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Summary

Modern high-throughput technologies have undergone continuous innovation,
enabling biologists and clinical scientists to detect functional molecules such
as proteins and metabolites and measure their concentrations in a scale and
coverage that had hardly been imagined a decade ago. Contemporary molecular
biologists are taking advantage of these technological advances to move toward
the new heights: systems biology. Analysis of the resulting data in systems
biology investigations, generated from the state-of-the-art omics technologies,
is not trivial and it can no longer be framed in the conventional line of
statistical analysis pipeline, heavily dominated by multiple hypothesis testing.
Capitalizing on an array of statistical techniques to model the high-dimensional
data, especially from the Bayesian literature, the thesis presents two novel
statistical methods that provide efficient data analysis solution for systems

biologists.

We first present a method termed mapDIA, a comprehensive statistical software
suite for data preprocessing and model-based differential expression analysis
for quantitative proteomics data generated by data independent acquisition
(DIA) mass spectrometry (MS), a newly rising platform of choice in proteomics
that can generate tandem mass spectrometry (MS/MS) data for an unbiased
set of peptides. The analysis is based on a hierarchical Bayesian latent variable

model with Markov random field prior with fast estimation and inference.

Next we developed a method to analyze dynamic gene expression regulation in

time course transcriptomic and proteomic data sets to quantitatively dissect

vil



the contribution of RNA-level and protein-level regulation to the variation
in gene expression. The Bayesian statistical method embodies a mass action-
based model for protein synthesis and degradation rates of individual genes,
and allows statistical inference of change points in the stochastic process of the
kinetic parameters, leading to characterization of gene expression regulation
patterns in the time course profiles. A reversible-jump MCMC sampler is used
to compute the posterior distribution, and the performance of the method has

been evaluated using both simulated and real experimental data.

The two methodologies tackle statistical problems with distinct biological
applications and data complexity, yet both approaches embody hierarchical
Bayes inference of high dimensional models for data sets. Through these
developments, we showcase exemplary solutions to derive biologically sensible
interpretation of data in non-trivial computational problems posed in systems

biology applications.
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Chapter

Introduction

1.1 Statistical challenges in genomic and proteomic

data analysis

Differential expression analysis using -omics data, such as gene expression microarrays
for mRNA transcripts, DNA copy numbers and methylation, etc, has garnered a large
amount of methodologies in modern statistics literature |10} 15, [16], 24], 30, 50, 61]. During
the early advances in the late 1990s, many statisticians have viewed this as multiple
hypothesis testing problem and seized the opportunity to develop mathematical solutions
to control the overall type I error to a reasonable low bound, i.e. on average. This is
best exemplified by the array of methods to control the family wise error rates or false
discovery rates |4, 18] [64], which is now considered as the most important contributions

of statistics to the field of modern biology.

Another important feature in the high-throughput -omics data is the so-called n < p
problem: small sample size. The dimension of whole genome-wide data sets easily
hovers over 50,000, as most technologies such as DNA-seq and RNA-seq now cover all
known transcripts of genes and the resulting protein isoforms. By contrast, typical group
comparisons in non-clinical, molecular biology problems are based on sample size no
greater than several replicates per group. Hence as the technologies are further refined

and more specific biological hypotheses are tested, far from those model “cancer” data sets



in clinical -omics featuring at least a few tens of samples, the n < p problem only deepens.
Even in these extreme examples of controlled experiments, the procedures to deal with
the false discoveries in multiple testing problems become vulnerable: the base measure of
statistical significance, p-value, cannot be calculated very accurately for various reasons.
For example, many low abundance molecules are known to be prone to measurement
inaccuracy because of masking by larger and abundant contaminants, and this hinders
identification of robust null hypotheses. Hence the robustness of all procedures that adjust
the raw p-values to a higher stringency level (to account for multiple testing) becomes

undermined.

The contribution of Bayesian statistics to this field lies in addressing this issue with
hierarchical Bayes inference |51, 57, 58|, [67], or the equivalent approach in the form of
empirical Bayes |18, [19] 43|, 44], 146, [66]. By formulating probabilistic models on the data
so that the gene specific model parameters, such as mean and variance of log expression
data, follow a global distribution (i.e. prior), the estimation of parameters in an individual
gene naturally incorporates the locale and variability in other genes. Although this
introduces the shrinkage of estimates (e.g. effect sizes such as log fold change) towards the
genome-wide mean and thus incurs bias, it renders the estimates robust against outlier

observations and genuine heterogeneity in biological samples.

However, this thesis is motivated by a few additional challenges that have yet to be
addressed by statistical modeling, which can be summarized: (i) the increasing complexity
in the data structure and (ii) that of biological question being asked. First, the existing
statistical methods make the implicit assumption that each molecule, such as messenger
RNA or protein, is quantified into a single concentration measurement. However, the most
widely used technologies such as next generation sequencing (NGS) and mass spectrometry
(MS) produce the quantitative data summarized at multiple levels. In the case of NGS
applied for mRNAs, each gene can be quantified for annotated transcripts, i.e. assembly

of multiple protein-coding regions (exons). In the case of MS, proteins are detected and



quantified at the level of peptides or their fragments, which are enzymatically digested
fragments of the intact proteins. In other words, these technologies generate the data
at much deeper level, which can effectively be considered as repeated measure of target

molecules.

Second, the biological questions being asked using these technologies are becoming more
complex. Integrative -omics, referring to studies utilizing more than one -omics technologies
to study the dynamics or association between different molecular levels, is becoming
increasingly common. One such area is gene expression regulation at the transcriptional
and translational levels, i.e. the kinetic changes in the regulatory parameters for mRNA
synthesis and degradation, and those for protein synthesis and degradation. This is
indeed an essential question in the systems biology: how do cells find new homeostatic
equilibrium in response to environmental stress? To answer this question, one must
measure concentration changes over a time course at both mRNA and protein levels,
monitoring the input and the output in the central dogma of molecular biology. Analysis
of the resulting dataset, especially phrased in terms of appropriate kinetic parameters of
synthesis and degradation, is not trivial and cannot be formulated as simple hypothesis

testing problem.

These two examples are merely a snippet of much bigger complexity to come in contem-
porary systems biology investigations. More complex biological questions, along with the
quantitative data acquired with ever increasing resolution, will require robust probabilistic
modeling strategies in the near future. In this context, the modeling framework offered
by Bayesian methods, with its powerful sampling-based inference, is an attractive and

reliable toolbox, and this thesis provides an early landscape of those applications.



1.2 Related statistical methodologies

Before we introduce our methods to address these challenges, we first review the sub-
stantial amount of literature on the application of Bayesian hierarchical modeling in
high-throughput genomic data analysis, such as for multiple testing correction |18, 48|

and differential expression analysis |2, [33] 34}, 58] 65].

One of the first empirical Bayesian analysis of expression data was published by Newton
et al. (2001) [47]. The authors worked on preprocessed, two-channel microarray data,
highlighting the drawbacks of the naive fold change estimator R/G, obtained from each
gene’s intensity measurements R (red) and G (green) in the two color channels on a
spotted cDNA microarray. The proposed empirical bayes estimate of fold change was
(R+v)/(G +v) where the value of the statistic ¥ depends on sources of variation affecting
the intensity measurements and is calculated from data on the gene set. The authors
showed by simulation how this estimator has improved the ranking of genes and reduced
mean squared error. The authors also presented a bayesian hierarchical mixture model
to address the problem of testing for significant differential expression. The simulation
results seem to show the effectiveness of this bayesian hierarchical model that does not
require Markov chain Monte Carlo methods. Similarly, our bayesian hierarchical model in
chapter [2| will rely on carefully chosen priors to avoid Markov chain Monte Carlo sampling.
The authors further extended the method to allow replicate expression profiles in multiple

mRNA populations in Kendziorski et al. (2003) [35].

Efron et al. (2001) [I8] proposes a nonparametric empirical bayesian mixture model
to analyse differential expression. This model eliminates the problems associated with
parametric modeling. This analysis makes use of permutation to estimate a null distri-
bution, and takes advantage of the large number of genes for the nonparametric density
estimate. However, it can be problematic when there is an insufficient number of replicate

(microarray) plates. Further, this paper was the first to associate a gene’s posterior



probabilities of equal expression to the rates of false discovery in a gene set.

Newton et al. (2004) [48] describes the dual role of posterior probabilities in the context
of multiple testing for differential gene expression. Consider gene g from a large set of
genes. By applying Bayesian or empirical Bayesian methods in the analysis of the gene
set will yield the posterior probability of gene g being equally expressed, 3,. Genes that
are evidently differentially expressed will have the smallest values of 5, and get on the list
of discoveries. The duality is that a small 3, is the ticket with which gene ¢ gets on this
list; at the same time (3, is the chance that the placement of gene g on the list is a false

discovery.

Consider a list of discoveries containing all genes having values 3, less than some bound

k. Given the data, the expected number of false discoveries is

By 1By < ]
~N Y

error rate discovery

Clr) =) _

since f3, is the conditional probability that placing gene g on the list creates a type I
error. The false discovery rate is %, with > 1[8, < k| being the size of the list.

Using the direct posterior probability approach [48], x < 1 is set as large as possible

satisfying = ?(“) < « so that we can obtain the largest possible list of discoveries while
g

32 1By <k]
bounding the rate of false discoveries by a. This idea is not new but is evident in the
recent and fruitful literature on FDR. In Efron et al. (2001) [18], 5, was called the local
false discovery rate because it measured the conditional type I error rate for gene g; the
ranking of genes by 3, and the formation of a gene list with level « FDR would give the
same thing as if the Storey (2003) [64] g-value method was applied to the S, themselves

and if we formed the list of genes for which these g-values are bounded by «. The direct

posterior probability approach will be adopted in the next two chapters.

Wei and Li (2007) [74] describes the use of Markov random field [36] for identifying the

subnetworks that show differential expression patterns between two conditions by utilizing



the network structure information. Consider the problem of identifying genes which
are differentially expressed given microarray gene expression profiling data under two
experimental conditions. Let y; = (Yi1, Yi2s - - - » Yim' Yitm+1)s Yi(m+2)» - - - » Yi(m+n)) denote
the observed mRNA expression level of gene ¢ composed of the first m replicates under

condition 1 and the next n replicates under condition 2. The hypothesis test of interest is
Hig : i = pa,

where ji; is the mean expression level of the ¢th gene under condition k. Let x; be the

state of gene i,

1 if gene i is differentially expressed (p1; # po;)
€T; =

0 otherwise (u1; = ;).

Using the gamma-gamma model with Gamma(shape=a, Scale:l%) as the likelihood and
setting the prior of uﬁ as Gamma(shape=ay, scale=v) for gene expression data [35], 47|,
the conditional density for gene i is

(TT2" i)™
(y + yi.m>ma+a0<y + yi.n)na+a0 )

(TT72" i)™

(l/ + Yim + yi.n)(er")a“‘O ’

f(yﬂ% = 1) =K K>

f(}’i|$i = O) =K



where

Yim = Z Yij,
j=1
m+n

Yin = Z Yij,
j=m+1
v*I'(ma + ap)

I () (ag)
vl (na + ag)

(@)l (ag)
K vl ((m+n)a + ap)

I (a)T(ao)

K1:

KQI

Note that the model parameters are «, the shape parameter of the gamma distribution of
the gene expression level and (ag, ) the shape and scale parameters of the gamma prior
of l% Using this model will require « to be fixed at some “suitable values”. In Chapter ,
we will use the log normal-normal inverse gamma model as it allows for all likelihood
parameters to be assigned a prior and thus avoiding the need to plug in an arbitrary
value. The authors applied their model to two real datasets and demonstrated that the
procedure is more sensitive in identifying the differentially expressed genes than those

procedures that do not utilize the pathway structure information.

1.3 Outline

As stated earlier, this thesis consists of two chapters, each addressing statistical problems

associated with different experiments.

Chapter [2| adapted from Teo et al [68] describe a software package mapDIA for sta-
tistical analysis of differential expression using tandem mass spectrometry (MS/MS)
fragment-level quantitative data. mapDIA offers a series of tools for essential data pre-

processing, including a novel retention time-based normalization method and multiple



peptide/fragment selection steps. Using the preprocessed data, mapDIA provides hier-
archical model-based statistical significance analysis for multi-group comparisons under

representative experimental designs.

Chapter 3| adapted from Teo et al [69] presents a statistical method based on a mass
action-based model for protein synthesis and degradation rates of individual genes, and
change points in the stochastic process of the kinetic parameters are derived to identify
distinct patterns of regulation of gene expression in time course profiles. A sampling-based
inference procedure using Markov chain Monte Carlo is implemented and the posterior
probabilities of change points in the ratio of protein synthesis and degradation are used

to control the Bayesian false discovery rate.



Chapter

Preprocessing and Statistical Analysis of
Quantitative Proteomics Data from Data
Independent Acquisition Mass

Spectrometry

2.1 Significance analysis of quantitative proteomic

data

The data dependent acquisition (DDA) mode of analysis is the prevailing platform of mass
spectrometry—basedE] shotgunE] proteomicsﬂ In the DDA mode, more abundant precursor

peptideﬂ ionsﬂ are preferentially isolated and fragmented to generate MS/ Mﬂﬂ spectra.

YAdapted with permission from Teo et al, “mapDIA: Preprocessing and statistical analysis of quan-
titative proteomics data from data independent acquisition mass spectrometry ,” J. Proteomics, 2015;
Copyright (2015) Elsevier.

