
AN INTEGRATED MULTI-CRITERIA SCREENING 

FRAMEWORK TO ANALYZE FLEXIBILITY IN 

ENGINEERING SYSTEMS DESIGN: 

APPLICATIONS IN LNG INFRASTRUCTURES 

 

MEHDI RANJBAR-BOURANI 

 

(MSc. Industrial Eng., Islamic Azad University - South Tehran Branch)  

(BSc. Industrial Eng., Iran University of Science and Technology) 

 

 

A THESIS SUBMITTED 

FOR THE DEGREE OF DOCOTR OF PHILISOPHY 

DEPARTMENT OF INDUSTRIAL AND SYSTEMS 

ENGINEERING 

 

NATIONAL UNIVERSITY OF SINGAPORE 

2015 



 

i 

 

DECLARATION 

I hereby declare that this thesis is my original work and it has been written by me 

in its entirety. I have duly acknowledged all the sources of information which 

have been used in the thesis.  

This thesis has also not been submitted for any degree in any university 

previously. 

 

 

 

 

 

Mehdi Ranjbar-Bourani 

15 October 2015 

 

 

 

  



ii 

Acknowledgments 

I would like to express my deep gratitude to my supervisor Prof. Michel-

Alexandre Cardin for his patient guidance, consistent encouragement, intellectual 

support and providing an enriching opportunity to me throughout my journey at 

NUS.  

Before my PhD, I was familiar with the research process to some extent as I had 

developed a limited set of research skills during my bachelor’s and master’s 

studies. During my PhD, I not only had an enriching learning experience doing 

research, but also developed other professional skills. My supervisor spent 

tremendous amount of time to give me insightful comments and constructive 

feedback through weekly meetings. I learned from him to think critically and to 

proactively seek feedback from experts to improve the quality of research. His 

patience and continuous encouragement have been the great source of inspiration 

to me. Besides having structured plan for research students, he was open to new 

ideas giving me the opportunity to explore new research areas.  

Through his comprehensive supervision, I have had the opportunity to collaborate 

with prominent professors, famous research groups, prestigious universities and 

relevant industries. Through his interaction with industry, I had the chance to 

work on real-world problems as case applications in my thesis. Research was not 

the only thing I learned from him. As his teaching assistant, I gained valuable 

experience in teaching and mentoring group projects. He also provided me the 

opportunity to assist him in supervising final-year-project students. The breadth of 

experience made my learning journey beautiful. 

I would also like to thank Prof. Richard de Neufville (my grand supervisor as a 

special collaborator) for his intellectual support and encouragement to solve real-



iii 

world problems creatively. Working closely with him during my exchange 

program at MIT, I had a productive time and it was a rewarding experience.  

Without their valuable and illuminating instructions, this thesis would not reach to 

its current state. After these invaluable experiences, I am much more confident 

than before to independently carry out research and provide quality services to 

academia, industry and my community. 

My gratitude also goes to my thesis committee examiners Prof. Vladan Babovic 

and Prof. Poh Kim Leng for their constructive and valuable feedbacks. Insightful 

comments from Dr. Teo Kwong Meng and Prof. Goh Thong Ngee are very much 

appreciated. I would also like to thank ISE faculty members and staff especially 

Prof. Tang Loon Ching, Prof. Ng Tsan Sheng, Adam, Prof. Lee Loo Hay and 

Prof. Chew Ek Peng for their support and Ms. Ow Lai Chun for her 

responsiveness, help and follow up actions during my study.  

I also would like to thank colleagues in Keppel Offshore and Marine Technology 

Center (KOMtech) Chong Wen Sin, Ravindu Atapattu, Sheng Xiaoxia, Dr. Foo 

Kok Seng, Kshudi Ram Sarkar for providing data and information about the case 

studies conducted in this research. 

I would like to thank the Agency for Science, Technology and Research 

(A*STAR) for the Singapore International Graduate Award (SINGA) so I could 

focus on my research during my PhD. A financial support from Lee Foundation 

and KOMtech is gratefully appreciated. 

I also would like to thank my friends in Prof. Cardin’s research group for their 

valuable feedback: Deng Yinghan, Zhang Sizhe, Xie Qihui, Howard Ka-Ho Yue, 

Dr. Mark Philip de Lessio, Dr. Hu Junfei, Dr. Ng Kwok Kei Simon, Dr. Deepak 

Santhanakrishnan, Dr. Aakil M. Caunhye, Dr. Jiang Yixin, and Dr. Sun Chang. I 

would like to thank my friends during my exchange program at MIT: Dr. Vivek 



iv 

Sakhrani, Dr. Alexandre Jacquillat, Dr. Maria Teresa Pena Alcaraz, Yin Jin Lee, 

Dr. Phillip Schrieverhoff, Dr. Abdelkrim Doufene, and Dr. Davoud Taghawi-

Nejad and my other friends there for their warm hospitality and invaluable 

insights. 

I also would like to thank my master’s supervisors in Iran, Prof. Reza Tavakkoli-

Moghaddam, late Prof. Mir Bahador Gholi Aryanejad and Prof. Gholamreza 

Amin, who inspired me to pursue my PhD study in Industrial and Systems 

Engineering field. 

I also would like to thank my friends Dr. Hassan Mirzahosseinian, Dr. Mehrdad 

Zarinejad, Ashkan Haji Hosseinloo, Dr. Aghil Rezaei Somarin, Akbar Vahidi 

Khalfekandi, Dr. Hassanali Ghaedamini, Dr. Sobhan Asian, Amir 

Nourmohammadi, Dr. Amir Tavakkoli Kermani Ghariehali, Dr. Saman Safari 

Dinachali, Tom Amiri, Dr. Seyyed Mohsen Mousavi Ehteshami, Dr. Reza 

Haghighi, Dr. Amir Hooshang Taheri, Dr. Ebrahim Akhondi, Dr. Seyed Mostafa 

Seyed Rezazad Dalaly, Dr. Alireza Akbarzadeh, Azad Saei, Kaveh Taghipour, 

Mahdi Rasuli and my other friends at NUS as well as my NUS Lab mates and 

friends: Dr. Ma Sicong, Dr. Kumar Ashwani, Zhang Linmiao, Wang Qiong, Dr. 

Weng Renrong, Li Guilin, Zhou Min, Dr. Ji Yibo, Dr. Li Haobin, Dr. Ahmad 

Reza Pourghaderi, Dr. Shahrzad Faghih Roohi, Dr. Jing Huayi and Dr. Jing Lei 

and my other classmates and friends in Singapore. 

Last but not least, my gratitude is due to my family for their encouragement, help, 

support, and understanding throughout my study and research. I dedicate this 

thesis to the soul of my beloved elder brother Amir whom I lost him during my 

PhD. 

 

  



v 

Table of Contents 

LIST OF TABLES ................................................................................................................ XI 

LIST OF FIGURES ........................................................................................................... XIV 

LIST OF ABBREVIATIONS ......................................................................................... XVIII 

LIST OF VARIABLES AND SYMBOLS ........................................................................ XXI 

 INTRODUCTION ........................................................................................ 1 CHAPTER 1

 BACKGROUND .............................................................................................................. 1 1.1

 MOTIVATION ................................................................................................................ 3 1.2

 RESEARCH SCOPE AND OBJECTIVES .............................................................................. 8 1.3

 RESEARCH OPPORTUNITIES AND EXPECTED CONTRIBUTIONS ........................................ 9 1.4

 THESIS OUTLINE .......................................................................................................... 10 1.5

 LITERATURE REVIEW .......................................................................... 12 CHAPTER 2

 INTRODUCTION ........................................................................................................... 12 2.1

 REAL OPTIONS AND FLEXIBILITY IN ENGINEERING DESIGN .......................................... 12 2.2

2.2.1 Relevant research studies .................................................................................. 14 

 SCREENING MODELS ................................................................................................... 17 2.3

 MULTI-CRITERIA DECISION-MAKING ........................................................................... 24 2.4

 LNG PRODUCTION SYSTEM DESIGN ............................................................................ 26 2.5

 RESEARCH OPPORTUNITIES ......................................................................................... 28 2.6

 SUMMARY................................................................................................................... 30 2.7

 METHODOLOGY: AN INTEGRATED MULTI-CRITERIA CHAPTER 3

SCREENING FRAMEWORK FOR FLEXIBILITY ANALYSIS ........ 32 

 INTRODUCTION ........................................................................................................... 32 3.1



vi 

 PROPOSED FRAMEWORK ............................................................................................. 34 3.2

 PHASE 1: PROBLEM MODELING ................................................................................... 36 3.3

3.3.1 Step 1: Develop deterministic quantitative performance model ........................ 37 

3.3.2 Step 2: Develop quantitative performance model under uncertainty ................. 37 

3.3.3 Step 3: Develop quantitative performance model for flexibility ........................ 38 

 PHASE 2: SCREENING .................................................................................................. 40 3.4

3.4.1 A meta-model based screening approach .......................................................... 40 

3.4.2 A computing budget allocation based screening approach ............................... 48 

 PHASE 3: MULTI-CRITERIA DECISION-MAKING ANALYSIS ........................................... 52 3.5

3.5.1 Hypervolume ...................................................................................................... 54 

3.5.2 Pareto post processing: weighted-sum method .................................................. 56 

 EXHAUSTIVE ENUMERATION ....................................................................................... 59 3.6

 SUMMARY................................................................................................................... 60 3.7

 CASE STUDY I: CENTRALIZED LNG PRODUCTION CHAPTER 4

SYSTEM...................................................................................................... 61 

 INTRODUCTION ........................................................................................................... 61 4.1

 PHASE 1: PROBLEM MODELING ................................................................................... 62 4.2

4.2.1 Modeling assumptions ....................................................................................... 63 

4.2.2 Step 1: Develop deterministic quantitative performance model ........................ 64 

4.2.2.1 Economies of scale ............................................................................................................................67 

4.2.2.2 Key demand parameter ..................................................................................................................67 

4.2.3 Step 2: Develop the quantitative performance model under uncertainty ........... 69 



vii 

4.2.4 Step 3: Develop quantitative performance model for flexibility ........................ 72 

4.2.4.1 Multi-criteria decision-making ...................................................................................................74 

4.2.4.2 Learning rate ........................................................................................................................................75 

4.2.4.3 Flexible design strategies ...............................................................................................................76 

4.2.4.4 Effect of learning ................................................................................................................................81 

4.2.4.5 Multi-criteria decision-making ...................................................................................................82 

4.2.4.1 Effect of economies of scale and learning rate on choice of flexible design ..........82 

 PHASE 2: SCREENING .................................................................................................. 84 4.3

4.3.1 A meta-model based screening approach .......................................................... 84 

4.3.2 A computing budget allocation based screening approach ............................... 87 

 PHASE 3: MULTI-CRITERIA DECISION-MAKING ANALYSIS ........................................... 91 4.4

4.4.1 A meta-model based screening approach .......................................................... 91 

4.4.2 A computing budget allocation based screening approach ............................... 96 

 EXHAUSTIVE ENUMERATION ....................................................................................... 99 4.5

 RESULTS AND DISCUSSION ........................................................................................ 104 4.6

 SUMMARY................................................................................................................. 111 4.7

 CASE STUDY II: DECENTRALIZED LNG PRODUCTION CHAPTER 5

SYSTEM.................................................................................................... 113 

 INTRODUCTION ......................................................................................................... 113 5.1

 PHASE 1: PROBLEM MODELING ................................................................................. 114 5.2

5.2.1 Modeling assumptions ..................................................................................... 114 

5.2.2 Step 1: Develop deterministic quantitative performance model ...................... 116 



viii 

5.2.3 Step 2: Develop the quantitative performance model under uncertainty ......... 117 

5.2.4 Step 3: Develop quantitative performance model for flexibility ...................... 119 

5.2.4.1 Strategic level flexibility .............................................................................................................. 120 

5.2.4.2 Tactical level flexibility ................................................................................................................ 121 

5.2.4.3 Operational level flexibility ........................................................................................................ 121 

5.2.4.4 Different flexible strategies ........................................................................................................ 125 

5.2.4.5 Multi-criteria decision-making ................................................................................................ 128 

 PHASE 2: SCREENING ................................................................................................ 129 5.3

5.3.1 A heuristic schema for operational flexibility .................................................. 129 

5.3.2 A meta-model based screening approach ........................................................ 130 

5.3.3 A computing budget allocation based screening approach ............................. 135 

 PHASE 3: MULTI-CRITERIA DECISION-MAKING ANALYSIS ......................................... 138 5.4

5.4.1 A meta-model based screening approach ........................................................ 138 

5.4.2 A computing budget allocation based screening approach ............................. 143 

 EXHAUSTIVE ENUMERATION ..................................................................................... 145 5.5

 RESULTS AND DISCUSSION ........................................................................................ 151 5.6

 SUMMARY................................................................................................................. 155 5.7

 CONCLUSION AND FUTURE WORK ................................................ 158 CHAPTER 6

 INTRODUCTION ......................................................................................................... 158 6.1

 MAIN CONTRIBUTIONS .............................................................................................. 160 6.2

 RECOMMENDATIONS ................................................................................................. 161 6.3

 RESULTS VALIDITY, LIMITATIONS AND FUTURE WORK .............................................. 164 6.4



ix 

6.4.1 Results validity ................................................................................................. 165 

6.4.2 Limitations and future work ............................................................................. 166 

BIBLIOGRAPHY ............................................................................................................... 169 

APPENDIX A: MULTI-CRITERIA DECISION-MAKING TABLE FOR CASE 

STUDY I .................................................................................................... 178 

APPENDIX B: PARETO FRONT FOR CASE STUDY I ............................................... 179 

APPENDIX C: PARETO FRONT FOR CASE STUDY II ............................................. 182 

APPENDIX D: POST-OPTIMALITY SENSITIVITY ANALYSIS FOR CASE 

STUDY I .................................................................................................... 185 

APPENDIX E: POST-OPTIMALITY SENSITIVITY ANALYSIS FOR CASE 

STUDY II .................................................................................................. 186 

APPENDIX F: MATHEMATICAL REPRESENTATION OF THE DCF 

MODEL FOR CASE STUDY I ............................................................... 187 

APPENDIX G: MATHEMATICAL REPRESENTATION OF THE DCF 

MODEL FOR CASE STUDY II ............................................................. 192 

APPENDIX H: SAMPLE VBA-MATLAB PROGRAMMING CODE  ........................ 198 

  



x 

AN INTEGRATED MULTI-CRITERIA SCREENING 

FRAMEWORK TO ANALYZE FLEXIBILITY IN 

ENGINEERING SYSTEMS DESIGN: 

APPLICATIONS IN LNG INFRASTRUCTURES 

Mehdi Ranjbar-Bourani 

Submitted to the Department of Industrial and Systems Engineering in Partial 

Fulfillment of the Requirements for the Degree of Doctor of Philosophy in 

Industrial and Systems Engineering 

Summary 

This thesis presents a novel integrated multi-criteria screening framework to 

analyze flexibility in the conceptual design of complex engineering systems. The 

proposed methodology aims to address two main issues in the evaluation of 

flexible systems design: 1) the computational intensity of exhaustively exploring 

the flexible design solutions because of different types of flexibility inherent in 

the systems design and 2) the multiple and possibly conflicting criteria inherent in 

the collaborative decision-making process of the design. The proposed screening 

framework based on meta-modelling and computing budget allocation is applied 

to real-world capital-intensive projects in on-shore LNG supply chain systems 

design. Results indicate that the screening models offers better performance than a 

full exhaustive search of the design space in terms of the number of evaluations 

and simulation runtime, while providing adequate design solutions in terms of 

lifecycle performance with respect to decision-makers’ preferences. This work 

provides insights on how to analyze flexibility in the conceptual design of 

complex systems, especially when computational resources are limited and the 

design must include multiple decision-making criteria.  
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 Introduction Chapter 1

 Background 1.1

The conceptual design phase of complex and capital-intensive engineering 

systems is very important as crucial decisions need to be made at this stage. These 

systems generally require a significant amount of capital investment and are 

subject to various sources of uncertainty throughout the system lifetime (Allen, 

Mcgowan et al. 2002; Lin, de Weck et al. 2009). Hence, in the design and 

management of these systems, literature shows that the notion of flexibility is at 

the center of attention for improving economic performance under uncertainty. 

Due to the importance of evaluating flexibility in engineering designs, various 

evaluation methods have been developed (Nilchiani and Hastings 2007; 

Mikaelian, Nightingale et al. 2011; Cardin 2014). Of these methods, a quantitative 

performance model based on the simulation approach, first developed by de 

Neufville, Scholtes et al. (2006), for the evaluation of flexibility under uncertainty 

has gained wide attention from academia and industry.  

Flexibility is a fundamental approach to systems design. Flexibility in design (also 

referred in this thesis as a real option) provides “the right, but not the obligation to 

change a system in the face of uncertainty”, and aims to improve the expected 

value of system performance over time as compared to standard design and 

project evaluation methods (e.g. discounted cash flow analysis). It does so by 

limiting exposure to downside losses (like an insurance policy), while positioning 

the system to capture possible additional gains (like a call option on a stock). For 

instance, a “flexible modular” Liquefied Natural Gas (LNG) plant may 
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outperform an “optimal” fixed LNG plant. The reason is that instead of building a 

large capacity LNG plant right away, systems operators may initially build a 

smaller plant, reducing initial capital expenditure, and therefore exposure to 

potential losses in the face of uncertainty capacity demand. A flexible modular 

design, however, enables may position the system to capture more upside, 

deploying capacity when and if it is needed, thus providing contingencies to 

capitalize on upside opportunities and profits, should more demand arise than 

originally planned (de Neufville and Scholtes 2011). Part of the work presented in 

this thesis focusing on tradeoffs between the time-value of money and economies 

of scale in the context of uncertainty and flexibility analysis have been published 

in a recent research paper. More details can be found in Cardin, Ranjbar-Bourani 

et al. (2015). 

Flexibility in engineering design has been widely used in different domains such 

as aerospace, airport design, the automotive industry, defense, energy, healthcare, 

mining, public infrastructure and management. Several examples of flexibility in 

engineering design, including urban infrastructures (de Neufville, Scholtes et al. 

2006), real estate (Guma, Pearson et al. 2009), satellite systems (de Weck, de 

Neufville et al. 2004), water resource systems (Wang 2005), automotive 

manufacturing systems (Yang 2009) and petroleum exploration and production 

systems (Lin 2009), have been summarized by de Neufville and Scholtes (2011) 

in their book. The emerging literature on flexibility in engineering design has 

shown that flexibility can improve the economic performance of a project from 

10% to 30% as compared to standard methods (de Neufville and Scholtes 2011; 

Cardin 2014).  
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 Motivation 1.2

Taking uncertainty into account in the design evaluation process is not prevalent 

in industry (de Neufville and Scholtes 2011). According to Savage’s (2009) “Flaw 

of Averages”, relying on the most likely or average scenario may lead to incorrect 

design selection and investment decisions. This is because the output from an 

upside scenario (e.g. high LNG demand growth) does not necessarily balance the 

output from a downside scenario (e.g. low LNG demand growth). Equation 1.1 

captures this formally: 

78"92:; < "9782;: (1.1) 

Here, E[x] represents for instance expected LNG demand, and f(E[x]) the Net 

Present Value (NPV) (the sum of all cash flows discounted back to present time t 

= 0) associated to the most likely or expected demand scenario (i.e. the time 

discounted value of the cash flows generated by the project). What equation 1.1 

means is that a design evaluation based on the average or expected demand 

scenario – as captured by f(E[x]) – does not lead to the same value as an 

evaluation relying on individual system responses from different demand 

scenarios, and then taking the average of the responses – as captured by E[f(x)]. If 

one chooses a systems design based on the left hand side – as often done in 

standard design and evaluation – a better design that can adapt to each scenario 

and provide better average NPV may be ignored altogether. Also, the right hand 

side of the scenario requires calculating the NPV over several scenarios, thus 

being a more realistic assessment that accounts for uncertainty. 

For example, suppose a hypothetical LNG production facility at 1.0 ton per day 

(tpd) based on the expected or average demand forecast (referred as “Medium” 
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demand) has 7�82; = >�!�81.0; = $1.0 million. Suppose also using the same 

economic model a low demand forecast at 0.5 tpd leads to 7C82; = >�!C80.5; =
$0.5 million with equal 1/3 probability. Now consider with equal probability a 

forecast where demand is higher at 1.5 tpd than installed capacity. The latter 

would lead to 7E82; = >�!E81.5; = $1.0 million as well, because the maximum 

production capacity of 1.0 tpd is already reached. Considering that "92: =
1/380.5 + 1.0 + 1.5; 	= 1.0 tpd, 78"92:; = >�!81.0; = >�!�81.0; = $1.0 

million based on the average forecast, but in reality the average NPV outcome 

should be "9782;: = 1/38>�!C; 	+ 1/38>�!�; 	+ 1/38>�!E; 	= 1/380.5 +
1.0 + 1.0; 	= $0.83 million. This is lower than the anticipated $1.0 million by 

17%. Therefore, a design decision based on deterministic analysis may lead to 

incorrect production capacity and project selection, given that the real expected 

return of a system cannot be measured via standard evaluation methods (i.e. like 

NPV based on discounted cash flow or DCF analysis). A different approach is 

needed to capture the full value of LNG production infrastructure systems, and 

different approach to systems design recognizing both uncertainty and flexibility 

is needed. 

Because the economic response from complex systems is highly nonlinear, long-

term decisions should not be made considering only the expected or most likely 

scenario. The NPV of projects based on optimization for the most likely demand 

scenario is not the same as the expected NPV resulting from different demand 

scenarios, as captured by equation 1.1. A system may appear more or less 

valuable than it is, as compared to other mutually exclusive design alternatives. 

Flexibility enables a system to capture the potential value associated with 

different scenarios. It might enable, for instance, capturing more demand in the 
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high demand cases, thus increasing the expected economic value (i.e. like a call 

option). It might reduce the financial losses in a downside demand scenario (i.e. 

like an insurance policy).  

Figure 1.1 illustrates conceptually the effects of embedding flexibility into the 

design of engineering systems. Flexibility enables the system to change its 

configuration (i.e. by acquiring more capacity as needed) over time and thus leads 

to a shift in the cumulative density function of the system design to the right, with 

higher value outcomes. The figure exemplifies conceptually an observation that is 

routinely made in flexibility studies, which is that a flexible design offers better 

expected economic performance metrics by shifting the distribution of outcomes 

towards better value, leading to improved expected NPV, value at risk (VaR10%), 

and value at gain (VaG90%) as compared to a more rigid, and fixed design (de 

Neufville and Scholtes 2011). 

 

Figure 1.1: Fixed design versus flexible design 

Although flexibility in engineering systems design has multiple advantages, the 

evaluation of flexible designs can be a challenging task. Exploring the flexible 

design space may require substantial computational effort due to the large number 

of design variables and parameters that usually need to be evaluated and 

ENPV 

VaG90% 

 

VaR10% 
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optimized in performance models of complex engineering systems. Such systems 

are already difficult to analyze due to their sizes and complexity, analyzing 

flexibility (which adds even more in terms of design variables, parameters, and 

uncertainty scenarios) certainly exacerbates the computational problem, and may 

result in an intractable challenge if considered exhaustively. Screening models, as 

proposed by de Neufville and Scholtes (2011), can be used to quickly explore the 

solution space of flexible designs and efficiently provide good-enough flexible 

solutions before the detailed design evaluation process. To address the 

computational challenge, several researchers have recently developed various 

forms of innovative screening model methodologies to explore flexible design 

strategies in infrastructure, off-shore petroleum, automotive manufacturing and 

space tug systems (Cardin 2007; Lin 2009; Yang 2009; Fitzgerald, Ross et al. 

2012).  

Besides the computational challenge, the possibly conflicting flexible design 

performance measures necessary to support the design decision-making process is 

another issue. In the conceptual phase of engineering systems design, multi-

criteria techniques can be used to capture existing tradeoffs, and satisfy different 

risk preference as well as profiles. The work on trade-space exploration is one 

example of such effort, based on utility and cost for flexibility in engineering 

systems design (Ross 2006; Viscito, Chattopadhyay et al. 2009; Viscito and Ross 

2009).  

In addition to the methodological motivation explained above, this thesis is also 

motivated by applications of ideas of flexibility in LNG infrastructure systems 

design. This is because the advantage of using natural gas products has increased 

over the last three decades, resulting in increasing demand growth for LNG 
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products in some countries. On the other hand, there is much uncertainty on how 

such demand will evolve over the next decades in different areas of the world. 

Research has shown that by 2030 there is a possibility that the overall LNG 

demand worldwide will be more than three times higher than from where it was in 

2011, and the regional distribution will significantly change accordingly (Kumar, 

Kwon et al. 2011). For example, gas product demand and supply forecasts in 

Australia indicate a potential shortfall of 300 to 600 TJ/day by 2015, and between 

zero and 600 TJ/day by 2020 (ECS 2011). A combination of growth and 

replacement production indicates there is a need to source at least 1,100 TJ/day of 

new production by 2020. 

Over the past 20 years price differentials between fuel oil, gasoil/diesel and LNG 

have changed significantly. In 1997 oil prices hovered around $20 per barrel 

(West Texas Intermediate - WTI) and around $2.50 per Million British Thermal 

Unit (MMBtu) for Henry Hub natural gas in the United States. Today, these are 

around $100 per barrel for oil and $5 per MMBtu for natural gas (GLE 2011). 

Natural gas prices have only doubled in 20 years while WTI prices gone up 5 

times in 20 years, making the price difference even more attractive. 

In liquefied form, the volume of LNG is 600 times less than the same amount of 

natural gas at room temperatures while the volume of compressed natural gas 

(CNG) is 1% less of its original volume (GLE 2013). Hence, the energy density of 

LNG over CNG increases the driving range significantly. With one fuel tank, a 

road truck can go around 800-1,200 km distance (GLE 2011). New emissions 

control regulations are making LNG an increasingly attractive alternative for the 

shipping sector as well as for heavy road transport. Furthermore lower LNG tax 
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compared to diesel tax is attractive for investors in this market. These advantages 

make LNG an excellent option for the heavy transportation sector. 

Since LNG can be used reliably as on-road transport fuel, there are growing 

business opportunities for LNG production. Development of this business can be 

risky, however, as it requires substantial amount of initial investment. The project 

will be subject to different uncertainties such as LNG demand uncertainty, gas 

price, and facility availability. Hence the conceptual design stage of such projects 

is very important, as critical decisions need to be made as changing the 

configuration of the system later on might be too costly. 

As a part of the motivation on the application domain, flexibility analysis is 

presented in this study as a practical procedure to improve (e.g., maximize 

expected net present value and minimize standard deviation) value of a system 

over its useful time. It enables developers to adapt the system for better 

performance as its requirements and opportunities evolve over its useful life by 

exploiting the notion of modularity in design (de Neufville and Scholtes 2011; 

Cardin 2014). It does so by addressing more specifically the computational 

challenges involved in the early phase analysis of design and project evaluation, 

considering explicitly uncertainty in the design decision-making process, and 

flexibility as an approach to improve expected lifecycle performance.  

 Research scope and objectives 1.3

Computational complexity of simulation based flexibility analysis and 

considering multiple objectives in the conceptual phase of design are the main 

research issues addressed in this thesis. So far, to the best of this author’s 

knowledge, challenges of uncertainty, flexibility, computational complexity, and 
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multi-criteria decision-making have not been addressed together in the context of 

engineering systems design. More specifically, there is currently no design 

framework and methodology that enables such an analysis in a structured and 

systematic manner. Therefore, to address these key issues simultaneously, this 

thesis proposes an integrated multi-criteria screening model to explore flexible 

design strategies efficiently and effectively under uncertainty. The proposed 

screening framework is then applied to two example real-world capital-intensive 

projects in on-shore LNG supply chain design. It is first to do this in the context 

of LNG production systems. 

 Research opportunities and expected contributions 1.4

This section briefly summarizes the identified research gaps and the proposed 

integrated framework as the main contribution in this thesis. The more detailed 

explanations regarding research opportunities and expected contributions are 

explained in chapters 2 and 3 respectively. 

In this thesis, relevant research studies are summarized in Chapter 2. Their 

limitations are summarized here to identify the main research gaps and 

contributions of the thesis. The identified research gaps are: 1) a lack of 

consideration of different types of flexibility in different domains of capital-

intensive complex systems; 2) limitations in applying both design variables and 

decision rules in simulation-based evaluation models for flexibility and 

uncertainty; 3) the lack of a systematic approach for efficiently tuning decision 

rules and design variables simultaneously (i.e. a decision rule is a triggering 

mechanism that determines when it is appropriate to exercise a particular 

flexibility, based on some uncertainty observation); and 4) limitations in 

exploring flexible design solutions with different objectives and criteria. From a 



Chapter 1 Introduction 

10 

broader perspective, although considerable research has been devoted to 

evaluating flexibility in engineering systems design, little attention has been paid 

to considering screening models and multi-criteria decision-making techniques in 

an integrated design methodological framework. More specifically, although 

separate research has been done on each aspect, sometimes combining some of 

these aspects, there is currently no integrated framework to fill all of the identified 

gaps. Therefore, to address these research opportunities, this thesis develops an 

integrated multi-criteria screening framework to explore flexible design strategies 

for complex engineering systems efficiently and effectively.  

This thesis, as a practical evaluation procedure, aims to facilitate the decision-

making process, especially when computational resources are limited and the 

designer must consider multiple decision-making preferences and criteria. The 

proposed model can be applied to evaluate flexibility in complex engineering 

systems design. The proposed framework consists of: 1) developing a simulation 

model to evaluate flexibility in engineering systems design under uncertainty, 

accounting for both design variables and decision rules; 2) developing different 

types of flexibility to deliver value-added flexible designs by determining 

corresponding decisions; 3) developing a screening model based on a meta-

modeling approach to lessen the computational effort of simulations by balancing 

exploration and exploitation of the design space; and 4) applying a multi-criteria 

model to provide distinct dominant flexible designs consistent with decision-

makers’ preferences. 

 Thesis outline 1.5

The remainder of this thesis is structured as follows:  
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• Chapter 2 provides a literature review of theories and methodologies of 

flexibility, screening models and multi-criteria decision-making techniques in 

the context of engineering systems design. Based on the literature review, 

research gaps for further contributions are identified.  

• Chapter 3 focuses on the proposed screening methodology. In this chapter, the 

details of the proposed multi-criteria screening framework are presented step 

by step. Three approaches are investigated and explained in detail: 1) an 

exhaustive enumeration approach; 2) a meta-model based screening approach 

and; 3) a computing budget allocation based screening approach.  

• Chapter 4 presents the first case study that is about a centralized on-shore 

LNG production system design. The problem is modeled for flexibility and 

uncertainty analysis and sensitivity analysis subject to the key parameter are 

conducted. Subsequently, the three above-mentioned screening approaches 

are applied as demonstration to the first case study. 

• Chapter 5 demonstrates the application of the proposed methodology to a 

decentralized version of the on-shore LNG production system design. The 

problem is modeled for flexibility and uncertainty and is explained in detail. 

Subsequently three proposed screening approaches are applied to this case 

study. This case study aims to demonstrate that the method can be applied to 

different types of engineering systems, thereby further supporting external 

validation and generalizability of the proposed framework. 

• Chapter 6 summarizes the major findings, provides conclusions, discusses the 

limitations and gives insights into further research. 
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 Literature Review Chapter 2

 Introduction 2.1

This chapter provides a review on relevant academic and industrial literature and 

practice. Given that the identified research opportunity is multidisciplinary in 

nature, the literature review in this section is drawn from multiple domains: real 

options and flexibility, screening models, multi-criteria decision-making in 

conceptual design stage, as well as domain literature on LNG production system 

design. A thorough survey of research documents, including journal papers and 

theses, in the fields of systems engineering, engineering design, and real options 

analysis, was conducted. Of these research documents, some relevant research 

works were considered for further investigation.  

The remainder of this review is organized as follows. Section 2.2 reviews real 

options in engineering design as a proactive way to deal with uncertainty in 

complex engineering systems. Section 2.3 provides a comparison of current 

methodologies on exploration of design space and of recently developed 

screening models. Section 2.4 reviews the methodologies for decision-making 

considering multiple criteria in the engineering systems design field. Section 2.5 

reviews the domain literature on decision making in LNG production system 

design. Section 2.6 presents identified research opportunities. Section 2.7 explains 

research contributions of this thesis. Section 2.8 summarizes this chapter.  

 Real options and flexibility in engineering design 2.2



Chapter 2 Literature Review 

13 

Since last decades, real options and flexibility in engineering design, as a real 

options analysis evaluation techniques, have been introduced by adapting the 

concept from financial options analysis (e.g. Black and Scholes (1973); Cox, Ross 

et al. (1979)) and real options analysis (e.g. (Dixit and Pindyck 1994; Trigeorgis 

1996)) in a way to suit the needs of engineering design in such a highly uncertain 

world. Browning and Honour (2008) proposed a conceptual approach to quantify 

a systems’ life cycle value. They concluded that to provide maximum life cycle 

value, a system may need to be designed to facilitate adaptability to changing 

circumstances and stakeholder preferences. Engel and Browning (2008) presented 

quantitative models to assess the value of architecture adaptability as quantitative 

means of optimizing a system architecture to maximize its lifetime value.  

Given the term “flexibility” may have different definitions in different contexts, 

some authors conducted research to clarify its definition to facilitate 

communication among systems engineering practitioners and academics (Ross, 

Rhodes et al. 2008; Ryan, Jacques et al. 2013). Flexibility in engineering design is 

an interdisciplinary field for research and practice (de Neufville and Scholtes 

2011). It adapts the concept of financial options to real engineering systems, with 

the goal of increasing the expected economic value by providing the “right, but 

not the obligation to change a system” to respond to uncertainties most profitably 

(Trigeorgis 1996). Flexibility exists “on” and “in” engineering systems. 

