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Abstract
Since Internet was invented, several researches have been conducted to address

its limitations. One of the most important limiting factors is the inconsistency
between the communication model, which works based on location (where), and
the usage of the Internet, which values the content (what). Information, or Con-
tent centric network is one of the influential trends to deal with this problem.
The ICN communication model works based on content name instead of IP ad-
dress. Although there are different ICN proposals, all of them have the property
of integrating the router and cache because current and future Internet traffic are
cachable. This makes a network of caches in the scale of Internet. In an ICN
network of caches, obtaining a high overall hit ratio, more important than only
having a high hit ratio in a single cache, is reduced by the filtering effect. The
filtering effect happens where a cache is managed in correlation with other caches
inside a network of caches. This correlation is due to communicating among caches
with the objective of serving requests. A cache filters the requests that generate
cache-hits and passes the requests that generate cache-misses. These filtering and
passing change the pattern of requests such that another cache is hardly able to
obtain a high hit ratio from the missed requests. Therefore, an ICN networked
cache policy should address the filtering effect problem in addition to obtaining
a high hit ratio. Moreover, a cache policy that is able to obtain a high hit ratio
and addresses the filter effect is not able to obtain a high overall hit ratio without
coordination due to redundancy. Furthermore, the coordinated schemes for ICN
network of caches should have lightweight communication and processing overhead
because an ICN router should operate in line speed.

The objective of this thesis is to propose the light weight coordinated schemes
for ICN network of caches to obtain high overall hit ratios by addressing the
filtering problem and managing the redundancy. We use two different approaches
to reach our goal. In the first approach, we design a cache management policy
to address the filtering effect problem. Then, we improve the performance of
our policy in terms of hit ratio. Finally, we introduce our coordinated scheme
integrated with our improved policy. In the second approach, we design a simple
caching algorithm to obtain a high hit ratio for a single cache. Then, we tackle the
filtering effect through coordinating and using our findings from the first approach.

The first approach starts by proposing a lightweight cache management algo-
rithm called two-state policy to address the filter effect problem. The two-state
policy manages a cache such that: i) the cache obtains a high hit ratio and, ii) the
missed requests from the cache can be used by other caches to obtain a high hit
ratio. From an ICN network of caches perspective, the two-state policy provides
the opportunity of obtaining high hit ratios for other caches by introducing a new
type of filtering. From a single cache perspective, we prove that the two-state pol-
icy obtains a hit ratio same as LRU under Independent Reference Model (IRM)
assumption. In addition, we improve the adaptation property of two-state policy
for the networks with large RTTs through a reservation mechanism. However, the
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two-state policy suffers from one-timer contents (pollution) and is not comparable
with other policies for real workloads. To solve this issue, we generalize the two-
state policy to an n-state policy that obtains hit ratio higher than two-state while
the n-state inherits the advantages of two-state such as solving the filter effect
problem.

We complete our first approach by proposing a coordinated protocol through
piggybacking information in extra integer fields of the request and content packets.
Our scheme is integrated with n-state policy and has two versions: coordinated
two-state with reservation (CO2S) and coordinated three-state with reservation
(CO3S). The CO2S and CO3S use the advantages of two-state (solving filtering
effect and thrashing) and three-state (solving filtering effect, thrashing and pol-
lution) and also manage the redundancy. Consequently, our schemes obtain a
high overall hit ratio by achieving a high hit ratio at both edge and core routers.
This leads to bringing the popular contents close to the consumers, decreasing
the content download time and decreasing the redundant packet transmissions in
the network. Moreover, our schemes decrease the cache eviction rate that may
lead to reducing the energy consumption. CO3S obtains a higher overall hit ratio
compared to CO2S. On the other hand, CO2S obtains overall hit ratio comparable
with other schemes, but decreases the eviction rate up to four orders of magnitude.

Our second approach starts by introducing a cache management policy, CAP,
which addresses all of the caching problems for a single cache and is the base for
a new coordinated scheme called COCAP. We introduce a class of replacement
policies by dividing the cache into two variable sized segments managed indepen-
dently. Among all of the combinations of the applicable replacement policies for
the two segments, the combination of Random policy for missed contents and
no-operation for hit contents solves all of the caching problems for a single cache
while its overhead is not considerable. In addition, our trace-based simulations
show that CAP obtains the hit ratio pretty close to the state-of-the-art for a sin-
gle cache. Furthermore, the time complexity of CAP is constant and it does not
impose memory overhead.

Our second approach is completed by proposing a coordinated scheme based
on CAP, COCAP, for an ICN network of caches. The COCAP, implemented
through piggybacking information in extra integer fields, solves thrashing and
pollution problems using CAP and tackles the filter effect through coordination.
The COCAP coordination has two characteristics: i) using freezing/updating idea
of two-state ii) managing the network of caches as a virtual cache. The idea of
virtual cache enables COCAP to bring the popular content close to the consumers
and manage the redundancy.
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Chapter 1

Introduction

1.1 Motivation

In the beginning of Internet era, the key goal of using the Internet was resource

sharing. Considering the goal, the communication model chosen for the earliest

Internet was based on a conversational model between two entities. Although

the Internet has received continuous improvement during the last 50 years, the

communication model roughly remains the same. However, the objective of using

the Internet has gradually changed from a pure resource sharing tool to a massive

disseminating information1 or content media [36]. This trend shows that the

location (where) is now less important for users than the content (what) [40]

but the location still has its main role in the communication model.

This difference between the communication model and the usage of the In-

ternet causes some challenges include, but not limited to, the lack of a content

distribution method in network layer and the overhead to the network such as the

translation from content to location. Therefore, an efficient and scalable Internet

architecture for future demand is required. The Information or Content centric

network is one of the influential trends for the future Internet architecture. Infor-

mation Centric Network (ICN) has the potential to cope with many architectural

1We use terms content and information in this text interchangeably
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Internet challenges because its communication model is consistent with the Inter-

net usage. That is, the communication model works based on the content rather

than the location. Although there are different ICN proposals such as NDN [40],

NetInf [1] and DONA [47], integrating cache and router is common among all of

them. This makes the Internet as a network of caches that is defined as a col-

lection of caches connected to each other. Each cache either answers a request

for a specific content with that content or forwards the request to the next router

through the path towards the producer.

The motivation for using a network of caches in ICN is that the Internet traffic

is cachable [3]. Anand et al. [3] show that caching the Internet traffic for 10 seconds

can lead up to 50% hit ratio. In addition, the projections about the future [22]

show that in 2016 around 86% of the customer traffic type will be video and the

access pattern of video contents follows the Zipf distribution [14, 21]. Therefore,

in addition to the currently cachable Internet traffic, it is highly probable that

the major type of Internet traffic will be cachable. Consequently, using a network

of caches in ICN has many potential benefits such as bringing the contents closer

to the consumers, reducing the load on producers and decreasing the unnecessary

retransmission in ISPs.

Although the usage of network of caches in ICN is promising, the efficiency

of a network of caches is affected by the filter effect phenomenon [4, 88, 89]. A

cache can be considered as a filter. That is, the cache serves the requests that

generate cache-hits and forwards the requests that generate cache-misses. These

filtering and passing change the pattern of requests such that subsequent caches

are unable to obtain high hit ratios from the forwarded requests. The filter effect

has been studied for several years from both the frequency perspective [29, 87, 88]

and the time perspective [8]. To reduce the filter effect, Busari and Williamson

[88] proposed to use heterogeneous replacement policies in a network of caches.

Later, Ari et al. [4] proposed Adaptive Caching using Multiple Experts (ACME)

that uses neural networks to find the optimal combination of replacement policies.
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Even though the previous studies combined different replacement policies to obtain

a higher hit ratio in the core routers, their results show that the filter effect still

appears because the request pattern in the core routers is changed by the filtering

at the edge routers. Therefore, the overall hit ratio of the network of caches

is degraded. Consequently, to obtain a high overall hit ratio for a network of

caches, a single cache should be managed such that it simultaneously achieves two

objectives: i) obtaining a high hit ratio and ii) generating a missed request stream

that can be used by other caches to obtain a high hit ratio. Although these two

objectives are necessary, they are not sufficient for obtaining a high overall hit

ratio in the network of caches.

In addition to the filter effect, the redundancy degrades the overall hit ratio

in the network of caches. The redundancy happens when several caches keep the

same copy of a content where these caches can communicate to each other and

obtain a content from one of the caches. This content redundancy is the result

of independent cache management algorithms that can be addressed by coordi-

nated caching schemes. The coordinated caching scheme is defined as the way

that different caches coordinate to prevent the content redundancy. There are

two types of coordinated caching scheme: explicit and implicit [72]. The explicit

coordination occurs when the caches share their states (or state summaries) with

each other [82]. Each cache uses the state information of other caches to decide

about the content that is going to be cached or evicted but the communication cost

of the state exchanging is not negligible. Although explicit coordination can be

considered as the method to overcome the filter effect, it is not applicable for ICN

proposals due to the high communication overhead. In contrast to explicit coor-

dination, implicit coordination may use a combination of local cache information,

the cache position, and small piggybacking information exchanged by requests or

content packets. Although implicit coordination is applicable for ICN, it is suf-

fering from filter effect. Consequently, they cannot effectively increase the overall

hit ratio.
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1.2 Objectives and Challenges

For more than several decades, many works have been conducted to improve the

cache management algorithms. However, using a network of caches is pushing

the cache management algorithms to consider an extra goal to solve filter effect

problem in addition to a obtaining high hit ratio. Recently, usage of network of

caches in ICN has pushed new efforts to deal with the filter effect by considering

the characteristics of ICN. The objective of this thesis is to propose and evaluate

implicit coordinated schemes, applicable to ICN, to obtain high overall hit ratios

by addressing the filtering problem and managing the redundancy.

In this section, we explain the challenges of the ICN cache management algo-

rithms from three perspectives. Firstly, we explain the challenges from a single

cache perspective that exists for a standalone cache in an ICN network of caches.

Secondly, we explain the challenges that should be addressed when a cache is man-

aged as a member of a network of caches. Finally, we explain the challenges that

coordinated caching scheme, applicable to ICN, should address. After explaining

all of the challenges, we introduce two approaches for tackling the challenges.

1.2.1 Single Cache Managed Independently

A single cache that is managed independently from other caches should address

these five challenges:

1. Time complexity of a cache management policy for an ICN network of

caches should be considered as an important factor. For example, Least

Frequently Used (LFU), which is the optimal replacement policy under In-

dependent Reference Model (IRM) assumption [23], has the time complexity

of O(log n) where n is the number of total contents in the network. Its time

complexity makes this algorithm impractical for ICN, where each router

should operate at line speed [5].

2. Pollution occurs in the network traffic [55, 86] when the contents with low
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reuse evict the contents with high reuse. This can happen when a sequence

of one-timer contents is generated and these one-timer contents evict the

popular contents that are regularly requested. This problem is also called

scan problem in the literature.

3. Thrashing is defined as the situation when a working set is sequentially and

repeatedly requested and is greater than the cache size. This causes continu-

ous content evictions without any gain. For example, suppose that the work-

load of requests for contents a, b and c in the format of abcabcabcabc . . . abc =

(abc)∗ comes to a Least Recently Used (LRU) cache with space for two con-

tents. Then, the number of hits will be zero because the different contents

kick each other out of the cache. Due to the large video file size, larger in

the future, the thrashing could happen in the network traffic where a group

of consumers requests a stream of packets repeatedly and the cache size is

small (maximum of 10GB[5]) compared to large high-definition video files.

4. Contention is possible in an ICN router where all of interfaces share a

cache. Specifically, the contention happens when all the requests in different

interfaces should be serialized behind a global cache lock because of the

cache management algorithm. For example, LRU requires all the hit requests

(missed contents) to promote (to be written) their corresponding contents

to the Most Recently Used position. To properly implement LRU, accessing

the Most Recently Used (MRU) position should be in a critical section. It

should be mentioned that the contention cannot be removed since several

interfaces try to access to a common place. However, the granularity of the

contention can be decreased from cache level to slot level. In this thesis,

solving the contention problem is defined as decreasing the granularity

of contention from the whole cache to one slot. For example, CLOCK [24],

an approximation of LRU, solves the contention problem. That is, there is

no need for a lock in cache level but a cache slot should be locked for writing

a content or setting the reference bit.
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5. Memory overhead. There are algorithms that keep additional information

to address some of the above mentioned challenges. Although the informa-

tion is limited to the meta-data of contents, the memory overhead is not

negligible for caches with large number of slots.

1.2.2 Single Cache Managed in a Network of Caches

The cache algorithm, managing a single cache in a network of caches, should

address one challenge.

6. Filtering effect. A cache can be considered a filter because it serves the

requests that generate cache-hits and forwards the requests that generate

cache-misses. These filtering and forwarding change the pattern of requests

such that the subsequent caches hardly are able to obtain high hit ratios

from the forwarded requests.

1.2.3 Coordinated Caching Schemes

The coordinated caching scheme designed for ICN should be able to address three

challenges:

7. Redundancy. Some schemes impose redundant copies of content and these

redundant copies decrease the efficiency of network of caches. Managing the

redundancy is important in ICN because the cache size compared to the

catalogue size (total number of contents) is very small and redundant copies

can degrade the overall hit ratio drastically.

8. Communication overhead is high for the explicit coordination where each

cache sends its state to its neighbors. Especially, the communication over-

head is increased when the number of total contents in the network is much

larger than the individual cache size that is the case for ICN [73] due to

limitations of the current memory technologies [5]. In such case, the rate
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of state change in a cache is high and consequently the amount of updating

information exchanged among caches is considerable.

9. Cross traffic means that the traffic traverses in two or more different di-

rections. A linear topology in which the consumers are at one end and

the producers are at the other end does not have cross traffic. However, if

there are consumers and producers located at both ends, there exists cross

traffic when consumers at each end request the content on the other end.

Some schemes only perform well when traffic moves in one direction, but the

schemes for the ICN network of caches should consider the cross traffic.

We use two different approaches to reach our goal. In the first approach, we

design a cache management policy to address the first six challenges including

the filtering effect through introducing a cache management policy. Moreover, we

manage the redundancy through implicit coordination integrated with our man-

agement policy. In the second approach, we design a simple caching algorithm to

obtain a high hit ratio by tackling the first five challenges for a single cache. In ad-

dition, we tackle the filtering effect problem and redundancy through coordinating

among caches and combining the finding of the first approach.

1.3 Contribution

The contributions of this thesis are as follow:

1. Two-State: a new cache management policy. The two-state policy is

a new cache management policy that fetches the contents for the first C dif-

ferent requests where C is the number of cache slots. Then, the cache slots

are frozen for a predefined period of time. During this period of time, the

cache slots do not get replaced. By finishing the period, the cache repeats

the process to adapt to the traffic pattern changes. This policy tackles the

first six challenges except the pollution. The most important characteristic
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of the two-state policy for ICN network of caches is to fight against the fil-

tering effect problem by introducing a new type of filtering effect while its

implementation is simple. Using the two-state policy instead of replacement

policy at the edge router caches (directly connected to consumers) leads

to higher hit ratios at the core router caches (indirectly connected to con-

sumers). Furthermore, we mathematically prove that the two-state policy

and LRU have the same hit ratios under the IRM assumption. Finally, we

improve the adaptation property of two-state policy for network with large

RTTs through reservation mechanism.

2. N-State: generalization of two-state. The n-state policy is the gener-

alization of the two-state policy. The policy obtains higher hit ratio than

the two-state by capturing the popular contents and solving the pollution

problem of the two-state. We show that the improvement of cache hit ratio

is considerable by increasing n from two to three, but it is not considerable

for n > 3. Under IRM assumption, our evaluations show that the three-state

policy obtains the hit ratio close to the hit ratio of LFU that is the optimal

policy for IRM [23]. Moreover, we evaluate the three-state policy through

real workloads and show that it obtains a high hit ratio for single cache and

provides the opportunity for subsequent caches to obtain a high hit ratio

too.

3. Coordinated Scheme Integrated with N-State. Our scheme has a

simple implementation and does not impose overheads such as measuring

content popularity [59] or exchanging the cache states among neighbors [37].

The coordination among ICN routers is done by piggybacking information

through integer fields in the request and content packets. Our coordinated

scheme is integrated with the n-state policy to obtain its advantages. More-

over, our scheme manages the redundancy and brings the popular content

close to the consumers. We evaluate coordinated three-state with reserva-

tion (CO3S) and coordinated two-state with reservation (CO2S) through
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synthetic and real topologies. Although our schemes obtain the high hit ra-

tio at both edge and core routers, CO3S outperforms CO2S in terms of the

overall hit ratio, content download time and transferred bytes. The CO3S

improves the overall hit ratio up to seven times for small cache sizes that

are important in the ICN and up to 25% for large cache sizes compared to

LRU universal caching (LRU in all caches). This leads to 7% to 13% more

reduction in content download time and 24% more reduction in transferring

packet by CO3S. Moreover, CO2S obtains the comparable performance with

other coordinated schemes while it decreases the evictions rate up to four

orders of magnitude. This may have the implication of reducing the energy

consumption by ICN routers.

4. CAP: a new cache management algorithm. We propose a new cache

replacement policy called CAP to simultaneously address the first five prob-

lems. We divide the cache into two variable sized segments: protected and

unprotected. The missed contents are written into unprotected segment and

they are moved into protected segment if they get at least one hit before be-

ing evicted. Each segment is managed by an independent replacement policy.

We explain the advantages and disadvantages of different replacement pol-

icy combinations. Finally, we choose the Random replacement policy (RND)

for the unprotected segment and do nothing (no action for a content hit)

for the protected segment. This combination can overcome the contention

and thrashing problems. Moreover, having separate segments for protected

and unprotected contents decreases the effect of the pollution problem since

the one-timer contents cannot drastically affect the popular contents in the

protected segment. Finally, the time complexity of CAP is constant and it

does not impose memory overhead. Our evaluation through both synthetic

and real workloads shows that CAP obtains the performance close to the

state-of-the-art, ARC [57], in terms of cache hit ratio while ARC is prone

for contention.
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5. COCAP: coordinated CAP Obtaining a high hit ratio close to the hit

ratio of the best policies for a single cache motivates us to propose a coordi-

nated scheme based on CAP for ICN network of caches. By introducing the

concept of virtual cache, COCAP caches the popular contents on the edge

router and provides the opportunity for core routers to obtain a high hit

ratio by using the idea of freezing the caches. For the binary tree topology

without cross traffic the COCAP outperforms the CO3S and CO2S. More-

over, COCAP obtains overall hit ratio close to the CO3S for real topology

with cross traffic but the CO3S obtains better performance than COCAP in

terms of content download time and the traffic reduction ratio.

1.4 Thesis Organization

The thesis is organized as follows:

Chapter 2. Related Work

The second chapter presents the related work from two different perspectives:

i) single cache ii) coordinated caching scheme. The related work from a single

cache perspective is classified based on the number of addressing challenges i.e.,

pollution, contention and thrashing. Moreover, we discuss the time complexity

and memory overhead for each work. Later, the related work of the coordinated

scheme is classified into three categories: i) hierarchical/distributed web caching,

ii) the coordinated en-route caching, iii) the recent work for ICN coordinated

caching. We conclude the chapter with three tables summarizing the related work

and the number of challenges that can be addressed by each algorithm or scheme.

Chapter 3. Two-State Cache Management Policy

The chapter explains our two-state cache management policy and follows by

introducing the main advantage of the two-state policy. To compare two-state

10
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with replacement policies, we represent the replacement policy by RND, LRU and

FIFO applicable in an ICN router [5]. We compare two-state with a replacement

policy from two different perspectives: i) single cache hit ratio ii) the effect on the

hit ratio of other caches (overall hit ratio). In addition to measuring the overall hit

ratio, we use stack distance [56] to quantify the effect of one cache on the network

of caches. Using stack distance, we explain why two-state leads to higher overall

hit ratio. In our evaluation, we use both synthetic and real workloads. The real

traces, also used in Chapter 4, are analyzed in this chapter from different per-

spectives such as the portion of one-timer requests and one-timer contents. The

less hit ratio of two-state compared to other replacement policies under realistic

workloads is due to pollution problem but is addressed in Chapter 4 by introduc-

ing the n-state policy. Lastly, the chapter shows that the two-state hit ratio drop

drastically when the RTTs is large. We discuss the reason for this observation and

explain that this is due to inability of two-state to adapt to popularity changes

for large RTTs. Finally, we explain our reservation mechanism.

Chapter 4. Coordinated Caching Scheme (CO2S and CO3S)

The chapter extends our two-state with reservation policy to n-state with reser-

vation to obtain a higher hit ratio compared to two-state. After discussing about

n-state, the chapter explains our coordinated caching scheme integrated with n-

state policy in three steps. First, we introduce three concepts i) path, ii) closeness

rank and iii) useless redundant copy. Then, we introduce our two design principles

and high level idea through three concepts. Finally, we explain the implementa-

tion of our scheme. The evaluation of CO3S and CO2S is integrated with the

evaluation of COCAP in Chapter 6.

Chapter 5. CAP Policy

This chapter introduces a class of replacement policies. We explain how differ-

ent combinations obtain the advantages of three applicable replacement policies

11
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for ICN routers [5]: FIFO, RND and LRU. Then, we discuss about our combina-

tion and explain how it can solve three caching problems, contention, thrashing

and pollution, at the same time and achieve a hit ratio comparable to other state-

of-the-art work. In addition, we prove that the average memory access in the

worst case is O(1). Finally, we evaluate CAP using synthetic and real workloads.

Chapter 6. Coordinated CAP (COCAP)

In this chapter, we present our coordinated caching scheme based on the CAP

introduced in Chapter 5. First, we explain the main idea of extending the CAP for

a network of caches by making two unrealistic assumptions. Then, in two steps,

we remove the assumptions and explain how our main idea can be implemented

through four extra fields in the request and content packets and two variables in

each router. Finally, we evaluate CO2S, CO3S and COCAP using synthetic and

real topologies.

Chapter 7. Conclusion

This chapter concludes the thesis and discusses the future research directions.

12
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Related Work

In this chapter, we present the related work from two different perspectives.

Firstly, we describe the related work conducted for improving the performance of

a standalone cache. The standalone related work is classified based on the num-

ber of addressed challenges from contention, pollution and thrashing described in

Section 1.2.1. Secondly, we describe the works conducted to improve the perfor-

mance of network of caches. The related work in this part is classified into three

categories based on their types of network of caches. The first category describes

the work for hierarchical/distributed web caching which is defined as a collection

of web caches in a hierarchical/distributed arrangement. The caches coordinate to

get better performance in terms of overall hit ratio. The second category includes

the work for coordinated en-route caching. In en-route caching, each router has its

own cache to keep the passing content for future re-references. The last category

covers the recent works for ICN coordinated caching. This chapter is concluded

with three tables summarizing the related work of single and network of caches.

Each table highlights the research gaps from its perspective.
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2.1 Single Cache Perspective

We categorize the cache management algorithms based on the number of challenges

that an algorithm can simultaneously tackle. The challenges are: contention,

thrashing and pollution. In addition, we mention the time complexity and memory

overhead of each algorithm.

2.1.1 Addressing Contention, Thrashing and Pollution

Random (RND) replacement policy randomly evicts one content for a miss and

does nothing for a hit. The RND obtains a higher hit ratio than LRU and FIFO

(zero) in the presence of thrashing. RND does not suffer from the contention

problem. However, the pollution affects the hit ratio of RND and its overall

hit ratio is not comparable with LRU. We will explain how our CAP uses the

advantages of RND and avoid its disadvantages. Moreover, the time complexity

of RND is O(1) and it does not impose any memory overhead.

