currently available in the market. These agents have 

a rapid onset of action and some of these direct acting inhibitors have excellent 

oral bioavailability (and hence are named as non-vitamin K antagonists oral 

anticoagulants (NOACs)). 

 Hirudin from the medicinal leech Hirudo medicinalis is a DTI. This 65-

residue anticoagulant has been produced recombinantly and has been used for 

treatment in patients with HIT and for thrombosis prophylaxis after major 

orthopedic surgery (Greinacher et al., 1999). However, the clinical use of hirudin 

has been limited due to several drawbacks such as (a) high risk of bleeding, (b) 

pharmacokinetics that depend on renal function, (c) lack of antidote and (e) 

immunogenicity (Lee and Ansell, 2011).  

 Bivalirudin is a 20-residue synthetic oligopeptide, which has been 

developed by linking the exosite-I binding C-terminus of hirudin with the active 

site binding moiety, D-Phe-Pro-Arg-Pro (Warkentin, 2004). The C-terminus of 

bivalirudin is based on the exosite-I binding sequence of hirudin. The N-terminal 

active site binding moiety is linked to the exosite-I binding C-terminus with 4 

glycine residues as a linker. Bivalirudin selectively and reversibly binds to the 

active site of free and fibrin bound thrombin, has negligible immunogenicity, 
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significantly lower bleeding risks than hirudin, and is eliminated via proteolytic 

cleavage and renal routes. It has been used in the management of percutaneous 

coronary intervention (PCI) and is gaining increased attention for numerous 

clinical applications like acute coronary syndrome (ACS), myocardial infarction 

(MI), and venous HIT thrombotic events (Mavrakanas and Chatzizisis, 2015).  

 The small molecule DTIs and direct FXa inhibitors like argatroban, 

dabigatran, apixaban, endoxaban and rivaroxaban are the NOACs, which are used 

for several conditions such as ACS, atrial fibrillation, VTE, stroke, 

thromboprophylaxis after knee or hip arthroplasty. Because these NOACs directly 

bind to a single enzyme, they have well documented mechanism of action, and 

predicted outcomes and have shown to be safer than VKAs  (Saito et al., 2015; 

Yeh et al., 2015). Despite all this progress, there are well documented side-effects 

of bleeding complications, as well as liver toxicities resulting from the use of 

NOACs (Santarpia et al., 2015). 

 Despite the presence of numerous antithrombotic options, these drugs are 

fraught with several limitations and do not present an ideal safety-efficacy 

balance. Therefore, in our quest for novel antithrombotics with superior benefits, 

we have identified and developed a novel family of anticoagulants from 

haematophagous animals and are developing them further in an attempt to fulfill 

an unmet need in the current day antithrombotic market.  
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1.4. Haematophagous animals 

    Different groups of animals in the arthropod, annelid and nematode taxa 

have evolved the ability to feed on vertebrate blood for their survival. Mosquitoes, 

ticks, bed bugs, leeches, tsetse flies and triatomines are a few examples of 

haematophagous animals. During feeding, these haematophagous animals 

puncture through the skin, lacerate the blood vessel and suck the host blood to 

obtain nutrients. This causes an injury to the vascular system and triggers the host 

defense mechanism which involves the haemostatic and the immune system. The 

host haemostatic system ensures minimal blood loss following a vascular injury, 

by sealing the breach to stop the blood flow; the host immune system causes pain 

and inflammation leading to a grooming response and aids in awareness in the 

host and subsequent removal of the parasite. To counter these defense 

mechanisms and to ensure a successful feeding, haematophagous animals produce 

an assortment of molecules in their saliva which they infuse into the host blood 

(Champagne, 2006; Mans, 2011; Mans and Neitz, 2004). 

 Evolutionary studies have shown that haematophagy (blood feeding 

behavior) has evolved at least 20 independent times in 15,000 species distributed 

over 400 genera of arthropods (Francischetti et al., 2009). At each of these stages 

of evolution, novel scaffolds, with new strategies, novel structures and 

mechanisms to overcome the host defense response have been evolved. In most 

cases, the saliva contains a complex mixture of components with vasodilatory, 

antiplatelet, anticoagulant and anti-inflammatory activities to disarm the host 

haemostatic and immune systems. Therefore, the saliva of these haematophagous 
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animals represent a rich pharmacoepia presenting a diverse set of molecules that 

target the host haemostatic and immune systems which can be developed into 

therapeutic agents for clinical use. 

 Since the sizes of these blood-feeding animals are significantly smaller 

than their vertebrate hosts, their mouthparts can be considered as tiny micro 

syringes that infuse minute amounts of saliva in the host blood, yet bring about 

the desired antihaemostatic response and help them obtain a successful blood 

meal. This indicates that the molecules isolated from the saliva of these animals 

would present as exceptionally potent antihaemostatics that could easily 

supersede the current day antithrombotics available in the market. Few examples 

of vasodilators, antiplatelets and anticoagulants studied from the saliva of 

haematophagous animals are discussed in detail below. 

1.4.1. Vasodilators  

  The main role of vasodilators in the saliva of haematophagous arthropods 

injected into the skin is to help the arthropod enlarge the vessel and subsequently 

enhance the blood flow to the feeding site. Maxadilan, a 60-residue peptide, 

isolated from the saliva of the sand fly, Lutzomyia longipalpis (Lerner et al., 

1991) and Simulium vittatum erythema protein (SVEP) from the saliva of the 

black fly, Simulium vittatum (Cupp et al., 1998) are the most potent known 

vasodilators, which bring about an erythema when injected at levels as low as 0.1 

ng peptide per rabbit. The vasodilatory properties of maxadilan is mediated by 

alterations in the levels of intracellular cAMP in smooth muscle cells by binding 

to the pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1) 
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(Lerner et al., 1991). Nitrovasodilators from Rhodnius prolixus, which were later 

identified as nitric oxide (NO) binding haeme proteins, have the lipocalin fold and 

were subsequently named as nitrophorins (Ribeiro et al., 1990a). These 

nitrophorins have been shown to bind and release NO in a pH dependent manner. 

In the case of hard ticks prostaglandins including prostacyclins, and prostaglandin 

E2 (PGE2) accomplish vasodilation of the host blood vessel (Champagne, 2006). 

Several other vasodilators from different classes of haematophagous arthropod 

saliva have been well studied, yet there remains immense potential to identify 

novel vasodilators from the largely unstudied groups of haematophagous animals. 

1.4.2 Antiplatelets  

 Antiplatelets which inhibit platelet activation and aggregation are 

extensively produced in a vast diversity in the saliva of haematophagous animals. 

These antiplatelets primarily inhibit platelet activation or aggregation by blocking 

the activation of one of receptors on the platelet surface. Apyrases which degrade 

ADP, a crucial activator of platelet aggregation, have been isolated from the 

saliva of mosquitoes, bugs, sand flies, fleas, triatomines and ticks (Ribeiro and 

Francischetti, 2003). The lipocalin moubatin, isolated from the saliva of 

Ornithodorus moubata inhibits collagen-induced platelet aggregation by 

interfering with a pathway associated with a thromboxane A2 (TXA2) receptor 

(Francischetti, 2010). Other examples of platelet aggregation inhibitors include 

‘tick adhesion inhibitor’ which inhibits integrin α2β1-collagen adhesion and 

disagregin which inhibits integrin αIIbβ3-fibrinogen mediated aggregation 

(Karczewski et al., 1994). The amine binding protein of the lipocalin superfamily 
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from the saliva of Rodnius prolixus inhibit serotonin and epinephrine mediated 

effects on platelets (Champagne, 2006). Since thrombin is an important activator 

of platelet aggregation, thrombin inhibitors have also been documented to exert 

antiplatelet activity (Tanaka et al., 2007). 

1.4.3. Anticoagulants 

 The blood coagulation cascade is disarmed by anticoagulants injected by 

the haematophgous animal at the site of feeding. Numerous anticoagulants are 

produced by these blood sucking parasites, and these exogenous anticoagulants 

present an array of molecules with tremendous diversity. Studies by different 

groups have reported that in addition to disabling the host blood coagulation 

cascade at the site of feeding, anticoagulants produced in the saliva of these 

haematophagous arthropods play a significant role in the parasite gut, where they 

maintain blood in the fluid state (Bowman et al., 1997; Valenzuela, 2004).  

Evolutionary studies with soft ticks have revealed that anticoagulants preceded 

antiplatelets in the ancestral arthropod saliva, suggesting that adaptation to blood 

coagulation played an important role in successful evolution of haematophagy 

(Mans et al., 2002). 

 These exogenous anticoagulants from arthropod saliva are serine protease 

inhibitors that selectively inhibit specific coagulation factors or inhibit the activity 

of one of the complexes assembled on the procoagulant surfaces (described in 

1.1.3.). Mechanistically, these exogenous anticoagulants are classified as extrinsic 

tenase complex inhibitors, intrinsic tenase complex inhibitors, contact system 

inhibitors, FXa inhibitors and thrombin inhibitors (Koh and Kini, 2008). Few 
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examples of anticoagulants which are present in the saliva of haematophagous 

animals are discussed in further detail below. 

1.4.3.1. Extrinsic tenase complex inhibitors 

 The extrinsic tenase complex (TF-FVIIa complex) which is assembled on 

the surface of TF-expressing endothelial cells, is one of the early responses and is 

triggered during the initiation phase of the blood coagulation cascade (described 

in 1.1.3.1.). Extrinsic tenase complex inhibitors have evolved in the arthropod 

saliva to target this important step. Extrinsic tenase complex inhibitors from 

haematophagous animals have been isolated and characterized and examples from 

two classes are described below.  

 Ixolaris, a two domain Kunitz type inhibitor, with both domains 

homologous to TFPI has been characterized from the saliva of Ixodes scapularis 

(Francischetti et al., 2002). The 120 residue long, two domain Kunitz inhibitor has 

been shown to interact stoichiometrically with FX and FXa with affinities in the 

range of 0.5-10 nM, but not with FVIIa. Ixolaris is a fast and tight binding 

inhibitor that binds to the exosite of FX (FXa) in a Gla domain dependent manner. 

This binding impairs the interaction of FX or FXa with FVIIa and prothrombin, 

thereby blocking the assembly of the extrinsic tenase complex and the 

prothrombinase complex, respectively, on the surface of TF expressing 

endothelial cells. Penthalaris, an inhibitor with five tandem Kunitz domains also 

isolated from the saliva of Ixodes scapularis inhibits the assembly of the extrinsic 

tenase and the prothrombinase complex using FX or FXa as a scaffold 

(Francischetti et al., 2004). 
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 The nematode anticoagulant protein 2 (NAPc2), from hookworm is a 

potent inhibitor of the TF-FVIIa complex. Similar to ixolaris, NAPc2 exerts its 

inhibition over the extrinsic tenase complex in a FX- or FXa-dependent fashion. 

But unlike ixolaris, NAPc2 bound to FX or FXa also binds to the TF-FVIIa 

complex and forms a tight ternary complex, with an equilibrium inhibitory 

constant of 10 pM (Lee and Vlasuk, 2003). 

1.4.3.2. Intrinsic tenase complex inhibitors 

 The intrinsic tenase complex (FIXa-FVIIIa complex), which is assembled 

on the phospholipid membrane of the platelet surface plays an important role in 

FXa generation, which leads to a subsequent burst in thrombin generation in the 

amplification phase of blood coagulation (described in 1.1.3.2.). The lipocalin 

prolixin S, isolated and characterized from the kissing bug Rhodnius prolixus is 

the only identified intrinsic tenase complex inhibitor from haematophagous 

arthropods. This intrinsic tenase complex inhibitor inhibits the complex by an 

anti-FVIIIa activity, which makes it a unique anticoagulant inhibiting a blood 

coagulation cofactor unlike the usual anticoagulants that inhibit the blood 

coagulation enzymes. The anti-FVIIa activity of prolixin S lies in a short stretch 

of the molecule and this anti-FVIIa activity is independent of NO binding. This 

makes prolixin S a unique lipocalin because all the other lipocalins identified 

from Rhodnius prolixus are NO dependent proteins and act as vasodilators 

(Ribeiro et al., 1995). 
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1.4.3.3. Contact system protein inhibitors 

 The contact activation system of blood coagulation, which involves 

kallikriens, FXIIa, FXIa and other plasma serine proteases (the activities of some 

of these serine proteases in the blood coagulation is yet to be understood) is also 

targeted by components of the arthropod saliva.  

 BmTI-A, from the larvae of Boophilus microplus is a Kunitz type inhibitor 

and it inhibits trypsin, neutrophil elastase and plasma kallikrien. BmTI-A has two 

Kunitz domains and its sequence shows similarity to ornithodorin (a thrombin 

inhibitor) (van de Locht et al., 1996) and tick anticoagulant peptide (TAP, a FXa 

inhibitor) (Waxman et al., 1990), both of which have been identified from 

Ornithodorus moubata (Tanaka et al., 1999). 

 Triafestin-1 and triafestin-2 are the two kallikrien-kinin system inhibitors 

from the salivary glands of the kissing bug, Triatoma infestans. Both inhibitors 

are structurally related to lipocalins and inhibit the contact pathway of blood 

coagulation by inhibiting the reciprocal activation of factor XII and prekallikrein. 

They interact with factor XII and high molecular weight kininogen in a Zn2+-

dependent manner and also inhibit, the ability of factor XII and high molecular 

weight kininogen binding to negatively charged surfaces. This inhibition not only 

blocks the activation of FXI by FXIIa, but it also inhibits bradykinin release 

because of the inhibition of the kallikrien-kinin system. Since bradykinin is 

involved in numerous inflammatory responses around the injured site, these 

molecules play dual roles, both as anticoagulants as well as immune suppressors 

(Isawa et al., 2007). 
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 Ixodes ricinus contact phase inhibitor (Ir-CPI), contains one Kunitz 

domain and inhibits the contact pathway and to a lesser extent, fibrinolysis in 

vitro. Ir-CPI exerts its inhibition on the contact pathway by inhibiting the 

reciprocal activation of FXII, prekallikrien and FXI in human plasma (Decrem et 

al., 2009).  

1.4.3.4. Factor Xa inhibitors 

 FXa is an important enzyme of the blood coagulation cascade, which 

along with FVa forms the prothrombinase complex. Suppression of FXa activity 

by intrinsic inhibitors is essential for the physiologic regulation of the blood 

coagulation cascade, and this is achieved by the plasma inhibitors,- antithrombin 

and TFPI (Furie and Furie, 2008). The saliva of haematophagous animals have 

evolved numerous FXa inhibitors to control the activity of this crucial enzyme of 

the blood coagulation cascade (Gould et al., 2006). 

1.4.3.4.1. Kunitz type Factor Xa inhibitors 

 The tick anticoagulant peptide (TAP, Ki 200 pM), is the most well studied 

FXa inhibitor from the haematophagous soft tick, Ornithodorus moubata 

(Waxman et al., 1990). TAP is a single domain Kunitz type, slow, tight binding 

and competitive FXa inhibitor that possesses the conserved cysteines of a Kunitz 

domain but differs significantly from other Kunitz type inhibitors in the overall 

amino acid sequence (Corral-Rodríguez et al., 2009; Waxman et al., 1990).  
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The three N-terminal residues of TAP bind to FXa active site in a non-canonical 

manner and exhibit a mechanism that is similar to hirudin inhibition of thrombin 

(Simone et al., 1998). During the formation of the TAP-FXa complex, an initial 

slow-binding occurs at the secondary binding site, which induces a rearrangement 

in the N-terminal residues of TAP to lock into the active site of factor Xa. In FXa, 

there are five basic residues at the secondary binding site that interact with the 

acidic residues of TAP. In thrombin and trypsin, the corresponding residues 

would not provide this kind of a charge interaction with TAP. The three N-

terminal residues locked into the active site form extensive hydrogen bonds with 

the active site. (Dunwiddie et al., 1992). 

1.4.3.4.2. Antistatin and ghilantens 

 Antistatin (ATS), isolated from the Mexican leech, Haementaria 

officenalis, is a slow binding FXa inhibitor (Tuszynski et al., 1987). The affinity 

Figure 1.3. Structure of Tick 
anticoagulant peptide (1TAP). The 
single domain Kunitz type FXa 
inhibitor TAP contains one α-helix 
(residues 51-60) and an antiparallel β-
sheet (residues 22-28 and 32-38). The 
N-terminal residues of the 310 helix 
(residues 2-7) lock into the active site 
of FXa.  
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of ATS was 8300- to 12,600-times smaller than TAP, and unlike TAP, ATS was 

cleaved by FXa at the Arg35-Val36 peptide bond (Mao, 1993). ATS contains two 

tandem antistasin-like domains, and each domain possesses 10 cysteines which 

form five intra-domain disulphide bonds. Several other FXa inhibitors 

homologous to antistatin (named ghilantens) have been isolated from the salivary 

glands of the South American leech Haementaria ghilianii (Blankenship et al., 

1990).  

1.4.3.4.3. Lufaxin 

 Lufaxin is a type member of a novel family of FXa inhibitors isolated 

from the saliva of the sand fly Lutzomyia longipalpis. The 32.4 kDa protein was 

identified as a slow, tight, noncompetitive, and reversible inhibitor of FXa. 

Lufaxin is a highly specific FXa inhibitor that does not interact with any other 

enzyme of the cascade. In addition to inhibiting the pro-coagulant properties of 

FXa, lufaxin also inhibits FXa-induced PAR2 activation. Lufaxin injected into the 

mice tails has been shown to prolong the time to occlusion in carotid artery 

thrombosis models. Because, the primary structure of lufaxin does not show any 

similarity to the other FXa inhibitor families, it has been classified as a novel 

family of FXa inhibitors (Collin et al., 2012). 

1.4.3.4.4. Ascaris type FXa inhibitors 

 Anticoagulant peptide (AcAP) was isolated from the human hookworm, 

Ancylostoma caninum and was shown to inhibit FXa with an affinity of 323.5 pM. 

AcAP inhibits the active site of FXa and shows a 100- to 200-fold higher 

specificity towards FXa than to the other serine proteases of the coagulation 
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cascade (Cappello et al., 1995). Several other ascaris-type FXa-inhibiting proteins 

similar to AcAP have been reported from Ancyclostoma caninum (NAP5/6 and 

NAPc2/3/4) and from Ancylostoma ceylanicum (AcAP5 and AceAP1) 

(Mieszczanek et al., 2004; Stassens et al., 1996).  

1.4.3.4.5. Serpin family of Factor Xa inhibitors 

 The ubiquitously found serpin family of serine protease inhibitors that 

inhibit blood coagulation proteases are also identified from the saliva of 

haematophagous animals and inhibit the key enzyme, FXa to control the host 

haemostatic system (Khan et al., 2011). Serpins contain 350-400 residues with 

molecular sizes in the range of 40-55 kDa (Khan et al., 2011). Alboserpin, from 

the salivary glands of the mosquito Aedes albopictus displays stoichiometric, 

competitive, reversible and tight binding to FXa. Like the other members of the 

serpin family, alboserpin undergoes huge conformational changes to bind to and 

inhibit FXa irreversibly (Calvo et al., 2011). Sequences of several other serpins 

from the salivary gland transcriptomes of other haematophagous animals have 

been identified and some of these sequences have been hypothesized to inhibit 

FXa in a manner similar to alboserpin (Karim et al., 2011; Ribeiro et al., 2006; 

Tan et al., 2015). 

1.4.3.5. Thrombin inhibitors 

 The crucial role of thrombin is reflected by the presence of thrombin 

inhibitors in the saliva of blood-sucking animals (Huntington, 2014). The unique 

3-dimensional organization of thrombin makes it a specialized enzyme restricting 

the access of most macromolecular substrates and inhibitors and only those which 
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exhibit specific properties that are able to fit this unique structure are able to enter 

the active site cleft.  

                                                                                      

Figure 1.4. Schematic of different classes of thrombin inhibitors and their 
structural features. (i) Hirudin, N-terminus binds to active site, acidic and 
extended C-terminal domain binds to exosite-I; (ii) rhodniin: two Kazal-type 
domains, the N-terminus binds to active site and the C-terminal domain binds to 
exosite-I; (iii) ornithodorin: two tandem Kunitz-type domains, N-terminus domain 
binding to active site and the C-terminal domain to exosite-I; (iv) haemadin: N-
terminus binds to active site, extended C terminus binds to exosite-II; (v) triabin: 
single lipocalin domain binds to exosite-I; (vi) bothrojaracin: two chains of the C-
type lectin domain bind to exosite-I and exosite-II respectively; (vii) Variegin: N-
terminal steers towards exosite-II, middle part of the molecule (MHTK) binds the 
active site and flexible acidic C-terminus binds to the exosite-I (Adapted and 
modified from (Koh et al., 2007)). 

In addition to the two basic exosites that determine the high substrate and 

inhibitor specificity, the thrombin active site is placed in a narrow cleft which is 

lined by two loops (called the 60-loop and the 149-loop) (Polgár, 2005). Many 

(vii)
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specialized thrombin inhibitors have been studied from the saliva of 

haematophagous animals and they fall into three general categories: ‘canonical’; 

‘non-canonical (or ‘heretical’); and exosite binding inhibitors. When the inhibitor 

binds to the enzyme in a substrate-like fashion forming an antiparallel β-strand 

between the P3-P1 residues of the inhibitor with 214–216 residues of thrombin, 

the interaction is called 'canonical'. 'Non-canonical' refers to any inhibitor- active 

site interaction that is not canonical (Krowarsch et al., 2003). 

1.4.3.5.1. Hirudin 

Hirudin, the anticoagulant protein isolated from the salivary glands of the 

medicinal leech, Hirudo medicinalis, was the first thrombin inhibitor from a 

haematophagous animal that was used as a clinical antithrombotic agent (Stone 

and Hofsteenge, 1986). It is a polypeptide composed of 65 amino acids, and 

tightly and specifically binds to thrombin with a Ki of about 20 fM. It interacts 

with the thrombin active site as well as the exosite-I, preventing fibrinogen 

cleavage thus inhibiting the clot formation. Hirudin binds to the active site cleft of 

thrombin with its three N-terminal residues- Val, Val and Tyr. The amino group 

at the N-terminus of hirudin forms strong hydrogen bonds with the active-site 

His57 and with the main chain carbonyl group of Ser214. The P2 position is 

occupied by Vall and the P3 position is approximately occupied by Tyr3. Thus the 

hirudin polypeptide binds thrombin in a direction opposite to that expected for 

fibrinogen and is hence a non-canonical inhibitor. The carboxy tail of hirudin 

(residues 48-65) wraps around the exosite-I and forms several ionic interactions 

and salt bridges. This binding to both thrombin active site cleft as well as the 
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exosite-I gives hirudin its high selectivity (Grütter et al., 1990). Of special 

importance in the hirudin sequence is the sulfated Tyr64 residue, which plays a 

significant role in interactions with thrombin. Hirudin desulfated at this position 

inhibits thrombin with a 10-fold weaker affinity (Stone and Hofsteenge, 1986). 

 

Figure 1.5. Structures of thrombin with inhibitors from leech. A. Hirudin 
binds thrombin active site with its globular N-terminal domain and exosite-I with 
its acidic C-terminal domain (4HTC) B. Haemadin binds thrombin active site with 
its globular N-terminal domain and shows overall similarity with hirudin, but 
unlike hirudin it binds exosite-II of thrombin with its acidic C-terminal domain 
(1E0F) (For panels A and B, thrombin surface view shown in gray, active site in 
cyan, exosite-I in orange, exosite-II in yellow; and hirudin and haemadin cartoons 
in blue. C. Main chain nitrogen of hirudin N-terminus fits in the active site cleft 
of thrombin forming hydrogen bond with main chain oxygen of Ser214 of 
thrombin. D. N-terminal residues of haemadin forming parallel β-sheet with 
Ser214-Gly216, a characteristic of the non-canonical type inhibitors. Isobutyl 
group of Ile1 occupies the S2 pocket of thrombin.  

A B

THis57

TSer214

HVal1

C D
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1.4.3.5.2. Haemadin 

 The slow, tight binding inhibitor, haemadin from the leech Haemadipsa 

sylvestris binds thrombin with an affinity of 200 fM (Strube et al., 1993). 

Haemadin is a 57 residue polypeptide with a globular N-terminal domain that is 

held compactly together with three disulphides bonds and an acidic C-terminal 

tail. Despite this similarity in the overall organization of hirudin and haemadin, 

haemadin binds to the thrombin active site and to the heparin binding exosite 

(exosite-II) (Richardson et al., 2000). The first three residues of the haemadin N-

terminus bind to active site of thrombin in a non-canonical manner identical to 

hirudin binding. A truncation of the 17 residues of the C-terminus reduces the 

haemadin affinity towards thrombin by 20,000-fold, indicating that these residues 

contribute to the tight binding nature of haemadin (Richardson et al., 2002).  

1.4.3.5.3. Kunitz type inhibitors 

 The Kunitz family of serine protease inhibitors is one of the most 

extensively studied class of thrombin inhibitors reported from ticks, and have 

been reported to be found in both soft and hard ticks (Corral-Rodríguez et al., 

2009). Despite exhibiting a characteristic BPTI-like disulphide bond pattern, 

members of the Kunitz family of serine protease inhibitors display significant 

differences in the amino acid sequences and bind the target serine protease with 

different mechanisms. 

 Ornithodorin comprises of two tandem Kunitz domains and interacts with 

the thrombin active site by inserting its N-terminal residues inside the active site 

cleft in a manner similar to the thrombin-hirudin interactions (van de Locht et al., 
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1996). Although ornithodorin contains two reactive site loops (RSLs) in the two 

Kunitz domains, neither of the two RSLs interacts with the enzyme active site. 

The two Kunitz domains of ornithodorin are oriented in a tail-to-tail manner and 

hence, the two RSLs are directed to point away from the enzyme surface. The first 

six residues of ornithodorin N-terminus are in direct contact with the thrombin 

active site and OSer1, OLeul, OAsn2 and OVal3 run towards TSerl95 and form a 

parallel β-sheet arrangement with T(Ser214-Gly219) of thrombin exhibiting a non-

canonical mode of inhibition. The C-terminal domain of ornithodorin shows 

lesser contacts with thrombin in the form of electrostatic contacts and forms three 

salt bridges that fix it to the exosite-I of thrombin.  

 Similar to ornithodorin, boophilin inhibits thrombin in a non-canonical 

manner (Macedo-Ribeiro et al., 2008). Whereas BPTI, the type-member of Kunitz 

type inhibitor, binds thrombin active site in a canonical manner and causes an 

extensive rearrangement of the active site, the active site remains almost unaltered 

by boophilin binding (Soares et al., 2012). The guanidinum group of BAgr17 

anchors to the S1 pocket of the enzyme and forms two hydrogen bonds with the 

carboxyl group of TAsp189 at the bottom of the S1 pocket. This feature of 

boophilin distinguishes it from ornithodorin, which does not possess an Arg at 

this position. The residues BAsn18, BGly19, BArg22, and BPhe39 are also involved in 

extensive interactions with different subsites of thrombin to facilitate boophilin 

binding (Macedo-Ribeiro et al., 2008). The C-terminal domain of boophilin forms 

ionic interactions with the exosite-I of thrombin. Ornithodorin and boophilin 
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differ greatly in the orientation of the two Kunitz domains with respect to their 

binding on the surface of the enzyme.  

