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Abstract

We study pool-based active learning in the Bayesian setting. To facilitate

the analyses of active learning algorithms in this setting, we develop two

powerful theoretical tools: (1) an equivalence between probabilistic hypoth-

esis spaces and deterministic hypothesis spaces, and (2) a near-optimality

guarantee for greedy algorithms when maximizing pointwise monotone

submodular functions. Using these tools, we analyze and prove novel the-

oretical properties of two commonly used greedy algorithms for active

learning: the maximum entropy and the least confidence algorithms. Then

we propose a new greedy criterion called the maximum Gibbs error crite-

rion, which can be proven to have near-optimality guarantees in the average

case. The criterion can be approximated more easily even for complex

structured models like the Bayesian conditional random fields, and it can

be shown to perform well in practice. We also generalize the maximum

Gibbs error criterion to include general loss functions into the criteria. We

prove near-optimality guarantees for these new criteria and show that they

also perform well in our experiments. Finally, we analyze the robustness of

active learning algorithms against prior misspecification in both the average

case and the worst case. We propose the use of mixture prior for more

robust active learning and show in our experiments that it can achieve good

performance even when the correct prior is unknown.

ix



List of Tables

1.1 Theoretical properties of greedy criteria for adaptive active learning. 4

6.1 AUCs (%) of different learning algorithms with batch size s = 10. 64

6.2 AUCs (%) of different learning algorithms with batch size s = 20. 64

6.3 AUCs (%) of different learning algorithms with batch size s = 30. 64

7.1 AUCs (%) for loss with weighted error types on the 20 Newsgroups data set. 77

7.2 AUCs (%) for loss with weighted error types on UCI data sets. 77

7.3 AUCs (%) for F2 and F0.5 on the 20 Newsgroups data set. 78

7.4 AUCs (%) for F2 and F0.5 on UCI data sets. 78

7.5 AUCs (%) for loss with weighted test examples on the 20 Newsgroups data set. 80

7.6 AUCs (%) for loss with weighted test examples on UCI data sets. 80

8.1 AUCs of the maximum Gibbs error algorithm with 1/σ2 = 0.01, 0.1, 1, 10

and the mixture prior model on the 20 Newsgroups data set. 97

8.2 AUCs of the maximum Gibbs error algorithm with 1/σ2 = 0.01, 0.1, 1, 10

and the mixture prior model on the UCI data set. 97

x



List of Figures

2.1 The active learning process. 12

3.1 Examples of a non-adaptive policy tree (left) and an adaptive policy tree

(right). 25

3.2 An example of a path ρ in an adaptive policy tree. In this example, the

probability of ρ is pπ0 [ρ] = p0[(y1 = 1, y2 = 1); (x1, x2)]. 26

6.1 Absolute AUC scores under the F1 curves on the CoNLL 2003 data set. 62

8.1 The average AUC scores for passive learning and the maximum Gibbs error

active learning algorithm with 1/σ2 = 0.01, 0.1, 0.2, 1, and 10 on the 20

Newsgroups data set (a) and the UCI data set (b). 95

xi



List of Algorithms

6.1 Batch maxGEC for Bayesian Batch Mode Active Learning 54

6.2 Approximation for Equation (6.5) in Bayesian transductive Naive Bayes

model. 59

8.1 Active learning for the mixture prior model. 93

xii



CHAPTER 1
Introduction

1.1 Motivations

A popular framework in supervised machine learning is passive learning, where a large

amount of training data are randomly gathered and labeled by human annotators and

then passed to a learning algorithm to train a model (e.g., a classifier). A good model

can usually be obtained when there are large enough labeled training data. However, in

practice, there are many cases where labeled training data are expensive to obtain (for

example, text, audio, or visual data), and thus we need frameworks that enable learning

algorithms to learn a good model with as few labeled training data as possible.

Active learning is one such framework in which learning algorithms are allowed to

actively choose examples to learn (Angluin, 1988; Atlas et al., 1990; Lewis and Gale,

1994). This is an important framework as it helps to significantly reduce the number

of labeled examples required for learning algorithms to train a good model. There

are many different settings for active learning such as the membership query setting

(Angluin, 1988), the stream-based setting (Atlas et al., 1990; Cohn et al., 1994), and the

pool-based setting (Lewis and Gale, 1994). Among these settings, the pool-based setting

where training examples are selected from a finite pool of unlabeled examples is very

common in practice due to the availability of large amounts of unlabeled data for many

real-world problems (Lewis and Gale, 1994; McCallum and Nigam, 1998; Tong and

Chang, 2001; Hoi et al., 2006a). Various algorithms have been proposed and applied
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Chapter 1. Introduction

successfully for pool-based active learning. Perhaps the most famous among them is the

family of uncertainty sampling algorithms which query the examples whose label is the

least certain (Lewis and Gale, 1994; Culotta and McCallum, 2005; Settles and Craven,

2008). Although these algorithms perform well in practice, they still lack most of the

theoretical understandings and guarantees, except in some very limited settings where

the underlying model is assumed to be noiseless (Golovin and Krause, 2011).

The lack of theoretical properties for uncertainty sampling algorithms motivates us to

study them in a more general and noisy setting. This setting is particularly useful in

practice since real labels tend to be noisy (Angluin and Laird, 1988; Cuong et al., 2013a).

Furthermore, considering the noisy setting allows us to develop new active learning

algorithms that can be used with many readily available probabilistic models such as

naive Bayes, logistic regression, conditional random field, etc. while at the same time

enjoying the theoretical guarantees that come with these algorithms.

On our trek to investigating active learning algorithms in the noisy setting, various

new active learning algorithms have been developed to fit different purposes. The

maximum Gibbs error algorithm allows queries to be made based on the probabilities

of all labels instead of just one or two most dominant labels as in the least confidence

algorithm (Culotta and McCallum, 2005; Settles and Craven, 2008) or the margin

sampling algorithm (Scheffer et al., 2001). The maximum Gibbs error algorithm also

allows full Bayesian inference to be used to approximate the uncertainty criterion in

large, complex structured models such as conditional random fields. Using full Bayesian

inference to compute other active learning criteria such as maximum entropy or least

confidence is usually not easy in such models due to the exponentially large number

of structured labels. Furthermore, to combine active learning with the power of loss

functions, we develop the generalized maximum Gibbs error algorithms that not only

allow users to incorporate a general loss function into the active learning criterion but

also maintain good theoretical guarantees. The use of loss functions is important in

machine learning (Gneiting and Raftery, 2007; Masnadi-Shirazi and Vasconcelos, 2009)

2



Chapter 1. Introduction

and is thus important for active learning as well.

For active learning algorithms in the Bayesian setting such as the maximum Gibbs

error algorithm and its variants, the choice of prior is very important as it determines

the uncertainty of each example and consequently the examples that will be queried.

However, in real-world applications, the true prior that generates the data is usually

unknown, and we have to use a prior close to the true prior in order to achieve a good

performance. An analysis for such scenario, where a perturbed prior is used instead of

the true prior, is still lacking for active learning. This motivates us to study the robustness

of active learning algorithms under prior misspecification. Such study is useful as it

helps us gain a deeper understanding of these algorithms and thus choose the robust ones

to use. In addition, studying the robustness of active learning algorithms also motivates

the use of mixture prior models for active learning that can achieve good performance

when the true prior is unknown.

1.2 Contributions

This thesis makes the following four contributions to the study of active learning:

1. It develops two general and powerful tools for analyzing the theoretical properties

of active learning algorithms in the noisy setting.

2. It applies the tools above to prove novel theoretical properties of two well-known

active learning algorithms: the maximum entropy algorithm and the least confi-

dence algorithm.

3. It develops a family of novel active learning algorithms called the maximum Gibbs

error algorithms that are useful in practice and have good theoretical properties.

4. It analyzes the robustness of the maximum Gibbs error algorithms and the least

confidence algorithm against prior misspecification. Then it proposes the use of a

mixture prior model for more robust active learning.

3



Chapter 1. Introduction

Criterion Objective Near-optimality Property Robustness

Maximum entropy Policy entropy No constant

factor approximation

Least confidence Worst-case (1− 1/e) factor Pointwise monotone Robust

version space reduction approximation submodular

Maximum Gibbs error Policy Gibbs error (1− 1/e) factor Adaptive monotone Robust

(expected version approximation submodular

space reduction)

Average generalized Generalized policy Gibbs error Loss-dependent

Gibbs error (expected generalized version

space reduction)

Worst-case generalized Total generalized (1− 1/e) factor Pointwise monotone Robust

Gibbs error version space reduction approximation submodular

Table 1.1: Theoretical properties of greedy criteria for adaptive active learning.

We briefly explain these contributions below. In Table 1.1, we summarize the theoretical

findings in this thesis.

1.2.1 Theoretical Tools for Analyzing Active Learning Algorithms

We develop two general and powerful tools for analyzing theoretical properties of active

learning algorithms in the noisy setting. The first tool is an equivalence result between

the probabilistic model and the deterministic model that allows algorithms in the noisy

setting to be analyzed in the noiseless setting. More specifically, to deal with probabilistic

hypotheses, we construct an equivalent deterministic hypothesis space which contains

all the possible labelings of the pool. Then a new prior on the deterministic hypothesis

space is derived from the original prior such that the probability of any event is always

the same with respect to both priors. Using this new model, we can prove the theoretical

properties of various Bayesian pool-based active learning algorithms.

The second tool is a general theoretical guarantee for a greedy algorithm when max-

imizing pointwise monotone submodular functions. In particular, we prove that if a

4



Chapter 1. Introduction

utility function satisfies pointwise monotonicity, pointwise submodularity and minimal

dependency, then a simple greedy algorithm can achieve a constant factor approximation

to the worst-case utility. This result is very useful for deriving greedy algorithms to

maximize various utility functions with a theoretical guarantee.

1.2.2 Analyses of Maximum Entropy and Least Confidence Algorithms

The maximum entropy and the least confidence algorithms are two well-known uncer-

tainty sampling criteria for pool-based active learning. The maximum entropy criterion

greedily selects the example with maximum label entropy given the observed labels

(Settles, 2010). In the non-adaptive case, where examples are selected before any label

is observed, this criterion selects the example that maximally increases the label entropy

of the selected set. The greedy criterion in this non-adaptive case is well-known to be

near-optimal due to the submodularity of the entropy function: the label entropy of the

selected examples is at least (1 − 1/e) of the optimal set. Selecting a set with large

label entropy is desirable, as the chain rule of entropy implies that maximizing the label

entropy of the selected set will minimize the conditional label entropy of the remaining

examples. It would be desirable to have a similar near-optimal performance guarantee

for the adaptive case where the label is provided after every example is selected.

Thus, we formulate a similar objective for the maximum entropy criterion in the adaptive

case which is called the policy entropy. Policy entropy is a generalization of Shannon

entropy to general (possibly adaptive) policies. For non-adaptive policies, it reduces to

Shannon entropy for sets. We prove that maximizing policy entropy is desirable since

that will minimize the posterior label entropy of the remaining unlabeled examples.

However, we also show that the maximum entropy algorithm does not provide a constant

factor approximation to the optimal policy entropy in the adaptive case.

The least confidence criterion is another commonly used greedy criterion. This criterion

selects the example whose most likely label has the smallest probability (Lewis and

Gale, 1994; Culotta and McCallum, 2005). In this thesis, we show that this criterion

5



Chapter 1. Introduction

provides a near-optimal adaptive algorithm for maximizing the worst-case version space

reduction, where the version space is the probability of labelings that are consistent with

the observed labels. This will be derived using the developed result above for pointwise

monotone submodular functions.

1.2.3 The Maximum Gibbs Error Algorithm and Its Variants

We investigate an alternative objective function suitable for active learning called the

policy Gibbs error. This is the expected error rate of a Gibbs classifier1 on the set

adaptively selected by the policy. It is a lower bound of the policy entropy; thus,

by maximizing policy Gibbs error, we hope to maximize the policy entropy, whose

maximality implies the minimality of the posterior label entropy of the remaining

unlabeled examples in the pool. Besides, by maximizing policy Gibbs error, we also aim

to obtain a small expected error of a posterior Gibbs classifier.2 Small expected error

of the posterior Gibbs classifier is desirable as it upper bounds the Bayes error but is at

most twice of it.

Maximizing policy Gibbs error is hard, and we propose a greedy criterion, the maximum

Gibbs error criterion (maxGEC), to solve it. This criterion queries the candidate that

has maximum Gibbs error, the probability that a randomly sampled labeling does not

match the actual labeling. We investigate the criterion in three settings: non-adaptive,

adaptive, and batch mode settings (Hoi et al., 2006b). In all these settings, we prove that

maxGEC is near-optimal compared to the best policy in the setting. We then examine

how to compute maxGEC, particularly for large structured probabilistic models such as

the conditional random fields (Lafferty et al., 2001). When inference in these models

can be done efficiently, we show how to compute an approximation to the Gibbs error

by sampling and efficient inference. We also provide an approximation for maxGEC in

the non-adaptive and batch mode settings with the Bayesian transductive Naive Bayes

1A Gibbs classifier samples a hypothesis from the prior for labeling.

2A posterior Gibbs classifier samples a hypothesis from the posterior (instead of the prior) for labeling.

6
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model. Experiments with maxGEC on named entity recognition and text classification

tasks show its good performance in terms of the area under the curve.

MaxGEC can be seen as a greedy algorithm for sequentially maximizing the Gibbs error

over the dataset. The Gibbs error of the dataset is the expected error of a Gibbs classifier

that predicts using an entire labeling sampled from the prior label distribution of the

whole dataset. Here, a labeling is considered incorrect if any example is incorrectly

labeled by the Gibbs classifier. Predicting an entirely correct labeling of all examples

is often unrealistic in practice, particularly after only a few examples are labeled. This

motivates us to generalize the Gibbs error to handle different loss functions between

labelings, e.g., Hamming loss which measures the Hamming distance between two

labelings. We call the greedy criterion that uses general loss functions the average

generalized Gibbs error criterion.

The corresponding performance measure for the average generalized Gibbs error criterion

is the generalized policy Gibbs error, which is the expected value of the generalized

version space reduction. The generalized version space reduction function is an extension

of the version space reduction function with a general loss. We investigate whether

this new objective is adaptive submodular, as this property would provide a constant

factor approximation for the average generalized Gibbs error criterion. Unfortunately,

we can show that this function is not necessarily adaptive submodular, although it is

adaptive submodular for the special case of the version space reduction. Despite that,

our experiments show that the average generalized Gibbs error criterion can perform

reasonably well in practice, even when we do not know whether the corresponding utility

function is adaptive submodular.

We also consider a worst-case setting for the generalized Gibbs error. The worst case

against a target labeling can be severe, so we consider a variant: the total generalized

version space reduction. This function targets the sum of the remaining losses over

all the remaining labelings, rather than against a single worst-case labeling. We call

the corresponding greedy criterion the worst-case generalized Gibbs error criterion. It

7
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selects the example with maximum worst-case total generalized version space reduction

as the next query. We show that the total generalized version space reduction function is

pointwise monotone submodular and satisfies the minimal dependency property; thus,

the method is guaranteed to be near-optimal. Our experiments show that the worst-case

generalized Gibbs error criterion performs well in practice. For binary problems, the

maximum entropy, least confidence, and Gibbs error criteria are all equivalent, and the

worst-case generalized Gibbs error criterion outperforms them for most problems in our

experiments.

1.2.4 Robustness of Bayesian Active Learning Algorithms

Bayesian pool-based active learning assumes the labeling of data is generated from

a prior distribution, which is generally assumed to be known in theory (Golovin and

Krause, 2011; Chen and Krause, 2013). In practice, the prior is often unknown, and we

choose a prior that is considered to be close to the true prior. However, to the best of our

knowledge, there is no analysis on the effect of a perturbed prior on the performance

of active learning algorithms. Thus, we investigate the robustness of active learning

algorithms against prior misspecification – that is, whether an algorithm achieves similar

performance using a perturbed prior as compared to using a true prior.

Our main result is that if the utility function is continuous in the prior, for both the

average case and the worst case, an α-approximate algorithm is robust; that is, when

using a perturbed prior, the algorithm is near α-approximate. In particular, if the utility

function satisfies a Lipschitz continuity condition in the prior, then the performance

guarantee on the expected utility or the worst-case utility degrades by at most a constant

multiple of the `1 distance between the perturbed prior and the true prior. Combining

with the (1− 1/e)-approximation results for the maximum Gibbs error algorithm and

the least confidence algorithm, it follows that they are near (1− 1/e)-approximate. In

addition, if an algorithm achieves the optimal approximation ratio using the true prior, it

is a near-optimal approximation algorithm using a perturbed prior.

8
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In practical usage of the active learning algorithms in the Bayesian setting, it is usually

difficult to determine a good prior to use. However, it is often reasonable to select a set of

priors with the expectation that one member of the set would be close to a good prior. For

example, in passive supervised learning, it is a common practice to use a validation set

to select a regularization parameter from among a small set of reasonable parameters in

methods such as regularized logistic regression. Given a finite set of candidate priors, our

theoretical analysis suggests that we should try to design a prior that is not too far from

any of the priors in the set. One simple prior that is not too far away from a set of priors

is a uniform mixture of the priors in the set. We experimented with using the uniform

mixture prior for active learning on some UCI data sets and a text classification data set.

The experiments show that the mixture prior is indeed robust and gives performance that

is reasonably close to the best prior in the set.

1.3 Thesis Outline

The rest of this thesis are structured as follows.

• Chapter 2 reviews some backgrounds on active learning.

• Chapter 3 gives the notations and settings used in the thesis, then it discusses the

equivalence between the probabilistic model and the deterministic model. This

equivalence result was published in (Cuong et al., 2013b).

• Chapter 4 reviews some previous results on submodular and adaptive submodular

function maximization, and then proves the new result on pointwise submodular

function maximization. This new result was published in (Cuong et al., 2014a).

• Chapter 5 analyzes the theoretical properties of the maximum entropy criterion

and the least confidence criterion. The results in this chapter were published in

(Cuong et al., 2014a).

• Chapter 6 introduces the maximum Gibbs error criterion, analyzes its near-

9
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optimality guarantees, and provides experimental results regarding the new crite-

rion. The results in this chapter were published in (Cuong et al., 2013b).

• Chapter 7 discusses the generalizations of the maximum Gibbs error criterion

with general loss functions and analyzes their near-optimality guarantees. The

chapter also provides the experimental results for the new criteria. The results in

this chapter were published in (Cuong et al., 2014a).

• Chapter 8 analyzes the robustness of Bayesian pool-based active learning algo-

rithms and applies the results to the maximum Gibbs error and least confidence

algorithms. The chapter also describes the mixture prior model for more robust

active learning and provides experimental results for this model.

• Chapter 9 gives the conclusion and some directions for future works.

10



CHAPTER 2
Background on Active Learning

Machine learning is an interdisciplinary field that studies algorithms that can learn from

past data and make predictions on new data. It has many useful applications such as in

natural language processing (Manning and Schütze, 1999; Sebastiani, 2002), computer

vision (Guo et al., 2000), biometrics (Huang et al., 2002; Cuong et al., 2012), and social

network analysis (Al Hasan et al., 2006).

Active learning is a machine learning framework in which the learning algorithms are

allowed to actively choose the examples to learn. More specifically, at each iteration,

an active learning algorithm may choose an unlabeled example and query an oracle (a

human annotator) for its label. After observing the label of the chosen example, the

active learning algorithm can then retrain or update its model and then use the new model

to select the next unlabeled example. The unlabeled examples given to the oracle may

be generated by the active learning algorithm itself or may be chosen from a stream or a

pool of data. A typical active learning process is shown in Figure 2.1.

The motivation for active learning is based on the assumption that unlabeled data are

free or very inexpensive, while the cost of labeling them is expensive. This situation

may often be encountered in real-world problems such as speech recognition (Zhu,

2005) and information extraction (Settles et al., 2008a). By allowing the algorithm to

actively choose the data from which it learns, we hope that the active learning algorithm

can achieve the same or better accuracy than usual passive learning algorithms while

requiring a much lower cost for labeling the data. Thus, the freedom of choosing the

11
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Model/Learner 

Unlabeled 
data 

Oracle/Human annotator 

Labeled 
training set 

Update/Retrain 

Select an instance query 

(x, ?) 

(x, y) 

Label and add 
to training set 

pool 
stream 

synthesized 

Figure 2.1: The active learning process.

data to learn is an important property of active learning since it helps reduce the number

of labeled data needed to train a good model.

In the subsequent sections, we will introduce some main settings for active learning.

Then we discuss various approaches for choosing training data in the pool-based setting,

which is the focus of this thesis. Finally, we summarize some theoretical results on active

learning.

2.1 Settings for Active Learning

In active learning, there are different settings in which an active learning algorithm

may choose the unlabeled data and query the oracle for their labels. The three main

settings that have been considered are the membership query setting (Angluin, 1988), the

stream-based setting (Atlas et al., 1990; Cohn et al., 1994), and the pool-based setting

(Lewis and Gale, 1994). Membership query is one of the first active learning settings to

be investigated; however, there are some limitations with this setting. The stream-based

12
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and pool-based settings are proposed to overcome these limitations.

The Membership Query Setting: In this setting, the active learning algorithm can

query the label of any data point in the input space, including those that the algorithm

generates by itself. Although efficiently generating the queries is tractable for finite

domains (Angluin, 2001), this setting may cause difficulties for the human annotator.

The reason is that it is usually confusing for a human annotator to label arbitrary data

instances, especially those generated by the active learning algorithms. For example,

when generating handwritten characters for querying, the active learning algorithm may

construct hybrid characters that have no semantic meaning to the human annotator (Baum

and Lang, 1992). Despite this limitation, membership query still has some promising

applications in a few real-world problems (Cohn et al., 1996; King et al., 2004, 2009).

