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ABSTRACT 

 

Chondroitin sulfotransferase 3 (CHST3) is involved in the biosynthesis of 

chondroitin sulfate (CS), which has been implicated to be involved in tumor 

progression. CHST3 specifically catalyzes carbon 6 sulfation of the CS molecule, 

and has not been studied of its effects in breast cancer. In this study, the expression 

and functional roles of CHST3 are evaluated in breast cancer.  

 

CHST3 expression is found to be significantly lower in malignant breast cells in 

comparison to that of the normal breast cells. Following that, in the in vitro studies, 

CHST3-silenced cells showed significant increases in cell migration and invasion 

whereas CHST3-over-expressed cells showed the opposite trends that are decreases 

in cell migration and invasion. Changes in cell adhesion, proliferation, and 

apoptosis are much lesser in comparison to cell migration and invasion. It is 

observed that CHST3 enhances cell adhesion and cell apoptosis, as well as 

suppresses cell proliferation. Therefore, the results show that there is a negative 

association between CHST3 expression and the metastatic, proliferative capabilities 

of breast cancer cells.  

 

Subsequently molecular pathway studies were carried out. GPNMB and FLRT3 are 

shown to be up-regulated after down-regulation of CHST3. A double knockdown 

of either CHST3 and GPNMB or CHST3 and FLRT3 abolished the cell migration, 

invasion, proliferation, and adhesion changes initially observed in the CHST3 

single silencing experiments. Hence, CHST3/GPNMB and CHST3 /FLRT3 pairings 

work together in modulating the cancer cells’ behaviors and both GPNMB and 

FLRT3 are downstream targets of CHST3. Additionally, epithelial-mesenchymal 

transition (EMT) markers (E-cadherin and β-catenin) decreased in expression after 

silencing of CHST3. Also, there is a decrease in pBAD/BAD level indicating that 

the changes observed in cell proliferation and apoptosis seen in the CHST3 

phenotypic experiments could be due to the BAD survival pathway. 
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Evaluation of CHST3 and FLRT3 expressions through immunohistochemistry in 

invasive ductal carcinoma tissues revealed enhanced CHST3 and reduced FLRT3 

expression in normal tissues in comparison to malignant tissues. The decrease in 

CHST3 level is also correlated with higher tumor stage and larger tumor size. As 

for FLRT3, its high expression was associated with patients with older age as well 

as enhanced staging of lymphovascular invasion. No trend is observed between 

CHST3 and FLRT3 expression levels. This initial study of CHST3 and FLRT3 

hence suggest that both molecules may participate in breast cancer as a tumor 

suppressor and tumor promoter respectively.   



 9 

LIST OF FIGURES 

 
Figure 1.1: Anatomy of the breast. ................................................................................................. 19 
Figure 1.2: Histopathology of ductal carcinoma. ........................................................................... 27 
Figure 1.3: Various forms of CS molecules...................................................................................... 39 
Figure 1.4: Structure of CPSG. ........................................................................................................ 39 
Figure 2.1: Plasmid maps for CHST3 over-expression study. .......................................................... 51 
Figure 3.1: CHST3 expression in breast cells ................................................................................... 68 
Figure 3.2: Silencing efficiencies of CHST3 in T47D cells ................................................................. 71 
Figure 3.3: Silencing efficiencies of CHST3 in MDA-MB-231 cells ................................................... 72 
Figure 3.4: Over-expression efficiencies of CHST3 in MCF7 cells .................................................... 73 
Figure 3.5: Over-expression efficiencies of CHST3 in MDA-MB-231 cells ....................................... 74 
Figure 3.6: CHST7 expression in CHST3-silenced T47D and MDA-MB-231 cells ............................. 75 
Figure 3.7: Cell migration level after silencing CHST3 .................................................................... 77 
Figure 3.8: Cell migration level after over-expression of CHST3 ..................................................... 78 
Figure 3.9: Cell invasion level after silencing CHST3 ....................................................................... 79 
Figure 3.10: Cell invasion level after over-expression of CHST3 ..................................................... 80 
Figure 3.11: Cell adhesion level after silencing CHST3 ................................................................... 81 
Figure 3.12: Cell adhesion level after over-expression of CHST3 .................................................... 82 
Figure 3.13: Cell proliferation level after silencing CHST3 .............................................................. 84 
Figure 3.14: Cell proliferation level after over-expression of CHST3 .............................................. 85 
Figure 3.15: Cell apoptosis level after silencing CHST3 .................................................................. 85 
Figure 3.16: E-cadherin expression after silencing CHST3 .............................................................. 88 
Figure 3.17: β-catenin expression after silencing CHST3 ................................................................ 89 
Figure 3.18: pJAK2/JAK2 expression after silencing CHST3 ............................................................ 91 
Figure 3.19: pSTAT3/STAT3 expression after silencing CHST3........................................................ 92 
Figure 3.20: pBAD/BAD expressions after silencing CHST3 ............................................................ 93 
Figure 3.21: Quality and integrity of RNA samples for microarray ................................................ 95 
Figure 3.22: Functional categorization of affected genes after CHST3 silencing ........................... 97 
Figure 3.23: GPNMB expression in CHST3 single-silenced T47D cells ........................................... 103 
Figure 3.24: CHST3 and GPNMB levels after different silencing treatments in T47D cells ........... 104 
Figure 3.25: Effects of CHST3 and GPNMB double silencing on cell migration ............................ 106 
Figure 3.26: Effects of CHST3 and GPNMB double silencing on cell invasion ............................... 108 
Figure 3.27: Effects of CHST3 and GPNMB double silencing on cell adhesion .............................. 109 
Figure 3.28: Effects of CHST3 and GPNMB double silencing on cell proliferation ........................ 110 
Figure 3.29: Silencing efficiencies of FLRT3 in T47D cells ............................................................. 112 
Figure 3.30: Silencing efficiencies of FLRT3 in MDA-MB-231 cells ................................................ 113 
Figure 3.31: Cell migration level after silencing FLRT3 ................................................................. 114 
Figure 3.32: Cell invasion level after silencing FLRT3 ................................................................... 115 
Figure 3.33: Cell adhesion level after silencing FLRT3 .................................................................. 116 
Figure 3.34: Cell proliferation level after silencing FLRT3 ............................................................. 117 
Figure 3.35: FLRT3 expression in CHST3 single-silenced T47D cells .............................................. 118 
Figure 3.36: CHST3 and FLRT3 levels after different silencing treatments in T47D cells .............. 119 
Figure 3.37: Effects of CHST3 and FLRT3 double silencing on cell migration ............................... 121 
Figure 3.38: Effects of CHST3 and FLRT3 double silencing on cell invasion .................................. 123 
Figure 3.39: Effects of CHST3 and FLRT3 double silencing on cell adhesion ................................. 124 
Figure 3.40: Effects of CHST3 and FLRT3 double silencing on cell proliferation ........................... 125 
Figure 3.41:  GPNMB and FLRT3 correlation in T47D cells ........................................................... 126 
Figure 3.42:  Staining pattern of CHST3 in breast tissues ............................................................. 129 
Figure 3.43:  Frequency distribution and ROC curve of CHST3 expression among normal and 
malignant tissues ......................................................................................................................... 130 
Figure 3.44:  CHST3 immunostaining in normal and malignant breast tissues ............................ 131 



 10 

Figure 3.45:  Paired analysis of CHST3 expression in 33 paired normal and malignant breast tissue 
samples. ........................................................................................................................................ 132 
Figure 3.46:  CHST3 immunostaining in breast tissues of different tumor stage ......................... 133 
Figure 3.47: Kaplan Meier curves using CHST3 ............................................................................ 135 
Figure 3.48: Staining pattern of FLRT3 in breast tissues. ............................................................. 144 
Figure 3.49:  Frequency distribution and ROC curve of FLRT3 expression among normal and 
malignant tissues ......................................................................................................................... 145 
Figure 3.50:  FLRT3 immunostaining in normal and malignant breast tissues ............................. 146 
Figure 3.51:  Paired analysis of FLRT3 expression in 26 paired normal and malignant breast tissue 
samples. ........................................................................................................................................ 147 
Figure 3.52: Kaplan Meier curves using FLRT3 ............................................................................. 149 
Figure 4.1: Proposed CHST3 pathway in breast cancer. ............................................................... 182 
 

 

 

 

 

 

 

  



 11 

LIST OF TABLES 

 
Figure 1.1: Anatomy of the breast. ................................................................................................. 19 
Table 1.1 Various TNM staging ...................................................................................................... 25 
Table 1.2 Classification of tumor by Bloom-Richardson score ........................................................ 26 
Table 2.1: siRNA sequences ............................................................................................................ 49 
Table 2.2: Volume and concentration of reagents used for siRNA transfection ............................. 49 
Table 2.3: cDNA synthesis reaction conditions ............................................................................... 53 
Table 2.4: Primer sequences targeting genes of interest ............................................................... 54 
Table 2.5: RT-PCR conditions .......................................................................................................... 55 
Table 3.1: Spectrophotometer reading of purified cRNA................................................................ 96 
Table 3.2: Functional categorization of differentially expressed genes (≥ 2 folds change) ............ 97 
Table 3.3 Clinicopathological features of 218 cases of invasive ductal carcinoma ...................... 128 
Table 3.4 Clinicopathological features of 41 cases of normal ductal cases .................................. 129 
Table 3.5: Analysis of CHST3 expression between normal and malignant breast tissues ............ 132 
Table 3.6:  Correlations between CHST3 expression and clinicopathological features of IDC ...... 134 
Table 3.7: Univariate Cox regression analysis of CHST3 and clinicopathological parameters using 
DFS time period ............................................................................................................................ 136 
Table 3.8: Univariate Cox regression analysis of CHST3 and clinicopathological parameters using 
OS time period .............................................................................................................................. 137 
Table 3.9: Univariate Cox regression analysis of CHST3 and clinicopathological parameters using 
SAR time period ............................................................................................................................ 138 
Table 3.10: Multivariate Cox regression analysis of CHST3 expression using DFS. ...................... 140 
Table 3.11: Multivariate Cox regression analysis of CHST3 expression using OS. ........................ 141 
Table 3.12: Multivariate Cox regression analysis of CHST3 expression using SAR. ...................... 142 
Table 3.13: Analysis of FLRT3 expression between normal and malignant breast tissues ........... 147 
Table 3.15: Univariate Cox regression analysis of FLRT3 and clinicopathological parameters using 
DFS time period ............................................................................................................................ 150 
Table 3.16: Univariate Cox regression analysis of FLRT3 and clinicopathological parameters using 
OS time period .............................................................................................................................. 151 
Table 3.17: Univariate Cox regression analysis of FLRT3 and clinicopathological parameters using 
SAR time period ............................................................................................................................ 152 
Table 3.18: Multivariate Cox regression analysis of FLRT3 expression using DFS. ....................... 154 
Table 3.19: Multivariate Cox regression analysis of FLRT3 expression using OS. ......................... 155 
Table 3.20: Multivariate Cox regression analysis of FLRT3 expression using SAR. ....................... 156 
Table 3.21: Correlation of CHST3 with FLRT3 expression in IDC tissues ....................................... 157 
Table 4.1 Potential transcription factors regulating CHST3 ......................................................... 180 
  



 12 

LIST OF ABBREVIATIONS 

 

 

APS   Ammonium persulfate 

ATCC   American type culture collection 

BCL2   B-cell lymphoma 2 

BSA   Bovine serum albumin 

C6ST1   Chondroitin-6-sulfotransferase 1 

cDNA   complementary DNA 

CHPF   Chondroitin polymerizing factor 

CHST3  Chondroitin sulfotransferase 3 

CHST7  Chondroitin sulfotransferase 7 

CHSY1  Chondroitin synthase 1 

CHSY3  Chondroitin synthase 3 

CMF   Cyclophosphamide, methotrexate, and fluorouracil 

CS   Chondroitin sulfate 

CSGALNACT-1 Chondroitin sulfate N-acetylgalactosaminyltransferase 1 

CSGALNACT-2 Chondroitin sulfate N-acetylgalactosaminyltransferase 2 

CSGLCAT  Chondroitin sulfate glucuronyltransferase 

CSPG   Chondroitin sulfate proteoglycan 

DCIS   Ductal carcinoma in situ 

DFS   Disease free survival 

DMSO   Dimethyl sulphoxide 

DS   Dermatan sulfate 

DTT   Dithiothretol 

ECM   Extracellular matrix 

EGFR   Epidermal growth actor receptor 

EMT   Epithelial-mesenchymal transition 

ER   Estrogen receptor 

FLRT3   Fibronectin leucine-rich transmembrane 

GAG   Glycosaminoglycan 

GalNAc  N-acetyl-galactosamine 



 13 

GCOS   GeneChip Operating Software 

GlcA   Glucuronic acid 

GPNMB  Glycoprotein transmembrane nmb 

HER2   Human epidermal receptor 2 

HS   Heparan sulfate 

IDC   Invasive ductal carcinoma 

JAK2   Janus kinase 2 

LCIS   Lobular carcinoma in situ 

OS   Overall survival 

PAI-1   Plasminogen activator inhibitor 

PAPS   3’-phosphoadenosine-5’-phosphosulfate 

PR   Progesterone receptor 

PG   Proteoglycan 

PI3K   Phosphoinositol-3-kinase 

PVDF   Polyvinyl difluoride 

SAR   Survival after recurrence 

SDS   Sodium dodecyl sulfate 

SED   Spondyloepiphyseal dysplasia 

SEM   Standard error mean 

STAT3  Signal transducer and activator of transcription 3 

TEMED  N,N,N',N'-tetramethylethylenediamine 

TMA   Tissue microarray 

TNM   Tumor-node-metastasis 

TPS   Tumor percentage score 

uPa   Urokinase plasminogen activator 

VCAN   Versican 

XYL1   Xylotransferase 1 

XYL2   Xylotransferase 2 

 

 



 14 

LIST OF PUBLICATIONS 

 

Journals 

 

1. Shin EM, Hay HS, Lee MH, Goh JN, Tan TZ, Sen YP, Lim SW, Yousef 

EM, Ong HT, Thike AA, Kong XJ, Wu ZS, Mendoz E, Sun W, Salto-

Tellez M, Lim CT, Lobie PE, Lim YP, Yap CT, Zeng Q, Sethi G, Lee 

MB, Tan P, Goh BC, Miller LD, Thiery JP, Zhu T, Gaboury L, Tan PH, 

Hui KM, Yip GWC, Miyamoto S, Kumar AP, Tergaonkar V (2014) 

DEAD-box helicase DP103 defines metastatic potential of human breast 

cancers. The Journal of Clinical Investigation 124 (9): 3807-3824.  

 

2. Kumar AV, Salem GE, Spillmann D, Stock C, Sen YP, Zhang T, Van 

KTH, Hulsewig C, Koszlowski E, Pavao MS, Ibrahim SA, Poeter M, 

Rescher U, Kiesel L, Koduru S, Yip GW, Gotte M (2014) HS3ST2 

Modulates Breast Cancer Cell Invasiveness via MAP Kinase- and Tcf4 

(Tcf712)-Dependent Regulation of Protease and Cadherin Expression. 

International Journal of Cancer 135: 2579-2592.   

 

3. Sen YP, Ker BT, Bay BH, Yip GW (2013) Chondroitin sulfate 

proteoglycans as drug targets in breast cancer treatment. Recent Patents on 

Anti-Cancer Drug Discovery. (Ahead of publication) 

 

4. Sen YP, Yip GW (2012) Chondroitin sulfate in breast cancer. Breast 

Cancer. (Ahead of publication) 

 

5. Koo CY, Sen YP, Bay BH, Yip GW (2012) Heparan sulfate 

proteoglycans: novel targets for breast cancer treatment. Topics in Anti-

Cancer Research 1: 90-112. 

 



 15 

6. Sen YP, Yip GW (2009) CD44 (CD44 molecule (Indian blood group)). 

Atlas Genet Cytogenet Oncol Haematol. URL: 

http://AtlasGeneticsOncology.org/Genes/CD44ID980CH11p13.html 

 

7. Koo CY, Sen YP, Bay BH, Yip GW (2008) Targeting heparan sulfate 

proteoglycans in breast cancer treatment. Recent Patents on Anti-Cancer 

Drug Discovery 3(3).  

 

Abstracts 

1. Sen YP, Thike AA, Tan PH, Bay BH, Yip GW (2013) Chondroitin 

sulfotransferase 3: a potential biomarker for breast cancer. 13th St Gallen 

International Breast Cancer Conference, St Gallen, Switzerland.  

 

2. Sen YP, Thike AA, Tan PH, Bay BH, Yip GW (2012) Expression of 

decorin in Singaporean breast cancer patients. Proceedings of the 

Microscopy Society Singapore Annual General and Scientific Meeting, 

Singapore. 

 

3. Sen YP, Thike AA, Tan PH, Bay BH, Yip GW (2011) CHSY1: a potential 

biomarker in breast cancer. Proceedings of the Microscopy Society 

Singapore Annual General and Scientific Meeting, Singapore. 

 

4. Sen YP, Thike AA, Tan PH, Bay BH, Yip GW (2010) Chondroitin 

synthase 1 mediates aggressive and metastatic phenotypic behaviors of 

breast cancer cells. International Anatomical Sciences and Cell Biology 

Conference, Singapore.  

 

5. Sen YP, Bay BH, Yip GW (2009) Dermatan sulfate modulates 

chemosensitivity of breast cancer cells to cisplatin. NHG Annual 

Scientific Congress, Singapore. 

 



 16 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1  

INTRODUCTION 

 

  



 17 

1 INTRODUCTION 

 

1.1 The Breast and Breast Cancer 

1.1.1 Introduction to Breast Carcinoma 

 

Breast cancer is the most commonly diagnosed carcinoma as well as one of the top-

ranked causes of cancer death, among females worldwide. The cancer of the breast 

may develop from different parts of the mammary gland and can be classified into 

different groups, as will be further discussed in this chapter. Breast tumors have 

also been long known to be a heterogeneous disease, as shown from molecular 

profiling, with varying clinical outcomes. It is hence essential and critical to gain 

knowledge on not only the anatomical and morphological characteristics of a 

normal breast and malignant breast tissues, but also the molecular features involved 

in breast tumor progression.     

 

1.1.2 The Development and Anatomy of the Breast 

 

Breast development in the embryo usually starts at the 5th week. The mammary 

ridges will form on the ventral surface, lengthening from the axilla to the medial 

thigh (Howard and Gusterson, 2000). After which, epithelial cells will focus at the 

center of each mammary ridge, forming the mammary bud (Watson and Khaled, 

2008). In the 15th week of development, mesenchymal cells will accumulate around 

the mammary bud, triggering its outgrowth and sprouting into the mesenchymal 

tissue (Howard and Gusterson, 2000, Mikkola and Millar, 2006). This would lead 

to the formation of lobes and ultimately lobules. The mammary bud will become 

canalized, forming lactiferous ducts. Approximately 15 to 20 lobes will be present 

in each breast, with their lactiferous ducts converging at the mammary pit that will 

later on form the nipple (Cowin and Wysolmerski, 2010).   

 

Post-natal, the mammary glands will be structurally similar in both males and 

females till puberty. For males, the mammary glands will remain rudimentary 

(Russo et al., 2001). The female breast changes continuously in structure 

throughout her lifetime, as caused by major physiological factors like puberty, 
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menstrual cycle, pregnancy, and menopause. When females hit puberty, hormonal 

secretion will change causing development and structural modifications within the 

glands (Naccarato et al., 2000). Estrogen and progesterone secretions from the 

ovaries as well as prolactin from the anterior pituitary gland will instigate further 

developments of the lobules and ducts (Howard and Gusterson, 2000) Additional 

hormones such as glucocorticoids and somatotropin are needed for full 

development of the ducts (Knight and Sorensen, 2001). Simultaneously, the 

mammary glands will enlarge due to an increase in connective and adipose tissues 

within the stroma. The female breast will encounter full development at around 20 

years of age, with minor cyclical changes during menstrual period and major 

changes during pregnancy and lactation period (Russo et al., 2001).  

 

The mature breast (as shown in Figure 1.1) is positioned upon the deep pectoral 

fascia, which in turn overlies the pectoralis major muscle of the chest wall, 

extending from the second to the sixth ribs in the vertical axis (Abrahams et al., 

2013, Standring, 2008). The breast is held by the suspensor-like ligaments of 

Cooper to the skin, of which provides support for the breast parenchyma (Hoda, 

2012, O'Rahilly and Muller, 2004, Standring, 2008). It consists of 15 to 20 lobules, 

which are responsible for producing and secreting milk into the lactiferous ducts 

that converge and lead out to the nipple, which is the greatest prominence of the 

breast (Kossoff et al., 1973, Ramsay et al., 2005). The nipple is surrounded by a 

circular pigmented area called the areola. Before getting to the nipple, each of the 

ducts is dilated, forming a lactiferous sinus used for storage of milk during 

lactation; after which, the ductal passage narrows before passing through the nipple 

(Love and Barsky, 2004, Doucet et al., 2009).  Histologically, the lactiferous duct 

in the lobe is lined by a double layer of cells (cuboidal or low columnar epithelial 

cells) that makes up the interior as well as the outer myoepithelial layers, and 

enclosed by the basal lamina. The lobules constitute alveolar acini that regulate 

milk production (Kierszenbaum and Tres, 2011). The lobules and ducts are 

surrounded by the connective tissue stroma, consisting of adipose and collagenous 

connective tissues  (American Cancer Society, 2012a, O'Rahilly and Muller, 2004, 
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Hoda, 2012, Nawaz, 2011, Moore and Agur, 2007, Gartner and Hiatt, 2007).  The 

stroma region that surrounds the lobules is dense and fibro-collagenous, while the 

intralobular stroma region has distinctively more loose texture to allow rapid 

expansion of the secretory tissue especially during pregnancy (Standring, 2008).  

 

During pregnancy, the terminal ducts and lobules will further differentiate causing 

extensive glandular expansion. Subsequently, the lobules will enlarge and the 

amount of both adipose and connective fibrous tissues will reduce. After the age of 

40 or so, the ducts, lobules, and connective tissues of the breasts will start to atrophy, 

giving rise to replacement by fatty adipose tissues. This process will continue 

throughout menopause (Hoda, 2012, Gartner and Hiatt, 2007).  

  

 

Figure 1.1: Anatomy of the breast.  

[This image, illustrated by (Lynch and Jaffe, 2007), is free from copyright and is free to 

be shared] 
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1.1.3 Epidemiology of Breast Cancer 

 

Breast cancer is the most frequently diagnosed cancer and a top cancer-related 

death among females worldwide, accounting for 22.9% and 13.7% of all cancers 

respectively (American Cancer Society, 2011). The diagnosis and mortality rate in 

developing countries (20% diagnosis rate and 12.7% mortality rate, of which both 

are lower than the global means) is lower than that of developed countries (26% 

diagnosis rate and 15.5% mortality rate, of which both are higher than the global 

means) (American Cancer Society, 2011). In the United States of America, breast 

cancer continues to be the top cancer among females constituting 29% or one third 

of female cancer cases, much higher than the global mean (American Cancer 

Society, 2012b). In terms of cancer-related death, breast cancer makes up 

approximately 14% of all cancer deaths in women, second only to lung cancers 

(26%) (American Cancer Society, 2012a). Nevertheless, the death rate for breast 

carcinoma has decreased over the past twenty years by ~30%, reflecting the 

improvements in early breast cancer detection and treatment options. It has been 

observed that Caucasian females have an overall elevated breast cancer incidence 

rate in comparison to females of other races, due to later first pregnancies, more 

frequent use of hormonal therapy, and higher mammography check-ups (Siegel et 

al., 2013).  

 

In Singapore, breast cancer is also the most frequently diagnosed cancer affecting 

females, accounting for almost 30% of all cancers in Singaporean women (Teo and 

Soo, 2013). Furthermore, it is the most common female cancer in the three different 

main ethnic groups in Singapore that are the Chinese, Malay, and Indian. In 

addition, from year 1968 to 2002, statistics showed that the Chinese in comparison 

to Malays and Indians have elevated risk of being diagnosed with cancer of the 

breast. Similar to global cancer statistics trend, breast carcinoma in Singapore is the 

top cancer-related death accounting for 18.0% of all female cancer mortalities 

(National Registry of Diseases Office, 2012). The rise in breast cancer incidence 

can be attributed to better awareness of breast cancer and wider use of 
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mammography for the detection of breast carcinoma. Nevertheless, it is also caused 

by urbanization in Singapore, of which females tend to adopt Western lifestyle and 

diet, as well as having low and late parity (Verkooijen et al., 2009, Rastogi et al., 

2008).  

 

1.1.4 Risk Factors of Breast Cancer 

 

It is hence necessary for females to be aware of the risk factors concerned with 

breast cancer.  The risk factors can be separated into the non-modifiable factors as 

well as the modifiable factors groups. The non-modifiable risk factors would 

comprise of patients’ age, family history of breast cancer, inherited gene mutations 

in BRCA1 and BRCA2 which are breast cancer susceptibility genes, early menarche 

and late onset of menopause. On the other hand, modifiable risk factors include late 

and low parity, use of hormonal therapy, having a high fat diet and sedentary 

lifestyle. 

 

1.1.4.1 Age 

 

 

Age in females is a main non-modifiable risk factor of breast carcinoma. The 

incidence risk in females aged 25 and below is usually very low. However, the risk 

will double with every 10 years of age (Hamajima et al., 2002) with the risk 

increasing substantially as females transition though menopause (American Cancer 

Society, 2011). In the United States of America, females aged 40 years old and 

older accounted for 95% of all new breast cancer cases, whereas the lowest risk 

group was in females aged 20 to 24 years old. Additionally, 97% of breast cancer 

deaths often occur among females of 40 years old and above (American Cancer 

Society, 2012a). In Singapore, from year 1968 to 2002, almost half of all breast 

carcinoma cases were diagnosed in females aged 50 years old and above, with 

women aged 55 to 59 years old having the highest risk (Seow et al., 1996).  
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1.1.4.2 Family history of breast cancer 

 

Another key risk factor of breast cancer is the genetic predisposition or inheritance 

of gene mutations in the female. She is more susceptible to breast cancer if she has 

a positive family history of the disease (Collaborative Group on Hormonal Factors 

in Breast Cancer, 2001). The degree of the risk involved is also dependent upon her 

connection with the affected family member or relative, as well as the number of 

family members or relatives diagnosed with the cancer (Singletary, 2003). An 

analysis involving 52 epidemiological studies found that 13% of breast carcinoma 

cases had family history of breast cancer (Hamajima et al., 2002). BRCA1 and 

BRCA2 are the two most established hereditary genes in breast cancer. Females 

with inherited BRCA1 mutations are more susceptible of getting breast cancer at 

around the age of 35 years old, whereas those with inherited BRCA2 mutations will 

have a 25% to 45% increased risk of developing breast carcinoma (Ferla et al., 2007, 

Antoniou et al., 2003).  

 

1.1.4.3 Early Menarche and Late Menopause  

 

Studies have established that most breast cancer risk factors are attributed to 

elevated exposure to estrogen (Collaborative Group on Hormonal Factors in Breast 

Cancer, 2012). Females having early onset of menarche and late onset of 

menopause are at higher risk of developing breast cancer due to prolonged exposure 

to high levels of estrogen during the menstrual cycle (Singletary, 2003). In fact, 

females with early menarche at age less than 12 years old have a 10 to 20% elevated 

risk of breast cancer occurrence. Additionally, females with delayed menopause 

after the age of 55 years old are more predisposed to getting breast carcinoma 

(Dumitrescu and Cotarla, 2005, Titus-Ernstoff et al., 1998).  

 

1.1.4.4 Late or Low Parity  

 

Moving on to the modifiable risk factors, a female having her first pregnancy at a 

younger age and having more children has lower risk of developing breast cancer 
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(Brinton et al., 1988). On the other hand, null-parity and first pregnancy after the 

age of 30 years old are two modifiable risk factors that can contribute to increased 

risk of developing breast cancer (Hulka and Moorman, 2008).  

 

1.1.4.5 Use of Hormonal Pills  

 

Use of oral contraceptives as well as hormone replacement therapy (HRT) is 

another two modifiable risks that can contribute to higher breast cancer incidence 

rate (Collaborative Group on Hormonal Factors in Breast Cancer, 1996). A slight 

increase in risk of developing breast cancer has been reported in females using oral 

contraceptives especially those with higher amounts of estrogen; nevertheless, the 

risk is observed to reduce after termination of the oral contraceptive intake  (Hulka 

and Moorman, 2008). The risk of breast cancer development also decreases in 

females after a 5-year cessation of HRT usage (Boyle, 2005).  

 

1.1.4.6 High Fat Diet and Sedentary Lifestyle  

 

Certain breast cancer risk factors such as physical activity and diet type are 

modifiable. Alcohol intake has been correlated with enhanced breast cancer risk 

(Zhang et al., 2007, Terry et al., 2006) due to possible increment in estrogen levels 

upon intake (Singletary and Gapstur, 2001). Obesity in post-menopausal females is 

also positively associated with elevated breast cancer risk. The high fat 

consumption in meals and its accumulation of body fat in these females can have 

an effect on the incidence of hormonally dependent breast cancer as fats in the 

plasma can significantly increase the levels of circulating estrogens (McTiernan et 

al., 2003). Apart from that, there have been controversies on soy intake as certain 

studies associated soy intake with decreased risk of breast cancer development as 

soy-based products contain isoflavones (or phyto-estrogen) while some studies 

showed otherwise (Boyle, 2005). Also, though there is no consistent significant 

correlation between breast cancer risk and physical activity, it is still suggested that 

physical activity has an indirect impact on body fats, which can contribute to 

estrogen levels (Colditz et al., 2003).  
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Hence, females should reduce the incidence of breast cancer by increasing physical 

activity, eating low-fat foods, minimizing alcoholic beverage intake, maintaining a 

healthy body weight, and reducing hormone intake. Breast-feeding by mothers is 

also encouraged as it decreases estrogen production due to suppression of the 

ovulatory cycle and increases secretion of prolactin, giving it a protective effect 

against breast cancer (Vogel, 2012).  

 

1.1.5 Symptoms of Breast Cancer 

 

For early detection of breast cancer, all females should be familiar with both 

appearance and feel of their breasts in order to promptly report any changes to a 

doctor. The most frequent physical symptom of a potential breast cancer case is a 

painless lump in the breast (American Cancer Society, 2012a). At times, the tumor 

mass can be felt at the axillary lymph nodes (underarm) before the primary breast 

tumor is sufficiently large to be felt. Other less frequent symptoms consist of breast 

pain, changes to the breast (swelling, thickening, skin irritation, skin distortion), 

and abnormalities at the nipple (bleeding discharge, erosion, inversion) (Osteen, 

2001, American Cancer Society, 2012a). 

 

1.1.6 Classification of Breast Cancer 

 

Classification of breast carcinoma provides details on the extent of the disease at 

the point of diagnosis i.e. the size and location of the primary tumor as well as 

presence and extent of metastasis to other parts of the body. The classification of a 

breast cancer tumor is vital in determining the therapy choice and estimating the 

prognosis of the patient. The tumor-node-metastasis (TNM) staging system, 

proposed by Pierre Denoix, is commonly used in clinical settings and it evaluates 

tumors in three aspects: (T) assesses size and extent of the primary tumor; (N) 

investigates the absence or presence of regional lymph node involvement; (M) 

evaluates the absence or presence of distant metastases (Arnone et al., 2010, 

Escobar et al., 2007). Upon determination of the TNM characteristics, stages are 

assigned with stage 0 being in situ while stage IV being invasive carcinoma (Sobin 
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et al., 2009, American Cancer Society, 2012a). Table 1.1 gives a brief description 

of the various TNM staging:  

 

Table 1.1 Various TNM staging 

Stage Description 

0 The breast tumor is at in situ stage, whereby the cancer cells are still contained within 

the duct or lobule. 

I The breast tumor is relatively small with a maximum size of 2cm. No lymph node 

metastasis is involved at this stage. 

II The breast tumor size is between 2 and 5cm, with lymph node metastasis to the ipsilateral 

axillary nodes. Breast tumors larger than 5cm with negative lymph node involvement 

are also categorized as Stage II. 

IIIA The breast tumor is of any size or more than 5cm, with lymph node metastasis to the 

ipsilateral axillary lymph nodes or other surrounding structures. 

IIIB Inflammatory carcinoma usually occurs at this stage. The breast tumor can be of any size 

with metastasis to the ipsilateral lymph nodes. 

IV The breast tumor is of any size with metastasis beyond the ipsilateral supraclavicular 

lymph nodes. 

 

Breast tumor originates in the breast tissue, mostly from the epithelia of ducts and 

lobules. Most lumps or masses are benign, that is they do not have uncontrolled 

growth or spread and are not life-threatening. Breast cancer of in situ stage is 

characterized by tumor cells that are still confined within their site of origin: ducts 

(ductal carcinoma in situ or DCIS, as shown in Figure 1.2) and lobules (lobular 

carcinoma in situ or LCIS). DCIS accounts for majority of the in situ breast cancer 

cases, accounting about 83%, while LCIS takes up 11% of in situ cases. The 

remaining in situ types have features of both DCIS and LCIS or have unspecified 

site of origin. Most breast cancer cases are of the invasive type, whereby the tumor 

cells from the ducts or lobules have broken through the basement membrane to 

invade into the surrounding breast tissues, and if left undiagnosed, metastasis may 

occur (American Cancer Society, 2012a). Metastatic spread occurs mainly through 

lymphatic drainage of the breast. The lymph passes from the nipple, ducts and 

lobules to the subareolar lymphatic plexus; after which, majority (more than 75%) 

of lymph drains through the axillary lymph nodes (Nawaz, 2011, Moore and Agur, 

2007). The remainder of the lymph will drains into the internal mammary nodes. 