! Mass spectrometry: A technique for determining the exact mass of every peptide present in a sample
of purified protein or protein mixture.

2Shotgun proteomics identifies proteins from tandem mass spectra of their proteolytic peptides.
3Proteomics: The large-scale study of the structure and function of proteins.

4Proteins are long polymers of amino acids, peptides are shorter, usually fewer than 50 amino acids
long.

4 . . . o .
°Ion: An atom or molecule carrying an electrical charge, either positive or negative.

6MS/MS (tandem mass spectrometry): This combines two mass spectrometers: one (MS1) for the
detection and selection of precursor ions, which is followed by a second (MS2) for the analysis of fragment



These MS/MS spectra are then computationally analyzed to identify the peptides and
to infer the corresponding proteind] In this strategy, peptides are quantified using the
intensity of the precursor peptide signal detected in the first stage of MS analysis (MS1
intensity). A well-known limitation of the DDA strategy is that precursor selection is
systematically biased in favor of more abundant peptides, which results in inconsistent
quantification of lower abundance peptides across multiple samples. This is particularly
a problem in complex samples where the number of co-eluting species to be sequenced

exceeds the duty cycle of the mass spectrometer.

An alternative mode of analysis, called data independent acquisition (DIA), has the
potential to provide more consistent peptide quantification. In the currently favored
DIA set-ups, the entire mass range relevant to the experimentalist is covered using a
set of wide sequential windows, which allows segmented acquisition of MS/MS fragment
ion spectra for an unbiased set of precursors. All precursor peptide ions within each
window are co-isolated and subjected to fragmentation to produce multiplex MS/MS
spectra. Although DIA had been initially proposed nearly a decade ago [49, [71], it was
not until recently that significant advances in the scan speed and the accuracy of mass
measurements enabled practical implementations of this strategy. One commonly used
DIA strategy, SWATH-MS, was first implemented on a Qq-TOF AB SCIEX instrument
using a sequence of 25 m/z-wide precursor isolation windows (see figure 2.1)[27], and
related methods are now available on MS instruments from other manufacturers, including
on the Thermo Fisher Q Exactive system. A variant of this strategy, called MSX, uses a
stochastic selection of smaller (e.g. 4 m/z wide) precursor isolation windows and has been

shown to reduce the fragment ion interference and increased precursor selectivity [20].

Because virtually every peptide ion is selected for fragmentation, DIA theoretically allows

ion spectra generated from selected precursor ions after collision-induced fragmentation. The information
from the fragment ion spectra is used for peptide identification.

"Protein: Polymer built from amino acids that provides cells with their shape and structure and
performs most of their activities.

10



more consistent peptide detection and quantification across multiple samples resulting
in more complete quantitative coverage (i.e., less missing data). In addition, DIA data

changes the way quantitative data are analyzed compared to the traditional quantitative

4754 .mm“.%. g .”E ...................... g .......................
swath

width :
4509... _ ................ .................. ........................ .......................

A
1200 14

1175+

525 - T

500+

4254

400 -2 . : :

cycle time retention time

Figure 2.1: SWATH MS data-independent acquisition: the data-independent acquisition
method consists of the consecutive acquisition of high resolution, accurate mass fragment
ion spectra during the entire chromatographic elution (retention time) range by repeatedly
stepping through 32 discrete precursor isolation windows of 25-Da width (black double
arrows) across the 400-1200 m/z range. The series of isolation windows acquired for a
given precursor mass range and across the LC is referred to as a “swath” (e.g., series of
the red double arrows). The cycle time is defined as the time required to return to the
acquisition of the same precursor isolation window. Note that the dotted line before the
beginning of each cycle depicts the optional acquisition of a high resolution, accurate
mass survey (MS1) scan. Adapted with permission from Gillet et al, “ Targeted Data
Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New
Concept for Consistent and Accurate Proteome Analysis,” Mol. Cell. Proteomics, 2012;
11(6):1753-68. Copyright (2012) The American Society for Biochemistry and Molecular
Biology.
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DDA proteomics analysis. The volume of quantitative information in the DIA data is
considerably larger than that of the DDA data, since the intensity data can be extracted
not only at the peptide level from MS1 data but also at the MS/MS fragment level (MS2
quantification). The current approaches for DIA data analysis, however, often do not take
full advantage of this extended (fragment level) data and instead aggregate intensities from
fragments to peptide intensities or even protein intensities. At the same time, the fragment
intensity data can be used as an extra layer of valuable information in the sense that
fragment intensities serve as ‘“repeated measures” of the intensity of their parent peptides.
From a statistical point of view, these data immediately create the opportunity to improve
statistical significance analysis from those approaches designed for MS1 peptide intensity
data, since the fragment intensity data provide clues for the reliability or reproducibility
of relative quantification as long as they are on average faithful to the quantitative level of
their parent peptides across the samples being compared. In other words, there are much
more data to work with to draw inferences for protein expression changes per protein

basis in the DIA data.

Nevertheless, the complexity of the DIA data poses numerous challenges to its extraction
and analysis. At present, the default data analysis strategy for DIA data is targeted
quantification using tools such as OpenSWATH [55] and Skyline [42], which depend
on spectral libraries obtained from DDA experiments. This requirement for external
spectral libraries is however not absolute, and can be alleviated using, for example, the
new computational workflow DIA-Umpire that enables untargeted and semi-targeted
identification and quantitative extraction [70]. In either case, the MS2 DIA data may
contain fragments that are shared across multiple co-eluting precursor ions within the
same isolation window, creating a difficult problem for quantification. Furthermore, after
data extraction for each sample, the fragment maps will not necessarily be reproducible
across multiple samples due to fragment ion interference and other sources of noise, and

therefore a reliable set of fragments has to be selected carefully before the statistical

12



analysis is performed.

These challenges have direct ramifications for statistical analysis of large DIA datasets.
Figures [2.2] and 2.3] demonstrate this challenge through real examples of fragment intensity
data in the 14-3-3/ dynamic interactome dataset we will analyze later. In these figures,
the intensity data from a time course experiment with three biological replicates were
transformed into natural log scale and centered by median within each replicate in each
fragment. Figure shows the examples of reliably extracted fragment intensity data
in which most fragments from these peptides are well correlated with one another and
faithfully represent their parent protein abundance (unknown yet can be inferred). By
contrast, Figure 2.3] shows the other side of the reality. Here, MYCBP2 and YWHAB
(14-3-3/3 /) contain a large number of peptides with sufficient fragment intensity data, yet
they both suffer from serious lack of reproducibility within each protein across peptides.
In the case of CYB5R3, the reproducibility within and across samples is fair, yet there
are only two peptides to draw our statistical inference for each protein. The alarming
fact is that these cases are ubiquitous in all SWATH-MS datasets we have analyzed and
are unrelated to the method of extraction. Because different types of challenging cases
(non reproducible peptides; too little data) are simultaneously present in a single dataset,
careful post-extraction processing is rapidly becoming a necessity, especially to preclude

spurious findings to percolate through the final stage of statistical significance analysis.

In this chapter, we present the first comprehensive software package specifically designed
for the fragment intensity data generated in the DIA mode, which tackles the challenges in
two stages: preprocessing and statistical modeling. Most existing statistical software tools
for quantitative proteomics data analysis are amenable for protein or peptide intensity
data, but not fragment intensity data. For example, the DANTE software package
offers regression model-based analysis of peptide intensity data [52]. The MaxQuant-
Perseus packages enable protein quantification via the LFQ (label-free quantification)

or iBAQ (intensity-based, absolute quantification) values and subsequent statistical

13



analysis of these data [12]. The DIA-Umpire tool, specifically developed for DIA data,
implements several approaches for selecting most reproducible fragments and peptides as
part of its procedure for computing protein-level quantification. MSstats (version 2.3.4) is
currently the only statistical software capable of differential expression analysis using the
fragment intensity data, since it was originally written for the S/MRM (selected /multiple
reaction monitoring)ﬂ data [§]. However, whether the regression-based framework currently
implemented in MSstats is adaptive to far more complex DIA data has not been rigorously
examined to date. In particular, as illustrated in Figures and [2.3] the fragment
intensities can vary significantly between (co-)isolated peptide precursors within the
same protein, which may expose the regression model to erroneous quantification and
resulting false discoveries more easily than the S/MRM data that uses specifically isolated
transitions that have been carefully selected by the experimentalists. In light of these
issues and with the number and scope of DIA studies rapidly expanding, it is therefore
of great importance to evaluate the existing options and develop new tools, if necessary,
which will render the statistical significance analysis of fragment-level intensity data as

robust as possible.

8Selected reaction monitoring: This is a sensitive mass spectrometry-based method for targeted
proteomics that is based on the measurement of precursor-fragment ion pairs (transitions) of proteotypic
peptides.
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Figure 2.2: The example of three proteins in which fragment-level intensity data are
highly consistent within each peptide and peptide-level abundances are highly consistent
within the same protein. Each line color corresponds to a unique peptide.
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Figure 2.3: The example of three proteins in which peptide-level abundances are highly
inconsistent within the same protein, with relatively faithful fragment-level intensity data.
Each line color corresponds to a unique peptide.
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2.2 Experimental Procedures

We first introduce key notations for the purpose of clarity. We denote the entire dataset
with all fragments by Y = {ys,}, a F' x S matrix of intensity values for F' fragments in S
samples across all comparison groups. For the purpose of flexible indexing in different
parts of the model, we use bold fonts to indicate vectors and sub-matrices, and regular
fonts to indicate scalars. Specifically, y, denotes the rows in Y that correspond to the
fragments of protein p. Likewise, y, will concomitantly be used to denote the rows
of Y for the fragments of peptide ¢, without specific reference to the protein, and y;
will denote a specific row of Y for the fragment f. When we need to specify a subset
of fragments/peptides in specific samples or groups, we use additional superscripts yfc,
yJ, to denote the sub-vector of y; and the sub-matrix of y, in the comparison group g

respectively. Finally, we use S, to denote the sample index set for group g.

17



2.2.1 Normalization

Once the fragment intensity data are extracted, the first data preprocessing in mapDIA
begins with the normalization of intensity data (Figure ), where the goal is to remove
systematic variations associated with easily identifiable experimental factors. A commonly
used data normalization is scaling by the total intensity sum (TIS), i.e. the sum of
intensities of all detected peak features in each sample. Since mapDIA takes the extracted
data only, we use the sum of all reported fragment intensities as the denominator and
transform the data as: yrs — yys/ Z,le Yns- Following this transform, we multiply a
constant factor to all fragment intensities so that the TIS of the normalized data is equal
to the TIS of the raw data, so that the two data will be in a similar scale of values as the
original data. This global normalization option is suitable when the inter-sample variation

is constant for all peptides/fragments.

To accommodate the situation where the systematic variation fluctuates across the chro-
matographic time or retention time (RT), we developed a local normalization procedure,
termed RT(9) normalization. Let T' = (¢4, ...,tr) denote the retention times of all F' frag-
ments in the dataset (e.g. RT of the apex of the elution profile of each fragment or its precur-
sor). Then the RT(8) normalization transforms the data as: ¥, — yss/ S on_y YnsGs(th—t7),
where gs(-) is the normal density with mean 0 and standard deviation d, and ¢ is the
user-specified RT window for local normalization. Similar to the global TIS normalization,
we multiply a constant to the normalized data to put them back on a comparable scale as
the original data, with the exception that the scaling occurs in each fragment. Note that
the the normalization factor in the RT(d) normalization can change significantly across
the RT axis, and thus the order of absolute abundance within each sample will change
as a result of the normalization. Rescaling data within fragments preserves the order

relatively intact.

It is crucial that the window size J is not too small since an extremely small window
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will cause the scaling factor to be dominated by the intensity of the fragment itself (or
the fragments of the same peptide). On the other hand, a large § will lead to equivalent
outcome to the TIS normalization. In a typical 2-3 hour chromatography gradient, our
current default choice of ¢ ranges from 10 to 30 minutes in proteomics applications
(experiments with >2 hour gradient), which can be decided based on the visualization of
total ion chromatograms of all samples on the same panel. The range of 10 to 30 minutes
empirically resulted in similar and stable normalization in the datasets we have analyzed

so far.

Once the data are normalized, the resulting data are log2 transformed and the intensities for
each fragment will be centered by median. The median centering is performed differently
depending on the experimental design (Figure ): the median is computed across all
the samples for the “Independent Sample” (IS) design, whereas it is computed within each
biological replicate for the “Replicate” (REP) design. See “IS design versus REP design”

in section 2.2.3] below for more details.
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2.2.2 Fragment filtering and selection

The next preprocessing step (Step 2) is a three-tiered fragment selection procedure
(Figure ) Exclusion of noisy or irreproducible fragments is critical for statistical
analysis because data extraction is typically performed in one sample at a time and thus

not all fragments are detected and measured consistently across different samples.

”

(Step 2a) The first filter is for outlier fragment detection. We define “outlier fragmen
as a fragment whose intensity data substantially deviates from the average normalized
intensity of all other fragments within the same protein. To find these fragments, we apply
row-wise median centering to the log-scale data for all fragments in each protein, compute
sample standard deviation of the fragments in each sample, and tag a fragment as outlier
if its intensity is outside a certain bound (default £2sd) in the sample. Note that this

step removes the fragment data in each relevant sample, not across the samples at once.