The Stream-based Setting: In this setting, unlabeled data examples are drawn one by

one from an underlying distribution. For each unlabeled example, the active learning

algorithm has to decide immediately whether to query its label or not. If an example is

queried, its label can be used to update the model before the next unlabeled example

in the stream is considered. There are many strategies for deciding whether to query

a label or not. For example, one can measure the amount of information in each data

example and query the more informative examples (Dagan and Engelson, 1995). Another

common approach is to compute the region of uncertainty (Cohn et al., 1994), which

is a subset of the input space that is still uncertain to the active learning algorithm. If

an unlabeled example is in this region, the algorithm will query its label. To compute

the region of uncertainty, we need to define the version space, the set of hypotheses

consistent with the current labeled training data. The region of uncertainty contains

the data examples that cause disagreement among the hypotheses in the version space.

Although the region of uncertainty is useful, computing it explicitly is usually intractable.

Thus, we often approximate it in practice (Seung et al., 1992; Cohn et al., 1994; Dasgupta

et al., 2007).
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The Pool-based Setting: In this setting, we assume that the active learning algorithm

is given a large finite pool of unlabeled data drawn from an underlying distribution.

If a large enough pool is sampled from the true distribution, good performance of a

model on the pool implies good generalization performance of the model. During the

learning process, at each iteration, the active learning algorithm chooses an unlabeled

example from the pool and queries the oracle for its label. The choice of the unlabeled

example is usually based on some greedy criterion such as most informativeness or least

confidence. The main difference between pool-based and stream-based settings is that in

the pool-based setting, we can consider all the unlabeled examples in the pool and make

the query, while in the stream-based setting, we can only consider the unlabeled examples

one by one and make the decision locally. The pool-based setting has been used in many

real-world applications of active learning such as information extraction (Thompson

et al., 1999; Settles and Craven, 2008), information retrieval (Tong and Chang, 2001;

Zhang and Chen, 2002), or speech recognition (Tur et al., 2005). Both stream-based

and pool-based settings can overcome the limitation of membership query because the

unlabeled data in the two former settings are drawn from the true data distribution, and

thus rare data that may confuse the human annotators have a low probability to occur.

Other Variants: There are also other setting variants for active learning such as active

learning for structured data or batch mode active learning. Many real-world applications

can be modeled as a prediction task on structured data such as sequences or trees.

For example, in a sequence labeling problem, the input sequence ~x has the form ~x =

(x1, x2, . . . , x|~x|) and the corresponding label sequence ~y is (y1, y2, . . . , y|~x|). In this

case, the label sequence is usually predicted using sequence models such as hidden

Markov models (HMMs) (Rabiner, 1989) or conditional random fields (Lafferty et al.,

2001). Settles and Craven (2008) evaluated a number of active learning strategies for

sequence labeling tasks using various probabilistic sequence models. These algorithms

can be adapted to other probabilistic sequence models such as probabilistic context-free

grammars (Baldridge and Osborne, 2004; Hwa, 2004) or HMMs (Dagan and Engelson,

1995; Scheffer et al., 2001). Active learning with structured data can be either in the
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stream-based setting or the pool-based setting. Batch mode active learning is a variant of

pool-based active learning in which the learning algorithm may choose from the pool a

fixed-size batch of unlabeled examples to query in each iteration (Hoi et al., 2006b). The

labels of the whole batch will be used to update or retrain the model for the next iteration.

Batch mode active learning has been applied to medical image classification (Hoi et al.,

2006b), large-scale text categorization (Hoi et al., 2006a), and image retrieval (Hoi et al.,

2009). Pool-based active learning is also related to adaptive informative path planning

(Lim et al., 2015a) and adaptive stochastic optimization (Lim et al., 2015b) problems.

2.2 Approaches to Querying for Pool-based Active Learning

Since the focus of this thesis is pool-based active learning, in this section we discuss

various approaches for choosing the unlabeled examples to query in this setting. We first

describe the simplest and most intuitive approaches called uncertainty sampling. Some

uncertainty sampling criteria will be analyzed in this thesis, and the new criteria proposed

in this thesis also belong to this group. We then discuss two other main approaches

called expected error minimization and query-by-committee. Finally, we will briefly

describe some other approaches.

2.2.1 Uncertainty Sampling

The general idea of the uncertainty sampling approach (Lewis and Gale, 1994) is to

choose the unlabeled data examples whose labels the current model is least certain about.

For instance, when considering a binary classification problem with a probabilistic model,

this approach is equivalent to querying the data example whose probability of being

labeled 1 is nearest to 0.5 (Lewis and Catlett, 1994; Lewis and Gale, 1994). To extend

the approach to multiclass classification problems with more labels, we may use the

least confidence algorithm which queries the examples according to the following greedy
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criterion:

x∗ = arg min
x
{max

y
p[y;x]},

where p[y;x] is the posterior probability that y is the label of x. In other words, the

model is least certain about the most probable label of x∗. This algorithm can be used

conveniently in sequence labeling or structured prediction problems since the most

probable label sequence can be computed easily using the Viterbi algorithm (Culotta and

McCallum, 2005; Settles and Craven, 2008).

Although the least confidence algorithm above is useful in some applications, it uses only

the most probable label and discards the information in other labels. Thus, the margin

sampling algorithm (Scheffer et al., 2001) was proposed to overcome this limitation.

According to this algorithm, we query the example:

x∗ = arg min
x
{p[y1;x]− p[y2;x]} ,

where y1 and y2 are the most and second most probable labels of x respectively. In other

words, the model is least certain when distinguishing between the best two labels of x∗.

The margin sampling algorithm can also be used in sequence labeling problems because

the best two label sequences of an input sequence can be computed easily using dynamic

programming (Settles and Craven, 2008).

A more general algorithm for uncertainty sampling is the maximum entropy algorithm

(Settles and Craven, 2008; Settles, 2010). This algorithm can make use of the probabili-

ties of all the labels instead of just the best one or two labels as in the least confidence or

margin sampling algorithm. More specifically, the maximum entropy algorithm queries

the unlabeled example that maximizes the Shannon entropy (Shannon, 1948) of the label

distribution. That is, it chooses the example:

x∗ = arg max
x

{
−
∑
y

p[y;x] ln p[y;x]
}
,

where y ranges over all the possible labels of x. For binary classification problems, the
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maximum entropy algorithm reduces to the least confidence algorithm and the margin

sampling algorithm. However, it can also be used in more complex problems such as

problems with sequence data (Settles and Craven, 2008) or tree data (Hwa, 2004).

2.2.2 Expected Error Minimization

Another approach to query selection in pool-based active learning is to choose the

examples that minimize the expected error of the model (Roy and McCallum, 2001). For

example, if we consider 0-1 loss, this approach will query the example x∗ such that:

x∗ = arg min
x

∑
y

p[y;x]

 ∑
xu∈U

(1− p′[yu;xu])

 ,
where p is the current posterior probability, p′ is the new posterior probability if (x, y) is

added to the labeled training set, U is the set of all remaining unlabeled examples, and

yu = arg maxy p′[y;xu] is the most probable label of xu with respect to p′. If log-loss

is considered, then the example x∗ chosen is:

x∗ = arg min
x

∑
y

p[y;x]

− ∑
xu∈U

∑
y′

p′[y′;xu] log p′[y′;xu]

 .
This expected error minimization approach has been used successfully with various types

of models such as naive Bayes (Roy and McCallum, 2001), support vector machines

(Moskovitch et al., 2007), Gaussian random fields (Zhu et al., 2003), and logistic

regression (Guo and Greiner, 2007). However, computing the exact expected error is

usually very expensive. Thus, in practice, we often approximate it using Monte Carlo

sampling methods (Roy and McCallum, 2001).

2.2.3 Query-By-Committee

In the query-by-committee approach (Seung et al., 1992), the active learning algorithm

maintains a set C = {θ1, θ2, . . . , θC} of different models trained on the current labeled
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training set. This set C is called a committee. For each unlabeled example, the members

of the committee may vote for its label. Then, the example with the most disagreement

among the committee members is queried. The idea of query-by-committee is very

similar to minimizing the version space described in Section 2.1.

There are two main issues involving the use of query-by-committee. The first issue is

how to construct a good committee of models, and the second issue is how to measure

the disagreement among the committee members. The first issue can be addressed in a

variety of ways. For example, Seung et al. (1992) randomly sampled two models that

are consistent with the current labeled training set, while McCallum and Nigam (1998)

sampled the committee members from a Dirichlet distribution over the model parameters.

The committee members can also be sampled from a normal distribution as in (Dagan

and Engelson, 1995).

For the second issue, there are two common measures for the disagreement among the

committee members: the Kullback-Leibler (KL) divergence (McCallum and Nigam,

1998) and the vote entropy (Dagan and Engelson, 1995). If KL divergence is used, the

example x∗ chosen is:

x∗ = arg max
x

1
C

C∑
c=1

D(pθc ||pC),

where D(pθc ||pC) =
∑
y

pθc [y;x] log pθc [y;x]
pC [y;x] and pC [y;x] = 1

C

C∑
c=1

pθc [y;x].

If vote entropy is used, the example x∗ chosen is:

x∗ = arg max
x

{
−
∑
y

V (y)
C

log V (y)
C

}
,

where y ranges over all the possible labels and V (y) is the number of votes that y receives

from the committee.
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2.2.4 Other Approaches

There are also other approaches for selecting the examples in pool-based active learning.

One approach to querying is to select examples that would make the most changes to

the current model. This approach measures the expected gradient length of the objective

function over the labeled training set (Settles and Craven, 2008; Settles et al., 2008b).

In this approach, we define 5lθ(L) to be the gradient of the objective function l with

respect to the current model parameters θ, where L is the current labeled training set.

Then the example x∗ that is queried would satisfy the equation:

x∗ = arg max
x

∑
y

pθ[y;x] ‖5lθ(L ∪ {(x, y)})‖ .

Another approach is to use the information density of the unlabeled data examples (Set-

tles, 2008, 2010; Settles and Craven, 2008). In this approach, we define the informative

examples to be those that we are uncertain about or those that are in the dense regions of

the input space. Then the example x∗ queried is:

x∗ = arg max
x

φ(x)

 1
|U|

∑
xu∈U

sim(x, xu)

β ,
where φ(x) is the informativeness of x, sim(·, ·) is the similarity function, and β is a

parameter controlling the importance of the density term.

2.3 Theoretical Analyses of Active Learning

In this section, we summarize some theoretical results on active learning. Although

empirical analyses have shown the usefulness of active learning (Settles and Craven,

2008; Tomanek and Olsson, 2009), the theoretical analyses of active learning algorithms

are not yet completed, especially for the pool-based setting. There are some positive

results on the effect of active learning; however, most of them are based on intractable
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or complex algorithms that are difficult to be used in practice. Furthermore, many

theoretical results are limited to minimizing 0-1 loss, and they cannot be easily adapted

to other loss functions.

For the membership query setting, there have been some strong positive results by An-

gluin (1988, 2001). However, as discussed in Section 2.1, this setting is very difficult for

human annotators to label the queried examples. Besides, most real-world applications

assume that unlabeled data from the actual distribution are freely available. So, these

theoretical results do not have much practical impact on real applications.

For the stream-based and pool-based settings, we have an early strong theoretical anal-

ysis of the query-by-committee algorithm (Freund et al., 1997). Under the Bayesian

assumption, the algorithm can achieve generalization error ε after seeing O(d/ε) unla-

beled examples and querying O(d log 1/ε) labels, where d is the Vapnik-Chervonenkis

(VC) dimension (Vapnik and Chervonenkis, 1971) of the hypothesis space. This is an

exponential improvement over normal supervised learning, whose sample complexity is

O(d/ε). However, the query-by-committee algorithm may be computationally expensive

in some practical problems.

For the stream-based setting, Dasgupta et al. (2005) proposed an active learning version

of the perceptron algorithm together with a variant of the perceptron update rule which

can achieve exponential improvement on the sample complexity compared to the usual

passive learning. Asymptotically, some active learning algorithms can always perform

better than passive learning in the limit (Balcan et al., 2010). Many results for active

learning assumed data are separable (or noiseless), i.e., there exists a hypothesis that can

classify the examples perfectly. Such an assumption is usually not true in practice. Thus,

there are works that consider the non-separable case (also called the agnostic or noisy

case) where the perfect classifier does not exist. In the non-separable setting, Hanneke

(2007) proved an upper bound on the sample complexity of active learning. Dasgupta

et al. (2007) also proposed a polynomial-time reduction algorithm from active learning

to supervised learning for an arbitrary input distribution and hypothesis space for this
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agnostic case. In a more recent work, Agarwal (2013) proved the fast learning rates of

active learning algorithms for the cost-sensitive multiclass classification problem under

Tsybakov’s margin assumption (Tsybakov, 2004), a form of low noise assumption. Fast

learning rates can also be achieved by some passive learning algorithms under the same

margin assumption (Audibert and Tsybakov, 2007; Dinh et al., 2015).

A notable family of active learning algorithms in the agnostic stream-based setting is

the importance weighted active learning algorithms (Beygelzimer et al., 2009, 2010).

Since the training data selected from active learning are usually biased, these algorithms

consider a weighted average of the losses such that the resulting weighted loss is unbiased.

Beygelzimer et al. (2009) described a constrained version of importance weighted

active learning for general loss functions, while Beygelzimer et al. (2010) proposed an

unconstrained version of the algorithm for the 0-1 loss. These algorithms were shown to

have better label complexity than passive learning when the disagreement coefficient is

bounded.

For pool-based active learning, greedy algorithms are the simplest and most common

(Settles, 2010). However, they usually do not have any theoretical guarantee except

for the non-adaptive case or the case where data are noiseless. Under the noiseless

assumption, Dasgupta (2004) proved that the sample complexity of linear classifiers is

O(1/ε) in the worst case, which is the same as passive learning. He also provided some

upper and lower bounds for active learning in the pool-based setting. In the noiseless

Bayesian setting, an algorithm called generalized binary search (Nowak, 2008, 2011)

was proven to be near-optimal: its expected number of queries is within a factor of

(ln 1
minh p0[h] + 1) of the optimum, where p0 is the prior (Golovin and Krause, 2011).

This result was obtained using the adaptive submodularity of the version space reduction.

Adaptive submodularity is an adaptive version of submodularity, a natural diminishing

returns property. The adaptive submodularity of version space reduction was also applied

to the batch mode setting to prove the near-optimality of a batch greedy algorithm

that maximizes the average version space reduction for each selected batch (Chen and

21



Chapter 2. Background on Active Learning

Krause, 2013). The algorithms that we propose in Chapter 6 of this thesis can be seen as

generalizations of these version space reduction algorithms to the noisy setting. When

the hypotheses are deterministic, our algorithms are equivalent to these version space

reduction algorithms.

For the case of noisy data, a noisy version of the generalized binary search was proposed

(Nowak, 2009). This algorithm was proven to be optimal under the neighborly condition,

a very limited setting where “each hypothesis is locally distinguishable from all others”

(Nowak, 2009). In another work, Bayesian active learning was modeled by the Equiva-

lence Class Determination problem and a greedy algorithm called EC2 was proposed for

this problem (Golovin et al., 2010). Although the cost of EC2 is provably near-optimal,

this formulation requires an explicit noise model and the near-optimality bound is only

useful when the support of the noise model is small. Our algorithms in this thesis, in

contrast, are simpler and do not require an explicit noise model: the noise model is

implicit in the probabilistic model and our algorithms are only limited by computational

concerns. Aside from the near-optimality analysis considered in this thesis, other types

of bounds were also obtained for pool-based active learning using minimax analysis

(Castro et al., 2005; Castro and Nowak, 2006, 2008).
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CHAPTER 3
Preliminaries

In this thesis, we consider the Bayesian setting and study pool-based active learning

(McCallum and Nigam, 1998) where training data are sequentially selected from a finite

set (called a pool) of unlabeled examples, with the aim of having good performance

after only a small number of examples are labeled. If a large enough pool is sampled

from the true distribution, good performance of a classifier on the pool implies good

generalization performance of the classifier. Previous theoretical works on Bayesian

active learning mainly deal with the noiseless case, which assumes a prior distribution on

a collection of deterministic mappings from observations to labels (Golovin and Krause,

2011; Chen and Krause, 2013). A fixed deterministic mapping is then drawn from the

prior, and it is used to label the examples.

In contrast to these works, we consider the case where probabilistic hypotheses, rather

than deterministic ones, are used to label the examples. We formulate the objective for

pool-based active learning as a maximum coverage objective with a fixed budget: given

a budget of k queries, we aim to adaptively select from the pool the best k examples with

respect to some appropriate objective function.1 In practice, the selection of the next

example to be labeled is usually done by greedy optimization of the objective function.

This chapter formally introduces the notations and settings for this scenario. Then it

1In our setting with probabilistic hypotheses, the usual objective of determining the true labeling of
the pool is infeasible unless the number of allowed labelings is small. When the prior gives non-zero
probabilities to all the possible labelings of the pool, we need to query the whole pool in order to determine
its true labeling.
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will present a result on the equivalence between probabilistic hypothesis spaces and

deterministic hypothesis spaces. This result forms the basis for various arguments and

proofs throughout the thesis.

3.1 Notations and Settings

Let X be a (possibly infinite) set of examples (or items), Y be a fixed finite set of labels

(or states), and H be a set of probabilistic hypotheses. In this thesis, we assume H is

finite, but our results extend readily to any generalH. For any probabilistic hypothesis

h ∈ H, its application to an example x ∈ X is a categorical random variable with support

Y , and we write P[h(x) = y |h] to denote the probability that h(x) has value y ∈ Y .

Let X ⊆ X be a finite set of examples from which the active learning algorithms

will choose their training data. We usually call X a pool of examples. A labeling

of X is a function from X to Y , and a partial labeling is a partial function from

X to Y . For any S ⊆ X , we use the notation h(S) to denote the label sequence

(h(x1), h(x2), . . . , h(xi)) whenever S is a sequentially constructed set (x1, x2, . . . , xi),

or simply the set {h(x) : x ∈ S} if the examples in S are not ordered. We also write

P[h(S) = y |h] for the probability that h assigns the label sequence y to examples in

the sequence S.

We operate within the Bayesian setting and assume a prior probability p0[h] on H.

After observing a labeled set (i.e., a partial labeling) D, we can obtain the posterior

pD[h] def= p0[h|D] using Bayes’ rule. For any distribution p[h] on H and any example

sequence S ⊆ X , we write p[y;S] to denote the probability that the example sequence

S is assigned the label sequence y by a hypothesis drawn randomly from p[h]. Formally,

p[y;S] def=
∑
h∈H

p[h]P[h(S) = y |h].

Note that p[ · ;S] is a probability distribution on the set of all label sequences y of S.
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Figure 3.1: Examples of a non-adaptive policy tree (left) and an adaptive policy tree
(right).

When S is a singleton {x}, we write p[y;x] for p[{y}; {x}].

A pool-based active learning algorithm corresponds to a policy for choosing training

examples from the pool X . A policy is a mapping from a partial labeling to the next

unlabeled example to query. At the beginning, a fixed label sequence y∗ of X is given by

a hypothesis h drawn from the prior p0[h] and is hidden from the learner. Equivalently,

y∗ can be thought of as being drawn from the prior distribution p0[y∗;X] over the label

sequences of X . During the learning process, each time the active learning policy selects

an unlabeled example, its label according to y∗ will be revealed to the learner.

A policy can be represented by a policy tree, where a node represents the next example to

be queried, and each edge below the node corresponds to a possible label. In this thesis,

we use the terms policy and policy tree interchangeably. Figure 3.1 illustrates two policy

trees with their top three levels: in the non-adaptive setting, the policy ignores the labels

of the previously selected examples, so all examples at the same depth of the policy tree

are the same; in the adaptive setting, the policy takes into account the observed labels

when choosing the next example.

A full policy tree for the pool X is a policy tree of height |X|. A partial policy tree is

a subtree of a full policy tree with the same root. The class of policies of height k will

be denoted by Πk. Note that Π|X| contains full policy trees, while Πk with k < |X|

contains partial policy trees.

25



Chapter 3. Preliminaries

2x 4x

1x

3x 4x 3x 2x

11 =y 21 =y

12 =y 14 =y

.	  .	  .	  

22 =y
.	  .	  .	  

24 =y .	  .	  .	  
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Figure 3.2: An example of a path ρ in an adaptive policy tree. In this example, the
probability of ρ is pπ0 [ρ] = p0[(y1 = 1, y2 = 1); (x1, x2)].

For any (full or partial) policy tree π and any prior p0, we define a probability distribution

pπ0 [ · ] over all possible paths from the root to the leaves of π. This distribution over

paths is induced from the uncertainty in the fixed label sequence y∗ of X: since y∗

is drawn randomly from p0[y∗;X], the path ρ followed from the root to a leaf of the

policy tree during the execution of π is also a random variable. If xρ (respectively, yρ)

is the sequence of examples (respectively, labels) along path ρ, then the probability of

ρ is pπ0 [ρ] def= p0[yρ;xρ]. Figure 3.2 gives an illustration of a path and its probability in

an adaptive policy tree. In this thesis, some objective functions for pool-based active

learning can be defined using this probability distribution over paths.

3.2 Equivalence of Probabilistic Hypothesis Spaces and De-

terministic Hypothesis Spaces

In this section, we establish a result on the equivalence between the probabilistic model

in Section 3.1 and a deterministic model. Recall that any h ∈ H is a probabilistic

hypothesis and P[h(x) = y |h] ∈ [0, 1]. For any partial labeling D, let xD def= dom(D)

be the domain of D, and let yD def= D(xD) be the label sequence assigned to xD by the

partial labeling D.