(Hoda, 2012).  
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Apart from ductal carcinoma and lobular carcinoma, there are other various types 

of breast cancer including inflammatory breast cancer, triple negative breast cancer, 

phyllodes tumor, mucinous carcinoma, and medullary carcinoma (van Bogaert, 

1981). In this study, I will be focusing on invasive ductal carcinoma (IDC) tumors. 

Hence, the details of IDC tumors will be discussed in greater detail.  

 

1.1.7 Invasive Ductal Carcinoma 

 

IDC is the most frequently diagnosed breast carcinoma, constituting 60 to 80% of 

all breast cancer cases (Rosen, 2009). IDC cases make up 79.2% of all breast cancer 

cases in Singapore (Seow et al., 1996). IDC is marked by its characteristics of 

having malignant ductal epithelial cells with abnormal growth and their invasion 

into the surrounding breast stromal tissue (as depict in Figure 1.2). The gross 

appearance of the breast tumor is often a fibrous and solid lump. At the histology 

level of IDC, the tumorigenic ductal cells would often invade in an irregular manner 

and are at times correlated with lymphoplasmacytic infiltrate. It is hence important 

for histopathologists to utilize a grading system to evaluate the breast tumor.  

 

The grading system of IDC tissues can be performed based on three histological 

factors, namely mitotic frequency, degree of nuclear pleomorphism, and extent of 

tubule formation. Each of these three factors is given a score of 1 to 3. After which, 

the scorings of the three factors will be added up to give the Bloom-Richardson 

score (Meyer et al., 2005). Table 1.2 shows a description of the score range. 

Classifying IDC patient tumors into their respective grades will aid physicians in 

predicting treatment response to chemotherapy as well as patient’s prognosis. 

 

Table 1.2 Classification of tumor by Bloom-Richardson score 

Tumor Grade Bloom-Richardson Score Description 

1 3 to 5 Well-differentiated 

2 6 to 7 Intermediate 

3 8 to 9 Poorly differentiated 
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Figure 1.2: Histopathology of ductal carcinoma.  

(A) depicts ductal carcinoma in situ, whereby the malignant ductal epithelial cells are still 

within the basement membrane. (B) illustrates IDC, whereby the malignant ductal 

epithelial cells have broken passed the basement membrane and invaded into the 

surrounding breast tissues. [This image is free from copyright and is free to be shared] 

 

1.1.8 Detection of Breast Cancer 

 

Apart from reducing risk factors involved, every female above age 40 years old 

should consider annual clinical breast examination and standard radiological 

imaging (such as mammography, ultrasound scan, and magnetic resonance 

imaging) for early breast cancer detection to increase their survival rate (Saslow et 

al., 2007). Early breast cancer detection can help reduce breast tumor recurrence as 

well as breast cancer-related mortality as treatment is more effective in patients at 

this stage of breast carcinoma (Hakim et al., 2012). Detection of the tumor at later 

(A) 

(B) 
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stages will give rise to poorer patient prognosis. For US females, the overall five-

year survival for those with early breast cancer stage is 98% in comparison to those 

with late breast cancer stage with the tumor cells spread to regional lymph nodes 

(84%) or distant organs (23%) (American Cancer Society, 2011). Therefore, public 

health campaigns are constantly carried out to raise awareness of the importance of 

early detection for breast cancer. 

  

1.1.8.1 Breast Self-Examination  

 

Every female is able to perform their own breast examination, of which is non-

invasive and it can be done comfortably on a regular basis to detect any changes in 

the breast. It is recommended that females be taught the correct techniques by their 

physicians for breast self-examination.  In developing countries, as mammography 

screening can be costly, the recommended early detection strategies there are to 

create awareness of breast cancer, its signs and symptoms, and carry out self breast 

examination (Anderson et al., 2008).  

 

1.1.8.2 Mammography  

 

Mammography screening has been shown of its capability in detecting breast 

cancer at an earlier stage when more treatment options are available; the 

treatment(s) would also be more effective and survival rate is higher (American 

Cancer Society, 2011). Mammography will specifically aid in detecting the 

presence of potential malignant masses seen as a stellate opacity, accompanied with 

architectural distortion of the surrounding parenchyma. At times, a DCIS mass may 

appear as micro-calcification on the mammogram (Standring, 2008). In the United 

States of America female population, mammography screening done every 1 to 2 

years showed a decrease in breast cancer-related mortality especially for females 

aged 40 years old and beyond (Smith et al., 2004).  In Singapore, 64% of breast 

cancer cases detected were of the early stage (Tan et al., 1999). The Singapore 

Health Promotion Board has subsequently held nation wide mammography 

screenings in order to decrease breast cancer-related mortality (Wang, 2003).  
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1.1.8.3 Ultrasound  

 

Ultrasound is another method used to help detect solid form of cystic masses, as 

well as differentiate malignant mass from benign lumps through different 

attenuation features of the ultrasound waves and blood flow patterns (Gabriel and 

Domchek, 2010). Nowadays, ultrasound is used as an additional important aid to 

mammography for breast cancer detection. It is usually used on females with 

potentially higher risk of breast cancer or with high breast tissue density (Irwig et 

al., 2004).  

 

1.1.8.4 Magnetic Resonance Imaging  

 

Magnetic resonance imaging (MRI) is sometimes used to further define the extent 

of the cancer (Saslow et al., 2007). MRI has higher sensitivity but lower specificity 

of tumor detection; hence, it is lesser used compared to mammography and 

ultrasound scan, and is particularly used in younger females having more dense 

breasts (Standring, 2008). Nevertheless, it can be used to follow tumor response 

after a patient undergoes chemotherapy (Hakim et al., 2012). 

 

1.1.9 Definitive Diagnosis of Breast Cancer 

 

After acquiring a plausible detection/diagnosis using radiological imaging, 

microscopic examination of the breast tissue would be required to give a definitive 

diagnosis of breast cancer as well as to determine the type of breast cancer, such as 

whether the cancer is of in situ or invasive type, and if the tumor is of ductal or 

lobular carcinoma type (American Cancer Society, 2012a).  

1.1.9.1 Tumor Biopsies  

 

Fine needle aspiration is able to achieve a cytological diagnosis of the breast lump, 

providing information on the cellular component of the lump. It can also be used to 

drain symptomatic breast cysts (Abati and Simsir, 2005). Wide-bore needle biopsy, 

on the other hand, is performed under local anaesthetic to attain specimen samples 
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for a histological diagnosis, permitting diagnosis of the tumor subtype through 

evaluation of various pathological characteristics (Standring, 2008).   

 

1.1.9.2 Prognostic Markers for Breast Cancer  

 

Even though lymph node status and primary tumor size are two powerful prognostic 

factors, at times, they can give inaccurate predictions of the survival outcome of the 

patients (Chen et al., 2009a, Gebauer et al., 2002). This may lead physicians to be 

more cautious in eradicating all possible tumors and hence recommending 

chemotherapy, of which patients may or may not benefit from.   

 

Tumor biomarkers are increasingly being used in the clinical setting to aid in the 

estimation of patients’ prognosis, determination of treatment choices, prediction of 

treatment outcome, and for better treatment response monitoring (American Cancer 

Society, 2012a). Some of the more well-known validated biomarkers for breast 

carcinoma include estrogen receptor (ER), progesterone receptor (PR), human 

epidermal receptor 2 (HER2), BRCA1, uPa/PAI1, and Ki67.  

 

Breast cancer cells with ER and/or PR are dependent on their respective ligands, 

estrogen and progesterone, for cell growth. ER, in the form of ERα, is present in 

70% of breast cancer cases. Evaluation for ER and PR status in patients’ tumor 

samples can be carried out to determine if the tumor can be successfully treated 

with hormone therapy, such as tamoxifen.  ER+ and PR+ will generally offer better 

survival outcome as well as better response to hormone therapy (Onitilo et al., 

2009). Tamoxifen will block ER and give rise to anti-malignant properties such as 

reduction in cancer cell growth. Tamoxifen is able to significantly decrease tumor 

recurrence risk within 5 years by 40% and increase overall survival by 31% (Early 

Breast Cancer Trialists' Collaborative Group, 2005). Other than that, aromatase 

inhibitors such as anastrozole work through the inhibition of conversion of 

precursor molecules to estradiol. Besides that, the presence of ER in a patient’s 

tumor is usually correlated with less beneficial effects from adjuvant chemotherapy. 
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This would help avoid unnecessary over-treatment and possible adverse side effects 

in the patient. As for PR, it is strongly dependent upon ER activity. Hence, PR+ 

breast tumors also have better patient survival outcome in comparison with PR- 

breast tumors (Anderson et al., 2001). Both ER and PR status in breast cancer 

tissues can be evaluated through immunohistochemistry by a pathologist.  

 

Human epidermal growth factor receptor 2 (HER2 or ERBB2), a transmembrane 

receptor with constitutive tyrosine kinase activity, is another well-established 

biomarker (Weigelt et al., 2005). HER2 has been reported to be involved in cell 

motility, adhesion, and differentiation. Clinical studies have generally shown that 

HER2 is over-expressed in breast tumors of higher grade (Slamon et al., 1987, 

Slamon et al., 2001). In addition, high expression of HER2 has been associated with 

higher risk of tumor recurrence and worse prognosis (Slamon et al., 1987, Ross and 

Fletcher, 1998). The finding of HER2 has an important biomarker has led to the 

development of a humanized monoclonal antibody (trastuzumab), designed against 

HER2 (Baselga et al., 1998). Trastuzumab is used in combination with 

chemotherapy in breast cancer patients diagnosed with over-expression of HER2 

antigen (Weigelt et al., 2005). Studies including randomized clinical trials have 

demonstrated reduced risk of tumor recurrence, decreased metastasis and improved 

survival rate in patients given trastuzumab treatment in comparison to those not 

receiving trastuzumab therapy (Slamon et al., 2001, Viani et al., 2007).  

 

BRCA1 gene is a well-known hereditary marker in breast cancer (Scully and Puget, 

2002). It is involved in the regulation of cell cycle, chromosomal remodeling and 

DNA repair. Loss of BRCA1 in breast carcinoma would not only cause decreased 

expression of BRCA1, but also incorrect sub-cellular localization (Rebbeck et al., 

1996). This in turn would lead to worse prognosis in breast cancer patients. 

Additionally, loss of BRCA1 has been correlated with tumors of higher grade and 

larger size, advanced lymph node involvement, vascular invasion, as well as ER 

and PR negative statuses (Heisey et al., 1999). 
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Urokinase plasminogen activator (uPa) and plasminogen activator inhibitor (PAI-

1), involved in the plasminogen activating system, have crucial roles in cell 

invasion, metastasis and angiogenesis (Stephens et al., 1998). Both uPa and PAI-1 

are highly expressed in breast cancer tissues (Duffy, 2002). In addition, both 

biomarkers have been validated of their prognostic importance in several 

retrospective studies as well as in a multi-center randomized prospective clinical 

trial (Janicke et al., 2001, Look et al., 2003). According to the American Society of 

Clinical Oncology (ASCO), both biomarkers can be utilized to determine patients’ 

prognosis, especially for those diagnosed with node-negative breast carcinoma 

(Duffy, 2013). In general, patients with high expression of uPa and PAI-1 have 

been associated with significantly higher risk of tumor recurrence. For these 

patients, adjuvant chemotherapy, specifically CMF-based which consists of 

cyclophosphamide, methotrexate, and fluorouracil, would be more beneficial 

compared to observation alone (Harris et al., 2007).  

 

Ki67 is a prognostic biomarker involved in tumor cell proliferation. Its expression 

level has been reported to be elevated in malignant breast tissues (Harper-Wynne 

et al., 2002), its expression increasing progressively from DCIS to IDC breast 

cancer type (Kontzoglou et al., 2013).  Therefore, high expression of Ki67 is 

associated with better therapeutic response towards chemotherapy as well as being 

a good biomarker for poor prognosis.  

 

Developing single gold-standard biomarkers is however difficult as tumor cells are 

known for their genetic instability and plasticity, which help in the tumor cells’ 

change and response towards the host defense system. It would also make it tricky 

for physicians to determine a patient’s relapse risk after treatment. Therefore, 

having biomarker panels and developing more improved panels that are able to 

identify high-risk and low-risk groups by providing a “yes” or “no” answer on 

tumor recurrence in a patient will significantly improve disease management. 

Hence, it is crucial for the cancer research community to understand a network of 
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genes significantly involved in breast cancer tumor progression, in order to improve 

disease management.  

 

Some biomarker panel assays available include the 70-gene MammaPrint® 

signature assay and the 21-gene Oncotype DX panel, both of which are able to 

determine the risk of tumor recurrence and prognosis outcome in a patient (Manjili 

et al., 2012, Espinosa et al., 2012). As an example, the assays can generate gene 

signatures that will determine that a patient in the high risk group has 30% chance 

of having tumor recurrence while a patient in the intermediate risk group will have 

a 14.3% chance of tumor recurrence within 5 to 10 years (Manjili et al., 2012). As 

for patients in the low risk group, they have a recurrence free survival rate of over 

90% without having the need to receive chemotherapy (Espinosa et al., 2012).  

 

The MammaPrint® assay has been cleared for use by the US Food and Drug 

Administration (FDA) in patients with lymph node negative status (and ER+ or ER- 

status) and tumors smaller than 5cm to determine the prognosis outcome of the 

patients (van 't Veer et al., 2002, van de Vijver et al., 2002). The assay can help in 

refining the prognostic value of traditionally-used biomarkers such as HER2. 

Recent studies also suggest that the MammaPrint® assay has predictive value, 

being able to predict the patients’ treatment response (Straver et al., 2010). The 

microarray-based assay utilizes high quality RNA, obtained from patients’ tumor 

tissue samples, which would then be processed to be used to obtain 70 gene 

expression levels. The 70-gene signature includes genes associated with cell 

invasion, metastasis, proliferation, and angiogenesis, of which would be used to 

determine if a patient has low or high risk of tumor recurrence. This is beneficial 

for patients as it would prevent over-treatment in patients with a low risk cancer 

and under-treatment of patients with high risk cancer (Gokmen-Polar and Badve, 

2012). Generally, patients of high risk, as determined by standard 

clinicopathological parameters (such as tumor grade and tumor size) and 

MammaPrint® gene signature would be administered with chemotherapy. On the 

other hand, patients identified with low risk will receive hormonal therapy. The 
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MammaPrint assay helps these patients with low risk avoid unnecessary 

chemotherapy, giving them a maximum 10% risk of tumor recurrence within a 

minimum of 5 years (Manjili et al., 2012).  

 

The 21-gene Oncotype DX assay is able to evaluate 16 cancer-related and 5 control 

genes through RT-PCR using RNA isolated from paraffin-embedded breast cancer 

tissue (Elloumi et al., 2011). The assay is mainly used among patients with lymph 

node negative and ER+ status, of which cancer-associated genes such as ER, PR, 

HER2, and Ki-67 are evaluated. A recurrence score will be generated with heavier 

weightage on ER and proliferation-related genes. Studies have shown that the 

Oncotype DX assay is better than standard clinicopathological parameters in 

predicting tumor recurrence (Gokmen-Polar and Badve, 2012). From the 

retrospective case-control clinical trial (NSABP Trial B-20), results showed that 

patients with high recurrence risk score benefit significantly from chemotherapy, 

compared to patients with low recurrence risk score who had minimal benefit (Paik 

et al., 2006). Moreover, adjuvant chemotherapy improved recurrence-free survival 

in 30% of patients with high recurrence risk score. While the Oncotype DX test is 

recommended by expert panels, it is not validated in a large prospective, 

randomized clinical trial. The TAILORx clinical trial is currently being carried out 

to address this validation (Manjili et al., 2012).  

  

1.1.10 Treatment for Breast Cancer 

 

Treatment options are dependent upon the stage, size and other clinical 

characteristics of the tumor, as well as patient preference. 

 

1.1.10.1 Surgery  

 

Surgery methods comprise of lumpectomy (removal of the tumor within the breast) 

or mastectomy (removal of the whole breast) with removal of some axillary lymph 

nodes. The surgical method to be used is dependable upon the stage and distribution 

of the tumor as well as the patient’s choice (American Cancer Society, 2012a). At 
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present times, lumpectomy is more often carried out compared to mastectomy to 

extract out only the tumor and surrounding tissues following radiation therapy as 

part of breast conserving surgery (Anderson et al., 2008, Moore and Agur, 2007). 

 

1.1.10.2 Radiation Therapy  

 

Radiation therapy can be administered prior to and after surgery in order to reduce 

the patient’s tumor size and to eliminate remaining cancer cells respectively (Clarke 

et al., 2005). Reports showed that tumor recurrence is reduced and patient’s survival 

is improved following radiation therapy that is used after surgery (Ragaz et al., 

1997).  

 

1.1.10.3 Chemotherapy  

 

Chemotherapy is administered before or after surgery, and is often given to patients 

with metastasis, to reduce the risk of tumor recurrence in the patients (Falo et al., 

2005). Some more common chemotherapeutic drugs used in treating breast cancer 

include doxorubicin, methotrexate, and 5-fluorouracil (Falo et al., 2005). Also, a 

combination of different chemotherapeutic drugs is more effective compared to a 

single drug for therapy (Hortobagyi, 1998). Some examples of successful drug 

combinations include doxorubicin and cyclophosphamide as well as methotrexate, 

5-fluorouracil and cyclophosphamide [Brennan 2005].  

 

1.1.10.4 Hormonal/Biological Therapy   

 

Hormonal or biological therapy is administered, for example, when the patient’s 

breast tumor is positive for ER/PR. The basis of this therapy is to introduce an agent 

that will bind to ER, inhibiting the binding of estrogen ligand with ER, and hence 

decreasing estrogen levels to the cancer cells. Tamoxifen is a common hormonal 

therapeutic drug given to both pre- and post-menopausal females (Fabian, 2007). 

HER2 biomarker is another well-known example involved in hormonal/biological 

therapy. As HER2 is over-expressed in 20 to 25% of breast cancer cases, 
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trastuzumab, a humanized monoclonal antibody, has been developed to directly 

target HER2 (Slamon et al., 1987). The binding of the antibody to the receptor will 

inhibit tumor cell proliferation in breast cancer cells over-expressing HER2. 

Another approach in hormonal therapy is to inhibit the formation of estrogen by 

introducing aromatase inhibitors; the inhibitors will inhibit cytochrome P450 

activity, of which will subsequently prevent androgens from converting to 

estrogens (Chumsri et al., 2011). This approach however can only be used in post-

menopausal females, as pre-menopausal females still have functional ovaries which 

are still able to generate estrogen (Milla-Santos et al., 2003, Mouridsen et al., 2003).  

 

1.1.11 Current Challenges in Breast Cancer 

 

Conventionally, physicians use well-established breast cancer clinical parameters 

such as tumor size, tumor grade, lymph node stage, and well-studied biomarkers – 

hormonal markers (ER, PR, and HER2) (Hatsell et al., 2005), hereditary molecules 

(BRCA1 and BRCA2) (Parsons, 2005) – to diagnose, determine suitable treatment 

options for patients and estimate the survival outcome of the patients. In the current 

medical world, although these characteristics are useful, basing diagnosis, therapy, 

and prognosis solely on them alone is not enough. Breast cancer is a heterogeneous 

disease with, at times, unpredictable survival outcome. There are still groups of 

breast cancer patients that do nor respond well to current available treatments or 

encounter tumor recurrence at a shorter period of time. It is therefore critical to 

achieve more reliable characterization of the tumor to enable more accurate 

diagnosis of the breast cancer subtype and hence improved treatment options and 

prediction of treatment response and survival outcome. Breast tumors cannot be 

oversimplified of its classification by just separating tumor cases by carcinoma in 

situ and invasive carcinoma, or ER+ and ER- tumor types. More specific 

biomarkers for screening in conjunction with current clinicopathological 

parameters are hence needed to identify the patient’s breast tumor subtype more 

accurately (Masood and Dabbs, 2012).  
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1.2 Glycosaminoglycans and Proteoglycans 

 

The ongoing need to discover additional distinctiveness of breast cancer is critical 

to further understand breast cancer and to help patients cope with the cancer more 

effectively through a more personalized treatment option, thus improving their 

quality of life. Biomarkers has been gaining potentiality to help in diagnosis, 

prognosis, and treatment of the patients. Knowing the expression of the marker can 

aid in determining the stage of the cancer, estimate the survival rate and tumor 

progression of the patient, and provide targeted therapy options to effectively 

reduce the tumor size and increase the patient’s survival rate. Glycosaminoglycan 

molecules have recently been of great interest to researchers studying their 

associations to breast cancer. Initial findings have related changes in 

glycosaminoglycan expression levels to breast tumorigenesis. 

 

1.2.1 Structure of Glycosaminoglycans and Proteoglycans 

 

Glycosaminoglycans (GAG) are heteropolysaccharides, composed of alternating 

uronic acid units and hexoamine amino sugars, found in various tissues (Yip et al., 

2006, Feldner et al., 2006). There are four major classes of GAGs constituting of 

chondroitin/dermatan sulfate, heparan sulfate, keratan sulfate, and hyaluronan (Yip 

et al., 2006). GAGs, except hyaluronan, are expressed in tissues as proteoglycans, 

of which are covalently bounded sulfated GAGs on core proteins (Yip et al., 2006, 

Berto et al., 2003). The GAG chains would be attached to a serine residue on the 

core protein via a tetrasaccharide linkage region as shown in Figure 1.4 (Yip et al., 

2006).  

 

Proteoglycans (PG) are principal structures found on cell surfaces and in the 

extracellular matrix (Berto et al., 2003). PGs play vital roles in the regulation of 

multiple signaling pathways and in the interactions between cells and their 

environment (Wade et al., 2013). They have major roles in cell proliferation, 

migration, adhesion, and angiogenesis (Raman et al., 2005, Cecchi et al., 2012).  
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GAGs and PGs have garnered much interest as their expression can potentially 

indicate diagnostic and prognostic values in cancer, and pave the way for novel 

targeted therapeutics (Yip et al., 2006). For example, studies have indicated that 

alterations in CS/CSPG expression and structure are seen in a wide variety of 

cancers such as breast cancer, prostate cancer, gastric cancer, pancreatic cancer, 

and melanoma (Suwiwat et al., 2004, Yang et al., 2004, Pirinen et al., 2005, Pukkila 

et al., 2007). In this study, chondroitin sulfate is my GAG of interest; hence, its 

characteristics will be elaborated.  

 

1.2.2 Chondroitin Sulfate and Chondroitin Sulfate Proteoglycans 

 

Chondroitin sulfate (CS) is located mainly on the cell surface and in the 

extracellular matrix (ECM) (Huang, 1974). CS consists of repeating disaccharide 

units of alternating N-acetyl-galactosamine (GalNAc) and glucuronic acid (GlcA) 

(Sugahara et al., 2003, Silbert and Sugumaran, 2002). There are various forms of 

CS molecules, including CS-A, CS-C, CS-D, and CS-E (CS-B is reclassified as 

dermatan sulfate (DS)).  Each of these CS molecules is distinctive of one another 

by its sulfation patterns (Sugahara et al., 2003, Kusche-Gullberg and Kjellen, 2003). 

The various CS molecule forms of different sulfation configurations are formed 

through sulfation modification. Figure 1.3 illustrates the differences in sulfation 

patterns between the various CS molecules. CS-A and CS-E are sulfated at carbon 

4 of the GalNAc unit, whereas CS-C and CS-D have a sulfated site at carbon 6 of 

the GalNAc unit (Grande-Allen et al., 2007). Additionally, CS-D and CS-E have 

an extra sulfation site in their disaccharide units; the additional sulfate site for CS-

D is located at the carbon 2 of GlcA while CS-E is also sulfated at carbon 6 of 

GalNAc (Sugahara et al., 2003, Kusche-Gullberg and Kjellen, 2003). Hence, at 

times, CS-A, CS-C, CS-D, and CS-E are sometimes known as C4S, C6S, C-2,6-S, 

and C-4,6-S respectively. The distinctive sulfation patterns would not only give rise 

to structural diversity of the CS molecules, but also cause a variety of ligand-

binding capacities, diverse signaling effects, and hence varied modulations of 

cellular behaviors (Kusche-Gullberg and Kjellen, 2003).  
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The CS molecules are usually attached to a core protein, therefore forming CS 

proteoglycan (CSPG) (Souza-Fernandes et al., 2006). The attachment is possible 

via a protein scaffold (as depicted in Figure 1.4) (Parcell, 2002, Bali et al., 2001).  

The CSPG family also has a variety of family members, ranging from CSPG1 to 

CSPG8, some of which have been implicated to have major functional roles in 

breast cancer.  

 

Figure 1.3: Various forms of CS molecules.  

 

Figure 1.4: Structure of CPSG. The CS molecules are attached to the core protein via a 

short tetrasaccharide glycan chain, consisting of one xylose, two galactose units, and one 
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GlcA, at the serine residue of the core protein. After which, polymerization of the CS 

disaccharide units (GalNAc and GlcA) would follow on. The CS molecules then undergo 

modification through sulfation to form variable CS forms (Sugahara et al., 2003, Silbert 

and Sugumaran, 2002).   

 

 

1.2.3 Biosynthesis of Chondroitin Sulfate and Chondroitin Sulfate 

Proteoglycan 

 

CS and CSPG expression is regulated by a wide range of enzymes in a complex 

biosynthesis pathway, leading to their variability in structure and function. Briefly, 

the tetrasaccharide glycan linkage is firstly synthesized by Xylotransferase 1 

(XYL1) and Xylotransferase 2 (XYL2) through the addition of xylose to the serine 

residue of the core protein (Gotting et al., 2000). The addition of two galactose units 

to xylose is next catalyzed by two galactosyltransferases, coded by B3GALT6 and 

B4GALT7 (Bai et al., 2001). The last unit of the glycan linkage, glucuronic acid, 

is added by glucuronyltransferase I, which is coded by B3GAT3 (Potapenko et al., 

2010, Kitagawa et al., 1998). 

 

The synthesis of the CS chain is next initiated by chondroitin sulfate N-

acetylgalactosaminyltransferase 1 (CSGALNACT-1), which adds a galactosamine 

to the linkage region (Sato et al., 2003, Uyama et al., 2002). Subsequent chain 

polymerization of CS (i.e. the elongation of CS chain through addition of the 

disaccharide units of glucuronic acid and galactosamine) is catalyzed by 

chondroitin sulfate N-acetylgalactosaminyltransferase 2 (CSGALNACT-2), 

chondroitin sulfate glucuronyltransferase (CSGLCAT), chondroitin synthase 1 

(CHSY1), chondroitin synthase 3 (CHSY3), and chondroitin polymerizing factor 

(CHPF) (Potapenko et al., 2010). 

 

Sulfation modifications subsequently take place to generate the various types of CS 

chains. The modifications are catalyzed by chondroitin sulfotransferases (CHSTs) 

(Potapenko et al., 2010). Some examples of CHSTs include CHST3 and CHST7 as 

well as CHST11 and CHST13, which aid in the transfer of the sulfate group from 

3’-phosphoadenosine-5’-phosphosulfate (PAPS) to the galactosamine unit 
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specifically at carbon 6 and carbon 4 respectively (Hiraoka et al., 2000, Kitagawa 

et al., 2000, Cooney et al., 2011). 

 

1.2.4 Functions of Chondroitin Sulfate and Chondroitin Sulfate 

Proteoglycans  

 

GAGs were once thought to only serve as space-filling function required for the 

orientation and organization of the exogenous matrix (Meyer and Palmer, 1934). 

CSPGs via their CS chains would interact with the extracellular matrix substances 

such as fibronectin, collagen, and laminin, generating stabilization in structure 

(Bernfield et al., 1999) (Jalkanen., 1992). Advances in glycobiology have shown 

otherwise.   

 

CS is a major component of cartilages, making it vital in maintaining elasticity and 

integrity of the cartilage matrix in the joints. In the form of CSPG, CS within the 

interfibrillar collagen matrix have great affinity for water and capable of generating 

compressive resilience, giving rise to cartilages with shock-absorbing properties 

(Chan et al., 2005). Also, CS is important in inhibiting proteases and cytokines 

responsible for cartilage destruction, of which would cause arthritis (Lesjak and 

Ghosh, 1984). In the clinical setting, the chondroprotective properties of CS make 

it possible for clinicians to use them as alternative agents in the treatment of 

osteoarthritis.  Apart from the cartilage, CS is also found naturally in other parts of 

the human body such as bones and skin (Parcell, 2002).  

 

Additionally, CS/CSPGs have been discovered to be vital regulators of various 

cellular signaling processes affecting cell proliferation, migration, and adhesion 

(Yin, 2005). Deregulation of the CS/CSPGs cause significant functional 

repercussions, including skeletal disorders, viral and bacterial infections, and 

cancers (Mikami and Kitagawa, 2013).  
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1.2.5 Chondroitin Sulfate and Chondroitin Sulfate Proteoglycans in Cancer 

 

Studies conducted have shown significant associations of CS expression with 

regard to breast cancer. The alterations in cell surface CS expression and 

consequently, ECM-degradative enzymes, such as matrix metalloproteinases, can 

change the cell’s invasiveness and cell-matrix interactions (Yip et al., 2006). From 

in vitro studies, breast cancer cells have been observed to have a general increase 

in CS expression, of which has been correlated to enhanced cell proliferation and 

migration (Kieber-Emmons et al., 2011, Alini and Losa, 1991, Olsen et al., 1988). 

At the tissue level, CS in general are significantly highly elevated in the stromal 

compartment of breast tumors (Ricciardelli et al., 2002, Suwiwat et al., 2004). 

Supporting this, MDA-MB-231 breast cancer cells releases high amounts of CSPGs 

into the culture medium, suggesting the enhanced level of CS in the stromal 

compartment. Additionally, in general, high CS level in breast cancer cells is linked 

to shorter overall survival and recurrence-free survival (Svensson et al., 2011). CS 

expression has been shown to be an independent predictive prognostic factor, with 

high CS expression levels having a hazard ratio of 1.71 to 2.28 in the cohort of 

breast cancer patients studied (Svensson et al., 2011). A mouse model study 

demonstrated that removal of cell surface CS from mouse breast cancer cells led to 

decreased tumor progression after intravenous injection (Cooney et al., 2011). This 

highly suggests that cell surface CS may have pivotal role in promoting metastasis 

and hence, may potentially lead to higher mortality risk. Looking into specific CS 

molecule type, CS-A chain has been shown to have increased expression level in 

human breast cancer cells with high metastatic capability (MDA-MB-231 and 

MDA-MET) compared to less aggressive breast cancer cells, MCF7 (Cooney et al., 

2011). CS-E has also been marked as a tumor promoter (Cooney et al., 2011); 

functional studies  in vitro showed that the over-expression of CS-E promotes 

angiogenesis and anti-apoptotic cell behavior (Grose and Dickson, 2005). On the 

other hand, the opposite trend has been observed for CS-C and CS-D chains; both 

of these CS molecules are reported to be down-regualted in breast carcinomas 
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(Potapenko et al., 2010), making them characterized as tumor suppressors instead, 

unlike their other two CS counterparts.  

 

At the core protein level, studies have also described breast tumor biopsies to have 

general increases in CSPG expression, particularly CSPG2 and CSPG4, compared 

against the adjacent normal breast tissues of patients (Vijayagopal et al., 1998). 

This would hence suggest the possibility of an association between CSPG levels 

and their role in tumor progression and metastases (Vijayagopal et al., 1998, 

Delehedde et al., 1997). Two CSPG members have been well-studied in breast 

cancer, which are versican (CSPG2) and NG2 (CSPG4).  

 

Versican (VCAN or CSPG2) is a large CSPG, which regulates cell adhesion, cell 

motility, and cell proliferation (Yee et al., 2007, Beck et al., 2008, Bhardwaj et al., 

2008). Its role in the regulation of different cellular behaviors is possible through 

its interactions, via the CS chains (Hirose et al., 2001, Wu et al., 2005, Suwan et al., 

2009) with a wide variety of ligands including collagen, fibronectin, chemokines, 

and epidermal growth factor receptor (EGFR) (Hirose et al., 2001, Zimmermann, 

2000). VCAN is up-regulated in malignant breast tissues and is associated with the 

severity of the cancer (Yee et al., 2007, Brown et al., 1999). Cox regression survival 

analysis indicated that VCAN expression is a good predictor of relapse-free 

survival; enhanced expression of VCAN is correlated with higher risk and rate of 

relapse in patients diagnosed with node-negative breast cancer (Ricciardelli et al., 

2002, Suwiwat et al., 2004).  