(Step 2b) The second filter is for searching for the most representative fragments based
on the “average cross-fragment correlation” of quantitative data. Suppose that protein p
contains F), fragments and a F,, X F), correlation matrix is computed between all pairs of
fragments, where the entry in the row a and column b is the Pearson correlation between
y. and y, (fragments a and b). We denote the median correlation of a fragment f by
mfc, where the median is taken over the correlations with all other fragments (excluding
the self correlation), which will serve as the consistency score for the fragment. This
score is stored in a score vector m? = (mf,...,mf, ... ,m%p)’ . After score calculation, the
fragments with mfc < m, are removed by the user specified threshold m,. As a result of
this filter, the fragments that are correlated with the major cross-sample pattern in each
protein will be retained, rendering the statistical analysis more robust than unfiltered
data. In addition, the user can specify the maximum number of fragments per peptide

(K) to keep the number of available fragments balanced for different peptides, where the

top K fragments are selected based on average cross-fragment correlation within each
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peptide. See examples and guidelines for choosing the optimal parameters in the software

user manual.

(Step 2c) The final filter is to set inclusion/exclusion criteria based on the minimum
number of fragments R and peptides () available for each protein. Since our model requires
repeated measurements for each peptide, at least two fragments must be available per
peptide. In our experience so far, there are typically a large number of proteins that will
be quantified by a single peptide, and the decision as to whether these proteins should be
included or not must be made by the user and specified in the input parameter setting
depending on the circumstances. The suggested default threshold values for protein and
peptide-level differential expression (DE) analysis can be found in the example datasets

distributed in the mapDIA package.
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2.2.3 Statistical Model for Differential Expression (DE) analy-

sis

Basic Modeling Framework

Using the preprocessed data, mapDIA proceeds to the DE analysis based on a Bayesian
latent variable model with Markov random field prior, an adaptation of the model described
in Wei and Li [74] with application to genomic data analysis. While our implementation
automatically performs all pairwise comparisons requested by the user, here we illustrate
using a comparison for two groups of samples for the clarity of explanation. We recall
that the data Y were median centered (differently depending on the experimental design),

then the probability model can be written as

P

n(Y|Z) = [ [ n(y,l2) (2.1)

p=1

where the observed data y, for protein p is associated with the latent state z,. z, =1
and z, = 0 indicate that protein p is differentially expressed (DEd) and non-differentially

(equally) expressed (EEd hereafter), respectively. Denoting the two groups in comparison

by ¢ and j,
7T<Yp‘zp =z) = H /¢(Y27Yg’2p = 2,0.)7(0.)do, (2.2)
q€Iy
= H H @(y},yﬁ@]z’p =2,0,)1(0,)do, (2.3)

q€Iy J€Fpq

= H W(yé, yg|zp = Z) (24)

q€Zp

where 7m(6,) denotes the prior distribution of all model parameters for DE status z, and

7, and F,, denote the peptide index for protein p and fragment index for peptide ¢
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respectively. Here o(-) denotes the product of all element-wise Gaussian densities, i.e.

i<, J 1 (yfs_ﬂ )2}
Yz, =1,0) = || II exp § ——
@(Yf Yf‘ P 1) Uf\/% p{ 20_3

ge{l).]} SESQ

@(y}’y;‘zp = 07(—)0) = H 1 exp {_M}
S opV2T 20,

where fragment f is from peptide ¢, ©1 = {(t140, ftq1, %)} and Og = {(yq,02)} in protein
p. The priors and closed form expression of W(yé,yg\zp) for DEd and EEd proteins is

provided in the next two sections.

Prior distributions

The prior distribution for ji44, the average of the all intensities in peptide g group g € {i,j}

and 4, or the average of the all intensities in peptide ¢ group ¢ and j, is conditional on

2

p and is the Gaussian distribution with mean 0 and variance

the variance parameter o

(02 V).

q

The hyperparameter V' is set to 1000 to render this prior to be effectively subjective.

qu|02 ~N (0, 03 V)

pigloe ~N(0,02 - V)

q

The prior distribution for 02, the variance of the all intensities in peptide ¢ group ¢ and 7,
is the inverse gamma distribution with hyperparameters (a, b).

The hyperparameters (a,b) is set to the method of moments estimates of the gamma
distribution based on the sample variance calculated assuming equal means across the

two groups, i.e.:
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2
ZQEQ Sq

first moment, M; =

Q|
2\2
s
second moment, My = %
h t 2- My — M}
shape parameter, 4 = —————
pe p TR
1 ter, b= - Mo
scale parameter, b = ——=
g 7 My — M}

where Sg is the sample variance for peptide ¢, Q is the set of peptides in the data and |Q|

is the number of peptides in the data.

Closed form expression of the marginal likelihood

The closed form expression of 7(y, yJ|zp, ©.) for the EEd case is

YQayq|Zp 0 @0)

/ / oYY g 02)0(11g]0, 02V D (02, b) djrgdo?

W+0%+WV® 1
erumv+1 [(a) (2) (itni)/2
ba

1 2 1 S\ et nitni)/20
54+ (Cerint ¥ — o) Coeyins )

X
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The closed form expression of ﬂ(yé, yg\zp, ©,) for the DEd case is

yq?Yq‘Zp 1 @ )

/ / / (Yol bai, 03) 0 (Y bgs, 02)

X 9(t1qil0, 05V ) (114510, 03V )IG (07 |a, b) dpagsdpug; dor

__ 1 1 T(a+ (n;+ny)/2) 1
VLV 1 T'(a) (2 )2
ba

X

a+(ni+n;)/2’
1 1 1
[b +1 (Zyey; Y = G ) yeys W2 + 2yeyi V2 — G ) (yeyi 9)° )}

where n, = Zyeyg I{y observed} is the number of observed intensities in peptide ¢ group g.

Markov random field (MRF) model, significance scores and FDR

We denote the true (unknown) state by Z, and interpret this as a particular realization of
the random vector Z. Our goal is to recover the true state Z, from the observed data Y
across all comparisons,

Z, = argmax 7(Z|Y) (2.5)

where the joint distribution of Z is approximated by the Markov random field (MRF)
model [5]

7(zp = 2]-) o exp <% B3 1z £ z}) (2.6)

kedp
with dp denoting the set of neighbor proteins of protein p. Note that, if the module
information is not utilized (5 = 0), then the entire model will be equivalent to the mixture
model treating the latent states as independent binary random variables. From the model
above, we can derive the overall optimal solution Zx* or derive the posterior probability

of being DEd (with no module information) as the final protein significance score for
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comparing group ¢ and j:

) e'%ﬂ(y |Z = 1)
—= = 1 == 2 - pA
Sp = 7(2 [¥) enT(yplzp, = 1) + €°m(yp|z, = 0)

(2.7)

Here €71 /(e7 +€70) represents the prior probability of differential expression in the dataset,
i.e. the estimate proportion of DEd proteins. In addition, we provide the posterior odds
0, = m(z, = 1]y)/m(z, = Oly) as a supplemental score (in natural log scale), which is
useful when further prioritization is needed among the high scoring proteins (e.g. among

the proteins scoring §, = 1).

When the module information is utilized, the probability and odds scores are derived in

the same manner by using the approximation

8p = (2, = 1]y, Z(/p)) (2.8)

e’%*B Zkeap(liék)ﬂ'(ypyzp = 17 é(Q/p))

_eryl—BZkeap(l_ék)W(yﬂZp =1, E(Q/p)) + e%—BZkeap 2k7r(yp|zp =0, 2<Q/p)>‘

Once the scores {5,} are computed (omitting groups in the notation), the Bayesian FDR

[48] is computed as

Z§p>s* (1 - §p)

BFDR(s") =
<S ) Z§p>s* 1

(2.10)

Estimation

The model parameters ® = (v, ) are estimated by the iterative conditional maximization

(ICM) algorithm [5] as follows:
1. Obtain an initial estimate Z of the true state Z., using simple two sample t-tests.
2. Estimate ® by the value ® which maximizes the pseudo-likelihood [] » ({2 }is {2 (0p) Yis» @)

3. Carry out a single cycle of ICM based on the current A é, d, to obtain a new Z.
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For p=1,..., P, update z, which maximizes

W(Zply, Q(Q/Z’)) (8 H ﬂ—(yza yg|zpv 9) W(zp|2(5’p)> CD) (211)
q€Zp

4. Go to step 2 until y/ converges.

This estimation is performed simultaneously for all pairwise comparisons specified by the

user {(4,)} and a single set of MRF coefficients is applied to all the comparisons.

IS design versus REP design

The model derivation above is based on the independent sample comparisons (IS design,
Figure )7 where the samples in one group are compared to those in another group. A
good example is the glycoproteomic data we present later, where 2 or 3 samples from each
of 4 different prostate cancer stages are compared in a pairwise manner. In our modeling
scheme, the replicate design (REP design, Figure ) refers to a situation where two or
more conditions are compared within each of the biological samples. An example of REP
design will be shown in the analysis of the dynamic interactome data of 14-3-33, where
the time course expression before and after a certain treatment is monitored within each
of three biological replicates of an affinity purified sample. In the analogy of conventional
hypothesis testing, the IS design corresponds to the t-test for two independent samples,
whereas the REP design corresponds to the t-test for paired samples. mapDIA does
not allow nested replicates in the comparisons, i.e. biological or technical replicates for

individual samples when the comparison is made between groups of samples.

For modelling the data in the REP design, an obvious choice is to derive a similar model
with replicate specific mean parameters and use the resulting marginal likelihood in the
MRF model. However, we discovered that this leads to over-parameterization and usually

performs poorly in small sample datasets. For this reason, we take the approach of
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removing replicate specific averages from the data prior to modeling. Specifically, we
apply median centering within each replicate separately first and analyze the data using
the same model as the IS design. This adjustment efficiently removes the differences in the
baseline intensity levels across different replicates and thus achieves reliable modelling of
the data without the over-parameterization problem mentioned above. Note that, unless
otherwise stated, replicates should be understood as biological replicates, not technical
replicates (repeated MS runs over the same biological specimen), as the variability in such
datasets do not represent the biological variation assumed in the variance component of

the model.
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2.3 Results

2.3.1 Overview of mapDIA workflow

A B signal processing quantification statistiqal
Signal processing and extraction & quantification analysis
rotein X
- Spectral library-based targeted extraction %ypq %ypq %; Yoot —> iﬁtensity —> protein
- Library-free untargeted extraction peptide
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Step 1. Normalization DDA DIA
- No normalization C DE model EE model
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Figure 2.4: (A) The workflow of data processing and analysis using mapDIA. (B)
Protein/peptide quantification possibilities using the data extracted from DDA and DIA
data. (C) A conceptual diagram of the hierarchical model in mapDIA. (D) Experimental
designs accommodated in mapDIA.

Our analysis framework follows a three-step workflow (Steps 1 through 3) as illustrated
in Figure 2.4A. The input data should be obtained from a signal processing software
that extracts peak features, either via targeted extraction of fragment intensities using
spectral libraries (e.g. OpenSWATH, Skyline) [42, 55| or other novel approaches that
do not rely on the spectral libraries (e.g. DIA-Umpire) [70]. The input data are further
processed in two preprocessing steps by mapDIA, namely normalization (Step 1) and

fragment selection (Step 2).
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In the first step, mapDIA offers two optional normalization methods. One approach is
the widely-used procedure of scaling the data by the total intensity sum in each sample
(TIS), which essentially corrects for the variation in the total amount of samples analyzed
per sample load. We developed an alternative procedure that scales intensity data by the
locally weighted intensity sums on the RT axis, which is applied to each fragment in each
sample separately. The latter procedure is more adaptive than the TIS-based universal
normalization in the sense that temporal fluctuations in the chromatography and mass

spectrometry can be adjusted [56].

The next step is fragment filtering and selection. This is a critical step since the data
extraction tools operate on one sample at a time, and as a result the detection rate and
quantification quality is not the same across all reported peptides and fragments. In
mapDIA, there are three-tiered selection thresholds, including (a) standard deviation
tolerance to define outliers, (b) minimum average cross-fragment correlation, and finally
(¢) minimum number of peptides and fragments required for differential expression (DE)

analysis.

The last step (Step 3) is the model-based analysis for selecting differentially expressed
proteins (DEPs). Although mapDIA’s probability model is constructed flexibly enough
to accommodate peptide and protein intensity data (Figure ), we will describe the
model primarily for the analysis of fragment intensity data, uniquely reported from DIA
data. mapDIA embodies a fairly sophisticated Bayesian hierarchical model for multi-group
comparisons, which borrows statistical strength across all proteins in each dataset and
thus confers robustness to the significance analysis, especially when the sample size is
small (e.g. 3 samples per group). By contrast, the existing software package MSstats
fits an independent fixed effects or random effects regression model for each protein and
performs statistical significance inference using p-values with multiple testing correction
[4], which heavily depends on the accurate estimation of fixed effects parameters and

prediction of random effects parameters with a limited number of samples.
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The structure of the probability model for individual proteins in mapDIA is illustrated
in Figure 2.4]C. After proper centering of the log scaled data, each fragment intensity is
considered as repeated measurements of the parent peptide and is modelled by probability
distributions under the differential expression (DE) scenario and equal expression (EE)
scenario respectively. The posterior probability and the posterior odds of DE is reported
as the significance score of the corresponding protein along with the false discovery rate
estimates directly derived from the probabilities [48]. This model is constructed for two
most common experimental designs, namely independent sample comparison (IS design)
and within-replicate comparison (REP design) (Figure 2.4D), adding to the flexibility of

our method to various kinds of experimental data.
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2.3.2 Simulation Study (Default Model)

Key factors in simulation

We performed extensive simulation studies to evaluate the ability of mapDIA to identify
DEPs. Although data preprocessing steps are essential components of mapDIA, the major
goal of this first simulation was to evaluate the performance of the model in comparison
to MSstats [§] in terms of classification of proteins into DEPs and non-DEPs and the
quality of FDR estimation, without the influence of preprocessing steps that could give

mapDIA an unfair advantage.