Flexibility “on” systems is associated with managerial flexibility like abandoning, 

deferring until favorable market conditions, expanding/contracting/reducing 

capacity, deploying capacity over time, switching inputs/outputs, and/or mixing 

the above (Trigeorgis 1996). Flexibility “in” systems refers to technical 

engineering and design components enabling the real options – another word for 

flexibility – in deployment and operations (Wang 2005). Cardin (2014) provides a 
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taxonomy and a design framework to organize design and evaluation activities to 

enable flexibility in engineering systems design. Table 2.1 summarizes the 

application of real options/ flexibility in different domain applications. 

Table 2.1: Classification of flexibility in engineering design in terms of 
application domain 

Research Application 
(de Weck, de Neufville et al. 2004; Hassan, de Neufville et al. 2005; 

Wang 2005; McConnell 2007) 

Aerospace 

(Chambers 2007; de Neufville 2008) Airport design 

(Mangin, de Neufville et al. 1995; Neely III and de Neufville 2001; 

Kalligeros, de Weck et al. 2006; Yang 2009) 

Automotive 

(Bartolomei, Hastings et al. 2006) Defense 

(Mittal 2004; Hassan and de Neufville 2006; Kalligeros 2006; Roques, 

Nuttall et al. 2006; Babajide 2007; Babajide, de Neufville et al. 2009; 

Lin 2009) 

Energy 

(Lee 2007; de Neufville, Lee et al. 2008; Maseda 2008) Healthcare 

(de Neufville and Pirnar 1999; de Neufville 2000; Rouse, Howard et al. 

2000; Pochard 2003; Quispez-Asin 2007; Rivey 2007; Ohama 2008) 

Management 

(Kazakidis and Scoble 2003; Cardin, de Neufville et al. 2008) Mining 

(Ramirez 2002; Wang 2003; Wang and de Neufville 2004; Wang 2005; 

Gupta 2011) 

Public 

infrastructure 

(Greden, de Neufville et al. 2005; Greden 2005; Barman 2007; Cardin 

2007; Lister 2007; Masunaga 2007; Guma 2008; Pearson and Wittels 

2008; Guma, Pearson et al. 2009; Zhang 2010) 

Real estate 

(Tsui 2005; Petkova 2007; Sussman and McConnell 2007; de Neufville, 

Hodota et al. 2008; Ohama 2008; Morgado, Nagaralu et al. 2011) 

Transportation 

2.2.1 Relevant research studies 

The literature shows that complex engineering systems that cannot change their 

configuration when facing uncertainty may result in failure. This uncertainty, 

particularly in capital-intensive and long-term projects, can create both risk and 

opportunity. The underlying assumption is that flexibility can improve the 

expected systems performance by reducing the downside risks and taking 
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advantage of the upside opportunities, as has been shown in many case studies (de 

Neufville and Scholtes 2011).  

Flexibility enables systems to proactively adapt to future uncertainty through 

managerial decision rules. For instance, to respond to demand uncertainty, an 

LNG production plant may use capacity expansion as a strategy and expansion in 

different modular volumes as an enabler in its design. In the evaluation of 

flexibility in complex engineering systems design, one approach to support the 

decision-making process is by embedding decision rules. Decision rules can be 

modeled to assess the value of flexibility. A decision rule is a triggering 

mechanism that determines when it is appropriate to exercise a particular 

flexibility, based on some uncertainty observation. For instance, one may decide 

to expand LNG production capacity after demand reaches a certain threshold.  

According to Cardin (2014), the evaluation techniques that are suitable for real 

options analysis in an engineering context are binomial lattice, decision tree 

analysis and Monte Carlo simulations. Binomial lattice, a discrete binomial 

formulation of the Black-Scholes formula (Black and Scholes 1973), is used to 

value financial options (Cox, Ross et al. 1979). However, the path independence 

assumptions used in the lattice model may not be appropriate in an engineering 

context. Because of the lattice’s rigid structure embedding Bellman’s dynamic 

programming equations, it is difficult to model more complex managerial 

decision rules. In addition, the lattice evolution assumes a stationary process, 

which may not be realistic. Decision tree analysis is a standard system analysis 

and scenario planning tool used under uncertainty. However, in this technique the 

number of paths typically increases exponentially even with the minimum 

possible decision nodes and chance outcomes.  
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Given using such modeling methods have shortcomings for real-world 

applications, Monte Carlo simulation is used. It provides a flexible platform so 

that even complex systems and decision rules can be easily modeled and 

analyzed. Longstaff and Schwartz (2001) presented a simulation model based on 

the least squares Monte Carlo simulation method to evaluate options. Research 

has revealed that the Monte Carlo simulation technique is suitable for systems 

modeling, especially in the case of existing multi-factor uncertainty and path 

dependency. In these cases, the objective function is typically a numerical 

simulation model describing a complex process that is often dynamic. Such 

simulation models often require uncertainty analysis or optimization for 

parameter estimation or to identify the best management or design decisions. de 

Neufville, Scholtes et al. (2006) introduced later a practical four-step procedure to 

evaluate real options in projects using a spreadsheet model based on Monte Carlo 

simulation based on decision rules, and a more practical approach for real options 

analysis.  

Building upon the Monte Carlo approach proposed by de Neufville et al. (2006), 

Cardin (2007) applied the same simulation method in his proposed design catalog 

screening approach. Lin (2009) relies on the same simulation framework in his 

proposed evaluation framework to evaluate flexibility in different domains of 

capital-intensive projects with different types of uncertainty. In his research, both 

design variables and decision rules were analyzed. However, decision variables 

and parameters embedded in decision rules need to be discretized and determined 

by trial and error and engineering practices. Lin’s study (2009) did not consider a 

systematic approach to fine tune the decision rule parameters. Yang (2009) 

developed an integrated model to evaluate flexibility in automotive manufacturing 

systems under demand uncertainty. However, only design variables were 
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considered in Yang’s research and decisions were made based on realized demand 

scenarios and different problem settings. No decision rules were used in her 

proposed simulation model, resulting in the plant’s inability to change its capacity 

over the project lifetime. Fitzgerald, Ross et al. (2012) presented a Valuation 

Approach for Strategic Changeability (VASC) developed based on Epoch Era 

Analysis (EEA) (Ross 2006; Ross and Rhodes 2008) to investigate the value of 

changeability in complex engineering systems in the early stage of the design 

process. In their five-step VASC model, Fitzgerald, Ross et al. (2012) used 

transition rules that are defined as a set of change mechanisms. In contrast, in this 

study, different decision rules and their embedded threshold parameters are used 

in the proposed simulation framework. Such decision rules aim to explicitly 

model the kinds of decisions that system operators would make to change and 

adapt the system in light of uncertainty realizations.  

Although using simulation-based models to evaluate flexibility have multiple 

advantages, exhaustively exploring the flexible design solution space can be 

computationally intensive. The following section covers the screening models 

used to efficiently explore the flexible design solutions. 

 Screening models 2.3

In the conceptual phases of complex systems design, finding the promising 

flexible designs from the large number of possible design alternatives is not an 

easy task. One of the motivations for using simulation-based evaluation method is 

because of the recent advances in computational technology. However, an 

exhaustive search and evaluation of all design alternatives can still be 

computationally expensive and intractable if many design variables and 

parameters, decision rules, and uncertainty scenarios are considered. Thus, 
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screening models as surrogates of the original simulation models are valuable to 

efficiently explore the flexible design space, aiming to find adequate flexible 

designs before proceeding to a more detailed design analysis phase.  

Screening models in engineering systems design can be classified into three 

groups: 1) top-down; 2) bottom-up and 3) simulator. The choice between them 

depends on the details and nature of the problem under consideration. In practice, 

different types of screening models for a particular problem may be used in 

combination (de Neufville and Scholtes 2011). 

Top-Down Screening Models 

In the top-down screening model, only the major relationships between the 

elements of the systems are considered. For instance, in systems dynamics, higher 

systems-level views are investigated instead of focusing on detailed relationships.  

Bottom-Up Screening Models 

Bottom-up screening models simplify the complexity of the systems’ high-fidelity 

model by taking the major factors of the model into account, e.g., by reducing the 

number of stochastic parameters in the model and considering them as fixed 

values. Jacoby and Loucks (1972) first proposed a bottom-up screening model 

based on a combination of optimization and simulation. They developed both 

static and dynamic optimization models to screen worthy river basin designs. The 

results derived from the solutions of the screening models were then analyzed in 

detail in the simulation model. Wang (2005) proposed a bottom-up screening 

framework using stochastic mixed-integer linear programming followed by 

simulation to filter out the worthwhile options. To show the efficiency of the 

proposed method, two case studies in river basin development and satellite 
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communications were investigated. The screening model, however, is limited to a 

low-fidelity, non-linear programming model with discrete values for uncertain 

parameters. Moreover, the research does not provide a systematic way to identify 

parameters in screening models. Despite the promising performance of the 

proposed screening model, developing a stochastic mixed-integer programming 

algorithm can be highly complex and difficult, making the applicability of the 

screening model questionable.  

Hassan, de Neufville et al. (2005) then developed a framework that integrates 

spacecraft engineering design with an economic analysis to maximize the 

financial value of a fleet to an operator under market uncertainty. Subsequently, 

Hassan and de Neufville (2006) developed a framework for using real options 

valuation in the design optimization of complex engineering systems with a 

genetic algorithm. They relied on a low-fidelity financial and hypothetical model 

with discrete values for uncertain parameters.  

Lin (2009) proposed a mid-fidelity screening model based on the bottom-up 

approach considering flexible strategies under multi-domain uncertainties to 

identify and evaluate architecture and develop strategies for capital-intensive 

projects. Figure 2.1 shows the four-step screening process.  

The screening framework was applied to design and develop off-shore petroleum 

projects, particularly in architecture project design and the development of tieback 

strategies. Different strategies, comprising design variables and decision rules, 

were synthesized to explore the solution space aimed at finding promising design 

alternatives. However, the decision rules used in the procedure were based on 

engineering practices and a trial and error approach in an iterative procedure. The 

trial and error nature of the analysis may have resulted in a biased sampling of the 
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flexible design space. A more systematic approach for exploring such design 

space (especially the decision rules) is needed for flexibility analysis.  

 

Figure 2.1: A generic four-step process for screening flexible strategies under 
uncertainty, adapted from Lin (2009) 

Viscito, Chattopadhyay et al. (2009) proposed a bottom-up screening model 

where a metric called the Filtered Out degree was used for identifying valuable 

flexible systems. This metric calls out designs that are both highly changeable and 

valuable to the stakeholder. This metric enhances trade-space exploration as the 

prior trade-space analysis techniques only accounted for the cost of flexibility. 

Subsequently, Fitzgerald, Ross et al. (2012) expanded the set of screening and 

valuation metrics compared to the previous Epoch Era Analyses (Ross 2006; Ross 

and Rhodes 2008).  

Zhang and Babovic (2011) proposed an evolutionary real options framework to 

integrate real options valuation, decision analysis techniques, Monte Carlo 

simulations and evolutionary algorithms. This approach can be considered as as 

bottom-up screening model. They applied their evolutionary framework on a test 

problem and results show that the evolutionary framework delivers considerable 
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improvements over current real options practices. The paper does not account, 

however, for multi-objective approach in real options analysis. 

To lessen the computational burden of the simulation, there is another alternative 

which is optimizing the simulation directly without using surrogate models but 

using efficient mechanisms based on computing budget allocation. These 

approaches can be considered as bottom-up screening models as well. They aim 

to optimize the simulation model by focusing on exploration of promising area of 

the solution space. Therefore one possible suggestion is applying Discrete 

Optimization via Simulation (DOvS) algorithms, which is based on random 

search. For instance, an algorithm called convergent optimization via most-

promising-area stochastic search (COMPASS) was developed based on random 

search (Hong and Nelson 2006), and can be used in the context of flexibility 

analysis. In this method, solutions are sampled stochastically within the most 

promising area, in which all solutions have shorter Euclidian distance to the 

current optima than the distance to any current non optima. The solutions are to 

be evaluated according to certain simulation allocation rule (SAR) and used to 

construct the next most promising area. It has been proven that the search 

typically converges to the local optima. In a multi-objective setting, Multi-

objective COMPASS was proposed by Lee, Chew et al. (2011), as well as multi-

objective computing budget allocation (MOCBA) (Lee, Chew et al. 2010). 

Simulator Screening Model 

The simulator screening models create an approximate surrogate of the 

computationally expensive simulation models (e.g., it might take from minutes to 

hours for each objective function evaluation). The response of these simulation 

models is often multimodal and the objective function is a “blackbox”. The 
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simulator screening models are called meta-models in the statistics discipline, 

meaning a model of the original simulation model. Meta-models are widely used 

in simulations of real-world complex problems, due to the complexity of the 

simulation models. There are different types of meta-models, for instance the 

Kriging model, polynomial regression model, multivariate adaptive regression 

splines model, radial basis function model and artificial neural network model. 

More information about the application of these techniques as meta-models in 

engineering design can be found in the work by (Kleijnen 2009), Van 

Groenendaal and Kleijnen (1998), Friedman (1991), Meckesheimer, Barton et al. 

(2001) and Hsu, Cho et al. (1995), among others. Cardin (2007) proposed a 

combined bottom-up and simulator-based screening model to efficiently search 

for catalogs of operating plans using the adaptive one-factor-at-a-time (OFAT) 

model developed by Frey and Wang (2006). Yang (2009) developed a coupled 

simulator and bottom-up based screening framework to explore planning 

decisions under demand uncertainty in automotive manufacturing systems. Figure 

2.2 shows the screening process.  

 

Figure 2.2: General overview of the screening model, adapted from Yang (2009) 
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In the screening framework, she used adaptive OFAT for strategic plant-product 

allocation decisions and a simulator-based quadratic regression model for tactical 

plant capacity decisions. To screen the plant capacity decisions, the regression 

model was built based on the response of the operational level decisions obtained 

through a linear programming model. The screening model showed good 

performance at providing adequate solutions with less computational effort 

compared to the stochastic mixed integer model, especially when the size of the 

problem increases.  

Güyagüler (2002) introduced a hybrid optimization technique (HGA), based on 

genetic algorithms (GA) with the help of a Kriging algorithm to determine the 

best location for new wells in offshore petroleum industries. The rationale behind 

using a simulator approach was to tackle the computational issue of the expensive 

numerical simulation through the low-fidelity surrogate response surface. 

Performance of the proposed technique was investigated by two real-world case 

studies. The first case was associated with optimizing placement of injection wells 

in the Gulf of Mexico Pompano field. The second case aimed to optimize the 

development plan of a reservoir located in the Middle East. The results were 

verified by comparison to exhaustive simulations. The research focused on a way 

to reduce the computational burden of making numerous numerical simulations.  

Besides the computational issue, finding promising flexible designs that are 

consistent with decision-makers’ preferences is not an easy task. The following 

section reviews the work on multi-criteria decision-making in engineering 

systems design. 
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 Multi-criteria decision-making 2.4

In flexibility analysis under uncertainty, each flexible design corresponds to a 

distribution of outcomes rather than a single-point solution. The different 

properties of these distributions (i.e., usually in a form of cumulative distribution 

function) can be interpreted as different objectives and criteria from the decision-

makers’ perspective. For instance, a risk neutral decision maker aims to maximize 

ENPV at the lowest standard deviation possible (Markowitz 1991). In other 

words, s/he aims to maximize the value of the unit return per unit of risk taken 

based on Capital Asset Pricing Model (CAPM) (Brealey and Myers 2000). On the 

other hand, considering only one objective, which comprises a linear combination 

of several objectives within a single measure of goodness, may not be practical 

(de Neufville and Scholtes 2011). It would thus be of interest to decision-makers 

that the promising flexible design solutions provide a satisfying tradeoff between 

several objectives and preferences. To do so, a multi-objective optimization 

approach is useful. From a multi-objective optimization perspective, the ideal 

flexible design is one that can change its configuration in order to satisfy the 

optimum performance level associated with different objectives.  

A popular approach to multi-objective optimization is the generation of a Pareto 

front. A Pareto front, here referred to as a set of dominant flexible designs, 

consists of a set of solutions that satisfy what is known as the Pareto optimality 

criterion. Based on the Pareto optimality criterion, a solution based on given 

objectives that one cannot improve upon in any single objective without giving up 

performance in some other objectives are characterized as dominant solutions 

(Deb 2001). Many techniques for generating a Pareto front are found in the 

literature (Horn 1996). These include multi-objective versions of genetic 
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algorithms (Deb and Tiwari 2005; Grierson 2008), simulated annealing (Czyzżak 

and Jaszkiewicz 1998; Ulungu, Teghem et al. 1999), weighting methods (Kim and 

De Weck 2006) and multi-start methods (Jaszkiewicz 2004). 

de Weck, de Neufville et al. (2004) investigated the staged deployment of a 

satellite constellation using trade-space paths instead of optimal design points. 

The flexible design was found based on trade-offs between lifecycle cost and 

capacity, resulting in significant economic benefits over the baseline design. 

Olewnik and Lewis (2006) presented a decision support framework, based on 

multi-objective optimization, consumer choice theory, and utility theory, for the 

design of flexible engineering systems. Only design variables were considered, 

however, in the flexible design vector, and the framework lacked a screening 

approach to explore the flexible design space for computationally demanding 

problems. Ross, Diller et al. (2002) introduced a multi-attribute decision-making 

process based on decision-making preferences and simulation-based analysis. 

Subsequently, Ross and Hastings (2005) introduced the idea of Multi-Attribute 

Trade-space Exploration (MATE) for considering a large number of design 

alternatives in terms of conceptual benefits and lifecycle cost. As opposed to 

relying on identifying the “optimum” design, their approach sought to evaluate 

even so-called “bad” designs due to the existing multi-dimensional trade-offs 

inherent in a complex design problem. Typically, with MATE represented as a 

utility-cost plot, the trade-space concisely reveals the structure of the high-order 

benefit-cost information of many design alternatives. Subsequently, Viscito, 

Chattopadhyay et al. (2009) coupled the idea of high Pareto Traces with high 

Filtered Out Degree designs to screen for valuable flexible designs. The 

framework was designed to provide subsets of designs in a trade-space, including 

those that are highly robust and highly changeable. To make the algorithm 
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efficient, only transitions to designs in the subset were allowed. In their research, 

the designs of interest were screened first in terms of different attributes and the 

transition rules were then applied. 

When dominant flexible design alternatives are generated, decision-makers must 

confront several criteria based on their preferences and make the trade-offs 

appropriately. Unfortunately, the number of dominant flexible designs is often 

large and the designs can become difficult to comprehend and consider. Some 

researchers have thus proposed Pareto set post-processing techniques, such as the 

pseudo-ranking and clustering method (Taboada, Baheranwala et al. 2007; 

Justesen 2010), weighted-sum approach and the recently developed Pareto 

filtering method (Raphael 2011). These approaches can help in narrowing down 

the number of dominant flexible designs to several distinct flexible designs, 

thereby facilitating trade-off analysis for decision-makers. 

 LNG production system design 2.5

LNG production system design has become more critical due to the growth of 

natural gas supply and demand and the great risks in this industry. The design of 

the LNG production system seeks a solution that offers better expected economic 

value over system lifetime, and an efficient LNG supply chain, from LNG 

upstream to the end user. The LNG supply chain can be defined as all processes 

from extraction of the natural gas until used by end users, which consists of 

exploration, extraction, liquefaction, transportation, storage and regasification. 

There are different types of LNG supply chains as there are different types of 

upstream resources (e.g. gas well at onshore or offshore sites), liquefaction 

process types (e.g. onshore or offshore liquefaction plants), and end users (e.g. 

power plant, home use and transportation sector).  
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Literature has shown a growing research towards designing value LNG 

production systems focusing on different segments of the LNG supply chain, 

depending on the problem under consideration and geographical situation. 

Özelkan, D’Ambrosio et al. (2008) studied the coupled segments of large scale 

shipping and receiving terminal of an LNG supply chain to minimize cost and 

storage inventory, while maximizing the output of natural gas to be sold to the 

market. Grønhaug and Christiansen (2009) presented both an arc-flow and a path-

flow model for tactical planning to optimize the LNG inventory routing problem. 

Andersson, Christiansen et al. (2010) worked on transportation planning and 

inventory management of a LNG supply chain used in tactical planning during 

negotiations about deliveries to different regasification terminals and annual 

delivery plan used in operational level decision making. 

As the overview above suggests most of the works focus on operational level 

problems, therefore more work is needed to evaluate LNG production systems in 

the early stages of design. In particular, more efforts are needed considering 

strategic level decisions involving flexibility and uncertainty in the analysis of site 

production capacity, design, and deployment over time. This thesis investigates 

the effects of uncertainty and explicit considerations of flexibility on key strategic 

factors affecting the design of LNG production systems, a downstream portion of 

LNG supply chain, from onshore natural gas transmission pipeline to end users at 

candidate geographical demand sites. It does so more specifically by focusing on 

the computational and multi-criteria issues relevant to the design decision-making 

process.  
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 Research opportunities 2.6

In the previous section, research studies relevant to this thesis were briefly 

described and limitations associated with these studies were also investigated. The 

aim in this section is to illuminate the axes of research opportunities so that this 

research can fill the identified research gaps.  

There is a need to study real-world capacity expansion problems under 

uncertainty. Julka, Baines et al. (2007) reviewed thoroughly research papers 

relevant to capacity expansion problem regarding todays’ complex global 

manufacturing system. Findings of the research show that multiple factors need to 

be considered so that designers can make critical decisions in the early phases of 

system designs. The paper’s extensive literature review and structured assessment 

of the strengths and weaknesses of the research demonstrate the lack of 

consideration of real-world capacity expansion problems under uncertainty, with 

explicit considerations of flexibility. Most of the research conducted implements 

proposed methods on some predefined test problems in the literature rather than 

real-world ones. This study therefore directly address capacity expansion problem 

in the field of LNG systems by focusing on a real problem in the LNG industry, 

motivated by close discussions with an offshore infrastructure facility provider for 

oil and gas production.  

In this thesis, four main axes of research opportunities are explored: 1) flexibility 

analysis that accounts for both design variables and decision rules; 2) different 

types of flexibility, considering operational, tactical, and strategic level decisions; 

3) screening model to deal with the computational issues arising from flexibility 

analysis; and 4) multi-criteria decision-making approach to account for different 

risk preferences and profiles in design decision-making.  
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Research gaps identified in this research are shown in Table 2.2.  

Table 2.2: Research gaps and anticipated contributions of this research 

No. Author(s) (year) 
Flexibility 

analysis 

Different types 

of flexibility 

Screening 

model 

Multi-criteria 

decision-making 

1 
Jacoby and Loucks 

(1972) 
  ����  

2 Güyagüler (2002)   ����  

3 
de Weck, de Neufville et 

al. (2004) 
����   ���� 

4 Wang (2005) ���� ���� ����  

5 
Hassan, de Neufville et 

al. (2005) 
���� ���� ����  

6 
de Neufville, Scholtes et 

al. (2006) 
����    

7 Ross (2006) ���� ����  ���� 

8 Hong and Nelson (2006)   ���� ���� 

9 
Olewnik and Lewis 

(2006) 
���� ����  ���� 

10 Cardin (2007) ���� ���� ����  

11 Lin (2009) ���� ���� ����  

12 Yang (2009) ���� ���� ����  

13 
Viscito, Chattopadhyay 

et al. (2009) 
���� ����  ���� 

14 Lee et al. (2010)   ���� ���� 

15 
Zhang and Babovic 

(2011) 
���� ���� ����  

16 
Fitzgerald, Ross et al. 

(2012) 
���� ����  ���� 

This research 

Ranjbar-Bourani (2015) 
���� ���� ���� ���� 

This research is designed to address the following research questions and to 

investigate all four axes of research simultaneously, since so far existing studies 

have only considered one but not all such aspect simultaneously. The thesis is 

thereby contributing to the existing body of knowledge by investigating: 
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• How to develop flexibility analysis that accounts for both design variables and 

decision rules? 

• How to take into account different types of flexible strategies, accounting for 

operational, tactical, and strategic level decisions? 

• How to develop a screening model to explore the flexible solution space in a 

computationally efficient way? 

• How to take into account different objectives and preferences in the 

conceptual phase of design processes? 

 Summary 2.7

In this chapter, a comprehensive literature survey was done from multiple 

standpoints: real options and flexibility in engineering design, screening models, 

multi-criteria decision-making in design stage, and domain literature on LNG 

production and infrastructure systems. Several observations and research gaps 

have been drawn from the review. 

The identified research gaps are: 1) a lack of consideration of different types of 

flexibility in different domains of capital-intensive complex systems; 2) 

limitations in applying both design variables and decision rules in simulation-

based evaluation models for flexibility and uncertainty; 3) a lack of a systematic 

approach to quickly explore the flexible design space through efficient tuning 

procedures for decision rules and design variables; and 4) limitations in exploring 

flexible design solutions with different objectives and criteria. From a broader 

perspective, although considerable research has been devoted to evaluating 

flexibility in engineering systems design, little attention has been paid to 
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considering screening models and multi-criteria decision-making techniques 

simultaneously. More specifically, although separate research has been done on 

each aspect, there is currently no integrated framework to fill all of the identified 

research gaps. Therefore, to address these research opportunities, this thesis 

develops an integrated multi-criteria screening framework to explore flexible 

design strategies for complex engineering systems efficiently and effectively.
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 Methodology: An Integrated Multi-Chapter 3

Criteria Screening Framework for Flexibility 

Analysis  

 Introduction 3.1

In the previous chapter, relevant research studies were briefly described and their 

limitations were identified. The main research gap addressed in this thesis is the 

lack of an integrated framework enabling: 1) analysis of flexibility in different 

domains of the systems (e.g. operational, tactical, strategic), and considering 

different types of flexibility strategies; 2) considerations of both design variables 

and decision rules simultaneously in simulation models; 3) systematic and 

computationally efficient analysis for tuning decision rules and design variables 

(i.e. essentially exploring the design space effectively and efficiently); 4) 

exploring the flexible design solutions subject to different objectives and criteria. 

From a broader perspective, although considerable research has been devoted to 

evaluating flexibility in engineering systems design, in the exploration of flexible 

designs less attention has been paid to screening methodology and more than one 

single performance measure simultaneously. Therefore, to address these research 

opportunities, this thesis develops and proposes an integrated multi-criteria 

screening framework to explore flexible design space efficiently and effectively. 

A structured methodology is developed to address the research questions posed at 

the end of the previous chapter. To address these questions, this thesis proposes a 

methodology referred as integrated multi-criteria screening framework to analyze 



Chapter 3 A Multi-Criteria Screening Framework 

33 

flexibility in engineering systems design. The proposed methodology builds upon 

and expands a four-step simulation based analysis for uncertainty and flexibility 

proposed by de Neufville and Scholtes (2011), and adapts existing computational 

methods to suit the needs of flexibility analysis in an engineering context. The 

proposed framework, as a practical procedure, aims to facilitate the decision-

making process especially when computational resources are limited and more 

than one objective is important in the design phase. The proposed model can be 

applied to assess flexibility in engineering systems designs.  

The main contribution of this thesis is this integrated and systematic three-phase 

framework that enables: 1) developing multi-domain flexibility to deliver better 

value designs through determining decisions when there are different types of 

flexibility, 2) developing flexibility analysis for engineering system design under 

uncertainty considering design variables and decision rules at the same time, 3) 

developing a screening model based on a meta-modeling approach and computing 

budget allocation approach to alleviate the computationally intensive real-world 

simulations, through balancing exploration and exploitation in searching the 

design space, 4) developing a multi-criteria model to provide distinct dominant 

flexible designs consistent with decision makers’ preferences. To this author’s 

knowledge, there is no framework currently enabling the analysis of complex 

systems considering simultaneously these four important angles. 

A secondary and important contribution is an in-depth study and application of 

the proposed framework to support the design and management of LNG 

infrastructure systems under explicit consideration of uncertainty and flexibility. 

Based on existing literature, this thesis is the first to investigate applications of the 

flexibility paradigm in the design and management of such infrastructures, and to 
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demonstrate significant performance improvements as compared to the outcomes 

of existing methods and practice. 

The proposed multi-criteria screening framework is applied in subsequent 

chapters to analyze real-world on-shore LNG production systems as case studies. 

In this thesis, two variations of the same engineering system are investigated: 1: A 

centralized LNG production system and 2: A decentralized LNG production 

system. The goal is to quantify the potential value improvements not recognized 

by standard design and evaluation approaches while benefiting from efficient and 

effective design space exploration to find promising flexible design and 

management strategies for the system. The analysis focuses on two variants of an 

LNG production infrastructure to demonstrate applicability of the framework to 

different instantiations of an engineering system, and further support validation 

towards better generalizability of the framework. 

 Proposed Framework 3.2

This section introduces and describes the proposed three-phase framework, as 

seen in figure 3.1. The phases are: Phase 1: Design problem modelling, Phase 2: 

Screening, and Phase 3: Multi-criteria decision-making analysis. The second 

phase, which is the screening procedure, may rely on two screening approaches, 

1) meta-modeling approach and 2) computing budget allocation approach. The 

transition between the phases is shown with arrows in the figure. 

For instance, when computing budget allocation based screening is applied, there 

is a back and forth procedure between phase 2 and 3 while in case of using meta-

model based screening approach, phase 3 starts when phase 2 is already 

accomplished. The details of each phase are elaborated in following sections. 
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Finally, the preferred trade-off flexible design, that is the output of the Phase 3, 

should be further investigated in a high-fidelity model.  

 

 

 

  

 

 

 

Figure 3.1: Proposed multi-criteria screening framework for flexibility in 
engineering design 

For better understanding of the function of the proposed framework, input and 

output for each phase of the proposed framework are represented in a flowchart. 

Figure 3.2 shows the process. 

 
 

  

 

 

Figure 3.2: Input and output for each phase of the proposed framework 

The input to phase 1 is the deterministic quantitative performance model and the 

output of phase 1 is the quantitative performance model for uncertainty and 

flexibility analysis. Using the output model from phase 1 that accounts for 

flexibility and uncertainty, a family of flexible design solutions can be generated, 
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but the best flexible design is not known yet. The enumeration of possible flexible 

designs can be demanding, hence there is a need for phase 2 to help quickly find 

preferred flexible solutions. Phase 2 of the proposed model relies on two 

screening approaches to address the computational issue: 1) meta-model and 2) 

computing budget allocation. When the meta-model screening approach is used, 

the outputs of phase 2 are inexpensive surrogate models for flexibility. On the 

other hand, when computing budget allocation screening approach is used, there 

is a back and forth procedure to create a computational efficient model for 

flexibility. Finally, the outputs of phase 3 are Pareto flexible design solutions and 

the preferred trade-off flexible design based on decision-makers’ preference. 

 Phase 1: Problem modeling 3.3

The starting phase of the proposed screening framework is a simulation-based 

flexibility and uncertainty analysis that starts with the three following steps, as 

illustrated in Figure 3.3. Each step is further described below.  

 

 

 

 

 

 

Figure 3.3: Problem modeling phase for flexibility and uncertainty analysis 
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In these steps, different sensitivity analyses can be conducted to observe the 

sensitivity of the system responses with respect to input parameters, design 

variables, and problem assumptions. Different tradeoffs can be studied, for 

example between economies of scale factor, volatility, discount factor, learning 

rate, and the value of flexibility. 

3.3.1 Step 1: Develop deterministic quantitative performance model 

This step builds a baseline quantitative performance model to evaluate the design 

alternatives. To do so, the scope of the problem and underlying assumptions about 

problem modeling and parameters need to be determined, such as market 

parameters, design variables, key costs and revenue drivers of the system. 

Following this, a deterministic quantitative performance-based model is 

developed to represent the relations among components of the system and to 

measure the lifecycle performance of the design alternatives using different 

metrics, such as Net Present Value. At the end of this step, the model can generate 

single-point outputs in terms of different values of design variables. This model, 

however, provides unrealistic solutions as it does not recognize uncertainty. 

3.3.2 Step 2: Develop quantitative performance model under uncertainty 

In this step, the deterministic quantitative performance model is extended into the 

model under uncertainty. To do so, the major uncertainty drivers of the system are 

first identified using a deterministic sensitivity analysis to determine and compare 

the relative importance of the model parameters. There are tools, such as Tornado 

diagrams, that can help prioritize a long list of uncertainty drivers and be used as a 

complement to − not a substitute for − expert judgment (de Neufville and Scholtes 

2011). In a Tornado diagram of design alternatives, the top bars represent the 

parameters that contribute the most to the variability of the outcome, and 
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therefore what the decision-maker should focus on. Once the main sources of 

uncertainty have been identified, the corresponding historical trends need to be 

analyzed by understanding the data, developing the overall pattern and assessing 

the uncertainty in their trends. Stochastic functions, such as Geometric Brownian 

Motion (GBM), s-curve function and Mean Reverting Process, can be used to 

model the uncertainty behavior over the evaluation period. By incorporating these 

stochastic behaviors into the deterministic model using the Monte Carlo 

simulation, a large number of possible scenarios can be generated. In this step, 

hence, one deals with distributions of outcomes in terms of different input 

variables.  

Considering a large enough number of sample demand scenarios (i.e. 2,000) as 

inputs for the quantitative performance model under uncertainty, cumulative 

distribution functions of the different design alternatives can be generated and 

compared based on different performance metrics, such as expected net present 

value (ENPV), value at risk (VaR) like 10th percentile (or P10), value at gain 

(VaG) like 90th percentile (or P90), and variability (standard deviation) (de 

Neufville and Scholtes 2011). The input variables of the model in this step are 

only design variables. 