Let p0 be a prior onH. After a partial labeling D is observed, the posterior pD can be
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obtained using Bayes’ rule:

pD[h] = p0[h|D] = p0[h]P[h(xD) = yD |h]
p0[yD;xD] .

From this noisy model with probabilistic hypotheses, we construct an equivalent noiseless

model with deterministic hypotheses as follows.

Consider a new hypothesis spaceH such thatH def= {h : h ∈ YX}, where for any S ⊆ X ,

we write YS to denote the set of all partial labelings with domain S. Thus,H = YX is

the set of all labelings of X . For any h ∈ H and x ∈ X , h(x) is the label of x according

to the labeling h. Hence, each h ∈ H is a deterministic hypothesis. For a sequence of

examples S ⊆ X , we write h(S) to denote the label sequence of S according to the

labeling h.

Furthermore, we construct a new prior p0 overH such that:

p0[h] def= p0[h(X);X] =
∑
h∈H

p0[h]P[h(X) = h(X) |h].

In the above formula, p0[h] is the probability in the probabilistic model that the label

sequence ofX is h(X). In essence, we have “moved” the uncertainty associated with the

likelihood P[h(X) = h(X) |h] into the new prior p0. Let 1(·) be the indicator function.

Given a partial labeling D, the posterior pD onH is obtained from p0 by using Bayes’

rule as:

pD[h] = p0[h] 1(h(xD) = yD)∑
h∈H p0[h] 1(h(xD) = yD)

.

We now prove that the probabilistic and deterministic models above are in fact equivalent

in the sense that pD[y;S] = pD[y;S] for any S ⊆ X \ xD and any label sequence y of

S. This means that both models always give the same probability for the event that y is

the label sequence of S. To prove this result, we first need the following lemma about

p0[yD;xD].
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Lemma 1. For any partial labeling D, we have:

p0[yD;xD] =
∑
h∈H

p0[h] 1(h(xD) = yD).

Proof. In the probabilistic model, p0[yD;xD] =
∑
h∈H p0[h]P[h(xD) = yD |h]. Since

h is a probabilistic hypothesis, we can expand P[h(xD) = yD |h] by summing over all

possible labelings that agree with D on xD. This process is equivalent to summing over

all possible label sequences of the remaining examples in X \ xD. Thus, we have:

p0[yD;xD] =
∑
h∈H

p0[h]
∑
h∈H

P[h(X) = h(X) |h] 1(h(xD) = yD)

=
∑
h∈H

1(h(xD) = yD)
∑
h∈H

p0[h]P[h(X) = h(X) |h]

=
∑
h∈H

1(h(xD) = yD) p0[h].

Therefore, the lemma holds.

Using Lemma 1, we can prove the following lemma about the equivalence of the

probabilistic model and deterministic model.

Lemma 2. Let pD and pD be the posteriors of the probabilistic model and the determin-

istic model respectively after observing a partial labeling D. For any S ⊆ X \ xD and

any label sequence y of S, we have:

pD[y;S] = pD[y;S].

Proof. For the probabilistic model, we have:

pD[y;S] =
∑
h∈H

pD[h]P[h(S) = y|h] =
∑
h∈H

p0[h]P[h(xD) = yD|h]
p0[yD;xD] P[h(S) = y|h].

We expand P[h(xD) = yD|h]P[h(S) = y|h] by summing over all possible labelings
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that both agree with D on xD and have y as the label sequence for S. Thus, we have:

pD[y;S] =
∑
h∈H

p0[h]
p0[yD;xD]

∑
h∈H

P[h(X) = h(X)|h] 1(h(xD) = yD) 1(h(S) = y)

=
∑
h∈H

1(h(xD) = yD) 1(h(S) = y)
p0[yD;xD]

∑
h∈H

p0[h]P[h(X) = h(X)|h]

=
∑
h∈H

1(h(xD) = yD) 1(h(S) = y)
p0[yD;xD] p0[h].

The last equality above is from the definition of p0[h]. From Lemma 1 and the definition

of pD[h], we have:

p0[h] 1(h(xD) = yD)
p0[yD;xD] = p0[h] 1(h(xD) = yD)∑

h∈H p0[h] 1(h(xD) = yD)
= pD[h].

Thus, pD[y;S] =
∑
h∈H

pD[h] 1(h(S) = y) = pD[y;S].

The equivalence in Lemma 2 will be used to prove some results in the later chapters.

Furthermore, because of this equivalence, some objective functions for Bayesian pool-

based active learning can be formulated using either the probabilistic model or the

corresponding deterministic model, or both.

We note that although the construction of the deterministic model requires an exponential

increase in the hypothesis space size, this does not affect the computational efficiency of

the algorithms considered in this thesis. In actual usages of those algorithms, we can do

the computation or approximation directly on the probabilistic model without explicitly

constructing the deterministic model. The deterministic model considered here is mainly

used only for theoretical analysis of the algorithms.
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CHAPTER 4
Submodular Function Maximization

In Bayesian pool-based active learning, our objective can often be stated as maximizing

some average or worst-case performance with respect to some utility function f(S) in

the non-adaptive case, or f(S, h) in the adaptive case, where S is the set of chosen

examples and h is the true labeling of all examples (Golovin and Krause, 2011; Chen and

Krause, 2013). When f(S) is monotone submodular or f(S, h) is adaptive monotone

submodular, greedy algorithms are known to be near-optimal (Nemhauser et al., 1978;

Golovin and Krause, 2011). In this chapter, we shall briefly summarize some results

about greedy optimization of monotone submodular functions and adaptive monotone

submodular functions, then prove a new result about the worst-case near-optimality of

a greedy algorithm for maximizing pointwise monotone submodular functions. In the

subsequent chapters, we will use the theorems in this chapter to prove near-optimal

guarantees for various active learning algorithms. However, we note that the results in

this chapter are general and can also be applied to settings other than active learning.

4.1 Near-optimality of Submodular Function Maximization

A set function f : 2X → R is submodular if it satisfies the following diminishing return

property: for all A ⊆ B ⊆ X and x ∈ X \B,

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).
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The function f is called monotone if f(A) ≤ f(B) for all A ⊆ B.

To select from X a set of size k that maximizes a monotone submodular function, one

greedy strategy is to iteratively select the next example x∗ that satisfies

x∗ = arg max
x∈X
{f(S ∪ {x})− f(S)}, (4.1)

where S is the set of previously selected examples. The following theorem by Nemhauser

et al. (1978) states the near-optimality of this greedy algorithm when maximizing a

monotone submodular function.

Theorem 1 (Nemhauser et al. 1978). Let f be a monotone submodular function such

that f(∅) = 0, and let Sk be the set of examples selected up to iteration k using the

greedy criterion in Equation (4.1). Then for all k > 0, we have:

f(Sk) ≥
(

1− 1
e

)
max
|S|=k

f(S).

4.2 Near-optimality of Adaptive Submodular Function Max-

imization

Adaptive submodularity (Golovin and Krause, 2011) is an extension of submodularity

in the non-adaptive setting to the adaptive setting. For a partial labeling D and a full

labeling h of X , we write h ∼ D to denote that D is consistent with h. That is, D ⊆ h

when we view a labeling as a set of (x, y) pairs. For two partial labelings D and D′, we

call D a sub-labeling of D′ if D ⊆ D′.

We consider a utility function f : 2X × YX → R≥0 which depends on the selected

examples and the true labeling of X . For a partial labeling D and an example x, we

define the expected utility gain when choosing x after observing D as:

∆(x|D) def= Eh
[
f(xD ∪ {x}, h)− f(xD, h) |h ∼ D

]
,
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where the expectation is with respect to p0[h |h ∼ D] and xD is the domain of D.

From the definitions in (Golovin and Krause, 2011), f is adaptive submodular with

respect to the prior p0 if for all D and D′ such that D ⊆ D′, and for all x ∈ X \ xD′ , we

have:

∆(x|D) ≥ ∆(x|D′).

Furthermore, f is adaptive monotone with respect to p0 if for all D with p0[h ∼ D] > 0

and for all x ∈ X , we have ∆(x|D) ≥ 0.

Let π be a policy for selecting the examples and xπ,h be the set of examples selected by

π under the true labeling h. We define the expected utility of π as

favg(π) def= Eh∼p0

[
f(xπ,h, h)

]
.

To adaptively select from X a set of size k that maximizes favg, one greedy strategy is to

iteratively select the next example x∗ that satisfies

x∗ = arg max
x∈X

∆(x|D), (4.2)

where D is the partial labeling that has already been observed. The following theorem

by Golovin and Krause (2011) states the near-optimality of this greedy policy when f is

adaptive monotone submodular.

Theorem 2 (Golovin and Krause 2011). Let f be an adaptive monotone submodular

function with respect to p0, let π be the adaptive policy selecting k examples using

Equation (4.2), and let π∗ be the optimal policy with respect to favg that selects k

examples. Then for all k > 0, we have:

favg(π) >
(

1− 1
e

)
favg(π∗).
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4.3 Near-optimality of Pointwise Submodular Function Max-

imization

In the previous section, Theorem 2 gives the near-optimal average-case performance guar-

antee for greedily optimizing an adaptive monotone submodular function. In this section,

we prove a new near-optimal worst-case performance guarantee for greedily optimizing

a pointwise monotone submodular function. A utility function f : 2X × YX → R≥0 is

said to be pointwise submodular if the set function fh(S) def= f(S, h) is submodular for

all labelings h ∈ YX . Similarly, f is pointwise monotone if fh(S) is monotone for all h.

When f is pointwise monotone submodular, the average utility favg(S) def= Eh∼p0
[f(S, h)]

is monotone submodular, and thus the non-adaptive greedy algorithm is a near-optimal

non-adaptive policy for maximizing favg(S) (Golovin and Krause, 2011). However, we

are more interested in the adaptive policies in this section. In the following, for any

partial labeling D, any x ∈ X \ xD, and any y ∈ Y , we write D ∪ {(x, y)} to denote the

partial labeling D with an additional mapping from x to y.

We assume that for any S ⊆ X and any labeling h, the value of f(S, h) does not depend

on the labels of examples in X \ S. We call this the minimal dependency property. Let

us extend the definition of f so that its second parameter can be a partial labeling. The

minimal dependency property implies that for any partial labeling D and any labeling

h ∼ D, we have f(xD, h) = f(xD,D). Without this minimal dependency property, the

theorem in this section may not hold. We will see some examples of functions that satisfy

or do not satisfy the minimal dependency property in Chapter 5 and 7.

For a partial labeling D and an example x, we define the worst-case utility gain when

choosing x after observing D as:

δ(x|D) def= min
y∈Y
{f(xD ∪ {x},D ∪ {(x, y)})− f(xD,D)} .

We consider the adaptive greedy strategy that iteratively selects the next example x∗
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satisfying

x∗ = arg max
x∈X

δ(x|D), (4.3)

where D is the partial labeling that has already been observed. For any policy π, let the

worst-case utility of π be

fworst(π) def= min
h∈H

f(xπ,h, h).

The following theorem states the near-optimality of the above greedy policy with respect

to fworst when f is pointwise monotone submodular.1 The main idea in proving this

theorem is to show that at every step, the greedy policy can cover at least (1/k)-fraction

of the optimal remaining utility. This property can be proven by replacing the current

greedy step with the optimal policy and considering the adversary’s path for this optimal

policy.

Theorem 3. Let f be a pointwise monotone submodular function such that f(∅, h) = 0

for all h ∈ H, and assume f satisfies the minimal dependency property. Let π be the

adaptive policy selecting k examples using Equation (4.3), and let π∗ be the optimal

policy with respect to fworst that selects k examples. Then for all k > 0, we have:

fworst(π) >
(

1− 1
e

)
fworst(π∗).

Proof. Consider the policy π. Let the worst-case labeling of π with respect to f be

hπ = arg minh∈H f(xπ,h, h). Then we have fworst(π) = f(xπ,hπ , hπ). Note that hπ

corresponds to a path from the root to a leaf of the policy tree of π. Let the examples

and labels along the path hπ (from root to leaf) be

hπ = {(x1, y1), (x2, y2), . . . , (xk, yk)}.

1Note that in the definition of fworst(π), h has to range over the set YX of all possible labelings.
Otherwise, Theorem 3 does not necessarily hold.
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Since f satisfies the minimal dependency property, let us abuse the notation and write

f({xt}it=1, {yt}it=1) to denote f({xt}it=1, hπ). Define

ui = f
(
{xt}it=1, {yt}it=1

)
− f

(
{xt}i−1

t=1, {yt}
i−1
t=1

)
,

vi =
i∑
t=1

ut and zi = fworst(π∗)− vi.

We prove the following claims.

Claim 1. For all i, we have ui+1 ≥
zi
k
.

Proof of Claim 1. Consider the case that after observing (x1, y1), . . . , (xi, yi), we run

the optimal policy π∗ from its root and only follow the paths consistent with (x1, y1), . . . ,

(xi, yi) down to a leaf. In this case, all the paths of the policy π∗ must obtain a value at

least zi = fworst(π∗) − vi, because running π∗ without any observation would obtain

at least fworst(π∗) and the observations (x1, y1), . . . , (xi, yi) cover a value vi. Now we

consider the adversary’s path of the policy π∗ in this scenario which is defined as:

hadv = {(xadv
1 , yadv

1 ), (xadv
2 , yadv

2 ), . . . , (xadv
k , yadv

k )},

where yadv
j = arg min

y
{f({xt}it=1 ∪ {xadv

t }
j−1
t=1 ∪ {x

adv
j }, {yt}it=1 ∪ {yadv

t }
j−1
t=1 ∪ {y})

− f({xt}it=1 ∪ {xadv
t }

j−1
t=1 , {yt}it=1 ∪ {yadv

t }
j−1
t=1 )}

if xadv
j has not appeared in {x1, . . . , xi}. Otherwise, yadv

j = yt if xadv
j = xt for some

t ∈ {1, . . . , i}. From the previous discussion, hadv covers a value at least zi in k steps.

Thus, one of its steps must cover a value at least zi/k.

Hence, what remains is to show that doing the greedy step in π after observing

(x1, y1), . . . , (xi, yi) is better than any single step along hadv. In the trivial case where

(xadv
j , yadv

j ) ∈ {(x1, y1), . . . , (xi, yi)}, we obtain nothing in this step since (xadv
j , yadv

j )

has already been observed. Thus, the above is true in this case. In the non-trivial case,
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we have:

ui+1 = f
(
{xt}i+1

t=1, {yt}
i+1
t=1

)
− f

(
{xt}it=1, {yt}it=1

)
≥ min

y

{
f
(
{xt}it=1 ∪ {xi+1}, {yt}it=1 ∪ {y}

)
− f

(
{xt}it=1, {yt}it=1

)}
≥ min

y

{
f
(
{xt}it=1 ∪ {xadv

j }, {yt}it=1 ∪ {y}
)
− f

(
{xt}it=1, {yt}it=1

)}
≥ min

y
{f
(
{xt}it=1 ∪ {xadv

t }
j−1
t=1 ∪ {x

adv
j }, {yt}it=1 ∪ {yadv

t }
j−1
t=1 ∪ {y}

)
− f

(
{xt}it=1 ∪ {xadv

t }
j−1
t=1 , {yt}

i
t=1 ∪ {yadv

t }
j−1
t=1

)
}

= f
(
{xt}it=1 ∪ {xadv

t }
j−1
t=1 ∪ {x

adv
j }, {yt}it=1 ∪ {yadv

t }
j−1
t=1 ∪ {y

adv
j }

)
− f

(
{xt}it=1 ∪ {xadv

t }
j−1
t=1 , {yt}

i
t=1 ∪ {yadv

t }
j−1
t=1

)
.

In the above, the second inequality is due to the greedy criterion, and the third inequality

is due to the submodularity of f . Therefore, this claim is true.

Claim 2. For all i ≥ 0, we have zi ≤ (1− 1
k

)ifworst(π∗).

Proof of Claim 2. We prove this claim by induction. For i = 0, this holds because

z0 = fworst(π∗) by definition. Assume that zi ≤ (1− 1
k )ifworst(π∗), then

zi+1 = fworst(π∗)− vi+1 = fworst(π∗)− vi − ui+1 = zi − ui+1

≤ zi −
zi
k

= (1− 1
k

)zi ≤ (1− 1
k

)i+1fworst(π∗).

In the above, the first inequality is due to Claim 1. Therefore, this claim is true.

To prove Theorem 3, we apply Claim 2 with i = k and have

zk ≤ (1− 1
k

)kfworst(π∗) <
1
e
fworst(π∗).

Hence, fworst(π) = vk = fworst(π∗)− zk > (1− 1
e

)fworst(π∗).

We note that in the worst-case setting, Golovin and Krause (2011) also considered the

problem of minimizing the number of queries needed to achieve a target utility value.
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However, their results mainly rely on the condition that the utility function is adaptive

submodular, not the pointwise submodular condition considered in this section. It is

also worth noting that our new greedy criterion in Equation (4.3) is different from the

greedy criterion considered by Golovin and Krause (2011), which is essentially Equation

(4.2). Thus, our result does not follow from their result and is developed using a different

argument.

Another remark is that the pointwise submodularity property considered in this section

does not necessarily imply adaptive submodularity. In Chapter 7, we will show an

example of a function that is pointwise submodular but not adaptive submodular (in

Theorem 13). Another example was also given by Golovin and Krause (2011).
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CHAPTER 5
Properties of Maximum Entropy and Least

Confidence Active Learning Algorithms

This chapter analyzes new theoretical properties of two commonly used greedy active

learning algorithms: the maximum entropy algorithm and the least confidence algorithm.

These two algorithms have been shown to have good performance in practice (Settles

and Craven, 2008). The algorithms are equivalent in the binary-class case in the sense

that they both choose the same examples to query, but they are different in the multiclass

case. In this chapter, we prove that the maximum entropy algorithm may not have

a near-optimality guarantee when maximizing the policy entropy, a natural objective

function for the algorithm. On the other hand, we also prove that the least confidence

algorithm has a near-optimality guarantee for maximizing the worst-case version space

reduction objective.

5.1 The Maximum Entropy Criterion

A commonly used objective for active learning in the non-adaptive setting is to choose k

training examples such that their Shannon entropy (Shannon, 1948) is maximal, as this

reduces uncertainty in the later stage. In this section, we first give a generalization for

the concept of Shannon entropy to general (both adaptive and non-adaptive) policies.
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Formally, we define the policy entropy of a policy π as:

Hent(π) def= Eρ∼pπ0 [− ln pπ0 [ρ] ].

We recall that pπ0 is the distribution over all the paths ρ of the policy tree of π (see

Section 3.1 for details). From this definition, policy entropy is the Shannon entropy of

the paths in the policy tree. The policy entropy reduces to the Shannon entropy on a set

of examples when the policy is non-adaptive.

For pool-based active learning, we argue that it is desirable to maximize the policy

entropy Hent(π) as maximizing the policy entropy will minimize the expected posterior

label entropy given the observations. More specifically, suppose a path ρ has been

observed, then the labels of the remaining examples in X \ xρ follow the distribution

pρ[ · ;X \ xρ], where pρ is the posterior obtained after observing (xρ, yρ). We denote

the entropy of this distribution by G(ρ) and call it the posterior label entropy of the

remaining examples given ρ. Formally,

G(ρ) def= −
∑

y
pρ[ y;X \ xρ ] ln pρ[ y;X \ xρ ],

where the summation is over all the possible label sequences y of X \ xρ. The posterior

label entropy of a policy π is defined as:

G(π) def= Eρ∼pπ0G(ρ).

The following result gives a formal statement that maximizing policy entropy minimizes

the posterior label entropy of the policy, or the uncertainty on the labels of the remaining

unlabeled examples in the pool. Note that in the theorem, Πk is the set of policies that

select k examples.

Theorem 4. For any k ≥ 1, if a policy π in Πk maximizes Hent(π), then π minimizes

the posterior label entropy G(π).
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Proof. Recall that p0[y;S] is the probability that examples in S are assigned the label

sequence y. We also use p0[(y,y′); (S, S′)] to refer to the probability that examples in

S and S′ are assigned label sequences y and y′ respectively. Let 1(A) be the indicator

function for the event A. In this proof, note that if we fix a label sequence y of X , the

path ρ followed from the root to a leaf of the policy tree during the execution of the

policy π is unique (since we only consider deterministic policies).

We shall prove that Hent(π) + G(π) is the Shannon entropy of the label sequence

distribution p0[ · ;X] which is a constant; and the theorem will follow. Indeed, the

Shannon entropy of the distribution p0[ · ;X] is:

−
∑

y
p0[y;X] ln p0[y;X]

= −
∑

y

∑
ρ

1(y is consistent with ρ) p0[y;X] ln p0[y;X]

= −
∑
ρ

∑
y

1(y is consistent with ρ) p0[y;X] ln p0[y;X]

= −
∑
ρ

∑
y′
p0[(yρ,y′); (xρ, X \ xρ)] ln p0[(yρ,y′); (xρ, X \ xρ)]

= −
∑
ρ

∑
y′
p0[(yρ,y′); (xρ, X \ xρ)]

(
ln p0[yρ;xρ] + ln pρ[y′;X \ xρ]

)
= −

∑
ρ

∑
y′
p0[(yρ,y′); (xρ, X \ xρ)] ln p0[yρ;xρ]

−
∑
ρ

∑
y′
p0[(yρ,y′); (xρ, X \ xρ)] ln pρ[y′;X \ xρ]

= −
∑
ρ

p0[yρ;xρ] ln p0[yρ;xρ]−
∑
ρ

∑
y′
p0[yρ;xρ]pρ[y′;X \ xρ] ln pρ[y′;X \ xρ]

= Hent(π) +
∑
ρ

p0[yρ;xρ]G(ρ)

= Hent(π) +G(π).

