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 SUMMARY 

Nanomaterials are appealing and valuable in various fields, 

as they are engineered to achieve particular physicochemical 

properties that are specific for their application. The present study was 

thus conducted in view of the mounting usage of silver nanoparticles 

(AgNPs) despite little being known about its toxicity and potential 

impacts on human health. The most prevalent toxicity mechanism for 

AgNPs is oxidative stress. Multiple studies have found that AgNPs 

preferentially disrupt mitochondrial function, since mitochondria are 

major reactive oxygen species (ROS) producers. Hence, the first part 

of the study was carried out to examine the acute effects of AgNPs in 

SH-SY5Y human neuroblastoma mitochondria, and possibly rescue the 

AgNPs-induced mitochondrial dysfunction through the use of 

docosahexaenoic acid (DHA) and l-carnitine (LC). Results from various 

mitochondrial assays revealed that acute exposure of AgNPs to SH-

SY5Y cells caused mitochondrial dysfunction, in particular, disrupted 

mitochondrial membrane potential, and loss of both ATP and ADP, 

which could be rescued by co-supplementation with DHA and LC. 

AgNPs have also demonstrated pro-inflammatory properties, 

although it is unknown if AgNPs enhance the effects of pro-

inflammatory mediators, inhibit anti-inflammatory mediators, or both. 

Thus, the second part of the study was conducted to examine the 

relationship between AgNPs and phospholipase A2 (PLA2) enzymes, in 

particular cPLA2 and iPLA2, in SH-SY5Y cells. Real-time RT-PCR and 
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immunocytochemistry analyses revealed that iPLA2 expression, but not 

cPLA2, was altered following acute exposure to AgNPs. Interestingly, 

co-treatment of DHA and/or LC with AgNPs did not result in significant 

changes in iPLA2 gene expression, suggesting that AgNPs affect iPLA2 

expression upstream that of its effects exerted on mitochondria, 

explaining for the inability of DHA and/or LC to alter iPLA2 expression. 

Lipidomic analysis also revealed decreased iPLA2 activity after acute 

exposure to AgNPs.  

AgNPs have been reported to produce ROS in various cell 

lines, although it has not been determined if AgNPs-induced ROS 

exerts its effects on the inflammatory mediators. Therefore, the third 

part of the study was conducted to investigate the effects of AgNPs-

induced ROS on iPLA2 and to potentially elucidate the mechanism 

underlying changes observed. Antioxidant pre-treatment prevented the 

observed decrease in iPLA2 gene expression following AgNPs 

exposure, indicating that the AgNPs-induced down-regulation of iPLA2 

gene involves ROS. Since the iPLA2 promoter contains a sterol 

regulatory element (SRE) binding site for sterol regulatory element-

binding proteins (SREBPs) that is not found on cPLA2, the effect of 

oxidative stress on SREBP expression was investigated. Real-time RT-

PCR analyses suggest that SREBPs are affected by AgNPs-induced 

ROS formation. 

Taken together, the present study’s results indicate that 

AgNPs exposure results in ROS formation causing a down-regulation 



 Summary  

XII 

of SREBP expression. This potentially reduces the amount of SREBP 

transcription factors binding to iPLA2 promoter, leading to a decrease in 

iPLA2 expression and activity, and in turn resulting in mitochondrial 

dysfunction. 
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1. Nanotechnology and Its Applications 

1.1. Nanotechnology 

Nanoscience and nanotechnology are the understanding 

and utilization of materials at a nanoscale, with size ranging between 1 

and 100 nm, in a broad range of scientific fields including engineering, 

biology, and material sciences (United States National Nanotechnology 

Initiative, 2015). The nanotechnology concept was first introduced in 

1959 by physicist Richard Feynman. He described a process in which 

individual atoms and molecules could be manipulated and controlled 

(United States National Nanotechnology Initiative, 2015). However, 

modern nanotechnology only begun in the 1980s, after the arrival of the 

scanning tunneling microscope, an instrument that allowed the viewing 

and manipulation of materials in the nanoscale (Fahlman, 2007, United 

States National Nanotechnology Initiative, 2015). 

Nanotechnology can be broadly split into three divisions; 

nanomaterials – structures with at least one dimension smaller than 

100 nm, nanodevices – production of nanoscale devices, and 

nanotools – techniques to synthesize and characterize nanomaterials 

and nanodevices (Borm et al., 2006). Although nanotechnology is a 

relatively new field, it has grown rapidly and extensively across wide-

ranging industries including biomedical, cosmetic, environmental, and 

material applications (Taton et al., 2000, Cui et al., 2001, Asz et al., 

2006, Chakraborty et al., 2009, Bi et al., 2015, Ongaro et al., 2015, 

Project on Emerging Nanotechnologies, 2015). Nanotechnology has 
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also brought about new multidisciplinary fields such as nanomedicine 

and nanobiotechnology (Moore, 2006, Amini et al., 2014). 

Nanotechnology promises benefits to society and the 

economy. Current treatments for nervous system disorders are often 

inadequate due to the presence of the blood brain barrier (BBB), which 

restricts the uptake of neurotherapeutics (Abbott and Romero, 1996, 

Roney et al., 2005, Martel, 2015). However, nanoneuromedicine could 

offer plausible solutions. Nanoparticles (NPs) would be efficient drug 

carriers as the crossing of the BBB depends solely on the 

physicochemical properties of NPs and not the drug characteristics. 

Furthermore, manipulation of NP surface confers features that promote 

BBB targeting or enhances its crossing of the BBB (Masserini, 2013). 

Chitosan NPs, poly(lactic-co-glycolic acid) (PLGA) NPs, and gelatin 

nanostructured lipid carriers are promising carriers for nose-to-brain 

drug delivery (Seju et al., 2011, Md et al., 2014, Zhao et al., 2014b). 

Table 1.1.1 lists several NPs used as drug-delivery systems to the 

brain. Nanotherapeutics have also been used clinically, where some 

examples of FDA-approved drugs include Doxil (anti-cancer drug), 

Emend (anti-emetic drug), and AmBisome (anti-fungal drug) (Ventola, 

2012). Iron oxide NPs have also been studied as a potential contrast 

agent for bioimaging to gauge brain tumor progression (Neuwelt et al., 

2007, Gahramanov et al., 2011). Additionally, nanotechnology can 

improve the nature of food to meet the needs of a growing population. 

Crop quality and yield have been suggested to improve by using 
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appropriate concentrations of fullerol, a carbon-based NP (Kole et al., 

2013). Carbon nanotubes (CNTs) are also commonly used to remove 

organic and inorganic pollutants from contaminated water (Li et al., 

2003b, Peng et al., 2005). The attractiveness of nanotechnology has 

thus brought about global multi-billion dollar investments (Guzman et 

al., 2006, Oberdörster et al., 2007). The Singapore government has 

also jumped onto the nanotechnology bandwagon, investing large 

amounts of money on research and development (Levine, 2014). 
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Table 1.1.1 NPs as drug-delivery systems to the brain. 

Type of 
NP Surface modification Size (nm) Type of Drug Type of action Reference 

CBSA PEG 50 – 58 Aclarubicin Anti-cancer Lu et al. (2006) 

Chitosan Non-coated 15.23 Amyloid-β Vaccine Zhang and Wu (2009) 

PBCA Tween-80, PEG 20000 100 Hexapeptide dalargin Anti-nociceptive Das and Lin (2005) 

PBCA Polysorbate 80 41 Rivastigmine Anti-Alzheimer’s Wilson et al. (2008) 

PBCA Polysorbate 80 112 Gemcitabine Anti-cancer Wang et al. (2009) 

PLGA (R)-g7 143 – 197 Loperamide Opioid receptor agonist Tosi et al. (2007) 

PLGA Alginate hydrogel 400 – 600 Dexamethasone Anti-inflammatory Kim and Martin (2006) 

PLGA Avidin 120 Leukemia inhibitory 

factor 

Pro-neural, 

reparative cytokine 

Zhao et al. (2014a) 

PLGA Glutathione 326.6 Triiodothyronine Thyroid hormone Mdzinarishvili et al. (2013) 

Tripalmitin Non-coated 358 – 362 Etoposide Anti-cancer Reddy et al. (2004) 
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1.2. Nanomaterials 

Nanomaterials are defined as structures with at least one 

dimension smaller than 100 nm, where they can exist in various forms 

such as fibers, particles, tubes, and wires, of which NPs are considered 

the building blocks for nanomaterial production (Fahlman, 2007). They 

can be roughly categorized according to their chemical structures, such 

as metals (e.g. copper NPs), metal oxides (e.g. titanium dioxide (TiO2) 

NPs), carbon-based (e.g. CNTs), and hybrid structures (e.g. quantum 

dots) (Handy et al., 2008, Smita et al., 2012). Nanomaterials are 

engineered to achieve particular physicochemical properties that are 

specific for product application. At the nanoscale, matters display 

unusual biological, chemical, and physical properties unique from that 

of bulk materials (Smita et al., 2012, United States National 

Nanotechnology Initiative, 2015). The reduction in size results in large 

surface area to volume ratio, rendering elevated reactivity with 

surrounding surfaces (Fahlman, 2007, Christian et al., 2008, Smita et 

al., 2012). Changes to nanomaterial’s size or structure also result in 

alterations in fundamental properties, including improved strength, 

advanced optical characteristics, augmented chemical reactivity, and 

enhanced thermal or electrical conductivity (Fahlman, 2007, Singh et 

al., 2009, United States National Nanotechnology Initiative, 2015). 

These novel features enable nanomaterials to become appealing and 

valuable in various fields. In the biomedical field, nanomaterials are 

highly favored for utilization in drug delivery and/or targeting, especially 
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due to their ability to carry an array of drugs and be targeted to specific 

organs through manipulation of surface features (Hans and Lowman, 

2002, Chouhan and Bajpai, 2009). For instance, rivastigmine is 

delivered to the brain for treatment of Alzheimer’s disease via poly(n-

butylcyanoacrylate) (PBCA) NPs coated with polysorbate 80 (Wilson et 

al., 2008). Commercially, there are close to 2,000 nanoproducts (Fig. 

1.1.1) of which majority is made up of health and fitness related 

products, such as cosmetics, sporting goods, and clothing (Fig. 1.1.2) 

(Project on Emerging Nanotechnologies, 2015). Researchers are also 

exploring potentials of nanomaterials in scientific and technical areas 

such as biomaterials, clinical diagnosis, and tissue engineering (Basu 

et al., 2004, Stuart et al., 2006, Wang et al., 2014b). 

 

           

Fig. 1.1.1 Nanoproducts that are currently commercially available. 
Adapted from Project on Emerging Nanotechnologies (2015). 
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Fig. 1.1.2 Health and fitness nanoproducts that are currently 
commercially available. Adapted from Project on Emerging 
Nanotechnologies (2015). 
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mitochondrial dysfunction, and cell death (Li et al., 2008, Sohaebuddin 

et al., 2010, Chairuangkitti et al., 2013, Manke et al., 2013). 

Nanomaterials preferentially localize in mitochondria (Foley et al., 

2002, Li et al., 2003a), and its deposition could disrupt mitochondrial 

functions by affecting the electron transport chain (ETC), leading to the 

formation of ROS and reduced adenosine triphosphate (ATP) 

production (Arora et al., 2008, AshaRani et al., 2009). Nanomaterials 

can also enter the bloodstream via multiple routes of exposure 

including dermal, inhalation, and oral (Table 1.1.2). They then circulate 

throughout the body, and are taken up by tissues and organs. Over 

time, it could lead to nanomaterial accumulation in organs, resulting in 

harmful effects such as tissue dysfunction and inflammation. Generally, 

nanomaterial biodistribution is size-dependent. Smaller nanomaterials 

tend to distribute to more organs, exhibit greater accumulation, and 

induce stronger toxicities than larger nanomaterials (Balasubramanian 

et al., 2013).  



Section I 
 Introduction	
   	
  

10 

Table 1.1.2 Effects of NPs via various exposure routes in different organisms. 

Organism NP Size (nm) Exposure route Affected organs Comments Reference 

Sprague-

Dawley rat 

AgNPs 18 – 19 Inhalation Lungs, liver, brain, 

kidneys 

Dose dependent 

translocation, 

inflammation 

Sung et al. (2009) 

Hartley albino 

guinea pig 

AgNPs < 100 Dermal Skin, liver, spleen Histopathologic 

anomalies 

Korani et al. (2011) 

Wistar rat AuNPs 20 Intravenous 

injection 

Liver, spleen, 

kidney, testis 

Gene expression 

changes 

Balasubramanian 

et al. (2010) 

Athymic nude 

mouse 

Carbon dots 3 Intravenous, 

intramuscular, 

subcutaneous 

injections 

Reticuloendothelial 

system (RES) 

Low retention in RES, 

rapid clearance 

through kidneys 

Huang et al. (2013) 

CD-1 mouse Ceria NPs Not 

reported 

Oral Liver, lungs, blood Inflammation Poma et al. (2014) 

Wistar rat Manganese 

oxide NM 

45 Oral Brain, liver, spleen, 

blood 

Histopathologic 

anomalies 

Singh et al. (2013) 



Section I 
 Introduction	
   	
  

11 

Nanomaterials could also be released into the environment 

during the production process and its subsequent use, leading to 

ecotoxicity. For instance, silver NPs (AgNPs) have been found to leach 

from commercially available products (Benn and Westerhoff, 2008, 

Kaegi et al., 2010, Farkas et al., 2011). Discharged nanomaterials may 

interact with the environment resulting in alterations in its 

physicochemical characteristics, potentially modifying its toxicity profile 

(Lyon et al., 2005, Klaine et al., 2008). Organisms, including 

microorganisms, will then take up the released nanomaterials in the 

ecosystem. Presence of CNTs and TiO2 NPs in the living environment 

of rainbow trout has led to organ pathologies, biochemical effects, and 

respiratory problems (Federici et al., 2007, Smith et al., 2007). 

Nanomaterials have also shown to be toxic to microbes (Sondi and 

Salopek-Sondi, 2004, Lyon et al., 2005, Adams et al., 2006), which is 

critical as microorganisms form the foundation of both aquatic and 

terrestrial ecosystems (Jafar and Hamzeh, 2013). 

 

1.2.1. Gold Nanomaterials 

Gold NPs (AuNPs) have been used in various consumer 

products including cosmetics, food and beverage, and electronic 

appliances (Project on Emerging Nanotechnologies, 2015). It is also 

commonly employed in the development of biomedical applications 

such as cancer diagnostics and therapeutics (El-Sayed et al., 2006, 

Huff et al., 2007, Ojeda et al., 2007, Parry et al., 2013), treatment for 
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rheumatoid arthritis (Tsai et al., 2007, Lee et al., 2013), and cell 

imaging (Chen et al., 2005, Shukla et al., 2005b). AuNPs are thought to 

be safe as bulk gold is chemically inert. This allows the manipulation of 

AuNPs’ size and shape without compromising its stability and toxicity 

profiles (Zhang, 2015). It has been established that AuNPs enter living 

cells through endocytosis (Shukla et al., 2005a), with several studies 

demonstrating that AuNPs are normally retained in endosomes 

(Goodman et al., 2004, Chithrani et al., 2006). 

Conflicting reports of AuNPs’ toxicity exists. It has been 

suggested that cytotoxicity of AuNPs is largely dependent on its 

physical features and cell lines. Several in vitro and in vivo studies 

have demonstrated that AuNPs do not show overt toxicity. Despite 

being taken up into human K562 cells, AuNPs did not cause acute 

cytotoxicity (Connor et al., 2005). Additionally, there was no inhibition in 

proliferation of normal peripheral blood mononuclear cells, while the 

proliferation of three multiple myeloma cell lines were significantly 

inhibited following AuNPs exposure (Bhattacharya et al., 2007). When 

exposed to zebrafish embryos (Bar-Ilan et al., 2009, Asharani et al., 

2011) and mice (Zhang et al., 2010), AuNPs also did not exhibit 

significant cytotoxicity. Interestingly, Avalos et al. (2015) did not find 

consistent changes in cytotoxicity in response to differences in AuNPs 

size, however, Pan et al. (2007) found that 1 to 2 nm AuNPs were 

highly toxic, while larger AuNPs, of up to 15 nm, were non-toxic in four 

representative cell lines. On the other hand, Mironava et al. (2010) 
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determined that larger AuNPs led to major damage in human dermal 

fibroblasts. Similarly, AuNPs with cationic side chains were determined 

to be moderately toxic while anionic particles were nontoxic (Goodman 

et al., 2004). AuNPs may also be identified as foreign materials by 

immune cells resulting in acute inflammation and apoptosis (Cho et al., 

2009).  

Although AuNPs are usually associated with low or no 

significant cell death, AuNPs may cause serious cellular damage. 

AuNPs promoted abnormal actin fiber formation in human dermal 

fibroblasts, leading to decreased cell proliferation, adhesion, and 

motility (Pernodet et al., 2006). AuNPs could also trigger stress 

response pathways in cells, including activation of stress-specific 

kinases, glutathione transferase activities, and chaperone induction 

(Khan et al., 2007). Multiple studies have reported elevated intracellular 

ROS levels in response to AuNPs exposure (Taggart et al., 2014). 

Additionally, Khan et al. (2007) observed activation of more than 30 

genes upon AuNPs exposure, indicating that unaffected cell viability 

does not equate to absence of cellular processes alterations. 