As discussed in the Introduction, we varied two factors that were deemed to be critical
determinants of performance in our empirical observation over several test datasets. The
first factor is what we dub as the “loyalty” of isolated precursor ions (peptides) to their
parent protein, i.e. the deviation from the underlying protein abundance across the
samples. The second factor is the measurement error or noise in the fragment intensities,
which can be interpreted as the loyalty of the fragments to the abundance of their precursor
peptides. Based on our empirical observations, the loyalty of fragments to their precursor
peptides tended to be better than that of peptides to their precursor proteins. One extra
factor we varied was the amount of data points per protein, which was controlled by the
number of peptides per protein (n,) and the number of fragments per peptide (n,,). At
a fixed value of the first two factors, we would expect that the simulation performance

improve as more data are reported per peptide and per protein basis.

Data generation process

Specifically, we generated log-scaled data for two group comparison (group A and B) from

the following simulation model:

Ypari = ol{p € D, j € Sp} + Tpgj + €pqy; (2.12)
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forp=1,...,1500,¢=1,...,n, f=1,...,n,, and each group had 3 samples. Here
Tpgi ~ N(0,7%) and e,qr; ~ N(0,0?) represent the intensity deviation of peptide ¢ from
the protein abundance in sample 7 and measurement error for fragments, respectively.
The term xy corresponds to the effect size (the magnitude of DE for the protein), the set

D is the set of DEPs, and Sp is the index set for samples in group B.

Figure illustrates how these two factors affect the simulated data, where we assume a
scenario of two group comparison and each group has three samples. Panels A through D
correspond to (7,0) = (0.3,0.3), (0.1,0.3),(0.3,0.2) and (0.1,0.2). In each panel, the log
fragment intensities of each peptide were visualised by the dots of the same color, with
additional lines connecting them across the samples. First, the parameter 7 represents
the variability between peptides, and thus the distance between the dots of different
colors within each sample in the visualized data. Hence for a fixed value of measurement
error o, a small value of 7 reflects good consistency between different peptides (panel B
compared to A, panel D compared to C). On the other hand, the parameter o represents
the measurement error of fragment intensities, and this can be interpreted as the distance
between fragments (dots) of the same color in each sample. Here for a fixed value of peptide
deviation 7, a small value of ¢ reflects good consistency between fragments belonging to

the same peptide (panels C/D compared to A/B).

In all simulation scenarios, we generated 100 datasets and averaged the results to produce
the pseudo receiver operating characteristic (pROC) and FDR accuracy plots, where
pROC is pseudo in the sense that “1-specificity” was replaced by the FDR in the horizontal
axis. Specifically, we created 150 DEPs and 1,350 non-DEPs, where 10% of the proteins
are DEPs in each simulation set. We set the effect size at o = 1 and the noise level at
o =10.2 and 0 = 0.3, and varied 7 between 0.1 and 0.3. Note that the peptide abundance
deviates more from the true protein abundance as 7 increases, i.e. quantification of
peptides becomes less faithful to the underlying protein abundance level in each sample.

In each simulation setup, we mixed proteins containing a different number of peptides
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and fragments (n,, n,,) = (2,3),(2,5), (5,5) per protein in equal proportions .
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Figure 2.5: The example of two proteins across different simulation setting in terms
of the peptide deviation from protein abundance 7 and fragment intensity measurement
error 0. (A) (1,0) = (0.3,0.3). (B) (r,0) = (0.1,0.3). (C) (1,0) = (0.3,0.2). (D)
(1,0) =(0.1,0.2).
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Classification performance and FDR accuracy

In all simulation settings, mapDIA and MSstats showed comparable classification per-
formance in terms of prioritization of proteins. This is demonstrated by the overlapping
pROCs for mapDIA (with no module information) and MSstats in Figures and
[2.6/C. This comparable classification performance was retained even when the peptide
abundance was very inconsistent with protein abundance (7 = 0.3). With regard to the
data volume, as expected, the classification performance improved as the intensity data

were included from more peptides and fragments (data not shown).

However, the accuracy in the FDR estimates was markedly different between mapDIA
and MSstats (Figures and [2.6D, Figure 2.7). In mapDIA, the FDR estimates were
highly accurate when the peptide deviation 7 was below 0.2 (data for 7 < 0.2 not shown
due to overlap), and the error began to be underestimated as 7 increased above 0.2 (green
and red line). Interestingly, the FDR accuracy was more dependent on the ratio of the
two sources of error 7 and ¢ than the sheer magnitude of each parameter. For a fixed level
of peptide deviation 7 = 0.2 or 7 = 0.3 (green line), the FDR estimates were more heavily
underestimated in the critical region (e.g. FDR < 0.1 in Figures and ) when the
ratio 7/ was smaller. This suggests that the peptide deviation 7 becomes much more
influential for the error control in mapDIA when the fragment intensity measurement
error is low, i.e. when the peptide deviation dominates the fragment measurement error.
Note that, however, the data preprocessing steps not factored into this simulation were
implemented to prevent these scenarios, since the filtering Step 2b based on the cross-
fragment correlation score shall remove most fragments from such peptides with large

deviation.

By contrast, MSstats showed unexpected results in terms of error control, with consistent
patterns observed across 100 simulations of various settings. In MSstats, the users are

expected to make the decision to model the data with fixed effects versus mixed effects
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over the biological replicates and/or the MS runs (technical replicates). Since each sample
is an independent MS run in our simulation, there are neither biological nor technical
replicates as defined in the MSstats package. Hence we first assigned different biological
replicate IDs to the samples and ran the analysis with fixed effects for biological replicates
and another analysis with random effects for them (scopeOfBioRep option). We have
also run the analysis with identical biological replicate IDs, but the results were similar.
The option of fixed versus random effects changed the outcome dramatically. Figure
shows the FDR accuracy plots in simulations of the same setting as before, where the
adjusted p-values showed poor control of the FDRs. When the model included random
effects terms, the adjusted p-values were ultra conservative. On the other hand, when the
model included fixed effects terms (currently the default option), the adjusted p-values
were too sensitive, losing control of false discoveries. This phenomenon alarmed us to
investigate this behavior carefully in all the experimental datasets, and this pattern

remained consistent in those datasets as it will be shown later.
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Figure 2.6: Classification performance and FDR accuracy in simulation studies. In each
plot, the fragment intensity measurement error o (“sigma”) was fixed and the peptide
deviation from protein abundance 7 (“tau”) was varied. (A, C) Sensitivity versus FDR
(pseudo-ROC curve) plot and (B, D) FDR accuracy plot for mapDIA (solid) and MSstats
(dashed). For each method, 7 was varied between 0.1 and 0.3 at a fixed value of ¢ (0.2 or

0.3).
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Figure 2.7: Classification performance and FDR accuracy in MSstats. In each plot, the
fragment intensity measurement error o (“sigma”) was fixed and the peptide deviation
from protein abundance 7 (“tau”) was varied. (A, C) Sensitivity versus FDR (pseudo-ROC
curve) plot and (B, D) FDR accuracy plot in MSstats with fixed effects model (dashed)
and random effects model (solid) for different values of 7 ranging from 0.1 to 0.3 at fixed
value of o at 0.2 or 0.3.
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2.3.3 Simulation Study With Module Information

We also evaluated mapDIA assuming a situation where module information is available,
i.e. relational information between proteins. One example would be utilizing existing
protein-protein interaction network (e.g. iRefIndex [53]) or functional modules (e.g. Gene
Ontology [1] or Reactome [14]) in the analysis. Another example is to use peptide-protein
membership as the module information when mapDIA is applied to score individual

peptides, not proteins (shown later in the prostate cancer glycoproteomic data analysis).

In this simulation, we created the most ideal scenario where the module information can
be maximized the most to demonstrate the concept for the purpose of illustration. To do
this, we first created a scale-free network (Figure using the algorithm of Herrera and
Zufiria [31], and verified that the degree of connectivity follows the power law as expected
in such a network (P(k) ~ k729). Next we allocated 150 DEPs in local subnetworks
(see next section) so that the DEPs are network neighbors with one another. Using one
realization of this network generation process, we simulated 100 datasets for DEPs and
non-DEPs the same way as above, and compared the performance of mapDIA with and

without the network (module) information.

As expected from such an ideal setup, the results showed that mapDIA assisted with the
module information through the MRF prior brought significant improvement in the classi-
fication performance and FDR accuracy (Figure . The improvement was pronounced
in proteins with few peptides and fragments, specifically for proteins with 2 peptides and
3 fragments per peptide. There are two caveats here. First, our analysis was conducted
assuming that we have the complete knowledge of the underlying network/module. Second,
the DEPs are often dispersed throughout the entire network in realistic datasets, i.e. not
as concentrated around a subnetwork as in our simulation example. Both properties are
not likely be fulfilled in real applications, and therefore it is expected the performance

improvement will be more moderate than our demonstration. Surprisingly, though, there
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are circumstances where such module information is indeed useful as we show later.
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Figure 2.8: The scale-free network of 1,500 proteins with 150 DEPs concentrated in
localized subnetworks (yellow).

DEPs on the scale-free network

Using the algorithm of Herrera and Zufiria [31], the generation of the 1,500 node network
starts with a circular graph of 11 nodes. Most these 11 nodes are highly connected and
play the role of hubs in the protein interactome. 2 neighbouring nodes from these 11
nodes were arbitrarily selected as DEPs. Next, the neighbors of these 2 nodes were also

set as DEPs. This process was repeated until 150 DEPs were produced.
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Figure 2.9: Classification performance and FDR accuracy in mapDIA. In each plot, the
fragment intensity measurement error o (“sigma”) was fixed and the peptide deviation
from protein abundance 7 (“tau”) was varied. (A, C) Sensitivity versus FDR (pseudo-ROC
curve) plot and (B, D) FDR accuracy plot in mapDIA with module information (solid)
and mapDIA without module information (dashed) for different values of 7 ranging from

0.1 to 0.3 at fixed value of o at 0.2 or 0.3.
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2.3.4 Analysis of 14-3-35 Dynamic Interactome Data

We applied mapDIA to a recently published SWATH-MS dataset by Collins et al [9],
who investigated the 14-3-35 interactome in IGF-stimulated HEK293 cells via affinity
purification-mass spectrometry (AP—MS)E] experiments in a time-resolved manner. The
AP-MS experiments were performed in three biological replicates at six time points: the
PI3K inhibitor LY294002 was added to prevent AKT activation (-60 minute) prior to
IGF1 stimulation (0 minute), and the interactome was followed at four post-treatment
time points (1, 10, 30, and 100 minutes) after IGF1 stimulation. GFP control purifications
were also prepared in triplicates at each of three time points (-60, 0, and 30) to remove
non-specific binders. The SWATH-MS data was extracted using the OpenSWATH tool
based on an existing spectral library as described in [9], which produced the original
data for 1,967 proteins, 16,180 peptides, and 85,545 fragments across all bait and control

purifications.

We performed the data analysis similar to the original paper, where we used mapDIA
(REP design, Figure 2.4D) and MSstats for the purpose of comparison. Since AP-MS
experiments capture contaminants in addition to real interaction partners [7, [17], 28], we
first compared the bait purification versus the control purification at each of the three time
points using mapDIA, and identified proteins significantly enriched in the bait purification
over controls (1% FDR) at one or more time points (648 / 1,967). Using this filtered data,
we performed the DE analysis to compare protein abundance at all time points against

the baseline at IGF1 stimulation (0 minute) using mapDIA and MSstats.

42



>

Replicate 1 Replicate 2 Replicate 3

— « [a\) 3V
>
=
[72] —
e o o o
2
c N (S
= | ] I
S
< < <
o i 1 1
© _| © © | [RY!
L I RN e T T T T
£E E E E E E £E E E E E E
o S - o o o o S - o 9o o
© — ™ (=} © — (&) o
T - T -
Color Key
Histo
B
Total intensity Median correlation 8"
-
> 8 8 boooo -05 0 05 1
%o 8 8 8 Mo RO Value
Ll [ [
g
f7 f7 T3 7
1o C——1 #o O 10
f9 C—1 9 5] 9
f21 O f21 f21
24 /3 24 o 24
22 [ f22 f22
fo5 O 25 i 25
16 O 16 ] 16
20 O 20 0 20
18 18 - 18
117 7 — 17
f19 O f19 C 1 19
134 134 C 1 34
31 31 I — 31
8 8 8
f6 1 f6 L ]
39 3 139 —/J
37 137
136 O 136 1
135 135 ]
38 1 138 L 1
23 3 23 ——
132 132 C 1
11 O f11 C 1
12 f12 ——
13 3 f13 ]
26 26 |
f2 O 2 .
3 0 f3 ]
f1 f1 ]
29 29
130 O 30 1
f27 f27 ]
4 f4 ]
5 0 5 1 R R~ - i —h ———h —h i —h
PR ERR S S IR G IRENEG
02 N G M N T N
Selected fragments
(top K fragments per peptide)
‘ Correlation filter
C Replicate 1 Replicate 2 Replicate 3
N o — AN —
>
=
(7] — | —
2 o o S
2
c C\Il | [V C\Il |
= [}
>
< < | <
o 1 1
© _| © _| © |
T T i

-60m —
10m —
30m —
100m
10m —
30m —
100m
-60m —

Oom —
im -
10m —
30m —
100m

Figure 2.10: (A) The raw data for a sample protein in the 14-3-35 dataset. Fach
black line is the time course trajectory of fragment intensity data in each biological
replicate. The first step detects outliers at each time point within each replicate. Red
boxes indicate the data points outside 2 standard deviation at specific time point in each
sample. The data shown are log-transformed data for all fragments with centering within
each replicate. (B) After removal of outliers, the average cross-fragment correlation (using
all 18 time points/samples) is used to score the fragment reliability. The dashed line 0.2 is
a user-specified correlation threshold. After this filter, a user specified maximum number
of fragments per peptide is selected (K). (C) The threshold 0.2 leads to removal of the
fragments shown in red lines. Following this step, the proteins with at least () peptides
with minimum R fragments are kept for further analysis.
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Fragment Filtering and Selection

Throughout the analysis, we applied 2 standard deviation threshold for outlier detection,
average cross-fragment correlation 0.2 with maximum number of fragment per peptide
K = 5, and at least 1 peptide per protein / 3 fragments per peptide in the fragment
selection step. Since normalization of quantitative data in dynamic conditions can remove
real biological signals [40], we applied no normalization procedure to this dataset. Figure
2.10A shows the outlier detection and removal step in the time course analysis, where
the red boxes indicate the outliers that are removed in the subsequent analysis in specific

samples.