Therefore, Theorem 4 holds.

To maximize the policy entropy Hent, one natural greedy method is to choose at every

iteration the example whose posterior label distribution has the maximum Shannon

entropy. This is in fact the well-known maximum entropy active learning criterion
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(Settles, 2010). Formally, this criterion chooses the next example x∗ that satisfies

x∗ = arg max
x∈X

Ey∼pD[ · ;x] [− ln pD[y;x]] , (5.1)

where pD is the posterior obtained after observing the partial labeling D.

Due to the monotonicity and submodularity of Shannon entropy (Fujishige, 1978), we

can construct a non-adaptive greedy policy that achieves near-optimality with respect to

the objective function Hent in the non-adaptive setting. In the adaptive setting, however,

the maximum entropy criterion may not be near-optimal with respect to the objective

function Hent in general. We prove this negative result in Theorem 5 below.

The main idea in proving this theorem is to construct a set of independent distractor

examples that have highest entropy but provide no information about the true hypothesis.

The greedy criterion is tricked to choose only these distractor examples. On the other

hand, there is an identifier example which gives the identity of the true hypothesis but

has a lower entropy than the distractor examples. Once the label of the identifier example

is revealed, there will be a number of high entropy examples to query, so that the policy

entropy achieved is higher than that of the greedy algorithm.

Theorem 5. Let π be the adaptive policy in Πk selecting examples using Equation (5.1),

and let π∗ be the optimal adaptive policy in Πk with respect to Hent. For any 0 < α < 1,

there exists a problem where
Hent(π)
Hent(π∗)

< α.

Proof. LetH = {h1, h2, . . . , hn}with n probabilistic hypotheses, and assume a uniform

prior on them. We construct k independent distractor instances x1, x2, . . . , xk with

identical output distributions for the n probabilistic hypotheses. Our aim is to trick the

greedy algorithm π to select these k instances. Since the hypotheses are identical on

these instances, the greedy algorithm learns nothing when receiving each label.

Let H(Y1) be the Shannon entropy of the prior label distribution of any xi (this entropy

is the same for all xi). Since the greedy algorithm always selects the k instances
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x1, x2, . . . , xk and their labels are independent, we have

Hent(π) = kH(Y1).

Next, we construct an instance x0 where its label will deterministically identify the

probabilistic hypotheses. Specifically, P[hi(x0) = i |hi] = 1 for all i. Note that

H(Y0) = lnn.

To make sure that the greedy algorithm π selects the distractor instances instead of

x0, a constraint is that H(Y1) > H(Y0) = lnn. This constraint can be satisfied by,

for example, allowing Y to have n + 1 labels and letting P[h(xj)|h] be the uniform

distribution for all j ≥ 1 and h ∈ H. In this case, H(Y1) = ln(n+ 1) > lnn.

We will compare the greedy algorithm π with an algorithm πA that selects x0 first, and

hence knows the true hypothesis after observing its label.

Finally, we construct n(k − 1) more instances, and the algorithm πA will select the

appropriate k − 1 instances from them after figuring out the true hypothesis. Let the

instances be {x(i,j) : 1 ≤ i ≤ n and 1 ≤ j ≤ k − 1}. Let Y h
(i,j) be the (random) label of

x(i,j) according to the hypothesis h. For all h ∈ H, Y h
(i,j) has identical distributions for

1 ≤ j ≤ k − 1. Thus, we only need to specify Y h
(i,1).

We specify Y h
(i,1) as follows. If h 6= hi, then let P[Y h

(i,1) = 0] = 1. Otherwise, let

P[Y h
(i,1) = 0] = 0, and the distribution on other labels has entropy H(Y h1

(1,1)), as all

hypotheses are defined the same way.

When the true hypothesis is unknown, the distribution for Y(1,1) has entropy

H(Y(1,1)) = H(1− 1
n

) + 1
n
H(Y h1

(1,1)),

where H(1 − 1
n) is the entropy of the Bernoulli distribution (1 − 1

n ,
1
n). As we want

the greedy algorithm to select the distractors, we also need H(Y1) > H(Y(1,1)), giving

H(Y h1
(1,1)) < n(H(Y1)−H(1− 1

n)).
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Algorithm πA first selects x0, identifies the true hypothesis exactly, and then selects k−1

instances with entropy H(Y h1
(1,1)). Thus,

Hent(πA) = lnn+ (k − 1)H(Y h1
(1,1)).

Hence, we have
Hent(π)
Hent(πA) = kH(Y1)

lnn+ (k − 1)H(Y h1
(1,1))

.

Set H(Y h1
(1,1)) to n(H(Y1) − H(1 − 1

n)) − c for some small constant c. The above

equation becomes

Hent(π)
Hent(πA) = kH(Y1)

lnn+ (k − 1)n(H(Y1)−H(1− 1
n))− (k − 1)c

.

Since H(1 − 1
n) approaches 0 as n grows and H(Y1) = ln(n+ 1), we can make the

ratio Hent(π)/Hent(πA) as small as we like by increasing n. Furthermore,

Hent(π)
Hent(πA) ≥

Hent(π)
Hent(π∗)

.

Thus, Theorem 5 holds.

5.2 The Least Confidence Criterion

Another well-known active learning algorithm in the pool-based setting uses the least

confidence criterion. This criterion chooses the next example whose most likely label

has minimal posterior probability (Lewis and Gale, 1994; Culotta and McCallum, 2005).

Formally, this criterion chooses the next examples x∗ that satisfies

x∗ = arg min
x∈X

{
max
y∈Y

pD[y;x]
}
. (5.2)

Note that x∗ = arg maxx{1 − maxy pD[y;x]}. Thus, the least confidence criterion

greedily optimizes the error rate of the Bayes classifier on the distribution pD[ · ;x].

Theoretically, little has been known about the near-optimality of this criterion in the
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multiclass setting. In this section, we use the theory in Section 4.3 to prove that the least

confidence criterion near-optimally maximizes the worst-case version space reduction.

For S ⊆ X and h ∈ H, the version space reduction function is defined as:

f(S, h) def= 1− p0[h(S);S]. (5.3)

This is the probability that a random labeling drawn from p0 does not agree with h on S.

For a policy π, we define the worst-case version space reduction objective as:

Hlc(π) def= min
h∈H

f(xπ,h, h),

where xπ,h is the set of examples selected by π under the true labeling h.

It can be shown that f is pointwise monotone submodular, and the least confidence

criterion is equivalent to the criterion in Equation (4.3). Thus, it follows from Theorem

3 that the least confidence criterion is near-optimal with respect to the objective function

Hlc. Theorem 6 below proves this result.

Theorem 6. Let π be the adaptive policy in Πk selecting examples using Equation (5.2),

and let π∗ be the optimal adaptive policy in Πk with respect to Hlc. Then for all k > 0,

we have:

Hlc(π) >
(

1− 1
e

)
Hlc(π∗).

Proof. It is clear that the version space reduction function f satisfies the minimal

dependency property, is pointwise monotone, and f(∅, h) = 0 for all h. For a partial

labeling D, let xD be the domain of D, and let yD = D(xD). From Equation (4.3), we

have:

arg max
x

min
y
{f (xD ∪ {x},D ∪ {(x, y)})− f(xD,D)}

= arg max
x

min
y
f (xD ∪ {x},D ∪ {(x, y)})

= arg max
x

min
y

[1− p0 [yD ∪ {y}; xD ∪ {x}]]
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= arg min
x

max
y

p0 [yD ∪ {y};xD ∪ {x}]

= arg min
x

max
y

p0 [yD ∪ {y};xD ∪ {x}]
p0 [yD;xD]

= arg min
x

max
y

pD[y;x]

= arg min
x

max
y

pD[y;x].

In the above, the second equality is from the definition of f , and the last equality is from

Lemma 2 in Section 3.2. Thus, Equation (5.2) is equivalent to Equation (4.3).

To apply Theorem 3, what remains is to show that f is pointwise submodular. Consider

fh(S) = f(S, h) for any h ∈ H. Fix A ⊆ B ⊆ X and x ∈ X \B. We have:

fh(A ∪ {x})− fh(A) = p0[h(A);A]− p0[h(A ∪ {x});A ∪ {x}]

=
∑

h′(A)=h(A)

p0[h′]−
∑

h′(A)=h(A)
h′(x)=h(x)

p0[h′]

=
∑
h′∈H

p0[h′] 1(h′(A) = h(A)) 1(h′(x) 6= h(x)).

Similarly, we have:

fh(B ∪ {x})− fh(B) =
∑
h′∈H

p0[h′] 1(h′(B) = h(B)) 1(h′(x) 6= h(x)).

Since A ⊆ B, all pairs h, h′ such that h′(B) = h(B) also satisfy h′(A) = h(A). Thus,

fh(A ∪ {x})− fh(A) ≥ fh(B ∪ {x})− fh(B) and fh is submodular. Therefore, f is

pointwise submodular and Theorem 6 holds.
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CHAPTER 6
The Maximum Gibbs Error Criterion

In the previous chapter, we have proven that the maximum entropy algorithm does not

always have a near-optimality guarantee in the average case while the least confidence

algorithm has a near-optimality guarantee in the worst case. In this chapter, we shall

introduce a new greedy criterion, the maximum Gibbs error criterion, that has a near-

optimality guarantee in the average case.

First, we propose a new objective for Bayesian pool-based active learning: the policy

Gibbs error. This new objective is a lower bound of the policy entropy introduced in

Section 5.1 and we shall prove that the maximum Gibbs error criterion greedily optimizes

this new objective with a near-optimality guarantee in the average case. Intuitively, the

policy Gibbs error of a policy π is the expected probability for a Gibbs classifier to make

an error on the set adaptively selected by π. Formally, we define the policy Gibbs error

of a policy π as:

Hgibbs(π) def= Eρ∼pπ0 [ 1− pπ0 [ρ] ] . (6.1)

In the above equation, 1− pπ0 [ρ] is the probability that a Gibbs classifier makes an error

on the selected set along the path ρ. Theorem 7 below, which is straightforward from the

inequality x ≥ 1 + ln x, states that the policy Gibbs error is a lower bound of the policy

entropy.

Theorem 7. For any (full or partial) policy π, we have Hgibbs(π) ≤ Hent(π).

As an analogue to Theorem 4 in Chapter 5, we show in Theorem 8 below that any policy

46



Chapter 6. The Maximum Gibbs Error Criterion

maximizing the policy Gibbs error will minimize the average weighted posterior Gibbs

error of the remaining examples. Formally, the average weighted posterior Gibbs error is

defined as:

G(π) def= Eρ∼pπ0 [ pπ0 [ρ]G(ρ) ] ,

where G(ρ) def= 1 −
∑

y p
2
ρ[ y;X \ xρ ] is the posterior Gibbs error of the remaining

examples after selecting the path ρ.

Theorem 8. For any k ≥ 1, if a policy π in Πk maximizes Hgibbs(π), then π minimizes

the average weighted posterior Gibbs error G(π).

Proof. We shall prove that Hgibbs(π) + G(π) is a constant, and the theorem will follow.

Using similar notations as in the proof of Theorem 4, we have:

∑
y
p0[y;X](1− p0[y;X])

=
∑

y

∑
ρ

1(y is consistent with ρ) p0[y;X](1− p0[y;X])

=
∑
ρ

∑
y

1(y is consistent with ρ) p0[y;X](1− p0[y;X])

=
∑
ρ

∑
y′
p0[(yρ,y′); (xρ, X \ xρ)](1− p0[(yρ,y′); (xρ, X \ xρ)])

=
∑
ρ

∑
y′
p0[yρ;xρ]pρ[y′;X \ xρ]

(
1− p0[yρ;xρ]pρ[y′;X \ xρ]

)
=

∑
ρ

p0[yρ;xρ](1− p0[yρ;xρ]
∑
y′
p2
ρ[y′;X \ xρ])

= Hgibbs(π) + (
∑
ρ

p0[yρ;xρ](1− p0[yρ;xρ]
∑
y′
p2
ρ[y′;X \ xρ])

−
∑
ρ

p0[yρ;xρ](1− p0[yρ;xρ]))

= Hgibbs(π) +
∑
ρ

p2
0[yρ;xρ](1−

∑
y′
p2
ρ[y′;X \ xρ])

= Hgibbs(π) + Eρ∼pπ0 [ p0[yρ;xρ]G(ρ) ]

= Hgibbs(π) + G(π).

Since
∑

y p0[y;X](1− p0[y;X]) is a constant, Theorem 8 holds.
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Given a budget of k queries, our proposed objective is to find

π∗ = arg max
π∈Πk

Hgibbs(π),

the height k policy with maximum policy Gibbs error. By maximizing Hgibbs(π), we

hope to maximize the policy entropy Hent(π), and thus minimize the uncertainty in the

remaining examples. Furthermore, we also hope to obtain a small expected error of a

posterior Gibbs classifier, which upper bounds the Bayes error but is at most twice of it.

In the next section, we shall describe greedy algorithms that are provably near-optimal

for optimizing this objective.

6.1 Near-optimal Greedy Algorithms for Maximizing Policy

Gibbs Error

In this section, we consider three settings: non-adaptive, adaptive and batch mode

settings. We shall describe the corresponding greedy algorithms for each setting and

prove their near-optimality when maximizing the policy Gibbs error.

6.1.1 The Non-adaptive Setting

In the non-adaptive setting, the policy π ignores the observed labels: it never updates the

posterior. This is equivalent to selecting a set of examples before any labeling is done.

In this setting, the examples selected along all paths of π are the same. Let xπ be the set

of examples selected by π. The policy Gibbs error of a non-adaptive policy π is simply

Hgibbs(π) = Ey∼p0[ · ;xπ ][1− p0[y;xπ]],

where p0[ · ;xπ] is the probability distribution induced by p0 on the set of all label

sequences of xπ. Thus, the optimal non-adaptive policy selects a set S of examples
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maximizing its Gibbs error, which is defined by:

εp0
g (S) def= 1−

∑
y
p0[y;S]2,

where the summation is over all the label sequences y of S.

In general, the Gibbs error of a distribution P is 1−
∑
i P [i]2, where the summation is

over elements in the support of P . The Gibbs error is a special case of the Tsallis entropy

used in nonextensive statistical mechanics (Tsallis and Brigatti, 2004) and is known

to be monotone submodular (Sayrafi et al., 2008). From the properties of monotone

submodular functions introduced in Section 4.1, the greedy non-adaptive policy that

selects the next example satisfying

x∗ = arg max
x∈X

{
εp0
g (Si ∪ {x})

}
= arg max

x∈X

{
1−

∑
y
p0[y;Si ∪ {x}]2

}
, (6.2)

where Si is the set of previously selected examples, is near-optimal compared to the best

non-adaptive policy. In the above formula, the summation is over all the label sequences

y of Si ∪ {x}. This result is formally stated in Theorem 9 below. The theorem is a direct

consequence of Theorem 1 in Section 4.1.

Theorem 9. Given a budget of k ≥ 1 queries, let πn be the non-adaptive policy in Πk

selecting examples using Equation (6.2), and let π∗n be the non-adaptive policy in Πk

with the maximum policy Gibbs error. Then for all k ≥ 1, we have:

Hgibbs(πn) ≥
(

1− 1
e

)
Hgibbs(π∗n).

6.1.2 The Adaptive Setting

In the adaptive setting, a policy takes into account the observed labels when choosing

the next example. This is done via the posterior update after observing the label of a

selected example. The adaptive setting is the most common setting for active learning.
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We now describe a greedy adaptive algorithm for this setting that is near-optimal.

Assume that the current posterior obtained after observing the labeled examples D is pD.

Our greedy algorithm selects the next example x∗ that maximizes εpDg (x):

x∗ = arg max
x∈X

εpDg (x) = arg max
x∈X

1−
∑
y∈Y

pD[y;x]2
 . (6.3)

From the definition of εpDg in Section 6.1.1, εpDg (x) is in fact the policy Gibbs error of a

1-step policy with respect to the prior pD. Thus, we call this greedy criterion the adaptive

maximum Gibbs error criterion (maxGEC).

Note that in binary classification where |Y| = 2, maxGEC selects the same examples

as the maximum Shannon entropy and the least confidence criteria. However, they are

different in the multiclass case. Theorem 10 below states that maxGEC is near-optimal

compared to the best adaptive policy with respect to the objective in Equation (6.1).

Theorem 10. Given a budget of k ≥ 1 queries, let πmaxGEC be the adaptive policy in

Πk selecting examples using maxGEC and let π∗ be the adaptive policy in Πk with the

maximum policy Gibbs error. Then for all k ≥ 1, we have:

Hgibbs(πmaxGEC) >
(

1− 1
e

)
Hgibbs(π∗).

The main idea to prove this theorem is to reduce probabilistic hypotheses to deterministic

ones by expanding the hypothesis space as described in Section 3.2 and then show that

maxGEC greedily maximizes the average version space reduction in the deterministic

model. Recall from Section 5.2 that the version space reduction function is f(S, h) =

1 − p0[h(S);S]. In the deterministic model H, the version space reduction function

f(S, h) is known to be adaptive monotone submodular (Golovin and Krause, 2011).

Thus, the greedy adaptive policy selecting

x∗ = arg max
x∈X

Eh∼pD [f(xD ∪ {x}, h)− f(xD, h)] (6.4)
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is near-optimal, where xD is the previously selected set and pD is the current posterior

of the deterministic model. This property is stated in Lemma 3 below and is a direct

consequence of Theorem 5.2 by Golovin and Krause (2011).

Lemma 3. For any k ≥ 1, in the deterministic model, let π be the greedy adaptive

policy that selects k examples by the criterion (6.4). Let π∗ be the adaptive policy that

selects the optimal k examples in terms of the average version space reduction objective.

We have:

Eh∼p0
[f(xπ,h, h)] >

(
1− 1

e

)
Eh∼p0

[f(xπ∗,h, h)],

where xπ,h is the set of unlabeled examples selected by π assuming the true labeling of

X is h.

Using this lemma, what remains to prove Theorem 10 is to show that Hgibbs is equal to

the average version space reduction, and maxGEC is equivalent to greedily maximizing

the version space reduction at every iteration. We now prove these results.

Proof of Theorem 10. First, we prove that Hgibbs is equal to the average version space

reduction. For any policy π, note that once we assume the true labeling of X to be a

fixed h, the policy π follows exactly one path from the root to a leaf in its policy tree.

We denote this path by ρπ,h. We have:

Eh∼p0
[f(xπ,h, h)] =

∑
h∈H

p0[h]
(
1− p0[h(xπ,h);xπ,h]

)

=
∑
ρ

∑
h:ρ

π,h
=ρ

p0[h] (1− p0[yρ;xρ])

=
∑
ρ

(1− p0[yρ;xρ])
∑

h:ρ
π,h

=ρ

p0[h]

=
∑
ρ

(1− p0[yρ;xρ]) p0[yρ;xρ]

=
∑
ρ

(1− pπ0 [ρ]) pπ0 [ρ]

= Hgibbs(π).
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In the above, the first equality is from definition of f and expectation, the second equality

is from the fact that xπ,h = xρ and h(xπ,h) = yρ for all h satisfying ρπ,h = ρ, the

fifth equality is from the equivalence in Lemma 2 and the definition of pπ0 , and the last

equality is from the definition of Hgibbs.

Hence, the inequality in Lemma 3 is equivalent to Hgibbs(π) > (1 − 1/e)Hgibbs(π∗).

Thus, to prove Theorem 10, we need to prove that the example x∗ selected by πmaxGEC

using Equation (6.3) also satisfies Equation (6.4). In the deterministic model, for any

x ∈ X , we have:

Eh∼pD
[
1− f(xD ∪ {x}, h)

]
= Eh∼pD

[
p0[h(xD ∪ {x});xD ∪ {x}]

]
=

∑
h∈H:pD[h]>0

pD[h] p0[h(xD ∪ {x});xD ∪ {x}]

=
∑
y∈Y

∑
h:pD[h]>0,
h(x)=y

pD[h] p0[h(xD ∪ {x});xD ∪ {x}].

For all h satisfying pD[h] > 0, we have pD[h] = p0[h]/
∑
h:pD[h]>0 p0[h]. Thus, if h

also satisfies h(x) = y, then:

p0[h(xD ∪ {x});xD ∪ {x}] =
∑

h:pD[h]>0,
h(x)=y

p0[h] =
∑

h:pD[h]>0,
h(x)=y

pD[h]
∑

h:pD[h]>0

p0[h]

 .

Hence,

Eh∼pD
[
1− f(xD ∪ {x}, h)

]
=
∑
y∈Y

∑
h:pD[h]>0∧h(x)=y

pD[h]
∑

h:pD[h]>0∧h(x)=y

pD[h]
∑

h:pD[h]>0

p0[h]




=

 ∑
h:pD[h]>0

p0[h]


∑
y∈Y

∑
h:pD[h]>0∧h(x)=y

pD[h]
∑

h:pD[h]>0∧h(x)=y

pD[h]




=

 ∑
h:pD[h]>0

p0[h]


∑
y∈Y

 ∑
h:pD[h]>0∧h(x)=y

pD[h]


2
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=

 ∑
h:pD[h]>0

p0[h]


∑
y∈Y

pD[y;x]2
 .