 

1.2.2. Silver Nanomaterials 

Silver has been known for its disinfectant properties for 

centuries. Silver powder was documented as ulcer treatment, while 

silver-containing cream is still used for serious burn wounds (Chen and 

Schluesener, 2008). Similarly, AgNPs have been established as 
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effective biocides against bacteria, fungi, and virii (Elechiguerra et al., 

2005, Hernandez-Sierra et al., 2008, Kim et al., 2009a, Marambio-

Jones and Hoek, 2010). Due to their innate strong antibacterial 

characteristic, AgNPs have been utilized in many daily commercial 

products including cosmetics, kitchenware and textiles. They are also 

frequently used in medical applications such as wound dressings and 

antibacterial coatings of medical instruments (Asz et al., 2006, Lee et 

al., 2007, Eby et al., 2009, Project on Emerging Nanotechnologies, 

2015). As such, AgNPs are said to be the most frequently utilized 

nanomaterial in consumer products (Chen and Schluesener, 2008, 

Beer et al., 2012), making up approximately 24 % of all nanoproducts 

(Project on Emerging Nanotechnologies, 2015). 

Despite its popularity, severe human health considerations 

have been brought up. AgNPs can reach the brain in a variety of ways. 

Inhalation of AgNPs allows AgNPs to reach the olfactory bulb and brain 

via traveling across the upper respiratory tract (Takenaka et al., 2001, 

Ji et al., 2007, Sung et al., 2009). AgNPs can also cross the BBB and 

damage its integrity (Tang et al., 2009, Sharma et al., 2010, Trickler et 

al., 2010), exposing the brain to previously restricted elements, such as 

immunological mediators and neurodestructive factors, leading to 

abnormal cellular reactions and injuries (Sharma et al., 2010). The 

most common mechanism of toxicity for AgNPs is oxidative stress. 

Exposure to AgNPs results in elevated ROS production, depletion of 

glutathione, and reduced superoxide dismutase activity (Hussain et al., 
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2005, Arora et al., 2008, Hsin et al., 2008, Kim et al., 2009b, Mukherjee 

et al., 2012). Additionally, exposure to AgNPs led to obvious alterations 

in expression of stress response genes involved in oxidative stress, 

endoplasmic reticulum stress, and apoptosis in an in vitro human 

intestine model (Bouwmeester et al., 2011). Multiple studies have 

found that AgNPs preferentially disrupt mitochondrial function 

(AshaRani et al., 2009, Costa et al., 2010, Kang et al., 2012, 

Mukherjee et al., 2012, Stensberg et al., 2013), since mitochondria are 

major sites of ROS production. Excessive formation of ROS can result 

in mitochondrial damage, in turn leading to uncontrolled ROS 

generation (Guo et al., 2013). Apart from mitochondria, AgNPs also 

exert genotoxic effects in cells. The generation of ROS from AgNPs 

exposure causes spontaneous DNA damage, alterations to cell cycle, 

and ultimately cell death (Cooke et al., 2003, AshaRani et al., 2009, 

Kim et al., 2009b, Eom and Choi, 2010, Guo et al., 2013). 

Exposure of animals to AgNPs also resulted in inflammatory 

responses. A single intratracheal instillation of AgNPs in rats resulted in 

distinct inflammatory responses across 28 days (Park et al., 2011). 

Additionally, a microarray analysis of mice liver RNA revealed 

alterations in expression of genes involved in apoptosis and 

inflammation that resulted in phenotypical changes following exposure 

to AgNPs (Cha et al., 2008). Similarly, rats exposed to AgNPs showed 

changes in expression of proteins that moderate ROS formation, 

inflammation and apoptosis (Kim et al., 2010).  
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2. Mitochondria and Its Related Compounds 

2.1. Mitochondria 

Mitochondria are commonly known as cellular powerhouses 

(Correia et al., 2010, Marchi et al., 2012). Apart from the generation of 

ATP, mitochondria are involved in other essential functions in cells, 

such as cell cycle regulation, differentiation, calcium homeostasis, and 

cell death (Raimundo, 2014). 

Mitochondrion is made up of an outer and inner membrane 

enclosing a matrix space, which contains enzymes that are involved in 

terminal catabolic pathways, such as the citric acid cycle (Schaffer and 

Suleiman, 2007, Alberts et al., 2008). The inner mitochondrial 

membrane is a specialized convoluted phospholipid membrane that 

contains a series of enzymes, known as the ETC. ETC uses electrons 

to translocate protons across the inner mitochondrial membrane 

generating an electrochemical gradient, which makes up the 

mitochondrial membrane potential, for the reformation of ATP (Fig. 

1.2.1) (Leuner et al., 2007, Schaffer and Suleiman, 2007, Alberts et al., 

2008, Keane et al., 2011, Marchi et al., 2012, Voet et al., 2013). This 

process is known as oxidative phosphorylation, and accounts for 95 % 

of energy required by brain (Chang and Reynolds, 2006). ATP is 

transported out of mitochondria via adenine nucleotide translocase 

(ANT) for use in various parts of the cell, and in the process is 

hydrolyzed back to adenosine diphosphate (ADP) and inorganic 
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phosphate (Pi) (Duchen, 2004, Ballinger, 2005, Alberts et al., 2008, 

Voet et al., 2013). 

 

 

Fig. 1.2.1 Schematic diagram of the ETC. Electrons are transferred 
across mitochondrial complexes I to IV, resulting in the corresponding 
pumping of H+ from the matrix (low concentration of H+) to 
intermembrane space (high concentration of H+), across the inner 
mitochondrial membrane. This electrochemical gradient is used for the 
reformation of ATP from ADP and Pi, via ATP synthase. Dotted red 
lines denote movement of H+, while dotted purple lines denote 
movement of electrons (e-). Abbreviations: Cyt C: cytochrome C; e-: 
electrons; H+: hydrogen ions; I – IV: mitochondrial complexes I to IV; Q: 
coenzyme Q. Adapted from Keane et al. (2011). 
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then interact with DNA, lipids, and proteins leading to oxidative damage 

(Marchi et al., 2012). Mitochondria destroy ROS using endogenous 

antioxidants such as vitamin E, coenzyme Q and glutathione, or 

enzymatically through activation of superoxide dismutase and catalase. 

However, when the antioxidant defenses cannot keep up with the 

production of ROS, ROS would accumulate in mitochondria 

(Mukhopadhyay and Weiner, 2007). Mitochondria are major targets of 

ROS as mitochondrial DNA, lipids, and proteins are susceptible to 

oxidative damage (Leuner et al., 2007, Pieczenik and Neustadt, 2007, 

Marchi et al., 2012). Additionally, mitochondria play crucial roles in cell 

death where the breakage of the outer mitochondrial membrane via the 

opening of mitochondrial permeability transition pore (MPTP) and the 

dissipation of the electrochemical gradient could result in apoptosis 

and/or necrosis (Kroemer et al., 1998, Green and Kroemer, 2004, 

Orrenius, 2004, Montero et al., 2010). Mitochondrial dysfunction has 

been associated with pathological development of various chronic 

neurodegenerative disorders, such as amyotrophic lateral sclerosis, 

Alzheimer’s disease, and Parkinson’s disease (Cozzolino et al., 2015, 

Ferrigno et al., 2015, Long et al., 2015). 

 

2.2. Docosahexaenoic Acid 

Docosahexaenoic acid (DHA, 22:6) (Fig. 1.2.2), a long-chain 

polyunsaturated fatty acid (PUFA), is the most abundant fatty acid in 

brain and is a structural component of neuronal membranes (Horrocks 
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and Farooqui, 2004). However, neurons do not have the capability to 

produce DHA. Instead, it is taken up through the diet, and subsequently 

transported across the BBB and inserted into the sn-2 position of 

glycerol backbone of membrane phospholipids (Glomset, 2006, Lukiw 

and Bazan, 2008, Nguyen et al., 2014). Due to its high number of 

double bonds, DHA helps to increase membrane fluidity, hence 

moderating membrane organization and function (Yang et al., 2011). 

Supplementation of DHA in HL-60 and Neuro-2A cells led to its 

incorporation into neural cell membranes, resulting in increased 

resistance against excitotoxic damage (Horrocks and Farooqui, 2004). 

High intake of DHA also resulted in its incorporation into mitochondrial 

membrane phospholipids, and was coupled to a resistance to Ca2+-

induced MPTP opening (O'Shea et al., 2009, Khairallah et al., 2010, 

Khairallah et al., 2012).  

DHA is crucial in neuroprotection as it contains anti-oxidative 

stress, anti-inflammation, and anti-apoptotic properties (Eady et al., 

2012, Tanaka et al., 2012). However, as the most common PUFA, 

DHA is a target for lipid peroxidation (Stillwell et al., 1997). Prolonged 

oxidative stress can oxidize DHA into prostaglandin-like substances, 

triggering the production of ROS leading to further oxidative stress, a 

vicious cycle that will result in extensive damage (Porter et al., 1995, 

Montine et al., 2004, Lukiw and Bazan, 2008). 
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Fig. 1.2.2 Structure of DHA. Adapted from Rajnavolgyi et al. (2014). 

 

2.3. L-Carnitine 

L-carnitine (LC) (Fig. 1.2.3) is an endogenous compound 

found in all mammalian species, which exists mainly as the unesterified 

form (Walter and Schaffhauser, 2000, Jones et al., 2010). It can be 

transported and accumulated in brain (Bresolin et al., 1982, Jones et 

al., 2010). LC is essential for brain function, where the absence of LC 

results in major detrimental consequences in brain, such as 

development of metabolic encephalopathy (Kimura and Amemiya, 

1990, Jones et al., 2010). 

The main function of LC is to facilitate fatty acid transport 

into mitochondrial matrix for the production of ATP via β-oxidation 

(Kerner and Hoppel, 2000, Walter and Schaffhauser, 2000, Hoppel, 

2003). This occurs via a three-step process known as the carnitine 

shuttle (Fig. 1.2.4). Acyl-CoA found in the cytosol is transferred onto LC 

by carnitine palmitoyltransferase-1 (CPT-1), which is subsequently 

OH 
O 



Section I 
 Introduction	
   	
  

21 

transported into mitochondrial matrix for β-oxidation (Virmani and 

Binienda, 2004, Sharma and Black, 2009, Houten and Wanders, 2010). 

The carnitine shuttle is critical as elevated levels of free fatty acids can 

result in mitochondrial dysfunction such as membrane damage, leading 

to mitochondria-dependent cell death (Virmani et al., 1995, Luo et al., 

1999, Furuno et al., 2001, Sharma and Black, 2009). LC effectively 

protects mitochondria and cells against oxidative stress by inhibiting 

mitochondrial membrane depolarization and ROS formation, increasing 

mitochondrial functions, and preventing cell death in serum- or glucose-

deprived medium (Ishii et al., 2000, Virmani and Binienda, 2004, Hino 

et al., 2005, He et al., 2011, Geier and Geier, 2013). Additionally, LC 

actively scavenges for ROS, playing a potential antioxidant role in cells 

(Derin et al., 2004, Augustyniak and Skrzydlewska, 2010, Mescka et 

al., 2011). 

 

 

Fig. 1.2.3 Structure of LC. Adapted from Pettegrew et al. (2000) 
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Fig. 1.2.4 Schematic diagram of the carnitine shuttle. CPT-1 transfers 
an acyl-CoA onto carnitine to form acyl-carnitine, which is then 
translocated across the inner mitochondrial membrane via CACT. In 
the mitochondrial matrix, CPT-2 catalyzes the conversion of acyl-
carnitine back to acyl-CoA and carnitine, where acyl-CoA can then 
undergo β-oxidation. Carnitine is then brought out from mitochondria 
via CACT. Dotted black lines denote movement of various compounds. 
Abbreviations: CACT: carnitine-acylcarnitine translocase; CPT-1: 
carnitine palmitoyltransferase-1; CPT-2: carnitine palmitoyltransferase-
2. Adapted from Sharma and Black (2009). 
 

3. Phospholipase A2 

3.1. Phospholipase A2 

Phospholipase A2 (PLA2) is a superfamily of enzymes that 

cleaves the acyl ester bond of glycerophospholipids at the sn-2 

position, in turn releasing free fatty acids and lysophosholipids (Dennis, 

1994, Takenaka et al., 2001, Burke and Dennis, 2009, Ong et al., 

2015). Almost 20 PLA2 enzymes have been identified (Kudo, 2004, 

Sun et al., 2014) based on structural and biochemical features 

including sequence similarity and subcellular localization (Dennis, 
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1997, Tang et al., 1997). These enzymes have been grouped into 

several broad families such as calcium-independent PLA2 (iPLA2), 

cytosolic PLA2 (cPLA2), and secretory PLA2 (sPLA2), which are then 

subdivided further into various isoforms (Dennis, 1994, Farooqui et al., 

1997, Sun et al., 2004, Ong et al., 2015). 

PLA2s play many integral roles in brain such as modulating 

neurotransmitter release, long-term potentiation (LTP), and behavioral 

and cognitive functions, and are crucial for signal transduction, 

production of eicosanoids and lipid mediators, inflammation, membrane 

remodeling, and lipid metabolism (Dennis, 1997, Farooqui et al., 1997, 

Farooqui et al., 2000, Farooqui et al., 2006, Schaloske and Dennis, 

2006, Ong et al., 2010, Murakami et al., 2011, Sun et al., 2014). These 

enzymes work as critical regulators of cell membrane phospholipids via 

the deacylation-reacylation cycle, by working as the initiation point of 

activation, releasing fatty acids and lysophospholipids (Fig. 1.2.5) (Sun 

and MacQuarrie, 1989, Sun et al., 2014). Under normal conditions, 

PLA2s maintain structure and function of membranes via removing 

oxidized fatty acids from phospholipids, hence preventing membrane 

lipid peroxidation (Tan et al., 1984, Sevanian and Kim, 1985, McLean 

et al., 1993, Ong et al., 2015). In pathological conditions however, 

elevated activation of PLA2 enzymes results in increased production of 

fatty acids and lysophospholipids that will be metabolized to form 

second messengers and metabolites that could lead to alterations in 

membrane permeability, stimulation of lipolytic enzymes, and 
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inflammation (Sun et al., 2005, Sun et al., 2014, Ong et al., 2015). 

Hence, PLA2 enzymes are said to be major components involved in 

oxidative stress and inflammation in brain, and have been implicated in 

a range of neurological disorders (Farooqui et al., 1997, Liu and Xu, 

2010, Ong et al., 2015). 

 

 

Fig. 1.2.5 Schematic diagram of the PLA2 enzymatic pathway. PLA2 
acts on cell membrane phospholipids, releasing fatty acids and 
lysophospholipids, which can be further metabolized to form second 
messengers and metabolites. Abbreviations: AA: arachidonic acid; 
COX: cyclooxygenases; DHA: docosahexaenoic acid; LOX: 
lipoxygenases; LysoPC: lysophosphatidylcholine; LysoPE: 
lysophosphatidylethanolamine; PLA2: phospholipase A2. 
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IIE, sPLA2-IIF, sPLA2-III, sPLA2-V, sPLA2-X, sPLA2-XIIA, and sPLA2-

XIIB (Kudo and Murakami, 2002). In the rat brain, sPLA2 isoforms are 

found in all regions, with highest activities in medulla oblongata, pons, 

and hippocampus, and lowest in olfactory bulb and cerebellum (Thwin 

et al., 2003). It is synthesized intracellularly, and in its mature form is 

secreted from the cytoplasm to the extracellular space to exert its 

effects on glycerophospholipids (Gentile et al., 2012, Sivaprakasam 

and Nachiappan, 2015).  

sPLA2 is dependent on Ca2+ for its functions, and lacks 

specificity for cleavage of fatty acids at the sn-2 position of 

glycerophospholipids (Murakami and Kudo, 2002, Sun et al., 2004, 

Schaloske and Dennis, 2006, Burke and Dennis, 2009, Yagami et al., 

2014, Ong et al., 2015). sPLA2 has been shown to release arachidonic 

acid (AA), oleic acid, and linoleic acid, as well as other pro-

inflammatory mediators from glycerophospholipids (Rosengren et al., 

2006). sPLA2-IIA, sPLA2-V, and sPLA2-X have been reported to amplify 

eicosanoid production by either modulating cPLA2 activity or directly 

releasing AA (Han et al., 2003, Kikawada et al., 2007). Studies reveal 

that pro-inflammatory cytokines and lipopolysaccharides induce sPLA2 

mRNA expression (Li et al., 1999, Shen et al., 2005, Sun et al., 2007). 

sPLA2 activity has been recorded in various inflammatory conditions 

such as sepsis, arthritis, acute lung injury, and neutrophilic 

inflammation (Suzuki et al., 2000, Munoz et al., 2009, Boilard et al., 

2010). Elevated gene and protein expressions of sPLA2 have also 
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been reported in neurodegenerative diseases including Alzheimer’s 

disease (Moses et al., 2006), cerebral ischemia (Lin et al., 2004), and 

multiple sclerosis (Cunningham et al., 2006).  

Apart from its PLA2 activity, sPLA2 is involved in the release 

of neurotransmitters (Matsuzawa et al., 1996) and neurite outgrowth 

(Ikeno et al., 2005, Burke and Dennis, 2009). sPLA2 is also found in 

mitochondrial fractions, playing a role in the regulation of mitochondrial 

phospholipid composition and the proper functioning of the ETC 

(Zhang et al., 1999, Adibhatla et al., 2003, Gentile et al., 2012). 

