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Summary

Advances in microelectronics and military hardware have led to a continual

increase in heat flux removal requirements. Hence, methods for removal of high

heat fluxes have attracted enormous attention in recent years. Flow boiling in

microchannels has been identified as a promising method because of advantages

like high heat transfer coefficient, low mass flow rate requirement, compact

designs, good hot spot mitigation capability and good temperature uniformity

across the length.

Flow boiling is a highly transient phenomena which leads to significant

temporal changes in heat transfer. Hence, transient nature of flow-regime and

heat transfer need to be considered. However, most experimental investigations

have only studied time-averaged heat transfer variables. Consequently, there is

still a dearth of fundamental understanding of boiling mechanisms and predic-

tive models.

The present work studies both, time-averaged as well as local, transient

heat transfer along with flow visualizations during flow boiling of de-ionized

water in a single microchannel. Micro-channel heights studied were 0.14, 0.28

and 0.42 mm, the tested mass fluxes ranged from 200− 1000 kg/m2s while the

tested heat fluxes were up to 105 W/cm2.

For transient studies, local temperature data and visual data from the high

speed camera were captured synchronously using a TTL signal, at a frequency

of 10 kHz and 5 kHz respectively. A solution methodology for Inverse Heat
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Conduction Problem (IHCP) was used to calculate the transient wetted surface

heat flux, temperature and heat transfer coefficient which were then correlated

with the visual data. Depending on the flow boiling phenomena, there were

significant variations in heat transfer with time. During the passage of vapour

slugs, transient heat transfer coefficient values peaked and the peak values were

much greater than the average values. Thus, thin film evaporation was found

to be primarily responsible for enhanced heat transfer. Peak values during thin

film evaporation were dependent on how close was the slug incipience from

sensor location and whether the flow just downstream of the slug was stagnated.

Small secondary peaks in heat transfer coefficient were also observed during the

passage of 3-phase contact line. If the liquid slugs were short and fast moving,

heat transfer coefficient was relatively higher compared to long, slow moving

liquid slugs.

Based on transient temperature data, a methodology has been developed

for detection of flow regimes in a microchannel as an alternative to flow visu-

alization. The Fourier Transform of the temperature-time data were corrected

for damping due to the solid substrate to get a true amplitude-frequency do-

main of temperature on the wetted surface. Depending on the prevalent flow

regime, there were notable differences in the amplitudes in frequency domain

of temperature-time data. This technique is potentially useful for experiments

involving multiple inter-layer microchannels within a 3D IC package since high-

speed camera cannot be used. This technique may also be used for design of a

vi
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feed-back loop to control the flow-rate which in turn controls the prevalent flow-

regime to maximize heat transfer.
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Chapter 1

Introduction

1.1 Background

The continuing increase in integration density of transistors onto micro-

processor chips is also leading to increase in power generation and heat dissipa-

tion from microprocessors [1]. Already, the current challenge is to remove heat

fluxes greater than 100 W/cm2 while maintaining device temperature below

70 oC due to reliability concerns of the chips [2]. Moreover, for military appli-

cations like lasers and radars, the challenge is to remove heat fluxes exceeding

10, 000 W/cm2 [3].

It is important to consider reliability, size, noise and power consumption

of the cooling solution technology to ensure successful practical application [4].

Apart from the conventional air cooling technology, other cooling technologies

worth mentioning are single phase microchannel cooling, 2-phase microchan-

nel cooling, spray cooling, thermo-syphons, heat pipes, refrigeration systems,

electro-wetting cooling, immersion cooling, cryogenic cooling, thermoelectric

coolers, etc [5]. Among these, microchannel cooling has been considered to
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Chapter 1 Introduction

be one of the most promising technologies ever since Tuckerman and Pease pro-

posed this idea in 1981 [1]. Microchannel cooling technology may involve either

single phase flow or two phase flow with or without phase change. Since pio-

neering work on flow boiling in narrow channels by Lazarek and Black [6], flow

boiling in microchannels has been a topic of much interest among researchers.

This is due to the fact that very high heat transfer coefficient can be achieved and

very high heat fluxes can be dissipated. In fact, Mudawar and Bowers [7] could

successfully dissipate heat flux of 10 kW/cm2 using this technology. Moreover,

the large latent heat of vaporization of the evaporating fluid improves tempera-

ture uniformity by maintaining the working fluid at the saturation temperature at

comparatively much smaller flow rates than its single-phase counterparts, thus

leading to a smaller pressure drop and a small pumping power requirement,

leading to smaller pumps and more compact designs [4]. Flow boiling can also

handle localized hot spots effectively as shown by Alam and Lee [8] as well as

by Ritchey et al.[9]. Research in this field is hence well warranted.

Research work in the field of microchannel flow boiling is quite diverse.

Many researchers carry out parametric studies for detailed understanding of the

effect of channel dimensions, wall heat fluxes, mass fluxes etc. on heat trans-

fer, pressure drop, flow instabilities etc [10–13]. Large data-sets have also lead

to a number of developed correlations and semi-analytical models for predic-

tion of heat transfer coefficient, pressure drop and Critical Heat Flux [14–16].

Some researchers have also developed flow-regime maps [16–18] and criteria for

determination of transition from macro-channel to micro-channel flow boiling
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[19, 20]. There is significant literature on active/passive techniques for enhance-

ment of flow boiling heat transfer and Critical Heat Flux as well as for reduction

of instabilities and pressure drop. Some achieve this by surface enhancement

[1, 21–28], others by the use of novel fins [4, 29–32] and yet others by some

active means [33]. With the advent of high performance computing, numerical

simulations have also gained significant attention in the field [34–39].

In spite of a plethora of research and although advantages of this cooling

technology are aplenty, major challenges limit its commercial application. A

fundamental understanding of boiling mechanisms is still missing [10]. Addi-

tionally, flow boiling being a highly transient phenomena the heat transfer coef-

ficient is time-dependent since it varies with various stages in bubble growth, as

well as with cyclical passage of liquid slug, an evaporating elongated bubble and

vapor slug as discussed by Thome et al.[15]. Hence, there is a need to consider

the transient nature of flow and consequently the heat transfer as well. Although

there is a plethora of research on flow boiling in mini/micro-channels, the fo-

cus on experimental studies has largely been on the variation of quasi-steady

state heat transfer coefficient with wall heat flux, wall superheat, vapor quality

(the ratio of mass flow rate of the vapour phase to the total mass flow rate of

the coolant), mass flux, coolants, mini/microchannel sizes etc rather than study

of the transient nature of heat transfer. Quite likely due to the severe dearth

of transient studies, the existing heat transfer models (based on time averaged

heat transfer data) still lack general applicability. There is also a dearth of pre-

dictive/diagnostic methods for prediction/detection of flow-regimes during flow
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boiling in mini/microchannels. Before micro-channel flow boiling can become

a commercial technology, these issues need to be resolved.

1.2 Objectives

1. To study the effect of wall heat flux, mass flux and channel height on

time-averaged pressure drop and heat transfer during micro-channel flow

boiling.

2. To test, optimize and apply a solution methodology for Inverse Heat Con-

duction Problem (IHCP) for calculation of transient wall temperature, heat

flux and heat transfer coefficient.

3. To correlate video-frames at specific time-intervals with transient tem-

perature, heat flux and heat transfer coefficient (calculated using IHCP

solution methodology) and thus analyze and understand the heat transfer

mechanisms during flow-boiling in a micro-channel, especially the rela-

tive importance of heat transfer during the passage of vapour slug, liquid

slug and 3-phase contact line and the effect of hydrodynamics on various

heat transfer mechanisms.

4. To develop a diagnostic technique for flow-regime detection during micro-

channel flow boiling, based on transient temperature data.

To meet these objectives, experiments on flow boiling have been conducted

on a single micro-channel. Time averaged and transient temperature as well as

pressure data were captured along with flow visualizations.
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1.3 Scope of the Present Work

In this work, apart from collection of time-averaged data, synchronous

temperature data logging and flow visualizations are carried out. This is fol-

lowed by application of solution methodology of IHCP which computes the

transient heat transfer coefficient, wall heat flux and temperature which are cor-

related to video-frames at specific instances. This gives a very unique perspec-

tive into heat transfer mechanisms prevalent during different flow boiling phe-

nomena. It thus serves to improve the fundamental understanding of transient

heat transfer evolution during flow boiling. The methodology and results also

serve to contribute to the development and validation of semi-analytical heat

transfer models as well as for validation of numerical simulations. The insights

gained from this kind of study can also be utilized to develop novel techniques

for enhancement of flow boiling heat transfer.

Based on corrected Fast Fourier Transform of the temperature-time data,

a novel technique that can potentially detect flow regimes, has also been de-

veloped. Such a technique can be especially of use for experiments involving

multiple layers of microchannels in a 3D IC package since flow-visualization

with a high-speed camera would not be possible for internal stacks. The tech-

nique may also be of utility for design of a feed-back flow loop that may have

variable flow-rate to control the prevalent flow-regime to maximize heat transfer

and prevent CHF (Critical Heat Flux).
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1.4 Thesis Structure

A literature review on mini/micro-channel flow boiling has been presented

in Chapter 2. Chapter 3 describes the experimental setup, the test section as

well as the procedure for conducting microchannel flow-boiling experiments.

Since some of the data-reduction procedures are quite unique and elaborate,

Chapter 4 has been fully devoted to it. It has a dedicated literature review as

well. In Chapter 5, experimental results are shown and detailed discussions are

provided for time-averaged as well as transient variables based on video-frames

and existing theories in literature. The effect of wall heat flux, mass flux as

well as channel height is discussed. It is also shown how transient temperature

signals can be used for detection of flow-regimes. Chapter 6 concludes the thesis

and gives recommendations for future work. Appendix A shows the procedure

for uncertainty analysis.
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Chapter 2

Literature Review

This chapter begins with a general introduction to regimes during flow-

boiling. This is followed by a review on quantitative criteria for differentiation

between unconfined and confined flows. Next, the effects of various parameters

and regimes on flow boiling heat transfer and pressure drop, as available in the

literature, are discussed. Based on time-averaged as well as transient studies car-

ried out by a number of researchers, explanation of various heat transfer mech-

anisms thought to be responsible for heat transfer during flow-boiling in micro-

domains is presented. A general review of correlations and semi-empirical mod-

els for heat transfer is also given. This is followed by a discussion on predic-

tion/detection methods for flow-regimes. Research gaps are identified, based on

which research work presented in this thesis is carried out.

2.1 Flow Boiling Regimes

Flow Boiling in channels is an inherently complex phenomena due to the

presence of 2-phases that have changing mass/void fractions. Consequently,

various flow-regimes are possible as shown schematically in Figure 2.1. It is
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important to understand the prevalent flow regime during experiments since heat

transfer and pressure drop characteristics change with the prevalent flow-regime.

FIGURE 2.1: Flow boiling regimes : (a) Bubbly flow (b) Slug flow (c) Churn
flow (d) Wispy annular flow (e) Annular flow

[11]

Major flow-regimes typically encountered during flow-boiling are

(a) Bubbly flow: It is characterized by the presence of round bubbles smaller

than the cross section of the channels. The bubbles nucleate and grow at

the walls and later detach.
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(b) Slug flow: When bubbles occupy the entire cross-section of the channels

and are forced to grow along the flow length, such a flow is called slug

flow. Sometimes, small bubbles may exist in the liquid slugs that are

between the elongated vapour bubbles/slugs. During passage of vapour

slugs, there is a thin film of liquid trapped between the vapour phase and

the heated wall.

(c) Churn flow: The churn flow regime is characterized by oddly shaped

chunks of flowing vapour bubbles. There may still be nucleation of large

bubbles at a high rate or nucleation may be completely suppressed.

(d) Wispy annular flow: There exists a thick film of unstable liquid adhering

to the wall and an annulus is formed consisting of vapor core. There may

be irregularly-shaped droplets entrained in the annular region and some

small vapor bubbles may nucleate in the liquid layer.

(e) Annular flow: The liquid layer is thinner compared to wispy annular flow.

The interface may become wavy. Nucleation is typically suppressed [11].

2.2 Transition from Unconfined Flow to Confined Flow

The macro-scale models cannot be applied for predicting flow boiling heat

transfer coefficients in microchannels since they are based on the nucleate boil-

ing and convective boiling mechanisms [15]. Also, with decrease in dimensions

of the channels, since the surface area to volume ratio becomes much larger,

surface forces become more dominant than the body forces. This is contrary to

9



Chapter 2 Literature Review

macro-scale flows and it may completely change the flow physics. For instance,

unlike for macro-channels, a nucleate bubble would be confined by the small

cross section of the microchannel before departure and there is no stratification

observed at micro-scales. Hence micro-scale flow boiling requires exclusive

studies rather than extrapolations from research on macro-scale flow boiling.

Several researchers have suggested using various criteria that differentiate

confined micro-scale flows from unconfined flows. Mehendale and Jacobi [40]

suggested that channels with diameters ranging from 1− 100 µm must be clas-

sified as micro-channels while Kandlikar [41] opined that channel sizes in the

range of 10− 200 µm must be considered as micro-channels.

Some researchers have also incorporated fluid properties into the transition

criteria to better predict the pre-dominance of vapour bubble confinement. Kew

and Cornwell [19] suggested that if the hydraulic diameters of channels were

such that Confinement number given by equation (2.1) was greater than 0.5,

then it should be considered as a micro-channel. While Ong and Thome [42]

observed confinement effects becoming predominant at a threshold value of≈ 1.

Co =
[σst/(g(ρl − ρv))]0.5

DH

(2.1)

Lee and Mudawar [43] argued that for flow-boiling, it is not just the surface

tension and the buoyancy force that are important but drag force on the bubble

too is important since it determines the bubble size during departure and thus
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influences confinement. Diameter indicating a transition from macrochannel

flow to micro-scale flows was derived and is expressed by equation (2.2).

Dtran =
160

9

(σρl − 3µlG)

G2
(2.2)

2.3 Fundamentals of Flow Boiling in Microchannels

In 1982, Lazarek and Black [6] conducted a study on flow boiling in 0.31

cm diameter tube with R113 as the coolant. The inlet condition was sub-cooled

liquid. They noted that for saturated boiling, heat transfer coefficient was inde-

pendent of vapour quality. This, according to them implied that nucleate boil-

ing was the heat transfer mechanism. While for negative qualities, HTC (Heat

Transfer Coefficient) increased monotonically with quality.

Wambsganss et al. [44] conducted flow boiling heat transfer studies in a

tube with a diameter of 2.92 mm with R113 as the refrigerant. The tested heat

fluxes and mass fluxes ranged from 8.8−90.75 kW/m2 and 50−300 kg/(m2s)

respectively resulting in vapour quality up to 0.9. Their results indicated that

HTC is a strong function of heat flux but a weak function of mass flux and mass

quality. A flow pattern map was used to determine that the slug flow pattern was

dominant and the heat transfer mechanism was concluded to be nucleate boiling.

Yu et al. [45] conducted studies on a small horizontal tube of 2.98 mm

diameter using water as the coolant. The mass fluxes ranged from 50 − 200
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kg/(m2s). They observed that heat transfer was heat-flux dependent and inde-

pendent of mass-flux. Their trend was consistent with boiling in small channels

but significantly different from larger-channel boiling wherein mass flux can

dominate. Hence they concluded that nucleation mechanism was dominant over

the convective mechanism even for high qualities.

Agostini et al. [46, 47] conducted a study on a silicon heat sink composed

of 67 microchannels, 223 µm wide, 680 µm high and 20 mm long using re-

frigerants R236fa and R245fa. For R236fa, heat flux and mass flux range tested

were 3.6− 221 W/cm2 and 281− 1501 kg/(m2s) respectively. The exit vapour

quality ranged from 2 − 75 %. They noted that at low heat flux, vapour quality

and mass velocity, HTC increased with vapour quality and was independent of

heat flux and mass velocity. While, for medium heat fluxes, HTC was nearly in-

dependent of the vapour quality, increased with heat flux and was weakly depen-

dent on the mass flux. But, for very high heat fluxes, the HTC increased weakly

with mass flux and decreased with increasing heat flux. Heat transfer was thus

predominantly dependent on heat flux. For R245fa, their test conditions covered

heat fluxes and mass fluxes from 3.6− 190 W/cm2 and 281− 1501 kg/(m2s).

Exit vapour qualities ranged up to 78 %. Again, it was found that at low heat

flux, HTC increased with vapour quality and was independent of heat flux and

mass velocity. At medium heat flux, HTC increased with heat flux, increased

slightly with mass flux and was not dependent on vapour quality. At high heat

flux, HTC decreased with increasing heat flux and vapour quality and increased

with mass velocity. For R245fa, the influence of mass velocity on HTC was
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more than that for R236fa. However, at low heat flux, the heat transfer coeffi-

cient shows essentially no dependence on mass velocity for both fluids.

Chen and Garimella [48] conducted flow boiling experiments on a heat sink

consisting of 60 parallel microchannels, each of which was 100 µm wide and

389 µm deep. Flow rates tested were in the range of 20 − 80 ml/min and the

inlet sub-cooling was fixed at 26 K. The working fluid used was FC-77. With

increase in heat flux, successive flow patterns observed were bubbly flow, slug

flow, elongated bubble flow or annular flow, alternating wispy-annular/churn

flow, and wall dryout. Hence, HTC varied substantially with heat flux. Their

results also suggest an increase in HTC with flow-rate. Pressure drop was found

to increase linearly with heat flux. They highlighted one of their major findings

to be that HTC was enhanced in the upstream and downstream region of the

microchannels due to changes in flow patterns during instabilities.