By Lemma 2 and the above equality, the example x∗ selected by Equation (6.3) satisfies

x∗ = arg max
x∈X
{1−

∑
y∈Y

pD[y;x]2} = arg max
x∈X
{1−

∑
y∈Y

pD[y;x]2}

= arg min
x∈X

∑
y∈Y

pD[y;x]2 = arg min
x∈X

Eh∼pD [1− f(xD ∪ {x}, h)]

= arg max
x∈X

Eh∼pD [f(xD ∪ {x}, h)] = arg max
x∈X

Eh∼pD [f(xD ∪ {x}, h)− f(xD, h)].

Thus, x∗ also satisfies Equation (6.4) and therefore Theorem 10 holds.

6.1.3 The Batch Mode Setting

In the batch mode setting (Hoi et al., 2006b), we query the labels of s (instead of one)

examples each time, and we do this for a given number of k iterations. After each

iteration, we query the labels of the selected batch and update the posterior based on

these labels. The new posterior can be used to select the next batch of examples. We

call a policy in this setting a batch policy. A non-adaptive policy can be seen as a batch

policy that selects only one batch.

Algorithm 6.1 describes a greedy algorithm for this setting which we call the batch

maxGEC algorithm. At iteration i of the algorithm with the posterior pi, the batch S is

first initialized to be empty, then s examples are greedily chosen one at a time using the

criterion:

x∗ = arg max
x∈X

εpig (S ∪ {x}). (6.5)

This is equivalent to running the non-adaptive greedy algorithm in Section 6.1.1 to select

each batch. Query-labels(S) returns the true labels yS of S and Posterior-update(pi, S, yS)

returns the new posterior obtained from the prior pi after observing yS .

The following theorem states that batch maxGEC is near-optimal compared to the best
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Algorithm 6.1: Batch maxGEC for Bayesian Batch Mode Active Learning

Input :Unlabeled pool X , prior p0, number of iterations k, and batch size s.

1 for i = 0 to k − 1 do
2 S ← ∅
3 for j = 0 to s− 1 do
4 x∗ ← arg maxx∈X εpig (S ∪ {x})
5 S ← S ∪ {x∗}
6 X ← X \ {x∗}
7 end
8 yS ← Query-labels(S)

9 pi+1 ← Posterior-update(pi, S, yS)

10 end

batch policy with respect to the objective Hgibbs in Equation (6.1). The proof for this

theorem also makes use of the reduction to deterministic hypotheses and the adaptive

submodularity of version space reduction.

Theorem 11. Given a budget of k batches of size s, let πmaxGEC
b be the batch policy

selecting k batches using batch maxGEC and let π∗b be the batch policy selecting k

batches with maximum policy Gibbs error. We have:

Hgibbs(πmaxGEC
b ) >

(
1− e−(e−1)/e

)
Hgibbs(π∗b ).

Proof. In each iteration of Algorithm 6.1, the example x∗ selected for the current batch

by Equation (6.5) satisfies

x∗ = arg max
x∈X

εpg(S ∪ {x}) = arg max
x∈X

{
εpg(S ∪ {x})− εpg(S)

}
,

where p is the current posterior in the probabilistic model. From Theorem 9, the batch S
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selected in each iteration of Algorithm 6.1 is near-optimal:

εpg(S) >
(

1− 1
e

)
max

S′:|S′|=s
εpg(S′).

To prove the near-optimality for the whole batch algorithm, we can employ the same

deterministic modelH as in Section 3.2. From the definition of εpg(S) and Lemma 2,

εpg(S) = 1−
∑

y
p[y;S]2 = 1−

∑
y
p[y;S]2,

where p is the corresponding posterior of p in the deterministic model and the summations

are over all possible label sequences y of S. Note that 1−
∑

y p[y;S]2 (and hence εpg(S))

is equivalent to the expected version space reduction in the deterministic model if S is

chosen. So, in the deterministic model, Algorithm 6.1 is equivalent to the BatchGreedy

algorithm proposed by Chen and Krause (2013). According to their results, the version

space reduction after observing the label sequence of each batch is adaptive monotone

submodular. Furthermore, the average version space reduction after selecting each batch

by Algorithm 6.1 is an e/(e − 1)-approximate greedy step. Using Theorem 5.2 of

Golovin and Krause (2011), we have:

Eh∼p0

[
f(xπmaxGEC

b
,h, h)

]
>
(
1− e−(e−1)/e

)
Eh∼p0

[
f(xπ∗

b
,h, h)

]
,

where f is the version space reduction function, p0 is the prior of the deterministic model

and xπb,h is the set of all examples selected by the batch algorithm πb after k iterations

(k × s examples in total), assuming the true labeling of the pool X is h. From the proof

of Theorem 10, Eh∼p0
[f(xπb,h, h)] = Hgibbs(πb) for any policy πb. Thus, we obtain

Theorem 11.

Theorem 11 has a different bounding constant than those in Theorems 9 and 10 because

it uses two levels of approximation to compute the batch policy: at each iteration,

it approximates the optimal batch by greedily choosing one example at a time using
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Equation (6.5) (first approximation). Then it uses these chosen batches to approximate

the optimal batch policy (second approximation). In contrast, the fully adaptive case

has batch size 1 and only needs the second approximation, while the non-adaptive case

chooses 1 batch and only needs the first approximation.

In non-adaptive and batch mode settings, our algorithms need to sum over all label

sequences of the previously selected examples in a batch to choose the next example.

This summation is usually expensive and it restricts the algorithms to small batches.

However, we note that small batches may be preferred in some real problems. For

example, if there is a small number of annotators and labeling one example takes a long

time, we may want to select a batch size that matches the number of annotators. In this

case, the annotators can label the examples concurrently while we can make use of the

labels as soon as they are available. It would take a longer time to label a larger batch

and we cannot use the labels until all the examples in the batch are labeled.

6.2 Computing maxGEC

In this section, we discuss how to compute maxGEC and batch maxGEC for some

useful probabilistic models. Computing the values is often difficult and we discuss some

sampling methods for this task.

6.2.1 MaxGEC for Bayesian Conditional Exponential Models

A conditional exponential model defines the conditional probability Pλ[~y | ~x] of a struc-

tured label ~y given a structured input ~x as:

Pλ[~y | ~x] def=
1

Zλ(~x) exp
(

m∑
i=1

λiFi(~y, ~x)
)
,

where λ = (λ1, λ2, . . . , λm) is the parameter vector, Fi(~y, ~x) is the total score of the

i-th feature, and Zλ(~x) =
∑
~y exp (

∑m
i=1 λiFi(~y, ~x)) is the partition function.
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A well-known conditional exponential model is the linear-chain conditional random field

(CRF) (Lafferty et al., 2001) in which ~x and ~y both have sequence structures. That is,

~x = (x1, x2, . . . , x|~x|) ∈ X |~x| and ~y = (y1, y2, . . . , y|~x|) ∈ Y |~x|. In this model,

Fi(~y, ~x) =
|~x|∑
j=1

fi(yj , yj−1, ~x),

where fi(yj , yj−1, ~x) is the score of the i-th feature at position j.

In the Bayesian setting, we assume a prior p0[λ] =
∏m
i=1 p0[λi] on λ, where p0[λi] =

N (λi|0, σ2) is a Gaussian distribution with a known σ. After observing the labeled

examples (partial labeling) D = {(~xj , ~yj)}tj=1, we can obtain the posterior

pD[λ] = p0[λ|D] ∝
t∏

j=1

1
Zλ(~xj)

exp
(

m∑
i=1

λiFi(~yj , ~xj)
)

exp
(
−1

2

m∑
i=1

(
λi
σ

)2)
.

For active learning, we need to estimate the Gibbs error in Equation (6.3) from the poste-

rior pD. For each ~x, we can approximate the Gibbs error εpDg (~x) = 1−
∑
~y pD[~y; ~x]2 by

sampling N hypotheses λ1, λ2, . . . , λN from the posterior pD. In particular,

∑
~y

pD[~y; ~x]2

≈
∑
~y

 1
N

N∑
j=1

Pλj [~y|~x]

2

= 1
N2

∑
~y

 N∑
j=1

exp
(∑m

i=1 λ
j
iFi(~y, ~x)

)
Zλj (~x)

2

= 1
N2

N∑
j=1

N∑
t=1

1
Zλj (~x)Zλt(~x)

∑
~y

exp
(

m∑
i=1

λjiFi(~y, ~x)
)

exp
(

m∑
i=1

λtiFi(~y, ~x)
)

= 1
N2

N∑
j=1

N∑
t=1

1
Zλj (~x)Zλt(~x)

∑
~y

exp
(

m∑
i=1

(λji + λti)Fi(~y, ~x)
)

= 1
N2

N∑
j=1

N∑
t=1

Zλj+λt(~x)
Zλj (~x)Zλt(~x) .
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Thus, εpDg (~x) ≈ 1− 1
N2

N∑
j=1

N∑
t=1

Zλj+λt(~x)
Zλj (~x)Zλt(~x) .

If we only use the MAP hypothesis λ∗ to approximate the Gibbs error (i.e., the non-

Bayesian setting), then N = 1 and

εpDg (~x) ≈ 1− Z2λ∗(~x)
Zλ∗(~x)2 .

This approximation can be done efficiently if we can compute the partition functions

Zλ(~x) efficiently for any λ. This condition holds for a wide range of models including

logistic regression, linear-chain CRF, semi-Markov CRF (Sarawagi and Cohen, 2004),

and sparse high-order semi-Markov CRF (Nguyen et al., 2011; Cuong et al., 2014b,

2015).

We note that the above equation to approximate maxGEC from N sampled hypotheses

demonstrates an advantage of the algorithm compared to the maximum entropy or least

confidence algorithms. To our knowledge, there is no simple way to compute the latter

criteria from a finite sample of hypotheses except for using only the MAP estimation. In

particular, it is difficult to sum (or minimize) over all the outputs ~y. For maxGEC, the

summation can be rearranged to obtain the partition functions, which can be computed

efficiently using known inference algorithms.

6.2.2 Batch maxGEC for Bayesian Transductive Naive Bayes

We now discuss an algorithm to approximate batch maxGEC for non-adaptive and batch

mode active learning with Bayesian transductive Naive Bayes. First, we describe the

Bayesian transductive Naive Bayes model for text classification. Let Y ∈ Y be a random

variable denoting the label of a document and W ∈ W be a random variable denoting

a word. In a Naive Bayes model, the parameters are θ = {θy}y∈Y ∪ {θw|y}w∈W,y∈Y ,

where θy = P[Y = y] and θw|y = P[W = w|Y = y]. For a document Z and a label Y ,

if Z = {W1,W2, . . . ,W|Z|} where Wi is a word in the document, then we model the
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Algorithm 6.2: Approximation for Equation (6.5) in Bayesian transductive

Naive Bayes model.

Input :Selected unlabeled examples S, current unlabeled example x, current

posterior pcD.

1 Sample M label vectors (yi)M−1
i=0 of (X \ T ) ∪ T from pcD using Gibbs

sampling.

2 r ← 0
3 for i = 0 to M − 1 do
4 for y ∈ Y do

5 p̂cD[yiS ∪ {y};S ∪ {x}]←
1
M

∣∣∣{yj : yjS = yiS ∧ yj{x} = y
}∣∣∣

6 r ← r + p̂cD[yiS ∪ {y};S ∪ {x}]2

7 end

8 end
9 return 1− r

joint distribution P[Z, Y ] as:

P[Z, Y ] def= θY

|Z|∏
i=1

θWi|Y .

In the Bayesian setting, we assume that there is a prior p0[θ] such that θy ∼ Dirichlet(α)

and θw|y ∼ Dirichlet(αy) for each y. When we observe the labeled documents, we

update the posterior by counting the labels and the words in each document label. The

posterior parameters also follow Dirichlet distributions.

Let X be the original pool of training examples and T be the unlabeled testing examples.

In the transductive setting, we work with the conditional prior pc0[θ] = p0[θ|X; T ].

For a set D = (T,yT ) of labeled examples where T ⊆ X is the set of unlabeled

examples and yT is the label sequence of T , the conditional posterior is pcD[θ] =

p0[θ|X; T ;D] = pD[θ|(X \ T ) ∪ T ], where pD[θ] = p0[θ|D] is the Dirichlet posterior

of the non-transductive model.
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To implement the batch maxGEC algorithm, we need to estimate the Gibbs error in

Equation (6.5) from the conditional posterior. Let S be the currently selected batch. For

each unlabeled example x /∈ S, we need to estimate:

1−
∑
y,y

pcD [y ∪ {y};S ∪ {x}]2 = 1− Ey

[∑
y p

c
D [y ∪ {y};S ∪ {x}]2

pcD[y;S]

]
,

where the expectation is with respect to the distribution pcD[y;S]. We can use Gibbs

sampling to approximate this expectation. First, we sample M label vectors y(X\T )∪T

of the remaining unlabeled examples from pcD using Gibbs sampling. Then, for each y,

we estimate pcD[y;S] by counting the fraction of the M sampled vectors consistent with

y. For each y and y, we also estimate pcD [y ∪ {y};S ∪ {x}] by counting the fraction of

the M sampled vectors consistent with both y and y on S ∪ {x}. This approximation is

equivalent to Algorithm 6.2. In the algorithm, yiS is the label sequence of S according to

yi.

6.3 Experiments

In this section, we report the experimental results for maxGEC on a named entity

recognition task with Bayesian CRF and for batch maxGEC on a text classification task

with Bayesian transductive Naive Bayes model.

6.3.1 Named Entity Recognition (NER) with Bayesian CRF

In this experiment, we consider the NER task with the Bayesian CRF model described

in Section 6.2.1. In this task, we need to label each word in English sentences with one

of the following four types of named entities: persons, locations, organizations, and

miscellaneous named entities (those that do not belong to the previous three groups) or

we label the word with “none” to indicate that it is not part of any named entity. We use

a subset of the CoNLL 2003 NER task (Tjong Kim Sang and De Meulder, 2003) which
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contains 1928 training and 969 test sentences.

Following the setting in (Settles and Craven, 2008), we let the cost of querying the

label sequence of each sentence be 1. We implement two versions of maxGEC with the

approximation algorithm in Section 6.2.1: the first version approximates Gibbs error by

using only the MAP hypothesis (maxGEC-MAP), and the second version approximates

Gibbs error by using 50 hypotheses sampled from the posterior (maxGEC-50). We

sample the hypotheses for maxGEC-50 from the posterior by the Metropolis-Hastings

algorithm (Chib and Greenberg, 1995) with the MAP hypothesis as the initial point.

We compare the maxGEC algorithms with 4 other learning criteria: passive learner

(Passive), active learner which chooses the longest unlabeled sequence (Longest), active

learner which chooses the unlabeled sequence with maximum Shannon entropy (SegEnt),

and active learner which chooses the unlabeled sequence with the least confidence

(LeastConf). For SegEnt and LeastConf, the entropy and confidence are estimated from

the MAP hypothesis. As discussed in Section 6.2.1, there is no simple way to compute

SegEnt or LeastConf criteria from a finite sample of hypotheses except for using only

the MAP estimation. For all the algorithms, we use the MAP hypothesis for Viterbi

decoding.

We compare the total area under the F1 curve (AUC) for each algorithm after querying

the first 500 sentences. The absolute AUC scores for the experiment are given in Figure

6.1. As a percentage of the maximum score of 500, algorithms Passive, Longest, SegEnt,

LeastConf, maxGEC-MAP and maxGEC-50 attain 72.8, 67.0, 75.4, 75.5, 75.8 and 76.0

respectively. Hence, the maxGEC algorithms perform better than all the other algorithms,

and significantly so over the Passive and Longest algorithms.

We test the statistical significance of our results using randomization tests (Noreen, 1989;

Yeh, 2000) in which we randomly shuffle the outputs of two systems being compared

and compute how likely the shuffle produces a difference in the AUCs. Because of the

large data sizes, we use approximate tests where for each comparison, we make 10000

random shuffles and repeat this process 999 times. The significance level p is at most
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Passive Longest SegEnt LeastConf maxGEC-MAP maxGEC-50

363.88 334.99 377.24 377.63 379.20 380.22

363.88

334.99

377.24 377.63 379.20 380.22

Passive Longest SegEnt LeastConf maxGEC-MAP maxGEC-50

Figure 6.1: Absolute AUC scores under the F1 curves on the CoNLL 2003 data set.

(nc + 1)/(nt + 1), where nc is the number of trials in which the difference between

the AUCs is greater than the original difference, and nt is the total number of iterations

(Noreen, 1989; Yeh, 2000).

Our statistical significance tests show that maxGEC-MAP is significantly better than

Passive, Longest (both with p ≤ 0.001), and SegEnt (with p ≤ 0.005). It is better than

LeastConf with p ≤ 0.013. On the other hand, maxGEC-50 is significantly better than

Passive, Longest, SegEnt, and LeastConf with p ≤ 0.001.

6.3.2 Text Classification with Bayesian Transductive Naive Bayes

In this experiment, we consider the text classification model in Section 6.2.2 with the

meta-parameters α = (0.1, . . . , 0.1) and αy = (0.1, . . . , 0.1) for all y. We implement

batch maxGEC (maxGEC) with the approximation in Algorithm 6.2 and compare with 5

other algorithms: passive learner with Bayesian transductive Naive Bayes model (TPass),

least confidence active learner with Bayesian transductive Naive Bayes model (LC),

passive learner with Bayesian non-transductive Naive Bayes model (NPass), passive

learner with logistic regression model (LogPass), and batch mode active learner with

Fisher information matrix and logistic regression model (LogFisher) (Hoi et al., 2006b).

To implement the least confidence algorithm, we sample M label vectors as in Algorithm
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6.2 and use them to estimate the label distribution for each unlabeled example. The

algorithm will then select s examples whose label is least confident according to these

estimates.

We run the algorithms on 7 binary text classification tasks from the 20 Newsgroups

data set (Joachims, 1996). In these tasks, we need to classify English news articles into

one of two different topics (see the first column of Table 6.1). We run our experiments

with batch size s = 10, 20, 30 and report the areas under the accuracy curve (AUC) for

these cases in Table 6.1, 6.2, and 6.3 respectively. In the tables, bold figures indicate

the best score on a row. The results are obtained by averaging over 5 different runs of

the algorithms, and the AUCs are normalized so that their range is from 0 to 100. From

the results, maxGEC obtains the best AUC scores on 4/7 tasks for each batch size and

also the best average AUC scores. LC also performs well and its scores are only slightly

lower than maxGEC. The passive learning algorithms are much worse than the active

learning algorithms.

We also run the statistical significance tests described in Section 6.3.1 for the results in

this experiments. For the batch size of 10, the tests show that maxGEC is significantly

better than TPass, NPass, LogPass, and LogFisher in terms of average AUC scores with

p ≤ 0.001. For the batch sizes of 20 and 30, maxGEC is significantly better than all the

competing algorithms (including LC) with p ≤ 0.001.
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Task TPass maxGEC LC NPass LogPass LogFisher

alt.atheism/comp.graphics 87.43 91.69 91.66 84.98 91.63 93.92

talk.politics.guns/talk.politics.mideast 84.92 92.03 92.16 80.80 86.07 88.36

comp.sys.mac.hardware/comp.windows.x 73.17 93.60 92.27 74.41 85.87 88.71

rec.motorcycles/rec.sport.baseball 93.82 96.40 96.23 92.33 89.46 93.90

sci.crypt/sci.electronics 60.46 85.51 85.86 60.85 82.89 87.72

sci.space/soc.religion.christian 92.38 95.83 95.45 89.72 91.16 94.04

soc.religion.christian/talk.politics.guns 91.57 95.94 95.59 85.56 90.35 93.96

Average 83.39 93.00 92.75 81.24 88.21 91.52

Table 6.1: AUCs (%) of different learning algorithms with batch size s = 10.

Task TPass maxGEC LC NPass LogPass LogFisher

alt.atheism/comp.graphics 87.62 91.52 91.70 84.85 91.28 93.37

talk.politics.guns/talk.politics.mideast 84.23 92.52 92.56 80.61 85.89 86.93

comp.sys.mac.hardware/comp.windows.x 73.96 91.71 89.98 74.79 85.83 88.06

rec.motorcycles/rec.sport.baseball 93.65 95.95 95.93 92.04 89.25 93.11

sci.crypt/sci.electronics 61.10 86.19 85.97 61.28 82.80 86.93

sci.space/soc.religion.christian 92.44 95.77 95.77 89.67 91.04 93.48

soc.religion.christian/talk.politics.guns 91.11 94.56 94.56 85.41 90.09 93.12

Average 83.44 92.60 92.35 81.23 88.02 90.71

Table 6.2: AUCs (%) of different learning algorithms with batch size s = 20.

Task TPass maxGEC LC NPass LogPass LogFisher

alt.atheism/comp.graphics 87.72 92.22 92.22 85.27 91.05 92.88

talk.politics.guns/talk.politics.mideast 85.13 92.20 92.17 81.00 85.63 86.35

comp.sys.mac.hardware/comp.windows.x 72.81 88.58 88.53 74.53 85.75 87.52

rec.motorcycles/rec.sport.baseball 94.03 96.21 96.22 92.09 89.03 92.22

sci.crypt/sci.electronics 61.71 86.12 85.25 61.62 82.74 86.31

sci.space/soc.religion.christian 91.09 95.86 95.86 88.76 90.88 92.82

soc.religion.christian/talk.politics.guns 91.00 95.54 95.54 85.19 89.65 91.89

Average 83.36 92.39 92.26 81.21 87.82 90.00

Table 6.3: AUCs (%) of different learning algorithms with batch size s = 30.
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CHAPTER 7
The Generalized Maximum Gibbs Error Criterion

In the previous chapter, we have introduced the maximum Gibbs error criterion for

Bayesian pool-based active learning that is near-optimal in the average case. In this

chapter, we shall propose generalized versions of the maximum Gibbs error criterion

that can incorporate any general loss function into the criteria. We shall also analyze

the near-optimality of the new criteria in both the average case and worst case, and then

show that they perform well in practice.