 

3.3. Cytosolic Phospholipase A2 

cPLA2 enzymes have high molecular weights of 85 – 110 

kDa, and consist of cPLA2α, cPLA2β, cPLA2γ, cPLA2δ, cPLA2ε, and 

cPLA2ζ (Molloy et al., 1998, Balboa et al., 2002). In normal rats, basal 

mRNA expression of cPLA2 is kept very low in brain (Pardue et al., 

2003). cPLA2 protein is found uniformly across various regions of rat 

brain, with relatively high levels of expression in hypothalamus, 

brainstem, cerebellum, and spinal cord (Ong et al., 1999).  

cPLA2 requires Ca2+ for its activities and preferentially 

releases AA from glycerophospholipids (Murakami and Kudo, 2002, 

Sun et al., 2004, Dennis et al., 2011, Murakami et al., 2011, Ong et al., 

2015). AA plays a critical role in multiple physiological functions. It 

serves as a substrate for cyclooxygenases (COX) and lipoxygenases 

(LOX) to become precursors for eicosanoids and prostanoids, which 
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mediate inflammatory responses in cells (Kramer and Sharp, 1997, 

Uozumi et al., 1997, Phillis et al., 2006, Calder, 2008, Farooqui, 2012, 

Sun et al., 2014). Discrepancies in eicosanoid production could lead to 

chronic inflammation, disturbing signaling pathways that could result in 

irregular immune functions (Harizi et al., 2008, Serhan, 2010). 

Additionally, cPLA2 can be activated by ROS (Xu et al., 2003, Zhu et 

al., 2006, Sun et al., 2007) and AA metabolism produces ROS as a by-

product (Gentile et al., 2012). Hence, elevated cPLA2 activity is often 

associated with oxidative stress and neuroinflammation (Arai et al., 

2001, Ong et al., 2003, Farooqui and Horrocks, 2006, Tanaka et al., 

2012). For instance, cPLA2 has been associated with a range of 

inflammatory neurological disorders including Alzheimer’s disease 

(Gentile et al., 2012, Sagy-Bross et al., 2014), Parkinson’s disease 

(Klivenyi et al., 1998), multiple sclerosis (Nomura et al., 2011, Yang et 

al., 2014), and spinal cord injury (Liu and Xu, 2010). It is therefore 

crucial to regulate activity of cPLA2 stringently so as to preserve 

appropriate levels of AA and lysophospholipases for cellular 

homeostasis (Katsuki and Okuda, 1995, Farooqui et al., 2006, Sun et 

al., 2010, Gentile et al., 2012). 

Although attention on cPLA2 is primarily due to its 

preference for AA release leading to inflammation, it is also involved in 

other functions in cells. Like other PLA2 enzymes, cPLA2 moderates 

membrane fluidity, and affect downstream signaling pathways via the 

action of released fatty acids, their metabolites, and lysophospholipids. 
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It also plays a role in regulation of membrane trafficking (San Pietro et 

al., 2009, Ha et al., 2012, Leslie, 2015), and synaptic plasticity via LTP 

and long-term depression (LTD) (Bazan, 2005, Le et al., 2010, Wang et 

al., 2014a, Leslie, 2015). Apart from its phospholipase activity, cPLA2 

exerts lysophospholipase and transacetylase activities although the 

physiological relevance is currently unknown (Ghosh et al., 2006, 

Dennis et al., 2011, Gentile et al., 2012, Leslie, 2015).  

 

3.4. Calcium-Independent Phospholipase A2 

iPLA2 has a molecular weight of 85 – 88 kDa, and exists as 

a multimeric complex (Ackermann et al., 1994, Tang et al., 1997, 

Winstead et al., 2000). Multiple splice variants have been discovered, 

including iPLA2α, iPLA2β, iPLA2γ, iPLA2δ, iPLA2ε, iPLA2ζ, and iPLA2η 

(Mancuso et al., 2000, Tanaka et al., 2000, Balboa et al., 2002, van 

Tienhoven et al., 2002, Jenkins et al., 2004, Glynn, 2005). iPLA2 is 

found in all regions of brain, with high expression in cerebral cortex, 

basal ganglia, brainstem, and cerebellum, and is localized in the 

cytoplasm (Ong et al., 2005).  

Unlike cPLA2 and sPLA2, iPLA2 has been postulated to show 

preference for DHA release at the sn-2 position of 

glycerophospholipids (Murakami and Kudo, 2002, Strokin et al., 2003, 

Farooqui and Horrocks, 2006, Strokin et al., 2007, Green et al., 2008, 

Basselin et al., 2010, Ong et al., 2015). Both DHA and its derivative 

neuroprotectin D1 (NPD1) have revealed neuroprotective roles in the 
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central nervous system (CNS) (Bazan et al., 2013). DHA is 

metabolized by 15-LOX enzyme to docosanoids such as resolvins and 

neuroprotectins, which antagonize effects of AA-derived pro-

inflammatory eicosanoids thus exhibiting anti-inflammatory and anti-

apoptotic characteristics (Hong et al., 2003, Mukherjee et al., 2004, 

Serhan, 2005, Bazan, 2009, Orr et al., 2013). Under conditions of 

oxidative stress and inflammation, NPD1 has been shown to up-

regulate anti-apoptotic proteins while down-regulating pro-apoptotic 

proteins, resulting in an overall pro-survival situation (Mukherjee et al., 

2004, Lukiw et al., 2005, Bazan, 2007). 

iPLA2 is an integral ‘housekeeping’ enzyme, highly 

expressed in brain under normal conditions (Ong et al., 2010). Similar 

to other PLA2 enzymes, iPLA2 is heavily involved with lipid regulation, 

cell signaling, and transcriptional regulation (Balsinde et al., 1997, 

Isenovic and LaPointe, 2000, Williams and Ford, 2001, Moran et al., 

2005, Hooks and Cummings, 2008). In the brain, iPLA2 has been 

associated with neurotransmitter release (St-Gelais et al., 2004), LTP 

and memory (Schaeffer and Gattaz, 2005, Shalini et al., 2014). The 

remodeling and repair of membrane phospholipids by iPLA2 could also 

protect mitochondrial integrity and function, since mitochondria are key 

ROS-generating organelles in cells. Seleznev et al. (2006) 

demonstrated a reduction in caspase-3 activation, fragmentation of 

DHA, and phosphatidylserine (PS) externalization upon iPLA2 

expression in INS-1 cells, preventing mitochondria-induced apoptosis. 
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Moreover, iPLA2 has been reported to repair oxidized mitochondrial 

membrane components, and modulate opening of MPTP (Gadd et al., 

2006, Zhao et al., 2010). Mutations in iPLA2 gene have been 

associated with development of neurologic childhood disorders due to 

iron accumulation in brain (Sun et al., 2010, Illingworth et al., 2014). 

Abnormal iPLA2 has also been observed in cerebellar atrophy, 

dystonia-parkinsonism, and increased expression of Lewy bodies and 

neurofibrillary tangles (Kurian et al., 2008, Paisan-Ruiz et al., 2009, 

Sun et al., 2010). 
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Table 1.1.3 Key characteristics of PLA2 isoforms. 

sPLA2 cPLA2 iPLA2 

14 – 19 kDa 85 – 110 kDa 85 – 88 kDa 

Synthesized intracellularly, with mature 

form secreted to extracellular space 

Requires Ca2+ for activities and 

preferentially releases AA 
Preference for DHA release 

Lacks specificity for cleavage of fatty 

acids 

Elevated cPLA2 activity often associated 

with oxidative stress and 

neuroinflammation 

Integral ‘housekeeping’ enzyme, highly 

expressed in brain under normal 

conditions 
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The introduction of nanotechnology in recent years has 

brought about multiple benefits to society and the economy, where 

novel features of nanomaterials enable them to become appealing and 

valuable in wide-ranging fields. AgNPs are said to be the most 

frequently utilized nanomaterial in consumer products (Chen and 

Schluesener, 2008, Beer et al., 2012), making up approximately 24 % 

of all nanoproducts (Project on Emerging Nanotechnologies, 2015). 

Much research has been conducted on the health effects of AgNPs 

with respect to organs such as the lungs and liver, however, little is 

known about the impacts on the human brain. Recent studies revealed 

the ability of AgNPs to readily cross the BBB, exerting its effects on the 

CNS (Tang et al., 2009, Sharma et al., 2010, Trickler et al., 2010). 

Additionally, multiple studies have found that AgNPs preferentially 

disrupt mitochondrial function (AshaRani et al., 2009, Costa et al., 

2010, Kang et al., 2012), since mitochondria are major sites of ROS 

production. Apart from disrupting mitochondrial function, nanotoxicity is 

often associated with the triggering of inflammatory responses (Park 

and Park, 2009, Xue et al., 2012, Panas et al., 2013). 

The present study was conducted in view of the mounting 

usage of AgNPs despite little being known about its toxicity and 

potential impacts on human and environmental health. Hence, several 

issues would be examined in this study. Firstly, the current study aims 

to investigate the effect of AgNPs on human neuronal mitochondria, as 

mitochondria are crucial organelles in cells (Raimundo, 2014), and 
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mitochondrial dysfunction often leads to cell death (Montero et al., 

2010). AgNPs have been reported to target mitochondria (AshaRani et 

al., 2009), although little is known about its effects in human neuronal 

cells. Additionally, I wanted to determine if any mitochondrial 

dysfunction observed could be rescued through the use of endogenous 

compounds, such as DHA and/or LC, since these compounds have 

shown to be essential for healthy mitochondrial function (He et al., 

2011, Khairallah et al., 2012).  

AgNPs have also demonstrated inflammatory properties 

(Kim et al., 2010). However, it is unknown if AgNPs enhances the 

effects of pro-inflammatory mediators, inhibit anti-inflammatory 

mediators, or both. Thus, the current study aimed to examine the effect 

of AgNPs on inflammatory mediators, in particular the pro-inflammatory 

mediator, cPLA2, and the anti-inflammatory mediator, iPLA2. 

Furthermore, AgNPs have been reported to produce ROS in various 

cell lines (Mukherjee et al., 2012), although it has not been determined 

if AgNPs-induced ROS exerts its effects on the inflammatory 

mediators. Hence, aims 4 and 5 of the present study were to 

investigate effects of AgNPs-induced ROS on inflammatory mediators 

and to elucidate the mechanism underlying changes observed. 

Due to the increasing usage of AgNPs in consumer 

products, it is crucial to highlight and understand the potential toxicities 

of AgNPs on human health. It is hoped that the present study could 

provide additional insights with respect to AgNPs’ toxicity in human 
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neuronal cells, and possibly the biochemical mechanisms underlying 

the said nanotoxicity.  

 

  



Section III 
 Experimental studies	
   	
  

36 

 

 

 

 

 

 

 

 

SECTION III 

EXPERIMENTAL STUDIES 



Chapter 1 
 DHA and LC prevent acute silver nanotoxicity	
   	
  

37 

 

 

 

 

 

 

 

CHAPTER 1 

DOCOSAHEXAENOIC ACID AND L-CARNITINE 

PREVENT ACUTE SILVER NANOTOXICITY 

  



Chapter 1 
 DHA and LC prevent acute silver nanotoxicity	
   	
  

38 

1.1. Introduction 

Nanomaterials are appealing and valuable in various fields, 

as they are engineered to achieve particular physicochemical 

properties that are specific for their application. However, serious 

health considerations have been considered. The most prevalent 

toxicity mechanism for AgNPs is oxidative stress. Multiple studies have 

found that AgNPs preferentially disrupt mitochondrial function, since 

mitochondria are major ROS producers. AgNPs exposure led to 

damaged mitochondrial membrane, reduced mitochondrial membrane 

potential, opening of MPTP, disruption of ETC, reduced ATP 

production, and eventually cell death (AshaRani et al., 2009, Costa et 

al., 2010, Piao et al., 2011, Teodoro et al., 2011, Mukherjee et al., 

2012, Chairuangkitti et al., 2013, Stensberg et al., 2013). On the other 

hand, there are conflicting reports of AuNPs’ toxicity. Several studies 

have demonstrated that AuNPs do not show overt toxicity (Connor et 

al., 2005, Zhang et al., 2010, Asharani et al., 2011). However, Li et al. 

(2008) determined that AuNPs inhibited cell proliferation, and induced 

oxidative damage and cytotoxicity in human lung fibroblasts. It has 

been suggested that the cytotoxicity of AuNPs is largely dependent on 

its physical properties (Goodman et al., 2004, Pan et al., 2007). When 

compared to AgNPs, AuNPs are noticeably less toxic (Bar-Ilan et al., 

2009). 

DHA is the major fatty acid in brain, and is a structural 

component of neuronal (Horrocks and Farooqui, 2004) and 
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mitochondrial membranes (O'Shea et al., 2009, Khairallah et al., 2012). 

DHA is crucial in neuroprotection as it contains anti-oxidative stress, 

anti-inflammation, and anti-apoptotic properties (Eady et al., 2012, 

Tanaka et al., 2012). Fatty acids are transported into mitochondrial 

matrix for ATP production via the carnitine shuttle, involving LC (Walter 

and Schaffhauser, 2000, Hoppel, 2003). Essential for brain function, 

the lack of LC results in major detrimental consequences including the 

development of metabolic encephalopathy (Kimura and Amemiya, 

1990, Jones et al., 2010). LC effectively protects mitochondria and 

cells against oxidative stress, by inhibiting mitochondrial membrane 

depolarization and ROS formation, increasing mitochondrial functions, 

and preventing cell death in serum- or glucose-deprived medium 

(Virmani and Binienda, 2004, Hino et al., 2005, He et al., 2011, Geier 

and Geier, 2013). 

In this chapter, the relationship between AgNPs and 

mitochondria was examined. The possibility of DHA and/or LC 

supplementation preventing AgNPs toxicity in SH-SY5Y cells was also 

determined. 
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1.2. Materials and Methods 

1.2.1. Cell Culture 

SH-SY5Y cells (CRL-2266TM, ATCC®, Manassas, VA, USA) 

were cultured in Dulbecco’s Modified Eagle Medium containing 10 % 

heat-inactivated fetal bovine serum and 1 % penicillin-streptomycin 

(Gibco®, Life Technologies, Carlsbad, CA, USA). The combined 

medium is defined as complete growth medium in this thesis. SH-SY5Y 

cells were grown in 100 mm dishes, incubated under standard 

conditions of 37 °C and 5 % CO2, and regularly passaged with 0.25 % 

Trypsin-EDTA (Gibco®, Life Technologies, Carlsbad, CA, USA). 

 

1.2.2. Synthesis of AgNPs 

5 mL 2 mg/mL silver nitrate (AgNO3) solution (Merck 

Millipore, Billerica, MA, USA) was added to 75 mL reagent-grade water, 

and heated in a 65 °C silicone oil bath. The solution was stirred at 

1,000 rpm. A separate solution of 3.1 mL 1 mg/mL tannic acid solution 

(Sigma-Aldrich, St. Louis, MO, USA), 4 mL 10 mg/mL sodium citrate 

dihydrate solution (Sigma-Aldrich, St. Louis, MO, USA), and 12.9 mL 

reagent-grade water was warmed for 20 minutes in the oil bath, and 

subsequently combined with the AgNO3 solution. Temperature of oil 

bath was increased to 100 °C, and the solution was heated for an 

additional 20 minutes, during which solution color turned golden yellow 

(Fig. 3.1.1). Synthesized AgNPs were cooled to room temperature prior 

to storing at 4 °C in the dark. 
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Fig. 3.1.1 Schematic diagram of the set up used for NPs synthesis (not 
drawn to scale). Solutions were heated in a temperature controlled 
silicone oil bath. A condenser was fitted onto the set up to prevent loss 
of solution due to vapor formation during the heating process. 
 

1.2.3. Purification of AgNPs 

8 mL synthesized AgNPs suspension was centrifuged at 

5,000 g for 30 minutes at 4 °C. Supernatant (S1) was separated and 

centrifuged with identical parameters to retrieve remaining AgNPs. 

AgNPs pellet (P1) was resuspended with 8 mL reagent-grade water. 

After S1 centrifugation, supernatant (S2) was decanted and AgNPs 

pellet (P2) added to existing AgNPs suspension. The process was 

repeated, and final pellets (P3 and 4) were resuspended in 8 mL 

complete growth medium (Fig. 3.1.2). 
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Fig. 3.1.2 Schematic diagram of AgNPs purification process. AgNPs 
suspension was purified twice to remove potential contaminants, using 
the following conditions: 5,000 g at for 30 minutes 4 °C. Adapted from 
Balasubramanian et al. (2010). 
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1.2.4. Synthesis of AuNPs 

AuNPs synthesis was conducted as previously described by 

Turkevich et al. (1951). 100 μL 10 % (w/v) gold chloride hydrate 

solution (Sigma-Aldrich, St. Louis, MO, USA) was added to 95 mL 

reagent-grade water, warmed in a 100 °C silicone oil bath, and stirred 

at 1,000 rpm. A separate solution of 5 mL 1 % sodium citrate dihydrate 

solution was heated for 20 minutes in the oil bath, and combined with 

the gold chloride hydrate solution. The solution was heated for an 

additional 20 minutes, during which solution color turned wine-red. 

Synthesized AuNPs were cooled to room temperature prior to storing at 

4 °C in the dark.  

 

1.2.5. Purification of AuNPs 

540 μL synthesized AuNPs suspension was centrifuged at 

7,000 g for 20 minutes at 4 °C. Supernatant (S1) was separated and 

centrifuged with identical parameters to retrieve remaining AuNPs. 

AuNPs pellet (P1) was resuspended in 540 μL reagent-grade water. 