 

NG2 (or CSPG4) is a cell surface proteoglycan, with enhanced expression levels in 

malignant breast tissues compared against normal breast tissues. From an in vitro 

study, CSPG4 is up-regulated in triple negative breast cancer cells (MDA-MB-231, 

MDA-MB-435, HS578T, and SUM149) in comparison to luminal breast cancer 

cells (MCF7, T47D, and SK-BR-3), which are less aggressive. Further evaluation 

on primary breast lesions showed that majority (>70%) of triple negative breast 

cancer tissues displayed higher expression levels of CSPG4 against ER+/HER2+ 
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breast cancer tissues (of which 30% has immunoreactivity to CSPG4 antibody). 

Moreover, CSPG4 protein was enhanced in breast cancer cells extracted from 

pleural effusion of patients diagnosed with metastatic breast cancer (Wang et al., 

2010b, Wang et al., 2010a). With CSPG4 emerging as a potential diagnostic and 

prognostic marker, scientists have looked into the development of a CSPG4 

antibody-based immunotherapy. In vitro evaluation showed that CSPG4-specific 

antibody regressed cancer cell growth and cell migration. More importantly, in in 

vivo, CSPG-4 specific antibody inhibited tumor growth and metastasis (Wang et al., 

2010a). As such, CSPG4 is one promising target for monoclonal antibody-based 

treatment especially for patients with high CSPG4 expression in their tumor.  

 

1.2.6 Chondroitin Sulfotransferase 3 in Cancer 

 

Chondroitin sulfotransferase 3 (CHST3 or sometimes known as chondroitin-6-

sulfotransferase 1 (C6ST1)) gene is located at chromosome 10, with an mRNA and 

protein size of 1440 base pairs and 55 kDa. CHST3 is one of the many enzymes 

involved in the sulfation modification of CS molecules, specifically forming CS-C 

(C6S) and CS-D (C-2,6-S). Its principal role is in catalyzing the transfer of sulfate 

from 3’-phosphoadenosine-5’-phosphosulfate (PAPS) to the carbon 6 of 

galactosamine unit (Silbert and Sugumaran, 2002). CHST3 has been reported to be 

involved in extracellular matrix remodeling (Deeken et al., 2010), hence it is 

suggested that CHST3 has roles in cell adhesion as well as cell invasion and 

metastasis. 

 

The role of CHST3 has not been widely studied in cancer. In laryngeal carcinoma, 

CHST3 expression level was reduced in malignant tissues compared to normal 

tissues. Also, lower level of C-6 sulfation was observed to be correlated with higher 

tumor stage, suggesting CHST3 to have a potential tumor suppressor role in 

laryngeal cancer (Kalathas et al., 2010). In prostate cancer, single nucleotide 

polymorphisms in CHST3 were seen to be associated with toxicity of 

chemotherapeutic drugs, thalidomide or docetaxel, used on prostate cancer patients. 
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In pancreatic cancer, CHST3 expression is postulated to be involved in TGFβ-

induced epithelial-mesenchymal transition (EMT) model, indicating CHST3 

potential role in metastasis (Maupin et al., 2010). To date, there is a lack of 

understanding of CHST3 in breast cancer. 

 

1.3 Scope of Study 

 

Therefore, in this study, CHST3 expression and functional roles are investigated in 

breast cancer. The outcomes from this study may provide a novel pathway map for 

the downstream gene(s) involved in cell migration, invasion, adhesion, and 

proliferation of the breast cancer cells after alteration of CHST3 expression. 

Additionally, immunohistochemical expression of CHST3 was examined on 

clinical tissue samples of IDC. This would allow a possible novel diagnostic and 

prognostic biomarker for breast cancer and potentially other cancers. Specific 

objectives of this study are as follows: 

 

 To examine the expression of CHST3 in various normal and malignant 

breast cells 

 To study the functional role of CHST3 in breast cancer cells through 

silencing and over-expression of CHST3 

 To explore the downstream molecular pathways involving CHST3 that 

regulate the phenotypic behavior changes 

 To determine the correlations between CHST3 expression and various 

clinicopathological parameters of patients with IDC 

 To evaluate if CHST3 expression could be a potential diagnostic or 

prognostic biomarker in IDC cases 
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2 MATERIALS AND METHODS 

2.1 Cell Culture of Breast Cancer Cells  

 

Non-malignant MCF12A as well as malignant T47D, MCF7 and MDA-MB-231 

breast epithelial cell lines were obtained from the American Type Culture 

Collection (ATCC, Manassas, VA, USA) for this study. MCF12A is an 

immortalized, non-malignant cell lines, established after a long-term cultivation of 

MCF12M mortal cells, that were harvested at reduction mammoplasty from 

fibrocystic breast tissue with focal areas of intraductal hyperplasia (Paine et al., 

1992). The MCF12A cells were maintained in DMEM-F12 medium supplemented 

with 5% fetal bovine serum (FBS), 20ng/ml human epidermal growth factor, 

100ng/ml cholera toxin, 0.01 mg/ml bovine insulin, and 500ng/ml hydrocortisone. 

T47D, a Grade 1 IDC cell line, was obtained from the pleural effusion of a 54-year-

old female diagnosed with IDC (Keydar et al., 1979). MCF7, another Grade 1 IDC 

cell line, was derived from the pleural effusion of a 69-year-old female who had 

metastasis even after having two mastectomies in a span of 5 years (Dickson et al., 

1986).  Compared to T47D and MCF7 cell lines that are poorly invasive, MDA-

MB-231 cell line is a highly invasive human breast adenocarcinoma cell line and is 

representative of Grade 3 IDC.  MDA-MB-231 cells were harvested from a pleural 

effusion of a 51-year old female (Cailleau et al., 1978). T47D and MDA-MB-231 

cells were cultured in RPMI medium while MCF7 cells were given DMEM 

medium. Both medium were supplemented with 10% FBS. All cell lines were 

grown at 37oC in a 5% CO2 atmosphere.  

 

2.1.1 Subculture of Cells  

 

Subculture was performed when cells reach 80 to 90% confluency. Firstly, the 

culture medium from the flask was aspirated out. This is followed by washing with 

PBS, to remove residual culture supernatant. The cells were then incubated with 

trypsin/EDTA for 5 to 10 min at 37oC, for cell detachment. Following incubation, 

the trypsin activity was neutralized using culture medium. The cell suspension was 

transferred into a 15ml tube for centrifugation at 1000rpm for 5 minutes. Fresh 
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culture medium was used to re-suspend the cell pellet and an appropriate volume 

of cell suspension was transferred into a T25 or T75 flask. Cells above passage 

number of 30 were discarded.  

 

2.1.2 Cryopreservation of Cells 

 

Cell detachment through trypsinization from culture flasks was firstly carried out. 

After the centrifugation step and removal of the culture medium, the cell pellet was 

re-suspended with culture medium containing 20% FBS and 10% dimethyl 

sulphoxide (DMSO). The cell suspension was transferred into cryovials, which 

were then placed in a freezing container, Mr Frosty (Nalgene, Rochester, NY, USA). 

The freezing container will enable uniform cooling of the cryovials at a rate of 1oC 

per minute in a -80oC freezer. After an overnight storage in the -80oC freezer, the 

cryovials were placed in a liquid nitrogen storage tank for long term storage.  

 

2.1.3 Thawing of Cells 

 

Frozen vials of cells, taken out from liquid nitrogen storage tank, were thawed 

immediately. The thawed cell suspension was transferred into a 15 ml tube and re-

suspended with 5ml of culture medium. The cell suspension was next centrifuged 

at 1000rpm for 5 minutes to remove the cytotoxic, cryoprotective DMSO 

component. After disposing the culture medium supernatant, the cell pellet was re-

suspended with 5ml culture medium and transferred into a 25cm2 culture flask (T25 

flask). The cell culture was incubated at 37oC in a 5% CO2 environment.  

 

2.2 siRNA Transfection  

 

Silencing experiments were carried out using T47D and MDA-MB-231 cell lines. 

One day prior to siRNA transfection, T47D and MDA-MB-231 cells were seeded 

in 6-well plates at cell densities of 3.0 x 105 cells/well and 2.0 x 105 cells/well 

respectively. The cells were transfected with siRNA targeting the gene of interest 

(Ambion, CA, USA) or scrambled siRNA (Ambion, CA, USA) as negative control 
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using Oligofectamine transfection reagent (Invitrogen, Carlsbad, USA) following 

the manufacturer’s protocol. Cells were exposed to the siRNAs in OPTIMEM for 

8 hours, after which the medium was replaced with RPMI containing 10% FBS. 

The transfected cells were then incubated for 48 hours before subsequent assays. 

Table 2.1 and Table 2.2 show the sequences of the siRNAs specifically targeting 

the genes of interest used as well as the final siRNA concentrations used 

respectively. 

 

Table 2.1: siRNA sequences  

siRNA (Silencer Select) Sequence 

CHST3 

(Ambion) 

 

Negative Scrambled 

siRNA 

sequence 1 

Forward 5'–GAC UGG AUC CAA AAG AAC ATT–3' 

Reverse 5’–UGU UCU UUU GGA UCC AGU CTT–3' 

siRNA 

sequence 2 

Forward 5'–CAU GUA CAC CAU ACA UAG ATT–3' 

Reverse 5'–UCU AUG UAU GGU GUA CAU GTA–3' 

GPNMB 

(Ambion) 

 

Negative Scrambled 

siRNA 
Forward 5'–GGA AUA CAA CCC AAU AGA ATT–3' 

Reverse 5'–UUC UAU UGG GUU GUA UUC CTT–3' 

FLRT3 

(Ambion) 

 

Negative Scrambled 

siRNA 
Forward 5'–CAA CCA CCC UCA AUC GAG ATT–3' 

Reverse 5'–UCU CGA UUG AGG GUG GUU GTA–3' 

 

 

 

 

 

 

 

 

 

Table 2.2: Volume and concentration of reagents used for siRNA transfection 



 50 

 Reagent Volume per well (µl) 

CHST3 

(Final concentration 10nM) 

siRNA (1µM) 10 

OPTIMEM 100 

Total 110 

GPNMB  

(Final concentration 5nM) 

siRNA (1µM) 5 

OPTIMEM 105 

Total 110 

FLRT3  

(Final concentration 5nM) 

siRNA (1µM) 5 

OPTIMEM 105 

Total 110 

Master mix 

Oligofectamine 10 

OPTIMEM 100 

Total 110 

 

2.3 CHST3 Over-expression  

 

2.3.1 CHST3 Over-expression Plasmid Preparation 

 

CHST3 over-expression plasmid (OriGene, Rockville, MD, USA) and the 

corresponding pCMV6-AC-GFP empty vector (OriGene, Rockville, MD, USA) 

used as negative control were purchased. The maps of the plasmids are shown in 

Figure 2.1. 1ul of the plasmids (100ng/ul) were used for bacteria transformation 

into 50ul of DH5α competent Escherichia coli cells. The transformed DH5α 

bacteria were spread on to LB plates containing 100g/ml ampicillin. The LB plates 

were then incubated overnight at 37oC. Subsequently, colony PCR was carried out 

using CHST3 qPCR primer for the colonies containing CHST3 over-expression 

plasmid. As for colonies transformed with the empty vector, VP1.5 and XL39 

primers provided by OriGene were used for the colony PCR procedure. Upon 

confirmation of the plasmid transformation by colony PCR, the same colonies were 

picked and expanded in 5ml of LB medium containing 100ug/ml ampicillin. The 

LB/Amp culture was incubated on a shaker (200rpm) overnight at 37oC. The 

following day, bacterial stocks were preserved in glycerol and stored at -80oC. The 
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remaining bacterial culture was used for plasmid extraction using QIAprep Spin 

Miniprep kit (Qiagen, Hilden, Germany). After which, the concentrations of both 

plasmids were determined using nanodrop spectrophotometry (Thermo Scientific, 

Asheville, NC, USA). 

 

  

 

Figure 2.1: Plasmid maps for CHST3 over-expression study.  

(A) shows the plasmid map of the CHST3-over-expression plasmid, of which CHST3 gene 

is within the empty vector plasmid, pCMV-AC-GFP depicted in (B).  

 

2.3.2 CHST3 Over-expression Plasmid Transfection 

 

Plasmid transfection into two breast cancer cell lines, MCF7 and MDA-MB-231, 

were carried out using Lipofectamine 2000. Cells were first seeded onto a 6-well 

plate at cell density of 2 x 105 cells per well. Upon 80 to 90% cell confluency at the 

time of transfection, 1ug of the plasmid topped up with OPTIMEM to 100ul and 

3ul of Lipofectamine 2000 in 97ul OPTIMEM were incubated separately at room 

temperature for 5min. The two mixtures were then combined and incubated for 

20min at room temperature to allow formation of plasmid-Lipofectamine 

complexes. A total of 200ul plasmid-Lipofectamine complexes were added drop-

by-drop into 800ul OPTIMEM in each well of the 6-well plate. The transfected 

culture was then incubated at 37oC, 5% CO2 for 5 hours before the medium was 

changed to medium consisting of 10% FBS and 450ug/ml geneticin. The following 

(A) (B) 
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day, the cells were re-seeded into a 24-well plate. The medium was changed every 

2-3 days for two weeks to allow selection of cells with the over-expression plasmid 

or empty vector. After two weeks of selection, a single colony of cells was picked 

from each well and grown in a 96-well plate. Fresh medium supplemented with 

10% FBS and 450ug/ml geneticin was replaced in the well every 2-3 days. Upon 

80-90% cell confluency, the cells were subcultured into a 24-well plate and 

subsequently, 6-well plate. The over-expression efficiencies were then measured 

through qPCR. The cells were subcultured for further experiment use and for 

generation of frozen stock.   

 

2.4 RNA Extraction  

 

Total RNA was isolated from breast cancer cells using the RNeasy Mini Kit 

(Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Cells grown 

in 6-well plates were washed with PBS before adding RNA lysis buffer, consisting 

a 1:100 ratio of 1% β-mercaptoethanol:Buffer RLT, at a volume of 350ul per well. 

After one minute incubation at room temperature, a disposable cell scraper was 

used to detach the cells from the 6-well plate. The cell contents were transferred 

into microcentrifuge tubes. Homogenization was performed using needles and 

syringes. The homogenized cell lysate was then mixed with 1 volume (350ul) of 

70% ethanol. The mixture was next transferred into RNeasy MiniElute spin column. 

Centrifugation was carried out at 13,000rpm for 30 seconds. After the flow through 

was discarded, 350ul of Buffer RW1 was used to wash the membrane in the spin 

column. Centrifugation was carried out at 13,000rpm for 30 seconds. The RNA was 

subsequently treated with 10ul DNase I diluted in 70ul Buffer RDD for 15 minutes 

at room temperature, to remove any traces of DNA contamination. Prior to 

centrifugation, 350ul Buffer RW1 was added to wash the spin column membrane. 

Further washing of the column was performed using 500ul of Buffer RPE. 

Centrifugation was repeated twice to ensure no carryover of the Buffer residuals. 

For the elution step, the total RNA was eluted out in 32ul RNase-free water through 

centrifugation. The RNA concentration and purity was determined using nanodrop 
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ND-100 spectrophotometer (Thermo Scientific, Asheville, NC, USA). 2ul of the 

eluted total RNA was loaded onto the pedestal containing fibre optic cable, that is 

able to generate a spectral measurement. The RNA integrity and purity can be 

obtained from the absorbance value at A260/280 ratio. An A260/280 ratio between 

1.8 and 2.0 indicates relatively pure RNA. The total RNA was stored at -80oC for 

future use.  

 

2.5 cDNA Synthesis  

 

The synthesis of first strand cDNA was achieved through reverse transcription of 

1000ng RNA diluted in RNase-free water. The mastermix reaction consists of 50ng 

random primers, 10nM dNTP mix, 5x First Strand buffer, 0.1M DTT, 40U 

RNaseOUTTM and 1U SuperScriptTM III Reverse Transcriptase, bringing the final 

reaction volume to 20ul. SuperScriptTM III First Strand Synthesis System 

(Invitrogen, Carlsbad, CA, USA) was performed according to the manufacturer’s 

protocol and used according to the reaction conditions in Table 2.3.  

 

Table 2.3: cDNA synthesis reaction conditions 

Temperature Time 

65°C 5 min 

0°C 3 min 

25°C 10 min 

50°C 60 min 

70°C 15 min 

 

2.6 Primers  

 

PCR grade oligonucleotides specific to genes of interest were purchased from 1st 

Base (Singapore). The primers were designed using Primer 3 v.0.4.0 to span across 

introns for detection of genomic contamination. They also have optimal amplicon 

size between 100 to 200 base pairs, target all transcript variants at their coding 
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regions, and have optimal BLAST values. Table 2.4 shows the primer sequences 

used to amplify and evaluate the gene expression of interest.  

 

Table 2.4: Primer sequences targeting genes of interest 

Gene of 

Interest 
 Sequence 

Product 

Size (bp) 

CHST3 
Forward 5’ – ACGCCCTTTTCTTGGTTTTT – 3’ 

107 
Reverse 5’ – AGAGCTTGGGGAATCTGCTT – 3’ 

GAPDH 
Forward 5' – GAAGGTGAAGGTCGGAGTCAACG – 3’ 

158 
Reverse 5' – TGCCATGGGTGGAATCATATTGG – 3’ 

GPNMB 
Forward 5’ – TGTGAACACAGCCAATGTGA – 3’ 

196 
Reverse 5’ – GGGGAGATCTTTGAGGAAGG – 3’  

FLRT3 
Forward 5’ – GCTCATCTGCTCCTGCTTCT – 3’ 

127 
Reverse 5’ – AGGGGACTTGAGGATGACCT – 3’ 

 

2.7 Quantitative Real-Time Polymerase Chain Reaction  

 

Quantitative real-time PCR was performed using SYBR Green Master Mix (Qiagen, 

Hilden, Germany). The final reaction of 10ul consists of SYBR Green, 10ng of 

cDNA template, and 0.5µM of specific primers. Amplification was performed on 

the LightCycler 1.5 (Roche Diagnostics, Indianapolis, USA) following the protocol 

in Table 2.5. Normalization was calculated using GAPDH values and the relative 

expression levels were calculated through the 2-ΔΔCT formula (Livak and 

Schmittgen, 2001) as shown below.  

 

ΔCTTarget gene = CTTarget gene in treatment group – CTTarget gene in control group 

ΔCTHousekeeping gene = CTHousekeeping gene in treatment group – CTHousekeeping gene in control group 

ΔΔCT = ΔCTTarget gene –Δ CTHousekeeping gene 

Fold change = 2-ΔΔCT 
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Table 2.5: RT-PCR conditions 

 Temperature Time Cycles 

Initial denaturation 95°C 15 min - 

Denaturation 94°C 15sec 

45 Annealing 60°C 25sec 

Extension 72°C 15sec 

Hold 4°C Forever 

 

2.8 Protein Electrophoresis  

 

2.8.1 Protein Extraction  

 

Cells were washed in ice-cold PBS before adding a mix of Mammalian Protein 

Extraction Reagent (Thermos Scientific, Asheville, NC, USA), HALTTM Protease 

Inhibitor (Pierce, Illinois, USA), and EDTA (Pierce, Illinois, USA). After a minute 

incubation on ice, a disposable cell scraper was used to detach the cells. The cell 

lysates was collected into microcentrifuge tubes. Subsequently, centrifugation was 

performed at 13,000rpm for 10 minutes at 4oC to pellet the cell debris. Collected 

supernatants containing cell proteins were stored in -80oC for future use.  

 

2.8.2 Protein Quantitation 

 

Protein concentration was determined using the bicinchoninic acid (BCA) protein 

assay kit (Pierce, Illinois, USA), which also adopts colorimetric method. The basis 

behind this kit is the reduction occurrence of Cu2+ to Cu+ by protein available. 

Hence, the protein concentration would be proportional the amount of reduction 

(generation of purple coloration). Extracted protein samples were diluted and added 

to BCATM Reagent A and B (Pierce, Illinois, USA), which were mixed at a ratio of 

50:1 respectively. Millipore water was used as a blank. The mixture in a 96-well 

plate was incubated in the dark on an orbital shaker (180rpm, 30 min, 37oC). The 

absorbance values for the protein samples were obtained using a microplate reader 

(Tecan, Switzerland). Protein standard (bovine serum albumin) of different 
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dilutions were also measured of their concentrations to obtain a protein standard 

curve, which would be used to determine the protein concentrations of each sample. 

 

2.8.3 Preparation of SDS-Polyacrylamide Gel  

 

The Western blot gel was firstly cast using gel casting frames, glass plates, and 

spacers. A 10% resolving gel, that makes up the bottom three quarter of the entire 

gel, was prepared through the mixture of deionized water, 30% acrylamide mix, 

1.5M Tris at pH8.8, 10% sodium dodecyl sulfate (SDS), 10% ammonium persulfate 

(APS), and N,N,N',N'-tetramethylethylenediamine (TEMED). Isopropanol was 

used to even out the surface of the resolving gel. The gel was then left to polymerize 

for approximately 30 minutes.  

 

Following that, the gel casting stand was inverted to drain out the isopropanol. A 

5% stacking gel, which makes up the top one quarter of the entire gel, was next 

prepared using a mixture of deionized water, 30% acrylamide mix, 1.0M Tris at 

pH6.8, 10% SDS, 10% APS, and TEMED. After overlaying the stacking gel 

mixture on the resolving gel, a well comb was gently inserted into the stacking gel. 

The gel was then left to polymerize for another 30 minutes.  

 

2.8.4 Electrophoresis of SDS-Polyacrylamide Gel  

 

Protein samples at 30µg each were used; the samples were diluted in 5x SDS gel-

loading buffer, consisting of 250mM Tris-Cl (pH 6.8), 10 % SDS, 30% glycerol, 

5% dithiothretol (DTT) and 0.02% bromophenol blue. The diluted samples were 

heated at 95oC for 3 minutes. After polymerization of the SDS-polyacrylamide gel, 

the well comb was removed. Subsequently, the electrophoresis module was 

assembled. Tris-glycine buffer was used in the electrophoresis run. The protein 

samples as well as the protein ladder (Precision Plus Protein dual color marker 

(Biorad, Hercules, CA, USA)) were loaded into the wells. The gel electrophoresis 

was then allowed to run at 100V for protein separation.  
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2.8.5 Semi-Dry Electro-Transfer  

 

The separated proteins on the gel were next electro-transferred onto a polyvinyl 

difluoride (PVDF) membrane. The membrane was firstly activated through soaking 

in methanol for 10 seconds. It was next soaked in deionized water for one minute 

before soaking in transfer buffer. Additionally, two thick filter pads were pre-

soaked in the transfer buffer. After the completion of the gel electrophoresis run, 

the gel was removed from the electrophoresis module. A gel-sandwich was 

assembled using the sequence of the first filter pad at the bottom, followed by the 

PVDF membrane, gel and lastly, the second filter pad. Trapped air bubbles were 

released by rolling over the filter pad surface. The electro-transfer was carried out 

using the TransBlot Semi-Dry Transfer Cell (Biorad, Hercules, CA, USA) at 15V 

for 45 minutes.  

 

2.8.6 Western Blot  

 

Following electro-transfer, the membranes were blocked overnight at 4oC using 5% 

fat-free milk in Tris-buffered saline containing 0.05% Tween-20 (TBS-T). The next 

day, the membrane was incubated with the primary antibody of interest at 1:500 

dilution factor for 1 hour at room temperature. Primary antibodies used were anti-

CHST3 (Proteintech, Catalog No. 18242-1-AP), anti-GPNMB (R&D Systems, 

Catalog No. AF2550), anti-FLRT3 (Abcam, Catalog No. ab97267), anti-E-

cadherin (Santa Cruz, Catalog No. sc-8426), anti-β-catenin (Santa Cruz, Catalog 

No. sc-7963), anti-BAD (Cell Signaling, Catalog No. #9268), anti-phospho-BAD 

(Cell Signaling, Catalog No. #5284), anti-JAK2 (Cell Signaling, Catalog No. 

#3230), anti-phospho-JAK2 (Cell Signaling, Catalog No. #3771), anti-STAT3 

(Cell Signaling, Catalog No. #4904), anti-phospho-STAT3 (Cell Signaling, Catalog 

No. #9145), anti-β-actin (Sigma, Catalog No. A2228). After which, the membranes 

were incubated with their respective horseradish peroxidase conjugated secondary 

antibodies for 1 hour at room temperature: anti-mouse (GE Healthcare; 1:5000 

dilution) and anti-rabbit (Dako; 1:3000 dilution). The blots were developed using 

chemiluminescence substrate solution (Pierce) and visualized with an image 
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analyzer. The intensities of the protein bands were obtained through ImageJ 

software. Each protein sample was normalized against house-keeping protein β-

actin.  

 

2.9 Immunofluorescence of Breast Cancer Cells 

 

Cells were seeded onto cover slips placed in 6-well plates. After a 72-hour 

transfection period, the attached cells on the cover slips were fixed with ice-cold 

methanol or 4% paraformaldehyde for 15 minutes. The fixed cells were then 

blocked with 5% BSA in PBS. Subsequently, the primary antibody of interest was 

added and incubation was carried out for 2 hours at room temperature: anti-CHST3 

(1:100 dilution), anti-E-cadherin (1:100 dilution), and anti-β-catenin (1:100 

dilution). Specific secondary antibody incubation was next carried out for 1 hour at 

room temperature at 1:400 dilution. The cover slips with the stained cells were 

mounted onto glass slides using DAPI-containing mounting medium (DAKO). 

Fluorescence microscopy was used to view the fluorescent cells.  

 

Image J software (National Institutes of Health, USA) was used to quantify the 

immunofluorescence level. The fluorescence intensity of the targeted protein was 

quantified for each cell. Background intensity was subtracted off the initial intensity 

score. The intensity was averaged out against total number of cells quantified.  

 

2.10 Functional Analysis of CHST3 in Breast Cancer Cells 

 

2.10.1 Cell Migration and Invasion Assays 

 

Cell migration and invasion were assessed using 24-well transwell system (8um 

pore size) with Transwell migration chambers (BD Biosciences, CA, USA) and 

Matrigel chambers (BD Biosciences, CA, USA) respectively. The chambers were 

firstly hydrated with culture medium for 1 hour at 37oC. The culture medium was 

aspirated out prior to cell seeding. Cells were seeded into the chambers at a cell 

density of 5 x 104 cells/well for migration chambers and 1 x 105 cells/well for 
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Matrigel chambers, using 0.2ml of serum-free medium. A total of 0.6ml medium 

containing 20% FBS was added below the chamber to allow cell migration/invasion 

via chemotaxis. After a 24-hour incubation at 37oC in 5% CO2 atmosphere, cells on 

the transwells were fixed with methanol for 15 minutes and stained with 0.5% 

crystal violet for 30 minutes. Non-migrated cells inside the chamber were removed 

using a cotton swab. Cells that had migrated/invaded to the underside of the 

membrane were counted in five different fields under light microscope.  

 

2.10.2 Cell Proliferation Assay 

 

To evaluate cell proliferation, cultured cells was first serum-starved (using culture 

medium without FBS) for 24 hours to induce G1 cell cycle phase arrest in all cells. 

After which, the serum-free medium was replaced with culture medium 

supplemented with 10% FBS to allow the cell growth. Subsequently, after 48 hours, 

cell proliferation was evaluated using CellTiter 96® AQueous One Solution Cell 

Proliferation Assay kit (Promega, Madison, WI, USA), which is a colorimetric 

method used to analyze the amount of viable cells in proliferation. The kit utilizes 

a tetrazolium compound or more commonly known as MTS. Mitochondrial 

dehydrogenase from viable cells will bioreduce the yellow-colored MTS compound 

into purple-caolored formazan. Hence, the amount of formazan formed would be 

proportional to the amount of living cells. Following the manufacturer’s protocol, 

cells were incubated with MTS solution and culture medium at a ratio of 1:5 for 3 

hours at 37oC before the absorbance level was measured at 490nm using a plate 

reader (Tecan, Switzerland).  

 

2.10.3 Cell Adhesion Assay 

 

Collagen and fibronectin were used to coat the wells of 96-well plates at final 

concentration of 20µg/ml. Cells were seeded into the coated plates at cell density 

of 5 x 104 cells/well and incubated for 30 min. After which, cells were washed twice 

with PBS to remove non-adherent cells. The amount of remaining cells was 

measured using CellTiter 96® AQueous One Solution Cell Proliferation Assay kit, 
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as mentioned in Section 2.10.2. Absorbance level was assessed at 490nm using a 

plate reader (Tecan, Switzerland).  

 

2.10.4 Cell Cycle Assay 

 

Cell cycle analysis (Cunningham, 1994) was carried out using a flow cytometer 

(Becton Dickinson, NJ, USA). Post 48-hour siRNA transfection, the culture 

medium was first collected into 15ml tubes (to collect the dead cells).  The culture 

cells were next detached from the well through trypsinization. The cells were 

transferred into the corresponding 15ml tubes. The collected dead and live cells 

were centrifuged at 1000rpm for 5min. After the supernatant was discarded, the 

cells were washed with PBS and centrifuged. This washing step was repeated to 

allow removal of the culture medium. After which, the pelleted cells were 

resuspended in 500ul of PBS. The cell suspension was added drop-by-drop into a 

new 15ml tube containing 4.5ml of ice cold ethanol. The cells were then left 

overnight at 4oC for fixation process.  

 

The following day, the tubes were centrifuged. The pelleted cells were then washed 

with PBS and centrifuged twice to remove the ethanol. The cells in each tube were 

subsequently resuspended in a 1ml cocktail containing propidium iodide (1mg/ml), 

PBS, Triton X-100 (0.1%), and RNase A. The propidium iodide-stained DNA of 

the fixed cells were measured using the Dako Cytomation Cyan LX (Dako, CA, 

USA) flow cytometer with laser excitation at 488nm wavelength. Analysis was 

performed comparing the DNA content of the silenced and control groups at 

different cell cycle phases.  

 

2.10.5 Cell Apoptosis Assay 

 

Caspase 3/7 assay kit (Promega, Madison, WI, USA) was used to evaluate cell 

apoptosis. Cells were seeded into a black 96-well plate at 8 x 103 cells/well and 

incubated for 48 hours at 37oC. The assay solution was then added to the cell culture 

and absorbance was measured using a plate reader (Tecan, Switzerland).  
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2.10.6 Statistical Analyses 

 

Results were performed with at least triplicates from one experiment set or two 

independent experiment sets and data obtained were expressed as mean ± standard 

error mean (SEM). The student’s t-test (using GraphPad Prism 5.0) was used to 

perform statistical analysis on experiments with two different treatment groups. For 

experiments with more than two treatment groups, 1-way ANOVA was utilized. P-

values of less than 0.05 were deemed as statistically significant, with p-values < 

0.05, < 0.01, and < 0.001 represented as *, **, and *** respectively. All error bars 

shown on graphs represent SEM.  

 

2.11 Immunohistochemistry of Human Breast Tissues 

 

2.11.1 Tissue Specimens 

 

Tissue microarray (TMA) slides consisting of 255 IDC cases and 77 normal ductal 

tissue cases were obtained from the Department of Pathology, Singapore General 

Hospital. Clinicopathological parameters of the cases were acquired for statistical 

analyses, inclusive of patients’ age, tumor size, histological grade of the tumor, 

lymphovascular invasion, stage of lymph node metastasis, ER status, PR status, and 

HER2 status. The age of the patients ranged from 23 to 89 years old, with a mean 

of 56.1 years and a median of 55.5 years. As for patient follow-up, the follow-up 

period ranged from 0 to 175.5 months. Ethics approval for the project was obtained 

from the Institutional Review Board, Singapore General Hospital.  

 

2.11.2 Immunohistochemistry 

 

 

Briefly, the TMA slides were de-paraffinized in clearene and re-hydrated through 

a graded series of ethanol. Endogenous peroxidase activity was quenched with 3% 

hydrogen peroxide for 30 minutes. The TMA slides were then blocked with goat 

serum (DAKO) for 1 hour prior to overnight incubation at 4oC with the primary 

antibodies (CHST3 antibody from Proteintech, FLRT3 antibody from Abcam) 

using 1:100 dilution factor. The following day, the secondary antibody (DAKO 
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Polymer Kit) was added and incubated for 1 hour at room temperature. The tissue 

sections on the TMA were visualized using diaminobenzidine as the substrate and 

counterstained with Shandon’s haematoxylin. The stained TMA sections were 

assessed by two independent blinded observers. 

 

2.11.3 Evaluation of Staining Intensities 

 

 

The staining intensities of the epithelial components in the IDC tissues were noted 

as: 0 (no staining), 1+ (weak), 2+ (moderate), and 3+ (strong). The percentage of 

cells that were stained was also recorded. The figures were converted into weighted 

average score (WAI) using the following equation, of which the total of different 

staining intensities multiplied with the percentage of each intensity are divided 

against percentage of positively stained area (Lo et al., 2011). WAI score was 

utilized in this study as it considers the staining intensities of the protein expression 

of interest in the breast tissues studied.  

 

𝑊𝐴𝐼 =

[
(% 𝑜𝑓 𝑛𝑜 𝑠𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥 0) + (% 𝑜𝑓 𝑤𝑒𝑎𝑘 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑥 1)

+(% 𝑜𝑓 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑥 2) + (% 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑥 3)
]

% 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙𝑦 𝑠𝑡𝑎𝑖𝑛𝑒𝑑 𝑎𝑟𝑒𝑎
 

 

2.11.4 Selection of Cut-Off Score 

 

 

The cut-off score was determined based on the median intensity and receiver 

operating characteristic (ROC) curve analysis. Selecting the cut-off score from 

median or mean would allow a better selection of a representative score for the 

cohort of patients studied. As the staining intensity values follow a skewed 

distribution, the median intensity was selected as the cut-off score to represent the 

average expression level in the patients’ breast tissues.  