1.4.3.5.4. Kazal type inhibitors 

 Like the Kunitz family of serine protease inhibitors, the members of the 

Kazal family of inhibitors too have been extensively studied as thrombin 

inhibitors (Laskowski and Kato, 1980). Rhodniin, the double Kazal domain 

protein from the assassin bug Rhodnius prolixus inhibits thrombin with a Ki of 0.2 

pM, with its N-terminal domain binding to thrombin’s active site and its C-

terminal domain binding to exosite I (van de Locht et al., 1995). A typical Kazal 

domain contains six cysteines forming three disulfide 

 

Figure 1.6. Structures of thrombin with kunitz and kazal inhibitors. A. 
Ornithodorin contains two kunitz type domains and binds to the active site with 
the N-terminal domain and to the exosite-I with the C-terminal domain (1TOC). 
B. Rhodniin is a double kazal domain inhibitor binding the active site with its N-
terminal domain and exosite-I with the C-terminal domain (1TBQ). (For panels A 
and B, thrombin surface view shown in gray, active site in cyan, exosite-I in 
orange; and ornithodorin and rhodniin cartoons in blue.)  

A B
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bonds, and the usual members of this family are slow, tight-binding competitive 

thrombin inhibitors (Huntington, 2014). And similar to the type member, 

rhodniin, the first domain of these Kazal proteins binds to the active site of 

thrombin canonically while the second domain, together with inter-domain 

linkers, binds to exosite-I. Other examples of Kazal-type thrombin inhibitors from 

other haematophagous animals include dipetalogastin from the blood-sucking 

bug, Dipetalogaster maximus and infestin from the assassin bug, Triatoma 

infestans (Campos et al., 2002; Mende et al., 1999). 

1.4.3.5.5. Lipocalins 

 The members of lipocalin family of proteins which share a low sequence 

similarity possess an eight stranded, anti-parallel β-barrel structures and have a 

hydrophobic ligand binding pocket (Flower et al., 2000). Some members of this 

family have been identified as thrombin inhibitors. Triabin, the lipocalin 

identified from the saliva of the triatomine bug, Triatoma palidipennis inhibits 

thrombin exosite-I in a 1:1 molar ratio and prolongs thrombin clotting time and 

activated partial thromboplastin time. Triabin is the only known thrombin 

inhibitor from a haematophagous animal that does not block the active site. 

Triabin completely blocks fibrinogen cleavage by inhibiting the exosite-I with an 

affinity of 3 pM. Triabin also inhibits thrombin induced platelet aggregation, 

presumably due to the exosite I-dependence of PAR-1 cleavage (Noeske-Jungblut 

et al., 1995).  
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1.4.3.5.6. Variegin 

 The 32-residue long peptide from the salivary gland extracts of 

Amblyomma variegatum was characterized as a fast, tight-binding, competitive 

thrombin inhibitor. Structurally, variegin lacks secondary structures and exists as 

a random coil in solution. Variegin selectively binds thrombin with an affinity of 

10.4 pM (Koh et al., 2007). Variegin binds to thrombin active site as well as the 

fibrinogen binding exosite and blocks the thrombus formation. The N-terminus of 

variegin has been described to be responsible for its fast binding kinetic 

properties. Variegin gets cleaved by thrombin and the cleaved product retains the 

ability to inhibit thrombin in a non-competitive way (Koh et al., 2009). The 

sequence of C-terminus of variegin resembles the sequence of hirulog which is a 

human-designed, bivalent thrombin inhibitor (Warkentin, 2004). It is therefore 

interesting to compare the development of a manmade rational antithrombotic 

drug with that of nature’s strategy of developing an anticoagulant through 

evolution and natural selection. 

Figure 1.7. Structure of thrombin 
with triabin. The lipocalin fold 
containing triabin binds to thrombin 
exosite-I alone and not to active site 
(1AVG). (Thrombin surface view 
shown in gray, active site in cyan, 
exosite-I in orange; and triabin cartoon 
in blue.)  
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Figure 1.8. Structures of thrombin with peptide inhibitors. A. Variegin is a 
cleavable inhibitor and the C-terminal cleaved product remains bound to the 
thrombin active site and exosite-I (3B23). B. Anophelin binds thrombin in a 
unique fashion in which its C-terminus binds to thrombin active site and N-
terminus binds to exosite-I (4E05). (For panels A and B, thrombin surface view 
shown in gray, active site in cyan, exosite-I in orange; and variegin and anophelin 
cartoons in blue.)  

1.4.3.5.7. Anophelin 

 Anophelin, the 61-residue long peptide from the the mosquito is a unique 

thrombin inhibitor with a Ki value of 3.5 pM. Anophelin by itself lacks a 

secondary structure and exists in the form of a random coil in solution. It has an 

inverted hirudin like interactions with its C-terminus binding to the active site of 

thrombin and its N-terminus binding to the exosite-I of thrombin. AAsp50 of 

anophelin has been shown to be the most important residue of anophelin as it 

makes simultaneous hydrogen bonds with both THis57 and TSer195 of the thrombin 

active site. The inhibitory mechnism of the active site of thrombin by anophelin is 

unique because it delocalizes the proton that is shared between His57 and Ser195, 

thus disrupting the catalytic triad. Although the N-terminus of anophelin binds to 

the exosite-I of thrombin, the interactions are sparse (Figueiredo et al., 2012).   

A                                                                      B     
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1.5. Aim and scope of the thesis 

  Cardiovascular disorders are a single largest killer worldwide and account 

for more than 20% of the deaths in Singapore (Ministry of Health, 2012). These 

cardiovascular diseases involve the formation of unwanted clots within the 

bloodstream. Antiplatelets and anticoagulants, which are agents that inhibit 

different components of the haemostatic pathway have been used for the 

prevention and treatment of these unwanted clots. Heparin, coumarin, warfarin, 

DTIs and direct FXa inhibitors are some of the most extensively used options of 

anticoagulant therapy. Despite being the most popular options, these classes are 

fraught with a number of limitations, such as narrow therapeutic window, high 

bleeding risks, poor bioavailability and high food drug interactions. Therefore, to 

overcome these unwanted side effects, superior anticoagulants with greater 

benefits have been sought. Hematophagous animals produce a plethora of 

antihaemostatic compunds in their saliva, which they inject into the host at the site 

of feeding. These antihaemostatic compounds prevent the host haemostatic 

pathway from being triggered and hence facilitate a successful bloodmeal. 

Therefore, the saliva of hematophagous animals presents as a pharmacopeia of 

anticoagulants that can be developed into therapeutics. The aim of this thesis is to 

identify novel anticoagulants from the saliva of hematophagous animals using 

different startegies.  

 Towards this aim, the specific objectives which are within the scope of 

this thesis are outlined below 
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1. Development of a microfluidic chip based online assay coupled to mass 

spectrometry for the identification of novel thrombin and FXa inhibitors 

  Drug discovery from natural sources has been a herculean task due to the 

scarce availability of the starting material. To address this question, we have 

developed an online assay in which a nano-LC is coupled with a mass 

spectrometer and a microfluidic chip. Being operated in the submicrolitre flow 

rates, this system is a platform for the identification of novel thrombin and 

FXa inhibitors from sources which are available in limited quantities. The 

specific aims for this approach were as follows: 

i. To standardize thrombin and FXa assays in microtiter plates 

ii. To standardize thrombin and FXa assays in the online format and 

demonstrate the dose response of inhibition 

iii. To demonstrate the thrombin and FXa online assay coupled with mass 

spectrometry  

iv. To demonstrate the use of online assay for the identification of thrombin and 

FXa inhibitors from snake venom  

2. Quantitative sialome of salivary gland extracts of male and female 

Dermacentor reticulatus at different stages of feeding  

Tick salivary gland extracts have been proven to be a rich source of potent 

pharmacologically active molecules. Blood feeding is known to induce the 

expression of new anticoagulant proteins which aid the ticks to obtain a 

successful bloodmeal. We have exploited this phenomenon and tried to 

identify novel anticoagulants that are produced during different stages of 
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blood feeding. The specific aims that were adopted for this approach were as 

follows: 

i. To generate the sialotranscriptome of male and female D. reticulatus 

ii. To generate a quantitative proteome of salivary gland extracts of male and 

female D. reticulatus at different stages of feeding 

iii. To identify the differences in the salivary composition between the male 

and female D. reticulatus 

iv. To explore the Kunitz type protease inhibitors for the identification of 

novel subclasses 

3.  Structural and functional characterization of avathrin, a novel thrombin 

inhibitor from Amblyomma variegatum 

Our collaborators, Dr. Maria Kazimirova and Dr. Ladislav Roller, identified 

variegin like sequences in the salivary glands of Amblyomma variegatum. 

Out of these sequences, we selected one representative peptide, avathrin, 

chemically synthesized it in our laboratory and tested its ability to inhibit 

thrombin. After successful confirmation of avathrin’s ability to inhibit 

thrombin, we have studied its structure activity relationships and 

demonstrated its in vivo antithrombotic efficacy in a murine model. The 

specific aims for this approach were as follows: 

i. To study the kinetics and mechanism of inhibition of avathrin 

ii. To understand the molecular mechanistic details of avathrin’s interactions 

with thrombin 
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iii. To design variants that allow better understanding of molecular 

interactions 

iv. To demonstrate the in vivo antithrombotic effect of avathrin and establish 

the feasibility of developing it as an anticoagulant therapeutic 

 

4. Novel family of thrombin inhibitors from ixodid ticks 

After the characterization of avathrin, we carried out a detailed analysis of 

the transcriptomes of other tick species and identified similar sequences. We 

have selected few interesting sequences and studied their interactions with 

thrombin. The specific aims for this part of the thesis were as follows:   

i. To identify variegin and avathrin like sequences from the sialomes of 

already studied species of hard ticks 

ii. To demonstrate their abilities to inhibit thrombin 

iii. To study their molecular interactiosn with thrombin 

iv. To describe a pattern which is found in all members of this family 

 

5. Identification of factor Xa inhibitors from the salivary gland extracts 

of Rhipicephalus pulchellus.  

 Since tick salivary gland extracts have proven to be excellent sources of 

anticoagulants, we have attempted to purify FXa inhibitors from the 

salivary gland extracts of female R. pulchellus. The specific aims for this 

part of the project are as follows: 
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i. To test the anti-FXa activity of male and female salivary gland extracts of R. 

pulchellus 

ii. To partially purify the FXa inhibitor using size exclusion chromatography 

iii. To purify the partially purified FXa inhibitor from the size exclusion 

chromatography using affinity chromatography 

iv. To test the homogeneity of the purified FXa inhibitor 
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Microfluidic chip-based online screening 
coupled to mass spectrometry for the 

identification of inhibitors of thrombin and 
factor Xa  
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2.1. Introduction 

 Thrombin and FXa are two key enzymes of the blood coagulation cascade 

and inhibitors targeting these two enzymes have excellent potential as potent 

anticoagulant therapeutics (Chaudhari et al., 2014). In search for novel 

anticoagulants with superior benefits, numerous molecules that inhibit these two 

enzymes have been purified and characterized from natural sources (Koh and 

Kini, 2008). Natural sources like plant or animal extracts are usually complex 

mixtures which are available in limited amounts and are difficult to process. 

 High-resolution screening techniques in which separation methods are 

coupled to bioassays that eliminate traditional, labour-intensive purification and 

screening tasks, and facilitate rapid identification of active compounds from 

complex mixtures are becoming increasingly popular (Shi et al., 2009; 

Wigglesworth et al., 2015). These HRS techniques have also been adapted for the 

identification of enzyme inhibitors, where an LC-based separation of a complex 

mixture is coupled to an absorbance or fluorescence based bioassay (Entzeroth, 

2003). Recent advancements have fuelled the hyphenation of separation 

techniques with mass spectrometry for accurate identification of active molecules 

(Graßmann et al., 2012; Kool et al., 2011). HRS techniques in which analyte 

separation coupled with biochemical detection in parallel with mass spectrometric 

identification, for ligand binding as well as enzyme inhibition have been 

developed in both at-line and on-line formats (Giera et al., 2009; Graßmann et al., 
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2012). Such HRS techniques are being used for the identification of individual 

compounds as lead molecules from complex mixtures like biological extracts or 

combinatorial libraries (Shin and van Breemen, 2001). Scarce availability of 

starting material is a key limitation in this process for many types of biological 

extracts (Valenzuela, 2004). Hence, there is a need for new platforms that can use 

minute amounts of starting material for the identification of highly active lead 

molecules. Although microfluidic systems show lower sensitivities and thus 

higher limits of detection (approximately 4-6 times lower sensitivities) than macro 

scale systems, these sensitivities have been reported to be within the concentration 

range of bioactivity detection, and hence are implemented for screening of 

bioactives from limited sample amounts (Irth, 2007). Therefore, microfluidic 

systems provide detection platforms for identifying bioactives from limited 

sample amounts and consume lesser amounts of bioassay reagents without a 

compromise in assay sensitivity (de Boer et al., 2005). Moreover, when coupled 

to a sensitive nano-spray ESI-MS, these platforms also allow parallel mass 

determination and further peptide analysis from minute amounts of starting 

material which macro scale systems fail to handle.  

 We have described microfluidic high resolution screening (HRS) 

procedures for bioaffinity profiling of the acetylcholine binding protein (AChBP) 

along with accurate mass determination (Heus et al., 2014; Kool et al., 2010; 

Otvos et al., 2013). For this, a nano-HPLC is coupled online to a fluorescence 

enhancement assay in parallel with a mass spectrometer, to detect bioactive 

compounds and identify their masses in a single analysis. We have also developed 
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a microfluidic chip-based method for screening of cathepsin B inhibitors and an 

HRS LC-MS method for detection and identification of small molecule inhibitors 

of p38α mitogen-activated protein kinase (de Boer et al., 2005; Falck et al., 2010). 

Here, we describe a microfluidic post-column method for identifying thrombin 

and FXa inhibitors from a mixture of compounds. Since both enzymes prefer to 

hydrolyze an arginyl bond, we have used the same fluorogenic substrate, R22124 

(Rhodamine 110, bis-(p-Tosyl-L-Glycyl-L-Prolyl-L-Arginine Amide)) for both 

enzymes, to keep the method simple.  
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2.2. Materials and Methods 

2.2.1. Chemicals and Reagents 

 Thrombin and FXa were purchased from BV Bioconnect, Haematologic 

Technologies, Amsterdam, The Netherlands. Substrate R22124, Rhodamine 110, 

bis-(p-Tosyl-L-Glycyl-L-Prolyl-L-Arginine Amide) was obtained from Life 

technologies, Amsterdam, The Netherlands. NaCl, KCl, Na2HPO4·2H2O, 

KH2PO4, argatroban monohydrate, Tween 20 and PEG 6000 were purchased from 

Sigma-Aldrich (Zwijndrecht, The Netherlands). ELISA blocking reagent was 

purchased from Hoffman-La-Roche (Mannheim, Germany). ULC-MS grade 

methanol, ULC-MS grade acetonitrile (ACN) and trifluoroacetic acid (TFA) were 

obtained from Biosolve (Valkenswaard, The Netherlands). HPLC grade water 

was produced using Milli-Q purification system (Amsterdam, The Netherlands). 

Venom of Dendroaspis polylepis was provided by Dr. Ryan McCleary. 

 2.2.2. Thrombin and FXa assays in microtiter plates  

 Enzyme assays were performed in 96-well black microtiter plates (Griener 

Bio-One GmBH, Kremsmünster, Austria) to evaluate parameters such as KM, 

Vmax, and tolerance to additives. Briefly, 50 µL of PBS (pH 7.4) was mixed with 

30 µL of R22124, and 20 µL of enzyme was then added to start the reaction. The 

rate of release of the fluorescent product R110 (excitation, 490 nm; emission, 520 

nm) at room temperature was measured for 10 min with an Infinite 200Pro 

microtiter plate reader (Männedorf, Switzerland). For determination of KM and 

Vmax, two different enzyme concentrations (thrombin: 100 ng/mL and 20 ng/mL; 

FXa: 1000 ng/mL and 250 ng/mL) along with different substrate concentrations 
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(for thrombin assay: 60, 20, 6.6, 2.2, 0.74 and 0.24 µM; and for FXa assay: 50, 

25, 12.5, 6.25, 3.12, 1.56 and 0.78 µM) were used. Initial reaction velocities were 

calculated by calculating the slopes of the first eight points of the reaction 

progression curves. KM and Vmax values were obtained by fitting the data to 

Michaelis-Menten equation using the GraphPad Prizm software. To determine 

tolerance of the assay to different additives, similar enzyme assays (with different 

concentrations of additives such as PEG 6000 (2, 1, 0.5, 0.25, 0.12, 0.62, 0.31 and 

0.15, 0.007 mg/mL), ELISA blocking reagent (10, 5, 2.5, 1.25, 0.62, 0.31, 0.15, 

0.07 and 0.03 mg/mL), Tween 20 (2.5, 1.25, 0.62, 0.31, 0.15, 0.0.08, 0.04, 0.02 

and 0.01%), acetonitrile or methanol (10, 5, 2.5, 1.25, 0.62, 0.31, 0.15, 0.07 and 

0.03%) and TFA (0.1, 0.05, 0.02, 0.01, 0.006, 0.003, 0.001, 0.0008 and 

0.0004%)) were performed. The reaction rates were calculated as described above 

and percentage inhibition at different concentrations of additives was determined 

by comparing the reaction velocities in the presence and absence of additives. The 

parameters obtained from these studies were used for the development and 

optimization of the online assays. 

2.2.3. Instrumentation  

 The instrumental setup for the online assay (Fig. 2..1 A) consisted of a 

nano-LC system, a miniaturized reaction coil in the form of a microfluidic chip, a 

microfluidic LED-based confocal detector and a mass spectrometer. 

2.2.3.1. Nano-LC system  

The Dionex Ultimate 3000 nano-LC system was from Thermo Fisher 

(Breda, The Netherlands).  
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Figure 2.1. Online setup for identification of thrombin and FXa inhibitors. A. 
Instrumental set-up for online assay consists of three parts: a nano-LC, a 
microfluidic chip and a mass spectrometer. With the nano-LC injector (1), 
samples (500 nL- 1µL) were injected into the C18 capillary column (2). The 
eluate from the capillary column was split post-column in a 1:1 ratio using a T-
splitter (3) in such a way that one part was fed into a nanospray ESI-MS (4), and 
the other part was infused into the microfluidic chip (5) in which the assay took 
place. The enzyme (thrombin/FXa) and substrate (R22124) were infused 
continually into the microfluidic chip using syringe pumps (6 & 7). The 
microfluidic chip outlet was channelled into the LIF detector (8), which measured 
the amount of fluorescent product formed. B. The microfluidic chip had three 
inlets connected to (1) nano-LC, (2) Enzyme, (3) substrate, and one outlet, (4) LIF 
detector. The first micro reactor (1.6 µL) acted as an in -flow incubation of 
enzyme with inhibitors eluting from nano-LC. The enzyme substrate reaction took 
place in the second micro reactor (2.4 µL). The amount of fluorescent products 
formed was measured by LIF detector.  
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Flow rate of the nano-LC was maintained at 400 nL min-1. Samples (500 

nL to 1 µL) were injected in the Flow Injection Analysis (FIA) mode or in  the 

gradient analysis mode using nano-LC controlled autosampler. For FIA 

experiments, 100% Milli-Q water was used as the mobile phase. For gradient 

analysis, a capillary column (150 mm X 75 µm i.d.) packed in-house with 

Phenomenex Aqua C18 particles (5 µm, 200 Å pore diameter) was used with 

mobile phase eluent A as water/ACN 99:1 and 0.1% TFA; and eluent B as 

water/ACN 1:99 and 0.1% TFA. The column was first equilibrated for 5 min at 

5% eluent B and then a linear gradient from 5% to 70% B in 60 min was applied. 

Eluate (400 nL min-1) from the column was split via a T-splitter in a 1:1 ratio and 

one half was infused into the microfluidic chip and the other half was fed into a 

mass spectrometer. Two fused silica capillaries of identical length (150 cm) and 

diameter (25 µm i.d.) were used to connect the nano-LC with the mass 

spectrometer and with the microfluidic chip to obtain a 1:1 split ratio. After each 

run, the column was washed with 70% eluent B for 5 min and re-equilibrated with 

5% eluent A for 3 min before the next run. 

2.2.3.2. Microfluidic chip  

The microfluidic chip and 4515 chip holder were from Micronit 

Microfluidics (Enschede, The Netherlands), and microfluidic chip nanoports were 

from Upchurch (Amsterdam, The Netherlands). The microfluidic chip (described 

previously) with dimensions 45 mm × 15 mm × 2.2 mm had an open tubular 

channel that was 125 µm wide × 70 µm deep  (Irth, 2007). This open tubular 

channel had a total volume of 4 µL and was divided into two micro reactors of 
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volumes 1.6 µL and 2.4 µL by incorporating three inlets and one outlet (Fig. 1b). 

The enzyme (thrombin or FXa) was infused through the first inlet via a 2.5 mL 

syringe driven by syringe pumps (Harvard Apparatus, Holliston, USA) at a 

constant flow rate of 2 µL/min. Eluate from C18 column (containing potential 

inhibitors) was infused through the second inlet at a flow rate of 200 nL/min. This 

allowed an in-flow incubation of enzyme with the eluting inhibitor in the first 

micro reactor. Substrate was infused through the third inlet via a 2.5 mL syringe 

driven by a syringe pump at a flow rate of 2 µL/min. In the second micro reactor, 

enzyme hydrolyzes the substrate releasing the fluorophore. The outlet from the 

chip was channelled to a microfluidic confocal fluorescence detector (CFD) to 

measure fluorescence of the product formed. The chip was connected to syringe 

pumps, nano-LC and detector using fused silica capillaries, placed in the chip 

holder, and maintained at 37°C in a water bath.  

2.2.3.4. LED-based microfluidic confocal fluorescence detector (CFD) 

The LED-based microfluidic CFD as described previously consisted of a 

bubble cell capillary of 150 µm i.d. and connecting capillaries of 50 µm i.d. from 

Agilent Technologies (Amsterdam, The Netherlands) (Heus et al., 2010). Briefly, 

in the CFD setup, light emitted from the LED passes through the 465 nm single 

bandpass filter followed by collimation by the lens, and then reflected under a 90° 

angle using dichroic mirror. This filtered light is focused onto the center of the 

florescence optical cell. Emitted light is allowed to pass through the same dichroic 

mirror, the focussing lens and the 520 nm single bandpass filter, and subsequently 

detected by the photomultiplier tube. 
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2.2.4. Mass Spectrometry settings 

The ion trap time-of-flight (IT-TOF) hybrid mass spectrometer from 

Shimadzu (Hertogenbosch, The Netherlands), with Picoview nano-ESI source 

from New Objective (Woburn, MA, USA), was operated in the positive ion mode. 

A 40 mm × 180 mm o.d. × 30 mm i.d. stainless-steel emitter from Thermo 

Scientific (Waltham, MA, USA) served as the spray needle. The temperature of 

the heating block was set to 200°C and interface voltage was set to 1.7 kV which 

resulted in a current of 32 µA. The scan range was m/z 200 to 1000. 

2.2.5. Microfluidic online assay of snake venom 

 For the analysis of snake venom, the nano-LC was connected to MS and 

microfluidic chip (as described in 2.3). After stabilization of the elevated baseline 

fluorescence, 5 µg of Dendroaspis polylepis venom dissolved in 500 nL and 

spiked with 500 ng of argatroban, dissolved in mobile phase eluent A was injected 

into the C18 capillary column. The column was equilibrated with 5% eluent B for 

5 min and the snake venom was separated using an acetonitrile gradient (5% to 

70% eluent B in 60 min). 
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2.3. Results and Discussion 

 Microfluidic chip-based enzymatic assays and receptor binding studies for 

the detection of bioactives from complex mixtures have been used as alternatives 

to traditional screening approaches because of their speed, robustness, 

reproducibility and sensitivity. They are most suitable for screening of novel drug 

leads from minute sample amounts. We have developed fluorescence based online 

screening methods coupled with mass spectrometry in miniaturized formats for 

bioaffinity profiling of AChBP ligands, cathepsin B inhibitors and inhibitors of 

p38α mitogen-activated protein kinase (de Boer et al., 2005; Falck et al., 2010; 

Heus et al., 2014; Kool et al., 2010; Otvos et al., 2013). In this study, we describe 

the development of an analytical platform for profiling of thrombin and FXa 

inhibitors.   

2.3.1. Standardization of enzyme assays in microtiter plates  

 The assay is based on enzymatic cleavage of a fluorogenic substrate- 

R22124 by thrombin or FXa to release a fluorescent product. KM and Vmax values 

for R22124 with thrombin and FXa were determined as described in the methods. 

The KM and Vmax for R22124 with thrombin were 4.05±0.87 µM and 81±4.72 

RFU min-1 ng-1 (thrombin) respectively, and KM and Vmax for R22124 with FXa 

were 4.29±0.55 µM and 10.01±0.38 RFU min-1 ng-1 (FXa) respectively (Fig. 2.2 

A and B). As R22124 is a specific substrate for thrombin, it has 8-times higher 

Vmax values, and thus, a 12-times higher concentration of FXa than thrombin was 

used to obtain a similar high fluorescence signal during the short (online assay) 
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incubation times. For all further assays in microtiter plate format, 20 ng/mL 

thrombin and 250 ng/mL and FXa respectively were used.  

Non-specific adsorption of enzymes and substrates to glass surfaces of the 

microfluidic chip and fused silica capillaries leads to increasing baselines and 

peak broadening (Heus et al., 2010). To block this non-specific adsorption, 

blocking reagents like PEG 6000, Tween 20 and ELISA blocking reagent were 

used in the online assays. 

 

A                                                                        B 

Figure 2.2. Effect of substrate concentrations microtiter assays. (A) 
Thrombin, (B) FXa. The KM for R2214 were determined using 100 ng/mL 
(6.03±0.88 µM) and 20 ng mL-1 (4.05±0.87 µM) for thrombin, and 1000 ng/mL 
(4.87±0.25 µM) and 250 ng/mL for FXa (4.29±0.55 µM).  
 

 As these additives may inhibit the assay or lead to enzyme precipitation 

within the microfluidic chip, their effect on the assay was evaluated using 

microtiter plate assays prior to translation to online format. The enzyme activity 

of thrombin or FXa was not affected in the presence of PEG 6000 (up to 2 
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mg/mL), Tween 20 (up to 0.02%) or ELISA blocking reagent (up to 3 mg/mL) in 

the reaction mixture (data not shown).  

In the online assay setup, organic mobile phase solvents like ACN and 

methanol used for gradient elution in the nano-LC system will be infused into the 

microfluidic chip and if the concentration of these solvents is significantly high, 

they might reduce thrombin and FXa enzymatic activities due to denaturation. 

Therefore, the effect of different concentrations of ACN and methanol (up to 

10%) on activities of thrombin and FXa was evaluated using microtiter plate 

assays. At lower concentrations of these organic solvents (2% to 5%), there were 

slight increases in thrombin and FXa enzymatic activities. Overall, the activities 

of both thrombin and FXa were not significantly affected in the presence of ACN 

or methanol at concentrations that would be used in the online assay. In the online 

assay format, 200 nL min-1 of the nano-LC eluate will be infused with 4 µL min-1 

of reagents of enzyme assay (2 µL min-1 each of enzyme and substrate). Since the 

online assay reagents are prepared in a PBS buffer (pH 7.4), the final 

concentration of organic solvents in the online assay taking place within the 

microfluidic chip will be diluted to a concentration that it will have little or no 

effect on the enzyme activities (organic solvent concentrations will remain well 

below 10% even when the mobile phase gradient of the nano-LC reaches up to 

70% eluent B). The effect of different concentrations of ion pairing agents TFA 

and FA on enzyme activities was also evaluated. At the concentrations that would 

be used in the online assay (up to 0.01%), no inhibition was observed for both ion 
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paring agents. Since TFA is the most commonly used ion pairing agent and gives 

better resolution, TFA was used in the online assay. 