CAR [9] combines the ARC [57] and CLOCK [24]. CAR has four doubly linked

lists B1, B2, T1, and T2. B1 and B2 are simple LRU lists while T1 and T2 are

CLOCKs. B1 (B2) is the meta-data for the recent (frequent) evicted contents while

T1 (T2) maintains the recent (frequent) cached contents. T1 and T2 together

keeps C (cache size) contents in the cache and size of each one adaptively is

changed based on the workload changes. CLOCK-Pro [41] works based on reuse

distance for content replacement decision. This policy categorizes the contents into

cold and hot. The cold contents have large reuse distances while the hot contents

have small reuse distances. The cache size, C, is adaptively divided between cold

contents and hot contents. In addition, the meta-data for C evicted contents

are also maintained in the memory. The policy makes an ordered list based on

content access to maintain all the accessed contents (hot and cold). Every cold

content which is accepted into the list should pass test period. This provides the

opportunity for the cold contents to turn into a hot content by being accessed
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once. Otherwise, the cold content is removed from the list. It is possible for a

cold content to be removed from the memory but its meta-data is kept in the list

for the test purpose.

Both CAR and CLOCK-Pro can solve the contention problem but they keep

extra meta-data of 2C and C evicted contents respectively. This makes the over-

head of CAR non negligible for the systems which need to cache a large number

of small objects. In contrast, our CAP policy can solve contention problem and

hit contents and does not need any meta-data about the evicted contents.

Two other techniques to reduce the impact of contention in caches are batching

and pre-fetching [26]. By batching, if a cache hit happens, the replacement policy

does not change its data structure. Instead, the policy appends the request into

a FIFO queue and applies the corresponding changes when number of requests

reaches a threshold. By pre-fetching, the required data in the critical section is

read immediately before a request for lock by the replacement algorithm. Since

these techniques do not need any specific requirement from the replacement policy

side, they can be combined with our replacement policy.

Static caching [83] requires real-time measurements of the access frequencies

for the content and this overhead might make it impractical for ICN routers to

implement because of ICN router processing limits.

LRFU [50] subsumes LRU and LFU. LRFU deals with three problems based

on one parameter. The parameter can convert LRFU to LRU by valuing the

unprotected. On the other hand, the parameter can also convert LRFU to LFU

by valuing protected. However, the time complexity of LRFU varies from constant

per requests to logarithmic in cache size per request. Our policy, CAP, can deal

with three problems by average time complexity of O(1).

2.1.2 Addressing Contention and Pollution

GCLOCK [62, 78] assigns a counter to each content. The counter is increased if

the content gets hit. To evict a content, the pointer of policy circularly searches
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the cache until finding a content with counter of zero. The non-zero counters are

decreased during the process of searching. Frequency Based-FIFO [35] divides

the cache into two FIFO segments. FB-FIFO creates a protected segment in the

cache for objects that are requested more than once within a short time span. The

unprotected segment is specified to the contents which are not frequent. When a

cache starts, the protected segment size is zero. The size of the protected segment

gradually is increased by getting hits in the unprotected segments and moving

the hit contents to the protected segment until the protected segment size reaches

a threshold. After that, the protected segment size (consequently unprotected

segment size) becomes constant.

2.1.3 Addressing Thrashing and Pollution

Unified Buffer Management (UBM) [46] automatically detects thrashing and pol-

lution and stores the detected contents in separate partitions managed by appro-

priate replacement policies. The appropriate policy is selected based on detected

problem (thrashing or pollution). However, UBM should address another problem

of partitioning the cache. LIRS [42] and ARC [57] are the ancestors of CLOCK-

Pro [41] and CAR [9] respectively. These policies separate the frequent and recent

contents in different sections and adaptively change the portion of each section in

the cache based on their stored additional meta-data of evicted contents. SEQ [34]

is an adaptive content replacement for virtual memory management. SEQ applies

Most Recently Used (MRU) policy to the long sequence of content misses with

continuous addresses. For other references, SEQ performs the LRU replacement.

Early Eviction LRU (EELRU) [77] keeps meta-data for 2.5 times of the cache

size. EELRU changes the eviction point of the resident contents if significant

number of hits can be achieved from the meta-data of evicted contents. 2Q [76]

has three queue called A1in, A1out and Am. The missed contents are initially

placed at A1in. By replacing a content from A1in, 2Q puts the meta-data for

that content in A1out. Only the contents getting hit in A1in or their meta-data
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are in A1out can be moved to Am. Every content in Am gets hit will be moved

to LRU position of the Am. Multi-Queue (MQ) [94], uses m (typically, m=8)

LRU queues (Q0, . . .Qm−1). The ith queue contains the contents which has been

referenced at least 2i but not more than 2i+1. MQ also has another queue called

Qout to maintain the meta-data for evicted contents. Based on the size of the

Qout, MQ can deal with thrashing.

2.1.4 Addressing Contention

FIFO is one the simplest cache replacement policies which does not suffer from

contention. It is due to the fact that there is no action on hits. However, FIFO

cannot adapt to the workload changes as good as LRU. An approximation of LRU

which inherit the characteristics of LRU except contention problem is CLOCK

[24]. CLOCK uses one bit per content in the cache called reference bit. The

default value of the reference bit is zero when a content is written into the cache.

If a content gets a hit, its reference bit is set to one. The CLOCK named is

due to the circular organization of the cache. To replace a content, a CLOCK

pointer passes contents until it reach a content with reference bit zero. Then, that

content will be replaced. While the pointer passing the over the contents to find

the victim, the reference bit of passed contents is reset to zero.

2.1.5 Addressing Pollution

LRU-K [64] keeps the times of the last K references to the cached contents and

replace the content with the largest Kth-to-last reference. Although for simplicity,

the authors recommended K = 2, the time complexity of LRU-K (even K=2) is

logarithmic in the cache size. Frequency-based replacement (FBR) policy [70]

divides an LRU list into three sections: new, middle, and old. In addition, every

content in the cache has a counter. If a content gets a hit, the content is moved to

the MRU position of the cache and its counter is increased if the content is in the

middle or old section. On a cache miss, the content with the smallest counter in
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the old section is replaced. However, the policy needs to rescale all the reference

counts to prevent cache pollution due to the contents having big counters but no

recent usage.

Segmented-LRU (S-LRU) [45] divides and LRU cache into two segments: pro-

bationary and protected. The missed contents are inserted into probationary

segment and they will be promoted to the protected segment if they can get at

least one hit before evicting. Although S-LRU can solve the pollution, it even

intensifies the thrashing problem. That is the S-LRU decrease the minimum reuse

distance that is tolerable for LRU by decreasing the probationary opportunity.

2.2 Network of Caches Perspective

2.2.1 Coordinated Hierarchical/Distributed Web Caching

Danzig et al. in [25] show that a hierarchical arrangement of several caches can

decrease the amount of network bandwidth required for file transmission. In this

caching scheme each cache independently decides whether to contact other caches

or contact the original server. Internet Caching Protocol (ICP) is responsible to

manage this contact and to check whether they have a missed request or not. By

using ICP, a missed request leads to an ICN message exchange and finding a cache

with the corresponding data. In Adaptive Web Caching, another hierarchical web

caching scheme proposed in [58], each node has some information about the caches

in its neighborhood. Caches in adaptive web caching network are formed in over-

lapping multicast groups. These groups have an implicit hierarchical structure.

Each cache exchanges cache state message with other caches in its group. By re-

ceiving a request, a cache first checks whether the requested item can be found in

its group or not. Otherwise, the cache will forward the request to another group

which is more likely to have the request. Another hierarchical web caching scheme,

Summary Cache [2], keeps a summary for the directory of each cache, so that the

decision for request forwarding in the time of a miss can be made more precisely.

18



CHAPTER 2. RELATED WORK

However, it imposes high overhead to the network for exchanging messages due to

update in cache state. In Summary Cache, a cache only sends update messages

to other caches when a threshold of its cache has been updated. Another study

is affinity based collaborative web caching [92] that takes into account the affinity

of caches for a missed request forwarding decision.

In addition to hierarchical web caching, distributed web caching [66] is another

scheme to improve the performance of multiple caches. In this scheme each cache

contacts an upper level server which has some information about each document

location. Distributed web caching has shorter transmission time than hierarchical

caches. On the other hand hierarchical caches have shorter connection time. Ro-

driguez et al. [71] made a hybrid scheme to use the advantage of both hierarchical

and distributed schemes.

Neither the hierarchical nor the distributed coordinated caching schemes can

be applied in ICN network of caches. It is due to the fundamental difference

between hierarchical/distributed caching and ICN network of caches. The requests

in the hierarchical/distributed caching are routed in such a way that increases

the probability of getting hit in some nearby caches. However, ICN network of

caches routes the requests based on FIB table. Requests are checked in all the

caches through their paths from consumers towards the producers. In other word,

ICN routing determines the caches that should be checked to find the requested

item. However, hierarchical/distributed caching schemes determine the route.

Another difference is that hierarchical/distributed caching is in the application

level. However, the caching in ICN network of caches is implemented in the

network layer.

The above discussion is also valid for the methods that are working in Content

Distribution Networks (CDN). That is in CDN the route is determined in such a

way that a request reaches appropriate content in a closer/more balanced server.

However, in ICN finding the requested content is doing when the request is trav-

eling in the network in its usual path. Therefore the works that have been done
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for CDN cannot be applied in ICN network of caches.

2.2.2 Coordinated en-route Web Caching

Bhattacharjee et al. [11] proposed to integrate cache and router. In their proposed

architecture each router caches the passing content for future uses and routing

was not affected by caching. This mechanism of web caching is called en-route

web caching. A more advanced coordinated scheme for en-route web caching has

been proposed by Tang et al. [82]. In their en-route web caching scheme, each

router caches a content in coordination with other routers that are involved in the

content delivery. The authors use a dynamic programming algorithm to optimize

the solution of the content placement problem. Content placement problem is

the problem of putting different contents in different caches to reach a specific

goal such as maximizing the traffic served by caches. An example is used to

describe the proposed coordinated algorithm. In the scheme, each node maintains

some information for each content such as content size and access frequency. As

depicted in figure 2.1, suppose that a node An requests the content R which is

located at node A0. When the request is issued by node An, all the nodes Ai

on the path between An and A0 piggybacks the corresponding information for

content R. When A0 receives the request uses the piggybacked information and

computes the optimal location for caching the content R in the path. Then A0

puts its decision together with content and sends it back to An. Through the

path the intermediate nodes adjust their caches based on the decision. If a node

is selected to cache the content, it uses a greedy heuristic algorithm to select the

replacement candidates.

Figure 2.1: System model for coordinated en-route caching

All the methods in [82, 52, 53] that solve the placement problem as an opti-

mization problem impose overhead to the routers. These methods require each
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node in the network to maintain some information such as the frequency of access

for each content. However, an ICN router cannot afford the overhead. It should

be mentioned that based on [5] very low complexity cache management policies

such as Random and FIFO can be implemented on an ICN router because the

routers with caches should be able to operate in line speed.

There are less complex coordinated caching schemes. These simple schemes

can be applied to ICN network of caches. Authors in [49, 16] showed that the

inefficiency of hierarchical caching is due to the redundant copies of one content in

different caches. That is a missed content is written to all caches from its current

location (a producer or a cache) towards the consumers. So there are multiple

copies from one content that leads to waste of cache space. The authors proposed

meta algorithms that decrease the number of duplicated copies in hierarchical

caching. There are six different meta algorithms in the literature:

• Leave Copy Everywhere(LCE)

• Prob

• Leave Copy Down(LCD)

• Move Copy Down(MCD)

• Filter

• DEMOTE

Leave Copy Everywhere (LCE) [40] refers to the usual method of uncoordinated

caching. In LCE if a miss happens, the missed content will be written to all of the

intermediate caches which are located between the location of hit for the content (a

producer or a cache) and the consumer. This algorithm has the most redundancy

among all of the meta algorithms.

Prob [49] is the randomized version of the LCE. Under Prob, each missed

content coming to the intermediate caches will be written with a fixed probability
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p and will not be written with probability 1 − p. If p = 1 then Prob converts to

LCE.

In Leave Copy Down (LCD) [49] a missed content only will be written to

the first intermediate cache from current location of the content. LCD gradually

moves contents from producer towards the consumer.

Move Copy Down (MCD) [49] is similar to LCD except that if the current

location of the content is a cache, it has to evict the hit content. Four different

meta algorithms are depicted in the figure 2.2.

Figure 2.2: Different meta algorithms

Filter [16] is described using an example. Suppose that client k requests content

i and this request is missed. Then it is forwarded until it is hit at a cache. This hit

leads to writing of the content i in the intermediate cache m if the intermediate

cache m satisfies the following condition: τ−1
m < λki. τm is the characteristic time of

the cache m under LRU replacement policy. “It is equal to the difference between

the current time and a timestamp that indicates the time of last access to the

document that would be replaced to make room for the caching of if LCE was to be

used“ based on [16]. λki is the frequency of requests for the content i by the client

k. In this scheme, each cache is seen as low pass filter which its cutoff frequency is

τ−1
m . The contents that have request frequency lower than the frequency of cache

filter should pass the cache without writing the contents to the cache. It is due

to the fact that the probability of getting hit before being replaced is small. The
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Filter meta algorithm cannot be applied in an ICN router due to its high overhead

for measuring λki.

The last meta algorithm, DEMOTE that is designed for hierarchical caching,

was proposed by Wong et al. [89]. A cache which is going to evict a content passes

the content to the upper level cache. The upper level cache put the content to the

head of its LRU cache. On the other hand if a cache passes a content to its lower

cache, the lower cache puts the content to the tail of its LRU list.

The studies that have been done in [48, 89] show that LCD has the best

performance in terms of average distance to hit among all meta algorithms for

hierarchical web caching. The studies are limited to the maximum of three levels

of hierarchy. In the hierarchical caching the traffic moves in one direction (from

the upper layer towards the lower layers). However, in ICN network of caches the

traffic moves in two directions (cross traffic). To the best of our knowledge the sole

investigation about meta algorithm for cross traffic is done in [73] which shows

that there is no difference between LCD and LCE where there is cross traffic.

2.2.3 Coordinated Caching for ICN

In this section, the work that has been done to study the efficiency of the network

of caches has been reviewed. The works are divided into three categories. First,

the work that has been done to study the performance of network of caches will

be reviewed in both aspects of simulation and modeling. Although some of these

works are not related to the coordinated caching, their findings can give us some

hints for better coordinated caching design. The second types are the works that

tries to change the routing to reach better hit ratio from the caches. The last

group is the work that tried to enhance the performance of network of caches by

coordinated caching schemes. In each section we will describe the advantages and

disadvantages of the works.
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The Efficiency of ICN Network of Caches

The most complete work to study the efficiency of the network of caches has been

done in [73]. Authors do an extensive simulation study for the ICN network of

caches. The authors show that the most important factors for the cache perfor-

mance in NoC are popularity and catalog settings. In addition, they show that

the random replacement policy has the same performance as the more complex

policies. In their study they consider three meta algorithms: Prob, Leave Copy

Everywhere (LCE) and Leave Copy Down (LCD). The authors conclude that there

is no difference between different meta algorithms. It shows that the meta algo-

rithm that works well for hierarchical caching may not improve the performance

of ICN network of caches in presence of cross traffic. Authors in [32] investigate

the impact of mixing different traffic types in network of caches. Although their

study is limited to uncoordinated caching, their finding is interesting. The study

shows that ICN network of caches can gain more if VoD traffic is cached in ac-

cess routers and other types of traffic are cached at high capacity disks in the

core. A trace driven analysis of caching in ICN network of caches has been done

in [84]. The authors show that caching in network of caches is beneficial. They

also claim that network of caches offers more benefits than the edge caching in

stub network. Arianfar et al. [5] describe a design for a content centric router.

They use random autonomous caching that does not need any coordination be-

tween routers. Authors go to the detail of the functionalities and different parts

of an ICN router such as ContentStore structure, insertion and deletion to Con-

tentStore, method for lookup and caching policy. They also show that their design

is practical in terms of processing throughput, memory latency, storage capacity

and energy consumption. Finally they implement their design by Network Sim-

ulator and conclude that the design has significant reduction of flow completion

time.
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Integrating Coordination and Routing

The common property of the works in [27, 28, 85, 37] is that they announced

the contents of each cache to the other caches. A cache can send their missed

requests to another cache that previously announced it has the corresponding

content. However, we think the small cache size compare to the total contents

leads to a high rate of replacement in a cache. The high replacement rate leads to

many update messages. The update messages impose a huge amount of updating

overhead to the network. So we think that these methods cannot be applied in

the network of caches due to their high overhead.

Fundamentally different from [27, 28, 85, 37], the authors in [75] propose to

use a hash function to distribute different data packets through different routers

inside an Autonomous System (AS). In addition, ASs cooperate to have different

data packets. The hash value determines the router that a data packet should be

cached. Based on the hash value, the request should be forward to a determined

router. The determined cache may use any replacement policy. If the forwarded

request gets missed in a cache, it is forwarded towards the producer. The scheme

is simple to implement but the hash function role is critical and may impose high

overhead because the hash function may determine a router in an AS far from the

producer of a specific data packet. Therefore, if the request is missed, it should

pass through several extra routers and links to reach the appropriate producer.

Moreover, the corresponding data packet is also pass the extra links and routers.

This may impose high overhead to the network because of useless transmissions.

Coordinated Caching Schemes

An autonomic cache management is proposed in [79]. The authors proposed dis-

tributed cache managers to decide about a content location in the network of

caches. Each cache manager has a holistic network-wide view of all the cache

configurations and requests patterns such as popularity. They also assumed that

a cache state consistently changes with other caches. However, providing such
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a wide-network view for all managers impose a huge amount of overhead to the

network. In addition, gathering some required information such as popularity of

different contents imposes an extra overhead to the router. So the proposed cache

management scheme is not applicable in the ICN network of caches.

In [59], authors propose an age-based cooperative caching scheme for ICN. The

scheme calculates the age of each packet which is supposed to be written to the

cache based on two parameters: i) distance from the provider ii) popularity of the

packet. The authors assume that an algorithm for calculating the popularity of

different content is given by [12]. However, they do not explain how the algorithm

is implemented in the proposed caching scheme. Also there is no investigation for

the cost the algorithm to determine the popularity in their scheme. The proposed

scheme is not applicable in network of cache similar to the previous work in [79].

In [51], authors propose an Aging Popularity-based Caching (APC) scheme.

The scheme has an Interested Content Object (ICP) table to keep three additional

information for each content: aging key, the latest access time and an indicator

for caching state. Although authors claim that the scheme only keeps ICP only

for a fraction of all content in the network, adding even a limited size table may

not be affordable for an ICN router. In addition, the scheme does address the

contention, thrashing and pollution problems.

CoRC [20] is a coordinated routing and caching scheme which combines the

routing and caching to obtain higher hit ratio. The scheme partitions the whole

content name space and assigns each partition to a dedicated node. The scheme

mitigates the routing scalability to enhance caching efficiency without exchanging

the control message. Although the scheme removes the filter effect problem by

partitioning the name space, it increases the cost of a missed because a missed

request may not be in the right direction towards the producer. Therefore, a

missed request may need to be redirected to the main producer after getting a

miss. Moreover, the content also should be written to a cache which may not be

the reverse path of the request. This leads to communication overhead.
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In [15], authors investigate the idea of not caching all packets in all routers.

The study shows caching packets only on one specific router through the path from

consumers towards producers can achieve better performance compare to ubiqui-

tous caching. The specific router is the router that has the highest betweenness-

centrality. However, the authors suppose that the betweenness centrality that is

depend on the network topology and path information on the router can be calcu-

lated off-line. The study is the first study that reveals preventing duplicate copies

of packets can offer better performance in the ICN network of cache when there

exists cross traffic.

[38] proposes a probabilistic algorithm called Prob-PD based on two variables:

i) the popularity ratio of a content, and ii) the distance ratio of each node from the

producer. The authors define two methods for measuring the popularity: static

and dynamic. However, measurement of popularity with a very large catalogue

size imposes high processing and memory overhead. In addition, the evaluation is

only for binary tree without cross traffic.

In a similar approach, MAGIC [68] also consider the hop distance and the

popularity of the content to decide about the location of the caching node. In

addition, the authors use the request packet to determine the caching node. This

decreases the communication overhead affordable for ICN routers. However, the

evaluation does not cover cross traffic. In addition, measuring the popularity

imposes a high processing overhead to the routers.

A traffic engineering based collaborative caching has been proposed in [90]. In

the proposed method each router has to measure some metric for the collaborative

caching (CC) such as popularity of each packet. In addition, each router measures

some metrics for the traffic engineering such as the fraction of a content that the

router gets from any other router in the network. Then all of the measured infor-

mation is passed to an administrative domain. The administrative domain solves

an optimization problem to minimize the maximum of link utilization. The cost

of information gathering of collaborative caching (CC) makes this approach inap-
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plicable to the ICN network of caches. In addition, the communication overhead

for exchanging of measured information between nodes and administrative domain

consumes a portion of bandwidth.

In [30], authors proposed CATT architecture to deal with two fundamental

problems in information centric networking: i) intelligently select one of multiple

replicas distributed in the network ii) caching these contents in network. For

caching part they select one point from consumer towards producer for caching

a content to prevent duplicate copies. They proposed three different types of

caching mechanisms: Topology aware (TP), Traffic aware (TF) and random (RD).

TP caching mechanism selects the node with high degree (the number of attached

links) to cache the content. TF caching mechanism selects the node with high

degree of betweenness-centrality similar to [15]. Finally RD randomly selects a

node. Using simulation they show that TP mechanism is the best among these

caching mechanisms in terms of experienced latency by user. Interestingly they

found that if more than 45% of nodes have cache, the difference between different

caching mechanisms disappears. That is if more than 45% of nodes have caches

a random selection of a node in the path for caching a content can get the same

delay as other methods.

A collaborative caching algorithm, WAVE, is proposed In [19]. The authors

used the popularity to determine the number of packets from a specific content that

should be cached in the network. They use the number of requests that is served by

the content producer as a metric of popularity. The number of packets that should

be cached is increased exponentially when the number of served requests for a

specific content is increased. The idea of using producer’s knowledge is interesting.

However, since there are multiple caches through the path from consumers to a

producer, it is not clear which packet request should be considered as an update

for popularity in the provider. If the author consider the requests for all packets,

then the larger contents seems to be considered more popular than what they are.

In addition, the intermediate caches filter the requests for more popular contents.
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So the measurement of the popularity in the producer side is not accurate where

there are multiple caches between consumers and producer.

In [67], a probabilistic in-network caching scheme is proposed. The scheme

consider three different parameter to find the probability of writing a content

in a cache: the total cache size in the path, the distance (hop count) from the

previous location of the cache and the distance (hop count) to the consumer. The

scheme has the ability of tuning its parameters such that the average times of

writing a content in all of the caches in the path from the hit location towards the

consumer is equal to one. The authors use traditional hierarchical topology for

performance evaluation of their scheme. The scheme decreases the producer hit

for 10% compare to the Leave Copy Everywhere (LCE). In addition, it decreases

the number of cache-eviction in the order of magnitude compare to Leave Copy

Everywhere (LCE). It is required to do simulation for the situation where there

exist cross traffic since this is the real traffic situation where the network of caches

is going to operate.

Another probabilistic caching scheme, LUV-Path, is proposed in [17]. The

scheme uses the LUV replacement policy [7] by taking into account the distance

between the routers and the producers. The LUV has two phase evaluation and

normalization. LUV evaluates a data packet to predict its likelihood of being

re-referenced based on the past references. Then, LUV normalizes the likelihood

value by the cost of the object per unit size. The LUV-Path uses LUV to give

higher probability to the popular data packets to be cached by the routers close to

the consumers. In addition, LUV-Path gives higher probability to the unpopular

data packets to be cached by the routers far from the consumers to. However, the

scheme suffers from filtering effect.

29



CHAPTER 2. RELATED WORK

Table 2.1: Related work summary - single cache perspective

Ref Contention Thrashing Pollution Time Com. Mem. Ov.