First, let us reconsider the maximum Gibbs error criterion in Chapter 6. Recall that

the policy Gibbs error objective Hgibbs can be written as Hgibbs(π) = Eh∼p0
[f(xπ,h, h)],

where f is the version space reduction function defined in Equation (5.3) of Section

5.2. Note that f(xπ,h, h) = 1− p0[h(xπ,h);xπ,h] is the expected 0-1 loss that a random

labeling drawn from p0 differs from h on xπ,h. Because of the nature of 0-1 loss, even if

the random labeling only differs from h on one element of xπ,h, it is counted as an error.

To overcome this disadvantage, we formulate a new objective function that can handle

an arbitrary general loss function L : YX × YX → R≥0 satisfying the following two

properties: L(h, h′) = L(h′, h) for any two labelings h and h′ of X , and L(h, h′) = 0

for any h = h′. For S ⊆ X and h ∈ H, we define the generalized version space

reduction function as:

fL(S, h) def= Eh′∼p0

[
L(h, h′) 1

(
h(S) 6= h′(S)

) ]
.
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This function is the expected loss between the true labeling h and any labeling h′ not

in the version space. Note that fL(S, h) =
∑
h′∈H:h(S)6=h′(S) p0[h′]L(h, h′), which can

also be written as:

∑
h′∈H

p0[h′]L(h, h′)−
∑

h′∈H:h(S)=h′(S)

p0[h′]L(h, h′).

IfL is the 0-1 loss, i.e.,L(h, h′) = 1(h 6= h′), we have f0-1(S, h) =
∑
h′:h(S)6=h′(S) p0[h′],

which is equal to the version space reduction function f(S, h).

Our new objective is to maximize the expected value of the generalized version space

reduction:

H
avg
L (π) def= Eh∼p0

[
fL(xπ,h, h)

]
.

Similar to the above discussion, when L is the 0-1 loss, this objective function is equal

to the policy Gibbs error Hgibbs(π). Thus, we call Havg
L (π) the generalized policy Gibbs

error. In the next section, we shall study some properties of a greedy algorithm that

attempts to maximize this objective function.

7.1 The Average-case Criterion

To maximize Havg
L (π), a natural algorithm is to greedily maximize the expected value

increment of fL at each step. Specifically, let D be the previously observed partial

labeling, this greedy criterion chooses the next example x∗ that satisfies

x∗ = arg max
x∈X

Eh∼pD [fL(xD ∪ {x}, h)− fL(xD, h)], (7.1)

where xD is the domain of D. We call this criterion the average generalized Gibbs error

criterion.

From the result in Section 4.2, if fL is adaptive monotone submodular, then using the

average generalized Gibbs error criterion above is near-optimal. Theorem 12 below
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states this result, which is a direct consequence of Theorem 2.

Theorem 12. Let πavg
L be the adaptive policy in Πk selecting examples using Equation

(7.1), and let π∗ be the optimal adaptive policy in Πk with respect to Havg
L . If fL is

adaptive monotone submodular with respect to the prior p0, then

Havg
L (πavg

L ) >
(

1− 1
e

)
Havg
L (π∗).

Note that if L is the 0-1 loss, then fL is adaptive monotone submodular with respect to

any prior. Unfortunately, in general, fL may not be adaptive submodular with respect to

a prior p0. Theorem 13 below states this result.

Theorem 13. Let p0 be a prior onH with p0[h] > 0 for all h ∈ H. There exists a loss

function L such that fL is not adaptive submodular with respect to p0.

Proof. Fix any two partial labelings D and D′ where D′ = D ∪ E with E 6= ∅. For any

D, let xD be the domain of D and yD = D(xD). For any x ∈ X \ xD′ , we have:

∆(x|D) = Eh∼pD
[
fL(xD ∪ {x}, h)− fL(xD, h)

]
= Eh∼pD [

∑
h′(xD)=h(xD)

p0[h′]L(h, h′)−
∑

h′(x)=h(x),
h′(xD)=h(xD)

p0[h′]L(h, h′)]

= Eh∼pD [
∑

h′(xD)=h(xD),h′(x)6=h(x)

p0[h′]L(h, h′)]

=
∑

h:pD[h]>0

pD[h]
∑

h′(xD)=h(xD),h′(x) 6=h(x)

p0[h′]L(h, h′)

 .

Note that if pD[h] > 0, then pD[h] = p0[h]
p0[yD;xD] = p0[h]∑

h:h(xD)=yD p0[h]
.

Thus, ∆(x|D)

=

∑
pD[h]>0

∑
pD[h′]>0,
h′(x) 6=h(x)

p0[h]p0[h′]L(h, h′)

∑
h(xD)=yD p0[h]

=

∑
h∼D

∑
h′∼D,

h′(x) 6=h(x)

p0[h]p0[h′]L(h, h′)

∑
h∼D p0[h]

.
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Similarly, for D′, we also have:

∆(x|D′) =
∑
h∼D′

∑
h′∼D′,h′(x)6=h(x) p0[h]p0[h′]L(h, h′)∑

h∼D′ p0[h]

= 1∑
h∼D′ p0[h]

[
∑
h∼D

∑
h′∼D,h′(x)6=h(x)

p0[h]p0[h′]L(h, h′)

−
∑
h∼D

∑
h′∼D,h′(x) 6=h(x)

p0[h]p0[h′]L(h, h′) 1(h � E ∨ h′ � E)],

where h � E denotes that h is not consistent with E . Now we can construct the loss

function L such that L(h, h′) = 0 for all h, h′ satisfying h � E or h′ � E . Thus,

∆(x|D′) =
∑
h∼D

∑
h′∼D,h′(x)6=h(x) p0[h]p0[h′]L(h, h′)∑

h∼D′ p0[h]
.

From the assumption p0[h] > 0 for all h, we have
∑
h∼D′ p0[h] <

∑
h∼D p0[h]. There-

fore, ∆(x|D′) > ∆(x|D) and fL is not adaptive submodular.

Sufficient Condition for Adaptive Submodularity of fL

We now discuss a sufficient condition for fL to be adaptive submodular with respect to

p0, and hence satisfy the precondition in Theorem 12 (note that fL is already adaptive

monotone with respect to any prior p0). From the previous proof, let

A =
∑
h∼D

∑
h′∼D,h′(x) 6=h(x)

p0[h]p0[h′]L(h, h′),

B =
∑
h∼D

∑
h′∼D,h′(x) 6=h(x)

p0[h]p0[h′]L(h, h′) 1(h � E ∨ h′ � E),

C =
∑
h∼D

p0[h] and D =
∑
h∼D

p0[h] 1(h � E).

Now let us allow E to be possibly empty instead of being just a non-empty set as in

the previous proof. Note that ∆(x|D) = A
C and ∆(x|D′) = A−B

C−D . Thus, a sufficient

condition for fL to be adaptive submodular with respect to p0 is that for all D, D′, and x,
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we have A
C ≥

A−B
C−D . This condition is equivalent to A

C ≤
B
D . That means:

∑
h∼D

∑
h′∼D,h′(x) 6=h(x) p0[h]p0[h′]L(h, h′)∑

h∼D p0[h]

≤
∑
h∼D

∑
h′∼D,h′(x) 6=h(x) p0[h]p0[h′]L(h, h′) 1(h � E ∨ h′ � E)∑

h∼D p0[h] 1(h � E)

for all D, D′, and x. This condition holds if L is the 0-1 loss. However, it remains open

whether this sufficient condition is true for any interesting loss function other than 0-1

loss.

7.2 The Worst-case Criterion

We have shown in Theorem 13 that fL may not be adaptive submodular, and thus we

may not always have a theoretical guarantee for the average generalized Gibbs error

criterion. In this section, we will reconsider our objective in the worst case instead of the

average case.

In the worst case, we may intuitively want to maximize the worst-case objective function

Hworst
L (π) def= minh∈H fL(xπ,h, h). However, using this objective function may be too

conservative since the generalized version space reduction is computed only from the

losses between the surviving labelings1 and the worst-case labeling. Instead, we propose

a less conservative objective function based on the losses among all the surviving

labelings. Formally, we define the following total generalized version space reduction

function:

tL(S, h) def=
∑
h′

∑
h′′

p0[h′]L(h′, h′′)p0[h′′]−
∑

h′:h′(S)=h(S)

∑
h′′:h′′(S)=h(S)

p0[h′]L(h′, h′′)p0[h′′].

Our new objective is to maximize the following function called the worst-case total

1The surviving labelings in fL(S, h) are the labelings consistent with h on S.
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generalized policy Gibbs error:

Tworst
L (π) def= min

h∈H
tL(xπ,h, h).

To maximize Tworst
L , we propose a greedy algorithm that maximizes the worst-case

total generalized version space reduction at every step. Note that tL(S, h) satisfies the

minimal dependency property, i.e., its value does not depend on the labels of X \ S in h.

So, for a partial labeling D, we have tL(xD, h) = tL(xD,D) for any h ∼ D. Using this

notation, the greedy criterion for choosing the next example x∗ can be written as:

x∗ = arg max
x∈X

{
min
y∈Y

[tL(xD ∪ {x},D ∪ {(x, y)})− tL(xD,D)]
}
, (7.2)

where D is the previously observed partial labeling. We call this criterion the worst-

case generalized Gibbs error criterion. It can be shown that tL is pointwise monotone

submodular and satisfies the minimal dependency property for any loss function L.

Furthermore, the criterion in Equation (7.2) is equivalent to the criterion in Equation

(4.3). Thus, it follows from Theorem 3 that this greedy criterion is near-optimal with

respect to the objective function Tworst
L (π). Theorem 14 below proves this result.

Theorem 14. Let πworst
L be the adaptive policy in Πk selecting examples using Equation

(7.2), and let π∗ be the optimal adaptive policy in Πk with respect to Tworst
L . We have:

Tworst
L (πworst

L ) >
(

1− 1
e

)
Tworst
L (π∗).

Proof. It is clear that tL satisfies the minimal dependency property and Equation (7.2)

is equivalent to Equation (4.3). It is also clear that tL is pointwise monotone and

tL(∅, h) = 0 for all h. Thus, to apply Theorem 3, what remains is to show that tL is

pointwise submodular.

Consider tL,h(S) = tL(S, h) for any h. Fix A ⊆ B ⊆ X and x ∈ X \B. We have:

tL,h(A ∪ {x})− tL,h(A)

70



Chapter 7. The Generalized Maximum Gibbs Error Criterion

=
∑

h′(A)=h(A)

∑
h′′(A)=h(A)

p0[h′]L(h′, h′′)p0[h′′]−
∑

h′(A)=h(A)
h′(x)=h(x)

∑
h′′(A)=h(A)
h′′(x)=h(x)

p0[h′]L(h′, h′′)p0[h′′]

=
∑
h′

∑
h′′

(p0[h′]L(h′, h′′)p0[h′′] 1(h′(A) = h(A) ∧ h′′(A) = h(A))×

1(h′(x) 6= h(x) ∨ h′′(x) 6= h(x))).

Similarly, we have: tL,h(B ∪ {x})− tL,h(B)

=
∑
h′

∑
h′′

(p0[h′]L(h′, h′′)p0[h′′] 1(h′(B) = h(B) ∧ h′′(B) = h(B))×

1(h′(x) 6= h(x) ∨ h′′(x) 6= h(x))).

Since A ⊆ B, all pairs h, h′ such that 1(h′(B) = h(B) ∧ h′′(B) = h(B)) = 1 also

satisfy 1(h′(A) = h(A) ∧ h′′(A) = h(A)) = 1. Thus, tL,h(A ∪ {x}) − tL,h(A) ≥

tL,h(B ∪ {x}) − tL,h(B) and hence tL,h is submodular. Therefore, tL is pointwise

submodular.

It is worth noting that, like tL, the function fL is also pointwise submodular for any loss

function L. The proof for the pointwise submodularity of fL is essentially similar to

the proofs that f and tL are pointwise submodular in Theorem 6 and 14. Proposition 1

below proves this claim.

Proposition 1. For any prior p0 and any loss function L, the generalized version space

reduction function fL is pointwise submodular.

Proof. Consider fL,h(S) = fL(S, h) for any h. Fix A ⊆ B ⊆ X and x ∈ X \ B. We

have:

fL,h(A ∪ {x})− fL,h(A) =
∑

h′(A)=h(A)

p0[h′]L(h, h′)−
∑

h′(A)=h(A),h′(x)=h(x)

p0[h′]L(h, h′)

=
∑
h′

p0[h′]L(h, h′) 1(h′(A) = h(A)) 1(h′(x) 6= h(x)).
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Similarly, we have

fL,h(B ∪ {x})− fL,h(B) =
∑
h′

p0[h′]L(h, h′) 1(h′(B) = h(B)) 1(h′(x) 6= h(x)).

Since A ⊆ B, all pairs h, h′ such that h′(B) = h(B) also satisfy h′(A) = h(A). Thus,

fL,h(A ∪ {x})− fL,h(A) ≥ fL,h(B ∪ {x})− fL,h(B) and hence fL,h is submodular.

Therefore, fL is pointwise submodular.

However, we note that fL does not satisfy the minimal dependency property, so we

cannot use the theory in Section 4.3 directly on fL. Besides, Theorem 13 also shows

that fL may not be adaptive submodular. Thus, this is an example that a pointwise

submodular function is not necessarily adaptive submodular, and we may not be able

to use Golovin and Krause (2011)’s result to obtain a result in the average case for

pointwise submodular functions.

7.3 Computing the Criteria

In this section, we discuss the computations of the criteria in Equation (7.1) and Equation

(7.2). First, we give two propositions below regarding these equations.

Proposition 2. The selected example x∗ in Equation (7.1) is equal to

arg min
x∈X

∑
y∈Y

Eh,h′∼pD
[
L(h, h′) 1(h(x) = h′(x) = y)

]
.

Proof. From Equation (7.1) and the definition of fL, we have:

x∗ = arg max
x∈X

Eh∼pD
[
fL(xD ∪ {x}, h)− fL(xD, h)

]
= arg max

x∈X
Eh∼pD

[
fL(xD ∪ {x}, h)

]
= arg max

x∈X
Eh∼pD [

∑
h′

p0[h′]L(h, h′)−
∑

h′:h(xD)=h′(xD),h(x)=h′(x)

p0[h′]L(h, h′)]
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= arg min
x∈X

Eh∼pD [
∑

h′:h(xD)=h′(xD),h(x)=h′(x)

p0[h′]L(h, h′)]

= arg min
x∈X

Eh∼pD [
∑

h′:pD[h′]>0,h(x)=h′(x)

p0[h′]L(h, h′)].

Note that if pD[h′] > 0, then p0[h′] = pD[h′]p0[yD;xD]. Hence, the last expression

above is equal to:

arg min
x∈X

Eh∼pD [
∑

h′:pD[h′]>0,h(x)=h′(x)

pD[h′]p0[yD;xD]L(h, h′)]

= arg min
x∈X

Eh∼pD [
∑

h′:pD[h′]>0,h(x)=h′(x)

pD[h′]L(h, h′)]

= arg min
x∈X

∑
h

pD[h]
∑

h′:h(x)=h′(x)

pD[h′]L(h, h′)

= arg min
x∈X

∑
y∈Y

∑
h:h(x)=y

pD[h]
∑

h′:h′(x)=y

pD[h′]L(h, h′)

= arg min
x∈X

∑
y∈Y

∑
h

pD[h]
∑
h′

pD[h′]L(h, h′) 1(h(x) = h′(x) = y)

= arg min
x∈X

∑
y∈Y

Eh,h′∼pD
[
L(h, h′) 1(h(x) = h′(x) = y)

]
.

Thus, Proposition 2 holds.

Proposition 3. The selected example x∗ in Equation (7.2) is equal to

arg min
x∈X

{
max
y∈Y

Eh,h′∼pD
[
L(h, h′) 1(h(x) = h′(x) = y)

]}
.

Proof. From Equation (7.2) and the definition of tL, we have:

x∗ = arg max
x∈X

min
y∈Y

[tL(xD ∪ {x},D ∪ {(x, y)})− tL(xD,D)]

= arg max
x∈X

min
y∈Y

[tL(xD ∪ {x},D ∪ {(x, y)})]

= arg max
x∈X

min
y∈Y

[
∑
h′

∑
h′′

p0[h′]L(h′, h′′)p0[h′′]

−
∑

h′(xD)=yD,
h′(x)=y

∑
h′′(xD)=yD,
h′′(x)=y

p0[h′]L(h′, h′′)p0[h′′]]
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= arg min
x∈X

max
y∈Y

∑
h′(xD)=yD,h′(x)=y

∑
h′′(xD)=yD,h′′(x)=y

p0[h′]L(h′, h′′)p0[h′′]

= arg min
x∈X

max
y∈Y

∑
pD[h′]>0,h′(x)=y

∑
pD[h′′]>0,h′′(x)=y

p0[h′]L(h′, h′′)p0[h′′]

= arg min
x∈X

max
y∈Y

∑
pD[h′]>0,h′(x)=y

p0[h′]
∑

pD[h′′]>0,h′′(x)=y

L(h′, h′′)p0[h′′].

Using the same observation about p0[h′] and p0[h′′] as in the previous proof, we note

that the last expression above is equal to:

arg min
x∈X

max
y∈Y

∑
pD[h′]>0,
h′(x)=y

(pD[h′]p0[yD;xD]
∑

pD[h′′]>0,
h′′(x)=y

L(h′, h′′)pD[h′′]p0[yD;xD])

= arg min
x∈X

max
y∈Y

∑
pD[h′]>0,h′(x)=y

pD[h′]
∑

pD[h′′]>0,h′′(x)=y

L(h′, h′′)pD[h′′]

= arg min
x∈X

max
y∈Y

∑
h′(x)=y

pD[h′]
∑

h′′(x)=y

L(h′, h′′)pD[h′′]

= arg min
x∈X

max
y∈Y

∑
h′

pD[h′]
∑
h′′

pD[h′′]L(h′, h′′) 1(h′′(x) = h′(x) = y)

= arg min
x∈X

max
y∈Y

Eh′,h′′∼pD
[
L(h′, h′′) 1(h′′(x) = h′(x) = y)

]
.

Thus, Proposition 3 holds.

From these two propositions, we can compute Equation (7.1) and Equation (7.2) by

estimating the expectation Eh,h′∼pD [L(h, h′) 1(h(x) = h′(x) = y)] for each y ∈ Y .

This estimation can be done by sampling from the posterior. More specifically, we

can sample directly from pD two sets H and H ′ which contain samples of h and h′

respectively. Then, the expectation Eh,h′∼pD [L(h, h′) 1(h(x) = h′(x) = y)] can be

approximated by:

1
|H| × |H ′|

∑
h∈H

∑
h′∈H′

L(h, h′) 1(h(x) = h′(x) = y).

Note that this approximation only requires samples of the labelings from the posterior,

and we do not need to explicitly maintain the set of all labelings which may be exponen-

tially large. In practice, we usually sample the labelings directly from the posterior of the
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probabilistic model without explicitly constructing the equivalent deterministic model.

We also note that if only one hypothesis (e.g., the MAP hypothesis) is used to sample

the labelings, then the criteria in this section would not depend on the loss function. In

this case, we cannot get the advantage of using the loss function. Hence, in practice, we

should sample the labelings from the whole posterior distribution instead of using only

the MAP hypothesis.

7.4 Experiments

Experimental results comparing the maximum entropy criterion, the maximum Gibbs

error criterion, and the least confidence criterion were reported in Chapter 6. In this

section, we only focus on the active learning criteria with general loss functions, and

conduct experiments with 3 different loss functions: the weighted error types loss, the F -

score loss, and the weighted test examples loss. These experimental results are reported

in Section 7.4.1, 7.4.2, and 7.4.3 respectively.

We experiment with various binary-class tasks from the 20 Newsgroups data set (Joachims,

1996) and the UCI repository (Bache and Lichman, 2013). The 20 Newsgroups text

classification tasks are similar to those in Section 6.3.2. In all the experiments, we

use the binary-class logistic regression as our model, and compare the active learners

using the greedy criteria in Section 7.1 and 7.2 with the passive learner (Pass) and the

maximum Gibbs error active learner (Gibbs). We estimate the average-case criteria

(AvgL), the worst-case criteria (WorstL), and the Gibbs criterion by sampling from the

posterior using the Metropolis-Hastings algorithm (Chib and Greenberg, 1995) with the

MAP hypothesis as the initial point. The Metropolis-Hastings algorithm walks randomly

around the data manifold and samples 500 labelings for each approximation. The Gibbs

criterion is estimated from Equation (6.3), while the criteria with loss functions are

estimated using the approximation in Section 7.3. We note that the Gibbs criterion is

equivalent to the maximum entropy and the least confidence criteria in this case since
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the tasks are all binary-class.

We compare the AUCs (area under the curve) for the F -scores or the corresponding

loss of the above algorithms (Pass, Gibbs, AvgL, and WorstL). The AUCs are computed

from the first 150 examples and normalized so that their ranges are from 0 to 100. We

randomly choose the first 10 examples as a seed set. In each run of the experiments, we

use the same seed set for all the algorithms. The final results are obtained by averaging

over 100 different runs of the algorithms.

The detailed procedure to compute the AUCs for each run is as follows. We sequentially

choose 10 (seed size), 11, . . ., 150 training examples using active learning or passive

learning. Then for each training size, we train a model and compute its score (F -score

or loss) on a separate test set. Using these scores, we can compute the AUCs. We use the

AUC scores because we want to compare the whole learning curves from choosing 10 to

150 training examples, not just the scores at any single point (e.g., 150 examples). This

is consistent with previous works such as (Settles and Craven, 2008).