2.3.2. Optimization of online assay parameters by flow-injection analysis 

(FIA) 

2.3.2.1. Microfluidic setup 

 The microfluidic chip has two micro reactors, where the enzyme and 

inhibitor are infused in the first, and substrate is infused in the second. Thus the 

EI complex is formed in the former and the enzymatic cleavage of the substrate to 

release the fluorescent product takes place in the latter. The continuous infusion 

of enzyme and substrate, and thus constant release of fluorescent products in the 

second micro reactor, gives stable elevated baseline fluorescence. The in-flow 

incubation of inhibitors eluting from the nano-LC provides its efficient mixing 

with the assay buffer and enzyme in the first micro reactor. As these inhibitors 

bind to and inhibit the enzyme, the rate of substrate turnover is decreased which is 

observed as a negative peak.  

2.3.2.2. Standardization of enzyme assays in the online format  

 For the online assays, enzymes and substrates were used at concentrations 

lower than those used for the microtiter plate assays. These lower concentrations 

were chosen to avoid the formation of saturating amounts of fluorescent products. 

Initially, different enzyme concentrations (1.5 ng/mL, 4.5 ng/mL and 13.5 ng/mL 

for thrombin, and 10 ng/mL, 25 ng/mL and 50 ng/mL for FXa) were used with a 

constant substrate concentration (3.3 µM of substrate for thrombin assays and 2.5 
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µM for FXa assays).  Decreasing amounts of benzamidine (13.8 µg, 2.76 µg and 

0.55 µg) were injected in triplicate into the system in the FIA mode (Fig. 2 .3 A; 

Fig 2.4 A). For thrombin and FXa, 4.5 ng/mL and 25 ng/mL were chosen as 

optimal concentrations respectively. At lower enzyme concentrations the 

detection limits of inhibitors is decreased, while at higher enzyme concentrations, 

inhibition peaks were observed for blank injections.  

The substrate concentration was optimized by using a constant enzyme 

concentration (thrombin, 4.5 ng/mL; FXa, 25 ng/mL) and different substrate 

concentrations (1.1 µM, 3.3 µM and 9.9 µM for thrombin; 1.25 µM, 2.5 µM, 4.5 

µM for FXa). Decreasing amounts of benzamidine (13.8 µg, 2.76 µg and 0.55 µg) 

were injected in triplicate into the system in the FIA mode. For thrombin, and 

FXa, 3.3 µM and 2.5 µM were chosen as optimal R22124 concentrations, 

respectively (Fig. 2.3 B; Fig. 2.4 B). At lower substrate concentrations, the low 

baseline fluorescence obtained decreased the detection limit, whereas at higher 

substrate concentrations blank injections (without inhibitor) gave false inhibition 

peaks.  

For all further experiments, enzymes were prepared in PBS buffer (PH 7.4) 

containing 0.5 mg/mL PEG 6000 and 0.5 mg/mL ELISA blocking reagent, and 

substrate R22124 was prepared in a buffer containing 0.01% Tween 20. 
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Figure 2.3. Optimization of enzyme and substrate concentration for online 
assays. A. Optimization of thrombin concentration. Three thrombin 
concentrations (1.5ng/mL, 4.5ng/mL and 13.5 ng/mL) were used. After 
stabilization of the elevated fluorescence baseline, triplicate injections of 13.8 µg, 
2.76 µg and 0.55 µg of benzamidine were made. For further experiments, 4.5 
ng/mL was selected as the optimum thrombin concentration. B. Optimization of 
R22124 concentration. Three R22124 concentrations (1.1 µM 3.3 µM and 9.9 
µM) were used. After stabilization of the elevated fluorescence baseline, triplicate 
injections of 13.8 µg, 2.76 µg and 0.55 µg of benzamidine were made. For further 
experiments, 3.3 µM was selected as the optimum R22124 concentration.  
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Figure 2.4. Optimization of the enzyme and substrate concentration for the 
online FXa assays. A. Optimization of FXa concentration. Three concentrations 
(50 ng/mL, 25 ng/mL and 10 ng/mL) of thrombin were used for optimization. 
After stabilization of the elevated fluorescence baseline, triplicate injections of 
13.8 µg, 2.76 µg and 0.55 µg of inhibi tor benzamidine were made. The negative 
peaks indicate the inhibition of thrombin by benzamidine. For further 
experiments, 25 ng/mL was selected as the optimum FXa concentration. B. 
Optimization of R22124 concentration. Three concentrations of R22124 (1.25 
µM, 2.5 µM and 4.5 µM) were used. After the stabilization of the elevated 
fluorescence baseline, triplicate injections of 13.8 µg, 2.76 µg and 0.55 µg of 
benzamidine were made. For further experiments, 2.5 µM was selected as the 
optimum R22124 concentration. 
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2.3.3. Validation of the online assay by flow-injection analysis (FIA)  

 The setup for the online enzymatic assays was validated in the FIA mode. 

The substrate, R22124 was continually infused into the microfluidic chip until a 

stable substrate baseline was obtained (Fig. 2.5 A). When thrombin infusion was 

started, there was a large increase in the fluorescence because of the formation of 

the fluorescent product and this fluorescence stabilized as an elevated baseline 

indicating that product formation had reached a steady state. Subsequently, 13.8 

µg of benzamidine was injected in triplicate through the nano-LC. Each injection 

resulted in a reproducible negative peak (Fig. 2.5 A). To demonstrate that the 

increase in the elevated fluorescence baseline is due to the enzyme-substrate 

reaction, the chip was incubated at different temperatures (at 0°C and at 37°C). 

An increase in the baseline fluorescence was observed when the chip was placed 

from 0°C to 37°C and a sudden dip in fluorescence when the chip was again 

incubated at 0°C. This behaviour shows that the elevated baseline fluorescence is 

due to the enzymatic formation of fluorescent product because the enzyme-

substrate reaction is optimal at 37°C, while low or no product formation occurs at 

0°C (Fig. 2.5 B). The difference in the height of the baseline is also a good 

indication of the total assay window in the online assay. This assay window was 

confirmed by injecting a high concentration of inhibitor (20 µg) that fully 

inhibited enzymatic activity (data not shown).  
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A 

 

B  

 

Figure 2.5. A. Validation of the online assay. Substrate was continually infused 
into the microfluidic chip until a stable baseline was obtained. Thrombin infusion 
led to an increase in fluorescence. After stabilization of the elevated fluorescence 
baseline, triplicate injections of 13.8 µg of benzamidine were made. The negative 
peaks indicated inhibition of thrombin by benzamidine. B. Temperature 
dependence of the enzymatic reaction. The microfluidic chip was incubated at 
different temperatures (0ᵒC and 37ᵒC). The temperature dependence was 
demonstrated by the sudden dip in the fluorescence intensity when the chip is 
incubated at 0ᵒC. 
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In order to demonstrate the robustness of the assay, statistical parameters like 

screening window coefficient (Z'-factor), dynamic range, signal-to-background 

ratio (S/B), signal-to-noise ratio (S/N) and signal window (SW) were calculated 

for the thrombin assay (Table 2.1) and for the FXa assay (Table 2.2) using 

different substrate (R22124) concentrations according to previously described 

methods (Zhang et al., 1999).  

For the thrombin assay, Z'-factors in the range of 0.5-1 were obtained for all 

R22124 concentrations of 3 µM and above, indicating an excellent assay and the 

highest dynamic range (2.9) was obtained for 20 µM R22124. For the FXa assay, 

Z'-factors in the range of 0.5-1 were obtained for all R22124 concentrations of 2.5 

µM R22124 and above, and the highest dynamic range (2.33) was obtained for 

2.5 µM R22124. 

Table 2.1. Calculated statistical parameters for thrombin assay using 

different R22124 concentrations. 

[R22124] 
(µM) 

Z’-factor Dynamic 
range 

S/B S/N SW 

20 0.85 2.90 1.47 71.83 22.72 

10 0.55 2.69 2.12 8.98 14.25 

3 0.55 1.00 1.71 21.23 5.25 

1 -0.02 0.30 1.49 4.88 -0.17 
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Table 2.2. Calculated statistical parameters for FXa assay using different 

substrate (R22124) concentrations. 

[R22124] 
(µM) 

Z’-factor Dynamic 
range 

S/B S/N SW 

4.5 0.84 2.33 1.62 42.36 27.86 

2.5 0.67 0.73 1.32 20.24 11.26 

1.25 0.14 0.13 1.11 7.50 0.90 

 

2.3.4. Dose-response of inhibition in the online assay  

 To demonstrate the dose-dependent inhibition, the online assay was set up 

using optimized thrombin and substrate concentrations, and after stabilization of 

the elevated fluorescence baseline, different amounts of the inhibitor benzamidine 

(13.8 µg, 4.6 µg, 1.53 µg, 0.52 µg, 0.17 µg, 0.05 µg and 0.016 µg) followed by a 

blank were injected in triplicates into the online assay system through the nano-

LC using the FIA mode. After each injection, a negative peak in fluorescence was 

observed (Fig. 2.6 A). The peak heights directly correlated with the 

concentrations of inhibitor. One important note in this regard is that the final 

inhibitor concentration in the assay after injection is diminished due to two 

factors: (i) due to the mixing of nano-LC eluate with reagents of the online assay 

(mixing dilution DM) and (ii) due to chromatographic dilution (DC). Detailed 

descriptions of calculating the final inhibitor concentrations considering these two 

dilutions are given elsewhere (Falck et al., 2010). The peak heights were plotted 

against log final inhibitor concentrations to determine the IC50 values. The IC50 
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for benzamidine was determined to be 1.13±0.02 µM for thrombin and 4.96±0.12 

µM for FXa (Fig. 2.6 B). 

 

 

Figure 2.6. Dose-response of inhibition in the online (A) thrombin assay, (B) 
FXa assay. Decreasing amounts of benzamidine were injected in triplicates. The 
final inhibitor concentration after injection is diminished due to two factors, (1) 
due to the mixing of nano-LC eluate with reagents of online assay and (2) due to 
chromatographic dilution and peak broadening. The final concentration of 
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inhibitor in the online assay was calculated considering these two dilutions as 
described previously. Inset, the plot of peak heights obtained in the online assay 
versus benzamidine concentrations. IC50 for thrombin assay was 1.13±0.02 µM. 
The IC50 for FXa assay was determined to be 4.96±0.12 µM. 

2.3.5. Online thrombin assay coupled with mass spectrometry 

 To demonstrate the online thrombin assay coupled to the MS, the nano-LC 

was connected to the MS and the microfluidic chip such that one half of the eluate 

from the nano-LC was fed into the assay and the other half into the MS. Briefly, 

once the elevated baseline fluorescence was obtained for the enzyme-substrate 

reaction, 1 µM argatroban was injected into the C18 capillary column and eluted 

using an acetonitrile gradient (5% to 70% in 60 min). The eluted argatroban 

(507.24 Da) detected by the MS at 48 min could be correlated as a bioactive 

negative peak in the online assay at 54 min. This delay is due to the additional 

volume that the inhibitor has to flow through the microfluidic chip before it is 

detected in the fluorescence detector. Similarly, when a final concentration of 1 

mM benzamidine was injected into the C18 column, dimer masses (277.11 and 

241.14 Da) detected by the MS at 10 min with a bioactive negative peak at 17 

min. Subsequently, a mixture of benzamidine (1 mM) and argatroban (1 µM) was 

injected into the capillary C18 column and eluted as described above (Fig. 2.7 A). 

From this mixture, benzamidine dimers (277.11 and the 241.14 Da) were detected 

at 10 min in the MS with a negative bioactive peak at 17 min. Argatroban (507.24 

Da) was detected at 48 min in the MS with the negative peak at 54 min in the 

assay. The second bioactive negative peak eluting at 46 min was not observed in 

MS. This bioactive was a low molecular weight impurity from benzamidine and 

in such a case, with the scan range used (m/z 200-1000), the mass of this eluting 
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compound could not be detected. Benzamidine is a low affinity, mechanism based 

inhibitor. This type of inhibition where inactivation of the active site occurs 

slowly, has a clear time dependency on the efficacy of inhibition. Sensitive 

measurement of mechanism based inhibitors in the online assay, which has a very 

short post-column incubation time, is a drawback of this assay format. For 

analyzing benzamidine, a high concentration was injected. With the scan range 

used (m/z 200 to 1000) only the early eluting benzamidine dimers (277.11 and the 

241.14 Da) resulting from ([2M+HCl]+ and [2M+H]+) could be observed at 10 

min in the MS. However additional experiments with a scan range of m/z 100-

1000 showed that monomer benzamidine eluted at 11 min in the UV and in the 

MS. But severe ion suppression from tailing benzamidine at a scan range m/z 100-

1000 masked the compounds eluting at lower concentration to be observed in MS 

and hence scan ranges lower than m/z of 200 were not used. When additional 

experiments with the same mixture using a scan range of m/z 100 to 1000 were 

performed, due to severe ion suppression, only the benzamidine monomer (121.07 

Da) could be observed, but benzamidine dimers (277.11 and 241.14 Da) were 

observed at much lower intensities and argatroban (509.27 Da) could not be 

observed anymore. Measurement with a scan range of m/z 200 to 1000 on the 

contrary, did allow the observation of the early eluting benzamidine dimers 

(277.11 and 241.14 Da). When the two analytical runs were compared, an elution 

time difference of 1 min between the different forms of benzamidine was 

observed with the monomer benzamidine (121.07 Da) observed with m/z 100 to 

1000 scan range eluting one minute later than the benzamidine dimers (277.11 
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and 241.14 Da) observed with m/z 200 to 1000 scan range. UV data can in this 

case help by providing additional information to be used for correlation purposes. 

 

Figure 2.7 A. Online thrombin assay with parallel mass spectrometry after 
nano-LC for analysis of a mixture of benzamidine and argatroban. 
Benzamidine eluting from the nano-LC was detected by the MS as its dimer 
masses (277.11 and 241.14 Da) at 10 min in the MS and 17 min in the assay. The 
scan range used of 200 -1000 did not allow the observation of benzamidine 
(121.07 Da). Argatroban (507.24 Da) detected by the MS at 48 min correlated 
with the bioactive negative at 54 min. The second bioactive negative peak 
observed at 46 min could be a low molecular weight impurity and was not 
observed in the MS.  

2.3.6. Online FXa assay coupled with mass spectrometry 

Similar to the thrombin assay, the online FXa assay coupled to mass 

spectrometer was also demonstrated. The FXa assay was set up in the 

microfluidic chip with the optimized FXa and R22124 concentrations and one 

half of the flow from the nano-LC column was fed into the assay and the other 
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half into the mass spectrometer. After the stabilization of the elevated 

fluorescence baseline, the inhibitors- argatroban (1 µM) or benzamidine (1 mM) 

were injected into the C18 capillary column and were eluted using an acetonitrile 

gradient from 5% to 70% in 60 min.  

B 

 

Figure 2.7. B. Online FXa assay coupled with mass spectrometry using a 
mixture of benzamidine and argatroban. Benzamidine that eluted from the 
nano-LC resulted in a negative peak at 18 min and was detected by the mass 
spectrometer at 10 min with an XIC of 277.1145 at 10 min. Argatroban that eluted 
from the nano-LC resulted in a negative peak at 54 min and was detected by the 
mass spectrometer at 47 min with an XIC of 507.2431.   

Their respective m/z peaks at 10 min and 48 min in the mass spectrometer 

and bioactive negative peaks at 17 min and 54 min in the assay were observed. 
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Further, a mixture of argatroban (1 µM) and benzamidine (1 mM) was injected 

into the nano-LC and was eluted using the same acetonitrile gradient and their 

corresponding peaks in the mass spectrometer and in the online assay were 

observed (Fig. 2.7 B). 

2.3.7. Identification of inhibitors in snake venoms with online assay  

 Previously, we have screened snake venoms for acetylcholine receptors 

antagonists using online methods. To evaluate the suitability of this method to 

identify FXa inhibitors from complex mixtures, we used the venom of the snake 

Dendroaspis polylepis spiked with argatroban. In addition to argatroban (50 min; 

509.25 Da), three inhibitors from the snake venom were detected at 36, 38 and 42 

min with masses of 6798.18 Da (m/z 1134.03; charge +6), 3492.76 Da (m/z 

874.19; charge +4;) and 7208.58 Da (m/z 1202.43; charge +6) corresponding to 

inhibitor peaks in the online assay at 42, 44 and 48 min respectively (Fig. 2.8). 

These proteins can be purified based on their masses, and further characterized for 

structure, function and selectivity. 

In conclusion, we have developed a platform for the identification of 

inhibitors of thrombin and FXa from a mixture of compounds. The robustness of 

the system was evaluated and optimized to deliver reliable data comparable to the 

traditional microtiter plate reader assays. This setup was used to identify FXa 

inhibitors from mixtures like snake venom.  
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Figure 2.8. Identification of FXa inhibitors in Dendroaspis polylepis venom. 
Crude venom spiked with argatroban was injected to nano-LC. Argatroban was 
detected as a bioactive peak at 56 min with a mass of 509.25 Da at 50 min in the 
MS. In addition three other FXa inhibitors from the venom were detected at 42, 
44 and 48 min in the online assay with masses of 6798.18 Da (m/z 1134.03; 
charge +6), 3492.76 Da (m/z 874.19; charge +4) and 7208.58 Da (m/z 1202.43; 
charge +6) at 36, 38 and 42 min respectively in the MS. 

 

  

Time (min) 

Time (min) 



72 
 

CHAPTER 3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantitative sialome of male and female 
Dermacentor reticulatus  

  



73 
 

3.1. Introduction 

 Ticks are a specialized group of obligate haematophagous ectoparasites 

which have evolved for millions of years and acquired potent pharmacologically 

active molecules in their saliva to disarm and counteract the host haemostatic 

system (Bowman et al., 2008). As a result, several novel compounds present in 

tick saliva and their roles as antihaemostatic compounds facilitating tick feeding 

have been studied. Therefore, the knowledge about the molecules present in tick 

saliva and their functions has accrued significantly over the past few years 

(Hovius et al., 2008). Hard ticks (Ixodidae) remain attached to their host for 

several days and throughout the feeding process, they infuse a cocktail of 

pharmacologically active molecules into the host blood. Due to their long term 

feeding patterns, ixodid ticks have also proven to act as excellent vectors 

pathogen transmission (Richter et al., 2013). Like the saliva from other 

hematophagous animals, tick saliva contains a wide range of physiologically 

active molecules that aid in the tick attachment to the host and facilitate blood 

feeding. Pathogens transmitted by ticks also utlilize the components of the tick 

saliva to facilitate their own transmission to other hosts (Francischetti et al., 

2009). Although both male and female ixodid ticks are blood feeders, stark 

differences in the blood feeding patterns of the two sexes have been observed and 

well reported (Bowman and Sauer, 2004; Sauer et al., 1995). For example, the 

female ticks feed on larger volumes of blood, and grow to about 100 times of their 

unfed body weights, whereas the male ticks barely grow to more than 2-times of 

their unfed sizes. During this blood feeding phase, various morphological and 
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physiological changes occur in the salivary glands of the male and female sexes 

and their salivary components reflect these differences in the feeding habits of the 

two sexes. With the salivary glands increasing in mass and protein content by 

more than 25 times, the granular type II and type III acinar cells exhibit 

remarkable morphological changes. The type III acini are transformed into a 

tissue that mainly performs fluid transporting functions. The male-specific type-

IV acinar cells have shown to increase in protein content selectively only if the 

female ticks are present on the host. These type-IV acinar cells are therefore 

hypothesized to produce proteins that transfer the male spermatophore into the 

females which involves copious amounts of saliva production by the males 

(Bowman and Sauer, 2004; Tan et al., 2015). 

 Blood feeding induces more gene expression of already expressed genes 

or expression of new genes that were not expressed earlier in the salivary glands. 

Salivary glands of female ixodid ticks have been shown to increase in mass and 

protein content by more than 25 times that enable the female tick to feed on the 

large volumes of blood (Šimo et al., 2004). The mass and total protein content of 

the ixodid male ticks also changes and new genes are expressed during feeding, 

but the magnitude of these changes are not to the same extent as those seen in the 

female ticks (Oaks et al., 1991). The small amounts of protein obtained from the 

salivary glands of these tiny ticks have largely hampered the identification of 

specific proteins that are up- or down-regulated during this feeding process 

(Bowman et al., 2008; Valenzuela, 2004).  
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Advancements in modern molecular techniques and the introduction of 

highly sensitive instruments has allowed the use small amounts of biological 

starting material for the complete profiling of molecules present in these complex 

mixtures. Transcriptomics and proteomics have become the two most common 

approaches that have facilitated the identification and isolation of a vast repertoire 

of transcripts and proteins from the tick salivary glands (Bowman et al., 2008). A 

quantitative profiling for the identification of specific proteins expressed at 

specific stages of tick feeding has not been done yet. The identification of these 

pharmacologically active molecules can lead to their development as potent 

antithrombotic agents, immune suppressors or as potential vaccine candidates for 

the control tick-borne diseases (Kazimírová and Štibrániová, 2013). 

 Dermacentor reticulatus is the second most important hard tick species in 

Europe after the common tick, Ixodes ricinus (Karbowiak, 2014). Commonly 

known as the ornate dog tick, Dermacentor reticulatus has a widespread 

occurrence across Western Europe, and feeds on the blood of vertebrate hosts like 

dog, cattle, sheep, horse, pig and human. D. reticulatus is the primary vector that 

transmits Babesia canis which is the pathogen for canine babesiosis (Halos et al., 

2014). It is also a vector for tick-borne encephalitis virus, which is the most 

frequent tick borne viral disease in Europe (Wójcik-Fatla et al., 2011). The 

protein content and body weight of the completely engorged female D. reticulatus 

is reported to increase drastically compared to the unfed ticks (Vančová et al., 

2010). Therefore, to identify novel, sex specific and feeding stage specific 

proteins in the male and female salivary gland extracts of D. reticulatus, we have 
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carried out a detailed the quantitative transcriptomic and proteomic profiling of 

the salivary gland extracts of males and females of this tick species. 
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3.2. Materials and Methods 

3.2.1. Salivary gland extracts 

 Salivary gland and salivary gland extracts of adult male and female D. 

reticulatus were obtained from collaborator RNDr. Mirko Slovak from the Slovak 

Academy of Sciences, Slovakia. The ticks were reared under laboratory 

conditions (Slovak et al., 2002) in the Institute of Zoology, SAS, Slovakia. Ticks 

from the fourth breeding generation were used in the experiments (Slovak et al., 

2002). Briefly, the ticks were maintained at 24 °C in desiccators filled with 

concentrated KCl solution, with 85-90% relative humidity and a photoperiod of 

16:8 h (L:D). White New Zealand rabbits were used as hosts for both male and 

female ticks at all stages of feeding. The usage of animals in these experiments 

was approved by the State Veterinary and Food Administration of the Slovak 

Republic (928/10-221 and 1335/12-221). Ticks were fed on rabbits for pre-

determined number of days, after which they were detatched from the rabbits and 

their salivary glands were dissected phosphate buffered saline (PBS, pH 7.2).  

 For the preparation of salivary gland extracts, the glands were 

homogenized in 150 μl of PBS, using a handheld homogenizer in a 

microcentrifuge tube. The homogenized mixture was then centrifuged at 15,000 

rpm, and the supernatant was harvested as the salivary gland extracts. This was 

repeated a second time with the pellet obtained from the centrifuged sample, and 

the pooled with the supernatant from the first extraction. The salivary gland 

extracts were then freeze dried until further use. 
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 For isolating RNA for transcriptomics, the salivary glands were immersed 

in RNAlater (Qiagen, Hilden, Germany) immediately after dissection. Salivary 

glands were kept in 4⁰C for a minimum of 48 h to ensure penetration of RNAlater 

solution into the tissue. Thereafter, they were kept frozen in -30⁰C until further 

processing. 

3.2.2. Transcriptomics  

3.2.2.1. cDNA library construction 

 Salivary glands from male and female ticks fed for the following time 

points were pooled as follows: Unfed, 1, 3 and 7 h, 1, 2, 3, 4, 5, 6, 7 and 8 days 

fed. Six male and six female ticks were used for each time point, except for 1 day 

where 12 ticks were used and separate libraries for male and female tick salivary 

gland extracts were generated. Salivary glands were dissected and the tissues were 

washed three times in the same buffer before being immersed into RNAlater 

(Qiagen) and stored at -30⁰C. mRNA was isolated from the salivary glands using 

a Micro-FastTrack 2.0 mRNA isolation kit (Invitrogen, San Diego, CA) according 

to the manufacturer's protocol and fragmented using a Covaris E210 (Covaris, 

Woburn, MA) sonicator. Library amplification was performed using eight cycles 

to minimize the risk of over-amplification. Unique barcode adapters were applied 

to male and female libraries for their identification separately. Individual libraries 

were quantified using qPCR and pooled in an equimolar ratio before sequencing 

on a HiSeq 2000 (Illumina) with ver. 3 flow cells. Two lanes of the HiSeq 2000 

were used and both libraries were run together in both lanes to avoid lane bias. A 

total of 20,144,555 paired ended sequences from adult females and 25,193,086 
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sequences from adult male ticks (100 nt long) were obtained. Raw reads were 

processed using RTA 1.12.4.2 and CASAVA 1.8.2. 

3.2.2.2. Transcriptome assembly 

 Reads from the Illumina sequencing were assembled with the Abyss 

software (Garber et al., 2011; Simpson et al., 2009) with different k values (every 

even number from 50 to 96). In addition to Abyss, which sometimes tends to miss 

highly expressed contigs (Zhao et al., 2011), the reads were assembled using the 

Trinity assembler (Grabherr et al., 2011). The resulting assemblies were joined by 

iterative BLAST and cap3 assembler (Karim et al., 2011). Coding sequences 

(CDS) were extracted using an in-house automated pipeline, based on similarities 

to known proteins, or by obtaining coding sequences from the larger open reading 

frame (ORF) of the contigs containing a signal peptide. A non-redundant set of 

the coding sequences and their translated protein sequences were mapped to a 

hyperlinked excel spreadsheet. Signal peptide, transmembrane domains, furin 

cleavage sites and mucin-type glycosylation were determined by software 

analysis available from the Center for Biological Sequence Analysis, Denmark 

(Duckert et al., 2004; Nielsen et al., 1999). To map raw reads to the coding 

sequences and determine their sex bias, raw reads from each library were blasted 

to the coding sequences using BLASTN with a word size of 25 and allowing 

recoveries of up to three matches and matches with less than two gaps were used. 

The resulting BLAST file was compiled and the number of reads each CDS 

received from each library was determined, and the number of hits at each base of 

the CDS was counted. This allowed the calculation of the average CDS coverage, 
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maximum coverage, minimum coverage and the reads per kilobase per million 

(RPKM) values. These results were statistically tested by Χ2 test (using the 

number of reads per CDS), and the results were reported as significant if the 'p' 

value was < 0.05. Phylogenetic analyses were done with ClustalX and Mega 

softwares. For quantitative analysis of the transcriptome, only CDS with RPKM 

values > 4 were considered (Garber et al., 2011; Wagner et al., 2012). 

3.2.3. Proteomics 

 Mass spectrometric based quantitation of proteins expressed in the male 

and female salivary glands at different stages of feeding was carried out by using 

the isobaric tag for relative and absolute quantification (iTRAQTM) technique. 

iTRAQTM is a chemical labeling technique that allows multiplexing of protein 

samples and quantification of individually identified proteins from each of the 

multiplexed sample (Wiese et al., 2007). Four time points from both sexes (unfed, 

day 0; early stage of feeding, day 2; late stage of feeding, day 4; and fully fed, day 

5 for males and day 6 for females) were used for this analysis. 