Following this step, for each fragment, the Pearson correlation is computed with all
other fragments within the same protein and the average cross-fragment correlation is
reported as the consistency score for that fragment. The fragments with a cross-fragment
correlation score below the minimal threshold are removed from further analysis (Figure

2 10B-2.10C).

After these two filtering steps, mapDIA analyzes the proteins with at least () peptides
containing at least R fragments for statistical analysis, where () and R are specified by
the user. As a result of this procedure, some outlier observations for 4,025 fragments
were removed in at least one of the 18 samples (3 replicates, 6 time points), and 8,277
fragments (19%) from 495 of 648 proteins were removed as inconsistent fragments for the
analysis. Lastly, 4,232 fragments were further removed by requiring Q = 1, R = 3 and
K =5, which resulted in the final dataset consisting of 31,038 fragments (6,872 peptides)

in 632 proteins.

9 Affinity purification-mass spectrometry: A method for the analysis of protein complexes that combines
purification of protein complexes using affinity reagents and mass spectrometry.
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Differential Expression Analysis in the REP design

Following the fragment selection step, we ran the DE analysis using mapDIA, comparing
pre- and post-treatment time points (-60,1,10,30,100 min) against the time at IGF1
stimulation (0 min). Note that quantitative comparison is made at each of the 5 time
points for 632 proteins (3,151 comparisons in total). In mapDIA, the estimated probability
score associated with the estimated 1% FDR was s* = 0.825 (no module information),
and this threshold gave 1,018 significant comparisons. Here DEP refers to a protein that

was DE in at least one of the five comparisons.

Figure shows the plot of the significance scores against log2 fold change estimated
from the three replicates at all five time points of comparison, showing clear separation
between significant and non-significant comparisons. Here many proteins with absolute
log2 fold change around 0.5 or below (raw fold change 30% increase or decrease) scored near
zero probability. However, there was indeed an increasing tendency to score favorably as
the number of peptides and fragments per protein increases. For example, the classification
calls were very clear cut once the number of fragments per protein reached 30 or so, and
the number of significant comparisons and non-significant ones were evenly distributed
(577/1,370 significant comparisons were from the proteins with >30 fragments). Moreover,
some comparisons were called significant at the target FDR level even with moderate
average log2 fold change. These cases came from the proteins in which clear DE was
observed in two biological replicates across many fragments, but not in third replicate. In
the REP design, mapDIA automatically reports the inter-replicate correlation for each

fragment, with which the user can identify these patterns once scoring is done.

Comparison with MSstats

In order to compare the results above with MSstats, we ran the analysis with all possible

combinations of fixed effects and random effects terms for both biological replicates and
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Figure 2.12: The left panel shows the log2 fold change against time 0 (at IGF simulation).
The right panel shows the posterior probabilites of differential expression against time 0,
with red indicating up-regulation, blue indicating down-regulation.
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technical replicates, which gave us four different analysis outputs. Consistent with our
experience in the simulation datasets, the output gave us two extreme results as far as
the reported p-values are concerned, mostly dependent on the options for the biological
replicates. When random effects were specified for biological replicates, merely 127
comparisons were found to be significant at 1% FDR threshold, whereas 2,244 comparisons
(out of 3,151) were reported to be significant when fixed effects were specified (Figure
). The options for technical replicates only played a minor role, as expected from
the design where the basal intensity levels for the time course for each biological replicates

are expected to vary between biological replicates, rather than across the time points.

When fixed effects for biological replicates were used for comparison in MSstats, the
significant comparisons from mapDIA were completely nested within the selection by
MSstats (1008,/1018), even though the two algorithms reported almost perfectly correlated
log2 fold changes (Figure [2.13B). In fact, when we looked at the proteins called significant
by MSstats but not by mapDIA, the fold change in the majority of these proteins was
40% or less (Figure 2.13(C). When it came to the behavior of p-values as a function of the
number of peptides and fragments, the majority of comparisons in those proteins with
>30 fragments were called statistically significant by MSstats (1,154/1,370 comparisons)
in the data with fixed effects for biological replicates (Figure [2.13D). Taken together, this
finding suggests that the additional comparisons reported by MSstats tended to come from

the pool of proteins with a large number of fragments showing moderate fold changes.

The comparisons called significant in MSstats also tended to come from the proteins
with lower inter-replicate correlations (Figure [2.13[E). This finding indicates that the
time course profile of dynamic changes was inconsistent in the three biological replicates
for these proteins. In addition, as an indirect evidence to show that mapDIA is not
under-powered, we also looked at the enrichment of Akt substrated’| (Akt1/Akt2) in the

top scoring comparisons. Akt is the central kinase in the insulin-IGF1 signalling pathway

10GQubstrate: A molecule on which an enzyme acts.
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which was modulated by the perturbation, and substrates of Akt are well known to bind
14-3-3 proteins at the phosphorylated site. As such, binding of Akt substrates to 14-3-3 is
expected to be significantly modulated by this treatment. The substrate list was extracted
from PhosphoSitePlus [32] and NetworKIN [38] and the comparisons were ordered by
the log odds scores for mapDIA and adjusted p-values for MSstats. Figure 2.13[F clearly
shows that Akt substrates were more enriched in the comparisons prioritized by mapDIA

than that of MSstats.
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Figure 2.13: (A) Significance score versus log2 fold change in MSstats. (B) The reported
log2 fold changes from mapDIA and MSstats. (C) Log2 fold changes for the comparisons
found significant in both softwares (top) and those found significant only in MSstats
(bottom). (D) The trend in significance scores along the number of fragments (represented
by the degrees of freedom in the regression model with fixed effects). (E) Inter-replicate
correlation for the comparisons found significant in both softwares versus those significant
in MSstats only. (F) Akt substrate enrichment in the top K comparisons in mapDIA and
MSstats.
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2.3.5 Analysis of Prostate Cancer Glycoproteomics Data

We next analyzed a published glycoproteomics dataset of prostate cancer samples with
varying tumor aggressiveness [39]. In this study, N-linked glycopeptides were isolated from
10 normal samples (N), 24 non-aggressive (NAG), 16 aggressive (AG) and 25 metastatid']
(M) prostate cancer samples, and each group was pooled into 2 or 3 sample pools and
analyzed by SWATH-MS (effective samples sizes are 2 N, 2 NAG, 3 AG, 3 M). We
extracted the data for 302 glycoproteins{T_Z] (2,641 peptides, 27,361 fragments) using the
recently developed DIA-Umpire tool [70], and performed DE analysis using mapDIA in
the independent sample (IS) design (Figure [2.4D) for all 6 pairwise comparisons between

the four groups at the protein level.

Since the extracted SWATH-MS data was based on glycopeptide enrichment, there are
many proteins for which only a few peptides are available. For this reason, we allowed
proteins with single peptide as long as each peptide has at least 3 to 5 fragments per
peptide (Q = 1, R = 3 and K = 5). Outliers were filtered by 2 standard deviation
threshold, and the cross-fragment correlation threshold was set to 0. In addition, we
required that each fragment have at least 2 non-missing values in each sample group, so
that the AG and M groups can be compared even if the data was missing in one of the
three samples. These parameters led to selection of 9,697 fragments in 298 glycoproteins,
for which 1,258 comparisons could be made after removing proteins in specific groups

with too many missing data.

Normalization

In this data, we tested all variants of normalization methods implemented in mapDIA first.

According to a recent report that investigated the variation in multi-center proteomic

" Metastasis, or metastatic disease: The spread of cancer cells from the initial site of the tumor to
form secondary tumors at other sites in the body.

12Glycoprotein: Any protein with one or more covalently linked oligosaccharide chains.
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data [56], the major source of systematic variation in LC-MS experiments turned out to
be chromatography retention time (RT), charge state, and ion suppression during the
ionization in each MS run. To address such temporal variation by the RT(d) normalization,
we used Gaussian kernel weights with standard deviation of 6 = 10 and é = 30 minutes. If
there is no such temporal or local variation, then this normalization method will lead to an
equivalent outcome as the TIS normalization. When we compared the post-normalization
data among no normalization, TIS-normalized, and RT(30) and RT(10) normalized data,
the fragment intensity data were significantly more correlated in RT(10) normalized data
between samples belonging to the same sample group (Figure , suggesting improved
normalization of the data therein. We therefore decided to use the data normalized by

the RT(10) normalization for further downstream analysis.

Protein DE Analysis in the IS design

We first performed protein DE analysis using mapDIA under the IS design (Figure )
and MSstats, comparing every pair of groups (up to 6 comparisons per protein). For
MSstats, the aberrant behavior of p-values were consistently observed with the choice of
fixed effects and random effects specification in the model, where nearly no comparisons
were reported to be significant once random effect terms were used, whereas three quarters
of comparisons (1,167 / 1,537) were found to be significant (see below). Since the random
effects model of MSstats gave too few significant comparisons, we used the fixed effects
model for comparison. We noticed that 279 / 1,537 comparisons reported from MSstats
were not found in the mapDIA output due to minimal fragment requirement (@, R) = (1, 3)
in the latter. Therefore we compared the two methods only for the comparisons reported

from both (1,258 in total).

At the 1% FDR threshold in each method, mapDIA and MSstats reported 511 and 971
comparisons as significant respectively, and the comparisons significant in the former

were again almost completely nested within those reported by the latter. In the mapDIA
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Figure 2.14: Within-group pairwise scatter plot of fragment-level intensity data using
four different normalization options: no normalization, TIC normalization, RT(30) and
RT(10) normalization in prostate cancer glycoproteomics data (control groups). The trend

and improvement was observed in the other three groups, which are not shown due to
large file sizes.
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analysis, most significant glycoproteins were differentially expressed by at least 40%

(absolute log2 fold change 0.5), and there was no bias in favor of the proteins with a

large number of fragments per protein (Figures [2.16/A and 2.16B). Examining the 511

significant DE cases, the majority came from the comparisons between cancer patients and
controls (transplant donors) and the comparisons between the MET group and AG/NAG
groups. When we examined the estimated fold changes reported from both methods, they
were again highly correlated (r = 0.952, Figure , indicating that the disparity in the
significant comparisons at the same FDR threshold comes from the distinct statistical
approach to model the variability in the data, rather than the estimation of effect size

(magnitude of change).

Peptide DE Analysis using the MRF model

For quantitative analysis for post-translational modifications, it may be of interest to

perform DE analysis at the level of modification site. Hence we performed the analysis at

Glycoproteomics data (RT10)

MSstats

-1

-2

mapDIA

Figure 2.15: The reported log2 fold changes from mapDIA and MSstats.
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the peptide level, by specifying peptide names as the protein identifiers in the mapDIA.
We ran the analysis with and without the module information in the MRF model, where
we set a group of peptides belonging to the same protein as a module (i.e. a parent protein
is a module for the member peptides). This specification represents the hypothesis that
a glycopeptide is more likely to be DE if other glycopeptides are also DE in the same

protein.

After applying the same fragment filtering and selection criteria, peptide DE analysis
could be performed for 6,754 comparisons. mapDIA reported 2,095 comparisons to be
significant at 1% FDR threshold without the module information. Figure 2.16C shows
the plot of the significance scores against the log2 fold change estimates. Unlike the
previous two protein-level analyses, this plot looks similar to a typical “volcano plot” one
would expect from the analysis of a typical gene or protein expression dataset where
each gene or protein is quantified with a single value. This was expected because the
analysis was performed at the peptide level, each containing at most 5 representative
fragments in terms of cross-fragment correlation, and therefore the amount of data for
each unit (protein or peptide) was much more balanced for peptide-level analysis that for

protein-level analysis.