3.3.3 Step 3: Develop quantitative performance model for flexibility 

This step introduces the notion of flexibility in the design, deployment and 

evaluation processes. In the proposed framework, step 1 of phase 1 takes as input 

a deterministic quantitative performance model, and step 2 of phase 1 augments 

this model by modeling uncertainty explicitly, as part of the quantitative 

performance model development under uncertainty. Essentially there is no 

flexibility in these two steps. Flexibility is considered in step 3 of phase 1. The 
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process here mainly focuses on flexibility valuation, but it is augmented by 

engineering design tools in systems design concept generation that help identify 

the valuable flexibility strategies. For instance, flexible strategies such as capacity 

expansion/reduction, switching inputs/outputs and deferring investment can be 

considered. In this step, for the “generating the flexibility” that requires expert 

domain knowledge, systematic processes such prompting, as suggested by Cardin, 

Kolfschoten et al. (2013), the Integrated Real Options Framework by Mikaelian, 

Nightingale et al. (2011), or the procedure explained in Hu and Cardin (2015) are 

all ways to generate the flexible alternatives as part of phase 1. When the effective 

flexible strategies have been identified, corresponding decision rules need to be 

explicitly embedded in the quantitative performance model under uncertainty. The 

concept of defining decision rules with threshold variables, which was first 

developed by Ranjbar-Bourani, Cardin et al. (2013), is extended to generate 

different flexible managerial strategies and solutions. Flexible strategies are 

characterized by a combination of design variables and decision rules, thereby 

defining the design space. Similar to Step 2, there are different performance 

metrics to evaluate design alternatives in this step.  

To evaluate each flexible design, a Monte Carlo simulation model with large 

enough number of scenarios needs to be run, which may take a few seconds, 

minutes or even hours depending on the complexity of the simulation model for 

the case under consideration. The total number of the flexible solution space 

combinations is determined by the numbers and step sizes of design variables and 

decision rule parameters. The larger number of flexibility options and the smaller 

the step sizes, the larger the number of possible combinations will be and, 

eventually, the more computationally intensive the exhaustive enumeration will 

be. In addition, considering different assessment criteria requires further 



Chapter 3 A Multi-Criteria Screening Framework 

40 

computational effort to explore the solution space in different directions. As a 

result, the enumeration technique can be further computationally intensive. 

Therefore, a screening model needs to be developed to quickly explore the 

flexible design solution space subject to different objectives. 

 Phase 2: Screening 3.4

There are several methods to screen complex systems design based on computer 

simulation. In the proposed framework, two approaches are explored: 1) A meta-

model based screening approach and 2) A computing budget allocation based 

screening approach. As opposed to all other approaches, the rationale for 

investigating these approaches is that these approaches rely on balancing between 

exploration and exploitation to search the flexible design space efficiently and 

systematically. Procedures for these screening approaches are explained in detail 

in the following subsections. 

3.4.1 A meta-model based screening approach 

This part of the analysis is the crux of the proposed screening framework where 

the response surfaces in terms of different objective are formed adaptively. Figure 

3.4 shows the procedure of the screening phase based on meta-model approach. In 

this approach, an inexpensive model is used instead of the original simulation 

model that is created in phase 1 for flexibility analysis. The proposed screening 

procedure is a simulator-based screening model with an embedded bottom-up 

screening procedure for operational flexibility. Here, surrogate approximation of 

the expensive (original) simulation is updated using all of the expensive 

simulation evaluations done in the previous and current iterations. When the 

stopping criterion is met, the surrogate model of the original simulation model is 



Chapter 3 A Multi-Criteria Screening Framework 

41 

accepted (i.e., good-enough). This surrogate is very inexpensive to evaluate in 

terms of computation time (i.e., it takes a fraction of a second) and very efficient 

compared to an exhaustive search. The inexpensive surrogate model can then be 

explored by nonlinear programming methods to help identify points where the 

original simulation model should be evaluated.  

 

 

 

 

 

 

Figure 3.4: Screening phase procedure to create good-enough and inexpensive 
surrogate models based on meta-model approach, CCD stands for Central 
Composite Design and LHS stands for Latin Hypercube Sampling 

When operational flexibility is enabled (i.e., turned “on”) in the simulation model, 

the simulator-based screening model captures the value added due to operational 

flexibility. In operational decision-making, the corresponding sub-problem (e.g., 

transportation, allocation, scheduling or inventory control problems) needs to be 

optimized at each operational period (e.g., one month, three months, six months, 

one year, etc.). Depending on the number of uncertainty scenarios, the 

optimization procedure must be repeated several times. Hence, finding the 

optimum decisions for all operational periods can be computationally intensive if 

a large number of uncertainty scenarios and small operational periods are 

considered.  
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To enhance the speed of the screening phase, a bottom-up screening model for the 

operational flexibility can be enabled, as shown in the grey box in Figure 3.3. A 

bottom-up screening models can be developed in a form of heuristic algorithms 

(e.g., heuristic rebalancing schemas) instead of calling optimization procedures 

(e.g., transportation model) repeatedly. Essentially, heuristic algorithms simplify 

the procedures used in original detailed operational models. 

In this thesis, an Efficient Global Optimization (EGO) algorithm proposed by 

Jones, Schonlau et al. (1998) will be used for screening the flexible solution 

space. Unlike conventional Response Surface Method (RSM) techniques, the key 

to using EGO for finding the best flexible design lies in balancing the need to 

exploit the approximating surface (by sampling where it is optimized) with the 

need to improve the approximation (by sampling where prediction error may be 

high).  

EGO is chosen as it explores the solution space efficiently and systematically. 

More specifically it: 1) Balances the local (also refereed as exploitation) and 

global (also refereed as exploration) search strategies to explore the solution 

space, while the conventional RSM methods have some limitations in highly non-

linear systems responses (Jones 2001; Kleijnen 2009); 2) Benefits from the 

adaptive sequential response surface procedure, which is based on a Gaussian 

process, to lessen the computational time and evaluation number; 3) Takes 

advantage of a viable stopping criterion which is tied with simulation-

optimization procedures to control the adequacy of the response surface.  

The EGO procedure finds the global optimum of a surrogate model of an original 

simulation model. The Kriging meta-model was adapted from the Design and 

Analysis of Computer Experiments (DACE) model (Nielsen, Lophaven et al. 
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2002). In this study, the DACE model is used to construct a Kriging 

approximation model as a surrogate of the Monte Carlo simulation computer 

model for flexibility and uncertainty. Following Sacks, Welch et al. (1989), the 

DACE model considers the deterministic response y(x) as a realization of a 

regression model and a random function or stochastic process, as shown in 

equation 3.1. An interpretation of the model is that deviations from the regression 

model, though the response is considered deterministic, may look like a sample 

path of a stochastic process z.  

 Y8x; = ∑ βNfN8x; + Z8x;QNR4    (3.1) 

In Equation 3.1, Y can be considered as a Bayesian prior in the true response 

function. One method of analysis for the use of a stochastic process as a prior in 

true response functions is known as the Kriging method (Matheron 1963). Given 

a design vector # = 9�4, … , �T: and system response U� = 9U8�V;, … , U8�W;:′, 
consider the linear predictor of U82; at an untried x. The U� can be replaced by the 

corresponding random quantity Y� = 9Y8�V;, … , Y8�W;:′. Accordingly, UZ82; =
[′82;U8�; can be treated as random and its mean squared error over the random 

process can be computed. A Bayesian estimation would predict U82; by the 

posterior mean and the Kriging predictor would be UZ82; = "9Y82;|U�:. The 

random process Z is assumed to have a mean of zero and a covariance between 

Z8w; and Z8x;, where σT is the process variance and R8θ,w, x; is the correlation 

model with parameters θ, as shown in equation 3.2.  

 Cov8w, x; = σTR8θ,w, x; (3.2) 

For interpolation purposes, different types of correlation functions provided by 

the DACE model can be used. In this study, a Gaussian correlation function is 

used with parameter	θ, as shown in equation 3.3. In the DACE model, this 
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parameter is estimated using maximum likelihood estimation (MLE). In the 

correlation function, the correlation decreases with the Euclidian distance, |dj|, and 

a larger value for θj leads to a faster decrease.  

R8θ,w, x; = expf−h���Ti ;					�� = k� − 2�  (3.3) 

Assuming a Gaussian process, the likelihood is a function of l in the regression 

model, the process variance mT and the correlation parameter	h. The DACE 

model can then be used to determine the optimum value for the optimal 

coefficients h∗ of the correlation function. The predictor in the DACE model 

provides the mean squared error (variance). The mean squared error can be used 

to build the confidence interval for the Kriging response surface. The EGO 

approach allows one to obtain an adequate response surface through a sequential 

procedure using a viable stopping criterion. Equation 3.4 calculates the expected 

improvement in the current response surface (Jones, Schonlau et al. 1998) where 

Φ is the cumulative normal distribution and p is the normal distribution; 7qr 

shows the minimum value among the tried points, where 7qr = min	8U4, … , Ur;; 
UZ	is the model predictor; and � shows the standard error (mean square error) of the 

Kriging meta-model. By optimizing the expected improvement function the 

optimum point v is obtained.  The original simulation is then run at this point  

"9&8v;: = 87wxy − UZ;Φz7qr − UZ� { + �p z7qr − UZ� { (3.4) 

The EGO technique creates the first response surface using the initial samples 

drawn from the design space. To fill the initial design space, a combination of 

Central Composite Design (CCD) and Latin Hypercube Design (LHD) is used. 

For the initial design in this study, the “faced” type of central composite design 

provided in MATLAB is used to cover the corner points and central point of the 
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design space. In addition, the Latin Hypercube sampling design technique is used 

to efficiently and randomly fill the initial design space. Next, sampling from the 

design space needs to be continued until the stopping criterion (i.e., expected 

improvement) is met. In this study, the following EGO procedure is applied to 

create an adaptive response surface for different system responses (i.e., here 

ENPV and standard deviation):  

Step 1: Conduct the initial design of the experiment (i.e., “space-filling” using 

Central Composite Design (CCD) and Latin Hypercube Design (LHD)). 

Step 2: Run the simulations at the points suggested in the previous step. 

Step 3: Fit the Kriging model parameters using the maximum likelihood 
estimation. Once the initial designs are complete and the response surface 

has been created, the iterative procedure can start. 

Step 4: Build the Expected Improvement (EI) function using equation 3.4 and 
maximize it. 

Step 5: Is the optimum value of EI less than the expected EI threshold?  

If yes, the current response surface is adequate. Stop the procedure and go 

to Step 7. 

If no, sample from the design space with the maximum EI and proceed to 

the next step. 

Step 6: Run the simulation with the suggested sample and fit the Kriging model, 

then go to Step 4. 

Step 7: The stopping criterion is met and the current response surface model is 

adequate. 

Subsequently, in phase 3 Pareto flexible design solutions are generated using the 

generated inexpensive meta-models and further Pareto post-processing analysis 

are performed in the following phases of the proposed framework. 

For better understanding of the meta-model screening procedure, consider a 

demand site for designing a flexible LNG production system. In this hypothetical 

example, the system configuration is adapted using modular capacity 25 tpd in the 
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face of LNG demand uncertainty over its lifetime. In the quantitative model for 

flexibility and uncertainty, for the LNG capacity expansion only one decision rule 

is considered: IF “the observed demand reaches certain percentage of the 

modular capacity 25 tpd” THEN “deploy the first capacity or expand the current 

capacity” ELSE “do nothing”. The threshold value can be set from 50% to 95%. 

The aim is to find an optimum threshold value leads to highest flexible design 

value in terms of ENPV. To find the best flexible design, the optimum threshold 

value needs to be found. To do so, an exhaustive enumeration method can be 

applied. Using this method, however, can be computationally expensive 

especially if complex simulation models are used. Thus, a screening approach is 

needed to quickly explore the flexible design solution aiming at finding good 

enough flexible design solutions. Figure 3.5 shows the meta-model screening 

procedure for the hypothetical example as shown in iterations “a” to “c”.  

 

Figure 3.5: The meta-model screening procedure for the hypothetical example 
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The meta-model screening procedure starts at iteration “a” where the initial 

design space is filled using the Latin Hypercube Sampling (LHS) design. As can 

be seen, three threshold points are suggested by LHS and these points are plugged 

in the simulation model for flexibility and uncertainty. Simulation model 

developed in the Microsoft Excel® is run for large number of demand scenarios 

(i.e. 2000 demand scenarios). In next iteration “b”, Design and Analysis for 

Computer Experiment (DACE) model developed in MATLAB® is applied, using 

the obtained simulation outputs, to create an inexpensive model of the original 

simulation model (i.e. the output of Phase 1 of the proposed framework). Once the 

meta-model is built, using the Mean Square Error (MSE) produced as a byproduct 

of the meta-model and the Efficient Global Optimization (EGO) procedure, 

Expected Improvement (EI) function is calculated. Subsequently, the EI function 

is optimized. Given the optimum value of the EI function is not less than or equal 

to the stopping value (i.e. 0.01), the current meta-model is not good enough and it 

should be updated accordingly. Thus, the corresponding optimum threshold value 

obtained by optimizing the EI function is suggested as a new untried threshold 

value. The new threshold value is plugged in the original simulation model and 

after running the simulation the simulation output is used in the next iteration “c”. 

In this iteration, the DACE model is applied to update the current meta-model by 

adding the new sample. Again, the EI function is calculated and its optimum 

value is obtained. The results show that the meta-model is not good-enough, and 

the corresponding optimum threshold for EI function should be considered. 

Following the same procedure performed at iteration “b” and “c”, the Kriging 

meta-model is updated in iteration “d” and its optimum EI function is calculated. 

The results show that the optimum value of the EI function is less than or equal to 

the stopping criteria (i.e. 0.01), and thus the algorithm stops at this iteration and 
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the current Kriging meta-model can be used as a good-enough meta-model 

instead of the original simulation model. The actual programming code for this 

hypothetical capacity expansion problem is available in Appendix H. 

Essentially the meta-model screening method presented in phase 2 of the 

proposed framework, builds an inexpensive model of the original simulation 

model for flexibility and uncertainty (i.e. the output model of the phase 1 of the 

proposed framework). The meta-model is updated adaptively until good-enough 

meta-models are achieved, when the stopping criterion (i.e. expected 

improvement) is met.  

3.4.2 A computing budget allocation based screening approach 

In this section, a multi-objective computing budget allocation is proposed to 

explore the flexible design solutions efficiently and effectively. This screening 

approach is considered as a bottom-up screening approach. Given a finite set of 

design alternatives and limited budget for simulation evaluation, the aim is to 

appropriately allocate more simulation evaluation budgets to promising flexible 

designs rather than less important ones. This approach is considerably different 

from the meta-model based screening approach, and offers an attractive 

alternative from a computational standpoint.  

Figure 3.6 shows the flowchart of the proposed multi-objective computing budget 

allocation (MOCBA) framework. The proposed heuristic MOCBA framework has 

been adapted from Lee, Chew et al. (2010) to suit the purpose of flexibility 

analysis. Before starting the procedure, some parameters of the MOCBA must be 

set first. Initial Budget Rate (IBR) refers to a portion of the Maximum Budget 

(MB). The MB determines the maximum budget available for each design 

alternative. In this study, different computer experiments are conducted by setting 
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different values of MB. Essentially, when the budget allocated to any design 

alternative reaches MB the algorithm terminates, and final results are returned. 

Budget Incremental Rate (BIR) refers to the incremental rate of budget for each 

design alternative at each iteration. Design archive keep rate (DAKR) determines 

the percentage of designs that are transferred to the next iteration. For instance, if 

DAKR is set to 40%, it means that only 40% of the top flexible designs, which are 

sorted according to dominance relation, will be analyzed in the next iteration and 

the rest of the flexible designs are then discarded. Besides the MB, Minimum 

design archive size (MDAS) is another stopping criterion to ensure that enough 

flexible designs are returned at the end of the algorithmic procedure, before 

proceeding to the analysis with large number of scenarios in phase 3.  

  

 

    

 

 

 

Figure 3.6: A multi-objective computing budget allocation flowchart 

The Allocation factor (AF) determines how the total simulation replication budget 

is allocated to flexible designs in different layers of the Pareto fronts at each 

iteration. This analysis is a part of the procedure used in Phase 3 of the proposed 

framework on multi-criteria decision-making analysis. Under the computing 

budget allocation approach, flexible designs are generated as shown in Figure 3.5, 
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and classified into different Pareto fronts (e.g. here Pareto fronts 1 to 4) using the 

Pareto dominance relation. The Pareto dominance relation will be explained in 

detail in the following section, phase 3.   

As can be seen, design numbers 1 to 4 are non-dominated designs and are in 

Pareto front level 1. Subsequently, design number 5 lies in Pareto front level 2, 

designs 6 and 7 lies in Pareto front level 3 and designs number 8 and 9 lies in 

Pareto front level 4. For simplicity, in the process of computing budget allocation 

it was assumed that the same budget is allocated to designs that are in a similar 

Pareto front level at each iteration. Total budget at each iteration is calculated 

using equation 3.5. 

Total budget= updated budget for each design × size of design archive (3.5) 

For instance, let flexible solutions contain 4 levels of Pareto fronts, as Figure 3.7 

shows and, AF be the allocation factor as an input parameter.  

 

Figure 3.7: Flexible designs classified using Pareto dominance relation 

The allocation factor determines how simulation budgets are allocated to different 

Pareto fronts. Equations 3.6 to 3.9 express the linear allocation problem. 
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w1 =AF w2   
�

  w1 − AF w2=0                    (3.6) 

w2 = AF w3   
�

  w2 − AF w3=0                    (3.7) 

w3 = AF w4   
�

  w3 − AF w4=0                    (3.8) 

w1 + w2+ w3+ w4=1  
�

  w1 + w2+ w3+ w4−1=0       (3.9) 

By solving these equations, the simulation replication budget for designs located 

at each Pareto front Wi is obtained. Now new budget for flexible designs in Pareto 

front i can be calculated as Total budget × Wi. According to this procedure, if 

AF=1 similar simulation budgets are then allocated to different Pareto front 

levels. On the other hand, if AF>1 budgets allocated to Pareto front 1 are AF 

times more than budgets allocated to Pareto front 2 and budgets allocated to 

Pareto front 2 are AF times more than budgets allocated to Pareto 3 and budgets 

allocated to Pareto front 3 are AF times more than budgets allocated to Pareto 4.  

The reason for this type of simulation budget allocation is that how simulation 

budgets are allocated to different Pareto fronts can be controlled. The bigger value 

of allocation factor is, the more budgets are allocated to the designs that are close 

to true Pareto front rather than those that are far away from true Pareto front. 

When the meta-modeling screening approach is used, the output of the phase 2 is 

the meta-models of the intended objective functions (e.g. ENPV and Standard 

deviation). There is a need to go phase 3 to find dominant flexible designs using 

the computationally inexpensive meta-models created in phase 2 and based on 

DMs preferences. It should be emphasized that there is a back and forth procedure 

between phases 2 and 3 when the computing budget allocation approach is used in 

phase 2. In contrast, using the meta-model approach in phase 2, the inexpensive 

meta-models are passed to the phase 3 for further analysis. In phase 3, dominant 

flexible designs are generated, and the best trade-off flexible solution is found 
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based on decision makers’ preferences using the weighted-sum method as a 

Pareto post processing approach. 

 Phase 3: Multi-criteria decision-making analysis 3.5

Until recently, most of the relevant screening models developed for analyzing 

flexibility in engineering systems design (e.g., Cardin (2007); Lin (2009); Yang 

(2009)) considered only one single criterion for design space exploration. 

However, researchers are increasingly aware of the importance of collaborative 

decision-making in the conceptual design phase.  

To illustrate the tradeoffs, Figure 3.8 shows dominant flexible designs with move 

option showing ENPV and standard deviation of the dominant flexible designs. 

The figure provides a range of flexible design solutions so that decision makers 

can trade-off between flexible design solutions in terms of different objectives 

(i.e., ENPV and standard deviation).  

 
 
 

ENPV 18.60 19.02 19.23 19.90 20.37 20.38 20.58 20.74 21.37 22.63 23.19 23.35 24.22 

Std. 8.78 9.07 9.29 10.60 10.69 10.82 10.93 12.39 13.37 13.61 14.99 15.30 15.51 

 

Figure 3.8: Dominant flexible designs, with move option 

The choice of a flexible design depends on the risk preferences of the decision 

makers. While standard approach explores a design space with respect to only one 

objective to find the best flexible design, exploring the solution space with respect 

to different objectives provides a range of feasible flexible design solutions. Thus, 

more options will be given to decision makers. 

Towards a better flexible design with respect to ENPV 

Towards a better flexible design with respect to Standard deviation 
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Given a range of flexible design solutions, a risk seeker decision maker may tend 

to choose flexible designs with higher value at risk (e.g. P95). On the other hand, 

a risk averse decision maker tend to choose flexible designs with lower standard 

deviation (e.g., flexible design with Std. = $8.78M). Both types of decision-

makers aim to maximize return for a given level of risk, but the risk-averse 

decision maker may prefer less risk, and be willing to sacrifice additional returns 

in exchange. The risk neutral decision-maker is indifferent between upsides and 

downsides, and therefore will aim to choose a design maximizing the expected 

value ENPV (e.g., flexible design with ENPV=$24.22M).  

Let us assume that there are m objective functions and x is an n dimensional 

flexibility vector having n design variables and/or decision rules. Solutions to a 

multi-objective optimization problem are mathematically expressed in terms of 

non-dominated points. 

It is useful to express non-dominance in terms of vector comparison; let x and y 

be two design vectors of n components. Thus, x = (x1, x2,.., xn) and y = (y1, y2,.., 

yn). For a maximization problem, we say that x dominates y if and only if (Deb 

2014), see equation 3.10: 

7� 	8x; ≥ 7�	8y;	and	7�	8x; > 7� 	8y;		for	at	least	one	�					� ∈ 	 �1,2,… ,��	     (3.10) 

Similarly, for a minimization problem, that x dominates y if and only if, see 

equation 3.11: 

7�8x; ≤ 7�8y;	and		7�8x; < 7�8y;			for	at	least	one	�					� ∈ �1,2,… ,��         (3.11) 

There are three possibilities that can be the outcome of the dominance check 

between two solutions x and y. That is (i) solution x dominates solution y, (ii) 

solution x gets dominated by solution y, or (iii) solutions x and y do not dominate 

each other.  
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Let us assume a two-objective optimization problem, maximizing ENPV and 

minimizing the standard deviation as exemplified above, and with nine different 

design solutions shown in the objective space, as illustrated in Figure 3.7.  

Given both objective functions are of importance to us, it is usually difficult to 

find one solution that is best with respect to both objectives. However, one can 

use the above definition of domination to decide which solution is better among 

any two given solutions in terms of both objectives. For example, if solutions 2 

and 5 are to be compared, we observe that solution 2 is better than solution 5 in 

terms of both objectives. Thus, both the above conditions for domination are also 

satisfied and we may write that solution 2 dominates solution 5. The solutions in 

each Pareto level do not dominate each other. The set of all non-dominated 

solutions are usually known as the Pareto-optimal (e.g. here design 1, 2, 3 and 4 

are in level 1). 

Figure 3.9 shows the proposed multi-criteria decision-making procedure to 

explore flexible design space with respect to more than one objective function. 

Under the meta-modeling approach, Pareto fronts are generated using inexpensive 

surrogate models obtained from phase 2.  

 

 

 

Figure 3.9: Procedure of the Multi-criteria decision-making analysis (Phase 3) 

3.5.1 Hypervolume 

Pareto front obtained from the screening phase is further analyzed using large 

enough number of scenarios. In this study 2000 scenarios are considered as 

system response converges to the same value with negligible variation. Then 
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using Pareto dominance relation, true Pareto front are obtained. To measure the 

quality of each Pareto front, Hyper-volume (also hyper-area for two objectives) is 

used. This criterion accounts for dominance, spread and density of Pareto designs 

simultaneously (Zitzler, Thiele et al. 2003; Bradstreet, While et al. 2008; Nebro, 

Durillo et al. 2008). The hyper-volume is dominated by the solutions in each 

Pareto set and closed by an arbitrary worst-case point. For illustration purposes, 

Figure 3.10 depicts the area dominated by a Pareto front using an arbitrarily 

chosen worst case scenario as a reference point with ENPV=$5M and Standard 

deviation=$25M.  

 

Figure 3.10: Hyper-area dominated by Pareto front and an arbitrary worst case 
with ENPV=$5M and Standard deviation = $25M was used 

The higher value of the hyper-volume, the better the quality of the Pareto front.  

In this example, the hyper-area is the sum of the areas of the vertical rectangles 

surrounded by the reference point and Pareto front points from left to right. 

Alternatively, the area can be numerically integrated in a horizontal way. The 

hyper-area is calculated as follows:   
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A1= (12.34-5) × (25-6.87) = 133.14; A2= (19.76-12.34) × (25-7.19) = 132.01; 

A3= (22.16-19.76) × (25-10.81) = 34.03; A4= (24.50-22.16) × (25-19.15)= 13.69 

Hyper-area= A1+A2+A3+A4=133.14+132.01+34.03+13.69= 312.87 

3.5.2 Pareto post processing: weighted-sum method 

Flexible solutions in the Pareto front are often large and can become difficult to 

comprehend and consider. The following section describes a procedure for 

evaluating the tradeoffs between the different objectives captured in the Pareto 

front analysis, and select recommended design alternatives. One approach is to 

find the best trade-off between flexible design solutions consistent with the 

preferences of the decision-makers. A common approach to evaluate the trade-

offs between flexible solutions lying on the true Pareto front is the weighted-sum 

method. In this method, decision makers provide weight for each objective 

function so that weighted-sum can be calculated. All the flexible design solutions 

can then be sorted accordingly. For illustration purposes, Figure 3.11 shows how 

dominant flexible designs are sorted using a weighted-sum method.  

 

Figure 3.11: Sorting dominant flexible designs using weighted-sum method 
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This method is different from the additive multiple attribute utility method. While 

the additive multiple attribute utility deals with attribute functions, the weighted-

sum method in this thesis aims to find the best trade-off dominant flexible design 

according to the decision makers’ preferences. 

In the two case studies, a demonstration of how to identify the recommended 

design(s) will be done. Of course, such recommendation depends on the decision-

maker’s preference, and is only for illustration purposes. Table 3.1 shows an 

example of weighted-sum calculation to minimize (-W1×Normalized (ENPV)) + 

(W2 × Normalized (Std.)) considering W1+W2=1. As can be seen, Pareto designs 

can be sorted in terms of different decision makers’ preferences.  

Table 3.1: Sorting flexible designs with respect to different DM preferences, 
Weighted-sum values are in millions dollars 

Decision maker preference weighted-sum (sorted design number) 

W1 50% 
0.21 (3) 0.26 (2) 0.5 (4) 0.5 (1) 

W2 50% 

W1 60% 
0.24 (3) 0.24 (2) 0.4 (1) 0.6 (4) 

W2 40% 

W1 40% 
0.17 (3) 0.27 (2) 0.4 (4) 0.6 (1) 

W2 60% 

The following procedure is proposed to find the preferred flexible design and sort 

flexible designs based on their weighted sum values.  

1. Convert the problem to a minimization problem for all objective functions, if 

needed.  

2. Find the utopia point for objective function i which is minimum, shown as .
. 

3. Find the nadir point for objective function i which is maximum, shown as ./. 

4. Normalized the objective function i in objective space, using equation 3.12 
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.0 = . − .
./ − .
 
(3.12) 

5. Calculate the weighted sum value for flexible design k using equation 3.13 

where k=1 …K and K is the total number of dominant flexible designs. Then sort 

flexible designs increasingly based on weighted-sum value; if two flexible designs 

have the same weighted-sum value, give the priority to the design with a bigger 

design number.  

5#6 =�k ×T
R4 .0 (3.13) 

The same abovementioned procedure was followed to evaluate the recommended 

designs in chapter 4 and chapter 5. 

For example, given w1=50% and w2=50%, design number 3 has the least 

weighted-sum value 0.21. Following design number 3, design numbers 2, 4 and 1 

with values 0.26, 0.5 and 0.5 respectively have the least weighted-sum value. In 

the Table, weighted-sum value with sorted design numbers in terms of (w1=60%, 

w2=40%) and (w1=40%, w2=60%) are also provided.  

A preferred trade-off dominant flexible design is obtained in this phase. The 

solution representation corresponding to the preferred flexible design represents 

the best trade-off values of the decision rule parameters and design variables. The 

example of possible solutions from the process are provided and described at the 

end of each case study. 

The proposed framework is able to optimize both design variables and decision 

rules using meta-model and computing budget allocation approaches subject to 

multiple performance assessment criteria. Essentially, the procedures presented in 

phase 2 and phase 3 of the proposed multi-criteria screening framework can be 
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considered as “decision-rule and design-variable optimizer" considering multiple 

performance assessment criteria.  

 Exhaustive enumeration 3.6

A full exhaustive enumeration is done with each case study application to validate 

the solutions found by the screening approaches, using the simulation model 

developed in Phase 1 of the proposed framework. The simulation model is used to 

generate different flexible design solutions by altering feasible values of the 

design variables and decision rule variables. Considering possible values for 

design variables and decision rules, a large number of flexible designs is 

generated and can make the exploration of flexible designs challenging. The 

proposed simulation model for flexibility and uncertainty described in this phase 

can be treated as an input-output model. 

By following the dominance relation procedure, the dominant flexible designs can 

be obtained with different simulation evaluation number in different computer 

experiments. For instance, in experiment with 50 simulation replications, all 

possible 5,940 designs in the first case study are analyzed with 50 simulation 

evaluation which resulting in 5,940×50=297,000 simulation evaluations. Once the 

Pareto fronts of the experiment with 50 simulation evaluations are found, for the 

fair basis analysis 2000 simulation evaluations are used as the system responses 

converge to a value with negligible variations. Figure 3.12 summarizes the 

exhaustive enumeration technique.  

 

 

Figure 3.12: Exhaustive enumeration analysis 
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Essentially, the Pareto front of a given experiment (e.g., 50 scenarios) is found 

first. Then the Pareto front solutions are further investigated using large enough 

number of scenarios. Finally, the true Pareto front for each computer experiment 

is found and the hyper-area is calculated. Once true Pareto front is obtained, 

Pareto post processing can be applied to find a preferred trade-off flexible design. 

 Summary 3.7

In this section, a screening methodology has been proposed to explore the space 

of flexible design solutions efficiently and effectively. Essentially the proposed 

screening approach is an extension of an existing four-step simulation-based 

approach for flexibility analysis. Two screening approaches have been proposed 

1) A meta-model based screening model; 2) A computing budget allocation based 

screening model. To validate the results found using these two screening 

approaches, an exhaustive enumeration method is conducted. Then the results of 

the three approaches are compared subject to Pareto quality and simulation 

runtime in terms of different computer experiments. To investigate the 

generalizability of the proposed multi-criteria screening framework, the proposed 

screening approaches are applied to two case studies: 1) A centralized LNG 

production system design that will be described in Chapter 4; and 2) A 

decentralized LNG production system design that will be explained in Chapter 5. 
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 Case Study I: Centralized LNG Chapter 4

Production System 

 Introduction 4.1

This chapter focuses on the design and development of a centralized LNG 

production system to provide fuel for trucks used in on-road product 

transportation in southeast Australia. The scope of the problem lies in the LNG 

supply chain where natural gas from on-shore pipeline is converted into LNG 

through liquefaction process, and then delivered to the transportation sector for 

the end users, heavy transportation sector. The goal is to meet the LNG demand at 

different geographical sites. Figure 4.1 schematically represents the LNG 

production system, from a fixed towards more flexible designs. This example has 

five candidate demand points equipped with filling station facilities and a main 

production site dedicated to a centralized LNG plant. All sites have access to the 

on-shore pipeline distributing the natural gas. In the main production site, LNG 

produced through the liquefaction process is transferred to the candidate demand 

sites. In this study, two main LNG system designs are investigated, 1) fixed 

centralized design (also referred as the fixed design), Figure 4.1 (a); and 2) 

flexible modular designs, Figure 4.1 (b and c).  

In the fixed centralized design, the optimal capacity significantly depends on the 

strength of the economies of scale. A big LNG plant is built in the main 

production site and LNG produced is carried to the market sites using fuel trucks. 

The flexible modular designs includes: 1) flexible modular design– no move, see 
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Figure 4.1 (b), which considers a phasing approach using a modular LNG plant 

with the flexibility to expand capacity at the main production site, and transport 

LNG to demand sites; 2) flexible modular design with move, see Figure 4.1 (c), 

which is the same design as the no-move flexible modular design but with the 

ability to move the modular LNG plants to demand sites. 

 

 

 

 

Figure 4.1: Shift from a fixed LNG system design towards a more flexible LNG 
system design 

The proposed integrated multi-criteria screening framework in three phases, 

explained in section 3.2, is applied to this case study to efficiently and effectively 

explore the solution space of flexible designs.  

 Phase 1: Problem modeling 4.2

This section proposes a practical approach to quantify flexibility under 

uncertainty. The process focuses mainly on flexibility valuation, but should be 

augmented by engineering design tools that help identifying the main uncertainty 

drivers, and valuable flexibility strategies. This approach improves the lifecycle 

performance of a project dependent on a range of potential uncertainties. To 

compare the design alternatives under uncertainty, the thesis provides and applies 

a structured three-step methodology based on several economic lifecycle 

performance indicators (e.g. Net Present Value, Initial Capex, etc.) in order to 

illustrate the “Value of Flexibility”. Figure 3.2 in chapter 3 illustrates the generic 
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process. In this case study, the three-step process is followed to analyze the 

system for flexibility, under market uncertainty related to LNG demand growth. 

More specifically, first, the deterministic DCF model is presented and second by 

taking uncertainty into account the DCF model under uncertainty is evaluated. 

Third, by incorporating decision rules into the DCF model under uncertainty the 

flexible DCF model is analyzed. A sensitivity analysis is performed to observe 

how the system responds to different parameters and input data. It is aimed to 

recognize that some of the modeling assumptions and parameters may be 

imprecise, and seek to determine where decision reversal might occur. 