It is worth to note that the loss functions used in this section are all imbalanced in

the sense that they give different weights for different examples or labels. From our

preliminary experiments not reported here, the active learning criteria with a balanced

loss function (Hamming loss, F1 loss, etc.) do not show advantages when compared to

the Gibbs criterion, although their performances are comparable. On the other hand, the

experiments in this section show that our active learning criteria with loss functions are

better when an imbalanced loss is concerned and the data sets are relatively balanced. In

all the results in this section, an asterisk (*) indicates that the corresponding score of the

active learning algorithm with a loss function is better than Gibbs. Bold figures indicate

the best average scores.
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Task Pass Gibbs AvgL WorstL

alt.atheism/comp.graphics 40.68 42.78 42.75* 38.27*

talk.politics.guns/talk.politics.mideast 57.60 56.30 56.40 52.99*

comp.sys.mac.hardware/comp.windows.x 56.07 56.45 56.10* 54.55*

rec.motorcycles/rec.sport.baseball 43.54 44.99 44.52* 41.49*

sci.crypt/sci.electronics 58.05 64.02 63.94* 60.60*

sci.space/soc.religion.christian 57.27 45.37 45.31* 45.16*

soc.religion.christian/talk.politics.guns 47.58 42.77 42.39* 39.98*

Average 51.54 50.38 50.20* 47.58*

Table 7.1: AUCs (%) for loss with weighted error types on the 20 Newsgroups data set.

Data set Pass Gibbs AvgL WorstL

Adult (Kohavi, 1996) 62.46 62.74 62.59* 62.58*

Breast cancer (Wolberg and Mangasarian, 1990) 32.23 34.33 34.98 34.96

Diabetes (Smith et al., 1988) 61.40 63.45 64.28 62.95*

Ionosphere (Sigillito et al., 1989) 30.05 28.78 28.34* 27.36*

Liver disorders (Forsyth, 1990) 75.13 77.37 77.21* 76.85*

Mushrooms (Schlimmer, 1987) 70.70 35.00 35.56 34.55*

Sonar (Gorman and Sejnowski, 1988) 74.48 74.27 74.17* 73.61*

Average 58.06 53.71 53.88 53.26*

Table 7.2: AUCs (%) for loss with weighted error types on UCI data sets.

7.4.1 Experiments with Weighted Error Types Loss

In this set of experiments, we consider a loss function that gives different weights for

different error types in the prediction. Specifically, the loss function here is similar to the

Hamming loss, except that it gives the weight 10 to false positives (instead of 1 as in the

Hamming loss). This type of loss functions is useful for applications where some types

of errors are more important than others.

Table 7.1 and 7.2 report the AUCs for this loss on the 20 Newsgroups and UCI data
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Task F2 F0.5

Pass Gibbs AvgL WorstL Pass Gibbs AvgL WorstL

alt.atheism/comp.graphics 82.47 87.19 87.22* 87.28* 85.60 85.94 85.77 87.01*

talk.politics.guns/talk.politics.mideast 76.33 75.49 76.14* 77.99* 76.36 75.99 76.66* 78.18*

comp.sys.mac.hardware/comp.windows.x 71.58 73.26 73.65* 75.34* 75.26 75.31 75.64* 76.47*

rec.motorcycles/rec.sport.baseball 77.83 80.31 81.24* 81.97* 82.02 82.00 82.14* 83.70*

sci.crypt/sci.electronics 67.13 76.01 76.41* 76.45* 72.42 72.32 72.56* 74.28*

sci.space/soc.religion.christian 84.49 83.60 84.61* 86.15* 78.71 83.07 83.20* 83.66*

soc.religion.christian/talk.politics.guns 79.23 80.31 80.62* 82.12* 80.14 81.75 82.04* 82.83*

Average 77.01 79.45 79.98* 81.04* 78.64 79.48 79.72* 80.88*

Table 7.3: AUCs (%) for F2 and F0.5 on the 20 Newsgroups data set.

Task F2 F0.5

Pass Gibbs AvgL WorstL Pass Gibbs AvgL WorstL

Adult (Kohavi, 1996) 85.85 88.56 88.49 88.46 84.52 84.95 85.01* 85.04*

Breast cancer (Wolberg and Mangasarian, 1990) 91.65 91.22 91.45* 91.53* 93.59 93.16 93.22* 93.39*

Diabetes (Smith et al., 1988) 24.09 28.01 27.56 28.90* 33.30 36.29 35.22 37.11*

Ionosphere (Sigillito et al., 1989) 59.45 62.24 62.15 61.86 78.66 80.32 80.71* 80.96*

Liver disorders (Forsyth, 1990) 74.80 77.13 77.34* 76.23 70.92 69.95 70.11* 70.23*

Mushrooms (Schlimmer, 1987) 76.88 91.41 91.38 91.62* 54.31 80.97 80.89 81.37*

Sonar (Gorman and Sejnowski, 1988) 72.74 73.16 72.90 72.85 69.00 69.18 69.20* 69.50*

Average 69.35 73.10 73.04 73.06 69.19 73.55 73.48 73.94*

Table 7.4: AUCs (%) for F2 and F0.5 on UCI data sets.

sets respectively. From the results, all the active learning algorithms perform better

than passive learning in terms of the loss. On the 20 Newsgroups data set, AvgL and

WorstL perform better than Gibbs on most tasks, and WorstL achieves the best average

AUC overall. On the UCI data sets, WorstL performs slightly better than Gibbs and also

achieves the best average score.

7.4.2 Experiments with F -scores

In this set of experiments, we consider the F2 and F0.5 loss functions on the 20 News-

groups and the UCI data sets. For two labelings h and h′ (viewing them as label vectors),
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the Fβ loss is 1− Fβ(h, h′) where Fβ(h, h′) ∈ [0, 1] is the Fβ score between h and h′.

The Fβ score is defined as:

Fβ
def=

(1 + β2)PR
(β2P ) +R

,

where P and R are respectively the precision and recall of h′ compared to h. This loss

function is useful when we want to focus on the Fβ scores during our learning process.

F2 and F0.5 are two commonly used scores (together with F1) for various applications

in information retrieval.

Table 7.3 and 7.4 report the AUCs for F2 and F0.5 scores in this experiment on the 20

Newsgroups and the UCI data sets respectively. From the results, all the active learning

algorithms perform better than passive learning in terms of average F -scores. On the 20

Newsgroups data set, for both types of F -scores, AvgL and WorstL perform better than

Gibbs on most tasks, and WorstL achieves the best average AUC overall. On the UCI

data sets, AvgL and WorstL do not perform better than Gibbs in terms of the F2 score;

however, WorstL performs better than Gibbs for all tasks on the F0.5 score and it also

achieves the best average AUC for F0.5 score overall.

7.4.3 Experiments with Weighted Test Examples Loss

Unlike the previous experiments, in this set of experiments we assume the test examples

are given in advance, and some test examples have a significantly more weight than the

others. This scenario may happen in applications where different examples are classified

for different users, and some users are more important than the others. With all the

information, we put a loss function on the test data during training that is essentially

similar to Hamming loss but gives higher weights for the important examples. In this

experiment, we set the weight 10 for half of the test examples, while the other half have

weight 1.

Table 7.5 and 7.6 report the AUCs for this loss on the 20 Newsgroups and UCI data

sets respectively. From the results, all the active learning algorithms perform better
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Task Pass Gibbs AvgL WorstL

alt.atheism/comp.graphics 15.54 13.37 13.25* 12.42*

talk.politics.guns/talk.politics.mideast 24.43 24.06 23.57* 22.16*

comp.sys.mac.hardware/comp.windows.x 24.59 23.83 23.39* 22.86*

rec.motorcycles/rec.sport.baseball 17.49 16.83 16.31* 15.21*

sci.crypt/sci.electronics 26.42 25.10 24.64* 23.40*

sci.space/soc.religion.christian 19.17 16.43 16.31* 14.84*

soc.religion.christian/talk.politics.guns 18.50 16.85 16.46* 15.24*

Average 20.88 19.50 19.13* 18.02*

Table 7.5: AUCs (%) for loss with weighted test examples on the 20 Newsgroups data
set.

Data set Pass Gibbs AvgL WorstL

Adult (Kohavi, 1996) 22.58 20.65 20.61* 20.44*

Breast cancer (Wolberg and Mangasarian, 1990) 9.75 10.45 10.12* 10.13*

Diabetes (Smith et al., 1988) 33.09 32.99 32.88* 32.57*

Ionosphere (Sigillito et al., 1989) 16.30 15.40 15.39* 15.71

Liver disorders (Forsyth, 1990) 32.57 32.05 31.92* 32.61

Mushrooms (Schlimmer, 1987) 28.30 12.01 12.05 11.69*

Sonar (Gorman and Sejnowski, 1988) 38.35 39.14 38.79* 38.74*

Average 25.85 23.24 23.11* 23.13*

Table 7.6: AUCs (%) for loss with weighted test examples on UCI data sets.

than passive learning in terms of the loss. On the 20 Newsgroups data set, AvgL and

WorstL perform better than Gibbs on all tasks, and WorstL achieves the best average

AUC overall. On the UCI data sets, both AvgL and WorstL perform slightly better than

Gibbs, and AvgL achieves the best average score overall.
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CHAPTER 8
Robustness of Bayesian Pool-based Active Learning

In the previous chapters, we considered Bayesian pool-based active learning with the

assumption that the true prior is known and given to the active learner. In practice,

however, the prior is often unknown, and we choose a prior that is considered to be

close to the true prior. In this chapter, we shall analyze the robustness of active learning

algorithms in such setting where a perturbed prior is used instead of the true prior.

In particular, we investigate whether an active learning algorithm can achieve similar

performance using a perturbed prior as compared to using the true prior. We shall also

describe the use of a mixture prior model for more robust active learning when the prior

is unknown and then conduct experiments to show that the mixture prior model is robust

in practice.

8.1 Robustness of Active Learning Algorithms

In this section, we analyze the robustness of active learning algorithms that use a

perturbed prior. We recall from the previous chapters that the utility function f(S, h)

measures the value of querying examples S ⊆ X when the true labeling is h ∈ H. The

utility function may depend on the prior, but such dependency was omitted from the

notation as it was assumed that the true prior is always used. However, in this chapter,

the learning algorithm may use a perturbed prior p which is different from the true prior;

thus we shall use the notation fp(S, h) to make the dependency explicit. Similar to the
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previous chapters, we also consider the maximum coverage problem in this section.

In our analysis, we will need the following definition about the Lipschitz continuity of

the utility functions:

Definition. A utility function fp is said to be Lipschitz continuous (in the prior) with a

Lipschitz constant L, if for any S, any h, and any two priors p and p′,

|fp(S, h)− fp′(S, h)| ≤ L‖p− p′‖, (8.1)

where ‖p− p′‖ def=
∑
h |p[h]− p′[h]| is the `1 distance between p and p′.

In this chapter, an active learning algorithm A is a mapping from a utility function and

a prior to a policy. We use xπ,h to denote the set of examples selected by a policy π

when the true labeling is h. We will analyze the robustness of adaptive active learning

algorithms for the average case and the worst case separately in the following sections.

8.1.1 The Average Case

In the average case, the objective of an active learning algorithm is to find a policy with

maximum expected utility. Assume p0 is the true prior, then the expected utility of a

policy π is:

f
avg
p0

(π) def= Eh∼p0

[
fp0(xπ,h, h)

]
. (8.2)

We consider the case where we have already chosen a utility function, but still need to

choose the prior. In practice, the choice is often subjective and may not be the true prior.

A natural question is if we choose a perturbed prior p1, that is, a prior which is not very

different from the true prior p0 (in terms of `1 distance), can an active learning algorithm

achieve performance competitive to that obtained using the true prior? Note that we

focus on perturbed priors, because if it is possible to achieve close to best performance

using any prior, then the problem is likely to be easy to solve approximately.

Our first robustness result is on exact algorithms which return a policy with maximum

82



Chapter 8. Robustness of Bayesian Pool-based Active Learning

expected utility on any given prior. An exact algorithm A for the average-case maximum

coverage problem is an algorithm that outputs an optimal policy for any prior p:

A(p) = arg max
π

f
avg
p (π). (8.3)

For notational convenience, we drop the dependency of the algorithm A on the utility

function as we assume a fixed utility function here. We shall often need the following

property:

The utility function fp is upper bounded by a constant M and Lipschitz continuous with

a Lipschitz constant L. (*)

We now prove the following theorem for exact algorithms.

Theorem 15. Assume (*) holds. IfA is an exact algorithm for the average-case maximum

coverage problem, then for any true prior p0 and any perturbed prior p1,

favg
p0

(A(p1)) ≥ favg
p0

(A(p0))− 2(L+M)‖p1 − p0‖.

Thus,A is robust in the sense that it returns a near optimal policy when using a perturbed

prior.

Proof. For any policy π, note that:

|f avg
p0

(π)− f avg
p1

(π)| = |(
∑
h

p0[h]fp0(xπ,h, h)−
∑
h

p0[h]fp1(xπ,h, h))

+(
∑
h

p0[h]fp1(xπ,h, h)−
∑
h

p1[h]fp1(xπ,h, h))|

≤ (L+M)‖p0 − p1‖,

where the last inequality holds due to the Lipschitz continuity and boundedness of the

utility function fp. Thus, if π1 = A(p1) and π0 = A(p0), it follows that:

f
avg
p0

(π1) ≥ f
avg
p1

(π1)− (L+M)‖p0 − p1‖, and
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f
avg
p1

(π1) ≥ f
avg
p1

(π0) ≥ f avg
p0

(π0)− (L+M)‖p0 − p1‖.

Hence, f avg
p0

(π1) ≥ f avg
p0

(π0)− 2(L+M)‖p0 − p1‖.

Note that f avg
p0

(A(p0)) and f avg
p0

(A(p1)) are the expected utility of the policies returned

by A using p0 and p1 as the priors respectively. The expected utility is always computed

with respect to the true prior p0. Theorem 15 shows that when we use a perturbed prior

p1, the expected utility achieved by an exact algorithm degrades by at most a constant

factor of the `1 distance between the perturbed prior and the true prior.

Theorem 15 considers the robustness of exact algorithms, while practical algorithms

are generally approximate due to computational intractability of the problem. Formally,

an α-approximate (0 < α ≤ 1) algorithm A for the average-case maximum coverage

problem is an algorithm that, for any prior p, outputs a policy A(p) satisfying

f
avg
p (A(p)) ≥ αmax

π
f

avg
p (π). (8.4)

When α = 1, an α-approximate algorithm is an exact algorithm. The following robust-

ness result for α-approximate algorithms is a generalization of Theorem 15 above.

Theorem 16. Assume (*) holds. If A is an α-approximate algorithm for the average-

case maximum coverage problem, then for any true prior p0 and any perturbed prior

p1,

favg
p0

(A(p1)) ≥ αmax
π

favg
p0

(π)− (α+ 1)(L+M)‖p1 − p0‖.

Thus, A is robust in the sense that it returns a near α-approximate policy when using a

perturbed prior.

Proof. Let C = L+M . Denote π0 = arg maxπ f avg
p0

(π) and π1 = arg maxπ f avg
p1

(π).

Note that π0 and π1 are exactly those in the proof of Theorem 15. We have:

f
avg
p0

(A(p1)) ≥ f
avg
p1

(A(p1))− C‖p0 − p1‖
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≥ αf
avg
p1

(π1)− C‖p0 − p1‖

≥ α(f avg
p0

(π0)− C‖p0 − p1‖)− C‖p0 − p1‖

= αmax
π

f
avg
p0

(π)− C(α+ 1)‖p0 − p1‖,

where the first and third inequalities are from the proof of Theorem 15 and the second

inequality holds as A is α-approximate.

Application to Maximum Gibbs Error

Theorem 16 can be used to prove the robustness of the maximum Gibbs error algorithm in

Section 6.1.2 of Chapter 6. We recall that the maximum Gibbs error algorithm greedily se-

lects the next example x∗ satisfying the criterion x∗ = arg maxx Ey∼pD[ · ;x][1− pD[y;x]],

where pD is the current posterior and pD[y;x] is the probability (with respect to pD) that

x has label y (see Equation (6.3)).

In Section 6.1.2, we have shown that using the maximum Gibbs error criterion above

can achieve a constant factor approximation to the optimal policy Gibbs error, which is

equivalent to the expected version space reduction. Recall from Equation (5.3) that the

version space reduction utility function is fp(S, h) = 1− p[h(S);S], where p[h(S);S]

is the probability (with respect to p) that S has the labels h(S). In this case, the expected

utility f avg
p (π) is the policy Gibbs error in Equation (6.1). It was shown in Theorem 10

that, for any prior p,

f
avg
p (A(p)) ≥

(
1− 1

e

)
max
π

f
avg
p (π),

where A is the maximum Gibbs error algorithm. That is, the maximum Gibbs error

algorithm is (1− 1/e)-approximate.

Furthermore, the version space reduction utility is upper bounded by M = 1, and for

any priors p, p′, we also have:

|fp(S, h)− fp′(S, h)|
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= |p′[h(S);S]− p[h(S);S]|

= |
∑
h′

p′[h′]P[h′(S) = h(S)|h′]−
∑
h′

p[h′]P[h′(S) = h(S)|h′]|

≤ ‖p− p′‖.

Thus, the version space reduction utility satisfies (*) with L = M = 1. Hence, we have

the following corollary about the robustness of the maximum Gibbs error algorithm.

Corollary 1. If A is the maximum Gibbs error algorithm, then for any true prior p0 and

any perturbed prior p1,

favg
p0

(A(p1)) ≥ (1− 1
e

) max
π

favg
p0

(π)− (4− 2
e

)‖p0 − p1‖.

Application to Batch Maximum Gibbs Error

We can also obtain a similar result for the batch version of the maximum Gibbs error

active learning algorithm in Section 6.1.3 of Chapter 6. We recall that in the batch mode

setting, the active learning algorithm selects a batch of examples in each iteration instead

of only one example (Hoi et al., 2006b). The batch version of the maximum Gibbs

error algorithm is described in Algorithm 6.1, and it is a (1− e−(e−1)/e)-approximate

algorithm by Theorem 11.

If we restrict the policies to only those in the batch mode setting, then from Theorem 16,

we have the following corollary about the batch version of the maximum Gibbs error

algorithm. Note that the range of the max operator in the theorem is restricted to only

batch policies.

Corollary 2. If A is the batch maximum Gibbs error algorithm, then for any true prior

p0 and any perturbed prior p1,

favg
p0

(A(p1)) ≥ (1− e−(e−1)/e) max
π

favg
p0

(π)− (4− 2e−(e−1)/e)‖p0 − p1‖.
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8.1.2 The Worst Case

In the worst case, the objective of an active learning algorithm is to find a policy with

maximum worst-case utility. Assume p0 is the true prior, then the worst-case utility of a

policy π is:

fworst
p0 (π) def= min

h∈H

[
fp0(xπ,h, h)

]
.

An algorithm A is an exact algorithm for the worst-case maximum coverage problem if

for any prior p,

A(p) = arg max
π

fworst
p (π). (8.5)

For exact algorithms, we can obtain a robustness result similar to Theorem 15, but

without requiring fp to be upper bounded.

Theorem 17. Assume fp is Lipschitz continuous with a Lipschitz constant L. If A is an

exact algorithm for the worst-case maximum coverage problem, then for any true prior

p0 and any perturbed prior p1,

fworst
p0 (A(p1)) ≥ fworst

p0 (A(p0))− 2L‖p1 − p0‖.

Thus,A is robust in the sense that it returns a near optimal policy when using a perturbed

prior.

Proof. Let π0 = A(p0) and π1 = A(p1). By the definitions of π1 and fworst
p1

, we have

fworst
p1

(π1) ≥ fworst
p1

(π0) = minh fp1(xπ0,h
, h). Let h0 = arg minh fp1(xπ0,h

, h), the

inequality above becomes fworst
p1

(π1) ≥ fp1(xπ0,h0
, h0). Using the Lipschitz continuity

of fp and the definition of fworst
p0

, we have:

fp1(xπ0,h0
, h0) ≥ fp0(xπ0,h0

, h0)− L‖p0 − p1‖

≥ min
h
fp0(xπ0,h

, h)− L‖p0 − p1‖

= fworst
p0 (π0)− L‖p0 − p1‖.
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Thus, fworst
p1

(π1) ≥ fworst
p0

(π0)− L‖p0 − p1‖.

Similarly, let h1 = arg minh fp0(xπ1,h
, h), we also have fworst

p0
(π1) = minh fp0(xπ1,h

, h) =

fp0(xπ1,h1
, h1). Using the Lipschitz continuity of fp and the definition of fworst

p1
, we

have:

fp0(xπ1,h1
, h1) ≥ fp1(xπ1,h1

, h1)− L‖p0 − p1‖

≥ min
h
fp1(xπ1,h

, h)− L‖p0 − p1‖

= fworst
p1 (π1)− L‖p0 − p1‖.

Thus, fworst
p0

(π1) ≥ fworst
p1

(π1)− L‖p0 − p1‖ ≥ fworst
p0

(π0)− 2L‖p0 − p1‖.

Similar to Theorem 15, the worst-case utility is always computed with respect to the

true prior p0. Thus, the left-hand side of the inequality in Theorem 17 is fworst
p0

(A(p1))

instead of fworst
p1

(A(p1)). Theorem 17 shows that when we use a perturbed prior p1, the

worst-case utility achieved by an exact algorithm degrades by at most a constant factor

of the `1 distance between the perturbed prior and the true prior.