When the module information was utilized through the MRF model, 2,185 comparisons
were found to be significant, where the majority (2,005) were in agreement between
the two models. As expected, additional DE peptides in the model using the module
information were found in the proteins containing other significant DE peptides. Figure
2.16D shows that, when we looked at the 180 additional comparisons significant in the
model with group information, on average 75% of the other peptides in the same proteins
were significant DE peptides. This indicates that the MRF model effectively pooled
information within modules (individual proteins) to boost probability scores for peptides

when other peptides in the same protein were DE and vice versa.
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Figure 2.16: (A) Statistical significance scores against log2 fold change of glycoproteins
in the prostate cancer glycoproteome data. (B) Statistical significance scores against the
number of fragments in each protein in the two methods in the prostate cancer glycopro-
teome data. (C) Statistical significance scores against log2 fold change of glycopeptides
in the prostate cancer glycoproteome data (no module information was used). (D) The
proportion of other significant peptides in the same protein for the peptides significant
in the model with and without module information. Here the module information is the

parent protein ID for each peptide.
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Figure 2.17: The left panel shows heatmap of the log2 intensities of the Glycoproteomics

data. The right panel shows the posterior probabilities of differential expression for the
various comparisons.
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2.4 Discussion

In this chapter, we presented a novel software package mapDIA for statistical analysis
of quantitative proteomics data generated in the DIA mode. Our data preprocessing
routines include normalization methods that can remove systematic bias that is constant or
temporal between the samples, and a series of fragment filtering and selection procedures
to remove noisy and irreproducible fragments. The Bayesian model, previously developed
for microarray data [74] and adapted here for the protein-peptide-fragment hierarchy in
DIA data, allows robust control of FDR and sensitive selection of DEPs with the power of
repeated measurements over multiple fragments/peptides, highlighting a unique advantage
of MS/MS fragment quantification offered by the DIA mode analysis. The software is
also flexible enough to accommodate different experimental designs and we believe that
our method works very robust in terms of controlling false positive findings even in small

sample datasets as illustrated in our two data analysis examples.

We have used MSstats as our main benchmark for comparison in this chapter. The
conclusion we drew in the performance comparison warrants further investigation across
a large number of datasets. We conjecture that the main reason behind the puzzling
behavior of their reported p-values is related to the differences in the property of data
between the integrated peak area data in SRM/MRM experiments and the fragment
intensity data in generic DIA mode. In the former, the protein-peptide-transition pairing
is carefully selected, which yields more reliable quantification for protein-level statistical
inference. In the latter, by contrast, we discovered that peptides isolated across the swaths
in SWATH-MS can deviate quite significantly from the average cross-peptide pattern
of each protein and the fact that MSstats’s current regression model handles sample-to-
sample variation only at the protein level through fixed or random effects (even in the
presence of the interaction terms in their model) may not be sufficient to account for such

variability. One possible remedy is to expand the model specification with peptide-level
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random effects rather than protein-level random effect terms, which does not cost the
model any significant loss since the best linear unbiased predictors in linear mixed effects
models do not take away large degrees of freedom for differential expression inference.
However, it will be important to control the number of random effects terms, for example,
by adding a variable selection step to prevent over-parametrization as the number of

peptides increases [22].

An important feature of mapDIA is the three-tiered fragment selection step. In particular,
the average cross-fragment correlation score can effectively remove noisy fragments in
both data examples. These steps are critical because the peak data is extracted in each
sample separately and thus the fragment intensity data may not be of the same quality
across different samples. Moreover, even with the well-behaving fragments, we noticed
that a certain degree of data reduction is crucial for reliable statistical modelling in both
methods because the amount of data can be severely unbalanced for different proteins,
i.e. while some proteins have hundreds of proteins from tens of peptides, others may
have a single peptide with a few reliable fragments. To address this problem, we have
allowed the user to control the maximum number of fragments (K) per peptide, where
the most representative K fragments in terms of the average cross-fragment correlation
score are chosen within each peptide. However, we also remark that excessive application
of these filtering steps can lead to spurious findings, and thus our recommendation is
to carefully specify the input parameters in a way that the final selection of reliable
fragments preserves the underlying quantitative trends across the samples. To facilitate
this monitoring process, our software automatically reports the filtering outcome at every
stage as a part of the analysis output and also saves the filtered data to allow the users to

visualize the data and monitor the changes as different filtering criteria are applied.

With regard to the statistical inference of DE, we formulated a hierarchical Bayesian
model with the MRF prior, which enables module-oriented DE analysis. However, we

discovered that this additional feature of MRF prior was impactful when there are a limited
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number of quantitative data per protein (i.e. a small number of peptides and fragments)
as illustrated in our simulation study. In other words, DIA mode offers more than a
sufficient number of repeated measurements (fragments and peptides) for many proteins to
support solid probabilistic decision for protein-level analysis (“data dominates the prior”).
Nevertheless, the MRF model can be still useful when the number of observations per
unit of analysis is relatively small, which occurs in two practical scenarios. First, when
the quantitative data is rolled up to the protein or peptide level (summed over fragments
and peptides), the model can incorporate the functional module information such as Gene
Ontology and protein-protein interaction data in the DE analysis, assuming that the
proteins in a common functional module are likely to behave similarly. Second, as we
demonstrated in the glycoproteomic data, the model can be used for peptide DE analysis
of post-translational modifications, using the peptide-protein group information as the
module information. mapDIA’s data input format was flexibly designed to accommodate

various types of module information (see our software manual).

A frequently arising topic in the statistical analysis of label-free quantitative data is the
treatment of missing data. Currently, we do not perform any missing data imputation
or model-based treatment in mapDIA. We analyze the data using fragments with non-
missing data in at least two samples within each comparison group in the IS design, or
using fragments with no missing data in the REP design. While the existing missing
data imputation methods such as the nearest neighbor-based approach are appealing,
their performance has not been benchmarked using gold standard DIA datasets, and
more fundamentally, it is difficult to judge whether such methods address the underlying
missing mechanism in DIA data (e.g. de-convolution of co-eluting ions, data extraction
parameters), which is non-random and associated with the data extraction pipeline such
as the quality of DDA spectral library in targeted extraction, etc. Indeed, this problem
can potentially be better addressed at the data extraction stage, where one can further

quantify low abundance fragment data in the below-the-detection-limit range.
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Finally, the current implementation of mapDIA requires that fragment intensity data be
organized in the two-layered hierarchy, that is, protein to peptides and peptides to frag-
ments. However, the software can be immediately applied to protein intensity and peptide
intensity datasets. As mentioned earlier, for example, quantitative phosphoproteomics
analysis requires significance scores at the peptide level, and the user can format the data
with peptide sequences as protein and peptide identifiers, which will inform the software
to compute scores for peptides. Likewise, protein DE analysis can be performed if protein
intensities are provided along with protein ID specified as protein/peptide/fragment

identifiers.

Overall, we believe that mapDIA is an attractive method for robust statistical analysis of
DIA mode quantitative proteomics data. There are refinements that can be made in the
mapDIA pipeline in the future, such as handling of technical/biological replicates in the
IS design and improved control of the fragment selection step, more elaborate evaluation
of the built-in normalization methods. More importantly, a comprehensive investigation
of the interplay between various data extraction methods and the preprocessing steps in
mapDIA will be of utmost interest, which will reveal the optimal integrated data analysis

pipeline for this type of data from start to finish.
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Chapter

A mass action-based model for gene

expression regulation in dynamic systems

3.1 Study of time-dependent gene expression regula-

tion

The process of RNAE] synthesis (transcription) is closely related with protein synthesis
(translation) according to the central dogma of molecular biologyP| [I3]. Considering gend’|
expressionﬁ] as an array of biochemical processes to produce gene products, regulation
of gene expression is a highly complex mechanism with multiple access points through
transcriptional, post-transcriptional, translational, and post-translational regulations. For
instance, when cells encounter environmental stress, they are challenged to reprogram the

transcriptome first (all messenger RNAEED to confer increased viability and fitness in the

YAdapted with permission from Teo et al, “PECA: a novel statistical tool for deconvoluting time-
dependent gene expression regulation,” J. Proteome Res., 2014; 13(1):29-37. Copyright (2014) American
Chemical Society.

'RNA (ribonucleic acid): Molecule produced by the transcription of DNA; usually single-stranded, it
is a polynucleotide composed of covalently linked ribonucleotide subunits.

2Central dogma of molecular biology: The principle that genetic information flows from DNA to RNA
to protein.

3Gene: Unit of heredity containing the instructions that dictate the characteristics or phenotype of an
organism.

4Gene expression: The process by which a gene makes a product that is useful to the cell or organism
by directing the synthesis of an RNA molecule with a characteristic activity.

5Messenger RNA: RNA molecule that specifies the amino acid sequence of a protein.
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new environment, and further adjust protein expression and additional post-translational
regulations [6]. However, the dynamic relationship between the transcriptome and the
proteome has remained elusive due to the lack of technology to measure protein expression
at a scale comparable to gene expression and it is of great interest to investigate how
much of transcriptional and translational regulation determine the fate of the final gene

products [25] [73].

To achieve this aim, proteome-wide expression datasets must be generated with sufficient
coverage and quantitative precision, especially in a time resolved manner. Thanks to
recent advances in large-scale high-resolution mass spectrometry (MS), comprehensive
quantitative proteomics datasets are now becoming available with longitudinal designs
(e.g. following a treatment of interest) [I1), 23, 25, B7, 59l 62, [73]. For example, a few
recent studies used time course transcriptomic and proteomic datasets to monitor stress
response in yeast and described the distinct roles of regulation at the level of RNAs
and proteins where the variation in protein expression was only partially explained by
transcription changes [37, [72]. While these results are intriguing, statistical analysis was
limited to linear correlation or the analysis of variance in these studies, separately applied
to RNA and protein datasets. In other words, there is no generalizable statistical method
to jointly model the two datasets to objectively extract biological signals of regulation at

different molecular levels.

With the emergence of these new datasets, time is now ripe to develop robust statistical
methods to identify candidate genes that are regulated at the RNA and/or protein levels
and to quantitatively dissect the different layers of gene expression control. Since the final
protein concentration is the combined result of these processes, the key task is to construct
a mathematical model of gene regulation, equipped with appropriate kinetic parameters for
transcription, translation, and the respective degradation. In this framework, the synthesis
and degradation rates can be inferred from the data and formally tested for significant

changes, providing statistically rigorous interpretation of the regulation activities that
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resulted in the observed concentration changes for each protein. In other words, we aim
to convert expression data into information on the rates of concentration changes and

regulation.

In this work, we propose a statistical modeling framework called Protein Expression
Control Analysis (PECA) to identify genes putatively regulated at the RNA or protein
levels based on parallel time course datasets of mRNAs and proteins. Adopting the kinetic
mass-action model used in the simulation exercise by [37], PECA dissects the change in
the protein concentration during each time interval (i.e. the period between adjacent time
points) into two potential sources: the change in the concentration of mRNA transcripts
and the change in the protein synthesis/degradation rate ratios. This deconvolution
renders the inferred protein rate ratios specific to the regulation at the protein level. As
explained later, the same model can be posited to infer the RNA rate ratios to infer
RNA-level regulation, under the reasonable assumption that the DNA copy numbers’| do
not change over time. For both analyses, PECA derives the posterior probability that the
rate ratio of synthesis versus degradation changed at each time point (before and after
each time point), along with the associated false discovery rates (FDR) [45]. Hence this
scoring framework leads to unbiased statistical framework of regulation changes at both

molecular levels.

We remark that there are a few methods for analyzing time course datasets in the current
statistics and bioinformatics literature [10, 50} 63], 66] . However, these methods are not
suitable for the multi-omics data of our interest, especially for detecting regulation at the
RNA and protein levels simultaneously. First, those methods are designed to analyze single
source datasets (e.g. transcriptomics data alone) and they do not explicitly model the
kinetic parameters of synthesis and degradation. Second, they are not able to account for

the contribution of mRNA concentration changes when analyzing protein-level regulation.

SCopy-number variation: Large segment of DNA, 1000 nucleotide pairs or greater, that has been
duplicated or lost in an individual genome.
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Third, they perform statistical tests whether the expression has changed anywhere in the
time course, not the temporal changes of regulatory parameters at specific time points

and the direction of change, which is offered by PECA.

The rest of the chapter is organized as follows. We first present the statistical model and
propose a straightforward estimation procedure using Markov chain Monte Carlo sampler.
We will evaluate the performance of our approach with simulation studies and report the

re-analysis of the yeast data by [37].

64



3.2 Method

3.2.1 Change-point model for gene expression regulation

Suppose that we have parallel gene and protein expression data X = {z;;} and Y = {y;i }
for protein i = 1,...,I in replicates j = 1,..., N observed over time points (hq, ..., hr).
Time hg indicates the time point before the samples are treated or the baseline of
subsequent time points. We assume that the protein expression measurements follow log

normal distributions

Yjir ™~ LN (njit;TiQ)

after proper normalization of the data. Our goal is to infer the protein synthesis rate
x5, and the degradation rate k% during the interval (hy, hyy1) of length Ahy = (hyyy — hy)
for protein ¢. More importantly, the mean parameters are related between adjacent time

points as follows:

Mjir1 = Mjir + Dby (Tjiky, — Ny ) (3.1)

fort =0,1,...,7 — 1. At time ¢, the mRNA abundance is z; and the current protein
abundance y;, and we would expect that the protein abundance will increase or decrease
by x:k5 — mkS. This is based on the mass-action kinetic action model, which underpins

the simulation model of [37].

Equation (3.1)) is a straightforward representation of time course profile of mean parameters
as a simultaneous outcome of synthesis and degradation of each molecule. If the abundance

of a protein is regulated by transcriptional regulation only, then we assume that the two

parameters { (x5, k4)}7 ;' do not change over time. By contrast, if the protein is regulated
by altering either the synthesis or the degradation rate, we assume that {(k5, %)}
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change over time. Translational regulation is a useful mechanism to react to sudden changes
because transcriptional regulation of protein expression entails a lengthy chain of cellular
processes, such as transport of mRNA from nucleus to ribosome, some biological functions
require an immediate response via translation control of synthesis and degradation at
the protein level [60]. Thus proteomic response to such an environment shock can be
delivered by altering protein synthesis and degradation directly, rather than altering the

concentration level of their precursors (mRNAs).