Harirchian and Garimella [49] pointed out that when flow is unconfined,

heat transfer and boiling curves are independent of the channel size as well as

the flow rate. Pressure drop and pumping power have only minor sensitivity to

channel size and flow rate. During confined flow, HTC increases as the micro-

channel cross sectional area decreases. After the onset of nucleate boiling, the

HTC is independent of mass flux and increases with heat flux. But at higher

heat fluxes, since contribution from convective heat transfer begins to dominate

that of nucleate boiling, the heat transfer coefficient becomes a function of mass

flux and increases with increasing mass flux. Thin liquid film evaporation that

13



Chapter 2 Literature Review

is responsible for larger values of HTC as compared to unconfined flow where

nucleate boiling is dominant.

Qu and Mudawar [50] conducted flow boiling experiments on a heat sink

with 21 parallel microchannels with a width of 231 µm and height of 713 µm

using de-ionized water as the coolant. Mass flux tested ranged from 135 to

402 kg/(m2s). Two, highly sub-cooled inlets, 30 ◦C and 60 ◦C were tested.

Abrupt transition to annular flow regime was observed near the point of zero

thermodynamic equilibrium quality. They concluded the dominant heat transfer

mechanism to be forced convective boiling rather than nucleate boiling. HTC

decreased with vapour quality. This was attributed to appreciable droplet en-

trainment at the onset of annular flow regime development, and the increase in

mass flow rate of the annular film by droplet deposition downstream. HTC was a

strong function of mass velocity, and only a weak function of heat flux. Another

publication ([51]) by the same authors with same microchannel geometry and

flow conditions revealed a steep rise in HTC with thermodynamic equilibrium

vapour quality (and heat flux) for negative vapour quality (sub-cooled region).

However, for saturated boiling region, HTC decreased with vapour quality.

Lee and Mudawar [43], conducted a study on four microchannel heat sinks

using HFE7100 as the working fluid. The inlet condition was significantly sub-

cooled. Three different inlet temperatures 44, 64 and 74 ◦C lower than saturation

temperature were tested. They found that high sub-cooling greatly reduced bub-

ble departure diameter as well as the void fraction, and it prevented flow pattern

transitions beyond the bubbly regime.
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Balasubramanian et al. [13] conducted a study on multi-microchannel heat

sink. Each of the channels was 300 µm wide and 1200 µm deep. HTC var-

ied with flow-boiling regime and the corresponding heat transfer mechanism.

HTC increases with heat flux and exit vapour quality in the nucleate boiling

regime, reaches a peak and then dips down after transitioning to intermittent

flow regime where it was found to be remaining almost constant. After tran-

sitioning to annular flow regime, HTC increases again, reaches a peak due to

thin film evaporation and then drops as dry-out progresses. Thus, HTC had a

’M’ shaped variation with heat flux and exit vapour quality. However, in the

sub-cooled region of the graph, the HTC increased monotonically with heat flux

and consequently with exit vapour quality. Mass flux had a pronounced effect

on HTC too beyond the nucleate boiling regime.

Researchers have also been interested in low-aspect ratio microchannels

and micro-gaps. Lee and lee [52] conducted experiments for micro-gap size

ranging from 0.4 − 2 mm using R113 as the test fluid. The tested mass fluxes

and heat fluxes respectively ranged from 50 − 200 kg/m2 and 0 − 15 kW/m2.

The vapour quality ranged from 0.15 − 0.75 and the flow pattern observed was

annular. The heat transfer coefficient increased with mass flux and local quality

while the effect of heat flux was not significant.

Kandlikar and Balasubramanian [53] studied flow boiling characteristics

of water in a set of six parallel mini-channels, each of which was 1054 µm

wide and 197 µm deep. They used a high-speed camera to capture two-phase

flow structure and liquid-vapor interactions. The observed flow patterns were
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bubbly flow, thin film nucleation, plug flow, annular flow and churn flow. Even

during annular flow or slug flow, bubbles were found to nucleate on the wall.

Hence, they concluded the dominance of nucleate boiling which was further

substantiated by the observed decreasing trend of HTC with quality.

Bar-Cohen and Rahim [54] performed a detailed analysis of microchan-

nel and micro-gap heat transfer data gathered from the open literature. They

first sorted the data by the use of Taitel and Dukler flow regime map and thus

identified data for different flow regimes namely bubbly flow, intermittent and

annular flow along with stratified flow for small channels. They observed that

for channels with diameter less than 0.1 mm, annular flow was the most domi-

nant regime. A characteristic M-shaped HTC variation with quality was found

to be prevalent. Transition of flow regimes occurred at the inflection points of

this curve. The first maxima indicated a transition from bubble to intermittent

flow, then during the intermittent regime there was a decrease in HTC. This was

followed by a sharp increase when there was transition to the annular flow. The

second maxima was at moderate qualities within annular flow regime just before

local dry-out started.

Utaka et al.[55] investigated micro-layer thickness under a confined vapour

bubble and heat transfer characteristics for narrow gaps of 0.5, 0.3 and 0.15mm.

They showed that heat transfer was enhanced due to the micro-layer evapora-

tion. They also clarified the effect of various factors on the initial micro-layer

thickness. The initial micro-layer thickness decreased as the micro-gap size de-

creased. Up to a certain threshold velocity of 2 m/s, with increase in velocity,
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the film thickness increased, while beyond this velocity, it was nearly constant.

Moreover, the initial micro-layer thickness also increased with heat flux since

high heat flux caused the bubble forefront velocity to increase. They also ob-

served a dependence of initial micro-layer thickness on the distance from the

bubble incipient site.

Kim et al. [56] experimentally investigated the applicability of a micro-

gap with FC-72 as a coolant for cooling of high power LED devices. Micro-

gap heights ranged from 110 − 500 µm while the mass flux range tested was

55− 1270 kg/(m2s). Using the Taitel-Dukler analytical flow regime map, they

concluded intermittent and annular flow regimes to be mainly responsible for

the two-phase heat transfer. They concluded that it is possible to dissipate up to

600 kW/m2 from an LED array for a wall superheat of 60 K.

Alam et al. [12] conducted a study on micro-gaps with heights 190, 285

and 381 µm using de-ionized water as the coolant. Mass fluxes tested were

420, 690 and 970 kg/(m2s) and heat fluxes tested were up to 110 W/cm2. At

inlet to the microchannels, the temperature was maintained constant at 86 ◦C

throughout. Confined slug and annular flow boiling were the dominant flow

regimes. HTC increased significantly with heat flux during confined boiling due

to thin film evaporation. Boiling curves showed sensitivity to mass flux as well.

Smaller micro-gap height yielded better HTC because of greater confinement

effects. Also HTC was greater for smaller mass flux. It was also observed that

micro-gap maintained a good wall temperature uniformity and smaller temporal

fluctuations for small gaps. For larger gap sizes, pressure drop remains almost
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constant with heat flux, while for smaller gap sizes, pressure drop increases with

heat flux. Pressure drop increased with mass flux for all micro-gap heights.

Based on large-sets of data, a number of different empirical correlations

have been developed by researchers. However, they lack general applicability

and are mostly good only with parent data-sets. Thome and Consolini [57]

reviewed a number of empirical correlations and remarked that none of them

were able to predict the diverse trends in the heat transfer coefficients. Similarly,

after comparison of a number of empirical correlations against a large database

available from various research groups, it was concluded by Bertsch et al. [58]

that none of the correlations developed for flow boiling offered an improved

prediction over those for pool boiling (boiling occurring on a heated surface

that is submerged in a liquid pool that is not agitated) and conventional sized

channels. The best predictions, they stated, had a mean absolute error (MAE) of

40% relative to the large experimental database, and predicted less than half of

the measured data to within a deviation of ±30%.

Harirchian and Garimella [16] pointed out that for nucleate boiling regime,

Coopers pool boiling correlation predicted their heat transfer experimental re-

sults, for nucleate boiling regime very well. Moreover, they noted that none of

the empirical correlations developed specifically for flow boiling in microchan-

nels were found to predict experimental heat transfer for other flow regimes. The

experimental results for even the pressure drop were compared with empirical

correlations existing in the literature and they yielded very large errors. Thus,
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FIGURE 2.2: Schematic showing similarities between heat transfer mecha-
nisms during pool boiling and slug flow during microchannel flow boiling

[60]

they concluded that there was a need for development of physics based models

for flow boiling heat transfer as well as pressure drop in microchannels.

For development of a physics based model, the mechanism of heat transfer

must be known. Some parallels may be drawn between flow boiling in mi-

crochannels with pool boiling heat transfer mechanisms. Kim [59] reviewed the

heat transfer mechanisms during pool boiling. Based on reviewed experimental

and numerical work on pool boiling, the main heat transfer mechanisms iden-

tified were transient conduction, micro-layer heat transfer and contact line heat

transfer. They clarified, that these mechanisms contribute to various extents de-

pending on various experimental conditions. However, it was concluded that it

is mostly the transient conduction and micro-convection that contribute the most

to heat transfer augmentation.

Kandlikar [60] noted similarities between the heat transfer mechanisms of

pool and flow boiling, not just for nucleation of the bubble, but also for the slug

flow. For pool boiling, when the nucleating bubble grows, heat is transferred by
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evaporation from the micro-layer beneath the bubble. The micro-layer contri-

bution can be divided between the conduction from the heater and evaporation

from the initial superheat of the liquid film. Its contribution reduces significantly

as the micro-layer evaporates completely, leaving dry patches at some locations

resulting in a very low heat transfer over the patches. As the bubble begins to

depart, the liquid interface then advances and covers the surface. This results

in a significantly higher heat transfer rate due to transient heat conduction to

the liquid which is at a much lower temperature. The cycle begins again with

the nucleation of the next bubble. The superheated liquid layer also releases its

energy by evaporation at the receding liquid-vapour interface during the growth

period of the bubble. The dominant mode of heat transfer for pool boiling, ac-

cording to him, is transient conduction since it raises the liquid superheat, which

is released at the evaporating interface through micro-convection.

Similarly, in the case of flow boiling (see figure 2.2), a nucleating vapour

bubble grows by evaporation at the bulk liquid-vapour interface. This provides

a relaxation mechanism for liquid superheat in the surrounding liquid. Evapo-

ration from the interface leads to elongation of the bubble in microchannel flow

boiling, and the heater surface surrounding the vapour is covered with a micro-

layer (or a thin film), similar to the micro-layer under a bubble in pool boiling.

The receding and advancing menisci at the front and back of the elongated bub-

ble (as shown in Figure 2.2) are similar to the interfaces during growth and de-

parture phases of a nucleating bubble in pool boiling respectively. The transient

conduction mechanism in pool boiling during the departure mode is replaced by
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the transient heat conduction to the liquid slug trapped between the two elon-

gated vapour bubbles. Transient conduction is followed by micro-convection in

the liquid slug. Micro-convection induces circulation within the liquid slug and

evaporation happens at the receding interface upstream. At the advancing inter-

face in the slug, liquid comes in contact with the wall, which may be partially

dry or may be covered with a thin liquid film. The liquid behind the interface

begins to be heated due to transient conduction, and sweeps over the receding in-

terface resulting in significant evaporation. Thus transient conduction followed

by release of energy through evaporation at the interface is identified as the heat

transfer mechanism in this configuration. In case of complete dry-out of the

film, there may be an additional component due to enhanced heat transfer at the

triple contact line, but this contribution, he expected to be quite small.

Contrastingly, Thome et al. [15] have suggested the thin film evaporation

to be significant during elongated bubble (slug flow) regime. The varying opin-

ions about the dominant mechanisms and their relative contributions make the

development of physics based model, a challenging task even if it is only for a

specific flow regime. Hence there are very few such models in the literature.

One such model is that of Jacobi and Thome [61], which was developed

for prediction of the HTC in slug flow. Thome et al. [15] further refined the

model. They argued that for the slug flow in microchannels, it is the thin film

evaporation mechanism which is of paramount significance. According to the

model, the local HTC, during the passage of liquid slug is much smaller com-

pared to that during passage of vapour slug surrounded by a thin liquid film.
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They considered a transient HTC which varied with the thickness of the thin

liquid film around the vapour slug. The challenges that Thome et al [15] pointed

out were that the model ideally requires knowledge about the critical nucleation

radius to calculate the required superheat for initiation of boiling as well as the

bubble frequency, the initial film thickness and the minimum film thickness. For

comparison with a wide database, they chose the optimum values for the stated

parameters and were able to predict 67% of the database to within 30% [62].

Pointing to significant deviations of HTC correlations developed for macro-

channels in predicting the trend in HTC, Qu and Mudawar [14] developed a

semi-analytical annular flow model. Features unique to two-phase micro-channel

flow, such as laminar liquid and vapour flow, smooth interface, as well as strong

droplet entrainment and deposition effects were incorporated into the model.

Forced convection followed by evaporation of the thin film of liquid into the

vapour core was considered as the heat transfer mechanism. Their model cor-

rectly captured the overall trend of decreasing and then increasing heat transfer

coefficient with increasing vapour quality. Their model yielded a MAE of 13.3%

for their experimental data.

Recently, Harirchian and Garimella [16] developed models similar to those

of Thome et al. [15] as well as Qu and Mudawar [14]. However, they had

to completely change the empirical constants used by the previous authors to

achieve a reasonable fit with their experimental data. In fact, the decreasing

and then increasing trend in the heat transfer coefficient observed by Qu and

Mudawar [14] was not observed. They only observed an increasing trend. They
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argued that they did not observe any entrapped liquid droplets in the vapour

core during the annular flow and hence the droplet deposition mechanism was

not considered.

In summary, the often diverging trends of especially the HTC, the mul-

tiplicity of mechanisms thought to be responsible for heat transfer and the rea-

sonable predictions given by semi-empirical correlations and the semi-analytical

models to usually only the parent data-sets rather than being generally applica-

ble points to the fact that flow boiling in microchannels is very complex. The

number of factors influencing the trends of HTC, flow regimes and heat trans-

fer mechanisms may be more than that which are considered while developing

correlations and semi-analytical models. Moreover, the highly transient nature

of flow-boiling even for a given set of experimental parameters and flow regime

makes it even more challenging to draw any concrete conclusions, especially on

the basis of data that is time-averaged. Hence, the necessity to conduct tran-

sient heat transfer measurements synchronously with flow visualizations is felt

herein. In recent years, some researchers [63–65] have worked towards fulfilling

the need for such transient studies.

Freystein et al. [63] conducted synchronous study on a mini-channel and

they obtained the temperature field with an Infra-red (IR) camera. They studied

transient wetted surface heat flux with passage of slug during flow-boiling of

FC-72. Rao et al.[64] conducted high frequency (10 kHz) temperature mea-

surements synchronously with high speed flow visualization during sub-cooled
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nucleate flow boiling in microchannels. They found that the local surface tem-

perature fluctuations closely followed the events in the flow field. They could de-

termine the relative importance of micro-layer evaporation, liquid phase cooling

(forced convection), dry-out and re-wetting. Transient heat transfer coefficient

was also computed, for which they used a finite element computational model by

matching experimental temperature histories and boundary conditions. Bigham

et al. [65] conducted a synchronized study and discussed the similarities and dif-

ferences between flow boiling and pool boiling heat transfer mechanisms. There

was a spike in heat flux and heat transfer coefficient during micro-layer/inter-line

evaporation.

It can thus be seen that studies on transient heat transfer during micro-

channel flow boiling are extremely limited. Many more detailed studies looking

into the effect of various parameters such as the micro-channel/micro-gap di-

mensions, heat flux, mass flux, quality, coolant etc. are required to understand

the effect of various parameters on heat transfer so that progress can be made

towards a detailed understanding of heat transfer mechanisms and development

of generally applicable models.

2.4 Prediction/Detection of Flow-regimes in Microchannels

Some researchers have attempted to develop regime-prediction techniques

or techniques to diagnose flow regimes. Revellin and Thome [66] developed

a flow pattern map for circular microchannels that had the mass velocity and

the vapor quality as co-ordinates. Transition curves were determined using
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Reynolds number, Weber number, Boiling number, fluid properties and mi-

crochannel dimensions. Regimes identified were isolated bubble regime, co-

alescing bubble regime, the annular zone and the post dry-out zone. Martin-

Callizo et al. [18] noted that larger inlet sub-cooling shifted all transition lines

(except for slug-annular/churn to annular flow) to earlier vapor qualities. More-

over, an increase in the saturation temperature shifted all transition boundaries

toward higher vapor qualities. A comprehensive flow regime map was proposed

by Harirchian and Garimella [16] based on their experiments on microchannels

of several dimensions. Fluid properties, channel diameter, heat flux, mass flux as

well as the heated length of the microchannels were considered and four regions

namely slug, confined annular, bubbly, and alternating churn/annular/wispy-

annular flow were plotted. It may hence be argued that there are a number of

variables affecting flow-regimes and it indeed seems to be a very difficult task

to develop a regime prediction method that is generally applicable.