3.2.3.1. Protein quantification 

 Freeze dried salivary gland extracts of male (80 ticks at day 0, 60 at day 2, 

60 at day 4 and 50 at day 5) and female (70 ticks at day 0, 50 at day 2, 50 at day 3 

and 30 at day 6) D. reticulatus at different stages of feeding were reconstituted in 

MilliQ water and filtered with a 0.22 µm Ministart filter (Sartorius Stedium 

Biotect, Goettingen, Germany). Protein quantification was performed by the 

Bradford assay. The diluted Bradford reagent concentrate (Bio-rad Laboratories, 

California, USA) (200 μl) of was mixed with the salivary gland extract protein 
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sample (10 μl) in a 96-well microtitre plate, and incubated at room temperature 

for 10 min. Absorbance was read at 595 nm with a microplate reader (Tecan 

M200, Männedorf, Switzerland). The protein concentration was estimated with a 

standard curve plotted using BSA. For all further proteomics experiments, 

samples were processed as technical replicates. 

3.2.3.2. Tryptic digestion and iTRAQ labeling 

 30 μg (1 mg/ml) of salivary gland extracts from each feeding stage from 

male and female ticks was used as the starting material. All reagents used for 

digestion and labeling (including trypsin) were from 8-plex iTRAQTM labeling kit 

supplied by AB SCIEX. Briefly, each sample was denatured and reduced by 

adding 1 µl denaturant (2% SDS), followed by the addition of 2 µl reducing agent 

(50 mM tris(2-carboxyethyl)phosphine (TCEP)), and incubated at 60 °C for 1 h. 

This was followed by alkylation of the cysteines by the addition of 1 µl cysteine 

blocking reagent (200 mM methyl methane thiosulfonate (MMTS)), and 

incubated at room temperature for 10 min. Trypsin was added to the mixture in a 

ratio of 6 μg trypsin : 30 μg protein and the mixture was incubated at 37⁰C for 16 

h, with light shaking.  

 Complete digestion of the sample was confirmed by running 0.5 μl of pre- 

and post-digested samples on a 12% (w/v) Mini-PROTEAN® TGX™ precast 

polyacrylamide gel (Biorad Laboratories, California, USA). 2X SDS loading dye 

(62.5 mM Tris-HCl pH 6.8, 2% (w/v) SDS, 10% glycerol, 50 mM DTT, 0.01% 

(w/v) bromophenol blue) was mixed with the protein sample in a 1:1 ratio and 

heated at 95 ⁰C for 10 min. After allowing the mixture to cool down to room 
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temperature, samples were loaded into the SDS-PAGE gel. Electrophoresis was 

carried out 160 V in a mini-PROTEAN® cell powered by the PowerPac™ Basic 

Power Supply (Bio-rad Laboratories, California, USA). Following 

electrophoresis, gels were washed briefly in MilliQ water and stained with a 

silver-stain kit (Thermo Fisher Scientific Inc., Massachusetts, USA) according to 

the manufacturer’s protocol. These tryptic digested samples were used for further 

iTRAQ labeling. 

 Three separate iTRAQTM runs for the analysis of male and female tick 

salivary gland extracts were performed (Male+female, female alone, male alone). 

8-plex iTRAQTM labels (113, 114, 115, 116, 117, 118, 119, and 121) were 

prepared freshly by adding 50 μl of isopropanol to each vial of the label. The 

contents of one iTRAQTM reagent label vial were transferred to one tryptic digest 

sample tube. The different stages of feeding and iTRAQTM labels with which they 

were labeled are summarized in Table 3.1. The pH of the solution was tested 

using a pH paper and was adjusted within the range of 7.5-8.5 by addition of the 

dissolution buffer. The organic concentration was maintained at a minimum of 

60% for efficient iTRAQTM labeling. The tubes were incubated for two hours at 

room temperature before the clean-up. 
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Table 3.1. Details of the three different iTRAQTM runs along with the labels 

used.  

iTRAQ label Male+female Female alone Male alone 

113 MD 0 (1) FD 2 (1) MD 0 (1) 

114 MD 5 (1) FD 4 (1) MD 5 (1) 

115 FD 0 (1) FD 0 (1) MD 2 (1) 

116 FD 6 (1) FD 6 (1) MD 4 (1) 

117 MD 0 (2) FD 2 (2) MD 0 (2) 

118 MD 5 (2) FD 4 (2) MD 5 (2) 

119 FD 0 (2) FD 0 (2) MD 2 (2) 

121 FD 6 (2) FD 6 (2) MD 4 (2) 

All experiments were carried out in duplicates and numbers 1 or 2 within the 
parantheses represent duplicate 1 and 2 respectively. (M: salivary gland extracts 
of male ticks; F: salivary gland extracts of female; D followed by the number 
represents the number of days for which the ticks were fed on the host before 
detatching and extraction of the salivary glands.) 

3.2.3.3. Sample clean-up 

 Digested samples were desalted using a C-18 Sep-Pak plus cartridge 

(Waters, Massachusetts, USA). The Sep-Pak cartridge was conditioned with 10 

ml 100% ACN, and then equilibrated with 10 ml 2% ACN. iTRAQTM labeled 

sample mixture was diluted with 2% ACN to more than 10 times the volume 

(approximately 10 ml) and then loaded into the cartridge. A wash step was 

performed with 10 ml 2% ACN and the peptides were eluted with 10 ml 80% 

ACN. Sample was freeze dried prior to mass spectrometric analysis.  
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3.2.3.4. Mass spectrometry 

 The dried sample mixture was reconstituted with 30 μl of 5% ACN and 

0.05% formic acid (FA) for LC MS/MS analysis. For each sample, 3 μg was 

injected into a microbore reverse phase column (75 μm × 150 mm, ReproSil-Pur 

C18-AQ, 3 μm, 120 Å (Eksigent, California, USA)) and eluted using mobile 

phase A as 2% ACN, 0.1% FA and mobile phase B as 98% ACN, 0.1% FA. The 

gradient (in terms of mobile phase B percentage) for the LC was as follows: 5% 

for 1 min, 5-12% for 2 min, 12-30% for 120 min, 30-90% for 1 min and held at 

90% for 11 min, with a flow rate of 300 nl/min. MS analysis was performed with 

the TripleTOF™ 5600 system (AB SCIEX). 

 Data acquisition was performed with a mass range set at m/z 400-1250 and 

an accumulation time of 250 ms per spectrum. 20 precursor ions were subjected to 

MS/MS analysis, with dynamic exclusion enabled for a duration of 15 s. Proteins 

from the three iTRAQTM runs were identified and the labels were quantified using 

the ProteinPilot™ Software v.4.5 (AB SCIEX) using the Paragon™ Algorithm 

(Hultin-Rosenberg et al., 2013). ID focus was set to biological modification, with 

cysteine alkylation by iodoacetamide, digestion by trypsin, and search effort set to 

thorough. The database used for the search was the set of proteins derived from 

the transcriptome of D. reticulatus, containing 37,036 protein sequences. The 

false discovery rate (FDR) analysis was performed with the Proteomics System 

Performance Evaluation Pipeline (PSPEP) feature in the ProteinPilot™ software 

using a decoy database search strategy in which the protein database sequences 

were reversed and searched against. The reported FDR for both male and female 
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proteomes at different stages of feeding with less than 1% based on the global 

FDR fit. Only proteins with at least two peptides with >95% confidence were 

taken for further analysis. For iTRAQTM quantification analysis the total intensity 

of spectra for each label from each run was calculated and a manual normalization 

was carried out to ensure equal loading. The integration of spectra from one label 

was considered as the reference label and the total intensity of spectra from other 

labels were divided by the total intensity of the reference label.  
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3.3. Results  

3.3.1. Transcriptome of Dermacentor reticulatus 

 In an attempt to identify novel proteins, the transcriptomes of male and 

female salivary gland extracts were generated. The transcriptomes of male and 

female salivary gland extracts represented the entire repertoire of proteins 

expressed at different stages of feeding in the two sexes in the highly specialized 

salivary glands of D. reticulatus. A statistical analysis of the assembled and 

annotated transcriptome data also helped us to compare the levels of expression of 

different proteins in the two sexes of this tick. 

 A total of 49,177 coding sequences (CDS) were extracted from the 

combined assembly of 35,982,329 and 40,274,259 paired-end sequences (100 nt 

long) from male and female samples, respectively, out of which 26 CDS resulting 

from a total of 30,766,591 had matches to the rRNA database. These reads were 

separated from the main transcripts to avoid rRNA induced bias in the fold 

change and RPKM calculation. The remaining 49,152 were sorted based on their 

RPKM values and the 37,036 CDS that had RPKM values >4 and were used for 

quantitative analysis. The CDS were classified into four main classes:  

housekeeping proteins (H), secreted and putative secreted proteins (S), 

transposable elements (TE), and proteins with unknown function (U) (Fig. 3.1 and 

Table 3.2.). 

 In summary, a total of 6,145 (27.94% reads) CDS were classified into the 

housekeeping (H) class; 10,328 CDS (31.3%) to the secretory (S) class and, 4,688 
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(15.80% reads) CDS including fragments, belonged to the transposon (TE) class 

and a total of 15,875 CDS (24.94% reads) were classified as unknowns (U) class 

CDS with unknown functions and these CDS were not analyzed further. All CDS, 

their similarity hits to different databases used for classification are presented as a 

spreadsheet in the supplementary files DVD, with the file named "DR 

transcriptome".  

Table 3.2. Functional classification of coding sequences from the 

transcriptome of D. reticulatus 

Class Number of CDS Number of reads Percentage of 

total reads (%) 

Housekeeping 6,145 12,667,655 27.94 

Secreted 10,328 14,194,752 31.30 

Unknown 15,875 11,308,847 24.94 

Transposon 4,688 7,166,387 15.80 
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Figure 3.1. Components of the sialotranscriptome of D. reticulatus. The 
sialotranscriptome was classified into four main classes - housekeeping (H), 
secreted (S), transposable (T) and unknown (U). Major families of secreted 
products are listed in the box.  

For each CDS, the numbers of reads derived from the male and female libraries, 

along with a chi-squared test, and RPKM values for the significance of the fold 

differences in expression in their read counts are tabulated. 

3.3.1.1 Housekeeping proteins 

 A total of 6,145 CDS were classified into the H class and were further 

subclassified into 23 families based on their function. Among the 23 subclasses, 

proteins associated with signal transduction, nuclear regulation, transporters and 

channels, transcription and translation were proteins which were most highly 

expressed. Since the salivary gland is a specialized organ associated mainly with 

glandular functions, polypeptide secretion and osmotic regulation, proteins with 

transcription, translation and transport functions are expected to be expressed in 

high numbers (Alarcon-Chaidez et al., 2007; Karim et al., 2011; Nene et al., 

2002). The high quality and number of reads generated by a deep sequencing 

technique allowed the detection and annotation of transcripts not usually detected 

by usual sequencing techniques. These included proteins belonging to minor 

subclasses like extracellular matrix, nuclear transport, storage and several others.  
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Table 3.3. Functional classification of extracted CDS of housekeeping 

proteins from the D. reticulatus sialotranscriptome 

Class CDS Associated 

Reads 

% Total 

reads 

Transcription machinery 372 406100 0.895724 

Transcription factors 207 207881 0.458517 

Storage 13 22361 0.049321 

Soluble carrier protein  43 45132 0.099546 

Translational machinery 351 1837438 4.052787 

Oxidant metabolism/detoxification 102 102586 0.226271 

Protein export 327 575762 1.269943 

Protein folding/ chaperone 88 217984 0.480801 

Transporters and channels 426 564620 1.245367 

Proteasomal machinery 259 408963 0.902039 

Signal transduction 961 1071215 2.36275 

Extracellular matrix 185 2881704 6.356096 

Lipid metabolism 359 439659 0.969744 

Energy metabolism 176 448035 0.988219 

Intermediary metabolism 34 22377 0.049356 

Cytoskeletal elements 346 588616 1.298294 

Nuclear regulation 801 1162468 2.564024 

Immune related 94 246061 0.54273 

Protein modifying 301 407648 0.899138 

Amino acid metabolism 103 179062 0.394952 

Nuclear transport 42 58453 0.128928 

Carbohydrate metabolism 253 459226 1.012902 

Nucleotide metabolism 302 314304 0.693252 
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 The transcription machinery proteins mainly constituted of RNA 

polymerases, transcription initiation and elongation factors, zinc finger proteins 

and while most of these were expressed in similar numbers in the male and female 

salivary glands, certain transcripts were expressed with very high RPKM values 

(>20) denoting that these functions were carried out mainly by these proteins, and 

for certain transcripts, the proteins were exclusive to males of females. This 

indicated that although the overall number of CDS were approximately equal in 

male and female transcriptomes, certain transcripts were expressed in a sex-

specific manner (transcripts SigP-620365 and SigP-602832 had high male RPKM 

values of 199 and 219 respectively which were more than 2 times higher than the 

RPKM values for the female transcripts, whereas transcripts DrIxod-559348 and 

DrIxod-220182 had female RPKM values of 25 and 48 respectively which were 

almost 3 times higher than the RPKM values for the corresponding male 

transcripts). Similar observations were made for specific transcripts from other 

classes such as those with translation and export functions, where a sex-specific 

expression of particular transcripts was noted. 

 Transcripts encoding for proteins associated with carbohydrate 

metabolism, lipid metabolism, nucleotide metabolism, protein modification and 

cytoskeletal elements were the next most abundant subclasses of transcripts 

within the H class. The lipase precursor transcripts (DrIxod-562420 and SigP-

606455) with male RPKM values >200 were overexpressed in males (>150 times) 

compared to the female transcripts. The glycolate oxidase (SigP-589640) was 

overexpressed in females (>100 times). This overexpression of proteins involved 
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in carbohydrate synthesis was observed in females which corroborated with the 

increased gluconeogenesis functions of the female salivary glands owing to the 

increased volumes of blood ingested by the females. The protein modifying 

fucosyltransferases were observed to be overexpressed in males (>15 fold) 

compared to females. This could be attributed to the higher amounts of 

glycoproteins and lubricating proteins produced in the male saliva which assist 

them in sexual reproduction (Feldman-Muhsam et al., 1970). These examples 

hence suggested that in addition to their direct roles in housekeeping functions, 

these proteins could be also be associated with the functions of the salivary glands 

and play sex-specific roles. 

 The other subclasses of protein families which were detected in low 

numbers, such as those associated with oxidant metabolism and detoxification 

may also be associated with direct salivary gland functions and assist the tick in 

feeding and osmoregulation. Enzymes and detoxification proteins such as 

glutathione-s-peroxidases, sulfotransferases, dehydrogenases and cytochrome-

P450 which were members of these classes could detoxify host oxidants and 

participate in prostaglandin synthesis which are important functions associated 

with tick saliva (Szabó et al., 2007). Of special interest were storage proteins, 

such as vitellogenins and transferrins, which were specifically overexpressed in 

females (>3 times overexpression in the total number of reads). These storage 

proteins are directly associated with female salivary functions such as salivary 

gland degeneration and ovarian development (Friesen and Kaufman, 2009). The 

extracellular matrix proteins like cell wall mannoproteins and collagen binding 
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proteins (>200 times overexpressed in males) were characteristic of the male 

salivary transcriptome. These proteins and glycoproteins play important roles in 

male tick, feeding, immunity and sexual reproduction (Donohue et al., 2008).  

3.3.1.2. Secreted proteins 

 The 10,329 reads which were classified as secreted proteins were further 

classified into 63 subclasses based on their function (Karim et al., 2011; Ribeiro 

and Francischetti, 2003; Ribeiro et al., 2011; Tan et al., 2015). These 63 families 

could be further subdivided into ubiquitous and tick specific proteins.  

 The ubiquitous families of proteins constituted of proteins which similar to 

proteins that were found in the salivary transcriptomes of other ticks. These 

families included enzymes such as metalloproteases, dipeptidyl peptidases, 

ADAMs (or ADAMTs), M13 peptidases, lipases, serine carboxypeptidases, zinc 

carboxypeptidases, serine proteases, apyrases and ribonucleases. The non-

enzymatic proteins included in ubiquitous families of proteins were the proteinase 

inhibitor families like serine protease inhibitors, cystatins, madanins, kunitz, kazal 

and trypsin inhibitor like (TIL) domains. In addition, the immunomodulatory 

proteins like lipocalins, lysozymes, defensins, ixoderins and other similar proteins 

which were also a part of the ubiquitous family of proteins were found in the D. 

reticulatus transcriptome similar to the salivary trancriptomes of other ixodid 

ticks.   

 Tick specific protein families included those with highly specialized 

functions associated with the tick salivary glands and tick feeding. These families 
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included glycine-rich superfamily proteins (cement protein), mucins (lubrication 

and sexual reproduction), evasins (bind and neutralize host cytokines), DA-p36 

(immunosuppressor), japanins (dendritic cell modulators), ixodegrins (potential 

antiplatelet agents) and tick-specific protease inhibitors such as carboxypeptidase 

inhibitors (Hajnická et al., 2001; Vančová et al., 2010; Wang and Nuttall, 1995). 

Some of these protein families are discussed in detail further. 

Table 3.4. Functional classification of extracted CDS of housekeeping 

proteins from the D. reticulatus sialotranscriptome 

Class CDS Associated 

Reads 

% secreted 

Metalloprotease 103 174024 1.225974 

ADAMs 6 3269 0.02303 

M13  42 68779 0.484538 

Dipeptidyl peptidase 9 10063 0.070892 

Lipocalin 366 1311467 9.239098 

Putative basic tail 1 156 0.001099 

18.3 kDa protein 8 32195 0.226809 

Carboxypeptidase inhibitor 15 15415 0.108596 

Serpins 6 3183 0.022424 

Putative metastriate 2 2452 0.017274 

8.9 kDa protein 131 231426 1.630363 

28 kDa protein 10 2330 0.016415 

IgG binding protein 8 363536 2.561059 

23 kDa protein 6 12115 0.085348 

Serine protease 15 17884 0.12599 

Male specific salivary serine 

protease 

1 938 0.006608 
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Serine carboxypeptidase 34 60835 0.428574 

Zinc carboxypeptidase 5 6403 0.045108 

Catalytically inactive chitinase 

like lectins 

2 695 0.004896 

Apyrase/ ribonuclease 7 4283 0.030173 

Antigen 5 family/CAP family 7 41654 0.293446 

Vasodilators 2 474 0.003339 

alpha macroglobulin 4 4984 0.035112 

Cystatins 7 14332 0.100967 

Tick til 51 127974 0.901559 

Putative metastriate one of 

each 

1 46 0.000324 

Defensins 24 57826 0.407376 

Lysozyme 3 1292 0.009102 

Peptidoglycan recognition 

protein 

3 1408 0.009919 

Salivary lipase 2 1450 0.010215 

Galectin 3 4858 0.034224 

Ixoderin/ficolin 5 14237 0.100298 

Ixostatin 2 8840 0.062277 

Thyropin 1 395 0.002783 

Putative 8 kDa  2 995 0.00701 

TGF beta induced 1 9526 0.067109 

Ixodegrins 6 8452 0.059543 

Dap36 31 63477 0.447186 

Evasin 21 18792 0.132387 

Kunitz 167 363038 2.557551 

Kazal 5 663 0.004671 

Similar to 

chymotrypsin/elastase inhibitor 

19 70855 0.499163 

Serine protease inhibitors 20 7220 0.050864 
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Glycine rich superfamily 124 4243216 29.89285 

Mucins 68 119697 0.843248 

Madanin 2 1774 0.012498 

Microplusin 5 9599 0.067624 

Insulin like growth factor 

binding proteins 

5 1039 0.00732 

22.5 secreted histamine 

binding protein 

1 3645 0.025679 

Fed tick salivary protein 1 260 0.001832 

Salivary gland expressed bhlh 1 557 0.003924 

Ribonuclease 1 490 0.003452 

Salivary selenoprotein 

precursor 

1 2052 0.014456 

Phospholipase A2 2 1871 0.013181 

Der and secreted protein 10 11732 0.08265 

Hypothetical acid tail secreted 

protein 

4 52443 0.369453 

Conserved secreted  105 393667 2.773328 

Japanin 8 3621 0.025509 

Secreted peptide precursor 479 1228358 8.653607 

Hypothetical conserved 

secreted 

37 156236 1.10066 

Hypothetical secreted 8301 4808961 33.87844 

Other secreted proteins that 

could not be classified 

10 11298 0.079593 

 

3.3.1.2.1. Enzymes 

 A total of 229 CDS were classified as enzymes in the S class. 103 

transcripts out of these were metalloproteases and more than half of these 103 
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metalloproteases were identified to be similar to the Reprolysin_2 PFAM domain. 

This family of metalloproteases found in snake venoms and salivary 

transcriptomes from other ixodid ticks are a highly specialized group of enzymes 

(4 of which contained a thrombospondin like motif, hence called ADAMTs) and 

are involved in tissue remodelling, processing of procollagen and von Willebrand 

factors, imflammation, angiogenesis and cell migration (Apte, 2004). Distinct 

sex-specific expression of certain transcripts (Transcripts SigP-585676 and SigP-

560950 were overexpressed in females while DrIxod-590135 was overexpressed 

in males). 

 M13 domain/neprilysin proteases, are transmembrane 

metalloendopeptidases and are zinc dependent enzymes involved in the 

inactivation of peptide hormones. In tick saliva, these metalloproteases could 

function by degrating inflammatory peptide mediators like cytokines, bradykinin 

or anaphylatoxins from the hosts. A total of 42 CDS were associated with these 

metalloproteases, and one transcript (SigP-620954) was >13 times over expressed 

in the male transcriptome compared to the females.  

 Apyrases are enzymes which hydrolyze ATP and ADP to AMP and hence 

suppress inflammation and platelet aggregation. Apyrases derived from the saliva 

of hard tick such as I. scapularis and the soft ticks O. moubata and O. savignyi 

have been previously shown to inhibit ADP and collagen induced platelet 

aggregation (Mans et al., 1998; Ribeiro et al., 1991). Apyrases usually possess a 

signature signal peptide which causes the protein to be transported to the 

extracellular environment, and a carboxy terminus in which a 
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phosphoglycoinositol (GPI) anchor fixes the protein to the extracellular side of 

the cell membrane (Ogata et al., 1990). Apyrases from mosquitoes and ticks 

belong to the 5′ nucleotidase family and lack the carboxyterminal membrane 

spanning domain that links them to a phosphoglycoinositol membrane anchor. In 

addition to antihemostatic functions, apyrases from the mosquito Anopheles 

gambiae have also shown to be involved in the pathogen transmission of several 

pathogens (Reno and Novak, 2005). Seven transcripts encoding for apyrases were 

found in the D. reticulatus transcriptome and all these 7 transcripts were over-

expressed in the males indicating the sex bias. 

 Several serine proteases from the sialomes of other ixodid ticks like A. 

maculatum R. pulchellus, A. variegatum have been reported, but their detailed 

structure activity relationships are not yet known (Karim et al., 2011; Nene et al., 

2002; Tan et al., 2015). In the tabanids (horsefly), serine proteases have shown to 

possess fibrinolytic activities (Xu et al., 2008). Although only 15 transcripts 

corresponding to serine proteases were identified in the D. reticulatus 

transcriptome, the sex-specific expression of transcripts is well pronounced in 

these 15 transcripts. The overall number of reads for male transcripts was about 5 

times more as compared to the female transcripts, and two transcripts in 

particular, DrIxod-592189 and DrIxod-587803 were 80 and 161 times 

respectively overexpressed in males compared to the females. This difference in 

the amounts of serine proteases expressed the male and female salivary glands has 

also been observed for other animals, like Drosophila, in which they are a part of 

the male specific seminal fluid and these serine proteases are activated during 
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mating (LaFlamme et al., 2012). The transfer of these male specific serine 

proteases to females during mating brings about important changes in the mated 

females like egg production and reduced receptivity to remating (Avila et al., 

2011). Serine proteases have also been shown to be present in the seminal fluid of 

other organisms such as human and C. elegans where they are known to affect 

male fertility (Smith and Stanfield, 2012; Veveris-Lowe et al., 2007). Therefore 

these male specific serine proteases in ticks could also be hypothesized to play 

significant roles in sexual reproduction.  

 Serine carboxypeptidases are a family of enzymes within the S class 

which are distinctly overexpressed in males than in females (>5 times) in the D. 

reticulatus transcriptome. A similar sex-specific pattern of expression of serine 

carboxypeptidases has also been noted in the salivary gland transcriptomes of 

other hard ticks. Despite this known sex-specific expression pattern, the role of 

this family of enzymes in tick feeding or tick reproduction is not yet known. 

 Carboxypeptidases were identified in both males and females of the D. 

reticulatus transcriptome and these carboxypeptidases could function in immune 

suppression of the host as observed in the saliva of I. dammini (Ribeiro et al., 

1990b).  

3.3.1.2.2. Proteinase inhibitor domains 

 To counter the host blood coagulation proteases, ixodid ticks produce 

enormous amounts of protease inhibitors in their saliva. Some of the proteins 

families with protease inhibitor domains that were abundantly expressed in the 
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saliva of D. reticulatus were kunitz, kazal, serpins, cystatins, thyropins and 

trypsin inhibitor like (TIL) proteins.  

3.3.1.2.2.1. Kunitz type serine protease inhibitors  

 The Kunitz domains are small (50-60 residues), disulfide-bonded 

molecules found in a variety of species. The typical kunitz domain is restrained by 

three disulfide bonds, but certain proteins containing unique pattern of disulfide 

bonds in the Kunitz domain have also been studied (Krowarsch et al., 2003). 

Endogenous serine protease inhibitors (e.g. TFPI) which possess the Kunitz 

domain target a large number of blood coagulation enzymes for efficient control 

of haemostasis (Wesselschmidt et al., 1993). Kunitz domain of protease inhibitors 

have shown to be evolved in large numbers in the saliva of haematophagous 

animals (Corral-Rodríguez et al., 2009). Whereas most proteins with the Kunitz 

domains inhibit serine proteases, some proteins have also been identified with 

functions that block ion channels (Schwarz et al., 2014). Proteins containing 

multiple Kunitz domains have also been characterized and have been named as 

monolaris, bilaris, trilaris and so on corresponding to the number of Kunitz 

domains. The single Kunitz domain containing ornithorodin and tick 

anticoagulant peptide are well studied examples of high affinity thrombin and 

FXa inhibitors respectively (Lim-Wilby et al., 1995; van de Locht et al., 1996) 

from the soft tick genera Ornithodorus. The two Kunitz domain containing 

protease inhibitor family is typified by ixolaris from I. scapularis which typically 

inhibits the extrinsic tenase complex (Francischetti et al., 2002).  
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 A total of 167 CDS corresponding to Kunitz domain containing proteins 

were identified in the D. reticulatus transcriptome. These transcripts were further 

classified and grouped into monolaris, bilaris and trilaris subclasses based on the 

number of cysteines and the observed pattern of disulphide bonds. Several other 

transcripts that could not be classified into one of these subclasses were grouped 

separately and analyzed. Among these sequences, several transcripts contained 

multiple Kunitz domains and their sequence lengths were more than 500 residues 

indicating they might possess over 10 tandem Kunitz domains. A sex specific 

expression pattern in a majority of these Kunitz domain containing proteins was 

observed. Some of these observations are discussed below. 