 

ROC curve analysis (staining intensity against tissue type – normal and malignant) 

was also performed to consider both sensitivity and specificity of the median 

intensity. Maximum sensitivity and specificity are signified from the score being 
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closer to the curve following the left hand border and then the top border of the 

ROC curve space. The area under the ROC curve will depict the discriminatory 

power of the biomarker with values of 0.5 indicating lower power and value nearer 

to 1.0 indicating higher power (Greiner et al., 2000, Zweig and Campbell, 1993).  

 

2.11.5 IHC Statistical Analysis 

 

 

Statistical analyses were carried out using SPSS Statistics 17 software (SPSS). 

Associations between the immunostaining in the IDC tissues and various 

clinicopathological parameters were analyzed using Fisher’s Exact and Kendall 

Tau’s tests. In addition, Kaplan Meier and Cox regression analyses were performed 

to evaluate possible correlations between the immunostaining in the IDC tissues 

with patients’ survival outcome. Disease-free survival (DFS), overall survival (OS), 

and survival after recurrence (SAR) durations were used for the survival analyses. 

DFS and OS define the duration from date of diagnosis to the date of first tumor 

recurrence and death respectively. SAR describes the duration from the date of first 

tumor recurrence to date of death. In addition, patient cases that did not reach the 

defined end-points of interest (first tumor recurrence and death) were censored at 

the last follow-up date. Statistical significance was defined when p-value was less 

than 0.05. 

 

2.12 Genome-wide Expression Profiling using Microarray Gene Chip 

 

2.12.1 Microarray Processing using Affymetrix Human Gene U133 Plus 2.0 

Array 

 

Total RNA were extracted from cultured cells using RNeasy Mini Kit. The RNA 

concentration and purity (260/280 OD) were measured by nanodrop. The silencing 

or over-expression efficiency was checked through qPCR before the RNA samples 

were sent to Origen (Origen, Singapore) for microarray processing. Briefly, the 

quality of the RNAs was further evaluated using an Agilent Bioanalyzer. The RNA 

samples were then processed based on Affymetrix recommended protocol for 
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whole transcript analysis. 300ng of total RNA was reverse transcribed to cDNA, 

which was used as a template to produce cRNA. The cRNA was then converted to 

single stranded DNA, which was biotin-labeled, fragmented, and hybridized to the 

Affymetric Human Gene U133 Plus 2.0 Array for 16 hours at 45oC with rotation at 

60rpm. Subsequently, the array was washed and stained using FS450_0007 fluidics 

protocol and visualized using Affymetrix 30007G scanner. Hybridization 

efficiency was inspected through the scanned images. CEL files generated from 

GeneChip Operating Software (GCOS) were imported into Expression Console 

software for array quality control. RMA normalization was carried out on the 

samples to create a quality control metrics.  

 

2.12.2 Microarray Gene Expression Analysis 

 

Genespring 7.0 (Silicon Genetics, CA, USA) and Expression Console 1.1.1 

(Affymetrix, CA, USA) softwares were used to analyze the microarray gene 

expression. Genespring 7.0 was used to normalize the CEL files generated from the 

Human Gene U133 Plus 2.0 Array to the median intensity of the same array. 

Following that, the median value of genes in the control samples was used to 

normalize the intensity of corresponding genes in the treatment group. Algorithmic 

model (RMA) was performed in Genespring to process the CEL files.  

 

Expression Console 1.1.1 summarized the probe set and checked the initial data 

quality. Algorithmic model (RMA) was also used for probe summarization and 

gene expression analysis. Upon completion of the data processing, CHP files are 

generated and intensities of all probe sets (genes) were reported after normalization.  

 

2.12.3 Filtering Criteria for Gene Selection 

 

After obtaining the intensities of the probe sets, filtering was carried out to select 

genes for further study.  

Filter 1: Fold change of at least 2 for relative gene expression was considered 
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Filter 2: p-value below 0.05 from unpaired t-test was considered after comparing 

the intensities of control and treated groups. 

Filter 3: Overlapped genes obtained from softwares used with different algorithmic 

models were selected. 

 

2.12.4 Gene Pathway Analysis 

 

Extensive literature review was carried out to find relevant gene(s) to justify the 

phenotypic changes observed upon silencing or over-expression of CHST3. The 

functional linkage between CHST3 and potential downstream genes was validated 

through experiments.  
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3 RESULTS 

 

3.1 Expression Analysis of CHST3 in Human Breast Cells  

 

As CHST3 has not been studied in breast cancer, the expression level of CHST3 in 

various breast cell lines (MCF-12A, MCF7, T47D, and MDA-MB-231) was firstly 

evaluated through immunofluorescence and western blot using a CHST3-specific 

antibody. As shown in Figure 3.1, it was observed that normal breast cells, MCF-

12A, have a higher expression level of CHST3 as compared to that of the breast 

cancer cell lines (MCF7, T47D and MDA-MB-231). Hence, it is notable that the 

differences in CHST3 expression may be associated with breast tumor progression 

and that CHST3 may be involved in alleviating metastatic and aggressive 

characteristics. 
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Figure 3.1: CHST3 expression in breast cells 

Increased CHST3 expression was observed in normal breast cells, followed by Grade 1 

breast cancer cells, and lastly Grade 3 breast cancer cells. (A) Immunofluorescence staining 

and (B) Western Blot analysis depict the protein expression level of CHST3 in the different 

breast cell lines. For the immunofluorescence staining, CHST3 expression is expressed in 

green fluorescence as an anti-CHST3 primary antibody and a secondary antibody 

conjugated with FITC are used, while the nuclei staining are shown in blue DAPI. In the 

Western Blot analysis, CHST3 expression levels were normalized against housekeeping 

protein, β-actin. From the graphs comparing (C) immunofluorescence staining and (D) 

Western Blot analysis, MCF-12A normal breast cells have increased CHST3 expression 

against MCF7, T47D and MDA-MB-231 breast cancer cell lines. Data shown was from 

one independent experiment performed with three biological replicates for each cell line. 

* P < 0.05; ** P < 0.01; *** P < 0.001 compared with MCF12A cell line.  
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3.2 Functional Analysis of CHST3 in Human Breast Cancer Cells 

 

With reference to the CHST3 expression study in breast cells, of which higher 

CHST3 expression level was observed in normal breast cells, followed by Grade 1 

breast cancer cells and lastly Grade 3 breast cancer cells, it is hypothesized that the 

cells will be more metastatic and proliferative after down-regulation of CHST3 and 

vice versa, that is the cells will be less metastatic and proliferative after over-

expression of CHST3. To investigate the functional roles of CHST3 in breast cancer 

cells, silencing and over-expression studies of CHST3 were carried out. The 

execution of both silencing and over-expression experiments would validate the 

observations obtained from both experiment sets.  

 

In the silencing experiments, CHST3 was silenced in two different breast cancer 

cell lines, namely T47D (Grade 1 breast cancer cells) and MDA-MB-231 (Grade 3 

breast cancer cells), to evaluate if the silencing of CHST3 in different grades of 

breast cancer cells will lead to similar or different functional behavior changes. 

Also, CHST3 was silenced in the breast cancer cells using two different siRNA 

sequences that specifically target the gene itself. Each sequence is essential to 

validate the phenotypic outcomes observed upon silencing of CHST3 using the 

other sequence.  

 

For the over-expression studies, two breast cancer cell lines namely MCF7 (Grade 

1 breast cancer cells) and MDA-MB-231 (Grade 3 breast cancer cells) were used. 

A different breast cancer cell line, MCF7, was chosen to evaluate if CHST3 has 

similar or different functional roles in different breast cancer cell lines. Additionally, 

two over-expression clones for each cell line were generated to confirm results that 

were observed.  
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3.2.1 Silencing and Over-expression Efficiencies of CHST3 

 

Prior to carrying out the various phenotypic assays, the silencing and over-

expression efficiencies of CHST3 at both the mRNA and protein levels were firstly 

determined. In the silencing experiments, CHST3 was silenced through transient 

transfection in T47D and MDA-MB-231 cells using Silencer Select siRNA 

accompanied by delivery reagent, Oligofectamine. From the qPCR results, CHST3 

mRNA was at least 93.7% and 85.6% silenced compared to the scrambled siRNA 

groups in T47D cells (Figure 3.2A) and MDA-MB-231 cells (Figure 3.3A) 

respectively. From the immunocytochemistry and western blot results, CHST3 

protein was at least 46.4% and 37.3% silenced in comparison to the scrambled 

siRNA groups in T47D cells (Figure 3.2B-E) and MDA-MB-231 cells (Figure 

3.3B-E) respectively.  

 

For the over-expression experiments, stable over-expression of CHST3 was carried 

out in MCF7 and MDA-MB-231 cells using over-expression plasmids 

accompanied by delivery reagent, Lipofectamine, and antibiotic for selection, 

Geneticin.  The qPCR analysis showed CHST3 mRNA was over-expressed by at 

least 17.8 folds and 1.7 folds compared to the empty vector groups in MCF7 cells 

(Figure 3.4B) and MDA-MB-231 cells (Figure 3.5B) respectively. Over-expression 

of CHST3 protein levels were measured from immunofluorescence experiments. 

CHST3 protein was over-expressed by at least 2.3 folds and 2.7 folds against the 

empty vector groups in MCF7 cells (Figure 3.4A and C) and MDA-MB-231 cells 

(Figure 3.5 A and C) respectively.  
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Figure 3.2: Silencing efficiencies of CHST3 in T47D cells 

Silencing efficiencies of CHST3 mRNA and protein levels were obtained for both siRNA 

sequences specifically targeting CHST3. In the qPCR analysis (A), the mRNA expression 

levels of GAPDH house-keeping genes were used for normalization. (D) 

Immunocytochemistry staining and (E) Western Blot analysis depict the silencing 

efficiencies of CHST3 protein expression level in T47D cells. Cells in the 

immunocytochemistry experiment was captured using differential interference contrast 

(DIC) to quantify both staining intensity and nuclei. CHST3 expression is observed in both 

nuclei and cytoplasm of the cells. In the Western blot analysis, the protein expression of 

CHST3 was normalized against house-keeping protein, β-actin. Graphs (B) and (C) show 

the silencing efficiencies of CHST3 protein observed in immunocytochemistry and 

Western blot respectively.  Data shown were each from one independent experiment set 

performed with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared 

with scrambled siRNA group.  
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Figure 3.3: Silencing efficiencies of CHST3 in MDA-MB-231 cells  

Silencing efficiencies of CHST3 mRNA and protein levels were obtained for both siRNA 

sequences specifically targeting CHST3. In the qPCR analysis (A), the mRNA expression 

levels of GAPDH house-keeping genes were used for normalization. (D) 

Immunocytochemistry staining and (E) Western Blot analysis depict the silencing 

efficiencies of CHST3 protein expression level in MDA-MB-231 cells. Cells in the 

immunocytochemistry experiment was captured using differential interference contrast 

(DIC) to quantify both staining intensity and nuclei. CHST3 expression is observed in both 

nuclei and cytoplasm of the cells. In the Western blot analysis, the protein expression of 

CHST3 was normalized against house-keeping protein, β-actin. Graphs (B) and (C) show 

the silencing efficiencies of CHST3 protein observed in immunocytochemistry and 

Western blot respectively. Data shown were each from one independent experiment set 

performed with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared 

with scrambled siRNA group.  
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Figure 3.4: Over-expression efficiencies of CHST3 in MCF7 cells 

Over-expression efficiencies of CHST3 mRNA and protein levels were obtained for both 

over-expression clones against the empty vector clones. In the qPCR analysis (B), the 

mRNA expression levels of GAPDH house-keeping genes were used for normalization. 

(A) Immunofluorescence staining depict the over-expression efficiencies of CHST3 

protein expression level in MCF7 cells. The immunostaining was observed in both nucleus 

and cytoplasm of the cells. Graph (C) shows the over-expression analysis of CHST3 

protein observed in the immunofluorescence experiment.  Data shown in (B) were each 

from one independent experiment performed with three biological replicates. Data shown 

in (C) were from two independent experiments performed with three biological replicates 

for each experiment set. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with empty 

vector group.  
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Figure 3.5: Over-expression efficiencies of CHST3 in MDA-MB-231 cells 

Over-expression efficiencies of CHST3 mRNA and protein levels were obtained for both 

over-expression clones against the empty vector clones. In the qPCR analysis (B), the 

mRNA expression levels of GAPDH house-keeping genes were used for normalization. 

(A) Immunofluorescence staining depict the over-expression efficiencies of CHST3 

protein expression level in MDA-MB-231 cells. The immunostaining was observed in both 

nucleus and cytoplasm of the cells. Graph (C) shows the over-expression analysis of 

CHST3 protein observed in the immunofluorescence experiment.  Data shown in (B) were 

each from one independent experiment performed with three biological replicates. Data 

shown in (C) were from two independent experiments performed with three biological 

replicates for each experiment set. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with 

empty vector group.  
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3.2.1.1 CHST7 Expression after Silencing CHST3 

 

Apart from CHST3, CHST7 is also known to transfer the sulfate group from PAPS 

to the 6th carbon of the galactosamine unit. Hence, before proceeding to the 

phenotypic assays, CHST7 was examined through qPCR to observe if its expression 

level was affected after silencing CHST3. From the qPCR results shown in Figure 

3.6, CHST7 expression was similar in both scrambled siRNA and CHST3-silenced 

groups, indicating that CHST7 was not affected when CHST3 was silenced in the 

breast cancer cells. 

 

Figure 3.6: CHST7 expression in CHST3-silenced T47D and MDA-MB-231 cells 

The mRNA expression level of CHST7 was obtained after silencing of CHST3 in (A) T47D 

and (B) MDA-MB-231 cells. GAPDH mRNA expression level was used as the house-

keeping gene for normalization. CHST7 level was not affected by the down-regulation of 

CHST3 in both cell lines. Data shown were each from one independent experiment 

performed with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared 

with scrambled siRNA group.  
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3.2.1.2 CHST3 affects Cellular Behaviors in Breast Cancer Cells  

 

Upon obtaining the silencing and over-expression efficiencies at the mRNA and 

protein levels, phenotypic assays – migration, invasion, adhesion, proliferation, cell 

cycle, and apoptosis assays – were performed to evaluate the functional roles that 

CHST3 may have in breast cancer cells. In the silencing experiments, the 

phenotypic assays were carried out post 48-hour transfection to investigate the 

effects of silencing CHST3. On the other hand, for the over-expression experiments, 

the phenotypic assays were performed after stable over-expression of CHST3 in the 

cells.  

 

3.2.1.2.1  CHST3 affects Cell Migration in Breast Cancer Cells  

 

Acquisition and enhancement of cell migration through the basement membrane is 

one of the main characteristics of malignant cells. To investigate if a change in 

CHST3 expression level in breast cancer cells would result in a change in tumor 

progression, cell migratory ability was evaluated after silencing and over-

expression of CHST3 using transwell migration chambers. After silencing of 

CHST3 in T47D (Figure 3.7A and C) and MDA-MB-231 (Figure 3.7B and D) cells, 

cell migration level was observed to be increased compared to the scrambled 

siRNA group. On the other hand, after over-expression of CHST3 in MCF7 (Figure 

3.8A and C) and MDA-MB-231 (Figure 3.8B and D) cells, decreased in cell 

migration levels for both cell lines was observed in comparison to the empty vector 

groups.  
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Figure 3.7: Cell migration level after silencing CHST3  

Increase in cell migration was observed in the CHST3-silenced groups compared to the 

scrambled siRNA group after down-regulation of CHST3 in (A and C) T47D and (B and 

D) MDA-MB-231 cells. Data shown were each from two independent experiment sets 

performed with three biological replicates for each experiment set. * P < 0.05; ** P < 0.01; 

*** P < 0.001 compared with scrambled siRNA group.  
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Figure 3.8: Cell migration level after over-expression of CHST3  

Decrease in cell migration was observed in the CHST3-over-expressed groups compared 

to the empty vector groups after up-regulation of CHST3 in (A and C) MCF7 and (B and 

D) MDA-MB-231 cells. Data shown in (C) were each from one independent experiment 

performed with three biological replicates. Data shown were each from two independent 

experiment sets performed with three biological replicates for each experiment set. * P < 

0.05; ** P < 0.01; *** P < 0.001 compared with empty vector group.  
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3.2.1.2.2 CHST3 affects Cell Invasion in Breast Cancer Cells  

 

Acquisition of cell invasion into the basement membrane and extracellular matrix 

is another main phenotypic behavior of malignant cells. Cell invasion ability was 

evaluated after silencing and over-expression of CHST3 in breast cancer cells, using 

matrigel-coated transwell chamber.  After silencing of CHST3 in T47D (Figure 

3.9A and C) and MDA-MB-231 (Figure 3.10B and D) cells, cell invasion level was 

observed to be increased compared to the scrambled siRNA group. On the other 

hand, after over-expression of CHST3 in MCF7 (Figure 3.10A and C) and MDA-

MB-231 (Figure 3.10B and D) cells, decreased in cell invasion levels for both cell 

lines was observed in comparison to the empty vector groups. 

 

Figure 3.9: Cell invasion level after silencing CHST3  

Increase in cell invasion was observed in the CHST3-silenced groups compared to the 

scrambled siRNA group after down-regulation of CHST3 in (A and C) T47D and (B and 

D) MDA-MB-231 cells. Data shown were from one independent experiment set performed 

with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with 

scrambled siRNA group.  
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Figure 3.10: Cell invasion level after over-expression of CHST3  

Decrease in cell invasion was observed in the CHST3-over-expressed groups compared to 

the empty vector groups after up-regulation of CHST3 in (A and C) MCF7 and (B and D) 

MDA-MB-231 cells. Data shown were each from one independent experiment set 

performed with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared 

with empty vector group.  
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3.2.1.2.3 CHST3 affects Cell Adhesion in Breast Cancer Cells  

 

Cell adhesion to the basement membrane and extracellular matrix is an important 

component for malignant cells’ capability to migrate and invade into the 

surrounding tissues as well as to other organs in the body. The effects of CHST3 

down-regulation and up-regulation on breast cancer cells’ adhesion ability were 

evaluated. From the silencing experiment, it was observed that cell adhesion, using 

fibronectin- and collegen-coated plates, decreased compared to the scrambled 

siRNA group in both T47D (Figure 3.11A and C) and MDA-MB-231 (Figure 3.11B 

and D) cells. On the other hand, in the over-expression experiment,  cell adhesion 

increased in comparison to the empty vectors groups in both MCF7 (Figure 3.12A 

and C) and MDA-MB-231 (Figure 3.12B and D).  

 

 
Figure 3.11: Cell adhesion level after silencing CHST3  

Decreases in cell adhesion was observed in the CHST3-silenced groups compared to the 

scrambled siRNA group after down-regulation of CHST3 in (A and C) T47D and (B and 

D) MDA-MB-231 cells, using fibronectin- and collagen-coated plates. Data shown were 

each from two independent experiment sets performed with three biological replicates for 

each experiment set. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with scrambled 

siRNA group.  
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Figure 3.12: Cell adhesion level after over-expression of CHST3  

Increase in cell adhesion was observed in the CHST3-over-expressed groups compared to 

the empty vector groups after up-regulation of CHST3 in (A and C) MCF7 and (B and D) 

MDA-MB-231 cells, using fibronectin- and collagen-coated plates. Data shown were each 

from two independent experiments performed with three biological replicates for each 

experiment set. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with empty vector group.  

  



 83 

3.2.1.2.4 CHST3 affects Cell Proliferation in Breast Cancer Cells  

 

Increase in cell proliferation and aggressiveness is another hallmark of tumor cells. 

Proteoglycans have been reported to play a role in cell proliferation through their 

binding to growth factors, initiating cell growth and multiplication. The effects of 

CHST3 silencing and over-expression in breast cancer cells was investigated, using 

a tetrazolium reagent. After down-regulation of CHST3, cell proliferation was 

observed to be slightly increased in T47D (Figure 3.13A) and MDA-MB-231 

(Figure 3.13C) cells. Contrary to this, over-expression of CHST3 gave decreases in 

cell proliferation in MCF7 (Figure 3.14A and Figure 3.14B).   As small changes 

were observed in cell proliferation assay using MTS solution, cell cycle analysis 

was performed through flow cytometry using detergent-based method and 

propidium iodide. After down-regulation of CHST3, changes was observed at the 

sub-G1 phase, indicating possible cell death occurrence as shown for T47D (Figure 

3.13B) and MDA-MB-231 (Figure3.13D) cells. However, only T47D cells showed 

changes at the S phase that is small reductions in DNA replication phase was 

observed in both CHST3-silenced groups compared to the scrambled siRNA group.     
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Figure 3.13: Cell proliferation level after silencing CHST3  

Slight increases in cell proliferation were observed in the CHST3-silenced groups 

compared to the scrambled siRNA group after down-regulation of CHST3 in (A) T47D and 

(C) MDA-MB-231 cells. Decreases in cell death were observed in the CHST3-silenced 

groups compared to the scrambled siRNA groups after silencing of CHST3 in (B) T47D 

and (D) MDA-MB-231 cells. Only T47D cells showed decreases in cell number in S phase 

of the cell cycle. For cell proliferation performed using MTS solution, data shown were 

each from two independent experiments performed with three biological replicates for each 

experiment set. For flow cytometry, data shown were from one independent experiment 

performed with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared 

with scrambled siRNA group. 
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Figure 3.14: Cell proliferation level after over-expression of CHST3  

Decreases in cell proliferation were observed in the CHST3-over-expressed groups 

compared to the empty vector groups after up-regulation of CHST3 in (A) MCF7 and (B) 

MDA-MB-231 cells. Data shown were from two independent experiments sets performed 

with three biological replicates for each experiment set. * P < 0.05; ** P < 0.01; *** P < 

0.001 compared with empty vector group.  

 

3.2.1.2.5 CHST3 affects Cell Apoptosis in Breast Cancer Cells  

 

As changes in cell proliferation were observed after regulating CHST3 expression, 

cell apoptosis assay was carried out, specifically looking at Caspase3/7 levels.  

After silencing CHST3, cell apoptosis was observed to be decreased in T47D 

(Figure 3.15A) and MDA-MB-231 (Figure3.15B) cells. 

 

 

Figure 3.15: Cell apoptosis level after silencing CHST3  

Decreases in cell apoptosis were observed in the CHST3-silenced groups compared to the 

scrambled siRNA group after down-regulation of CHST3 in (A) T47D and (B) MDA-MB-

231 cells. Data shown were each from one independent experiment performed with three 

biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with scrambled 

siRNA group. 
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3.3 Signaling Pathways Affected through Silencing of CHST3  

 

From the functional analyses performed, results suggest that CHST3 has a tumor 

suppressing role in breast cancer cells. To understand the pathways involved for 

CHST3 that could have potentially regulated the phenotypic behavioral changes, 

several proteins from different signaling pathways associated with tumorigenesis 

were chosen for evaluation of their expression level after silencing of CHST3. The 

proteins investigated are involved in epithelial-mesenchymal transition, JAK-

STAT pathway, and apoptosis pathway.      

 

3.3.1 CHST3 affects Proteins involved in Epithelial –Mesenchymal 

Transition  

 

The metastatic capability of breast cancer cells was observed to be enhanced by 

down-regulation of CHST3 and suppressed by up-regulation of CHST3, suggesting 

the possibility of CHST3 pathway in the epithelial-mesenchymal transition (EMT) 

process that occurs in cancer cells for the initiation of metastasis. In general, cancer 

cells will lose cell-cell adhesion as well as gain invasive and migratory 

characteristics. A wide range of well-established EMT molecules are involved in 

the EMT process including E-cadherin and ZO-1 (for the breakdown of cell-cell 

adhesion), β-catenin and Snail (for the regulation and localization of transcription 

factors and repressors), as well as cytokeratin and vimentin (for the changes in the 

cytoskeleton organization) (Quaggin and Kapus, 2011). The expression levels of 

two epithelial markers - E-cadherin and β-catenin – were examined in this study.  

 

E-cadherin belongs to the cadherin transmembrane glycoprotein family, which 

regulate cell-cell adhesion, making cells cohesive and stably immotile (Guarino et 

al., 2007, Kemler, 1993, Takeichi, 1991, Shiozaki et al., 1996). It interacts with 

catenins including β-catenin, forming cadherin/catenin complexes that anchor to 

actin filaments of the cytoskeleton (Aberle et al., 1996, Lu et al., 2012). The 

formation of the complexes is crucial for optimal epithelial cell function and tissue 

integrity (Zappulli et al., 2012). The decreased expression of E-cadherin is possibly 



 87 

the most crucial event of EMT that leads to changed phenotypic behavior of the 

tumor cells (Schmalhofer et al., 2009, Dubois-Marshall et al., 2011). Both E-

cadherin and β-catenin expression is dys-regulated by genetic and epigenetic events 

in various cancers (including breast, prostate, lung, liver, and kidney cancers). This 

hence leads to loss of epithelial phenotype, metastases and poor survival outcome 

(Zappulli et al., 2012, Simic et al., 2013). E-cadherin plays significant role as a 

predictor of primary tumor disease-free survival and distant disease-free survival. 

It is also an independent prognostic marker in predicting reduced survival duration 

for breast cancer patients with lymph node positive status (Park et al., 2007). In 

IDC, loss of E-cadherin and β-catenin expression is reported. It has hence been 

postulated that down-regulation of E-cadherin promotes the release of membrane-

bound β-catenin into the cytosol, enhancing the tumor progression promoting Wnt 

signaling (Prasad et al., 2009). Canonical Wnt signaling is one of the key signaling 

pathways involved in the promotion of metastatic behavior in breast cancer (Prasad 

et al., 2007). 

Upon silencing of CHST3 in T47D cells, the expression levels of E-cadherin and 

β-catenin were observed to be significantly reduced as shown in Figures 3.16 and 

3.17 respectively. 
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Figure 3.16: E-cadherin expression after silencing CHST3  

Reductions in E-cadherin expression level were observed in the CHST3-silenced groups 

compared to the scrambled siRNA group after down-regulation of CHST3 as shown in the 

(A) immunofluorescence pictures and (B) graph comparing the fluorescence intensities of 

each group. Data shown were from one independent experiment performed with three 

biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with scrambled 

siRNA group. 
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Figure 3.17: β-catenin expression after silencing CHST3  

Reductions in β-catenin expression level were observed in the CHST3-silenced groups 

compared to the scrambled siRNA group after down-regulation of CHST3 as shown in the 

(A) immunofluorescence pictures and (B) graph comparing the fluorescence intensities of 

each group. Data shown were from one independent experiment performed with three 

biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with scrambled 

siRNA group. 
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3.3.2 CHST3 affects Proteins involved in JAK/STAT Pathway  

 

EMT also acts through the activation of the JAK/STAT pathway, affecting cancer 

cell proliferation, migration and invasion. The well-established JAK/STAT 

signaling pathway is an evolutionarily conserved cascade that regulates cellular 

processes including cell migration and survival (Ekas et al., 2010, Arbouzova and 

Zeidler, 2006). It has been well-documented to be mis-regulated in various cancers 

including ovarian cancer, pancreatic cancer, and breast cancer (Spangenburg and 

Booth, 2002, Burke et al., 2001, Toyonaga et al., 2003), It is one of the key drivers 

for breast tumor aggressive progression and metastasis (Ling et al., 2013).  

 

In this study, JAK2/STAT3 proteins from the JAK/STAT pathway are observed 

through Western Blot analyses after silencing of CHST3 in T47D breast cancer cells. 

Janus kinase 2 (JAK2) is a cystolic non-receptor tyrosine kinase, that is widely 

expressed and localized at the intracellular domains of cytokine receptors (Sayyah 

et al., 2011, Wagner and Schmidt, 2011, Gilbert et al., 2005). When phosphorylated, 

JAK2 is activated and undergoes dimerization (Sayyah et al., 2011). Despite having 

numerous phosphorylation sites, auto-phosphorylation of Tyr1007 is essential for 

JAK2 activation, function, and regulation (Nam et al., 2012). JAK2 plays vital roles 

in mammary gland development and breast cancer tumor progression (Burke et al., 

2001). A known downstream component of JAK2 is signal transducer and activator 

of transcription 3 (STAT3), a transcription factor that is also commonly expressed 

in cells and tissues (Gilbert et al., 2005, Yang et al., 2012). STAT3 is activated via 

phosphorylation by JAK2 at its primary site Tyr705, leading to the dimerization of 

STAT3 through the SH2 domain interaction (Gilbert et al., 2005, Wagner and 

Schmidt, 2011, Behera et al., 2010, Wakahara et al., 2012). From the cytoplasm, 

active STAT3 dimers will translocate into the nucleus and promote the transcription 

of specific genes, affecting cellular behaviors including cell proliferation and 

metastasis (Ekas et al., 2010, Arbouzova and Zeidler, 2006, Sansone and Bromberg, 

2012). Reported as an oncogenic transformation regulator, STAT3 is involved in 

approximately 60% of breast tumors (Behera 2009). Constitutive activation of 
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STAT3 via phosphorylation can promote cell migration, survival and angiogenesis 

in high grade breast carcinoma (Walker et al., 2009, So et al., 2013, Balanis et al., 

2013). Tumor formation and growth as well as metastasis are inhibited upon 

STAT3 knockdown (through STAT3 shRNA silencing or STAT3 phosphorylation 

inhibitors) in in vivo tumor transplant model (So et al., 2013, Ling et al., 2013) 

 

The phosphorylated forms or active molecular forms that are pJAK2 and pSTAT3, 

as well as the total JAK2 and total STAT3 protein levels were analyzed. Through 

Western Blot analyses, observations suggest that activated JAK2 over total JAK2 

(Figure 3.18), and activated STAT3 over total STAT3 (Figure 3.19) protein 

expressions did not show significant differences.  

 

Figure 3.18: pJAK2/JAK2 expression after silencing CHST3  

Non-significant changes in (B) pJAK2/JAK2 expression levels were observed in the 

CHST3-silenced groups compared to the scrambled siRNA group after down-regulation of 

CHST3 as shown in the (A) Western Blot. Protein expressions were normalized against 

house-keeping protein, β-actin. Data shown were from two independent experiments sets 

performed with three biological replicates for each experiment set. * P < 0.05; ** P < 0.01; 

*** P < 0.001 compared with scrambled siRNA group. 
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Figure 3.19: pSTAT3/STAT3 expression after silencing CHST3  

Non-significant changes in (B) pSTAT3/STAT3 expression levels were observed in the 

CHST3-silenced groups compared to the scrambled siRNA group after down-regulation of 

CHST3 as shown in the (A) Western Blot. Protein expressions were normalized against 

house-keeping protein, β-actin. Data shown were from two independent experiments sets 

performed with three biological replicates for each experiment set. * P < 0.05; ** P < 0.01; 

*** P < 0.001 compared with scrambled siRNA group. 

 

3.3.3 CHST3 affects Protein involved in Cell Apoptosis Pathway  

 

As small changes were observed in cell proliferation and cell apoptosis levels upon 

regulation of CHST3 in breast cancer cells, the expression level of one protein from 

the apoptosis pathway, BAD, was examined to validate the observations. Pro-

apoptotic BAD is part of the B-cell lymphoma 2 (BCL2) family.  BAD is activated 

via dephosphorylation and forms an inhibitory heterodimer with Bcl-2 or Bcl-xL to 

catalyze the oligomerization of BAK and BAX (Howells et al., 2010, Berndtsson 

et al., 2005). After which, mitochondrial outer membrane permeabilization occurs 

causing cytosolic release of DIABLO and cytochrome c, eliciting cell death 

(Howells et al., 2010, Cannings et al., 2007). Three main phosphorylation sites are 

situated at position Ser112, Ser136, and Ser155. Both Ser112 and Ser136 

phosphorylation facilitates 14-3-3 binding and kinase access to Ser155, while 

Ser155 phosphorylation hinders Bcl-xL binding (Datta et al., 2000). Although 
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phosphorylation at Ser136 is necessary to regulate pro-apoptotic function of BAD, 

phosphorylation at Ser112 protects the dephosphorylation of Ser136, indicating that 

BAD function is dependent on the dephosphorylation of Ser112 (Chiang et al., 

2003). The phosphorylation of BAD protein has been associated with cell survival 

and proliferation of some cancers (Howells et al., 2010). In vitro and in vivo studies 

in non-small lung cancer revealed that the over-expression of BAD inhibits cell 

growth and promotes cell apoptosis (Huang et al., 2012). BAD in BRAF mutant 

melanoma cells is also implicated in cell proliferation (Polzien et al., 2011). 

Additionally, patients with high Bad expression in their tumors had improved 

survival outcome compared against patients with low Bad expression (Cannings et 

al., 2007). Through Western Blot analyses (Figure 3.20), observations suggest that 

inactivated BAD over BAD protein expressions were enhanced upon down-

regulation of CHST3 in T47D cells. 