Further, any modification to the wetted surface characteristics and/or the

geometry of microchannel can add to the difficulty in development of a generic

prediction method for regime detection. It was shown by Alam et al. [21]

that transition from single phase to bubbly flow can be altered by changing the

surface roughness. Even artificial nucleation sites (ANS) as shown by some

researchers [1, 22, 23, 26] can alter the flow-regime and heat transfer mech-

anism. Yang et al.[28] showed that by having superhydrophilic silicon nano-

wires on the inner-walls of the microchannel, heat transfer can be very dras-

tically enhanced by manipulation of prevalent flow regime. Some researchers
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have also developed novel microchannel designs that can change heat transfer

performance by changing prevalent regimes under certain experimental condi-

tions [4, 29, 30].

Thus, development of a diagnostic tool for flow-regime detection seems

to be a simpler alternative to the apparently very challenging problem of devel-

oping a generally applicable regime prediction method. Although, a diagnostic

technique cannot fully replace flow-regime prediction techniques, it can still be

of utility for certain applications. Smart feed-back loops that control flow-rate

to control the prevalent flow-regime for optimal heat transfer performance and

minimum pressure drop can potentially use detection techniques. Another appli-

cation includes upcoming technology such as 3D IC packages. In fact, in recent

times, researchers have shown interest in moving towards assessment of cool-

ing solutions for modular thermal management of 3D-ICs consisting of multiple

inter-layer microchannels. Kim et al. [67] and Koo et al. [68] carried out numer-

ical and theoretical investigations respectively, to explore 3D IC cooling. Since

a high speed camera cannot be used for regime detection in internal microchan-

nels, a diagnostic technique can be useful.

Only Revellin et al.[69] developed a diagnostic tool based on a novel op-

tical technique that could characterize flow pattern transition of two-phase flows.

Their technique could determine bubble frequency, percentage of surviving small

bubbles, lengths of bubbles and flow pattern transitions. However, it requires

optical access for implementation. It is hence desirable to look into alternative

techniques such as transient variations in temperature.
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Experimental Setup and Procedure

This chapter begins with a description of the test section and flow loop.

Details regarding the calibration of temperature sensing diodes as well as the

heat loss test are given. The procedure adopted for conducting the experiments

is then explained.

3.1 Experimental Setup

3.1.1 Test-section

An exploded view and sectional view of the test-section are shown in

Figures 3.1 and 3.2 respectively; while a photograph of the assembled micro-

channel test section is as shown in Figure 3.3(a). The silicon test-chip (from

Delphi Electronics) is flip-chip packaged onto the PCB (Printed Circuit Board)

shown in Figure 3.3(b). The Pyrex glass (shown in Figure 3.1) insert is bonded

to the Polycarbonate top-cover cavity and it provides good optical transparency

required for flow-visualizations. A gap is formed between the surface of the sil-

icon shown in Figure 3.3(b) and the pyrex glass insert. This gap acts as a finless

low aspect ratio micro-channel.
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FIGURE 3.1: Exploded view of the assembled test-section

Gasket sheet between the Polycarbonate top-cover and the PCB acts as a

sealant. The inlet and outlet plenums in the polycarbonate top cover, as seen in

Figure 3.3(a), have fittings above them so that by slightly loosening them, the

bubbles can be bled out. Two ports (see Figure 3.3(a)) are provided through

which RTD (Resistance Temperature Detector) probes can be fitted to measure

the fluid temperature at the inlet and outlet plenums. Similarly there are also

two ports coming out of the other end of the plenums connected to the Pressure
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FIGURE 3.2: Sectional view along Z-mid-plane (plane of symmetry)

transducers. The teflon bottom cover has an air-gap so that it is better insulated

leading to smaller heat loss from the bottom.

The microchannel width and length are 2540 µm and 25400 µm respec-

tively and the height ranged from 0.14 − 0.42 mm. The currently used silicon

test-chip consists of an array of 10 × 1 thermal test dies (See figure 3.3(c))

630 µm below the top (wetted) surface. Each of the thermal test dies has an area

of 2540 µm x 2540 µm and each of them consists of a heater and a diode. Each

heater covers an area of 2000 µm x 2000 µm and each doped diode tempera-

ture sensor covers an area of 400 µm × 400 µm at the centre of the die. Each

temperature sensor is a series connection of 5 diodes (p-n junction) with a total

sensitivity of −10 mV/oC.

It may be noted that the wetted silicon surface has a roughness of Ra =

0.57 µm and Rt = 5.45 µm. The contact angle of water on silicon is 57◦ [26].
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FIGURE 3.3: (a) Assembled test-section (b) Silicon test chip (wetted surface)
on the PCB (c) 1 x 10 array of thermal test dies behind the silicon surface

3.1.2 Flow Loop

The flow loop schematic is as shown in Figure 3.4. The test-section is

mounted on a X-Y stage so that it is easy to adjust the field of view of the cam-

era. The temperature at the inlet and outlet plenums of the test-section are mea-

sured using RTDs (Omega 1/10 DIN class). At the inlet and the outlet plenums,
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FIGURE 3.4: Schematic of the flow loop

gauge pressure was measured by Setra pressure transducers (Model 204) and

the differential pressure was measured using Omega differential pressure trans-

ducer.

The reservoir is filled with de-ionized water. Immersion heaters (2 x 600

Watts) fitted into the reservoir are used to boil the water for degassing purpose.

The gear pump (Micropump driven by Cole-parmer gear pump drive) drives the

flow through the loop and the McMillan liquid flow sensor (Model 104) mea-

sures the flow rate. The water bath and liquid to liquid heat exchanger control

the temperature of the fluid supplied to the test-section. Hot water that leaves the

test section is cooled using a condenser (Thermatron liquid-to-air heat exchanger

(Model 735), before it flows back into the reservoir. All these components in the

flow-loop were connected using Swagelok tubing.

The data from all the sensors were collected using a National Instruments

31



Chapter 3 Experimental Setup and Procedure

high speed Data Acquisition System. This system consists of a chassis (NI

PXIe-1082), controller (NI PXIe-8135), a voltage module (NI PXIe-6363) and

a RTD module (NI PXIe-4357).

High speed camera (Photron FASTCAM SA5) was used for flow visual-

ization. A metal halide light source (Daitron MLDS250) provided the required

lighting. However, if the light intensity was high, the measured (diode) tem-

perature could increase by up to 1 ◦C. Similar phenomena was also reported

by Rao et al. [64]. This problem was altogether avoided by keeping the light

intensity very low and no temperature bias was observed. Yet, reasonably bright

video quality was achieved by keeping the magnification and the frame rate of

the video captured, relatively low.

3.2 Calibration of Temperature Sensors

First, calibration of the diode temperature sensors was carried out. For a

constant current (100 µA) the voltage drop across diodes is a linear function of

temperature and the sensitivity is −10 mV/oC. The silicon test chip flip-chip

packaged on to a PCB was placed inside a uniform-temperature forced con-

vection oven along with a reference temperature sensor (Omega surface mount

RTD) attached to the PCB.

Calibration was performed in the range of 40 − 120 ◦C in steps of 10 ◦C.

It took about 30 minutes to reach a steady-state when temperature fluctuations

were reduced to within ±0.05 ◦C. The voltage and temperature readings were

then taken and calibration curve for each of the series of diodes was plotted.
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FIGURE 3.5: Calibration curves for diodes on the thermal test-chip

During actual experiments, this voltage-temperature relationship of each of the

diodes was used to calculate the actual temperature. Figure 3.5 shows the cali-

bration plot.

3.3 Characterization of Heat Loss

Before conducting the main experiments, heat-loss characterization was

carried out. The heat loss occurring mainly through the bottom of the test section

i.e. the heat loss that happens without the heat entering into the fluid within

the channel, is estimated by conducting tests after the test-section is evacuated

of the coolant. Power is supplied to the heaters and at a steady-state, all the

heat supplied is lost. It takes about 30 minutes for the test-section to reach a
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steady state, which is characterized by fluctuations of less than ±0.1 oC for

5 minutes. Heat loss is plotted as a function of the average wall temperature.

As shown in Figure 3.6, the relationship is linear. This method is similar to that

adopted by Alam et al. [12]. For estimation of wall heat flux (during flow boiling

experiments), this is the heat loss that is subtracted from the total heater power

supplied.

FIGURE 3.6: Heat loss vs. average substrate temperature

Out of the total heat that goes from the heated wall to the fluid, a part of

it is convected by the fluid to the sides and top and then is lost to the ambient

air, before the fluid goes to the outlet. Hence, the above heat loss is not the one

used for estimation of mean temperature of the fluid at a cross-section. Instead,
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since the cases presented herein are that of sub-cooled flow-boiling, linear inter-

polation of inlet and outlet plenum temperature gives a good estimate of mean

temperature of fluid at a cross-section. This linearity can be easily understood

from the equation (4.4) for sub-cooled boiling cases.

3.4 Experiment Procedure

Before each experiment session, degassing was carried out by vigorously

boiling the de-ionized water in the reservoir for 2 hours after which the mea-

sured dissolved oxygen (DO) content was found to be ≈ 3.5 ppm. This DO

measurement was done using a DO sensor (Fisher Scientific accumet AP84 me-

ter) with a measurement uncertainty of ±0.3 ppm. The boiled fluid was then

cooled.

During actual experiments, flow rate as well as inlet fluid temperature were

maintained throughout a session. Heat-flux was supplied/incremented and a

quasi-steady state was considered to be achieved after the temperature fluctua-

tions reduced to within ±0.5 ◦C for 1 minute. A TTL signal was then sent by

the camera to the DAQ thus triggering it to capture data synchronously with flow

visualization. This data was captured at 10 kHz while the video was captured

at a frame rate of 1 − 5 kHz, for a short duration of about 1 second. Under

the same experimental conditions, data (not synchronous with video) was also

captured at a frequency of 10Hz for 5 minutes to get time-averaged values. The

same procedure was repeated for several heat fluxes.
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Methodologies for Data Reduction

Since, some of the methodologies used for data reduction in this thesis

are quite unique, this chapter exclusively deals with data reduction procedures.

The steady state post-processing procedure is first presented. Next, the post-

processing procedure for transient state heat transfer is presented. The discus-

sion includes a literature review on the subject. The subsequent section deals

with a procedure for post-processing to get a true frequency domain of tempera-

ture on the wetted surface, which is then used for identification of flow-regimes

in the next chapter. Lastly, the estimated uncertainties in measured and derived

quantities are presented.

4.1 Steady State Heat Transfer

The base heat flux is calculated by subtracting the heat loss happening

through the bottom (as explained in Section 3.3) from the total heater power

supplied and dividing it by the wetted/heated area. For measurement of the

voltage drop across the heaters, the Kelvin connection (4-wire sensing) is used

to eliminate the effects of voltage drops in the lead wires carrying high current,

when calculating the voltage drop across the heaters. Current is calculated from
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the voltage measurement across a shunt resistor connected in series with the load

(heaters).

qb(t) =
V I −Ql

Aws
(4.1)

Ql = VlIl (4.2)

Wetted area is given as

Aws = wl (4.3)

Since, the bulk fluid is sub-cooled, the mean fluid temperature at a cross-section

is given by energy balance assuming thermodynamic equilibrium condition [51,

64].

Tα(z) = Tin +
qfluidwz

mCP
(4.4)

The effective heat flux carried by the fluid for thermodynamic equilibrium con-

dition is

qfluid =
mCP (Tout − Tin)

wl
(4.5)

Hence, this implies

Tα(z) = Tin +
(Tout − Tin)z

l
(4.6)

Notice that qfluid is different from qb since after absorbing the heat flux qb,

the fluid also loses part of it through the top of the microchannel test section.
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Wetted surface temperature is calculated from the sensor temperature, lo-

cated 630µm below the surface assuming 1D conduction.

Tw(z) = Tsensor(z)− qbts
ks

(4.7)

Local heat transfer coefficient is calculated as

h(z) =
qb

Tw(z)− Tα(z)
(4.8)

4.2 Transient Heat Transfer

During flow boiling in microchannels, high frequency temperature fluctu-

ations occur on the wetted surface. The thermal diffusivity of the solid (wall

material) leads to significant damping as well as lag of the measured temper-

ature (generally at some distance away from the wetted surface) compared to

the temperature variation occurring on the wetted surface. Such problems in-

volving unknown boundary conditions (in this case, at the wetted surface) and

known quantity at an interior location (such as temperature measured at an inte-

rior point within the solid), belong to ill-posed class of problems i.e., they yield

large deviations in estimated quantities for small errors in measured data. Hence,

estimation of variables is not straight-forward even for a one dimensional case.

The use of simple direct numerical method would yield erroneous estimations

(This would be seen later in Figure 4.3) due to noise involved in temperature
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measurements and the ill-posed nature of the problem. In fact, noise in the tem-

perature measurement data (which is some distance below the surface) can be

misinterpreted as significant variation of temperature on the wetting surface.

This ill-posed problem is known as an inverse heat conduction problem

(IHCP). To solve it, a suitable estimation algorithm that is efficient and min-

imizes the problem’s sensitivity to noise [70], is required. There seems to be

a promising scope of the use of such methods in conjunction with experimen-

tal temperature data (captured using fast-response temperature sensors) to study

transient heat transfer along with synchronized flow visualizations at time scales

small enough to capture boiling phenomena in microchannels. Before applica-

tion of such methods, proper choice of certain variables, experimental as well

as numerical, is necessary, since reliability of estimation results is sensitive to

these. An uneducated guess of these parameters can lead to misleading results.

4.2.1 Literature Review

Methods to solve IHCP have been well compiled by Beck et al.[71] and Al-

ifanov [72]. Some of the important methods to solve IHCP are functional speci-

fication method (variations include different functional relationships of heat flux

with time), Tikhonav (zeroth, first and second order) regularization method and

Iterative regularization method. A common approach is that an objective func-

tion, which involves the quadratic difference between measured and model im-

posed value of variables, is minimized. Blum and Marquardt [73] proposed an

observer based method which is based on by-pass frequency filters, an approach
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that is commonly used in Systems and Control theory. Moreover, Bayo et al.[74]

suggested that low by-pass frequency filters can be used to eliminate the noise

before applying the IHCP solution algorithm.

IHCP algorithms have over time been tested by various authors. Blum and

Marquardt [73] used sinusoidal test-cases having non-dimensional angular fre-

quencies of 5 and 20 and the ratio of noise to peak measurement signal of 0.2.

A qualitative (graphical) assessment based on heat flux estimation was carried

out. Raudenský et al. [75] tested IHCP algorithm using triangular heat transfer

coefficient variation for noise of ±1, ±2 and ±5 oC. Su and Hewitt [76] used

saw-tooth waveforms of heat transfer coefficient variation and tested two fre-

quencies, 10 and 20 Hz to evaluate IHCP algorithms. The standard deviation in

the noise tested were 0.1, 0.2 and 0.5 oC and data acquisition frequencies tested

were 1 kHz and 10 kHz. They concluded that a standard deviation of 0.1 oC in

the noise was well predicted and that the data acquisition frequency did not make

a difference. Marquardt and Auracher [77] evaluated IHCP algorithm based on

square heat flux variation of frequencies 5, 16 and 25Hz. These aforementioned

researchers carried out a qualitative assessment based on graphical comparison.

4.2.2 Scope

Sinusoidal test cases are used as recommended by Blum et al. [73] who

pointed out that other test cases such as triangular and square wave-forms may

not be sufficient to assess the algorithms for cases involving fast boundary con-

dition dynamics. Moreover from application point of view, sinusoidal test cases
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can offer better assessment, since experimentally measured temperature is of-

ten broken down into sine waves of various amplitudes and frequencies by Fast

Fourier Transform (FFT).

Stloz’s method (Direct numerical method) as well as some of the IHCP so-

lution methods namely Functional Specification method-constant heat flux func-

tional form, Functional Specification method-linear heat flux functional form

[71] and Tikhonav First order Regularization method [71, 78] are first compared.

In all cases, sequential estimation is carried out. Depending on performance and

computational efficiency, one method is selected. Broadening the bounds of pre-

vious studies, a larger set of numerical and experimental variables are studied.

Especially, the frequencies of sinusoidal temperature variation studied are high,

noise to signal ratio is large and additionally, qualitative graphical comparison

is supplemented with quantitative data ((%)MAE of heat transfer coefficient) to

assess the performance of IHCP solution method under various cases.

The data acquisition frequencies (of temperature) studied are 1 kHz and

10 kHz implying time steps of 10−3 and 10−4 seconds corresponding to non-

dimensional sampling time-steps (non-dimensionalized by dividing the time-

step by t2s/α) of 0.13 and 0.013 respectively. The amplitudes and frequencies of

sine wave temperature fluctuations (on wetted surface) studied are 0.1, 0.2, 0.6, 1

and 2 ◦C and 5, 30, 50, 100 and 300 Hz respectively, implying non-dimensional

angular frequency of up to 15. Two standard deviations of the temperature mea-

surement noise, 0.05 and 0.1 ◦C are studied to assess the IHCP solution method.
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4.2.3 Test-case

FIGURE 4.1: Schematic of solid domain

The 1-D test-case considered herein is that of a solid with known initial

condition (temperature) and known bottom boundary conditions namely the sup-

plied heat flux and temperature measured by sensor, as shown in Figure 4.1.