Monolaris 

 The monolaris (one Kunitz domain) group of proteins was studied in 

detail. A total of 62 CDS were classified as monolaris proteins. In a typical Kunitz 

domain, the protein structure is held by three conserved disulphide bonds: C1-C6, 

C2-C4 and C3-C5. Interestingly, none of the monolaris identified in the D. 

reticulatus transcriptome contained this typical disulphide pattern of the usual 

Kunitz domain. Twenty two CDS in the monolaris subclass contained 2 cysteines 

in addition to the typical 6 cysteines (Fig 3.2 A and B). Since the two extra 

cysteines in this group of monolaris may form an extra disulphide bond at the N-

terminus of the molecule, this monolaris family of proteins may have a fold 

different than the other studied monolarises and it could target a unique serine 

protease with a novel mechanism. Three CDS were >10 times overexpressed in 

the male ticks while 8 CDS were > 10 times overexpressed in the female ticks. 
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Four of these CDS were almost exclusive to the females with their expression 

levels >1000 times greater in the females compared to the males. This observation 

supports the hypothesis that different sets of unique inhibitors may be expressed 

in the males and females. (There is a chance that the N-terminal cysteines might 

form a disulphide. In addition to the extra cysteines, these transcripts also contain 

a long (7 residues insertion) between C2 and C3 of the typical Kunitz. this longer 

sequence might position the second disulphide in a different way allowing the 

formation of an extra disulphide at the N-terminus.)  

Bilaris 

 Bilarises are proteins which contain two Kunitz domains in tandem. In the 

D. reticulatus transcriptome, 54 CDS were classified as the bilaris subclass of 

proteins. Eight out of these CDS contained 10 cysteines in a specific pattern and 

were overexpressed in females. A group of 12 CDS which contained 14 cysteines 

were overexpressed (5-20 times) in the male ticks (Fig. 3.3.). 
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Figure 3.2. Comparison of disulphide bonding pattern of typical Kunitz 
domain with novel monolaris subclass found in D. reticulatus 
sialotranscriptome. A. 6 cysteines of the typical Kunitz domain form 3 
disulphide bonds (C1-C6, C2-C4, C3-C5). B. 8 cysteines of the novel monolaris 
subclass form 4 disulphide bonds (C1-C3, C2-C8, C4-C6, C5-C7). 

 

 

 

Figure 3.3. Disulphide bonding pattern of novel bilaris subclass found in D. 
reticulatus sialotranscriptome. 6 cysteines of the first typical Kunitz domain 
form 3 disulphide bonds (C1-C6, C2-C4, C3-C5). 4 cysteines of the second 
domain for 2 disulphide bonds (C1-C4, C2-C3). 
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Trilaris 

Proteins containing 18 to 22 cysteines were classified as trilaris proteins. 

A total of 19 CDS were classified as trilaris proteins. Five CDS which had 18 

cysteines with three typical Kunitz domains were separately grouped as they were 

slightly overexpressed in the males. 

3.3.1.2.2.2. Kazal 

  The two kazal domain containing rhodniin from the assassin bug Rhodnius 

prolixus is a well studied example of a kazal inhibitor from the saliva of a 

haematophagous animal (van de Locht et al., 1995). A total of 5 transcripts 

encoding for proteins containing kazal domain were detected in the transcriptome 

of D. reticulatus. these transcripts did not show significant sequence identity with 

rhodniin. Four transcripts of these contained 2, 3, 6 or 8 cysteines, while one 

transcript contained 20 cysteines indicating the possibility of more than one 

tandem kazal domains 

3.3.1.2.2.3. Serpins 

 The serpin (for Serine Protease Inhibitor) class of proteins are a common 

class of protein inhibitor family found in many species (Ixodes scapularis and 

Rhipicephalus microplus) and are physiological inhibitors of blood coagulation 

enzymes that control haemostasis. Serpins from saliva of other haematophagous 

arthropods such as R. microplus and I. ricinus inhibiting trypsin and other 

coagulation cascade enzymes have been previously reported (Chmelar et al., 

2011; Rodriguez-Valle et al., 2012). In our studies, 26 transcripts encoding for 
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serpins from the salivary gland extracts of D. reticulatus were identified. A clear 

sex bias in the expression pattern of serpins was observed where female reads 

were about two times more abundant than male reads. Five out of the 26 

transcripts were >10 times overexpressed in the females compared to males. 

3.3.1.2.2.4. Cystatins 

 Cystatins are cysteine protease inhibitors, inhibit peptidases belonging to 

the legumain and papain family (Yadav et al., 2013). Salivary cystatins 

(sialostatin L and sialostatin L2) from I. scapularis have shown to inhibit 

cathepsin L and cathepsin S and have shown to have anti-inflammatory and 

immunosuppresive functions (Kotsyfakis et al., 2007). Seven transcripts encoding 

for cystatins were identified from the transcriptome of D. reticulatus. The 

cystatins were clearly >3 times overexpressed in males as compared to the 

females. This could be correlated to the known observations that cystatins play an 

important role in sexual reproduction in the male ticks, as high levels of cystatins 

have also been found in seminal fluids of other organisms (Yadav et al., 2013).  

3.3.1.2.2.5. TIL domain containing proteins 

 The trypsin inhibitor-like (TIL) domain containing proteins are protease 

inhibitors found in different organisms. TIL containing proteins found in ixodid 

ticks have found to possess anti-trypsin and anti-elastase like activities (Fogaça et 

al., 2006). In the D. reticulatus transcriptome, 51 TIL domain containing proteins 

were identified, and the expression patterns of several of these were sex biased, 

and one transcript in particular (DrIxod-625451) was 11 times overexpressed in 

males.   



105 
 

A 

 

B 

 

Figure 3.4. Transcripts selectively overexpressed in A. female and B. male 
sialotranscriptome of D. reticulatus. 8.9 kDa protein, Kunitz type inhibitors, 
ixostatins, variegin family proteins, acid tail proteins and DA-p36 were the 
proteins that were mainly overexpressed in the female salivary gland extracts. 
Tick til, IgG binding proteins, 18.3 kda, Ag5, SCPs and defensins were the 
families that were overexpressed in male salivary gland extracts.  

0

5

10

15

20

25

8.9 kDa protein Kunitz

N
um

be
r o

f r
ea

ds
(x 10,000)

0

10

20

30

40

50

60

Ixostatin Variegin 
family

Acid tail 
protein

Dap36

N
um

be
r o

f r
ea

ds

(x 1,000)
Male reads Female reads

Transcripts overexpressed in females

0

10

20

30

40

Tick til IgG binding protein

N
um

be
r o

f r
ea

ds

(x 10,000)

0

1

2

3

4

5

6

18.3 kDa Ag 5 family SCPs Defensins

N
um

be
r o

f r
ea

ds
(x 10,000)

Male reads Female reads

Transcripts overexpressed in males



106 
 

3.3.1.2.3. Immunity associated proteins 

  Lysozymes, peptidoglycan recognition proteins, galectins, ficolins and 

ML domain containing proteins were some of the immunity associated proteins 

found in the salivary gland transcriptomes of D. reticulatus. These protein 

families which are produced in the salivary glands during tick feeding are infused 

into the host blood to modulate the host immune system to ensure successful tick 

feeding (Johns et al., 2001).  

3.3.1.2.4. Lipocalins 

 Lipocalins were one of the largest groups of secreted proteins found in the 

salivary gland extracts of D. reticulatus. A total of 365 transcripts encoding for 

lipocalins were found out of which 57 were female specific and 46 were male 

specific in their expression pattern. Lipocalins are a unique group of structurally 

similar proteins with barrel-like structures that are known to carry hydrophobic 

ligands and are associated with transport functions across the membranes (Flower 

et al., 2000). Despite their similarity in structures, tick lipocalins are known to be 

associated with a diverse set of functions. Tick lipocalins have been reported to be 

associated with functions like scavenging biogenic amines, anti-complement, anti-

clotting and immunoglobulin binding activities, and mediators of inflammation 

(Mans et al., 2008; Sangamnatdej et al., 2002).  

Japanin 

Japanins are a group of glycosylated lipocalins which were first identified 

in the salivary glands of Rhipicephalus appendiculatus . Japanins modulate the 
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dendritic cell (DC) activity by altering their expression of co-stimulatory and co-

inflammatory transmembrane molecules and their secretion of pro-inflammatory, 

anti-inflammatory and T cell polarising cytokines (Preston et al., 2013). Japanin 

like sequences have been identified in the transcriptomes of D. andersoni and R. 

microplus. In the D. reticulatus transcriptome, 8 CDS (which did not fall in the 

lipocalin group) were identified as japanin sequences. A neighbor joining tree of 

these sequences with the native japanin sequence from R. appendiculatus and 

japanin like sequences from D. andersoni is shown in Fig 3.5. 

 

Figure 3.5. Neighbor joining tree of japanin like sequences from different 
ticks. NJ tree of japanin with japanin like sequences from the sialotranscriptome 
of D. reticulatus and D. andersoni.  

 

3.3.1.2.5. DA-p36 family 

 The 36 kDa immunosuppressor protein from D. andersoni was shown to 

possess Ig-G binding properties and hence modulate host immune responses 

(Bergman et al., 2000). This family of proteins has also been reported to be found 

in transcriptomes of other ticks and 31 transcripts were identified in D. 

reticulatus. Out of the 31 transcripts, 13 transcripts were exclusively 
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overexpressed in females (some of these transcripts were >800 times 

overexpressed in females than in males). 

3.3.1.2.6. Immunoglobulin G-binding proteins 

 This specialized family of proteins found in ticks bind to host IgG to 

suppress an immune reaction. When the tick feeds on host blood, host antibodies 

pass through the tick midgut into the haemolymph, and antibodies specific for tick 

antigens and cause damage to the ticks (Wang and Nuttall, 1995). The IgG 

binding proteins produced in tick saliva bind to the host IgG and recycle them 

back to the host thus preventing IgG mediated immune response. Male specific 

IgG binding proteins have been previously reported in Rhipicephalus 

appendiculatus and these have been shown to help the gregarious feeding of the 

female ticks (Wang and Nuttall, 1995). Previous observations have suggested that 

like other tick species, IgG binding proteins might be produced exclusively in the 

male D. reticulatus (Šimo et al., 2004). In our analysis we identified 8 transcripts 

encoding for IgG binding proteins, however these 8 transcripts were mapped from 

a total of 363536 reads, which were almost exclusively from the male ticks. The 

RPKM values for male reads for three of these transcripts > 1000 (which is well 

above the RPKM average for a moderately expressed proteins that have RPKM 

values ∼10). This indicated that these three transcripts were expressed in very 

high numbers in the male salivary glands. These transcripts were >200 times 

overexpresssed in the male salivary glands compared to the females.  
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3.3.1.2.7. Glycine rich superfamily 

 This family of proteins which includes cuticle proteins, collagen, small 

GGY peptides, and large GGY peptides function as tick cement proteins and are 

associated with immunity. The metastriate ticks which have smaller mouthparts 

produce copius amounts of cement proteins that forms a cement cone and attached 

the tick to the host (Francischetti et al., 2009). This family of proteins was found 

to be about 3 times overexpressed in the males compared to the females. This 

could result from the male ticks producing large amounts of cement proteins 

because of their intermittent feeding nature (and they have to attach to the host 

multiple times) whereas the female ticks which feed continuously produce smaller 

amounts to produce the cement cone only once that helps them in attaching to the 

host.  

3.3.1.2.8. Mucins 

 Mucins are serine- and/or threonine-rich proteins which are glycosylated 

at N-acetyl -galactosamine residues. These proteins function in tick feeding by 

coating and lubricating the chitinous feeding mouthparts. Proteins from this 

family have a shown to possess a distinct chitin binding domain in addition to the 

Ser/Thr-rich domain. In the D. reticulatus transcriptome, 68 transcripts encoding 

for mucins were identified and one transcript in particular was 136 times 

overexpressed in males compared to the female ticks. 

3.3.2. Proteome of Dermacentor reticulatus  

 Isobaric tag for relative and absolute quantification (iTRAQTM), the 

chemical labeling technique based on stable isotopes that allows multiplexing was 
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used for the detection of sex-specific and feeding stage specific proteins from the 

salivary proteomes of D. reticulatus. Briefly, in the iTRAQTM technique, peptides 

are labeled at their primary amine groups with a stable isotope label using the N-

hydroxysuccinimide (NHS) chemistry (Fuller and Morris, 2012; Hultin-

Rosenberg et al., 2013). In an 8-plex iTRAQTM (AB SCIEX), up to 8 different 

protein samples can be labeled with the 8 isobaric tags. Following labeling, 

identical peptides from different protein samples with different labels have the 

same physicochemical properties in an LC-MS and are selected for fragmentation 

as a single precursor ion. During the fragmentation, the isobaric labels from the 

peptides are released and identified with different masses in the MS spectrum 

(113, 114,...,119, 121) (Karp and Lilley, 2007; Pütz et al., 2005). Therefore a 

relative quantification of different amounts of proteins present in different 

samples can be done by comparison of intensities of the different isobaric labels. 

 Since tick size increases drastically during feeding, it has been 

hypothesized that the composition of the salivary gland proteins undergoes a 

feeding induced change and different sets of proteins are synthesized during 

different stages of feeding (Xu et al., 2008). The increasing body weight is 

reported to be brought about by an increase in total protein content of the salivary 

glands in different ixodid ticks (Kubes et al., 1994; Tan et al., 2015). To identify 

specific proteins that increase or decrease during different stages of feeding, we 

have carried out a quantitative proteomics of the salivary gland extracts of male 

and female D. reticulatus at different stages of feeding. When the total protein 

content from the male and female salivary gland extracts was quantified at 
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different stages of feeding, it was observed that the protein content of the female 

salivary gland extracts increases by about 70 times as the feeding progresses (Fig. 

3.6.).     

 

Figure 3.6. Protein quantification in the male and female salivary gland 
extracts at different stages of feeding. The amount of protein in the female ticks 
increased from 1.05 µg/ tick at day 0 to 72.6 µg/ tick at day 6 (more than 70 
times), while the amount of protein in the male ticks increased from 0.92 µg/ tick 
at day 0 to 12.57 µg/ tick at day 5 (more than 10 times). 

 

Table 3.5. Setup of three iTRAQ runs  
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 All experiments were carried out in technical replicates (with 8 iTRAQ 

labels as described in methods) and data from the three iTRAQ runs were 

analyzed separately. For equal loading, data was normalized with 113 as the 

denominator label for all three runs. 

 A total of 552 proteins were identified in the male+female run, 439 

proteins were identified in the male alone run and 636 proteins were identified in 

the female alone run. These proteins have been mapped to the transcriptome and 

we are currently carrying out the quantification of different proteins at different 

stages of feeding.   
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3.4. Discussion 

 We have generated the sialomes of male and female D. reticulatus. From 

the transcriptome we have reported a total of 37,036 CDS, classified them into 

various classes and compared their expression patterns in male and female ticks. 

We have also generated the proteomes of both male and female tick salivary 

gland extracts at different stages of feeding. We have identified over 400 proteins 

in each of the three iTRAQTM run and we are currently analyzing this data for 

detailed expression profiling of the proteins expressed at different stages of 

feeding in the male and female salivary glands. 

 As indicated in the transcriptome, many transcripts were differentially 

expressed in the male or the female salivary glands, and in some cases, the fold 

differences were well over 1000 times. Interestingly, the number of proteins 

overexpressed in females was more than twice that of males. This supports the 

observation made in the total protein content where the protein content of the 

female increases drastically during feeding (>10 times) while the protein content 

of the males shows only a marginal increase (∼2 times). This may also be 

attributed to the observed differences in the feeding patterns of the male and 

female ticks. Female ticks, which feed on larger volumes of blood, produce more 

proteins for the necessary metabolic processes.  

 Interesting classes of proteins which were selectively overexpressed in 

females were 8.9 kDa proteins, Kunitz type inhibitors, lipocalins and DA-p36 

family of proteins. On the other hand male specific serine proteases, glycine rich 

superfamily, mucins IgG binding proteins and cystatins were some families which 
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were overexpressed in the male ticks. With these observations we could conclude 

that the female ticks produce abundant amounts of anti-haemostatic and 

immunomodulatory proteins, while the male ticks produce copius amounts of 

proteins required for sexual reproduction. Members of these families of proteins 

may represent new molecular structures with the same basic scaffold but novel 

mechanisms to disarm the host haemostatic and immune system. We have 

therefore generated a library of molecules which could be drug leads as 

antithrombotics or immunesuppressors and can be developed further for clinical 

use. We have in fact inititated the recombinant expression of three Kunitz type 

proteins of the monolaris subclass and intent to study their structure activity 

relationship and develop them further.  

The importance of anti-haemostatic and immunomodulatory proteins 

produced by the females has been discussed in the previous sections and the 

importance of proteins involved sexual reproduction produced by the male ticks is 

discussed below. The mouthparts of male ticks play an important role in the 

sexual reproduction. The male ticks salivate enormously on the spermatophore, 

and push it inside the female’s genital pore using their mouthparts (Feldman-

Muhsam et al., 1970). Glycine rich proteins and mucins are the classes of proteins 

which aid this process  (Kubes et al., 1994). These proteins coated on the 

spermatophore avoid stickiness of the spermatophore while it is being transferred 

inside the female genital pore. An interesting class of proteins exclusively 

expressed by the male ticks (>200 times overexpressed in males compared to 

females) was the IgG binding proteins. These IgG binding proteins have been 
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reported to combat the injested host IgGs. The IgG binding proteins produced and 

secreted at the site of feeding assist the female ticks in the vicinity to engorge at 

faster rates (Wang and Nuttall, 1995). 
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Structure-activity relationship of avathrin, a 

novel thrombin inhibitor   
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4.1. Introduction 

 The action of thrombin (FIIa) is pivotal in both haemostasis and 

thrombosis (Stubbs and Bode, 1993). This crucial enzymes plays roles as both a 

procoagulant and an anticoagulant under different conditions (Di Cera, 2008). In 

its pro-coagulant role: (a) it cleaves soluble fibrinogen to fibrin monomers, which 

polymerize to form a nascent clot; (b) it activates the transglutaminase (FXIII) 

that covalently crosslinks fibrin monomers to stabilize the clot; (c) it activates 

non-enzymatic cofactors (FV and FVIII) required for its own amplification; (d) it 

activates FXI which in turn activates the intrinsic pathway; and (e) it activates 

platelets by cleaving protease-activated receptors leading to their shape change, 

degranulation and aggregation (Monroe et al., 2002; Versteeg et al., 2013). 

Conversely, thrombin also plays a significant role as an anticoagulant by down 

regulating the progression and amplification of the blood coagulation process: 

upon binding to thrombomodulin, it activates protein C, which in turn inactivates 

both cofactors FVa and FVIIIa to mitigate further thrombin generation (Di Cera, 

2008). These paradoxical procoagulant and anticoagulant roles of thrombin 

maintain a balance between uncontrolled bleeding and formation of obstructive 

thrombi, with sufficient thrombus formation when desired. 

Cardiovascular disease is the single largest killer worldwide and is a hefty 

contributor to the burden of non-communicable diseases (Chaudhari et al., 2014). 

Ischemic heart disease and stroke, both of which are pathological manifestations 

of thrombosis are the most common examples of cardiovascular disease and 

account for up to one in four deaths worldwide (Raskob, 2014). Anticoagulants 
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like direct thrombin inhibitors (DTIs), direct factor Xa (FXa) inhibitors and 

vitamin K antagonists (VKAs) comprise a significant fraction of the current 

therapeutic options as antithrombotic drugs. Some examples of DTIs used as 

therapeutic options are bivalirudin, the synthetic analogue of hirudin which is a 

bivalent inhibitor binding to the thrombin active site and exosite-I; argatroban and 

dabigatran, small molecule univalent DTIs that bind to the active site alone; and 

low-molecular-weight-heparins (LMWHs) which inhibit thrombin in an 

antithrombin-dependent manner (Coppens et al., 2012). Despite being popular 

options of anticoagulant therapy, these classes are fraught with limitations like 

narrow therapeutic window, individual dosing, high bleeding risks, poor 

bioavailability and high food-drug interactions (Bauer, 2013). Therefore, novel, 

superior anticoagulants with greater benefits are being sought (described in detail 

in 1.3). 

Haematophagous animals have adapted a blood feeding diet and have 

evolved an assortment of molecules that control host haemostasis to ensure a 

continuous blood flow for successful feeding (Koh and Kini, 2008). Due to 

thrombin's crucial role in haemostasis, it is not surprising that ixodid ticks have 

evolved numerous thrombin inhibitors, and among anticoagulants, thrombin 

inhibitors take a central stage in these blood sucking parasites. Hirudin, haemadin, 

triabin, ornithodorin and rhodniin are some of the most extensively studied 

examples of specific families of thrombin inhibitors from haematophagous 

animals (Huntington, 2014) (described in detail in 1.4.3.5).  
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We have previously described a novel class of thrombin inhibitor variegin, 

a 32-residue long peptide which is a fast, tight binding, and competitive thrombin 

inhibitor from the salivary gland extracts of the hard tick- Amblyomma 

variegatum (Koh et al., 2007). Here we describe the structural and functional 

characterization of ‘Avathrin’, a 30-residue long peptide, the transcripts of which 

were detected in the form of a polypeptide in the salivary glands of Amblyomma 

variegatum. We have synthesized avathrin using solid phase peptide synthesis, 

studied its structure-activity relationship and studied its in vivo efficacy in a 

murine thrombosis model. Although avathrin shows only 40% sequence identity 

with variegin, it selectively inhibits thrombin in a similar fast, tight binding 

competitive mode with a Ki of 545 pM. 
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4.2. Materials and Methods 

4.2.1. Materials 

9-Fluorenylmethyloxycarbonyl (Fmoc)-L-amino acids, Wang resin, N, N- 

Dimethylformamide, Piperidine, O-(7-azabenzotriazol-1-yl)- 1,1,3,3-

tetramethyluronium hexafluorophosphate (HATU), and N,N-

diisopropylethylamine (DIPEA) kallikrein, human fibrinogen, and bovine trypsin 

were from Merck Chemicals Ltd. (Nottingham, UK). Trifluoroacetic acid, 

acetonitrile, 1, 2- ethanedithiol, thioanisole, bovine chymotrypsin, 4-(2-

Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), HEPES sodium salt 

and polyethylene glycol (PEG) 8000, ferric chloride hexahydrate and bovine 

serum albumin were purchased from Sigma- Adrich (St. Louis, Missouri, USA). 

Human alpha thrombin, human factor VIIa (FVIIa), factor XIIa (FXIIa), tissue 

plasminogen activator (TPA), urokinase, human factor IXa (FIXa), factor Xa 

(FXa), factor XIa (FXIa), APC, and plasmin were from Hematologic 

Technologies, Inc. (Essex Junction, VT). Recombinant thrombin was a gift from 

the Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN). Chromogenic 

substrates S2222, S2238, S2251, S2288, S2302, S2366, S2444, S2586, and S2765 

were purchased from Chromogenix (Milano, Italy). Spectrozyme FIXa was from 

American Diagnostica Inc. (Stamford, CT, USA). Crystallization greased plates 

and coverslips were purchased from Hampton Research (Aliso Viejo, California, 

USA). All other chemicals and reagents used were of analytical grade.  
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4.2.2. Peptide synthesis and purification 

All peptides (avathrin, ultravariegin, QT26, IS20, GL16, avathrinS12A, 

avathrinS12H, avathrinK10R, avathrinL16P,G17P and β-avathrin) were 

synthesized using solid-phase peptide synthesis on an Intavis MultiPep RSi 

peptide synthesizer. Fmoc groups of the amino acids were removed using 20% 

v/v piperidine in N, N-dimethylformamide and coupled using HATU/DIPEA. All 

peptides were synthesized on standard Wang resin which had a loading capacity 

of 0.54 mmol/g. The peptides were cleaved from the resin using a cleavage 

cocktail of trifluoroacetic acid/1, 2-ethanedithiol/thioanisole/water 

(92.5%/2.5%/2.5%/2.5%). Crude peptides were purified using reverse-phase 

HPLC on an AKTA basic purifier from GE Healthcare (Uppsala, Sweden) with a 

Jupiter proteo (5 µm, 250 mm X 10 mm) column. The purity and mass of all 

peptides were determined by electrospray ionization mass spectrometry using an 

LCQ Fleet Ion Trap mass spectrometer from Thermo Fisher Scientific (Waltham, 

MA, USA). 

4.2.3. CD Spectroscopy  

Far-UV CD spectra (260–190 nm) of avathrin, QT26 and IS20 dissolved 

in 10 mM sodium phosphate buffer (pH 7.4) were measured using a Jasco J-810 

spectropolarimeter (Easton, MD, USA). All measurements were carried out at 

room temperature using a 0.1-cm path length cuvette with a scan speed of 50 

nm/min, a bandwidth of 2 nm and a resolution of 0.2 nm. 
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4.2.4. Inhibition of thrombin amidolytic activity and determination of 

inhibitory constants 

All thrombin amidolytic activity assays for avathrin and all variants were 

performed in 96-wells microtiter plates in 50 mM Tris buffer (pH 7.4) containing 

100 mM NaCl and 1 mg/ml bovine serum albumin at room temperature. 

Typically, 100 µl of peptide and 100 µl of thrombin were preincubated for 

different durations before 100 µl of the S2238 was added to the reaction wells. 

The rates of formation of coloured product p-nitroaniline were followed by 

measuring the absorbance at 405 nm for 10 min with a Tecan InfinitePro 

Microplate reader. Percentage inhibition was calculated by taking the rate of 

increase in absorbance in the absence of inhibitor as 0%. Dose-response curves 

were fitted using the Prizm Software to calculate IC50 values and Hill coefficients. 

Assays to measure the inhibitory constants were also carried out in a similar way 

as described above. Typically, 100 µl of thrombin (0.81 nM) was added to wells 

containing 100 µl of different concentrations of the peptide and 100 µl of 

different concentrations of S2238 (100 µM).  Product formations was measured 

and residual velocities were determined. The resulting equation was fitted to the 

Morrison’s tight binding equation (Copeland, 2000) and the inhibitory constants 

were determined.  

4.2.5. Inhibition of thrombin fibrinogenolytic activity 

The abilities of avathrin, QT26, IS20 and GL16 to prolong fibrinogen 

clotting time were tested using a BBL fibrometer from BD Biosciences (Franklin 

Lakes, NJ, USA). Typically, 100 µl of fibrinogen (final concentration, 3 mg/ml) 



123 
 

was added to wells conatining 100 µl of  peptides (different concentrations) at 37 

°C. Clotting of fibrinogen was initiated by the addition of 100 µl of thrombin 

(final concentration, 20 nM). All reagents and samples were dissolved in 50 mM 

Tris buffer (pH 7.4) containing 100 mM NaCl. 

4.2.6. Serine protease selectivity 

The selectivity profile of avathrin was examined against 13 serine 

proteases: anticoagulant serine protease APC, procoagulant serine proteases 

(FXIIa, FXIa, FXa, FIXa, FVIIa, kallikrein, and thrombin), fibrinolytic serine 

proteases (plasmin, TPA, and urokinase), and classic serine proteases 

(chymotrypsin and trypsin). Effects of avathrin on these serine proteases were 

determined by inhibition of their amidolytic activities assayed using particular 

chromogenic substrates. All assays were carried out in 96-well microtiter plates, 

in a 50 mM Tris buffer (pH 7.4) containing 100 mM NaCl and 1 mg/ml BSA at 

room temperature (5 mM of CaCl2 were also present in the buffer for FVIIa, 

FIXa, FXa, chymotrypsin and activated protein C assays). Typically, 100 µL of 

avathrin (concentrations for thrombin assay: 1000 nM, 100 nM and 10 nM; 

concentrations for all other serine proteases: 100 µM, 10 µM and 1 µM) was 

incubated with 100 µL of the respective serine protease for 5 minutes followed by 

the addition of 100 µL of the respective substrate. The reaction rates were 

followed for 10 minutes using a Tecan InfinitePro microplate reader and 

percentage inhibition at different concentrations of avathrin were calculated using 

the rate of increase in absorbance in the absence of inhibitor as 0%. 
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4.2.7. Cleavage of avathrin by thrombin 

Avathrin (150 µM) was incubated with human α-thrombin (5 µM), in a 50 

mM Tris buffer (pH 7.4) containing 150 mM NaCl and 1 mg/ml BSA. After 

different incubation times, reactions were quenched with 1% TFA (pH 1.8) and 

loaded onto a Jupiter Proteo (4µm, 90Å) microbore column (100 x 1.0 mm) 

attached to a Dionex nano-HPLC system and eluted using an acetonitrile gradient 

with 0.05% TFA and 99.95% milliQ water as eluent A and 0.05% TFA, 19.95% 

milliQ water and 80% ACN as eluent B. New peaks other than those present in 

the control chromatogram were taken as the peaks of cleaved products. The 

masses of the cleaved products were confirmed by analyzing their masses using 

electrospray ionization mass spectrometry. Cleavage products were quantified by 

integrating the peaks and calculating the area under the curves.  