Example procedures like prompting suggested by Cardin, Kolfschoten et al. 

(2013) or the Integrated Real Options Framework by Mikaelian, Nightingale et al. 

(2011) can help generate flexibility strategies. While this thesis focuses on on-

shore LNG systems, the proposed frame work could be adapted to measuring the 

value of flexibility in many other engineering systems as well. 

4.2.1 Modeling assumptions 

The free cash flows are modeled directly from cost and revenue assumptions, 

based on discussions with the collaborators at a practising company, and 

incorporating the best practices in the industry. The following assumptions are 

made for model development. Demand is assumed to be evenly distributed in the 

region over five distinct demand sites. There is no market at the main production 

site. All sites have access to on-shore natural gas pipeline in the region. At the 

main production site, time to build for the first plant is 3 years while at each 

demand site, the first plant takes 2 years to be built. Also, if one decides to expand 

capacity in year t, extra capacity will be available for production in year t+1. 

Regarding financial parameters, the project lifetime is assumed to be 20 years. 
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Each year is considered to be 350 working days. A 10-year straight-line 

depreciation method is used for all LNG production facilities with zero salvage 

value. The discount rate as an after-tax Minimum Attractive Rate of Return 

(MARR) is assumed to be 10% and the corporate tax rate is 15%. Essentially, the 

quantitative performance of the design is evaluated based on an After Tax Cash 

Flow (ATCF) analysis. 

With regards to design parameters, the fixed design analysis examined economies 

of scale: α=1, 0.95, 0.9 and 0.85. The modular design analysis investigated 

different learning rates: LR = 0, 5, 10, 15 and 20%. The capacity of modular LNG 

plant was set to 25 tpd with initial Capex $25 million. The Opex of the plant is 

assumed 5% of the plant’s Capex. Flexibility cost is 10% of the Capex of the first 

capacity deployment at each site because of gas tie-in to the existing natural gas 

pipeline and extra land cost. Transportation cost for carrying LNG is set to $0.4 

per ton-kilometer, while travel distances from the main production site to demand 

sites 1, 2, 3, 4, and 5 are 118, 121, 281, 318, and 446 Km respectively. 

4.2.2 Step 1: Develop deterministic quantitative performance model 

The proposed methodology starts with the deterministic analysis, considering first 

a rigid design as benchmark. The aim is to understand the key components of the 

system that influence its lifecycle performance. The performance metric used in 

this problem is NPV, calculated as the sum of discounted cash flows throughout 

the project lifecycle T = 20 years – see equation 4.1. Variables  *� and  �� are 

the total revenues and costs incurred in years t = 1, 2, ...  , r is the discount rate, 

 �2 is the effective income tax on ordinary income and �� is the sum of all 

noncash, or book, costs during year t, such as depreciation. A mathematical 

representation of the case study I is provided in Appendix F. 
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>�! =�81 −  �2;8 *� −  ��; +  �2	��81 + �;�
,
�R4  (4.1) 

LNG demand is a key driver of system performance. A deterministic s-curve 

function is assumed to simulate LNG demand over the study period, as shown in 

equation 4.2. The rationale is that LNG demand initially grows slowly; it then 

increases exponentially, and finally tapers as it approaches a saturation limit. 

Variable +,� is the maximum expected demand for LNG, �� is the sharpness 

parameter that determines how fast demand grows over time to reach the upper 

bound for demand. The parameter ��translates the curve horizontally.  

��� = +,�1 + ����	�� (4.2) 

where ��is calculated using equation 4.3. 

�� = +,���� − 1 (4.3) 

In general, the conventional DCF model is built to assess the performance of the 

system under deterministic conditions. This step captures standard industry 

practice in terms of design and project evaluation (Cardin, Ranjbar-Bourani et al. 

2013). Parameters associated with deterministic LNG demand modeling obtained 

through a combination of personal communications and market research at the 

collaborating firm are summarized in Table 4.1. 

Table 4.1: Parameters used in deterministic demand modeling for each site 

Deterministic demand model 

Parameter  Value ���  5 tpd ��  0.35 +,�  50 tpd 
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Figure 4.2 shows the results of the fixed design analysis assuming a deterministic 

LNG demand forecast. It shows the NPV for different sizes of plants that have 

various economies of scale factors. It shows, as might be anticipated intuitively, 

that: a) for any set of plant size and economies of scale, there is a “sweet spot”: 

build too small, and there is no profit from higher demands; build too large, and 

there is risk of overcapacity and attendant losses (stars on the curves indicate the 

best design for each set of parameters), and b) the greater the economies of scale 

(smaller α), the larger the fixed design should be. 

 

Figure 4.2: NPV of fixed designs under deterministic LNG demand. A star shows 
the optimum design for a given economies of scale factor 

The advantages of these economies compensate for the overcapacity of the greater 

size over initial demand, and counterbalance the economic advantages of 

deferring costs (due to the discount rate). The discount rate is a key factor in the 

valuation process. It captures the time value of money and provides incentives to 

delay initial capital expenditures to later in the future, especially when the 

opportunity cost of capital is high. Note however, that deterministic analysis 

based on expected LNG demand gives misleading results, compared to realistic 

analysis that recognizes uncertainty, as shown in step 2. 
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4.2.2.1 Economies of scale 

Economies of scale mean that the average cost per unit of production capacity 

decreases as one builds larger plants. Economies of scale are crucial factors 

because they drive designers to create the largest economically reasonable 

facilities, thereby counteracting a modular approach to capacity deployment (de 

Neufville and Scholtes 2011). This phenomenon is typically represented by the 

so-called cost function in equation 4.4. The parameter α is the economies of scale 

factor: the lower α is, the greater the economies of scale. Here it is assumed that 

the Operating Costs (Opex) of an LNG plant is proportional to its Capex as in 

equation 4.5. 

Capex	of	a	fixed	LNG	plant = capacity� 
(4.4) 

Opex	of	a	fixed	LNG	plant = k × Capex (4.5) 

The case study analyzed designs with different capacities for the fixed LNG plant 

ranging from 25 to 300 tpd, with 25 tpd capacity increments. The sensitivity 

analysis investigated different economies of scale factors to see their influence on 

optimum capacity for fixed LNG designs, and thus on the value of flexibility. 

4.2.2.2 Key demand parameter 

The most effective sensitivity analyses consider the joint effect of the variability 

of a parameter and their effects. This contrasts with the approach often 

encountered in practice of varying each parameter by a fixed percentage (such as 

+/– 10%). The reality is that some parameters are more uncertain than others. 

Also, some parameters may not vary considerably, yet have great effect – while 

others can vary considerably but have little effect.  The cost-effective approach to 
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sensitivity analysis then first estimates the plausible range of the spread of these 

parameters (such as their standard deviation if available) and then calculates the 

possible effect on the outcomes. The sensitivity analysis then focuses on the 

parameters with the greatest impact.  

Figure 4.3 illustrates the first result of this approach. It shows the calculated effect 

of probable ranges of values for the parameters of the assumed demand 

projection, specifically of its initial and final levels and of the rate of growth. It 

presents the results in the form of a “Tornado” diagram, which stacks the 

parameters with the most effect at the top, thus presenting an image reminiscent 

of the cone of a tornado. For the example case, this first stage of sensitivity 

analysis indicates that the most sensitive assumption concerns the sharpness 

factor. 

Based upon the first stage of the sensitivity analysis that highlighted the 

importance of the sharpness factor on the evaluation, its effect on the design 

evaluations for combinations of economies of scale and learning rate will be 

examined.  

 

Figure 4.3: Tornado diagram showing effects of demand parameters on the 
optimum NPV (fixed design, deterministic analysis, α = 95%) 
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4.2.3 Step 2: Develop the quantitative performance model under uncertainty 

This step models the major uncertainty drivers and analyzes their effect on 

lifetime system performance. The analysis uses the distribution of input 

parameters over time to calculate the distribution of the performance metric. Each 

demand scenario s leads to a performance outcome, NPVS. Simulation is the 

conventional way to do this, but analysts can use different techniques (e.g., 

decision trees, binomial lattice). 

A stochastic version of demand using uncertainty factors is created. The case 

study used the s-shaped model of demand. As in equation 4.6, +,
 is stochastic 

demand limit and �
 is stochastic sharpness parameter in demand models with 

uncertainty. Equation 4.7 defines �
 	as the stochastic translation factor that varies 

due to volatilities in initial demand, ��
, and demand limit, +,
. Realized demand 

at time t+1 equals realized demand at time t plus annual volatility multiplied by 

growth rate %� at time t, as shown in equation 4.8. While other assumptions are 

possible, it is convenient to assume that %� follows a standard normal distribution 

and �� is a fixed parameter calibrated using historical data.  

��
 = +,
1 + �
��8	�;�	 (4.6) 

 

�
 = +,
��
 − 1	 (4.7) 

 

Realistically, future demand over the 20-year life of the project is highly uncertain 

due to currently unknown prices, competition, government regulations, and other 

factors. Market research at the collaborating firm provided the stochastic LNG 

demand modeling parameters summarized in Table 4.2.  

		���4
 = ��
 + 8�� × %�; (4.8) 
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Table 4.2: Parameters used in stochastic demand modeling for each site 

Stochastic demand model 

Parameters ~ Uniform distribution  Volatility  Value ��
	~ Uniform (���81 − Δ��;, ���81 + Δ��;;  Δ��  50% 

�
	~ Uniform (��81 −	Δ	;, ��81 + Δ	;)  Δ	  70% +,
	~ Uniform (+,�81 − Δ�-;,+,�81 + Δ�- 	;;  Δ�-   50% 

While other types of distributions such as Normal and Lognormal are possible, it 

is convenient to assume that ��
	, �
 and +,
 follows a uniform distribution; 

where ��� 	is the limit on volatility of the realized demand in year 0 as it differs 

from its projected value; �	 defines the volatility of the sharpness parameter as it 

differs from its forecasted value; ��-  defines the volatility of the demand limit 

parameter as it differs from its forecasted value. 

The uncertainty analysis results in a distribution of possible performance 

outcomes. The obvious way to compare this result to that of the deterministic 

model is to focus on the expected value of the distribution of NPV, or ENPV, 

calculated according to equation 4.9. The overall result is that the ENPV does not 

equal the deterministic NPV, which makes the point that the deterministic 

analysis that ignores uncertainties may lead to an erroneous result. 

Note that the ENPV metric implies risk neutral preferences, which may not 

always be appropriate. Indeed, decision-makers often take downside risk into 

account and weight it heavily. It is thus often useful to supplement the ENPV 

metric with others that represent the extreme distributions of the outcomes, such 

as the Value at Risk (VaR) for a given level of probability and, complementarily, 

the potential for upside gain, the Value at Gain (VaG) (de Neufville and Scholtes 

2011).  

ENPV = 1> ×�>�!�/
�R4  (4.9) 
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The deterministic analysis gives a false impression of lower value due to the Flaw 

of Averages (Savage 2009). Engineering systems typically respond non-linearly 

to inputs, and any decision based on average value of these factors is almost 

certain to provide a false reading on the actual average value of an alternative. To 

get the right answer, one needs to analyze the system under uncertainty. 

The case study recognized LNG demand as a key source of uncertainty. Using 

Monte Carlo simulation it explored how design alternatives behave under 

different LNG demand scenarios. These simulations used different LNG plant 

capacities and economies of scale factors. The aim was to find the stochastically 

optimum design for plant capacity. The results show when using 2000 demand 

scenarios the system performance converged to a steady state value with a 

negligible variation. Figure 4.4 compares the projected LNG demand (i.e. dashed 

line) with 25 representative LNG demand scenarios (i.e. grey lines). 

 

Figure 4.4: Projected and realized regional LNG demand at each geographical site 

Table 4.3 compares the results of the deterministic and uncertainty analyses. The 

result is that optimum capacities and values generated by the uncertainty analysis 

are systematically different (in this case, smaller) than those obtained from the 
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deterministic analysis. The intuition is that an asymmetric response of the system 

occurs because of variations in demand: lower demands lead to losses, which 

higher demands can only partially compensate, because of limitations in installed 

capacity. Given that the system’s response is not linear (which is also the case for 

most engineering systems), designs selected based on optimizing the left hand 

side (i.e. deterministic analysis) will not be the same as designs selected based on 

optimizing the right hand side (i.e. uncertainty analysis).  

Table 4.3: Optimum fixed designs under deterministic and uncertain LNG 
demand with different economies of scale factors α 

α 

 Optimum capacity (ton per day) 

 

Optimum value ($ millions) 

 

Deterministic 

 

Uncertainty 
Deterministic 

(NPV) 

 

Uncertainty  

(ENPV) 

1 50 25 1.75 0.87 

0.95 100 75 21.51 14.27 

0.90 175 125 51.75 37.18 

0.85 200 175 84.56 61.18 

Here, the Flaw of Averages favors smaller capacity designs that are cheaper 

because less capacity is needed upfront. In return, such designs minimize unused 

capacity when demand grows slower than planned, and therefore reduce exposure 

to potential losses. 

4.2.4 Step 3: Develop quantitative performance model for flexibility 

This step recognizes system operators’ ability to change, adapt, and reconfigure 

the system in light of uncertainty realizations. To account for system flexibility, 

decision rules are embedded into the DCF model under uncertainty. For example, 

to embed the capacity expansion policy in flexible modular designs, a set of 

simple decision rules is programmed in the Excel® spreadsheet DCF model under 

uncertainty. For instance a capacity expansion policy can be: IF “observed 
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aggregate demand in the current year is higher than a certain threshold value at 

the main production site” THEN “build extra modular plant” ELSE “do 

nothing”. The threshold value determines when extra capacity should be built, 

either at the main production site or other demand sites. For example, decision-

makers may decide to add another modular plant as soon as the difference 

between the realized and current capacity (i.e. unmet demand) reaches 60% of the 

capacity of a modular plant for the site.  

In this thesis, decision rules with feasible ranges for their threshold values were 

designed using the prompting procedure proposed by Cardin, Kolfschoten et al. 

(2013) based on discussion with collaborators at a local company. To find the 

optimum or near-optimum value for the threshold values, three methods are 

proposed in this thesis: 1) enumeration method; 2) meta-model based screening 

method; 3) computing budget allocation based screening method. Given a set of 

defined decision rules for each case study, optimum values for the thresholds can 

be found using the enumeration method while near-optimal threshold values are 

obtained using the meta-model and computing budget allocation based screening 

methods. 

The value of flexibility is calculated as shown in equation 4.10. Whether ENPV 

of flexible design is less than the ENPV of optimum fixed design depends 

whether the cost premium for flexibility (i.e. cost of enabling flexibility) is 

considered. If not considered, then ENPV of flexible design cannot be less than 

ENPV of optimum fixed design because flexibility would not be embedded in the 

first place. In this case, the analysis focuses on finding the value of flexibility, 

which determines the maximum a decision-maker should be willing to pay to 

enable it in the system. In other words, the correct formulation should be Value of 
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flexibility = max [0, ENPV of flexible design – ENPV of optimum fixed design]. 

If the premium cost for flexibility is included and it costs more than the value of 

flexibility, then yes the ENPV of the flexible design could be less than the ENPV 

of the optimum fixed design. Indeed, flexibility could add little to no value if 

there is a bad decision rule.  

Flexibility	Value = max	80, ENPV	¡¢£¤x¥¢£	¦£§x¨y − ENPV	©ª«xw¬w	x¤£¦	¦£§x¨y; (4.10) 

4.2.4.1 Multi-criteria decision-making 

In evaluating flexible designs, the analyst needs to factor in a distribution of 

outcomes instead of one single point to support design decision-making. These 

distributions can be interpreted using the shape of different criteria. For instance, 

one may seek to maximize ENPV or to minimize downside risk or to choose some 

balance between these criteria. Given the several possible criteria that are not 

directly compatible, it is useful to create a multi-criteria table, providing decision 

makers with the information needed to trade-off criteria among flexible design 

alternatives. In the field of decision-making under uncertainty, the expected value 

is widely used as an objective function, for instance using expected NPV. The 

ENPV is calculated using equation 4.11. 

ENPV = 1> ×�>�!�/
�R4  

(4.11) 

This value, however, is based on risk neutral preference, which may not match 

with different risk preferences in reality. In practice indeed, downside risk is an 

important factor that decision makers often need to take into account. For 

instance, typical decision makers prefer lower risks given the same value of 

expected value. So other criteria for selection of projects include the Value at Risk 
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(VaR) for a given level of probability and, equally, the potential for upside gain, 

the Value at Gain (VaG). While this analysis relies here on a multi-criteria 

decision making table to trade-off quantitative life cycle performance metrics, 

more sophisticated multi-criteria decision-making approach can be applied when 

both quantitative and qualitative criteria are considered (Georgiadis, Mazzuchi et 

al. 2013). 

4.2.4.2 Learning rate 

The case study considered modular designs for LNG plants in the proven size of 

25 tpd. Because of the learning phenomenon, the unit cost of these modules can 

decrease as more are installed. The more one builds, the more efficient one 

becomes. The learning curve in equation 4.12 represents this situation (de 

Neufville and Scholtes 2011): 

Ux = 34 × �¯ (4.12) 

where 3 is the Capex of the ith modular LNG plant, 34 the Capex of the first 

modular LNG plant, and B is the slope of the learning curve. The slope is 

calculated with different empirical values for LR, from 0%, 5%, 10%, 15% and 

20%, using equation 4.13. 

B	 = 	log	8100	percent	– 	LR	percent;	/	log	82; 	 (4.13) 

Thus if the cost of the first modular LNG plant is $25 million, the cost of the 5th 

module (given a 10% learning rate) is: B = log (100 percent – 10 percent) / log (2) 

= –0.1520 so that U5 = $25M (5)–0.1520= $19.57M. The learning phenomenon 

provides great incentives to install capacity consisting of many smaller units 
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instead of a few large units. Together with high discount rates, learning 

counteracts the effects of economies of scale. 

4.2.4.3 Flexible design strategies 

Using concept generation techniques inspired from Cardin, Kolfschoten et al. 

(2013), flexibility to expand capacity is recognized as a strategy to deal with 

uncertain demand growth. The idea is to build less capacity at the start – to avoid 

over commitment and over capacity, and to add capacity based upon 

demonstrated demand. Key to this strategy, of course, is that the original design 

should be designed to facilitate capacity expansion easily. The analysis 

considered two kinds of capacity expansion. First, it looked at the benefits of 

building up capacity incrementally at the main site. Second, it considered the 

further advantage of moving additional modules in the field, close to the demand 

sites, as way of lowering transportation costs, and further exploiting the benefits 

from a modular approach to design and management. The average aggregate 

demand in the main production site and the average observed demand at demand 

sites are sensed annually by the relevant decision rules. For the first capacity 

deployment, besides its capex, there is a cost of flexibility while for the capacity 

expansion only modular capex is considered. At the main production site, time to 

build for the first plant is 3 years while at each demand site, the first plant takes 2 

years to be built. At any location, however, capacity expansion takes only 1 year. 

4.2.4.3.1 Flexible modular design - no move 

Figure 4.5 illustrates the results of the flexibility analysis. This result is typical of 

what is observed in flexibility studies in the sense that it shows that flexibility can 

reduce the down side risks while allowing to capture upside opportunities, and 
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improving the economic performance metrics such as VaR, VaG and ENPV (de 

Neufville and Scholtes 2011). It compares the performance under uncertainty of 

an optimal fixed design and a flexible design that expands capacity at the main 

production site [‘no move’ option]. Specifically, Figure 4.5 displays the 

cumulative distribution of the performance of each design (that is, the target 

curve). The lower left side of each curve indicates the lowest level of performance 

of each design as observed in the simulation, which is at 0% on the vertical scale 

of the cumulative distribution. The curve extends to the upper right, where it 

indicates the maximum performance observed, at the 100% level of the 

cumulative distribution.  

 

Figure 4.5: Optimum fixed design (α=0.95 → 75 tpd) and flexible modular design 
no move 

As an example, the case study embedded the following decision rule in the 

simulation spreadsheet model:  

• IF “the difference between the observed aggregate demand and current 

capacity at this site is higher than a certain percentage of the modular 

design capacity being used in the design”  

• THEN “the current capacity using the modular design capacity is 

expanded”  
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• ELSE “do nothing”.  

Using an exhaustive enumeration technique, the threshold value 80% offered a 

better system performance among other threshold values. 

The curve for the fixed design has an ENPV of $14.27M if the system exhibits 

modest economies of scale (α = 0.95), as indicated in Table 4.3. Notice that this 

fixed design, that takes advantage of economies of scale to build a large facility at 

the central site, has two unattractive features: 

• It can lead to large losses (ENPV < – $25M), this is because the big plant 

can lose a lot if sufficient demand does not materialize; and  

• Has limited upside potential (ENPV < $21M), since its fixed capacity 

cannot serve highest LNG demands. 

The flexible design does significantly better than the fixed design, with the same 

assumed range of uncertainties: 

• Its ENPV = $20.69M (see Table 4.4), that is nearly 44% better than that of 

the fixed design [$20.69M vs. $14.27 M]! 

• Moreover, the performance of the flexible design in this case dominates 

stochastically that of the fixed design (i.e., its cumulative or target curve is 

absolutely to the right of that of the fixed design). 

• The flexible design reduces exposure to downside risks: the strategy of 

building small at first puts less investment at risk and lowers maximum 

losses if demand is low. In this particular example the flexible design 

strategy reduces the maximum loss from about – $25M to less than – 

$5M.  

• Similarly, the flexible design provides the ability to take advantage of 

upside opportunities: it enables the easy addition of capacity when 

demand soars and increases the maximum gain, in this case from about 

$21M to nearly $38M.  

4.2.4.3.2 Flexible modular design - with move 
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The flexibility analysis for the ‘move’ strategy, which allows flexibility both as to 

when and where to add capacity, is similar to the previous example. However, this 

analysis had to implement additional decision rules to explore this flexibility, to 

address three questions: when should we build the modular plant for the first time 

at distance, where should we build it, and when should we expand it? 

The decision rule regarding the capacity expansion at a distance was:  

• IF “demand at each demand site reaches Y% of the modular design 

capacity in the previous period”, 

• THEN “build a modular production plant at the demand site”, 

• ELSE “do nothing”.  

Comprehensive enumeration determined that in this case the optimal economical 

threshold value was Y =100%.  

The decision rule regarding the geographical location for capacity expansion was:  

• IF “the demand sites qualified for the first capacity deployment in terms of 

timing are located beyond the maximum coverage distance D”,  

• THEN “consider building the first modular production facility at those 

sites”,  

• ELSE “do nothing”.  

Again, enumeration determined the best threshold distance D = 400Km.  

The decision rule to build extra modular plants at any demand site was:  

• IF “unmet demand (i.e., the difference between the observed demand and 

the current capacity at the site) reaches Z% of the modular capacity”,  

• THEN “deploy extra modular capacity”,  

• ELSE “do nothing”.  

Further enumeration found the optimal Z = 50%.  

Figure 4.6 and Table 4.4 show the additional advantages of the flexibility to 

locate capacity away from the main site. As must be expected, looser constraints 
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on system design increase maximum potential value. In this case, the ability to 

distribute capacity across the region (and thus to reduce logistical costs) further 

increases system ENPV, in this case from 20.69 to 23.29$M  

This flexibility and added value, however, complicates the evaluation! In this 

case, the design with the flexibility to move capacity away from the main site 

does not dominate stochastically the design that fixes capacity there. Visually, the 

target curve for the design with the move option crosses the target curves for other 

designs. In this case, as often happens, designers may not want to choose the 

solution based upon a single metric such as ENPV. Indeed, no one metric is 

sufficient to characterize a general distribution. In this context we need to 

consider multiple criteria of evaluation. 

 

Figure 4.6: Optimum fixed design (α=0.95 → 75 tpd) and flexible modular 
designs 

Table 4.4 provides a multi-criteria display of the performance of the fixed and 

flexible designs. It displays the average ENPV value and two measures of the 

extreme values. In terms of extremes, better practice generally focuses on some 

threshold level of cumulative performance rather than on the absolute maxima 

and minima values from the Monte Carlo simulation. This is because those 

highest and lowest values, being very rare, can vary considerably between 
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simulations. The threshold values are quite stable, however. Standard thresholds 

of value are VaR10%, the 10% Value at Risk, the performance at the 10% 

cumulative probability or percentile, and VaR10%, the 90% Value at Gain. Table 

4.4 compares the performance of the fixed and two flexible designs in these 

terms. 

Table 4.4: Improvement of multi-criteria performance metrics due to flexibility 
with no learning 

Criteria 

 Value ($ millions)  Improvement (%) 

 
Optimum 

fixed design 
 

Flexible 

no move 
 

Flexible with 

move 
 

Flexible 

no move 
 

Flexible 

with move 

ENPV  14.27  20.69  23.29  43.90%  61.97% 

VaR10%  1.82  5.40  3.74  196.40%  105.59% 

VaG90%  20.46  34.54  45.78  68.82%  123.79% 

4.2.4.4 Effect of learning 

Learning affects the value of flexibility. Because learning reduces the cost of 

modules as they get implemented, it favors their use and thus the usefulness and 

value of flexibility. Figure 4.7 shows how this occurs.  

 

Figure 4.7: Flexible modular design with move in terms of different learning rates 

Learning rate increases 
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It compares the target curves for the flexible design with move with no learning to 

those that have various levels of learning. The message is clear: the greater the 

potential for learning, the better the flexibility through the use of modules. 

4.2.4.5 Multi-criteria decision-making 

The best design alternative can be chosen based on many criteria. Some common 

economic metrics in project evaluation under uncertainty are shown in Table 4.5. 

The results correspond to the optimum fixed design with the economies of scale 

0.95 and the flexible designs (with and without move) in terms of different 

learning rates. The aim is to choose a design based on the highest value for ENPV 

(or mean NPV), P10VaR and P90VaG, and smaller values for standard deviation 

of NPV distribution and initial Capex. Corresponding results in terms of other 

economies of scale factors are shown in the relevant tables in Appendix A. 

Table 4.5: Multi-criteria decision-making table considering α=0.95, figures are in 
million dollars 

α=0.95   on-shore LNG production system design                  

Fixed 

design 

  Flexible 1: no move   Flexible 2: with move Best design Value of flexibility 

 Learning rate Learning rate Learning rate Learning rate 

Criteria  (75 tpd)  0% 10% 20% 
 

0% 10% 20% 
 

0% 10% 20% 
 

0% 10% 20% 

ENPV 14.27 20.69 36.93 50.92 23.29 43.17 59.00 Flexible 2 Flexible 2 Flexible 2 
 

9.02 28.90 44.73 

VaR 1.82 5.40 10.82 15.71 3.74 11.06 16.47 Flexible 1 Flexible 2 Flexible 2 
 

3.58 9.24 14.65 

VaG 20.46 34.54 63.17 85.65 45.78 80.09 108.29 Flexible 2 Flexible 2 Flexible 2 
 
25.33 59.63 87.84 

STD 8.78 10.57 18.91 25.30 15.79 25.31 33.35 Fixed Fixed Fixed 
 

0.00 0.00 0.00 

Capex 60.44   27.50 27.50 27.50   27.5 27.5 27.5   Flexible Flexible Flexible   N/A N/A N/A 

4.2.4.1 Effect of economies of scale and learning rate on choice of flexible 

design 

The proper role of sensitivity analysis for a design under uncertainty is to explore 

the robustness of the choice of design. Once we recognize that we cannot 

accurately predict future demands on a system, we have also acknowledged that 

we cannot define future performance precisely. The key question is: is the 
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recommended design robust to variability in parameter estimation? This is the 

focus of the sensitivity analysis section. Since this section of the thesis proposes 

an approach to improved design, rather than a specific solution to a particular 

issue, the following paragraphs focus on illustrating the approach to sensitivity 

analysis for flexibility in design. They do not try to justify the details of the 

particular design that emerged from the case study analysis, which depended on 

the specific assumptions deemed appropriate by a company at a given moment. 

The case study is used to illustrate the effects of important parameters and 

tradeoffs.  

As the analysis stresses, the discount rate and intensities of economies of scale 

and learning rate have an important effect on the desirability of flexible designs. 

In the practical context of this demonstration case, we could reasonably assume 

that the proposed contractor knew its acceptable discount rate, so the effect of this 

parameter was not investigated. Thus one focus of the sensitivity analysis is on 

the joint effect of the economies of scale and learning rate factors. Although 

experienced designers in a particular field can reasonably estimate these factors, 

they cannot know them unambiguously.  

The sensitivity analysis explored the joint effect of various economies of scale 

and learning rate by repeating the analysis for combinations of these parameters. 

Figure 4.8 displays the results. It brings out two important results: 

• As expected, lower economies of scale and greater learning rates increase 

the value of flexibility. Expressed another way, high economies of scale 

favor larger fixed designs. 

• In this example case, the flexible design strategy is valuable for all but the 

most extreme cases, that is, where the economies of scale are particularly 

high and there is no learning. For even modest learning rates and 

economies of scale, the flexible modular design is valuable overall. One 
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may thus conclude that, in the demonstration case, the modular flexible 

design is robust over a wide range against variations in these parameters. 

 

Figure 4.8: Value of flexibility with different economies of scale and learning 
rates 

 Phase 2: Screening 4.3

In this section, the screening phase of the proposed framework is applied to the 

first case study. In this phase, two screening approaches are considered: 1) A 

meta-model based screening approach and 2) A computing budget allocation 

based screening approach. It should be noted that there is a back and forth 

procedure between phase 2 and phase 3 of the proposed framework when the 

multi-objective computing budget allocation is applied. The procedures of the 

screening approaches are described in detail in the following subsections. 

4.3.1 A meta-model based screening approach 

In this section, a meta-model based screening approach is applied to the first case 

study, the centralized LNG production system. Table 4.6 shows the parameters 

used in the meta-model screening approach. The parameters were set based on 

trial and error and engineering practice. As can be seen, a Gaussian process was 
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used in the correlation model and parameter theta was set between 0 and 2. This 

parameter is a correlation parameter and the DACE model is used to determine 

the optimum value for its optimal coefficient h∗ of the correlation function. In the 

correlation function, the correlation decreases with the Euclidian distance, |dj|, and 

a larger value for θj leads to a faster decrease, see equation 3.2 in chapter 3. 

Table 4.6: Parameters used in the meta-model based screening approach 

Meta-model based screening parameters  Value 

Expected improvement  4 

Samples drawn from Latin Hypercube Design  15 

Samples drawn from Central Composite Design  45 

Correlation model  Gaussian 

Theta band  [0 - 2] 

Unlike the exhaustive enumeration where only Excel is used to explore the 

solution space, this meta-model approach builds upon the computational power of 

both MATLAB and Excel. Figure 4.9 shows the Microsoft Excel and MATLAB 

interfaces connected via spreadsheet link EX® in the meta-model screening 

approach. Essentially, in the MATLAB workspace, a DACE model was used to 

create a Kriging response surface, and the optimization Toolbox was used to 

optimize the meta-model surface.  

 

 

 

  

Figure 4.9: Microsoft Excel and MATLAB interaction via spreadsheet link EX® 
in the meta-model screening approach 

Excel workspace MATLAB workspace 

Microsoft Excel MATLAB  

MATLAB 

Compiler 

Toolboxes DACE 
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Obtaining the final response surface of each objective requires an iterative 

procedure. Table 4.7 shows the procedure. The sample programming code for the 

one-site capacity expansion problem demonstrated in section 3.4.1 is provided in 

Appendix H. 

Table 4.7: Procedure of meta-model screening approach 

Set input parameters 
Response surface for each objective function, ENPV or Standard deviation 

− Step 1 Conduct initial design of experiment (i.e. “space-filling” using Latin 
Hypercube Sampling and Central Composite Design) in MATLAB  

− Step 2 Conduct initial simulation using Monte Carlo Simulation in Excel at the 

points suggested in the previous step. 

− Step 3 Fit the parameters of a DACE model using maximum likelihood 

estimation and build Kriging meta-model. 

Once the initial DACE surface is fit and any transformation made, the iterative 
procedure starts. 

− Step 4): The expected improvement function is maximized using MATLAB 

optimization toolbox 

− Step 5): Is the maximum value of the expected improvement (EI) function is 
less than the EI threshold value?  

If Yes): Global optimum is expected we stop. Otherwise  

If No): Sampling of the design space including design variables and 
decision rules is conducted where expected improvement is maximized, run 

simulation in Excel and re-estimate the DACE parameters in MATLAB 

− Step 6) Iterate until stopping criteria at step 4 is met. 
Return Kriging surface, ENPV or standard deviation 

Enumerate all flexible designs in objective function space 

Using this approach, first a few samples are drawn, using a Central Composite 

Design (CCD) and Latin Hypercube sampling (LHS), from the solution space of 

feasible flexible designs. Essentially, initial samples are generated in MATLAB 

and simulations of corresponding flexible designs are performed in Excel. Then 

using the Gaussian model, a simulation surface is created for each objective (i.e., 

ENPV and Standard deviation). The surface is adaptively evolved until a stopping 

criterion is met. 
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4.3.2 A computing budget allocation based screening approach 

In this section, a multi-objective computing budget allocation (MOCBA) 

screening model is applied to the analysis of case study 1, a centralized LNG 

production system design; indeed a bi-objective computing budget allocation 

(BOCBA) approach is used in this case study but let us use the general term 

“MOCBA” as represented in the proposed framework for consistency. Table 4.8 

shows the parameters used in this approach. It should be noted that there is a back 

and forth procedure between phase 2 and 3. Using this approach, more budgets 

are allocated to designs that are close to the true Pareto fronts. The process is 

terminated when the maximum budget is exhausted or the design archive size 

reaches its minimum size. Eventually a preliminary true Pareto front is found and 

further analysis using large number of scenarios (i.e. with 2,000 demand 

scenarios) is conducted to find true Pareto fronts in phase 3.  