Boundary conditions at the top surface are unknown. However to evaluate the

methods to solve IHCP, a temperature signal is first simulated (Figure 4.2(a))

at the top surface, then the temperature (that should be measured by an ideal

temperature sensor without any noise) is calculated at the sensor location (Fig-

ure 4.2(b)) using direct numerical method. The top surface temperature is then

treated as unknown. Since all sensors and data acquisition systems are never

ideal, to simulate the actual case, this temperature variation at the sensor loca-

tion is corrupted with noise (Figure 4.2(c)) having a normal distribution. Lastly,

using IHCP solution algorithm, the top surface/boundary temperature is esti-

mated (Figure 4.2(d)) and is compared with the temperature signal that was first

simulated at the top (Figure 4.2(a)). This is a standard method for evaluation of

solution algorithms (see Alifanov [72] and Beck et al. [71]).
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FIGURE 4.2: Testing of solution algorithm for IHCP

4.2.4 Mathematical Description

1D transient heat conduction equation is given as :

ρc
∂T

∂t
=

∂

∂x

(
k∂T

∂x

)
(4.9)

The top surface temperature Tw(0, t) and top surface heat flux qw(t) are un-

known.

−k∂T
∂x

∣∣∣∣
x=0

= qw(t) (4.10)

The initial temperature T0 is known too.

T (x, 0) = T0 (4.11)
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The heat flux at the bottom surface qb is known.

−k∂T
∂x

∣∣∣∣
x=L

= qb (4.12)

The temperature measured by temperature sensor at the bottom surface is given

as

T (L, t) = Tsensor(t) = Y (t) (4.13)

As discussed previously in this sub-section, to simulate Y (t), a sine wave

of the following form is induced at the top surface (x = 0).

Tsignal = T0 + A1sine(2πft) (4.14)

Using the Finite Volume Method, equations (4.9) is solved using equation (4.11)

as the initial condition and equations (4.12)and (4.14) as the boundary condi-

tions. Temperature Tideal measured by an ideal temperature sensor (i.e. σ = 0 or

noiseless data) at the bottom surface is calculated. This temperature is corrupted

by an additive error that has a normal distribution with a standard deviation σ,

to simulate the real temperature sensors’ measurements.

Y (t) = Tideal + ωσ (4.15)

Y (t) is then used in equation (4.13). As an initial condition, for equation

(4.11), value of Tsignal at some random time is used; this does not affect the
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results. However, results for initial few milliseconds must be disregarded since

in practice, T0 is not known accurately throughout the solid domain and unlike

uniform temperature represented by equation (4.11), in practice, the temperature

is not actually uniform in the solid domain.

This linear equation (4.9) along with initial condition i.e. equation (4.11)

and two boundary conditions at the bottom surface i.e. equations (4.12) and

(4.13) can be solved using Stloz’s method (Direct numerical method). However,

as would be shown in Figure 4.3, the problem being ill-posed, IHCP solution

method is required.

1. Function Specification Method: Constant heat flux functional form [71]

The objective for the function specification method is to minimize the func-

tion S (equation 4.16) with respect to top (wetted surface) surface heat flux qM

where M refers to the index of the current time-step. Function S is the summa-

tion for r future-time steps of the square of the difference between the sensor

temperature Y and the numerical model imposed temperature T at the sensor

location. Temporarily the heat flux qM at time step tM is assumed constant over

′r′ future times. Future temperature information is used to reduce the sensitivity

of the estimated heat flux to measurement noise and stabilize the computation

as the time step size reduces. The heat flux qM is determined such that the least

square error between the model and experimentally measured temperatures is
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minimized.The function S function is expressed as

S =
r∑
i=1

(YM+i−1 − TM+i−1)
2 (4.16)

where

TM+i−1 = T̂M+i−1|qM=qM+1=···=qM+i−1=0 + φiqM (4.17)

The resulting equation after minimization of S w.r.t qM for the Function Speci-

fication Method-Constant heat flux functional form is

qM =

∑r
i=1(YM+i−1 − T̂M+i−1|qM=qM+1=···=qM+i−1=0)φi∑r

i=1 φ
2
i

,M = 1, 2 · · ·Mmax

(4.18)

where

T̂M+i−1|qM=qM+1=···=qM+i−1=0 = T0 +
M−1∑
n=1

qn∆φM−n+i−1 (4.19)

and the sensitivity coefficient for temperature at the sensor location and heat flux

at the top surface is written as

φi =
∂T

∂q

∣∣∣∣
ti

(4.20)

∆φi = φi+1 − φi (4.21)

2. Function Specification Method: Linear heat flux functional form [71]

For the linear heat flux functional form, heat flux is assumed to be varying
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linearly. This linear equation is calculated based on the current and previous

time-step’s heat flux values. For this method, equation (4.18) is replaced by

qM =

∑r
i=1 ψi(YM+i−1 − T̂M+i−1|qM=qM+1···=0)∑r

i=1 ψ
2
i

+ qM−1

∑r
i=1 ψi−1ψi∑r
i=1 ψ

2
i

(4.22)

where

ψi =
i∑

j=1

φj (4.23)

3. First Order Tikhonav Regularization Method [71]

First order Tikhonav Regularization Method adds a term to the minimiza-

tion function S, the effect of this extra term is to reduce the magnitude of

changes in heat flux from one time-step to the next.

S =
r∑
i=1

(YM+i−1 − TM+i−1)
2 + α1

r−1∑
i=1

(qM+i − qM+i−1)
2 (4.24)

Minimization of this function with respect to the top surface heat flux results in

the following matrix formulation.

q = [XTX + α1H]−1XT (Y− Ṫ) (4.25)
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wherein

q =



qM

qM+1

...

qM+r−1


(4.26)

X =



∆φ0 0 0 · · · 0

∆φ1 ∆φ0 0 · · · 0

∆φ2 ∆φ1 ∆φ0 · · · 0

...
...

... . . .

∆φM+r−1 ∆φM+r−2 ∆φM+r−3 · · · ∆φ0


(4.27)

Ṫ =



ṪM |qM=0

ṪM+1|qM=qM+1=0

...

ṪM+r−1|qM=qM+1=···=qM+r−1=0


(4.28)

Y =



YM

YM+1

...

YM+r−1


(4.29)
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H =



1 −1 0 0 · · · 0

−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0

... . . . . . . . . .

0 0 · · · −1 2 −1

0 0 · · · 0 −1 1



(4.30)

The value of α1 is chosen based on the residual principle [72]. After the surface

heat flux is calculated, the temperature distribution within the solid can be easily

found out by direct numerical method using equations (4.9), (4.10), (4.11) and

(4.12). The heat transfer coefficient at the top wetted surface is calculated as

shown in equation (4.31), as suggested by Beck et al. [71].

hi =
qi

0.5(T1,i + T1,i−1)− Tα
(4.31)

In this equation, T1,i is the temperature at node 1 (top wetted surface) at

time step i, T1,i−1 is the same at time-step i − 1. qi is the heat flux from the

wetted surface between time-steps i− 1 and i.

For the test-cases simulated in this paper, the value of T0 used was 115 ◦C.

The denominator (which is temperature difference between wetted durface and

the fluid) of equation (4.31) ranged between 13 to 17 ◦C and the bottom (sup-

plied) heat flux was 30 W/cm2. These values were chosen so that the average

value of ′h′ are those that are typically encountered in flow boiling in microchan-

nels (See Alam et al. [8], Balasubramanian et al. [13], Agostini et al. [46]) when
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some of the common working fluids such as water or R236fa are used. It may

be noted that any changes made to the value of heat flux and the range of the

denominator of equation (4.31) would not in any way affect the trend in the sur-

face temperature and heat transfer coefficient. The curve would simply shift by

a factor. It may be noted that the thermal diffusivity of the solid and the depth of

the sensor from the wetted surface are 5.5×10−5 m2/s and 630 µm respectively.

4.2.5 Test-case Results and Discussion

FIGURE 4.3: Direct Numerical (Stloz) method vs. Function Specification
Method (Constant heat flux functional form) for A1 = 1 oC and f = 30 Hz

(a) Top surface temperature vs. time (b) Heat transfer coefficient vs. time

Figure 4.3(a) shows a comparison between temperature signal initially in-

duced at the top surface (Ideal) using equation (4.14), surface temperature cal-

culated using the Direct numerical method (or Stolz algorithm) and that using an
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IHCP solution method (Function Specification Method) on simulated data at the

sensor location. The utility of IHCP can be easily understood since the solution

given by IHCP solution algorithm matches very well with the initially induced

top-surface temperature, while that given by the direct numerical method is dis-

mal. It may be observed that the errors in estimation of heat transfer coefficient

in figure 4.3(b) are amplified compared to errors in temperature measurement.

Also, since it is the heat transfer coefficient which is the general quantity of in-

terest, evaluation of the IHCP solution algorithm for various cases is carried out

by quantification of error in estimation of heat transfer coefficient rather than

temperature. However, comparison of IHCP solution methods and optimization

based on temperature estimation give results that are qualitatively similar.

Figure 4.4 shows a typical induced temperature signal on the top surface,

the temperature measured by an ideal sensor located at the bottom surface and

that measured by a real sensor (noise added to the ideal bottom temperature) at

the same location. The temperature measured by the real sensor is then used

in the IHCP solution algorithm to estimate the temperature at the top surface.

It can be observed that amplitude of temperature fluctuation at the sensor loca-

tion is significantly smaller compared to that at the wetted surface. This shows

that there is significant amplitude attenuation. A noticeable phase difference is

also observed. These are due to the finite thermal diffusivity of the solid. The

amplitude attenuation as a function of the signal wave frequency is given in Fig-

ure 4.5. This is case specific depending on thermal diffusivity of the solid and

the depth of the sensor from the top surface. The amplitude ratio is the ratio
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FIGURE 4.4: Induced temperature signal, signal measured by an ideal sensor,
signal measured by a real sensor and the estimated signal using IHCP solution

method for A1 = 1 oC and f = 100 Hz

of the amplitude of the signal captured by the sensor AS to the signal (induced

on the top surface) amplitude A1. This amplitude ratios are derived for several

frequencies of the sine wave and are then plotted and curve fitted.

It may be noted that the graph plotted in Figure 4.5 can have general appli-

cability for a similar problem if non-dimensional frequency given by Equation

(4.32) is instead plotted on the top x-axis of Figure 4.5. Non-dimensionalization

makes the damping independent of depth of the sensor and thermal diffusivity
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of the solid substrate.

f ∗ =
ts

2

α
f (4.32)

FIGURE 4.5: Amplitude ratio vs. frequency

FIGURE 4.6: Comparison of IHCP solution methods
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Figure 4.6 shows that the Beck’s Function Specification Method-constant

heat flux functional form, Function Specification Method-linear heat flux func-

tional form and Regularization method give very similar results for optimal tun-

ing parameter ′r′. Since the function specification method-constant heat flux

functional form is the simplest and computationally most efficient, it was the

preferred method and is the only method used henceforth. Although for brevity,

only one set of amplitude and frequency is shown for comparison of the solu-

tion methods, it may be noted that other sets of amplitudes and frequency were

tested too and the results from different methods were very close. Beck et al.

[79] reached similar conclusions for their experimental test cases.

FIGURE 4.7: IHCP solution method applied to filtered and unfiltered data

Figure 4.7 shows the difference between raw data that is filtered (Low-pass

Butterworth filter) and not filtered before using IHCP solution methodology. In

general, no improvement was found in the estimation of the temperature and the
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resultant heat transfer coefficient. Blum and Marquardt [73] reached a similar

conclusion. So, filtering is not used henceforth.

FIGURE 4.8: Comparison of data-logging frequency (a)f = 30 Hz, σ =
0.1 oC (b)f = 100 Hz, σ = 0.1 oC

Quite noticeably a higher data logging frequency yields better results (see

Figure 4.8). The difference in the results for lower and higher data logging

frequencies is especially prominent at higher temperature signal frequencies.

Although in Figure 4.8(b), the heat transfer coefficient becomes very small

and negative for a short while, such values are not actually encountered during

flow-boiling experiments. The choice of different parameters for some of the

numerical test-cases presented lead to such values. The higher the amplitude

and frequency of temperature oscillations induced on the wetted surface, the

greater are the fluctuations of the heat transfer coefficient. Although, in practical
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applications, high frequencies and amplitudes are possible, actual temperature

signature consist of a number of frequencies superimposed on each other in such

a way that it would not lead to negative values of heat transfer coefficient. Also,

when ′h′ tends to zero, MAE(%) tends to infinity. Hence, a cut-off heat transfer

coefficient is fixed at 5000 W/(m2K) (since, generally the experimental heat

transfer coefficient remained above this value) and the values below this are

disregarded for comparison of Percentage Mean Absolute Error (% MAE).

FIGURE 4.9: MAE(%) in Heat transfer coefficient vs. ′r′ for σ = 0.1 oC,F =
10 kHz (a) f = 5 Hz (b) f = 30 Hz (c) f = 50 Hz (d) f = 100 Hz

From Figure 4.9 it can be clearly observed that the success of the IHCP
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solution methodology is dependent on ′r′. An unfortunate choice of the tun-

ing parameter can lead to very poor estimations. As would be discussed later,

300 Hz frequency of temperature fluctuations is deemed unfit to be captured

by this methodology and hence, has not been shown in Figure 4.9 for brevity.

It may also be noted that for data logging frequency of 1 kHz, as well as for

σ = 0.05 oC, the trends of ropt are similar although the values are different.

The values of ropt are summarized in Tables 1 and 2. After some of the op-

timization results were obtained, since it was observed that higher data-logging

frequency gives better results, not all frequencies were tested for lower data-

logging frequency of 1 kHz. It is interesting to note that for F = 1 kHz,

although the Nyquist criteria is satisfied for frequency of 300 Hz, it was found

that the sine wave trend could not be properly captured and hence 300 Hz fre-

quency is not analyzed at 1 kHz data-logging frequency. For F = 10 kHz,

f = 5 Hz, the optimum ′r′ could have been higher but since the improvement

in MAE(%) was insignificant after ′r = 75′, further optimization was not car-

ried out. For higher value of ′σ′, the optimum value of ′r′ is higher. In general,

for high ′f ′ and high ′A′1, the ropt was lower.

Figures 4.10 and 4.11 show the maximum and minimum of the tested am-

plitudes for all tested frequencies. Several important observations can be made

from these figures and Table 4.1. The results are better for smaller value of ′σ′

since the data is less corrupted. Unfortunately, σ can only be controlled to a lim-

ited extent during practical experiments. Its value as obtained from experiments

was 0.1 ◦C. With increase in frequency, the predictions became worse. For a
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FIGURE 4.10: Heat transfer coefficient vs. time for F = 10 kHz (a)f =
5 Hz,A1 = 0.1 oC (b)f = 5 Hz,A1 = 2 oC (c)f = 30 Hz,A1 = 0.1 oC
(d)f = 30 Hz,A1 = 2 oC (e)f = 50 Hz,A1 = 0.1 oC (f)f = 50 Hz,A1 =

2 oC (g)f = 100 Hz,A1 = 0.1 oC (h)f = 100 Hz,A1 = 2 oC

FIGURE 4.11: Heat transfer coefficient vs. time for F = 10 kHz (a)f =
300 Hz,A1 = 0.2 oC (b)f = 300 Hz,A1 = 1 oC
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TABLE 4.1: MAE(%) in heat transfer coefficient at data-logging frequency of
10 kHz

f σ A1 As/σ ropt h f σ A1 As/σ ropt h
(%MAE) (%MAE)

5 0.05 0.1 1.98 75 0.44 50 0.05 1 14.04 25 5.48
5 0.05 0.2 3.96 75 0.44 50 0.05 2 28.1 23 6.97
5 0.05 0.6 11.88 75 0.45 50 0.1 0.1 0.7 53 2.39
5 0.05 1 19.8 75 0.45 50 0.1 0.2 1.40 43 3.40
5 0.05 2 39.6 75 0.48 50 0.1 0.6 4.21 33 6.83
5 0.1 0.1 0.99 75 0.92 50 0.1 1 7.02 28 7.95
5 0.1 0.2 1.98 75 0.92 50 0.1 2 14.04 27 10.14
5 0.1 0.6 5.94 75 0.93 100 0.05 0.1 0.86 30 3.59
5 0.1 1 9.9 75 0.94 100 0.05 0.2 1.73 25 5.28
5 0.1 2 19.8 75 0.97 100 0.05 0.6 5.18 20 12.57
30 0.05 0.1 1.71 60 0.99 100 0.05 1 8.63 18 9.98
30 0.05 0.2 3.42 50 1.37 100 0.05 2 17.26 16 13.15
30 0.05 0.6 10.27 38 2.45 100 0.1 0.1 0.43 36 4.98
30 0.05 1 17.12 33 3.82 100 0.1 0.2 0.86 30 7.38
30 0.1 2 34.2 30 4.63 100 0.1 0.6 2.59 23 18.17
30 0.1 0.1 0.855 75 1.35 100 0.1 1 4.32 20 14.74
30 0.1 0.2 1.71 57 1.89 100 0.1 2 8.64 20 17.83
30 0.1 0.6 5.14 43 3.39 300 0.05 0.2 0.48 20 20.63
30 0.1 1 8.56 38 5.27 300 0.05 0.6 1.44 15 28.72
30 0.1 2 17.1 35 6.32 300 0.05 1 2.40 12 42.25
50 0.05 0.1 1.4 47 1.81 300 0.1 0.2 0.24 20 24.16
50 0.05 0.2 2.81 38 2.46 300 0.1 0.6 0.72 15 40.04
50 0.05 0.6 8.43 28 4.84 300 0.1 1 1.20 15 60.12

TABLE 4.2: MAE(%) in heat transfer coefficient at data-logging frequency of
1 kHz

f σ A1 As/σ ropt h f σ A1 As/σ ropt h
(%MAE) (%MAE)

30 0.05 0.2 3.42 7 2.4 50 0.1 0.2 1.40 6 5.7
30 0.05 0.6 10.27 5 4.2 50 0.1 0.6 4.21 4 12.0
30 0.05 1 17.12 4 6.5 50 0.1 1 7.02 4 13.2
30 0.1 0.2 1.71 8 3.5 100 0.05 0.2 1.73 3 9.2
30 0.1 0.6 5.14 6 6.3 100 0.05 0.6 5.18 3 25.9
30 0.1 1 8.56 5 9.5 100 0.05 1 8.63 2 26.4
50 0.05 0.2 2.81 5 4.4 100 0.1 0.2 0.86 4 12.3
50 0.05 0.6 8.43 4 8.9 100 0.1 0.6 2.59 3 31.4
50 0.05 1 14.04 3 9.5 100 0.1 1 4.32 3 34.1

given frequency and ′σ′ if the amplitude of sine wave is large, then although the

signal to noise ratio ′As/σ′ is larger, the MAE(%) in ′h′ is generally not smaller.