After S1 centrifugation, supernatant (S2) was decanted and AuNPs 

pellet (P2) added to existing AuNPs suspension. The process was 

repeated, and final pellets (P3 and 4) were resuspended in 540 μL 

complete growth medium. 
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1.2.6. Characterization of AgNPs and AuNPs 

Concentration, hydrodynamic size, and polydispersity of 

NPs were analyzed via dynamic light scattering measurements, using 

the Zetasizer Nano ZS (Malvern Instruments, Worcestershire, England, 

UK). General morphology, size, and possible aggregation of NPs were 

determined using Philips CM120 BioTwin transmission electron 

microscope (FEI Philips, Hillsboro, OR, USA). 

 

1.2.7. Trypan Blue Exclusion Cell Viability Assay 

SH-SY5Y cells were plated in a 6-well plate at 0.5 X 106 

cells/well, and allowed to attach overnight. Four groups of cells were 

treated with the following reagents: (1) vehicle, water, (2) 78.7 μg/mL 

AgNO3, (3) 50 μg/mL AgNPs, (4) 91.3 μg/mL AuNPs, and incubated for 

one hour. Phosphate buffered saline (PBS, pH 7.4) was used to wash 

the cells. SH-SY5Y cells were then exposed to 0.4 % trypan blue 

solution (Sigma-Aldrich, St. Louis, MO, USA) for five minutes, and 

viable cells percentage determined.  

 

1.2.8. Mitochondrial Membrane Potential Assay 

SH-SY5Y cells were plated in a 24-well plate at 1.0 X 105 

cells/well, and allowed to attach overnight. Three groups of cells were 

treated with the following reagents: (1) negative control: vehicle, water, 

(2) positive control: vehicle, water, (3) 50 μg/mL AgNPs, and incubated 

for one hour. PBS was used to wash the cells. SH-SY5Y cells were 
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then incubated with 0.5 μM 5,5’,6,6’-tetrachloro-1,1’,3,3’-

tetraethylbenzimidazolylcarbocyanine iodide (JC-1 dye) (Molecular 

Probes®, Life Technologies, Carlsbad, CA, USA) at 37 °C for 20 

minutes in Earl’s balanced salt solution (EBSS) (Sigma-Aldrich, St. 

Louis, MO, USA). PBS was used to wash the cells. EBSS with dimethyl 

sulfoxide (DMSO) (Sigma-Aldrich, St. Louis, MO, USA) was 

supplemented to negative control and AgNPs-treated cells, while 

positive control was given 5 μM carbonyl cyanide 3-

chlorophenylhydrazone (CCCP) (Santa Cruz Biotechnology, Dallas, 

TX, USA). Samples were read with the Tecan Infinite® 200 microplate 

reader (Männedorf, Switzerland) using excitation and emission 

wavelengths of 488 nm and 535 nm for green fluorescence and 590 

nm for red fluorescence. Cells were analyzed at two-minute intervals 

for 30 minutes. Red/green fluorescence (590/535) ratios were taken as 

an expression of mitochondrial membrane potential. 

 

1.2.9. ADP/ATP Ratio Assay 

1.2.9.1. Treatment with AgNPs, DHA and LC 

SH-SY5Y cells were plated in a 96-well plate at 1.0 X 104 

cells/well, and allowed to attach overnight. Five groups of cells were 

treated with the following reagents: (1) vehicle, ethanol and water, (2) 

50 μg/mL AgNPs, (3) 50 μg/mL AgNPs and 10 μM DHA (Cayman 

Chemical, Ann Arbor, MI, USA), (4) 50 μg/mL AgNPs and 100 μM LC 

(Sigma-Aldrich, St. Louis, MO, USA), (5) 50 μg/mL AgNPs, 10 μM 
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DHA, and 100 μM LC, and incubated for one hour. PBS was used to 

wash the cells. The assay was then carried out according to the 

manufacturer’s instructions (Abcam, Cambridge, UK). Briefly, SH-SY5Y 

cells were exposed to nucleotide releasing buffer (NRB) for 10 minutes 

with gentle agitation. Concurrently, a reaction mix containing NRB and 

ATP monitoring enzyme was added into each well of a 96-well white-

walled luminometer plate. After 10 minutes, the lysed cells were 

transferred into the white-walled luminometer plate, and allowed to sit 

for an additional 10 minutes. Samples were then read using the Tecan 

Infinite® 200 microplate reader (Data A). Samples were analyzed again 

after 10 minutes (Data B). ADP converting enzyme was added to the 

samples, and samples were analyzed after another 10 minutes (Data 

C). Intracellular ADP/ATP ratios were determined using the following 

equation: 

Data C  -  Data B
Data A  

 

1.2.9.2. Treatment with AgNPs and AuNPs 

SH-SY5Y cells were plated in a 96-well plate at 1.0 X 104 

cells/well, and allowed to attach overnight. Three groups of cells were 

treated with the following reagents: (1) vehicle, water, (2) 50 μg/mL 

AgNPs, (3) 91.3 μg/mL AuNPs, and incubated for one hour. PBS was 

used to wash the cells. The assay was conducted as per above.  
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1.2.10. Statistical Analyses 

Mean and standard error of values were determined for 

each experimental group, and possible significant differences among 

various groups were analyzed using one-way ANOVA with Bonferroni’s 

multiple comparison post-hoc test. p < 0.05 was deemed significant. 
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1.3. Results 

1.3.1. Characterization of AgNPs and AuNPs 

AgNPs and AuNPs were roughly spherical, with an 

approximate diameter of 26 nm for AgNPs (Fig. 3.1.3) and 20 nm for 

AuNPs (Fig. 3.1.4). AgNPs and AuNPs suspension concentrations 

were determined to be 50 μg/mL and 91.3 μg/mL respectively. Number 

of particles was equivalent in both suspensions, at 2.79 X 1017 

particles/mL, signifying that subsequent experiments were centered on 

number of particles, which is a better design.  

 

 

Fig. 3.1.3 TEM micrograph of AgNPs used in the present study. AgNPs 
are roughly spherical, with an average diameter of 26 nm. Scale: 20 
nm. 
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Fig. 3.1.4 TEM micrograph of AuNPs used in the present study. AuNPs 
are roughly spherical, with an average diameter of 20 nm. Scale: 20 
nm. 
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1.3.2. Trypan Blue Exclusion Cell Viability Assay Analysis 

One hour incubation of SH-SY5Y cells with 78.7 μg/mL 

AgNO3 resulted in rapid cell death, with an observed cell viability of 

0.99 % (Fig. 3.1.5). Cell viabilities of vehicle control, 50 μg/mL AgNPs-, 

and 91.3 μg/mL AuNPs-treated SH-SY5Y cells after one hour 

incubation were 92.98 %, 94.52 %, and 92.77 % respectively. 

Significant differences were observed between 78.7 μg/mL AgNO3-

treated cells and vehicle control, 50 μg/mL AgNPs-, and 91.3 μg/mL 

AuNPs-treated cells (p < 0.001). 

 

 

Fig. 3.1.5 Cell viability of SH-SY5Y cells following one hour incubation 
with various treatment groups – vehicle control; 78.7 μg/mL AgNO3; 50 
μg/mL AgNPs; 91.3 μg/mL AuNPs (n = 4 in each group). Each bar in 
the figure denotes mean + SEM. Asterisks (*) indicate significant 
differences in cell viability by one-way ANOVA with Bonferroni’s 
multiple comparison post-hoc test. *** p < 0.001. 
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1.3.3. Mitochondrial Membrane Potential Assay Analysis 

One hour incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

resulted in a significant reduction in 590/535 ratio compared to 

negative control over time (p < 0.001) (Fig. 3.1.6). Similarly, positive 

control showed a significant decrease in 590/535 ratio compared to 

negative control over time (p < 0.001). 

 

 

Fig. 3.1.6 Mitochondrial membrane potential of SH-SY5Y cells 
following one hour incubation with various treatment groups – negative 
control; 50 µg/mL AgNPs; 5 µM CCCP (positive control) (n = 4 in each 
group). Each time point represents a two-minutes interval. Asterisks (*) 
indicate significant differences in 590/535 ratio compared to negative 
control by one-way ANOVA with Bonferroni’s multiple comparison post-
hoc test. *** p < 0.001.  
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1.3.4. ADP/ATP Ratio Assay Analyses 

1.3.4.1. Treatment with AgNPs, DHA, and LC 

1.3.4.1.1. ATP Levels 

One hour incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

resulted in a 0.63-fold (p < 0.001) statistically significant change in ATP 

levels compared to vehicle control (Fig. 3.1.7). There was a 0.71-fold (p 

< 0.001), 0.79-fold (p < 0.001), and 1.05-fold (p = 1.00) change in ATP 

levels in cells treated with the various rescue efforts – 50 μg/mL AgNPs 

+ 10 μM DHA, 50 μg/mL AgNPs + 100 μM LC, and 50 μg/mL AgNPs + 

10 μM DHA + 100 μM LC – compared to vehicle control. Compared to 

50 μg/mL AgNPs-treated SH-SY5Y cells, significant increases in ATP 

levels were observed in cells treated with 50 μg/mL AgNPs + 10 μM 

DHA (p = 0.033), 50 μg/mL AgNPs + 100 μM LC (p < 0.001), and 50 

μg/mL AgNPs + 10 μM DHA + 100 μM LC (p < 0.001). Statistically 

significant increases in ATP levels were also observed in cells treated 

with 50 μg/mL AgNPs + 10 μM DHA + 100 μM LC compared to 50 

μg/mL AgNPs + 10 μM DHA (p < 0.001) and 50 μg/mL AgNPs + 100 

μM LC (p < 0.001). 
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Fig. 3.1.7 Fold change in ATP levels of SH-SY5Y cells following one 
hour incubation with various treatment groups – vehicle control; 50 
μg/mL AgNPs; 50 μg/mL AgNPs + 10 μM DHA; 50 μg/mL AgNPs + 
100 μM LC; 50 μg/mL AgNPs + 10 μM DHA + 100 μM LC (n = 6 in 
each group). Each bar in the figure denotes mean + SEM. Asterisks (*) 
indicate significant differences in fold change by one-way ANOVA with 
Bonferroni’s multiple comparison post-hoc test. * p < 0.05, p < 0.01,  
*** p < 0.001.  
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1.3.4.1.2. ADP Levels 

One hour incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

resulted in a 0.79-fold (p < 0.001) statistically significant change in ADP 

levels compared to vehicle control (Fig. 3.1.8). There was a 0.80-fold (p 

< 0.001), 0.78-fold (p < 0.001), and 0.88-fold (p = 0.003) change in 

ADP levels in cells treated with the various rescue efforts – 50 μg/mL 

AgNPs + 10 μM DHA, 50 μg/mL AgNPs + 100 μM LC, and 50 μg/mL 

AgNPs + 10 μM DHA + 100 μM LC – compared to vehicle control. 

Statistically significant increases in ADP levels were also observed in 

cells treated with 50 μg/mL AgNPs + 10 μM DHA + 100 μM LC 

compared to 50 μg/mL AgNPs (p = 0.021) and 50 μg/mL AgNPs + 100 

μM LC (p = 0.011). 
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Fig. 3.1.8 Fold change in ADP levels of SH-SY5Y cells following one 
hour incubation with various treatment groups – vehicle control; 50 
μg/mL AgNPs; 50 μg/mL AgNPs + 10 μM DHA; 50 μg/mL AgNPs + 
100 μM LC; 50 μg/mL AgNPs + 10 μM DHA + 100 μM LC (n = 6 in 
each group). Each bar in the figure denotes mean + SEM. Asterisks (*) 
indicate statistically significant differences in fold change by one-way 
ANOVA with Bonferroni’s multiple comparison post-hoc test. * p < 0.05, 
** p < 0.01, *** p < 0.001. 
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1.3.4.1.3. ADP/ATP Ratio 

One hour incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

resulted in a 1.25-fold (p < 0.001) statistically significant increase in 

ADP/ATP ratio compared to vehicle control (Fig. 3.1.9). There was a 

1.13-fold (p < 0.001), 0.98-fold (p = 1.00), and 0.84-fold (p < 0.001) 

change in ADP/ATP ratio in cells treated with the various rescue efforts 

– 50 μg/mL AgNPs + 10 μM DHA, 50 μg/mL AgNPs + 100 μM LC, and 

50 μg/mL AgNPs + 10 μM DHA + 100 μM LC – compared to vehicle 

control. Compared to 50 μg/mL AgNPs-treated SH-SY5Y cells, 

significant decreases in ADP/ATP ratio were observed in cells treated 

with 50 μg/mL AgNPs + 10 μM DHA (p = 0.002), 50 μg/mL AgNPs + 

100 μM LC (p < 0.001), and 50 μg/mL AgNPs + 10 μM DHA + 100 μM 

LC (p < 0.001). Statistically significant decreases in ADP/ATP ratio 

were also observed in cells treated with 50 μg/mL AgNPs + 10 μM 

DHA + 100 μM LC compared to 50 μg/mL AgNPs + 10 μM DHA (p < 

0.001) and 50 μg/mL AgNPs + 100 μM LC (p < 0.001). 
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Fig. 3.1.9 Fold change in ADP/ATP ratio of SH-SY5Y cells following 
one hour incubation with various treatment groups – vehicle control; 50 
μg/mL AgNPs; 50 μg/mL AgNPs + 10 μM DHA; 50 μg/mL AgNPs + 
100 μM LC; 50 μg/mL AgNPs + 10 μM DHA + 100 μM LC (n = 6 in 
each group). Each bar in the figure denotes mean + SEM. Asterisks (*) 
indicate statistically significant differences in fold change by one-way 
ANOVA with Bonferroni’s multiple comparison post-hoc test.  
** p < 0.01, *** p < 0.001. 
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1.3.4.2. Treatment with AgNPs and AuNPs 

1.3.4.2.1. ATP Levels 

One hour incubation of SH-SY5Y cells with 91.3 μg/mL 

AuNPs resulted in a 1.36-fold (p < 0.001) statistically significant 

increase in ATP levels compared to vehicle control (Fig. 3.1.10). 

Similar to previous findings, 50 μg/mL AgNPs-treated SH-SY5Y cells 

led to a 0.47-fold (p < 0.001) statistically significant change in ATP 

levels compared to vehicle control. 

 

 

Fig. 3.1.10 Fold change in ATP levels of SH-SY5Y cells following one 
hour incubation with various treatment groups – vehicle control; 50 
μg/mL AgNPs; 91.3 μg/mL AuNPs (n = 6 in each group). Each bar in 
the figure denotes mean + SEM. Asterisks (*) indicate statistically 
significant differences in fold change by one-way ANOVA with 
Bonferroni’s multiple comparison post-hoc test. *** p < 0.001.  
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1.3.4.2.2. ADP Levels 

One hour incubation of SH-SY5Y cells with 91.3 μg/mL 

AuNPs resulted in a 0.96-fold (p = 1.00) change in ADP levels 

compared to vehicle control (Fig. 3.1.11). Similar to previous findings, 

50 μg/mL AgNPs-treated SH-SY5Y cells led to a 0.70-fold (p < 0.001) 

statistically significant change in ADP levels compared to vehicle 

control. 

 

 

Fig. 3.1.11 Fold change in ADP levels of SH-SY5Y cells following one 
hour incubation with various treatment groups – vehicle control; 50 
μg/mL AgNPs; 91.3 μg/mL AuNPs (n = 6 in each group). Each bar in 
the figure denotes mean + SEM. Asterisks (*) indicate statistically 
significant differences in fold change by one-way ANOVA with 
Bonferroni’s multiple comparison post-hoc test. *** p < 0.001.  
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1.3.4.2.3. ADP/ATP Ratio 

One hour incubation of SH-SY5Y cells with 91.3 μg/mL 

AuNPs resulted in a 0.70-fold (p = 0.004) statistically significant change 

in ADP/ATP ratio compared to vehicle control (Fig. 3.1.12). Similar to 

previous findings, 50 μg/mL AgNPs-treated SH-SY5Y cells led to a 

1.46-fold (p < 0.001) statistically significant increase in ADP/ATP ratio 

compared to vehicle control. 

 

 

Fig. 3.1.12 Fold change in ADP/ATP ratio of SH-SY5Y cells following 
one hour incubation with various treatment groups – vehicle control; 50 
μg/mL AgNPs; 91.3 μg/mL AuNPs (n = 6 in each group). Each bar in 
the figure denotes mean + SEM. Asterisks (*) indicate statistically 
significant differences in fold change by one-way ANOVA with 
Bonferroni’s multiple comparison post-hoc test. ** p < 0.01,  
*** p < 0.001.  
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1.4. Discussion 

This chapter was conducted to investigate the acute effects 

of AgNPs in SH-SY5Y human neuroblastoma mitochondria, and 

possibly rescue the AgNPs-induced mitochondrial dysfunction through 

the use of DHA and LC. SH-SY5Y is a subclone from SK-N-SH, an 

uncloned neuroblastoma line (Biedler et al., 1978, Lopes et al., 2010, 

Yusuf et al., 2013). Due to its capacity to acquire neuron-like 

phenotypes, SH-SY5Y is frequently used as a neuronal model (Lopes 

et al., 2010, Yusuf et al., 2013). Additionally, cell lines are easy to 

manipulate, with infinite lifespans when handled appropriately (ATCC, 

2012). Therefore, SH-SY5Y human neuroblastoma cells were selected 

to investigate the effects of AgNPs. 