Table 4.8: Parameters used in computing budget allocation screening model  

MOCBA parameters  Value 

Initial Budget Rate  5% 

Incremental Budget Rate  1.4 

Archive keep rate  50% 

Minimum archive size  100 

Allocation factor  1.2 

Like the meta-model based screening approach, this approach also benefits from 

the computational power of both Excel and MATLAB. Figure 4.10 shows the 

interface between Microsoft Excel and MATLAB via spreadsheet link EX® in the 

computing budget allocation approach. Using the MATLAB workspace, Pareto 

dominance rule and allocation schema were applied in the MOCBA procedure.  
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To give an example how the procedure works, let us assume the maximum 

simulation budget is equal to 300 simulation evaluations. Given initial budget rate 

is 5%, see Table 4.8, initial simulation budget is 300×0.05=15. Thus all 5,940 

flexible designs are first evaluated using 15 simulation evaluations. Subsequently, 

more budget allocations are performed systematically by following the 

pseudocode shown in Table 4.9.  

 

 

 

 

Figure 4.10: Microsoft Excel and MATLAB interface via spreadsheet link EX® in 
the computing budget allocation screening approach 

Table 4.9: Pseudocode of a multi-objective computing budget allocation 

Construct initial design archive 
Allocate initial budget→MATLAB 

Run flexibility simulation→Excel 
Conduct Pareto dominance analysis→MATLAB 

Sort designs with different frontiers→MATLAB 

Do while (Minarchive size ≤ archive size) or (each design budget ≤ Maxbudget) 
Update design archive→MATLAB 

Update simulation replication budget → MATLAB 

Allocate new budgets to designs in different frontiers 

Run flexibility simulation→Excel 
Conduct Pareto dominance analysis→MATLAB 

Sort designs with different frontiers→MATLAB 

End while 

Return Pareto front 
Conduct analysis with 2000 demand scenarios 

Return true Pareto front 

Table 4.10 shows a schematic example of computing budget allocation. As can be 

seen, in this example 300 simulation evaluations was allocated to design number 

6, and the algorithm was terminated. Following the computing budget allocation 
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approach, more budgets are allocated to promising designs (i.e., near the true 

Pareto front) rather than less important flexible designs.  

Table 4.10: A schematic example of computing budget allocation  

Simulation 
evaluation 

Flexible designs 

1 2 3 4 5 6 7 … 5936 5937 5938 5939 5940 

15              
16              
17              
18              
19              ⋮              

300              

Figure 4.11 shows the evolution of a design archive in MOCBA in an experiment 

with maximum budget 300 demand scenarios. In Figure 4.11 (a) all 5,940 flexible 

designs are first evaluated with 15 simulation evaluations in Excel.  

As mentioned earlier, this number is the result of the initial budget rate times the 

maximum budget, 5%×300=15. Then all the 5,940 flexible designs are ranked in 

terms of Pareto dominance aiming at allocating more simulation budgets to 

designs near the Pareto front. The algorithm iteratively continues until the 

stopping criteria are met, Minarchive size ≤ archive size or each design budget ≤ 

Maxbudget. The design archive is updated by keeping only 50% of the top flexible 

designs sorted according to Pareto dominance. Subsequently, using the procedure 

explained in the methodology section, new simulation budgets are allocated to 

different layers of Pareto fronts. In the updated flexible design archive, new 

allocated simulations are conducted in Excel and simulation responses in terms of 

ENPV and Standard deviation are updated accordingly. Then the current design 

archive with updated objective function values is transferred to MATLAB to be 

sorted according to Pareto dominance. Again the size of the design archive is 

updated based on the design archive keep rate and new simulation budgets are 
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allocated to the updated flexible designs. This procedure continues until the 

stopping criteria are satisfied. Figure 4.11 (f) is the last design archive and its 

Pareto front is further analyzed under large number of scenarios in the next phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Evolution of a design archive in the MOCBA, in an experiment with 
300 demand scenarios, from (a) to (f) 
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 Phase 3: Multi-criteria decision-making analysis 4.4

In this section, dominant flexible designs from the screening phase conducted in 

different computer experiments are further analyzed under a large number of 

scenarios. Subsequently, true Pareto flexible design solutions are obtained and the 

hyper-area is calculated. Once the true Pareto fronts are obtained using a large 

number of demand scenarios, an example preferred trade-off flexible design 

solution is chosen based on decision makers’ preferences. In this section, a 

weighted-sum approach is applied to choose the preferred dominant flexible 

design among other flexible designs in the true Pareto set, as a demonstration of 

how to use the framework. The recommended design solution(s) would then be 

used as input for a higher-fidelity modeling analysis – if needed. 

4.4.1 A meta-model based screening approach 

Given there are more than two variables and decision rules in the design vector, 

response surfaces cannot be demonstrated in the figures. Once the response 

surfaces are created given the intended objectives, an enumeration is done using 

these inexpensive meta-models. Figure 4.12 displays dominant flexible designs 

obtained using the multi-objective function space through inexpensive meta-

models, here using objectives ENPV and standard deviation.  

Then, a preliminary Pareto front is found and further analysis using large number 

of scenarios (i.e., with 2000 demand scenarios) is conducted to find the true 

Pareto fronts. For hyper-volume, an arbitrary reference point ENPV=$0M and 

Standard deviation=$20M are assumed. 

To illustrate how a decision-maker would use the above analysis to identify 

preferred flexible design alternative(s), let’s assume that the decision-maker’s 
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preference is to put 60% of the weight on maximizing the ENPV, and 40% on 

minimizing the standard deviation (as a proxy for the risk level). The preferred 

trade-off flexible design with ENPV=$20.06M and standard deviation=$11.53M 

is then selected. The preferred trade-off flexible design is shown in a circle in 

Figure 4.12.  

 

Figure 4.12: Dominant flexible designs obtained using meta-model with an 
experiment with 300 scenarios 

The corresponding design vector of the preferred trade-off flexible design is 

detailed in Table 4.11. The extension form for all acronyms used in this table is 

shown in Table 4.13. This design vector would then be selected from the 

screening process, and further used for a higher fidelity design analysis. 

Table 4.11: Design vector of the preferred flexible design using MM 

Design 
number  

InCap MDC MsiteTV MoveTV Cover DsiteTV 

601 0 25 60% 300% 300 60% 

The solution suggests that the system operator should not deploy initial capacity 

and should delay the capacity deployment until the aggregate demand observed at 

the main production site reaches 60% of 25 tpd modular design capacity. The 25 
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tpd modular design capacity should be used for capacity expansion. The system 

operator should expand the capacity at the main production site every time 

aggregate demand reaches 60% of the 25 tpd modular capacity.  

The demand sites that are located 300KM far away from the main production site 

should be considered for the first LNG production facility deployment when the 

observed demand in these sites reaches 300% of 25 tpd modular capacity. The 

system operator should also expand the capacity of production facilities at 

demand sites every time demand reaches 60% of the 25 tpd modular capacity.  

Post-optimality sensitivity analysis 

A post-optimality sensitivity analysis is performed on the flexible solution found 

at the end of phase 3 using the meta-model screening approach. The optimum 

flexible solution is analyzed to see how the performance changes by varying the 

discount rate, volatility factor and other parameters. The parameters to vary are: 

1) discount rate, 2) learning rate and 3) volatility of the sharpness parameter. The 

effects of changes in these parameters on the value of flexibility are shown in a 

Tornado diagram in Figure 4.13.  

 

Figure 4.13: Post-optimality sensitivity analysis for the flexible design solution 
obtained using the meta-model screening approach, Case study I. 
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The details of the post-optimality sensitivity analysis are provided in Appendix D. 

Results show that the discount rate, learning rate and sharpness volatility have the 

most to the least influences on the value of flexibility respectively. The effects of 

changes in these parameters are analyzed here. 

The Tornado diagram shows that the discount rate has the most influence on the 

value of flexibility. In capital-intensive and long-term project evaluations, when 

the discount rate increases (i.e. 12%) the present value of the project design 

decreases because cash flows of future revenues are discounted back at a higher 

rate to the present time leading to a lower design value. On the other hand, when 

discount rate decreases (i.e. 8%) cash flows of future revenues are discounted 

back at a lower rate to the present time leading to a higher design value. The 

results show that when the discount rate increases the value of both flexible and 

fixed designs decreases leading to a lower value of flexibility compared to the 

analysis under the base discount rate (i.e. 10%). On the other hand, when the 

discount rate decreases the value of both flexible and fixed designs improves, 

leading to a higher value of flexibility.  In this case study, the flexible design is 

initially built at the main production site to meet the LNG demand at all the 

demand points. To fulfill the aggregate demand by LNG produced at the main 

production site, there is a high chance, depending on a given possible scenario, 

that a considerable number of modular capacity is required in the early years of 

the project lifetime. For instance, we may need to deploy modular capacity in 

each year for 6 consecutive years to fulfil the aggregate demand ramping up at the 

early years. As a result, we may not be able to defer the capacity deployment as 

much as we can in the case of a decentralized flexible design. In other words, the 

flexible centralized design, case study I, can be considered less modular than the 

flexible decentralized design, case study II. 
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The Tornado diagram shows the sensitivity of the value of flexibility subject to 

changes in learning rate. The changes in learning rate influences the flexible 

design value and consequently have effects on the value of flexibility. The results 

suggest that when learning rate increases (i.e. 5% instead of 0%), the cost of 

deploying extra modular capacity decreases leading to a higher flexible design 

value and consequently higher value of flexibility. On the other hand,  when there 

is a low learning rate in the flexible system design that uses modular production 

facility, the design does not take advantage of cheaper extra modular capacity and 

thus it leads to a lower flexible design value and consequently lower value of 

flexibility. 

As the sharpness parameter has been recognized as the key demand parameter, it is 

worthwhile to investigate the effect of different volatilities of this parameter on the 

designs value and, subsequently, on the value of flexibility. To do so, different values 

of the sharpness volatility at each geographical site are considered. The values 45%, 

70% and 95% correspond to the low, the base and the high for the volatility of the 

sharpness parameter. When the volatility of the sharpness parameter decreases, the 

optimum fixed design and the flexible design provide better ENPV while more 

improvement is observed especially in the fixed design than the flexible one and 

consequently the value of flexibility is less than one under base sharpness volatility 

assumption. On the other hand, when the volatility of the sharpness parameter 

increases, the optimum fixed design and the flexible design provide less ENPV while 

more decrease is observed especially in the fixed design than the flexible one and 

consequently the value of flexibility is more than under the base assumption for 

sharpness volatility.  

The results suggest that when sharpness volatility increases, so does the value of 

flexibility. In other words, the more uncertainty there is, the more valuable flexibility 
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is. The reason for this improvement is that the flexible design provides a better value 

than the fixed design under highly volatile market. When demand is strong, while the 

fixed design cannot accommodate extra capacity due to its rigid capacity, the flexible 

design can acquire more capacity as needed, to meet the stronger-than-expected 

demand, leading to relatively more improvement in ENPV. On the other hand, when 

demand is weak, flexible design is less affected because of the smaller capital 

investment in unfavorable markets whereas the fixed design incurs huge loss due to 

the relatively higher upfront investment and higher unused capacity over its lifetime. 

This improvement in the value of flexibility indicate the ability of flexible design to 

better capture the upside opportunity of strong demand and more adequately prevent 

the potential loss of weak demand compared to fixed design.  

4.4.2 A computing budget allocation based screening approach 

Once the computing budget allocation procedure is terminated, a set of Pareto 

front is returned. Once these flexible designs are obtained, further analysis under a 

large sample of demand scenarios and Pareto dominance relation are performed to 

find the true Pareto front in different runs of the computer experiments. Figure 

4.14 shows dominant flexible designs obtained using MOCBA with an 

experiment with 300 scenarios.  

Based on the decision makers’ preferences, it is assumed again that the weight for 

ENPV is 60% and 40% for Standard deviation. As a result, the preferred trade-off 

flexible design with ENPV=$18.93M and Standard deviation=$10.83M is chosen. 

The preferred trade-off flexible design is shown in a circle in Figure 4.14.  
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Figure 4.14: Dominant flexible designs obtained using MOCBA with an 
experiment with 300 scenarios 

The corresponding design vector of the preferred trade-off flexible design is 

shown in Table 4.12. The extension form for all acronyms used in this table is 

shown in Table 4.13 

Table 4.12: Design vector of the preferred trade-off flexible design using 
MOCBA 

Design 
number  

InCap MDC MsiteTV MoveTV Cover DsiteTV 

2305 25 25 20% 300% 400 50% 

The solution suggests that the system operator should consider modular design 25 

tpd for capacity expansion and should deploy the initial capacity 25 tpd at the 

main production site. The system operator should expand the capacity at the main 

production site every time the aggregate demand reaches 20% of the 25 tpd 

modular capacity. The demand sites that are located 400KM far away from the 

main production site should be considered for the first LNG production facility 

deployment when the observed demand in these sites reaches 300% of the 25 tpd 

modular capacity. The system operator should expand the capacity of production 
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facilities at demand sites every time demand reaches 50% of the installed 25 tpd 

modular capacity.  

Post-optimality sensitivity analysis 

The post-optimality results for the solution obtained from MOCBA are shown in 

Figure 4.15. The details of the post-optimality sensitivity analysis are provided in 

Appendix D. Results show that the discount rate, learning rate and sharpness 

volatility have the most to the least influences on the value of flexibility 

respectively. Due to similar explanations as provided in Section 4.4.1, the results 

show that as the discount rate increases (decreases), the value of flexibility 

decreases (increases). Furthermore, flexibility becomes more valuable when the 

learning rate increases due to further exploitation of the modularity. Also, when 

more (less) uncertainty is considered in the simulation process via variations in 

the sharpness parameter, the value of flexibility increases (decreases). 

 

Figure 4.15: Post-optimality sensitivity analysis for the flexible design solution 
obtained using the computing budget allocation screening approach, Case study I.  
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 Exhaustive enumeration 4.5

In this section, a comprehensive enumeration technique was used to explore the 

flexible design space aiming at finding promising flexible design solutions. Table 

4.13 shows the characterization of the design space for flexibility analysis.  

Table 4.13: Characterization of the design space for flexibility analysis 

Option Design variables Units 
Step 

Size 
Values Steps 

No Move 

only 

Initial capacity (InCap)  Tpd 25 0, 25, 50 3 

Modular design 

capacity (MDC) 

Tpd 
25 25, 50 2 

Capacity expansion 

threshold, at main 

production site 

(MsiteTV)  

% of   

modular design 
20 0 to 100 6 

Additions 

with 

Move 

Moving value threshold 

(MoveTV) 

% of   

modular design 
50 100 to 300 5 

Coverage distance 

threshold (Cover) 

Km 
100 200, 300, 400 3 

Capacity expansion 

threshold, at demand 

site (DsiteTV) 

% of   

modular design 10 0 to 100 11 

The second column of the Table describes the elements of the flexible design 

vectors comprised of both design variables and decision rules. Design variables 

describe the system architecture, while decision rules describe managerial flexible 

design solutions. The third and fourth columns show the values investigated for 

each vector element and the incremental step size, which determines the precision 

level of the simulation model in the enumeration process. Looking at the number 

of possible values in column five, the total number of possible flexible design 



Chapter 4 Case Study I: A Centralized LNG Production System 

100 

configuration with move option is 5,940, while the design space for the no-move 

flexible design is much smaller at 36. Thus, it is mainly aimed to explore the 

design space of the flexible design with move option as it can be computationally 

expensive if a high-fidelity simulation model is used.  

Table 4.14 shows design vector of flexible designs with move option in a 

horizontal way. The extension form for all acronyms used in this table is shown in 

Table 4.13. In this case study n = 5,940 flexible designs are analyzed. 

Figure 4.16 illustrates the interface between Microsoft Excel spreadsheets and 

macros developed in VBA in an exhaustive enumeration approach. Essentially, 

macros control simulation models and set up different flexible design vectors in 

an organized way.  

Table 4.14: Different design vectors of flexible designs with move options 

Flexible design Elements of flexible design vectors 

1 InCap1 MDC1 MsiteTV1 MoveTV1 Cover1 DsiteTV1 

2 InCap2 MDC2 MsiteTV2 MoveTV2 Cover2 DsiteTV2 

3 InCap3 MDC3 MsiteTV3 MoveTV3 Cover3 DsiteTV3 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
n=5,940 InCapn MDCn MsiteTVn MoveTVn Covern DsiteTVn 

 

 

 

 

 

Figure 4.16: Interface between Microsoft Excel spreadsheet and macros 
developed using VBA in an exhaustive enumeration approach 

Excel workspace 

Microsoft Excel 

Macros in 
VBA 

  

Spreadsheet 
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To better understand how the exhaustive enumeration is conducted, the 

pseudocode is provided in Table 4.15.  

Table 4.15: Pseudocode for Exhaustive Enumeration (EE) approach 

Set input parameters 

For InCap = LBInCap to UBInCap StepInCap 

   For MDC = LBMDC to UBMDC StepMDC 

      For MsiteTV = LBMsiteTV to UBMsiteTV StepMsiteTV 

         For MoveTV = LBMoveTV to UBMoveTV StepMoveTV 

            For Cover = LBCover to UBCover StepCover 

               For DsiteTV = LB DsiteTV to UB DsiteTV Step DsiteTV 

          Synthesize a flexible design vector 
For i=1 to number of simulation 

                                            Application.calculate ← Generate a new scenario 

        Calculate NPV 

Next 
                            Calculate ENPV and Standard deviation of the design 

               Next 

            Next 
         Next 

      Next 

   Next 

Next 
Return all design vectors with ENPV and standard deviation 

Enumerate all flexible designs in objective function space 

Exploring exhaustively the solution space of flexible designs with move, which 

includes 5,940 designs, can be computationally expensive. Different experiments 

are conducted to show the performance of exhaustive enumeration in terms of 

different simulation evaluation numbers. The results of different experiments will 

be discussed in the following results and discussion section 4.6.  

Figure 4.17 shows the true Pareto fronts (i.e., with 2,000 demand scenarios) of 

flexible designs with move and with no move, as well as the optimum fixed 

design.  
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Figure 4.17: Dominant flexible designs with large number of scenarios (i.e., 2,000 
scenarios)  

Like screening approaches, exhaustive enumeration is conducted in different 

computer experiments. Once the enumeration in terms of each experiment is 

conducted, candidate flexible designs in the Pareto front are obtained. The Pareto 

front will be further analyzed using a large number of sample demand scenarios 

(i.e., 2,000) and the Pareto dominance rule will be used to obtain the true Pareto 

front. The true Pareto front flexible solutions will be further analyzed in the 

Pareto post processing phase. 

To evaluate the quality of the Pareto front, the hyper-area criterion is considered. 

Assuming for illustration purposes again weights for ENPV of 60% and weight 

for Standard deviation of 40%, a trade-off flexible solution is selected with 

ENPV=$24.22M and standard deviation=$15.51M as shown in Figure 4.18. The 

corresponding design vector is shown in Table 4.16. 
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Figure 4.18: Preferred trade-off flexible design with move using exhaustive 

enumeration 

Table 4.16: Design vector of the preferred trade-off flexible design using 
exhaustive enumeration  

Design number  InCap MDC MsiteTV MoveTV Cover DsiteTV 

2592 25 25 60% 100% 400 60% 

The solution suggests that the system operator should consider modular design 25 

tpd for capacity expansion in the system and should deploy the initial capacity 25 

tpd at the main production site. The system operator should expand the capacity at 

the main production site every time the aggregate demand reaches 60% of the 25 

tpd modular capacity. The demand sites that are located 400KM far away from 

the main production site should be considered for the first LNG production 

facility deployment when the observed demand in these reaches 100% of the 25 

tpd modular capacity. The system operator also should expand the capacity of 

production facilities at demand sites every time demand reaches 60% of the 

installed 25 tpd modular capacity.  

Post-optimality sensitivity analysis 
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The post-optimality results for the solution obtained from Exhaustive 

Enumeration are shown in Figure 4.19. The details of the post-optimality 

sensitivity analysis are provided in Appendix D. Results show that the discount 

rate, learning rate and sharpness volatility have the most to the least influences on 

the value of flexibility respectively. Due to similar explanations as provided in 

Section 4.4.1, the results show that as the discount rate increases (decreases), the 

value of flexibility decreases (increases). Furthermore, flexibility becomes more 

valuable when the learning rate increases due to further exploitation of the 

modularity. Also, when more (less) uncertainty is considered in the simulation 

process via variations in the sharpness parameter, the value of flexibility increases 

(decreases). 

 

Figure 4.19: Post-optimality sensitivity analysis for the flexible design solution 
obtained using the exhaustive enumeration approach, Case study I. 

 Results and discussion 4.6

In this section, results obtained from the proposed screening framework are 

validated by comparing them with the results from the exhaustive enumeration in 

different computer experiments. In each computer experiment, Pareto quality and 

the number of simulation evaluation for all approaches are investigated.  
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Figure 4.20 shows dominant flexible designs of case study 1 using different 

screening approaches and exhaustive enumeration in an experiment with 300 

scenarios. Results obtained from other experiments are provided in Appendix B. 

As can be seen, Pareto designs using exhaustive enumeration have more spread as 

compared to the meta-model and computing budget allocation based methods, 

because they explore the design space fully. As a result, it provides more 

dominant flexible solutions so that decision makers have more alternatives to 

choose from. It, however, requires more simulation evaluation numbers and 

consequently more computational resources. On the other hand, the meta-model 

(MM) and MOCBA approaches provide good-enough solutions with reasonable 

Pareto quality gap and simulation replication number. 

 

Figure 4.20: Dominant flexible designs using different approaches Meta-model 
based screening model (MM), Multi- Objective Computing Budget Allocation 
(MOCBA); Exhaustive Enumeration (EE) 

Table 4.17 shows the comparison between meta-model (MM), multi-objective 

computing budget allocation (MOCBA), and exhaustive enumeration (EE) in 

terms of different performance metrics, the Pareto quality and the number of 

simulation evaluations, and computer experiments. The larger the hyper-area the 
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better the Pareto quality and the smaller number of simulation evaluation the more 

efficient the screening approach.  

Table 4.17: Comparison between MM, MOCBA, and EE in terms of different 
performance metrics, Pareto quality and number of simulation evaluation  

Experiments 
  Pareto quality (hyper-area)   Number of simulation evaluation 

  MM   MOCBA   EE   MM   MOCBA   EE 

50   182  226   237   3,000  27,450   297,000 

100   182  209   237   6,000  62,264   594,000 

150   184  227   246   9,000  79,396   891,000 

200   187  233   239   12,000  104,881   1,188,000 

250   183  218   244   15,000  130,162   1,485,000 

300   174  218   249   18,000  162,019   1,782,000 

The hyper-volume is dominated by the solutions in the true Pareto set (i.e., the 

Pareto set obtained under analysis using large number of scenarios, here 2000 

demand scenarios) and closed by an arbitrary worst case point. This criterion 

accounts for dominance, spread and density of the Pareto designs simultaneously 

(Zitzler, Thiele et al. 2003; Bradstreet, While et al. 2008; Nebro, Durillo et al. 

2008). For consistency, an arbitrarily worst case scenario is chosen with 

ENPV=$0M and Standard deviation=$20M for calculation of hyper-area in all the 

experiments.  

Let us compare the results in terms of different computer experiments. It should 

be emphasized that although different number of scenarios are considered in 

different experiments (i.e., 50 to 300 simulation evaluations), final Pareto fronts 

in Phase 3 are constructed under large number of sample scenarios (i.e., 2000 

demand scenarios). 

As the number of simulations in different experiments increases, the number of 

simulation evaluations increases proportionally. By increasing the number of 
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simulations in different experiments, however, the hyper-area does not strictly 

increase. This is because of the fact that after running each experiment (i.e., from 

50 to 300 scenarios), analysis using a large number of sample scenarios (i.e., with 

2000 demand scenarios) is conducted in phase 3. As a result, Pareto solutions in 

terms of different computer experiments tend to converge to the true Pareto front. 

Consequently, the hyper-areas calculated in terms of different computer 

experiments tend to converge to the hyper-area of the true Pareto front. Moreover, 

the stochastic nature of the developed simulation models can be a part of the 

reasons. 

Now let us compare the results in terms of different screening approaches as well 

as the exhaustive enumeration method. For Pareto quality, multi-objective 

computing budget allocation (MOCBA) systematically offers better hyper-areas 

as compared to meta-model based screening approach (MM). This is because of 

the lack of appropriate sampling of flexible designs in the latter case with respect 

to different objectives. As can be seen, the quality of the Pareto front is not so 

good because only a few dominant flexible designs are found. As a result it leads 

to a lower hyper-area value. This is also due to the fact that response surfaces for 

ENPV and standard deviation are built separately. As a result, more samples were 

drawn in the proximity of the optimum (i.e., minimum of standard deviation and 

maximum of ENPV) area of the corresponding meta-model surfaces.  

One way to overcome this issue is to use a multi-objective version of the meta-

modelling approach. On the other hand, the quality of the Pareto front resulting 

from the MOCBA approach is not much better than for the MM approach, as a 

trial and error approach was used to set the input parameters. The quality of the 
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Pareto front resulting from MOCBA can be improved if optimal simulation 

budget allocation schema is used in its procedure.  

As expected, exhaustive enumeration offers the best Pareto quality among the 

three approaches. On the other hand, in terms of the number of simulation 

evaluation, the meta-model approach requires the least number of simulation 

evaluations. According to computer experiments, simulation runtime is roughly 

proportional to the number of simulation evaluations. 

For clarification purpose, let us compare the results in terms of different screening 

approaches and the exhaustive enumeration with respect to a particular computer 

experiment. Considering the experiment with 50 sample scenarios, see the first 

row in Table 4.17, MM with hyper-are 182 and MOCBA with hyper-area 226 

approaches provide dominant flexible design solutions with 23% (i.e., (237-

182)/237×100) and 5% (i.e., (237-226)/237×100) Pareto quality gap (hyper-area) 

respectively as compared to exhaustive enumeration. Furthermore, MM and 

MOCBA approaches require only 1% (3,000/297,000) and 9% (27,450/297,000) 

of the number of simulation evaluations, respectively, required in the exhaustive 

enumeration approach. In sum, there is indeed a trade-off between these two 

screening approaches in terms of Pareto quality and the number of simulation 

evaluations. 

Table 4.18 shows the comparison between MM, MOCBA, and EE in terms of 

computational runtime. All screening analyses were performed on a Windows 7 

platform with 8 GB RAM and 3.3 GHz processing speed.  

Assuming each simulation evaluation takes one second, computational runtime 

for all screening methods are calculated. As can be seen, by increasing the 

number of scenarios in the computer experiments the computational runtime 
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proportionally increases. Exhaustive enumeration requires the most computational 

effort while the meta-model based screening method needs the least 

computational burden. In sum, decision makers based upon observations in Table 

4.17 and Table 4.18 can choose which screening approach should be used subject 

to expected Pareto quality and available computational time and resources.  

Table 4.18: Comparison between MM, MOCBA, and EE in terms of 
computational runtime 

Experiments 
  Computational runtime (hours) 

  MM   MOCBA   EE 

50   0.83  7.63   82.50 

100   1.67  17.30   165.00 

150   2.50  22.05   247.50 

200   3.33  29.13   330.00 

250   4.17  36.16   412.50 

300   5.00  45.01   495.00 

Table 4.19 summarizes the results for case study 1 when flexible design with 

move is investigated considering weights 60% for ENPV and 40% for standard 

deviation in an experiment with 300 scenarios. The value of flexibility for 

different screening approaches as well as the exhaustive enumeration is provided 

in Table 4.19. 

Table 4.19: Summary of results for case study one, flexible design with move 
considering W1=60% and W2=40% in a computer experiment with 300 
scenarios. 

Criteria 
  Exploration of flexible design space  

  MM   MOCBA   EE 

Design vector number   601  2305  2592 

Value of flexibility ($M)    5.79  4.66  9.95 

Runtime (hours)   5.00  45.01   495.00 

The value of flexibility using MM is calculated as ENPVMM − ENPVFixed = 

$20.06M − $14.27M = $5.79M, where ENPVFixed is the ENPV of the benchmark 
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fixed design in Phase 1. The value of flexibility using MOCBA approach is 

calculated as ENPVMOCBA − ENPVFixed = $18.93M− $14.27M = $4.66M and the 

value of flexibility using EE approach is calculated as ENPVEE − ENPVFixed = 

$24.22M− $14.27M = $9.95M. 

As expected, EE recognizes the most value of flexibility, and is shown as a bold 

figure in the Table. It requires, however, 495 hours (~ 20 days) to fully enumerate 

the flexible design space with 300 scenarios. On the other hand, MM and 

MOCBA approaches provide good-enough flexible solutions within a more 

reasonable amount of time.  

Figure 4.21 shows the cumulative density function of the preferred flexible 

designs resulted from the proposed screening framework, exhaustive enumeration 

and the fixed benchmark design. As can be seen, all flexible designs can reduce 

the downside risk and capture the upsides opportunities. Decision-makers can 

feed the design(s) to a higher-fidelity model to further investigate these flexible 

designs in a greater detail. 

 

Figure 4.21: CDFs for preferred flexible designs for case study one in a computer 
experiment with 300 scenarios, (w1=60%, w2=40%) 
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 Summary 4.7

In this chapter, case study one focusing on a centralized on-shore LNG production 

system design was analyzed. Using the three-step problem modeling 

methodology, the case study was modeled using Monte-Carlo simulation analysis 

for uncertainty and flexibility in Excel. Subsequently, to investigate the effect of 

problem modeling assumptions and input parameter settings, different sensitivity 

analyses were conducted. Then, meta-model based screening and computing 

budget allocation based screening model were used to analyze the flexible 

centralized LNG infrastructure system.  

The results of the case study obtained using the proposed methodology can be 

explained to management laymen, and policy-making audiences. In this case 

study, the flexible design solution includes these decision variables: InCap, MDC, 

MsiteTV MoveTV, Cover and DsiteTV. Once the optimum values for these 

elements are obtained, the solution can be explained to laymen and a team of 

experts with diverse backgrounds in operations. The solution suggests that the 

system operator should consider modular design capacity MDC for capacity 

expansion and should deploy the initial capacity InCap at the main production site 

at time zero. The system operator should expand the capacity at the main 

production site every time the aggregate demand reaches the amount MsiteTV of 

the MDC modular capacity. The demand sites that are located at a distance Cover 

away from the main production site should be considered for the first LNG 

production facility deployment when the observed demand in these sites reaches 

MoveTV of the MDC modular capacity. The system operator should expand the 

capacity of the production facilities at demand sites every time demand reaches 

DsiteTV of the MDC modular capacity.  
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Results show both meta-model and multi-objective computing budget allocation 

provides good-enough Pareto quality within a reasonable amount of time. 

Exhaustive enumeration used as validation metric provides the best Pareto quality 

while requiring the largest number of simulation evaluation as compared to the 

screening approaches. In sum, both screening models based on meta-modeling 

and computing budget allocation approaches can be applied to provide good-

enough solutions with respect to different objectives while computational 

resources are limited. While MM and MOCBA requiring respectively 1% and 9% 

of the computational runtime, the MM and MOCBA find flexible design solutions 

that recognize 58% and 47% of the value of flexibility identified under the full 

exhaustive search. This may represent a good tradeoff for decision-makers, 

depending on the amount of time and computational resources available for the 

analysis. Even if the value of flexibility is only recognized at about half the value 

from the exhaustive, it still represents 41% and 33% performance improvements 

as compared to the benchmark design, which is significant given the multi-million 

dollar investment required. 
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 Case Study II: Decentralized LNG Chapter 5

production system 

 Introduction 5.1

Unlike the case study 1, which was primarily about a centralized LNG production 

system, this chapter investigates a decentralized LNG production system. 

Although both systems are instantiations of LNG infrastructure systems, from a 

design problem stand point, they have different forms of flexible design vectors 

and flexible solution spaces. These differences motivate the application of the 

proposed multi-criteria screening framework to this second case study, and also to 

investigate the generalizability of the proposed screening framework as a way to 

further support its validation in conceptual design analysis. 

The case study that will be explained in this chapter focuses on the development 

of a decentralized on-shore LNG production system to provide fuel for on-road 

transportation in southeast Australia. Figure 5.1 shows the schematic 

representation of the LNG production system from a fixed design towards a more 

flexible design. The scope of the problem lies in the part of the LNG supply chain 

where natural gas from on-shore pipelines is converted to LNG through a 

liquefaction process and the fuel is then delivered to the end users. All five sites 

have access to the existing on-shore natural gas pipeline. Figure 5.1 (a) depicts a 

fixed design where optimum capacity is deployed at each demand point. Figure 

5.1 (b) shows a flexible modular design where the initial capacity is built at each 

demand point depending on the market situation. Using this design, extra capacity 
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will be deployed based on the managerial capacity expansion policy. Figure 5.1 

(c) shows a flexible modular design similar to the design in Figure 5.1 (b), but 

with extra operational flexibility. This flexibility enables the production system to 

rebalance its capacity among the demand points using a fuel truck fleet 

transportation system.  

 

 

 

 

Figure 5.1: A fixed LNG system design towards a more flexible decentralized 
LNG system design 

The proposed integrated multi-criteria screening framework represented in three 

phases, that was explained in chapter 3, is applied to this case study to efficiently 

and effectively explore the solution space of flexible designs.  

 Phase 1: Problem modeling 5.2

In this phase, the three-step process for problem modeling is applied to the second 

case study. Figure 3.2 in chapter three shows the generic process. 

5.2.1 Modeling assumptions 

The following assumptions are made for problem modeling. Demand is assumed 

to be unevenly distributed in the region over five distinct demand sites. 