To detect the change in these rate parameters, we formulated a change point model to
describe the probability distribution of kj = (k,- -+ ,#;_;) as follows. We first note
that 3, and k% are always positive since they are rate parameters by definition, and thus
the issue of identifiability arises. This is expected since we model the change in protein
expression as the difference of two positive values, where there can be infinite number of
solutions. Hence we impose the restriction % = 1 — k3, for all i. This condition does not
undermine the aim of this model since our interest is ultimately in the rate ratio 3, /k%.
Under this simplex constraint, it suffices to keep track of x;, only. For protein ¢, let C;
and |Cj| denote the set of time points {t : 7, | # £3[0,1,---,T — 1} and the size of the
set, respectively. If the elements of k; remained constant across time, C; is an empty set;
if some elements of k] were distinct from others, C; is the set of all intermediate time
points from 1 to T'— 1 with different adjacent rates. Given a specific configuration of
C;, we can re-parameterize this model by 8; = (C;, {(k},) 1) where ], = 3,/ (k3 + %),
which further reduces to ], = &}, under the simplex constraint. We remark that this
change point model resembles the well-known model of [29], but our model is simpler than
his because change points can occur at the observed time points only. This is a reasonable
choice since there are often a few time points in dynamic expression studies (often <10
time points), but the location of change points can be easily incorporated in the model

for datasets with sufficiently dense time points.
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Figure 3.1: (A) Hypothetical examples of RNA-level regulation and protein-level regula-
tion. (kf, k%) refer to the protein synthesis and degradation rates during the ¢-th time
interval, respectively. (¢7,¢?) are the corresponding RNA-level rate parameters. PECA
models the ratio of the two rates over the time course. The left panel illustrates the
case in which protein concentration is entirely regulated at the RNA level, i.e. with no
change in the protein-level kinetic parameters. The right panel shows the case in which
protein concentration is regulated at both RNA and protein level, where the protein-level
regulation compensates the RNA-level regulation to maintain the protein homeostasis,
which is not easy to see from the concentration data alone. (B) Extraction of RNA-
and protein-level regulation signals in alcohol dehydrogenase class-3 protein encoded
by ADH5 gene. The upper panels of the figure show the time course of mRNA and
protein concentrations of ADH5 after an osmotic shock. The lower panels show the kinetic
parameters (rate ratios) during time intervals at both levels, as reported by PECA. The
protein-level rate ratio is estimated accounting for the available amount of mRNA at the
beginning of each time interval. The consistency of rate ratio profiles across the replicates
is automatically taken into consideration in the estimation process.
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3.2.2 Estimation and Inference

To estimate the model parameters, we constructed a MCMC sampler that combines
standard Metropolis-Hastings updates and dimension switching updates in the form of

reversible-jump MCMC [29].

First, the likelihood of the entire model is
I

(likelihood) = H H H \/_ exp [ 212 (In(y;i¢) — In (njit>)2

i=1 j=1 t=0 YgitTi

where
t—1

Njit = Nji0 + Z Ahy (l'jié’ﬁ;e - Uji!i(l - ’fgz))
(=0

We specify prior distributions that are the effectively informative in our view:
nio ~ N(0,100%) for j=0,...,N

Ky ~ U0,1) for £=0,...,|C

7—1'_2 ~ g(aT7bT)

for fixed C; for all ¢, where N/, U, G denote normal, uniform, and gamma distributions
respectively. We also assume that the change point configuration C; has the following

prior:

m(Cy) o< gl @1 — )T 171

where we set ¢ = 0.5 assuming that nothing is known a priori about the chance of having

a change point in any of the proteins.

To elicit the hyperprior parameters (a,,b,), we first calculate the sample variance of
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the protein intensities across all time points in each replicate and plug in the maximum

likelihood estimates for the shape parameter a and scale parameter b:

B (S W) =(ox3)

i,

where v;; is the sample variance for protein 7 replicate j.
In summary, the prior can be written as

b

A3

(prior) oc [T 1{ pes () le T o) - ¢C|(1_¢)T—1—|ci}

where the prior for {x],} is omitted conditional on the fact that they are all on the unit

interval, and ¢ denotes standard normal density.

The model parameters are updated in the following order:
{77]@0}3 —0 7 T — {’fzt = ' — C;

for all . This whole cycle is repeated for 5,000 iterations for burn-in period and M = 20, 000
iterations for the main iteration with thinning of 20 samples, in both simulation and data
analysis sections that follow. We use hat and tilde symbols to denote current and proposal

values respectively.

1. We first start with 7,0 by a Metropolis-Hastings step, with proposal value 7);
drawn from N (7);;0,0.1?), and compute the Metropolis-Hastings ratio to complete
the update. Since this parameter is involved in the mean values at all time points,
the likelihood has to be evaluated at all time points for updating each of these

parameters.

2. Next, we draw the variance parameter 72 by Gibbs sampling from inverse gamma

distribution IQ(aT + N(T + 1)/2, bT + Zj,t (yﬂt — njlt)2/2)
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3. Next, we draw {x},} for £ =0,...,|C;| under the fixed C; for each protein i. We
use random walk Metropolis-Hastings steps to update them, i.e. draw a proposal

value &}, from N (#,,0.1%) and accept or reject afterwards.

4. Finally, we update the change point configuration C;. There are two different moves:
birth of a new change point and removal (death) of an existing change point. Since
these two moves are reversible in notation, we just describe the birth move here.
Suppose that &}, covers a time period (h, htyq,) that contains at least one observation
time(s). Then we propose a birth of a new change point h* € {hy11,..., hirm_1}
within the interval (chosen from one of the intermediate time points) and break the
current rate parameter into two daughter parameters, namely (&}, 5} ,,,) where it

is required to meet

(R = he) - logit(Fi) + (hum — B") - 10git (%5 py1) = (hum — ha) - logit (i)

with a random perturbation such that

-, iy
Riev1 L —u Ky

~! - o1

1 =Ry u 11—k

R (LR )R], (1R, )2
with u ~ Uniform(0, 1). Under this transformation, the Jacobian is (i Fop Rt U F 1))

Rie(1=Rjy)
for (&}, u) — (R, Fjey1)- Hence the Metropolis-Hastings ratio for the birth move
just equals the posterior ratio times the Jacobian since the acceptance probability

of this proposal is

min{1, likelihood ratio X prior ratio x proposal ratio x Jacobian},

where the prior and proposal ratios are the ratios of Uniform distribution over unit
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intervals. Then the Metropolis-Hastings ratio becomes

11 {eXp {_2%2(111(%@%) - 1ﬂ(77jz‘t))2H o (Rig(l = Rig) + R (1 — f%m))?_

jit l—¢ Rl (1 — &ly)

Using the samples drawn from the posterior distributions, we perform statistical inference
as follows. Our main goal is to identify the time points where the protein rate ratio shifts,
i.e. pit = P(Kj # Ki11|X5,Y:), where X; and Y; denote the gene and protein expression
data for protein ¢, respectively. This score has the nice property that it is a marginal
probability computed after accounting for the data and change point configurations at all
time points. Instead of seeking the maximum a posteriori estimate of C';, we perform our
inference based on this probability. Denote the posterior samples of {&},} by rl(tl ), o ,7«5}4 )
for each kf,. We first compute py by pi = =7 Z%zl 1{7"1(;” ) £ 7"1(7221} If p;; > p* holds
for at least one t, where p* is the probability threshold, we consider protein i to be

translationally regulated. To determine an optimal threshold, we compute the Bayesian

false discovery rate (BFDR) as

> it (1= Dir)dut(p")

BEDRG) = == =510

(3.2)

where 0;(p*) = 1{p;y > p*} [26, 45]. This decision rule d;(+) results in the selection of
specific time points where translation regulation shifted from the preceding time period.
Furthermore, we can perform functional clustering [3| using this surrogate data {x.,}
instead of the raw expression data Y by the agglomerative hierarchical clustering [21]
with the Euclidean distance metric on the matrix data {x},} for the selected proteins,
ultimately identifying different groups of proteins with a similar translational regulation

pattern.
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3.2.3 Simulation study

We first conducted simulation studies to evaluate the sensitivity and specificity of the
method. We simulated expression datasets for K transcripts (mRNAs) and proteins in
parallel in single biological replicate across six different time points. Among these, we
created three groups that are different in terms of the translational control mechanism,
which emulated the protein expression profiles of up- and down-regulated proteins in [37].
Specifically, each of the three groups represents a different combination of transcriptional
and translational regulation. Protein expression in Group 1 is regulated entirely by tran-
scriptional regulation (gene up-regulation). Protein expression in Group 2 is translationally
up-regulated by an increased rate of translation during the first time period in addition to
the transcriptional up-regulation. This pattern is expected to occur in immediate shock
conditions when direct translational regulation is required. Finally, Group 3 represents
the case of down-regulation in both data, where down-regulation of protein expression
was driven by increased degradation rates in the late time points as well as transcriptional
down-regulation in the early time points.
Group | Size | po 1 p2 M3 p4 s
1 500 | 1.00 1.25 1.20 1.10 1.00 1.00

2 500 | 1.00 1.25 1.20 1.10 1.10 1.10
3 500 | 1.00 0.75 0.80 0.90 0.90 0.90

Table 3.1: Mean parameters of gene expression data in the three groups.

S S S S S
Group | Kj  Ki K3 K3 Ky

1 1.00 1.00 1.00 1.00 1.00
2 P 1.00 1.00 1.00 1.00
3 1.00 1.00 r*~ 1 g2 px2

Table 3.2: Protein synthesis rates in protein expression data in the three groups with
fixed degradation rate {x¢} =1 at all time points. Essentially r* plays the role of protein
rate ratio.

Here we describe the data generation process in detail. We simulated gene expression
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data reflecting the burst of up- and down- regulation of mRNAs between the first two
time points, from log normal distribution with their respective mean parameters in each
group as specified in Table [3.1] along the time course, and the variance parameters fixed at
0% = 0.1. To simulate protein expression data according to the turnover mechanism, we
set the translation and degradation rates (k°, %) as tabulated in Table , in which the
protein synthesis rate changes by a factor of r*. We fixed ¢ at 1, and thus r* essentially
represents the “scaled” rate ratio. This leads to the time-dependent mean expression values
following the relationship in Equation . Using these means, we simulated protein
expression data from log normal distribution, where different variance parameters 72 were
attempted to control the signal-to-noise ratio. Based on Equation , the ratio e /r*
can be interpreted as a variant of the coefficient of variation (CV), provided that the gene
and protein expression data are properly scaled. We have evaluated the performance at
different CVs, where r* ranged from 1.5 to 2.0 and 72 ranged from 0.01 to 0.2. In each

scenario, we looked at three different probability thresholds p* = 0.5,0.6,0.7.

Figure |3.2 shows the results. The sensitivity, specificity, and BF DR estimates in the
figure were computed by averaging the results over 100 simulations of each setting. The
MCMC sampler converged quickly to the posterior distribution, as illustrated in Figure
E (left panel). First, any detection in Group 1 represents false positives. For Group 2,
r* increased sharply during the first time period (hg, k1) and thus the second time point
hi is the true change point. Likewise for Group 3, r* decreased from unit rate twice at
ho and hs. Hence any detection at these time points at Groups 2 and 3 represents true
positives. To see the range of the CVs we cover in the simulation, consider the worst case
scenario with r* = 1.5 and 7 = 0.2. This means that the protein rate ratio increases by
50%, yet the standard deviation of the error is at about 22% (e®? ~ 1.22). In this case,
the level of translational regulation signal will be masked by the noise. By contrast, in
the scenario with * = 2.0 and 7 = 0.01, the protein rate ratio increases by 100% and the

noise is ignorable (1%).
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As expected, the proposed model performed very well in the scenarios with low CV (7 = 0.1
or below), achieving almost perfect specificity (>97%) and good sensitivity (>80%) with
increasing r*. Interestingly, the sensitivity for down-regulation in Group 3 at h3 (not
shown) was very low compared to the sensitivity at hg, even though the rate ratio went
down by the same factor of r*. This is possibly because the gene expression level increased
at hs from 0.8 to 0.9 in the simulation scheme, compensating the decrease in protein
turnover. Finally, the estimated BF DR was not trivially small at all three thresholds,
ranging from 12% to 36% across the scenarios (last panel of Figure . However, since
very few false positives were detected in Group 1 in the modest signal-to-noise ratio

settings (top panel), these estimates can be considered to be conservative.