It is the combined effect of higher amplitude, higher frequency and higher noise

which make the estimation of temperature more difficult. f = 300Hz is deemed

unfit to be estimated for present work since MAE(%) is high and graphical trend

too is not captured properly as can be seen from Table 4.1 and Figure 4.11 re-

spectively.
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For certain applications, it is the trend which is more important to capture

than the actual value of heat transfer coefficient. Although from Table 4.1 it

can be seen that predictions for smaller amplitudes for a given ′σ′ and frequency

are better, graphically it is the larger amplitudes for which the IHCP solution

algorithm is more successfully able to capture the trend. This is especially true

for f = 100 Hz when fluctuation amplitude is small. Although the MAE(%)

is small for smaller amplitudes, the graph shows that the trend captured does not

give a good idea about the simulated sinusoidal signal. Small value ofMAE(%)

is due to large value of ′h′. To avoid any misleading conclusions due to high ′h′

by use of just MAE(%), it may be useful to note that for frequencies up to

f = 50 Hz and all amplitudes, the peaks and valleys in heat transfer coefficient

were captured to within ±1000 W/(m2K) accuracy, while for frequency of

100 Hz, for all amplitudes except for A1 = 2 oC the peaks and valleys in heat

transfer coefficient values were in general captured to within ±2000 W/(m2K)

accuracy.

4.2.6 Validation of IHCP Solution Method for Experiment Based Super-

imposed Sinusoidal Test-cases

Test cases used in Subsection 4.2.5 were pure sinusoidal temperature vari-

ations. To confirm the validity of those results for cases that are not pure si-

nusoids but have a temperature signal consisting of a number of superimposed

sine waves, the IHCP solution method is tested on a more realistic temperature

signal representing temporal temperature fluctuations during actual flow boiling
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experiments. Two test cases are presented; each one consists of a few sinu-

soidal waves with frequencies and amplitudes selected from frequency domain

of temperature-time variations obtained during actual flow boiling experiments.

Test Case 1

For the first test-case, FFT is done on transient temperature-data captured

during flow-boiling experiments on a microchannel with height 420 µm, at a

mass flux of 200 kg/(m2s) and heat flux of 17.2W/cm2. Following the method-

ology which will be given in Section 4.3, amplitude in the frequency-domain of

the sensor temperature were corrected and frequency-domain representative of

wetted surface temperature is obtained as shown in Figure 4.12. The notable

amplitudes and frequencies fall within the maximum amplitude and frequencies

of sinusoidal temperature fluctuations tested numerically in Section 4.2.5. For

′r′ = 50, the MAE(%) for all sinusoids falling within the range of amplitudes

and frequencies in Figure 4.12 are 5 % (Figure 4.9).

Some of the representative amplitude and frequencies of the sine waves in

Figure 4.12 are enlisted in Table 4.3. These have been superimposed on one

another to form a temperature signal on the wetted surface. Figure 4.13 shows

that IHCP solution methodology can estimate ′h′ very well. The Percentage

Mean Absolute Error (MAE(%)) for the tested case was 5.4 % for value of

future-time steps ′r′ = 40.

Test Case 2
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FIGURE 4.12: FFT for G = 200 kg/(m2s), qb = 17.2W/cm2

TABLE 4.3: Constituent sine-waves’ frequency and amplitude for test-case 1

No. f(Hz) A1(
oC)

1 1 0.5
2 2 0.5
3 3 0.56
4 4 0.7
5 5 1.15
6 6 0.4
7 7 0.4
8 8 0.26
9 9 0.3
10 11 0.4
11 12 0.4
12 13 0.23
13 14 0.2
14 15 0.4
15 23 0.22
16 35 0.15
17 46 0.1

The same procedure was adopted as that of the previous test-case. The

heat flux and mass flux were 32 W/cm2 and 400 kg/m2s respectively for mi-

crochannel height of 420 µm. Frequency domain of the temperature-time data

is as shown in Figure 4.14 and the representative sine waves’ amplitudes and

frequencies are enlisted in Table 4.4.
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FIGURE 4.13: Assessment of IHCP solution method with superimposed
sine waves as the test-case for H = 0.42 mm G = 200 kg/(m2s),

qb = 17.2W/cm2

FIGURE 4.14: FFT for G = 400 kg/(m2s), qb = 32W/cm2
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TABLE 4.4: Constituent sine-waves’ frequency and amplitude for test case 2

No. f(Hz) A1(
oC)

1 1 0.9
2 2 0.4
3 4 0.25
4 5 0.25
5 6 0.54
6 7 0.7
7 8 0.24
8 11 0.4
9 13 0.33
10 21 0.15
11 50 0.1

Just as the test-case 1, for optimum value of ′r′, the MAE(%) for all sinu-

soids falling within the range of amplitudes and frequencies in Figure 4.14 are

within 5 % (Figure 4.9) for ′r′ = 40.

FIGURE 4.15: Assessment of the IHCP solution methodology with superim-
posed sine waves as the test-case for H = 0.42 mm, G = 400 kg/(m2s),

qb = 32W/cm2

The (%) MAE for this case is 2.7% for ′r′ = 40. The graphical result has

been depicted in figure 4.15. Hence, it is concluded that indeed individual sine-

waves′ results provide a good estimate of (%) MAE for superimposed waves,
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typical of temperature variations observed during flow boiling experiments.

4.2.7 Summary

(a) Use of conventional noise filter did not have any effect on the estimation

of wetted surface temperature and the heat transfer coefficient.

(b) Estimation of the heat transfer coefficient improved with increase in data-

logging frequency. The improvement was especially more prominent for

higher frequency temperature fluctuations.

(c) It is the combined effect of high amplitude, high frequency and high noise

which make the estimation of temperature more difficult.

(d) From both, graphical results as well as quantitative results, it is concluded

that frequencies up to 100 Hz can be captured well with a data-logging

frequency of 10 kHz even for data that is corrupted with noise having a

standard deviation of 0.1 oC. For frequencies up to f = 50Hz, for all am-

plitudes, the peaks and valleys in the variation of ′h’ is captured within an

error of ±1000 W/(m2K) while for f = 100 Hz, for all amplitudes ex-

ceptA1 = 2 oC, are captured with a maximum error of±2000W/(m2K).

(e) The error in the estimation of heat transfer coefficient for pure sine waves

gives a good estimate for more realistic cases for which a number of sine

waves are superimposed on each other.
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4.3 Fast Fourier Transform (FFT) of the Wetted Surface Tem-

perature

Fourier analysis is performed using Discrete Fourier Transform (DFT) on

the transient temperature measured by the diode sensor. DFT breaks down the

signal into constituent sinusoidal signals of different frequencies and ampli-

tudes. The governing equation for temperature distribution within the solid is

the transient heat conduction equation (4.9). Because of thin substrate, temper-

ature difference within the solid domain are small enough so that changes in

substrate properties can be neglected. This implies that this equation (4.9) is

linear. The principle of superposition is hence valid. Thus, the original signal

can be broken down into a number of constituent signals.

The algorithm used for computing the DFT is Fast Fourier Transform (FFT).

FFT transforms the time-dependent temperature signal into frequency domain

data. During actual experiments, temperature measurement is done 630 µm be-

low the wetted surface. The requirement however, is to get frequency domain of

temperature on the wetted surface rather than that at the sensor location. How-

ever, the difficulty here is that due to finite thermal diffusivity of the silicon sub-

strate, the temperature signal on the wetted surface gets damped as it penetrates

the substrate.

To correct for this damping and to get the actual frequency domain that

represents temperature variations on the wetting surface, amplitude ratio (damp-

ing) plotted in figure 4.5 is used. This amplitude ratio is a function of the sine
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wave signal frequency. The amplitudes in the frequency domain (by FFT) of

temperature-time data obtained from the sensor (630 µm below the wetted sur-

face) are then divided by these amplitude ratios (corresponding to the individual

frequencies) and the frequency domain of the temperature signal at the wetting

surface is thus derived.

4.4 Uncertainties

Diode sensors (embedded on Delphi Electronics Thermal Test Chip) and

RTDs (Omega 1/10 DIN class) measure the temperature with an uncertainty of

±0.4 oC and ±0.12 oC respectively. The uncertainties in wall heat flux and

heat transfer coefficient ranged from ±0.73− 2 % and ±1.64− 3.75 % respec-

tively. The greatest contribution to the uncertainty in heat transfer coefficient

measurement comes from temperature measurement errors. However, since the

inlet sub-cooling is substantial, the temperature difference between the fluid and

wall is substantial and hence the relatively low values of uncertainty in heat

transfer coefficient. Differential pressure transducers and gauge pressure trans-

ducer readings have an uncertainty of ±0.14 mbar and ±1.92 mbar respec-

tively. The uncertainty in pressure measurement was found to be in the range of

±0.28 − 5.6%. Flow rate was measured with an uncertainty of ±0.5 ml/min.

Uncertainty for geometrical dimension measurements is ±10 µm. The uncer-

tainty analysis according to that proposed by Taylor[80] is briefly discussed in

Appendix A.

67



Chapter 5

Results and Discussion

This chapter presents the major experimental results of this thesis and the

relevant discussion. A description of microchannels tested and the experimental

conditions is given first. Next, the pressure drop data as well as the boiling curve

for various conditions is presented and explained. Variation of time-averaged

heat transfer coefficient is also studied with various microchannel heights and

mass fluxes. The uniqueness of this study is that in addition to time-averaged

study of heat transfer variables, a detailed transient study coupled with flow-

visualization (captured synchronously with data) is presented. This has given

detailed insights into the mechanisms of heat transfer. Lastly, based on temper-

ature signature, it is found that flow regimes can be distinguished.

It may be noted that the presented heat transfer variables are for data cap-

tured by diode 8 (diode 1 is the most upstream while diode 10 is the most down-

stream). The reason for the choice of this diode is because it is nearly in center

of the field of view of the high speed camera used to capture video frames when

it was adjusted towards the most downstream end of the microchannel.

For all the conditions presented in Table 5.1, inlet fluid temperature was

86 oC. Notice the range of heat flux for various cases. For each case, the
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TABLE 5.1: Microchannel dimensions and experimental test conditions

Case W H Dh G actual (nominal) qb Co Dtran[43]
(mm) (mm) (mm) (kg/(m2s)) (W/cm2) [42] (mm)

1.1 2.54 0.14 0.265 557 (600) 0-29 9.51 3.27
1.2 2.54 0.14 0.265 994 (1000) 0-44 9.51 1.01
2.1 2.54 0.28 0.504 393 (400) 0-36 5.01 6.59
2.2 2.54 0.28 0.504 600 (600) 0-46 5.01 2.82
2.3 2.54 0.28 0.504 998 (1000) 0-105 5.01 1.01
3.1 2.54 0.42 0.721 182 (200) 0-27 3.5 30.8
3.2 2.54 0.42 0.721 380 (400) 0-50 3.5 7.05
3.3 2.54 0.42 0.721 580 (600) 0-60 3.5 3.02
3.4 2.54 0.42 0.721 1028 (1000) 0-94 3.5 0.954

maximum heat flux was determined by maximum of the transient wall tempera-

ture encountered during experiments. Even though the time-averaged maximum

temperature would quite often be less than 110 oC, the very seldom dry-outs

could sometimes cause over-shoot in wall temperature to above 150 oC. Such

high wall temperature often lead to the failure of the test-chip, either due to soft-

ening of the solder bumps connecting the test-chip to the PCB (by flip chip pack-

aging) or due to mechanical failure of the solder bumps due to thermal stresses

induced on account of difference in thermal expansion of the silicon test chip

and PCB material. Due to this reason, high wall heat fluxes could not be tested

and sub-cooled boiling prevailed for all cases even for the most downstream

region.

Confinement number [42, 81] (equation 2.1) was always large. Also, the

value of Dtran ([43]) (equation 2.2) is larger compared to diameter of all mi-

crochannels used in this study. Hence, under all tested conditions, the term

”microchannel” is considered most appropriate. However, it may be noted that

the aspect ratio (H/W ) of all microchannels is small. Yet, the aspect ratios
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are much larger compared to the that of so called micro-gaps used by some

researchers [21, 82].

Figure 5.1 shows various flow regimes observed during experiments con-

ducted under conditions mentioned in table 5.1. Location of diode 8 is shown

by a blue dot.

FIGURE 5.1: Flow regimes observed during experiments were (a) Single phase
flow (b) Bubbly flow (c) Slug flow (d) Churn flow (e) Wispy Annular flow

5.1 Pressure Drop Characteristics

Figure 5.2 shows the effect of microchannel height on pressure drop plot-

ted as a function of heat flux for various mass fluxes. For low heat fluxes, sin-

gle phase flow was observed. With increase in heat flux, temperature increases

which reduces the viscosity of the fluid and hence up to a certain value of heat

flux until which single phase flow was observed, the pressure drop decreases

somewhat. After commencement of phase change process, the pressure drop

increases monotonically with increase in heat flux except for the case for mi-

crochannel with height 0.42 mm at a mass flux of 1000 kg/(m2s). This is due
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FIGURE 5.2: Effect of microchannel height on pressure drop verses heat flux
curves for various mass fluxes
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to the fact that as heat flux increases, the vapour quality increases which leads

to greater accelerational pressure drop.

It can also be observed that for smaller microchannel heights, the pressure

drop is larger since frictional pressure drop larger as well as the accelerational

pressure drop is larger due to greater quantity of vapour generated in the coolant

flowing through microchannel with smaller heights, for a given value of heat

flux. It is also worth noting that the slope of pressure drop verses heat flux curve

is steeper for smaller channels compared to larger ones. This was also observed

by Harichian and Garimella [10].

While for microchannel with height 0.42mm, at a mass flux of 1000 kg/(m2s)

bubbly flow was observed, slug flow was the dominant flow regime for other

cases. Hence for the former case, the pressure drop is insensitive to heat flux as

also observed by Alam et al.[12].

In Figure 5.2(b), for microchannel with height 0.14 mm, there is a slight

anomaly in the trend since pressure drop decreases for a heat flux of 25 W/cm2.

Boiling is stochastic in nature. Pressure drop is influenced by the nucleation site

distribution, the number of nucleation sites, etc. which can change with change

in heat flux. Moreover, since it is sub-cooled boiling and the channel is long;

there could have been more instances of nucleation and detachment of small

bubbles and their collapse in the upstream for this heat flux compared to slightly

lower heat flux which led to lower pressure drop.
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FIGURE 5.3: Effect of mass flux on pressure drop verses heat flux curves for
various microchannel heights
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Figure 5.3 shows the effect of mass flux on pressure drop verses heat flux

curve for three microchannel heights tested. In general, pressure drop increases

as the mass flux increases, since the frictional pressure drop component is more

dominant. However, the pressure drop due to the accelerational component is

greater for smaller mass fluxes since for smaller mass fluxes, the amount of

vapour generated for a given heat flux is greater. Hence, it is sometimes possible

to see, the pressure drop trend to be contrary to what is generally seen herein. It

can be noticed from Figures 5.3(b) and (c) that for G = 400 and 600 kg/(m2s),

that the pressure drop is the same for several values of heat flux. Thus, for

these cases, the increase in frictional component of pressure drop with mass flux

is balanced by decrease in accelerational pressure drop with increase in mass

flux. Such mass flux independence of pressure drop was also noted by Chen and

Garimella [83].

5.2 Heat Transfer Characteristics

5.2.1 Boiling Curves

Curves shown in this sub-section are for time-averaged variables. Figure

5.4 shows the effect of microchannel height on the boiling curve for various

mass fluxes. ONB (Onset of Nucleate Boiling) is characterized by a sudden

change in slope of the curve. For heat flux beyond this point, slug flow was the

main flow boiling regime observed except for microchannel height of 0.42 mm

at a mass flux of 1000 kg/(m2s) as well as for mass flux of 600 kg/(m2s) below

heat flux of 28.6 W/cm2. For those conditions, bubbly flow was observed.
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In the single phase region, the slope is not steep. In two phase region, as

the wall heat flux increases, generally the wall superheat (difference between

the temperature of the wall and the local saturation temperature of the fluid) in-

creases. However, at times it is seen that the slope of the curve becomes negative

implying a decrease in wall superheat with increase in heat flux. This is because

the liquid is superheated before nucleation occurs and then the temperature sud-

denly drops as bubbles nucleate.