 Effect of different pre-incubation times (hence cleavage), on the thrombin 

inhibitory activity of avathrin was measured. Briefly, amidolytic assays were 

performed as described in 4.2.4. where different concentrations of avathrin (1000 

nM, 100 nM and 10 nM were incubated with thrombin for different pre-

incubation times (up to 36h), followed by which the substrate was added and 

inhibitory activities were measured by monitoring the rates of reaction. 

4.2.8. Crystallization of avathrin in complex with thrombin 

Recombinant α-thrombin (in 150 mM NaCl) as a generous gift from 

Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN, Japan) was 

desalted using 3000 MWCO spin filters in 20 mM ammonium bicarbonate 

(NH4HCO3), and lyophilized before using it for crystallization. The reported 
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crystallization conditions for thrombin in complex with other inhibitors, like 

variegin, hirugen and hirulog were used and optimized further (Koh et al., 2011; 

Skrzypczak-Jankun et al., 1991). Lyophilized avathrin was dissolved in 50 mM 

HEPES buffer (pH 7.4) containing 375 mM NaCl to a concentration of 81.73 µM 

(256 µg/mL). Desalted, lyophilized recombinant α-thrombin was subsequently 

dissolved in the avathrin solution to a final concentration of 54.49 μM (2 mg/ml). 

The amount of avathrin in the mixture was 1.5 fold in molar excess of thrombin. 

Crystallization was achieved using hanging drop method vapor diffusion method. 

Typically, 1 μl of mixture containing avathrin and thrombin was mixed with 1 μl 

of precipitant buffer (100 mM HEPES buffer pH 7.4), containing 20 to 25% (w/v) 

PEG 8000 and were equilibrated against 1 ml of precipitant buffer. The 

crystallization plates were left at 4 °C and crystals appeared after approximately 

sixr weeks and were harvested for data collection. The entire process for setting 

up, growing and harvesting of crystals were performed in 4 °C as the crystals are 

unstable at room temperature. 

Prior to data collection, crystals were soaked in a cryoprotectant solution 

containing the mother liquor, supplemented with 25% (v/v) glycerol, and flash 

cooled at 100 K in cold nitrogen gas stream (Cryostream cooler, Oxford 

Cryosystem, Oxford, United Kingdom). A data set of 180 frames was collected 

using a CCD detector. The data set was processed and scaled using mosflm and 

aimless respectively (Leslie and Powell, 2007). The structure of the complex was 

determined by molecular replacement using Phaser (McCoy, 2006) using light 

and heavy chains of thrombin from the thrombin-variegin crystal structure (3B23) 
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as the template. The crystal belonged to the monoclinic space group C2 and 

diffracted up to 2.25 Å resolution with unit cell dimensions as a = 70.2, b =71.2, 

c=72; and β = 100°. This unit cell dimensions and space group were the same as 

that of the thrombin-hirulog-1 complex.  

Model building and refinement was performed using COOT (Emsley and 

Cowtan, 2004) and R-work/R-free for the refined structure was 0.185/0.226. The 

completely refined structure, had no Ramachandran outliers (0%) and had a high 

MolProbity score of 1.35. Details of crystallographic parameters are given in 

Table 4.1. 
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Table 4.1. Crystallographic data and refinement statistics.  

Data collection & processing 

Wavelength  (Å)  1.54 

Space group C2 

Unit cell parameters [a, b, c (Å); β (°)] 70.2, 71.2, 72.0; 100.0 

Resolution  (Å)  38.46 – 2.25 

Unique reflections 14872 (859) 

Completeness (%)  89.4 (56.3) 

Rmerge  0.091 (0.362) 

Rpim  0.055 (0.224) 

CC1/2  1.00 (0.87) 

Mean I/σ(I)  10.1 (3.0) 

Multiplicity  4.6 (3.4) 

Refinement 

Resolution (Å) 38.46 – 2.25 

Rwork  0.185 

Rfree  0.226 

RMSD bonds (Å)  0.007 

RMSD angles (°)  1.19 

No. atoms (thrombin/avathrin/water)  2229/92/129  

Residues in favoured regions (%)#  96.4 

Residues in allowed regions (%)  3.6 

Residues in disallowed regions (%)  0 

Average B factors for atoms 
(thrombin/avathrin/water) (Å2)  

34.3/68.8/29.6 
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4.2.9. Ferric chloride carotid artery thrombosis model 

All animal experiments were carried out under protocol 041/12 approved 

by Institutional Animal Care and Use Committee, National University of 

Singapore. The FeCl3- induced carotid artery thrombosis model was performed to 

demonstrate the in vivo efficacy of avathrin in a murine model using previously 

described protocols and compared with the efficacy of hirulog-1 using the same 

model (Eckly et al., 2011). Briefly, C57BL/6 male mice (9–11 weeks old, 24.5–

27.5 g) were anesthetized with an intraperitoneal injection of ketamine (75 mg/kg) 

and medetomidine (1 mg/kg). In each set of experiment (n = 6), 0.1 mL of 

different doses of avathrin or hirulog were injected via tail vein into the mice. The 

right carotid artery was exposed using blunt dissection, and vascular injuries were 

caused by applying filter paper (2 mm x 2 mm) saturated with 10% FeCl3 on top 

of the carotid artery. Following 3-min FeCl3 exposure, the filter paper was 

removed and the vessel was washed with sterile normal saline. To determine the 

time to occlusion (TTO), a miniature Doppler flow probe was placed around the 

carotid artery, and blood flow was recorded using a Transonic flowmeter, and 

data was acquired using ADInstruments and recorded wing the Labcharts 

software. The maximal monitoring time after injury was 30 min. Mice were killed 

via cervical dislocation immediately after conclusion of the experiment and prior 

to recovery from anesthesia. 
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4.3. Results 

4.3.1. Detection of avathrin transcripts in salivary glands of Amblyomma 

variegatum 

 Transcripts encoding variegin-like peptides were detected in the large 

basal granular cells of salivary gland acini type II of nymphs, adult males and 

females by in situ hybridization with a single stranded DNA probe labelled with 

digoxigenin. There were differences in the expression pattern of the transcript at 

different stages of feeding (Dr M. Kazimirova, unpublished observations). 

Strongest expression was observed at 2-4 days of feeding in the nymphs, 12 days 

of feeding in males and 5 days of feeding in females. The transcript encodes for a 

219-residue protein that contains a putative secretion signal and five highly 

similar repetitive sequences, each around 30-residue-long. Each of the five repeats 

showed ~40% sequence identity with the 32-mer variegin. Initially, this transcript 

was named 'AvaHIRU' (BAD29729), based on the structural similarity of its C-

terminus with that of hirudin. Subsequently, one representative sequence out of 

the five repeats (30 residues) was synthesized and characterized to be a potent 

thrombin inhibitor as reported here. As a result, we renamed this AvaHIRU 

derived peptide as 'Avathrin' (Amblyomma variegatum derived thrombin 

inhibitor) for a better reflection of its origin and function. 
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Variegin:SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES  

Avahiru: SGGHQTAVPKISKQGLGGDFEEIPSDEIIE 

Figure 4.1. Comparison of variegin and avathrin sequences. Variegin and 
avathrin had the typical sequence for thrombin active site interactions (P2 Pro, P1 
Lys). Both variegin and avathrin had an acidic C-terminus that could interact with 
the exosite-I. His12 in variegin which disrupted the catalytic triad was replaced by 
Ser12 in avathrin. Identical residues are underlined.   

4.3.2. Synthesis and purification of avathrin and its variants  

 For the structural and functional characterization, avathrin was 

synthesized using solid phase peptide synthesis, purified by reversed-phase high 

performance liquid chromatography (RP-HPLC) and its purity and mass were 

determined by ESI-MS (Fig. S1-S3, Table S1). ESI-MS spectrum of avathrin 

revealed 3 m/z peaks with +4, +3 and +2 charged states and a mass of 3139.5 ± 

0.2 Da. Thus, the estimated masses of the avathrin peptides matched the 

calculated masses. The CD spectra of avathrin and two of its variants were typical 

of random coil (Fig. 4.2).  

 

Figure 4.2. Far UV CD spectra of avathrin and IS20. Avathrin and its 
truncated variant, IS20 showed CD spectra characteristic of random coil. 
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4.3.3. Inhibition of thrombin amidolytic activity  

 The ability of avathrin to inhibit the amidolytic activity of thrombin was 

assayed using S2238 as the substrate. Avathrin inhibited thrombin amidolytic 

activity in a dose-dependent manner with IC50 and Hill coefficient of 6.95 ± 0.42 

nM and 0.92 ± 0.01 respectively. Significant inhibition was observed at equimolar 

concentrations of avathrin and thrombin (~25% inhibition at 0.81 nM avathrin) 

indicating that avathrin is a tight binding thrombin inhibitor (Fig. 4.3A). Reaction 

progress curves showed that a steady-state equilibrium was achieved upon mixing 

indicating a fast binding mode of avathrin (Fig 4.3B).  Residual reaction velocities 

of thrombin amidolytic activity in presence of avathrin at different S2238 

concentrations were determined to calculate Kiapp. A straight line plot of the 

linearly increasing Kiapp with increasing S2238 concentrations indicated that 

avathrin is a competitive inhibitor and these Kiapp were fitted to the Morrison 

equation using the GraphPad Prizm software and a Ki of 545.78 ± 0.29 pM of 

avathrin towards thrombin was obtained (Fig. 4.3C and 4.3D). Therefore, avathrin 

is a fast, tight binding, competitive inhibitor of thrombin.  
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Figure 4.3. Kinetics of thrombin inhibition by avathrin using the 
chromogenic substrate S2238. A. Avathrin inhibits thrombin amidolytic 
assay in a dose-dependent manner. The effect of various concentrations of 
avathrin on the amidolytic activity of thrombin (0.81 nM) was measured using the 
substrate S2238 (100 μM) with (10 min) or without pre-incubation. IC50 and Hill 
coefficient of the inhibition are 6.95 ± 0.42 nM and 0.92 ± 0.01 at 0 min and 4.86 
± 0.36 nM and 0.94 ± 0.02 nM at 10 min, respectively. Each data point is the 
mean ± S.D. of at least three experiments. B. Avathrin is a fast binding 
inhibitor. Thrombin (0.81 nM) amidolytic assay using S2238 (100 μM) in 

presence of various concentrations of avathrin was carried out and linear 
progression curves of thrombin inhibition in presence avathrin were achieved – a 
characteristic of fast binding inhibitor. C. Avathrin is a tight binding inhibitor. 
The residual thrombin amidolytic activity in presence of various concentrations of 
avathrin was measured at different concentrations of S2238 and the Ki’ (apparent 

Ki) was determined. Reactions were started with the addition of thrombin (0.81 
nM). Data were fitted to the Morrison tight binding equation using GraphPad 
Prizm software. Each data point is the mean ± S.D. of at least three experiments. 
D. Avathrin is a competitive thrombin inhibitor. Plot of Ki’ against S2238 

concentration increased linearly, indicating avathrin is a competitive inhibitor. 
The inhibitory constant Ki was determined to be 545.3 ± 3.1 pM.  
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4.3.4. Inhibition of thrombin fibrinogenolytic activity 

Fibrinogen is an important physiological substrate for thrombin which 

binds to both active site and exosite-I of thrombin. Therefore, the ability of 

avathrin to inhibit thrombin's fibrinogenolytic activity was evaluated.  

 

Figure 4.4. Inhibition of fibrinogenolytic actvity of thrombin. Avathrin and its 
truncated variants (IS20 and GL16) prolonged fibrinogen clotting times (n = 3, 
error bars represents S.D.). GL16 inhibited fibrinogenolytic activity but not 
amidolytic activity of thrombin, suggesting the C-terminal binding to exosite-I. 

Avathrin prolonged fibrinogen clotting time in a dose-dependent manner 

(Fig. 4.4). This observation is consistent with observations for variegin and the C-

terminus of hirudin which also inhibit thrombin's fibrinogenolytic activity (Koh et 

al., 2007; Stone and Hofsteenge, 1986). 

4.3.5. Serine protease selectivity 

The serine protease selectivity of avathrin was examined by screening 

against 13 serine proteases which included pro- and anti-coagulant serine 
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proteases of the blood coagulation cascade and the two classic serine proteases 

trypsin and chymotrypsin. At 10 nM, avathrin inhibited 64.95% of thrombin's 

activity. However, even at 1 µM, it showed no significant inhibition (<5%) of any 

of the serine protease other than thrombin. Trypsin and fXIa activities were 

inhibited ~30% at 100 µM avathrin (Fig. 4.5). Thus, avathrin is a highly potent 

and selective (at least 4 orders of magnitude) thrombin inhibitor.  

 

Figure 4.5. Serine protease selectivity of avathrin. Avathrin was screened for 
its selectivity against 13 serine proteases: procoagulant serine proteases (fXIIa, 
fXIa, fXa, fIXa, fVIIa, kallikrein and thrombin); anticoagulant serine protease 
(APC); fibrinolytic serine proteases (plasmin, tPA and urokinase) and classical 
serine proteases (chymotrypsin and trypsin). The final concentrations of proteases 
and substrates used for the amidolytic assays are given in parentheses in nM and 
µM, respectively, unless mentioned o therwise: α-thrombin (0.81)/S2238 (0.1), 
trypsin (0.87)/S2222, fIXa (333)/Spectrozyme® fIXa (0.4), fXIa (0.125)/S2366 
(1000), fXa (0.24)/S2765 (650), chymotrypsin (1.2)/S2586 (0.67), tPA 
(36.9)/S2288 (1000), fVIIa (460)/S2288 (1200), plasmin (3.61)/S2251 (1200), 
APC (2.74)/S2366 (600), kallikrein (0.93)/S2302 (1100), urokinase (32 
U/ml)/S2444 (650), fXIIa (20)/S2302 (1000). Activity of thrombin was tested at 
lower concentrations of avathrin (1000 nM, 100 nM and 10 nM) while the other 
proteases were tested at much higher concentrations of avathrin (100 μM, 10 μM 

and 1 μM). Each data point is the mean ± S.D. of at least three experiments. 
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4.3.6. Cleavage of avathrin by thrombin  

Because avathrin binds to the thrombin active site, we hypothesized that 

like variegin and the other thrombin inhibitors (Krowarsch et al., 2003), avathrin 

may be prone to proteolytic cleavage by thrombin. A time course analysis of 

avathrin incubated with thrombin indicated that avathrin was indeed cleaved of by 

thrombin. A RP-HPLC separation of the reaction mixture incubated for different 

time points was carried out to separate and quantify the cleaved products. At 0 

min, a single peak corresponding to full length avathrin and a peak corresponding 

to thrombin were observed (Fig. 4.6A upper panel). With increasing periods of 

incubation, two new peaks corresponding to the cleaved products 

(SGGHQTAVPK with a mass of 981.3 Da and ISKQGLGGDFEEIPSDEIIE with 

a mass of 2176.3 Da indicating the cleavage of Lys10-Ile11 peptide bond) started 

to appear (Fig. 4.6A middle panel). With increasing incubation times, the amounts 

of these two peaks increased, and the amount of the full length avathrin 

decreased. After 10 h, only three peaks, two peaks corresponding to the cleavage 

products of avathrin, and one peak corresponding to thrombin were detected. The 

peak corresponding to avathrin was not detected indicating complete cleavage 

(Fig. 4.6A lower panel). These cleavage products wer quantified by integrating 

the areas under the curve (Fig. 4.6B). In order to verify the effect of thrombin 

cleavage on the  
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Figure 4.6. Cleavage of avathrin by thrombin. A. Typical HPLC 
chromatograms of avathrin cleavage by thrombin. Avathrin (150 μM) was 

incubated with thrombin (5 μM) for different lengths of time and the reaction 

mixtures were separated using RP-HPLC; and the masses of the cleavage 
products were analyzed with ESI-MS. At 0 min (upper panel), a single peak 
corresponding to full length avathrin (mass 3139 Da) was identified. At 120 min 
(middle panel), two new peaks corresponding to N-terminal cleavage product 
(SGGHQTAVPK; mass 982Da) and C-terminal cleavage product 
(ISKQGLGGDFEEIPSDEIIE; mass 2175 Da) were identified in addition to 
avathrin peak. At 600 min (lower panel), two peaks corresponding to the N- and 
C-terminal cleaved products were observed while avathrin peak was not observed, 
indicating complete cleavage. B. Quantification of cleavage products. Relative 
percentages of avathrin, its N- and C-terminal cleavage products were quantified 
by calculating areas under the curve. Each data point is the mean ± S.D. of at least 
three experiments. C. Prolonged inhibitory effect of avathrin. Avathrin was 
incubated with thrombin (0.81 nM) for up to 36 h, and assayed at different time 
points for its ability to inhibit thrombin amidolytic activity on the chromogenic 
substrate S2238. At 25 nM of avathrin, the inhibitor was present in ~30-fold 
excess of thrombin (0.81 nm), and these ratios are similar to that used in HPLC 
analysis of cleavage products. After 24 h, cleavage products retained >50% of the 
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original inhibitory activity, although full length avathrin was completely cleaved 
around 10 h. Thus, cleavage products, particularly the C-terminal cleavage 
product of avathrin appears to remain bound to thrombin and continues to inhibit 
thrombin. Each data point is the mean ± S.D. of at least three experiments. 

inhibitory activity, avathrin was incubated with thrombin for up to 36 h and the 

inhibitory effect of avathrin at different time points was examined by testing the 

amidolytic activity of thrombin (Fig. 4.6C). At 25 nM concentration (30 times 

excess peptide), avathrin inhibited more than 30% of thrombin activity for 18 h. 

Thus, avathrin exhibited prolonged inhibition of thrombin and we concluded its 

cleaved products retained strong binding to thrombin. 

4.3.7. Truncated versions of avathrin 

In order to optimize the chain length, we synthesized three truncated 

versions of avathrin. The three truncated versions, QT26, IS20 and GL16 were 

synthesized using solid phase peptide synthesis, purified by reversed-phase high 

performance liquid chromatography (RP-HPLC) and its purity and mass were 

determined by ESI-MS (Fig. 7). QT26 and IS20 inhibited thrombin amidolytic 

activity with IC50s and Hill coefficients of 8.94 ± 0.64 nM and 0.89 ± 0.03 and 

12.17 ± 0.32 nM and 0.87 ± 0.06 respectively. Inhibitory kinetics of QT26 and 

IS20 showed that both peptides were tight binding inhibitors with Ki of 760.32 ± 

0.91 pM and 5760.00 ± 0.23 pM respectively. A plot of the Kiapp versus increasing 

concentrations of S2238, increased linearly for QT26, but remained constant for 

IS20, indicating that QT26, like full length avathrin was a competitive inhibitor, 

while IS20, the cleavage product of avathrin inhibited thrombin with a non-

competitive mode (Fig. 4.8A and B). Both QT26 and IS20 inhibited thrombin 
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fibrinogenolytic activity in a dose-dependent manner. The third and the shortest 

truncated variant, GL16 did not inhibit thrombin amidolytic activity even at 300 

µM, but a slight activation (5-10%) of thrombin amidolytic activity was seen with 

GL16. However, GL16 did inhibit the fibrinogenolytic activity of thrombin in a 

dose dependent manner (Fig. 6). 

Avathrin: SGGHQTAVPKISKQGLGGDFEEIPSDEIIE 
QT26:         QTAVPKISKQGLGGDFEEIPSDEIIE 
IS20:               ISKQGLGGDFEEIPSDEIIE 
GL16:                   GLGGDFEEIPSDEIIE  
 

Figure 4.7. Truncated versions of avathrin. Three truncated versions of 
avathrin - QT26, IS20 and GL16 were synthesized and their abilities to inhibit 
thrombin active site and exosite were tested.  

 

 

Figure 4.8. Affinity of IS20, the cleavage product of avathrin. A.  IS20 at 
different concentrations (0.078 nM, 0.156 nM, 0.312 nM, 0.625 nM, 1.25 nM, 2.5 
nM, 5 nM, 10 nM, 20 nM, 40 nM) was mixed with different concentrations of 
S2238 (50 μM, 100 μM, 150 μM, 200 μM, 250 μM, 300 μM, 350 μM and 400 μM 

and the Ki' was determined. Reactions were started by the addition of thrombin 
(0.81 nM). Data were fitted to the Morrison equation equation using GraphPad 
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prizm software (n = 3, error bars represent S.D.). B. Plot of Ki’ against substrate 

concentration decreased gradually, indicating avathrin competitively inhibited 
thrombin amidolytic activity and the inhibitory constant Ki was shown to be 
5760.3 ± 0.23 pM. 

4.3.8. Crystal structure 

The crystal structure of thrombin-avathrin complex was determined at 

2.25 Å. The electron density for residues of thrombin was well defined except for 

termini residues of chain A [T(1TFGSG5, 13DGR15 and E259)]. Only 14 out of the 

30 residues of avathrin had well defined densities [A(9PKI11 and 

18GDFEEIPSDEI28)]. Since avathrin gets cleaved by thrombin, a single crystal 

may represent a heterogeneous population of molecules in which thrombin may 

either be bound to the full-length peptide or the C-terminal fragment after 

cleavage. The structure that we have modelled however represents thrombin in 

complex with the full length avathrin.  

Active site interactions - Side chain density of avathrin residues interacting with 

thrombin active site is not distinctive enough to unambiguously identify them – 

but based on our sequence, cleavage and kinetic data, we conclude these residues 

to be A(9PKI11). The N of P1’ (AI11) is in close proximity of the γO of TS195 

(distance of 3.04 Å). This proximity would facilitate the nucleophilic attack 

during the catalytic cleavage of the peptide bond between P1 and P1’ residues. In 

the region where the peptide bound to the active site of thrombin, one hydrogen 

bond between main chain carbonyl O of AK10 and backbone amide N of TG193 

(2.88 Å) was observed. The P1 (AK10) of avathrin is coordinated with S1 (TD189) 

of thrombin. The N ζ of AK10 is in proximity to the T189D and possibly interacts 
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coordinated by a water molecule (distances: TD189 to H2O: 3.58 Å and AK10 to 

H2O is 1.89 Å respectively). This interaction is similar to that observed for 

thrombin's interactions with the PAR3 receptor which also possesses a Lys at P1 

position and the  

 

 

Figure 4.9. Crystal structure of thrombin-avathrin complex. A. Overall 
thrombin-avathrin complex crystal structure. Surface representation of 
thrombin is shown in cyan; and ball and stick representation of avathrin is shown 
(carbon: yellow; nitrogen: blue; oxygen: red). Two avathrin residues (ALys10 -
AIle11) were identified in the proximity of the thrombin active site cleft. B. 
Avathrin interactions at thrombin active site. Oγ of TSer195 is 2.7 Å away 
from Nε of THis57, forming the nucleophile poised to attack the carbon atom of 
ALys10 (P1) 2.7 Å away. Carbonyl oxygen of ALys10 is stabilized in the oxyanion 
hole at 2.9 Å from backbone nitrogen of TGly193. ALys10 fits into the S1 
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specificity pocket of thrombin and stabilized by an electrostatic interaction (3.0 
Å) with Oδ of TAsp189 at the bottom of the pocket. C. Avathrin interactions 
with thrombin exosite-I. Three electrostatic interactions (AAsp19-TArg73; 
AGlu21-TArg75; and AGlu27-TArg77A) are observed between avathrin C-
terminus and exosite-I. Distances of all three electrostatic interactions lie in 
between 2.9 to 4.1 Å. 

interaction is coordinated by an intermediate water molecule (Bern et al., 1991). 

The corresponding residue P1 residue in hirulog-1 is an Arg. The side chain 

nitrogens of this Arg interact directly with its side chain oxygens of TD189, but the 

backbone carbonyl oxygen of the backbone amide N of  TG193 (Perona et al., 

1995) and this interaction is also seen in avathrin-thrombin complex. The basic P1 

residue of fibrinogen occupies the S1 specificity pocket of thrombin and forms an 

antiparallel beta sheet with T(214S-G216) (Perona et al., 1995). The main chain N of 

AK10 comes close to main chain O of TS214 (3.43 Å). And AP9 points in the 

direction of (or is close to) TG216 (distance between main chain amide N of AP9 

and main chain carbonyl O of TG216 is 4.51 Å). Therefore, we concluded that 

avathrin is a canonical inhibitor as it binds to thrombin in a substrate-like fashion.  

Interactions with the prime subsite - The apolar binding site of thrombin is a 

hydrophobic pocket formed by the 60 loop (Page et al., 2005) which is lined by 

TH57 TY60A, TW60D, aliphatic (amphipathic) chain of TK60F and the disulphide bond 

between TC42 and TC58 (Skrzypczak-Jankun et al., 1991). The P1' side chain of AI11 

is buried inside this hydrophobic cavity of S1' subsite of thrombin.  

Interactions with thrombin exosite - Clear electron density for the main chain 

residues of A(18GDFEEIPSDEI28) was observed out of which clear side chain 

densities for only AE21 and A(23IPSDEI28) could be observed. Although the side 
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chain of AD19 points towards the exterior, the main chain carbonyl O is in close 

proximity to the side chain η2 N of TR75 (2.81 Å). The side chain oxygens of the 

cognate Asp corresponding to AD19 in hirulog-1/-3 and hirugen structures form 

ion pairs with the side chain nitrogens of TR73. Side chain density for the aromatic 

ring of AF20 is not observed but the C β of the AF20 points in a direction towards 

TF34. The cognate Phe in variegin, hirulog-1/3 and hirugen all of which have their 

aromatic rings pointing towards TF34 and show a T shaped π-Stacking 

interactions with this Phe of thrombin (Chang, 1983; Skrzypczak-Jankun et al., 

1991). AE21 side chain points to the surface of thrombin and lies at the interface 

between the structure. The O ɛ1 of AE21 forms a salt bridge with the amide N of 

TY76 (3.75 Å) and the O ɛ1 forms a salt bridge with the ɛ N of TR75 (2.88 Å). This 

is different from what is observed for variegin, hirulog, hirugen. Density for side 

chain of AE22 is not observed but for the C β which points away from the interface 

towards the solvent. Side chain of AI23 is buried in a hydrophobic cavity lined by 

TI28, TF34, TL65, TY76and TI82. The Ile in this position in variegin, hirugen, hirulog 

all of them appear to be buried within this cavity. AP24 comes close to the 

aromatic ring of TY76 (within 5 Å). Proline  can interact aromatic residues 

favorably, due to both the hydrophobic effect and the interaction between the π 

aromatic face and the polarized C-H bonds, called a CH/π interaction. But this 

proline occupies a similar position in variegin and sulfo-hirudin structures. AS25 

and AD26 side chains points away from thrombin into the solvent. C β of AE27 is 

seen. Side chain oxygens are not seen. But the C β points towards TR77 (distance 

between C β and N η of TR77 is 6.54 and 6.75 Å). This may be due to the 
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oxygens of the glutamate side chain forming ionic interactions with the TR77. AI28 

side chain goes into a cavity formed by TL68 and TI82. 