The selected AgNPs concentration, 50 μg/mL, is based on 

previous cell culture studies that utilized AgNPs, where changes in 

mitochondrial function and cell morphology were detected (Hussain et 

al., 2005, Arora et al., 2008, Hsin et al., 2008). AgNO3 and AuNPs 

concentrations were chosen to match the number of Ag and Au 

particles in the respective solutions to Ag particles in 50 μg/mL AgNPs 

suspension, at approximately 2.79 X 1017 particles/mL. AgNPs have 

been reported to release Ag ions over time (AshaRani et al., 2009, 

Kittler et al., 2010, Liu and Hurt, 2010, Yu et al., 2013). Hence, AgNO3 

solution was used as a control, to distinguish between effects of Ag 

nanoparticulates and Ag ions in solution. By determining number of 

AgNPs in suspension, total amount of Ag atoms was calculated and 
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converted to the concentration of AgNO3 solution required, in the event 

that all atoms went into solution as Ag ions. After one hour incubation, 

AgNO3-treated cells exhibited 0.99 % cell viability, while 94 % of 

AgNPs-treated cells survived. This reveals that AgNPs are much less 

hazardous as compared to Ag ions in solution, and indicates that 

results obtained from AgNPs-treated SH-SY5Y cells in subsequent 

assays are mainly due to the actions of AgNPs. Since incubation with 

AgNO3 led to death of almost all SH-SY5Y cells, it was not used in 

other experiments. 

 Mitochondrial membrane potential is generated from the 

presence of an electrochemical gradient across the inner mitochondrial 

membrane (Alberts et al., 2008, Voet et al., 2013). JC-1 dye is used to 

indicate status of mitochondria as it accumulates as red fluorescence 

aggregates in healthy cell mitochondria but stays in its cytoplasmic 

green monomeric form when mitochondrial membrane depolarizes (Ma 

et al., 2011, Guo et al., 2013). Acute exposure of AgNPs to SH-SY5Y 

cells led to a drop in 590/535 ratio, similar to CCCP, the positive 

control, suggesting mitochondrial membrane damage. CCCP is a well-

characterized protonophore. Exposure of CCCP to cells causes rapid 

loss of mitochondrial membrane potential and mitochondrial 

morphological swelling (Minamikawa et al., 1999, Lim et al., 2001, 

Perry et al., 2011). This corroborates with results from previous studies 

where AgNPs affected mitochondria of non-neuronal cells, determined 

by TPP+ – selective electrode (Teodoro et al., 2011) and rhodamine 
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123 uptake (Hussain et al., 2005). Mitochondrial membrane 

depolarization and oxidative stress are important cellular occurrences 

that often precede the induction of apoptosis (Taggart et al., 2014). 

However, the incubation period of one hour in the current study was 

probably too short for apoptosis to occur, as demonstrated by the lack 

of significant cell death in the trypan blue exclusion cell viability assay.  

ATP levels decreased in AgNPs-treated cells indicating 

possible damage to mitochondrial respiratory chain (AshaRani et al., 

2009, Costa et al., 2010). AgNPs have been reported to cause 

oxidative stress and calcium dysregulation in cells (Haase et al., 2012). 

In order to restore intracellular calcium levels, the Ca2+ ATPase pump 

or Na+/Ca2+ exchanger could be activated, leading to increased 

intracellular sodium and Na+/K+ ATPase pump activity to maintain 

resting potential (Wang et al., 2003, Alberts et al., 2008). Therefore, 

usage of these pumps could in turn result in lowered ATP levels in 

cells. Another reason for the observed reduction in ATP levels could be 

due to cell lysis and release of intracellular ATP (Suszynski et al., 

2008). Nevertheless, this is unlikely as negligible cell death was 

observed for AgNPs-treated cells as compared to vehicle control in the 

current study. As ATP levels decline, a corresponding rise in ADP 

levels is expected since ATP hydrolyzes to form ADP (Alberts et al., 

2008, Myhill et al., 2009, Voet et al., 2013). Conversely, a decrease in 

ADP levels was detected. This could possibly be due to the action of 

adenylate kinase (AK), a phosphotransferase that catalyzes the 
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conversion of ADP to ATP and adenosine monophosphate (AMP) 

(Alberts et al., 2008, Voet et al., 2013). Under conditions of low ATP 

levels, AK compensates by using two ADP molecules to generate more 

ATP and in the process produce AMP, which can be degraded by AMP 

deaminase to give rise to inosine monophosphate (IMP), preventing 

the recycling of AMP to ADP and ATP (Myhill et al., 2009). This 

decreases the adenine nucleotide source and diminishes ADP and 

ATP stores. 

 Studies have demonstrated protective properties of DHA 

and LC against mitochondrial dysfunction and neuronal injury 

(Horrocks and Farooqui, 2004, Virmani and Binienda, 2004, Alves et 

al., 2009, He et al., 2011). Co-incubation of SH-SY5Y cells with AgNPs 

and DHA led to greater ATP and ADP levels compared to AgNPs-

treated cells only, suggesting that DHA was capable of partially 

reversing damage caused by acute AgNPs exposure. DHA is 

incorporated in both cell (Horrocks and Farooqui, 2004) and 

mitochondrial membrane phospholipids (O'Shea et al., 2009, Khairallah 

et al., 2012), and could repair AgNPs-induced damage to these 

membranes. Moreover, co-supplementation of DHA and LC was even 

more effective at preventing AgNPs-induced drop in ATP levels. 

Statistically significant differences were also detected between cells 

treated with AgNPs + DHA and AgNPs + DHA + LC, and cells treated 

with AgNPs + LC and AgNPs + DHA + LC, possibly indicating a 

synergistic association between DHA and LC. The main function of LC 
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is to facilitate fatty acid transport, such as DHA, into mitochondrial 

matrix for the production of ATP via β-oxidation (Kerner and Hoppel, 

2000, Walter and Schaffhauser, 2000, Hoppel, 2003). LC is also crucial 

for protection against mitochondrial dysfunction (Ishii et al., 2000, 

Virmani and Binienda, 2004, Hino et al., 2005, He et al., 2011, Geier 

and Geier, 2013). It is hypothesized that the effectiveness of co-

supplementation of DHA and LC in diminishing AgNPs’ harmful effects 

could be because LC aids in the transport of DHA into mitochondria for 

the incorporation of DHA into mitochondrial phospholipids to repair 

damaged phospholipids affected by AgNPs’ attack. 

As AuNPs are usually associated with low or no cytotoxicity 

(Connor et al., 2005, Bar-Ilan et al., 2009, Asharani et al., 2011), 

AuNPs were used as a positive control in the study. As expected, one 

hour incubation with AuNPs did not lead to significant cell death, 

indicating its relative non-toxicity. However, AuNPs may demonstrate 

other cellular damage. Incubation of SH-SY5Y cells with AuNPs for one 

hour led to increased ATP levels, no changes in ADP levels, and 

decreased ADP/ATP ratio as compared to vehicle control. This could 

possibly be due to depressed cellular processes following the one hour 

incubation with AuNPs, resulting in decreased consumption of ATP, 

and consequently, an accumulation of ATP. Lack of significant 

alterations in ADP levels following AuNPs exposure suggests that ATP 

is unlikely to be synthesized. Several studies have shown that 

exposure to AuNPs led to a depression of ATP-dependent cellular 
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processes such as cell proliferation, cell cycle progression, and motility 

(Pernodet et al., 2006, Balasubramanian et al., 2010, Liu et al., 2014). 

The reduction in ATP expenditure could contribute to the observed 

accumulation of ATP following one hour incubation with AuNPs. 
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2.1.       Introduction 

In the previous chapter, it was established that acute 

exposure of AgNPs to SH-SY5Y cells resulted in mitochondrial 

dysfunction and subsequently decreased ATP production, without 

leading to cell death. The harmful effects exerted by AgNPs were 

rescued through the co-supplementation of DHA and LC. Apart from 

disrupting mitochondrial function, nanotoxicity is often associated with 

the triggering of inflammatory responses (Park and Park, 2009, Xue et 

al., 2012, Panas et al., 2013). AgNPs exposure in various cell lines led 

to the induction of inflammation (Romoser et al., 2012, Prasad et al., 

2013). Additionally, mice (Cha et al., 2008) and rats (Kim et al., 2010) 

exposed to AgNPs showed changes in expression of genes and 

proteins that moderate ROS formation, inflammation, and apoptosis. 

On the contrary, AuNPs do not show overt toxicity, although it could be 

identified as foreign materials by immune cells, leading to acute 

inflammation and apoptosis (Cho et al., 2009). 

PLA2 enzymes play integral roles in brain and are crucial for 

signal transduction, production of eicosanoids and lipid mediators, 

inflammation, membrane remodeling, and lipid metabolism (Dennis, 

1997, Farooqui et al., 2000, Ong et al., 2010, Sun et al., 2014). Under 

normal conditions, PLA2 enzymes prevent membrane lipid peroxidation 

through the removal of oxidized fatty acids from phospholipids (Tan et 

al., 1984, Sevanian and Kim, 1985, McLean et al., 1993, Ong et al., 

2015). In pathological conditions however, elevated activation of PLA2 
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enzymes result in increased production of fatty acids and 

lysophospholipids that will be metabolized to form second messengers 

and metabolites that could lead to inflammation (Sun et al., 2014, Ong 

et al., 2015). cPLA2 preferentially releases AA from 

glycerophospholipids (Murakami and Kudo, 2002, Sun et al., 2004, 

Ong et al., 2015), where AA becomes precursors for eicosanoids and 

prostanoids, which lead to inflammatory responses in cells (Calder, 

2008, Sun et al., 2014). Elevated cPLA2 activity is often associated with 

oxidative stress and neuroinflammation (Ong et al., 2003, Farooqui and 

Horrocks, 2006, Tanaka et al., 2012). On the other hand, iPLA2 

mediates release of DHA, which is further metabolized to docosanoids 

that antagonize effects of AA-derived pro-inflammatory eicosanoids 

thus exhibiting anti-inflammatory and anti-apoptotic characteristics 

(Mukherjee et al., 2004, Bazan, 2009, Ong et al., 2015). 

In this chapter, the relationship between AgNPs and PLA2 

enzymes, in particular cPLA2 and iPLA2, was examined. The 

mechanism underlying AgNPs-induced inflammatory responses in SH-

SY5Y cells – induction of cPLA2, depression of iPLA2 expression and 

function, or both – was also determined.  
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2.2.       Materials and Methods 

2.2.1.      Cell Culture 

SH-SY5Y cells were cultured in complete growth medium, 

and grown in 100 mm dishes. SH-SY5Y cells were incubated under 

standard conditions of 37 °C and 5 % CO2, and regularly passaged 

with 0.25 % Trypsin-EDTA. At 70 % confluence, cells were used for 

treatments. 

 

2.2.2. Synthesis, Purification, and Characterization of AgNPs 

and AuNPs 

26 nm AgNPs and 20 nm AuNPs were synthesized, purified, 

and characterized as described in chapter 1 (pages 40 – 43). 

 

2.2.3. Trypan Blue Exclusion Cell Viability Assay 

SH-SY5Y cells were plated in a 6-well plate at 0.5 X 106 

cells/well, and allowed to attach overnight. Three groups of cells were 

treated with the following reagents: (1) vehicle, water, (2) 50 μg/mL 

AgNPs, (3) 91.3 μg/mL AuNPs, and incubated for six hours. PBS was 

used to wash the cells. The assay was then carried out as described in 

chapter 1 (page 44). 
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2.2.4. Cell Treatment 

2.2.4.1. Treatment with AgNPs 

Two groups of SH-SY5Y cells were treated with the following 

reagents: (1) vehicle, water, (2) 50 μg/mL AgNPs, and were incubated 

for one and six hours. PBS was used to wash the cells. SH-SY5Y cells 

were then harvested for further real-time RT-PCR, 

immunocytochemistry, and lipidomic profiling analyses. 

 

2.2.4.2. Treatment with AgNPs and AuNPs 

Three groups of SH-SY5Y cells were treated with the 

following reagents: (1) vehicle, water, (2) 50 μg/mL AgNPs, (3) 91.3 

μg/mL AuNPs, and incubated for one and six hours. PBS was used to 

wash the cells. SH-SY5Y cells were then harvested for further real-time 

RT-PCR analyses. 

 

2.2.4.3. Treatment with AgNPs, DHA, and LC 

Eight groups of SH-SY5Y cells were treated with the 

following reagents: (1) vehicle, ethanol and water, (2) 10 μM DHA, (3) 

100 μM LC, (4) 10 μM DHA and 100 μM LC, (5) 50 μg/mL AgNPs, (6) 

50 μg/mL AgNPs + 10 μM DHA, (7) 50 μg/mL AgNPs + 100 μM LC, (8) 

50 μg/mL AgNPs + 10 μM DHA + 100 μM LC, and incubated for six 

hours. PBS was used to wash the cells. SH-SY5Y cells were then 

harvested for further real-time RT-PCR analysis.  
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2.2.5. Real-time RT-PCR 

RNeasy Mini Kit (Qiagen, Venlo, Limburg, Netherlands) was 

used to extract and purify RNA of treated cells, which was then reverse 

transcribed using High-Capacity cDNA Reverse Transcription Kits 

(Applied Biosystems®, Life Technologies, Carlsbad, CA, USA) with the 

stated reaction parameters: 10 minutes at 25 °C, 120 minutes at 37 °C, 

and 5 minutes at 85 °C. Using a 7,500 Real-time PCR system, real-

time PCR amplification was carried out with the following reagents: 

TaqMan® Universal PCR Master Mix (#4304437) and probes for 

human cPLA2 (Hs00233352_m1), iPLA2 (Hs00185926_m1), and ACTB 

(beta actin) (#4326315E) (Applied Biosystems®, Life Technologies, 

Carlsbad, CA, USA), and with the stated parameters: 2 minutes at 50 

°C, 10 minutes at 95 °C, 40 15 seconds cycles at 95 °C, and 1 minute 

at 60 °C. Amplified transcripts were quantified using the comparative 

threshold cycle (CT) method (Livak and Schmittgen, 2001), where 

relative fold change is calculated with the following equation: 

2-ΔΔCT 

CT is the number of cycles where reporter fluorescence 

emission surpasses preset threshold level. CT value inversely 

correlates with target mRNA levels. 

 

2.2.6. Immunocytochemistry 

SH-SY5Y cells were plated on poly-L-lysine (Sigma-Aldrich, 

St. Louis, MO, USA) coated coverslips in a 24-well plate at 2.0 X 105 
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cells/well, and allowed to attach overnight. Two groups of cells were 

treated with the following reagents: (1) vehicle, water, (2) 50 μg/mL 

AgNPs, and incubated for six hours. PBS was used to wash the cells. 

SH-SY5Y cells were then fixed with 2 % paraformaldehyde (PanReac 

AppliChem, Barcelona, Spain), washed with PBS, and reacted with 70 

% formic acid (Sigma-Aldrich, St. Louis, MO, USA) for 20 minutes and 

0.1 % PBS-Triton® X-100 (USB Corporation, Cleveland, OH, USA) for 

15 minutes. Cells were incubated with 1 % bovine serum albumin 

(BSA) (Calbiochem®, Merck Millipore, Billerica, MA, USA) in PBS for 

one hour, and anti-iPLA2 antibody (#160507, Cayman Chemical, Ann 

Arbor, MI, USA; diluted 1:50) in 1 % BSA overnight at 4 °C. PBS was 

used to wash the cells. SH-SY5Y cells were incubated with Alexa 

Fluor® 488 Donkey Anti-Rabbit lgG (H+L) Antibody (Applied 

Biosystems®, Life Technologies, Carlsbad, CA, USA; diluted 1:200) for 

one hour at room temperature, and subsequently mounted onto 

microscope slides using ProLong Gold anti-fade reagent with DAPI 

(InvitrogenTM, Life Technologies, Carlsbad, CA, USA), which is also 

used for nuclear counterstaining. Cells were viewed using the Olympus 

FluoView FV1000 confocal microscope at 40 X magnification. Total cell 

fluorescence corrected for background was determined with ImageJ 

software (National Institutes of Health, Bethesda, MD, USA). 
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2.2.7. Lipidomic Profiling 

2.2.7.1. Lipid Extraction 

Lipid extraction was conducted using a modified protocol 

from Bligh and Dyer (1959). SH-SY5Y cells were passed through 27 G 

needles and sonicated in 750 μL chloroform/methanol, 1:2 (v/v) and 5 

μL of internal standards solution containing PC 14:0 14:0, LysoPC 

20:0, PE 14:0 14:0, PS 14:0 14:0, SM 30:1, and Cer 17:0 (Avanti Polar 

Lipids, Alabaster, AL, USA) for 30 minutes at 4 °C. Samples were 

supplemented with 250 μL chloroform and 450 μL 0.88 % potassium 

chloride solution, and centrifuged for two minutes at 9,000 g at 4 °C. 

250 μL chloroform was used to re-extract the aqueous phase and the 

organic fractions were combined, where the lipids were then isolated 

and vacuum-dried (Thermo ScientificTM SavantTM SpeedVacTM, Life 

Technologies, Carlsbad, CA, USA). 