For smaller microchannel heights, ONB occurs at a smaller wall superheat.

Moreover, for two-phase region, wall superheat is lower for smaller microchan-

nel heights. This is due to more amount of vapour being generated for smaller

heights for a given heat flux and greater confinement effects.

Figure 5.5 shows the effect of mass flux on the boiling curve for various

microchannel heights. For smaller mass fluxes, ONB occurs earlier. For a given

heat flux, for smaller mass fluxes, the wall superheat is lower since the vapour

generated is greater than that for higher mass fluxes. In the single phase region,

since flow is developing, the trend can be contradictory, since for higher mass

flux, the boundary layer is thinner leading to better heat transfer compared to

that for lower mass fluxes.

The general trend is also not seen in Figure 5.5(c). For mass flux of

200 kg/(m2s), for somewhat larger heat fluxes, the wall superheat is greater

compared to that for mass flux of 400 kg/(m2s). This is due to larger mean

fluid temperature for the former, since it is sub-cooled boiling. The same is true
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FIGURE 5.4: Effect of microchannel height on the boiling curves for various
mass fluxes
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for mass flux of 600 kg/(m2s) having a higher wall superheat compared to that

of 1000 kg/(m2s). The trends observed in Figures 5.5 and 5.4 are similar to that

of Alam et al. [12].

5.2.2 Time-averaged Heat Transfer Coefficient Characteristics

Figure 5.6 shows the effect of microchannel height on heat transfer coeffi-

cient as a function of heat flux for various mass fluxes. ONB is characterized by

change in slope of the curve. After ONB, the heat transfer coefficient increases

substantially with heat flux. In some cases, at much greater heat fluxes, heat

transfer coefficient decreases slightly or almost remains constant since enhance-

ment in heat transfer coefficient due to larger vapour quality is compensated by

more frequent and longer periods of dry-outs during which heat transfer is poor.

Heat transfer coefficient for smaller heights is greater due to greater con-

finement effects and larger quantity of vapour generated for a given heat flux.

This is further elaborated while presenting transient heat transfer characteristics.

Figure 5.7 shows the effect of mass flux on heat transfer coefficient as

a function of heat flux for various microchannel height. After ONB, the heat

transfer coefficient is consistently seen to be sensitive to mass flux. For smaller

mass fluxes, heat transfer coefficient was always higher since for a given value

of heat flux, the amount of vapour generated is greater compared to that for

larger mass fluxes.
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FIGURE 5.5: Effect of mass flux on the boiling curves for various microchan-
nel heights
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FIGURE 5.6: Effect of microchannel height on heat transfer coefficient as a
function of heat flux for various mass fluxes
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FIGURE 5.7: Effect of mass flux on heat transfer coefficient as a function of
heat flux for various microchannel height

80



Chapter 5 Results and Discussion

FIGURE 5.8: Heat transfer coefficient as a function of heat flux for two sepa-
rate trials for two cases

Repeatability experiments were performed for all channel heights and mass

fluxes. As can be seen from Figure 5.8, the experimental results had good re-

peatability.

5.2.3 Transient Heat Transfer Characteristics

Estimation of all transient variables shown in figures of this Sub-section

are based on the methodology discussed in Section 4.2. Figures 5.9(a) and (b)

and 5.11(a) and (b) show the heat transfer coefficient, wall (wetted surface) heat

flux and temperature as a function of time for two base heat fluxes for each of
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them. The experimental data along with video is recorded for a period of one

second. However, because of lack of knowledge of initial condition (tempera-

ture distribution) within the solid domain (between the wetted surface and the

sensor), the temperature throughout the domain is assumed to be uniform, equal

to the temperature reading of the sensor at initial time 0, in the numerical model

discussed in section 4.2. Due to this, the values for the first few milliseconds

are erroneous and must be discarded. But since the time axis is shifted, for all

subsequent Figures, the time axis begins from 0. Moreover, the IHCP solution

algorithm requires information regarding future time steps. Hence, several mil-

liseconds of data just before 1 second is discarded and thus time axis ends at

0.95 seconds.

It is clearly visible from Figures 5.9 and 5.11 that the trends in wall heat

flux follow that of heat transfer coefficient. In contrast, the wall temperature falls

quickly as the heat transfer coefficient increases sharply. When the heat trans-

fer coefficient value is small, initially, the wall temperature increases quickly

and then increases relatively slowly as it approaches the steady state value of

temperature corresponding to that (low) value of heat transfer coefficient.

It is interesting to note that the constant wetted surface heat flux boundary

condition is not valid. Because of synchronized flow visualization with data cap-

ture, it was possible to note that in general, nucelation of a bubble/slug happens

when the wall temperature is relatively high. When the slug passes over, due to

thin film evaporation, the heat transfer coefficient shoots up, leading to lower-

ing of wall temperature. This often leads to flow of liquid only, during which
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time the wall temperature generally starts rising again leading to nucleation of

a bubble and the cycle continues. However, nucleation of bubble being a highly

stochastic phenomenon, the trends in heat transfer variables in the Figures 5.9

and 5.11 seems haphazard since time intervals between consecutive slugs is not

fixed due to nucleation sites being distributed near the sensor location as well as

further upstream.

It is worth mentioning that the rate at which the temperature rises/falls

corresponding to liquid/slug flow, also depends on thermal mass of the solid

substrate. The rate of rise/fall of temperature would be high if thermal mass of

the solid substrate were low. Hence the time it takes for the wall temperature to

rise/fall in this manner depends not only on the boiling phenomena but also on

the material properties of the substrate material and heater depth. Any change

in thermal mass may change the flow boiling behavior. For instance, a very

small heater depth could have led to very quick rise/fall in temperature thus

possibly leading to slugs at a much greater frequency resulting in higher average

heat transfer coefficient. Due to this kind of coupling between wall temperature

and flow boiling phenomena leading to variations in heat transfer, the heater

depth as well as substrate properties could be important for numerical and semi-

analytical modeling of heat transfer during flow boiling in microchannels. This

kind of study is beyond the scope of this thesis and is suggested as future work.

It can also be seen from Figures 5.9 and 5.11 that for higher base heat

fluxes (sub-figure (b) for both cases), the amplitudes of the peaks in heat transfer

coefficient are greater compared to lower base heat fluxes (sub-figure (a) for both
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cases). Although, there are large variations in the amplitude of peak values of

heat transfer coefficient for a given condition (of H , G and qb), some of the

highest of the peaks are clearly greater for higher heat flux. Even the frequency

of peaks is much greater for higher heat fluxes for both figures, since higher heat

fluxes imply faster rate of rise in wetted surface temperature leading to higher

rate of nucleation. For Figure 5.9, at times when heat transfer coefficient is

low and flat, some bubbles were observed as can be seen from Figure 5.10(a)

(the blue dot indicates the sensor location), while at higher heat flux the bubble

density was greater (Figure 5.10(b)) due to higher wall temperature. Hence for

higher heat flux case, at times when the heat transfer coefficient is low, its value

is higher than those encountered for lower heat flux case. Hence, average heat

transfer coefficient for higher heat flux was higher as indicated by dashed lines

in the figures.

However, it can be observed from Figure 5.11(a), that some of the peak

heights are lower for higher heat flux. The reason is that while nucleation

sites were generally closer to the sensor, for low heat flux (as shown in Fig-

ure 5.12(a1)), the slugs used to come from further upstream for high heat flux

(as shown in Figure 5.12(b1)). Another observation is that valleys are higher

and narrower for higher heat flux of 32W/cm2 since as seen in Figure 5.12(b2),

liquid slugs were very short, while for lower heat flux of 24.6 W/cm2, liquid

slugs were long (Figure 5.12(a2)).

For microchannel of height 0.42 mm, for almost the same heat flux of

approximately 25 W/cm2, Figures 5.9(b) and 5.11(a) may be compared which
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are for mass fluxes of 200 and 400 kg/(m2s) respectively. The peaks in heat

transfer coefficient for lower mass flux are much greater than those for higher

mass flux. This is the reason for higher average heat transfer coefficient for

lower mass flux for a given heat flux and given microchannel dimensions.

At low heat flux and mass flux condition of Figure 5.9(a), the fluctuations

seem to be cyclic while the same for high heat flux and mass flux of Figure

5.11(b) do not seem to be cyclical. This is because, at higher heat flux, generally

the number of active nucleation sites are more. This leads to more number of

slugs resulting in more number of peaks in Figure 5.11(b) compared to Figure

5.9(a). Since the peak value of heat transfer coefficient depends on location of

slug incipience as well as whether a downstream slug is present or not (as would

be seen in the discussion of the subsequent figures in this section), the trends in

heat transfer coefficient may not follow a regular pattern due to the stochastic

nature of boiling.

To gain more detailed insights into the variation of heat transfer coefficient

and its correlation with boiling phenomena (captured in video frames), three

time-intervals of interest in Figure 5.9(a) have been chosen and heat transfer co-

efficient verses time curve has been replotted in Figures 5.13, 5.16 and 5.18. The

corresponding video frames for each of these plots have been shown respectively

in Figures 5.14,5.17 and 5.19.

The horizontal dashed line on heat transfer coefficient verses time curve in-

dicate the time-averaged value. The vertical dashed lines have been labeled and
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FIGURE 5.9: Variation of heat transfer coefficient, wall (wetted surface) heat
flux and wall (wetted surface) temperature with time for H = 0.42mm,G =

200 kg/(m2s) for (a) qb = 17.2W/cm2 (b) qb = 25.2W/cm2

FIGURE 5.10: Bubbly flow at times when heat transfer coefficient is low in
Figure 5.9 at heat fluxes (a) qb = 17.2W/cm2 (b) qb = 25.2W/cm2
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FIGURE 5.11: Variation of heat transfer coefficient, wall (wetted surface) heat
flux and wall (wetted surface) temperature with time for H = 0.42mm, G =

400 kg/(m2s) for (a) qb = 24.6W/cm2 (b) qb = 32W/cm2

FIGURE 5.12: Time frames corresponding to Figure 5.11 for (a1) qb = 24.6
W/cm2, nucleation site is close to sensor location (a2) qb = 24.6 W/cm2,
long liquid slug (b1) qb = 32 W/cm2, nucleation site is further upstream
outside the field of view of the camera (b2) qb = 32W/cm2, short liquid slug
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the corresponding event has been described in the ”Legend”. The figures fol-

lowing each of the plots show video-frames labeled in a similar manner showing

the flow-boiling phenomena corresponding to labeled time-instants in the heat

transfer coefficient verses time plots. The blue dot in each of the video frames

indicates the location of the centroid of temperature sensor.

FIGURE 5.13: Variation of heat transfer coefficient with time for H =
0.42mm, G = 200 kg/(m2s), qb = 17.2W/cm2 from 0.42-0.476 seconds

FIGURE 5.14: Video frames corresponding to Figure 5.13

For a bubble travelling at a mean velocity of single phase flow, it would

take ≈ 0.1 second to traverse the length of the microchannel at a mass flux of

200 kg/(m2s). Hence, for time interval greater than 0.1 second, if no slug is
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seen in flow visualization, the flow is labeled as liquid flow and is distinguished

herein from liquid slug flow.

In Figure 5.13, time instant A indicates flow of liquid only as is shown in

video frame A of Figure 5.14. Several small bubbles were seen during flow of

liquid. The heat transfer coefficient is relatively low and the curve is almost flat

during liquid flow. Frame B shows the incipience of a bubble at a nucleation

site close to the sensor. At time instant C, the bubble nose is close to the sensor

and is approaching it leading to a slight increase in heat transfer coefficient.

This could be due to evaporation of liquid near the nose (front interface) of the

bubble and quenching of surrounding liquid as well as due to flow structures at

the bubble nose that promote mixing as suggested by Rao and Peles [84]. From

time instant C to D, the slug grows and traps a thin film of liquid over the wetted

surface. Schematic of slug flow is shown in Figure 5.15.

FIGURE 5.15: Schematic of slug flow

The film evaporates with time and with thinning down of the film, the heat

transfer coefficient increases and reaches a maximum at time instant D. The

inverse relationship of heat transfer coefficient and thin film thickness may be
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understood by Equation 5.1 suggested by Thome et al. [15] for steady conduc-

tion through the thin film of liquid.

h =
kl
δ

(5.1)

After time-instant D, the thin film was seen to break and accumulate leading

to partial dry-out (as can be seen in frame E) due to which the wetted surface

is progressively exposed to more and more vapour. The liquid film does not

thin down uniformly throughout and so dry-out does not appear simultaneously

throughout. Hence, the heat transfer coefficient decreases gradually rather than

dropping sharply

The mechanism of partial dry-out was observed to be due to accumulation

of liquid at a location due to cohesive force by virtue of which the liquid tries to

maintain a certain contact angle with the wetted surface. Hence, very high peaks

in heat transfer coefficient predicted by Equation 5.1 for infinitesimally thin

film of liquid, are not observed. The average surface roughness was Ra = 0.6

microns and hence for the case of perfectly hydrophilic surface, the potentially

minimum thin film thickness would be O(10−6) meters corresponding to which

the maximum heat transfer coefficient would by O(106) W/(m2K) for water.

At time-instant F, the rear interface of the vapour slug passes over the sen-

sor and a small peak is observed in Figure 5.13. This is because of 3-phase con-

tact line evaporation mechanism. During passage of a liquid slug (time-instant

and frame G) having a short length, it was observed that the rear interface of
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the downstream slug, moving with a velocity of 0.38 m/s almost stagnated the

liquid since the bubble tries to expand both, upstream and downstream. Hence,

heat transfer coefficient was low. As another slug approaches in frame H, the

heat transfer coefficient again starts increasing.

FIGURE 5.16: Variation of heat transfer coefficient with time for H =
0.42mm, G = 200 kg/(m2s), qb = 17.2W/cm2 from 0.476-0.56 seconds

FIGURE 5.17: Video frames corresponding to Figure 5.16

Figures 5.16 and 5.17 respectively show the immediately following time-

interval of interest. Similar trend in heat transfer coefficient with sequence of

boiling event follows. At time-instants (and corresponding frames in Figure

5.17) I,J,K and L, vapour slug (thin film evaporation), partial dry-out, 3-phase

contact line and a short liquid slug were observed over the sensor location. It can

be clearly observed that the peak heat transfer coefficient (20, 568 W/(m2K))
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at time-instant I is significantly lower than that at D (Figure 5.13) at which it is

32, 043 W/(m2K).

The difference is due to the difference in the initial thickness of the liquid

film trapped between the slug and the heated/wetted surface. Zhang et al.[85]

have explained that hydrodynamic boundary layer plays a role in determining

the thickness for which the low velocity liquid near the wall offers resistance

to the in-coming bubble/slug front. For frame D, it was observed that the nu-

cleation site was near to the sensor. Moreover, there was no hindrance to the

fluid-flow since there was no vapour slug in the downstream region. Hence the

boundary layer just starts developing and its thickness is very small at the sensor

location. So a very thin layer of liquid offered resistance to the bubble motion.

Hence, a very thin liquid film was trapped by the incoming slug which later lead

to a high heat transfer coefficient as can be understood from Equation 5.1. For

the slug in Frame I, although the nucleation was quite near to the sensor loca-

tion too (See trailing bubble in frame F in Figure 5.14), the presence of another

slug just downstream, moving with a velocity of 0.38 m/s stagnated the liquid

slug between them. When the velocity of the fluid is small, the boundary layer

develops quickly, hence the boundary layer is thicker, implying a thicker layer

of liquid resisting the in-coming slug. Hence, the peak heat transfer coefficient

seen at time-instant I is smaller than that at time-instant D. It may be again

be noted that before the thin film of liquid could become thinner, the cohesive

forces in the liquid tends to accumulate the liquid film causing partial dry-out so

that peaks in heat transfer coefficient are low.
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A very small peak was observed at K during the passage of 3-phase contact

line (See Figure 5.17). The peak value (11, 570W/(m2K)) is smaller compared

to that observed at F (Figure 5.13). The differences are due to the fact that

3-phase contact line is not always well established since partial rather than com-

plete dry-outs were observed leading to differences in length of 3-phase contact

lines over the sensor location.

Following this, a short liquid slug is again observed at time-instant L. Since

the downstream slug causes flow-stagnation, again the expected improvement

in heat transfer coefficient is not seen. Again, the same sequence of events

follows. At time-instants M,N,O and P , approaching/growing slug, vapour slug,

rear interface of the slug and liquid slug are respectively observed. During this

cycle, the peak heat transfer coefficient at N, due to thin film evaporation is even

lower (15, 747 W/(m2K)). This is due to larger thickness of boundary layer

due to both, bubble incipience further upstream (See small bubble in bottom

right of frame I which later grows in frame J) as well as flow stagnation due

to downstream slug moving with a velocity of 0.19 m/s. Another difference

observed was that even though it seems that 3-phase contact line passes over the

sensor location, since there was still liquid in the thin film near the rear vapour-

liquid interface, 3-phase contact line was not well established and a small peak

observed before was not seen at time-instant O.