RND No No No O(1) 0
CAR [9] No No No O(1) 2C

CLOCK-Pro [41] No No No O(1) C

LRFU [50] No No No O(log n) n

GCLOCK [62] No Yes No O(1) 0
FB-FIFO [35] No Yes No O(1) 0

UBM [46] Yes Yes No O(1) 0
LIRS [42] Yes No No O(1) 3C

ARC [57] Yes No No O(1) C
SEQ [34] Yes No No O(1) 0

EELRU [77] Yes No No O(1) 2.5 ×C

2Q [76] Yes No No O(1) C
static [83] No No No O(log n) N

MQ [94] Yes No No O(1) C

LRU-K [64] Yes Yes No O(log n) 0
FBR [70] Yes Yes No O(1) 0

S-LRU [45] Yes Yes No O(1) 0
CLOCK[24] No Yes Yes O(1) 0

FIFO No Yes Yes O(1) 0
LRU Yes Yes Yes O(1) 0

2.3 Summary

2.3.1 Single Cache Perspective

In this part, we summarize the related work of cache management algorithms from

a single cache perspective. The comparison is depicted in Table 2.1 based on five

challenges described in Section 1.2.1. It should be mentioned that the hit ratio

which is a very important metric for evaluating cache management algorithms is

missing in the table. This is due to the fact that the hit ratio drastically varies

with cache size and workload changes. Therefore, we compare our policy with

the state of the art cache management algorithms, ARC and LIRS, as well as the

popular cache management policies such as LRU and FIFO in Section 5.4.

As it can be seen from the table, although RND policy can overcome all of

the challenges, it suffers from the low cache hit ratio compared to LRU, ARC
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and LIRS. RND is the base replacement policy in one of our cache management

policies, CAP. Therefore, CAP can tackles all the challenges and at the same time

obtain high hit ratio close to ARC and LIRS.

2.3.2 Network of Caches Perspective

In this part, we summarize the coordinated caching schemes for the network of

caches in Table 2.3.2 based on the ten different challenges described in Section 1.2.

It should be mentioned that DoR is the abbreviation for Depend on Replacement.

DoR is used to describe that the challenge is depend on the cache replacement

policy used for each cache. For example, the work [58] can overcome the first four

challenges listed in the table if RND is used in as the cache replacement policy.

In contrast, [58] cannot deal with the first four challenges if the LRU is used as

the replacement policy in every cache. Moreover NI is the abbreviation for Not

Investigated. That is, the challenge has not investigated yet.

The contention happens in a router which has several ports accessing a common

cache. In addition, thrashing is a common problem for current routers with the

small cache size (maximum of 10GB[5]) and huge amount of data in the Internet.

Moreover, pollution is also a common problem for in-network and ICN network of

caches. This is due to the fact that high amount of traffic is one-timer [55, 86].
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Method Ref Hit Con. Miss Con. Thrash. Poll. Comp. Mem. O. Filter Com. O. Red. Cr. Tr.

H
ierar.

D
istr.

[25] DoR DoR DoR DoR DoR DoR Yes Low High No

[58] DoR DoR DoR DoR DoR High No High Med No

[2] DoR DoR DoR DoR DoR High No High Med No

[92] DoR DoR DoR DoR DoR High No High Med No

[66] DoR DoR DoR DoR DoR High No High Med No

[71] DoR DoR DoR DoR DoR High No High Med No

E
n
-R

ou
te

C
oord

in
ation

[11] Yes Yes Yes Yes O(1) Low Yes Low Med NI

[82] Yes Yes Yes Yes O(1) Low No High Med NI

[52] Yes Yes Yes Yes O(log C) Low No High Low NI

[53] Yes Yes Yes Yes O(log C) Low No High Low NI

[89] Yes Yes Yes Yes O(1) Low Yes Low Low Poor

LCE[40] Yes Yes Yes Yes O(1) Low Yes Low High Poor

Prob[49] Yes Yes Yes Yes O(1) Low Yes Low Med Poor

LCD[49] Yes Yes Yes Yes O(1) Low Yes Low Low Poor

MCD[49] Yes Yes Yes Yes O(1) Low Yes Low Low Poor

Filter[16] Yes Yes Yes Yes O(1) High No High Low NI
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Method Ref Hit Con. Miss Con. Thrash. Poll. Comp. Mem. O. Filter Com. O. Red. Cr. Tr.

IC
N

C
oord

in
ated

[68] Yes Yes No No O(1) High No Low Low NI

[20] Yes Yes Yes No O(1) High No High Low Good

[27] Yes Yes Yes Yes O(1) High No High Low Poor

[28] Yes Yes Yes Yes O(1) High No High Low Poor

[38] No Yes No No O(1) High No Low Low NI

[85] Yes Yes Yes Yes O(1) High No High Low Poor

[51] Yes Yes Yes Yes O(1) High Yes Low Low NI

[37] Yes Yes Yes Yes O(1) High No High Low Poor

[79] Yes Yes Yes Yes O(1) High No High Low Poor

[15] Yes Yes Yes Yes O(1) High No High Low Poor

[19] Yes Yes Yes Yes O(1) Low Yes Low Low Poor

[67] Yes Yes Yes Yes O(1) Low Yes Low Low NI

[17] Yes Yes Yes No O(1) High Yes Low Low NI
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As it is depicted in Table 2.3.2, the related works of hierarchical/distributed

web caching have either high communication overhead or high redundancy. Among

related work of en-route web caching, [16, 52, 53, 82] have high overhead to im-

plement. They are not simple enough to be implemented in an ICN router too.

Also LCE[40] leads to a high redundancy in network of caches. Prob, LCD, MCD

proposed in [49] and DEMOTE proposed in [89] do not have good performance in

network of caches with cross traffic.

Among related work for ICN, [27, 28, 85, 37] propose schemes for changing

routing algorithm to get more from caching which is not applicable due to the

high rate of content replacement. [79, 15] have high overhead. Also [19] has poor

performance in network of caches with cross traffic. There are two works that

are compatible with ICN and they have low overhead and redundancy[11, 67].

However, they are suffering from the first four problems: hit-contention, miss-

contention, thrashing and pollution. Moreover, their performance is not investi-

gated under a network of caches with cross traffic.
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Chapter 3

Two-State Cache Management

Policy

In this chapter, we start to build the basics for our first approach of proposing the

lightweight coordinated schemes for ICN network of caches. First, we explain our

two-state policy in terms of managing a single cache. We evaluate the two-state

cache hit ratio versus LRU, RND and FIFO (referred by replacement policies for

the rest of the thesis), the applicable replacement policies for an ICN router [5],

using both synthetic and real workloads. Next, we introduce the main advantage

of the two-state policy in terms of obtaining a high overall hit ratio in the ICN

network of caches and compare our policy versus LRU, RND and FIFO in terms

of their effects on the overall cache hit ratio. Finally, we show that large RTTs

degrade the hit ratio of two-state in a standalone cache because large RTTs affect

the adaptability of two-state policy. To deal with this issue, we introduce a mech-

anism (reservation) that enables a cache to adapt to the traffic pattern changes

even when the RTT is large. We conclude the chapter with a summary.

Before moving to the description, we need to emphasize on two characteristics

of the cache size in an ICN network of caches. These characteristics should be

taken into account in designing a caching policy or coordinated caching scheme.

First, the ratio of cache size compared to the catalog size, i.e. the total number of

35



CHAPTER 3. TWO-STATE CACHE MANAGEMENT POLICY

contents, is very small (in the order of 10−5) [74]. Second, there is not a hierarchy

of caches in which each level has a very larger cache size compared to the caches

of which it receives the requests. That is, the caches (located at the core routers)

that receive the requests through other caches have the cache size in the same

order as the cache at the edge routers that receives the requests directly from

consumers. Therefore, we consider these characteristics for our experiments and

presents some of the results in this chapter and our complementary results in the

Appendix A, B, C and D.

3.1 Two-State Policy in Single Cache

The main objective of proposing two-state policy is to deal with filter effect because

the filter effect degrades the overall hit ratio in ICN network of caches. We propose

to freeze the cache for a predefined amount of time. This freezing helps the

subsequent caches to obtain a high hit ratio. We explain how two-state operates

in this section.

3.1.1 Description

The main idea of two-state policy is depicted by the state transition diagram

of Figure 3.1, where a cache is operated at either an updating state or a frozen

state. After a cache transits to the frozen state, its contents remain frozen for a

predefined amount of time called updating period. While the cache is in frozen

state, no new content is cached and no existing content is evicted, before the

cache transits back to the updating state. Under the two-state policy, two design

Figure 3.1: State diagram of two-state cache management
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parameters need to be determined: 1) the updating period, τ , 2) the triggering

condition for transition to the frozen state.

Regarding the τ value (updating period), as two-state policy does not change

the cached contents in the frozen state, the cache should be refreshed when con-

tents become unpopular because of changes in routing paths, network topologies,

user demand, and etc. To adapt to the various network changes in practice, the

updating period should be set shorter than the times between these exogenous

changes. For example, the popularity of VoD contents does not change much

within a day [21, 14] and most (around 2/3) of Internet paths do not change for

days [65, 54]. Hence, suitable lengths of the updating period can be in the order

of hours in practice.

Regarding the triggering condition, a cache considers all of its slots as outdated

after entering the updating state and updates all of its slots before transition to

frozen state (triggering condition). A cache updates an outdated slot by either

i) getting hit for its content, or ii) writing a missed content. Consequently, a

cache captures the first C distinct requested contents and then returns to the

frozen state. In terms of implementation, the cache should differentiate between

outdated and updated slots. To do so, a cache uses one extra bit for each slot

called update bit (Ub). The Ub of one (zero) indicates an updated (outdated)

slot. In addition to Ub, we use a variable called updatedSlots, representing the

number of updated slots that is increased by one whenever the cache updates a

slot. Therefore, a cache transits to its frozen state when the updatedSlots = C

(triggering condition).

The two-state policy does not suffer from the thrashing problem because the

cache gets frozen after capturing the first C distinct requested contents. Moreover,

the contention only happens when the cache is in the updating state and the

contention happens in the slot level. However, the two-state suffers from one-

timer contents (pollution) because among the first C distinct contents captured in

the updating state, there may be some one-timer contents that are not replaced
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while the cache is in the frozen state. This decreases the hit ratio of two-state

in presence of the one-timer. We will deal with this problem by proposing the

n-state policy in Chapter 4. In the next two subsections, we show the cache hit

ratio of the two-state policy versus FIFO, RND and LRU (applicable in ICN) for

both synthetic and real workloads respectively.

3.1.2 Synthetic Workload Evaluation

In this section, we evaluate the hit ratio of two-state policy from a standalone

cache perspective. First, we prove that the two-state policy has the same hit ratio

as LRU under the Independent Reference Model (IRM) assumption by using a

simple mathematical model. Later, we compare the hit ratio of two-state policy

with FIFO, RND and LRU (applicable in an ICN router) using simulation under

IRM assumption.

Model

Consider a set F = {1,2, . . . ,n} of n different contents, out of which c contents

can be stored in a set S = {1,2, . . . , c} of c cache slots. Under IRM assumption,

the ith most popular content is independently requested with probability qi that

is the popularity of the ith content and we have q1 ≥ q2 ≥ . . . ≥ qn. In addition,

suppose a cache is managed by a two-state policy. After entering the updating

state, the policy places the first requested content, σ1 ∈ F , in the first slot. Then,

the policy places the second requested content, σ2 ∈ F − {σ1}, in the second slot

and this process continues. Therefore, the cache goes to the frozen state after

filling the c slots with the first c distinct requested contents in order. Let us

assume the σ⃗ = (σ1,σ2, . . . ,σc) represents the state of the cache in the frozen state

where σi ∈ F is located at the ith slot.

Lemma 1. The probability of finding a cache managed by the above described
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two-state policy in the frozen state of σ⃗, P (σ⃗), is obtained through

P (σ⃗) =
c∏

i=1

qσi

1 −
∑i−1

j=1 qσj

(3.1)

Proof. Let pi
j denote the probability that the ith distinct requested content is con-

tent j ∈ F given that the first i−1 distinct requested contents are σ1,σ2, . . . ,σi−1.

For i = 1, p1
σ1

is simply the probability that the first requested content is the

content σ1. Therefore, we have

p1
σ1

= qσ1
(3.2)

,and

pi
σi

=
qσi

1 −
∑i−1

j=1 qσj

(3.3)

The explanation is that given the first i − 1 distinct requested contents are

σ1,σ2, . . . ,σi−1, the remaining contents compete to occupy the ith cache slot. We

exclude the popularity of the already requested contents and normalize the pop-

ularity of the remaining contents to one. The probability of finding a cache in a

frozen state σ⃗ can be calculated by the following expression.

P (σ⃗) =
c∏

i=1

pi
σi

=
c∏

i=1

qσi

1 −
∑i−1

j=1 qσj

(3.4)

Theorem 1. Under IRM assumption, P (σ⃗) = πLRU (σ⃗) where πLRU (σ⃗) is the

steady state probability of finding an LRU cache in the state of σ⃗.

Proof. Based on [81], πLRU (σ⃗) can be calculated by

πLRU (σ⃗) =
c∏

i=1

qσi

1 −
∑i−1

j=1 qσj

(3.5)

that is the same with P (σ⃗) found in Lemma1.
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Simulation

Setting: We set an experiment with topology depicted in Figure 3.2 to compare

Figure 3.2: Simple topology for filter effect experiment

the first cache hit ratio achieved by the two-state policy and replacement policies

(FIFO, RND and LRU). In the experiment, the routers have equal cache size

and there are N equally sized contents located at the producer. In addition, the

consumers generate content requests based on Zipf(α, N) distribution where α

is the slope of the distribution. We do the simulation with 2 × 107 requests and

updating period is 5 × 104 requests. In addition, the RTT in this experiment is

zero and have the experiments with RTT > 0 in Section 3.3.

Findings and Discussion: Figure 3.3 shows that the first cache hit ratio for
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Figure 3.3: The first cache hit ratio with different policies versus cache size

LRU and the two-state policy are the same under the IRM assumption for different

cache sizes. In addition, Figure 3.4 shows that the first cache hit ratio is also the

same with LRU for a wide range of α (Zipf slope) with C = 10.
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Figure 3.4: The first cache hit ratio with different policies versus popularity (α)

3.1.3 Real Workload Evaluation

Although using synthetic workload gives us the opportunity of changing the char-

acteristic of the workload such as α in Zipf distribution, we evaluate our findings

through trace-based simulation too. The specification of the traces is presented in

Table 3.1.

Setting: We use eight traces of IRCache [39], used in recent studies [91], from

Trace Total req. Total
contents

1-timer req. 1-timer contents Max. hit ratio

bo2 448875 264460 50.7% 86.0% 67.7%
ny 843925 545348 55.2% 85.4% 35.3%
pa 487179 229287 47.0% 83.6% 43.7%
rtp 6162823 2991227 43.0% 88.6% 51.4%
sd 2923802 1720736 51.0% 86.6% 41.1%
sj 289879 711434 33.9% 83.2% 59.2%
sv 354382 975442 27.9% 76.7% 63.6%
uc 533406 1074618 42.4% 85.5% 50.3%

Table 3.1: The specifications of the traces

eight different proxy caches for the period of 2007/01/09-2007/01/10. The maxi-

mum hit ratio is obtained by an infinite cache size.

Findings and Discussion: Figure 3.5 shows that the two-state hit ratio in

the first cache is less than the replacement policies. This contradicts with our
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Figure 3.5: The first cache hit ratio with different policies versus cache size with uc trace

finding under the IRM assumption because real traces have a high percentage

of one-timer contents (pollution problem) as depicted in Table 3.1. The high

percentage of one-timer contents causes the first cache to go to the frozen state

with a number of one-timer contents that cannot be evicted for updating period

amount of time. This degrades the hit ratio of the first cache compared to the

LRU, RND and FIFO that are able to evict the one-timer contents faster than

two-state. Although the difference between LRU and two-state is small for trace
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Figure 3.6: The first cache hit ratio with different policies versus cache size with pa trace

uc in Figure 3.5, Figure 3.6 shows that the situation can be worse for other traces.

Therefore, we introduce a generalized version of the two-state policy called N-state
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policy, in Section 4.1, that solves the pollution problem for the real workloads. So

far, we have evaluated the hit ratio of two-state policy for a single cache. In the

next section, we explain and discuss how the two-state policy improves the overall

network hit ratio compared to the replacement policies.

3.2 Two-State Benefits for Network of Caches

Our objective in this section is to show that using the two-state policy at the

edge routers provides better opportunity for core routers to obtain high hit ratios

compared to the situation where the edge routers are managed by LRU, RND and

FIFO. First, we explain the reason behind providing the better opportunity and

then evaluate our description through the simulation of both synthetic and real

workloads.

3.2.1 Description

The performance of a standalone cache is influenced mainly by its management

policy. However, in an ICN network of caches, a cache performance is influenced

not only by its management policy but also by the interactions with other caches.

For example, one of the interactions in a network of caches is the filter effect [88]

that is caused by replacement policies and lowers the overall hit ratio by serving

the requests that generate cache-hits and forwarding the requests that generate

cache-misses. Hence, there is little chance for core routers to achieve high hit

ratios because their incoming requests are filtered by the edge routers. However,

our two-state policy mitigates the filter effect by introducing a new filtering type.

The filter effect lowers the overall hit ratio because it affects the locality of

reference used by replacement policies to obtain high hit ratios. The locality of

reference means that “a content just requested has a high probability of being

referenced in the near future” [44]. In other words, the locality of reference de-

termines the potential of achieving a high hit ratio. The stronger the locality of
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reference is, the more the potential of achieving a high hit ratio exists. However,

the locality of reference is weakened by the filter effect of the replacement policy

but the two-state policy allows the missed requests to be efficiently served by other

caches. We should emphasize that there are multiple interpretations of locality

of reference in the literature. We use the interpretation in [31] that defines two

kinds of temporal locality (locality of reference): popularity and correlation. We

use the term locality of reference to cover both popularity and correlation in this

thesis.

Although both two-state and replacement policies serve some requests (hits)

and forward some requests (misses), they have different types of filter effect on the

pattern of requests. Despite the replacement policy that serves a fraction of the

requests (with strong locality of reference) of all contents, the two-state policy

serves all the requests for C (cache size) number of contents. To make the

difference clear, we use an example. Suppose that in Figure 3.2 (simple topology

for filter effect experiment) both routers use replacement policy. In this situation,

router1 can count on the locality of reference of the receiving requests. However,

the locality of reference is weakened in router2 because the requests are affected

by router1. That is, if router2 receives a request for a specific content, router2

cannot assume that it will receive another request for that specific content with a

high probability in near future. Otherwise, router1 should miss two requests with

strong locality of reference. This contradicts with the functionality of replacement

policy in router1. However, by using the two-state policy in router1, router2 still

is able to count on the locality of reference because router1 either serves all of the

requests of one specific content or forwards all of the requests for that content.

Therefore, if router2 receives a request for a specific content, router2 can assume

that it will receive another request for that specific content with a high probability

in near future. In the next subsection, we evaluate the above discussion regarding

different types of filter effect.
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3.2.2 Synthetic Workload Evaluation

In this section, we firstly use stack distance metric, used in the literature to quan-

tify the locality of reference, to show that the missed requests from a cache with

our two-state has a stronger locality of references compared to the missed request

of the caches managed by LRU, RND and FIFO. Then, we show that this leads to

a higher hit ratio obtained by serving the missed requests from a two-state policy

than LRU, RND and FIFO.

Metrics Explanation

The stack distance is widely used in the literature to characterize the locality of

reference [56]. The stack distance of the jth request (j = 2,3, . . .) for content i is

defined as the number of distinct contents requested between the j −1th and jth

requests for content i (undefined stack distance considered for the first request of

content i). For example, let 4, 5, 1, 3, 2, 7, 2, 3, 1, 6 be a stream of requests for

contents 1 to 7. The stack distance of the second request for content 1 is three

because there are three distinct contents (2, 3, 7) requested between the first and

the second requests of content 1. The stack distance represents the strength of

locality of reference. The smaller the stack distances of the content requests are,

the stronger the locality of reference for the requests of that content is. Using the

stack distance, we define three metrics to characterize the locality of reference:

the minimum, maximum and average stack distances.

The minimum (maximum) stack distance is defined as the smallest (largest)

stack distance seen in a stream of requests. The minimum (maximum) stack

distance in combination with cache size affects the hit ratio. To explain this

impact, let us assume that a stream of requests with minimum stack distance

of 10 enters to a cache with less than 10 slots. In this situation, FIFO or LRU

obtains hit ratio of zero because they evict a content before being re-referenced.

In contrast, RND obtains a hit ratio greater than zero because the cache does

not evict all of the contents before being re-referenced. On the other hand, the
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maximum stack distance determines the minimum cache size that is required to

obtain the hit ratio of 1 (excluding cold misses).

The average stack distance (SDavg), our last metric based on stack distance,

is defined as

SDavg =

∑n−1
i=0 SD(i) × i
∑n−1

i=0 SD(i)
(3.6)

where n is the total number of contents in a stream and SD(i) is the number

of occurrences of stack distance i in the stream. Although the SDavg is more

representative for locality of reference compared to minimum and maximum stack

distances, it is not sufficient to characterize the locality of reference by itself. For

example, two streams with similar SDavg may lead to totally different hit ratios

because of different minimum stack distances. We use these three metrics to

explain how the replacement policies and the two-state policy differ in changing

the locality of reference.

Setting

We use the same topology from the previous set of experiments depicted in Fig-

ure 3.2. We measure the minimum, maximum and average stack distances of the

missed requests from the first cache while the first cache managed by FIFO, RND,

LRU and two-state. In addition, we measure the second cache hit ratio while it

is managed by FIFO, RND and LRU. Similar to previous set of experiments, the

routers have equal cache size and there are N equally sized contents located at the

producer. The content requests are generated based on Zipf(α, N) distribution

where α is the slope of the Zipf distribution. We do the simulation with 2 × 107

requests.

Findings and Discussion (Stack Distances vs Cache Sizes)

As it can be seen from Figure 3.7, the minimum stack distance of the missed

requests from a cache managed by two-state policy is zero because two-state policy

filters requests based on content not based on locality of reference. That is, two-
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Figure 3.7: Minimum stack distances of the missed requests from the first cache managed
by three replacement policies and two-state policy

state policy only filters the requests for a specific set of contents and forwards

the rest (even two consecutive requests for the same content). Therefore, two-

state policy gives the opportunity to other caches to use the remaining locality

of references. Close to the minimum stack distance of two-state policy, RND has

the minimum stack distance of 1. Totally different from two-state and RND, the

minimum stack distance of FIFO increases linearly with the cache size and is

equal to the cache size (C) because FIFO evicts a content when there is exactly

C number of misses after the time that the content entered the cache. Similar to

FIFO, the minimum stack distance of LRU increases by increasing the cache size

but only up to a specific point and the increment is less than FIFO because LRU

evicts a content by receiving C distinct requests rather than C distinct misses.

That is, for LRU, some of the requests contributing in the eviction of a content

are hits (filtered by the cache). Therefore, the minimum stack distance for LRU

can happen with a smaller number of misses compared to FIFO. In addition, the

fraction of hits that push a content towards LRU position (contributing to evict

the content) is increased by the increment of the cache size and after a certain

point (600 in this example) overcomes the fraction of missed requests. Therefore,

after the specific point, the minimum stack distance is decreased by increasing the

cache size.
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Figure 3.8: Maximum stack distances of the missed requests from the first cache managed
by three replacement policies and two-state policy

The maximum stack distances of missed requests, depicted in Figure 3.8, de-

termines the minimum cache size for the second router to reach the hit ratio of 1.

As depicted in Figure 3.8, the maximum stack distances of RND and FIFO do not

decrease by increasing the cache size because of the evicting mechanism of these

policies. That is, they evict a content independent from its number of hits. For

example, FIFO even evicts the most popular content by getting C distinct misses

after writing the most popular content. In addition, RND probably evicts the

most popular content by getting even one miss after writing it. Therefore, FIFO

and RND evict all the contents in the system. Consequently, it is possible to get

N − 1 (N is the catalogue size, total number of contents in the system) misses

between two consecutive misses. In contrast to FIFO and RND, LRU deceases

the maximum stack distance. To make the description of the LRU maximum stack

distance curve easier, we assume that the maximum stack distance happens for

two misses of the least popular content. The decrement in LRU maximum tack

distance is due to considering content hits for eviction. That is, LRU keeps a

popular content in the cache for a long time by moving the popular content to

the MRU position whenever it gets hit. Therefore, the most popular content may

not get missed between two misses of the least popular content (the misses lead

to maximum stack distance). Moreover, the larger the cache size, the more the
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number of non-missed contents between two misses of the least popular content.