 

Figure 3.20: pBAD/BAD expressions after silencing CHST3  

Increases in (B) pBAD/BAD expression levels were observed in the CHST3-silenced 

groups compared to the scrambled siRNA group after down-regulation of CHST3 as shown 

in the (A) Western Blot. Protein expressions were normalized against house-keeping 

protein, β-actin. Data shown were from two independent experiment sets performed with 

three biological replicates for each experiment set. * P < 0.05; ** P < 0.01; *** P < 0.001 

compared with scrambled siRNA group. 
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3.4 Genome –Wide Expression Profiling of CHST3-Silenced T47D Cells  

 

CHST3, from observations obtained, has thus far been found to be more expressed 

in normal breast cells as well as less aggressive breast cancer cells compared to 

more aggressive and metastatic breast cancer cells. Additionally, CHST3 is found 

to have tumor suppressor roles in breast carcinoma according to the phenotypic 

behavior studies performed. Protein expression studies have also suggested 

associations of several proteins in different cellular behavioral pathways to the 

effects observed in the phenotypic behavioral changes after regulation of CHST3 

expression level. Following this, CHST3 was silenced in T47D cells and genome-

wide microarray was carried out to identify significant gene expression changes in 

CHST3-related genes, in order to further explore potential pathways in which 

CHST3 is possibly involved in the malignant process of tumorigenesis.  

 

3.4.1 RNA Yield, Quality, and Integrity  

 

The quality and integrity of the RNA samples sent for microarray processing were 

important factors to be taken into account to ensure success of gene microarray 

hybridization. The quality of RNA samples were defined by A260/A280 

absorbance ratio as well as the RNA integrity number (RIN) value, as summarized 

in Figure 3.21A. RIN value is ranged from 1 (degraded RNA) to 10 (intact RNA) 

and is calculated based on the ratio of 28S/18S ribosomal RNA using Agilent 2100 

Bioanalyzer. All samples showed RIN values above 9 indicating that the RNA 

samples were of good quality.  

 

The gel image in Figure 3.21B showed two specific distinct bands (representing 

18S and 28S ribosomal subunits). Additionally, electropherograms as illustrated in 

Figure 3.21C depicting two sharp peaks at 18S and 28S indicate good integrity of 

the RNA samples. After strict quality control evaluation, the RNA samples were 

qualified to be used for subsequent steps in the microarray sample processing.   
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Figure 3.21: Quality and integrity of RNA samples for microarray  

The RNA quality and integrity of the samples were shown through their (A) RIN number, 

concentration, and A260/280, (B) gel image consisting 18S (lower band) and 28S (upper 

band) in every lane, and (C) electropherogram image showing sharp peaks at 18S and 28S 

indicating highly intact RNA. Triplicates for each group (scrambled siRNA and CHST3-

silenced) were used in the processing. Values in (A) are indicated as mean ± standard error.  

 

3.4.2 Target Preparation  

 

For each sample, 100ng of total RNA was used for the assay. Table 3.1 shows the 

results of the purified cRNA, that was later fragmented and the size distribution of 

the resulting product was checked by gel electrophoresis.  
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Table 3.1: Spectrophotometer reading of purified cRNA  

Values are indicated as mean ± standard error.  

 

Criteria Control Silenced 

260/280 Ratio 2.076 ± 0.002 2.084 ± 0.007 

Conc (ng/ul) 1470 ± 50.00 1433 ± 46.67 

Yield (ug) 73.50 ± 2.500 71.67 ± 2.333 

 

3.4.3 Gene Microarray Data Analysis  

 

Synthesized biotin-labeled cRNA were hybridized on to the Human U133 Plus 2.0 

Arrays. Arrays were washed and stained prior to scanning using Affymetrix 3000 

7G scanner. The resultant scanned image file and raw signal intensities for all probe 

sets were obtained. After which, Expression Console and Genespring softwares 

were utilized to process the microarray data. Based on stringent criteria including 

p-value below 0.05 and fold change of at least 2 folds, 58 genes obtained showed 

significant alteration after silencing of CHST3 in T47D cells. Of the 58 genes, 15 

genes were up-regulated and 43 genes were down-regulated after silencing of 

CHST3. 

 

3.4.4 Functional Categorization of Genes Affected from Silencing CHST3  

 

The list of 58 differentially expressed genes were categorized in accordance to their 

gene function(s) using Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) microarray analysis software. Figure 3.22 depicts the number 

of genes involved in various cellular processes upon down-regulation of CHST3. 

Table 3.2 shows the various up-regulated and down-regulated genes regulated after 

silencing of CHST3 in T47D cells. It is noted that a substantial number of genes are 

involved in cell migration and invasion as compared to genes involved in other 

phenotypic behaviors, which suggests consistency with the phenotypic behavioral 

changes observed.  
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Figure 3.22: Functional categorization of affected genes after CHST3 silencing  

Graphs (A) and (B) depict the functional categorization of up-regulated and down-

regulated genes respectively (≥ 2 folds change) after down-regulation of CHST3 in T47D 

cells.  

 
Table 3.2: Functional categorization of differentially expressed genes (≥ 2 folds change)  

 

Function 
Gene 

Symbol 
Gene Name 

Relative 

Expression 

Cell 

Migration 

FLRT3 fibronectin leucine rich transmembrane protein 3 5.48 

 TGFB2 transforming growth factor, beta 2 4.37 

 GPNMB glycoprotein (transmembrane) nmb 2.94 

 DUSP1 dual specificity phosphatase 1 2.91 

 PCLO piccolo (presynaptic cytomatrix protein) 2.86 

 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), 

member 5 

2.61 

 CYR61 cysteine-rich, angiogenic inducer, 61 2.36 

 ANXA1 annexin A1 2.30 

 PAX6 paired box 6 -2.01 

 ADAMTS1

5 

ADAM metallopeptidase with thrombospondin 

type 1 motif, 15 

-2.03 

 RDX radixin -2.07 

 SLC7A11 solute carrier family 7, (cationic amino acid 

transporter, y+ system) member 11 

-2.09 

 ANTXR1 anthrax toxin receptor 1 -3.24 

 ELK3 ELK3, ETS-domain protein (SRF accessory 

protein 2) 

-4.15 

    

Cell Invasion FLRT3 fibronectin leucine rich transmembrane protein 3 5.48 

 TGFB2 transforming growth factor, beta 2 4.37 

 FGF12 fibroblast growth factor 12 3.84 

 GPNMB glycoprotein (transmembrane) nmb 2.94 
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 DUSP1 dual specificity phosphatase 1 2.91 

 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), 

member 5 

2.61 

 ADAMTS1

5 

ADAM metallopeptidase with thrombospondin 

type 1 motif, 15 

-2.03 

 

    

Cell Adhesion FLRT3 fibronectin leucine rich transmembrane protein 3 5.48 

 TGFB2 transforming growth factor, beta 2 4.37 

 GPNMB glycoprotein (transmembrane) nmb 2.94 

 PCLO piccolo (presynaptic cytomatrix protein) 2.86 

 CYR61 cysteine-rich, angiogenic inducer, 61 2.36 

 KRTAP3-1 keratin associated protein 3-1 2.01 

 RDX radixin -2.07 

 ANTXR1 anthrax toxin receptor 1 -3.24 

    

Cell 

Proliferation 

TGFB2 transforming growth factor, beta 2 4.37 

 FGF12 fibroblast growth factor 12 3.84 

 DUSP1 dual specificity phosphatase 1 2.91 

 CDKN2B cyclin-dependent kinase inhibitor 2B (p15, inhibits 

CDK4) 

2.58 

 CYR61 cysteine-rich, angiogenic inducer, 61 2.36 

 ANXA1 annexin A1 2.30 

 PAX6 paired box 6 -2.01 

 DNAJC2 DnaJ (Hsp40) homolog, subfamily C, member 2 -2.02 

 MDFIC MyoD family inhibitor domain containing -2.05 

 MCM10 minichromosome maintenance complex 

component 10 

-2.06 

 HIPK1 homeodomain interacting protein kinase 1 -2.08 

 BRCC3 BRCA1/BRCA2-containing complex, subunit 3 -2.20 

 LAMP3 lysosomal-associated membrane protein 3 -2.28 

 ASNS asparagine synthetase (glutamine-hydrolyzing) -2.31 

 KIF23 kinesin family member 23 -2.40 

 PRIM2 primase, DNA, polypeptide 2 (58kDa) -2.62 

 DDX18 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 -2.73 

 PRKAR2B protein kinase, cAMP-dependent, regulatory, type 

II, beta 

-2.88 

 PDZK1 PDZ domain containing 1 -3.00 

 PSAT1 phosphoserine aminotransferase 1 -4.47 

    

Cell apoptosis TGFB2 transforming growth factor, beta 2 4.37 

 FGF12 fibroblast growth factor 12 3.84 

 DUSP1 dual specificity phosphatase 1 2.91 

 ANXA1 annexin A1 2.30 
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 STRADB STE20-related kinase adaptor beta 2.23 

 DICER1 dicer 1, ribonuclease type III 2.01 

 WT1 Wilms tumor 1 -2.07 

 HIPK1 homeodomain interacting protein kinase 1 -2.08 

 ASNS asparagine synthetase (glutamine-hydrolyzing) -2.31 

 RNF130 ring finger protein 130 -2.37 

 BRCC3 BRCA1/BRCA2-containing complex, subunit 3 -2.20 

    

Angiogenesis TGFB2 transforming growth factor, beta 2 4.37 

 DUSP1 dual specificity phosphatase 1 2.91 

 DICER1 dicer 1, ribonuclease type III 2.01 

 HIPK1 homeodomain interacting protein kinase 1 -2.08 

 ELK3 ELK3, ETS-domain protein (SRF accessory 

protein 2) 

-4.15 

    

Metabolic 

Process 

SLC16A9 solute carrier family 16, member 9 

(monocarboxylic acid transporter 9) 

2.38 

 OBFC2A oligonucleotide/oligosaccharide-binding fold 

containing 2A 

2.15 

 GNG11 guanine nucleotide binding protein (G protein), 

gamma 11 

-2.00 

 RFK riboflavin kinase -2.02 

 TMX3 thioredoxin-related transmembrane protein 3 -2.08 

 EIF2S1 eukaryotic translation initiation factor 2, subunit 1 

alpha, 35kDa 

-2.11 

 ALDH1L2 PDZ domain containing 1 -3.00 

 PDZK1 PDZ domain containing 1 -3.00 

    

Transcription 

Regulation 

GTF2E2 general transcription factor IIE, polypeptide 2, beta 

34kDa 

-2.03 

 EIF3J eukaryotic translation initiation factor 3, subunit J -2.08 

 PHTF2 putative homeodomain transcription factor 2 -2.10 

 MBNL1 muscleblind-like (Drosophila) -2.12 

 CBX3 chromobox homolog 3 (HP1 gamma homolog, 

Drosophila) 

-2.35 

 PRIM2 primase, DNA, polypeptide 2 (58kDa) -2.62 

 DPY30 dpy-30 homolog (C. elegans) -3.86 

    

Signal 

Transduction 

STRADB STE20-related kinase adaptor beta 2.23 

 GNG11 guanine nucleotide binding protein (G protein), 

gamma 11 

-2.00 

 SLITRK4 SLIT and NTRK-like family, member 4 -2.03 

 ODZ2 odz, odd Oz/ten-m homolog 2 (Drosophila) -2.08 

 RAB12 RAB12, member RAS oncogene family -2.12 
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 CBS cystathionine-beta-synthase -2.20 

 PRKAR2B protein kinase, cAMP-dependent, regulatory, type 

II, beta 

-2.88 

    

Ion/Protein 

Transport 

DNAJC24 DnaJ (Hsp40) homolog, subfamily C, member 24 -2.10 

 C11orf54 chromosome 11 open reading frame 54 -2.19 

 LARS leucyl-tRNA synthetase -2.22 

 DNAJC21 DnaJ (Hsp40) homolog, subfamily C, member 21 -2.28 

 NXT2 nuclear transport factor 2-like export factor 2 -2.34 

 LMAN2 lectin, mannose-binding 2 -2.40 

 

3.5 Downstream Molecules of CHST3 Silencing  

 

An extensive literature review was carried out to evaluate the potential functions of 

the genes from the microarray list. Among the genes, a few genes were found to be 

potentially involved in the observed phenotypic changes after regulation of CHST3 

in breast cancer cells. Two genes, that were up-regulated of their expression after 

CHST3 was silenced in T47D breast cancer cells, were chosen to be examined 

further: glycoprotein transmembrane nbm (GPNMB) and fibronectin leucine-rich 

transmembrane (FLRT3).  

 

GPNMB (or sometimes known as osteoactivin) is a type I transmembrane 

glycoprotein, localized on the cell surface and lysosomal membrane. It can also be 

secreted by cells (Tsui et al., 2012, Safadi et al., 2001). GPNMB has been studied 

in various carcinomas including melanoma, hepatocellular carcinoma, lung cancer, 

stomach cancer, as well as breast cancer (Loging et al., 2000, Nielsen et al., 2002, 

Haralanova-Ilieva et al., 2005, Borczuk et al., 2003, Rich et al., 2003). In skin 

malignancies, GPNMB expression level was significantly higher than that in 

normal and benign skin tissues. Also, GPNMB was positively immunostained in 

87% of malignant melanoma cases and 80% of squamous cell carcinoma cases 

(Zhao et al., 2012).  
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GPNMB has been shown to have an oncogenic role in breast carcinoma; the over-

expression of GPNMB in breast cancer cells caused increased cell invasion and 

metastasis (Rose et al., 2007). This result supports the phenotypic behavior changes 

observed in this study as cell invasion and cell migration were both reduced after 

down-regulating GPNMB in breast cancer cells. In another study (Rose et al., 2010), 

high expression of GPNMB can be observed in basal and triple negative types of 

breast cancer compared to normal breast tissues. Furthermore, high GPNMB level 

has been correlated to increased tumor recurrence risk, shorter time to tumor 

recurrence, and decreased overall patient survival (Rose et al., 2010). GPNMB was 

hence identified as a candidate gene that could be regulated by CHST3 and is 

potentially involved in breast cancer metastasis, invasion, and growth.  

 

As for FLRT3, no known expression profile and functional study of this cell surface 

protein have been carried out in human cells or tissues. In the developmental 

biology field, in Xenopus embryos, Flrt3 expression was observed at sites with 

higher occurrences of epithelial-mesenchymal (EMT) interactions, such as eyes, 

developing tooth buds, and hair follicles, hence indicating its importance in 

mediating cell migration (Gong et al., 2009). Apart from regulating cell migration, 

Flrt3 has been reported to inhibit C-cadherin-mediated cell adhesion after it is 

induced by Tgfβ signaling (Chen et al., 2009b). Additionally, Flrt3 co-expresses 

with Fgf8, interacts with Fgf receptors (Fgfr) to activate MAPK signaling cascade 

(Karaulanov et al., 2006). As FLRT3 is not well-studied yet in cancer, it was chosen 

in order to examine its expression and functions in human breast cancer. 

Additionally, its association with CHST3 would be examined.  

 

In order to evaluate whether CHST3 and GPNMB or FLRT3 works together in 

regulating phenotypic behaviors of breast cancer cells, the functional assays were 

performed after double silencing CHST3 together with either GPNMB or FLRT3 in 

T47D cells.  The hypothesis then would be that GPNMB and FLRT3 are 

downstream molecules of CHST3, whereby CHST3 regulates their expression 

levels and hence, brings rise to the observed phenotypic changes.  
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To elaborate more on the double silencing experiment design, four groups were 

performed namely (Group 1) double negative, (Group 2) CHST3-silenced, (Group 

3) GPNMB- or FLRT3- silenced, and (Group 4) double silenced of either CHST3 

and GPNMB silenced or CHST3 and FLRT3 silenced. For Groups 1 to 3, additional 

scrambled siRNA was included to match the volume and concentration of siRNAs 

in Group 4.  

 

3.5.1 CHST3 modulates GPNMB  

3.5.1.1 Silencing Efficiency of CHST3 and GPNMB  

 

GPNMB mRNA expression level was validated in CHST3-single-silenced T47D 

cells. As shown in Figure 3.23, GPNMB expression level increased by almost 2 

folds after down-regulation of CHST3. Also, prior to carrying out the phenotypic 

assays, the expression levels of CHST3 and GPNMB in double silenced groups were 

evaluated at mRNA (Figure 3.24 A and B) as well as protein level (Figure 3.24 (C 

to F). As observed from qPCR, CHST3 was down-regulated by more than 80% in 

the CHST3-silenced group and CHST3-GPNMB silenced group. Its expression was 

not affected in the GPNMB-silenced group. As for GPNMB expression level, it was 

up-regulated by 41.1% in the CHST3-silenced group. GPNMB level was down-

regulated by at least 65% in the GPNMB-silenced group and CHST3-GPNMB 

silenced group.  

 

From the western blot results, a similar trend was observed. CHST3 was down-

regulated by more than 45% in the CHST3-silenced group and CHST3-GPNMB 

silenced group. Its expression was not affected in the GPNMB-silenced group. 

Looking at GPNMB, it was up-regulated in both of its protein forms (80kDa and 

115kDa) GPNMB expression was down-regulated in the GPNMB-silenced group 

and similar to double negative group in the CHST3-GPNMB silenced group.  
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Figure 3.23: GPNMB expression in CHST3 single-silenced T47D cells 

The mRNA expression level of GPNMB was enhanced by almost 2 folds in T47D cells 

after single-silencing CHST3. GAPDH mRNA expression level was used as the house-

keeping gene for normalization. Data shown was from one independent experiment 

performed with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared 

with scrambled siRNA group.  
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Figure 3.24: CHST3 and GPNMB levels after different silencing treatments in T47D cells  

qPCR was carried out to evaluate the mRNA expression levels of (A) CHST3 and (B) 

GPNMB in the various groups. GAPDH mRNA expression level was used as the house-

keeping gene for normalization. From (C) western blot analyses, (D) CHST3 and (E and 

F) GPNMB protein levels were examined for the various silencing treatment groups. Β-

actin was used as the house-keeping protein for normalization. Data shown in (A) and (B) 

were from one independent experiment set performed with three biological replicates. Data 

shown in (D), (E), and (F) were from two independent experiment sets performed with 

three biological replicates each.* P < 0.05; ** P < 0.01; *** P < 0.001 compared with 

double negative group.  
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3.5.1.2 Regulation of Cellular Behaviors by CHST3 and GPNMB  

3.5.1.2.1 Regulation of Cell Migration by CHST3 and GPNMB  

 

Migration assay was carried out to examine the effect of double silencing CHST3 

and GPNMB on cell migration ability of T47D cells compared to the double 

negative, CHST3-silenced, and GPNMB-silenced groups. Post 48 hours 

transfection, the transfected cells were re-seeded into migration chambers and 

incubated for 24 hours. Silencing CHST3 alone increased cell migration level. 

Silencing of GPNMB alone decreased cell migration. Rose et al had previously 

showed an increase in cell migration upon ectopic expression of GPNMB (Rose et 

al., 2007). As depicted in Figure 3.25, double silencing of CHST3 and GPNMB 

abrogated these changes in cell migration level.    
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Figure 3.25: Effects of CHST3 and GPNMB double silencing on cell migration  

As shown in the (A) pictures and (B) graph, silencing of CHST3 caused an increase in cell 

migration; while on the other hand, down-regulation of GPNMB caused a reduction in cell 

migration. Double silencing of CHST3 and GPNMB abrogated these changes in cell 

migration level. Data shown were from two independent experiment sets performed with 

three biological replicates for each experiment set. * P < 0.05; ** P < 0.01; *** P < 0.001 

compared with double negative group.  
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3.5.1.2.2 Regulation of Cell Invasion by CHST3 and GPNMB  

 

   

Invasion assay, using Matrigel chambers, was carried out to evaluate the effect of 

double silencing CHST3 and GPNMB on cell invasion ability of T47D cells 

compared to the double negative, CHST3-silenced, and GPNMB-silenced groups. 

After 48 hours transfection, the transfected cells were re-seeded into the invasion 

chambers and incubated for 24 hours. From the single-silenced experiment, it was 

observed that silencing of CHST3 increased cell invasion level. Upon silencing of 

GPNMB, cell invasion decreased. From Figure 3.26, double silencing of CHST3 

and GPNMB abrogated these changes in cell invasion level.   



 108 

 

Figure 3.26: Effects of CHST3 and GPNMB double silencing on cell invasion  

As shown in the (A) pictures and (B) graph, silencing of CHST3 caused an increase in cell 

invasion; while on the other hand, down-regulation of GPNMB caused a reduction in cell 

invasion. Double silencing of CHST3 and GPNMB abrogated these changes in cell invasion 

level. Data shown was from one independent experiment set performed with three 

biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with double negative 

group.  
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3.5.1.2.3 Regulation of Cell Adhesion by CHST3 and GPNMB  

 

Adhesion assay, using fibronectin- and collagen-coated plates, was performed to 

examine the effect of double silencing CHST3 and GPNMB on regulating the 

adhesion capability of T47D cells on ECM components. Post 48 hours transfection, 

transfected cells were re-seeded into fibronectin- and collagen-coated plates. From 

the single-silenced experiment, it was observed that silencing of CHST3 decreased 

cell adhesion level in the fibronectin-coated plate. Upon silencing of GPNMB, cell 

adhesion increased.  Results in Figure 3.27A (using fibronectin-coated plate) 

suggest that double silencing of CHST3 and GPNMB abrogated these changes in 

cell adhesion level.  On the other hand, no significant changes were observed in the 

collagen-coated plate experiment.  

 

 

Figure 3.27: Effects of CHST3 and GPNMB double silencing on cell adhesion  

From the fibronectin-coated plate (A), silencing of CHST3 caused a decrease in cell 

adhesion; while on the other hand, down-regulation of GPNMB caused an increase in cell 

adhesion. Double silencing of CHST3 and GPNMB abrogated the changes in cell adhesion 

level. In contrast, no significant changes was observed in cell adhesion level in the 

collagen-coated plate. Data shown were from two independent experiment sets performed 

with three biological replicates each. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with 

double negative group.  
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3.5.1.2.4 Regulation of Cell Proliferation by CHST3 and GPNMB  

 

Proliferation assay, using MTS assay, was performed to evaluate the effect of 

double silencing CHST3 and GPNMB on cell proliferation capability of T47D cells. 

Cell proliferation levels were assessed 48 hours after transfection. From the single-

silenced experiment, it was observed that silencing of CHST3 increased cell 

proliferation level. Upon silencing of GPNMB, cell proliferation decreased. From 

Figure 3.28, results suggest that double silencing of CHST3 and GPNMB abrogated 

these changes in cell proliferation level.   

 

Figure 3.28: Effects of CHST3 and GPNMB double silencing on cell proliferation  

Silencing of CHST3 caused an increase in cell proliferation; while on the other hand, down-

regulation of GPNMB caused a decrease in cell proliferation.  Double silencing of CHST3 

and GPNMB caused cell proliferation level to return to basal level (similar to double 

negative group). Data shown were from two independent experiment sets performed with 

three biological replicates each. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with 

double negative group.  
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3.5.2 FLRT3 in Breast Cancer Cells 

 

Prior to carrying out double silencing experiments of CHST3 and FLRT3, single 

silencing of FLRT3 in T47D and MDA-MB-231 cells was performed. As no 

literature on FLRT3 functional role in cancer is known thus far, it would be 

necessary to examine FLRT3’s role in the various cellular behaviors. Two breast 

cancer cell lines as well as two siRNA sequences specifically targeting FLRT3 were 

used to validate the phenotypic changes observed. 

 

3.5.2.1 Silencing Efficiency of FLRT3  

 

The silencing efficiencies of FLRT3 at both mRNA and protein levels were firstly 

determined before carrying out of phenotypic assays. FLRT3 was silenced through 

transient transfection in T47D and MDA-MB-231 cells using Silencer Select 

siRNA accompanied with delivery reagent, Oligofectamine. From the qPCR 

results, FLRT3 mRNA was at least 72.3% and 74.3% silenced as compared to the 

scrambled siRNA groups in T47D cells (Figure 3.29B) and MDA-MB-231 cells 

(Figure 3.30B) respectively. From the immunofluorescence results, FLRT3 protein 

was at least 50.1% and 60.2% down-regulated in comparison to the scrambled 

siRNA groups in T47D cells (Figure 3.29A and C) and MDA-MB-231 cells (Figure 

3.30A and C) respectively.  
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Figure 3.29: Silencing efficiencies of FLRT3 in T47D cells 

Silencing efficiencies of FLRT3 mRNA and protein levels were obtained for both siRNA 

sequences specifically targeting FLRT3. In the qPCR analysis (B), the mRNA expression 

levels of GAPDH house-keeping genes were used for normalization. (A) 

Immunofluorescence staining depict the silencing efficiencies of FLRT3 protein 

expression level in T47D cells. Graph (C) shows the silencing efficiencies of FLRT3 

protein observed in immunofluorescence.  Data shown were each from one independent 

experiment performed with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 

0.001 compared with scrambled siRNA group. 
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Figure 3.30: Silencing efficiencies of FLRT3 in MDA-MB-231 cells 

Silencing efficiencies of FLRT3 mRNA and protein levels were obtained for both siRNA 

sequences specifically targeting FLRT3. In the qPCR analysis (B), the mRNA expression 

levels of GAPDH house-keeping genes were used for normalization. (A) 

Immunofluorescence staining depict the silencing efficiencies of FLRT3 protein 

expression level in MDA-MB-231 cells. Graph (C) shows the silencing efficiencies of 

FLRT3 protein observed in immunofluorescence.  Data shown were each from one 

independent experiment performed with three biological replicates. * P < 0.05; ** P < 0.01; 

*** P < 0.001 compared with scrambled siRNA group. 
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3.5.2.2 FLRT3 affects Cell Migration in Breast Cancer Cells 

 

The various phenotypic assays were performed to evaluate the role of FLRT3 in 

breast cancer cells. Cell migration ability was assessed using the transwell 

migration chambers post 48 hours transfection in T47D and MDA-MB-231 cells. 

After silencing of FLRT3 in T47D (Figure 3.31A and C) and MDA-MB-231 

(Figure 3.31B and D) cells, migration level was observed to have decreased 

compared to the scrambled siRNA group.  

 

Figure 3.31: Cell migration level after silencing FLRT3  

Decrease in cell migration was observed in the FLRT3-silenced groups compared to the 

scrambled siRNA group after down-regulation of FLRT3 in (A and C) T47D and (B and 

D) MDA-MB-231 cells. Data shown were from one independent experiment performed 

with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with 

scrambled siRNA group.  
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3.5.2.3 FLRT3 affects Cell Invasion in Breast Cancer Cells 

 

Cell invasion ability was also assessed using the matrigel-coated transwell 

chambers post 48 hours transfection. After silencing of FLRT3 in T47D (Figure 

3.32A and C) and MDA-MB-231 (Figure 3.32B and D) cells, invasion level was 

observed to have decreased compared to the scrambled siRNA group.  

 

Figure 3.32: Cell invasion level after silencing FLRT3  

Decrease in cell invasion was observed in the FLRT3-silenced groups compared to the 

scrambled siRNA group after down-regulation of FLRT3 in (A and C) T47D and (B and 

D) MDA-MB-231 cells. Data shown were from one independent experiment performed 

with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with 

scrambled siRNA group.  
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3.5.2.4 FLRT3 affects Cell Adhesion in Breast Cancer Cells 

 

Cell adhesion ability was next assessed using fibronectin- and collagen-coated 

plates, after a 48-hour transfection period. After silencing of FLRT3 in T47D 

(Figure 3.33A and C) and MDA-MB-231 (Figure 3.33B and D) cells, adhesion 

level was observed to be enhanced compared to the scrambled siRNA group.  

 

Figure 3.33: Cell adhesion level after silencing FLRT3  

Increases in cell adhesion was observed in the FLRT3-silenced groups compared to the 

scrambled siRNA group after down-regulation of FLRT3 in (A and C) T47D and (B and 

D) MDA-MB-231 cells, using fibronectin- and collagen-coated plates. Data shown were 

from one independent experiment performed with three biological replicates. * P < 0.05; 

** P < 0.01; *** P < 0.001 compared with scrambled siRNA group.  
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3.5.2.5 FLRT3 affects Cell Proliferation in Breast Cancer Cells 

 

Cell proliferation capability was examined using MTS assay after a 48-hour 

transfection period. After silencing of FLRT3 in T47D (Figure 3.34A) and MDA-

MB-231 (Figure 3.34B) cells, proliferation level was observed to be decreased 

compared to the scrambled siRNA group.  

 

 

Figure 3.34: Cell proliferation level after silencing FLRT3  

Small decreases in cell proliferation were observed in the FLRT3-silenced groups 

compared to the scrambled siRNA group after down-regulation of FLRT3 in (A) T47D and 

(B) MDA-MB-231 cells. Data shown were from one independent experiment performed 

with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with 

scrambled siRNA group. 

 

3.5.3 CHST3 modulates FLRT3  

 

From the single-silenced experiments, the down-regulation of FLRT3 showed 

decreases in metastatic capability and aggressiveness, suggesting FLRT3 to be a 

tumor promoter gene. Double silencing experiments were next performed to 

evaluate whether CHST3 acts through FLRT3, giving rise to the various phenotypic 

changes observed in the CHST3-silenced experiments.  

 

3.5.3.1 Silencing Efficiency of CHST3 and GPNMB  

 

FLRT3 mRNA expression level was firstly validated in CHST3-single-silenced 

T47D cells. As shown in Figure 3.35, FLRT3 expression level increased by almost 

2 folds after down-regulation of CHST3. Also, prior to carrying out the phenotypic 

assays, the expression levels of CHST3 and FLRT3 in double silenced groups were 

evaluated at mRNA (Figure 3.36A and B) as well as protein level (Figure 3.36C to 
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E). As observed from qPCR, CHST3 was down-regulated by more than 67% in the 

CHST3-silenced group and CHST3-FLRT3 silenced group. Its expression was not 

affected in the FLRT3 -silenced group. As for FLRT3 expression level, it was up-

regulated by 94.5% in the CHST3-silenced group. FLRT3 level was down-regulated 

by at least 61.7% in the FLRT3-silenced group and CHST3-GPNMB silenced group. 

FLRT3 returned to basal level (similar to the double negative group) in the CHST3-

FLRT3 silenced group. 

 

From the western blot results, the same trend was observed. CHST3 was down-

regulated by more than 44.5% in the CHST3-silenced group and CHST3-FLRT3 

silenced group. Its expression was not affected in the FLRT3-silenced group. 

Looking at FLRT3, it was up-regulated of its expression level in the CHST3-

silenced group. Also, FLRT3 expression was down-regulated by 38.2% in the 

FLRT3-silenced group and similar to the double negative group in the CHST3-

FLRT3 silenced group.  

 

 

Figure 3.35: FLRT3 expression in CHST3 single-silenced T47D cells 

The mRNA expression level of FLRT3 was enhanced by almost 2 folds in T47D cells after 

single-silencing CHST3. GAPDH mRNA expression level was used as the house-keeping 

gene for normalization. Data shown was from one independent experiment performed with 

three biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with scrambled 

siRNA group.  
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Figure 3.36: CHST3 and FLRT3 levels after different silencing treatments in T47D cells  

qPCR was carried out to evaluate the mRNA expression levels of (A) CHST3 and (B) 

FLRT3 in the various groups. GAPDH mRNA expression level was used as the house-

keeping gene for normalization. From (C) western blot analyses, (D) CHST3 and (E and 

F) FLRT3 protein levels were examined for the various silencing treatment groups. Β-actin 

was used as the house-keeping protein for normalization. Data shown was from one 

independent experiment performed with three biological replicates. * P < 0.05; ** P < 0.01; 

*** P < 0.001 compared with double negative group.  
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3.5.3.2 Regulation of Cellular Behaviors by CHST3 and FLRT3  

3.5.3.2.1 Regulation of Cell Migration by CHST3 and FLRT3  

 

 

After obtaining the silencing efficiencies of FLRT3, phenotypic assays were 

performed. Cell migration ability was assessed with transwell migration chambers 

to examine the effect of double silencing CHST3 and FLRT3 against double 

negative, CHST3-silenced, and FLRT3-silenced groups. The transfected cells were 

re-seeded into the migration chambers after a 48-hour transfection period. From the 

single-silenced experiments, it was observed that silencing of CHST3 increased cell 

migration level while silencing of FLRT3 decreased cell migration level. From 

Figure 3.37, double silencing of CHST3 and FLRT3 abrogated these changes in cell 

migration level.  
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Figure 3.37: Effects of CHST3 and FLRT3 double silencing on cell migration  

As shown in the (A) pictures and (B) graph, silencing of CHST3 caused an increase in cell 

migration; while on the other hand, down-regulation of FLRT3 caused a reduction in cell 

migration. Double silencing of CHST3 and FLRT3 caused cell migration level to return to 

basal level (similar to double negative group). Data shown was from one independent 

experiment performed with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 

0.001 compared with double negative group.  
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3.5.3.2.2 Regulation of Cell Invasion by CHST3 and FLRT3  

 

Cell invasion ability was next evaluated to compare the effect of double silencing 

CHST3 and FLRT3 with the double negative and other silencing treatment groups. 