Essentially the distributions of the demand at different sites are independent and 

identical where the same distribution parameters are assumed.  

a: Fixed design b: Flexible design without transport c: Flexible design with transport 

Filling station 

Modular LNG plant 
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All sites have access to an on-shore natural gas pipeline in the region, but this 

access has a cost due to gas tie-in operations and acquiring extra land. For all 

demand sites, the time needed to build the first plant is two years and the capacity 

expansion takes only one year. In other words, if one decides to expand the 

current capacity in year t, the extra capacity will be available for production in 

year t+1. Regarding the financial parameters, the project lifetime is assumed to be 

20 years and each year is considered to be 350 working days. A ten-year straight-

line depreciation method is used for all LNG production facilities with a zero 

salvage value. The discount rate as an after-tax MARR is assumed to be 10% and 

the corporate tax rate is 30%. Essentially, the quantitative performance of the 

design is evaluated based on an After Tax Cash Flow (ATCF) analysis. 

Similar assumptions are used for developing the performance model. According 

to the data provided by the company, the natural gas purchase price was assumed 

$250 per ton and the LNG selling price was assumed as $800 per ton. It is 

assumed that the gas purchase and LNG selling prices increase by 3% annually. 

The LNG margin at time t is calculated based on the LNG selling price minus the 

gas purchase price at time t. The fixed design analysis examines economies of 

scale where the economies of scale factor α=95%. The modular design analysis 

assumes a learning rate under 10%. The Opex of the plant is assumed at 5% of the 

plant’s Capex. The flexibility cost is 10% of the Capex of the first capacity 

deployment at each site because of gas tie-in operations to the existing natural gas 

pipeline and extra land costs. Transportation is outsourced through a contract with 

a transportation company to transfer fuel among the different geographical sites.  

The transportation cost for carrying LNG is set at $0.80 per ton-kilometer. 

Parameters associated with deterministic and stochastic LNG demand modeling 
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obtained through a combination of personal communications and market research 

at the collaborating firm are summarized in Table 4.1 and Table 4.2 in chapter 4. 

The travel distances among the district sites are shown in Table 5.1.  

Table 5.1: Distance among the distinct demand sites, figures are in kilometer 
(Km) 

From / to Site1 Site2 Site3 Site4 Site5 

Site1 N/A 153 164 441 540 

Site2 153 N/A 318 413 401 

Site3 164 318 N/A 602 706 

Site4 441 413 602 N/A 529 

Site5 540 401 706 529 N/A 

5.2.2 Step 1: Develop deterministic quantitative performance model 

The problem modeling starts with the deterministic analysis, as done in case study 

1. The aim is to understand the key components of the system that influence its 

lifecycle performance. The performance metric used in this problem is NPV, 

calculated as the sum of discounted cash flows throughout the project lifecycle T 

= 20 years – see equation 5.1. Variables  *� and  �� are the total revenues and 

costs incurred in years t = 1, 2, ...,  , and r is the discount rate,  �2 is the 

effective income tax on ordinary income and �� is the sum of all noncash, or 

book, costs during year t, such as depreciation. The detailed mathematical 

representations of the case study II are provided in Appendix G. 

>�! =�81 −  �2;8 *� −  ��; +  �2	��81 + �;�
,
�R4  (5.1) 

LNG demand is identified as the key driver of system performance. A 

deterministic s-curve function is assumed to simulate LNG demand over the study 
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period, as shown in equation 5.2. The values of these deterministic parameters are 

shown in Table 4.1 in the previous chapter.  

��� = +,�1 + ����	�� (5.2) 

where �� is calculated using equation 5.3. 

�� = +,���� − 1 (5.3) 

The parameters of these equations have been explained in section 4.2.2 in chapter 

4. In general, the conventional DCF model is built to assess the performance of a 

system under deterministic conditions. This step captures the standard industry 

practice in terms of design and project evaluation.  

5.2.3 Step 2: Develop the quantitative performance model under uncertainty 

This step enables the analyst to explicitly recognize, characterize and model the 

major uncertainty drivers affecting the future lifecycle performance. The analysis 

under uncertainty considers a distribution of outcomes instead of a single 

performance output, which can be modeled using different techniques (e.g., 

Monte Carlo simulation, decision trees or binomial lattice). Here, NPVS, which 

refers to NPV under demand scenario s, is calculated in terms of different realized 

and uncertain demand scenarios via simulation. A stochastic s-curve function is 

used to simulate LNG demand over the system’s lifecycle using additional 

uncertainty factors, as shown in equation 5.4.  

��
 = +,
1 + �
��8	�;� (5.4) 

Equation 5.5 shows how �
 is calculated.  
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�
 = +,
��
 − 1 (5.5) 

The parameters of these equations have been explained in section 4.2.3 in chapter 

4. The values of the stochastic demand parameters are shown in Table 4.2. 

Realized demand at time t + 1 equals realized demand at time t plus annual 

volatility multiplied by the growth rate at time t, as equation 5.6 shows.  

In this equation, %� is the annual growth rate assuming adherence to a standard 

normal distribution, (Gt ~ Normal (0, 1)), and Av is assumed as a fixed parameter 

throughout the project lifetime calibrated using historical data. Monte Carlo 

simulation is used to simulate a wide range of LNG demand scenarios. This 

analysis recognizing uncertainty provides designers with a more realistic 

overview of system performance as compared to the deterministic analysis in Step 

1. In order to extend the deterministic model into the model under uncertainty, the 

uncertainty drivers that significantly affect the economic performance of the 

project must first be identified. Through a sensitivity analysis, LNG demand is 

again treated as the main source of uncertainty. Next, the Monte Carlo simulation 

technique can be used to simulate a wide range of LNG demand scenarios.  

Figure 5.2 shows regional LNG demand scenarios generated using an uncertain s-

curve demand at each geographical site. The analysis under uncertainty provides 

designers with a more realistic overview of system performance as compared to 

the deterministic analysis in Step 1. Recognizing the uncertainty in this step, the 

optimum capacity for the fixed LNG production system is determined as a 

benchmark design. According to Savage’s “Flaw of Averages” (2009), relying on 

���4
 = ��
 + 8�� × %�; (5.6) 
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the most likely or average scenario may lead to incorrect design selection and 

investment decisions. The results show that the optimum system capacity and 

value under uncertainty are less than those obtained relying on demand forecast, 

NPV8D¶; ≥ ENPV8D·; and Capacity*D ≥ Capacity*U. 

 

Figure 5.2: Projected and realized regional LNG demand at each geographical site 

5.2.4 Step 3: Develop quantitative performance model for flexibility 

To deal with uncertain LNG demand, three different flexible strategies are 

proposed: 1) strategic; 2) tactical and 3) operational flexibility. In the strategic 

level, flexible decision rules for determining initial capacities are applied. In the 

tactical level, capacity expansion flexibility is identified as the most relevant 

strategy to cope with demand uncertainty. Both strategic and tactical flexibility 

are embedded in the flexible modular design − with no transport − as shown in 

Figure 5.1(b). To embed these flexible strategies, a set of managerial decision 

rules is embedded in the programming of the Excel® spreadsheet DCF model 

under uncertainty. To further extract value from uncertainty, operational 

flexibility is proposed, as shown in 5.1(c). These three flexible strategies are 

described in greater detail in the following subsections. 
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5.2.4.1 Strategic level flexibility 

In this case study, determining the initial plant capacity is considered as a 

strategic level decision. This decision is made by relying on a short-term, 

forward-looking forecast.  

Given the practical modular capacities available to the company, the three 

decision rules used in the simulation model are as follows: 1) IF “realized demand 

in year of forecast t <= bound 1” THEN “Initial capacity = 0”; 2) IF “realized 

demand in year of forecast t > bound 1” AND “realized demand in year of 

forecast t <= bound 2” THEN “Initial capacity = 25”; and 3) IF “realized demand 

in year of forecast t > bound 2” THEN “Initial capacity = 50”, where bound 1, 

bound 2 and year of forecast t are parameters of the decision rules.  

Figure 5.3 demonstrates a case where Band 1, Band 2 and Band 3 are evenly 

distributed between the lower and upper bounds of LNG demand and the short-

term, forward-looking year of forecast is set to year 6. 

Figure 5.3: Parameters of strategic flexibility for initial demand deployment 

Band1=Bound 1−LB=33.3% 

Band2=Bound 2−Bound 1=33.3% 

Band 3=UB−Bound 2=33.3% 

Upper bound 

Lower Bound 
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5.2.4.2 Tactical level flexibility 

In this case study, tactical level capacity expansion policy was considered the 

most appropriate flexibility for responding to demand uncertainty. For capacity 

expansion, it is important to know when capacity should be expanded given the 

available modular designs (i.e., 25 tpd and 50 tpd). Hence, an appropriate 

managerial decision rule was embedded at each production site.  

The decision rule is defined in a logical form as:  

• IF “observed demand is higher than current capacity” AND “the 

difference between the observed demand and current capacity reaches a 

threshold value that is a certain percentage of the modular design used at 

each production site in year t”  

• THEN “build extra modular plant that will be available for production in 

year t+1”  

• ELSE “do nothing”.  

The threshold value determines when the extra capacity should be built. For 

example, decision-makers may decide to add another modular plant as soon as the 

difference between the realized and current capacity reaches 60% of the modular 

plant capacity for the site.  

5.2.4.3 Operational level flexibility 

In order to further improve the lifecycle performance of the flexible LNG 

production system, an operational flexible strategy can be applied to better meet 

unmet demand with unused capacity in the system. The LNG production at each 

site is planned to be absorbed by the demand at the same location. However, if the 
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capacity at any operational period (i.e., one year, in this case) is not matched with 

the realized demand, this will lead to either an unused capacity or unmet demand 

situation at any given location. The proposed operational flexibility (also referred 

to as the rebalancing problem) is concerned with the situation in which LNG is 

transported from sites with unused capacity to locations with unmet demand. The 

rebalancing transportation problem can be formulated as a linear programming, 

transportation problem. By embedding this flexibility for each set of demand 

scenarios for each operational time period, the optimum amount of LNG that 

should be transported from the supply sites (i.e., those with unused LNG capacity) 

to the demand sites (i.e., those with unmet LNG demand) can be determined.  

The objective of operational planning is to minimize the total transportation cost 

that leads to maximizing the added value of the system design, which is termed 

the added value of flexibility. Let m-plant equal the locations with unused 

capacity (supply) and the n-plant with unmet demand (demand). Let USCi,t,s  ≥ 0, 

i= 1, 2,…, m be the amount of capacity idle at the ith plant in year t under scenario 

s from a set of plants with unused capacity. Similarly, let UMDj,t,s  ≥ 0, j= 1, 

2,…,n be the amount of demand required at the jth plant from a set of plants with 

unmet demand in year t under scenario s. Assume the cost of transporting one unit 

of LNG (i.e., one ton) from ith supply to jth demand site be Ci,j, in terms of i=1,2, 

…,m and j=1,2,….n. If xi,j,t,s is the amount of LNG to be transported from ith 

supply to jth demand point in year t under scenario s, then the problem is to 

determine xi,j,t,s so as to minimize the following function considering xi,j,t,s ≥ 0 for 

all values of i and j.  

Equation 5.7 determines the total transportation cost incurred by enabling 

operational flexibility at time t under demand scenario s. Equation 5.8 ensures that 
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the amount of LNG carried from site i at time t under demand scenario s is equal 

to the available unused capacity. In a similar fashion, equation 5.9 guarantees that 

the amount of LNG carried to site i at time t under demand scenario s is equal to 

the amount of unmet demand.  

 *#��,� =��2,�,�,��,�										∀	� = 1… ,			� = 1…#r
�R4

q
R4  (5.7) 

�2� = 3#�,�,�								∀	� = 1…�, � = 1… ,			� = 1…#r
�R4  (5.8) 

�2� = 3+��,�,�						∀	� = 1…', � = 1… ,			� = 1…#q
R4  

(5.9) 

The value of flexibility added because of operational flexibility under each set of 

demand scenarios in each year is calculated using equation 5.10. 

Value	added« = 	max	80, f8		LNG	Production	added« 	× 	LNG	margin«;− Transportation	cost«;	i (5.10) 

For illustration purposes, Table 5.2 shows the optimal solution for transportation 

planning under demand scenario in year 9.  

Table 5.2: Transportation planning in year 9, ton per day 

Transportation 
planning in year 9 

Unmet demand site LNG 
shipped 

from D1 D2 D3 D4 D5 

Unused 
capacity 

Site 

S1 0 0 9.05 0 0 9.05 

S2 0 0 0.23 0 3.57 3.80 

S3 0 0 0 0 0 0 

S4 0 0 0 0 3.24 5.63 

S5 0 0 0 0 0 0 

LNG shipped to 0 0 9.28 0 6.82  

Transportation Cost= $ 2,634,556     

It is assumed that all sites have flexibility for sending and receiving LNG fuel – 

full operational flexibility. As can be seen, this flexibility results in $1.41M value 
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added in year 9. Value added in year 9 = max[0, (LNG production addedt × LNG 

margint) – Transportation cost] = max [0, ((9.05+0.23+3.57+3.24) × 350) × 

717.63) − 2,634,556] = $1406751/106 = $1.41M. 

In the model explained above, it was assumed that all locations have the 

capability to send and receive fuel under different demand scenarios. However, 

some locations may not be capable of sending or receiving LNG fuel. Under such 

circumstances, partial operational flexibility can be considered instead of no 

operational flexibility or full operational flexibility.  

Let Oi be the state of operational flexibility at location i, where 0 means no 

operational flexibility and 1 means with operational flexibility. It is important to 

note that operational flexibility can lead to value added to the system design if the 

operational flexibility of at least two locations is switched “on”. In other words, if 

only one location is operationally flexible, this will not lead to any value added. 

The number of operational flexibility statuses depends on the number of demand 

locations and can be calculated using equation 5.11. Hence, for five locations, the 

total number of combinations – including designs with operational flexibility 

levels ranging from partial to full – that can lead to value added is 26.  

�º '2 + �»
r�T
R� = º52» + º53» + º54» + º55» = 10 + 10 + 5 + 1 = 26							 (5.11) 

Figure 5.3 illustrates the range of partial operational flexibility towards a full 

operational flexibility. As can be seen, under full operational flexibility (i.e., state 

26 for flexibility of the demand sites) when bound 1 is equal to 45%, bound 2 is 

equal to 33%, threshold value is equal to 65% of modular design 25 tons per day, 

value added due to operational flexibility under 2000 demand scenarios is more 

than 3.5 million dollars. The value of flexibility is calculated as the value of a 
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flexible design minus its corresponding fixed design value, as equation 5.12 

shows. 

 

Figure 5.3: Partial operational flexibility towards a full operational flexibility 
under 2000 demand scenarios 

Flexibility	Value = max	80, ENPV	¡¢£¤x¥¢£	¦£§x¨y − ENPV	©ª«xw¬w	x¤£¦	¦£§x¨y;	  (5.12) 

5.2.4.4 Different flexible strategies 

In this study, design vectors are used to represent the physical design 

configuration of complex systems as well as flexible managerial strategy and 

policy. These vectors are classified into two types: 1) design vectors that represent 

major flexible design strategies, so-called “flexible design strategy vectors” and 

2) design vectors that represent flexible design solutions, so-called “flexible 

design solution vectors”. The major flexible design strategies determine the 

general approach towards the system design. For instance, in the case under 

consideration, three types of flexible strategy are investigated and each type has 

two possible values, either “on” or “off”. Hence, 23 major flexible strategies can 

be synthesized. Each major flexible design strategy may correspond to a flexible 

design vector. Unlike major flexible design strategies, flexible design solutions 
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may require more domain-specific knowledge. Hence, decision-making at this 

level is delegated to domain-specific designers and experts who can determine 

and judge about the value of design variables, decision rules and their 

corresponding threshold variables. In this thesis, screening models are used to 

assist decision makers to determine these values. 

Table 5.3 demonstrates a full factorial experimental design matrix of the two-

dimension problem (i.e., Bound 1 and threshold value). The three levels of 

flexibility correspond to three factors of the experimental design. Each factor has 

two potential values: Y - with flexibility, or N - no flexibility. Thus, there are 23 

flexible strategies in total. Last column of the table shows the design vectors. 

Each design vector has three elements: 1) initial capacity for the fixed design or 

the value of Bound 1 in case of flexibility shown as InCap/ B1%; 2) no capacity 

expansion or threshold value of modular design capacity shown as 0%(0) 

/TV%(tpd); 3) state of operational flexibility shown as No/Full. 

Table 5.3: Design of experiment for strategies 1 to 8 under 2000 demand 
scenarios 

Flexible 

strategy 

Strategic 

flexibility 

Tactical 

flexibility 

Operational 

flexibility 
Design vector 

Initial 

capacity 

(Y/N) 

Capacity 

expansion 

(Y/N) 

transportation 

flexibility 

(Y/N) 

[ InCap/B1% - 0%(0) /TV%(tpd) - 

No/Full ] 

1 N N N Initial Cap. 5×30=150 - 0%(0) - No 

2 N N Y Initial Cap. 5×30=150 - 0%(0) - Full 

3 N Y N Initial Cap. 5×30=150 - 65%(25) - No 

4 N Y Y Initial Cap. 5×30=150 - 65%(25) - Full 

5 Y N N B1=20% - 0%(0) - No 

6 Y N Y B1=20% - 0%(0) - Full 

7 Y Y N B1=45% - 65%(25) - No 

8 Y Y Y B1=45% - 65%(25) - Full 
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Each strategy is simulated using 2000 sets of demand scenarios for different 

locations. The first strategy represents the optimum fixed design with initial 

capacity 5×30=150 tons per day. An exhaustive enumeration was conducted to 

find the optimum design variables and decision rule parameters of all flexible 

strategies. To analyze the contribution of each type of flexibility to the value of 

flexibility, the NPVs of all strategies are compared to the ENPV of strategy 1. 

Strategy 1, which represents the optimum fixed design, is considered the baseline 

design. Figure 5.4 shows the cumulative density function of strategies one to 

eight. 

 

Figure 5.4: Cumulative density function curves for strategy 1 to 8  

A pairwise t-test is applied to see whether the ENPVs of any two strategies are 

statistically different from each other. Given a large number of scenarios, pairwise 

t-tests show that the differences among strategies are statistically significant. As 

can be seen, strategy 8 with operational, tactical, and strategic flexibility is the 

best of the eight flexible strategies in terms of ENPV that is shown in bold figure. 
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5.2.4.5 Multi-criteria decision-making 

Table 5.4 shows a multi-criteria decision-making table to compare and contrasts 

the different solutions above. Best flexible strategies in terms of different criteria 

are shown in bold figures in the table. It compares results for the optimum fixed 

design (i.e., strategy number one) and flexible designs (i.e., strategies two to 

eight). Strategy number 8 outperforms among the others in terms of ENPV 

($20M) and Value at Risk 10%, by protecting the downside risk by more than 

$8M. In terms of value at gain 90%, flexible strategy 3 gains the most value, more 

than $33M, from the upside opportunities among the rest. Strategy number 5 

provides the least standard deviation, with less than $7.7M. 

Table 5.4: Multi-criteria decision-making table, numbers in million dollar 

Criteria 
Flexible strategy Value of  

flexibility 

Best 

strategy 1 2 3 4 5 6 7 8 

ENPV 10.56 13.67 5.83 8.82 11.32 12.48 17.90 20.05 9.49 8 

VaR10% -8.87 -4.99 3.71 -14.79 2.41 3.55 6.66 8.53 17.40 8 

VaG90% 28.89 30.49 33.53 30.98 21.47 22.56 30.09 32.28 4.64 3 

STD 14.69 13.94 11.01 17.72 7.65 7.73 9.02 9.20 0 5 

In this study, two types of screening model are used to explore efficiently and 

effectively the design space: 1) meta-model based screening model and 2) multi-

objective computing budget allocation model; indeed a bi-objective computing 

budget allocation (BOCBA) approach is used in this case study but let us use the 

general term “MOCBA” as represented in the proposed framework in chapter 3 

for consistency.  Besides these screening models, for the operational level 

decisions, a bottom-up screening model is proposed to further enhance the speed 

of the overall screening procedure. The results are then compared to a full 

exhaustive enumeration for purpose of comparisons. 
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 Phase 2: Screening 5.3

In this section, the screening phase of the proposed multi-criteria screening 

framework is applied to the second case study. In this phase, three screening 

approaches are considered: 1) A bottom-up screening approach for operational 

flexibility, 2) A meta-model based screening approach and 3) A computing 

budget allocation based screening approach. The procedures of the screening 

approaches are described in the following subsections. The addition of another 

screening approach demonstrates the generalizability of the proposed framework 

in Phase 2. 

5.3.1 A heuristic schema for operational flexibility 

Under each set of demand scenarios, the optimum solution in each operational 

period can be obtained by optimizing the linear programming (LP) model. 

Assuming that full flexibility (i.e., all the demand points can receive and deliver 

LNG) in the operational level is intended, the optimization procedure is called 

multiple times depending on the number of operational periods and demand 

scenarios. Let us assume that, under each demand scenario, the optimization 

solver is called an average of 15 times. Hence, if 2000 demand scenarios are used, 

the optimization solver will be called 30,000 times. This can be very time 

consuming. Therefore, a heuristic rebalancing approach is proposed to obtain a 

good-enough solution for operational level decision-making in a reasonable 

amount of time.  

It should be emphasized that the value added due to operational flexibility can be 

captured by both meta-model screening approach and multi-objective computing 

budget allocation. In the heuristic rebalancing schema, LNG fuel produced at sites 
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with unused capacity is evenly distributed among sites with unmet demands. It is 

important to note that the LP optimization procedure always offers the upper 

bound for this maximization problem. This is due to the fact that the heuristic 

procedure does not guarantee the optimal solutions.  

Table 5.6 shows the comparison between the LP optimization and the heuristic 

rebalancing schema in terms of the ENPV and computational runtime for a given 

design vector. The results suggest that the heuristic algorithm offers good-enough 

solutions, with a 7.81% gap, and is more than two times faster than the 

optimization approach.  

Table 5.6: Screening operational level decision-making under 2000 demand 
scenarios 

ENPV ($ millions) Computational time (Sec.) 

No  

operational 

flexibility 

Heuristic LP  Gap% 

No 

operational 

flexibility 

Heuristic LP  Efficiency% 

17.77 18.50 19.95 7.81% 245.28 7153.08 23125.03 223.29% 

The efficiency of the screening model is further enhanced if this kind of screening 

model (i.e., bottom-up screening model) is combined with the meta-model and 

computing budget allocation screening approaches that will be explained in the 

following sections. 

5.3.2 A meta-model based screening approach 

In this section, the meta-model based screening model is applied to the second 

case study, the decentralized LNG production system. Table 5.5 shows the 

parameters used in the meta-model screening approach. As can be seen, a 

Gaussian process was used in the correlation model and parameter theta was set 

between 0 and 2. This parameter is a correlation parameter and the DACE model 



Chapter 5 Case Study II: A Decentralized LNG Production System 

131 

is used to determine the optimum value for its optimal coefficient h∗ of the 

correlation function. 

Using the meta-model screening approach, first a few samples are drawn, using 

Central Composite Design and Latin Hyper Cube sampling, from the solution 

space of flexible designs. 

Table 5.5: Parameters used in Meta-model screening approach 

Meta-model based screening parameters  Value 

Expected improvement  0.5 

Latin Hypercube Design  12 

Central Composite Design  18 

Correlation model  Gaussian 

Theta band  [0 - 2] 

Then using the Gaussian model, a simulation surface is created for each objective. 

The surface is adaptively evolved until a stopping criterion, which is expected 

improvement, is met. Once response surfaces are created given intended 

objectives, an enumeration is done using these inexpensive meta-models. Then, a 

preliminary Pareto front is found and further analysis using a large number of 

scenarios (i.e., 2000 demand scenarios) is conducted to find True Pareto fronts in 

phase 3, as done in case study 1.  

Unlike exhaustive enumeration that only uses Excel, in the meta-model screening 

approach both Excel and MATLAB are used. In the MATLAB workspace the 

DACE model is used to create inexpensive response surface and MATLAB 

optimization toolboxes are used to perform the EGO procedure. Essentially, 

optimization toolboxes are used to maximize expected improvement in the DACE 

model and to find the optimum response surfaces. A represented in chapter 4, 

Figure 4.9 shows Microsoft Excel and MATLAB interface via spreadsheet link 

EX® in the meta-model screening approach. 
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In the EGO procedure, a Kriging meta-model is used to build an inexpensive 

surrogate response surface. The Kriging method dates back to the early 1960s 

(Krige, 1960) where its original model was used to find a function that 

approximates the underground concentration of a valuable mineral. Since then, 

different types of Kriging meta-models have been developed for complex 

simulation models (Kleijnen 2009). The Kriging model is an interpolating meta-

modeling technique that employs a trend model, F(x), to capture large-scale 

variations and a systematic departure, Z(x), to capture small-scale variations 

(Nielsen, Lophaven et al. 2002). Kriging postulation is the combination of a 

global model and departures in the form of equation 5.13: 

782; = $82; + ¾82; (5.13) 

In this equation, f(x) represents the unknown function and F(x) is the global 

model, while Z(x) represents the localized deviations. In this equation, Z(x) is the 

realization of a stochastic process with a zero mean and non-zero covariance. A 

linear polynomial function is used as a trend model and the systematic departure 

terms follow a Gaussian correlation function. As represented in chapter 4, table 

4.7 shows procedure of meta-model screening approach. The screening model is 

applied to the problem with a uniform solution with all elements of the flexible 

design vector so that more focus can be given to the details of the framework. As 

an alternative to an exhaustive search, the screening model is used to find the 

optimal values of the design vector by efficiently exploring the flexible design 

solution space.  

For visualization purposes, a two-dimensional problem is analyzed first. In the 2D 

problem with a uniform solution, bound 1 and the threshold value are considered 

as variables and the other elements of the design vector are set as fixed 
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parameters, bound 2=45% and modular design capacity=25 tons per day. Then, 

all possible combinations of bound 1 and threshold value are enumerated to obtain 

the true response of the simulation model in terms of ENPV and Standard 

deviation as benchmark solutions. In the exhaustive enumeration, the simulation 

model is run 9×21=189 times, showing all possible flexible design solutions. In 

the exhaustive search, 2000 demand scenarios are used as the system performance 

converged to a steady state value with a negligible variation. Figure 5.5 

demonstrates the ENPV and standard deviation of the simulation response using 

the enumeration method.  

 

 

Figure 5.5: ENPV and standard deviation of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Simulation using exhaustive enumeration, 2000 scenarios 
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Following the exhaustive enumeration method, the EGO based on Kriging meta-

modeling was applied to reduce the computational burden. Figure 5.6 

demonstrates the response surface for ENPV and standard deviation using the 

Kriging meta-model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Kriging meta-model for ENPV and standard deviation – 250 scenarios 

To find the predicted optimum ENPV and standard deviation values, a global 

multi-start gradient based optimization algorithm in MATLAB was used. While 

bound 1 and the threshold value are continuous functions varying between 5%-

45% and 0%-100% respectively, the screening approach only samples a few 

points in the simplified design space. Although the two-dimensional analysis is 

(b) 

(a) 
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shown for visualization purposes only, in the uniform solution, it is extended to 

analyze a combination of other decision rules and physical design variables (e.g., 

bound 2, modular capacity), which will be explained in the following sections.  

5.3.3 A computing budget allocation based screening approach 

In this section, a computing budget allocation screening model is applied to the 

second case study, the decentralized LNG production system design. Table 5.6 

shows the parameters used in this approach.  

Table 5.6: Parameters used in the multi-objective computing budget allocation 

MOCBA parameters  Value 

Initial Budget Rate  5% 

Incremental Budget Rate  10% 

Archive keep rate  50% 

Minimum archive size  50 

Allocation factor  1.2 

Using this approach, more budgets are allocated to designs that are close to true 

Pareto fronts than those are far away from true Pareto front. The process is 

terminated when the maximum budget is exhausted or the design archive size 

reaches its minimum acceptable size.  

Like the meta-model approach, in the multi-objective computing budget 

allocation both Excel and MATLAB are used, as shown in Figure 4.11 in chapter 

4. Essentially, macros in VBA are used to synthesize flexible designs and 

simulation is modeled by programming in Excel spreadsheet and VBA. In the 

MATLAB workspace, Pareto dominance module and MATLAB functions for 

solving equations are used. 

Pareto dominance is used to rank flexible designs in different layers. MATLAB 

functions for solving equations are used to appropriately allocate budgets to 
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different layers of Pareto fronts. Table 5.7 shows Pseudocode of a multi-objective 

computing budget allocation model used in the second case study.  

Table 5.7: Pseudocode of a multi-objective computing budget allocation 

Construct initial design archive 
Allocate initial budget→MATLAB 

Run flexibility simulation→Excel 

Conduct Pareto dominance analysis→MATLAB 
Sort designs with different frontiers→MATLAB 

Do while (Minarchive size ≤ archive size) or (each design budget ≤ Maxbudget) 

Update design archive→MATLAB 

Update simulation replication budget → MATLAB 
Allocate new budgets to designs in different frontiers 

Run flexibility simulation→Excel 

Conduct Pareto dominance analysis→MATLAB 

Sort designs with different frontiers→MATLAB 
End while 

Return Pareto front 

Conduct analysis using large number of scenarios, with 2000 demand scenarios 

Return true Pareto front 

Assume an experiment with maximum 300 demand scenarios. Given initial 

budget rate is 5%, initial budget will be 300×5%=15. Therefore all the 3,402 

designs are analyzed under 15 demand scenarios. Subsequently, Pareto 

dominance is conducted and the designs are sorted in the design archive with 

respect to their Pareto frontier ranks. Now the loop shown in the pseudocode 

starts until certain criteria are met, Minarchive size ≤ archive size or each design 

budget ≤ Maxbudget. Subsequently, the size of the design archive is updated. As 

Archive keep rate is 50%, only top 50% of flexible designs are kept and the other 

50% of the flexible designs are discarded. It should be noted that the archive keep 

rate was chosen based on trial and error. More research is needed to fine tune this 

parameter as well as the other parameters used in MOCBA approach. Table 5.8 

shows a schematic example of the computing budget allocation approach from a 

general perspective. As can be seen, all the 3,402 designs are first evaluated 15 

times according to the initial simulation budget.  
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Table 5.8: A schematic example of computing budget allocation  

Simulation 
evaluation 

Flexible designs 

1 2 3 4 5 6 7 … 3,398 3,399 3,400 3,401 3,402 

15              
16              ⋮              

300              

Then more simulation evaluation budgets are allocated to the promising flexible 

designs until the stopping criteria are met. As can be seen, the procedure stops 

when 300 simulation budgets are allocated to design number 3,398, shown for 

illustration purpose only. Essentially, this example shows how the problem is 

structured in Excel spreadsheet. Figure 5.7 shows this transition; Figure 5.7(a) 

contains 3,402 flexible designs and Figure 5.7(b) contains 1,701 flexible designs.  

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Evolution of a design archive in the MOCBA, in an experiment with 
300 demand scenarios, from (a) to (d) 
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Following the procedure in the methodology section, computing simulation 

budget allocated to different frontiers are updated. Given an updated design 

archive and an updated incremental simulation budget, Monte Carlo simulation is 

conducted in Excel. Subsequently Pareto dominance is conducted and all the 

designs are sorted in terms of different Pareto frontiers. Once the stopping criteria 

are met, dominant flexible designs are returned as input of phase 3.  

 Phase 3: Multi-criteria decision-making analysis 5.4

In this section, dominant flexible designs obtained from the screening phase in 

different computer experiments are further analyzed under large number of 

scenarios. Subsequently, true Pareto flexible design solutions are generated and 

the hyper-area is calculated. Once true Pareto fronts are obtained using a large 

number of sample demand scenarios, a preferred trade-off flexible design solution 

is chosen based on decision makers’ preferences. In this section, the weighted-

sum approach described and used before is applied to choose a preferred 

dominant flexible design among other flexible designs in the true Pareto set.  

5.4.1 A meta-model based screening approach 

Now, let us consider the design vector with full elements, strategic and tactical 

flexibility. Figure 5.8 shows the dominant flexible designs using the meta-model 

screening approach. Enumeration is conducted using inexpensive Kriging meta-

models. Then using dominance relation, dominant flexible designs are identified. 

These dominant flexible designs are further analyzed using large number of 

scenarios (i.e., 2000 demand scenarios) and hyper-area is calculated using an 

arbitrary worst case reference point with ENPV=$0M and Standard deviation= 

$20M. 
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Figure 5.8: Dominant flexible designs using meta-model screening approach 

Once dominant flexible designs are obtained using meta-model, a trade-off 

flexible solution can be found using decision makers’ preferences. Assuming the 

weight for ENPV is 60% and the weight for Standard deviation is 40%, a 

preferred trade-off flexible design is the design with ENPV=$17.03M and 

standard deviation=$8.40M, shown in a circle in Figure 5.10. Table 5.9 illustrates 

the corresponding design vector of the preferred trade-off flexible design.  

Table 5.9: Design vector of the preferred trade-off flexible design using MM 

Design number X1 X2 MDC TV 

3303 45% 25% 25 75% 

The solution suggests that the system operator should deploy initially capacity 

based on the following scenarios: 1) IF “the short-term forward looking forecast 

in year 6 lies in the projected lower (pessimistic) band demand with X1=45% 

width”, THEN “initial capacity should not be deployed and the system operator 

should wait until demand reaches 75% of the 25 tpd modular capacity”; 2) IF “the 

short-term forward looking forecast in year 6 lies in the projected base case (most 

likely) band demand with X2=25% width” THEN “Initial capacity=25”; 3) IF 

“the short-term forward looking forecast in year 6 lies in the projected upper 
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(optimistic) band demand with X3=1−X1−X2=30% width” THEN “Initial 

capacity=50”. The system operator should use 25 tpd modular design and the 

capacity should be expanded every time demand reaches 75% of the installed 25 

tpd modular capacity. 