Similarly, two-state policy decreases the maximum stack distance by the cache size

while the cache is in the frozen state. That is, for cache size of 10, the missed re-

quests have the maximum stack distance of 989 because 10 contents are excluded

from the missed stream. However, the plot shows almost the same maximum dis-

tance for two-state and LRU because we measure the maximum even while the

cache is in the updating state and operates similar to the replacement policies. If

we only measure maximum stack distance when the cache is in the frozen state,

the maximum stack distance is decreased by the cache size for two-state policy.
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Figure 3.9: Average stack distances of the missed requests from the first cache managed
by three replacement policies and two-state policy

Regarding the average stack distance, it has the least increment when the two-

state policy manages the first cache as depicted in Figure 3.9. In addition, the

average stack distance of two-state is decreased after cache size 200 and reaches

below its initial value, 190, for cache sizes larger than 600. However, other policies

increase the average stack distance in a way that it never reaches below the initial

value. Especially, FIFO increases the average stack distance linearly because FIFO

increases the minimum stack distance and keeps the maximum stack distance

constant. However, LRU increases the minimum stack distance slower than FIFO

and starts to decrease the maximum stack distance for cache sizes larger than 300

as depicted in Figure 3.7 and 3.8. Consequently, the average stack distance of LRU
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becomes smaller than FIFO for cache sizes greater than 300. On the other hand,

RND and LRU increase the average stack distance up to C = 600 because the

first cache hit ratio reaches around 90% that makes a number of popular contents

almost resident in the cache and excluded from the missed stream.

To conclude, we show that by using the two-state policy at the first router, the

second router has a higher opportunity to obtain a high hit ratio. We show this

finding for 1000 contents of which requests generated based on Zipf law with Zipf

slope of 1. In the next section, we show that our findings are also valid for the

same number of contents with a fixed cache size while the Zipf slope, α, varies.

Findings and Discussion (Stack Distances vs Zipf Slope)

To recall the experiment settings, we use same topology and there is the same

number of contents, 1000, on the producer. However, we select the cache size of

10 due to the small fraction of cache size to the catalogue size in ICN network and

change the popularity by changing the α.

As it can be seen from Figure 3.10, the two-state policy has the smallest

minimum stack distance of zero and RND has the minimum stack distance of one
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Figure 3.10: Minimum stack distances of the missed requests from the first cache versus
different α (Zipf slope)

(reason explained above). On the other hand, FIFO has the largest minimum stack

distance that is equal to the cache size for different α. Finally, the LRU minimum
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stack distance decreases with increasing the α because the misses, forwarded to

the next cache, are decreased by increasing the α. Therefore, the minimum stack

distance is decreased.

The maximum stack distance is constant for different α and for all policies as

depicted in Figure 3.11. This shows that increasing the α increases the number of

hits but not enough to make some of the contents residents in the cache with size

10.
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Figure 3.11: Maximum stack distances of the missed requests from the first cache versus
different α (Zipf slope)

As depicted in Figure 3.12, the average stack distance is decreased by increasing

the α for all policies. Our two-state policy has the smallest average stack distance

for α < 1.1 but RND and FIFO have the smallest average stack distance after

this point. This may be interpreted that RND and FIFO under large α provide a

better situation for the subsequent caches to obtain a high hit ratio. However, we

show in the next section that the second cache obtains the highest hit ratio while

the first cache managed by the two-state even for α > 1. To determine the reason

for this phenomenon, we use the Cumulative Distribution Function (CDF) of the

stack distance and the fact that the LRU hit ratio for a stream of requests can be

obtained by using its CDF. That is, the LRU hit ratio of a cache with C slots can

be obtained by CDFSD(C − 1) where CDFSD is the CDF function of the stack

distance because an LRU is able to capture the requests with stack distance less
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than C. In addition, [10] proves that the LRU obtains higher hit ratio than FIFO
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Figure 3.12: Average stack distances of the missed requests from the first cache versus
different α (Zipf slope)

and RND under IRM. Therefore, the CDF of the stack distance can determine

the potential of obtaining hit ratio.

Depicted in Figure 3.13, the two-state CDF with α = 1.2 has the largest value

for small cache sizes up to the cache size of 30 (three times of the first cache size

of 10). Moreover, Figure 3.14, representing the CDF with α = 1.5, shows that
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Figure 3.13: The CDF plot of the stack distance from the missed requests with α = 1.2

the two-state policy has the largest CDF value for the small cache sizes up to

cache size of 20. The comparison of these figures implies that increasing the α

decreases the cache size that the two-state still has the largest CDF value but
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we should consider two points regarding this finding. First, as described before
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Figure 3.14: The CDF plot of the stack distance from the missed requests with α = 1.5

in ICN network of caches, the different routers have either equal or in the same

order cache sizes. Second, the hit ratio of the first cache is around 70% for α = 1.5

(shown in Section 3.1.2). In such situation, there is not much motivation for using

the network of caches. Therefore, the interval of cache sizes that two-state has the

highest hit ratio is suitable for ICN network of caches.

We can conclude that, the locality of reference of the missed requests from the

two-state policy has the highest potential to be efficiently served by another cache

most of the time. Specifically, we show that this is true for small cache sizes relative

to the catalogue size that is the case for ICN network of caches. Consequently, the

second cache (managed by LRU, RND and FIFO) has the highest hit ratio when

the first cache is managed by the two-state policy. This is shown in the below

discussions.

Findings and Discussion (Second Hit Ratio vs Cache Size)

Figure 3.15 shows that RND in the second cache obtains its highest hit ratio while

the first cache managed by two-state. The figure follows the trend of average stack

distance depicted in Figure 3.9. For example, RND obtains a higher hit ratio with

FIFO than LRU in the first cache up to the cache size of 300 but obtains higher
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Figure 3.15: The hit ratio of the second cache that is managed by RND. The first cache is
managed by RND, LRU, FIFO and two-state policy

hit ratio with LRU for cache sizes greater than 300. There is a similar trend for

average stack distances in Figure 3.9 where the average stack distance of LRU

starts to become less than FIFO at C = 300. The last but not the least, RND
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Figure 3.16: The hit ratio of the second cache that is managed by LRU. The first cache is
managed by RND, LRU, FIFO and two-state policy

obtains a non-zero hit ratio with all four combinations.

The hit ratio of the second cache managed with LRU, depicted in Figure 3.16,

is zero while the first cache managed by FIFO because of minimum stack distance.

As depicted in Figure 3.7, the minimum stack distance of the missed requests from

FIFO is equal to the cache size. On the other hand, the second cache has the same

54



CHAPTER 3. TWO-STATE CACHE MANAGEMENT POLICY

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  100  1000

Se
co

nd
 c

ac
he

 h
it 

ra
tio

Cache size (# of content)

FIFO in 2nd cache, N=1000, α=1, updating=50000

LRU 2S RND FIFO

Figure 3.17: The hit ratio of the second cache that is managed by FIFO. The first cache is
managed by RND, LRU, FIFO and two-state policy

size as the first cache and this leads to the hit ratio of zero at the second cache.

The same reasoning causes that the hit ratio of the second cache managed by

FIFO becomes zero while the first cache managed by FIFO in Figure 3.17.

Findings and Discussion (Second Hit Ratio vs Zipf Slope)

Figure 3.18, 3.19 and 3.20 show that second cache obtains the highest hit ratio

while the first cache is managed by two-state policy for different α. Similar to

Figure 3.15, 3.16 and 3.17, the hit ratio of second cache managed by LRU or

FIFO is zero while the first cache managed by FIFO as depicted in 3.19 and 3.20

(described before).

This section concludes that under IRM assumption using two-state at the edge

router provides better opportunity for the core router to obtain a high hit ratio

compared to the situation that edge routers managed by LRU, RND and FIFO.

In the next section, we are going to investigate if this property is valid when the

workload is based on real traces or not.
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Figure 3.18: The hit ratio of the second cache that is managed by RND. The first cache is
managed by RND, LRU, FIFO and two-state policy
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Figure 3.19: The hit ratio of the second cache that is managed by LRU. The first cache is
managed by RND, LRU, FIFO and two-state policy

3.2.3 Real Workload Evaluation

In this section, we repeat the previous set of experiments using real trace-based

simulation to show that using two-state at the edge router provides better oppor-

tunity for the core router to obtain a high hit ratio compared to the situation that

edge routers managed by LRU, RND and FIFO.
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Figure 3.20: The hit ratio of the second cache that is managed by FIFO. The first cache is
managed by RND, LRU, FIFO and two-state policy

Setting

We use the same topology and traces used in Section 3.1.3. The trace description

can be found in Table 3.1.

Findings and Discussion (Stack Distances vs Cache Size)

Figure 3.21 shows that the minimum stack distance linearly increases for LRU and
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Figure 3.21: The minimum stack distances of the missed requests from the first cache with
trace uc

FIFO by increasing the cache size. However, it is constant for RND and two-state

for uc trace. The reason is because of the way that these policies are working and
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described in Section 3.2.2.
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Figure 3.22: The maximum stack distances of the missed requests from the first cache with
trace uc

Figure 3.22 shows that the maximum stack distance of uc trace negligibly

decreases by increasing the cache size (same trend of IRM) for all policies except

LRU. The negligible decrease is due to the effect of one-timer contents that weakens

the effect of increasing the cache sizes. For LRU, the maximum stack distance

negligibly decreases up to cache size 2000 and there is a jump at 3000. After 3000,

the maximum stack distance negligibly decreases. LRU jumps at 3000 because

the maximum happens between two specific consecutive missed requests and for

C ≥ 3000 one of these requests gets hit in the cache and the maximum happens

between other request and a further request. We only see this jump in uc and pa

traces. We should mention that the effect of increasing the cache size on maximum

stack distance is very negligible because of one timer. For example, the largest

decrement in the maximum stack distance that is four happens by increasing the

cache size from 10 to 10000. Therefore, we can conclude that the maximum stack

distance is almost unchanged for real traces because one-timer contents prevent

decreasing the maximum stack distance by increasing the cache size.

Finally, Figure 3.23 shows that the average stack distance of the missed re-

quests has the smallest value for two-state policy up to cache sizes of 5000. For

cache sizes greater than 5000, the average stack distance of FIFO and RND have
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the smallest value. We present the results for other traces that have the same

trends in Appendix B.
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Figure 3.23: The average stack distances of the missed requests from the first cache with
trace uc

Findings and Discussion (Second Hit Ratio vs Cache Size)

Figure 3.24, 3.25 and 3.26 show that the second cache (managed by RND, LRU

FIFO respectively) obtains the highest hit ratio for real trace uc while the first

cache managed by the two-state policy. The figures show that the hit ratio of the

second cache starts to decrease after increasing the cache size up to 1000 because

the updating period of the two-state policy is set to 5000 requests. Therefore, the

two-state policy waits for receiving 5000 requests after entering into the frozen

state and then returns to the updating state. This causes the second cache hit

ratio decreases for C > 1000 because it does not provide enough time (requests) for

the second cache to obtain a high hit ratio. Therefore, by increasing the updating

period the trend of increasing the hit ratio of the second cache continues. It should

be mentioned that the hit ratio of the first cache with size of 1000 is almost 50%

of the maximum achievable hit ratio by infinite cache size. In such situations, the

requirement of using network of caches may be doubtful.

So far, we have shown that our two-state policy provides the opportunity for

subsequent caches to obtain a high hit ratio but suffers from one-timer contents.
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Figure 3.24: The hit ratio of the second cache that is managed by RND. The first cache is
managed by RND, LRU, FIFO and two-state policy
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Figure 3.25: The hit ratio of the second cache that is managed by LRU. The first cache is
managed by RND, LRU, FIFO and two-state policy

In the next chapter, we present our solution for this issue. In addition, the per-

formance of two-state policy may be affected in terms of hit ratio by the network

RTT. In the next subsection, we discuss this situation and explain our proposed

mechanism, reservation, to deal with this RTT issue.

3.3 Popularity Changes and Reservation

The content popularity varies in Internet through time when the unpopular con-

tents become popular and vice versa. We can provide the opportunity for two-state
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Figure 3.26: The hit ratio of the second cache that is managed by FIFO. The first cache is
managed by RND, LRU, FIFO and two-state policy

policy to adapt to the popularity changes by setting the updating period smaller

than the average period of popularity changes. In addition, the two-state pol-

icy is able to capture the new popular contents by capturing the first C distinct

requested contents in the updating state. However, the implementation of the

two-state policy so far cannot guarantee to capture the first C distinct requested

contents where the RTT > 0. This weakens the ability of capturing the new pop-

ular contents and consequently decreases the hit ratio by increasing the RTT. In

this section, we explain how increasing the RTT affects the ability of capturing

the new popular contents and propose a simple mechanism, reservation, to deal

with this situation.

3.3.1 Motivation

The time between missing a request and receiving its corresponding content is the

RTT between the cache and the content producer as depicted in Figure 3.27a.

With RTT > 0, a cache in the updating state can categorize its receiving missed

contents into: i) missed contents get requested in updating state ii) missed con-

tents previously get requested in frozen state. To provide the opportunity of

a lightweight coordination, explained in Section 4.2, the two-state policy only

writes the missed contents requested in the updating state. Therefore, there is
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(a)

(b)

Figure 3.27: RTT between sending a missed request and receiving its content

at least one RTT between the time that a cache enters the updating state until

the cache receives the first missed content as depicted in Figure 3.27b. During

this period (RTT), it is probable that the contents in all cache slots get hit. This

leads to updating all slots and transiting to the frozen state with the previous con-

tents. Consequently, the two-state policy cannot capture new popular contents.

In addition, increasing the RTT increases the chance of having this situation.

To show the effect of the RTT on the adaptability of two-state policy, we

consider the catalog size of 1000 and Zipf slope of 1, while requests arrive based

on a Poisson process with rate 104 requests/sec. For every random amount of time

X, exponentially distributed with mean 50 seconds (rate of λc = 0.02), we change

the popularity of contents such that 1) each content will have an equal probability

to be more or less popular, and 2) the change in its popularity rank (1 to the

catalog size 1000) is determined by a geometric random variable with mean 20

(success probability of ps = 0.05). The ps determines the intensity of popularity

changes. For example, ps = 1 leads to the situation that all of the ranks remain

unchanged. However, decreasing the ps enlarges the difference between current

and new ranks. Therefore, we can obtain harsh popularity changes by setting ps

close to zero. We focus on the performance of a standalone cache and repeat the

experiment with 10 runs, each lasts for 2×105 seconds.

As depicted in Figure 3.28, the two-state hit ratio decreases by increasing the

RTT because the cache goes to the frozen state before capturing the new popular
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Figure 3.28: The hit ratio of the cache with arrival rate of 10000 requests per second,
updating period of 10 sec, the average popularity change period of 50 sec (λc = 0.02) and
the probability of popularity changes, ps, of 0.05 - C=10, N=1000, α = 1

contents. On the other hand, LRU hit ratio decreases by increasing the RTT from

zero to 0.1 second but it remains constant after RTT = 0.1. The shape of the LRU

hit ratio curve can be interpreted through the relation of RTT and characteristic

time [16, 48]. The characteristic time is defined as the maximum inter-arrival time

between two consecutive requests for a content that leads the second request to a

hit [48]. In Figure 3.29, we represent the characteristic time of a content with T ,

Figure 3.29: Different combinations of RTT and characteristic time that plays role in
decreasing the hit ratio of LRU

the request time with tr, the incoming time of a content with tin and the outgoing

time of a content in condition that the content has not been requested from its tin

with tout; T = tout − tin. For RTT = 0, the first request after a miss will get hit if

it arrives at t ∈ [tin, tout] and miss if is arrives at t > tout. Having RTT > 0 causes

the first request after a miss to get missed if it arrives at t ∈ [tr, tr + RTT ] because

the missed content has not reached the cache. We call this kind of misses as RTT
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misses because these misses are hit with RTT = 0. Increasing the RTT increases

the number of RTT misses until RTT becomes equal to the characteristic time

(T ). For RTT > T , the number of RTT misses is equal to the number of misses

with RTT = T . This is due to the fact that if the first request after a miss arrives

to the cache at t > tin + T , it leads to a miss. Finally, we should mention that

the characteristic time is approximately the same for all contents with different

popularity [48]. Therefore, after a certain RTT (T ), increasing the RTT does not

decrease the LRU hit ratio.

3.3.2 Reservation

A two-state with reservation policy guarantees capturing the first C distinct re-

quested contents after entering the updating state even for RTT > 0. To do so,

among the first C distinct requests arriving after entering the updating state,

those lead to hit update the corresponding slots. On the other hand, the policy

reserves cache slots for those that get missed from their forwarding time until the

time of receiving the corresponding missed contents. Therefore, independently

from RTT, the two-state with reservation always fills the cache with the first C

distinct requested contents in the updating state. Consequently, the policy is able

to capture the new popular contents even for large RTTs as depicted in Figure 3.28

The reservation implementation needs two mechanisms in the updating state

for i) reserving a slot ii) distinguishing between the incoming contents that get

missed before and after entering the updating state. We implement the reser-

vation by using a variable called resSlots, representing the number of reserved

slots. A cache reserves a slot through increasing resSlots by one in condition that

resSlots + updatedSlots < C. The condition prevents the cache from over reserv-

ing. In addition, a cache updates an outdated slot with P b = 0 by getting hit for its

content only in condition that resSlots + updatedSlots < C. The unsatisfied con-

dition (resSlots + updatedSlots = C) at the hit time means that the cache needs

the outdated slots to write the missed contents that are on the way. In addition to
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reserving a slot, we need the second mechanism, distinguishing between the incom-

ing contents that get missed before and after entering the updating state, because

the two-state with reservation only writes the missed contents that are requested

in the updating state. We describe the implementation of the mechanism and the

coordinating reasons behind it in Chapter 4. The high level description is that

a cache puts extra information in the header of forwarded requests after entering

updating state. Through coordination and the extra information, the incoming

missed contents that were forwarded in the updating state are distinguishable

from others. Finally, it should be mentioned that Pending Interest Table (PIT) in

NDN [40] or its equivalent in other ICN proposals handles the case that multiple

misses happen for the same content in the updating state because PIT only lets

the first missed request for a content to be forwarded towards the producer.

3.4 Summary

This section describes a new cache management policy, the two-state policy, that

achieves two objectives: i) obtains a high cache hit ratio and, ii) lets other caches

to obtain a high hit ratio by serving the missed requests from the cache managed

by two-state. In terms of the first objective, we prove that under IRM assumption

the two-state policy obtains the same hit ratio as LRU. However, trace-based

simulation shows that the two-state policy obtains less hit ratio for a standalone

cache than other policies because of the one-timer contents. In terms of the second

objective, we show how the two-state policy can address the filtering problem by

introducing a new type of filtering. To distinguish between the filtering effect of

the replacement policy and the two-state policy, we use the minimum, maximum

and average stack distances to explain how the two-state policy manages a cache

such that the missed requests can be effectively used by other caches to obtain

high hit ratios for both synthetic and real workloads. Finally, we introduce a

mechanism called reservation that enables the two-state policy to adapt to the
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traffic pattern changes even for large RTT.

So far, we have proposed the two-state with reservation, the base for our first

coordinated scheme, which is able to address the contention and thrashing prob-

lems with low time complexity and memory overhead (one bit for each slot).

However, the limitation of two-state policy is its low hit ratio in the presence of

one-timer contents as we showed in evaluation with trace-based evaluation. To

deal with one-timer contents and improve the standalone cache hit ratio, we will

propose a generalized version of two-state that is the base for our coordinated

scheme in Chapter 4. Our first approach to tackle the challenges listed in Chap-

ter 1 will finish at the end of Chapter 4.
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Chapter 4

Coordinated Caching Scheme

In Chapter 3, we introduced our two-state policy that provides better opportunity

for subsequent caches to obtain a high hit ratio compared to replacement policies

but suffers from one-timer contents. To deal with this issue in this chapter, we

extend our two-state with reservation policy to n-state with reservation (summa-

rized by two-state and n-state in the rest of the thesis). The n-state policy obtains

higher hit ratio compared to two-state by removing the one-timer contents and

capturing the popular contents. We start by explaining the implementation of the

n-state policy for a single cache. Then, our experiments, using both synthetic and

real workloads, show that increasing n (number of states) from two to three con-

siderably improves the hit ratio but the improvement is negligible for increasing

n where n > 3. After discussing about n-state, we complete our first approach

for proposing the lightweight coordinated schemes for ICN by explaining our co-

ordinated scheme integrated with n-state policy. Moreover, we discuss about two

important properties of our scheme: managing the redundancy and caching the

popular contents close to the consumers. We present the evaluation of our schemes

in Chapter 6. We conclude the chapter with a summary.
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4.1 N-State Policy with Reservation

As we explained in Section 3.1.3, the two-state policy suffers from one-timer con-

tents (pollution). This leads to the situation that many of the cached contents

in the frozen state are one-timer contents that decrease the hit ratio. Moreover,

both prior work studying web caching workload [55] and video sharing workload

[60] showed that up to around 50% of the data are one-timers. Our objective of

introducing the n-state policy is to solve the one-timer problem of two-state to

increase the standalone cache hit ratio.

4.1.1 Main Idea and Implementation

As explained in Section 3.1.1, all of the slots in a two-state cache are considered

as outdated after the cache enters the updating state. Each slot gets updated if

i) a hit happens to its content ii) a missed content for which the cache reserved

a slot is written to a slot. By getting updated, a slot P b is set to one and the

cache goes to the frozen state when all of its slots get updated once. The n-state

also has the same logic and a cache goes to the frozen state if all of its slots get

updated n−1 times. However, in an n-state cache, a slot gets updated if i) a hit

happens for its content ii) a missed content is written to the slot that has not

gotten updated so far. Moreover, the reservation is used only when the cache

is in updating state (state zero). That is, writing a missed content only updates

a slot if this is the first update since the cache enters updating state. Therefore,

any slot that goes to frozen gets at least one hit and one-timer contents cannot

reach frozen state for n ≥ 3. To keep the track of each slot, we use a variable per

slot called slot state to count the number of times that a slot gets updated after

a cache enters updating state. The slot with the minimum state is the place that

a cache writes a missed content and changes the slot sate to Max(1,slotState)

where the slotState is the current slot state. On the other hand, if a slot gets hit,

the cache increases the state value by one except for the slots reached state n−1.
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Moreover, a slot reached n−1 is not replaced by a missed content. Therefore, the

cache does not write any missed content when all of its slots reach state n−1.

The cache state diagram of n-state policy is depicted in Figure 4.1. Based on

the definition of the slot state, we define the whole cache state as the minimum

state of its slots. For example, a cache in the state i has at least one slot in the

state i and all of its slots has the state greater than or equal to i. Therefore, a

whole cache may be in one of the n different states from zero (updating state) to

n−1 (frozen state). The n-state uses a timer, updating timer, for the whole cache

to adapt to traffic pattern changes similar to two-state. By the expiration of the

updating timer, the cache transits to the state-0 (updating state) and resets the

state of all slots to zero. When all of its slots get updated at least once (cache

Figure 4.1: The cache state diagram in n-state policy

enters state one), the cache restarts the updating timer.

So far, we have explained the n-state mechanism that prevents the one-timer

contents from reaching the frozen state. In the next two subsections, we evaluate

the effect of n, number of states, on standalone and overall cache hit ratio under

synthetic and real workloads.

4.1.2 State Number Effect on Standalone Hit Ratio

In this section, we investigate the effect of number of states (n) on the hit ratio of

a standalone cache.