After 48 hours transfection, the transfected cells were re-seeded into matrigel 

invasion chambers and incubated for 24 hours. From the single-silenced 

experiments, it was observed that silencing of CHST3 increased cell invasion level 

while silencing of FLRT3 decreased cell invasion level. Figure 3.38 shows double 

silencing of CHST3 and FLRT3 abrogated these changes in cell invasion level.  
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Figure 3.38: Effects of CHST3 and FLRT3 double silencing on cell invasion  

As shown in the (A) pictures and (B) graph, silencing of CHST3 caused an increase in cell 

invasion; while on the other hand, down-regulation of FLRT3 caused a reduction in cell 

invasion. Double silencing of CHST3 and FLRT3 caused cell invasion level to return to 

basal level (similar to double negative group). Data shown was from one independent 

experiment performed with three biological replicates. * P < 0.05; ** P < 0.01; *** P < 

0.001 compared with double negative group. 
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3.5.3.2.3 Regulation of Cell Adhesion by CHST3 and FLRT3  

 

Cell adhesion capability to ECM-components, fibronectin and collagen, was 

examined for the effect of double silencing CHST3 and FLRT3 in T47D cells 

compared to double negative and other silencing treatment groups. After a 48-hour 

transfection period, transfected cells were re-seeded into fibronectin- and collagen-

coated plates. From the single-silenced experiments, it was observed that silencing 

of CHST3 decreased cell adhesion level while silencing of FLRT3 increased cell 

adhesion level. Results in Figure 3.39 suggest that double silencing of CHST3 and 

FLRT3 abrogated these changes in cell adhesion level.  

 

 

Figure 3.39: Effects of CHST3 and FLRT3 double silencing on cell adhesion  

Silencing of CHST3 caused a decrease in cell adhesion; while on the other hand, down-

regulation of FLRT3 caused an increase in cell adhesion for both fibronectin- and collagen-

coated plates.  From the (A) fibronectin- and (B) collagen-coated plate, double silencing 

of CHST3 and FLRT3 caused cell adhesion level to return to basal level (similar to double 

negative group). Data shown was from one independent experiment performed with three 

biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with double negative 

group.  
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3.5.3.2.4 Regulation of Cell Proliferation by CHST3 and FLRT3  

 

Cell proliferation was also examined after double silencing CHST3 and FLRT3. 

Evaluation was performed post 48 hours transfection using MTS assay. From the 

single-silenced experiments, it was observed that silencing of CHST3 increased cell 

proliferation level while silencing of FLRT3 decreased cell proliferation level. 

Results in Figure 3.40 depict double silencing of CHST3 and FLRT3 abrogated 

these changes in cell proliferation level.  

 

 

Figure 3.40: Effects of CHST3 and FLRT3 double silencing on cell proliferation  

Silencing of CHST3 caused a small increase in cell proliferation; while on the other hand, 

down-regulation of FLRT3 caused a small decrease in cell proliferation.  Double silencing 

of CHST3 and GPNMB caused cell proliferation level to return to basal level (similar to 

double negative group). Data shown was from one independent experiment performed with 

three biological replicates. * P < 0.05; ** P < 0.01; *** P < 0.001 compared with double 

negative group.  
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3.5.4 Relationship of GPNMB and FLRT3 

 

From the in vitro results, it is observed that both GPNMNB and FLRT3 are tumor 

promoters. After down-regulation of the genes in breast cancer cells, cellular 

behavior became less proliferative and metastatic. The next step would be to 

evaluate whether GPNMB and FLRT3 regulate one another in the cellular process. 

qPCR was performed whereby GPNMB expression was examined in FLRT3-

silenced cells and FLRT3 expression was evaluated in GPNMB-silenced cells. 

Results as shown in Figure 3.41 unveil that both GPNMB and FLRT3 do not 

regulate one another as there were no significant changes observed from the qPCR 

results.  

 

Figure 3.41:  GPNMB and FLRT3 correlation in T47D cells 

(A) FLRT3 expression in GPNMB-silenced T47D cells showed no significant difference 

between the scrambled siRNA and GPNMB-silenced groups. (B) GPNMB expression in 

FLRT3-silenced T47D cells showed no significant difference between scrambled siRNA 

and FLRT3-silenced groups. This indicates that FLRT3 expression level is not affected or 

regulated by GPNMB change in expression, as well as vice versa. Data shown was from 

one independent experiment performed with three biological replicates. * P < 0.05; ** P < 

0.01; *** P < 0.001 compared with double negative group.  
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3.6 Expression Analysis of CHST3 in Invasive Ductal Carcinoma Tissues  

 

From the in vitro studies, it is observed that CHST3 plays a tumor suppressor role 

in breast cancer tumorigenesis; the down-regulation of CHST3 brings forth more 

aggressive and metastatic behaviors in breast cancer cells. Therefore, investigation 

was further extended to clinical patient samples. It was hypothesized that low 

expression of CHST3 in human breast cancer tissue is correlated with worse 

prognosis and clinical parameters.  

 

3.6.1 Clinicopathological Parameters of IDC Patient Cases  

 

A total of 255 human IDC cases and 77 normal non-malignant ductal tissue cases, 

in tissue microarray format, were used for immunohistochemical evaluation of 

CHST3 protein. The patients’ age ranged from 23 to 89 years old, with a mean of 

56.1 years and a median of 55.5 years. As a result of tissue loss during the 

immunohistochemistry process, the expression patterns of CHST3 were examined 

in 259 cases (218 IDC cases and 41 normal ductal cases). The clinicopathological 

features of the malignant cases and normal cases are summarized in Table 3.3 and 

3.4 respectively. 

 

Patient survival and tumor recurrence data were available for 213 (97.7%) of the 

218 IDC cases studied. The follow-up period ranged from 0 to 175.5 months. There 

was death occurrence in 22.5% of patients, with the mean and median of OS period 

being 106.7 and 99.9 months respectively. All death cases arose from the cancer 

disease itself. Tumor recurrences were found in 30.7% of cases, and the mean and 

median DFS time were 100.2 months and 98.0 months. Among patients with tumor 

recurrence, 19.6% of them had died of the cancer at the end of the study period, 

with a mean SAR time of 6.5 months and median SAR time of 0 month. 
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Table 3.3 Clinicopathological features of 218 cases of IDC tissues 

Clinicopathological features  Clinicopathological features  

Age (years) 

     Mean 

     Median 

     Minimum 

     Maximum 

 

56.1 

55.5 

23.0 

89.0 

Tumor size (mm) 

     Mean 

     Median 

     Minimum 

     Maximum 

 

34.6 

30.0 

5.0 

140.0 

Clinicopathological features No. of cases Clinicopathological features No. of cases 

Age (years) 

     ≤ 56 

     > 56 

 

135 

83 

 

Lymphovascular invasion 

     Absent 

     Present 

     NA 

 

87 

70 

61 

 

Ethnicity 

     Chinese 

     Malay 

     Indian 

     Others 

     NA 

 

154 

15 

7 

9 

33 

Lymphovascular invasion stage 

     1 

     2 

     3 

     NA 

 

 

101 

49 

55 

13 

Tumor size (mm) 

     ≤ 30 

     > 30 

     NA 

 

 

117 

99 

2 

Lymph node status 

     1 

     2 

     3 

     NA 

 

 

105 

51 

48 

14 

Histological tumor grade 

     1 

     2 

     3 

     NA 

 

13 

80 

120 

5 

Tubule Formation Stage 

     1 

     2 

     3 

     NA 

 

 

7 

42 

103 

66 

Tumor stage 

     1 

     2 

     3 

     NA 

 

 

17 

81 

12 

108 

Estrogen receptor status 

     Negative 

     Positive 

     NA 

 

104 

93 

21 

Mitotic Stage 

     1 

     2 

     3 

     NA 

 

 

27 

46 

79 

66 

Progesterone receptor status 

     Negative 

     Positive 

     NA 

 

85 

111 

22 

Pleomorphism Stage 

     1 

     2 

     3 

     NA 

 

 

4 

67 

81 

66 

HER2 receptor status 

     Negative 

     Positive 

     NA 

 

134 

63 

192 

NA = Not Available 
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Table 3.4 Clinicopathological features of 41 cases of normal ductal cases 

Clinicopathological features Value (years) Clinicopathological 

features 

Frequency 

distribution 

Age (years) 

     Mean 

     Median 

     Minimum 

     Maximum 

 

 

65.8 

71.0 

35.00 

89.00 

Ethnicity 

     Chinese 

     Malay 

     Indian 

     Others 

     NA 

 

18 

1 

1 

1 

20 

 

 

3.6.2 CHST3 Expression Pattern in Breast Tissues  

 

CHST3 expression staining was positive in the epithelial compartment of both 

normal and malignant breast tissues as shown in Figure 3.42. Additionally, Figure 

3.42 depicts the CHST3 staining intensities of 0, 1+, 2+, and 3+ in breast ductal 

tissues.   

 

 

Figure 3.42:  Staining pattern of CHST3 in breast tissues  

CHST3 staining intensities of 0, 1+, 2+, and 3+ were observed in the epithelial 

compartment of breast tissues. Images indicating staining intensities of 0, 1+, and 2+ were 

taken from malignant tissue samples while the image indicating staining intensity 3+ was 

taken from a non-malignant sample.  
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3.6.3 CHST3 Selected Cut-off Point  

 

To select a suitable cut-off point for CHST3, the distribution curve was first 

analysed. As a non-normal distribution curve (Figure 3.43A) was observed, the 

median was selected to be the cut-off point for CHST3 (Figure 3.43C). Also, an 

ROC curve analysis was performed to evaluate the sensitivity and specificity of the 

median cut-off point of CHST3 (Figure 3.43B). The median cut-off point shows a 

sensitivity score of 0.732 (Figure 3.43D), false positivity score between 0.413 and 

0.482 (Figure 3.43D), and area under curve is 0.667 (Figure 3.43B), which is above 

0.500.  

 

 
 
Figure 3.43:  Frequency distribution and ROC curve of CHST3 expression among normal 

and malignant tissues  

(A) Histogram illustrates the frequency distribution of the WAI score of CHST3 expression 

across both normal and malignant tissues. (B) ROC curve depicts WAI score of CHST3 

expression of normal and malignant tissues following their sensitivity and 1-specificity 

score. The area under curve is 0.667, which is above 0.500.   
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3.6.4 CHST3 Expression in Normal and Malignant Breast Tissues  

 

Expression of CHST3 epitope was evaluated in the epithelial (cytoplasm) 

compartment of ductal specimens. Analysis of the tissue microarrays showed that 

normal ductal tissues had enhanced staining in comparison to malignant IDC 

tissues as shown in Figure 3.44 and Table 3.5 (p-value = 0.000). Further analysis 

was also performed on paired normal and malignant breast tissues, of which results 

showed higher CHST3 expression level in the normal tissues compared to its paired 

malignant counterpart tissue (Figure 3.45). 

 

 

Figure 3.44:  CHST3 immunostaining in normal and malignant breast tissues  

Higher expression of CHST3 was observed in normal ductal tissues compared to malignant 

breast tissues. Staining intensities of 2+ and 3+ are shown in the above normal tissues 

whereas staining intensities of 0 and 1+ are depicted in the above malignant tissues.  
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Table 3.5: Analysis of CHST3 expression between normal and malignant breast tissues  

CHST3 expression is significantly enhanced in normal ductal tissues in comparison to 

malignant tissues.  

 

 Weighted Average Score (WAI) 

 ≤ 1.06 > 1.06 p-value 

Diagnosis 

     Normal 

     Malignant 

 

11 

128 

 

30 

90 

 

0.000* 

 

 
Figure 3.45:  Paired analysis of CHST3 expression in 33 paired normal and malignant 

breast tissue samples.  

Normal tissues shows enhanced expression level of CHST3 compared to malignant tissues.  

 

3.6.5 CHST3 Correlations with Clinicopathological Parameters  

 

Among the malignant tissues, higher CHST3 expression was significantly 

correlated with lower tumor stage (Figure 3.46 and Table 3.6) and borderline 

significantly associated with smaller tumor size (Table 3.6).  
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Figure 3.46:  CHST3 immunostaining in breast tissues of different tumor stage  

Higher expression of CHST3 was observed in IDC of lower tumor stage. Stage 1 shows 

staining intensity of 2+, stage 2 depicts intensities of 1+ and 2+, and stage 3 displays mostly 

0 intensity and a small area with 1+ intensity.   
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Table 3.6:  Correlations between CHST3 expression and clinicopathological features of 

IDC  

 WAI  WAI 

 
≤ 

1.06 

> 

1.06 
p-value  

≤ 

1.06 

> 

1.06 
p-value 

Age (years) 

     ≤ 56 

     > 56 

     NA 

 

 

81 

47 

0 

 

54 

36 

0 

 

0.672 

Lymphovascular 

invasion 

     Absent 

     Present 

     NA 

 

 

 

47 

36 

45 

 

 

40 

34 

16 

 

 

0.751 

Ethnicity 

     Chinese 

     Malay 

     Indian 

     Others 

     NA 

 

89 

7 

3 

9 

20 

 

65 

8 

4 

0 

13 

 

0.561 

Lymphovascular 

invasion stage 

     1 

     2 

     3 

     NA 

 

 

 

57 

28 

33 

10 

 

 

44 

21 

22 

3 

 

 

0.691 

Tumor size (mm) 

     ≤ 30 

     > 30 

     NA 

     

 

62 

66 

0 

 

55 

33 

2 

 

0.052 

Lymph node status 

     1 

     2 

     3 

     NA 

 

 

57 

31 

29 

11 

 

48 

20 

19 

3 

 

0.397 

Histological 

tumor grade 

     1 

     2 

     3 

     NA 

 

 

8 

44 

72 

4 

 

 

5 

36 

48 

1 

 

 

0.634 

Tubule Formation 

Stage 

     1 

     2 

     3 

     NA 

 

 

 

5 

23 

64 

36 

 

 

2 

19 

39 

30 

 

 

0.657 

Tumor stage 

     1 

     2 

     3 

     NA 

 

 

7 

46 

12 

63 

 

10 

35 

0 

45 

 

0.004* 

ER status 

     Negative 

     Positive 

     NA 

      

 

62 

50 

16 

 

42 

43 

5 

 

0.472 

Mitotic Stage 

     1 

     2 

     3 

     NA 

 

 

15 

26 

51 

36 

 

12 

20 

28 

30 

 

0.309 

PR status 

     Negative 

     Positive 

     NA 

      

 

54 

57 

17 

 

31 

54 

5 

 

0.110 

Pleomorphism 

Stage 

     1 

     2 

     3 

     NA 

 

 

 

2 

41 

49 

36 

 

 

2 

26 

32 

20 

 

 

0.998 

HER2 receptor status 

     Negative 

     Positive 

     NA 

      

 

75 

38 

15 

 

59 

25 

6 

 

0.644 

NA = Not Available 
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3.6.6 urvival Analysis of CHST3 Expression  

 

3.6.6.1 Survival Analysis using Kaplan Meier  

 

Survival analysis was first performed using Kaplan Meier curves to observe any 

general trends between CHST3 expression and tumor recurrence and mortality rate. 

No significant trends were observed for CHST3 expression with patients’ tumor 

recurrence and mortality rate, as shown in Figure 3.47. 

 

 

Figure 3.47: Kaplan Meier curves using CHST3  

No significant trend was observed between CHST3 expression and (A) tumor recurrence, 

(B) overall survival, and (C) survival after recurrence.  

 

(A) (B) 

(C) 
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3.6.6.2 Survival Analysis using Cox Regression Univariate  

 

Cox regression analysis using univariate method was performed to determine the 

hazard ratio of CHST3 expression as well as for the clinicopathological parameters. 

Several significant hazard ratios were obtained for various clinical parameters. 

However, no significant hazard ratios were attained for CHST3 expression in 

disease-free survival (Table 3.7), overall survival (Table 3.8), as well as survival 

after recurrence (Table 3.9) time period. 

 

Table 3.7: Univariate Cox regression analysis of CHST3 and clinicopathological 

parameters using DFS time period 

 
Disease Free Survival 

p-value Hazard ratio 

95% CI  

 
Lower Upper 

Increased CHST3 expression  
.531 1.451 .452 4.673 

Presence of lymph node invasion 
.448 1.508 .522 4.360 

PR+ status 
.036 4.713 1.106 20.080 

ER+ status 
.327 .603 .219 1.659 

HER2+ status 
.328 .557 .173 1.798 

Increased lymphovascular invasion stage 
.898 .000 .000 3.426E52 

Increased tumor stage 
.496 1.570 .429 5.743 

Race 
.366 .745 .393 1.411 

Increased histological grade 
.802 1.266 .199 8.041 

Increased tubule formation stage 
.716 .792 .226 2.775 

Increased pleomorphism stage 
.313 2.010 .518 7.802 

Increased mitotic index 
.685 1.227 .457 3.299 

Increased lymph node stage 
.901 3778.146 .000 6.341E59 

Larger tumor size  
.382 .640 .236 1.738 

Increased age  
.060 3.286 .952 11.348 
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Table 3.8: Univariate Cox regression analysis of CHST3 and clinicopathological 

parameters using OS time period 

 
Overall Survival 

p-value Hazard ratio 

95% CI  

Lower Upper 

Increased CHST3 expression  
.198 .362 .077 1.699 

Presence of lymph node invasion 
.302 1.955 .547 6.983 

PR+ status 
.036 6.572 1.134 38.084 

ER+ status 
.331 .541 .157 1.867 

HER2+ status 
.759 .818 .227 2.950 

Increased lymphovascular invasion stage 
.904 .000 .000 6.920E57 

Increased tumor stage 
.838 .833 .144 4.802 

Race 
.247 .619 .275 1.394 

Increased histological grade 
.634 1.784 .165 19.262 

Increased tubule formation stage 
.383 .501 .106 2.372 

Increased pleomorphism stage 
.305 2.434 .445 13.310 

Increased mitotic index 
.497 1.530 .449 5.212 

Increased lymph node stage 
.906 5364.575 .000 2.233E65 

Larger tumor size  
.513 .656 .185 2.323 

Increased age  
.026 6.558 1.247 34.477 
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Table 3.9: Univariate Cox regression analysis of CHST3 and clinicopathological 

parameters using SAR time period 

 
Survival after Recurrence 

p-value Hazard ratio 

95% CI  

Lower Upper 

Increased CHST3 expression  
.480 .566 .117 2.742 

Presence of lymph node invasion 
.956 .967 .292 3.202 

PR+ status 
.285 2.372 .487 11.562 

ER+ status 
.352 .490 .109 2.199 

HER2+ status 
.457 1.712 .415 7.060 

Increased lymphovascular invasion stage 
.926 .000 .000 1.132E77 

Increased tumor stage 
.875 .863 .137 5.417 

Race 
.284 .546 .180 1.653 

Increased histological grade 
.974 .962 .092 10.099 

Increased tubule formation stage 
.646 .708 .162 3.086 

Increased pleomorphism stage 
.583 1.689 .260 10.973 

Increased mitotic index 
.791 1.179 .349 3.986 

Increased lymph node stage 
.925 7595.428 .000 6.112E84 

Larger tumor size  
.898 .919 .256 3.303 

Increased age  
.069 5.087 .879 29.458 
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3.6.6.3 Survival Analysis using Cox Regression Multivariate  

 

Following this, Cox regression multivariate survival analysis (Table 3.10-3.12) 

using clinicopathological parameters were carried out for DFS, OS, and SAR time 

period respectively. This was performed to examine if CHST3 is a good prognostic 

marker after adjusting for various important clinical parameters. No significant 

hazard ratio was obtained for CHST3 expression level. However, tumor size was 

found to have significant hazard ratio after adjusting for confounding factors in all 

time periods.    
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Table 3.10: Multivariate Cox regression analysis of CHST3 expression using DFS.  

  

p-value Hazard Ratio 

95% Confidence Interval 

  Lower Upper 

Step 1 Increased CHST3 expression .952 .973 .402 2.354 

Presence of lymph node invasion .224 1.659 .734 3.752 

PR+ status .225 1.848 .685 4.982 

ER+ status .131 .510 .213 1.223 

HER2+ status .204 .535 .204 1.405 

Increased tumor stage .717 1.197 .452 3.168 

Race .999 1.000 .575 1.738 

Larger tumor size  .023 2.969 1.161 7.594 

Increased age  .812 1.107 .479 2.557 

Step 2 Increased CHST3 expression .952 .973 .403 2.353 

Presence of lymph node invasion .215 1.659 .745 3.694 

PR+ status .225 1.848 .686 4.979 

ER+ status .130 .510 .214 1.218 

HER2+ status .197 .535 .207 1.384 

Increased tumor stage .713 1.197 .459 3.121 

Larger tumor size  .022 2.969 1.168 7.550 

Increased age  .807 1.107 .489 2.504 

Step 3 Increased CHST3 expression .982 .990 .413 2.374 

Presence of lymph node invasion .214 1.661 .746 3.697 

PR+ status .195 1.898 .720 5.001 

ER+ status .122 .505 .213 1.200 

HER2+ status .197 .535 .207 1.383 

Increased tumor stage .705 1.201 .464 3.110 

Larger tumor size  .021 2.991 1.179 7.587 

Step 4 Increased CHST3 expression .866 .933 .414 2.102 

Presence of lymph node invasion .185 1.707 .774 3.764 

PR+ status .179 1.939 .739 5.088 

ER+ status .114 .497 .209 1.182 

HER2+ status .167 .518 .204 1.315 

Larger tumor size .008 3.201 1.346 7.611 

Step 5 Increased CHST3 expression .847 .924 .413 2.069 

PR+ status .210 1.841 .709 4.778 

ER+ status .131 .516 .219 1.219 

HER2+ status .201 .549 .219 1.377 

Larger tumor size .003 3.532 1.514 8.238 

Step 6 Increased CHST3 expression .967 1.017 .459 2.252 

ER+ status .275 .636 .282 1.433 

HER2+ status .142 .504 .202 1.257 

Larger tumor size .003 3.593 1.540 8.382 

Step 7 Increased CHST3 expression .992 1.004 .452 2.229 

HER2+ status .235 .588 .245 1.413 

Larger tumor size .004 3.501 1.501 8.167 

Step 8 Increased CHST3 expression .931 .965 .437 2.135 

Larger tumor size .006 3.237 1.402 7.476 
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Table 3.11: Multivariate Cox regression analysis of CHST3 expression using OS.  

  

p-value Hazard Ratio 

95% Confidence Interval 

  Lower Upper 

Step 1 Increased CHST3 expression .340 .579 .189 1.779 

Presence of lymph node invasion .373 1.558 .587 4.132 

PR+ status .543 1.432 .450 4.553 

ER+ status .199 .487 .162 1.459 

HER2+ status .234 .502 .162 1.559 

Increased tumor stage .709 .795 .239 2.646 

Race .849 .938 .485 1.814 

Larger tumor size  .009 5.188 1.502 17.921 

Increased age  .886 1.077 .389 2.981 

Step 2 Increased CHST3 expression .347 .587 .193 1.780 

Presence of lymph node invasion .376 1.552 .586 4.112 

PR+ status .498 1.467 .484 4.447 

ER+ status .186 .481 .162 1.424 

HER2+ status .233 .502 .162 1.557 

Increased tumor stage .717 .803 .244 2.639 

Race .824 .929 .487 1.772 

Larger tumor size  .009 5.202 1.508 17.949 

Step 3 Increased CHST3 expression .354 .592 .195 1.795 

Presence of lymph node invasion .344 1.586 .610 4.121 

PR+ status .502 1.464 .481 4.453 

ER+ status .180 .475 .160 1.409 

HER2+ status .214 .492 .161 1.506 

Increased tumor stage .669 .778 .245 2.467 

Larger tumor size .010 5.158 1.492 17.829 

Step 4 Increased CHST3 expression .408 .640 .222 1.842 

Presence of lymph node invasion .363 1.551 .602 3.993 

PR+ status .537 1.411 .473 4.209 

ER+ status .190 .491 .170 1.423 

HER2+ status .236 .511 .168 1.552 

Larger tumor size .008 4.659 1.487 14.603 

Step 5 Increased CHST3 expression .466 .678 .239 1.925 

Presence of lymph node invasion .390 1.510 .590 3.867 

ER+ status .249 .555 .204 1.511 

HER2+ status .205 .490 .163 1.476 

Larger tumor size .007 4.784 1.533 14.935 

Step 6 Increased CHST3 expression .440 .664 .235 1.877 

ER+ status .255 .562 .209 1.516 

HER2+ status .231 .515 .173 1.527 

Larger tumor size .005 5.087 1.650 15.683 

Step 7 Increased CHST3 expression .426 .655 .231 1.856 

HER2+ status .384 .629 .222 1.783 

Larger tumor size .006 4.920 1.597 15.163 

Step 8 Increased CHST3 expression .374 .625 .222 1.762 

Larger tumor size .007 4.633 1.517 14.147 
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Table 3.12: Multivariate Cox regression analysis of CHST3 expression using SAR.  

  

p-value Hazard Ratio 

95% Confidence Interval 

  Lower Upper 

Step 1 Increased CHST3 expression .448 .640 .203 2.025 

Presence of lymph node invasion .997 1.002 .355 2.832 

PR+ status .874 1.102 .332 3.660 

ER+ status .297 .529 .160 1.749 

HER2+ status .541 .697 .218 2.223 

Increased tumor stage .728 .787 .205 3.029 

Race .654 .826 .359 1.903 

Larger tumor size  .028 4.120 1.167 14.542 

Increased age  .934 .960 .361 2.551 

Step 2 Increased CHST3 expression .448 .640 .203 2.024 

PR+ status .873 1.102 .334 3.637 

ER+ status .296 .529 .161 1.745 

HER2+ status .533 .697 .224 2.168 

Increased tumor stage .726 .787 .207 2.995 

Race .634 .826 .375 1.817 

Larger tumor size  .025 4.122 1.191 14.261 

Increased age  .935 .960 .362 2.545 

Step 3 Increased CHST3 expression .439 .637 .203 1.995 

PR+ status .882 1.094 .336 3.565 

ER+ status .294 .534 .165 1.725 

HER2+ status .536 .700 .226 2.168 

Increased tumor stage .728 .788 .207 3.010 

Race .638 .827 .376 1.821 

Larger tumor size  .023 4.079 1.211 13.734 

Step 4 Increased CHST3 expression .447 .648 .211 1.985 

ER+ status .266 .557 .199 1.560 

HER2+ status .540 .702 .227 2.173 

Increased tumor stage .744 .802 .213 3.013 

Race .644 .831 .379 1.823 

Larger tumor size  .023 4.059 1.209 13.625 

Step 5 Increased CHST3 expression .481 .674 .225 2.018 

ER+ status .281 .571 .206 1.581 

HER2+ status .559 .715 .232 2.204 

Race .491 .780 .385 1.581 

Larger tumor size  .023 3.854 1.204 12.337 

Step 6 Increased CHST3 expression .384 .624 .216 1.805 

ER+ status .338 .615 .228 1.662 

Race .450 .761 .375 1.545 

Larger tumor size  .027 3.624 1.156 11.365 

Step 7 Increased CHST3 expression .466 .676 .237 1.934 

ER+ status .432 .681 .262 1.774 

Larger tumor size .037 3.337 1.074 10.370 

Step 8 Increased CHST3 expression .494 .693 .243 1.980 

Larger tumor size .037 3.354 1.077 10.442 
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3.7 Expression Analysis of FLRT3 in Invasive Ductal Carcinoma Tissues  

 

The evaluation of FLRT3 was also extended to clinical tissue work as no studies 

thus far have reported on FLRT3 expression in breast cancer. FLRT3 expression in 

IDC patient cases was evaluated using the same tissue microarray used for CHST3 

expression analysis. From the in vitro studies, it can be concluded that FLRT3 plays 

a tumor promoter role in breast cancer tumorigenesis; the down-regulation of 

FLRT3 brings forth less aggressive and metastatic behaviors in breast cancer cells. 

Therefore, we would like to investigate if these observations can be extended to 

clinical patient samples. We would hypothesize that high expression of FLRT3 in 

human breast cancer tissue is correlated with worse prognosis and clinical 

parameters. As a result of tissue loss during the immunohistochemistry process, the 

expression patterns of CHST3 were examined in 258 cases (208 IDC cases and 50 

normal ductal cases).  
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3.7.1 FLRT3 Expression Pattern in Breast Tissues  

 

FLRT3 expression staining was positive in the epithelial compartment of both 

normal and malignant breast tissues as shown in Figure 3.48.   

 

 

Figure 3.48: Staining pattern of FLRT3 in breast tissues.  

FLRT3 expression was observed in the epithelial compartment of normal and malignant 

breast tissues, each showing staining intensity of 0 and 1+ respectively. 
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3.7.2 FLRT3 Selected Cut-off Point  

 

Selecting a suitable cut-off point for FLRT3 was also carried out first analysing the 

distribution curve of the staining intensities gathered from the breast tissues. 

Though a non-normal distribution curve (Figure 3.49A) was observed, the mean 

was selected to be the cut-off point for FLRT3 (Figure 3.49C) as the mean 

compared to the median cut-off point has a better balance in terms of sensitivity 

and false positivity scores. The mean cut-off point shows a sensitivity score of 

0.601 (Figure 3.49D), false positivity score between 0.000 and 0.180 (Figure 

3.49D), and area under curve is 0.719 (Figure 3.49B), which is above 0.500.  

 

 
Figure 3.49:  Frequency distribution and ROC curve of FLRT3 expression among normal 

and malignant tissues  

(A) Histogram illustrates the frequency distribution of the WAI score of FLRT3 expression 

across both normal and malignant tissues. (B) ROC curve depicts WAI score of FLRT3 

expression of normal and malignant tissues following their sensitivity and 1-specificity 

score. The area under curve is 0.719, which is above 0.500.   
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3.7.3 FLRT3 Expression in Normal and Malignant Breast Tissues  

 

 

Expression of FLRT3 epitope was evaluated in the epithelial (cytoplasm) 

compartment of ductal specimens. Analysis of the tissue microarrays showed that 

malignant IDC tissues had enhanced staining in comparison to normal ductal 

tissues as shown in Figure 3.50 and Table 3.13 (p-value = 0.000). Further analysis 

was also performed on paired normal and malignant breast tissues, of which results 

showed decreased FLRT3 expression level in the normal tissues compared to its 

paired malignant counterpart tissue (Figure 3.51). 

 

 

Figure 3.50:  FLRT3 immunostaining in normal and malignant breast tissues  

Higher expression of FLRT3 was observed in malignant breast tissues (with overall 

staining intensities of 1+ and 2+) compared to the normal breast tissues (with overall 

staining intensity of 0).  
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Table 3.13: Analysis of FLRT3 expression between normal and malignant breast tissues  

FLRT3 expression is significantly enhanced in malignant breast tissues in 

comparison to normal breast tissues.  

 

 Total Percentage Staining 

 ≤ 0.55 > 0.55 p-value 

Diagnosis 

     Normal 

     Malignant 

 

41 

83 

 

9 

125 

 

0.000* 

 

 

Figure 3.51:  Paired analysis of FLRT3 expression in 26 paired normal and malignant 

breast tissue samples.  

Normal tissues shows reduced expression level of FLRT3 compared to malignant 

tissues.  

 

3.7.4 FLRT3 Correlations with Clinicopathological Parameters  

 

Following expression analysis using WAI (cutoff at 0.55), FLRT3 expression level 

was analyzed against the various clinicopathological parameters (Table 3.14).  

Enhanced FLRT3 staining was observed in patients with enhanced lymphovascular 

invasion stage (p-value = 0.018) and patients of older age (p-value = 0.003).   
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Table 3.14 Correlations between FLRT3 expression and clinicopathological features of 

IDC 

 
 WAI  WAI 

 ≤ 

0.55 

> 

0.55 

p-

value 

 ≤ 

0.55 

> 

0.55 

p-

value 

Age (years) 

     ≤ 56 

     > 56 

     NA 

 

62 

21 

0 

 

68 

57 

0 

 

0.003* 

Lymphovascular 

invasion 

     Absent 

     Present 

     NA 

 

 

 

39 

27 

17 

 

 

38 

44 

43 

 

 

0.139 

Ethnicity 

     Chinese 

     Malay 

     Indian 

     Others 

     NA 

 

 

67 

6 

1 

6 

3 

 

79 

5 

3 

4 

34 

 

0.587 

Lymphovascular 

invasion stage 

     1 

     2 

     3 

     NA 

 

 

 

47 

17 

14 

5 

 

 

50 

30 

35 

10 

 

 

0.018* 

Tumor size (mm) 

     ≤ 30 

     > 30 

     NA 

      

 

51 

31 

1 

 

62 

61 

2 

 

0.096 

Lymph node status 

     1 

     2 

     3 

     NA 

 

 

46 

19 

13 

5 

 

57 

28 

29 

11 

 

0.157 

Histological tumor 

grade 

     1 

     2 

     3 

     NA 

 

 

 

2 

32 

46 

3 

 

 

 

11 

43 

67 

4 

 

 

0.511 

Tubule Formation 

Stage 

     1 

     2 

     3 

     NA 

 

 

2 

18 

43 

20 

 

 

 

4 

19 

55 

47 

 

 

0.855 

Tumor stage 

     1 

     2 

     3 

     NA 

 

 

12 

30 

4 

37 

 

7 

39 

5 

74 

 

0.204 

ER status 

     Negative 

     Positive 

     NA 

      

 

40 

33 

10 

 

62 

57 

6 

 

0.767 

Mitotic Stage 

     1 

     2 

     3 

     NA 

 

 

9 

19 

35 

20 

 

18 

27 

33 

47 

 

0.095 

PR status 

     Negative 

     Positive 

     NA 

 

31 

42 

10 

 

54 

64 

7 

 

0.765 

Pleomorphism 

Stage 

     1 

     2 

     3 

     NA 

 

 

0 

29 

34 

20 

 

 

4 

33 

41 

47 

 

 

0.686 

HER2 receptor status 

     Negative 

     Positive 

     NA 

    

      

 

52 

23 

8 

 

80 

36 

9 

 

1.000 

NA = Not Available 
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3.7.5 Survival Analysis of FLRT3 Expression  

 

3.7.5.1 Survival Analysis using Kaplan Meier  

 

Survival analysis was performed using Kaplan Meier curves to observe any general 

trends between FLRT3 expression and tumor recurrence and mortality rate. No 

significant trends were observed for FLRT3 expression with patients’ tumor 

recurrence and mortality rate, as shown in Figure 3.52. 