Post-optimality sensitivity analysis 

In this section, a post-optimality sensitivity analysis is performed to assess the effects 

of changes in input parameters on the value of flexibility for the obtained flexible 

solution. The effects of these parameters on the value of flexibility are shown in the 

Tornado diagram in Figure 5.9. The details of the post-optimality sensitivity 

analysis are provided in Appendix E. The Tornado diagram shows the sensitivity of 

the value of flexibility subject to different values for the discount rate, learning rate 

and sharpness volatility. The sharpness volatility, discount rate and learning rate have 

the most to the least influences on the value of flexibility respectively. The effects of 

changes in these parameters are analyzed here. 

 

Figure 5.9: Post-optimality sensitivity analysis for the flexible design solution 
obtained using the meta-model based screening approach, Case study II. 

As the sharpness parameter has been recognized as the key demand parameter, it is 

worthwhile to investigate the effect of different volatilities of this parameter on the 
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designs value and, subsequently, on the value of flexibility. To do so, different values 

of the sharpness volatility at each geographical site are considered. The values 45%, 

70% and 95% correspond to the low, the base and the high for the volatility of the 

sharpness parameter. When the volatility of the sharpness parameter decreases, the 

optimum fixed design and the flexible design provide better ENPV while more 

improvement is observed in the fixed design than the flexible one and consequently 

the value of flexibility is less than the value obtained under the base sharpness 

volatility. On the other hand, when the volatility of the sharpness parameter increases, 

the optimum fixed design and the flexible design provide less ENPV while more 

decrease is observed especially in the fixed design than the flexible one and 

consequently the value of flexibility is more than under the base sharpness volatility. 

The results suggest that when sharpness volatility is high, although the value of both 

rigid and flexible designs decreases, the value of flexibility increases. This is similar 

to the observation made on the first case study in Sections 4.4 and 4.5. The reason for 

this improvement is that the flexible design provides better value than the fixed 

design under highly volatile market. When demand is strong, while the fixed design 

cannot accommodate extra capacity due to its rigid capacity, the flexible designs can 

acquire more capacity as needed, to meet the stronger-than-expected demand, leading 

to relatively more improvement in ENPV. On the other hand, when demand is weak, 

the flexible design is less affected because of the smaller capital investment in 

unfavorable markets whereas the fixed design incurs huge loss due to the relatively 

higher upfront investment and higher unused capacity over its lifetime. This 

improvement in the value of flexibility indicate the ability of flexible design to better 

capture the upside opportunity of strong demand and better prevent the potential loss 

of weak demand compared to fixed design.  

The Tornado diagram investigates the sensitivity of the value of flexibility subject to 

changes in learning rate. The changes in learning rate influences the flexible design 
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value and consequently have effect on the value of flexibility. The results suggest that 

when the learning rate increases (i.e. 15% instead of 10%), the cost of deploying extra 

modular capacity decreases leading to a higher flexible design value and higher value 

of flexibility. On the other hand,  when there is a low learning rate (i.e. 5% instead of 

10%) the flexible design, that uses modular production facility, does not take 

advantage of cheaper capital investment for extra modular capacity leading to a lower 

flexible design value and consequently lower value of flexibility. 

The Tornado diagram shows the sensitivity of the value of flexibility subject to 

changes in discount rate. One notices a difference in the results as compared to Case 

Study I in Sections 4.4 and 4.5, whereby a higher discount rate seems to improve the 

value of flexibility. As before, in capital-intensive and long-lasting project design, 

when the discount rate increases the present value of the project design decreases 

because future cash flow revenues are discounted back in a higher rate to the present 

time leading to a lower value of project design. On the other hand, when the discount 

rate decreases future cash flow revenues are discounted back at a lower rate to the 

present time leading to a higher value of the project design.  

The results here show that when the discount rate increases (i.e. 12%) the value of 

both flexible and fixed designs are decreased but the flexible design is much less 

affected due to deferring capital investment for the initial capacity deployment 

leading to a higher value of flexibility compared to the analysis under the base 

discount rate (i.e. 10%). On the other hand, when the discount rate decreases the 

value of both flexible and fixed design improves relatively at the same pace leading to 

a lower value of flexibility. These observations reverse the effect of changes in 

discount rate observed under case study one where no forward-looking decision rules 

were applied for determining initial capacity. This may be due to the fact that this 

system, as opposed the one considered in case study one, is even more modular, and 
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therefore can exploit further the benefits associated to deploying capacity in phases, 

and over time. 

5.4.2 A computing budget allocation based screening approach 

To obtain the true Pareto front, analysis with large number of sample scenarios 

(i.e., 2000 demand scenarios) is conducted. Figure 5.10 shows the dominant 

flexible designs using MOCBA with an experiment based on 300 scenarios. The 

preferred flexile design is shown in a circle.  

Once the true Pareto front is obtained, the hyper-area is calculated using an 

arbitrary worst case reference point with ENPV=$0M and Standard deviation= 

$20M. The Pareto quality of the MOCBA in terms of different computer 

experiment will be discussed in section 5.6. 

 

Figure 5.10: Dominant flexible designs using MOCBA approach 

Once dominant flexible designs are obtained, a preferred flexible design can be 

chosen based on decision makers’ preferences. Assuming weight 60% for ENPV 

and weight 40% for standard deviation, a flexible design with ENPV=$18.11M 
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and standard deviation=$9.55M is chosen, shown in a circle in Figure 5.11. Table 

5.10 shows the design vector of the preferred flexible design.  

Table 5.10: Design vector of the preferred flexible design using MOCBA 

Design number X1 X2 MDC TV 
2927 40% 30% 25 75% 

The solution suggests that the system operator should deploy initially capacity 

based on the following scenarios: 1) IF “the short-term forward looking forecast 

in year 6 lies in the projected lower (pessimistic) band demand with X1=40% 

width”, THEN “initial capacity should not be deployed and the system operator 

should wait until demand reaches 75% of the 25 tpd modular capacity”; 2) IF “the 

short-term forward looking forecast in year 6 lies in the projected base case (most 

likely) band demand with X2=30% width” THEN “Initial capacity=25”; 3) IF 

“the short-term forward looking forecast in year 6 lies in the projected upper 

(optimistic) band demand with X3=1−X1−X2=30% width” THEN “Initial 

capacity=50”. The system operator should use 25 tpd modular design and the 

capacity should be expanded every time demand reaches 75% of the installed 25 

tpd modular capacity.  

Post-optimality sensitivity analysis 

The post-optimality results for the solution obtained from MOCBA are shown in 

Figure 5.11. The details of the post-optimality sensitivity analysis are provided in 

Appendix E. Results show that the sharpness volatility, discount rate and learning 

rate have the most to the least influences on the value of flexibility respectively. 

Due to similar explanations as provided in Section 5.4.1, the results show that 

when more (less) uncertainty is considered in the simulation process via 

variations in the sharpness parameter, the value of flexibility increases 

(decreases). The discount rate increases (decreases), the value of flexibility 
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increases (decreases). Also, flexibility becomes more valuable when the learning 

rate increases due to further exploitation of the modularity.  

 

Figure 5.11: Post-optimality sensitivity analysis for the flexible design solution 
obtained using the computing budget allocation based screening approach, Case 
study II. 

 Exhaustive enumeration  5.5

The total number of the solution space combinations is determined by the 

precision level, which is determined by the step size of design variables and 

decision rules. The smaller the step size, the larger the number of possible 

combinations will be and, eventually, the more computationally intensive the 

exhaustive enumeration will be. Table 5.11 shows the number of flexible design 

solutions for each site in terms of different precision levels when only strategic 

and tactical level decisions are considered.  

The best flexible design solutions can be obtained by exhaustively exploring the 

flexible design solution space. To evaluate each flexible design, a Monte Carlo 

simulation model with a large enough number of scenarios needs to be run, which 

may take a few seconds, minutes or even hours depending on the complexity of 

the simulation model. As a result, the enumeration technique can be 
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computationally intensive or even intractable if a high-fidelity simulation model 

and high-level precision are used. Therefore, a screening model needs to be 

developed to quickly explore the flexible design solution space.  

Table 5.11: Number of flexible design solutions for each site considering strategic 
and tactical flexibility 

 

Design variables and 

decision rules' 

parameters for one 

location 

LB UB 

High-level 

precision 

Mid-level 

precision 

Low-level 

precision 

Step 

size 
Steps 

Step 

size 
Steps 

Step 

size 
Steps 

Band 1 - x1% 5% 45% 1% 41 5% 9 20% 3 

Band 2 - x2% 5% 45% 1% 41 5% 9 20% 3 

Modular design 

capacity 
25 50 25 2 25 2 25 2 

Threshold for 

capacity expansion 
0% 100% 1% 101 5% 21 20% 6 

Table 5.12 shows the design space of the decentralized LNG production system 

with mid-level precision. As can be seen, considering mid-level precision, the 

total number of flexible designs are 3,402 (=9×9×2×21).  

Table 5.12: Characterization of the design space for flexibility analysis based on 
mid-level precision 

Option Design variables Units 
Step 

Size 
Values Steps 

Strategic 

flexibility 

Band 1 (X1) 
% of 

Projected demand 
5 5 to 45 9 

Band 2 (X2) 
% of 

Projected demand 
5 5 to 45 9 

Tactical 

flexibility 

Modular design 

capacity (MDC) 
Tpd 25 25 to 50 2 

Threshold value (TV) 
% of 

modular design 
5 0 to 100 21 
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It is assumed that when both strategic and tactical flexibility are considered and 

the operational flexibility is “on”, the added value due to operational flexibility 

can be added later on. Table 5.13 shows flexible design vectors in a horizontal 

way. Once different flexible designs are synthesized, Monte Carlo simulation is 

used to generate different scenarios and analyze the flexible designs under 

uncertainty. 

As a result of different possibilities of design variables and decision rules, 

different flexible design solutions can be generated. To conduct exhaustive 

enumeration Excel was used. Essentially, macros developed in VBA were used to 

synthesize different flexible designs in Excel spreadsheets. 

Table 5.13: Different design vectors of flexible designs  

Flexible design Elements of flexible design vectors 

1 X11 X21 MDC1 TV1  

2 X12 X22 MDC 2 TV2  

3 X13 X23 MDC3 TV3  ⋮ ⋮ ⋮ ⋮ ⋮ 
n=3,402 X1n X2n MDCn TVn  

Figure 5.12 shows the interface between Microsoft Excel spreadsheet and macro 

developed using VBA in an exhaustive enumeration approach.  

 

 

 

 

Figure 5.12: Interface between Microsoft Excel spreadsheet and macro developed 
using VBA in an exhaustive enumeration approach 

Excel workspace 

Microsoft Excel 

Macros in 
VBA 

  

Spreadsheet 

 Monte Carlo 
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To measure the performance of the LNG production system design, the 

performance at each site needs to be evaluated. Hence, the ENPV of the whole 

system under demand scenario s is calculated using equation 5.14:  

">�!� = ">�!�¿ÀÁ�¿r	84; + ">�!�¿ÀÁ�¿r	8T; +⋯+ ">�!�¿ÀÁ�¿r	8Ã; +
ENPV©Ä	  (5.14) 

Table 5.14 shows the pseudocode for exhaustive enumeration approach for 

decentralized LNG production system design. Essentially dominant flexible 

designs were further analyzed under 2000 demand scenario to form the true 

Pareto front. Once dominant flexible designs are obtained, based on 2000 demand 

scenarios, decision makers can choose a trade-off solution based on their 

preferences. Assuming weight for ENPV is 60% and weight for Standard 

deviation is 40%, the preferred trade-off flexible design can be found. Based on 

decision makers’ preferences, a flexible design solution with ENPV=S21.56M 

and standard deviation=S12.14M is chosen, shown in a circle in Figure 5.13. 

Table 5.14: Pseudocode for Exhaustive Enumeration (EE) approach 

Set input parameters 

For Bound 1 = LBBand1 to UB Band1 Step Band1 

   For Bound 2 = LBBand2 to UB Band2 Step Band2 

      For MDC = LBMDC to UBMDC StepMDC 

         For TV = LBTV to UBTV StepTV 

                             Synthesize a flexible design vector 

For i=1 to number of simulation 

                                            Application.calculate ← Generate a new scenario 

            Calculate NPV 

Next 
                            Calculate ENPV and Standard deviation of the design 

         Next 

      Next 
   Next 

Next 

Return all design vectors with ENPV and standard deviation 
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Enumerate all flexible designs in objective function space 

 

Figure 5.13: Exhaustive enumeration with an experiment with 300 demand 
scenarios  

The corresponding design vector of the flexible deign is shown in Table 5.15.  

Table 5.15: Design vector of preferred trade-off flexible design using EE 

Design number X1 X2 MDC TV 

3271 45% 35% 25 65% 

The solution suggests that the system operator should deploy initially capacity 

based on the following scenarios: 1) IF “the short-term forward looking forecast 

in year 6 lies in the projected lower (pessimistic) band demand with X1=45% 

width”, THEN “initial capacity should not be deployed and the system operator 

should wait until demand reaches 65% of the 25 tpd modular capacity”; 2) IF “the 

short-term forward looking forecast in year 6 lies in the projected base case (most 

likely) band demand with X2=35% width” THEN “Initial capacity=25”; 3) IF 

“the short-term forward looking forecast in year 6 lies in the projected upper 

(optimistic) band demand with X3=1−X1−X2=20% width” THEN “Initial 

capacity=50”. The system operator should use 25 tpd modular design and the 
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capacity should be expanded every time demand reaches 65% of the installed 25 

tpd modular capacity.  

Post-optimality sensitivity analysis 

The post-optimality results for the solution obtained from Exhaustive 

Enumeration are shown in Figure 5.14. The details of the post-optimality 

sensitivity analysis are provided in Appendix E. Results show that the sharpness 

volatility, learning rate and discount rate have the most to the least influences on 

the value of flexibility respectively. Due to similar explanations as provided in 

Section 5.4.1, the results show that when more (less) uncertainty is considered in 

the simulation process via variations in the sharpness parameter, the value of 

flexibility increases (decreases). Also, flexibility becomes more valuable when 

the learning rate increases due to further exploitation of the modularity. 

Furthermore, the discount rate increases (decreases), the value of flexibility 

increases (decreases).  

 

Figure 5.14: Post-optimality sensitivity analysis for the flexible design solution 
obtained using the exhaustive enumeration approach, Case study II. 
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 Results and discussion 5.6

In this section, results obtained from the proposed screening framework are 

validated by comparing them with results of an exhaustive enumeration in terms 

of different computer experiments. In each computer experiment, for different 

screening approaches as well as the exhaustive enumeration, Pareto quality and 

simulation evaluation criteria are considered as performance metrics. Figure 5.15 

shows dominant flexible designs for case study two, the decentralized LNG 

production system design, using different screening approaches with experiment 

based on 300 scenarios.  

 

Figure 5.15: Dominant flexible designs using different approaches Meta-model 
based screening model (MM), Multi- Objective Computing Budget Allocation 
(MOCBA); Exhaustive Enumeration (EE) 

Results obtained from other experiments are provided in Appendix C. As can be 

seen, Pareto designs using exhaustive enumeration have more spread as compared 

to meta-model and computing budget allocation based method. As a result, in the 
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exhaustive enumeration, value corresponding to the Pareto quality (i.e., hyper-

area) is the highest as compared to the other screening approaches. 

Table 5.16 shows the comparison between meta-model (MM), multi-objective 

computing budget allocation (MOCBA), and exhaustive enumeration (EE) in 

terms of different performance metrics, the Pareto quality and the number of 

simulation evaluations. As expected, in terms of Pareto quality, exhaustive 

enumeration provides better results than meta-model and multi-objective 

computing budget allocation. As a result, the hyper-area of EE is systematically 

bigger than MM and MOCBA in terms of different experiments.  

The larger the hyper-area the better the Pareto quality and the smaller number of 

simulation evaluation the more efficient the screening approach. For consistency, 

an arbitrarily worst case scenario is chosen with ENPV=$0M and Standard 

deviation=$20M for calculation of hyper-area in all the experiments.  

Table 5.16: Comparison between MM, MOCBA, and EE in terms of different 
performance metrics, Pareto quality and maximum budget allocation 

Experiments 
  Pareto quality (hyper-area)   Number of simulation evaluation 

  MM   MOCBA   EE   MM   MOCBA   EE 

50   240  259   273   1,700  17,570   170,100 

100   234  263   268   3,300  34,993   340,200 

150   241  269   276   5,100  56,237   510,300 

200   220  271   273   6,400  71,708   680,400 

250   233  269   274   8,250  93,503   850,500 

300   230  270   276   9,600  111,266   1,020,600 

Let us compare the results in terms of different experiments. It should be noted 

that although different scenarios are considered in different experiments (i.e., 50 

to 300 simulation evaluations), final true Pareto fronts are analyzed under the 

same analysis with large enough number of scenarios (i.e., 2000 demand 
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scenarios). When the number of simulations in different experiments increases, 

the number of required simulation evaluations increases. By increasing the 

number of simulations in different experiments, however, the hyper-area does not 

strictly increase for the reasons explained in Section 4.6. 

Now let us compare the results in terms of different screening approaches. For 

Pareto quality, multi-objective computing budget allocation (MOCBA) 

systematically offers better hyper-areas as compared to meta-model based 

screening approach, but requires more computations. This is similar to the results 

observed in case study 1. As expected, exhaustive enumeration offers the best 

Pareto quality among the other approaches. 

For illustration purpose, let us compare the results in terms of different screening 

approaches with respect to a particular computer experiment. Considering the 

experiment with 50 sample scenarios, see the first row in Table 5.17, the meta-

model and computing budget allocation approaches provide dominant flexible 

design solutions with 12% (i.e., (273-240)/273×100) and 5% (i.e., (273-

259)/259)×100) Pareto quality gap (hyper-area) respectively as compared to the 

exhaustive enumeration. Furthermore, meta-model and computing budget 

allocation screening approaches require only 1% (i.e., 1,700/170,100) and 10.3% 

(i.e., 17,570/170,100) of the number of simulation evaluations, respectively, 

required in the exhaustive enumeration approach. In sum, there is indeed a trade-

off between these two screening approaches in terms of expected Pareto quality 

and number of simulation evaluation. 

Table 5.17 shows the comparison between MM, MOCBA, and EE in terms of 

computational runtime. All screening analyses were performed on a Windows 7 

platform with 8 GB RAM and 3.3 GHz processing speed. Assuming each 
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simulation evaluation takes one second, computational runtime for all screening 

methods are calculated.  

Table 5.17: Comparison between MM, MOCBA, and EE in terms of 
computational runtime 

Experiments 
  Computational runtime (hours) 

  MM   MOCBA   EE 

50   0.47  4.88   47.25 

100   0.92  9.72   94.5 

150   1.42  15.62   141.75 

200   1.78  19.92   189 

250   2.29  25.97   236.25 

300   2.67  30.91   283.5 

As can be seen, by increasing the number of scenarios in the computer 

experiments the computational runtime proportionally increases. Exhaustive 

enumeration requires the most computational effort while the meta-model based 

screening method needs the least computational resource. 

Table 5.18 shows the summary of results for the second case study where the 

flexible design with no operational flexibility is investigated considering weight 

60% for ENPV and weight 40% for standard deviation for illustration purposes, in 

an experiment with 300 sample scenarios.  

The Table provides value of flexibility when different screening approaches as 

well as the exhaustive enumeration approached are used. The value of flexibility 

using MM is calculated as ENPVMM − ENPVFixed = $17.03M − $10.56M = 

$6.47M, the value of flexibility using MOCBA is calculated as ENPVMOCBA − 

ENPVFixed = $18.11M− $10.56M = $7.55M and the value of flexibility using EE 

is calculated as ENPVEE − ENPVFixed = $21.56M− $10.56M = $11M. As can be 

seen, EE provides the best value of flexibility with $11M.  
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Table 5.18: Summary of results for case study two, flexible design with no 
operational flexibility considering W1=60% and W2=40% in an experiment with 
300 scenarios 

Criteria 
  Computational runtime (hours) 

  MM   MOCBA   EE 

Design vector number   3305  2927  3271 

Value of flexibility ($M)    6.47  7.55  11 

Runtime (hours)   2.67  30.91   283.5 

Figure 5.16 shows the cumulative density function of the preferred flexible 

designs resulted from the proposed screening framework, exhaustive enumeration 

and the fixed benchmark design. As can be seen, all the flexible designs can 

reduce the downside risk and capture the upsides opportunities. Decision-makers 

can feed the design(s) to a high-fidelity model to further investigate the design in 

a greater detail. 

 

Figure 5.16: CDFs for preferred trade-off flexible designs for case study two in a 
computer experiment with 300 scenarios, w1=60% and w2=40% 

 Summary 5.7

This case study has proposed and applied an integrated multi-criteria screening 

framework to efficiently explore the solution space of flexible design and 
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management strategies and effectively provide multi-criteria decision-making 

support in complex engineering systems. The proposed methodology is applied to 

the analysis of a real-world, decentralized on-shore LNG supply chain production 

design. The results demonstrate promising improvement in economic lifecycle 

performance by exploiting ideas of flexibility in comparison to a baseline design 

concept developed from standard design and evaluation approaches.  

The results of the case study obtained using the proposed methodology can be 

explained to management, laymen, and policy-making audiences. the flexible 

design solution includes these decision variables: X1, X2, MDC and TV. Once 

the optimum values are obtained, the solution can be explained to laymen and a 

team of experts with diverse backgrounds. The solution suggests that the system 

operator should deploy initially capacity based on the following scenarios: 1) IF 

“the short-term forward looking forecast in year 6 lies in the projected lower 

(pessimistic) band demand with X1 width”, THEN “initial capacity should not be 

deployed and the system operator should wait until demand reaches the amount 

TV of the MDC modular capacity”; 2) IF “the short-term forward looking forecast 

in year 6 lies in the projected base case (most likely) band demand with X2 

width” THEN “Initial capacity=25”; 3) IF “the short-term forward looking 

forecast in year 6 lies in the projected upper (optimistic) band demand with 

X3=1−X1−X2 width” THEN “Initial capacity=50”. The system operator should 

use modular design with capacity MDC and the capacity should be expanded 

every time demand reaches the amount TV of the installed MDC modular 

capacity.  

Observations from the case study show that the screening approach reduces 

significantly computational time as compared to the full exhaustive search (0.1% 
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for MM and 11% for MOCBA). The MM and MOCBA approaches find flexible 

design solutions that recognize 59% and 69% of the value of flexibility identified 

under the full exhaustive search. This may represent a good tradeoff for decision-

makers, depending on the amount of time and computational resources available 

for the analysis. Even if the value of flexibility is only recognized at about two-

thirds the value from the exhaustive, it still represents 61% and 71% performance 

improvements as compared to the benchmark design respectively, which is 

significant given the multi-million dollar investment required. The recommended 

design can then be used for further high fidelity analysis, depending on the 

analyst’s needs.  
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 Conclusion and Future Work Chapter 6

 Introduction 6.1

This research has proposed an integrated multi-criteria screening framework to 

efficiently explore the solution space of flexible design and management 

strategies and effectively provide multi-criteria decision-making support in 

complex engineering systems. The proposed methodology covers two approaches: 

1) a meta-model based screening approach; 2) a computing budget allocation 

based screening approach. For verification purpose, results obtained from these 

screening approaches were compared with the results obtained from the 

exhaustive enumeration. Essentially, the proposed methodology extends an 

existing three-step simulation based analysis for uncertainty and flexibility to 

account for screening and multi-criteria exploration of the flexible design space. 

The significance of the proposed framework is that for the first time, screening 

and multi-criteria approaches have been integrated in the context of flexibility in 

engineering systems design where different types of flexibility exist. To show the 

validity of the methodology, it has been applied to the designs of two variants of a 

real-world on-shore LNG production infrastructure system: a centralized and a 

decentralized one. 

In the first phase of the methodology, problem modeling, attempts were made to 

demonstrate the economic value of flexibility in the long-term design and 

deployment of production facilities subject to demand growth uncertainty. Results 

demonstrated promising improvement on economic lifecycle performances where 

ideas of flexibility are exploited in the different levels of the project domain. This 

approach proves to be superior to a baseline design concept developed from 
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standard design and evaluation approaches. The significance of the approach used 

in the first phase is that it motivates the use of flexibility in engineering design as 

a paradigm to deal with uncertainty affecting the lifecycle performance of 

engineering systems. In this respect, the study represents an argument for a shift 

in the design paradigm, away from the frequent focus on economies of scale and 

on to the development and deployment of unitary large facilities that embody this 

advantage. The concepts introduced in the problem modeling phase are general 

and can be applied to other distributed engineering systems sharing similar 

characteristics. However, consideration of flexibility adds another layer of 

complexity to the analytical problem making the simulation model 

computationally intensive.  

To overcome the computational issue, screening was developed to efficiently 

explore flexible design strategies. Observations on the case studies showed that 

the screening model offers better performance than a full exhaustive search of the 

design space in terms of the number of evaluations required and of the simulation 

runtime, while providing good enough flexible design solutions in terms of 

lifecycle performance evaluation. These findings are significant as this approach 

enables decision-makers and practitioners to explore flexible design strategies at a 

fraction of the computational cost, while finding good enough solutions as 

compared to a full exhaustive search that may require hours, if not days, of 

computations on standard computers. The output from such analysis can then be 

fed into a higher fidelity model, if needed, for the more detailed and subsequent 

phase of the design analysis. 

As decision-making typically involves several objectives, a multi-criteria 

decision-making using trade-space approach was introduced in the following step 
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to further assist the decision-making process. In the proposed methodology, the 

multi-criteria decision-making approach was developed to evaluate flexible 

design strategies subject to different objectives and decision-makers’ preferences. 

The results suggest that when dominant flexible designs are identified and 

classified into number of distinct flexible designs, a better decision-making 

platform is provided than a single criterion analysis. Using a multi-criteria 

decision-making approach hence is significant as generating different design 

solutions based on multiple objectives helps designers avoid starting with point 

designs, and allow them to recognize better design solutions. 

 Main contributions 6.2

This thesis, as a practical evaluation procedure, aims to facilitate the decision-

making process, especially when computational resources are limited and the 

designer must consider multiple decision-making preferences and criteria. The 

proposed three-phase framework can be applied to evaluate flexibility in complex 

engineering systems design. The integrated multi-criteria screening framework 

consists of: 1) developing a simulation framework to evaluate flexibility in 

engineering systems design under uncertainty, accounting for both design 

variables and managerial decision rules; 2) developing a screening models based 

on meta-modeling approach and/or computing budget allocation to lessen the 

computational effort of simulations by balancing exploration and exploitation of 

design space (with some attention given to bottom-up heuristics-based 

simplifications in case study 2); and 3) applying a multi-criteria model to provide 

distinct dominant flexible designs consistent with decision-makers’ preferences. 

The proposed three-phase framework gives guidance to analysts to 1) consider 

flexibility systematically as a value-enhancing paradigm in the face of 
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uncertainty, 2) speed up the analytical process, and 3) account for the fact that 

multiple decision criteria might have to be considered. Essentially, each phase is 

adding value upon each other. This is how the complete value is added, and the 

proposed methodology helps decision-makers make better design decisions, and 

system operators make better decisions in operations. As a result of saving time in 

the analytical process, systems designers and stakeholders can start analyzing the 

flexible system design in detail earlier than when an exhaustive enumeration 

approach is used. In addition, by considering multiple objectives and decision 

makers’ preferences, the flexible design offered by the proposed framework 

would satisfy systems designers and stakeholders’ preferences, and help identify a 

system that represents a good tradeoff between the decision makers’ possibly 

conflicting objectives. 

 Recommendations 6.3

In this thesis, to explore the flexible design space efficiently and effectively two 

screening approaches were proposed: 1) A meta-model based screening approach; 

2) A computing budget allocation based screening approach. Results show that if 

there are less limitations on computational resources, the computing budget 

allocation based can provide good-enough solutions in terms of measuring the 

economic benefits of flexibility. On the other hand, if there are strict limitations 

on computational resources, the meta-model based screening approach can 

provide good-enough solutions using the least computational cost. The exhaustive 

enumeration provides the best results in terms of the Pareto quality. In reality, 

however, this approach can be intractable from a computational standpoint. The 

framework provides the freedom to the decision makers to choose an appropriate 
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screening method subject to the expected accuracy of results, and available 

computational resources. 

Table 6.1 summarizes the results of the two case studies considering for 

illustrative purposes 60% weight for ENPV and 40% weight for standard 

deviation in a computer experiment with 300 scenarios.  

Table 6.1: Summary of results for two case studies considering W1=60% and 
W2=40% in an computer experiment with 300 scenarios 

Case study Criteria  
Exploration of flexible design space 

 
MM 

 
MOCBA 

 
EE 

Centralized LNG 

production system 

Design vector number 
 

601  2305  2592 

Value of flexibility ($M) 
 

5.79  4.66  9.95 

Runtime (hours) 
 

5.00  45.01   495.00 

Decentralized LNG 

production system 

Design vector number  3305  2927  3271 

Value of flexibility ($M)  6.47  7.55  11 

Runtime (hours)  2.67  30.91   283.5 

Results show that in case study one MM has better performance than MOCBA 

while in case study two MOCBA has better performance than MM in terms of 

measuring the value of flexibility, as compared to the value determined by the 

exhaustive enumeration analysis. Results show that MM requires the least amount 

of computational resources among all approaches in two case studies. In sum, the 

choice of design space exploration approaches depends on whether the analyst 

wants to reduce computational burden at the expense of the solution quality, or 

emphasize quality at the expense of additional computational resources. 

In case study one, while MM and MOCBA requiring respectively 1% and 9% of 

the computational runtime, the MM and MOCBA find flexible design solutions 

that recognize 58% and 47% of the value of flexibility identified under the full 

exhaustive search. This may represent a good tradeoff for decision-makers, 
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depending on the amount of time and computational resources available for the 

analysis. Even if the value of flexibility is only recognized at about half the value 

from the exhaustive, it still represents 41% and 33% performance improvements 

as compared to the benchmark design, which is significant given the multi-million 

dollar investment required. Figures 6.1 represents the cumulative density function 

for preferred trade-off flexible designs for case study one in a computer 

experiment with 300 scenarios considering w1=60%, w2=40%.  

 

Figure 6.1: CDFs for preferred trade-off flexible designs for case study one in a 
computer experiment with 300 scenarios, w1=60%, w2=40% 

The analyst can choose a flexible design in terms of different economic 

performance metrics such as ENPV, value at risk, value at gain and standard 

deviation in a multi-criteria decision-making table. The recommended design can 

then be used for further high fidelity analysis, depending on the analyst’s needs. 

In case study two, observations from the case study show that the screening 

approach reduces significantly computational time as compared to the full 

exhaustive search (0.1% for MM and 11% for MOCBA). The MM and MOCBA 

approaches find flexible design solutions that recognize 59% and 69% of the 

value of flexibility identified under the full exhaustive search. This may represent 
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a good tradeoff for decision-makers, depending on the amount of time and 

computational resources available for the analysis. Even if the value of flexibility 

is only recognized at about two-thirds the value from the exhaustive, it still 

represents 60% and 70% performance improvements as compared to the 

benchmark design, which is significant given the multi-million dollar investment 

required.  

Figures 6.2 represents the cumulative density function for preferred trade-off 

flexible designs for case study two in a computer experiment with 300 scenarios 

considering w1=60%, w2=40%. The analyst can choose a flexible design in terms 

of different economic performance metrics such as ENPV, value at risk, value at 

gain and standard deviation in a multi-criteria decision-making table. The 

recommended design can then be used for further high fidelity analysis, 

depending on the analyst’s needs. 

 

Figure 6.2: CDFs for preferred trade-off flexible designs for case study two in a 
computer experiment with 300 scenarios, w1=60% and w2=40% 

 Results validity, limitations and future work 6.4

Results validity, limitations and future work are discussed in this section. 
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6.4.1 Results validity 

Validity of the results is discussed here along the three angles: 1) External 

validity; 2) Internal validity and 3) Reliability.  

The external validity of the results refers to what extent the obtained results can 

be generalized to other contexts and systems. As the literature review in Chapter 2 

shows, the methodology of the three-step simulation based flexibility analysis can 

be applied to different domains, see Table 2.1. As simulation is the core part of 

the proposed screening-based framework, it is reasonable to assume that the 

proposed screening methodology could be applied in different domains as well. 

While the proposed methodology was applied to two variants of an LNG 

infrastructure system to provide support to the above claim, more work is needed 

to fully validate and guarantee generalizability of the proposed framework, and to 

determine to what extent it generalizes to other classes of engineering systems. 

Internal validity is discussed here to show how one can trust the procedure and the 

cause and effect relationships represented in the proposed framework. Essentially, 

flexibility is worthwhile to consider and improves performance, and that the 

proposed framework can do that faster. First, an economic model was developed 

from data collected based on close interactions with industry collaborators, cost 

and market information from publicly available sources, and it was relied on 

standard methods used for analysis (simulation, optimization, DCF). Second, the 

speed of the proposed approach using the same computer for all experiments and 

across all three methods (MM, MOCBA, and EE) were compared.  

Reliability of the results is discussed here to show how repeatable the experiments 

are. The same underlying assumptions for the simulation processes were used 
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when all three methods were compared and a large set of simulation samples were 

used, thus reinforcing the statistical validity. 

6.4.2 Limitations and future work 

Although the proposed multi-criteria screening framework has addressed the 

identified research gaps in the literature, several interesting and challenging 

directions remain to be considered for future extensions. 

Problem modeling 

In the problem modeling phase, the demand sites and location of the plants are 

assumed to be pre-decided. These considerations determine the distances between 

plants and demand points and thus further determine the transportation costs. 