Synthetic Workload

Setting: For all experiments in this section, we use the same experiment topology

used in Chapter 3 where there are two caches between a group of consumers and a
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producer. The requests are generated for 1000 contents based on Zipf distribution

with slope of one and the experiments are repeated for three small cache sizes of

10, 50 and 100.

Findings and Discussion (Standalone Hit Ratio vs n): Figure 4.2 and

all of the figures in Appendix C show that the improvement of cache hit ratio by

increasing the number of states from two to three is considerable. However, the

improvement by increasing the state number from three to four, four to five and

five to six is almost zero for all synthetic workloads. In Section 4.1.4, we will show

that the cache hit ratio for three-state policy is pretty close to LFU that is the

optimal replacement policy under IRM assumption [23]. Although, the results are

limited to the IRM assumption, they indicate that three-state policy is able to

capture the popular contents much better than two-state, RND, LRU and FIFO.
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Figure 4.2: The first cache hit ratio with different policies versus cache size

Trace-Based Workload

Setting: The requests are generated based on bo2 and sd traces and the exper-

iments are repeated for three small cache sizes of 10, 100 and 1000. We select

different updating periods 25000 and 50000 to show that the results are valid

under different updating periods.

Findings and Discussion (Standalone Hit Ratio vs n): Figure 4.3 and

4.4 show the hit ratio of the first cache versus increasing the number of states
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for two traces described in Section 3.1.3. These figures and the figures depicted

in Appendix D for other six traces show that the hit ratio improvement is only
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Figure 4.3: The first cache hit ratio with n-state versus number of states by bo2 trace

considerable for increasing n (number of states) from two to three. So far, we have

found that n = 3 improves the two-state policy hit ratio. In the next subsection,

we investigate the effect of n on the overall hit ratio and locality of references.
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Figure 4.4: The first cache hit ratio with n-state versus number of states by sd trace

4.1.3 State Number Effect on Overall Hit Ratio

In this section, we investigate about the effect of number of states (n) on the

overall cache hit ratio by measuring the hit ratio of the second cache that receives

the missed requests from the first cache.
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Synthetic Workload

Findings and Discussion (Overall Hit Ratio vs n): Figure 4.5, 4.6 and 4.7

respectively show the hit ratio of the second cache managed by LRU, RND and

FIFO while the first cache is managed by the n-state policy. The main decrease
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Figure 4.5: The second cache hit ratio with LRU versus number of states with N = 1000,
α = 1

happens when n increases from two to three because of the increase at the first

cache hit ratio as shown in Figure 4.2. That is, the first cache with three-state

obtains a higher hit ratio and leave less potential for the second cache to obtain

a high hit ratio compared to two-state. However, the first and second cache hit

ratios are almost unchanged by increasing the states number greater than three.
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Figure 4.6: The second cache hit ratio with RND versus number of states with N = 1000,
α = 1
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By comparing Figure 4.5 with Figure 4.6 and 4.7, we find that using the n-state

at the first cache leads to the situation that the second cache obtains the highest

hit ratio when it is managed by LRU. In addition, the second cache obtains almost

equal hit ratios using FIFO and RND but less than LRU. This means that the hit

ratio of LRU, FIFO and RND has the same order at the first and second caches.

However, if the first cache is managed by replacement policies, the hit ratio order

is not the same in both first and second caches. For example, if the first cache

managed by LRU the order of hit ratio in the second cache is RND, FIFO, LRU

(RND obtains the highest; FIFO obtains less than RND and more than LRU).
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Figure 4.7: The second cache hit ratio with FIFO versus number of states with N = 1000,
α = 1

This property of same order implies that n-state only uses the locality of refer-

ence to obtain a high hit ratio as much as possible and provides the opportunity

for the subsequent caches to obtain too. However, the replacement policies use the

locality of reference to increase the hit ratio but destroy the locality of references

for subsequent caches.

Trace-Based Workload

Findings and Discussion (Overall Hit Ratio vs n): Figure 4.8, 4.9 and

4.10 respectively show the second cache hit ratio of LRU, RND and FIFO while the

first cache is managed by n-state. The main decrease happens when n is increased
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Figure 4.8: The second cache hit ratio with LRU versus number of states by sd trace

from two to three. In addition, the property of having the same trend of the hit

ratio of LRU, RND and FIFO is also valid for cache size of 10 and 100. However,

RND outperforms LRU for cache size of 1000 at the second cache because the
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Figure 4.9: The second cache hit ratio with RND versus number of states by sd trace

updating period of 25000 requests. That is, large cache size leads to long time

(large number of requests) for the cache to reach to the frozen state. Therefore,

it is possible that the cache returns to the updating state before reaching to the

frozen state and the first cache keeps replacing the missed contents. This causes

the missed requests of the n-state to have the characteristics similar to replacement

policies.

Based on the results in this section and in Appendix D, we conclude that
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Figure 4.10: The second cache hit ratio with FIFO versus number of state by sd trace

n = 3 is the best practical option because i) it considerably improves the hit ratio

of cache by dealing with the pollution ii) it provides the opportunity for subsequent

caches to obtain high hit ratio iii) its implementation overhead is not considerable

(two bits per slot).Therefore, we only present the results of three-state (3S) in our

evaluation for the remaining sections of this chapter. In the next two subsection,

we compare our three-state policy with LRU, LFU and two-state in terms of

standalone and overall cache hit ratio under synthetic and real workloads.

4.1.4 3-State First Cache Hit Ratio

In this section, we compare the hit ratio of three-state policy with LRU, LFU and

two-state. Although implementing of LFU is not practical for an ICN network of

caches because of the current memory technology [5] and the large catalog size in

the Internet, we select LFU because LFU is the optimal replacement policy under

IRM [23].

Synthetic Workload

Setting: We measure the first cache hit ratio managed by four above mentioned

policies versus cache size and α (popularity) where there are 1000 contents with

the updating period of 50000.
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Figure 4.11: The first cache hit ratio with different policies versus cache size

Findings and Discussion (3-State Hit Ratio): Figure 4.11 and 4.12 show

that three-state policy obtains higher hit ratio compared to LRU and two-state

and pretty close to the hit ratio of the LFU (optimal for IRM). The same trend

is also valid for all of the results presented in Appendix C. These results indicate

that the three-state policy is able to capture the popular (high frequency) contents

in the workload.
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Figure 4.12: The first cache hit ratio with different policies versus α

Trace-Based Workload

Findings and Discussion (Hit Ratio under Different Traces): Fig-

ure 4.13 shows the first cache hit ratio for all traces (described in Section 3.1)

for a specific cache size of 100 and updating period of 10000. As depicted in Fig-
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ure 4.13, the three-state policy obtains the hit ratio pretty close to the highest hit

ratio and it is always greater than the two-state hit ratio due to the property of

removing the one-timer contents. As it can be seen, LRU outperforms LFU for bo,

pa, sj and sv traces and LFU outperforms LRU for ny, rt, sd and uc. However,

the three-state policy obtains hit ratio close to the highest hit ratio (either LRU

or LFU) for all of the traces. This indicates that the three-state performs well by

capturing the popular contents and the correlation between requests.
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Figure 4.13: The first cache hit ratio with different policies and traces

4.1.5 3-State Benefits for Overall Hit Ratio

Synthetic Workload

Findings and Discussion (3-State Overall Hit Ratio): Figure 4.14 shows

that the LRU at the second cache obtains the hit ratio of one with LFU at the

first cache but less than one with two-state and three-state for C ≥ 500. The 500

is the size that the summation of both cache sizes is equal to the catalogue size

(1000). Therefore, if the first cache can always keep the same set of contents, the

second cache obtains the hit ratio of 1 because the cache size is greater than or

equal to the missed contents set from the first cache. This is what LFU does at the

first cache by filtering the requests for the first C − 1 most popular contents and

pass the rest. However, the two-state and three-state do not have this property

because they do not keep the frequency of contents and their cached contents may

77



CHAPTER 4. COORDINATED CACHING SCHEME

be different in two consecutive updating periods. This leads to some changes in

the missed contents set of the two-state and three-state and consequently prevents

the second cache from reaching the hit ratio of one.
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Figure 4.14: The second cache hit ratio with LRU, N = 1000, α = 1

Figure 4.15 shows the LRU hit ratio in the second cache with 1000 contents

and cache size of 10 versus different α. The figure shows that LRU at the second

cache obtains the highest hit ratio while the first cache is managed by two-state.

The subsequent ranks are achieved by three-state, LFU and LRU respectively.
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Figure 4.15: The second cache hit ratio with LRU, N = 1000, C = 10

The hit ratio of LRU, RND and FIFO in the second cache, presented in Ap-

pendix C, have the same trend for different combinations of cache size, catalog

size and α.
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Trace-Based Workload

Findings and Discussion (3-State Overall Hit Ratio): Figure 4.16 and

4.17 show that the second cache can obtain the highest hit ratio while the first

cache is managed by the two-state. This is achieved for the real traces with the

cost of low hit ratio at the first cache. However, the three-state policy is able to

obtain a hit ratio close to the best policy at the first cache and it also provides

opportunity for the second cache to obtain a high hit ratio. Figure 4.16 and 4.17

show that the second cache hit ratio is low for ny, rt and sd traces while the first

cache is managed by three-state. This is due to the fact that three-state spends a

long time before reaching frozen state and keeps replacing during the time. This

prohibits the second cache from obtaining a high hit ratio. We solve this issue

through the coordination where the high level idea is that caches helps each other

to go to the frozen state faster than the case of a standalone cache.
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Figure 4.16: The second cache hit ratio with LRU and different traces
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Figure 4.17: The second cache hit ratio with RND and different traces

So far, we have discussed our n-state policy that is able to deal with one-timer

problem for n ≥ 3 in addition to thrashing and contention. It obtains a high hit

ratio for both synthetic and real workloads. In the next section, we complete our

first approach for proposing the lightweight coordinated schemes for ICN network

of caches by introducing our n-state coordinated scheme.

4.2 Coordinated N-State Scheme

As shown in the previous section, managing a cache with n-state policy provides

the opportunity for subsequent caches to obtain high hit ratio. However, indepen-

dently managing the caches in a network of caches leads to redundant copies in

different caches. This reduces the overall hit ratio of network of caches. To solve

this problem, we propose our lightweight coordinated scheme that is integrated

with our n-state policy. First, we introduce three concepts used in this section to

explain the idea. Then, we discuss our design principles, their intuitions and high

level implementation ideas. Finally, we explain how our protocol implements the

design principles.
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4.2.1 Defining Path, Closeness Rank & Useless Duplicate

Three concepts used in our protocol are: i) path ii) closeness rank and iii) useless

duplicate copy. A path consists of a set of routers and links that connect a group

of consumers to a producer. For example, Figure 4.18 shows three different paths.

With respect to a path, we define the concept of closeness rank of a router as the

hop distance of that router from the consumers of the path. Therefore, the router

with the smallest (largest) hop distance from the consumers of a path has the

highest (lowest) closeness rank. A router may have different ranks if it is involved

Figure 4.18: Definition of closeness rank based on path

in multiple paths with respect to each path. For example, router 4 in Figure 4.18

has rank 1 with respect to path 3 but has rank 3 with respect to paths 1 and 2.

The third concept, useless redundant copy, is related to the situation that

multiple routers have the same copy of a content. For example, let us assume

that multiple routers have the same copies of content X that are called duplicate

copies. A copy of X in router Y is a useless duplicate if for each path towards X’s

producer passing through Y there is a higher closeness-ranked router that has a

copy of X. Therefore, router Y does not receive any request for content X and

there is no point in keeping that useless copy. For example, let us assume that

all three routers 1, 2 and 3 in Figure 4.18 cache content X of producer2 that is

requested by consumers 1 and 2 from paths 1 and 2. The duplicate copy of X at

router 3 is useless because for each path towards producer2 (path 1 and 2), there

is one router that has X (router 1 and 2 respectively) with higher closeness rank

compare to router 3. In contrast, if a duplicate copy is not useless, it is useful.
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For example, the duplicate copies of X at router 1 and router 2 in our scenario

are useful. After defining the three concepts used in our protocol, we describe our

two design principles in the next subsection.

4.2.2 Design Principles

Our design principles are:

1. Managing redundant copies: In the whole network of caches, there should

not be any useless duplicate copy in a frozen slot.

2. Bringing popular contents close to consumers: For each path, the router

with the highest (lowest) closeness rank should have the highest (lowest)

chance of caching the popular contents.

We achieve our design principles through three rules. First, when a consumer

requests a content from a producer, only one of the path routers may write the

content. Second, to write a content, a router in state i should receive the cor-

responding request and piggybacks the message of “the corresponding content of

this request is going to be cached if it is at least in state i+1” because the router is

trying to transits to state i+1. Then, the router should announce this message to

the subsequent routers along the path, which have lower closeness ranks. Third,

these subsequent router(s) receiving a request with such a message cannot cache

the corresponding content if the content has the minimum state of i+1. Moreover,

if they have the content, they should fetch a new content instead of that content.

Through our three rules, we achieve the first design principle. Because of the

first rule, every time that a content is fetched, it is only written to one router in

the path. Therefore, the only way to have useless duplicate copy in a path is to

write the same content in at least two routers of the path through multiple fetches

and the order of writing has to follow a specific pattern due to the second rule.

The pattern is that the router with lower rank must write the content before the

higher ranked router otherwise it is not possible for the lower ranked to receive
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the request (filtered by higher ranked). Without receiving a content request, it

is not possible to write that content based on the second rule. Moreover, due to

the third rule, the specific order lets the lower ranked router to distinguish the

situation and fetch a new content instead of the duplicate copy.

The second design principle means that a router in the state i has the privilege

to fetch the contents with minimum state i + 1 from all routers with lower ranks

with respect to each path because it is highly probable that a content at least

in state i + 1 is more popular than a content in state i. The second principle is

guaranteed by our three rules because a router should receive the corresponding

request for a content to be able to cache the content based on the second rule and

a router receives a content request only if the path ’s routers with higher closeness

rank have not cached the content. Therefore, a router cannot fetch content from

the path ’s routers that have higher ranks but it can fetch from the lower ranked

routers by announcing the specific message based on the second rule. By receiving

such a message, the receiving router understands that it cannot cache the content

based on the third rule and gives the priority to the higher ranked routers to cache

the content.

4.2.3 Implementation

Our high level implementation idea is that each router, requiring to fetch a con-

tent, puts extra information (the minimum acceptable state of the content) in the

request and forwards the request (marking). The provider (a router or producer)

that serves the request decides about the location of the content based on the

extra information (deciding). To do so, we use the extra fields in the request and

content packet headers. We name each of these extra fields as Distance from Can-

didate Router (DCR) and there are n−1 DCRs in an n-state coordinated scheme

indexed from 1 (DCR1) to n − 1 (DCRn−1) representing the required content

state of 1 to n − 1 (frozen). The value of a DCR in each router represents the

distance from the candidate router in terms of number of hops. In addition, a
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positive value of DCRi in a router indicates that a higher ranked router is going

to cache the corresponding content if it has the minimum state of i. On the path

towards the producer, if a router needs to fetch a content in state i, the router

changes the default value of DCRi to 1 and forwards it. Other routers towards

the producer increases the DCRi by one until the request reaches the provider (a

cache or producer). In the reverse path, each router decreases the DCRi by one

until the request reaches the candidate router with DCRi = 0. On the other hand,

a request with all DRCi = −1 where 1 ≤ i ≤ n − 1, set by consumers, indicates

that the corresponding content is not going to be cached. We call the mechanism

of changing the DCR value from −1 to 1 as marking a request.

When a cache in the state i receives a request, the request gets either missed

or hit.

Missed Situation (marking rules)

1. Suppose that the request has not been marked by the higher ranked routers

for fetching a content in state j ≤ i + 1. That is, the state of all higher

closeness-ranked routers is greater than i. The physical meaning of this

situation is that the higher ranked routers are not interested in the contents

that are in the slot state i + 1 or less. Therefore, the router is allowed to

mark DCRi+1 to inform the lower ranked routers that it will cache the

corresponding content if the content has the minimum slot state of i+ 1.

2. Suppose that the request has been marked by higher ranked routers to fetch

a content in the state j ≤ i + 1. That is, the higher ranked routers are

eager for the corresponding content if the content has minimum slot state

of j ≤ i + 1. Therefore, the receiving router is not allowed to mark this

request and should increase the value of DCRs that are greater than zero

and forwards the request.

These marking rules provide an important characteristic for a marked request.

That is, if two routers have marked a request for the state i and j (i < j, DCRi > 0
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and DCRj > 0), the higher (lower) closeness-ranked router must mark the request

for state j (i). This is due to the fact that if the higher ranked router marks for

state i, the lower ranked router could not mark the request based on marking rule

two. This characteristic is used in deciding process when a provider determines

the highest ranked router that has marked a request.

Hit Situation (deciding rules)

1. Suppose that several routers (with higher closeness rank) have marked a

request. Therefore, there are multiple DCRs with value greater than zero.

Then, there are two cases based on whether the content state meets the

required minimum state of any router or not:

(a) meets: the provider decides that the content should be written to the

router with the highest closeness rank among the routers of which the

requirements are satisfied.

(b) does not meet: the provider decides that the content should be written

to the router with highest closeness rank among the routers that have

marked the request. In the special case of having only DCRn−1 > 0,

the provider copies the value of DCRn−1 to DCRn−2. This makes the

content to get at least one hit in the candidate router before going to

the frozen state.

2. Suppose that none of the DCRs of the request has been marked. In such

case, the slot state of the hit content gets increased by one if it is not in the

frozen and it is in a cache. Otherwise, the slot state remains constant.

Writing Only to One Router: The content provider (an intermediate router

or a producer) guarantees that a requested content is only written to one router by

only copying the decided DCR (determined by deciding rule 1) from the request

header to the content header and setting other DCRs in the content header to −1.

However, when the DCR1 is greater than zero, DCR1 is also copied to inform the

corresponding router to release the reserved slot. This is considered independent
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from the deciding process because n-state uses reservation only in the updating

state. In the path towards the consumer, when a router receives the request with

DCR zero, it writes the content to its cache. In a special case if a router receives

a content with DCR1 = 0, the router checks whether there is another positive

DCR or not. If there is, the router releases one reserved slot without writing the

content and forwards the content because a higher ranked router is going to cache

the content.

Managing the Duplicate Copies: The first case of the hit situation indicates

that a hit content may be a useless duplicate copy in the future because a higher

ranked router is going to cache the content. To solve this issue, the lower ranked

router downgrades the slot state of the hit content to the current state of the cache

(n − 2 when the cache is frozen). Therefore, the hit content will be replaced if it

is a useless copy.

Figure 4.19: Managing the duplicate copies and multipath routing

The mechanism of downgrading guarantees the lack of useless redundant copies

in frozen state under the assumption of lacking the multipath routing. To explain

how we deal with the cases of having multipath routing, we use the example

depicted in Figure 4.19 where there are two paths from router 4 to the producer.

Assume that there are two different copies of content X at routers 5 and 6. In

addition, assume that a request with at least one DCR > 0 gets hit at router 5

and the content X is going to be cached at router 3. Therefore, all of the future

X’s requests get filtered by router 3 and the duplicate copy in router 6 becomes

a useless copy (X in router 5 got downgraded). To solve this issue, we propose a

mechanism that is only used by a router that uses multipath from itself to other

nodes. For example, router 4 divides the requests targeting the producer through
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routers 5 and 6. In our mechanism, router 4 forwards the requests having at least

one DCR > 0 and targeting the producer to both router 5 and 6. Therefore, both

routers downgrade their X copies and this prevents having useless duplicate copies

in the frozen state. In the return path, the first X content packet that reaches

router 4 will be forwarded and the the later one will be discarded because there

is no entry for the later one in the PIT.

Prioritizing Routers Based on Closeness Rank: Using our coordinated

scheme, a cache in a path is able to fetch any content from caches with lower

closeness ranks but not from the caches with higher closeness ranks. For example,

router 1 in Figure 4.20 is able to mark any DCR of path 1 and caches the cor-

Figure 4.20: A linear topology with cross traffic

responding content if the content satisfies the state that router 1 is looking for.

Router 1 can mark any DCR because it has the highest rank (1) for path 1 and

receives the requests with DCRs of -1 directly from the consumers 1. On the other

hand, router 1 has limitations for marking requests from path 2 because it has the

lowest rank (7) for path 2 and the second path requests passed through six routers

before reaching router 1. Therefore, router 1 is only able to mark a request from

path 2 if the request has not been marked by router 7 to 2. Moreover, any request

from path 2 that is marked by router 1 is served by producer 1 and will have

state 1 because the contents in all producers have state one forever. Therefore,

the content will have the lowest state and may be replaced with high probability.

Managing Packet Lost: Our coordinated scheme should deal with the situation

that a request or content packet with a marked DCR1 gets lost because a candidate

router reserves a slot for that request. Lost of this kind of requests or contents
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prevents releasing the reserved slot. To handle this situation, each router uses a

timer called reservation timer. A router restarts a reservation timer at the time

of i) marking a DCR1 ii) receiving a content with DCR1 = 0. In the case of

reservation timer expiration, the router decreases the counter that represents the

number of reserved slots and restarts the timer. The expiration period should be

set relative to RTT of the network because a cache should wait at least RTT after

marking a request to receive its corresponding content.

4.3 Evaluation

We evaluate our coordinated n-state scheme for n = 2 and n = 3 in Section 6.2

together with COCAP.

4.4 Summary

In this section, we extend our two-state policy to n-state policy that obtains

higher hit ratio compared to two-state. Moreover, n-state inherits the advantages

of two-state i) providing opportunity for other caches to obtain high hit ratios

ii) adapting to the traffic pattern changes iii) simple implementation. We evaluate

n-state based on synthetic and trace-based simulation and show that increasing n

from two to three leads to a considerable improvement in hit ratio by capturing

popular contents and removing one-timer contents. However, the improvement of

increasing n for n > 3 is negligible.

In addition, we introduce a coordinated caching scheme integrated with n-

state policy. Our coordinated scheme manages the duplicate copies such that

there is no useless redundant copy in the frozen state. Moreover, it brings the

popular contents close to the consumers based on each path. So far, we have

completed our first approach for proposing the lightweight coordinated schemes

for ICN network of caches. In the next chapter, we start our second approach by

introducing a new cache management policy called CAP that is the base for our
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second coordinated scheme, COCAP, which is presented in Chapter 6.
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Chapter 5

CAP:

Contention-Thrashing-Pollution

Aware Replacement Policy

In this chapter, we start our second approach of proposing the lightweight coor-

dinated schemes for ICN network of caches by introducing a class of replacement

policies for managing a standalone cache. In the class of replacement policy, we

manage a cache with two different policies for protected and unprotected segments.

We explain how different combinations can use the advantages of three replacement

policies, FIFO, RND and LRU, that are applicable in an ICN router [5]. Then, we

discuss about our combination and explain how it can solve three caching prob-

lems at the same time and achieve a hit ratio comparable to other state-of-the-art.

Then, we discuss the average time complexity and memory overhead of our im-

plementation and prove that the average time complexity of our implementation

is O(1). Finally, we evaluate our CAP against the state-of-the-art policies de-

signed for a standalone cache and show that CAP obtains close hit ratio to the

state-of-the-art without keeping the meta-data of evicted pages.
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5.1 A Class of Policies

Our main goal is to address the three predefined caching challenges: contention,

thrashing and pollution without keeping the history of evicted contents. To achieve

our goal, we divide a cache space into two variable-sized segments: protected and

unprotected as depicted in Figure 5.1. The size of protected segment is Sp and

the size of unprotected segment is C −Sp, where C is the cache size.

Figure 5.1: Protected and unprotected segments. Sp = 5 and C = 8

.

5.1.1 Cache Division

The idea of cache division between protected and unprotected gives us the oppor-

tunity to solve the pollution problem. Each segment is managed with an indepen-

dent replacement policy and segments are separated by a pointer called border.