Overall, our method showed good sensitivity and specificity for the scenarios with modest
signals at all probability score thresholds. The result also suggests that the optimal
threshold can be set as low as (~ 0.6) in the scenarios with a high signal-to-noise ratio,
even if the associated BF' DR estimates may be greater than conventional FDR targets such
as 5%. However, in the scenario where large variation in the mRNA abundance coexists
with protein expression changes, a selection criterion that controls BF' DR reasonably low

will be desired. We illustrate such a case in the next section.
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Figure 3.2: Simulation results. Proteins selected from Group 1 across all time points
are false positives. Proteins selected from Group 2 at h; and Group 3 at (he, h3) are true
positives.
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3.3 Application: analysis of osmotic shock in yeast

Next we reanalyzed the yeast dataset which profiled the cellular response to an osmotic
shock using three biological replicates [37]. In the experiment, 0.7M NaCl was applied to
budding yeast in growth medium, where the dose of salt provides a robust physiological
response, but results in high viability and eventual resumption of cell growth. Samples
were collected before and at 30, 60, 90, 120, and 240 minutes after treatment to capture
cells acclimated to the new environment, and the samples were divided for gene and
protein expression measurements using microarray and quantitative mass spectrometry
respectively. For data analysis, the authors performed modified ¢-test to select proteins
that are differentially expressed before and after the treatment, and used mRNA expression
as a post-hoc analysis to show correlated changes therein. In our analysis, we first analyzed
the data for protein-level regulation inference, treating microarray data as X and mass
spectrometry data as Y as described in the method above. We also analyzed the data
for RNA-level regulation, using microarray data as Y and a fictitious DNA copy number
dataset filled with constant element 1 as X (0 on log scale). This represents the assumption
that the DNA copy number remains constant along the time course in the genome, which

is a realistic assumption in normal cell populations.

Gene expression was measured using a custom Nimblegen tiled microarray platform (Gene
Expression Omnibus GSE23798). Instead of quantile normalization the authors used,
the data was further examined for systematic shift in expression level distribution across
different samples, but it was deemed that no further normalization was necessary since
such normalization may remove real signals due to the burst in transcriptional regulation
upon osmotic shock [41]. Protein expression was measured using an isobaric tagging and
liquid chromatography and mass spectrometry on an Orbitrap Velos instrument. The mass
spectrometry analysis was performed simultaneously for the samples of each biological
replicate taken at different time points. This batch analysis is beneficial in time course

designs since a multiplexed design can control the within-sample variation better than
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other designs such as label-free protein quantitation. From this experiment, 1,999 proteins
were quantified consistently across the time points in at least two replicates, and among

those we analyzed 1,508 proteins with no missing data across all three replicate samples.

For model parameter estimation, we ran the MCMC for 20,000 iterations with thinning
(every 10th sample) after 5,000 iterations for burn-in period. We elicited the same prior
distributions used in the simulation studies, and the acceptance rates for the Metropolis-
Hastings updates (13%) and reversible jump MCMC (21%) remained reasonably good
(before thinning of the chain). We performed visual inspection of model fit by plotting the
estimated level of protein expression {7;;} against the observed values and found that
the fit was reasonably good. We also confirmed the convergence of the MCMC sampler to
the posterior distribution by the trace plot of the log likelihood (Figure .
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Figure 3.3: The log-likelihood trajectory of the model shows that the parameter values
were drawn from the appropriate posterior distributions in the simulation data and the
yeast dataset.
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Figure 3.4: Heatmaps of the 722 stress induced and repressed proteins subject to RNA-
level regulation. The left panel is the rate ratios at the RNA-level, estimated for each
time interval (between two adjacent time points). The right panel is the mRNA data.
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Figure 3.5: Heatmaps of the 249 stress induced and repressed proteins subject to protein-
level regulation. The left panel is the rate ratios at the protein-level, estimated for each
time interval (between two adjacent time points). The middle and right panels are the
mRNA and protein expression data.
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3.3.1 Scoring protein-level regulation changes

Using the output above, we extracted candidate genes subject to protein-level regulation.
We selected 249 out of the 1,508 proteins with the posterior probability >0.8 at any of
the time points as proteins putatively regulated at the protein level, controlling the FDR
at 10%. To see gene function enrichment in the proteins regulated at the protein level, we
selected two clusters of 68 and 131 proteins that were up and down regulated respectively
at 30 minutes. All 1,508 proteins in the protein/RNA dataset served as the background
list for hypergeometric test. Similar to the transcriptome analysis above, up-regulated
proteins showed enrichment of stress-related functions (p-value < 0.001). By contrast,
down-regulated proteins showed enrichment of the terms related to RNA processing and
regulation of translation, indicating immediate shutdown of translation activities under

high osmolarity (p-value < 0.001).

Similar to the RNA data, we found that the major change in the protein-level rate ratios
also occurred immediately after the treatment (0~30 min). In addition, most proteins
regulated at the protein level (161/199) were also significantly regulated at the RNA level,
implying that the regulation of gene expression during osmotic stress response was highly
coordinated at both levels, particularly at early time points. However, as only 249 genes
(17%) were regulated at the protein level while 722 genes (49%) were at the RNA-level at
much more stringent FDR, one may hypothesize that transcriptional reprogramming is
the dominant response to osmotic stress and ultimately protein concentrations change

only by carefully selected paths of protein-level regulation.
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Figure 3.6: The mRNA and protein concentration data and estimated rate ratios at both
levels of regulation for GPD1, CTT1, HSP12, and HSP104. These are four proteins with
osmotic shock-induced expression. Blue, red, and green curves are time course data for
each biological replicate. Yellow background indicates the time intervals during which the
rate ratios deviated from the average range across the time course. Red arrows indicate
significant regulation change at the RNA and protein level in each gene.
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3.3.2 Characterizing the link between the regulatory processes

Next, we inspected the correlation between the regulatory patterns using the rate ratio
profiles within the same molecules. Figure shows the RNA and protein concentrations,
and the rate ratios for four key proteins known to be up-regulated during osmotic stress
response [b4]: glycerol-phosphate dehydrogenase GPD1, cytosolic catalase T CTT1,
heat shock proteins HSP12 and HSP104. Time intervals where the rate ratios changed
significantly were indicated by yellow rectangles - illustrating that the RNA level up-
regulation was most active during the first 30 minutes and subsided afterwards, with
mRNA concentration recovering the stability within 60 minutes. By contrast, protein-level
regulation was also the most active during the first time interval but it counterbalanced
the RNA-level regulation in the opposing direction (down) during the next time interval,
resulting in stabilized protein level concentrations. This pattern suggests that protein-level
regulation buffered the abrupt change at the RNA level and contributed to the stable

protein concentration levels.

The possible role of buffering by protein-level regulation was even more pronounced
for down-regulated mRNAs, consistent with Lee et al.’s observation of less correlation
between mRNA and protein concentrations for down-regulated RNAs [37]. For example,
PECA provides strong evidence of protein-level regulation that resulted in stable protein
concentration for four members of the large subunit of ribosome (RPLIA, RPLIB, RPL16A,
RPL19A) and several subunits of RNA polymerasd’| I and IIT subunits (RPA43, RPA49,
RPC19, RPC53, and RPCS82; figures and . In these examples, mRNA concentration
decreased significantly at the 30 minutes and recovered to the pre-treatment level at 60
minutes, whereas protein concentrations hardly changed. The rate ratio profiles reported
by PECA showed that there was substantial protein-level up-regulation between 30 minutes

and 60 minutes to fend off the effect of reduced mRNAs during the same time interval.

"RNA polymerase: Enzyme that catalyzes the synthesis of an RNA molecule from a DNA template
using nucleoside triphosphate precursors.
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In sum, RNA-level and protein-level regulation were orchestrated together in the early
response in this data, but the protein-level regulation clearly acted as the buffer to the
vast transcriptome changes in this dataset. Figure 3.9 shows the correlation patterns
between RNA-level regulation and protein-level regulation across the time points. Since
most regulation activities occurred in the first time interval in this dataset, we focus on the
first row of the figure, i.e. correlation between protein-level regulation with the RNA-level
regulation during the first time interval. Consistent with the evidence from Figure |3.5]
the top left panel shows that RNA and protein expression were consistently up- or down-
regulated in many genes during the first time interval with positive correlation (r = 0.51).
The negative correlations in the next two panels clearly illustrate that the RNA-level
regulation of the first time interval were countered by protein-level regulation of opposite
direction of the second and third time interval (r = —0.78, —0.37). In those intervals,
the majority of the buffering effect was for the RNA-level down-regulation (countered by
protein-level up-regulation), suggesting proteome-wide evidence of proteostasis through
protein-level regulation. Interestingly, the positive correlations in the remaining two
panels with large time lags (last two in the first row) suggest that the effect of RNA-level

down-regulation takes a long time to come through at the protein concentration.
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Figure 3.7: The mRNA and protein expression and estimated rate ratios at both levels
of regulation for RPL9A, RPLI9B, RPL16A, RPL19A, which are members of the large
subunit of ribosome.
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Figure 3.8: The mRNA and protein expression and estimated rate ratios at both levels
of regulation for RPA43, RPA49, RPC19, RPC53, and RPC82, which are subunits of
RNA polymerase I and III.
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Figure 3.9: S. cerecvisiae data with osmotic stress. The panels were arranged so that
each row and column corresponds to each time point respectively. In each panel, the
protein rate ratios were plotted against the RNA rate ratios (transformed by log base 2,
then centered by median in each protein). The panels on diagonal positions show coupling
at the same time point, whereas the panels on off-diagonal positions show buffering at
different time points or time-delayed correlation.
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3.4 Discussion

In this work, we proposed a statistical method to describe the patterns of gene expression
regulation with respect to mass action kinetics of individual genes. Our method carries
out probabilistic inference for the essential kinetic parameters of synthesis and degradation
using time course data, extracting the proteins with statistically significant evidence of
translational regulation. While the method has been demonstrated using paired gene and
protein expression data, the kinetic relationship is also applicable to other types of paired
data such as DNA copy number and gene expression data as illustrated in the analysis of
osmotic shock, where one type of molecule is the precursor of the other by the central
dogma. In this framework, we identify the signals of expression regulation in terms of
synthesis/degradation rates instead of mean expression values, which provides biologically

more interpretable results in temporal expression data.

We formulated the change point model to perform probabilistic inference and appropriate
control of FDR. As illustrated in both simulation and yeast data analysis, the MCMC
sampling procedure is straightforward and efficient with good mixing rates and it showed
swift convergence to the stationary distribution after starting from arbitrary initial points.
In the simulation study, we showed that the method is able to detect protein-level
regulation activities in scenarios with reasonably modest signal-to-noise ratios. We also
validated this methodology using a yeast dataset where cells were challenged to adapt to a
sudden increase in osmolarity. Our method recovered a profile of translational regulation
in a highly variable system where excessive gene expression changes occurred yet not all

of them led to protein expression changes as expected.

A few components in the the statistical model need further improvement. First, the model
specification includes the constraint k¢ + &k = 1 for all ¢, which was introduced to address
the identifiability problem. In the absence of this condition, both parameters must be

estimated independently at each time point, which has no unique numerical solution as
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explained above. The imposed condition mirrors the assumption that the total regulation
activity (synthesis and degradation) adds up to a constant at all time points, which has
to be modified if estimation of absolute rates of synthesis and degradation is of interest.
Second, the prior for change points 7(C;) o< @!€il(1 — )T=1=ICl with ¢ = 0.5 reflects the
assumption that any change point arrangement with the same number of total change
points has the same prior probability. This specification can deviate from biological reality
in dynamic systems during perturbations, in which expression changes are induced in
the early response more often than in the late response. Such prior information can be
extracted from the data itself via an Empirical Bayes approach, or careful elicitation on ¢

can also be an alternative remedy. We leave these aspects for future investigation.
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Chapter

Conclusion

This thesis presented Bayesian hierarchical models for the analysis of large-scale genomic
and proteomic data from high-throughput experiments in modern molecular biology. Due
to the limited sample size and complex structure in the data, hierarchical Bayes can be
a powerful modeling framework. The preceding chapters clearly demonstrate that, with
modern computing and efficient sampling method, Bayesian inferential methods are viable
for such large scale datasets. Besides hierarchical Bayes, the proposed methods integrates a
collection of well known statistical techniques, including MRF model (chapter [2)), iterated
conditional modes (chapter [2)) and reversible jump Markov chain Monte Carlo-based

change point analysis (chapter [3)).

In chapter [2] we described a software package mapDIA that performs essential data
preprocessing, including novel retention time-based normalization method and a sequence
of peptide/fragment selection steps, and more importantly, hierarchical model-based statis-
tical significance analysis for multi-group comparisons under representative experimental
designs. The advanced modeling technique also allows the user to incorporate relational
information such as existing network data or protein-peptide mapping, which enables
module-oriented analysis of differential expression. Using a comprehensive set of simulation
datasets, we showed that mapDIA provides reliable classification of differentially expressed
proteins with accurate control of the false discovery rates. Together with the analysis
of two SWATH-MS datasets of 14-3-3 dynamic interaction network and prostate cancer

glycoproteome the results showed the mapDIA performed better than the frequentist
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based, regression framework implemented in the MSstats package.

In chapter [3, a model-based method was developed to simultaneously analyze time course
transcriptomic and proteomic datasets to quantitatively dissect the contribution of RNA-
level and protein-level regulation to the variation in gene expression. The statistical
method is based on a mass action-based model for protein synthesis and degradation rates
of individual genes, and change points in the stochastic process of the kinetic parameters
are derived to identify distinct patterns of regulation of gene expression in time course
profiles. A sampling-based inference procedure using MCMC was implemented and the
posterior probabilities of change points in the ratio of protein synthesis and degradation

are used to control the Bayesian false discovery rate.

In both the preceding chapters, the hierarchical prior enables the borrowing of strength
across the genome or the proteome and carefully chosen prior that allows for an explicit
form of the posterior distribution or efficient implementation of Markov chain Monte
Carlo allowed parameter estimation despite the presence of a large number of parameters.
In sum, these examples show that hierarchical Bayes, coupled with other complimentary
statistical inferential techniques, can be a desirable model framework for use in complex

biological data analysis involving high-throughput technologies in the future.
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