  

 

Figure 3.52: Kaplan Meier curves using FLRT3  

No significant trend was observed between FLRT3 expression and (A) tumor recurrence, 

(B) overall survival, and (C) survival after recurrence.  

 

 

 

(A) (B) 

(C) 
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3.7.5.2 Survival Analysis using Cox Regression Univariate 

 

Cox regression analysis using univariate method was performed to determine the 

hazard ratio of FLRT3 expression as well as for the clinicopathological parameters. 

Several significant hazard ratios were obtained for various clinical parameters. 

However, no significant hazard ratios were attained for FLRT3 expression in 

disease-free survival (Table 3.15), overall survival (Table 3.16), as well as survival 

after recurrence (Table 3.17) time period. 

 

Table 3.15: Univariate Cox regression analysis of FLRT3 and clinicopathological 

parameters using DFS time period 

 
Disease Free Survival 

p-value Hazard ratio 

95% CI 

Lower Upper 

Increased FLRT3 expression  
.795 1.164 .371 3.663 

Presence of lymph node invasion 
.813 1.158 .345 3.889 

PR+ status 
.051 5.512 .993 30.600 

ER+ status 
.638 .763 .247 2.357 

HER2+ status 
.353 .487 .107 2.219 

Increased lymphovascular invasion stage 
.915 .000 .000 1.365E63 

Increased tumor stage 
.328 1.942 .514 7.338 

Race 
.152 .532 .224 1.263 

Increased histological grade 
.863 1.191 .164 8.646 

Increased tubule formation stage 
.788 .834 .222 3.133 

Increased pleomorphism stage 
.590 1.508 .338 6.721 

Increased mitotic index 
.299 1.764 .605 5.143 

Increased lymph node stage 
.918 3303.709 .000 1.893E70 

Larger tumor size  
.780 .854 .282 2.583 

Increased age  
.101 2.867 .813 10.104 
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Table 3.16: Univariate Cox regression analysis of FLRT3 and clinicopathological 

parameters using OS time period 

 
Overall Survival 

p-value Hazard ratio 

95% CI 

 
Lower Upper 

Increased FLRT3 expression  
.291 2.445 .466 12.838 

Presence of lymph node invasion 
.463 1.837 .363 9.297 

PR+ status 
.054 12.006 .956 150.760 

ER+ status 
.358 .481 .101 2.290 

HER2+ status 
.775 1.305 .211 8.076 

Increased lymphovascular invasion stage 
.920 .000 .000 2.575E74 

Increased tumor stage 
.842 .826 .126 5.401 

Race 
.109 .256 .048 1.359 

Increased histological grade 
.540 2.533 .130 49.446 

Increased tubule formation stage 
.422 .416 .049 3.536 

Increased pleomorphism stage 
.688 1.503 .206 10.944 

Increased mitotic index 
.100 3.507 .786 15.641 

Increased lymph node stage 
.921 9873.267 .000 2.754E82 

Larger tumor size  
.883 .889 .186 4.253 

Increased age  
.025 8.297 1.300 52.949 
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Table 3.17: Univariate Cox regression analysis of FLRT3 and clinicopathological 

parameters using SAR time period 

 
Survival after Recurrence 

p-value Hazard ratio 

95% CI 

 
Lower Upper 

Increased FLRT3 expression  
.073 5.272 .857 32.434 

Presence of lymph node invasion 
.711 1.352 .274 6.677 

PR+ status 
.160 7.163 .458 111.954 

ER+ status 
.182 .288 .046 1.794 

HER2+ status 
.647 1.600 .215 11.931 

Increased lymphovascular invasion stage 
.899 .000 .000 4.808E53 

Increased tumor stage 
.701 .666 .083 5.310 

Race 
.071 .118 .012 1.199 

Increased histological grade 
.970 .940 .039 22.774 

Increased tubule formation stage 
.770 .708 .070 7.160 

Increased pleomorphism stage 
.599 1.952 .162 23.565 

Increased mitotic index 
.093 4.030 .793 20.486 

Increased lymph node stage 
.901 4376.959 .000 1.113E61 

Larger tumor size  
.496 1.874 .307 11.451 

Increased age  
.035 7.519 1.158 48.838 
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3.7.5.3 Survival Analysis using Cox Regression Multivariate 

 

As no significant hazard ratio was obtained through the univariate method, analysis 

using Cox regression multivariate survival analysis (Table 3.18-20) using 

clinicopathological parameters were performed. A borderline significant trend that 

high FLRT3 expression in IDC patients was associated with higher tumor 

recurrence with a hazard ratio of 2.445 (p-value = 0.054) when adjusted for the 

clinicopathological parameters.  Tumor size was also found to have significant 

hazard ratios after adjusting for confounding factors in all time periods. 
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Table 3.18: Multivariate Cox regression analysis of FLRT3 expression using DFS.  

  

p-value Hazard Ratio 

95% Confidence Interval 

  Lower Upper 

Step 1 Increased FLRT3 expression .088 2.247 .887 5.714 

Presence of lymph node invasion .746 1.161 .471 2.864 

PR+ status .212 2.038 .666 6.243 

ER+ status .380 .656 .256 1.681 

HER2+ status .121 .413 .135 1.262 

Increased tumor stage .451 1.508 .519 4.383 

Race .341 .689 .321 1.482 

Larger tumor size  .040 2.830 1.048 7.645 

Increased age  .369 1.502 .618 3.652 

Step 2 Increased FLRT3 expression .085 2.262 .893 5.714 

PR+ status .219 2.014 .659 6.149 

ER+ status .390 .663 .260 1.693 

HER2+ status .128 .426 .142 1.277 

Increased tumor stage .389 1.576 .560 4.439 

Race .307 .674 .316 1.437 

Larger tumor size  .035 2.886 1.078 7.729 

Increased age  .349 1.524 .631 3.682 

Step 3 Increased FLRT3 expression .054 2.445 .983 6.061 

PR+ status .340 1.659 .586 4.701 

HER2+ status .165 .462 .155 1.373 

Increased tumor stage .339 1.673 .582 4.804 

Race .276 .655 .306 1.403 

Larger tumor size  .036 2.852 1.069 7.604 

Increased age  .350 1.529 .628 3.726 

Step 4 Increased FLRT3 expression .068 2.294 .942 5.587 

PR+ status .248 1.828 .656 5.094 

HER2+ status .212 .508 .176 1.471 

Increased tumor stage .374 1.587 .573 4.392 

Race .214 .618 .290 1.320 

Larger tumor size  .029 2.972 1.120 7.884 

Step 5 Increased FLRT3 expression .093 2.075 .885 4.854 

PR+ status .263 1.788 .646 4.948 

HER2+ status .179 .487 .171 1.390 

Race .272 .667 .324 1.373 

Larger tumor size  .004 3.660 1.526 8.776 

Step 6 Increased FLRT3 expression .072 2.198 .932 5.181 

HER2+ status .099 .420 .150 1.179 

Race .270 .665 .323 1.372 

Larger tumor size  .003 3.734 1.550 8.996 

Step 7 Increased FLRT3 expression .100 2.041 .872 4.785 

HER2+ status .098 .420 .150 1.174 

Larger tumor size .005 3.500 1.458 8.398 
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Table 3.19: Multivariate Cox regression analysis of FLRT3 expression using OS.  

  

p-value Hazard Ratio 

95% Confidence Interval 

  Lower Upper 

Step 1 Increased FLRT3 expression .345 1.733 .554 5.405 

Presence of lymph node invasion .910 1.066 .351 3.239 

PR+ status .584 1.454 .380 5.564 

ER+ status .465 .636 .189 2.139 

HER2+ status .141 .346 .084 1.421 

Increased tumor stage .875 .890 .210 3.780 

Race .331 .513 .133 1.974 

Larger tumor size  .014 5.279 1.392 20.017 

Increased age  .600 1.336 .452 3.948 

Step 2 Increased FLRT3 expression .337 1.742 .561 5.405 

PR+ status .590 1.443 .380 5.477 

ER+ status .469 .644 .195 2.124 

HER2+ status .139 .352 .088 1.405 

Increased tumor stage .893 .908 .223 3.698 

Race .321 .507 .133 1.936 

Larger tumor size  .014 5.314 1.409 20.036 

Increased age  .592 1.343 .457 3.946 

Step 3 Increased FLRT3 expression .298 1.783 .600 5.291 

PR+ status .595 1.433 .380 5.402 

ER+ status .475 .650 .200 2.116 

HER2+ status .141 .354 .089 1.412 

Race .301 .498 .133 1.865 

Larger tumor size  .006 5.092 1.585 16.360 

Increased age  .592 1.343 .457 3.942 

Step 4 Increased FLRT3 expression .236 1.908 .656 5.555 

ER+ status .604 .754 .260 2.190 

HER2+ status .124 .338 .085 1.347 

Race .312 .508 .137 1.887 

Larger tumor size  .006 5.162 1.606 16.592 

Increased age  .514 1.421 .495 4.082 

Step 5 Increased FLRT3 expression .215 1.957 .677 5.650 

HER2+ status .148 .372 .098 1.419 

Race .310 .509 .138 1.875 

Larger tumor size  .006 5.119 1.598 16.400 

Increased age  .541 1.388 .485 3.978 

Step 6 Increased FLRT3 expression .221 1.931 .842 5.524 

HER2+ status .165 .393 .105 1.469 

Race .280 .487 .132 1.797 

Larger tumor size  .005 5.273 1.650 16.849 

Step 7 Increased FLRT3 expression .413 1.529 .554 4.219 

Race .274 .454 .111 1.867 

Larger tumor size  .008 4.699 1.491 14.814 

Step 8 Increased FLRT3 expression .468 1.458 .528 4.016 

Larger tumor size .013 4.287 1.364 13.480 
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Table 3.20: Multivariate Cox regression analysis of FLRT3 expression using SAR.  

  

p-value Hazard Ratio 

95% Confidence Interval 

  Lower Upper 

Step 1 Increased FLRT3 expression .919 1.062 .334 3.378 

Presence of lymph node invasion .686 .782 .238 2.571 

PR+ status .672 1.359 .329 5.619 

ER+ status .374 .554 .150 2.039 

HER2+ status .254 .437 .105 1.812 

Increased tumor stage .790 .804 .161 4.012 

Race .279 .416 .085 2.039 

Larger tumor size  .027 4.500 1.191 16.999 

Increased age  .582 1.364 .451 4.126 

Step 2 Increased FLRT3 expression .846 1.115 .371 3.356 

Presence of lymph node invasion .623 .751 .239 2.358 

PR+ status .697 1.318 .328 5.298 

ER+ status .388 .574 .162 2.027 

HER2+ status .264 .451 .111 1.825 

Race .225 .388 .084 1.788 

Larger tumor size  .021 4.211 1.239 14.307 

Increased age  .576 1.371 .454 4.136 

Step 3 Increased FLRT3 expression .797 1.153 .387 3.436 

Presence of lymph node invasion .600 .737 .235 2.308 

ER+ status .447 .653 .218 1.956 

HER2+ status .277 .464 .116 1.854 

Race .238 .406 .091 1.813 

Larger tumor size  .022 4.186 1.232 14.216 

Increased age  .541 1.406 .471 4.198 

Step 4 Increased FLRT3 expression .854 1.106 .376 3.257 

ER+ status .433 .643 .214 1.936 

HER2+ status .241 .440 .111 1.737 

Race .263 .431 .099 1.882 

Larger tumor size  .026 3.876 1.179 12.740 

Increased age  .586 1.348 .461 3.943 

Step 5 Increased FLRT3 expression .834 1.121 .385 3.268 

ER+ status .442 .648 .215 1.958 

HER2+ status .265 .459 .117 1.803 

Race .266 .435 .100 1.888 

Larger tumor size  .017 4.137 1.283 13.337 

Step 6 Increased FLRT3 expression .806 1.144 .391 3.344 

HER2+ status .356 .540 .146 1.998 

Race .296 .467 .112 1.948 

Larger tumor size  .021 3.892 1.223 12.383 

Step 7 Increased FLRT3 expression .990 1.007 .351 2.890 

Race .281 .440 .099 1.957 

Larger tumor size  .027 3.688 1.157 11.751 

Step 8 Increased FLRT3 expression .889 1.076 .384 3.012 

Larger tumor size .043 3.296 1.040 10.444 
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3.8 Correlation of CHST3 and FLRT3 Expression in Invasive Ductal 

Carcinoma 

 

Evaluation was also performed on whether the expression levels of CHST3 and 

FLRT3 are correlated in human tissue samples of IDC. No significant association 

was observed between the expression levels of CHST3 and FLRT3 in the evaluated 

set of IDC tissues (Table 3.21).    

 

Table 3.21: Correlation of CHST3 with FLRT3 expression in IDC tissues  

No significant association was obtained between CHST3 and FLRT3 expression levels in 

IDC breast tissues.  

 

 FLRT3 expression 

 WAI ≤ 0.55 WAI > 0.55 p-value 

CHST3 expression 

    WAI ≤ 1.06 

    WAI  > 1.06 

     Not Available 

 

49 

31 

3 

 

63 

53 

19 

 

0.379 
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3.9 Summary of Results 

 

This study first focused on the significance of CHST3 in breast cancer phenotypic 

behaviors. The regulatory roles of CHST3 were examined in T47D, MCF7 and 

MDA-MB-231 cell lines through various functional experiments including cell 

migration, invasion, adhesion, proliferation, cell cycle, and apoptosis assays. Also, 

several potential molecules were studied on their associations with CHST3 pathway. 

This study would be the first evaluation performed to elucidate the functional roles 

as well as expression studies of CHST3 and FLRT3 in breast cancer. Table 3.22 and 

3.23 summarize the results obtained.  

 
Table 3.22: Summary table of in vitro studies 

 Cell 

Migration 

Cell 

Invasion 

Cell 

Adhesion 

Cell 

Proliferation 

Cell 

Apoptosis 

CHST3 Silenced 

 ↑ ↑ ↓ ↑ ↓ 

CHST3  

Over-expressed 

 
↓ ↓ ↑ ↓  

FLRT3 Silenced 

 ↓ ↓ ↑ ↓  

CHST3 + FLRT3 

Silenced 

 

≈ ≈ ≈ ≈  

GPNMB Silenced 

(from literature 

search) 

 

↓ ↓ N.A. ≈  

CHST3 + GPNMB 

Silenced 

 

≈ ≈ ≈ ≈  

 E-cadherin β-catenin pJAK2 pSTAT3 pBAD 

CHST3 Silenced 

 ↓ ↓ ≈ ≈ ↑ 

 
Table 3.23: Summary table of clinical IDC studies 

 Tissue 

Type 

Tumor 

stage 

Tumor 

size 

Age Lymphovascular 

invasion stage 

Tumor 

recurrence 

Mortality 

rate 

Low 

CHST3  

 

Malignant ↑ ↑ 

 

ns 

 

ns ns ns 

High 

FLRT3 

 

Malignant ns ns 
 

↑ 
 

 

↑ 
 

ns ns 
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3.9.1 CHST3 Regulates Cell Migration  

 

Cancer cells have the potential to reach metastatic potential, migrating from the 

primary tumor to a distant secondary site (organ) via the blood vessels and 

lymphatic vessels (Simpson et al., 2010, Moutasim et al., 2011). To evaluate the 

effect of CHST3 on cell motility, migration assay using migration chambers was 

carried out after silencing as well as over-expression of CHST3. Significant 

increase in cell migration was observed upon silencing of CHST3 whereas 

significant decrease was observed after over-expression of CHST3 in the breast 

cancer cells.  

 

3.9.2 CHST3 Regulates Cell Invasion  

 

Cell invasion of the tumor cell arise from the interaction of the cancer cells with 

surrounding cells as well as the extracellular matrix and stroma. Invasive tumors 

can metastasize to adjacent tissues as well as migrate to other organs in the body. 

In the case of breast cancer, the tumor cells usually metastasize to the lungs, liver, 

bone, and brain. The cancer cells will invade the basement membrane that lines the 

epithelial cells, hence invading to the surrounding environment. To replicate this 

event, invasion assay using matrigel invasion chambers was performed. Down-

regulation of CHST3 increased cell invasion whereas over-expression of CHST3 

decreased cell invasion.   

 

3.9.3 CHST3 Regulates Cell Adhesion  

 

Cell adhesion also has a major role in cancer cell aggressive and metastatic behavior. 

Cancer cells will usually have weaker cell adhesion compared to normal cells, 

causing the cancer cells to metastasize more easily to surrounding tissues and other 

organs (Ruoslahti, 1984). Adhesion assay was performed using either collagen I or 

fibronectin coated plates. Upon silencing of CHST3, small decreases in cell 

adhesion in both coated plates were observed. The opposite observation was 

obtained for cells over-expressed with CHST3, which is an increase in cell adhesion. 
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These would suggest that CHST3 modulates the expression level of adhesion 

molecule(s), which would in turn adhere to collagen and/or fibronectin, and 

regulates cell adhesion level.  

 

3.9.4 CHST3 Regulates Cell Proliferation  

 

In the proliferation assay performed using MTS solution, silencing of CHST3 

resulted in a small increase in the number of viable T47D and MDA-MB-231 cells. 

On the other hand, over-expression of CHST3 in MCF7 and MDA-MB-231 cells 

led to a small decrease in cell proliferation. It should be noted that the change in 

cell viability can not only be attributable to rate of cell proliferation but also rate of 

cell apoptosis or both events. Flow cytometry was also performed to further analyze 

cell proliferation and to observe whether cell death occurred after silencing of 

CHST3. Cell cycle analysis showed decreases in cell death at the sub-G1 phase for 

T47D and MDA-MB-231 cell lines. However, only T47D cell line showed a slight 

change (reduction) at the DNA replication phase (S phase). This may signify the 

changes in cell numbers could be due more to cell death.  

 

3.9.5 CHST3 Regulates Cell Apoptosis  

 

To verify the sub-G1 observations, apoptosis assay was performed. Fluorescence 

measurement showed reductions in caspases 3 and 7 levels upon down-regulation 

of CHST3. This hence indicates the potential ability of CHST3 in regulating cell 

viability through cell apoptosis. 

 

3.9.6 CHST3 Effects on Downstream Molecules  

 

Moving on to the downstream molecular work, based on the microarray analysis, 

both GPNMB and FLRT3 were found to be up-regulated after down-regulation of 

CHST3. Therefore, the downstream relationship of GPNMB or FLRT3 and CHST3 

was validated through functional studies. Silencing of CHST3 increased cell 

survival and cell motility whereas silencing of GPNMB or FLRT3 showed 
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otherwise, decreased cell survival and cell motility. Upon double silencing of 

CHST3 and GPNMB or FLRT3, the levels of cell proliferation, cell adhesion, cell 

migration, and cell invasion were similar to that of the control group, indicating 

that phenotypic behavior changes observed during single silencing of either CHST3 

or GPNMB or FLRT3 were diminished and returned to basal level. This suggests 

that GPNMB and FLRT3 are downstream molecules of CHST3 given that the 

cellular behaviors were similar to the double negative group after double silencing.  

 

In addition to GPNMB and FLRT3, silencing of CHST3 in T47D cells gave rise to 

reduced expression of E-cadherin and β-catenin as well as enhanced expression of 

pBAD/BAD, all of which have involvement in the various cellular behavior 

changes especially for the main alterations in cell migration and invasion. This will 

be further elaborated later in this chapter. 

 

3.9.7 CHST3 and FLRT3 in Breast Tissues  

 

From the immunohistochemistry analysis, CHST3 and FLRT3 expression levels 

were observed to be significantly higher and lower respectively in the epithelial 

compartment of normal ductal tissues as compared to that of the malignant tissues. 

Significant associations were also found between CHST3 expression and several 

clinicopathological parameters that are low CHST3 expression is significantly 

linked to higher tumor stage. Additionally, CHST3 expression is borderline 

significantly associated with larger tumor size. Significant correlations were also 

found between FLRT3 expression and clinicopathological parameters – higher 

FLRT3 expression was associated with patients with older age and greater stage of 

lymphovascular invasion. In terms of prognosis, from the multivariate survival 

analysis, no observable trend was observed for CHST3. For FLRT3, there was 

borderline significance in that higher tumor recurrence risk was observed for 

enhanced FLRT3 expression upon adjusting for confounding factors. Additionally, 

there was no significant association between CHST3 and FLRT3 expression levels 

in breast cancer.   
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4 DISCUSSION 

 

4.1 Potential Role of CHST3 in Breast Cancer 

 

With growing evidence that proteoglycans and their glycosaminoglycan chains 

play substantial roles in regulating cancer behavior, the roles of chondroitin- and 

heparan-related enzymes have also been investigated in recent years. A few of the 

more well studied enzymes in this field are heparanase (Ilan et al., 2006, Vlodavsky 

et al., 2007a, Vlodavsky et al., 2007b) and chondroitin sulfotransferase 11 or 

CHST11 (Cooney et al., 2011, Potapenko et al., 2010), both enzymes having been 

associated with tumorigenesis. CHST3, or otherwise known as chondroitin-6-

sulfotransferase 1 (C6ST1), has been investigated in greater detail in the field of 

musculoskeletal disease; the de-regulation of CHST3 expression level is associated 

with the diagnosis of spondyloepiphyseal dysplasia which has a deficiency in the 

expression level of CHST3 (Tuysuz et al., 2009, van Roij et al., 2008). The interest 

to pursue evaluations of CHST3 built up when it is also found to be potentially 

regulating cancer cell behavior, such as those studied by Kalathas et al and Maupin 

et al (Kalathas et al., 2010, Maupin et al., 2010) in laryngeal and pancreatic cancer 

respectively. Being a relatively new enzyme, CHST3 is yet to be evaluated for its 

potential roles in breast cancer and its signaling pathways is yet to be uncovered.  

 

This study has been carried out with a focus on evaluating the expression level as 

well as the functional roles of CHST3 in breast cancer and whether CHST3 is a 

potential marker for diagnosis, prognosis, or therapy in breast cancer. The in vitro 

experiments that were carried out included cell migration, invasion, adhesion, 

proliferation, and cell cycle assays, which were performed to investigate CHST3’s 

potential role in regulating typical cancer cell behaviors or hallmarks. Taken 

together the observations obtained from this study, they potentially support the 

notion that CHST3 expression level in epithelial breast cancer cells affect 

metastatic phenotype. Upon silencing or overexpressing CHST3 in the three 

different breast cancer cells (T47D, MCF7, and MDA-MB-231), CHST3 is 



 164 

observed to regulate cell migration and cell invasion substantially and at greater 

extent compared to the other phenotypic assays carried out. Further evaluations of 

microarray-analyzed genes (GPNMB and FLRT3), EMT markers (E-cadherin and 

β-catenin), and other signaling pathways’ molecules (JAK2, STAT3, and BAD) 

showed expression changes after modulation of CHST3 expression level, pointing 

to the possibility of CHST3 having a substantial role in their signaling processes. 

In the IDC tissue expression study, it is observed that low CHST3 expression levels 

is correlated with malignant tissues as compared to normal ductal tissues. 

Additionally, lower levels of CHST3 expression is found to be associated with 

higher tumor grade in IDC tissue samples. 

 

The next critical question then would be on how CHST3 potentially regulates the 

phenotypic behaviors observed. To have a certain understanding of how CHST3 

functions or regulates, one may look into its substrate’s functional roles, expression 

levels, and regulation in breast cancer instead. CHST3 is a sulfotransferase enzyme 

responsible for the carbon-6 sulfation pattern of galactosamine unit in chondroitin 

sulfate. The chondroitin sulfate itself or together with the proteoglycan portion, 

chondroitin sulfate proteoglycan, has been evaluated in breast cancer and has 

shown regulating capabilities towards cellular behavior in breast cancer. Also, the 

closest related gene or protein studied to date in breast carcinoma would be 

CHST11, which will be elaborated later on.  

 

4.1.1 Potential Role of CHST3 through Chondroitin Sulfate 

 

Past studies conducted have shown significant associations of CS expression with 

regards to breast cancer. Researchers studied CS expression in general, showing 

that changes in the cell surface CS expression level consequently alters ECM-

degradative enzymes, such as matrix metalloproteinases, which in turn affects the 

breast cancer cells’ invasiveness and cell-matrix interactions (Yip et al., 2006). 

From in vitro studies, breast cancer cells have been seen to have general increased 

expression of CS levels and are linked to augmented cell proliferation and 
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migration, making the cells more aggressive and metastatic (Kieber-Emmons et al., 

2011, Alini and Losa, 1991, Olsen et al., 1988). At the tissue level, CS levels are 

observed to be significantly elevated in the stromal compartment of breast tumors 

(Ricciardelli et al., 2002, Suwiwat et al., 2004). Cooney et al evaluated the effect 

of specific chondroitin sulfate types in breast cancer. Carbon-4 sulfated CSA is 

shown to be expressed at increased levels in human breast cancer cells with high 

metastatic capacity (MDA-MB-231 and MDA-MET) compared to less aggressive 

cell line, MCF7 (Cooney et al., 2011)). CSE, another CS containing carbon-4 

sulfation pattern, has also been considered a tumor promoter molecule, whereby 

functional studies in vitro showed over-expression of CSE promotes angiogenesis 

and anti-apoptotic cell behavior (Cooney et al., 2011, Grose and Dickson, 2005). 

Unlike their carbon-4 sulfated CS counterparts, carbon-6 sulfated CSC and CSD 

chains have been observed to be down-regulated in breast carcinomas (Potapenko 

et al., 2010), hence may be characterized as tumor suppressors. The differential 

roles of the various chondroitin sulfate types are also observed in other cases. In 

wound healing, Zou et al studied the effects of chondroitin-4-sulfate (CSA) and 

chondroitin-6-sulfate (CSC) on wound healing in which the group observed CSC 

to increase while CSA decreases cell adhesion levels in palatal fibroblasts (Zou et 

al., 2004).  

 

At the sulfotransferase level, CHST11 is responsible for the transfer of a sulfate 

group to the carbon 4 of galactosamine unit to form CSA and CSE. The epithelial 

expression level of CHST11 is significantly up-regulated in more aggressive breast 

cancer cells (MDA-MB-231, MDA-MB-468, and MDA-MET) in comparison to 

their less aggressive metastatic cell line counterpart (MCF7). The same trend is also 

displayed at the tissue level, whereby CHST11 is over-expressed in malignant 

specimens against their adjacent non-malignant breast tissues (Cooney et al., 2011, 

Potapenko et al., 2010). One of CHST11 product, CSA, as mentioned has increased 

expression level in breast cancer cells of higher tumor grade. This would lead to 

further plausibility that CHST11 and its product, CSA are correlated to aggressive 

and metastatic capacities of breast cancer cells.  
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In view of these observations, the expression level of CHST3 as well as potentially 

its product, CSC, may then be suppressed when there are enhanced levels of 

CHST11 and its CS products, causing tumor suppressing effects to be reduced. 

From the observations in this study, CHST3 has shown the opposite trends 

compared to CHST11. Through the patient IDC tissue samples, it is observed that 

a significant proportion of IDC tissues samples display lower levels of CHST3 as 

compared to the normal ductal tissues. This observation is similar to that observed 

in vitro whereby the breast cancer cells have decreased levels of CHST3 in 

comparison to MCF12A normal breast cells. Both cell line work and tissue study 

show expression of CHST3 within the epithelial cells. In the tissue study, it is noted 

that CHST3 is not expressed in the stroma region of the ductal tissue for both 

malignant and normal types. Further examination of the expression levels of 

CHST3 in the malignant tissues showed significant association between low levels 

of CHST3 and greater tumor stage. Again, this can be observed from the in vitro 

studies of which Grade 1 breast cancer cell lines T47D and MCF7 have higher 

levels of CHST3 against Grade 3 MDA-MB-231 breast cancer cells. It is to be noted 

that tumor size has a borderline association with CHST3 expression level. Further 

evaluations would be necessary to investigate whether both CHST3 and CHST11 

act from within the epithelial regions and affects the CS chains as well as CSPGs 

that are on the cell surface and stroma regions.  

 

Another notion in this study was to investigate whether the regulation of CHST3 

has different effects on different grades and hormonal status of breast cancer cells. 

The establishment of the hormonal type and grade of cancer the patient has 

determined the type of therapy strategy as well as most importantly, ascertain the 

survival rate of the patient. Molecular diagnosis using various established 

biomarkers such as BRCA1, BRCA2, ER, PR, and HER2 are performed for 

diagnostic examination in breast cancer (Huston, 2005). In recent years, CSPGs 

such as versican (VCAN or CSPG2) and CSPG4 have been evaluated of their 

diagnostic and prognostic capabilities as a biomarker in breast cancer. Both VCAN 
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and CSPG4 are up-regulated in malignant breast tissues compared to normal breast 

tissues (Yee et al., 2007, Wang et al., 2010b). Survival analysis indicated VCAN 

expression is a good predictor of relapse-free survival; enhanced expression of 

VCAN in the stromal is associated with higher risk and rate of relapse in breast 

cancer patients (Ricciardelli et al., 2002, Suwiwat et al., 2004). Additionally, it is 

evaluated that increased VCAN expression is associated with higher expression 

levels of ER and PR in malignant–appearing microcalcifications (MAMCs) 

(Skandalis et al., 2011). In the case of CSPG4, CSPG4-specific antibody has been 

shown to inhibit tumor growth and metastasis as well as reduce risk of tumor 

recurrence in vivo in a lung metastasis model (Wang et al., 2010a). No associations 

of CSPG4 with ER or PR status have since been reported.  

 

Comparing the changes in phenotypic behavior in the three breast cancer cells 

examined in this study, the extent of changes are relatively similar with the 

exception of cell invasion. Compared against T47D and MCF7 Grade 1 (ER+/PR+) 

breast cancer cells, MDA-MB-231 Grade 3 (ER-/PR-) breast cancer cells showed 

lesser extent of changes in cell invasion for both silencing and overexpression 

studies. Moreover, there were no significant correlation between CHST3 

expression levels with the various hormonal biomarker statuses in the IDC tissue 

expression study. The reason(s) to this limitation will need to be explored further; 

a difference in gene expression may potentially be the cause to the difference in 

extent of changes observed. One possible method will be to carry out microarray 

studies on CHST3-silenced and CHST3-overexpressed MDA-MB-231 cells. The 

gene list generated from the microarray studies can then be compared against those 

obtained from the microarray study carried out using T47D cells.  

 

From past CS-related in vitro studies, there has been associations of CS levels and 

its effect on cellular behavior such as cell proliferation, apoptosis, migration, and 

invasion. From the various cell lines experimented on in this study, little impact has 

been observed for cell proliferation phenotype. There are also observations that 

differ between the observations from the in vitro studies and that in the expression 
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studies on human IDC tissues. While the in vitro work showed impact towards 

cellular migratory and invasive behaviors, the analysis carried out on the ductal 

tissues showed otherwise. As an example, there is no significant association 

between CHST3 expression level and lymphovascular invasion. Though CHST3 

has some diagnostic value, no significant value is found in this population of 

patients’ tissues in terms of it being a potential prognostic marker.  

 

Looking further into detail from the results of the experiments, in the case of cell 

adhesion, apart from investigating whether cell adhesion would be affected upon 

regulation of CHST3 expression, it was also to be evaluated whether the breast 

cancer cells’ adhesive behavior would be similar or different towards various 

extracellular matrix components such as fibronectin and collagen. In the case of 

chondroitin sulfate cousin molecules - heparan sulfate - depending on the cell type, 

cell surface heparan sulfate can have different binding affinity towards different 

ECM components; in myeloma, heparan sulfate can attach to collagen but has no 

adhesiveness towards fibronectin (Stamatoglou and Keller, 1983). It is firstly 

observed, in the in vitro study, that the changes are to a small extent for the cell 

adhesion experiments performed, signifying that CHST3 may not have much 

biological importance in cell adhesion in breast cancer cells. Similar extent of 

changes are also observed when either collagen or fibronectin was used in the 

experiments for the three breast cancer cell lines. This may indicate that CHST3 

effects are similar in the different breast cancer cells during the presence of collagen 

or fibronectin.  

 

Cell proliferation changes are also not as substantial as cell migration and cell 

invasion in all the experiments carried out; the small extent of changes are 

consistent throughout the silencing and overexpressing experiments as well as for 

the various breast cancer cells used. Nevertheless, cell cycle assays were also 

carried out to validate the observations. The cell cycle assay showed that cell death 

may be at play and that the cell growth changes may potentially be affected by 

changes in the S phase (DNA replication) of cell cycle. Additionally, from the 
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microarray carried out for the CHST3-silenced T47D cells, a total of 20 genes 

having functional roles in cell proliferation are seen to have more than 2-fold 

changes. For cell migration, 14 genes having migratory roles are picked up after 

analysis. This may indicate that there are cancelation effects by the genes affected 

or that some of the genes that have been regulated do not serve any functional 

importance for cell proliferation. 