We denote Rp and Ru as the replacement policies that manage the protected and

unprotected segments, respectively. The cache starts its operation with Sp = 0

where all the cache slots are devoted to the unprotected segment. The missed

contents are inserted into the unprotected segment based on Ru. When an unpro-

tected content, i.e., a content in the unprotected segment, gets hit, our mechanism

takes two actions: 1) the protected size is increased by one (Sp = Sp + 1) and 2)

the hit unprotected content is moved to the protected segment and considered as

a protected content. The location of the moved content in the protected segment
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can be at the end or at the beginning of the segment depending on the implemen-

tation of Rp. On the other hand, if a protected content in the protected segment

gets a hit, the Rp does the appropriate action. This process continues until the

size Sp reaches a maximum threshold, Smax
p , and the mechanism restarts by set-

ting all contents as unprotected contents and Sp to zero. The time between two

consecutive restarts is defined as a round. A round is depicted in Figure 5.2 with

two omitted cache states.

(a) (0, 8) (b) (1, 7) (c) (2, 6) (d) (5, 3) (e) (6, 2)

Figure 5.2: A cache round starts from 5.2a and ends with reaching 5.2e. Smax
p = 5 in this

sample. The two intermediate cache states from 5.2c to 5.2d are omitted.

5.1.2 Adaptivity

Our cache policy uses a threshold, Smax
p , to limit the size of the protected segment.

In fact, the protected size, Sp, grows from zero to its maximum of Smax
p and when

Sp becomes greater than Smax
p , it is reset back to zero. The large value for Smax

p

(close to C) leads to behaviors similar to LFU and large Smax
p performs well for

the workload with no or low rate of popularity change. On the other hand, when

the workload has a very high rate of popularity change, all of our policies described

in Section 5.1.3 obtain their largest hit ratio pretty close to LRU that performs

well for workload with high popularity change rate with Smax
p = 1. This is due

to the fact that with Smax
p = 1, the policy ’s behavior is close to that of LRU,

because the hit contents get moved to the MRU position and all contents could

be considered as unprotected.
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To adapt the policy between LFU and LRU based on workload, we use the

number hits of the unprotected contents (Nu) and protected contents (Np) during

one round. Our logic is that the policy can push the Smax
p towards its minimum

Smin as long as the unprotected segments can get more hits than the protected

segment (Nu > Np). Intuitively, Nu > Np happens when the protected contents do

not stay popular for a long time because the workload popularity change rate is

very high, i.e., after capturing a popular content, it becomes unpopular. On the

other hand, the policy can push Smax
p towards its maximum C −Smin as long as

protected segments can get more hits than the unprotected segment, i.e., Np > Nu.

To dynamically adjust the maximum threshold, we update the value of Smax
p at

the end of each round as follows:

Smax
p = Max(Min(Smax

p + Np −Nu,C −Smin),Smin) (5.1)

Consequently, Smax
p plays the role of adapting the size of the protected segment

in the interval of [Smin,C −Smin] when workload characteristics change.

Using Smin enables us to control the minimum size of both unprotected and

protected segments. Without this bound if the cache decreases the Smax
p to zero,

our policy is trapped and cannot have protected segment anymore. This is due to

the fact that Np is always zero by having Smax
p = 0. To avoid this situation, we

set the Smin to 0.1 ×C in practice.

5.1.3 Choices of Replacement Policies (Ru,Rp)

We use three replacement policies, i.e., FIFO, RND and LRU, as our candidate

replacement policies for protected and unprotected segments, because of their

applicability for ICN routers [5], simplicity and wide range of characteristics. We

investigate the advantages and disadvantages of different combinations of (Ru,Rp)

under our adaptive policy framework. Since Ru is responsible for reacting to

misses, in this situation, there is no difference between LRU and FIFO. Therefore,
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Algorithm 1 CAP(Ru,Rp)

1: Input: The request stream of x1,x2, . . .xt, . . .
2: Initialization: Smax

p =C −Smin, Sp=0,Nu=0,Np=0
3: For every t > 1 and xt, only one case happens:

4: Case I: xt gets hit in protected segment
5: Rp(xt,hit) ◃ Rp reacts to a hit for xt

6: Np = Np + 1

7: Case II: xt gets hit in unprotected segment
8: Sp = Sp + 1
9: Move xt to the protected segment

10: Nu = Nu + 1
11: if Sp > Smax

p then
12: ADAPT()
13: end if

14: Case III: xt gets missed
15: Ru(xt,miss) ◃ Ru reacts to a miss for xt

16: function ADAPT( )
17: Smax

p = Max(Min(Smax
p + Np −Nu,C −Smin),Smin)

18: Sp = 0
19: end function

we consider to use either FIFO or RND for Ru. Since Rp is responsible for reacting

to hits and FIFO and RND do not make any reaction to hit contents, we consider

to use either LRU or NoOP for Rp, where NoOP denotes the mechanism that

does not react to hits in the protected segment at all. Consequently, we consider

four combinations of (Ru,Rp): (FIFO, LRU), (FIFO, NoOP), (RND, LRU) and

(RND, NoOP).

We discuss these four combinations from the perspective of the trashing and

pollution problems as follows. (FIFO, LRU) and (FIFO, NoOP) cannot handle

thrashing because the unprotected segment is managed by FIFO that suffers from

thrashing. However, the separation of unprotected and protected segments pro-

tects the popular contents from being polluted by one-timer contents. (RND,

LRU) and (RND, NoOP) combinations can solve thrashing and pollution prob-
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lems. Using RND in the unprotected segment gives the opportunity of getting hit

for some contents in the presence of thrashing. These contents will be safe in the

protected segment from the moment of moving to the protected segment till the

end of a round. Moreover, the pollution can be solved by the separation between

protected and unprotected segments.

So far, we have introduced our class of replacement policies and explained the

advantages and disadvantages of different combinations. In the next subsection,

we introduce the combination used for CAP and explain the reasons for selecting

this combination.

5.2 CAP Combination:(RND,NoOP )

Although both combinations of (RND, LRU) and (RND, NoOP) can deal with

thrashing and pollution, we choose (RND, NoOP) to further handle the cache

contention problem. By using RND as the policy for the unprotected segment,

multiple threads could write to the cache in parallel; by using NoOP for the

protected segment, contention for the hit contents is in the slot level. Therefore,

the choice of CAP decreases the granularity of contention from the whole cache

level to slot level.

Although using RND in the unprotected segment may decrease the chance of

getting hit for the contents in the unprotected segment, our investigation shows

that most of the hits come from the protected segment. That is, the unprotected

segment only has the role of detecting the popular contents. After detection, the

contents are moved to the protected segment. Therefore, RND is the best option

from our pool since it can deal with the thrashing problem and contention for

missed contents at the same time.

So far, we have introduced and discussed our CAP policy in terms of its high

level idea and advantages. In the next subsection, we explain the challenges from

the implementation perspective and our solutions and we show that the average
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time complexity of our CAP in the worst case scenario is O(1).

5.3 CAP Implementation

In this section, we explain the issues of CAP implementation and our solutions.

The first issue is the time complexity of our CAP implementation and we prove

that the average time complexity of our policy can be as good as O(1) depending

on Smin. The second issue, false protection, is the possibility of considering an

unprotected content as a protected content. Through approximation, we show

that the probability of false protection is almost zero in practice.

5.3.1 CAP’s Implementation Discussion

To implement (RND, NoOP), we need two variable-sized lists. The list for pro-

tected segment can be a traditional linked list that is easy to implement. How-

ever, the implementation of the unprotected list is more complicated because RND

needs to have access to any location in the list in a constant time but accessing a

random content in a linked list has the time complexity of O(C). Another option

for unprotected segment is to use the dynamic array. However, the wasted space

of the dynamic array is also high [13], θ(C), where C is the total number of slots.

Instead of using linked list or dynamic array for the unprotected segment, we

use a single array to keep both protected and unprotected contents. In addition,

we maintain a variable vi for each slot i. Related to vi, we introduce a shared

variable Vp among all slots in the cache. Both vi and Vp have the length of b bits.

If vi equals Vp, the ith slot is interpreted as a protected content (slot). Otherwise,

the slot is considered as unprotected slot. At the time of writing a missed content

that a cache needs to find an unprotected slot, a cache generates a random number

k between 1 and C until finding vk ̸= Vp. At the time of getting hit for slot i, a

cache copies Vp to the vi. Each vi is initialized to be 0 and Vp is initialized to be

1 when the CAP starts.
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During a round, any missed content is brought to the unprotected segment,

with its slot vi set to be Vp − 1. When a content in the unprotected segment

gets hit, its slot vi is further increased to be Vp. At the end of each round, Vp is

updated by (Vp + 1) mod 2b, where b is the number of bits of Vp. Through this

simple mechanism, the protected and unprotected contents can be distinguished.

However, there are two issues with this mechanism. The first issue is related to

the time complexity of finding an unprotected content. The second issue is related

to the possibility of considering a stale content, un-replaced and un-referenced,

from 2b previous rounds as a protected content in the ongoing round. For example,

if a one-timer content comes to the cache in round i and is not replaced until round

i + 2b, the content can be considered as a protected content. This situation is

defined as false protection. In the following subsections, we calculate the average

time complexity in the worst case and the probability upper bound of having a

false protection.

5.3.2 Time Complexity of CAP Replacement

The time complexity of finding an unprotected content is equal to the number of

memory access before finding an unprotected content. We are going to calculate it

in the worst case scenario that happens when the number of unprotected contents

is minimum and the cache needs to find an unprotected content. That is, the

number of unprotected contents in the cache is Smin (C −(C −Smin)) that happens

when Sp = Smax
p and Smax

p has its maximum value equal to C −Smin. In addition,

the mechanism for finding an unprotected content is to generate a random number

i between 1 and C until finding vi ̸= Vp. Therefore, the probability of finding an

unprotected slot by generating one random number between 1 and C (in the worst

case scenario) can be calculated by

p =
Smin

C
(5.2)
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Algorithm 2 CAP(RND,NoOP )

1: Input: The request stream of x1,x2, . . .xt, . . .
2: Initialization: Smax

p =C −Smin, Sp=0,Nu=0,Np=0
3: For every t > 1 and xt, only one case happens:

4: Case I: xt is found in the cache
5: if cache.vi == Vp then ◃ A protected content gets hit
6: Np = Np + 1 ◃ Atomic increment
7: else ◃ An unprotected content gets hit.
8: Sp = Sp + 1, Nu = Nu + 1 ◃ Atomic increment
9: if Sp > Smax

p then ◃ A new round should be started
10: ADAPT()
11: else
12: cache.vi = Vp ◃ Needs to lock the slot i
13: end if
14: end if

15: Case II: xt is not found in the cache.
16: rindex=Random(1,C) ◃ Generate a random number between 1 and C
17: while cache.vrindex == Vp do
18: rindex=Random(1,C)
19: end while
20: Copy content xt into slot rindex ◃ Needs to lock the slot rindex
21: cache.vrindex = Vp −1 ◃ Needs to lock the slot rindex

22: function ADAPT( ) ◃ ADAPT is inside a critical region.
23: if Sp < Smax

p then ◃ Executes only once at the end of a round.
24: Return
25: end if
26: Sp = 0
27: Vp = (Vp + 1) mod 2b

28: Smax
p = Max(Min(Smax

p + Np −Nu,C −Smin),Smin)
29: end function

Moreover, the number of times that is required to generate a random number

(the number of memory accesses) has a geometric distribution with success prob-

ability of p. Therefore, the average number of memory access in the worst case,

Mw
avg is equal to 1

p = C
Smin

and can be calculated by

Mw
avg = 1 ×p + 2 ×p(1 −p) . . .k ×p(1 −p)k−1 . . . (5.3)
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which is

Mw
avg =

∞∏

i=1

i×p(1 −p)i =
1

p
=

C

Smin
(5.4)

Therefore, the time complexity of the average memory access in the worst case

is O( C
Smin

). Smin plays an important role in balancing the rate of reaction to the

workload changes and hit ratio of the protected segment. The larger (smaller)

the Smin is, the lower (higher) hit ratio of the protected segment is and the faster

(slower) reaction to the workload changes happens. We use Smin = 0.1×C in our

evaluation and obtain hit ratio close to ARC [57] for different workloads and cache

sizes. By our configuration, the average number of memory accesses to find an

unprotected content in the worst case is O(10) = O(1). It should be mentioned

that this is the average for the worst case and a cache is not in the worst case

scenario all the time. Therefore, the average memory access in practice is less

than 10 accesses.

5.3.3 Upper Bound of the False Protection Probability

The false protection happens when an unprotected content is considered protected

because the content neither gets hit (may be one-timer) nor replaced for 2b − 1

rounds. This happens because the vi starts from its minimum (zero) and reaches

its maximum (2b − 1 where Vp and vi have b bits). Then, it restarts from zero

and this process continues. Therefore, a content that is written or referenced in

the round i may neither gets referenced nor replaced during next 2b − 1 rounds.

Consequently, that content is considered as a protected content in round i + 2b

and is called a false protected content. To calculate the upper bound probability

of happening a false protection, we assume that this probability has its maximum

when a one-timer content comes to a cache and does not get replaced (regular

contents may get hit). Therefore, we find the upper bound of the probability for

a one-timer content that does not get replaced in 2b −1 rounds.

Let pkj be the probability that the unprotected content in slot k gets replaced
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through processing a single request by a cache that has j protected contents. This

happens if the request gets missed, with probability m, and independently the

CAP policy selects the cache slot k for replacement, with probability 1
C−j since

one of the C − j unprotected slots have to be selected uniformly. Thus,

pkj =
m

C − j
(5.5)

where m can be approximated by the cache miss ratio. Therefore, the probability

that an unprotected content does not get replaced by processing a single request

by a cache having j protected contents is obtained by

p′

kj = 1 −
m

C − j
(5.6)

Let us assume that Xj denotes the number of requests that are processed when

the cache has j protected contents in one round. Therefore, the probability that

an unprotected content does not get replaced in one round, denoted by q, can be

calculated by

q =
C−Smax

p∏

j=0

(p′

kj)
Xj =

C−Smax
p∏

j=0

(1 −
m

C − j
)Xj (5.7)

and we have that

1 −
m

C − j
≤ 1 −

m

C
(5.8)

Therefore,

q ≤
C−Smax

p∏

j=0

(1 −
m

C
)Xj = (1 −

m

C
)
∑C−Smax

p
j=0

Xj (5.9)

The right hand side is decreasing in
∑C−Smax

p

j=0 Xj, which is in fact the total

number of requests that are processed in one round. In one round, at least Smax
p

requests should be processed and the minimum of Smax
p , as explained in Section

5.1.2, is Smin. Hence, the minimum of
∑C−Smax

p

j=0 Xj is Smin, and

q ≤ (1 −
m

C
)Smin (5.10)
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Let r(n) be the probability that a one-timer unprotected content does not

get replaced during n consecutive rounds. r(n) can be calculated by r(n) = qn.

Therefore, the upper bound of the probability that a false protection happens in

a cache with b bits in vi and Vp is

r(2b −1) ≤ ((1 −
m

C
)Smin)2b

−1 (5.11)

This upper bound is less than 10−10 for cache size from 10 to 1010, m ≥ 0.01

and Smin ≥ 0.1 ×C. The larger the m is, the smaller the upper bound is.

So far, we have explained our CAP with its advantages in terms of solving

the three caching problems and its implementations. Furthermore, we have shown

that our implementation is easy to be deployed in an ICN router. In the next

subsection, we compare our policy with the state-of-the-art policies for standalone

caches and show that CAP obtains comparable results without keeping any meta-

data for evicted contents.

5.4 Evaluation

In this section, we evaluate our replacement policy under both synthetic and real

workloads. Using the synthetic workload enables us to separately examine the

effect of thrashing and pollution on CAP policy and other policies. We generate

our synthetic workload based on Independent Reference Model (IRM) [23] assump-

tion and add a different portion of polluting and thrashing traffic. In addition to

synthetic scenarios, we use block-level traces collected by Microsoft Research Cam-

bridge [61] as our real workloads. The detailed analysis of some of the traces can

be found in [61, 93].

In both synthetic and real scenarios, we compare our CAP policy with LRU as

the most common replacement policy, S-LRU as the pollution resistant version of

LRU, LFU as the optimal replacement policy under IRM assumption, ARC [57]

and LIRS [43] as the very good self adaptive policies and FB-FIFO [35]. It should
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Figure 5.3: Cache hit ratio versus cache size under synthetic workload. Total number of
contents in the system is 1000.
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Figure 5.4: Cache hit ratio versus cache size under synthetic workload. Total number
of contents in the system is 1000, thrashing length (β) is 100 with different portion of
thrashing workload (γ).
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Figure 5.5: Cache hit ratio versus cache size under synthetic workload. Total number
of contents in the system is 1000, thrashing length (β) is 200 with different portion of
thrashing workload (γ).
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be mentioned that we exclude CAR [9] and Clock-Pro [41] from our comparison

because their ancestors, ARC [57] and LIRS [43] respectively, that obtain higher

hit ratios are present in our evaluation.

5.4.1 Synthetic Workloads

In this section, we evaluate different policies under IRM assumption in three sec-

tions. First, the requests are generated based on Zipf distribution with different

Zipf slope of α = 0.9,1,1.2. Second, we add a thrashing traffic to the Zipf gener-

ated workload. To do so, a portion of requests, γ, are generated in (a1,a2, . . . aβ)∗

format where β is the length of the thrashing workload. Finally, we add a polluting

workload to the Zipf and thrashing workload. This can be achieved by generating

a portion of requests, Θ, in (b1, b2, . . . , bi, . . .) format where i is increased without

any limit.

Independent Reference Model (IRM) We compare our policy with other

policies under different configuration for Zipf distribution i.e., different total num-

ber of contents in the system and Zipf slopes (α). The results for three different

Zipf slope are depicted in Figure 5.3. As it can be seen from the figure, LFU has

the best (optimal) hit ratio under IRM and LRU has the worst hit ratio. S-LRU

has the second rank among all replacement policies in terms of hit ratios. ARC,

LIRS and CAP almost have the same performance. Therefore, CAP can capture

the popular contents and obtain a comparable hit ratio with ARC and LIRS. Re-

garding the effect of the total number of contents, we have done the experiment

with different total number of contents but we only present one set of results for

1000 contents due to the similar trends.

IRM with Thrashing In addition to the IRM traffic, there is a fraction of

thrashing traffic, γ, with the thrashing length of β. Figure 5.4 shows the results

for different γ where FB-FIFO and S-LRU have the worst performance because

they use a smaller fixed fraction of cache to detect the popular contents and
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Figure 5.6: Cache hit ratio versus cache size under synthetic workload. Total number of
contents in the system is 1000, thrashing length (β) is 200, portion of thrashing workload
(γ) is 0.25 with different portion of pollution workload(Θ).
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move them to their protected segments. On the other hand, LFU has the best

performance since it has the access frequency of all contents and selects the most

frequent contents to fill the cache. LIRS has the second rank in terms of cache

hit ratio since LIRS has no bound for keeping meta-data of evicted contents (for

example up to 4.5 times of the cache size[42]). However, CAP can obtain the hit

ratio near to the best without keeping any meta-data.

As it can be seen from Figure 5.4, there is a sharp jump for the hit ratio of

ARC and LRU after point (100 contents) because ARC and LRU can obtain hits

from thrashing workload for cache sizes larger than 100. In addition, the jump

becomes sharper as the portion of thrashing requests increases because the effect

of thrashing workload intensified. On the other hand, the sharp jumping point is

shifted to 200 contents by increasing the length of thrashing workload, β, from

100 to 200 contents as depicted in Figure 5.5.

IRM with Thrashing and Pollution In the last set of experiment, we add the

polluting workload to the combination of IRM and thrashing workloads. We do

the experiment by different portions of polluting workload, Θ, of 0.1,0.2,0.3. As

it can be seen from Figure 5.6, increasing the Θ intensifies the thrashing problem

and shift the sharp jumping point from 500 to 600 for LRU and from 300 to 400

for ARC because the reuse distance of the thrashing workload gets increased when

the one-timer contents interleave with thrashing workload.

5.4.2 Real Workloads

We use Microsoft Research Cambridge (MSR-Cambridge) traces to evaluate our

CAP policy. These traces are collected from the MSR-Cambridge data center

servers and are in the block level [61]. We use 4 KByte block size for our ex-

periments and simulate a content with one block. We compare CAP with the

same group of policies described before except LFU because of its high overhead.

Instead of LFU, we implement LFUApp in which a cache has a counter for each
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Figure 5.7: Cache hit ratio versus cache size under real workloads of hm0, hm1 and msd0.
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Figure 5.8: Cache hit ratio versus cache size under real workloads of prn0, mds1 and proj0.
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Figure 5.9: Cache hit ratio versus cache size under real workloads of prxy0, rsrch0 and
rsrch2.
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content that is in the cache instead of having a counter for each content that is in

the system.

As it is depicted in Figure 5.7, 5.8 and 5.9, our CAP policy follows the hit

ratio of the best policy (ARC) with different workloads. However, CAP does not

need to keep the meta-data of evicted contents and its contention granularity is

finer (slot level) than the ARC (cache level).

5.5 Summary

In this chapter, we introduce a new class of replacement policies by dividing a

cache into two independently managed segments. The total size of the cache

is adaptively divided between protected and unprotected segments. We explain

different combinations of policies for protected and unprotected segments and

their advantages and disadvantages. Among different combinations, we select a

combination that could simultaneously solve the important caching problems of

contention, thrashing and pollution. Our CAP policy decreases the granularity of

contention to the cache slot and solves the thrashing and pollution problems by

combining the advantages of different policies. Moreover, our policy adaptively

reacts to the workload changes without any requirement for the history of evicted

contents. CAP reaches the hit ratio close (sometimes better than) the hit ratio

of the policies that use history of evicted contents. We show that our policy is

simple to be deployed with average time complexity of O(1).

So far, we have proposed our second replacement policy, base for our second co-

ordinated scheme, that is simple to be deployed and it solves the caching problems.

However, CAP cannot deal with the filter effect problem in network of caches. In

the next chapter, we introduce the coordinated CAP, COCAP, that deals with the

filtering effect by using the idea of freezing, borrowed from two-state policy, in a

coordinated manner.
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Coordinated CAP Scheme

In this chapter, we complete our second approach for proposing the lightweight

coordinated schemes for ICN network of caches by introducing the coordinated

CAP scheme called COCAP that is based on the CAP introduced in Chapter 5.

First, we explain the main idea of extending the CAP for a network of caches

by making two unrealistic assumptions to make the transition smooth. Then,

in two steps, we remove the assumptions and explain how our main idea can

be implemented with a light overhead through four extra fields in the request

and content packets and two variables in each router. Finally, we evaluate all of

our coordinated schemes (COCAP, CO3S and CO2S) by comparing them with

other schemes using synthetic and real topologies. We conclude this chapter with

a summary. In this chapter, we use the concepts of path, closeness rank, high

(low) closeness-ranked routers and useless redundant copy that are introduced in

Section 4.2.1.

6.1 COCAP: Coordinated CAP Scheme

In this section, we explain the main idea of our COCAP by making two unrealistic

assumptions i) having a centralized control with a holistic view ii) having a

synchronized protocol among all caches. After describing the main idea through
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example, we describe how to rectify the first assumption. Moreover, we describe

the two important characteristics of our scheme and their implementations through

examples. The first characteristic is the ability of caching the popular contents

close to the consumers that decreases the content download time and transferred

bytes. The second characteristic is to manage the redundancy to improve the

overall network hit ratio. Finally, we explain how to remove the assumption of

having synchronized protocol among all caches.