As can be seen in Figures 5.18 and 5.19, the same cycle repeats. A small

bubble seen in Frame Q (at the lower right hand corner of the frame in Figure

5.19) grows to become a slug in frames R and S. The nucleation site is relatively
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FIGURE 5.18: Variation of heat transfer coefficient with time for H =
0.42mm, G = 200 kg/(m2s), qb = 17.2W/cm2 from 0.62-0.78 seconds

FIGURE 5.19: Video frames corresponding to Figure 5.18
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upstream compared to that at frame B. Hence the boundary layer thickness is

greater for slug in this case compared to that in frame D. Thus heat transfer

coefficient for time-instant S is slightly lower 29, 049 W/(m2K)) compared

to that at time-instant D (Figure 5.13). However, the peak is still larger at S

compared to I and N (Figure 5.16) since there was no downstream vapour slug

to cause flow stagnation and the front interface of the bubble moved with a

velocity of 1.46 m/s.

Small bubble in frame W grows to become a larger bubble in frame X

and eventually a slug in frame Y. The nucleation site is the same as that in

frame B (Figure 5.14). Moreover, in both cases, no downstream vapour slug was

observed. Hence, for both cases the peak heat transfer coefficient is very similar,

33, 178 W/(m2K) at time instant Y and 32, 043 W/(m2K) at time instant D.

For frames V and ZA in Figure 5.19, due to a relatively well stablized 3-

phase contact line, small peaks are observed at time-instants V and ZA in Figure

5.18

FIGURE 5.20: Variation of heat transfer coefficient with time for H =
0.42mm, G = 400 kg/(m2s), qb = 32W/cm2
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FIGURE 5.21: Video frames corresponding to Figure 5.20

Figure 5.20 shows transient variations in heat transfer coefficient in a cer-

tain time-interval of interest. The video file from which these frames were ex-

tracted has been uploaded in the attached CD for reference. The condition is

same as that of Figure 5.11(b). The sequence of events repeat for this condition

too. For this condition however, the peak heat transfer coefficient at time-instant

C is significantly larger compared to all previously discussed cases.This is be-

cause of several reasons. The nucleation site is very close to the sensor (See

frame B), there is no downstream slug to restrict to cause flow stagnation. Ad-

ditionally, the higher heat flux (32 W/cm2) implies faster thinning down of the

thin film liquid layer so that heat transfer coefficient reaches a higher peak before

the thin film liquid layer gets enough time to accumulate at a location to cause

partial dry-out and the the consequent lowering of heat transfer coefficient.
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Subsequently, due to partial dry-out as shown in frame D, the heat transfer

coefficient drops. The 3-phase contact line is not well established at time-instant

E and so small peak is not observed. Since flow was stagnated by downstream

bubble (whose rear interface moved with a velocity of 0.52 m/s) during the

passage of liquid slug at time instant F, heat transfer coefficient is low. Sub-

sequently, during the passage of slug in frame H, due to previously stagnated

liquid, the boundary layer thickness being larger and nucleation site being up-

stream, the heat transfer coefficient is low. However, during the passage of very

short liquid slug in frame I, the heat transfer coefficient is relatively much higher

compared to similar events discussed previously. Although there was a vapour

slug just downstream, the upstream bubble was observed to grow somewhat

rapidly and accelerate. Hence, there was no stagnation and velocity of the liquid

slug was quite large (2.7 m/s) leading to high heat transfer coefficient at time

instant I (liquid slug). In fact, due to high velocity of slug, the rear interface of

downstream slug in frame I appears blurred. The subsequent peak in heat trans-

fer coefficient is reached during thin film evaporation a little after time-instant

J. However, this peak is relatively still lower than that at C since the nucleation

was further upstream outside the field of view of the camera.

The peaks observed during thin film evaporation are in accordance with the

model proposed by Thome et al. [15] as well as the findings of Rao and Peles

[84] and Bigham and Moghaddam [65].

There are however, certain differences in the heat transfer coefficient trends
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during passage of liquid slug. In contrast to the conclusions arrived at by Kan-

dlikar [60] and Magnini et al.[38], the heat transfer coefficient for the present

experimental conditions was lower than that encountered during thin film evap-

oration.

FIGURE 5.22: Streamlines within a liquid slug trapped between vapour slugs,
in a reference frame moving with the bubble

(Adapted from Magnini et al. [38])

Kandlikar [60], based on analogy of heat transfer in microchannels to that

during pool boiling as well as experiments on evaporating meniscus on a moving

heated surface [86] opined that the combination of micro-convection and tran-

sient conduction are responsible for high heat transfer coefficient during liquid

slug flow. Circulation is induced (as shown in Figure 5.22) in the liquid slug

and this provides a path for the heat to be transported from superheated liquid

layer experiencing transient conduction to liquid-vapour interface of the trailing

vapour slug. This in turn helps to reduce temperature behind the front interface

within the liquid which leads to high heat transfer rate.

Magnini et al.[38] carried out simulations to investigate the influence of

leading and sequential bubbles during slug flow in a microchannel. They con-

cluded that due to a re-circulating toroidal vortex (Figure 5.22) within the liquid
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slug trapped between two consecutive vapour slugs, the by-pass liquid layer re-

freshes with cooler fluid and hence the heat transfer coefficient was much higher

than that which is otherwise expected in liquid slug region. For the conditions

of their simulations (short bubble length and low heat flux), this heat transfer

coefficient was comparable to thin liquid film region during vapour bubble flow.

In the figure, ripples at the interface can also be observed at the rear end of the

leading vapour slug. These are capillary waves whose dynamics are in gen-

eral influenced by surface tension, gravity and fluid inertia. In the present work

however, these capillary waves were not observed.

Unlike the case considered by Magnini et al. [38], in the current case flow

stagnation was sometimes observed in the liquid behind the rear vapour slug

interface due to bubble growth towards the upstream which may happen due to

upstream compressibility. The resulting difference in the heat transfer trend can

be explained based on the work by Thulasidas et al. [87]. Using Particle Imaging

Velocimetry (PIV), they studied toroidal vortices in liquid slugs trapped between

strings of bubbles in circular and square capillaries, for various capillary num-

bers for 2 phase flows without phase change. Recirculation time was pointed out

to be an important measure of radial mixing which is responsible for good heat

transfer performance. For small capillary numbers, the dimensionless recircula-

tion time was found to be almost constant (≈ 3). This means that the time taken

by a typical particle inside the liquid slug to move from one end to the other

end of the slug is equal to the time taken by the slug to move 3 times its length.
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Hence, assuming the applicability of these results to flow boiling in microchan-

nels with rectangular cross-section, it can be concluded that longer is the liquid

slug length and smaller is the bubble velocity, the longer would be the time the

particle would take to circulate within the liquid slug and slower would be the

rate at which the fluid near the wall would be replenished with cooler fluid re-

sulting in lesser enhancement in heat transfer. As mentioned before, somewhat

high heat transfer coefficient was observed when the liquid slug was short and

its velocity was high. However, if the liquid slug was long and/or velocity was

low (due to stagnation), the heat transfer coefficient was low.

Another difference between the present case and the cases considered by

Kandlikar [60] and Magnini et al. [38] is that the current case is that of sub-

cooled boiling. The recirculation may not enhance heat transfer performance as

much as it is expected to, for the case of saturated flow boiling since the bulk of

the fluid is anyways cooler, below saturation temperature. This likely prevented

the re-circulating fluid from losing as much amount of thermal energy at the

front bubble interface of the vapour bubble (due to phase change) as it would for

saturated flow boiling condition.

Effect of Channel Height

From Figure 5.23, it is evident that many of the peaks in heat transfer co-

efficient are much greater in magnitude for microchannel with height 0.28 mm

compared to that for microchannel with height 0.42 mm. This is due to bubble

nucleation sites often being closer to the sensor location for smaller channel as
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FIGURE 5.23: Variation of heat transfer coefficient with time for G = 400
kg/(m2s), qb = 32.5 W/cm2(±1.5%) for microchannel heights of (a) 0.28
mm (b) 0.42mm. Video frames (a1) Nucleation site is close to sensor location
for condition (a) (a2) Liquid slug is long for condition (a) (b1) Nucleation site
is upstream outside the field of view of the camera for condition (b) (b2) Liquid

slug length is short for condition (b)

seen in frame (a1) (Figure 5.23) compared to upstream location of nucleation

sites for larger microchannel as seen in frame (b1). This could be due to larger

average (temporally and spatially) wall superheat of 5 oC for H = 0.42 mm

channel compared to 3.9 oC for H = 0.28 mm channel. The frequency of

peaks (caused by thin film evaporation during passage of slugs) was greater for

larger microchannel, which again can be due to larger wall superheat (however,

as would be see in subsequent cases, a counter effect can be caused by larger

channel heights and/or mass fluxes since such conditions are less conducive for
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bubble confinement to happen, thus for many cases, it leads to more small bub-

bles and lesser confined bubbles/slugs that lead to peaks in heat transfer coeffi-

cient).

The valleys too were higher for 0.42 mm channel. This is due to shorter

liquid slugs for larger microchannel. Frame (a2) (for H = 0.28 mm) shows

that liquid slug is so long that it occupies the complete channel in the field of

view of the camera, while frame (b2) (for H = 0.42 mm) shows a short liquid

slug. Because of long slugs for microchannel with H = 0.28 mm, the valleys

are generally flatter compared to microchannel with H = 0.42 mm.

As can be seen from Figure 5.24, the average heat transfer coefficient

for smaller microchannels is much larger. For smallest microchannel (H =

0.14 mm), churn as well as wispy annular flow was observed. The trend in tem-

poral variations in heat transfer coefficient is similar to that during slug flow.

When slugs (that may be oddly shaped) passed over the sensor location, the

heat transfer coefficient rises and when dry-out commences, it falls. During the

passage of liquid slugs, the heat transfer coefficient was low. The peaks and

valleys for the smallest microchannel are usually greater than those for larger

microchannels. This is due to thinner film of liquid trapped for microchannels

with smaller heights as noted by Zhang et al. [85]. Although the nucleation site

was quite often close to the sensor location for sub-figure (b) as shown in frame

(b1), the effect of smaller height supersedes the effect of closeness of nucleation

site so that peaks for sub-figure (a) are greater.
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FIGURE 5.24: Variation of heat transfer coefficient with time for G = 600
kg/(m2s), qb = 29.3W/cm2(±3.6%) for microchannel heights (a) 0.14 mm
(b) 0.28 mm (c) 0.42 mm. Video frames (a1) Short liquid slug for condition
(a) (b1) Nucleation site is near to the sensor for condition (b) (b2) Bubbles

observed during passage of long liquid slug for condition (b)
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The length of liquid slugs too were shorter for smaller microchannel as can

be seen by comparing frames (a1) and (b2). In frame (b2), liquid and few small

bubbles completely occupy the microchannel length seen in the field of view

of the camera. Hence the valleys for smaller microchannels were often higher.

Some of the valleys with very low heat transfer coefficient indicate partial dry-

out conditions.

The average (temporally and spatially) wall superheat for H = 0.14 mm,

H = 0.28 mm and H = 0.42 mm were 4.1, 6 and 6.2 oC. The effect of greater

bubble confinement and earlier ONB for smaller channels outweighs the effect

of wall superheat in determining the slug frequency.

The trends shown in Figure 5.25 are quite similar to those seen in Figure

5.24. Notable difference is that for microchannel with H = 0.14 mm, the val-

leys are often very low. This was due to very frequent partial dry-out conditions

arising from relatively greater heat flux.

For microchannel with H = 0.42 mm, bubbly flow was observed. How-

ever, very seldom, large bubbles were seen as shown in frame (c).

Effect of Mass Flux

Figure 5.26 shows the effect of mass flux on transient heat transfer for mass

fluxes of 600 kg/(m2s) and 1000 kg/(m2s). The frequency of peaks (slugs) is

greater for smaller mass flux since lower mass flux condition is more favourable

for confinement.
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FIGURE 5.25: Variation of heat transfer coefficient with time for G = 1000
kg/(m2s), qb = 42.4 W/cm2(±2.4%) for various microchannel heights (a)
0.14 mm (b) 0.28 mm (c) 0.42 mm. Video frame (c) Very rarely observed short

vapour slug for condition (c)
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FIGURE 5.26: Variation of heat transfer coefficient with time for H =
0.14 mm, qb = 28.1 W/cm2(±3.2%) for mass fluxes (a) 600 kg/(m2s) (b)

1000 kg/(m2s)

The peaks in heat transfer coefficient too are higher for low mass flux case.

This could be due to higher bulk mean fluid temperature of 95.6 oC for G =

600 kg/(m2s) compared to 90.4 oC for G = 1000 kg/(m2s) at the sensor

location. Lower fluid temperature of the fluid implies more heat being used for

sensible heating of the liquid rather than evaporating the thin film during passage

of vapour slug, thus preventing thinning down of the liquid film before it gets

accumulated by virtue to cohesive force to maintain a certain wall contact angle.

Due to more frequent slugs, the liquid slugs were comparatively short for

G = 600 kg/(m2s). So the heat transfer coefficient at valleys was generally
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larger than those seen for G = 1000 kg/(m2s). At times however, partial dry-

out lead to very low valleys.

FIGURE 5.27: Variation of heat transfer coefficient with time for H =
0.28 mm, qb = 30.8 W/cm2(±3%) for mass fluxes (a) 400 kg/(m2s) (b)

600 kg/(m2s) (c) 1000 kg/(m2s)

The trends seen for Figure 5.27 are similar to those seen in Figure 5.26 and

explanation that follows is similar. For highest mass flux of 1000 kg/(m2s),
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FIGURE 5.28: Variation of heat transfer coefficient with time for H =
0.42 mm, qb = 21.1 W/cm2(±2.8%) for mass fluxes (a) 200 kg/(m2s) (b)

400 kg/(m2s) (c) 600 kg/(m2s)
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FIGURE 5.29: Variation of heat transfer coefficient with time for H =
0.42 mm, qb = 59.4 W/cm2(±2.3%) for mass fluxes (a) 600 kg/(m2s) (b)

1000 kg/(m2s)

hardly any bubbles were seen since the average wall superheat was only 2.4oC.

Hence the peaks in heat transfer which happen due to elongated bubbles/slugs

are very scarce.

The average wall superheat for 400 kg/(m2s) and 600 kg/(m2s) was 3.3 oC

and 6 oC. Yet, due to greater effect of flow confinement for smaller mass flux,

the slug frequency and hence the number of peaks are much greater for mass

flux of 400 kg/(m2s). The peak values are somewhat greater due to larger bulk

mean temperature of 92.9 oC for G = 400 kg/(m2s) compared to 90.2 oC for

G = 600 kg/(m2s).

109



Chapter 5 Results and Discussion

The trend for Figure 5.28 is same as those observed for Figures 5.26 and

5.27. Due to less confinement effects, bubbly flow was observed for mass flux

of G = 600 kg/(m2s).

Figure 5.29 shows that for mass flux of 600 kg/(m2s), slug flow was ob-

served and the fluctuations in heat transfer coefficient were very significant. Due

to high frequency of slugs and fairly high peak values, the average heat trans-

fer coefficient value is higher than that for mass flux of 1000 kg/(m2s) during

which bubbly flow was observed.

The high and low value of heat transfer coefficient in valleys for mass flux

of 600 kg/(m2s) were due to short liquid slugs and partial dry-outs respectively.

5.3 Detection of Flow Regimes

Figure 5.30 shows typical sensor temperature verses time data for some

of the selected conditions under which various flow regimes were observed. A

cursory look gives an idea about the unique temperature signature of each of

the flow regimes. While single phase flow has the least fluctuations, the same

for bubbly flow are relatively larger. For slug flow as well as for Churn/Wispy

annular flow, the fluctuations are even larger.

There were three probable data-reduction procedures considered that could

be used to identify flow regimes.
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FIGURE 5.30: Typical temperature (measured by sensor) verses time curve
for different flow regimes (a) Single phase flow for H = 0.14mm, G = 1000
kg/(m2s) (b) Bubbly flow for H = 0.42 mm, G = 1000 kg/(m2s) (c) Slug
flow for H = 0.14 mm, G = 1000 kg/(m2s) (d) Churn/Wispy-annular flow

for H = 0.14mm, G = 600 kg/(m2s)

1. Standard deviation of sensor temperature data: Although very simple to

apply, the difficulty with standard deviation is that temperature data is typ-

ically measured below the wetted surface. This leads to damping (due to

thermal capacitance of the solid substrate) of temporal fluctuations in tem-

perature due to phenomena occuring on the wetted surface. This damping

is not only a function of substrate properties and depth of temperature sen-

sor from the wetted surface but also the frequency components present in

the temperature-time data as shown in Figure 4.5. Even if regimes could

be differentiated for the present experimental conditions from standard

deviation values, it would lack general applicability. This method is thus
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avoided.

2. Direct application of FFT on temperature sensor data followed by the use

of methodology described in section 4.3 to correct for damping of ampli-

tudes of different frequencies.

3. The use of IHCP solution method to first calculate the wetted surface tem-

perature followed by application of FFT on this temperature.