 

Apart from understanding CHST3’s regulatory effect on the functional roles 

observed in breast cancer from this main potential angle, there are other possibilities 

of how CHST3 regulates the various phenotypic behaviors in breast cancer. 

 

4.1.2 CHST3 affects Downstream Molecules GPNMB and FLRT3 

 

The CHST3 pathway was evaluated through a microarray study. GPNMB and 

FLRT3 genes were selected from the microarray list for further evaluation on 

whether both molecules are involved in CHST3 pathway that affected the 

phenotypic changes occurred. Results from the double silencing experiments have 

suggested that GPNMB and FLRT3 are downstream of CHST3 in regulating the 

phenotypic changes observed. As mentioned previously, it is important to note the 

small changes in cell proliferation observed in this study, as compared to the more 

substantial changes seen in cell migration and invasion. GPNMB has been 

previously studied by Rose et al (Rose et al., 2010) whereby it was observed that 

overexpression of ectopic GPNMB increases the invasive and migratory 

phenotypes in BT549 breast cancer cells by at least 50%. Their complementary 

experiments through silencing of GPNMB in SUM1315 cells brought forth 

reduction in cell invasion capability. The cell invasion assays carried out in this 

study validates the research group’s findings whereby T47D cells’ invasive 

capability decreased upon silencing of GPNMB. This effect is observed to be 

neutralized upon double silencing of CHST3 and GPNMB, indicating GPNMB to 

be downstream of CHST3. Additionally, Rose et al observed that cell growth was 

unaffected after overexpressing GPNMB in BT549 cells. In this study, GPNMB-
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silenced cells was observed to have non-substantial change in cell proliferation 

level. This possibly indicates that the effects of GPNMB in breast cancer cell 

migration and invasion is not, at a large extent, attributed to the enhancement in 

cell proliferation. Additionally, this may suggest that CHST3 have a biologically 

non-important cell proliferation role in breast cancer.  

 

Similar to CHST3, FLRT3 is also a relatively new gene of which its expression 

level and functional roles are yet to be unraveled in the cancer field. From the in 

vitro work carried out, it is observed that FLRT3 plays an oncogenic role as 

compared to tumor suppressor CHST3. Indeed, the pro-metastatic changes by 

FLRT3 are neutralized by CHST3 in the double silencing study of both genes. 

Additionally, to note, the effects of FLRT3 on cell proliferation and cell adhesion 

are similar to the effects shown from regulation of CHST3 or GPNMB, whereby 

smaller degree and non-substantial changes were observed in both of these 

phenotypic behaviors.  

 

For FLRT3, the observations from the in vitro work are partly extended to the 

observations collected in the tissue expression study. FLRT3 expression is seen to 

display greater intensity in malignant ductal cells compared to its normal ductal cell 

counterpart. In vitro, it is only observed that FLRT3 expression is greater in Grade 

3 breast cancer cells compared to Grade 1 breast cell lines. This observation or 

association is not significant when analysis was carried out between FLRT3 

expression in the malignant ductal tissues and grades of the tissues. Nevertheless, 

from the FLRT3 tissue study, FLRT3 expression in the invasive ductal tissues is 

significantly correlated to lymphovascular invasion stage. Also, its expression level 

is analyzed to be not significantly correlated to tumor size. This potentially 

indicates that there are certain extensity of the observations from in vitro to human 

tissue samples. This is as, from the cell line work, silencing of FLRT3 caused 

significant changes in cell migration and invasion but little changes in cell 

proliferation. 
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Due to the similar characteristics observed for GPNMB and FLRT3, it was 

hypothesized that GPNMB and FLRT3 may potentially be regulated by one 

another’s cellular processes. The down-regulation of GPNMB or FLRT3 had a 

similar extent of changes in T47D cells’ phenotypic behaviors; there are decreases 

in cell migration and cell invasion by about 50% and small changes in cell 

proliferation and adhesion in T47D breast cancer cells.  However, from the qPCR 

experiment carried out, it is seen that GPNMB and FLRT3 do not regulate one 

another’s expression level. This may possibly indicate that these two downstream 

molecules of CHST3 work independently of one another and may not have 

cumulative effects on the evaluated phenotypic behaviors. 

 

In addition, as CHST3 and FLRT3 are observed to have associated functional roles 

in breast cancer cells, it is appropriate to test their association in human ductal 

tissues as well. As the same human patient samples were used in both CHST3 and 

FLRT3 expression studies, analysis was carried out to test both molecules’ 

expression in terms of their correlation with one another. No significant correlation 

is found between the expression levels of CHST3 and FLRT3 in the breast tissues. 

An additional tissue expression study in a different Singapore cohort of breast 

cancer patients should be studied to validate the expression studies carried out. 

Moreover, an expression study of GPNMB in the Singapore patient cohort 

diagnosed with IDC should also be performed. This will allow evaluation of the 

associations of the three molecules (CHST3, FLRT3, and GPNMB) as well as 

analyses with associated clinicopathological factors. Overall, from the two tissue 

studies, CHST3 and FLRT3 preliminarily has potential as diagnostic markers when 

evaluating a patient’s malignant ductal tissues and surrounding normal tissues in 

terms of the epithelial cells’ expression levels of CHST3 and FLRT3. Low CHST3 

expression is correlated with larger tumor size and higher tumor stage, while high 

FLRT3 expression is associated with patients with older age and enhanced stage of 

lymphovascular invasion. This could also potentially lead CHST3 and FLRT3 as 

diagnostic biomarkers to detect the possibility of the patients having metastasis. 

However, CHST3 and FLRT3 did not appear to be potential prognostic biomarkers 
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in breast cancer in this study. No significant association was observed between their 

expression levels and tumor recurrence or mortality risk. Nevertheless, it is 

observed that tumor size has prognostic prediction for both tumor recurrence and 

survival after adjusting for confounding factors.  

 

One factor, however, to be noted from the expression studies in the ductal tissues 

is that both CHST3 and FLRT3 are not associated to the expression levels of the 

well-established biomarkers ER, PR, and HER2. Hence, there is the possibility of 

both CHST3 and FLRT3 being non-associated with particular breast cancer 

subtypes such as luminal breast cancer (mostly having ER/PR positive statuses) or 

basal breast cancer type (usually having ER/PR/HER2 negative statuses). This may 

somewhat explain why ER/PR positive breast cancer cell lines MCF7 and T47D as 

well as ER/PR negative MDA-MB-231 breast cancer cells display similar extensity 

of changes when CHST3 expression is affected. 

 

One common signaling pathway that CHST3, GPNMB, and FLRT3 have is the 

MAPK signaling cascade. GPNMB has been shown to be enhanced of its 

expression level in breast cancer tissues (Rose et al., 2010, Rose et al., 2007), of 

which its up-regulated expression level and aggressive phenotype features have 

been associated with increasing tumor grade of the breast tissues and  enhanced 

MAPK signaling (Vaklavas et al., 2013). In the case of regulation through FLRT3, 

its effect has been observed in regulating cell migration and adhesion in Xenopus 

tissues. Upon Tgfβ signaling induction, Flrt3 co-expresses with Fgf12 growth 

factor to activate Mapk signaling cascade (Karaulanov et al., 2006, Chen et al., 

2009b). Hence, it is possible that CHST3 together with GPNMB and FLRT3 have 

a role to play in the MAPK signaling pathway. Further studies will be needed to 

investigate whether there are associations between CHST3, GPNMB, FLRT3 and 

MAPK-related molecules as well as whether the molecules are upstream or 

downstream of CHST3, GPNMB, and FLRT3. 
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4.1.3 Potential Regulatory Role of CHST3 through Other Pathways 

 

EMT is an important event during embryogenesis and normal development (Thiery 

et al., 2009). However, EMT also takes place in tumor progression during late 

cancer stages, promoting metastases and treatment resistance (Polyak and 

Weinberg, 2009). It involves the detachment of tumor cells from the primary tumor 

site, whereby intercellular contacts are disrupted and cell motility is enhanced. The 

progression of the epithelial cell phenotype to mesenchymal phenotype would 

allow tumor cell invasion and migration allowing metastases and secondary tumor 

site formation (Guarino et al., 2007, Simic et al., 2013). Also, the transformed 

epithelial cells would adopt capabilities resisting cell apoptosis to allow increased 

survivability of the transformed tumor cells (Hanahan and Weinberg, 2000).  

 

Nadanaka et al showed that either the exogenous treatment of CSE or regulation of 

CSE levels via modulating CHST11 expression has a downstream effect in 

reducing β-catenin expression levels (Nadanaka et al., 2011). In this study, through 

immunofluorescence observations, EMT markers (E-cadherin and β-catenin) were 

observed to be down-regulated after silencing of CHST3 in T47D cells. These 

corroborate with the phenotypic behavior changes, promoting metastatic-like 

events and cell invasion in the breast cancer cells studied. 

 

Transforming growth factor-β (TGFβ) that is up-regulated as observed from the 

microarray study and other growth factors (such as midkine (MK) and fibroblast 

growth factor 2 (FGF2)) are involved  in initiating extensive crosstalk and feedback 

control of different gene expression levels (Lamouille and Derynck, 2007, Wang et 

al., 2010c). In breast cancer cells, FGF2 is observed to down-regulate E-cadherin 

via the activation of MAPK signaling pathway (Lau et al., 2013, Pece and Gutkind, 

2000). In the example of MK, it decreases epithelial markers E-cadherin and β-

catenin, through activation of downstream molecule neurogenic locus notch 

homolog protein 2 (NOTCH2) (Huang et al., 2008a, Huang et al., 2008b). 

Additionally, transcription factor Wilms’ tumor suppressor gene (WT1), which is 
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down-regulated by 2.07 folds in the microarray study, regulates expression level of 

E-cadherin (Hosono et al., 2000, Brett et al., 2013, Morrison et al., 2008). Moreover, 

WT1 is regulated by MK via MK’s binding site for WT1 (Adachi et al., 1996) of 

which the over-expression of MK down-regulates WT1 (Konishi et al., 1999). 

Hence, MK and other growth factors may potentially be upstream of CHST3, 

initiating various EMT markers (E-cadherin and β-catenin) and intermediary 

molecules (MAPK, NOTCH2, and WT1).  

 

The EMT process also includes the survival capability of tumor cells which is vital 

for the cells to migrate, invade, and to grow a distant secondary tumor successfully. 

Cell proliferation, from this study’s observations, may possibly be non-biogically 

important in terms of CHST3 functional roles in breast cancer cells, due to the small 

changes observed after regulating CHST3. The change in cell death, while slightly 

more in extent compared to cell proliferation change, is still considerably small and 

may only be a minor functional role comparing with that in cell migration and 

invasion. Pro-apoptotic BAD was also observed to be slightly increased of its 

deactivated protein form after silencing of CHST3, indicating CHST3 has some 

potentiality to regulate cell survival through BAD and thereafter caspase 3/7 

pathway. Growth factors such as TGFβ and FGF2 (Dufour et al., 2008) are also key 

molecules in this case for EMT. The growth factors signal transducts mitogen 

activated protein kinase (MAPK) signaling pathways, of which the activated 

MAPK pathway will phosphorylate pro-apoptotic BAD protein, prohibiting 

mitochondrial death cascade, promoting cell survival and EMT event (Lahiry et al., 

2010, Suman et al., 2012). These provide insight to possibilities in the CHST3 

pathway. Further studies will be needed to evaluate the signaling order of CHST3 

pathway, possibly starting from the signal transducting growth factors to 

intermediary molecules stated. 
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4.1.4 Potential Role of CHST3 through Non-Enzymatic Activity Role 

 

To be noted, the phenotypic behavior observations in this study should be analyzed 

with caution of their source of regulation, which remains uncertain at this point in 

time. To elaborate, even after down-regulating CHST3 in the breast cancer cells, it 

is uncertain whether the phenotypic changes were due to the active CHST3 

molecule itself or changes in level/sulfation pattern of CHST3’s known substrate, 

6-O-sulfated CS. The phenotypic changes observed in this study could be due to 

the fact that CHST3 had modulated the cellular behavior changes through sulfation 

at the carbon 6 of galactosamine of CS. In laryngeal cancer, an association was 

observed whereby both CHST3 and C-6 sulfation of galactosamine were shown to 

decrease as tumor stage increases (Kalathas et al., 2010). Hence, the difference in 

levels of C6S molecules would affect cell signaling behavior through different 

binding of ligands such as growth factors, cytokines, and apoptotic factors. On the 

other hand, CHST3 may have enzymatic activity-independent function that 

regulates breast cancer cell behaviors. To elaborate, CHST3 may regulate cancer 

cell behaviors via upstream or downstream molecular targets such as GPNMB and 

FLRT3, without having to pass through the effect of C-6 sulfation level. Heparanase 

is of one example of a GAG-related enzyme that has enzymatic activity-

independent function (Kessenbrock et al., 2010). It is has been known to be 

involved in degradation of heparan sulfate. Studies however showed that 

heparanase also exhibit non-enzymatic related activities that are independent of its 

involvement in the degradation of heparan sulfate (Levy-Adam et al., 2010). 

Amongst such activities include stimulating AKT signaling pathway, enhancing 

PI3K-dependent cell migration and up-regulating VEGF, all of which are involved 

in cancer metastasis and angiogenesis (Ilan et al., 2006, Vlodavsky et al., 2007a, 

Vlodavsky et al., 2007b). To address this, the effect of C-6 sulfation can be 

investigated by treating breast cancer cells with C6S, prior to carrying out the 

phenotypic assays. Changes observed and caused by C6S in the assays would be 

compared to the changes obtained from regulating CHST3. This would hence allow 

observations as of whether CHST3 has indeed enzymatic activity-independent 
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functions in breast cancer. For now, one should look at the potential signaling 

pathways that CHST3 may be involved in such as the follows. 

 

4.2 Regulation of CHST3 Expression 

 

As downstream targets like GPNMB and FLRT3 of CHST3 pathway have been 

identified, it is also important to evaluate potential upstream molecules that may 

regulate CHST3 expression, hence giving rise to the phenotypic behavioral changes 

observed. As the focus in this study tended towards the downstream molecules of 

CHST3 regulation, one may hypothesize on the possible upstream molecules that 

can regulate CHST3 expression and functions.  

 

4.2.1 Regulation by Ligands 

 

Studies have determined the interactions of growth factors and cytokines with 

CSPGs at the cell surface. One likely mechanism CHST3 may regulate and may be 

regulated is through the interaction and effect of different ligands at the cell surface 

level, which in turn stimulate different signaling pathways, affecting its expression 

level. TGFβ, in this study, has shown up-regulated expression level of 4.37 folds 

after down-regulation of CHST3. TGFβ, in breast cancer, has been controversial. 

One analysis showed that high TGFβ expression in breast cancer patients is 

associated with better prognosis than those with low TGFβ expression level. 

However, some studies have depicted the opposite whereby the overexpression of 

TGFβ is correlated with worse prognosis and associated with metastatic events 

(Kubiczkova et al., 2012).     

 

Nevertheless, in the case of CHST3, the variation in levels of ligands such as TGFβ 

can affect the composition of cell surface CS expression, which in turn can 

potentially lead to altered regulation of CHST3 expression and carbon-6 sulfation 

pattern. In human arterial cells, TGFβ was observed to stimulate the synthesis of 

C4S and C6S (Chen et al., 1991), and regulate CHST11 or chondroitin-4-
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sulfotransferase 1 (Kluppel et al., 2012), suggesting higher possibility that TGFβ is 

upstream of CHST3. Additionally, TGFβ can regulate the expression levels of 

CSPGs such as neurocan and brevican, as seen in vitro in astrocytes that were 

treated with TGFβ. It has been suggested by the research group that TGFβ may 

regulate CSPG expression via the PI3K-AKT-mTOR pathway (Jahan and Hannila, 

2015). Perhaps, similar to heparanase, CHST3 may exert part of its role through 

this pathway, bringing rise to regulation of cell migration Hence, TGFβ can affect 

both CS chains and CSPGs which in turn will have an effect on CHST3 and cellular 

behaviors.  

 

Another example will be the association of CSPG (lumican) with TGFβ. In acute 

lung injury, reduced expression of lumican is associated with enhanced levels of 

TGFβ, affecting its downstream molecules E-cadherin and β-catenin by reducing 

their expression levels (Li et al., 2013). Syndecan 4 proteoglycan, in breast cancer, 

is able to bind to FGF2 at the cell surface and promote FGF signaling pathway 

(Mundhenke et al., 2002). Therefore, CHST3 expression may potentially be 

regulated by CS and CSPG pool at the cell surface level, which affects ligands such 

as MK, TGFβ, and FGF2 that subsequently affects their downstream molecules, 

one of which may be CHST3. Also, as CHST11 and lumican proteoglycan are both 

associated with TGFβ and (for the latter molecule) associated with effect on 

biomarkers E-cadherin and β-catenin, this raises the possibility of CHST3 as well 

as CHST11 and lumican to be involved in the metastatic events. 

 

In the EMT signaling pathway, as mentioned, TGFβ is upstream of E-cadherin and 

β-catenin (both molecules’ expression level decreased after silencing of CHST3), 

causing loss of E-cadherin-β-catenin complexes at the cell membrane and re-

localization of β-catenin to the cytosol and nucleus (Ma et al., 2010, Onder et al., 

2008, Prasad et al., 2009). This will in turn cause loss of cell-cell junctions 

(adhesion), re-organization of the actin cytoskeleton, leading to cells turning 

spindle-like mesenchymal in morphology (Huber et al., 2005), and hence 

promoting further EMT-inducing stimuli, cell invasion and migration (Guarino et 
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al., 2007). Cytokine midkine is also a potential upstream molecule of CHST3 

considering downstream molecules of MK studied (E-cadherin, β-catenin, and 

WT1) are affected in its signaling pathway. Another cytokine that has potentiality 

to be upstream of CHST3 is interferon-gamma (IFNγ). IFNγ has been reported to 

have tumor suppressing effects such as inhibition of cell proliferation in breast 

cancer cells. In an IHC study, the expression level of IFNγ was observed to be 

higher in in situ carcinoma against benign and infiltrating tumors (Garcia-Tunon et 

al., 2007). In skin fibroblasts, enhanced levels of IFNγ were found to down-regulate 

4-O-sulfation and up-regulate 6-O-sulfation of CS chains (Praillet et al., 1996). This 

suggests the possibility of IFNγ regulating the expression level of CHST3, which 

subsequently affects the sulfation pattern type of the CS chains and thereafter the 

cellular behaviors.   

 

From another perspective, CS sulfation pattern may affect potential upstream 

molecule such as MK, to subsequently have an effect in regulating CHST3. MK 

has been evaluated to have strong affinity to CS proteoglycans such as versican, 

CSPG4, and syndecans (Nakanishi et al., 1997, Zou et al., 2000, Ichihara-Tanaka 

et al., 2006) via their CS chains particularly tumor promoting CSE units 

(Muramatsu, 2010). Removal of the CS chain from the proteoglycans reduces 

binding of the proteoglycans to MK, which may affect the subsequent signaling 

pathway and CHST3 pathway.   

 

4.2.2 Regulation at Gene Expression Level 

 

Gene expression can be modulated at various steps; one of which include epigenetic 

regulation (e.g. methylation and acetylation). The expression of a gene can be 

highly dependent on its epigenetic regulation (Bergmann 2012). Epigenetic 

mechanisms define mitotically heritable differences in gene expression potential 

without changing the DNA sequence. These epigenetic changes can occur due to 

random mutation or environmental factors. Some examples of epigenetic marks 

include DNA methylation and chromatin modifications through histone acetylation 
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(Inbar-Feigenberg 2013). In general, DNA methyltransferases (DNMT) catalyze 

the methylation of cytosine to 5-methylcytosine. DNA methylation is able to cause 

failure in binding of a protein such as a transcription factor to its cognate DNA 

sequence, resulting in repression of tumor suppressor genes and enhancement of 

tumor promoter genes (Bird 2002). 5-aza-2’-deoxycytidine (5-AZA) is a DNMT 

inhibitor, capable of reversing promoter hypermethylation in cancers (Palii 2008).  

 

Histone acetylation, on the other hand, is regulated by the antagonistic actions of 

two families of enzymes, namely histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) (Haberland 2009). Catalyzed by HATs, histone acetylation 

involves the transfer of an acetyl group to the ε-amino group of lysine residues in 

N-terminal histone tail. This neutralizes the positive charge of lysine residues, 

weakens the charge-dependent interactions between histones and DNA, and hence 

relaxes the chromatin structure for transcription initiation (Feigenberg 2013 and 

Bannister 2011). In an opposing manner, histone deacetylation can occur catalyzed 

by HDACs, condensing the chromatin structure and repressing gene expression 

(Haberland 2009). Trichostatin A (TSA) is an antifungal antibiotic, used to inhibit 

HDAC and thereby restoring gene transcription (Dokmanovic 2007).  

 

Initial evaluation of CHST3 expression from Gene Expression Omnibus (GEO) 

microarray databases has shown little changes in CHST3 expression level after 

treatment of either 5-AZA or TSA on various breast cancer cell lines (T47D, MCF7, 

and MDA-MB-231) (Dedeurwaerder et al., 2011, Sun et al., 2009). Till further 

validation is carried out, this initial literature review currently suggest that CHST3 

expression level is not regulated through epigenetic regulation methylation or 

acetylation.  

 

Apart from epigenetic regulation, gene expression can also be regulated at the 

transcription level by transcription factors, defined as regulatory proteins that 

activate, or at times, inhibit, DNA transcription through their binding to specific 

DNA sequences, hence promoting or inhibiting gene expression (Phillips, 2008).  



 180 

The binding of transcription factors to the DNA is the fundamental step to 

regulating gene expression. A certain transcription factor bound at a site can 

regulate genes that are of close proximity and possibly those that are further away 

with the aid of enhancers. A number of transcription factor-related genes (as shown 

in Table 4.1) have been noted from the microarray in this study. Though the change 

in expression of the genes were affected after down-regulation of CHST3, further 

evaluation is necessary to determine if the affected genes regulate CHST3 

expression in the transcription as well as translation processes, and whether the 

genes are upstream or downstream of CHST3. Future experiments such as 

chromatin immunoprecipitation (ChIP) can be performed to evaluate the genes 

affected by particular transcription factor binding sites (Maienschein-Cline et al., 

2012). 

 

Table 4.1 Potential transcription factors regulating CHST3  

Gene Changes after 

Silencing of 

CHST3 

Fold 

Change 

Function 

ELK3 Down-regulated 4.15  Member of the ETS-domain transcription 

factor and ternary complex factor (TCF) 

 Activates transcription when Ras is present 

DPY30 Down-regulated 3.86  Member of the MLL1/MLL complex 

 Role in methylation of histone for 

transcriptional activation 

PRIM2  Down-regulated  2.62  Subunit of DNA primase 

 Role in DNA replication, specifically to aid 

in synthesizing small RNA primers to 

create Okazaki fragments 

LARS  Down-regulated  2.62  Member of the tRNA synthetase family 

 Role in catalysing ATP-dependent ligation 

of leucine to tRNA (Leucine) 

EIF2S1 Down-regulated 2.27  A translation initiation factor 

 Role in catalysing protein synthesis 
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 Role in promoting binding of tRNA to 40S 

ribosomal subunits 

MBNL Down-regulated 2.12  Role in pre-mRNA alternative splicing 

regulation 

HIPK1 Down-regulated 2.08  Member of the HIPK subfamily  

 Member of the Ser/Thr family of protein 

kinases 

 Role in phosphorylating homeodomain of 

transcription factors 

EIF3J Down-regulated 2.08  Member of the eukaryotic initiation factor 

3 complex 

 Role in translation initiation 

 Role in recruiting mRNA and protein 

components to 40S ribosome 

WT1 Down-regulated 2.07  Consists of a DNA-binding domain 

 Regulates other genes’ expression and 

activity through binding to specific regions 

of the DNA 

MCM10 Down-regulated 2.05  Member of the mini-chromosome 

maintenance proteins (MCM) 

 Role in initiation of genome replication 

 Role in formation of replication forks 

DICER1 Up-regulated 2.01  Role in production of miRNA 

 miRNA regulates gene expression via 

inhibition of the protein production process 
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4.3 Proposed CHST3 Pathway 

 

Putting everything together, the evaluations in this study are of importance in terms 

of diagnosis and treatment response in breast cancer. A CHST3 pathway (as shown 

in Figure 4.1) was hence proposed based on the regulated genes picked up from the 

microarray as well as from candidate proteins potentially involved in the 

phenotypic behavior changes observed after modulation of CHST3 in breast cancer 

cells.  

 

 

 

Figure 4.1: Proposed CHST3 pathway in breast cancer.  

 

 

 



 183 

4.4 Limitations in Study 

 

4.4.1 Evaluation of CHST3 and CHST7 Functional Activities 

 

It should be noted that CHST3 and CHST7 functional activities were not evaluated 

in this study. Hence, it remains unclear whether the down-regulation of CHST3 led 

to a decrease in 6-O-sulfation of CS. High performance liquid chromatography 

(HPLC) to determine CS content should be carried out after silencing or over-

expressing CHST3. Also, it is also uncertain whether CHST7 is functionally active 

and has compensated for the loss of CHST3 functional role. An enzyme activity 

assay needs to be performed to evaluate the functional activities of CHST3 and 

CHST7 after silencing or over-expressing CHST3.   

 

4.4.2 Evaluation with Clinical Samples and Animal Models 

 

In the tissue expression study, 218 cases were analyzed of the expression levels of 

CHST3 and FLRT3 with the various clinicopathological parameters. The 

preliminary analyses give a sense of the expression levels of both molecules in 

human ductal tissues and whether they are associated with any of the 

clinicopathological parameters. One should evaluate the associations using a larger 

patient sample size as well as a different cohort of patients diagnosed with IDC. 

Additionally, it is important to extend the investigation to animal models, such as 

to evaluate if an overexpression of CHST3 in the cancer cells of the animal model 

will suppress cell migration or cell growth.  

 

4.4.3 Evaluation using Different Assays 

 

In experimental cell biology, phenotypic behaviors can be investigated via various 

methods depending on the objectives of the study. Through different methods, one 

is able to better understand the cellular behaviors of breast cancer cells upon 

regulation of CHST3. For cell migration in this study, the focus was on using a 

filter-assay method (transwell membrane chambers) to measure cell migration 

towards chemoattractant FBS. Other types of migration assays can also be carried 
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out such as (i) random walk assay which evaluates the rate of random motion of the 

cells that are sparsely distributed on a matrix-coated surface, (ii) wound healing 

assay that evaluates quantification and characterization of collective cell motility 

by measuring the wound geometry after a gentle wound scratch through a confluent 

cell monolayer, and (iii) cell-populated agarose drop which characterizes cell 

motility on various extracellular substrates by trapping cells within an agarose 

group, in which the cells will diffuse progressively out from the drop onto the 

surrounding extracellular substrate (Rosello et al., 2004). 

 

Evaluation of cell proliferation was performed using MTS solution, a quantitative 

colorimetric assay that measures enzyme activity of mitochondrial dehydrogenase 

reflecting the metabolic status of a cell. Therefore, the absorbance change in color 

of the MTS solution is proportional to the number of metabolically active cells. 

Though simple and rapid, there must be precaution in concluding cell proliferation 

observations done using indirect measuring methods. MTS assay is sensitive 

towards cell size, hence there can be an increase in cell size without any cell 

division (Mosmann, 1983). More direct methods require measurements of DNA 

synthesis or cell division or cell number itself. Flow cytometry using propidium 

iodide and detergent-based method was also hence performed in this study to 

further evaluate cell growth and cell death based on the cellular DNA contents and 

cell cycle phases (Nunez, 2001). Other methods include 5-bromo-2’-deoxyuridine 

(BrdU) that specifically label DNA with a precursor molecule. BrdU can be 

detected through immunocytochemistry using an anti-BrdU antibody that labels the 

nuclei. Results will be generated based on the quantification of stained nuclei in 

different random fields (Gratzner, 1982, Waldman et al., 1991). Apart from BrdU, 

cells can also be immunostained with proliferation markers such as Ki-67 and 

proliferating cell nuclear antigen (PCNA) (Scholzen and Gerdes, 2000, Hughes and 

Mehmet, 2003). Cell proliferation can also be measured at its membrane integrity 

state through the usage of chemicals like trypan blue. A healthy viable cell with 

intact cell membrane will prevent trypan blue from entering the cell membrane. On 

the other hand, a dying or dead cells will allow trypan blue to enter their cell 
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membrane. The number of unstained viable cells hence can be counted manually 

or via an automated cell counter, making it less labor-intensive (Hughes and 

Mehmet, 2003).  

 

As for cell adhesion, it is a complex cellular process involving various types of 

interactions, including cell-cell interactions, cell-matrix interactions, and cell 

receptor-ligand binding. In this study, adhesion assay (static cell-matrix attachment 

method) was used to evaluate the ability of the cancer cells to adhere to an adhesive 

substrate (collagen or fibronectin) (Kucik and Wu, 2005, Humphries, 2009). As the 

washing protocol is the most critical for cell-attachment method, the number of 

washing cycles had been optimized (Kueng et al., 1989). Also, to have an 

estimation for 100% cell attachment, unwashed wells containing cells attached to 

an adhesive substrate were measured by their absorbance level using MTS solution . 

It should also be noted that cell number was quantified using metabolic measuring 

MTS solution. In addition, as washing was carried out through manual pipetting, 

adhesion assay with hands-free agitation can be performed, that is placing the 

coated 96-well plate containing cell suspension on a shaker with mild rotation 

(100rpm) for 30 minutes (Mathieu and El-Battari, 2003) 
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5 CONCLUSION AND FUTURE WORK 

 

Biomarkers have been making their mark in cancer history in the last decades, 

having important roles in regulating signaling pathways involved in tumor 

progression. Some of the biomarkers have progressed to become diagnostic, 

prognostic, and/or therapeutic markers in breast cancer as well as other 

malignancies. This has led to improved early detection of breast cancer as well as 

better decision-making in administering the optimal personalized treatment. Today, 

more efforts are being made to achieve the “personalized medicine” vision. 

Developing biomarkers in breast cancer is one way to characterize a tumor’s 

sensitivity towards a particular form of therapy and to improve diagnosis as well as 

prognosis estimation for the patients.  

This study has unraveled the first insights of CHST3 and its function as well as its 

clinical relevance in breast cancer. From the in vitro study, it was shown that 

CHST3 plays a tumor suppressor role, of which higher expression of CHST3 

reduces cell migration, invasion, and proliferation as well as increases cell adhesion 

and cell apoptosis of breast cancer cells. In the immunohistochemical analysis, 

CHST3 was found to be down-regulated in invasive ductal tissues compared to 

normal ductal tissues. From this study, CHST3 shows potential to be diagnostic 

biomarker, but not a prognostic biomarker as no associations were obtained from 

the survival analyses. Genome wide microarray analysis revealed a list of genes 

altered after down-regulating CHST3 in breast cancer cells. From the list of genes, 

two selected genes, GPNMB and FLRT3 had significant importance in the CHST3 

pathway, whereby both genes are downstream molecules of CHST3 in breast cancer. 

FLRT3 was also found to be a potential diagnostic biomarker as it is up-regulated 

of its expression in malignant ductal tissue compared to normal ductal tissue. 

Additionally, alteration in CHST3 expression affected the E-cadherin/β-catenin, 

and apoptotic (BAD) pathways. 

The findings from this study are of considerable significance as an interesting gene, 

CHST3, has been uncovered to regulate breast cancer cells’ behaviors, specifically 

in the metastatic portion. Nevertheless, further studies should be carried out to fully 
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understand the functions and molecular pathways of CHST3 before extending the 

study to in vivo studies as well as other cancers.  

The potentiality of CHST3 and FLRT3 as diagnostic biomarkers should also be 

further evaluated. For example, both biomarkers could be examined in different 

cancers such as ovarian cancer as well as other breast cancer types such as lobular 

carcinoma and phyllodes tumor. Additionally, evaluation of the biomarkers should 

be carried out at the global level. The current study involves the Singaporean breast 

cancer patient cohort and hence, the two biomarkers should be further tested on 

other populations to investigate if the correlations observed in this study are 

consistent in other populations. 

Additionally, as mentioned, the phenotypic changes observed in this study could be 

due to the fact that CHST3 had modulated the cellular behavior changes through 

sulfation at the carbon 6 of galactosamine of CS or via its own enzymatic activity-

independent role. Therefore, the effect of C-6 sulfation should be investigated by 

treating breast cancer cells with C6S, prior to carrying out the phenotypic assays. 

Cellular behavior changes observed and caused by C6S in the assays would then be 

compared to the alterations obtained from regulating CHST3. This would hence 

allow observations as of whether CHST3 has indeed enzymatic activity-

independent functions in breast cancer. Also, after treating the breast cancer cells 

with exogenous C6S, the expression levels of the downstream molecules inclusive 

of GPNMB, FLRT3, E-cadherin, β-catenin, pBAD as well as the speculated 

molecules involved in CHST3 pathway should be evaluated.  
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