6.1.1 Centralized Control and Synchronized Caches

To explain the main idea of COCAP, we use an example of one cache managed as

distributed caches depicted in Figures 6.1 and 6.2 respectively. Figure 6.1 shows

a standalone cache with nine slots and Figure 6.2 shows a network of caches with

nine slots of the standalone cache distributed among three routers. We manage

Figure 6.1: A single big cache

the network of caches as a single unified cache with the CAP policy. That is, we

randomly write the contents that get missed in all caches to one of the nine slots

and make a slot that gets hit protected until the number of protected slots reaches

Smax
p . Then, all of the slots become unprotected and the process starts again. To

do so, each cache slot should have one protection bit, P b, to differentiate between

protected and unprotected slots. In addition, we need a centralized control with

a holistic view over all cache slots that synchronously become unprotected after

the number of protected slot reaches Smax
p . These two assumptions, centralized

control with a holistic view and synchronized caches, enable us to manage the

three caches as a unified big cache that is managed by CAP policy. Consequently,
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Figure 6.2: A big cache distributed in the network with a centralized control

there is no redundant copy in the network and the overall hit ratio is the same

as a standalone CAP cache located between consumers and the producer. In

addition, as it can be seen from Figure 6.2, we assign a virtual slot number with

respect to the path to each cache slot. The virtual slot number starts from zero on

the highest closeness-ranked router and is increased towards the lowest closeness-

ranked router. We use this virtual slot number, defined per path, to explain how

our COCAP can bring popular contents close to the consumers with respect to

each path.

Popular Content Close to Consumers

As shown in Chapter 5 through trace-based simulation, CAP obtains hit ratio

close to the state-of-the-art. Therefore, the unified big cache obtains high overall

hit ratio and the probability of finding a popular content is similar in all caches

because of uniform random number generation at the time of writing a missed

content. However, in terms of content download time and transmitted byte, it

is better to place the popular content close to consumers as CO3S obtains this

property by prioritizing the routers based on their closeness ranks described in

Section 4.2.2.

To cache the popular contents close to the consumers, we introduce the concept

of virtual cache with respect to a path. A virtual cache is the first Svc
u number

of unprotected slots based on their virtual slot number with respect to a path

plus the protected slots with the virtual slot number smaller than the virtual slot

number of last unprotected slot. For example, consider Figure 6.2 that shows the

network of caches after resetting all P bs. In addition, let us assume that Svc
u = 3.

Therefore, the virtual cache is consists of the first three unprotected slots located
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at the first cache. Moreover, let us assume that the virtual slot 1 gets hit and the

network of caches status changes to Figure 6.3 where the virtual cache consists of

the virtual slots 0, 1, 2, and 3 because the first three unprotected slots are 0, 2, 3

and the virtual slot 1 (protected and 1 < 3).

With respect to the virtual cache, the missed contents from a path are only

written to the unprotected slots. For example, the missed contents are only written

Figure 6.3: A virtual cache with size of 3

to slots, 0, 2 and 3 in Figure 6.3. As it can be seen from Figure 6.2 and 6.3, the

virtual cache grows towards the producer but the maximum number of unprotected

slots is the same. Through setting of Svc
u , we can determine where the first hits

happen. In our example, we guarantee that the first hit happens in the first cache

and the content will be protected at the first cache. Moreover, the chance of

getting the first hit for a popular content is higher than an unpopular content.

Therefore, by using the virtual cache, we can protect the popular contents by

converting their slots to protected from the highest closeness rank router towards

the lowest closeness rank router with respect to a path. With respect to a virtual

cache, we introduce the concept of virtual hit and virtual miss. A virtual hit

happens whenever a request gets hit in a slot inside the virtual cache. Otherwise,

it is considered as a virtual miss. For example, a virtual hit happens in Figure 6.3

if the contents in slots 0, 1, 2, 3 get hit but a virtual miss happens if the content

in slot 6 gets hit. In addition, whenever a content gets a virtual hit, we set its P b

to one.

The centralized control with holistic view lets us to implement the virtual cache

with respect to each path. For example, Figure 6.4 shows two paths crossing each

other. For path 1, we write the missed contents only to slot 0, 1 and 2 until getting

the first hit and grow the virtual cache towards the producer 2. However, for path
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2, we write the missed contents only to slot 8, 7 and 6 (which have virtual slot

number of 0, 1 and 2 with respect to path 2) until getting the first hit and move

the virtual cache of path 2 towards the producer 1.

Figure 6.4: The virtual cache with respect to different paths

So far, we have introduced the main idea of our COCAP using examples under

the assumption of having a centralized control with a holistic view and a synchro-

nized protocol. In the next section, we explain that how we can implement our

COCAP without the centralized control.

6.1.2 Synchronized Caches without Centralized Control

In this section, we release the assumption of having a centralized control with

holistic view. Instead, we use a coordinated scheme, COCAP, to manage the

virtual caches to obtain the same functionality. To do so, COCAP continues to

replace the missed contents until all of the slots get protected and it synchronously

resets the protection bits of all cache slots every updating period amount of time.

We will remove synchronized assumption in the next section.

We implement our COCAP through piggybacking information on four extra

fields in request and content packets and two variables in the routers. Before

discussing the implementation, we need to explain the recently proposed variables

and recently proposed. Router variables:

1. Su represents the size of unprotected slots in a router. We define a cache as

an active cache if its Su > 0. Otherwise, the cache is inactive.
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2. Svc
u represents the number of unprotected slots in the virtual cache. Svc

u of

all routers are set to a constant and common value.

Extra fields in request and content packets:

1. V b or virtual bit indicates whether the content gets virtual hit (1) or virtual

miss (0).

2. DCR or Distance from Candidate Router is exactly the same as used in

our previous coordinated scheme (described in Section 4.2.3). A packet with

DCR > 0 indicates that the corresponding content of the packet is going to

be written to another cache. Therefore, only the router that receives the

content with DCR = 0 is supposed to write the content in the condition

that the content gets virtual missed (V b = 0). In addition, V b = 1 indicates

that the content gets hit inside the virtual cache and there is no need to be

written to the virtual cache.

3. L represents the rank of the unprotected slot among Svc
u unprotected slots

to which the corresponding content is written. Therefore, it is an integer

number between 1 and Svc
u . For example, L = 2 for the cache in the state

of Figure 6.3 where the Svc
u = 3 refers to the virtual slot 3 because it is the

second unprotected slot in the virtual cache.

4. Lsum of a request in a router represents the summation of the unprotected

slots that are involved in the virtual cache in all higher ranked routers. For

example, the Lsum of the request packet received by router 2 (3) in Figure 6.3

is 2 (3). The minimum of Lsum is zero and its maximum is Svc
u . For example,

let us assume that slots 0 and 2 get protected in Figure 6.3 (all slots of router

1 are protected). Then, the Lsum of the requests received by router 2 is zero

because there is no slot involved in the virtual cache from router 1.
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Implementation

When a router receives a request (receiving router), COCAP reacts based on

whether the request either gets missed or hit:

Missed

1. Su = 0. This means that all of the cache slots in the receiving router are pro-

tected (inactive cache). Therefore, the router only coordinates by increasing

the DCR if DCR > 0 similar to coordinated n-state scheme.

2. Su > 0 (an active cache):

(a) Lsum = 0. This means that the receiving cache is the first active cache

involved in the virtual cache. We call this kind of cache as the generator

because it generates an integer random number between 1 and Svc
u as

the value of L in the request. The value of L determines where the

content should be written in the case of a virtual miss. Based on L,

there are two cases:

i. Lsum +Su ≥ L. This means that the corresponding content of this

request should be written in this cache in the case of a virtual miss

(this router is the candidate router). Therefore, the router should

mark the request by setting the DCR to one and it should change

Lsum by Min(Lsum + Su,Svc
u ).

ii. Lsum + Su < L. This means that the receiving cache is not the

candidate router. Therefore, the router only sets the Lsum by

Lsum + Su and forwards the request.

(b) 0 < Lsum < Svc
u . This means that the receiving cache is involved in the

virtual cache. Therefore, it should check whether it is the candidate

router or not through Missed 2(a)i and Missed 2(a)ii.

(c) Lsum = Svc
u . Although the receiving cache is active, the cache is not in-

volved in the virtual cache for the request because the higher closeness-
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ranked caches could provide the required number of unprotected slots.

Therefore, the cache just coordinates through DCR.

Hit

1. Lsum = 0. This means that the router may be the first active router (gen-

erator) in the virtual cache depends on its Su. Therefore, L = 0 for the

request.

(a) Su = 0. The cache is inactive and does not do anything.

(b) Su > 0. The cache is active and needs to check whether the hit should

be considered as a virtual hit or a virtual miss.

i. Lsum + Su ≤ Svc
u That is, the hit happens inside the virtual cache

because the number of unprotected slots of the higher ranked caches

plus the unprotected slots of the receiving cache is less than the

virtual cache size. Therefore, the hit should be considered as a

virtual hit. Moreover, if the protection bit of the slot is zero, the

cache sets it and decreases its Su by one.

ii. Lsum +Su > Svc
u It is possible that the hit is not inside the virtual

cache because the number of unprotected slots of the higher ranked

caches plus the unprotected slots of the receiving cache is more than

the virtual cache size. In this case, if the number of unprotected

slots between the real slot zero and the hit slot (including) is less

than the Svc
u −Lsum, the hit is inside virtual cache and considered

as a virtual hit. Otherwise, it is considered as a virtual miss. There

are three cases:

A. P b = 0 && inside => P b = 1 and Su = Su −1.

B. P b = 0 && not inside => relocate it with one item inside.

C. P b = 1 => do nothing.
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2. 0 < Lsum ≤ Svc
u In this case, the receiving router is not the fist active router

(generator) but it may be involved in virtual cache depends on Su.

(a) Lsum + Su ≤ Svc
u . The hit is a virtual hit. Similar to Hit 1(b)i.

(b) Lsum +Su > Svc
u . This is the case that needs to investigate if the hit is

a virtual hit or a virtual miss. Similar to Hit 1(b)ii.

3. Lsum = Svc
u That is, the receiving cache is not involved in the virtual cache

and this hit is considered as a virtual miss.

So far, we have explained the COCAP implementation without centralized

control with holistic view. However, we still count on the assumption of having

synchronized network of caches. In the next section, we release this assumption.

6.1.3 Removing Synchronized Assumption

We assume that all caches synchronously clear their P bs after updating period

amount of time. However, the requirement of our coordinated scheme is that

when an edge router resets its P bs, the core routers with lower closeness rank

involved in all of the paths passing through that edge router also reset their P bs.

To do so, we can use a limited flooding algorithm that is driven by the edge routers

to reset the P bs of all caches periodically. To achieve this, we set the edge routers

as the driving routers with a predefined updating period. The driving routers

reset their P bs and forward a reset request to the routers involved in all of their

paths. The routers, receiving the reset request, also reset their P bs and broadcast

the request in the condition that they have not received a reset request within a

specific threshold amount of time. The threshold should be set in the order of

the average network RTT. Moreover, we can use the Network Timing Protocol

(NTP) [69] (in operation since 1985) to synchronize the network of caches. The

NTPV3 has the resolution of one nanosecond and it is improved in the latest

version, NTPV4 [63].
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6.2 Evaluation

In this section, we evaluate our coordinated schemes, coordinated two-state (CO2S),

coordinated three-state (CO3S) and coordinated CAP (COCAP), from the per-

spective of consumers, producers and ISPs for both synthetic and real network

topologies.

6.2.1 General Setting

Comparing Schemes

Although, there are many coordinated schemes in the literature, some of them

are not applicable to the ICN network of caches. For example, the schemes that

are proposed in [68, 38, 51] measure the popularity of the contents. This makes

the schemes impractical for an ICN router that should work at line speed [5].

Moreover, [27, 28, 85, 37] announce the contents of each cache to other caches but

the small cache size compare to the catalogue size in ICN leads to a high rate

of replacement and high communication overhead, which makes them impracti-

cal. Finally, schemes such as [79] requires a holistic view of all caches and this

requirement is not practical with the ICN scale.

We compare our schemes with four schemes that are applicable in the ICN and

representatives of other schemes. The first scheme is LRU universal caching (Leave

Copy Everywhere, LCE) that is the base for evaluation of many schemes [67, 19]

because it produces the results without any coordination. The second and third

schemes are Leave Copy Down (LCD) and Move Copy Down (MCD) described

in Section 2.2.3. LCD only writes the content into cache if it gets hit in the

previous cache when the content is on the way back to the consumers. LCD is

a representative for [19] because both approaches write the content missed in the

network to the farthest router from consumers and move the contents towards

the consumers. We also consider MCD that is similar to LCD except that the

hit contents get erased from the cache. Consequently, MCD keeps the number of
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redundant copies smaller than LCD. Finally, we compare our schemes with UNI,

used in [19], that caches each content with the probability of 1
hop−1

where the

hop is the number of hops between the consumer and the current location of the

content (excluding). For example, let us assume that a request gets hit after three

hops from consumers in a cache (consumers− >router1− >router2− >router3).

Therefore, the content is written to router2 and router 1 with probability of 0.5.

The UNI is the representative of the schemes such as [67, 15] with the goal of

writing a missed content in one of the caches on the way back to the consumers.

In addition to the four above-mentioned schemes, we compare our results with

the optimal policy for linear topology. The optimal policy is defined as the policy

that leads to the maximum overall hit ratio and also places the contents from most

popular to the least popular from the closest router to the farthest router to the

consumers. For a linear topology, the optimal policy is to select Call most popular

contents where Call is the summation of all cache sizes. Then, we should place

the selected contents from the most popular to the least popular into the routers

with the highest closeness rank towards the lowest close rank. Although finding

the optimal policy for linear topology is simple, it is an np-hard problem [80] for

complicated topologies.

Content and Packet Generation

For request generation in the content level, we use the Poisson distribution because

of the observation that shows the session level of Internet traffic is well modeled by

a Poisson process [18]. Moreover, we use window-based request generation at the

packet level on the consumer side. This window-based request generation starts

with w = 1 and uses TCP rules such as increasing the window size by getting the

packet and dividing window size by two for each lost packet. Finally, we should

mention that we change the popularity in all of our experiments based on the

approach described in Section 3.3. We use ps = 0.05 and λc = 0.00066 for all

experiments. Otherwise, we will explicitly mention.
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Metrics

We define six metrics from three different perspectives of producers, consumers

and ISPs. Producers’ perspective: i) overall hit ratio, HitNet, is defined as

HitNet = Rhit
Rentered

, where Rentered is the total number of requests entered to the

network of caches and Rhit is the total number of requests get hit in the routers.

Consumers’ perspective: ii) average content download time that represents the

consumers’ average experienced delay for downloading contents. ISPs’ perspec-

tive: iii) traffic reduction ratio, Tred, is defined as Tred = Tcache
Tno−cache

where Tcache

(Tno−cache) is the total transmitted traffic with (without) caching. It should be

mentioned that the transmitted traffic between consumers and edge routers are

excluded from Tcache and Tno−cache since caching does not affect this part of traffic.

iv) average eviction rate per cache slot, Eavg, is defined as Eavg = Etotal
Stotal×Tsim

where

Etotal is the total number of evictions in the network, Stotal is the total number

of cache slots in the network of caches and Tsim is the simulation time. Eavg

implicitly represents the network energy consumption caused by the evictions in

all caches. Finally, we use two more metrics to investigate the hit ratio and filter

effect more precisely: v) average edge router hit ratio and vi) average core router

hit ratio.

6.2.2 Linear Topology

Setting: To show the importance of removing the useless duplicates and prior-

itizing the caches based on their closeness rank, we start with a linear topology

depicted in Figure 6.5.

Figure 6.5: A linear topology with one-way traffic

There are 1000 contents on the producer and each content consists of one

packet. In addition, the consumers generate the request with the rate of 20 re-
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quests per second. The popularity distribution has the Zipf slope of one (α = 1).

We run the simulation for 20000 seconds. The updating period for CO2S, CO3S

and COCAP is 750 seconds. For COCAP, we use the virtual size of 5 for C = 5

and virtual cache size of 10 for C ≥ 10.
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Figure 6.6: Overall network hit ratio

Performance versus Cache Size

Findings and Discussion: Figure 6.6 shows that the CO3S and COCAP ob-

tain the overall hit ratios that are close to the optimal overall hit ratio. Although,

the CO3S obtains lower edge router hit ratio compared to COCAP and LCD as

depicted in Figures 6.7, it compensates on the core router hit ratio as depicted in

Figure 6.8. The optimal obtains the highest hit ratio at the edge router but less

than COCAP, CO3S and CO2S at the core router. This is expected because the

optimal policy performs better than these schemes at the edge router. Therefore,

the opportunity for obtaining the high hit ratio for core routers with optimal at

the edge router is less than the situation that COCAP, CO3S and CO2S operate

at the edge router. Moreover, optimal always obtains the highest overall hit ratio.

As it can be seen in Figure 6.7, the COCAP obtains higher hit ratio at the edge

router than the CO3S. This is due to the way that COCAP and CO3S fill the edge

router. In COCAP, all caches reset their P bs together and the edge router is part

of the virtual cache until all of its slots become protected. During this time, all of
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Figure 6.7: Average hit ratio of edge routers

the missed contents are written to the virtual cache and the contents that get hit

out of virtual cache are considered as missed contents (virtual miss) and only the

contents that get hit in the virtual cache become protected. On the other hand,

the edge router with CO3S goes to updating state independent from other caches

and gets help from them to go to frozen state. Other caches can be in frozen state

and help the edge router by delivering their frozen contents to the edge router.

That is, some of the contents are frozen in other caches and CO3S brings them to

the edge router. Therefore, the condition for a content to be frozen at the edge

router by CO3S is easier than a content to be protected by COCAP and it is more

likely to have a content, not very popular, in an edge router managed by the CO3S

than the COCAP. In contrast to the hit ratio of the edge router, CO3S obtains

higher hit ratio than COCAP at the core routers, shown in Figure 6.8, because

the popular contents that could not be placed at the edge router are placed at

the core router by CO3S. Consequently, COCAP and CO3S have almost the same

overall hit ratio.
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Figure 6.8: Average hit ratio of core routers

Comparing the LCD and CO2S in Figure 6.6, 6.7 and 6.8 shows that LCD

outperforms the CO2S for edge router hit ratios but CO2S compensates by ob-

taining the higher hit ratio at the core routers. Consequently, both obtain the

similar overall hit ratios.

Performance versus Popularity

Setting: In this section, we repeat the same experiment of the previous section

for the cache size of 10 with different Zipf slope, α, to investigate the effect of

varying the popularity. We choose cache size of 10 because in ICN network of

caches the ratio of cache size to the catalogue size is very small.
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Figure 6.9: Overall network hit ratio
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Findings and Discussion: As it can be seen from Figure 6.9, the COCAP and

CO3S have the second rank for the overall hit ratio after the optimal. Similar to

the previous section, CO2S and LCD have close overall hit ratios. Therefore, the

trends discussed in this experiment are similar to the previous experiment.
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Figure 6.10: Average hit ratio of edge routers
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Figure 6.11: Average hit ratio of core routers

6.2.3 Cross Traffic

Setting: To show the importance of prioritizing routers based on their closeness

rank with respect to different paths, we set an experiment by using a simple linear

topology with presence of cross traffic depicted in Figure 6.12. The consumers on

the left only generate requests to obtain the contents on the right producer (P2)
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while the consumers on the right only generate requests to obtain the contents

on the left producer (P1). We measure the overall hit ratio and the hit ratio of

contents of P1 and P2 on each router. The optimal policy with cross traffic divides

Figure 6.12: A linear topology with cross traffic

the overall cache size equally between the contents of the two producers because

the consumers generate the requests with the same rate of 20 requests per second

and the popularity slope of both producers are one (α = 1). In addition, we place

the content of P1 (P2) based on their popularity from router 7 (1) towards router

4 (4). There are 1000 contents (each has one packet length) on each producer. We

run the simulation for 20000 seconds and the virtual cache size for COCAP is 10

slots.

Findings and Discussion: Figure 6.13 (Figure 6.14) shows the cache hit ratio
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Figure 6.13: Individual hit ratio of P1 with cache size of 10 and catalog size of 1000

of the contents on the left (right) producer, P1 (P2), requested by the consumers

on the right (left) while the cache size is 10 (the ratio of cache size to the catalog

size is 10−2). Our CO3S and COCAP obtain the hit ratio close to optimal for
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each router. As it can be seen in Figure 6.13, router 1 to 3 are not involved in

caching the contents of P1 for optimal because these routers have higher closeness
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Figure 6.14: Individual hit ratio of P2 with cache size of 10 and catalog size of 1000

rank for path 2 than path 1. Similarly, these routers are negligibly involved for

COCAP and CO3S. This shows that COCAP and CO3S follow the optimal in

terms of assigning the cache to different paths for linear traffic with cross traffic.

Figure 6.13 and 6.14 also show that COCAP and CO3S outperform LCD even

for the edge cache hit ratio (in router 7 and 1 for path 1 and 2 respectively).

This contradicts with the finding from linear topology without cross traffic in the

previous section. The reason is that LCD writes the contents that get missed in

all routers only to the last router. For example, LCD writes entire network missed

contents of path 1 (path 2) to router 7 (router 1) and pushes them towards the

consumers if they get hit. This property has a destructive effect on the cache hit

ratio of the LCD on the first router on each path.

Figure 6.15 shows that CO3S and COCAP obtain the overall cache hit ratio

pretty close to optimal. For example, CO3S obtains 5.4% less overall hit ratio on

average than the optimal with the standard deviation of 10−3.

6.2.4 Binary Tree Topology

Setting: In this section, we use the topology depicted in Figure 6.16 to investigate

the effect of combining similar traffic patterns. That is, every higher level of router
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Figure 6.15: The overall hit ratio versus cache size for catalog size of 1000

receives the requests for the same set of contents from two underlying routers.

There are 1000 contents on the producer. Each group of consumers generates

the requests with the average rate of 5 requests per second and the Zipf slope is

Figure 6.16: The binary tree topology

one (α = 1). The popularity changes by the same way and setting described in

Section 3.3 with ps = 0.05 and λc = 0.0008 (period of 1250 seconds). We run the

simulation for 6000 seconds. The updating period for CO2S, CO3S and COCAP

is 500 seconds. The content size is based on the geometric distribution [33] with

average content size of 500 packets. Consequently, there are 5×105 chucks in the

networks. Finally, the COCAP virtual cache size is 500.
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Performance versus Cache Size

Findings and Discussion: 1) Overall hit ratio: Figure 6.17 shows that

the COCAP obtains the highest overall hit ratio and CO3S obtains pretty close

overall hit ratio to COCAP. This is due to higher edge and core router hit ratio by

COCAP compared to CO3S depicted in Figure 6.18 and Figure 6.19. Comparing

CO3S with LCD, we find that CO3S obtains less edge hit ratio than LCD depicted

in Figure 6.18 but it compensates through getting higher hit ratio at core routers

depicted in Figure 6.19.

Regarding comparison between CO2S and LCE (universal LRU caching) at

the edge router, Figure 6.18 shows that CO2S obtains higher hit ratio compared

to LRU. However, we show in Section 3.1.1 that LRU and two-state policy obtain

similar hit ratios for standalone cache that is the case at the edge router because

there is no cross traffic and edge routers do not get affected by other routers in the

binary topology. The difference is due to the effect of stream of packets. That is,

there is a kind of thrashing problem because in this experiment the content size

is 500 packets on average. For example, suppose that the most popular content

has 500 packets. Then, the edge router with cache sizes smaller than 500 does not

have enough slots to store the most popular content. This leads to the situation

that even the most popular packets evict themselves from the cache. This problem

is intensified by having multiple active flows because the packets of one flow evict
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Figure 6.18: Average hit ratio of edge routers

the packets of another flow. This thrashing problem affects the performance of

the LRU but not of two-state policy due to freezing. Figure 6.18 also shows that

the hit ratio of UNI is also greater than LRU on the edge routers because UNI

only writes some of the packets to the edge router. This decreases the effect of

thrashing on the edge router.
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Figure 6.19: Average hit ratio of core routers

2) Average content download time: Figure 6.20 shows that the COCAP

decreases the content download time up to 17% more than other schemes because

COCAP obtains the high hit ratio at both core and edge routers.

3) Average eviction rate per slot: The eviction rate is an important factor for

an ICN router. The less the eviction rate is, the less memory write happens in an
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Figure 6.20: Average content download time

ICN router that should operate at line speed [6]. Moreover, the less eviction rate
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Figure 6.21: Average eviction rate per slot

can lead to reducing the energy consumption in ICN routers. Figure 6.21 shows

that CO2S has less average eviction rate up to four orders of magnitude compared

to other schemes because CO2S transits to the frozen state faster than CO3S and

COCAP. In addition, CO2S only evicts the contents at the updating state. The

highest eviction rate belongs to LCE because LCE writes a missed content to all

of the routers in the path.