 

2.2.7.2. Lipid Analysis 

Quantification of individual polar lipids was conducted using 

an Agilent HPLC-Chip system connected with an Agilent Technologies 

6460 Triple Quad LC/MS (Santa Clara, CA, USA), where the column 

used was Kinetex 2.6 μM HILIC 100 Å chip with a LC column of 150 X 

2.10 mm size. Solvents used were 50 % acetonitrile + 50 % 25 μM 

ammonium formate buffer pH 4.6 (solvent A) and 95 % acetonitrile + 5 

% 25 μM ammonium formate buffer pH 4.6 (solvent B). Analytes were 

eluted under the stated parameters: 0.1 % solvent A and 99.9 % 
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solvent B (0 to 6 minutes), 75 % solvent A and 25 % solvent B (6 to 7 

minutes), 90 % solvent A and 10 % solvent B (7 to 7.1 minutes), and 

0.1% solvent A and 99.9% solvent B (7.1 to 10.1 minutes) using a 

constant 0.5 mL/min flow rate. For the MS source parameters, gas 

temperature was set at 300 °C with a 5 L/min flow rate and nebulizer at 

45 psi. Sheath gas temperature was 250 °C with a 11 L/min gas flow 

rate. Data was then extracted and analyzed using the Agilent 

MassHunter acquisition, Agilent MassHunter Qualitative and Agilent 

MassHunter Quantitative software (Santa Clara, CA, USA). 

 

2.2.8. Statistical Analyses 

Mean and standard error of values were determined for 

each experimental group, and possible significant differences among 

various groups were analyzed using two-tailed unpaired Student’s t-test 

or one-way ANOVA with Bonferroni’s multiple comparison post-hoc 

test. p < 0.05 was deemed significant. 
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2.3. Results 

2.3.1. Real-time RT-PCR Analyses 

2.3.1.1. Effect of AgNPs Treatment on cPLA2 and iPLA2 mRNA 

Expression 

2.3.1.1.1. 1 Hour 

One hour incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

resulted in a 1.26-fold (p = 0.44) change in cPLA2 mRNA expression 

compared to vehicle control (Fig. 3.2.1). 50 μg/mL AgNPs-treated SH-

SY5Y cells exhibited a 0.74 fold (p = 0.004) statistically significant 

change in iPLA2 mRNA expression compared to vehicle control. 
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Fig. 3.2.1 Fold change in cPLA2 and iPLA2 mRNA expression in SH-
SY5Y cells following one hour incubation with vehicle control and 50 
μg/mL AgNPs (n = 4 in each group). Each bar in the figure denotes 
mean + SEM. Asterisks (*) indicate statistically significant differences in 
fold change by two-tailed unpaired Student’s t-test. ** p < 0.01. 
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2.3.1.1.2. 6 Hours 

Six hours incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

resulted in a 1.12-fold (p = 0.69) change in cPLA2 mRNA expression 

compared to vehicle control (Fig. 3.2.2). 50 μg/mL AgNPs-treated SH-

SY5Y cells exhibited a 0.48 fold (p < 0.001) statistically significant 

change in iPLA2 mRNA expression compared to vehicle control. 

 

 

Fig. 3.2.2 Fold change in cPLA2 and iPLA2 mRNA expression in SH-
SY5Y cells following six hours incubation with vehicle control and 50 
μg/mL AgNPs (n = 4 in each group). Each bar in the figure denotes 
mean + SEM. Asterisks (*) indicate statistically significant differences in 
fold change by two-tailed unpaired Student’s t-test. *** p < 0.001. 
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2.3.1.2. Effect of AgNPs and AuNPs Treatment on iPLA2 mRNA 

Expression 

2.3.1.2.1. 1 Hour 

One hour incubation of SH-SY5Y cells with 91.3 μg/mL 

AuNPs resulted in a 0.48-fold (p < 0.001) statistically significant change 

in iPLA2 mRNA expression compared to vehicle control (Fig. 3.2.3). 

Similar to previous findings, 50 μg/mL AgNPs-treated SH-SY5Y cells 

led to a 0.74-fold (p = 0.006) statistically significant change in iPLA2 

mRNA expression compared to vehicle control. 

 

 

Fig. 3.2.3 Fold change in iPLA2 mRNA expression in SH-SY5Y cells 
following one hour incubation with various treatment groups – vehicle 
control; 50 μg/mL AgNPs; 91.3 μg/mL AuNPs (n = 4 in each group). 
Each bar in the figure denotes mean + SEM. Asterisks (*) indicate 
statistically significant differences in fold change by one-way ANOVA 
with Bonferroni’s multiple comparison post-hoc test. ** p < 0.01, *** p < 
0.001. 
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2.3.1.2.2. 6 Hours 

Six hours incubation of SH-SY5Y cells with 91.3 μg/mL 

AuNPs resulted in a 0.97-fold (p = 1.000) change in iPLA2 mRNA 

expression compared to vehicle control (Fig. 3.2.4). Similar to previous 

findings, 50 μg/mL AgNPs-treated SH-SY5Y cells led to a 0.48-fold (p 

= 0.009) statistically significant change in iPLA2 mRNA expression 

compared to vehicle control. 

 

 

Fig. 3.2.4 Fold change in iPLA2 mRNA expression in SH-SY5Y cells 
following six hours incubation with various treatment groups – vehicle 
control; 50 μg/mL AgNPs; 91.3 μg/mL AuNPs (n = 4 in each group). 
Each bar in the figure denotes mean + SEM. Asterisks (*) indicate 
statistically significant differences in fold change by one-way ANOVA 
with Bonferroni’s multiple comparison post-hoc test. ** p < 0.01. 
 

  

0!

0.2!

0.4!

0.6!

0.8!

1!

1.2!

Vehicle! AgNPs! AuNPs!

R
el

at
iv

e 
Fo

ld
 C

ha
ng

e 
to

 V
eh

ic
le
!

iPLA2 mRNA Expression Following Six Hours Treatment with AgNPs and AuNPs!

**!



Chapter 2 
 iPLA2 and acute silver nanotoxicity	
   	
  

81 

2.3.1.3. Effect of AgNPs, DHA, and LC Treatment on iPLA2 mRNA 

Expression 

Six hours incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

resulted in a 0.29-fold (p < 0.001) statistically significant change in 

iPLA2 mRNA expression compared to vehicle control (Fig. 3.2.5). 10 

μM DHA + 100 μM LC-treated cells exhibited a 0.51-fold (p = 0.016) 

significant change in iPLA2 mRNA expression compared to vehicle 

control. There was a 0.30-fold (p < 0.001), 0.34-fold (p < 0.001), and 

0.28-fold (p < 0.001) change in iPLA2 mRNA expression in cells treated 

with the various rescue efforts – 50 μg/mL AgNPs + 10 μM DHA, 50 

μg/mL AgNPs + 100 μM LC, and 50 μg/mL AgNPs + 10 μM DHA + 100 

μM LC – compared to vehicle control. Compared to 50 μg/mL AgNPs-

treated SH-SY5Y cells, no significant changes in iPLA2 mRNA 

expression were observed. Statistically significant reductions in iPLA2 

mRNA expression were also observed in cells treated with 10 μM DHA 

compared to 50 μg/mL AgNPs + 10 μM DHA (p < 0.001), and 100 μM 

LC compared to 50 μg/mL AgNPs + 100 μM LC (p = 0.002). 

 

  



Chapter 2 
 iPLA2 and acute silver nanotoxicity	
   	
  

82 

 

Fig. 3.2.5 Fold change in iPLA2 mRNA expression in SH-SY5Y cells 
following six hours incubation with various treatment groups – vehicle 
control; 10 μM DHA; 100 μM LC; 10 μM DHA + 100 μM LC; 50 μg/mL 
AgNPs; 50 μg/mL AgNPs + 10 μM DHA; 50 μg/mL AgNPs + 100 μM 
LC; 50 μg/mL AgNPs + 10 μM DHA + 100 μM LC (n = 4 in each 
group). Each bar in the figure denotes mean + SEM. Asterisks (*) 
indicate statistically significant differences in fold change by one-way 
ANOVA with Bonferroni’s multiple comparison post-hoc test. * p < 0.05, 
** p < 0.01, *** p < 0.001. 
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2.3.2. Immunocytochemistry Analysis 

iPLA2 immunofluorescence labeling showed localization of 

iPLA2 protein in the cytoplasm of SH-SY5Y cells (Fig. 3.2.6). Six hours 

incubation of SH-SY5Y cells with 50 μg/mL AgNPs resulted in a 0.77-

fold (p < 0.001) statistically significant change in iPLA2 fluorescence 

intensity compared to vehicle control (Fig. 3.2.7). 

 

 

Fig. 3.2.6 Immunocytochemistry photos of iPLA2 protein expression in 
SH-SY5Y cells following six hours incubation with vehicle control and 
50 μg/mL AgNPs. Scale: 20 μm. 
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Fig. 3.2.7 Fold change in iPLA2 fluorescence intensity in SH-SY5Y cells 
following six hours incubation with vehicle control and 50 μg/mL AgNPs 
(n = 4 in each group). Each bar in the figure denotes mean + SEM. 
Asterisks (*) indicate statistically significant differences in fold change 
by two-tailed unpaired Student’s t-test. *** p < 0.001. 
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2.3.3. Trypan Blue Exclusion Cell Viability Assay Analysis 

Six hours incubation of SH-SY5Y cells resulted in cell 

viabilities of 98.3 %, 94.0 %, and 98.2 % for vehicle control, 50 μg/mL 

AgNPs-, and 91.3 μg/mL AuNPs-treated cells respectively (Fig. 3.2.8). 

No significant differences were observed between vehicle control and 

50 μg/mL AgNPs- and 91.3 μg/mL AuNPs-treated cells. 

 

 

Fig. 3.2.8 Cell viability of SH-SY5Y cells following six hours incubation 
with various treatment groups – vehicle control; 50 μg/mL AgNPs; 91.3 
μg/mL AuNPs (n = 4 in each group). Each bar in the figure denotes 
mean + SEM. 
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2.3.4. Lipidomic Profiling Analysis 

Six hours incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

resulted in significant differences in relative abundance of various 

phospholipid and lysophospholipid species compared to vehicle control 

(Table 3.2.1) – phosphatidylcholine (PC) (Fig. 3.2.9A & 3.2.9B), 

lysophosphatidylcholine (LysoPC) (Fig. 3.2.10A & 3.2.10B), 

phosphatidylethanolamine (PE) (Fig. 3.2.11A & 3.2.11B), and 

phosphatidylserine (PS) (Fig. 3.2.13). Significant increases in relative 

abundance of PC 30:0p, PC 30:0, PC 32:1e, PC 32:0e, PC 32:0p, PC 

32:2, PC 34:2e, PC 34:1e, PC 34:1p, PC 34:5, PC 34:4, PC 34:3, PC 

34:2, PC 36:2e, PC 36:6, PC 36:5, PC 36:3, PC 36:1, PC 36:0, PC 

38:4e, PC 38:4p, PC 38:7, PC 18:2/20:4, PC 38:2, PC 40:7e, PC 

40:5e, PC 40:6p, PC 40:8, PC 40:7, PC 40:6, PC 40:4, PE 34:1e, PE 

34:3, PE 34:2, PE 34:1, PE 35:2, PE 36:5e, PE 36:3, PE 36:2, PE 36:1, 

PE 36:0, PE 16:0p/20:4, PE 18:0p/18:1, PE 38:4, PE 38:3, PE 

16:0p/22:6, PE 16:0p/22:5, PE 40:7, PE 40:6, PE 40:5, PE 18:0p/22:6, 

PS 36:2, PS 36:1, PS 38:4, PS 38:3, PS 40:6, PS 40:5, LysoPC 18:0, 

LysoPC 24:0e, and LysoPC 26:0 lipid species were observed in 50 

μg/mL AgNPs-treated SH-SY5Y cells as compared to vehicle control. 

In contrast, PC 32:3 and PE 32:0 lipid species showed a significant 

reduction in relative abundance in 50 μg/mL AgNPs-treated cells as 

compared to vehicle control. No significant differences were observed 

in lysophosphatidylethanolamine (LysoPE) lipid species (Fig. 3.2.12). 
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Six hours incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

also resulted in significant differences in relative abundance of 

sphingomyelin (SM) (Fig. 3.2.14) and ceramide (Cer) (Fig. 3.2.15) lipid 

species (Table 3.2.1). Significant increases in relative abundance of 

SM 31:1, SM 32:2, SM 32:1, SM 32:0, SM 33:1, SM 34:2, SM 34:1, SM 

34:0, SM 36:2, SM 36:1, SM 38:1, SM 39:1, SM 41:2, SM 34:1, SM 

42:1, Cer 16:0, Cer 18:0, Cer 20:0, Cer 22:0, Cer 24:1, and Cer 24:0 

lipid species were observed in 50 μg/mL AgNPs-treated SH-SY5Y cells 

as compared to vehicle control. 
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Table 3.2.1 Lipid species with significant changes in relative 
abundance following six hours incubation with vehicle control and 50 
μg/mL AgNPs. 
 

Lipid 
Species 

Vehicle AgNPs 
p-

Value 
Mean 
( /106 
cells) 

S.E. 
( /106 
cells) 

Mean 
( /106 
cells) 

S.E. 
( /106 
cells) 

PC 30:0p 2.18E-03 2.47E-04 2.46E-03 2.01E-04 0.047 

PC 30:0 2.79E-01 3.44E-03 2.90E-01 1.81E-02 0.039 

PC 32:1e 1.96E-02 1.28E-03 3.19E-02 1.87E-03 0.019 

PC 32:0e 4.41E-02 3.83E-03 5.57E-02 3.71E-03 0.014 

PC 32:0p 4.81E-03 2.56E-04 6.29E-03 7.80E-04 0.023 

PC 32:3 1.21E-02 1.48E-03 1.66E-02 1.19E-03 0.046 

PC 32:2 8.67E-02 9.66E-03 1.21E-01 8.80E-03 0.041 

PC 34:2e 1.12E-02 1.95E-04 1.80E-02 8.54E-04 0.032 

PC 34:1e 1.39E-01 9.13E-03 1.93E-01 1.07E-02 0.006 

PC 34:1p 1.07E-02 6.35E-04 1.65E-02 1.15E-03 0.002 

PC 34:5 3.18E-04 4.57E-05 4.08E-04 2.28E-05 0.009 

PC 34:4 9.45E-03 9.07E-04 1.17E-02 8.21E-04 0.035 

PC 34:3 5.79E-02 4.99E-03 7.75E-02 4.68E-03 0.019 

PC 34:2 2.89E-01 3.52E-03 3.23E-01 2.01E-02 0.023 

PC 36:2e 8.41E-03 7.85E-04 1.26E-02 7.03E-04 0.029 

PC 36:6 3.82E-03 3.32E-04 5.14E-03 2.78E-04 0.005 

PC 36:5 2.52E-02 5.82E-04 2.52E-02 1.41E-03 0.008 

PC 36:3 6.90E-02 4.34E-03 8.21E-02 4.43E-03 0.032 

PC 36:1 1.64E-01 3.66E-03 1.78E-01 1.03E-02 0.015 
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Lipid 
Species 

Vehicle AgNPs 
p-

Value 
Mean 
( /106 
cells) 

S.E. 
( /106 
cells) 

Mean 
( /106 
cells) 

S.E. 
( /106 
cells) 

PC 36:0 2.44E-02 1.39E-03 2.82E-02 1.46E-03 0.022 

PC 38:4e 1.08E-02 9.65E-04 1.82E-02 1.82E-03 0.010 

PC 38:4p 1.38E-02 6.64E-04 1.90E-02 1.44E-03 0.010 

PC 38:7 6.47E-03 7.14E-04 8.55E-03 6.08E-04 0.001 

PC 
18:2/20:4 

4.71E-02 6.05E-04 5.28E-02 3.33E-03 0.003 

PC 38:2 9.36E-03 7.63E-04 1.19E-02 8.52E-04 0.020 

PC 40:7e 9.27E-03 7.26E-04 1.70E-02 1.17E-03 0.004 

PC 40:5e 6.34E-03 4.16E-04 8.83E-03 7.73E-04 0.016 

PC 40:6p 3.10E-03 3.57E-04 6.11E-03 7.06E-04 0.002 

PC 40:8 4.80E-03 3.17E-04 6.08E-03 3.60E-04 0.046 

PC 40:7 3.89E-02 2.11E-03 4.55E-02 2.48E-03 0.006 

PC 40:6 1.08E-02 6.44E-04 1.13E-02 5.61E-04 0.021 

PC 40:4 1.18E-02 1.25E-04 1.36E-02 8.89E-04 0.010 

PE 32:0 2.49E-02 1.16E-03 2.29E-02 6.33E-04 0.036 

PE 34:1e 1.11E-02 1.24E-03 2.89E-02 1.52E-03 0.014 

PE 34:3 3.27E-02 3.63E-03 4.88E-02 4.33E-03 0.029 

PE 34:2 1.40E-01 1.64E-02 1.89E-01 1.36E-02 0.027 

PE 34:1 3.71E-01 2.33E-02 4.50E-01 2.59E-02 0.028 

PE 35:2 2.28E-02 1.63E-03 2.98E-02 1.18E-03 0.020 

PE 36:5e 1.02E-02 5.41E-04 1.46E-02 1.50E-03 0.040 

PE 36:3 9.67E-02 9.62E-04 1.22E-01 4.93E-03 0.009 
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Lipid 
Species 

Vehicle AgNPs 
p-

Value 
Mean 
( /106 
cells) 

S.E. 
( /106 
cells) 

Mean 
( /106 
cells) 

S.E. 
( /106 
cells) 