Hence, one possible future research direction is to extend the strategic decisions 

to determine the optimal plant set-up, namely identifying a location based on 

observed LNG demand in many candidate production sites. This is closer to how, 

in reality, plant investment decisions are made. Also, set-covering principles from 

operations research area may be employed to address this problem. Another 

possible avenue for future work is to extend the strategic level decisions of the 

problem so that the location of the facility can be decided in this phase. 

While the proposed multi-criteria screening framework was applied to LNG 

production system design, it could be applied to other engineering systems with 

different types of flexibility. For the operational flexibility, only the rebalancing 

schema was used; different types of operational screening models could be used 

to efficiently explore the operational solution space.  

The proposed  framework is developed to address the computational complexity 

associated with exploring large number of flexible design solutions for complex 
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engineering systems, which is already motivated in the literature focusing on 

flexibility in engineering design (e.g. Lin, de Weck et al. (2012)). In this study, 

only exogenous market-related uncertainty is considered, while other uncertainty 

sources can also be considered in the simulation model. When the number of 

uncertainty factors increases, the computational complexity of the simulation 

model increases as well. As a result, the enumeration of different flexible designs 

can be computationally intensive or even intractable when simulating each 

flexible design, which may take several hours if not days. Therefore, the increased 

computational complexity even further motivates us to apply meta-modeling and 

computing budget allocation based screening approaches, especially when the 

computational resources are limited. An extensive study considering multiple 

uncertainty sources and real option strategies can be considered as an opportunity 

for future improvement and work.  

It was also assumed that the number of design vector combinations was of a size 

such that an exhaustive search was still feasible – even though taking days of 

computations. In many complex systems, however, exhaustive search could be 

computationally intractable. To address this issue, an optimization mechanism 

could be coupled with a meta-modeling approach to overcome the combinatorial 

complexity of the flexible design space. In other words, the design space with 

different types of flexibility can be combinatorial, and combinatorial space grows 

large easily. Therefore evolutionary algorithms such as genetic algorithm and 

scatter search among others could be used to augment the current framework to 

efficiently explore large number of flexible design solutions.   

Meta- modeling approach 
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In the meta-model approach, while the multi-criteria phase was done sequentially 

after the screening phase in this research, by merging the screening phase and 

multi-criteria decision-making technique, the results of the trade-off solutions 

could be further improved. The current meta-model based screening approach 

samples from the design space to separately improve the response surface for each 

objective function (i.e. ENPV or standard deviation). In multi-objective 

optimization, however, samples should be drawn from the design space to 

improve the trade-off flexible solutions with respect to different objectives. 

Hence, a multi-objective version of the meta-modeling approach could be applied 

in the future research to improve the Pareto front solutions. Although a Kriging 

meta-model in the DACE model for deterministic simulation was used in this 

study, further research is required to investigate the application of the stochastic 

version of the Kriging meta-model for current stochastic simulation for 

uncertainty and flexibility.  

Computing budget allocation approach  

Furthermore, the current computing budget allocation analysis requires a 

predefined set of input parameters and these parameters need to be fine-tuned for 

better performance. More work may focus on exploring other combinations of 

parameters, and determine how this may affect the results. While a heuristic 

multi-objective computing budget allocation based screening model was 

developed in this study, an optimal computing budget allocation (OCBA) can be 

applied to see the effects of the optimal simulation budget allocation feature. 

Essentially in OCBA, an optimal ratio is defined and calculated to determine the 

optimal simulation budget allocation for stochastic simulations, at each iteration 

of the algorithm.  
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Appendix A: Multi-Criteria Decision-Making Table for 

Case Study I 

α=1 
 

on-shore LNG production system design 
        

  
Fixed 

design 
 
Flexible 1: no move 

 
Flexible 2: with move 

 
Best design 

 

Value of 

flexibility 

   
Learning rate 

 
Learning rate 

 
Learning rate 

 
Learning rate 

Criteria 
 

(25 tpd) 
 

0% 10% 20% 
 

0% 10% 20% 
 

0% 10% 20% 
 

0% 10% 20% 

ENPV 
 

0.87 
 
20.69 36.93 50.92 

 
23.29 43.17 59.00 

 
Flexible 2 Flexible 2 Flexible 2 

 
22.42 42.31 58.13 

VaR 
 

0.89 
 

5.40 10.82 15.71 
 

3.74 11.06 16.47 
 
Flexible 1 Flexible 2 Flexible 2 

 
4.51 10.17 15.58 

VaG 
 

0.89 
 
34.54 63.17 85.65 

 
45.78 80.09 108.29 

 
Flexible 2 Flexible 2 Flexible 2 

 
44.90 79.20 107.41 

STD 
 

0.14 
 
10.57 18.91 25.30 

 
15.79 25.31 33.35 

 
Fixed Fixed Fixed 

 
0.00 0.00 0.00 

Capex 
 

25.00 
 
27.50 27.50 27.50 

 
27.5 27.5 27.5 

 
Fixed Fixed Fixed 

 
N/A N/A N/A 

 

α=0.90 
 

on-shore LNG production system design 
        

  
Fixed 

design 
 
Flexible 1: no move 

 
Flexible 2: with move 

 
Best design 

 
Value of flexibility 

   
Learning rate 

 
Learning rate 

 
Learning rate 

 
Learning rate 

Criteria 
 
(125 tpd) 

 
0% 10% 20% 

 
0% 10% 20% 

 
0% 10% 20% 

 
0% 10% 20% 

ENPV 
 

36.76 
 
20.69 36.93 50.92 

 
23.29 43.17 59.00 

 
Fixed Flexible 2 Flexible 2 

 
0.00 6.41 22.24 

VaR 
 

2.66 
 

5.40 10.82 15.71 
 

3.74 11.06 16.47 
 
Flexible 1 Flexible 2 Flexible 2 

 
2.73 8.40 13.80 

VaG 
 

59.18 
 
34.54 63.17 85.65 

 
45.78 80.09 108.29 

 
Fixed Flexible 2 Flexible 2 

 
0.00 20.90 49.11 

STD 
 

23.32 
 
10.57 18.91 25.30 

 
15.79 25.31 33.35 

 
Flexible 1 Flexible 1 Fixed 

 
12.75 4.42 0.00 

Capex 77.13 
 
27.50 27.50 27.50 

 
27.5 27.5 27.5 

 
Flexible Flexible Flexible 

 
N/A N/A N/A 

 

α=0.85 
 

on-shore LNG production system design 
        

  
Fixed 

design 
 
Flexible 1: no move 

 
Flexible 2: with move 

 
Best design 

 
Value of flexibility 

   
Learning rate 

 
Learning rate 

 
Learning rate 

 
Learning rate 

Criteria 
 
(175 tpd) 

 
0% 10% 20% 

 
0% 10% 20% 

 
0% 10% 20% 

 
0% 10% 20% 

ENPV 
 

60.11 
 
20.69 36.93 50.92 

 
23.29 43.17 59.00 

 
Fixed Fixed Fixed 

 
0.00 0.00 0.00 

VaR 
 

-1.29 
 

5.40 10.82 15.71 
 

3.74 11.06 16.47 
 
Flexible 1 Flexible 2 Flexible 2 

 
6.69 12.35 17.76 

VaG 
 

104.54 
 
34.54 63.17 85.65 

 
45.78 80.09 108.29 

 
Fixed Fixed Flexible 2 

 
0.00 0.00 3.75 

STD 
 

40.03 
 
10.57 18.91 25.30 

 
15.79 25.31 33.35 

 
Flexible 1 Flexible 1 Flexible 1 

 
29.46 21.13 14.73 

Capex 80.65 
 
27.50 27.50 27.50 

 
27.5 27.5 27.5 

 
Flexible Flexible Flexible 

 
N/A N/A N/A 
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Appendix B: Pareto Front for Case Study I 
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Appendix C: Pareto Front for Case Study II 
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Appendix D: Post-Optimality Sensitivity Analysis for 

Case Study I 

Case Study I: Sensitivity Analysis for Solution Obtained using Exhaustive 

Enumeration 

Input 
Variable 

Input Value Output Value of Flexibility ($M) Swing 
($M) 

  Low Base High 
Low Base High 

Flexible Fixed VoF Flexible Fixed VoF Flexible Fixed VoF 

Discount rate 12% 10% 8% 5.20 2.12 3.09 24.22 14.27 9.95 48.33 30.32 18.02 14.93 

Learning rate 0% 0% 5% 24.22 14.27 9.95 24.22 14.27 9.95 33.10 14.54 18.57 8.62 

Sharpness 

volatility 
45% 70% 95% 25.31 16.49 8.83 24.22 14.27 9.95 21.69 10.06 11.63 2.80 

 

Case Study I: Sensitivity Analysis for Solution Obtained using Meta-Model 

Input 
Variable 

Input Value Output Value of Flexibility ($M) 
Swing 
($M) Low Base High 

Low Base High 

Flexible Fixed VoF Flexible Fixed VoF Flexible Fixed VoF 

Discount rate 12% 10% 8% 3.84 2.11 1.74 20.06 14.27 5.79 39.93 30.20 9.73 8.00 

Learning rate 0% 0% 5% 20.06 14.27 5.79 20.06 14.27 5.79 27.46 14.64 12.82 7.03 

Sharpness 
volatility 

45% 70% 95% 20.64 16.46 4.18 20.06 14.27 5.79 17.40 10.40 7.00 2.82 

 

Case Study I: Sensitivity Analysis for Solution Obtained using Computing Budget 

Allocation 

Input 
Variable 

Input Value Output Value of Flexibility ($M) 
Swing 
($M) Low Base High 

Low Base High 

Flexible Fixed VoF Flexible Fixed VoF Flexible Fixed VoF 

Discount rate 12% 10% 8% 2.34 1.81 0.53 21.24 16.49 4.75 42.43 30.19 12.24 11.71 

Learning rate 0% 0% 5% 21.24 16.49 4.75 21.24 16.49 4.75 29.49 14.72 14.77 10.02 

Sharpness 

volatility 
45% 70% 95% 19.80 16.59 3.21 21.24 16.49 4.75 16.81 10.34 6.47 3.26 
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Appendix E: Post-Optimality Sensitivity Analysis for 

Case Study II 

Case Study II: Sensitivity Analysis for Solution Obtained using Exhaustive 

Enumeration 

Input 
Variable 

Input Value Output Value of Flexibility ($M) 
Swing  
($M) Low Base High 

Low Base Case High 

Flexible Fixed VoF Flexible Fixed VoF Flexible Fixed VoF 

Sharpness 
volatility 

45% 70% 95% 22.84 17.40 5.44 21.56 10.56 11.00 20.77 3.48 17.29 11.85 

Learning rate 5% 10% 15% 18.06 11.31 6.76 21.56 10.56 11.00 23.94 10.95 12.99 6.23 

Discount rate 8% 10% 12% 43.97 36.49 7.48 21.56 10.56 11.00 4.66 -8.83 13.50 6.02 

 

Case Study II: Sensitivity Analysis for Solution Obtained using Meta-Model 

Input 
Variable 

Input Value Output Value of Flexibility ($M) 
Swing  
($M) Low Base High 

Low Base High 

Flexible Fixed VoF Flexible Fixed VoF Flexible Fixed VoF 

Sharpness 
volatility 

45% 70% 95% 19.44 17.36 2.08 17.03 10.56 6.47 18.94 4.23 14.71 12.63 

Discount rate 8% 10% 12% 39.39 36.97 2.43 17.03 10.56 6.47 3.89 -7.98 11.88 9.45 

Learning rate 5% 10% 15% 16.10 10.60 5.50 17.03 10.56 6.47 20.63 10.95 9.68 4.18 

 

Case Study II: Sensitivity Analysis for Solution Obtained using Computing Budget 

Allocation 

Input 
Variable 

Input Value Output Value of Flexibility ($M) 
Swing  
($M) Low Base High 

Low Base High 

Flexible Fixed VoF Flexible Fixed VoF Flexible Fixed VoF 

Sharpness 
volatility 

45% 70% 95% 17.79 17.42 0.37 18.11 10.56 7.55 18.31 2.30 16.02 15.65 

Discount rate 8% 10% 12% 38.73 37.15 1.58 18.11 10.56 7.55 2.20 -8.46 10.67 9.09 

Learning rate 5% 10% 15% 15.16 11.04 4.11 18.11 10.56 7.55 19.64 11.21 8.43 4.32 
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Appendix F: Mathematical representation of the DCF 

model for Case Study I 

To have a better understanding of the detailed relations among the components of 

the simulation model for case study I, a mathematical representation of the DCF 

model is presented. First, a deterministic DCF model is built and then by taking 

uncertainty into account the DCF model under uncertainty is proposed. Finally, 

by incorporating decision rules into the DCF model under uncertainty, the flexible 

DCF model is presented. Table 1 shows the solution representation of the flexible 

design for case study 1. 

Table 1: Solution representation of the flexible design for case study I 

InCap MDC MsiteTV MoveTV Cover DsiteTV 

 

Decision rules, design variables 

&'��(���� Initial capacity of LNG at the main production site (tpd) 

+�� Modular design capacity of LNG used in the system design (tpd) 

+���� ! Percentage of the modular design capacity for capacity expansion 

decision rule used at the main production site (%) 

+��� ! Percentage of the modular design capacity to consider the time for 

the first capacity deployment at demand sites in the relevant 

decision rule embedded at each demand site (%) 

����� The coverage distance from the main production site where 

demand sites located beyond this coverage distance are considered 

for the first capacity deployment in the relevant decision rule 

embedded at each demand site (%) 
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����� ! Percentage of the modular design capacity for capacity expansion 

decision rule used at the demand site with installed capacity (%) 

�������,�,� Capacity of LNG at the main production in year t under demand 

scenario s (tpd) 

����,�,� Capacity of LNG at the demand site l in year t under demand 

scenario s (tpd) 

#1�,�,� Sale quantity of LNG for the demand site l in year t under demand 

scenario s (tpd) 

Equation 1 shows how the margin of selling one unit LNG is calculated. In this 

function, an escalation factor (ESCF) is used to consider the increasing trend of 

selling price (SP) and gas purchase (GP) during the entire study period, where it 

is assumed to be 3% per year. 

+��Æ�'� = "#�$ × 8#�� − %��; (1) 

The capacity expansion decision rule embedded at the main production site is 

presented in equation 2, where the DRMEXP shows the decision rule for the main 

production site capacity expansion. The decision rule takes value 1 if the realized 

aggregate demand at main production site in year t under demand scenario s is 

greater than or equal to the threshold value MsiteTV multiplied by the modular 

capacity MDC, where RAD is the realized aggregate demand. Otherwise the 

decision rule takes value zero.  

�*+"v�����,�,� = Ç1 If	*������,�,� ≥ 8+���� ! ×+��;			∀	�, �	0 Otherwise  (2) 

At the main production site, time to build for the first plant is 3 years while one 

decides to expand capacity in year t, extra capacity will be available for 

production in year t+1. 

The first capacity deployment at demand site l is presented in equation 3, where 

DRFCD shows the decision rule for the first capacity deployment. The decision 
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rule takes value 1 if the realized demand at demand site l, in year t under demand 

scenario s is greater than or equal to the threshold value MoveTV multiplied by the 

modular capacity MDC and the distance from the demand site l to the main 

production site is more than or equal to the coverage distance Cover, where *� is 

the realized demand and ����� shows the distance from the main production site 

to the demand site l. Otherwise, the decision rule takes value zero. 

�*$���,�,�
= Ç1 If	88*��,�,� ≥ 8+��� ! ×+��;	�'�	8����� ≥ �����;;				∀	Ê, �, �	0 Otherwise  

(3) 

At demand site l, time to build for the first plant is 2 years while one decides to 

expand capacity at any demand site in year t, extra capacity will be available for 

production in year t+1. 

The capacity expansion decision rule embedded at each demand site is presented 

in equation 4, where DRDEXP shows the capacity expansion decision rule for 

demand sites. The decision rule takes value 1 if the realized demand at demand 

site l, in year t under demand scenario s is greater than or equal to the threshold 

value DsiteTV multiplied by the modular capacity MDC and the capacity of the 

demand site l is bigger than zero. Otherwise, the decision rule takes value zero. 

�*�"v��,�,�
= Ç1 If	88*��,�,� ≥ 8����� ! ×+��;	�'�	f����,�,� > 0i;				∀	Ê, �, �	0 Otherwise  

(4) 

Equation 5 guarantees that sale quantity of LNG at demand site l in year t under 

demand scenario s is less than or equal to the capacity installed at demand site l in 

year t under scenario s.  

#1�,�,� ≤ ����,�,�										∀	Ê, �, � (5) 

The objective function is NPV which is calculated based on discounted cash flow 

of costs and revenues. The general form of the objective function is demonstrated 

in equation 6, where  *�,� shows the total revenue in year t under scenario s,  ��,� 
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shows the total cost in year t under scenario s and ��,� shows the sum of all 

noncash, or book, costs such as depreciation during year t under scenario s. 

Essentially in equation 6 an After Tax Cash Flows (ATCFs) analysis is used in 

place of a Before Tax Cash Flows (BTCFs) approach by including expenses (or 

savings) to income taxes and then making equivalent worth calculations using the 

after-tax MARR (Sullivan, Wicks et al. 2009). 

>�!� =�81 −  �2;f *�,� −  ��,�i +  �2	��,�81 + �;�
,
�R4 					∀	�				 (6) 

Equation 7 calculates the total revenue obtained by selling LNG in year t under 

scenarios s and the salvage value of the design alternative.  

 *�,� =�#1�,�,� ×+��Æ�'� 					∀	�, �C
�R4  (7) 

Equation 8 shows the components of the total cost including the CAPEX, OPEX 

and transportation cost in year t under scenario s, where  *>��,� is the total 

transportation cost in year t under scenario s.  

 ��,� = ���"v�,� + .�"v�,� +  *>��,� (8) 

Equation 9 is considered to calculate the CAPEX of the project in year t=0 under 

scenario s while equation 10 is considered to calculate the CAPEX of the project 

in year t under scenario s. 

���"v�,� = Ë&'��(����+�� Ì × ���"v��Í 		∀	� = 0, � (9) 

 

���"v�,� = f�*+"v�����,�,� 	× ���"v��Íi	
																			+�f�*$���,�,� + 	�*�"v��,�,�i × ���"v��ÍC

�R4 					∀	� > 0, � 
(10) 
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Equation 11 is considered to calculate the operational cost of the project in year t 

under scenario s, where ����,�,� is the capacity in demand site l in year t under 

scenario s. 

.�"v�,� = Ë�������,�,�+�� Ì × .�"v��Í	
																	+�8Ë����,�,�+�� ÌC

�R4 × .�"v��Í;					∀	�, � 

(11) 

Equation 12 represents how the transportation cost is calculated, where �� is the 

cost of transporting one tone of LNG from the main production site to demand 

site l in year t under scenario s. The equation indicates that when new production 

facility is deployed at demand site, the corresponding transportation cost 

decreases as the demand is met by the LNG produced at the same demand site. 

 *>��,� =�8��280, #1�,�,� − ����,�,�; × ��C
�R4 ;				∀	�, � (12) 

To generate the distribution of NPV outcomes, Monte Carlo simulation, which 

allows one to consider a large enough number of scenarios (e.g. 2000), is used. 
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Appendix G: Mathematical representation of the DCF 

model for Case Study II 

To have a better understanding of detailed relations among the components of the 

simulation model for case study II, a mathematical representation of the DCF is 

presented. First, a deterministic DCF model is built and then by taking uncertainty 

into account the DCF model under uncertainty is proposed. Finally, by 

incorporating decision rules into the DCF model under uncertainty the flexible 

DCF model is presented. Table 1 shows the solution representation of the flexible 

design for case study II. 

Table 1: Solution representation of the flexible design for case study II 

X1 X2 MDC  TV 

Decision rules and design variables 

&'��(� Initial capacity of LNG at demand site l (tpd) 

#�$�,�,� Short-term forward looking demand forecast at demand site l in 

year t under scenario s (tpd) 

*��,�,� Realized demand at demand site l in year t under scenario s (tpd) 

+�� Modular design capacity of LNG used in the system design (tpd) 

 !� Percentage of the modular design capacity for capacity expansion 

decision rule used at demand site l (%) 

3#��,�,� Unused capacity at demand site l in year t under scenario s (tpd) 

3+��,�,� Unmet demand at demand site l in year t under scenario s (ton) 

2,�,�,� Amount of LNG to be transferred from demand site i with unused 

capacity to demand site j with unmet demand in year t under 

scenario s (tpd) 
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����,�,� Capacity of LNG production facility at demand site l in year t 

under scenario s (tpd) 

#1�,�,� Sale quantity of LNG facility for the demand site l in year t under 

demand scenario s (tpd) 

 *#��,� Total transportation cost incurred by enabling operational 

flexibility in year t under scenarios s 

 *.�,� Total revenue generated by enabling operational flexibility in year 

t under scenario s 

 �.�,�  Total cost incurred by enabling operational flexibility, comprising 

total gas purchase cost and transportation cost, in year t under 

scenario s 

!�.�,� The value added by enabling operational flexibility in year t under 

demand scenario s  

Equation 1 shows the three decision rules used in the simulation model that are as 

follows: 1) IF “realized demand in year of forecast t <= bound 1” THEN “Initial 

capacity = 0”; 2) IF “realized demand in year of forecast t > bound 1” AND 

“realized demand in year of forecast t <= bound 2” THEN “Initial capacity = 25”; 

and 3) IF “realized demand in year of forecast t > bound 2” THEN “Initial 

capacity = 50”, where bound 1, bound 2 and year of forecast t are parameters of 

the decision rules.  

&'��(�,� = Î 0 If	#�$�,� ≤ ��Ï'�1		∀	�, �25	�(� If	8#�$�,� ≥ ��Ï'�1	�'�	50	�(� If	#�$�,� ≥ ��Ï'�2		∀	�, �#�$�,� ≤ ��Ï'�2;∀	Ê, �, � (1) 

Equation 2 shows how the margin of selling one unit LNG is calculated. In this 

function escalation factor (ESCF) is used to consider the increasing trend of 

selling price (SP) and gas purchase (GP) during the entire study period. 
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+��Æ�'� = "#�$ × 8#�� − %��; (2) 

The capacity expansion decision rule embedded at each demand site is presented 

in equation 3, where DRDEXP shows the capacity expansion decision rule for 

demand sites. The decision rule takes value 1 if the realized demand at demand 

site l in year t under demand scenario s is greater than or equal to the threshold 

value TV multiplied by the modular capacity MDC. Otherwise, the decision rule 

takes value zero. 

�*�"v��,�,� = Ç1 If	f*��,�,� ≥  ! ×+��i					∀	Ê, �, �	0 Otherwise  (3) 

Equation 4 guarantees that sale quantity of LNG at demand site l is less than or 

equal to the capacity installed at demand site l in year t under demand scenario s.  

#1�,�,� ≤ ����,�,�						∀	Ê, �, � (4) 

The objective function is NPV which is calculated based on discounted cash flow 

of costs and revenues without considering operational flexibility. General form of 

the objective function is demonstrated in equation 5, where  *�,� and  ��,� show 

the total revenue and total cost respectively in year t under scenarios s and ��,� is 

the sum of all noncash, or book, costs such as depreciation during year t under 

scenario s. Essentially in equation 5 an ATCFs analysis is used in place of a 

BTCFs approach by including expenses (or savings) to income taxes and then 

making equivalent worth calculations using the after-tax MARR (Sullivan, Wicks 

et al. 2009). 

>�!� =�81 −  �2;f *�,� −  ��,�i +  �2	��,�81 + �;�
,
�R4 									∀	�				 (5) 

Equation 6 calculates the total revenue obtained by selling LNG in year t under 

scenarios s.  
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 *�,� =�#1�,�,� ×+��Æ�'� 			∀	�, �C
�R4  (6) 

Equation 7 shows the components of the total cost including the CAPEX, OPEX 

and transportation cost in year t under scenario s, where  *>��,� is the total 

transportation cost in year t under scenario s. 

 ��,� = ���"v�,� + .�"v�,� (7) 

Equation 8 is considered to calculate the CAPEX of the project in year t under 

scenario s. 

���"v�,� =�Ë&'��(�r�Á�Ð+�� Ì × ���"v��ÍC
�R4 	

																			+�f�*�"v��,�,�i × ���"v��ÍC
�R4 					∀	�, � 

(8) 

Equation 9 is considered to calculate the OPEX of the project in year t under 

scenario s. 

.�"v�,� =�Ë����,�,�+�� Ì × .�"v��Í 			C
�R4 	∀	�, � (9) 

The objective of operational planning is to minimize the total transportation cost 

that leads to maximizing the added value of the system design, which is termed 

the added value of flexibility. Let m-plant equal the locations with unused 

capacity (supply) and the n-plant with unmet demand (demand). Let USCi,t,s  ≥ 0, 

i= 1, 2,…, m be the amount of capacity idle at the ith plant from a set of plants 

with unused capacity in year t under scenario s. Similarly, let UMDj,t,s  ≥ 0, j= 1, 

2,…,n be the amount of demand required at the jth plant from a set of plants with 

unmet demand. Assume the cost of transporting one unit of LNG (i.e., one ton) 

from ith supply to jth demand site be Ci,j, in terms of i=1,2, …,m and j=1,2,….n. If 

xi,j,t,s is the amount of LNG to be transported from ith supply to jth demand point in 



 

196 

year t under scenario s, then the problem is to determine xi,j,t,s so as to minimize 

the following function considering xi,j,t,s ≥ 0 for all values of i and j.  

Equation 10 determines the total transportation cost incurred by enabling 

operational flexibility at time t under demand scenario s. Equation 11 ensures that 

the amount of LNG carried from site i at time t under demand scenario s is equal 

to the available unused capacity. In a similar fashion, equation 12 guarantees that 

the amount of LNG carried to site i at time t under demand scenario s is equal to 

the amount of unmet demand.  

 *#��,� =��2,�,�,��,�										∀	� = 1… ,			� = 1…#r
�R4

q
R4  (10) 

�2,� = 3#�,�,�								∀	� = 1…�, � = 1… ,			� = 1…#r
�R4  (11) 

�2,� = 3+��,�,�						∀	� = 1…', � = 1… ,			� = 1…#q
R4  (12) 

Total revenue generated by enabling operational flexibility in year t under 

scenario s, shown as  *.�,�, is calculated using equation 13.  

 *.�,� =��82,�,�,� × #��r
�R4

q
R4 ;					∀	�, � 

(13) 

Total cost incurred by enabling operational flexibility, shown as  �.�,� that 

comprises gas purchase cost and transportation cost, in year t under scenario s is 

calculated using equation 14. 
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 �.�,� =��82,�,�,� × %��r
�R4

q
R4 ; +  *#��,�					∀	�, � 

(14) 

The value added by enabling operational flexibility in year t under demand 

scenario s is calculated using equation 15. It is assumed that operational flexibility 

is enabled in year t under scenario s when such flexibility is worthwhile. 

VAO«,§ = maxf0, *.�,� −  �.�,�i									∀	�, � (15) 

The NPV of the design under demand scenario s is calculated using equation 16. 

To generate the distribution of NPV outcomes, Monte Carlo simulation, which 

allows one to consider a large enough number of scenarios (e.g. 2000), is used. 

>�!� =�81 −  �2;f!�.�,� +  *�,� −  ��,�i +  �2	��,�81 + �;�
,
�R4 									∀	�				 (16) 
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Appendix H: Sample VBA-MATLAB Programming 

Code  

The following Visual Basic Application (VBA)-MATLAB programming code, with 

the help of “Spreadsheet Link EX” interface toolbox, is used to screen the flexible 

design solutions using the meta-model approach for the hypothetical capacity 

expansion problem demonstrated in section 3.4.1.  

 

*More computer programming codes related to the meta-model and computing 

budget allocation based screening approaches for case study I and case study II are 

available for interested readers upon written request. 

 

'Sequential Kriging Method – Efficient Global Optimization 

Sub SKM () 

'Define the variable used in Excel and MATLAB 

Dim i As Integer; Dim j As Integer; Dim temp1 As Double; Dim temp2 As 

Double; Dim doe_no As Integer; Dim samples As Double; Dim stopping As 

Double; Dim rep As Integer; Dim iter As Integer; Dim maximp As Double; Dim 

untried As Double; Dim lastresponse As Double; Dim a, b, c As Variant; Dim 
LB, UB As Double 

'Input data here or can be read from spreadsheet tab "SKM" 

'Lower and upper bound of threshold value 

LB = 0.5 

UB = 0.95 

'No of simulation replication 

rep = Sheets("SKM").Cells(1, 5).Value 

'Stopping criterion for sequential kriging method 

stopping = Sheets("SKM").Cells(1, 2).Value 

'No of samples chosen for initial space filling 

doe_no = Sheets("SKM").Cells(2, 2).Value 

'Sequential kriging counter 

iter = 0 

'Elapsed time of "SKM" process 

a = Timer() 

'Clear MATLAB environment 

    MLevalstring "clear all" 

    MLevalstring "clc" 

    MLevalstring "clf" 

'Put needed variable to MATLAB 

Mlputvar "doe_no", doe_no 
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Mlputvar "LB", LB 

Mlputvar "UB", UB 

'Using Latin Hyper Cube sampling for initial space filling 

MLevalstring "spacefill=LB+lhsdesign(doe_no,1)*(UB-LB)" 

MLevalstring "samples=[1:doe_no]'" 

MLgetmatrix "spacefill", Sheets("SKM").Cells(3 + 1, 2).Address 

MLgetmatrix "samples", Sheets("SKM").Cells(3 + 1, 1).Address 

matlabrequest 

'Conducting simulation considering initial space filling and given replication no. 

    For i = 1 To doe_no 

         Sheets("demand data- 25 tpd - flex").Range("D6") =  

         Sheets("SKM").Cells(3+ i, 2).Value 

        temp1 = 0 

        temp2 = 0 

        For j = 1 To rep 

            Calculate 

            temp1 = temp1 + Sheets("Simulation - flex").Cells(4, 4).Value 

            temp2 = temp2 + Sheets("Graph-Table").Range("N5").Value 

        Next 

        'ENPV 

            Sheets("SKM").Cells(3 + i, 3) = temp1 / rep 

        'Flexibility value 

            Sheets("SKM").Cells(3 + i, 4) = temp2 / rep 

         

    Next 

    'Put the samples and response of simulation to MATLAB 

    Mlputmatrix "S", Sheets("SKM").Range(Cells(3 + 1, 2), Cells(3 + doe_no, 2)) 

    Mlputmatrix "Y", Sheets("SKM").Range(Cells(3 + 1, 4), Cells(3 + doe_no, 4)) 

        

    MLevalstring "[untried maximp]=SKM(S,Y)" 

    MLgetfigure 1, 0.75 

    MLgetmatrix "untried", Sheets("SKM").Cells(2 + iter, 10).Address 

    MLgetmatrix "maximp", Sheets("SKM").Cells(2 + iter, 11).Address 

    matlabrequest 

    untried = Sheets("SKM").Cells(2 + iter, 10).Value 

    maximp = Sheets("SKM").Cells(2 + iter, 11).Value 

    'Start sampling and sequential kriging method 

    Do While maximp >= stopping 



 

200 

        'This means next iteration is needed 

        iter = iter + 1 

        'Add to MATLAB variable Y 

        MLevalstring "S(end+1,:)=untried" 

        'Update values at sheet 

        Sheets("SKM").Cells(3 + doe_no + iter, 1).Value = doe_no + iter 

        Sheets("SKM").Cells(3 + doe_no + iter, 2).Value = untried 

        'Run simulation in a given untried point 

        Sheets("demand data- 25 tpd - flex").Range("D6") = untried 

        temp1 = 0 

        temp2 = 0 

            For j = 1 To rep 

                Calculate 

                temp1 = temp1 + Sheets("Simulation - flex").Cells(4, 4).Value 

                temp2 = temp2 + Sheets("Graph-Table").Range("N5").Value 

            Next 

               'ENPV 

               Sheets("SKM").Cells(3 + doe_no + iter, 3) = temp1 / rep 

               'Flexibility value 

               Sheets("SKM").Cells(3 + doe_no + iter, 4) = temp2 / rep 

               lastresponse = Sheets("SKM").Cells(6 + iter, 4) 

        'Update the response vector in MATLAB 

        MLevalstring "Y(end+1,:)=lastresponse" 

        'refresh matlab for next iteration and update the "S" and "Y" 

        MLevalstring "clear all" 

        MLevalstring "clc" 

        MLevalstring "clf" 

        Mlputmatrix "S", Sheets("SKM").Range(Cells(3 + 1, 2),  

        Cells(3 + doe_no + iter, 2)) 

        Mlputmatrix "Y", Sheets("SKM").Range(Cells(3 + 1, 4),  

        Cells(3 + doe_no + iter, 4)) 

            'Refitting kriging method using the updated "S" and "Y" 

            'MLevalstring "[untried maximp]=SKM(S,Y)" 

            MLevalstring "[untried maximp X P MSE dmodel]=SKM(S,Y)" 

            MLgetfigure 1, 0.75 

            MLgetmatrix "untried", Sheets("SKM").Cells(2 + iter, 10).Address 

            MLgetmatrix "maximp", Sheets("SKM").Cells(2 + iter, 11).Address 

            matlabrequest 
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        untried = Sheets("SKM").Cells(2 + iter, 10).Value 

        maximp = Sheets("SKM").Cells(2 + iter, 11).Value 

        ‘Optimizing the finalized meta-model using "SKM_OPT" 

            If maximp < stopping Then 

                MLevalstring "[Thrld FV]=SKM_OPT(dmodel)" 

                MLgetmatrix "Thrld", Sheets("SKM").Cells(2, 12).Address 

                MLgetmatrix "FV", Sheets("SKM").Cells(2, 13).Address 

                matlabrequest 

            End If 

         

    Loop 

b = Timer() 

c = b - a 

Sheets("SKM").Cells(2, 8).Value = c 

End Sub 

 