Performance versus Content Size

Setting: In this experiment, we use the constant cache size of 300 packets and
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increase the average content size from 100 packets to 600 packets. Other setting

is the same as the previous experiment.

Findings and Discussion: Figure 6.22, 6.23, 6.24, 6.25, and 6.26 show that

the performance metrics have the similar trend as the previous section. Therefore,

we skip the discussion in this section.

1) Overall hit ratio:
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Figure 6.22: Overall network hit ratio
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Figure 6.23: Average hit ratio of edge routers
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Figure 6.24: Average hit ratio of core routers

2) Average content download time:
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Figure 6.25: Average content download time

3) Average eviction rate per slot:
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Figure 6.26: Average eviction rate per slot
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6.2.5 Real ISP Topology Capture by RocketFuell

Setting: We use the topology depicted in Figure 6.27 with ISP number of 6461

for our last evaluation. The ISP has 25 edge routers and 77 core routers. There are

5×105 contents in the network and the producers of these contents are connected

to 25 edge routers (green) and 25 core routers (blue). In addition, there are three

different types of traffic: i) Internet video ii) Web iii) file sharing. We select the

content size of these traffic types such that the fraction of video, web and file

sharing traffic are 64%, 21% and 15% respectively due to the prediction about

the future traffic pattern [22]. The Internet video traffic has the average content

size of 600 packets; the web traffic has the average content size of 100 packets;

and the file sharing has the average content size of 2000 packets. The content size

(number of packets per content) is generated based on the geometric distribution

[33]. Consequently, there are around 2×107 different packets in the network. The

Figure 6.27: Topology captured by rocketfuel with ISP number of 6461

consumers generate requests with the average rate of 250 requests per second. The

popularity of the content follows the Zipf distribution with a slope of one (α = 1).
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The popularity changes with the method described in Section 3.3 with ps = 0.05

and λc = 0.00066 (period of 1500 seconds). We run the simulation for 6000 seconds

and the updating period of CO2S, CO3S and COCAP are 700 seconds. We do

the experiment for the virtual cache size of 4000 and 8000 packets and obtain the

same trend.
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Figure 6.28: Overall network hit ratio

Findings and Discussion:

1) Overall hit ratio: Figure 6.28 shows that the COCAP and CO3S have the

highest overall hit ratio among all of the schemes. Figure 6.29 shows that COCAP

and CO3S obtain the higher hit ratios than LCD at the edge router because CO-

CAP and CO3S prioritize the routers based on their closeness ranks with respect

to different paths. However, LCD writes all of the contents, missed in the network,

to the edge routers because they are connected to producers. This decreases the

hit ratio of edge routers.

Figure 6.30 shows that the COCAP and CO3S have the highest hit ratio for

the core routers for small cache sizes. Although, increasing the cache size increases

their core hit ratios, they get downgraded to lower ranks by increasing the cache

size because of the updating period effect. That is, increasing the cache size

increases the time required for a cache to reach frozen state. Therefore, after a

certain point (5000 packets in Figure 6.30), the updating period of 700 seconds is

not sufficient for both core and edge routers to reach frozen state. Consequently,
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Figure 6.30: Average hit ratio of core routers

core routers keep replacing the packets and affect the requests of each other such

that they cannot obtain high hit ratio. As it is shown in the figure, the updating

period affects COCAP more than CO3S at core routers because the condition for

a content to be protected by COCAP is harder than a content to be frozen by

CO3S (described in Section 6.2.2). Consequently, the time required for COCAP

to make the whole cache slots protected is longer than CO3S. However, the role of

edge router for large cache sizes is more important than core routers as Figure 6.30

and 6.29 show that both COCAP and CO3S obtain similar overall and edge router

hit ratios.

2) Average content download time: Figure 6.31 shows that the worst average

download time belongs to MCD because MCD removes the hit contents from the
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routers after getting a hit to decrease the number of duplicate copies. Therefore,

when a miss happens at the edge router, the content is fetched from producer with

high probability.
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Figure 6.31: Average content download time

3) Transferred packet reduction ratio: Figure 6.32 shows that the CO3S and

COCAP obtain larger transferred reduction ratio up to 28% compared to other

schemes.
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4) Average eviction rate per slot:
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Figure 6.33: Average eviction rate per slot

6.3 Summary

In this chapter, we complete our second approach in proposing the lightweight

coordinated schemes by proposing COCAP. The COCAP uses the concept of vir-

tual cache to bring the popular contents close to the consumers with respect to

the path. We also evaluate all of our proposed coordinated schemes (CO2S, CO3S

and COCAP) for synthetic and real topologies. Our evaluation shows that CO-

CAP and CO3S obtain the best performance among all of the applicable schemes

for ICN network of caches and they are followed by LCD and CO2S that obtain

similar performance. Moreover, the COCAP outperforms the CO2S and CO3S

for topologies without cross traffic. This is due to obtaining a higher hit ratio at

the edge routers compared to CO2S and CO3S. Moreover, COCAP obtains very

close overall hit ratio to the CO3S for ISP topology with cross traffic. However,

CO3S performs better than COCAP in term of average content download time

and traffic reduction ratio. Finally, our evaluations show that the CO2S obtains

the comparable results with LCD but CO2S reduces the average eviction rate per

slot up to four orders of magnitude.
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Chapter 7

Conclusion

We conclude the thesis by a summary of our contributions followed by discussion

of future work.

7.1 Thesis Summary

Recently, ICN is introduced to make the Internet communication model consistent

with the usage of Internet. Although there are different ICN proposals, all of them

propose to integrate the router and cache because current and future Internet

traffic are cachable. As a result, we have a network of caches in the scale of

Internet that requires lightweight coordinated schemes. These lightweight schemes

should address the filtering effect problem and manage the redundant copies of

a content to obtain a high overall hit ratio. This thesis presents the coordinated

caching schemes with low overhead that can solve the filter effect problem, manage

the redundancy and obtain a high overall hit ratio. We propose two coordinated

schemes: n-state and COCAP.

Our first coordinated caching scheme, n-state is based on our new policy called

two-state. The two-state policy introduces a new type of filtering effect. Due to

this new filtering property, using the two-state policy at the edge router leads

to providing opportunity for the core routers to obtain high hit ratios. Further-

141



CHAPTER 7. CONCLUSION

more, our two-state policy and the LRU replacement policy have the same hit

ratios under the Independent Reference Model (IRM) assumption. The two-state

has a reservation mechanism that improves its adaptability to the traffic pattern

changes in the network with large RTTs. Although two-state suffers from pollution

problem, its generalization (n-state), overcomes the pollution problem for n ≥ 3.

The n-state policy obtains higher hit ratio than two-state by capturing the

popular contents and solving the pollution problem. The improvement of cache

hit ratio is considerable by increasing the n from two to three but the achievement

is negligible for increasing the n > 3. Under IRM assumption, the three-state

policy obtains the hit ratio close to the hit ratio of LFU. Moreover, using trace-

based simulation, we show that the three-state policy obtains a high hit ratio for

a standalone cache and provides the opportunity for subsequent caches to obtain

a high hit ratio. Although n-state provides the opportunity for other caches,

obtaining a high overall hit ratio without coordination is almost impossible because

of the redundant copies of the contents.

Our first coordinated scheme integrated with n-state policy obtains the ad-

vantages of n-state policy and manages the redundant copies. Our scheme has

the property of removing the useless redundant copies and prioritizing the routers

based on their closeness rank with respect to different paths. This leads to cache

the popular contents close to the consumers with respect to paths. We present two

versions of our coordinated scheme, CO3S and CO2S. Compared to other work,

the CO2S decreases the eviction rate up to four orders of magnitude while it ob-

tains comparable performance in terms of the overall hit ratio, content download

time and the transferred packet. Moreover, our CO3S, outperforming CO2S, im-

proves the overall hit ratio up to seven times for small cache sizes and up to 25%

for large cache sizes compared to LCE. Consequently, CO3S reduces the content

download time 24% and the transferred packet 7% to 13% more than LCE. The

implementation of our coordinated scheme is simple in terms of processing and

communicating overhead.
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Our second coordinated scheme is based on the CAP policy that is designed

to address all of the problems for a standalone cache. CAP addresses the pollu-

tion problem by dividing the cache into two variable sized segments: protected

and unprotected. The missed contents are written into unprotected segment and

they are moved into protected segment if they get at least one hit before being

evicted. Therefore, the one-timer contents do not affect the popular content in the

protected section. We assign one independent policy for each segment. Based on

the advantages and disadvantages of different replacement policy combinations,

we choose the RND for the unprotected segment and do nothing (no action for

a content hit) for the protected segment. This combination can overcome the

contention problem and at the same time it is resistant against the thrashing

problem. Finally, the time complexity of CAP is constant and it does not impose

memory overhead. Our evaluation through simulation of both synthetic and real

workloads shows that CAP obtains the performance close to the state-of-the-art

policy in terms of cache hit ratio.

We propose our second coordinated scheme based on CAP policy, COCAP,

that introduces the concept of virtual cache. The virtual cache enables the CO-

CAP to cache the popular content close to the consumers with respect to the

path. We evaluate COCAP for synthetic and real topology captured by rocket-

fuel. For topologies without cross traffic, the COCAP outperforms the CO2S and

CO3S. This is due to obtaining a higher hit ratio at the edge routers by COCAP.

Moreover, COCAP obtains very close overall hit ratio to the CO3S for ISP topol-

ogy with cross traffic. However, CO3S performs better than COCAP in term of

average content download time and traffic reduction ratio.
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7.2 Future Work

7.2.1 The Effect of Coordinated Schemes on Routing

Our coordinated schemes obtain high hit ratios at both edge and core routers.

Therefore, the cache size of the core routers and the number of core routers in-

volved in a path affect the cache hit ratio. The number of routers involved in a

path depends on network topology and routing algorithm. Therefore, the topology

and routing protocols causing larger number of routers in a path lead to the higher

overall network hit ratio. The higher overall hit ratio leads to saving bandwidth

by avoiding redundant transmission and decreasing the access delay by bringing

popular contents close to the consumers. On the other hand, increasing the num-

ber of routers in a path increases the bandwidth consumptions and access delay.

Therefore, there is a trade-off that can be a valuable research direction.

7.2.2 Combining CO2S, CO3S and COCAP with Traffic

Engineering

The objective of our coordinated schemes is to obtain a high overall hit ratio.

However, a specific strategy can integrate with our scheme to obtain a specific

goal. For example, an ISP may be interested to minimize the traffic coming from

a list of ISPs. This can be integrated into our schemes by considering the traffic

engineering metrics. Another example is the number of hops between a cache and

the producer that can be used to value a content. The farther a packet from its

producer, the more important the packet can be considered. Finally, the number

of hops between a cache and the consumer of the content packet can also be

considered.
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7.2.3 Enhancing the Coordinated Schemes by Considering

Neighbour Caches

Our coordinated schemes use n-state and CAP to cache a number of contents and

do not replace them for a while. Consequently, as we showed, the eviction rate is

drastically decreased compared to other schemes. This provides an opportunity

for combining our schemes with the work that considers the neighbour caches such

as Summary Cache. These schemes change the default path of a request by consid-

ering the state of neighbour caches and have high communication overhead where

the replacement policy is used because each cache should update its neighbours

about its state changes with high rate. However, our schemes can be combined

with these schemes without imposing a high communication overhead because the

update rate, affected by the updating period, is lower.
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Appendix A

Synthetic Workload for

Two-State Policy

The objective of this appendix is to show that our two properties of two-state

policy introduced and evaluated in Chapter 3 are valid under IRM assumption for

a wide range of contents number (N), cache sizes (C) and zipf slopes (α). The

first property is that using two-state policy at the edge routers provides better

opportunity for core routers compared to the situation that replacement policies

(RND, FIFO and LRU) manage the edge router. The second property is that

two-state can obtain the hit ratio same as LRU. We only present the results in the

appendixes because we discussed the reasons for these properties in main chapters.

To evaluate the properties under different combinations of the N , C and α,

we select N = 100, N = 1000 and N = 10000 and plot the stack distance metrics,

second and first cache hit ratios while either C or α is constant and the other one

varies. In addition, we stick to the same topology used in Section 3.1.2. Firstly, we

plot the curves versus C for each N and 0.6 ≤ α ≤ 1.5 with step of 0.1. However,

we present the results only for minimum (0.6), average (1) and maximum (1.5)

values of α due to the similar trends. Secondly, we plot the curves versus α for

each N and 10 ≤ C ≤ N . However, we present the results only for three small

cache sizes compared to the N because our concentration is on ICN network of
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caches that has a small C
N . In the next appendix, we evaluate the two above

described properties using trace-based simulations.

A.1 Content Number of 100
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Figure A.1: Average stack distance with different α, N=100
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Figure A.2: Average stack distance with different cache sizes, N=100
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Figure A.3: Minimum stack distance with different α, N=100
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Figure A.4: Minimum stack distance with different cache sizes, N=100

A.1.2 The Effect on Overall Cache Hit Ratio

FIFO on Second Cache
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Figure A.5: Second cache (FIFO) hit ratio with different α, N=100
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Figure A.6: Second cache (FIFO) hit ratio with different cache sizes, N=100

LRU on Second Cache
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Figure A.7: Second cache (LRU) hit ratio with different α, N=100
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Figure A.8: Second cache (LRU) hit ratio with different cache sizes, N=100
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RANDOM on Second Cache
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Figure A.9: Second cache (RND) hit ratio with different α, N=100
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Figure A.10: Second cache (RND) hit ratio with different cache sizes, N=100

A.1.3 The First Cache Hit Ratio
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Figure A.11: First cache hit ratio with different α, N = 100
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Figure A.12: First cache hit ratio with different cache sizes, N=100
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Figure A.13: Average stack distance with different α, N=1000
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Figure A.14: Average stack distance with different cache sizes, N=1000
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Figure A.15: Minimum stack distance with different α, N=1000
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Figure A.16: Minimum stack distance with different cache sizes, N=1000
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Figure A.17: Second cache (FIFO) hit ratio with different α, N=1000
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Figure A.18: Second cache (FIFO) hit ratio with different cache sizes, N=1000
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Figure A.19: Second cache (LRU) hit ratio with different α, N=1000
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Figure A.20: Second cache (LRU) hit ratio with different cache sizes, N=1000
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RANDOM on Second Cache
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Figure A.21: Second cache (RND) hit ratio with different α, N=1000
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Figure A.22: Second cache (RND) hit ratio with different cache sizes, N=1000

A.2.3 The First Cache Hit Ratio
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Figure A.23: First cache hit ratio with different α, N = 1000
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Figure A.24: First cache hit ratio with different cache sizes, N=1000
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Figure A.25: Average stack distance with different α, N=100
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Figure A.26: Average stack distance with different cache sizes, N=1000
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Figure A.27: Minimum stack distance with different α, N=10000
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Figure A.28: Minimum stack distance with different cache sizes, N=10000

A.3.2 The Effect on Overall Cache Hit Ratio

FIFO on Second Cache

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  100  1000  10000

Se
co

nd
 c

ac
he

 h
it 

ra
tio

Cache size (# of content)

FIFO in 2nd cache, N=10000, α=0.6, updating=10000

LRU 2S RND FIFO

(a) α = 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  100  1000  10000

Se
co

nd
 c

ac
he

 h
it 

ra
tio

Cache size (# of content)

FIFO in 2nd cache, N=10000, α=1, updating=10000

LRU 2S RND FIFO

(b) α = 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10  100  1000  10000

Se
co

nd
 c

ac
he

 h
it 

ra
tio

Cache size (# of content)

FIFO in 2nd cache, N=10000, α=1.5, updating=10000

LRU 2S RND FIFO

(c) α = 1.5

Figure A.29: Second cache (FIFO) hit ratio with different α, N=10000
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Figure A.30: Second cache (FIFO) hit ratio with different cache sizes, N=10000
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Figure A.31: Second cache (LRU) hit ratio with different α, N=10000
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Figure A.32: Second cache (LRU) hit ratio with different cache sizes, N=10000
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RANDOM on Second Cache
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Figure A.33: Second cache (RND) hit ratio with different α, N=10000
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Figure A.34: Second cache (RND) hit ratio with different cache sizes, N=10000
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Figure A.35: First cache hit ratio with different α, N = 10000
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Figure A.36: First cache hit ratio with different cache sizes, N=10000
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Appendix B

Trace Based Workload for

Two-State Policy

In the previous appendix, we show that two properties of two-state policy are

valid under IRM assumption. The objective of this appendix is to evaluate the

same properties with trace-based simulation. In Section 3.2.3, we discussed that

providing better opportunity for the core routers by using the two-state policy at

edge routers is valid for some of the traces. In this appendix, we show that the

property also valid for the rest of our traces but the second property, obtaining

similar hit ratio as LRU, is not valid for trace-based evaluation. We discussed that

this is due to the one-timer contents. We solved this issue with three-state policy

that is evaluated in the next two appendixes.
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Figure B.1: Average stack distance with different traces
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Figure B.2: Minimum stack distance with different traces
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B.2 Benefit for Overall Hit Ratio

B.2.1 RANDOM on Second Cache
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Figure B.3: Second cache (RND) hit ratio with different traces
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B.2.2 LRU on Second Cache
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Figure B.4: Second cache (LRU) hit ratio with different traces
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B.2.3 FIFO on Second Cache
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Figure B.5: Second cache (FIFO) hit ratio with different traces
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B.3 The First Cache Hit Ratio
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Figure B.6: First cache hit ratio with different traces
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Appendix C

Synthetic Workload for

Three-State Policy

The objective of this appendix is to show that three-state policy obtains higher hit

ratio than two-state for a standalone cache under IRM assumption. We use IRM

without one-timer content to show that three-state can capture popular contents

almost as good as LFU. In the next appendix, we will show that three-state can

obtain high hit ratio for the trace-based simulation as well. We use the same

setting as described in Appendix A.
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C.1 Content Number of 100

C.1.1 The First Cache Hit Ratio
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Figure C.1: First cache hit ratio with different α, N = 100
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Figure C.2: First cache hit ratio with different cache sizes, N=100
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C.2 Content Number of 1000

C.2.1 The First Cache Hit Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10  100  1000

Fi
rs

t C
ac

he
 H

it 
R

at
io

Cache size (# of contents)

N=1000, α=0.6, updating=10000

LRU LFU 3S 2S

(a) α = 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10  100  1000
Fi

rs
t C

ac
he

 H
it 

R
at

io
Cache size (# of contents)

N=1000, α=1.5, updating=10000

LRU LFU 3S 2S

(b) α = 1.5

Figure C.3: First cache hit ratio with different α, N = 1000
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Figure C.4: First cache hit ratio with different cache sizes, N=1000
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C.3 Content Number of 10000

C.3.1 The First Cache Hit Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10  100  1000  10000

Fi
rs

t C
ac

he
 H

it 
R

at
io

Cache size (# of contents)

N=10000, α=0.6, updating=10000

LRU LFU 3S 2S

(a) α = 0.6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  100  1000  10000

Fi
rs

t C
ac

he
 H

it 
R

at
io

Cache size (# of contents)

N=10000, α=1, updating=10000

LRU LFU 3S 2S

(b) α = 1

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10  100  1000  10000

Fi
rs

t C
ac

he
 H

it 
R

at
io

Cache size (# of contents)

N=10000, α=1.5, updating=10000

LRU LFU 3S 2S

(c) α = 1.5

Figure C.5: First cache hit ratio with different α, N = 10000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

Fi
rs

t C
ac

he
 H

it 
R

at
io

Cache size (# of contents)

N=10000, cache size=10, updating=10000

LRU LFU 3S 2S

(a) C = 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

Fi
rs

t C
ac

he
 H

it 
R

at
io

Cache size (# of contents)

N=10000, cache size=100, updating=10000

LRU LFU 3S 2S

(b) C = 100

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

Fi
rs

t C
ac

he
 H

it 
R

at
io

Cache size (# of contents)

N=10000, cache size=1000, updating=10000

LRU LFU 3S 2S

(c) C = 1000

Figure C.6: First cache hit ratio with different cache sizes, N=10000
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Appendix D

Trace Based Workload for

Three-State Policy

In this appendix and through trace-based simulation, we show that the three-

state overcomes the one-timer problem of two-state and obtains high hit ratio for

a standalone cache.
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D.1 The First Cache Hit Ratio
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Figure D.1: First cache hit ratio with different traces

183


	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Objectives and Challenges
	Single Cache Managed Independently
	Single Cache Managed in a Network of Caches
	Coordinated Caching Schemes

	Contribution
	Thesis Organization

	Related Work
	Single Cache Perspective
	Addressing Contention, Thrashing and Pollution
	Addressing Contention and Pollution
	Addressing Thrashing and Pollution
	Addressing Contention
	Addressing Pollution

	Network of Caches Perspective
	Coordinated Hierarchical/Distributed Web Caching
	Coordinated en-route Web Caching
	Coordinated Caching for ICN

	Summary
	Single Cache Perspective
	Network of Caches Perspective


	Two-State Cache Management Policy
	Two-State Policy in Single Cache
	Description
	Synthetic Workload Evaluation
	Real Workload Evaluation

	Two-State Benefits for Network of Caches
	Description
	Synthetic Workload Evaluation
	Real Workload Evaluation

	Popularity Changes and Reservation
	Motivation
	Reservation

	Summary

	Coordinated Caching Scheme
	N-State Policy with Reservation
	Main Idea and Implementation
	State Number Effect on Standalone Hit Ratio
	State Number Effect on Overall Hit Ratio
	3-State First Cache Hit Ratio
	3-State Benefits for Overall Hit Ratio

	Coordinated N-State Scheme
	Defining Path, Closeness Rank & Useless Duplicate
	Design Principles
	Implementation

	Evaluation
	Summary

	CAP: Contention-Thrashing-Pollution Aware Replacement Policy
	A Class of Policies
	Cache Division
	Adaptivity
	Choices of Replacement Policies (Ru,Rp)

	CAP Combination:(RND, NoOP)
	CAP Implementation
	CAP's Implementation Discussion
	Time Complexity of CAP Replacement
	Upper Bound of the False Protection Probability

	Evaluation
	Synthetic Workloads
	Real Workloads

	Summary

	Coordinated CAP Scheme
	COCAP: Coordinated CAP Scheme
	Centralized Control and Synchronized Caches
	Synchronized Caches without Centralized Control
	Removing Synchronized Assumption

	Evaluation
	General Setting
	Linear Topology
	Cross Traffic
	Binary Tree Topology
	Real ISP Topology Capture by RocketFuell

	Summary

	Conclusion
	Thesis Summary
	Future Work
	The Effect of Coordinated Schemes on Routing
	Combining CO2S, CO3S and COCAP with Traffic Engineering
	Enhancing the Coordinated Schemes by Considering Neighbour Caches


	Bibliography
	Synthetic Workload for Two-State Policy
	Content Number of 100
	Stack Distance
	The Effect on Overall Cache Hit Ratio
	The First Cache Hit Ratio

	Content Number of 1000
	Stack Distance
	The Effect on Overall Cache Hit Ratio
	The First Cache Hit Ratio

	Content Number of 10000
	Stack Distance
	The Effect on Overall Cache Hit Ratio
	The First Cache Hit Ratio


	Trace Based Workload for Two-State Policy
	Stack Distance
	Average
	Minimum

	Benefit for Overall Hit Ratio
	RANDOM on Second Cache
	LRU on Second Cache
	FIFO on Second Cache

	The First Cache Hit Ratio

	Synthetic Workload for Three-State Policy
	Content Number of 100
	The First Cache Hit Ratio

	Content Number of 1000
	The First Cache Hit Ratio

	Content Number of 10000
	The First Cache Hit Ratio


	Trace Based Workload for Three-State Policy
	The First Cache Hit Ratio