PE 36:2 4.47E-01 1.23E-02 5.36E-01 3.64E-02 0.002 

PE 36:1 6.99E-01 5.81E-02 7.97E-01 4.80E-02 0.027 

PE 36:0 8.64E-02 1.67E-03 9.50E-02 7.82E-03 0.014 

PE 
16:0p/20:4 

1.03E-02 5.17E-04 1.46E-02 1.50E-03 0.041 

PE 
18:0p/18:1 

3.60E-03 2.10E-04 4.35E-03 8.09E-04 0.009 

PE 38:4 1.10 1.42E-02 1.22 8.18E-02 0.003 

PE 38:3 4.76E-02 2.33E-03 6.45E-02 3.59E-03 0.003 

PE 
16:0p/22:6 

1.82E-02 3.26E-03 2.90E-02 3.06E-03 0.009 

PE 
16:0p/22:5 

5.31E-02 3.60E-03 9.69E-02 5.51E-03 0.011 

PE 40:7 1.34E-01 1.57E-02 1.76E-01 1.31E-02 0.017 

PE 40:6 2.60E-01 2.07E-02 3.44E-01 1.79E-02 0.019 

PE 40:5 3.24E-01 5.13E-03 3.47E-01 2.85E-02 0.004 

PE 
18:0p/22:6 

3.32E-02 4.34E-03 4.87E-02 3.32E-03 0.008 

PS 36:2 3.87 4.16E-01 5.67 4.55E-01 0.005 

PS 36:1 3.31E01 5.11E-01 4.54E01 3.35 0.017 

PS 38:4 2.42 1.10E-01 2.81 1.91E-01 0.010 

PS 38:3 3.08 2.14E-01 4.35 2.79E-01 0.006 

PS 40:6 9.84 7.14E-01 1.44E01 1.42 0.004 

PS 40:5 1.14E01 7.29E-01 1.44E01 1.21 0.009 
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Lipid 
Species 

Vehicle AgNPs 
p-

Value 
Mean 
( /106 
cells) 

S.E. 
( /106 
cells) 

Mean 
( /106 
cells) 

S.E. 
( /106 
cells) 

LysoPC 18:0 3.31E-01 1.85E-02 4.82E-01 5.60E-02 0.030 

LysoPC 
24:0e 

1.62E-02 1.97E-03 2.63E-02 1.78E-03 0.012 

LysoPC 26:0 8.56E-02 4.52E-03 1.32E-01 1.88E-02 0.034 

SM 31:1 9.22E-03 3.28E-04 1.16E-02 1.05E-03 0.002 

SM 32:2 1.05E-02 9.72E-04 1.20E-02 1.03E-03 0.018 

SM 32:1 3.82E-01 3.40E-02 4.68E-01 3.38E-02 0.017 

SM 32:0 5.01E-02 3.87E-03 6.10E-02 2.83E-03 0.033 

SM 33:1 7.49E-01 9.25E-02 9.27E-01 8.43E-02 0.018 

SM 34:2 8.57E-01 7.28E-02 1.02 1.03E-03 0.021 

SM 34:1 9.17 7.51E-01 1.17E01 8.68E-01 0.018 

SM 34:0 4.91E-01 4.41E-02 5.95E-01 5.00E-02 0.014 

SM 36:2 4.10E-01 2.01E-02 5.05E-01 3.26E-02 0.024 

SM 36:1 6.68E-01 2.88E-02 8.25E-01 4.93E-02 0.003 

SM 38:1 2.18E-01 5.06E-03 2.41E-01 1.93E-02 0.008 

SM 39:1 4.69E-01 3.99E-02 7.25E-01 5.47E-02 0.009 

SM 41:2 4.14E-01 4.88E-02 6.95E-01 4.83E-02 0.011 

SM 41:1 1.39E-01 1.29E-02 2.02E-01 1.89E-02 0.006 

SM 42:1 1.33E-01 3.36E-04 1.34E-01 1.36E-02 0.001 

Cer 16:0 3.77E-01 2.55E-02 5.96E-01 2.70E-02 0.014 

Cer 18:0 9.36E-02 6.62E-03 1.40E-01 1.31E-03 0.013 

Cer 20:0 1.06E-02 1.65E-03 1.33E-02 7.52E-04 0.043 
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Lipid 
Species 

Vehicle AgNPs 
p-

Value 
Mean 
( /106 
cells) 

S.E. 
( /106 
cells) 

Mean 
( /106 
cells) 

S.E. 
( /106 
cells) 

Cer 22:0 8.38E-02 2.19E-03 9.09E-02 5.08E-03 0.005 

Cer 24:1 3.76E-01 5.78E-03 4.11E-01 2.65E-02 0.002 

Cer 24:0 1.07E-01 3.23E-03 1.24E-01 8.74E-03 0.005 
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2.3.4.1. Phosphatidylcholine and Lysophosphatidylcholine 
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Fig. 3.2.9 Relative abundance of phosphatidylcholine in SH-SY5Y cells 
following six hours incubation with vehicle control and 50 μg/mL 
AgNPs. Each bar in the figure denotes mean + SEM. Asterisks (*) 
indicate statistically significant differences in relative abundance by 
two-tailed unpaired Student’s t-test. * p < 0.05. PC – 
phosphatidylcholine. 
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Fig. 3.2.10 Relative abundance of lysophosphatidylcholine in SH-SY5Y 
cells following six hours incubation with vehicle control and 50 μg/mL 
AgNPs. Each bar in the figure denotes mean + SEM. Asterisks (*) 
indicate statistically significant differences in relative abundance by 
two-tailed unpaired Student’s t-test. * p < 0.05. LysoPC – 
lysophosphatidylcholine.  
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2.3.4.2. Phosphatidylethanolamine and 

Lysophosphatidylethanolamine 
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Fig. 3.2.11 Relative abundance of phosphatidylethanolamine in SH-
SY5Y cells following six hours incubation with vehicle control and 50 
μg/mL AgNPs. Each bar in the figure denotes mean + SEM. Asterisks 
(*) indicate statistically significant differences in relative abundance by 
two-tailed unpaired Student’s t-test. * p < 0.05. PE – 
phosphatidylethanolamine. 
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Fig. 3.2.12 Relative abundance of lysophosphatidylethanolamine in 
SH-SY5Y cells following six hours incubation with vehicle control and 
50 μg/mL AgNPs. Each bar in the figure denotes mean + SEM. LysoPE 
– lysophosphatidylethanolamine. 
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2.3.4.3. Phosphatidylserine 

 

Fig. 3.2.13 Relative abundance of phosphatidylserine in SH-SY5Y cells 
following six hours incubation with vehicle control and 50 μg/mL 
AgNPs. Each bar in the figure denotes mean + SEM. Asterisks (*) 
indicate statistically significant differences in relative abundance by 
two-tailed unpaired Student’s t-test. * p < 0.05. PS – 
phosphatidylserine.  
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2.3.4.4. Sphingomyelin 

 

Fig. 3.2.14 Relative abundance of sphingomyelin in SH-SY5Y cells 
following six hours incubation with vehicle control and 50 μg/mL 
AgNPs. Each bar in the figure denotes mean + SEM. Asterisks (*) 
indicate statistically significant differences in relative abundance by 
two-tailed unpaired Student’s t-test. * p < 0.05. SM – sphingomyelin.  
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2.3.4.5. Ceramide 

 

Fig. 3.2.15 Relative abundance of ceramide in SH-SY5Y cells following 
six hours incubation with vehicle control and 50 μg/mL AgNPs. Each 
bar in the figure denotes mean + SEM. Asterisks (*) indicate 
statistically significant differences in relative abundance by two-tailed 
unpaired Student’s t-test. * p < 0.05. Cer – ceramide.  
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2.4. Discussion 

This chapter was conducted to examine the relationship 

between AgNPs and PLA2 enzymes, in particular cPLA2 and iPLA2, in 

SH-SY5Y human neuroblastoma cells. Since AgNPs have 

demonstrated inflammatory properties (Carlson et al., 2008, Cha et al., 

2008, Kim et al., 2010), I wanted to determine if AgNPs-induced toxicity 

is due to an induction of cPLA2, depression of iPLA2 expression and 

function, or both. sPLA2 activity has been heavily implicated in 

inflammatory conditions, however, it lacks specificity for the cleavage of 

fatty acids at the sn-2 position of glycerophospholipids (Burke and 

Dennis, 2009, Ong et al., 2015). As such, the present study focuses on 

cPLA2, which preferentially releases AA, a potent pro-inflammatory 

mediator (Sun et al., 2004, Dennis et al., 2011), and iPLA2, which 

preferentially releases DHA, a potent anti-inflammatory mediator 

(Green et al., 2008, Basselin et al., 2010). 

Interestingly, no significant changes in cPLA2 gene 

expression following incubation with AgNPs for up to six hours, while a 

significant reduction in iPLA2 gene expression from one to six hours 

was observed. This indicates that iPLA2 is more susceptible to AgNPs’ 

toxicity as compared to cPLA2, suggesting that AgNPs exerts its 

harmful effects through the inhibition of anti-inflammatory mechanisms 

instead of elevating pro-inflammatory pathways in SH-SY5Y cells. 

Moreover, iPLA2 protein expression decreased significantly after six 

hours exposure to AgNPs, as reflected by the significant drop in 
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fluorescence intensity using immunocytochemistry analysis. AgNPs 

exposure has also been reported to cause cell death in various cell 

lines (Braydich-Stolle et al., 2005, Carlson et al., 2008, Eom and Choi, 

2010). The observed decrease in iPLA2 expression could thus be 

potentially due to the loss of cells after exposure to AgNPs. However, 

six hours incubation of SH-SY5Y cells with AgNPs did not result in 

significant cell death. This implies that AgNPs exert its toxicity in SH-

SY5Y cells, in part by affecting iPLA2 expression. On the contrary, 

AuNPs showed a greater reduction in iPLA2 mRNA expression at one 

hour as compared to AgNPs-treated cells, although iPLA2 expression 

returned to similar to that of vehicle control after six hours exposure. 

The observed recovery suggests that SH-SY5Y cells are able to 

overcome the inhibitory effects of AuNPs on iPLA2 gene expression. 

This corroborates with other findings that AuNPs are generally safe, 

exhibiting lesser toxic effects as compared to AgNPs (Bar-Ilan et al., 

2009, Asharani et al., 2011). 

Additionally, it was shown in the previous chapter that acute 

exposure of SH-SY5Y cells to AgNPs resulted in mitochondrial 

dysfunction. The use of DHA and LC was able to rescue the harmful 

effects exerted by AgNPs in SH-SY5Y cells. However, co-treatment of 

DHA and/or LC with AgNPs did not result in significant changes in 

iPLA2 mRNA expression of SH-SY5Y cells, suggesting that 

supplementation of DHA and/or LC was unable to overcome changes 

observed in iPLA2 expression despite their ability to rescue harmful 
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effects exerted by AgNPs on mitochondria. As an integral 

housekeeping gene, iPLA2 plays many crucial roles in cells, including 

maintenance of mitochondrial integrity and its functions (Gadd et al., 

2006, Seleznev et al., 2006, Beck et al., 2011). This suggests that 

AgNPs affect iPLA2 expression upstream that of its effects exerted on 

human neuronal mitochondria, explaining for the inability of DHA and/or 

LC to alter iPLA2 expression. 

Alterations in activity of the iPLA2 enzyme following AgNPs 

treatment were investigated via lipidomic profiling. Since iPLA2 

preferentially releases DHA from phospholipids (Strokin et al., 2003, 

Green et al., 2008, Ong et al., 2015), it was postulated that AgNPs 

exposure to SH-SY5Y cells would result in lowered activity of the 

enzyme, i.e., less hydrolysis of glycerophospholipids to produce DHA 

and 2-lysophospholipids. Based on the molecular weights of PC, 

LysoPC, PE, and LysoPE lipid species, relative amount of released 

DHA by the action of iPLA2 enzyme can be determined. For example, 

PC 36:6 is hydrolyzed to produce LysoPC 14:0 and DHA, i.e. PC 36:6 

– LysoPC 14:0 = 22:6 (DHA). Similarly, PE 40:7 releases LysoPE 18:1 

and DHA. Lipidomic analysis revealed significant increases in PC and 

PE species and little to no significant changes in LysoPC and LysoPE 

species that are involved in the release of DHA, indicating decreased 

iPLA2 activity after six hours incubation with AgNPs. Decreased levels 

of PC and PE species such as PC 32:0, PC 36:5, and PE 32:0 were 

also detected. However, these are non-DHA-containing PC and PE 
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species as they have five or lesser double bonds in their fatty acid 

chains. Mitochondrial phospholipids are mainly made up of PC, PE, 

and cardiolipin lipid species (Zinser et al., 1991). Hence, alterations in 

these lipid species would have an effect on mitochondrial function, for 

instance, mitochondrial membrane integrity, permeability, and 

intracellular trafficking (Yorio and Frazier, 1990, Stenger et al., 2009, 

Sivaprakasam and Nachiappan, 2015). Taken together, the results 

suggest that AgNPs could exert its pro-inflammatory properties in SH-

SY5Y cells by modulating iPLA2 expression and function, in turn 

resulting in mitochondrial dysfunction. 

Lipidomic analysis also showed a significant increase in Cer 

lipid species following six hours incubation with AgNPs. Cer are lipid 

messengers that are involved with suppression of cell growth and 

induction of apoptosis (Obeid and Hannun, 1995). They can also work 

on mitochondria, causing the opening of the MPTP and release of 

cytochrome C, leading to mitochondrial dysfunction (Cutler et al., 

2004). iPLA2 is involved in the induction of ER stress that causes an 

increase in Cer levels (Lei et al., 2007). Additionally, the presence of 

ROS from AgNPs exposure could result in an increase in Cer levels 

(Cutler et al., 2004, Alessenko et al., 2005, Ichi et al., 2009). However, 

the resultant increase in Cer species is often due to the activation of 

sphingomyelinase, an enzyme that cleaves SM to produce Cer and 

phosphocholine (Alessenko et al., 2005, Lei et al., 2007). This 

contradicts the present study’s results as SM levels were found to 
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increase significantly following AgNPs treatment. Intriguingly, the 

addition of tumor necrosis factor, an inflammatory cytokine known to 

generate ROS in cells, increased both SM and Cer levels (Pekary and 

Hershman, 1998), indicating that ROS could affect phospholipid 

species in various ways. Additionally, it is possible that incubation with 

AgNPs resulted in increased SM levels so as to produce more Cer as 

SM are precursors of Cer. Six hours incubation with AgNPs also saw a 

significant increase in PS lipid species levels. Under apoptotic 

conditions, the translocation of PS from the inner to outer membrane of 

the plasma membrane act as a phagocytic “eat-me” signal (Verhoven 

et al., 1995). The increased PS lipid species could possibly be due to 

the preparation of apoptosis, in response to AgNPs exposure. 
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3.1. Introduction 

In the previous chapters, it was established that acute 

exposure of AgNPs affects iPLA2 expression and function, in turn 

leading to mitochondrial dysfunction. AgNPs have been reported to 

cause cytotoxicity in cells due to generation of ROS, which react with 

cellular components like DNA and lipids, leading to mitochondrial 

dysfunction, DNA damage, and ultimately cell death (AshaRani et al., 

2009, Costa et al., 2010, Hwang et al., 2012, Kang et al., 2012, 

Mukherjee et al., 2012). iPLA2 has been reported to protect cells 

against oxidant-induced lipid peroxidation (Cummings et al., 2002, 

Kinsey et al., 2008, Eady et al., 2012), and the inhibition of iPLA2 

activity increases oxidant-induced cell death (Peterson et al., 2007). 

While iPLA2 plays a protective role against oxidative stress, the 

enzyme can also be inactivated by ROS due to the oxidation of iPLA2 

sulfhydryl groups (Cummings et al., 2004, Song et al., 2006). 

Decreased iPLA2 activity may thus lead to reduced cleavage, 

reacylation, and reinsertion of the peroxidized phospholipids into 

membranes, resulting in increased lipid peroxidation, and ultimately 

leading to cell death (Cummings et al., 2002, Cummings et al., 2004, 

Peterson et al., 2007). 

iPLA2 expression is potentially modulated by several 

regulatory factors at the promoter including Sp1 transcription factor 

(SP1), urocortin, and sterol regulatory element-binding proteins 

(SREBPs). iPLA2 contains several potential SP1 binding sites on its 
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promoter (Larsson Forsell et al., 1999), hence it could possibly regulate 

alterations in iPLA2 gene expression following exposure to AgNPs. 

However, SP1 is a general transcription factor that binds to GC-rich 

elements in DNA, and has been shown to affect multiple genes 

including cPLA2 (Tsou et al., 2008, Zhang et al., 2008). Similarly, 

urocortin regulates both cPLA2 and iPLA2 expression (Zhu et al., 2014). 

The results in chapter 2 indicate that AgNPs exposure in SH-SY5Y 

cells affects iPLA2 but not cPLA2 expression, suggesting that SP1 and 

urocortin are possibly not involved in the AgNPs-induced alterations of 

iPLA2 expression. 

On the other hand, iPLA2 promoter contains a sterol 

regulatory element (SRE) binding site for SREBPs that is not found on 

cPLA2 (Seashols et al., 2004, Chew and Ong, 2014). SREBPs are 

transcription factors that play an integral role in lipid homeostasis. In 

mammals, there are three isoforms, SREBP-1a, SREBP-1c, and 

SREBP-2 (Horton et al., 2003). SREBP-1a and SREBP-1c are 

alternatively spliced isoforms of the sterol regulatory element binding 

transcription factor 1 (SREBF1) gene found on human chromosome 

17p11.2, while SREBP-2 gene (SREBF2) is found on human 

chromosome 22q13 (Hua et al., 1995, Brown and Goldstein, 1997, 

Horton et al., 2002). SREBP-1a enhances transcription of all SREBP-

related genes, including genes involved in cholesterol and fatty acid 

synthesis, while SREBP-1c activates genes involved in fatty acid 

synthesis and SREBP-2 regulates expression of genes that play a role 
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in cholesterol synthesis and uptake. (Brown and Goldstein, 1997, 

Krycer and Brown, 2013). 