4.3.9. Structure based variants 

 For further characterization of the structure-activity relationship and to 

identify the functionally important residues responsible for inhibitory activity, we 

synthesized a series of avathrin substitution mutants. From the crystal structure of 

variegin-thrombin complex, we have shown that VH12 binds to the prime subsite 

and its side chain nitrogen forms a hydrogen bond with TS195, hence disrupting the 

charge relay system of the thrombin catalytic triad. However the electron density 

of the cognate AS12 in the avathrin-thrombin crystal structure could not be 

observed. Therefore, to identify if the AS12 in avathrin plays a role similar to 

VHis12 in variegin, we synthesized two mutant peptides replacing this AS12 with 

Ala and His and named these mutants as avathrinS12A and avathrinS12H 

respectively. AvathrinS12A and was a competitive inhibitor with an IC50 and Ki 

of 101.20 ± 1.32 nM and 6075 ± 1.82 pM (Suppl Fig. 4C and 4D). Since the 

replacement of AS12 resulted in a more than 10-fold loss in the inhibitory activity, 

we concluded that AS12 of avathrin was indeed important for disrupting the 

catalytic triad similar to the VH12 of variegin. AvathrinS12H was a tight binding 

inhibitor with IC50 and Ki of 18.51 ± 0.32 nM and 1237.91 ± 2.46 pM.  

 From the crystal structure of variegin in complex with thrombin, we have 

identified the contribution of two proline residues in variegin at position 16 and 

17. VP16 and VP17 induce a kink in the backbone of variegin, which causes a slight 

upward bend in the main chain of the peptide and this kink has been shown to be 
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important for the binding of the P' residues of the peptide with the prime subsite 

of thrombin. In the sequence of avathrin, position 16 and 17 are occupied by 

ALeu16 and AGly17. Therefore, to identify if the two prolines at these two positions 

could introduce a similar kink in the avathrin backbone, hence making the 

interactions of the peptide stronger with the thrombin prime subsite, we replaced 

ALeu16 and AGly17 by two proline residues. The activity of this mutant, 

avathrinL16P,G17P dropped severely and it had an IC50 of 181.32 ± 3.76 nM and 

its binding mode changed from tight binding to competitive mode. The N-

terminal acidic residues of variegin are hypothesized to steer towards the basic 

surface of the exosite-II. The N-terminus of avathrin lacked any acidic residues, 

and therefore, we introduced acidic residues at two positions in the N-terminus of 

avathrin (avathrinG2D,Q5D). This mutant did not gain a significant increase in 

activity and in fact its inhibitory capacity was a little weaker than avathrin with an 

IC50 of 13 ± 1.23 nM and Ki of 981.32 ± 0.45 pM. The Lys at the P1 site of 

avathrin interacts with TAsp189 mediated by a water molecule. The P1 residue of 

most thrombin substrates is Arg, that directly interacts with the side chain oxygen 

of TAsp189. Therefore we substituted the Lys at this position by Arg, and observed 

a 5 fold gain in activity with avathrinK10R showing an IC50 and Ki of 1.32 ± 0.45 

nM and 172.92 ± 2.91 pM . The results of all the variants are summarized in 

Table 4.2. 
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Table 4.2. IC50 and Ki values of avathrin and all its variants 

 

 

4.3.10. Uncleavable avathrin 

 Avathrin possesses the typical sequence like thrombin substrates which 

makes it a favourable candidate to be cleaved while it is bound to the active site. 

Because of the cleavage of avathrin by thrombin, and owing to its flexibility, the 

electron densities for avathrin residues interacting with the thrombin active site 

could not be clearly seen. Therefore, we synthesized a variant of avathrin, called 

β-avathrin in which the P1 Lys was substituted by a β-homoArg. The scissile 

peptide bond of avathrin (Lys10-Ile11) was substituted by a proteolytically stable 

bond (β-homoArg10-Ile11) in β-avathrin. Owing to the proteolytically stable 

bond, β-avathrin could not be cleaved by thrombin for upto 24 hours and it 

retained the inhibition of thrombin's amidolytic activity but its potency was 

significantly reduced. β-avathrin inhibited thrombin with an IC50 of 332 ± 1.32 

Peptide Sequence IC50 (nM) Hill Slope Ki (nM)

Avathrin SGGHQTAVPKISKQGLGGDFEEIPSDEIIE 6.95  0.42 0.92  0.02 0.545  0.003

QT26 QTAVPKISKQGLGGDFEEIPSDEIIE 8.94  0.64 1.22  0.03 0.760  0.009

IS20 ISKQGLGGDFEEIPSDEIIE 12.17  0.32 0.86  0.02 5.760  0.230

GL16 GLGGDFEEIPSDEIIE N. I.* N. I. N. I.

AvathrinS12A SGGHQTAVPKIAKQGLGGDFEEIPSDEIIE 101.20  1.32 0.62  0.01 6.075  0.180

AvathrinS12H SGGHQTAVPKIHKQGLGGDFEEIPSDEIIE 18.51  0.32 0.88  0.02 1.230  0.046

AvathrinL16P,G17P SGGHQTAVPKISKQGPPGDFEEIPSDEIIE 181.32  3.76 0.54  0.02 -

AvathrinG2D,Q5D SDGHDTAVPKISKQGLGGDFEEIPSDEIIE 12.98  1.23 0.71  0.03 0.932  0.015

AvathrinK10R SGGHQTAVPRISKQGLGGDFEEIPSDEIIE 1.32  0.45 1.22  0.01 0.172  0.002

β-avathrin SGGHQTAVPβISKQGLGGDFEEIPSDEIIE 332.16  1.32 0.62  0.01 32.04  0.36
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nM and a hill coefficient of  β-avathrin was a competitive thrombin inhibitor with 

a Ki of 32 nM. Crystallization of β-avathrin in complex with thrombin is in 

process.  

4.3.11. Clot bound thrombin inhibition 

 The blood coagulation cascade culminates with the formation of a 

haemostatic clot and this clot mainly traps active α-thrombin within the clot 

limiting its circulation in the blood. However, the α-thrombin trapped within the 

clot also acts as a reservoir of active thrombin and can become instrumental in 

causing re-thrombosis. Therefore, inhibition of clot bound thrombin may prevent 

re-thrombosis from occurring. Therefore, we evaluated the ability of avathrin to 

inhibit clot bound thrombin. Avathrin was able to inhibit to inhibit clot bound 

thrombin in a dose-dependent manner with an IC50 of 1.12 ± 0.35 µM.  

4.3.12. Ferric chloride carotid artery thrombosis model 

 We used an established FeCl3-induced carotid artery thrombosis model to 

evaluate the in vivo antithrombotic efficacy of avathrin in mice. The average time 

to occlusion in control animals was 7.24 min, while the time to occlusion in 

animals injected with avathrin increased in a dose dependent way.  
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Figure 4.10. in vivo antithrombotic effect of avathrin in murine model. FeCl3-
induced carotid artery thrombosis model was used to evaluate the in vivo 
antithrombotic efficacy of avathrin in mice. Two concentrations (10mg/kg and 3 
mg/kg) of avathrin or bivalirudin were injected in mice and the time to occlusion 
after a FeCl3-induced thrombosis was tested and compared with control animals.   

Time to occlusion in animals injected with 10mg/kg and 3 mg/kg were 24 min 

and 16 min respectively. To compare this efficacy, same doses of the 

commercially available drug, hirulog were also injected in another set of animals. 

Time to occlusion in animals injected with 10mg/kg and 3 mg/kg were 15 min 

and 9 min respectively (Fig. 15.).  



148 
 

4.4. Discussion 

 Several thrombin inhibitors have been identified from the saliva of 

hematophagous animals. To control the host haemostatic system, anticoagulants 

targeting thrombin are produced in the saliva of A. variegatum. We have 

previously described variegin, which is a potent fast binding thrombin inhibitor 

from the salivary gland extracts of female A. variegatum. By using in situ 

hybridization, we identified variegin like sequences from the salivary gland 

extracts of A. variegatum and synthesized one representative peptide- avathrin, 

and have studied it structure-activity relationship and demonstrated its in vivo 

efficacy in a murine model.  

Although avathrin was identified as a variegin like peptide, it showed 

certain striking differences in its sequence and interactions with thrombin. 

Avathrin showed only 40% sequence similarity with variegin. The crystal 

structure of s-variegin relevaled that His12 of variegin was the residue which 

interacted with Ser195 of the thrombin active site catalytic triad and disrupted the 

charge relay system. This residue is replaced by Ser in avathrin sequence, and this 

Ser12 also interact with the catalytic triad of thrombin in a manner similar to 

His12 of variegin. Ser12 of avathrin most likely interacts with His57 of thrombin 

active site hence disrupting the charge relay system of the catalytic triad. 

Unfortunately this was not directly evident from the crystal structure of avathrin 

in complex with thrombin, but we have shown the importance of Ser12 using 

mutagenesis. When Ser12 was replaced with Ala, the potency of the peptide 

dropped > 15 times, which indicated the importance of Ser at that position for the 
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inhibitory effect of avathrin. The native variegin (n-variegin) which was the 

peptide originally isolated from the salivary gland extracts of A. variegatum, was 

glycosylated at Thr14. S-variegin which was synthesized using solid phase 

peptide synthesis which lacked the glycosylation at Thr14  (due to difficulties in 

synthesizing the glycosylated peptide) was 14 times less potent than n-variegin. 

Avathrin sequence however lacked a glycosylation site and instead possessed a 

Gln at that position. And we hypothesized that this Gln14 could be extensively 

involved in electrostatic interactions and compensate for the missing glycosyl 

moiety. Unfortunately, this hypothesis could not be confirmed, since the electron 

density of Gln14 was not observed in the crystal structure. The variegin sequence 

contained more acidic residues (10 residues) as compared to the avathrin 

sequence (6 residues). These acidic residues are important because, the surface of 

thrombin has exosite-I and exosite-II which are highly basic in nature, and the 

acidic residues in the C-terminus of variegin were shown to interact with the 

thrombin exosite-I, while the acidic residues towards the N-terminus of vareigin 

were hypothesized to steer the molecule towards the exosite-II. Avathrin 

contained acidic residues only in its C-terminus, which we have shown to interact 

with exosite-I of thrombin. However, the addition of acidic residues in the N-

terminus of avathrin did not improve its potency, indicated that despite possessing 

a flexible molecular structure, the way avthrin interacts with thrombin is different 

than variegin-thrombin interaction.  

Both variegin and avathrin possess a basic residue at the P1 site which 

makes them susceptible to thrombin cleavage. Therefore, similar to variegin, 
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avathrin was also cleaved by thrombin in a time dependent manner. However, 

avathrin was cleaved at a much slower rate (8-10 hr), compared to vareigin (3 hr). 

This could be attributed to the presence of more number of glycines in the 

avathrin sequence. These glycines could make avathrin more flexible in its 

binding with thrombin, and hence slightly less susceptible to cleavage. This 

flexibility could also be responsible for the slightly lower potency of avathrin 

compared to variegin.  Similar to MH22, the cleaved product of variegin, IS20, 

the cleaved product of avathrin, inhibited thrombin amidolytic activity in a non-

competitve manner, and hence both variegin and avathrin, retained the ability to 

exert a prolonged inhibitory effect over thrombin for as long as 36 hr. 

Variegin and avathrin are distinct from the other described thrombin 

inhibitors (discussed in 1.4.3.) and can be classified to form a new family of 

thrombin inhibitors. Two thrombin inhibitors, tsetse thrombin inhibitor (TTI), 

isolated from tsetse fly Glossinia morsitans morsitans, and NTI-1, isolated from 

the camel tick Hyalomma dromedarii (Barker and Murrell, 2004) have molecular 

sizes in a similar to variegin and avathrin. Despite, similar molecular sizes, they 

appear to be unrelated to variegin and avathrin.      

  In fact, the best comparison of variegin and avathrin could be made with 

the sequence of bivalirudin. Bivalirudin is a synthetic thrombin inhibitor which 

has been developed by linking the exosite-I binding C-terminus of hirudin with 

the active site binding moiety, D-Phe-Pro-Arg-Pro (Bourdon, 1991). Bivalirudin is 

the current anticoagulant of choice for prevention of thrombosis during certain 

cardiovascular procedures (Mavrakanas and Chatzizisis, 2015). Bivalirudin 
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competitively inhibits thrombin with an affinity of 3.23 nM, and is cleaved by 

thrombin. However, unlike variegin and avathrin, which exert prolonged 

inhibitory effect over thrombin, bivalirudin loses its ability to inhibit thrombin 

after it is cleaved. An in vitro comparison of avathrin with bivalirudin therefore 

demonstrated that avathrin, which has an affinity of 545 pM is more potent than 

bivalirudin, and retains the ability to inhibit thrombin for periods longer than 

bivalirudin. Avathrin may therefore perform as a better anticoagulant than 

bivalirudin for the control of cardiovascular disorders. 

We have shown that avathrin is able to inhibit free as well as clot bound 

thrombin and have evaluated the efficacy of avathrin to inhibit thrombosis in an 

established ferric chloride carotid artery thrombosis model. With observations 

from these experiments and inferences from other DTIs, we are certain that 

avathrin can be used for several clinical indications and cardiovascular procedures 

such as (1) prevention of arterial thrombosis and reocclusion during invasive 

procedures such as percutaneous coronary intervention (PCI); (2) venous 

thrombosis prophylaxis after an orthopaedic surgery such as hip or knee 

replacement; (3) management of myocardial infarction (MI) (Bates and Weitz, 

2005). We have also compared the efficacy of avathrin with bivalirudin using in 

murine models, and demonstrated that avathrin may indeed perform as an 

anticoagulant with better efficacy. Safety and efficacy are the two most basic 

clinical parameters which are used for comparison of performance of 

anticoagulants. Safety and efficacy of different anticoagulants vary due to their 

inherent differences in pharmacokinetics, pharmacodynamics, and interactions 
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with other plasma proteins. Therefore, although initial experiments with small 

animals may be a starting point for the development of antithrombotics, details 

about pharmacokinetics, pharmacodynamics, and other side effects should be 

considered before accurate clinical comparisons could be made. We plan to 

conduct pharmacokinetics/ pharmacodynamics of variegin, avathrin and few other 

peptides (ultravariegin, described in 5.3.) to identify the peptide which would 

have the best safety-effficacy balance and develop that peptide as a therapeutic.  
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5.1. Introduction 

 The crucial role of thrombin in haemostasis (discussed in section 1.1.3 and 

4.1) is reflected in the prevalence of the variety of thrombin inhibitors in the 

saliva of haematophagous animals (Dodt et al., 1996). These thrombin inhibitors, 

which are mostly proteinaceous molecules, fall into three categories: canonical, 

non-canonical and exosite binding inhibitors and are grouped into distinct families 

based on similarities in their structure, mode of binding and mechanism of 

inhibition (discussed in detail in 1.4.3.5). Hirudin and hirudin like, kunitz, kazal, 

lipocalin, madanins are some of the examples of different families of thrombin 

inhibitors from which type members have been characterized for their structure-

activity relationship (Huntington, 2014). These families usually possess unique 

secondary and tertiary structures, with several disulfide bonds that give the 

inhibitor a typical fold that confers the unique mechanism of inhibition. These 

inhibitors that bind and inhibit one of the three functional sites of thrombin 

(thrombin active site, exosite-I, or exosite-II) are called univalent inhibitors. 

Inhibitors binding to two of these sites on the surface of thrombin (a combination 

of active site and exosite-I/exosite-II, or exosite-I and exosite-II) have also been 

studied and are named bivalent inhibitors (Warkentin, 2004).  

 The unique structure of thrombin in comparison to the other serine 

proteases of the blood coagulation cascade, allow only the binding of highly 

selective substrates and inhibitors to the thrombin active site (Pechik et al., 2004). 

The thrombin active site contains the classical catalytic triad formed by His57, 

Asp102 and Ser195. The active site is placed in a canyon like cleft which is 
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buried in between two insertion loops (60- and autolysis loops). Thrombin active 

site of has an acidic S1 subsite, hence it preferentially cleaves substrates with a 

basic side chain at the P1 position of the scissile bond (Fuentes-Prior et al., 2000; 

Polgár, 2005). Furthermore, exosite-I and exosite-II which are two highly basic 

surfaces on two opposing sides of the active site form specialized patches which 

allow only specific substrates to enter the active site cleft (Myles et al., 2001). 

Owing to this specialized structure, thrombin inhibitors possess complimentary 

surfaces which can bind to these specific sites of thrombin and selectively inhibit 

it with very high potencies (Malovichko et al., 2013).  

 Out of the described families of thrombin inhibitors, madanins, which bind 

in a substrate like fashion are quickly processed by thrombin resulting in 

fragments that are devoid of thrombin inhibitory activities (Figueiredo et al., 

2013). Variegin and avathrin are the two novel thrombin inhibitors from the 

salivary gland extracts of Amblyomma variegatum, which we have described as 

highly selective thrombin inhibitors. These inhibitors, like madanins are 

processed by thrombin. However, but unlike madanins, they retain the ability to 

inhibit thrombin post processing (Koh et al., 2009). In this chapter, we describe a 

novel family of thrombin inhibitors from ixodid ticks, which bear certain key 

similarities with variegin and avathrin, bind to thrombin with a fast, tight binding 

mode, and inhibit it with high affinities. These inhibitors are processed by 

thrombin, and retain their ability to inhibit thrombin after they are cleaved. We 

hypothesize that some of these inhibitors possess properties that would allow 



156 
 

them to bind thrombin in a trivalent fashion, by binding to the active site as well 

as to thrombin exosite-I and exosite-II.  

  



157 
 

5.2 Materials and methods 

5.2.1. Identification of peptide sequences from Ixodid tick transcriptomes 

 Peptide sequences which were similar to variegin and avathrin were 

identified by performing a standalone BLAST analysis of published 

transcriptomes of Amblyomma variegatum, Rhipicephalus pulchellus, 

Amblyomma americanum, Amblyomma cajenesse, Amblyomma maculatus and 

Dermacentor marjinatum rupifies (Cavassani et al., 2005; Nene et al., 2002). 

These sequences were manually aligned with variegin and avathrin and one 

peptide from each tick was selected for further analysis. 

5.2.2. Peptide synthesis and purification 

 All selected peptides (ultravariegin and peptides from R. sanguineus, A. 

americanum, A. cajenesse, A. maculatum and D. marjinatum rupifies) were 

synthesized using solid-phase peptide synthesis and purified using reversed phase 

HPLC as described in 4.2.2.. The purity and mass of all peptides were determined 

by electrospray ionization mass spectrometry using an LCQ Fleet Ion Trap mass 

spectrometer from Thermo Fisher Scientific (Waltham, MA, USA). These peptide 

sequences and molecular masses of the selected peptides are given in (Table 5.1). 

5.2.3. Inhibition of thrombin amidolytic activity 

 Thrombin amidolytic activity assays for all peptides were performed in 

96-wells microtiter plates as described in Section 4.2.3. All reactions were carried 

out at room temperature in 50 mM Tris buffer (pH 7.4) containing 150 mM NaCl. 

The resulting reaction rates were used to calculate the IC50 and Hill slope.  
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Assays for determining the inhibitory constants were also carried out in a similar 

way. Typically, 100 µl of thrombin (0.81 nM) was added to wells containing 100 

µl of different concentrations of the peptide and 100 µl of different concentrations 

of S2238 (100 µM). The resulting reaction rates and residual velocities were used 

to calculate the inhibitory constants (Ki). 

5.2.4. Inhibition of thrombin fibrinogenolytic activity 

 The abilities of all peptides to prolong fibrinogen clotting time were tested 

as described in 4.2.4. 

5.2.5. Serine protease selectivity 

 The selectivity profile of all peptides was examined against 13 serine 

proteases: anticoagulant serine protease APC, procoagulant serine proteases 

(FXIIa, FXIa, FXa, FIXa, FVIIa, kallikrein, and thrombin), fibrinolytic serine 

proteases (plasmin, TPA, and urokinase), and classic serine proteases 

(chymotrypsin and trypsin). All assays were carried out with respective substrates 

as described in Section 4.2.5. 

5.2.6. Cleavage of peptides by thrombin 

 The ability of thrombin to cleave ultravariegin and peptide from R. 

sanguineus was tested by incubating 150 µM ultravariegin (or R. sanguineus 

peptide) with 5 µM thrombin. The reaction mixtures were incubated in a 50 mM 

Tris buffer (pH 7.4) containing 150 mM NaCl and 1 mg/ml BSA. After different 

incubation times, reactions were quenched with 1% TFA (pH 1.8) and loaded 

onto a Dionex Acclaim100 PepMap microbore column (100 x 1.0 mm) attached 
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to a Dionex nano-HPLC system and eluted using an acetonitrile gradient with 

0.1% TFA and 99.9% milliQ water as eluent A and 0.1% TFA, 19.9% milliQ 

water and 80% ACN as eluent B. New peaks other than those present in the 

control chromatogram were taken as the peaks of cleaved products. The masses of 

the cleaved products were confirmed by analyzing their masses using electrospray 

ionization mass spectrometry. Cleavage products were quantified by integrating 

the peaks and calculating the area under the curves.  

 Effect of different pre-incubation times (hence cleavage), on the thrombin 

inhibitory activity of ultravariegin was measured in a way similar to that 

measured for avathrin as described in 4.2.6. 
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5.3. Results  

5.3.1. Inhibition of thrombin amidolytic activity  

 The ability of different thrombin inhibitor peptides to inhibit the 

amidolytic activity of thrombin was assayed using S2238 as the substrate. The 

selected peptides from different ticks inhibited thrombin amidolytic activity in a 

dose-dependent manner. IC50 and Hill coefficient of all these peptides are outlined 

in Table 5.2. Of special interest was one peptide from the sialome of A. 

variegatum which had an IC50 of 0.5 nM. Since this peptide showed 50% 

sequence identity with variegin and was more potent to inhibit thrombin, this 

peptide was named as ultravariegin. Significant inhibition was observed at 

equimolar concentrations of ultravariegin and thrombin (~80% inhibition at 0.81 

nM ultravariegin) indicating that ultravariegin is a tight binding thrombin 

inhibitor (Fig. 5.2.). Reaction progress curves showed that steady-state 

equilibrium was achieved upon mixing indicating a fast binding mode of 

ultravariegin. Residual reaction velocities of thrombin amidolytic activity in 

presence of ultravariegin at different S2238 concentrations were determined to 

calculate Kiapp. A straight line plot of the linearly increasing Kiapp with increasing 

S2238 concentrations indicated that ultravariegin is a competitive inhibitor and 

these Kiapp were fitted to the Morrison equation using the GraphPad Prizm 

software and a Ki of 1.5 ± 0.19 pM of ultravariegin towards thrombin was 

obtained. Therefore, ultravariegin is a fast, tight binding, competitive inhibitor of 

thrombin.  
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Figure 5.1. Inhibition of thrombin amidolytic assay by peptides of variegin 
family. Selected peptides at different concentrations (3000- 0.0003 nM) were 
tested for their abilities to inhibit thrombin. Ultravariegin, the peptide identified 
from the sialome of A. variegatum was the most potent peptide with an IC50 of 
0.26 ± 0.008 nM. All other peptides had IC50s in the range of 14 to 130 nM.  

Table 5.2. IC50 and Ki values of members of variegin family 

Peptide IC50 (nM) Affinity (nM) 

Avathrin 6.95 ± 0.42 0.545 ± 0.002 

Variegin 4.17 ± 0.93  0.283 ± 0.01  

Ultravariegin 0.26 ± 0.008 0.001  

A. americanum 14.29 ± 0.12 - 

A. maculatum 130.20 ± 1.74 - 

R. sanguineus 42.38 ± 0.62  8.79 ± 0.61 

D. marginatum rupifies 32.48 ± 3.94 6.135 ± 0.39 

(Experiments for determining Ki values for A. americanum and A. maculatum are 
not yet completed) 
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Figure 5.2 Inhibitory constant Ki of ultravariegin. Ki of ultravariegin, the most 
potent member of the vareigin family is shown as a representative. Ultravariegin 
is a tight binding inhibitor of thrombin. Different concentrations of ultravariegin 
were mixed with different concentrations of S2238 (50 μM, 100 μM, 150 μM, 200 

μM, 250 μM, 300 μM, 350 μM and 400 μM and the Ki' was determined. 

Reactions were started with the addition of thrombin (0.81 nM). Data were fitted 
to the Morrison equation equation using GraphPad prizm software (n = 3, error 
bars represent S.D.). (B) Plot of Ki’ against substrate concentration increased 
linearly, indicating ultravariegin competitively inhibited thrombin amidolytic 
activity and the inhibitory constant Ki was determined to be 1.5 ± 0.03 pM (error 
bars represent S.D.).  
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5.3.2. Inhibition of thrombin fibrinogenolytic activity 

 The ability of all thrombin inhibitor peptides from the ixodid ticks to 

inhibit thrombin's fibrinogenolytic activity was tested. Ultravariegin and all other 

peptides prolonged fibrinogen clotting time in a dose-dependent manner (data not 

shown). This observation is consistent with observations for variegin, avathrin 

and the C-terminus of hirudin which also inhibit thrombin's fibrinogenolytic 

activity.  

5.3.3. Serine protease selectivity 

 The serine protease selectivity of ultravariegin and the other peptides was 

examined by screening against 13 serine proteases which included pro- and anti-

coagulant serine proteases of the blood coagulation cascade and the two classic 

serine proteases trypsin and chymotrypsin. At 10 nM, ultravariegin inhibited 

94.56% of thrombin's activity. However, even at 1 µM, ultravariegin showed no 

significant inhibition (<5%) of any of the serine protease other than thrombin 

(Fig. 5.3). The other thrombin inhibitor peptides also showed high selectivities for 

thrombin. Thus, these thrombin inhibitors from ixodid ticks are highly potent and 

selective (more than 4 orders of magnitude) thrombin inhibitors.  

5.3.4. Cleavage of ultravariegin by thrombin  

 Because ultravariegin binds to the thrombin active site, we hypothesized 

that like variegin, avathrin and the other described thrombin inhibitors, 

ultravariegin (and peptide from R. sanguineus) may be prone to proteolytic 

cleavage by thrombin. Preliminary experiments with ultravariegin and the peptide 

from R. sanguineus have shown that these peptides are cleaved by thrombin. 
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Preliminary experiments have also shown that ultravariegin is cleaved completely 

after 16-18 h and further experiments to confirm this observation are currently 

being carried out.  

 

Figure 5.3. Serine protease selectivity of ultravariegin. The serine protease 
selctivity of all members of variegin family was determined by screening them 
against 13 serine proteases: procoagulant serine proteases (FXIIa, FXIa, FXa, 
FIXa, FVIIa, kallikrein and thrombin), anticoagulant serine protease APC, 
fibrinolytic serine proteases (plasmin, tPA and urokinase), and classical serine 
proteases (chymotrypsin and trypsin). The selectivity profile of the most potent 
peptide, ultravariegin is shown in this figure. All members of this family are more 
than 3-5 orders of magnitude more selective towards thrombin than the other 
serine proteases of the blood coagulation cascade. 
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5.4. Discussion 

 We have successfully demonstrated the presence of a novel families of 

thrombin inhibitors in hard ticks and named this family as the ‘variegin family’. 

These peptides which are 25-50 residues long selectively inhibit thrombin with 

affinities in the nanomolar to picomolar range. The absence of cysteines in these 

peptide sequences differentiates them from the other prototypic thrombin 

inhibitors such as hirudin, haemadin, triabin and bothrojaracin which are 

discussed in earlier chapters.  