We now consider approximate algorithms for the worst case. An algorithm A is an

α-approximate (0 < α ≤ 1) algorithm for the worst-case maximum coverage problem if

for any prior p,

fworst
p (A(p)) ≥ αmax

π
fworst
p (π). (8.6)

For approximate algorithms, we can obtain a robustness result similar to Theorem 16.

Theorem 18. Assume fp is Lipschitz continuous with a Lipschitz constant L. If A is an

α-approximate algorithm for the worst-case maximum coverage problem, then for any

true prior p0 and any perturbed prior p1,

fworst
p0 (A(p1)) ≥ αmax

π
fworst
p0 (π)− (α+ 1)L‖p1 − p0‖.

Thus, A is robust in the sense that it returns a near α-approximate policy when using a
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perturbed prior.

Proof. Let π = A(p1) and h∗ = arg minh fp0(xπ,h, h). Let π0 = arg maxπ fworst
p0

(π)

and π1 = arg maxπ fworst
p1

(π). Note that π0 and π1 are exactly those in the proof of

Theorem 17.

From the definition of fworst
p0

, we have fworst
p0

(π) = minh fp0(xπ,h, h) = fp0(xπ,h∗ , h
∗).

By the Lipschitz continuity of fp, we have:

fp0(xπ,h∗ , h
∗) ≥ fp1(xπ,h∗ , h

∗)− L‖p0 − p1‖

≥ min
h
fp1(xπ,h, h)− L‖p0 − p1‖

= fworst
p1 (π)− L‖p0 − p1‖

≥ αmax
π

fworst
p1 (π)− L‖p0 − p1‖

= αfworst
p1 (π1)− L‖p0 − p1‖,

where the last inequality holds as A is α-approximate. Using the inequality relating

fworst
p1

(π1) and fworst
p0

(π0) in the proof of Theorem 17, we now have:

fworst
p0 (π) ≥ α(fworst

p0 (π0)− L‖p0 − p1‖)− L‖p0 − p1‖

= αmax
π

fworst
p0 (π)− (α+ 1)L‖p0 − p1‖.

Thus, the theorem holds.

Application to Least Confidence

Theorem 18 can be used to prove the robustness of the least confidence active learning

algorithm (Lewis and Gale, 1994; Culotta and McCallum, 2005) with the perturbed

prior. We recall that the least confidence algorithm greedily selects the next example x∗

satisfying the criterion x∗ = arg minx{maxy∈Y pD[y;x]}. In Section 5.2 of Chapter 5,

we have shown that using the least confidence criterion can achieve a constant factor

approximation to the optimal worst-case version space reduction.
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Formally, if fp(S, h) is the version space reduction utility in Section 8.1.1, then fworst
p (π)

is the worst-case version space reduction of π, and it was shown in Theorem 6 that, for

any prior p,

fworst
p (A(p)) ≥

(
1− 1

e

)
max
π

fworst
p (π),

where A is the least confidence algorithm. That is, the least confidence algorithm is

(1− 1/e)-approximate.

Since the version space reduction function is Lipschitz continuous with L = 1 as shown

in Section 8.1.1, we have the following corollary about the robustness of the least

confidence active learning algorithm when the perturbed prior is used.

Corollary 3. If A is the least confidence algorithm, then for any true prior p0 and any

perturbed prior p1,

fworst
p0 (A(p1)) ≥ (1− 1

e
) max

π
fworst
p0 (π)− (2− 1

e
)‖p0 − p1‖.

Application to Generalized Maximum Gibbs Error

Theorem 18 can also be used to prove the robustness of the worst-case generalized Gibbs

error algorithm (see Section 7.2) with a bounded loss. We recall that the algorithm

greedily maximizes the total generalized version space reduction in the worst case.

Formally, the total generalized version space reduction function is defined as:

tp(S, h) def=
∑

h′,h′′:h′(S)6=h(S) or
h′′(S)6=h(S)

p[h′]L(h′, h′′) p[h′′],

where L is a non-negative loss function between labelings that satisfies L(h, h′) =

L(h′, h) and L(h, h) = 0 for all h, h′. The worst-case generalized Gibbs error algo-

rithm attempts to greedily maximize tworst
p (π) def= minh tp(xπ,h, h), and it was shown in
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Theorem 14 that, for any prior p,

tworst
p (A(p)) ≥

(
1− 1

e

)
max
π

tworst
p (π),

where A is the worst-case generalized Gibbs error algorithm. That is, the worst-case

generalized Gibbs error algorithm is (1− 1/e)-approximate.

If we assume the loss function L is upper bounded by a constant m, then tp is Lipschitz

continuous with L = 2m. Indeed, for any S, h, p, and p′, we have:

|tp(S, h)− tp′(S, h)|

= |
∑

h′(S)6=h(S) or h′′(S)6=h(S)

L(h′, h′′)(p[h′]p[h′′]− p′[h′]p′[h′′])|

≤ m
∑

h′(S)6=h(S) or h′′(S)6=h(S)

|p[h′]p[h′′]− p′[h′]p′[h′′]|

= m
∑

h′(S)6=h(S) or h′′(S)6=h(S)

|(p[h′]− p′[h′])p[h′′] + p′[h′](p[h′′]− p′[h′′])|

≤ m
∑
h′,h′′

(|p[h′]− p′[h′]|p[h′′] + p′[h′]|p[h′′]− p′[h′′]|)

= 2m‖p− p′‖.

Thus, from Theorem 18, we have the following corollary about the robustness of the

worst-case generalized Gibbs error algorithm when the perturbed prior is used. We note

that the bounded loss assumption is reasonable since it holds for various practical loss

functions such as Hamming loss or Fβ loss.

Corollary 4. If A is the worst-case generalized Gibbs error algorithm and the loss

function of interest is upper bounded by a constant m ≥ 0, then for any true prior p0

and any perturbed prior p1,

tworst
p0 (A(p1)) ≥ (1− 1

e
) max

π
tworst
p0 (π)−m(4− 2

e
)‖p0 − p1‖.
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8.1.3 Remarks

By taking p1 = p0, we can use Corollary 1 to recover the known approximation ratio for

the maximum Gibbs error algorithm in Theorem 10. Similarly, we can use Corollary

2 to recover the approximation ratio for the batch maximum Gibbs error algorithm in

Theorem 11. For the worst case, we can also use Corollary 3 to recover the approximation

ratio for the least confidence algorithm in Theorem 6, and use Corollary 4 to recover the

approximation ratio for the generalized Gibbs error algorithm in Theorem 14. Thus, our

corollaries are generalizations of these previous theorems.

We also note that if the algorithm A is α-approximate (in the average or worst case)

with an optimal constant α under some computational complexity assumptions (Golovin

and Krause, 2011), then the constant α in our theorems is also optimal under the same

assumptions. This can be proven easily by contradiction and setting p1 = p0.

8.2 Robust Active Learning Using Mixture Prior

For active learning in the Bayesian setting, it is very important to use a good prior since

the prior determines which training examples the active learning algorithm would select

and how good the final learned model would be. In practice, however, it is difficult to

select the correct prior to use, and we usually resort to a perturbed prior instead.

However, in passive supervised learning methods such as in regularized logistic regres-

sion, it is common to use only a small set of potential priors and select the best prior from

that set using a validation set, which is set aside for that purpose. Given the practical

successes of these algorithms, our robustness analysis suggests that we should design

priors that are close to every prior in the small finite set of priors.

A simple prior that overlaps with every prior in a set is the uniform mixture of the priors

in the set. While it may not be particularly close to any element in the set, it is at least

bounded away from the worst-case distance of 2 between disjoint priors. In fact, a k
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Algorithm 8.1: Active learning for the mixture prior model.

Input :A set of n priors {p1, p2, . . . , pn}, the initial normalized weights for the

priors {w1, w2, . . . , wn}, and the budget of k queries.

1 pi0 ← pi for all i = 1, 2, . . . , n;

2 wi0 ← wi for all i = 1, 2, . . . , n;

3 for t = 1 to k do
4 Choose an unlabeled example x∗ based on an active learning criterion;

5 y∗ ← Query-label(x∗);

6 Update and normalize weights:

7 wit ∝ wit−1 p
i
t−1[y∗;x∗] for all i = 1, 2, . . . , n;

8 Update each posterior individually using Bayes’ rule:

9 pit[h] ∝ pit−1[h]P[h(x∗) = y∗|h] for each i = 1, 2, . . . , n and h ∈ H;

10 end
11 return {p1

k, p
2
k, . . . , p

n
k} and {w1

k, w
2
k, . . . , w

n
k};

component uniform mixture has `1 distance of no more than 2(1− 1/k) from any of the

component priors.

Hence, we propose to use a uniform mixture prior for practical robust active learning.

In this model, instead of using only one prior, we maintain a weighted set of priors (or

posteriors if we have already observed some labels). Every time we receive a label of an

example, we update the weights of the posteriors based on how good their predictions

on the example are. We also use the new label information to update the posteriors

individually using Bayes’ rule. We give the details of active learning for the mixture

prior model in Algorithm 8.1.

In this algorithm, the unlabeled example x∗ chosen in each iteration can be computed

using any active learning criterion of choice. For instance, if the maximum Gibbs error

criterion is used, then at iteration t, we have:

x∗ = arg max
x
Ey∼p[ · ;x][1− p[y;x]],
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where p[y;x] =
∑n
i=1w

i
t−1 p

i
t−1[y;x]. Thus, the active learning criterion can be com-

puted from the weights and posteriors obtained from the previous iteration. After x∗ is

chosen, we query its label y∗ and use this label to update the new weights and posteriors.

In our algorithm, the weights and posteriors are always normalized so that
∑
iw

i
t = 1

for all t and
∑
h p

i
t[h] = 1 for all i and t. The algorithm returns the final weights and

posteriors which can be used to make predictions on the new examples. More specifically,

the predicted label of a new example x is arg maxy
∑n
i=1w

i
k p

i
k[y;x].

We note that Algorithm 8.1 does not require the hypotheses to be deterministic. In

fact, the algorithm can be used with probabilistic hypotheses where P[h(x) = y|h] is

a real value between 0 and 1. We also note that for a posterior pit, computing pit[y;x]

can be expensive. In this case, we can approximate this probability by using the MAP

hypothesis. Particularly, we can approximate pit[y;x] by piMAP[y;x], the probability that

x has label y according to the MAP hypothesis of the posterior pit. This approximation

can be used to approximate both the active learning criterion and the predicted label of a

new example.

8.3 Experiments

In this section, we report our experimental results with the usage of different priors

and the mixture prior model. Our experiments use the logistic regression model with

different L2 regularizers. It is well-known that using an L2 regularizer is equivalent

to imposing a Gaussian prior with mean zero and variance σ2 on the parameter space.

Thus, we can consider different priors for our model by varying the variance σ2 of the

regularizer.

We consider two sets of experiments that use the maximum Gibbs error active learning

algorithm. We note that since our data sets are all binary classification data sets, the

maximum Gibbs error algorithm is also equivalent to the least confidence algorithm

and the maximum entropy algorithm. In our first set of experiments, we confirm our
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Figure 8.1: The average AUC scores for passive learning and the maximum Gibbs error
active learning algorithm with 1/σ2 = 0.01, 0.1, 0.2, 1, and 10 on the 20 Newsgroups
data set (a) and the UCI data set (b).

theoretical findings by running the logistic regression model with different priors (or

equivalently, regularizers). In the second set of experiments, we run the mixture prior

model and compare it with models that use only one prior.

For the active learning algorithm in our experiments, we randomly choose the first 10

examples as a seed set. The scores in this section are averaged over 100 runs of the

experiments with different seed sets. In all the experiments, we use the MAP hypotheses

to approximate both the maximum Gibbs error criterion and the predicted label on the

testing set, as described in Section 8.2.

8.3.1 Experiments With Different Priors

In this first set of experiments, we run the maximum Gibbs error active learning algorithm

with regularizers 1/σ2 = 0.01, 0.1, 0.2, 1, 10 on 7 binary classification tasks from the

20 Newsgroups data set (Joachims, 1996) and on another 7 binary classification tasks

from the UCI data set (Bache and Lichman, 2013). The tasks for the 20 Newsgroups

data set are shown in the first column of Table 8.1, and the tasks for the UCI data set are

shown in the first column of Table 8.2.

We show in Figure 8.1 the average areas under the accuracy curves (AUC) on the first

150 selected examples for the different regularizers. Figure 8.1a shows the average AUC
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scores for the 7 tasks from the 20 Newsgroups data set, while Figure 8.1b shows the

average scores for the 7 tasks from the UCI data set. The AUCs are computed from the

accuracy on a separate testing set. For completeness, we also compare the scores for

active learning with passive learning.

From Figure 8.1, active learning is better than passive learning for all the regularizers.

We also see that when the regularizers are close to each other (e.g., 1/σ2 = 0.1 and 0.2),

the corresponding scores also tend to be close. When the regularizers are farther apart

(e.g., 1/σ2 = 0.1 and 10), the scores also tend to be far to each other. Thus, this figure,

in some sense, confirms our theoretical findings in Section 8.1.

8.3.2 Experiments With Mixture Prior

In this second set of experiments, we investigate the performance of the mixture prior

model proposed in Section 8.2. We run the mixture prior model with the regularizers

1/σ2 = 0.01, 0.1, 1, 10 and compare it with models that use only one of these regular-

izers. Table 8.1 and 8.2 show the AUC scores of the first 150 selected examples for these

models on the 20 Newsgroups data set and the UCI data set respectively. In the tables,

double asterisks (**) indicate the best score, while an asterisk (*) indicates the second

best score on a row (without the last column). The last columns of the tables show the

AUCs of passive learning with the mixture prior model for comparison.

From the results in Table 8.1, the mixture prior model achieves the second best AUC

scores for all the tasks in the 20 Newsgroups data set. From the results for the UCI data

set in Table 8.2, the mixture prior model achieves the best score on the Ionosphere data

set, and the second best scores on three other tasks. For the remaining three tasks, it

achieves the third best scores. On average, the mixture prior model achieves the second

best scores for both data sets. Thus, the mixture prior model performs reasonably well

given the fact that we do not know which regularizer is the best to use for the data.

From Table 8.1 and 8.2, it is also interesting to note that if a bad regularizer is used (e.g.,
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Data set 0.01 0.1 1 10 Mixture Mixture

(Passive)

alt.atheism/comp.graphics 87.60** 87.25 84.94 81.46 87.33* 83.92

talk.politics.guns/talk.politics.mideast 80.71** 79.28 74.57 66.76 79.49* 76.34

comp.sys.mac.hardware/comp.windows.x 78.75** 78.21* 75.07 70.54 78.21* 75.02

rec.motorcycles/rec.sport.baseball 86.20** 85.39 82.23 77.35 85.59* 81.56

sci.crypt/sci.electronics 78.08** 77.35 73.92 68.72 77.42* 73.08

sci.space/soc.religion.christian 86.09** 85.12 81.48 75.51 85.50* 80.31

soc.religion.christian/talk.politics.guns 86.16** 85.01 80.91 74.03 85.46* 81.81

Average 83.37** 82.52 79.02 73.48 82.71* 78.86

Table 8.1: AUCs of the maximum Gibbs error algorithm with 1/σ2 = 0.01, 0.1, 1, 10
and the mixture prior model on the 20 Newsgroups data set.

Data set 0.01 0.1 1 10 Mixture Mixture

(Passive)

Adult 79.38 80.15 80.39** 79.68 80.18* 77.41

Breast cancer 88.28* 88.37** 86.95 83.82 88.14 89.07

Diabetes 65.09* 64.53 64.39 65.48** 64.82 64.24

Ionosphere 82.80* 82.76 81.48 77.88 82.95** 81.91

Liver disorders 66.31** 64.16 61.42 58.42 64.73* 65.89

Mushroom 90.73** 89.56 84.14 82.94 90.33* 73.38

Sonar 66.75** 65.45* 63.74 60.81 65.00 66.53

Average 77.05** 76.43 74.64 72.72 76.59* 74.06

Table 8.2: AUCs of the maximum Gibbs error algorithm with 1/σ2 = 0.01, 0.1, 1, 10
and the mixture prior model on the UCI data set.

1/σ2 = 10), the performance of active learning may be even worse than passive learning

with the mixture prior model.
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CHAPTER 9
Conclusion and Future Works

9.1 Conclusion

In this work, we have considered greedy algorithms for pool-based active learning in the

Bayesian setting. We developed two useful tools for analyzing theoretical properties of

these algorithms in the noisy case. The first tool is the equivalence between probabilistic

and deterministic models, and the second tool is the near-optimality guarantee for

greedy algorithms when maximizing pointwise monotone submodular functions. Using

these tools, we proved a near-optimality guarantee for the well-known least confidence

algorithm in the worst case. Furthermore, we also gave a negative result for another

well-known algorithm, the maximum entropy algorithm, in the average case.

We also proposed a new objective function for Bayesian pool-based active learning:

the policy Gibbs error. With this objective, we described the maximum Gibbs error

criterion for selecting the examples. This greedy algorithm has average-case near-

optimality guarantees in the non-adaptive, adaptive, and batch mode settings. We

discussed methods to approximate the maximum Gibbs error criterion for Bayesian

CRFs and Bayesian transductive Naive Bayes models. Our experimental results showed

that the criterion is useful for named entity recognition with the Bayesian CRF model

and for text classification with the Bayesian transductive Naive Bayes model.

As an improvement to the maximum Gibbs error algorithm, we also considered active

learning with general losses and proposed two new greedy algorithms, one of which is
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for the average case and the other is for the worst case. We proved that the worst-case

algorithm is always near-optimal, while the average-case algorithm is near-optimal under

some conditions. The main theoretical results for these algorithms are based on our

newly developed tool for analyzing pointwise monotone submodular functions. Our

experiments showed that the new algorithms with general losses perform well in practice.

Lastly, we investigated the robustness of active learning in the Bayesian pool-based

setting. We proved new robustness bounds for active learning algorithms that operate on

a perturbed prior instead of the true prior. The bounds can be applied to various active

learning algorithms such as the maximum Gibbs error, the batch maximum Gibbs error,

the generalized Gibbs error, and the least confidence algorithms. We also proposed the

use of mixture prior to make active learning algorithms more robust against a wrong

prior. Our experiments showed that the mixture prior is a reasonable choice in case we

do not know which prior is good for our data.

9.2 Future Works

There are several directions that can be considered for future works. In this section, we

briefly describe the following four potential directions.

The Min-Cost Setting: The first direction is to prove the near-optimality guarantees

in this thesis for the min-cost setting, rather than the maximum coverage setting as in

this work. The min-cost setting for active learning can be generally stated as: given a

target utility value, find the active learning policy that requires the minimum number of

queries (in the average case or worst case) to achieve the target utility. In this setting,

we conjecture that the algorithms proposed in this work can also achieve near-optimality.

That is, the number of queries required by these algorithms is within a constant factor of

the optimal number of queries.

The Multivariate Loss Functions: The total generalized version space in Chapter 7,∑
h,h′ p0[h]L(h, h′)p0[h′], can be seen as an uncertainty measure of p0 on the hypothesis
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spaceH. This uncertainty measure can be further generalized as follows. Let p be a proba-

bility measure on a spaceZ with p[z] being the probability of z ∈ Z . Consider a function

L : Zq → R≥0 from the set of q-tuples of Z to non-negative real numbers. We define an

uncertainty measureHL(p) def= 1
q−1

∑
z1,z2,...,zq p[z1]p[z2] . . . p[zq]L(z1, z2, . . . , zq) of p.

Note that when L is the 0-1 loss, i.e., L(z1, z2, . . . , zq) = 1(∃i, j s.t. zi 6= zj), we have

H0-1(p) = 1
q−1 (1−

∑
z p[z]q), which is the Tsallis entropy with entropic-index q (Tsal-

lis and Brigatti, 2004). A possible direction for a future work is to investigate whether

this new uncertainty measure is useful for active learning or other applications.

The Non-uniform Cost Setting: Another direction for future works is to consider

different costs for different types of queries. In the non-adaptive setting and the average-

case setting with adaptive monotone submodular functions, the greedy algorithms can

take into account the cost of each query by greedily choosing the example with maximum

utility gain per unit cost. For these cases, the greedy algorithms can still obtain near-

optimality compared to the optimal policy. It would be useful to prove similar results for

the worst-case setting considered in Chapter 7 of this work. In addition, using different

costs for different queries may be desirable for active learning with segmentation models

such as the semi-Markov conditional random fields (Sarawagi and Cohen, 2004). In

these models, segments of the input sequence may have different lengths, and the costs

or time to label them may also be different. Thus, the active learning algorithms should

take into account the costs for labeling the segments.

Improving Batch maxGEC: The fourth direction for future works is to improve

the near-optimality bound for the batch mode setting in Chapter 6. Recall that in

the batch mode setting, we need to select a batch of size s in each iteration be-

fore observing their labels. If in each iteration with the current posterior p, a batch

active learning policy π always chooses the ε-optimal batch S such that εpg(S) ≥

maxS′:|S′|=s εpg(S′) − ε, then from a result by Golovin and Krause (2011), we have

Hgibbs(π) ≥
(
1− 1

e

)
Hgibbs(π∗b ) − kε ≈ 0.63Hgibbs(π∗b ) − kε, where k is the number

of selected batches and π∗b is the optimal batch policy. When compared to the bound
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in Theorem 11, i.e. Hgibbs(πmaxGEC
b ) > 0.47Hgibbs(π∗b ), the above bound may be better

when ε is small. To select an ε-optimal batch with small ε in each iteration, we may

consider an exhaustive search strategy and thus trade off the computational efficiency for

better accuracy.
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