Figure 5.31 shows a comparison between the second and third idea con-

sidered for various experimental conditions under which different flow regimes

were observed. It can be observed from Figures 5.31 (c),(d) and (e) that there

is a very good agreement in the frequency domain, between the two methods,

especially for lower frequencies (below 80 Hz). For higher frequencies, the

data reduction procedure based on the third method (involving the use of Tw)

leads to smaller amplitudes compared to that obtained from the second method

(involving the direct use of Tsensor). For Figure 5.31 (a) and (b) the difference in

amplitude seems much more prominent, since the y-scale is relatively smaller.

The discrepancy in the frequency domain for the two methods increases as the

frequency increases. This is due to the presence of noise in the Tsensor data.

Also, the correction for higher frequency is much larger (refer to Figure 4.5 and

note the decreasing value of amplitude ratio with increasing frequency) leading

to much greater amplification of noise at higher frequencies. Contrastingly, for

Tw, since IHCP solution dampens the noise very well, this effect is not observed

112



Chapter 5 Results and Discussion

for Tw based curve. These are the reasons for differences in the frequency-

domain of the two methodologies.

The second method seems to be the best due to clear distinction in the some

of the highest peak amplitudes for different flow regimes. However, the algo-

rithm for post-processing is much more complex than that for the third method.

This could make things difficult for real-time applications. Fortunately, within

certain limits the third method is still applicable.

For frequency components less than 80 Hz, the third method is nearly as

good as the second method for distinction of the flow regimes. Moreover, the

relative simplicity of the method makes it more practical for application purpose.

Hence, unless much higher frequencies are dominant and unless the sensor noise

(having standard deviation of≈ 0.1 oC in the present case) is too large, the third

method is good enough. If sensor noise is much smaller and/or if the sensor

depth is smaller and/or the thermal diffusivity of the solid substrate material is

large (non-dimensional frequency would be less in that case and amplitude ratio

would be large implying a smaller amplification of noise), it is expected that

frequencies much greater than 80 Hz can also be well captured.

For each of the conditions presented in table 5.1, a number of heat fluxes

were tested. However, for brevity, results of only some of the heat fluxes have

been shown in Figures 5.32 to 5.40 to demonstrate the differences in some of

the maximum peak amplitudes in the frequency for different flow regimes.
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FIGURE 5.31: Comparison of frequency domain obtained directly using tran-
sient wall (wetted surface) temperature and corrected frequency domain of
temperature sensor data for (a) Single phase flow (b) Bubbly flow (c) Slug

flow (d) Slug/Churn flow (e) Churn/Wispy Annular flow

Figure 5.41, shows the regime detection chart summarizing the observa-

tions. For single phase flow, amplitude of all peaks were below 0.03 oC for

frequencies less than 80 Hz. For bubbly flow several of the highest of ampli-

tude peaks ranged from 0.04−0.25 oC. While Slug flow, Churn flow and Wispy

annular flow could not be distinguished among each other, some of the highest

of peaks for all cases were much greater (> 0.35 oC) compared to single phase

and bubble flow.
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FIGURE 5.32: Corrected frequency domain of temperature (measured by sen-
sor) verses time data for H = 0.14mm, G = 600 kg/(m2s) for various heat

fluxes

FIGURE 5.33: Corrected frequency domain of temperature (measured by sen-
sor) verses time data for H = 0.14mm, G = 1000 kg/(m2s) for various heat

fluxes
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FIGURE 5.34: Corrected frequency domain of temperature (measured by sen-
sor) verses time data for H = 0.28mm, G = 400 kg/(m2s) for various heat

fluxes

FIGURE 5.35: Corrected frequency domain of temperature (measured by sen-
sor) verses time data for H = 0.28mm, G = 600 kg/(m2s) for various heat

fluxes
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FIGURE 5.36: Corrected frequency domain of temperature (measured by sen-
sor) verses time data for H = 0.28mm, G = 1000 kg/(m2s) for various heat

fluxes

FIGURE 5.37: Corrected frequency domain of temperature (measured by sen-
sor) verses time data for H = 0.42mm, G = 200 kg/(m2s) for various heat

fluxes
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FIGURE 5.38: Corrected frequency domain of temperature (measured by sen-
sor) verses time data for H = 0.42mm, G = 400 kg/(m2s) for various heat

fluxes

FIGURE 5.39: Corrected frequency domain of temperature (measured by sen-
sor) verses time data for H = 0.42mm, G = 600 kg/(m2s) for various heat

fluxes
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FIGURE 5.40: Corrected frequency domain of temperature (measured by sen-
sor) verses time data for H = 0.42mm, G = 1000 kg/(m2s) for various heat

fluxes

Single phase flow (for steady-state condition) in Figures 5.32 to 5.40 should

ideally not have had any frequency components and the curve should have sim-

ply coincided with the x-axis. However, due to non-ideal experimental condi-

tions, primarily the inherent noise in temperature measurement leads to some

temperature fluctuations leading to non-zero amplitudes in frequency domain.

During bubbly flow, the temperature fluctuations are relatively higher than that
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FIGURE 5.41: Regime detection chart

of single-phase flow since single-phase is steady (ideally) while boiling phe-

nomena is unsteady. Immediately following bubble nucleation, there is a sud-

den increase in heat transfer coefficient due to release of accumulated superheat

(utilized in evaporation, owing to the latent heat) in the surrounding liquid [88].

This increased heat transfer coefficient in turn leads to decreased wall tempera-

ture. However, during the waiting time (time period between bubble detachment

and ebullition of another bubble), since there is single phase flow, the heat trans-

fer coefficient again reduces and consequently, the wall temperature increases.

Hence, amplitudes are larger for bubbly flow compared to single phase flow.

Slug flow regime generally involves three distinct features as shown in Fig-

ure 5.15; (i)elongated vapour bubble (slug) flow during which the heat transfer

coefficient is very high owing to thin film evaporation (ii)local dry-out during

which the heat transfer coefficient is very low (iii) liquid slug flow during the
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passage of which heat transfer coefficient is intermediate [15]. Due to multiplic-

ity of heat transfer mechanisms and large difference in heat transfer coefficient

associated with each of them, the temperature fluctuations during slug flow are

very large. During Churn flow and Wispy annular flow, the hydrodynamics and

heat transfer are complex. These flow regimes may include thin film evapora-

tion of liquid film (whose thickness may vary with time), nucleation of smaller

bubbles and periods of partial-dry-out. This phenomenon leads to temperature

fluctuations which are as high as those observed during slug flow regime.

It was anticipated that with increase in heat flux, due to increase in number

of bubbles and slugs, the dominant frequency would shift to higher frequencies.

But contrarily to expectations, this was not observed. The lack of increase in

dominant frequencies with increasing heat flux is likely due to stochastic nature

of the bubble/slug ebullition and passage leading to distributed peaks rather than

a single large peak. Moreover, temperature variation during a complete slug

cycle is not sinusoidal. These reasons likely explain the counter-intuitive results.

These are also the reasons, that for conditions under which slug flow regime

was observed, although a relatively large peak was observed in the frequency-

domain at a frequency corresponding to the frequency of passage of slug (as

seen from high speed flow visualization), there were other peaks too, which

could often have larger amplitudes. Hence, neither was a pattern such as in-

crease in dominant frequencies was observed with increase in heat flux nor was

it possible to detect the slug frequency from peaks in frequency domain.
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Conclusions and Recommendations

for Future Work

Sub-cooled flow boiling phenomena in a single low aspect ratio microchan-

nel was investigated using DI water as the coolant. Mass fluxes tested were 200,

400, 600 and 1000 kg/(m2s) for a microchannel with a width of 2.54 mm,

length of 25.4 mm and heights 0.14, 0.28 and 0.42 mm. Several heat fluxes

were tested, the maximum being 105 W/cm2. Time-averaged results for both

pressure drop and heat transfer were presented. Numerical method involving

solution technique for Inverse Heat Conduction Problem (IHCP) was first tested

for a number of cases and then applied to transient temperature data captured

synchronously with video frames during experiments. Transient results thus ob-

tained were also presented for aforementioned conditions. This provided unique

insights into the flow boiling phenomena. Transient temperature data was also

shown to be useful for detection of flow boiling regimes.

The following section summarizes the important conclusions from the pre-

sented work. Lastly, based on insights gained from this thesis, recommendations

for future work have been provided.
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6.1 Conclusions

1. Confinement of bubble was observed for most of the cases and hence slug

flow regime was the most pre-dominant. A cycle typically commences

with nucleation of bubble. It grows to become a slug confined by the

small microchannel dimensions. This is followed by detachment from

nucleation site and expansion/acceleration longitudinally as well as en-

trapment of a thin film of liquid on the wetted surface. This film thins

down and accumulates leading to partial dryout. Re-wetting is then ob-

served when liquid slug passes.

2. Pressure drop was found to be sensitive to heat flux for all cases except

when bubbly flow was prevalent. Pressure drop was significantly higher

for smaller microchannels for a given heat flux and mass flux due to (a)

larger frictional pressure drop and (b) accelerational pressure drop due

to greater amount of vapour (having much larger specific volume com-

pared to liquid) being generated. For a microchannel of given height, for

a given heat flux, pressure drop was also higher for higher mass fluxes

due to greater frictional component of pressure drop. For some cases, the

pressure drop for high and low mass fluxes was the same. This was due to

greater accelerational component of pressure drop for smaller mass flux

due to greater quantity of vapour being formed.

3. ONB (Onset of Nucleate Boiling) on the boiling curve and heat transfer

coefficient verses heat flux curve is identified by a sharp increase in slope.
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The boiling curve is nearly vertical for two-phase region and it can be

easily distinguished from single-phase region. The heat transfer coeffi-

cient also increases quite drastically with heat flux. In two-phase region,

the boiling curve for a given mass flux is observed to shift towards higher

wall superheat for larger microchannel height, since onset of nucleation

is delayed for larger microchannels. Correspondingly heat transfer coef-

ficient too is relatively inferior since vapour confinement effects too are

relatively lesser. Larger mass flux was also observed to elevate the super-

heat required for onset of nucleate boiling for a given channel height. In

general the boiling curve shifts towards higher wall superheat for greater

mass fluxes due to lesser confinement effects which also result in rela-

tively lower heat transfer coefficient. However, sometimes due to low

bulk mean fluid temperature, the wall superheat was lower for high mass

fluxes.

4. During flow boiling in microchannels, variations in heat transfer coeffi-

cient, wall heat flux and temperature are very significant with time. In

fact, constant wall heat flux boundary condition is found to be invalid.

While the trend in wall heat flux follows that of heat transfer coefficient,

the wall temperature is observed to increase when heat transfer coefficient

is low and it decreases sharply when heat transfer coefficient increases.

Because of coupling of heat transfer coefficient (governed by boiling phe-

nomena) and wall temperature, it is apparent that wall thickness/material
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plays a role in determining how quickly the temperature fluctuates, thus

influencing boiling phenomena and heat transfer coefficient.

5. Heat transfer coefficient increases as the slug nose arrives. This is due

to evaporation of liquid at the interface causing quenching of surround-

ing liquid as well as due to flow structures at the slug nose that promote

mixing within the liquid.

6. Peaks in heat transfer coefficient occur during passage of vapour slugs

due to thin film evaporation. Thus, thin film evaporation is found to be the

primary mechanism responsible for enhanced heat transfer during slug

flow.

7. The peak value of heat transfer coefficient depends on initial thin film

thickness trapped when the slug just arrives at a location. This in turn de-

pends on distance of bubble incipience as well as any phenomena in the

downstream region which affects the fluid flow influencing the develop-

ment of hydrodynamic boundary layer. In fact, due to stagnation caused

by a downstream slug, trailing slugs lead to smaller peaks in heat transfer

coefficient due to thicker initial film of liquid trapped above the wetted

surface.

8. Heat flux at a given mass flux and microchannel height also influences the

peak heat transfer coefficient. Higher heat flux leads to higher bulk mean

fluid temperature and faster thinning down of thin film before the film

accumulates thus facilitating higher peaks. Since accumulation of a film
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of liquid is governed by surface-wettability, it also affects the heat transfer

coefficient. For high heat fluxes, even the frequency of slugs were higher

since higher heat flux implies faster rise in wetted surface temperature

thus leading to faster nucleation events.

9. At a given heat flux and mass flux, for smaller microchannels the peaks in

heat transfer coefficient were larger due to thinner film of liquid trapped

initially during passage of slug. The spatially and temporally averaged

wall superheat and bulk mean temperature too affect the frequency of

peaks in heat transfer coefficient.

10. At a given heat flux and microchannel height, peaks and frequency in

heat transfer coefficient were respectively higher and larger for lower mass

fluxes. Higher bulk mean fluid temperature and greater confinement ef-

fects for smaller mass fluxes is thought to be responsible for this observa-

tion.

11. Small peaks were observed during passage of 3-phase contact line. It

covers a very small region and its residence time at a given location too is

small. Hence, it does not contribute significantly to the overall high heat

transfer seen during slug-flow regime.

12. During the passage of liquid slug, the heat transfer coefficient was lower

than that during thin film evaporation. Passage of shorter and fast moving

liquid slugs lead to higher heat transfer coefficient compared to longer

and/or slow moving ones. Difference in temperature profile development
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length and recirculation time within the liquid slug are the likely reasons

for the differences in heat transfer coefficient due to length and velocity

of liquid slug.

13. A simple methodology based on transient temperature is developed to di-

agnose flow regimes. Single phase flow, bubbly flow and slug/churn/wispy-

annular flow could be clearly differentiated by looking at some of the

highest of peaks in amplitude in the corrected frequency domain of wall

temperature for frequencies below 80Hz. For single phase flow, all peaks

were below 0.03 oC. For bubbly flow, several of the highest of peaks

ranged from 0.04 − 0.25 oC. While for slug flow, churn flow and wispy

annular flow, the highest of peaks were greater than 0.35 oC). Sugges-

tions have also been given to increase the limit of maximum frequency for

which results can be relied upon.

6.2 Recommendations for Future Work

1. The range of heat flux, mass flux and the channel dimensions are lim-

ited. A similar study including time-averaged and transient variables can

be carried out for a wider set of parameters. Studies on dielectric fluids

should also be carried out since their properties are quite different from

that of water.

2. The maximum value of heat flux was limited due to limitations of the

thermal test chip used in this work hence only sub-cooled experiments

127



Chapter 6 Conclusions and Recommendations for Future Work

could be performed. Future endeavors could carry out similar studies for

saturated boiling as well and could also include the study of CHF.

3. It is worth checking the effect of heater depth on the heat transfer perfor-

mance of the microchannels. This is because a strong coupling was found

between transient variations of surface temperature and heat flux with the

transient flow-regime.

4. Effect of inlet/outlet compressibility on transient evolution of heat transfer

can be studied.

5. Boiling is a phenomena that is very difficult to control. There were a

number of different randomly active nucleation sites on the microchannel.

Study on a microchannel with a very smooth surface with artificial nu-

cleation sites (ANS) may be able to offer pre-determined well controlled

boiling sites. A parametric analysis can then be conducted and effect of

various parameters like distance of bubble incipience, slug length, liquid

slug length, heat flux, mass flux, microchannel dimensions etc on tran-

sient heat transfer can be well quantified and a semi-analytical model can

be developed.

6. Numerical simulations for flow boiling in microchannels can be carried

out, not with just the fluid domain alone, but should also include the solid

domain between the wetted surface and heater, to better simulate the ex-

perimental phenomena. Simulation heat transfer results should then be

compared to transient experimental heat transfer results for validation.
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Parametric analysis and ease of control of variables during simulations

can offer invaluable information regarding local and temporal variations

of hydrodynamic and thermal fields, thus enabling an understanding that

could ultimately lead to mechanistic heat transfer models.

7. The methodology for regime-detection can be tested for a wider set of

heat fluxes, mass fluxes, fluids etc. Use of better sensors (with lower

noise) can increase the limit to which higher frequencies can be captured

reliably. This method can be used and research work can be conducted to

optimize a smart feed-back control of flow-rate for optimal heat transfer

performance and minimum pumping power.
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Appendix A: Uncertainty Analysis

Uncertainties in results of experiments have been estimated based on prin-

ciples explained by J.R. Taylor [80].

Uncertainty in Summation

Suppose F = f(x, y, ..., v, w) such that

F = x+ y + ....− v − w

and uncertainties in measuring x, y, . . . v and w are δx, δy, ..δv and δw respec-

tively and if they are known to be independent and random, then the uncertainty

in F is given as

δF =
√

(δx)2 + (δy)2 + · · ·+ (δv)2 + (δw)2

In cany case, δF is never larger than their ordinary sum.

δF ≤ δx+ δy + ....+ δv + δw
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Uncertainty in Products and Quotients

Suppose F = f(x, y, ..., v, w) such that

F =
x× y . . .
. . . v × w

the fractional uncertainty in F is sum in quadrature of the fractional uncertainties

in x, y, v and w and is given as

δF

|F |
=

√(
δx

|x|

)2

+

(
δy

|y|

)2

+ · · ·+
(
δv

|v|

)2

+

(
δw

|w|

)2

if errors are known to be random and independent of each other. In cany case, it

is never large than their ordinary sum.

δF

|F |
≤ δx

|x|
+
δy

|y|
+ · · ·+ δv

|v|
+
δw

|w|
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Attachment

A CD has been attached with the thesis. It consists of a sample video file

corresponding to figure 5.21.
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