These peptides possess certain striking similarities because of which they 

are classified as a separate family of thrombin inhibitors. All these peptides 

contain a basic residue at the P1 site and are cleaved by thrombin. The C-termini 

of these peptides contain acidic residues with which they are able to bind to the 

thrombin exosite-I. An interesting observation about the peptides from R. 

sanguineus and D. marginatum rupifies is that in addition to the acidic residues at 

the C-terminus which binds to exosite-I, these peptides have an extended N-

terminus which contains several acidic residues that could bind to thrombin 

exosite-II. Thrombin exosite-II, which is also referred to as the heparin binding 

exosite hosts a number of positively charged residues (She et al., 2014). Heparin 

enhances the inhibition of thrombin by antithrombin by mediating its interaction 

with the thrombin exosite-II. Heparin first forms a complex with antithrombin and 

this complex then docks into the exosite-II by electrostatic coupling. Additionally, 

exosite-II is also involved in the interaction with the platelet receptor, 

glycoprotein Ibα (GPIbα). Cleavage of the PAR1 by thrombin proceeds in a 
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GPIbα dependent manner (Wallace and Smyth, 2013). Several inhibitors binding 

to the thrombin active site and to exosite-I have been studied and are discussed in 

1.4.3. 

Bothrojaracin and haemadin are two inhibitors which are known to bind to 

thrombin exosite-II (Strube et al., 1993). Bothrojaracin, a C-type lectin like 

protein binds to both thrombin exosite-I and exosite-II without binding to the 

active site (Zingali, 1993). Haemadin, the slow tight-binding thrombin inhibitor 

derived from the land living leech docks to the non-prime subsite of thrombin 

with its N-terminal segment in a manner similar to hirudin. In contrast to hirudin, 

the extended acidic C-terminus of haemadin does not interact with the exosite-I, 

but binds to the exosite-II forming direct intermolecular salt bridges (Richardson 

et al., 2000).  

Trivalent thrombin inhibitors inhibitors which bind to the thrombin active 

site and both the thrombin exosite-I and exosite-II simultaneously have not been 

described yet. We hypothesize that the long peptides of the variegin family may 

form a group of trivalent thrombin inhibitors. We have shown that these peptides 

bind the active site and exosite-I of thrombin using standard assays, and are 

currently carrying out experiments to prove that the extended acidic N-terminus 

may bind to the exosite-II. Because of the presence of the basic P1 residue, these 

peptides are cleaved by thrombin, and similar to variegin, avathrin and 

ultravariegin, the cleaved products of these peptides may retain their inhibitory 

property against thrombin.  
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Figure 5.4. Hypothesized mode of binding of trivalent inhibitors of the 
vareigin family. A. Initial recognition of the thrombin active site, exosite-I and 
exosite-II by the C- and N-termini. B. C-terminus would bind to the exosite-I and 
N-terminus would bind to exosite-II. C. Due to the presence of a basic P1 residue, 
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the peptide would be cleaved, and N-terminus would remain bound to the exosite-
II and C-terminus would remain bound to exosite-I. 

Therefore, we propose that these trivalent inhibitors first bind to thrombin active 

site and to exosite-I and exosite-II and they get cleaved by thrombin at the P1 

residue. Subsequently, the cleaved fragments may remain bound to the two 

thrombin exosites (Fig 5.4.). The variegin family of thrombin inhibitors could be 

described as a novel molecular scaffold in hard ticks. Generally different sets of 

scaffold are evolved by hematophagous to target and inhibit various stages of the 

blood coagulation cascade.  

 All molecules within one set possess a basic scaffold, which are further 

tailored to target the same or a different serine protease with a unique mechanism. 

For example, exogenous serine protease inhibitors from ticks are largely of the 

Kunitz type, whereas those from leeches are of the hirudin type. This is due to the 

evolution of different molecules of these sets from a common ancestral molecule. 

Despite having a common molecular scaffold, in come cases, different members 

within a group may show striking structural and mechanistic differences. These 

differences may be due to the adaptation to different hosts, or their evolution to 

target the same or different serine protease under a different condition. Hirudin, 

hirullin and bufrudin are examples of thrombin inhibitors within a single class. 

Yet hirullin and bufrudin show deviations from the features that confer its 

inhibitory property on hirudin. While Hirudo medicinalis, the leech from which 

hirudin is obtained is an amphibian parasite, Hirudinaria manillensis, from which 

both hirullin and bufrudin have been isolated is primarily a mammalian parasite. 

This suggests that hirullin and bufrudin may be tailored to inhibit mammalian 
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thrombin in contrast to hirudin which may be most efficient in inhibiting the 

amphibian enzyme.  

Similarly, we have observed that although members of the variegin family 

possess a basic scaffold, they show striking differences in certain key properties 

like their affinities to inhibit thrombin, times at which they are cleaved by 

thrombin, and the differences in their molecular interactions with thrombin as 

revealed by the crystal structures. Variegin and avathrin which show 40% 

sequence similarity were able to inhibit thrombin amidolytic activity with similar 

affinities while (300-500 pM), ultravariegin which shows 50% sequence 

similarity with variegin inhibited thrombin amidolytic activity with >200 fold 

higher potency compared to variegin (∼ 1.5 pM). The key residue of variegin, 

His12, which was shown to disrupt the catalytic triad of thrombin, was replaced 

by Ser in avathrin and Tyr in ultravariegin. The Ser12 in avathrin plays a role 

similar to His12 of variegin in disrupting the catalytic triad of thrombin and is 

confirmed by mutations (described in detail in 4.3.). Tyr12 in ultravariegin may 

interact with the thrombin catalytic triad using a novel mechanism which could 

confer on it a higher inhibitory potency compared to variegin and avathrin. We 

are currently crystallizing ultravariegin in complex with thrombin, to study the 

details of its structure-activity relationship.  

We are currently also carrying out safety and efficacy experiments in 

animal models to study and compare their in vivo effects. At the clinical level, 

these three molecules may be developed to target different indications depending 

to their potencies. Unfractionated heparin (UFH), the most widely used 
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anticoagulant for cardiovascular disorders shows severe bleeding side effects and 

causes HIT (Coppens et al., 2012). Bivalirudin which is currently the 

anticoagulant of choice for percutaneous coronary intervention (PCI) has recently 

been shown to cause severe bleeding and intracranial haemorrhaege (Yeh et al., 

2015). These limitations indicate the need for novel anticoagulants with better 

safety-efficacy balance that may prove as superior therapeutics. Variegin and 

avathrin, which have >5 times higher potency than bivalirudin may be developed 

for use in PCI, depending on their safety profiles. Ultravariegin, which is 1500 

times more potent than bivalirudin, may be developed for use in cardiopulmonary 

bypass (CPB) and extracorporeal membranous oxygenation (ECMO). CPB and 

ECMO, in which blood is exposed to highly thrombogenic surfaces, require 

anticoagulants with extremely high potencies, and currently heparin is the only 

anticoagulant used for this purpose. Heparin causes unmanageable side-effects 

like severe bleeding and HIT, and no other drug has proven to be safe and 

efficacious enough for effectively managing these patients undergoing these two 

procedures. We are currently evaluating the safety-efficacy balance of 

ultravareigin in animal models and plan to develop it to as a therapeutic for these 

procedures. 
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CHAPTER 6 
 

 

 

 

 

 

 

 

 

 

 

 

 

Factor Xa inhibitors from salivary gland 
extracts of female Rhipicephalus pulchellus 
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6.1. Introduction 

 Based on the theory of interaction of coagulation factors, and on the 

results of clinical outcomes, there is accumulating evidence that FXa may be a 

better target for inhibition than thrombin (Mousa, 2008). FXa occupies a crucial 

juncture in the blood coagulation cascade and produces thrombin. The activation 

of one molecule of FX to FXa can result in the generation of 1000 molecules of 

thrombin (Davie et al., 1991). On a molar basis, FXa is more thrombogenic than 

thrombin and it has also been shown that less heparin is required to inhibit 

thrombosis prior to thrombin formation than afterwards (Lee and Ansell, 2011). 

Additionally, FXa has limited roles other than producing thrombin.  

Thrombin has several important activities within and outside of the 

haemostatic system and therefore the inhibition of thrombin may hamper other 

physiological processes (Borissoff et al., 2009; Myles and Leung, 2008). Some of 

the important prothrombotic roles of thrombin within the haemostatic system are 

its positive feedback on the coagulation factors to amplify its own production and 

its ability to activate platelets. In addition thrombin also has antithrombotic roles 

by activating protein C and thrombin activatable fibrinolysis inhibitor. On the 

other hand, FXa does not possess any role other than thrombin geneneration. FXa 

inhibitors have been shown to be more efficacious than DTIs in decreasing the 

endogenous thrombin potential and in prolonging the lag phase in thrombin 

generation time assays (Szlam, 2007). Therefore, FXa inhibitors may be 

interesting targets, especially to overcome the limitations posed by thrombin 

inhibitors. Whether or not FXa inhibitors are indeed better than thrombin 
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inhibitors with superior safety and efficacy profiles will remain controversial until 

direct clinical comparisons are made.  

 The role of antihaemostatic molecules in the saliva of ixodid ticks has 

already been discussed in the previous chapters. In order to identify novel FXa 

inhibitors from tick saliva, we analyzed the salivary gland extracts of the zebra 

tick, Rhipicephalus pulchellus. We have studied the anti-FXa properties of the 

salivary gland extracts of R. pulchellus and partially purified the FXa inhibitor. 

We are currently carrying out further purification of this protein and we will be 

studying the detailed structure-activity relationship of this protein to develop it as 

an antithrombotic agent.  
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6.2. Materials and Methods 

 Salivary gland extracts of male and female R. pulchellus which were fed 

for 6 days on the host were prepared and the amount of protein was estimated as 

explained in 3.2. Thrombin and FXa inhibitory actitivities of the crude extracts 

and purified fractions was tested in 384 well plates as described in 4.2. 

For the purification of the FXa inhibitor, female salivary gland extracts 

were separated using size exclusion chromatography with a Superdex 75 10/300 

column (GE Healthcare, Uppasala, Sweden). The column was first equilibrated 

with 25 ml of 50 mM Tris buffer (pH 7.4), and 100 salivary gland pairs 

reconstituted in 1 ml MilliQ water were injected into the column. Proteins were 

eluted using the same buffer at a flow rate of 0.8 ml/min and elution was 

monitored at UV wavelengths 215 nm and 280 nm and 0.8 ml fractions were 

collected. 

Fractions from the size exclusion chromatography which showed FXa 

inhibition were further purified using FXa affinity chromatography. FXa was first 

coupled to CNBr-Activated Sepharose beads (GE Healthcare, Uppasala, Sweden) 

according to manufacturer’s protocol. 1 ml of FXa coupled beads were used in a 

10 ml poly-prep column (Bio-rad, California, USA). Protein samples were 

incubated with the beads for 30 min, with gentle rocking. The column was then 

washed with 40 ml Tris buffered saline and proteins were eluted using increasing 

concentrations of NaCl (0.5 M, 1.0 M, 1.5 M and 2.0 M) in 20 mM HCl. Proteins 

were eluted in tubes containing 1M Tris buffer, pH 8.0.  
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Eluted fractions from the FXa affinity chromatography which showed FXa 

inhibition were further purified using reverse phase chromatography using mobile 

phase eluent A as 84.9% H20/15% ACN/0.1% TFA and eluent B as 99.9% 

ACN/0.1% TFA. An Agilent Zorbax 300SB-C18 column was first equilibrated 

with eluent A. 20 µl protein samples were then loaded into the column and eluted 

using a linear gradient of 5% eluent B to 70% eluent B in 70 min at a flow rate of 

40 µl/min. The elution was monitored at UV wavelengths 215 nm and 280 nm 

and 60 µl fractions were collected, lyophilized and tested for anti-FXa activities.  
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6.3. Results 

6.3.1. Protein quantification of Rhipicephalus pulchellus salivary gland 

extracts 

Similar to D. reticulatus, there was a huge difference in the protein content 

in the salivary gland extracts of male and female R. pulchellus. The total protein 

content from the female ticks (43.72 µg/tick) was 5-times > than the total protein 

content of the male ticks (8.34 µg/tick).  

6.3.2. Activity of crude salivary gland extracts 

Equivalent amounts of male and female crude salivary gland extracts were 

assayed for their anti-thrombin and anti-FXa activities. Fig. 6.1. shows the 

percentage inhibition the male and female salivary glands had towards FXa. 

While the female salivary gland extracts were able to inhibit thrombin and FXa 

(92%), the male salivary glands showed little inhibition of thrombin (18%) and 

FXa (4%) amidolytic activity. We proceeded with the purification the FXa-

inhibitor protein.  

6.3.3. Purification of factor Xa inhibitor salivary gland extracts 

Female salivary gland extracts of R. pulchellus were fractionated using 

size exclusion chromatography and their anti-FXa activities were measured as 

described in 6.2. FXa inhibitory activity was observed in two protein peaks 

(FXaI-1 and FXaI-2) (Fig. 6.2).  

For further purification of the FXa inhibitor, an affinity chromatography 

was carried out using a FXa affinity column. Fractions containing FXaI-1 from 
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the size exclusion chromatography were pooled and incubated in the FXa affinity 

column for 30 min before washing away the unbound sample. The sample was 

eluted with increasing salt concentration and all fractions were tested for their 

FXa inhibitory activity. Most of the FXa had eluted in the 1.5 M NaCl fraction.  

The active fraction from the affinity chromatography was further purified 

using a reverse phase microbore column as described in 6.2. There were two 

active inhibitor peaks in the reverse phase chromatogram which were well 

separated (data not shown). However due to limited amount of protein obtained 

from the tick salivary gland extracts, FXa inhibitor could not be sequenced and 

studied further.  
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Figure 6.1. Anti-thrombin and anti-FXa activity of female R. pulchellus 
salivary gland extracts. Equivalent amounts of male and female crude salivary 
gland extracts were assayed for their anti-thrombin and anti-FXa activities. 
Female salivary gland extracts were able to inhibit thrombin and FXa (92%), male 
salivary glands showed little inhibition of thrombin and FXa amidolytic activities. 

 

Figure 6.2. Gel filtration chromatogram of female R. pulchellus salivary 
gland extracts. Fractions collected from size exclusion chromatograhy were 
tested for their anti-FXa activities. An overlay of the protein elution 
chromatogram with the anti-FXa activity was plotted.  
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6.4. Discussion 

We have successfully demonstrated that salivary gland extracts of female 

R. pulchellus contain anti-FXa activity and we have developed a strategy to purify 

this inhibitor. Using three types of chromatographies, the FXa inhibitor could be 

purified. However, the minute amounts of FXa inhibitor in the salivary gland 

extracts made the sequencing of this inhibitor a herculean task. To purify the FXa 

inhibitor for further analysis, several thousands of ticks would be required. We are 

trying to rear more ticks to isolate the FXa inhibitor sufficient for sequencing the 

protein. We are also adapting alternative approaches to identify the inhibitor.  
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CHAPTER 7 

 

 

 

 

 

 

 

 

 

Conclusions and future perspectives  
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7.1. Conclusions 

Haemostasis is the physiological process that prevents blood loss 

following a vascular injury. Blood coagulation, which is an important part of 

haemostasis, involves a cascade of events which finally culminate to form a stable 

blood clot (Davie et al., 1991). The players of the blood coagulation cascade are 

activated one after the other in a stepwise manner and among all players; 

thrombin is the most important serine protease. Thrombin is an effector enzyme 

playing paradoxical roles both as a procoagulant and an anticoagulant, hence 

maintaining the delicate balance between uncontrolled bleeding and formation of 

obstructive thrombi, and allowing sufficient thrombus formation when desired.  

Abnormalities in haemostasis result in unwanted clots which in turn lead 

to the formation of cardiovascular disease. These diseases are the single largest 

killer worldwide and is a heavy contributor to the burden of non-communicable 

diseases. Anticoagulants like direct thrombin inhibitors and direct FXa inhibitors 

are the most commonly used therapeutic options for the control of these unwanted 

clots. 

Traditional development of anticoagulants from natural complex mixtures 

has rather been a cumbersome procedure involving lead separation, identification, 

characterization and development as separate procedures demanding intensive 

manual labour and copious amounts of starting material. Out of the two issues, 

obtaining large amount of starting material from natural sources has been a severe 

concern and has seriously hampered drug development.  
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To address this concern, we have developed a high throughput platform 

for the identification of functionally active molecules targeting the blood 

coagulation cascade and established the proof-of-principle concept with the two 

major enzymes targeted for the control of unwanted clot formation- thrombin and 

FXa. We have developed an on-line post-separation bioassay in which inhibitors 

for these two enzymes from complex mixtures can be separated, identified for 

functional activity and their exact masses can be determined simultaneously. In 

this novel approach, we have coupled a nano-HPLC to a microfluidic chip based 

bioassay system and a mass spectrometer. The instrumentation is designed in such 

a way that eluate from the nano-HPLC is split into two equal parts wherein one 

part is fed into a mass spectrometer (which identifies exact mass) and another part 

is fed into a microfluidic chip where the enzyme assay takes place (which 

determines the functional activity of the molecule). This nano-HPLC coupled to a 

microfluidic bioassay system reduces the amount of starting material and reagent 

consumption by about 100 times than that used by the conventional approaches.  

To identify novel molecules with potent pharmacological activities, we 

have looked into the saliva of ticks. Ticks are obligate parasites that obtain a 

blood meal from their host. The host however, restrains the foreign invader from 

accessing its blood by various defense mechanisms such as vasoconstriction, 

blood coagulation and immune reaction. To counter these host defense 

mechanisms, the blood sucking parasites infuse their saliva which is a complex 

cocktail of vasodilatory, anti-clotting, anti-platelet and immune suppressors, into 

the host blood at the blood feeding site. The evolution of hematophagy has 
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occurred on at least 20 independent times in the arthropod genera and at each of 

these occasions, novel mechanisms and distinct protein scaffolds to target the host 

hemostatic and immune system have been adopted. Hence tick saliva presents a 

unique pharmacopoeia which can be explored for novel proteins with enormous 

significance. 

Ixodid ticks - a specialized group among arthropods, are long term feeders 

that remain attached to the host and feed on the host blood for periods as long as 

9-12 days. However, striking differences in the feeding behaviours between male 

and female ticks of the same species are observed. For example, the female ticks 

feed and increase in size by about 100 times of the unfed body weight, while the 

male ticks grow barely about 2 times their body weight after feeding.  

Because it is through the saliva that ticks obtain the host blood, tick 

feeding triggers the expression of new protein in the saliva, and these newly 

synthesized proteins may be the regulators which disarm the host defense 

mechanisms enabling prolonged tick feeding. Therefore, we have carried out 

transriptomic (Illumina) and quantitative proteomic (iTRAQ) profiling of the tick 

salivary gland extract of an ixodid tick, Dermacentor reticulatus at different 

stages of feeding to identify sex specific differences and the special proteins 

implicated in tick feeding. With this deep sequencing approach, we have 

identified more than 30,000 transcripts in the transcriptome, and over 400 proteins 

in the proteome of the male and female ticks. We have provided evidence that 

feeding stage-specific expression occurs in tick saliva, and the alteration in the 

levels of these proteins is what mediates prolonged tick feeding. We are currently 
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carrying out recombinant expression of some of these proteins to study their 

structure-activity relationships. Because these proteins are mainly anticoagulants, 

anti-platelets, vasodilators and immune suppressors, this library of tick saliva not 

only presents a unique pharmacopoeia of molecules which can be developed into 

drugs, but also pinpoints towards specific sequences which are unique and most 

interesting members of these specific families.  

DTIs and direct FXa inhibitors have been the most preferred 

anticoagulants for the prevention and control of cardiovascular disorders. Despite 

being the most sought after options, these anticoagulants are fraught with 

limitations and do not present a good safety-efficacy balance. In our quest for 

better and safer anticoagulants, we have identified and characterized a novel 

thrombin inhibitor-avathrin from the salivary glands Ambylomma variegatum. We 

have solved the 3D-crystal structure of avathrin in complex with thrombin to 

study detailed structure-activity relationships. We have successfully demonstrated 

the activities of avathrin using in vitro assays and in vivo animal models. We have 

also identified similar sequences from other tick species and demonstrated the 

presence of a family of thrombin inhibitors in ixodid ticks. These peptides are 

short simple sequences with a unique mechanism of inhibiting thrombin active 

site and exosite with affinities in the picomolar to femtomolar range. We have 

also conceived and synthesized structure based variants of these peptides with 

better potencies and different modes of inhibition than the native peptides. We are 

currently evaluating the safety-efficacy balance and pharmacokinetics-

pharmacodynamics of some of these peptides in animal models to provide 
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evidence that these peptides hit the sweet spot and fulfil an unmet need in the 

current day anticoagulant market.  
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7.2. Future Perspectives 

7.2.1. Development of at-line nano-fractionation assay for identifying 

thrombin and factor Xa inhibitors 

 We plan to develop an at-line nano-fractionation assay in collaboration 

with the Biomolecular Analysis group at VU University, Amsterdam. This 

approach would overcome the limitations posed by the online assay (described in 

Chapter 2). Several additives are used in the online assay to prevent the 

adsorbance of assay reagents to the walls of the microfluidic chip. Because the 

microfluidic chip has a narrow internal diameter, the mixing of assay reagents and 

additives with organic eluents from the nano-LC causes precipitation of the 

enzymes and substrates, when complex mixtures such as tick salivary glands are 

used in the online assay.  

 With the at-line nano-fractionation assay, we will be able to identify novel 

thrombin and FXa inhibitors from tick salivary gland extracts. Briefly, in this 

approach, we plan to split the eluate from the nano-LC in a 1:9 ratio using a post-

column flow split (similar to the T-splitter used in the online assay). The smaller 

fraction will be directed towards the MS and the larger fraction will be directed 

towards a fraction collection device. The fractions eluting from the nano-LC will 

be collected in 384 well-microtiter plates and will be subjected to freeze drying 

using a vacuum centrifuge. Followed by the freeze drying, the entire plate will be 

subjected to a thrombin/ FXa bioassay using the fluorescence substrate- R22124. 

To achieve an excellent separation, and prevent mixing of the compounds eluting 
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from the nano-LC, the fraction collection device will be operated at the highest 

possible resolution (3-12 s/well).  

 

Figure 7.1. At-line nano fractionation set-up. Complex mixtures will be 
separated using a reverse phase column connected to the nano-LC. The eluate 
from the nano-LC will be split in a 1:9 ratio using a T-splitter. The smaller 
fraction will be directed towards the MS where the masses of the eluting 
compounds will be identified and the larger fraction will be directed towards a 
fractionantion device, where the eluate will be fractionated into 384-well 
microtiter plates. The microtiter plates will be freeze dried and a fluorescence 
based thrombin/FXa assay will be carried to identify wells in which the inhibitors 
have been collected. By correlating the times at which the inhibitors are identified 
in the MS and in the bioassay, their accurate masses will be identified.   

With information from the fluorescence assay, the wells containing inhibitors will 

be identified, and the parallel MS data will reveal the masses of the eluting 

compounds. By correlating the times at which the inhibitor is identified in the 

bioassay and in the MS, the exact masses of the inhibitors will be identified. 
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Subsequently, inhibitors in those wells will be subjected to in-solution tryptic 

digestion and using the transcriptome library as the database, peptides from the 

tryptic digest which match with proteins in the library will be identified.  

7.2.2. Recombinant expression and functional studies of monolaris proteins 

 The transcriptome and proteome library of male and female salivary gland 

extracts of D. reticulatus represents a pharmacopeia of novel proteins which could 

serve as potential drug leads for the control of several cardiovascular disorders. In 

our study we have identified a novel subclass of monolaris proteins which contain 

two extra cysteines at the N-terminus of the molecules and these proteins are 

specifically overexpressed in the females (e.g. SigP-383232, DrIxod-9948 and 

DrIxod-595427 are 1200, 1300 and 2800 time over-expressed in the females 

compared to the males). With one extra disulphide bond, these proteins may have 

a fold that is different than the usual Kunitz proteins, and this novel fold may 

confer an interesting functional property on the protein. We will carry out 

recombinant expression of three such monolaris proteins in insect cell lines that 

would allow appropriate disulphide bond formation of the expressed proteins. 

Briefly, the synthetic genes for these transcripts will be ordered and the genes will 

be first be cloned and amplified in plasmids in bacterial cells. The plasmids will 

be sequenced to check for the sequence and the orientation of the insert. These 

plasmids will then be transfected into High FiveTM insect cell lines and the protein 

expression will be carried out in these cells. Once the proteins are expressed and 

purified from these cell lines, the masses and disulphide bonding patterns of these 

proteins will be identified using ESI-MS and disulphide mapping experiments.  
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 Further, a serine protease screning assay will be carried out using the pro-

and anticoagulant enzymes of the blood coagulation cascade to identify the targets 

of these Kunitz proteins. Having a target serine protease that is inhibited by these 

proteins identified, all the kinetics and structure activity relationships of these 

proteins with the target enzyme will be studied. We will also try to understand 

detailed structure activity relationships by solving the co-crystal structure of the 

Kunitz inhibitor with the serine protease. Further site directed mutagenesis to 

identify key residues important for the binding of the inhibitor to the serine 

protease will also be carried out. Site directed mutagenesis will also be used to 

improve the selectivity and  affinity of the inhibitors to target specific enzymes 

while leaving the other serine proteases unaffected.  

 Based on the crystal structure and the information about the key residues 

we will try to design shorter pepdide sequences that would retain the inhibitory 

effects of the full length Kunitz proteins. Being short peptides, these would be 

easy to produce in larger amounts, and we will be able to study the efficacy and 

safety profiles of these inhibitors in smaller animals models and develop them 

further as therapeutics.  
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7.2.3. Preclinical studies of avathrin and other peptides of the variegin family  

For the development of avathrin and ultravareigin as therapeutics, their in 

vivo efficacy and safety in rodent models will be studied. For the efficacy models, 

we will use the well established ferric chloride induced thrombosis of the carotid 

arteries. Briefly, in this set up, the carotid artery of rats will be exposed using 

blunt end dissection, and increasing amounts of the peptide will be infused 

intravenously into the circulation by cannulating the femoral vein. A probe will be 

placed on the carotid artery and the blood flow will be monitored. After the 

stabilization of the blood flow, a filter paper saturated with ferric chloride will be 

placed on the carotid artery to induce thrombosis. The time taken for an occlusion 

will be monitored by observing the blood flow. An ED50 curve will be plotted and 

the most efficacious dose will be determined.  

For determining a safe dose of the anticoagulant, a tail bleeding rat model 

will be used. In this model, the peptide will be infused intravenously into the 

femoral vein. Subsequently an insicion in the tail vein will be made using a 

Surgicutt device and the blood will blotted using a filter paper and the time taken 

for the bleeding to stop will be noted. Plotting the bleeding times, and the ED50 

values on the same graph, a therapeutic window for avathrin and ultravariegin 

will be identified. This therapeutic window will be compared to the therapeutic 

window of other commercially available and most extensively used drugs such as 

unfractionated heparin and hirulog-1. This would give a head-to-head comparison 

of the already available drugs with our peptides. Preliminary experiments for this 

part are already being carried out using our first peptide- variegin and that data 
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already shows that doses at which our peptides possess an efficient antithrombotic 

effect do not cause significant bleeding in comparison to the other existing drugs.  

Pharmacokinetics/ pharmacodynamics experiments will be carried out to 

determine the clearance of the peptide from the animals and duration of the 

efficacy of the antithrombotic effect. All of this data will together indicate the 

doses that would serve as therapeutic doses in animals. These doses will then be 

translated to other higher animals like pigs and similar and more detailed 

experiments will be carried out in larger animal models. Other models like the 

cardiopulmonary bypass model will also be studied with our peptides in pigs. 

These results will be give us insights about the doses of avathrin and ultravariegin 

that could be initially tried in humans after obtaining all the necessary approvals. 
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