In this chapter, the role of oxidative stress in mediating 

AgNPs-induced decrease in iPLA2 expression and function was 

examined using antioxidants such as N-acetyl L-cysteine (NAC) and N-

tert-Butyl-α-phenylnitrone (PBN). The potential mechanism underlying 

the down-regulation of iPLA2 gene expression following acute exposure 

to AgNPs was also elucidated. 
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3.2. Materials and Methods 

3.2.1. Cell Culture 

SH-SY5Y cells were cultured in complete growth medium, 

and grown in 100 mm dishes. SH-SY5Y cells were incubated under 

standard conditions of 37 °C and 5 % CO2, and regularly passaged 

with 0.25 % Trypsin-EDTA. At 70 % confluence, cells were used for 

treatments. 

 

3.2.2. Synthesis, Purification, and Characterization of AgNPs 

26 nm AgNPs were synthesized, purified, and characterized 

as described in chapter 1 (pages 40 – 43). 

 

3.2.3. Cell Treatment 

3.2.3.1. Treatment with NAC and AgNPs 

Four groups of SH-SY5Y cells were treated with the 

following reagents: (1) vehicle, water, (2) 1mM NAC (Sigma-Aldrich, St. 

Louis, MO, USA), (3) 50 μg/mL AgNPs, (4) 1 mM NAC and 50 μg/mL 

AgNPs. Cells were pre-treated with 1 mM NAC for one hour prior to 

addition of AgNPs for another six hours. PBS was used to wash the 

cells. SH-SY5Y cells were then harvested for further real-time RT-PCR 

analysis. 
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3.2.3.2. Treatment with PBN and AgNPs 

Four groups of SH-SY5Y cells were treated with the 

following reagents: (1) vehicle, ethanol, (2) 10 μM PBN (Sigma-Aldrich, 

St. Louis, MO, USA), (3) 50 μg/mL AgNPs, (4) 10 μM PBN and 50 

μg/mL AgNPs. Cells were pre-treated with 10 μM PBN for one hour 

prior to addition of AgNPs for another six hours. PBS was used to wash 

the cells. SH-SY5Y cells were then harvested for further real-time RT-

PCR analyses. 

 

3.2.4. Real-time RT-PCR 

RNA of treated cells was extracted and real-time RT-PCR 

analyses were carried out as described in chapter 2 (page 72), using 

probes for human iPLA2 (Hs00185926_m1), SREBP-1 

(Hs01088691_m1), SREBP-2 (Hs01081784_m1), and ACTB (beta 

actin) (#4326315E) (Applied Biosystems®, Life Technologies, Carlsbad, 

CA, USA). 

 

3.2.5. Statistical analyses 

Mean and standard error of values were determined for 

each experimental group, and possible significant differences among 

various groups were analyzed using one-way ANOVA with Bonferroni’s 

multiple comparison post-hoc test. p < 0.05 was deemed significant. 
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3.3. Results 

3.3.1. Real-time RT-PCR Analyses 

3.3.1.1. Effect of NAC and AgNPs Treatment on iPLA2 mRNA 

Expression 

Six hours incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

resulted in a 0.43-fold (p < 0.001) statistically significant change in 

iPLA2 mRNA expression compared to vehicle control (Fig. 3.3.1). 1 mM 

NAC + 50 μg/mL AgNPs-treated cells also exhibited a 0.65-fold (p = 

0.005) statistically significant change in iPLA2 mRNA expression 

compared to vehicle control. Compared to 50 μg/mL AgNPs-treated 

SH-SY5Y cells, significant increase in iPLA2 mRNA expression was 

observed in cells treated with 1 mM NAC + 50 μg/mL AgNPs (p = 

0.023). Statistically significant reduction in iPLA2 mRNA expression 

was also observed in cells treated with 1 mM NAC compared to 1 mM 

NAC + 50 μg/mL AgNPs (p = 0.047). 
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Fig. 3.3.1 Fold change in iPLA2 mRNA expression in SH-SY5Y cells 
following six hours incubation with various treatment groups – vehicle 
control; 1 mM NAC; 50 μg/mL AgNPs; 1 mM NAC + 50 μg/mL AgNPs 
(n = 4 in each group). Each bar in the figure denotes mean + SEM. 
Asterisks (*) indicate statistically significant differences in fold change 
by one-way ANOVA with Bonferroni’s multiple comparison post-hoc 
test. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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3.3.1.2. Effect of PBN and AgNPs Treatment on iPLA2 mRNA 

Expression 

Six hours incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

resulted in a 0.48-fold (p = 0.001) statistically significant change in 

iPLA2 mRNA expression compared to vehicle control (Fig. 3.3.2). No 

significant difference was observed between 10 μM PBN + 50 μg/mL 

AgNPs-treated cells and vehicle control. Compared to 50 μg/mL 

AgNPs-treated SH-SY5Y cells, significant increase in iPLA2 mRNA 

expression was observed in cells treated with 10 μM PBN + 50 μg/mL 

AgNPs (p < 0.001). 

  



Chapter 3 
 Role of oxidative stress in AgNPs-induced iPLA2 changes	
   	
  

116 

 

Fig. 3.3.2 Fold change in iPLA2 mRNA expression in SH-SY5Y cells 
following six hours incubation with various treatment groups – vehicle 
control; 10 μM PBN; 50 μg/mL AgNPs; 10 μM PBN + 50 μg/mL AgNPs 
(n = 4 in each group). Each bar in the figure denotes mean + SEM. 
Asterisks (*) indicate statistically significant differences in fold change 
by one-way ANOVA with Bonferroni’s multiple comparison post-hoc 
test. *** p < 0.001. 
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3.3.1.3. Effect of PBN and AgNPs Treatment on SREBP-1 mRNA 

Expression  

Six hours incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

resulted in a 0.32-fold (p < 0.001) statistically significant change in 

SREBP-1 mRNA expression compared to vehicle control (Fig. 3.3.3). 

10 μM PBN-treated cells exhibited a 2.10-fold (p < 0.001) statistically 

significant increase in SREBP-1 mRNA expression compared to 

vehicle control. 10 μM PBN + 50 μg/mL AgNPs-treated cells exhibited 

a 0.58-fold (p < 0.001) statistically significant reduction in SREBP-1 

mRNA expression compared to vehicle control. Compared to 50 μg/mL 

AgNPs-treated SH-SY5Y cells, significant increase in SREBP-1 mRNA 

expression was observed in cells treated with 10 μM PBN + 50 μg/mL 

AgNPs (p < 0.001). Statistically significant reduction in SREBP-1 

mRNA expression was also observed in cells treated with 10 μM PBN 

compared to 10 μM PBN + 50 μg/mL AgNPs (p < 0.001). 
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Fig. 3.3.3 Fold change in SREBP-1 mRNA expression in SH-SY5Y 
cells following six hours incubation with various treatment groups – 
vehicle control; 10 μM PBN; 50 μg/mL AgNPs; 10 μM PBN + 50 μg/mL 
AgNPs (n = 4 in each group). Each bar in the figure denotes mean + 
SEM. Asterisks (*) indicate statistically significant differences in fold 
change by one-way ANOVA with Bonferroni’s multiple comparison 
post-hoc test. *** p < 0.001.   
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3.3.1.4. Effect of PBN and AgNPs Treatment on SREBP-2 mRNA 

Expression 

Six hours incubation of SH-SY5Y cells with 50 μg/mL AgNPs 

resulted in a 0.68-fold (p < 0.001) statistically significant change in 

SREBP-2 mRNA expression compared to vehicle control (Fig. 3.3.4). 

10 μM PBN-treated cells exhibited a 1.49-fold (p < 0.001) statistically 

significant increase in SREBP-2 mRNA expression compared to 

vehicle control. No significant difference was observed between 10 μM 

PBN + 50 μg/mL AgNPs-treated cells and vehicle control. Compared to 

50 μg/mL AgNPs-treated SH-SY5Y cells, significant increase in 

SREBP-2 mRNA expression was observed in cells treated with 10 μM 

PBN + 50 μg/mL AgNPs (p = 0.009). Statistically significant reduction 

in SREBP-2 mRNA expression was also observed in cells treated with 

10 μM PBN compared to 10 μM PBN + 50 μg/mL AgNPs (p < 0.001). 
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Fig. 3.3.4 Fold change in SREBP-2 mRNA expression in SH-SY5Y 
cells following six hours incubation with various treatment groups – 
vehicle control; 10 μM PBN; 50 μg/mL AgNPs; 10 μM PBN + 50 μg/mL 
AgNPs (n = 4 in each group). Each bar in the figure denotes mean + 
SEM. Asterisks (*) indicate statistically significant differences in fold 
change compared with vehicle control, by one-way ANOVA with 
Bonferroni’s multiple comparison post-hoc test. ** p < 0.01,  
*** p < 0.001.   
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3.4. Discussion 

To determine if ROS and oxidative stress affects iPLA2 

expression, SH-SY5Y cells were pre-treated with the antioxidants NAC 

and PBN to observe for possible alterations in iPLA2 gene expression. 

NAC is a commonly used antioxidant with the ability to reduce oxidative 

stress and the downstream effects associated with oxidative stress 

(Kerksick and Willoughby, 2005). NAC works as an antioxidant in two 

ways. Firstly, it is a precursor of cysteine, which is the rate-limiting 

enzyme in the synthesis of glutathione, a crucial endogenous 

antioxidant. Under oxidative stress, glutathione levels are depleted and 

this can be reversed via NAC supplementation (Dodd et al., 2008). 

NAC is also an active scavenger for free radicals (Kerksick and 

Willoughby, 2005, Dodd et al., 2008). Similar to NAC, PBN scavenges 

for a wide range of free radicals (Sack et al., 1996). PBN is commonly 

known as a spin-trapping compound. It detoxifies free radicals by 

adding them to its carbon-nitrogen double bond resulting in a stable 

nitroxide product, which is subsequently metabolized and excreted in 

the urine (Sack et al., 1996). Antioxidant pre-treatment prevented the 

observed decrease in iPLA2 gene expression following AgNPs 

exposure, indicating that the AgNPs-induced down-regulation of iPLA2 

gene involves ROS. This corroborates with previous findings that acute 

exposure of AgNPs results in formation of ROS (Haase et al., 2012). 

Additionally, AgNPs-induced ROS affected iPLA2 gene expression 

through an unknown mechanism. 
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Oxidative stress can alter gene expression of various genes 

in multiple ways. Different ROS could produce different effects on 

various genes’ expression. Mackerness et al. (2001) found that H2O2 

derived from O2
!- caused an up-regulation of PR-1 gene and down-

regulation of Lhcb gene, while O2
!- resulted in an up-regulation of 

PDF1.2 gene. ROS could also alter gene expression by affecting cell 

signaling upstream of the gene. Wartenberg et al. (2001) determined 

that ROS down-regulated expression of Pgp gene via up-regulation of 

Erk1 and 2, and JNK. Additionally, ROS could affect transcription 

factors that have binding sites on the gene-of-interest’s promoter 

(McCullough et al., 2001). It would be interesting to determine the 

mechanism underlying the down-regulation of iPLA2 gene expression 

following six hours treatment with AgNPs. 

Since the iPLA2 promoter contains a SRE binding site for 

SREBPs that is not found on cPLA2 (Seashols et al., 2004, Lei et al., 

2010, Chew and Ong, 2014), it was decided to study the effects of 

oxidative stress on SREBP gene expression. As PBN pre-treatment 

resulted in a more significant change in iPLA2 expression, PBN pre-

treatment was used for subsequent investigations. AgNPs-treated cells 

showed significant reductions in both SREBP-1 and SREBP-2 

expression as compared to vehicle control, indicating that acute 

exposure of SH-SY5Y cells to AgNPs causes dysregulation of SREBP 

gene expression. Although it is not known how AgNPs result in 

aberrant modulation of SREBP expression, transcriptional activity of 
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SREBPs have been reported to be regulated in a variety of ways 

including proteolytic processing and recruitment of transcriptional 

cofactors (Xiaoping and Fajun, 2012). Furthermore, cells treated with 

PBN and AgNPs showed a significant increase in both SREBP-1 and 

SREBP-2 expression as compared to cells treated with only AgNPs, 

suggesting that SREBPs are affected by AgNPs-induced ROS 

formation. Reduction in SREBP expression could potentially limit 

amount of SREBP transcription factors binding to the SRE binding site 

on the iPLA2 promoter leading to lowered iPLA2 expression, as 

observed in the present study. 

Taken together, the present study’s results suggest that 

SREBPs are highly involved in AgNPs-induced down-regulation of 

iPLA2. Besides SREBPs, there may be other potential pathways 

involved. One possible mechanism is the AMPK signaling pathway, 

which has been shown to be activated by ROS in cultured cells (Hardie 

et al., 2012, Auciello et al., 2014). AMPK has also been demonstrated 

to inhibit SREBP expression and activity (Li et al., 2011, Liu et al., 

2015). Thus, it is plausible that AgNPs-induced ROS production could 

first activate AMPK, which suppresses SREBPs, in turn leading to the 

down-regulation of iPLA2. Nonetheless, additional work has to be done 

to validate these mechanisms.  
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In chapter 1, the acute effects of AgNPs in SH-SY5Y 

mitochondria were investigated. Mitochondrial membrane potential 

assay analysis showed that acute exposure of AgNPs to SH-SY5Y 

cells led to a drop in 590/535 ratio suggesting mitochondrial membrane 

damage. Additionally, ATP levels decreased in AgNPs-treated cells 

indicating possible damage to mitochondrial respiratory chain. As ATP 

levels decline, a corresponding rise in ADP levels is expected. 

Conversely, a decrease in ADP levels was detected. This could 

possibly be due to the action of AK decreasing the adenine nucleotide 

source and diminishing ADP and ATP stores. No significant cell death 

was detected after acute exposure to AgNPs. DHA and LC were then 

used to rescue AgNPs-induced mitochondrial dysfunction. Taken 

together, acute exposure of AgNPs to SH-SY5Y cells resulted in 

mitochondrial dysfunction and subsequently decreased ATP production 

without leading to cell death, which could be rescued by co-

supplementation with DHA and LC. 

In chapter 2, the relationship between AgNPs and PLA2 

enzymes, in particular cPLA2 and iPLA2, were investigated in SH-SY5Y 

cells. No significant changes in cPLA2 gene expression following 

incubation with AgNPs for up to six hours, while iPLA2 gene expression 

was significantly reduced from one to six hours. Immunocytochemistry 

analysis also revealed a significant decrease in iPLA2 protein 

expression following acute exposure to AgNPs. This observed 

reduction could possibly be due to loss of cells after AgNPs exposure, 
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however, no significant cell death was observed. Supplementation of 

DHA and/or LC was unable to overcome the iPLA2 expression changes 

despite their ability to rescue harmful effects exerted by AgNPs on 

mitochondria, indicating that AgNPs affect iPLA2 expression upstream 

that of its effects exerted on mitochondria. Alterations in iPLA2 activity 

following AgNPs treatment were investigated via lipidomic profiling. 

Lipidomic analysis revealed significant increases in PC and PE species 

and little to no significant changes in LysoPC and LysoPE species that 

are involved in DHA release, indicating decreased iPLA2 activity after 

acute exposure to AgNPs. Significant changes in Cer, SM, and PS lipid 

species were also detected. Taken together, AgNPs exert its 

inflammatory properties in SH-SY5Y cells by modulating iPLA2 

expression and function. 

In chapter 3, the effects of AgNPs-induced ROS and 

oxidative stress on iPLA2 expression were investigated, and the 

mechanism underlying changes observed was elucidated. Antioxidant 

pre-treatment prevented the observed decrease in iPLA2 gene 

expression following AgNPs exposure. Since the iPLA2 promoter 

contains a SRE binding site for SREBPs that is not found on cPLA2, 

effects of oxidative stress on SREBP expression were investigated. 

Cells treated with PBN and AgNPs showed a significant increase in 

both SREBP-1 and SREBP-2 expressions as compared to cells treated 

with only AgNPs. Taken together, the observed down-regulation of 

iPLA2 gene involves ROS production via acute exposure to AgNPs, 
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and the AgNPs-induced ROS formation affects SREBP expression. 

This could potentially reduce the amount of SREBP transcription 

factors binding to iPLA2 promoter, leading to reduced iPLA2 expression. 

In conclusion, the present study examined the acute effects 

of AgNPs in SH-SY5Y human neuroblastoma cells. Despite a short 

incubation period of up to six hours, AgNPs exposure led to ROS 

production in SH-SY5Y cells, causing reduced SREBP and iPLA2 

expression and function. This subsequently leads to mitochondrial 

dysfunction, which could be rescued through DHA and LC co-

supplementation (Fig. 4.1.1). The mechanism underlying AgNPs-

induced mitochondrial dysfunction in SH-SY5Y cells was thus 

elucidated in the present study. Besides SREBPs, there may be other 

potential pathways involved. One possible mechanism is the AMPK 

signaling pathway. Nonetheless, additional work has to be done to 

validate these mechanisms. Establishment of such mechanisms could 

result in additional insights with respect to AgNPs’ toxicity in human 

neuronal cells. 
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Fig. 4.1.1 Schematic flowchart of potential pathway and mechanism 
underlying acute effects of AgNPs in SH-SY5Y cells. 
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